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Abstract 
 

A qualified fingerprint verification and identification system should 
resolve most of the problems of fingerprint image enhancement and 
fingerprint matching. In practice, the fingerprint images are not ideal 
and may have totally different qualities when the fingers are too moist 
too dry, improperly placed, or from some users who are engaged in 
heavy manual work. Furthermore nonlinear deformations in 
fingerprint images by reason of the elasticity of the skin as well as the 
pressure and the movement of the finger during image acquisition, 
result in bad matching results in verification and identification even 
from the same finger.  

In this thesis I designed a fingerprint-based biometric system in order 
to solve most of the above problems in both software and hardware 
application. Fingerprint identification and verification algorithms were 
first developed for PC, then optimized and implemented in an ARM9-
based embedded system.  

 



vi 
 

 
 
 
Zusammenfassung 

 
Ein gutes Fingerabdruck Verifikations- und -Identifikationssystem 
sollte die meisten Probleme bei Verbesserung und Vergleich von 
Fingerabdruckbildern lösen. In der Praxis sind Fingerabdruckbilder 
jedoch nicht ideal und können völlig unterschiedliche Eigenschaften 
haben, wenn die Finger zu feucht oder zu trocken sind, falsch auf den 
Sensor gelegt wurden oder abgenutzt sind. Zusätzlich treten durch 
die Elastizität sowie Druck und Bewegung des Fingers während der 
Bilderfassung nichtlineare Verzerrungen in Fingerabdruckbildern auf, 
die zu schlechten Ergebnissen bei Identifizierung und Verifikation 
führen. 

In dieser Arbeit wurde ein Fingerabdruck-basiertes biometrisches 
System entworfen, das die meisten der genannten Probleme lösen 
soll. Algorithmen zur Identifizierung und Überprüfung von 
Fingerabdrücken wurden zuerst auf dem PC entwickelt, und dann 
optimiert und auf einem ARM9-basierten eingebetteten System 
implementiert. 
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Chapter 1 

Introduction 

 

1.1  Biometrics 
 

Biometrics is the technology that uses unique and measurable physiological and 

behavioural characteristics to distinguish one person from the others. From these 

unique features many different research fields have been expanded, the major of 

which are fingerprint recognition, hand geometry recognition, facial recognition, 

iris recognition, voice recognition, keystroke recognition and signature 

recognition.  

 

These biometric technologies can be also separated into two categories: 

behavioural biometrics and physical biometrics [ 1 ]. Although behavioural 

biometrics includes all of the mannerisms or behaviour from an individual, it 

cannot be captured by a biometric system. Signature as well as keystroke 

recognition belongs to this category. On the other side physical biometrics has so 

many biological and physiological features, which can be captured by a biometric 

system. Fingerprint recognition, hand geometry recognition, facial recognition, iris 

recognition, voice recognition belong to this category. 
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Fingerprint recognition has been used for over a century and given criminal 

investigations a great aid. Every fingerprint has its own ‘ridges’ and ‘valleys’, 

which compose the loops, arches and swirls in some special positions. The 

ridges and valleys have different kinds of breaks and discontinuities. They are 

called ‘minutiae’, most of which will not change during a person’s life. The 

direction, location and type information of the reliable minutiae will be computed 

and used to compare with these from another finger. 

 

Hand geometry recognition is based on the structure of the hand such as its 

shape, size of palm, the length, width and thickness of the finger, the distances 

between finger joints. Hand geometry-based verification systems are simple, 

inexpensive and relatively easy to use. Dry weather or individual anomalies such 

as dry skin will not make the verification accuracy of the hand geometry-based 

systems worse. But its physical size limits its use. It cannot be used in many 

embedded systems such as laptop, cell phone etc.  

 

Facial Recognition uses facial images as biometric characteristic to distinguish 

one person from another. This biometric characteristic is perhaps the most 

prominent and intuitive of all recognition methods. Two basic clues of this 

approach are that: 1) the location and shape of facial attributes such as the eyes, 

ears, nose, lips and chin, and their spatial relationships, or 2) the global analysis 

of the face image that represents a face as a weighted combination of a number 

of standard faces. The result of facial recognition depends much on the capture 

angle of facial images. [2]  

 

Iris recognition relies on the distinctive features of the iris. The iris, which is one 

colour region, is located between the pupil and the sclera. Its texture such as 

freckles, furrows, rings, and the corona is stable and unique to an individual, 

which are also very difficult to tamper. 
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Voice recognition utilizes the characteristic of the sound, which is different from 

person to person, to identify an individual. The vibration of the words from the 

vocal tract as well as the shapes and sizes of the articulators change at all times. 

By this mean it is also one of the behavioural biometrics to some extent. Voice-

based recognition is sensitive to the background noise. 

 

Keystroke recognition is applied by comparing the particular way in which an 

individual types on a computer keyboard. Each individual has its own typing 

speed, the favourite time of some keys down and the interval between two 

continuous keystrokes. 

 

Signature recognition makes records of the way and the manner in which we sign 

our name. Signature recognition system analyses the timing, pressure and speed 

during the signing process and surely the signature itself. But the signature may 

change at every time even by the same person. Moreover, professional forgers 

can simulate the signature precisely. 

 

According to the development of biometrics technologies, they can be separated 

into several generations. Before the first generation of automatic fingerprint 

identification system (AFIS) came into use in 1970s, the earlier generation has 

limited performance and lack of interconnectivity (standalone). The first 

generation systems including all the technologies mentioned above have then 

widely used in civilian and commercial systems. Some examples are shown in 

Figure 1.1, which are mostly used at international border crossings. In spite of 

the advancement in sensor technology, computer speed and memory storage, 

the first generation still cannot meet the request of real-time computation in some 

cases and vulnerable to be attacked. Therefore the second generation biometrics 

systems in the present aim at firstly solving such left problems and then 

developing more techniques to improve such as data acquisition environment, 

user convenience, data acquisition quality and the capability to handle poor 

quality data, and to protect user privacy more efficiently.[3] 
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    a)         b)           c)        d) 

    

e)       f) 

    

g)         h) 

Figure 1.1: Deployment of biometrics systems at border crossings for immigration 

control: a) face recognition system (Smart Gate) at Sydney airport; b) iris 

recognition system at Amsterdam Schiphol airport; c) at Manchester airport (UK); 

d) at UAE airport; e) fingerprint recognition using index fingers at airports in 

Japan; f) ten fingerprint acquisition at airports in the United States; g) fingerprint 

based immigration clearance for passengers at Hong Kong airport; h) vehicular 

clearance using fingerprint and face in Hong Kong.[3] 
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In each kind of biometrics people are concerned with two problems: identification 

and verification. In identification, the enrolled templates try to tell the biometric 

system whether they are authenticated members by being compared with the 

other templates in the database, which is a one-to-N process. In verification, the 

enrolled templates with definite identification (ID) codes are compared with the 

templates with the same ID in the database in order to verify whether these 

newly enrolled templates are agreeable with the ID that they have, which is a 

one-to-one process. In contrast with popular identification methods, such as 

identification cards, personal identification numbers (PINs), or passwords, the 

most evident advantage of biometrics is that it is more secure and difficult to 

forger. Furthermore, it is more convenient for the users who utilize such biometric 

systems every day. 

 

Both identification and verification must supply a YES or NO as the answer, 

which is based on some matching algorithm. The latter generates a score which 

represents the similarity between the template to identify or verify and the 

matched template in the database. Each biometric system has at least one 

threshold for this matching score. If the score is lower than this threshold, the 

template will not be accepted by this biometric system.    

 

In order to give a standard performance evaluation of these matching algorithms, 

three important factors are introduced – the false acceptance rate (FAR), the 

false rejection rate (FRR) and the equal error rate (EER). 

 

The FAR is defined as the percentage of individuals who are not correctly 

identified: 

 

𝐹𝐴𝑅(%) =
𝑛𝑢𝑚 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑
× 100% 

               (1.1) 
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The FRR is defined as the percentage of individuals who should be identified, but 

are not: 

 

𝐹𝑅𝑅(%) =
𝑛𝑢𝑚 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑
× 100% 

               (1.2) 

 

The EER which is also called crossover rate is the point where the FAR and the 

FRR have the same value, see Figure 1.2. 

 

Figure 1.2: The relations between EER, FAR and FRR. 

 

In addition, there are some other standards such as the failure to enroll rate 

(FTER) and the ability to verify rate (ATV). The FTER is defined as the statistical 

probability that an individual is unable to enroll successfully in a biometric system: 

 

𝐹𝑇𝐸𝑅(%) =
𝑛𝑢𝑚 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑜𝑓 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
× 100% 

               (1.3) 
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The ATV implies the overall percentage of how difficult users can be verified by a 

biometric system. It is also related with the FTER and the FRR described above: 

 

𝐴𝑇𝑉 = [(1 − 𝐹𝑇𝐸𝑅) × (1 − 𝐹𝑅𝑅)] 

               (1.4) 

 

1.2  Embedded System 
 

Embedded system is actually such a software-hardware system which faces on 

practical application and puts emphasis on its main processor. The hardware as 

the basic platform of the whole embedded system provides exhaustive physical 

communicating interfaces, on the other side the software including operating 

system and application software, which are the controlling centre of this system, 

provides the operation of Human-Machine Interaction. Therefore, the 

development of embedded system includes two different parts. Hardware design 

contains the selection of processor, memory, communication interfaces, I/O and 

power supply. Software design refers to the programming of operating system 

and application program, especially software-interrupt debugging, code 

optimization and robustness. 

 

The aim of hardware selection is actually to search suitable microprocessor. The 

ARM processor, which is a 32-bit reduced instruction set computer (RISC) 

instruction set architecture (ISA), is considered as the most popular and universal 

embedded processor at the moment. The ARM processor has various families 

with different performance, the principal of which are the following: ARM7, ARM9, 

ARM11 and ARM Cortex.  

 

The ARM7 processor family was introduced in 1994 and continuous to be used 

today for simple 32-bit devices. Its successor is the ARM9 processor family, 

which enables single processor solutions for microcontroller, DSP and Java 
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applications, offering savings in chip area and complexity, power consumption 

etc. The representative core of the ARM9 processor family is ARM926EJ-S with 

enhanced 32-bit RISC CPU, flexible size instruction and data caches, tightly 

coupled memory (TCM) interfaces and memory management unit (MMU). 

Parallel with classic arm families, ARM Cortex family has its special advantages 

such as lower power consumption, higher code density etc. The ARM11 family 

and other later ARM Cortex processors are used for higher performance 

application and will not be discussed in this thesis. 

 

 

Figure 1.3: The ARM and Cortex families. 

 

1.3  Overview of the Thesis 
 

In this thesis a minutiae-based fingerprint encoding and matching approach is 

proposed and implemented in ARM9-based embedded system. Through further 

optimizations of the generation of binarized- and skeletonized- fingerprint image, 

more reliable minutiae are extracted and unreliable minutiae are rejected. And 

then a novel multiple-matching algorithm is developed to improve traditional 

minutiae-based fingerprint matching approaches. The main contribution of this 

thesis is that it provides a reliable and fast fingerprint identification and 

verification method applicable not only on PC platform but also on embedded 

hardware system. 
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This thesis is organized as follows. Chapter 2 and Chapter 3 give a general 

review of image enhancement, feature extraction methods and our improvements. 

Chapter 4 introduces various fingerprint matching algorithms and our hardware 

oriented fingerprint matching. Chapter 5 emphasizes the implementation of the 

fingerprint feature extraction and matching on embedded hardware platform. 

Chapter 6 summarizes the main work of thesis and gives some suggestions of 

future work. 
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Chapter 2 

Fingerprint Image Enhancement 

 

2.1  Introduction 
 

During the acquisition of fingerprint images some undesired factors such as 

moist or dry fingers, cuts, bruises and incorrect finger pressure will lead the input 

images to bad quality. In contrast with an ideal fingerprint, a practical fingerprint 

has discontinuous ridges and valleys with unequalled width. In Figure 2.1 

different fingerprints from the same Atmel senor indicate great difference of 

quality. 

 

The degradation of fingerprint images makes the ridge extraction and minutiae 

extraction very unreliable. As a consequence many spurious minutiae instead of 

genuine minutiae are extracted. Furthermore even the extracted genuine 

minutiae may have false position and orientation.  

 

The enhancement algorithm aims to find various methods to recover the ridges 

and valleys as much as possible. Some classic image enhancement techniques, 

such as contrast stretching, histogram manipulation, normalization[4], have been 

used as the initial preprocessing. Besides more sophisticated enhancement 

algorithms have also been developed for better results. 
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a) 79_6.bmp   b) 64_9.bmp   c) 20_1.bmp 

Figure 2.1: Fingerprint images with various qualities from FVC2006_DB3_A. a) A 

good quality fingerprint; b) A medium quality fingerprint; c) A poor quality 

fingerprint. 

 

2.2  State of the Art 

2.2.1 Segmentation 
 

Segmentation, as the initial step of fingerprint image preprocessing, aims to 

separate fingerprint area (foreground) from the original image background, which 

makes the preprocessing only valid for the foreground and reduces the 

preprocessing time quite a lot. Moreover the extraction of false features in noisy 

areas, which will greatly degrade the latter enhancement, can be avoided. 

 

The classic segmentation algorithms are based on the variance of each block 

and oriental information from the directional image. Ridge orientation is estimated 

at each pixel and a histogram is computed for each 16 × 16 block[5]. According 

to the distribution of the signal in the histogram, oriented ridges and valleys can 

be located at the peak signal and isotropic areas are represented as a flat region. 

When a block has no ridge information such as a background block, grey-scale 
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variance of this block is needed to be computed[6, 7] since the background area 

has uniform grey value and also low-variance. A more efficient method proposed 

in [8] is to use the average magnitude of the gradient in each image block. Since 

gradient response uses the differential between the grey value of the two 

neighbor pixels in horizontal and vertical orientation, it can differentiate the 

fingerprint area and background area faster than grey-scale variance method. 

 

Apart from this, some other theories are also applied in this field such as Gabor-

filters-based[ 9 ], Fourier-spectrum-based[ 10 ] and Harris-corner-detector-

based[11]. And in [12-15] more accurate segmentation approaches based on 

feature value threshold are proposed, whereas their computational complexity is 

relatively higher. 

 

2.2.2 Normalization 
 

In the normalization, input fingerprint images are normalized to limit the dynamic 

range of the grey scale between ridges and valleys of the images, which 

facilitates the processing of the following steps such as orientation image 

estimation and filtering. Figure 2.2 shows an image before and after 

normalization. 

 

The input image is divided into sub-blocks with the size 𝑁 × 𝑀. As described in 

[4], a fingerprint image 𝐼 is defined as 𝑁 × 𝑀 matrix and 𝐼(𝑖, 𝑗) is the grey value of 

the pixel at the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column: 

 

𝐼′(𝑖, 𝑗) =

{
 
 

 
 
𝑀0 + √

𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) − 𝑀̂)2

𝑉𝐴𝑅̂
   𝐼(𝑖, 𝑗) > 𝑀̂

𝑀0 − √
𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) − 𝑀̂)2

𝑉𝐴𝑅̂
   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

    (2.1) 
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In (2.1) 𝑀0 and 𝑉𝐴𝑅0 are the desired mean and variance values; 𝑀̂ and 𝑉𝐴𝑅̂ are 

the computed mean and variance of the given image. The desired 𝑀0 and 𝑉𝐴𝑅0 

should be pre-computed from the origin image, which is reliable but maybe also 

of poor quality.  

 

    

a) FVC2000_DB2_B:104_1.tif   b) 

Figure 2.2: Image normalization. a) Original image; b) Image after normalization. 

 

2.2.3 Ridge Orientation Estimation 
 

The fingerprint orientation image, which is also called directional image, 

demonstrates the local orientation of the fingerprint ridges. The orientation of the 

ridges supply important clues to the completeness of each ridge, with which most 

of the cuts, creases and bruises can be found and repaired. In Figure 2.3 a 

block-wise orientation image is shown with its corresponding original input image.   

 

The prominent approach to determine local ridge orientation is from the 

computation of gradients in the fingerprint images. The gradient ∇(𝑥𝑖, 𝑦𝑖) is one 

two-dimensional vector [∇𝑥(𝑥𝑖, 𝑦𝑖), ∇𝑦(𝑥𝑖, 𝑦𝑖)] at point [𝑥𝑖, 𝑦𝑖] in the image, where 

∇𝑥  and ∇𝑦  denote the derivatives with reference to the x and y directions, 
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respectively. The gradient orientation is actually the direction of the maximum 

pixel-intensity at point [𝑥𝑖, 𝑦𝑖] . Therefore its orthogonal angle represents the 

direction of the ridges at point[𝑥𝑖 , 𝑦𝑖]. 

 

    

a) FVC2000_DB2_B: 104_1.tif    b)  

Figure 2.3: Ridge orientation estimation. a) Original image; b) Orientation image. 

 

In [7, 16] such gradient-based method is proposed within each 17 × 17 block 

centered at point[𝑥𝑖 , 𝑦𝑖]: 

 

𝜃𝑖𝑗 = 90° +
1

2
arctan (

2𝐺𝑥𝑦

𝐺𝑥𝑥 − 𝐺𝑦𝑦
) 

𝐺𝑥𝑦 = ∑ ∑ ∇𝑥(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘) ∙

8

𝑘=−8

8

ℎ=−8

∇𝑦(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘) 

𝐺𝑥𝑥 = ∑ ∑ ∇𝑥(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘)
2

8

𝑘=−8

8

ℎ=−8

 

𝐺𝑦𝑦 = ∑ ∑ ∇𝑦(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘)2

8

𝑘=−8

8

ℎ=−8

 

               (2.2) 
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where ∇𝑥 and ∇𝑦 are the x- and y-gradient components computed with 3×3 Sobel 

or Prewitt masks.  

 

Another novel one called slit-based approach has been proposed by [5, 17, 18] 

which is to select the best slit based on the pixel grey-values along the slits. It 

was firstly used in local threshold binarization and then in computation of local 

ridge orientation with some revision of this threshold. The algorithm of this 

method is that pixels along the ridge orientation obtain small sum of grey-values, 

whereas along the valley orientation relative high. Its computational complexity is 

relatively higher than gradient-based approach.  

 

The basic principle is shown in Figure 2.4. The center 𝐶  is the pixel whose 

direction is to be computed. The 9×9 window which is also variable is selected 

around 𝐶. The sum of the four pixel values 𝑠𝑖 along the direction marked as 𝑖 will 

be firstly computed (𝑖 = 1⋯8) . The direction is then selected based on the 

following formula: 

 

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝐶) = {
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑠𝑚𝑎𝑥)  𝑖𝑓 4𝐶 + 𝑠𝑚𝑎𝑥 + 𝑠𝑚𝑖𝑛 >

3

8
∑𝑆𝑖

8

𝑖=1

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑠𝑚𝑖𝑛)   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

    (2.3) 

 

 

Figure 2.4: A 9×9 window in slit-based approach. 
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The direction of the local ridges and valley is computed at each pixel where the 

direction of the slit with the minimal sum of 𝑠𝑖 is assigned if this pixel is defined as 

a black ridge point and otherwise the direction of slit with the maximal sum of 𝑠𝑖 is 

assigned for the pixel as a white valley point. 

 

Another projection-based approach proposed in [19 ] is one relative intuitive 

method. Similar to the following slit-based approach, a rectangle window is 

defined around one pixel and then rotated to 8 or 16 directions. At each direction 

this window is projected to y axis of the image. When the x axis of this window is 

perpendicular to the local ridge, this projection obtains the maximal change. 

When the x axis of this window is parallel to the local ridge, this projection 

obtains the minimal change. But its computational complexity is usually higher 

than gradient-based methods. 

 

2.2.4 Ridge Frequency Estimation 
 

Alternate ridges and valleys constitute a line-shaped fingerprint image. In some 

certain local area of a fingerprint image, the grey values are distributed 

approximately in sinusoidal shape along the direction orthogonal to local ridge 

orientation. The frequency of this sinusoid can be considered as the frequency of 

the ridges in this local area, with which some latter enhancement can be 

executed such as filtering. In Figure 2.5 ridge frequency image is shown with an 

original input image. 

 

In Figure 2.5 b) light areas signify higher frequencies. One popular approach for 

ridge frequency estimation proposed in [4] is to estimate local ridge frequency by 

analyzing the period of the ridges along the direction orthogonal to local ridge 

orientation. In Figure 2.6 the frequency 𝑓𝑖𝑗  at [𝑥𝑖, 𝑦𝑖]  can be obtained by 

accumulating the grey values along a rotated orientation window (32×16 in this 

figure). Between the two dash lines a valley of grey values can be computed, 
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with which the period of ridges and valleys within this window is computed as the 

frequency at [𝑥𝑖 , 𝑦𝑖]. 

 

    

a) FVC2000_DB2_B: 104_1.tif    b)  

Figure 2.5: Ridge frequency estimation. a) Original image; b) Frequency image. 

 

 

Figure 2.6: Ridge frequency computation. 

 

Besides this approach some other methods such as in [20] with a high-order 

spectrum technique, [ 21 ] with scale space theory are proposed to locally 

estimate ridge width. 
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2.2.5 Filtering 
 

Normalization introduced in section 2.2.2 belongs to pixel-wise method. In 

practice this is far not enough to represent a perfect fingerprint image. Another 

kind of enhancement based on section 2.2.3 and 2.2.4 which is called contextual 

filters. These filters execute convolution operations with different parameters 

based on local information of ridge direction and frequency. Furthermore, in order 

to get better computation efficiency such convolution matrixes are pre-computed. 

The principal thought of this enhancement is to perform low-pass (averaging) 

filtering along the ridge direction to connect the discontinuous line or to perform 

band-pass filtering along the direction orthogonal to the ridges to separate 

neighbour ridges where they are too close to each other. In Figure 2.7 filtered 

image is shown with its original view. 

 

    

a) FVC2000_DB2_B: 104_1.tif  b)  

Figure 2.7: Image filtering. a) Original image; b) Filtered image. 

 

Some earlier approaches[22, 23] are proposed which defined a set of bell-

shaped filters (16 sub-filters along each 22.5°) to convolute each point of the 
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image with one from this filter-set which has the best matched direction with the 

local ridge and in [24] which processed the fingerprint image in the frequency 

domain using Fourier transform under the help of the local ridge orientation to 

select the best enhancement. 

 

Subsequently Gabor filters became the most popular approach in contextual 

filters because of its frequency-selective and orientation-selective properties[25]. 

After Gabor proposed 1-dimention Gabor-transform in 1946 and Daugman 2-

dimention Gabor-transform in 1985, [4] developed a method based on this theory. 

Such Gabor filters, whose spatial extent, frequency and orientation as well as 

bandwidths can be configured with the parameters generating themselves, can 

reach the lower bound of the uncertain relation simultaneously in space and 

frequency fields[26]. In [4] a Gabor filters is defined in the following form and 

shown in Figure 2.8. 

 

𝑔(𝑥, 𝑦: 𝜃, 𝑓) = 𝑒𝑥𝑝 (−
1

2
[
𝑥𝜃

2

𝜎𝑥
2
+

𝑦𝜃
2

𝜎𝑦
2
]) ∙ cos(2𝜋𝑓 ∙ 𝑥𝜃) 

    (2.4) 

where 𝜃 is the orientation of the filter, [𝑥𝜃, 𝑦𝜃] are the coordinates of [𝑥, 𝑦] after a 

clockwise rotation of the Cartesian axes by an angle of (90° − 𝜃) , 𝑓  is the 

frequency of a sinusoidal plane wave, and 𝜎𝑥, 𝜎𝑦 are the standard deviations of 

the Gaussian envelop along the x- and y-axes, respectively. 

 

[
𝑥𝜃

𝑦𝜃
] = [

cos(90° − 𝜃)

− sin(90° − 𝜃)
   

sin(90° − 𝜃)

cos(90° − 𝜃)
] [

𝑥

𝑦
] = [

sin 𝜃

− cos 𝜃
   

cos 𝜃

sin 𝜃
] [

𝑥

𝑦
] 

    (2.5) 

However, when local ridge orientation and frequency are not reliable in the 

fingerprint image with many bad areas, convolution with Gabor filters will bring 

side effect because of unsuitable parameters based on this local ridge’s 

information. Some other approaches based on Gabor filters proposed in [19, 27-
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29] etc. aim to optimize the above parameters - 𝜎𝑥, 𝜎𝑦 in order to obtain better 

tolerate errors or avoid generating spurious ridges and valleys. 

 

 

Figure 2.8: Gabor Filter with the parameters 𝜃 = 135°, 𝑓 = 1/5, 𝜎𝑥 = 𝜎𝑦 = 4. 

 

2.3  Experimental Improvements 
 

Besides some enhancement approaches mentioned above, some other attempts 

have also been adopted by us in order to obtain a more qualified fingerprint 

image for minutiae extraction. 

 

2.3.1 Directional Image Filtering 
 

The fingerprint directional image extracts the characteristics of the distribution of 

ridges and valleys and provides the image’s textural structure, with which images 

can be directionally filtered. To obtain more reliable filtered image, we firstly use 

the intermediate noise image, to be discussed in next section, to restrain the 
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direction image to the valid range. Then Gabor filter is used to filter the fingerprint 

image. 

 

The direction corresponds to horizontal direction that goes to the left and 

increment of the direction gives counterclockwise turn. But in fact to simplify the 

computation, each direction and its reverse direction are regarded as the same 

direction, so that only four main directions (0°, 45°, 90°, 135°.) are counted to 

represent the direction info at each pixel. The direction layout is shown in Figure 

2.9.  

 

Figure 2.9: Image direction layout. 

 

In directional image computation the sum of pixel values around each pixel along 

different directions should be firstly obtained within a pre-defined window shown 

in Figure 2.10. 

             

Figure 2.10: Computation window (𝑤 = 12). 

 

0º 
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180º 

225º 

270º 
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𝑆𝑖𝑗 = ∑ ∙ ∑

(

 
 

|𝐼𝑦      𝑥−1 − 𝐼𝑦𝑥| + |𝐼𝑦        𝑥+1 − 𝐼𝑦𝑥|

|𝐼𝑦−1 𝑥−1 − 𝐼𝑦𝑥| + |𝐼𝑦+1 𝑥+1 − 𝐼𝑦𝑥|

|𝐼𝑦−1 𝑥     − 𝐼𝑦𝑥| + |𝐼𝑦+1 𝑥     − 𝐼𝑦𝑥|

|𝐼𝑦−1 𝑥+1 − 𝐼𝑦𝑥| + |𝐼𝑦+1 𝑥−1 − 𝐼𝑦𝑥|)

 
 

𝑗+𝑤𝑖𝑛𝑑𝑜𝑤

𝑥=𝑗−𝑤𝑖𝑛𝑑𝑜𝑤

𝑖+𝑤𝑖𝑛𝑑𝑜𝑤

𝑦=𝑖−𝑤𝑖𝑛𝑑𝑜𝑤

 

    (2.6) 

From (2.2) and (2.6) the orientation of each pixel can be computed. In practice 

this direction image is not quite acceptable because of noise which may disturb 

the orientation of the local ridges. A low-pass filter which is performed in each 

3×3 block is used to smooth this directional image shown in the following (2.7). 

 

𝑆𝑥 = ∑ ∑ cos 2𝜃(𝑢, 𝑣)

𝑗+1

𝑣=𝑗−1

𝑖+1

𝑢=𝑖−1

 

𝑆𝑦 = ∑ ∑ sin2𝜃(𝑢, 𝑣)

𝑗+1

𝑣=𝑗−1

𝑖+1

𝑢=𝑖−1

 

𝜃(𝑖, 𝑗) =
1

2
𝑡𝑎𝑛−1 (

𝑆𝑦

𝑆𝑥
)    𝑖𝑓 𝜃(𝑖, 𝑗) < 0, 𝜃(𝑖, 𝑗) = 𝜃(𝑖, 𝑗) + 𝜋 

    (2.7) 

According to (2.4), a set of horizontal Gabor filter templates 

(𝜔−𝑁/2, ⋯ , 𝜔−1, 𝜔0, 𝜔1, ⋯ , 𝜔𝑁/2) are firstly generated and then rotated to all of the 

other pre-defined directions, where 𝑁 is the template size. If the input fingerprint 

image is defined as 𝐼(𝑥, 𝑦) and the filtered image is 𝑂(𝑥, 𝑦), the directional image 

filtering can be described in (2.8) and (2.9).  

 

𝑂(𝑥, 𝑦) = 𝜑0𝐼(𝑥, 𝑦) + ∑𝜑𝑗(𝐼(𝑥 − 𝑠, 𝑦 − 𝑠) + 𝐼(𝑥 + 𝑠, 𝑦 + 𝑠))

𝑁
2

𝑠=1

  

    (2.8) 

𝑂(𝑥, 𝑦) = 𝜑0𝐼(𝑥, 𝑦) + ∑𝜑𝑗(𝐼 (𝑥 −
𝑠

𝜇
, 𝑦 − 𝑠) + 𝐼 (𝑥 +

𝑠

𝜇
, 𝑦 + 𝑠))

𝑁/2

𝑠=1

 

    (2.9) 
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When the direction is along the x-axis at  [𝑥, 𝑦] , the convolution filtering is 

implemented with (2.8). Otherwise the input fingerprint image is filtered with (2.9) 

at [𝑥, 𝑦] along 𝑦 = 𝜇𝑥,𝑤ℎ𝑒𝑟𝑒 𝜇 = 𝑡𝑎𝑛𝜃. If the coordinates in (2.9) fall between two 

neighbor pixels, linear interpolation will be used to obtain its approximate 

coordinates.  

 

 

FVC2006_DB3_A: 4_3.bmp 

 

FVC2006_DB3_A: 9_12.bmp 

 a)             b)            c)  

Figure 2.11: Directional image filtering. a) Fingerprint grey-scale images; b) 

Images before directional image filtering; c) Images after directional image 

filtering. 
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It is evident from Figure 2.11 that most undesired noise is removed and the 

ridges and valleys are preserved and improved. 

 

2.3.2 Noise Image Evaluation 
 

In fingerprint images regular ridges and valleys are regarded as the foreground 

and the other areas filled with smudge or shadow generated from sensor as the 

background which is also called noisy regions. To separate noisy regions from 

the original fingerprint image or other intermediate images is very gainful such as 

computational complexity and precision. The basic assumption for this 

segmentation is that in a given block noisy regions have no dominant direction 

while clear regions lie in a particular direction[30]. Moreover, foreground regions 

have a very high variance in a direction orthogonal to the orientation of the 

pattern and a very low variance along its dominant ridge direction. 

 

We obtain the original noise image during directional image computation 

according to the following assumption. There should be a dominant direction at 

each foreground pixel. This direction has a nearest neighbor direction and a 

furthest neighbor direction among the four main directions listed in Figure 2.9. 

The difference between the gradients along these two directions represents the 

ridge quality at this pixel. Since they are orthogonal, the direction at this pixel is 

not evident and the ridge quality is low if they are close and vice versa. The noise 

image records such difference at each pixel. Afterwards the obtained noise 

image is optimized using the values at each pixel and a finite 33×33 window 

around each pixel in order to divide those areas with poor ridge quality into 

background quickly. 

 

According to the judgment that whether a dominant direction at each pixel exists, 

two rules are proposed in this thesis to differentiate background and foreground 

in a noise image: 
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1) At [𝑥𝑖, 𝑦𝑖], if the maximal gradient 𝑓𝑚𝑎𝑥 in all directions is below a pre-defined 

threshold 𝑓𝑡ℎ𝑟𝑒𝑠1, this point will be set to background. 

2) In a 31×31 window centered at [𝑥𝑖 , 𝑦𝑖], if the sum of the pixels with unreliable 

directions, i.e. their respective quality in noise image is below a pre-defined 

threshold 𝑓𝑡ℎ𝑟𝑒𝑠2, is more than 50% and in addition it is not a singular point, 

this point will be reset to background. 

 

 

a)    b) 

 

      c)    d) 

Figure 2.12: Noise image evaluation. a) Original noise image; b) Optimized 

noise image; c) Original binary image; d) Optimized binary image. 

 



2.3  Experimental Improvements 

26 
 

If  [𝑥𝑖 , 𝑦𝑖] in a noise image is marked as the background, this pixel is considered 

as the unreliable position. The following operation such as grey-image filtering, 

binarization and minutiae extraction will ignore such area (Figure 2.12). 

 

2.3.3 Frequency Image Improvement 
 

The fingerprint ridge distributes with special orientation feature. Particularly 

perpendicular to the local ridge orientation, the grey values alter with the period 

of approximate to some kind of sine wave[31]. Besides the indication of the 

period of ideal parallel ridges, the local ridge frequency (density) image provides 

the ridge’s filling rate inside one window. Figure 2.13 shows three 33×33 

windows in a pre-binarized image with different local density. To define the 

difference of these windows can help for the selection of the threshold for 

binarization for the reason that if the density is too high, a relative small 

binarization window should be selected to avoid interacting between two 

neighboring ridges and if the density is too low, a relative big binarization window 

can include more ridge orientation information.  

 

  
a) Low                            b) Middle                            c) High 

Figure 2.13: 33×33 windows with different local frequencies. 

 

We propose a method to find this local ridge frequency by accumulating the edge 

pixels of the ridges inside this window. The frequency 𝑓𝑖𝑗 is computed as follows. 
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1) A filtered input image is firstly pre-binarized with the simple algorithm: 

 

𝑖𝑓     𝑂(𝑥, 𝑦) ≥ (
1

(2𝑚 + 1)2
∑ ∑ 𝑂(𝑥, 𝑦)

𝑚

𝑥=−𝑚

𝑚

𝑦=−𝑚

+
1

(2𝑛 + 1)2
∑ ∑ 𝑂(𝑥, 𝑦)

𝑛

𝑥=−𝑛

𝑛

𝑦=−𝑛

)/2 

         𝐵(𝑥, 𝑦) = 255 

𝑒𝑙𝑠𝑒 

         𝐵(𝑥, 𝑦) = 0 

  (2.10) 

where 𝑂(𝑥, 𝑦) is the filtered input image, 𝐵(𝑥, 𝑦) is the pre-binarized image 

and m, n is the window size. 

2) A 36×36 window centered at [𝑥𝑖, 𝑦𝑖] is defined in horizontal-vertical coordinate 

system in this pre-binarized image. 

3) Another 3×3 window is scanned from left-top to right-bottom in the above 

36×36 window. If the sum of the grey values in this 3×3 window 𝑆3×3  is 

between 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥, the window counter 𝑛𝑆3×3 will be accumulated. 

4) If [𝑥𝑖 , 𝑦𝑖] in noise image is not in background field, 𝑛𝑆3×3 from step 2 will be 

limited to [0⋯255]  and then projected to horizontal or vertical axis using 

directional image. 

5) A local mean filter is performed after frequency estimation in step 3 to reduce 

noise. 

6) The filtered frequency image is then quantized with a finite quantization step 

(in this thesis step = 8) if [𝑥𝑖, 𝑦𝑖] is not a singular point. 

 

Since frequency image describes the density of the ridges, the binarization 

presented in the next chapter will be more effectively performed with this 

information. Some intermediate results for frequency image improvement are 

shown in Figure 2.14. 
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                    a)                         b)              c)  

Figure 2.14: Frequency image improvement. a) Original frequency image; b) 

Filtered frequency image; c) Quantized frequency image. 

 

2.4  Summary 
 

Some earlier work in fingerprint enhancement is introduced in this chapter, which 

includes general-purpose image processing techniques such as segmentation, 

normalization, image smoothing and also special-purpose method for fingerprint 

such as contextual filtering, ridge frequency estimation. Based on the previous 

work, we have optimized the fingerprint enhancement algorithm and the new 

algorithm will be more robust to noise. Figure 2.15 presents some enhancement 

results using our optimized algorithm. Images are from FVC2006 DB3 with the 

resolution 500 dpi and the size 400×500.  
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FVC2006_D3_A: 1_3.bmp 

 

FVC2006_D3_A: 6_5.bmp 

 

FVC2006_D3_A: 124_2.bmp 

      a)                                 b)                                c) 

Figure 2.15: Results of fingerprint image enhancement with optimized algorithm: 

a) Input image; b) Directional filtered image; c) Directional filtered image with 

ridge estimation. 
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We note that our algorithm can find and repair most of the cuts, dryness but for 

those extreme unrecoverable regions such as the creases in the image of the 

first row not very well. These regions have to be marked and not used for the 

next fingerprint feature extraction. 



 

31 
 

 

 

Chapter 3 

Fingerprint Feature Extraction 

 

3.1  Introduction 
 

Fingerprint features include minutiae, singularity (see Figure 3.1) and local ridge 

alignment etc. Minutiae, which exist where the ridges become somehow 

discontinuous, constitute the unique characteristic of one fingerprint. According to 

the structure of this discontinuity, minutiae can be classified into terminations and 

bifurcations (see Figure 3.2)[ 32 ]. The x- and y- coordinates and the angle 

between the tangent to the ridge line at the minutia position and the horizontal 

axis. 

 

 

2_12.bmp          3_6.bmp            6_3.bmp          62_11.bmp       80_10.bmp 

Figure 3.1: Various singularities of fingerprint in FVC2006_DB3_A. 
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Figure 3.2: Termination minutia (𝑥0, 𝑦0, 𝜃0) and bifurcation minutia (𝑥1, 𝑦1, 𝜃1). 

 

 

a) (FVC2006_DB3_A: 31_12.bmp) 

 

b) (FVC2006_DB3_A: 4_6.bmp) 

Figure 3.3: Efficiency of binarization-based method for images with different 

quality and acquisition condition: a) A medium quality fingerprint with scratches 

and ridge breaks; b) A poor quality fingerprint with too much acquisition noise. 
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Most of the past research on fingerprint feature extraction is based on minutiae, 

which is still the principle criterion in fingerprint comparison. Therefore, to obtain 

the credible minutiae is the key to fingerprint matching. Various approaches have 

been proposed in minutiae detection, which can be concluded into two types: 

grey-scale based and binarization-based. Grey-scaled based method aims to 

extract minutiae directly from grey-scale images where image information keeps 

unchanged and more reliable especially for low-quality images. However 

binarization-based method has to process enhanced even skeletonized image. 

The advantage of this method is that the background noise because of smudges 

or acquisition and the discontinuity of the ridges because of bruises and cuts can 

be better improved (see Figure 3.3). 

 

3.2  State of the Art 

3.2.1 Binarization 
 

The purpose of the binarization is to convert grey-value fingerprint image to 

binary-value image with the pixel value of “0” and “255”. Thus the geometric 

characteristic of the image is only concerned with the distribution of “0” and “255”, 

which simplifies the latter processes. One simple approach is to set a global 

threshold 𝑡, with which the pixels whose grey-level is lower than 𝑡 are set to 0 and 

the others to 255. When a fingerprint image has good contrast and the statistic 

histogram can acquire two apparent peaks (see Figure 3.4.a), this approach is 

feasible. Nevertheless it is very sensible to noises. Moreover, this threshold is not 

easy to decide and maybe inexistent for the reason that the contrast and intensity 

in local areas of one image may have great difference (see Figure 3.4.b). From 

the point of this view, local-threshold-based approach has been widely used only 

to improve the quality of the binarization image. 
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a)  (FVC2006_DB3_A:48_3.bmp)      b) (FVC2006_DB3_A: 15_3.bmp) 

Figure 3.4: Fingerprint images with different contrast: a) Appropriate for global 

threshold; b) Appropriate for local threshold. 

 

A binarization approach using Laplacian operator and dynamic thresholds was 

proposed in [33, 34]. The image is convolved with a Laplacian operator and the 

intensity of each pixel is computed. If this intensity value is not between the two 

pre-defined thresholds, the relative pixel will be set to 0 or 255 according to the 

above comparison.  

 

An approach which uses the edges information around each ridge combined with 

the grey-scale image was designed in [35]. An edge image is firstly computed 

and then the fingerprint ridges are tracked separately in grey-scale image and 

edge image. Finally these two tracked image will be combined with the OR 

operation.  

 

Another one based on peak detection from grey-scaled image is from [7]. After 

the computation of the orientation field, the input image is divided into 16×16 

pixel blocks. For each block the maximum variance of the grey level projection 
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appears along the orientation perpendicular to the local ridge orientation. Thus 

the peaks are obtained with the variance and ridges are located and thinned 

along the same orientation with an adaptive morphological filter. Meanwhile the 

peaks and its two neighbouring pixels are set to 0 and the remaining to 255. 

 
One topological approach proposed in [36] considers a fingerprint image as 

continuous surface of noise, which is generated from Chebyshev polynomials. 

From the curvatures of this surface ridges and valleys areas can be determined 

with the help of its second-order derivatives.  

 

Some other documents related to fingerprint image binarization can be found in 

[4, 24, 30, 37, 38]. 

 

3.2.2 Thinning 
 

    

a) FVC2000_DB2_B: 104_1.tif   b) 

Figure 3.5: Binarized image thinning. a) Binarized image; b) Thinning image. 

 

Thinning, also called skeletonization, aims to extract one-pixel-width ridge 

structure from binarized image which is composed of multi-pixel-width ridges and 
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valleys (see Figure 3.5). A qualified thinning method should preserve the profile 

and connectivity of the ridges, the distribution of the minutiae and locate each 

skeleton in the centre of its relational ridge. Some research has been done in [7, 

39-46] by filling holes, eliminating small breaks, deleting bridges between ridges 

and smudges. For example, in [45, 46] some arithmetic-logic operations are used 

in elimination and relative smooth skeletons can be obtained, however [45] loses 

some ridge structure and [46] generates much deformation for those slanting 

ridges. 

 

The approach OPTA (One-pass Parallel Thinning Algorithm) proposed in [44] is a 

popular method for thinning. It uses eight 3 × 3 thinning patterns (see Figure 3.8) 

to remove edges pixels and two restoring patterns (1 × 4 and 4 × 1) (see Figure 

3.7) to preserve continuity. For one binarized fingerprint image, the pixel of 

background will be set to 0 and foreground to 1. This algorithm starts from the 

left-top of the image, extracts neighbour pixels around each foreground element 

(see Figure 3.6, P5). These neighbour pixels are then compared with the eight 

thinning patterns. If one from the eight thinning patterns coincides with these 

neighbour pixels, this pixel will be marked as “deleted”, otherwise as “restored”. 

In view of the continuity, this pixel will also be compared with the other two 

restoring patterns. If the second row in Figure 3.6 matches with the second row 

of a) in Figure 3.7 or the second column in Figure 3.6 matches with the second 

column of b) in Figure 3.7, this pixel will be marked as “restored”, otherwise as 

“deleted”. However, this algorithm raises such a problem that it generates biased 

skeletons and is more easily to remove convex corners than concave corners 

[47]. 

 

𝑃1 𝑃2 𝑃3 × 

𝑃4 𝑃5 𝑃6 𝑃14 

𝑃7 𝑃8 𝑃9 × 

× 𝑃11 × × 

Figure 3.6: Neighbour of P5 in OPTA. 
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a)                   b) 

Figure 3.7: Restoring patterns in OPTA. 

 

       

 

       

Figure 3.8: Thinning patterns in OPTA. 

 

In [48 , 49 ] this algorithm is optimized by using more reliable restoring and 

thinning patterns. These new patterns can remove edge pixels including convex 

corner pixels, but not very helpful to those concave corner pixels.  

 

3.2.3 Minutiae Extraction 
 

Many different minutiae extraction methods have been proposed in the past 

years (see Figure 3.9). And the effective detection approaches can be on the 

whole concluded into the following two categories based on image domain for 

detection. The first group extracts minutiae using binarized images. The second 

group extracts minutiae directly from grey-scale images [7], and ignores the 

above section 3.2.1 and 3.2.2 mentioned binarization and thinning processes. 
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Minutiae 

Extraction 

Techniques

Gray Scale 

Images

Binarized 

Images

Ridge Line 

following 

based

Ridge Line 

following 

based

Crossing 

Number Based 

Morphology 

Based

Thinned 

Binarized 

Images

Unthinned 

Binarized 

Images

Run 

Representation 

Based 

Chaincode 

Based 

 

Figure 3.9: Classifications of minutiae extraction techniques. 

 

3.2.3.1 Extraction with Unthinned Binarized Images 

 

One extraction algorithm depended on unthinned binarized images makes use of 

the closed contours of the ridges in fingerprint images [17, 50, 51]. These ridge 

contours will be consistently traced in a counter clockwise fashion and marked 

with a special grey value except 0 (foreground) and 255 (background). When we 

arrive at one point where exists a sharp turn, we mark this point as a candidate 

for a ridge-ending or bifurcation point.  

 

A binary image (0 – foreground, 255 – background) is scanned from left-top to 

right-down row by row. In order to avoid data overflow and keep all ridges closed, 

pixels at the outermost rows and columns will be omitted in scanning. The 

scanning procedure is described as follows: 

 



Fingerprint Feature Extraction 

39 
 

 

Figure 3.10: Minutiae extraction using contour tracing in binary image. 

 

1) If the first scanned foreground pixel at [𝑥𝑖 , 𝑦𝑖] is not inside one ridge field, this 

pixel will be set to the starting point of one contour tracing. 

2) A 3 × 3 window is defined where the central point is 𝑇, see Figure 3.10. 

3) Set [𝑥𝑖 , 𝑦𝑖] as the coordinate of the central point 𝑇, and trace the pixels around 

𝑇 from index 0 to 7. The first non-background pixel will be assigned as the 

next neighbouring central point, whose value will also be modified to a special 

value (e.g. 253). 

4) From the new neighbouring central point step 3 will be repeated until the next 

central point reaches the starting point at step 1 where a complete ridge 

contour is obtained. 

5) Along the computed contour of the ridge three points 𝑃0, 𝑃1 and 𝑃2 with the 

same step length are defined in order to compute the local minimum angle 𝜃. 

𝑃1 will be marked as a candidate of the expected minutiae when the following 

conditions are met: 

 

𝑆 = (𝑥0 − 𝑥1) × (𝑥2 − 𝑥1) × (𝑦0 − 𝑦1) × (𝑦2 − 𝑦1) 

𝑆 > 𝑆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

    (3.1) 
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6) From all above candidates the pixel 𝑃𝑚𝑎𝑥with 𝑆𝑚𝑎𝑥 is selected as the minutiae 

position. And the minutiae angle can be extracted from the vector 𝑃⃑ 𝑚𝑎𝑥  in 

(3.2): 

 

𝑃⃑ 𝑚𝑎𝑥 = 𝑃1𝑃0
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  + 𝑃1𝑃2

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   

               (3.2) 

Another effective algorithm utilizes the horizontal and vertical run-length 

encoding from binary images instead of a computationally expensive thinning 

process[52, 53]. After run-length encoding Fingerprint images are represented as 

a cascade of runs. In this method, fingerprint images should also be pre-

processed: using Gabor filters to enhance the ridges oriented in the direction of 

local orientation at each pixel and to reduce noise with parameters for the 

orientation and the frequency; and using adaptive image binarization with an 

optimal threshold. After the binary image is generated, a run-length encoding of 

this binary image is executed horizontally to define successive black pixels as a 

run. Each run has its starting location and ending location or running length. 

Moreover each run has its special case as follows: 

1) No adjacent runs both on previous and the next scan line. 

2) Two adjacent runs on previous and the next scan line. 

3) One adjacent runs on either the previous or the next scan line. 

4) Two adjacent runs on either the previous or the next scan line. 

5) More than two adjacent runs on either the previous or the next scan line. 

From the case of each run, the characteristics of these successive black pixels 

can be concluded as 1) one pixel spot or one pixel width line; 2) ridgeline; 3) 

ridge termination, i.e. the starting or ending point of one ridge; 4) ridge bifurcation; 

5) not yet considered according to the features of ridge’s distribution. 

 

3.2.3.2 Skeletonization-based Methods 

 

Skeletonization-based methods require not only the procedures described in last 

section such as image enhancement and binarization, but only one additional 
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process – thinning. The thinning algorithm reduces pixels along the ridges up to 

one pixel width (see section 3.2.2). In this category two principal approaches 

have been widely utilized to process such thinned binary images, which are 

crossing number based and morphology based. 

 

The Crossing Number (CN) method is a popular skeletonization-based method. 

In the literature [34, 54-59] this method is used for minutiae extraction. The 

advantage of this method lies in its computational efficiency and theoretical 

simplicity. Since the ridge flow pattern in the skeleton image is 8-distance, 

scanning can be made in the local neighbourhood of each ridge pixel with a 3×3 

window (see Figure 3.11), through which CN value is computed as follows: 

 

𝐶𝑁(𝑝) =
1

2
∑|𝑃𝑖 − 𝑃𝑖−1|

8

𝑖=1

     𝑤ℎ𝑒𝑟𝑒 𝑃0 = 𝑃8 

    (3.3) 

 

𝑃8 𝑃7 𝑃6 

𝑃1 𝑃 𝑃5 

𝑃2 𝑃3 𝑃4 

 

Figure 3.11: 3×3 window for Crossing Number scanning. 

 

Half the sum of the difference between two adjacent pixels in the 8-distance 

neighbourhood is counted, for the reason that each pixel has to be used twice in 

(3.3). From the value of the CN, the ridge pixel can be classified as a ridge 

ending, bifurcation or an intermediate ridge point (see Figure 3.12).  
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Figure 3.12: Types of Crossing Number. 

 

Another commonly used technique is based on mathematical morphology. Some 

special morphological operators are used[60, 61] to remove isolated islands, 

spurs, spurious bridges and holes and then to extract true minutiae with Hit or 

Miss Transformation. 

 

𝐴 ⊗ 𝐵 = (𝐴 ⊝ 𝐵1)⋂(𝐴𝑐 ⊝ 𝐵2) 

    (3.4) 

In (3.4) 𝐴  is the binarized fingerprint image, while 𝐵  is a structuring element 

pair 𝐵 = (𝐵1, 𝐵2). The foreground pixels can be located by erosion with 𝐵1 and 

the background pixels by erosion of the complement with 𝐵2. As mentioned in 

[61], ridge endings have the property that there is only one foreground pixel in 

their 3 × 3 neighbour, whose element pair is composed of the elements (i)-(viii) 

and (ix)-(xvi) in Figure 3.13. And ridge bifurcations have the property that there 

are three nonadjacent foreground pixels in their 3 × 3 neighbour, whose element 

pair is composed of the elements (i)-(viii) and (ix)-(xvi) in Figure 3.14. 
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Figure 3.13: The structure element sequence for ridge endings. 

 

 

Figure 3.14: The structure element sequence for ridge bifurcations. 

 

3.2.3.3 Extraction with Grey-Level Images 

 

Some recent researches have shown that minutiae extraction directly from grey-

level images without binarization and thinning can obtain better results in some 

database especially with low quality images. Some other considerations for this 

idea are that binarization and thinning bring degradation of image details and 

time consuming, furthermore a fair number of spurious minutiae will be generated 

during these processes. 

 

Ridge lines are the most prominent feature in a grey-level fingerprint image, 

which are composed of a set of pixels with local maxima along one direction. 

Based on this idea, [8, 62] extract the minutiae directly from the grey-level image 

by following the ridge flow lines according to their local orientation field. From a 

pre-defined starting point with its definite direction, this algorithm calculates the 

ending point by moving given step from the current point along the local direction. 
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Then the median point with its median direction between the starting point and 

the ending point is computed as the next starting point. The process is iterated 

until all ridge lines are followed and can meanwhile be interrupted when a ridge 

line terminates or intersects another ridge line (minutiae point). Thence when all 

ridge lines are scanned, minutiae with its type, coordinates and direction are also 

obtained. 

 

The above method was improved by using dynamical step[63] instead of given 

step. The step length is decided by the change of the ridge contrast. If the 

contrast (intensity variations) is small, a relative large step will be used, otherwise 

a small step will be used. Another optimized method[64] is proposed, which 

tracks not only the central ridge line but also its two adjacent valleys 

simultaneously. At each step, both local maxima and its two parallel local minima 

are located. Minutiae should be extracted where the relation of these three 

extreme values changes. Linear Symmetry filter[65, 66] was also used to extract 

minutiae directly from grey-level images for the reason that minutiae leads to the 

local discontinuities from the view of the symmetry filter. A local window is built to 

compute filter response. If the response is greater than pre-defined threshold, 

minutiae will be located. 

 

3.3  Application and Optimization 

3.3.1 Grey-Level Image Binarization 
 

Among the approaches mentioned in 3.2.1, direct gray-scale extraction method 

depends on the quality of fingerprint image and cannot present the correct trend 

of ridges in poor quality image especially when image has much noise. Another 

direction-image-based extraction method utilizes the direction at each pixel to 

supply an amendment for the accumulations of the gray value in a window for the 

decision of background or foreground. This method can deal with most parts of 

one fingerprint image, whereas it gains not good results in such areas with not 
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enough or irregular direction information. To solve the above problems, an 

optimized noise image (see 2.3.2) is firstly used to mark all invalid noise area as 

background, and all further operations are processed only in other valid area. 

Moreover the frequency of directional filtering and the window size of adaptive-

local-threshold for binarization also change according to the filling rate inside one 

window, i.e. ridge density, to reconcile the binarization result and computation 

speed. Through multiple directional filtering in such areas with uncertain direction 

information excluding background area, the binarization in these areas is 

remarkably improved by reconnecting broken ridges or separating two adjacent 

parallel ridges. The approach we propose performs binarization using not only 

grey-level and orientation image but also noise and frequency image. 

Furthermore the morphological dilation operators are also used to improve the 

binarization of non-fingerprint-area and fingerprint centre area where might 

produce some unexpected holes etc. The details of various procedures of the 

proposed algorithm are described as follows and in Figure 3.15. 

 

Adaptive threshold 

binarization

Frequency image 

computation

Adaptive window 

binarization

Binary image 

direction filtering

New direction and 

noise image

Adaptive window 

binarization

Background 

binarization

Foreground 

dilating

Background 

elimination

 

Figure 3.15: Stages of the proposed grey-level image binarization algorithm. 

 

1) Define windows (𝑤1 = 7,𝑤2 = 15) in image 𝐺 1, the mean value of all pixels in 

windows can be computed: 
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𝑇1 =

∑ ∑ 𝐺1(𝑢, 𝑣)
𝑗+

𝑤1
2

𝑣=𝑗−
𝑤1
2

𝑖+
𝑤1
2

𝑢=𝑖−
𝑤1
2

𝑤1 × 𝑤1
 

𝑇2 =

∑ ∑ 𝐺1(𝑢, 𝑣)
𝑗+

𝑤2
2

𝑣=𝑗−
𝑤2
2

𝑖+
𝑤2
2

𝑢=𝑖−
𝑤2
2

𝑤2 × 𝑤2
  

𝑖𝑓   𝐺1(𝑢, 𝑣) ≥
(𝑇1 + 𝑇2)

2
 

         𝐺2(𝑢, 𝑣) = 255 

𝑒𝑙𝑠𝑒 

        𝐺2(𝑢, 𝑣) = 0  

    (3.5) 

If the pixel 𝐺1(𝑢, 𝑣) is a noise point in the orientation image, it will not be 

computed in this step. 

2) Define windows (𝑤1 = 3,𝑤2 = 36)   in image 𝐺2 , and compute the ridge 

frequency image 𝐺3 according to the proportion of window 𝑤1, when it’s not all 

0 or 255 in the window 𝑤1 (see 2.3.3). 

3) Smooth image 𝐺3 with window (𝑤1 = 33). 

 

𝐺4(𝑢, 𝑣) =

∑ ∑ 𝐺3(𝑢, 𝑣)
𝑗+

𝑤1
2

𝑣=𝑗−
𝑤1
2

𝑖+
𝑤1
2

𝑢=𝑖−
𝑤1
2

𝑤1 × 𝑤1
 

    (3.6) 

4) Using the smoothed frequency image 𝐺4 the pre-filtered fingerprint image can 

be binarized again in windows of different size (𝑤1 = 7,𝑤2 = 11,𝑤3 = 15). 

 

𝑖𝑓   𝐺4(𝑢, 𝑣) ≥ 𝑡ℎ𝑟𝑒𝑠1                     𝑤 = 𝑤1

𝑖𝑓   𝑡ℎ𝑟𝑒𝑠1 ≥ 𝐺4(𝑢, 𝑣) ≥ 𝑡ℎ𝑟𝑒𝑠2  𝑤 = 𝑤2

𝑖𝑓   𝑡ℎ𝑟𝑒𝑠2 ≥ 𝐺4(𝑢, 𝑣)                     𝑤 = 𝑤3

 

    (3.7) 

In this window 𝑤, 𝐺5(𝑢, 𝑣) is obtained as step 1. 

5) Directional image filtering on image 𝐺 5 . With the algorithm in 2.3.1 a 

binarized-directional-filtered image 𝐺 6 is computed. 
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6) From the binarization image  𝐺 6 , the directional image  𝐺 7  and frequency 

image 𝐺 8 is recomputed and updated. 

7) The binarization image  𝐺 6  is selectively filtered to image  𝐺 9  with new 

directional image in those areas where more noise exists. 

8) With the new directional image and images 𝐺 4,  𝐺 6, the optimized binarization 

image 𝐺 10 is computed as step 4. 

9) Define windows  (𝑤1 = 3) in image 𝐺 10, and compute the sum of the grey 

values in each window and the binarization image 𝐺 11 as follows (edge pixels 

are not included here and set to 255): 

𝑆(𝑢, 𝑣) = ∑ ∑ 𝐺10(𝑢, 𝑣)

𝑗+
𝑤1
2

𝑣=𝑗−
𝑤1
2

𝑖+
𝑤1
2

𝑢=𝑖−
𝑤1
2

 

𝑖𝑓   𝑆(𝑢, 𝑣) < 𝑤1 × 𝑤1 × 128 

         𝐺11(𝑢, 𝑣) = 0 

𝑒𝑙𝑠𝑒 

         𝐺11(𝑢, 𝑣) = 255 

    (3.8) 

10) At each foreground pixel in image 𝐺 11 a 4-distance area is built and dilated 

along its horizontal and vertical directions until ending condition satisfies. 

When the central pixel and the pixel at one of its 4-distance position are 

background, dilation algorithm will set it to foreground and make a record at 

this pixel and locate it as the next starting point. When the ending condition 

satisfies i.e. the sum of the records reaches a pre-defined threshold, all of 

these pixels will be set back to background otherwise these pixels will be 

dilated to foreground (compare delta area in image 𝐺11 and dilated image 𝐺12 

in Figure 3.16).  

11) In the directional image 𝐺7 pixels with uncertain direction have been specially 

marked. With this information the noise areas in dilated image 𝐺12 can be 

easily removed (set pixel value to background 255 in noise areas) and final 

binarization image 𝐺13 is generated. 
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G1 G2 G3 G4

G5 G6

G9 G10

G7 G8

G11 G12

G13  

Figure 3.16: Results of various stages in grey-level image binarization. 
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3.3.2 Minutiae Extraction 
 

As described in previous chapters minutiae extraction can make use of original 

grey-level image, contour traced binary image or skeletonized binary image. 

Among these approaches using a binarized and skeletonized image is the most 

popular one for minutiae extraction and thinning is the important step of minutiae 

extraction in this method.  

 

As discussed in 3.2.2, the approach in [44] generates many biased skeletons, 

which has been improved in [48] by using some new patterns listed in Figure 

3.17 b) instead of patterns in 3.17 a). Nevertheless the thinning patterns in Figure 

3.17 a) are not suitable for the image thinning process, our experiment has 

shown that they are still helpful to amend the thinned image and make the 

skeleton corners smoother instead. Based on this idea, we have implemented 

the existing thinning patterns and given some improvements with our proposed 

thinning patterns subsequently, which are shown in Figure 3.17 c).  

 

The thinning process can be concluded that when a pixel and its neighbour are 

examined and this central pixel is flagged as a boundary pixel, both the flag and 

the result image in this iteration will be updated for the next iteration process. 

 

The proposed thinning algorithm is described as follows: 

1) For each pixel and its neighbours decide whether it matches one of the 

thinning patterns in Figure 3.18 a). If it matches, make a flag. 

2) Delete all flags and update the binary image at each flagged location as a 

background pixel. 

3) Repeat step 1 and step 2 until no pixel can be deleted or the maximal 

repetition number reaches. 

4) For each pixel and its neighbours decide whether it matches one of the 

thinning patterns in Figure 3.18 b). If it matches, update it as a background 

pixel. 
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Step 1 to step 3 aims to trim the ridges to one-pixel wide with the criteria that no 

end pixel is deleted; no connectedness is violated; no excessive erosion occurs. 

Step 4 tries to repair such convex corner pixels along a thinned ridge line in order 

to make this corner smoother. 

 

The thinned skeleton image of fingerprint is then scanned and all possible 

minutiae such as ridge endings and ridge bifurcations are detected using the 

method of Cross Number described in earlier section.  

 

 

Figure 3.17: Thinning patterns improvements. 

 



Fingerprint Feature Extraction 

51 
 

 

Figure 3.18: The proposed thinning patterns. 

 

3.3.3 Minutiae Post-processing 
 

For those fingerprint images of poor quality, many spurious minutiae can be 

extracted due to noise. Consequently, a post-processing algorithm is designed to 

optimize the result of minutiae extraction. The proposed post-processing 

algorithm makes use of the extracted minutiae information such as 

coordinates (𝑥𝑖, 𝑦𝑖), direction 𝜃𝑖, and distance between two minutiae and score 𝑠𝑖 

of each minutiae (see Figure 3.19) as well as directional image 𝐺1 and direction 

variance image 𝐺2. 
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Figure 3.19: One minutia pair for post-processing. 

 

The proposed minutiae post-processing rules are described as follows: 

1) If two minutiae are close and have quite different direction, they are 

considered as from a broken ridge and should be deleted. 

 

{

𝑑𝑖𝑗 < 𝐷𝑡ℎ𝑟𝑒𝑠1

|𝜃𝑖 − ∆𝜃𝑖𝑗| > 𝜃𝑡ℎ𝑟𝑒𝑠1

|𝜃𝑗 − ∆𝜃𝑖𝑗| > 𝜃𝑡ℎ𝑟𝑒𝑠1

 

    (3.9) 

2) If the number of one minutia’s neighbours within a definite distance exceeds 

the threshold 𝑇1, it should be deleted. 

 

𝑇|𝑑𝑖𝑗<𝐷𝑡ℎ𝑟𝑒𝑠2| > 𝑇𝑡ℎ𝑟𝑒𝑠1 

  (3.10) 

3) If one minutia has one or more neighbours with closer distance, both or all of 

them should be deleted. 

 

𝑑𝑖𝑗(𝑖≠𝑗) < 𝐷𝑡ℎ𝑟𝑒𝑠3 

  (3.11) 

4) If one minutia is too close to the image borders, it should be deleted. 
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𝑑𝑖,𝑏𝑜𝑟𝑑𝑒𝑟𝑠 < 𝐷𝑡ℎ𝑟𝑒𝑠4 

  (3.12) 

5) If one pixel is close enough to one minutia but it has no reliable direction in 

the directional image, this minutia is not reliable as well and should be deleted. 

 

{
𝑑𝑖,(𝑥,𝑦) < 𝐷𝑡ℎ𝑟𝑒𝑠5

𝐺1(𝑥, 𝑦) 𝑖𝑠 𝑛𝑜𝑖𝑠𝑒
 

  (3.13) 

6) If one minutia is too close to one singularity, it should be deleted. 

 

𝑑𝑖,𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 < 𝐷𝑡ℎ𝑟𝑒𝑠6 

  (3.14) 

7) If two close minutiae have similar direction and not ideal minutia scores, they 

should both be deleted. 

 

{
 
 

 
 𝑑𝑖𝑗 < 𝐷𝑡ℎ𝑟𝑒𝑠7

|𝜃𝑖 − 𝜃𝑗| < 𝜃𝑡ℎ𝑟𝑒𝑠2

𝑠𝑖 < 𝑆𝑡ℎ𝑟𝑒𝑠1

𝑠𝑗 < 𝑆𝑡ℎ𝑟𝑒𝑠1

 

  (3.15) 

8) If one minutia and its several neighbouring minutiae have worse scores even 

though they are further in distance, it should be deleted when such 

neighbours exceed the threshold 𝑇2. 

 

{

𝑇|𝑑𝑖𝑗<𝐷𝑡ℎ𝑟𝑒𝑠8| < 𝑇𝑡ℎ𝑟𝑒𝑠2

𝑠𝑖 < 𝑆𝑡ℎ𝑟𝑒𝑠2

𝑠𝑗 < 𝑆𝑡ℎ𝑟𝑒𝑠2

 

  (3.16) 

9) All other undeleted minutiae are kept according to the distance between the 

minutiae and the singular region or the coordinates in the original image. 
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3.4  Experimental Improvements 
 

To achieve better minutiae extraction representation, we have improved the 

classic grey-level image binarization approach described in 3.3.1. Figure 3.20 

shows the various results using different binarization methods aiming at filling 

holes, removing small gaps and other artifacts produced by the noise. 

 

In evaluation of the minutiae extraction algorithm we make a 1:1 comparison 

between the proposed algorithm and the other existing algorithms in [8] (A), [67] 

(B), [33] (C), [68] (D), [23] (E). The dataset is also the same as what is used in [8]: 

7 fingerprints (no. 3, 4, 5, 11, 12, 13 and 14 in Figure 3.21) taken from the NIST 

fingerprint database[69], 4 fingerprints (no. 1, 2, 9 and 10 in Figure 3.20) from an 

FBI sample set, and 3 fingerprints (no. 6, 7 and 8 in Figure 3.21) acquired 

through an opto-electronic device based on a prism.  

 

The approach A uses ridge-line following technique directly on grey-scale 

fingerprint image. The approaches B, C, D and E use the binarization and 

thinning method similar to the proposed in this thesis. Figure 3.22 and Figure 

3.23 show two fingerprint images, which are also used for comparison in [8], and 

their minutiae extraction process using our approach and the approaches A, B 

and E.  

 

Table 3.1 gives the results of the number of undetected minutiae (dropped), non-

existent minutiae (false) and type-exchanged minutiae (exchanged) from the 

algorithms listed above. Table 3.2, 3.3 and 3.4 give the results of the average 

error percentage from the classes - good, - poor and from the whole sample set. 

The average error percentage of total error is computed as follows[70]: 

 

𝐴𝐸𝑃 =
1

𝑁
× (∑

𝑑𝑟𝑜𝑝(𝑖) + 𝑓𝑎𝑙𝑠𝑒(𝑖) + 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑(𝑖)

𝑡𝑜𝑡𝑎𝑙

𝑁

𝑖

) × 100 

  (3.17) 
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1 Proposed 

 
4 Local threshold 

 
7 [33] 

 
   2 [23] 

 
   5 [19] 

 
   8 [67] 

 
   3 [68] 

 
   6 [71] 

 
   9 [37] 

Figure 3.20: Comparison of binarization from a fingerprint of good quality with 

various methods. 
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             1                          2                         3                         4 

          
             5                         6                     7                    8 

    
              9                      10                       11                       12 

  
            13                        14 

 

Figure 3.21: The sample set of fingerprints referred in [8] and used in our 

comparison. All the fingerprints (except no. 6, 7 and 8) have dimensions 256×256 

with 256 grey levels. The fingerprints no. 6, 7 and 8 have dimensions 190×250 

with 256 grey levels. 
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Figure 3.22: Automatic minutiae detection in fingerprint no.1 - class good using 

approach A, the proposed, B and E (from left to right). The first row is the input 

image successively with its smoothing, binarization, thinning and minutiae 

extraction results. 
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Figure 3.23: Automatic minutiae detection in fingerprint no.13 - class poor using 

approach A, the proposed, B and E (from left to right). The first row is the input 

image successively with its smoothing, binarization, thinning and minutiae 

extraction results. 
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Proposed A B C D E

fingerprint minutiae d    f    x d    f    x d    f    x d    f    x d    f    x d    f    x

1 33 0    0    5 0    2    7 0   25   2 1  102  7 0   53   6 0    5    4

2 29 0    4    3 3    1    4 0   20   2 2   24   1 1   34   2 2    4    0

3 28 0    1    4 1    2    4 0   24   0 1   35   1 1   28   2 0    4    4

4 37 2    2    0 3    0    4 0   15   3 4   32   0 1   42   3 2    2    2

5 22 0    2    5 0    0    3 0   38   1 0   80   2 1   18   0 0    8    2

6 23 0    0    3 0    0    4 0    3    2 0   25   3 0   19   2 0    2    1

7 31 0    1    6 2    1    2 3   13   2 2   27   2 0   40   3 2    0    2

8 31 1    0    4 1    0    3 0    2    0 1   10   3 0    5    4 0    0    3

9 21 0   10   3 1   10   1 1  115  1 0  180  1 0  153  1 0   24   2

10 22 0    4    4 1    0    4 0   53   1 0  104  3 0  100  1 0    8    4

11 32 0    2    3 3    5    4 1   22   4 2   22   3 3   73   4 1    5    2

12 33 2    3    2 3    8    2 0   23   3 4   45   1 1   79   3 0   10   5

13 20 0    3    2 0    0    4 0   48   2 0   57   3 0   81   2 0    7    5

14 37 0    0    6 0    5    6 1   43   5 3   67   5 1   57   4 0   11   2  

Table 3.1: Minutiae extraction comparison 

 

The first column is the fingerprint index. Fingerprints 1...8 belong to the class 

good; fingerprints 9...14 belong to the class poor. The second column is the 

minutiae number detected manually. The d, f and x denote the number of 

dropped minutiae, false minutiae and exchanged minutiae, respectively [8]. 

 

Proposed A B C D E

1.48% 4.27% 1.28% 4.70% 1.71% 2.56%

4.93% 2.56% 59.83% 143.16% 102.14% 10.68%

14.78% 13.25% 5.13% 8.12% 9.40% 7.69%

21.18% 20.09% 66.24% 155.98% 113.25% 20.94%

good

dropped minutiae

false minutiae

exchanged minutiae

total error  

Table 3.2: Average error percentage relative to the fingerprint of class good. 
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Proposed A B C D E

1.21% 4.85% 1.82% 5.45% 3.03% 0.61%

13.33% 16.97% 184.24% 287.88% 329.09% 39.39%

8.48 12.73% 9.70% 9.70% 9.09% 12.12%

23.03% 34.55% 195.76% 303.03% 341.21% 52.12%

poor

dropped minutiae

false minutiae

exchanged minutiae

total error

 

Table 3.3: Average error percentage relative to the fingerprint of class poor. 

 

Proposed A B C D E

1.36% 4.51% 1.50% 5.01% 2.26% 1.75%

8.70% 8.52% 111.28% 203.01% 195.99% 22.56%

11.96% 13.03% 7.02% 8.77% 9.27% 9.52%

22.01% 26.07% 119.80% 216.79% 207.52% 33.83%

whole set

dropped minutiae

false minutiae

exchanged minutiae

total error

 

Table 3.4: Average error percentage relative to the fingerprint of the whole 

sample set. 

 

The results from Table 3.1 to Table 3.4 show that the proposed method is 

comparable to other mentioned methods. The AEPs of the dropped minutiae and 

false minutiae are much remarkable for the reason that they play important roles 

in fingerprint matching and have direct effect on the matching result. Considering 

these two factors our method is the best one in the above list. On the other hand 

we also notice that the AEP of exchanged minutiae is not quite satisfying 

because of some excessive directional filtering by pre-processing. Moreover in 

the computation of noise image, the four corners of the fingerprint image are 

regarded as noise region, which causes the loss of minutiae in this area. 
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3.5  Summary 
 

Our fingerprint minutiae extraction algorithm is introduced in this chapter. When 

the direction field is computed and the grey-level image is directionally filtered, 

this binarization-based algorithm generates a binarized image from the input 

image and uses our optimized thinning patterns to obtain a skeleton image for 

minutiae extraction. After all the possible minutiae are extracted, false minutiae 

are excluded using the proposed deletion criteria. A comparison between our 

algorithm and some other existing algorithms shows that this algorithm is 

comparable and acceptable. 
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Chapter 4 

Fingerprint Matching 

 

4.1  Introduction 
 

In most Automated Fingerprint Identification Systems (AFIS), fingerprint matching 

is the crucial step, which compares two fingerprints and gives the similarity 

between them. According to this similarity one matching score is computed to 

decide whether these two fingerprints are from the same finger. 

 

Some fingerprint matching algorithms use only the greyscale fingerprint images 

for the reason that without pre-processing the greyscale fingerprint images retain 

reliable original feature information. However more other algorithms generate 

templates from binarized images and matching is processed with two prepared 

templates. A template contains the info of the coordinates, angles and qualities of 

the minutiae and ridges in a fingerprint image. It also includes some auxiliary info 

such as core type, ridge frequency and block directional image etc. 

 

In practice fingerprint matching is quite troublesome due to some unexpected 

factors. (1) Nonlinear distortion by fingerprint image acquisitions is directionally 

random and difficult to reconstruct mathematically. By acquisition the three-

dimensional elastic surface of a finger is pressed onto a flat sensor interface.  
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a) FVC2006 DB3_A: 5_4.bmp, 81_9.bmp 

      

b) FVC2006 DB3_A: 122_9.bmp, 140_7.bmp 

Figure 4.1: Image in a) and b) are from two different fingers in FVC2006 DB3_A 

respectively, which are falsely matched in our preceding matching algorithm. 

 

This 3D-2D conversion introduces nonlinear distortion, especially when the 

power is not orthogonally applied to the sensor[72]. (2) The translation and 

rotation in successive enrolments from the same finger give these images 

different appearance. (3) There might be only a partial overlap between the two 
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fingerprint images because of the translation and rotation. In our system a kind of 

small solid-state senor is used and this problem becomes much evident. (4) 

Finger conditions such as dryness, wetness, and injury often result in false 

contact and minutiae info.  (5) The imperfect fingerprint algorithms also generate 

false minutiae, omit the true minutiae, and bring some deviation in coordinates’ 

location computation. (6) According to some matching algorithms, a few of 

fingerprint images from different fingers are still difficult to distinguish due to their 

high similarity (Figure 4.1). 

 

In recent years, the challenge of fingerprint matching algorithms is not the 

optimization in matching good quality fingerprint images, but the robustness in 

matching poor quality fingerprint images[ 73 ]. On the one hand fingerprint 

acquisition devices are not intelligent enough to dispose of fingers with different 

conditions such as dryness, wetness and especially distortion, on the other such 

original poor fingerprint images with cuts, bruises and gaps on ridges or parallel 

ridge intercepts are still the main sources of false match and no-match errors.  

 

Fingerprint matching algorithms can be mainly classified into the following types 

[73]: Correlation-based matching – the fingerprint images to be matched are 

superimposed and the corresponding pixels are computed to retrieve the 

variation of the translations and rotations and compared with this info. Minutiae-

based matching – mainly based on two kinds of minutiae – ridge ending and 

ridge bifurcation. Through analysing the similarity of the coordinates and rotation 

angles of these matched minutiae pairings, a global matching is obtained. Non-

Minutiae feature-based matching makes use of some other features (e.g. local 

orientation and frequency, ridge shape, texture information) to differentiate 

fingerprint images. Based on not enough minutiae info, minutiae-based matching 

algorithm cannot mostly make reliable decision. This kind of approach helps 

especially in these databases which have small image size and few minutiae. 

Besides these methods there are some other matching techniques such as 

graph-based, genetic-based, hybrid feature-based and etc. 
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The rest of this chapter is organized as follows. The next section introduces the 

main existing methods of fingerprint matching mentioned above. And then our 

proposed matching algorithm will be described in detail. Performance analysis 

and experiment results are discussed subsequently. The databases that are 

used in this chapter are mostly from FVC2004_DB3 and FVC2006_DB3, 

because the main research in this thesis is focused on fingerprint images from 

ATMEL sensor. 

 

4.2  State of the Art 
 

Correlation-based approach makes use of the invariance of the rotation and 

translation of a fingerprint image. This approach uses the classical pre-

processing techniques to extract the minutiae, ridges and the orientation field of 

the input fingerprint image[74]. If 𝐼(∆𝑥,∆𝑦,𝜃)  is defined as a rotated image from 

original image 𝐼  with the rotation angle 𝜃  and the translation  (∆𝑥, ∆𝑦) , the 

similarity between these two images 𝑇 and 𝐼 can be defined [73] as  

 

𝑆(𝑇, 𝐼) = max
∆𝑥,∆𝑦,𝛽

𝐶𝐶(𝑇, 𝐼(∆𝑥,∆𝑦,𝛽)) 

    (4.1) 

Where 𝐶𝐶(𝑇, 𝐼(∆𝑥,∆𝑦,𝛽)) = 𝑇𝑇𝐼 is the cross-correlation between 𝑇 and 𝐼. Through 

computing the maximization of (4.1) the optimal rotation angle 𝜃  and the 

translation (∆𝑥, ∆𝑦) can be obtained. Since each acquisition has its particular 

condition as mentioned in last section, these factors such as finger pressure, 

image quality can lead most of the matching to false result in practice. In [75] 

instead of global correlation local or block-wise correlation is used to improve a 

non-linear distortion for the reason that such elastic distortion does not alter 

fingerprint pattern in local area significantly, however its accumulation differs the 

distributions of ridges between two fingerprint images. In [76, 77] some more 

sophisticated correlation measures such as normalized cross-correlation and 
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differential correlation are applied to optimize the results in view of the influence 

from the brightness, contrast and ridge thickness of a input fingerprint image. 

Furthermore to reduce the computational complexity local correlation and global 

correlation are also applied in Fourier domain which is described in [78, 79]. 

 

Minutiae-based approach plays the most important role in fingerprint matching 

field and is most widely used for fingerprint matching especially as a proof of 

identity in the courts of law. Similar to the correlation-based matching in this 

approach minutiae are certainly extracted from fingerprint images and stored in 

templates. Each minutia in a template consists of at least its coordinates and 

direction, and in addition maybe also its type, quality and neighbour minutiae info, 

which can be used to weight the matching score from the coordinates and 

direction of the minutiae pairs themselves.  

 

Hough transform-based approach is one of the most popular minutiae-based 

methods. It is firstly proposed in [80, 81] to convert point pattern matching to the 

problem of detecting peaks in the Hough space of transformation parameters 73. 

The parameters - transformations of angles and coordinates of minutiae - are 

discretized and accumulated. According to Hough transform theory the most 

consistent transformation of these parameters gains the most overlap in their 

Hough spaces each and thus the optimal parameters are obtained. In [82] Hough 

transform-based minutiae matching approach is proposed with one additional 

parameter – scale besides translation and rotation. Another alternative approach 

in [ 83 ] determines the optimal parameter with the maximum Matching Pair 

Support, which is computed using the difference of the angle and scale of the 

possible minutiae pairs from the two templates each. 

 

Another minutiae-based approach makes use of not only common minutiae but 

also some special pre-aligned characters associated with some minutia. 

Singularities such as core, delta or other core types can be stored in template to 

identify two different fingerprints. In [16, 31] the orientation of the core or around 
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the core and the orientations of the singularities are individually used as a 

measurement to differentiate two different fingerprints. In [84] the pre-aligned 

ridges, where the minutiae reside, are used to assist minutiae matching. By 

iterative matching these ridges between two templates, the best rotation angle 

and translation coordinates can be obtained.  However this kind of approach has 

relative high computational complexity, furthermore the biggest problem of it is 

that how reliable are those singularities and ridges since there are still many false 

minutiae in a to-be-matched template or even in the reference template in 

database. 

 

One more effective minutiae-based approach is local minutiae matching, which 

consists of a central minutia and its several neighbouring minutiae within a 

predefined distance. Since the relative angle and the distance between the 

central minutia and its one neighbour is absolute and independent of the image 

rotation and the translation and even distortion to some extent, this approach 

offers great assistance to the global minutiae matching mentioned above when a 

minutia pair cannot be confidently determined. In [55] the neighbours of the 

central minutiae are filtered and its 𝑁 spatially nearest minutiae are reserved in 

distance order. When 𝑁  is small, this approach is very efficient. In [85] this 

approach is developed that the 𝑁 spatially nearest minutiae are sorted not by 

their distance to the central minutiae but their angles due to the reason that if two 

of its neighbours have similar distance to the central minutiae, the sequence of 

the final neighbours could be false. The approach mentioned in [86] selects the 

nearest neighbour minutiae within a fixed radius. In addition, local matching is 

also implemented using minutiae triangles [87-89]. The triangle features such as 

the length of each side, the ridge count between each pair of vertices, type, 

direction or even the average deviation of the local orientations in the 

neighbourhood of each triangle vertex are used for measuring the similarity of the 

triangles between two templates. Another local matching approach proposed in 

[90] gathers sampling points around each minutia along a set of circles with 

different radii. The orientation information at these points is recorded and the 
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average angular difference between corresponding orientations is used to weigh 

the similarity. 

 

Non-Minutiae feature-based approaches include the utilization of the features 

such as texture information[91], spatial relationship of the ridge lines [86, 92], 

sweat pores and etc. For those small size sensors it is difficult to generate 

enough minutiae, moreover in low quality fingerprint images most of the 

extracted minutiae are not reliable enough. This kind of approaches has just an 

edge under such situations. In [91] the fingerprint area of interest is set around 

the core point and divided into several neighbouring sectors. The local texture 

information in each sector is decomposed into separate channels with a Gabor 

filter bank. Through gaining the local texture information and the global 

relationship among local sectors each fingerprint is encoded as a vector called 

Finger Code. This approach acts as assistance to minutiae-based matching. In 

[86, 92] the spatial relationship of ridges is used to verify how exact a minutiae 

pair is. In this approach the relative ridges are also matched to compensate the 

final matching score generated from a minutiae pair. If the relative ridges have 

similar length and curvature, this compensation is positive and vice versa. 

Another distinctive approach uses the reliable detection of sweat pores. Since 

this approach requires high-resolution scanners, it is not the range of our recent 

research and not discussed in this thesis. 

 

4.3  Application and Optimization 
 

To develop an efficient fingerprint verification and identification approach 

depends on its real application environment. We aim to discover one approach 

suitable for implementation in embedded system with limitations of computational 

capability and also available memory resources. As described in last section, 

various fingerprint matching algorithms can be classified into three categories. In 

correlation-based fingerprint matching, the reference image and the query image 

are correlated to estimate the degree of similarity between them. If the rotation 



Fingerprint Matching 

69 
 

and displacement between these two images are unknown, the correlation must 

be computed over all possible rotations and displacement, which is very 

computationally expensive. Moreover the non-linear distortion and noise 

decrease the global correlation degree between these two images extraordinarily. 

However the ridge feature-based methods suffer from their low discrimination 

capability, which are generally suitable for such applications with small 

acquisition area and only 4-5 minutiae available. In minutiae-based matching, the 

similarity between two templates depends on the matching of each minutia pair 

and therefore be proportional to the number of the minutia pairs. Although 

minutiae contain most of the fingerprint discriminatory information, the missing or 

spurious minutiae in minutiae extraction because of fingerprint image acquisition 

and pre-processing deteriorate the eventual matching result. [73] The complexity 

of this method can be different. Some earlier researches based on only the 

location and orientation of the minutiae are comparatively faster but lack of 

robustness [82, 83]. Later researches combine the minutiae features and some 

other features such as the orientation and frequency of ridges, the type of 

singularities to improve this kind of method and obtain better robustness at cost 

of more computational complexity. 

 

As a trade-off between the computational complexity and discrimination 

capability in view of our hardware environments such as fingerprint sensor and 

processor speed, we have developed one minutiae-based fingerprint matching 

approach. In this approach several improvements have been made to overcome 

the shortcomings mentioned above. (1) Feature vector pairs are used instead of 

minutia pairs to find the best translation and rotation parameters since each 

feature vector pair contains two minutia pairs and provides a factor of n2 with 

respect to n of one minutia pair, which make these parameters more precise. (2) 

Fingerprint identification is a 1:𝑁  matching process, which consists of most 

matching between two templates from different fingers. Several accelerating 

algorithms are designed to discriminate two different fingers and end the 

matching process quickly through calculating the scores of all raw matched 
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feature vectors, comparing the different of the directional image blocks which 

contain the valid feature vectors and counting the proportion of the corresponding 

directional blocks in directional images. (3) Additionally two more similarity 

arbitration algorithms are designed to re-evaluate the matching score if matching 

fails with the standard algorithm. One hypothesis is that if two templates are from 

the same finger, one block directional image and another block direction image 

after rotating and translating according to some parameters should obtain the 

best overlap. To find these parameters, each reliable minutia from one template 

will be compared with each minutia from another. If they are similar enough, i.e. 

with similar curvature and limited difference of minutia angle and location, the 

difference between them will be considered as the parameters to transform the 

corresponding block directional image. Finally all possible parameter sets are 

recorded and one best set is selected as the translation and rotation parameters 

to execute the standard algorithm again. Another hypothesis is that since 

singularities are usually characterized by high curvature [73], the minutia point 

with higher curvature can represent the distinctive shapes of the original 

fingerprint image better. Therefore all minutiae are rearranged and several 

minutiae with higher curvature are selected as candidates, which are used one 

by one to find the best matched minutia on the other template. If a matched 

minutia can be found, the similarity of this minutia pair is recorded. The 

translation and rotation parameters of the minutia pair with the best similarity will 

be used to execute a simplified standard matching algorithm. 

 

The proposed minutiae-based multiple-matching algorithm can be summarized 

into two main steps: (1) template location and (2) template multiple-matching. In 

the template location step the translation and rotation between the reference 

template and the template to be matched are computed and the most reliable 

feature vector pairs are obtained as the input of the next step. In the template 

multiple-matching step the similarity between two templates is arbitrated with 

different matching algorithms for the reason that some single matching algorithm 
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cannot discriminate the two templates as expected. The key steps of our 

algorithm are described as follows. 

 

A. The Translation and Rotation Location and the Feature Vector Pairs 

Investigation 

 

i. To find the optimal translation and rotation parameters, each minutia is 

connected with another (𝑃⃑ 𝑖𝑗, see Figure 4.2) within each template. The 

feature vector of this line segment is defined as 𝑃⃑ 𝑖𝑗 = {𝜃𝑖𝑗 , 𝛿𝑖 , 𝛿𝑗 , 𝑙𝑖𝑗} where 

𝜃𝑖𝑗 denotes the angle from this line segment to x-axis anticlockwise; and 

(𝛿𝑖, 𝛿𝑗)  indicates the direction from the vector 𝑃⃑ 𝑖𝑗  to minutia 𝑖  and the 

direction from the vector 𝑃⃑ 𝑖𝑗  to minutia   𝑗 ; 𝑙𝑖𝑗  presents the length of the 

vector  𝑃⃑ 𝑖𝑗 . These parameters are independent of the translation and 

rotation between two templates. If one minutia in a vector is not reliable 

enough, which means that its minutia score is relative low, or if the length 

of this vector is outside our predefined threshold, the vector will be not 

included. And then all qualified vectors are rearranged and sorted by their 

length and updated for later use. 

 

 

Figure 4.2: Feature vector between two minutiae. 
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ii. The unreliable minutiae are filtered using block direction image and the 

vectors from the previous step are updated. To compare the respective 

direction image in block requires such a transformation of one block 

direction image 𝐹 as to reach a better overlap between the two images 𝐹 

and  𝐺. The correlation between the core points from the two templates is 

used to retrieve the approximate transformation parameters. So this step 

can be ignored for those templates without core. In general there may be 

three possibilities of core condition:  

 

{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑎) 𝑁1 = 1,𝑁2 = 1
𝑏) 𝑁1 = 1,𝑁2 = 2 𝑜𝑟  𝑁1 = 2,𝑁2 = 1
𝑐) 𝑁1 = 2,𝑁2 = 2

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡:
𝑖𝑓   𝑁1 = 𝑁2 = 1

      {
𝛼 = 𝑑𝑖𝑟2 − 𝑑𝑖𝑟1
𝑐𝑥 = 𝑥2 − 𝑥1

𝑐𝑦 = 𝑦2 − 𝑦1

𝑒𝑙𝑠𝑒 𝑖𝑓   𝑁1 = 𝑁2 = 2

                    

{
 
 

 
 
𝛼 = 𝑑𝑖𝑟2(𝑐𝑜𝑟𝑒12̅̅ ̅̅ ̅̅ ̅̅ ̅) − 𝑑𝑖𝑟1(𝑐𝑜𝑟𝑒12̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑐𝑥 =
𝑥2 𝑐𝑜𝑟𝑒1 + 𝑥2 𝑐𝑜𝑟𝑒2

2
−

𝑥1 𝑐𝑜𝑟𝑒1 + 𝑥1 𝑐𝑜𝑟𝑒2

2

𝑐𝑦 =
𝑦2 𝑐𝑜𝑟𝑒1 + 𝑦2 𝑐𝑜𝑟𝑒2

2
−

𝑦1 𝑐𝑜𝑟𝑒1 + 𝑦1 𝑐𝑜𝑟𝑒2

2

𝑒𝑙𝑠𝑒
      𝑖𝑓   𝑁1 = 1

            {

𝛼 = 𝑑𝑖𝑟2(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) − 𝑑𝑖𝑟1
𝑐𝑥 = 𝑥2(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) − 𝑥1

𝑐𝑦 = 𝑦2(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) − 𝑦1

      𝑖𝑓   𝑁2 = 1

 {

𝛼 = 𝑑𝑖𝑟2 − 𝑑𝑖𝑟1(𝑚𝑎𝑡𝑐ℎ𝑒𝑑)

𝑐𝑥 = 𝑥2 − 𝑥1(𝑚𝑎𝑡𝑐ℎ𝑒𝑑)

𝑐𝑦 = 𝑦2 − 𝑦1(𝑚𝑎𝑡𝑐ℎ𝑒𝑑)

 

    (4.2) 
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Figure 4.3: Minutiae filtering using block direction image. 

 

 

a) FVC2006 DB3_A: 115_12.bmp 

 

b) FVC2006 DB3_A: 115_11.bmp 

Figure 4.4: Minutiae filtering using block direction image. 
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In (4.2) the core numbers 𝑁𝑖 can be different. The aim is to find which core 

is matched in one template with which core in another. Subsequently block 

direction image 𝐹 is transformed to block direction image 𝐹′ (see Figure 

4.3) and the corresponding template too. In images 𝐹′ and 𝐺 the blocks 

with indefinite direction, i.e. noise, are temporarily marked as invalid. Any 

minutia, which is located in such a noise area i.e. there are no valid 

direction blocks around with threshold radius 𝑟 or the two relative central 

direction blocks have too much difference, will be eliminated.  

 

In Figure 4.4 shows the result of the method - original fingerprint image, 

continuous direction image and minutiae with binarized image. Block 

direction image uses the direction at the centre of each block from 

continuous direction image. Minutia 1 in a) and minutiae 1-4 in b) are 

deleted for the lack of the overlap of direction blocks and minutia 5 in b) is 

deleted for too much difference of relative direction blocks between two 

block direction images. 

 

iii. In this step all qualified feature vectors 𝑃⃑ 𝑖𝑗 in both templates are compared 

in all possible directions and every comparison score will be accumulated. 

Since (𝛿𝑖, 𝛿𝑗)  in 𝑃⃑ 𝑖𝑗  is independent of the direction of a template, the 

feature vectors with similar (𝛿𝑖, 𝛿𝑗) can be directly matched without rotation 

previously. In view of the influence of distortion the feature vectors from 

the second template are chosen not only at the precise (𝛿𝑖, 𝛿𝑗) but also its 

upper and lower deviations to obtain better focus. The score of each 

matched vector pair will be evaluated under a 3-D Guess distribution 

according to the difference of the features (𝛿𝑖, 𝛿𝑗 , 𝑙𝑖𝑗). Then the score is 

further optimized with some features from the related minutiae themselves. 

The procedure of this step is described as follows. 
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{
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ (0,2𝜋)
   𝑡1 = 𝑖 − 𝑇1, 𝑡2 = 𝑖 + 𝑇1

   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛿𝑖𝑗  𝑖𝑛 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 1

      𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ∈ (𝑡1, 𝑡2)

         𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛿𝑖𝑗
′  𝑖𝑛 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 2

            𝑖𝑓 |𝛿𝑖 − 𝛿𝑖
′| > 𝑇2   𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

            𝑖𝑓 |𝛿𝑗 − 𝛿𝑗
′| > 𝑇2   𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

            𝑖𝑓 |𝑙𝑖𝑗 − 𝑙𝑖𝑗
′ | > 𝑇3   𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

            𝑠𝑐𝑜𝑟𝑒 = 𝐺(|𝛿𝑖 − 𝛿𝑖
′|, |𝛿𝑗 − 𝛿𝑗

′|, |𝑙𝑖𝑗 − 𝑙𝑖𝑗
′ |)

            𝑠𝑐𝑜𝑟𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 …

            𝑎𝑛𝑔𝑙𝑒[|𝛿𝑖 − 𝛿𝑖
′|]+= 𝑠𝑐𝑜𝑟𝑒

            𝑎𝑛𝑔𝑙𝑒[|𝛿𝑗 − 𝛿𝑗
′|]+= 𝑠𝑐𝑜𝑟𝑒

            𝑝𝑎𝑖𝑟𝑙𝑖𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 …
            𝑖𝑓   𝑠𝑐𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥

               𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 𝑢𝑝𝑑𝑎𝑡𝑒 …

         ∑𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 𝑢𝑝𝑑𝑎𝑡𝑒 …

 

    (4.3) 

In (4.3) the constants 𝑇1 − 𝑇3  are predefined thresholds and function 𝐺 

submits to Gauss distribution. Array 𝑎𝑛𝑔𝑙𝑒[ ]  records the statistic 

arrangement of rotation between two templates. Score optimization is here 

applied with five algorithms. 

  

Algorithm 1:  

  

𝐶𝑥𝑦 =
∑ |𝑑𝑖𝑟0 − 𝑑𝑖𝑟𝑖𝑗, 𝑖𝑓 (𝑑𝑖𝑟𝑖𝑗 ∉ 𝑛𝑜𝑖𝑠𝑒)|

(𝑥,𝑦)+𝑤
𝑖,𝑗=(𝑥,𝑦)−𝑤

𝑁
 

    (4.4) 

Define 𝐶𝑥𝑦 in (4.4) as the curvature of one minutia at the position (𝑥, 𝑦). 

The variants 𝑑𝑖𝑟0 and 𝑑𝑖𝑟𝑖𝑗  indicate the direction at position (𝑥, 𝑦) and its 

neighbours. The denominator 𝑁  denotes the number of pixels with 

qualified direction. If 𝐶𝑥𝑦 and 𝐶𝑥𝑦
′  from the corresponding feature vectors 

are not the same. The score is scaled according to the difference. 

Furthermore, if these two minutiae are reliable enough, i.e., the minutia 
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scores are greater than a threshold, their minutia types are also 

considered as a factor to scale the score. 

  

Algorithm 2: 

 

As shown in Figure 4.5, define 𝑙𝑖𝑗−𝑐𝑜𝑟𝑒  as the distance between the 

midpoint of feature vector 𝑃⃑ 𝑖𝑗 and the core point, and 𝜃𝑖𝑗 also in Figure 4.2 

as the angle of 𝑃⃑ 𝑖𝑗 , and 𝜃𝑖𝑗as the direction of core point. If the feature 

vectors  𝑃⃑ 𝑖𝑗and  𝑃′⃑⃑  ⃑
𝑖𝑗 are a correct pair, ∆𝑙𝑖𝑗−𝑐𝑜𝑟𝑒  and ∆(𝜃𝑖𝑗 − 𝜃𝑐𝑜𝑟𝑒) should 

be within a threshold as shown in (4.5). If (4.5) is not supplied, the score of 

this minutiae pair is scaled. 

  

{
|𝑙𝑖𝑗−𝑐𝑜𝑟𝑒 − 𝑙𝑖′𝑗′−𝑐𝑜𝑟𝑒′

′ | < 𝑇4

||𝜃𝑖𝑗 − 𝜃𝑐𝑜𝑟𝑒| − |𝜃𝑖′𝑗′
′ − 𝜃𝑐𝑜𝑟𝑒′

′ || < 𝑇5

 

    (4.5) 

  

    

FVC2006 DB3_A: 111_8.bmp, 111_12.bmp 

Figure 4.5: Minutiae similarity decided with singularity. 
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 Algorithm 3: 

 

As shown in Figure 4.6, define 𝜃𝑚𝑖𝑑 as the direction of the midpoint of the 

feature vector 𝑃⃑ 𝑖𝑗. If (4.6) is not supplied, the score of this minutiae pair is 

scaled. 

  

{

𝛿 = |𝜃𝑖𝑗 − 𝜃𝑚𝑖𝑑|

𝛿′ = |𝜃𝑖′𝑗′
′ − 𝜃𝑚𝑖𝑑′

′ |

|𝛿 − 𝛿′| < 𝑇6

 

    (4.6) 

    

FVC2006 DB3_A: 111_8.bmp, 111_12.bmp 

Figure 4.6: Minutiae similarity decided with midpoint. 

  

Algorithm 4: 

 

In this step frequency block image 𝐹 is used to measure the difference 

between the two feature vectors. If the minutiae from the corresponding 

feature vectors don’t have similar frequency in their frequency blocks (see 

(4.7)), the score of this minutiae pair is also scaled. 
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{
|𝑓𝑖 − 𝑓𝑖′| < 𝑇7

|𝑓𝑗 − 𝑓𝑗′| < 𝑇7
 

    (4.7) 

Algorithm 5: 

 

Figure 4.7 and Figure 4.8 show two different descriptors, which symbolize 

the relation between a central minutia and its neighbours. Some 

parameters are extracted and matched. The similarity is then converted to 

standard similarity score. If either of these two descriptors is not well 

matched, the score of this minutiae pair is to some extent scaled. 

 

The descriptor in Figure 4.7 denotes that the direction blocks around the 

minutia should also be consistent between two to-be-matched templates. 

These blocks are divided into several different groups according to the 

distance to the central minutia. The farther the direction blocks are to the 

central minutia, the more detailed they will be segmented. The differences 

of the minutia direction and such 16×16 direction blocks at each circle with 

radius from 𝑟𝑖 to 𝑟𝑘 are recorded and matched. In order to minimize these 

differences, the corresponding direction blocks in these two templates 

should be independent of rotation. Therefore the first direction block is 

located along the direction of the minutia and at the circle with the first 

radius 𝑟𝑖. If some direction block is marked as noise previously, it will also 

be recorded but with invalidity. 

  

{
 
 

 
 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟 ∈ (𝑖, 𝑘)

   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 ∈ (1, 𝑁𝑟)

      𝑜𝑟𝑖𝑒𝑛𝑡𝑚 = 𝑜𝑝𝑡1(𝜃0, 𝜃𝑟𝑛)

𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑜𝑟𝑖𝑒𝑛𝑡 = ∑ 𝑜𝑝𝑡2(𝑜𝑟𝑖𝑒𝑛𝑡1(𝑛), 𝑜𝑟𝑖𝑒𝑛𝑡2(𝑛))

𝑁

𝑛=0

 

    (4.8) 

In (4.8) (𝑖, 𝑘) gives the possible distances between central minutia and its 

neighbour direction blocks. Function 𝑜𝑝𝑡1  normalizes each difference of 
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the minutia direction and the block direction. Function 𝑜𝑝𝑡2 converts the 

orientation difference to a measurable score. And the variable 𝑁 denotes 

the number of all neighbour direction blocks. 

 

The descriptor in Figure 4.8 denotes relation between the central minutia 

and its neighbour minutiae within radius 𝑟. The similar approach called 

local structure matching can also be referred in [55]. A constant radius 𝑅 is 

defined in advance. Two angle parameters will be extracted from the 

central minutia 𝑚0 and its neighbour 𝑚𝑖, which has the distance within 𝑅 to 

the central minutia. One parameter is the alpha, which presents the angle 

difference of minutia 𝑚0 and vector 𝑚0𝑚𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑. Another parameter is the delta, 

which shows the angle difference of minutia 𝑚0  and minutia  𝑚𝑖 . The 

comparison of the alpha and delta for a minutia pair is shown in (4.9). 

  

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝛼𝑖 = |𝜑𝑖 − 𝜃0|

𝛿𝑖 = |𝜃0 − 𝜃𝑖|

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖, 𝑗𝜖(0,𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑖𝑗)

      𝑝𝑎𝑖𝑟𝑖[𝑖] = 0

      𝑝𝑎𝑖𝑟𝑗[𝑗] = 0

𝑖𝑓 (|𝛼𝑖 − 𝛼𝑗| < 𝑇8 𝑎𝑛𝑑 |𝛿𝑖 − 𝛿𝑗| < 𝑇8 𝑎𝑛𝑑 |𝑟𝑖 − 𝑟𝑗| < 𝑇9)

      𝑝𝑎𝑖𝑟𝑖[𝑖] = 1

      𝑝𝑎𝑖𝑟𝑗[𝑗] = 1

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖, 𝑗𝜖(0,𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑖𝑗)

      𝑖𝑓(𝑝𝑎𝑖𝑟𝑖[𝑖] == 1)   𝑛𝑁𝑢𝑚𝑖 + +

      𝑖𝑓(𝑝𝑎𝑖𝑟𝑗[𝑗] == 1)   𝑛𝑁𝑢𝑚𝑗 + +

𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 = 𝑜𝑝𝑡3 (
(𝑛𝑁𝑢𝑚𝑖 + 1) × (𝑛𝑁𝑢𝑚𝑗 + 1)

(𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑖 + 1) × (𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑗 + 1)
)

 

    (4.9) 

Evidently each minutia pair  𝑚0𝑚𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ in one template is compared with each 

pair from another. Moreover, the condition of the comparison consists of 

the difference not only of angles alpha and delta but also of the Euclidean 

distance of the minutia pair. In this thesis the radius 𝑟 in Figure 4.7 is set 

to 27, 45, 63 and 81 and the radius 𝑅 in Figure 4.8 is set to 80. 
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a)                                         b) 

FVC2006 DB3_A: 111_8.bmp 
 

Figure 4.7: Minutiae local orientation descriptor. 

  

 

FVC2006 DB3_A: 111_8.bmp 

Figure 4.8: Minutiae local neighbour descriptor. 
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iv. As discussed in step (iii) all feature vectors 𝑃⃑ 𝑖𝑗  from two templates are 

cross-matched according to their intrinsic parameters {𝜃𝑖𝑗 , 𝛿𝑖, 𝛿𝑗 , 𝑙𝑖𝑗}  at all 

possible rotations. The matching scores of two feature vectors are 

accumulated in array  𝑎𝑛𝑔𝑙𝑒[ ] . In this step the final translation and 

rotation parameters will be extracted based on (i) - (iii).  

 

To gain precise rotation parameter, array 𝑎𝑛𝑔𝑙𝑒[ ]  is firstly locally 

focused, i.e. each matching score here is amplified in a limited field (see 

(4.10) (a)). Hereafter the angle which has the maximal matching score is 

set as the focus and its neighbouring angles, which have only limited 

angle difference from the focus, use such difference as weighted factors 

for computing the final rotation angle (see (4.10) (b) and (c)). 

 

𝐴𝑛𝑔𝑙𝑒′[𝑖] = ∑ 𝐴𝑛𝑔𝑙𝑒[𝑗]

𝑖+𝑤

𝑗=𝑖−𝑤

                                                                              (a)  

𝑛𝑓𝑜𝑐𝑢𝑠 = 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑀𝑎𝑥(𝐴𝑛𝑔𝑙𝑒′[𝑖], 𝑖 ∈ (0,2𝜋))                                   (b) 

 

𝑎𝑛𝑔𝑙𝑒𝑟𝑜𝑡

= 𝑜𝑝𝑡 (
∑ (𝐴𝑛𝑔𝑙𝑒′[𝑖] × 𝑖)

𝑛𝑓𝑜𝑐𝑢𝑠+𝑤

𝑖=𝑛𝑓𝑜𝑐𝑢𝑠−𝑤
   (𝑖𝑓 𝐴𝑛𝑔𝑙𝑒′[𝑖] > 𝐴𝑛𝑔𝑙𝑒𝑀𝑎𝑥

′ /2)

∑ 𝐴𝑛𝑔𝑙𝑒′[𝑖]
𝑛𝑓𝑜𝑐𝑢𝑠+𝑤

𝑖=𝑛𝑓𝑜𝑐𝑢𝑠−𝑤

) (𝑐) 

  (4.10) 

v. With the rotation angle the template to be matched is rotated to the 

optimal direction to the reference template. Before computing the 

translation, one preparation step is essential. Each matched pair from pair 

list in (4.3) should be checked whether their slopes are similar. If the two 

slopes from a pair are quite different (∆𝜑 >
𝜋

12
), this pair will be removed 

from the pair list. And the translation parameters can then be computed as 

(4.10). 
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vi. Some post-processing are implemented in this step to further optimize the 

feature vector pairs in view of computing more reliable matching score 

later. From this step, the template to be matched and its related direction 

blocks have been rotated and translated to the best position to the 

reference template.  

 

The direction blocks are firstly used as the reference of the reliability of a 

matched feature vector pair. The percentage of the non-noise blocks of 

the two templates is recorded as 𝑝𝑐 and the average similarity of all the 

corresponding blocks, whose similarities are beyond the 

threshold  (∆𝑑𝑖𝑟 >
𝜋

24
), is recorded as 𝑝𝑏 . If either of 𝑝𝑐  and 𝑝𝑏  is below 

pre-defined threshold 𝑇10  and  𝑇10 , it can be directly decided that the 

matching of these two templates is rejected. 

 

When 𝑝𝑐 and 𝑝𝑏 are satisfied the condition, the minutiae of both templates 

will be checked again according to their corresponding block direction 

image. If one minutia lies in a noise block, it should be removed and the 

related feature vector too.  

 

Another optimization is a compromise to the finger distortion. We define 

the feature vector 𝑃⃑ 𝑖𝑗 = (𝑥1, 𝑦1, 𝑥2, 𝑦2)  and the feature vector  𝑃⃑ 𝑖𝑗
′ =

(𝑥1
′ , 𝑦1

′ , 𝑥2
′ , 𝑦2

′), which are a matched pair from two templates respectively. If 

either of the conditions in (4.11) is not supplied, this pair will be removed 

because of too much distortion. The result is shown in Figure 4.9. 

 

{
 

 
∆𝑥1 = |𝑥1 − 𝑥1

′ | < 𝑇12

∆𝑦1 = |𝑦1 − 𝑦1
′ | < 𝑇12

∆𝑥2 = |𝑥2 − 𝑥2
′ | < 𝑇12

∆𝑦2 = |𝑦2 − 𝑦2
′ | < 𝑇12

 

  (4.11) 
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FVC2006 DB3_A: 42_8.bmp 

   

FVC2006 DB3_A: 42_9.bmp 

a)                                 b)                                     c) 

Figure 4.9: Comparisons of feature vectors before and after optimization 

for Finger Distortion:  a) Original grey fingerprint image; b) Feature vectors 

before optimization; c) Feature vectors after optimization. 

 

Furthermore there might be a special situation that more than one feature 

vector in one template are matched with the same feature vector in 

another template. Generally only one pair among these matched pairs is 

correct, and the others are caused by associated false minutiae or too 

dense minutiae. In this event the matching scores of all pairs with one 
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same component are compared and the pair with the best score is kept 

and others are removed from the pair list. 

 

B. Matching Score Computation with Multi-matching Algorithms 

 

After the template to be matched is transformed to the optimal position as 

described in last section, two templates can be further matched with various 

approaches. In this section the matching score 𝑠𝑐𝑜𝑟𝑒_𝑚𝑎𝑥 obtained above will be 

temporarily stored for reference, and new matching score will then be computed 

and evaluated in the following steps. 

 

i. A fast algorithm is firstly proposed in order to finish matching between two 

templates with high similarity. Several minutiae (we define 𝑁 = 7) from the 

reference template are chosen randomly, which should have enough 

distance (𝑑 > 30)  from each other. Figure 4.10 shows the correlation 

between a minutia 𝑚 and core points of different number. The selected 

minutiae in the reference template have their own parameters (𝑑, |𝜃𝑚 −

𝜃𝑐𝑜𝑟𝑒|). If the template has two singularities, 𝜃𝑐𝑜𝑟𝑒  means the slope of 

vector from one core to another. Each parameter will be set as a reference 

and used to find the best matched minutia in another template. If such 

qualified minutia exists in the template to be matched, this template will be 

transformed again according to the difference between this pair and the 

matching result is marked as a candidate  𝑠𝑐𝑜𝑟𝑒𝑖 . The best of the 

candidates from  𝑠𝑐𝑜𝑟𝑒𝑖 (𝑖 ∈ (0, 𝑁)) is chosen as the final score  𝑠𝑐𝑜𝑟𝑒𝑓 of 

this algorithm. If  𝑠𝑐𝑜𝑟𝑒𝑓 and 𝑠𝑐𝑜𝑟𝑒_𝑚𝑎𝑥 are both beyond their thresholds, 

the two templates are regarded as from the same finger. 
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FVC2006 DB3_A: 111_8.bmp, 17_8.bmp 

Figure 4.10: Correlations between a selected minutia and one singularity 

or two singularities. 

  

ii. If the algorithm in (i) cannot offer one positive decision, local matching [55, 

93] is applied to obtain a negative one with celerity. This method makes 

use of the relations, also shown in Figure 4.8, between one minutia and its 

neighbour minutiae within definite spatial distance. The starting threshold 

of this distance is 𝑑𝑚𝑎𝑥1 = 100. If no enough minutiae (𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 < 8) can 

be obtained in this area, the distance will be enlarged up to 𝑑𝑚𝑎𝑥𝑁 = 200. 

When all minutiae pairs from the related feature vectors are scanned and 

their neighbours are recorded, a local matching will be executed between 

these minutiae with enough neighbours in respective templates. Different 

from [93], we just count the number of matched minutia pairs instead of 

accumulating the similarities. If the count cannot reach our threshold, the 

two templates are regarded as from different fingers. 

 

iii. If the decision cannot be made in (i) and (ii) that the two templates are 

from the same finger or different fingers, another reference score 𝑠𝑐𝑜𝑟𝑒𝑑 

will be generated in this step using the descriptors described in section - A 
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(iii) algorithm 5. The scores 𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑜𝑟𝑖𝑒𝑛𝑡 and 𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 

will be computed for each minutia pair and accumulated in (4.12). 

 

𝑠𝑐𝑜𝑟𝑒𝑑 = ∑
𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑜𝑟𝑖𝑒𝑛𝑡(𝑖) × 𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒(𝑖)

100

𝑁𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 
𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 𝑝𝑎𝑖𝑟𝑠

𝑖=0

 

  (4.12) 

 

Combined with  𝑠𝑐𝑜𝑟𝑒𝑑  and block scores 𝑝𝑏  and 𝑝𝑐  the score 𝑠𝑐𝑜𝑟𝑒_𝑚𝑎𝑥 

will be revised. Finally based on a set of parameters (𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥,  𝑠𝑐𝑜𝑟𝑒𝑓 ,  𝑝𝑏 ,

𝑝𝑐, 𝑁, 𝑓𝑟𝑖𝑑𝑔𝑒) a reliable matching score  𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑖𝑛 will be generated. 

 

iv. After  𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑖𝑛 is obtained, our main matching algorithm is completed. If it 

is beyond a moderate threshold (𝑇 = 50), a final matching score is made. 

However in order to improve the FRR in statistic result, some 

optimizations are developed in this step to process the matching with 

score below this threshold. 

 

Algorithm 1: 

 

The rotation and translation parameters will be recomputed with one 

approach described in (4.13). On condition that two minutiae from the 

reference and the to-be-matched template have similar curvature, every 

minutia in reference template is compared with every minutia in another. 

 

The minutia 𝑚𝑟𝑒𝑓 in the reference template is then rotated according to the 

difference of the direction of a minutia pair. The new coordinate of this 

minutia 𝑚𝑟𝑒𝑓
′  is compared with the coordinate of another 𝑚𝑠𝑒𝑎𝑟𝑐ℎ and the 

translation (∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟) is obtained. If this translation is not beyond the 

threshold, the block direction image of the reference image is rotated 

according to this rotation and translation and matched with another block 
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direction image. If the matching of block direction images returns a reliable 

score, these transformation parameters and their corresponding scores of 

block image matching are recorded in arrays 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 and 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒. 

According to the similarities of the minutiae from array 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, the 

array 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒  will be accumulated and the optimal rotation and 

translation parameters are extracted.  

  

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1⋯𝑁

   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑟𝑒𝑓 ∈ (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)

      𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑠𝑒𝑎𝑟𝑐ℎ ∈ (𝑡𝑜 − 𝑏𝑒 − 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)

         𝑖𝑓 |𝑐𝑢𝑟𝑣𝑟𝑒𝑓 − 𝑐𝑢𝑟𝑣𝑠𝑒𝑎𝑟𝑐ℎ| < 𝑇13

            𝑚𝑟𝑒𝑓
′ = 𝑟𝑜𝑡1(𝑚𝑟𝑒𝑓, |𝑑𝑖𝑟𝑟𝑒𝑓 − 𝑑𝑖𝑟𝑠𝑒𝑎𝑟𝑐ℎ|)

            𝑖𝑓 |𝑥𝑟𝑒𝑓
′ − 𝑥𝑠𝑒𝑎𝑟𝑐ℎ| < 𝑇14 𝑎𝑛𝑑 |𝑦𝑟𝑒𝑓

′ − 𝑦𝑠𝑒𝑎𝑟𝑐ℎ| < 𝑇14

               𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑅𝑒𝑓′ = 𝑟𝑜𝑡2(𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑅𝑒𝑓, ∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟)

               𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑐𝑜𝑟𝑒 = 𝑚𝑎𝑡𝑐ℎ(𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑅𝑒𝑓′, 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑒𝑎𝑟𝑐ℎ)

               𝑖𝑓 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑐𝑜𝑟𝑒 > 𝑇15

                  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖] = (∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟)

                  𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖] = 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑐𝑜𝑟𝑒
                  𝑖 = 𝑖 + 1
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1⋯𝑛𝑢𝑚𝑖

   𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 𝑖 + 1⋯𝑛𝑢𝑚𝑖

      𝑖𝑓 ∆(𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖], 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖]) < (𝑇16(∆𝑥, ∆𝑦), 𝑇17(∆𝑑𝑖𝑟))

         𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖]+= 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑗]

         𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑗]+= 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖]

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1⋯𝑛𝑢𝑚𝑖

   𝑖𝑓 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖] == 𝑀𝑎𝑥(𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒)

      (∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟)𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖]

 

  (4.13) 

With these parameters the reference block image and template are 

transformed. The new reference template and the to-be-matched template 

are scanned and the minutiae located in the noise block in the 

corresponding block direction images will be removed. Finally these two 

new obtained templates are matched with the algorithms mentioned in 

section A and B again. 
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Algorithm 2: 

 

The rotation and translation parameters will be recomputed with another 

approach described in Figure 4.11.  

  

 

FVC2006 DB3_A: 111_8.bmp 

Figure 4.11: Minutiae selection for transformation parameters using spatial 

distance, minutia score and curvature. 

 

All minutiae, which have good minutia scores, in the reference template 

will be rearranged in descending order according to the curvature of each 

minutia. From the first minutia of this rearranged template, several 

minutiae (we define 𝑁 = 10) will be selected, which should have a spatial 

distance more than a threshold (we define 𝐷𝑡ℎ𝑟𝑒𝑠 = 30) from each other. 

Since these selected minutiae have good minutia scores and relative long 

distance, they can be considered as reliable and independent from each 

other. Then every minutia will be compared with all minutiae in another 

template. If one minutia from the selected has a pair in another template 

with similar curvature and limited difference of minutia direction, the 

reference template will be transformed with the difference of these two 
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minutiae, and a candidate matching score is obtained. Then the 

transformation with the best candidate matching score is used as the new 

parameters for repetitive matching. In addition block direction image 

should be matched if this score is below pre-defined threshold. When this 

score and the block direction image matching score are both unreliable, 

the matching of these two templates will be rejected. With this best 

translation and rotation parameters the reference template is transformed 

and the both templates are filtered to remove those minutiae located in 

noise area. 

 

As described in Algorithm 1, these two new obtained templates are 

matched with the algorithms mentioned in section A and B again but with 

more flexible thresholds.  

 

4.4  Experimental Results 
 

Since the proposed algorithm aims to improve the identification system based on 

the thermal sweeping sensor by ATMEL, in our experiments, the FVC2004 

DB3_A and FVC2006 DB3_A have been selected as the testing database for 

statistics and algorithm comparison. The introduction of FVC can be referred in 

Appendix A. Figure 4.12 indicates some examples from these two databases. 

 

The database FVC2004 DB3_A consists of 800 fingerprint images from 100 

fingers with 8 fingerprints each. The number of the genuine match and the 

imposter match is 2800 and 4950. For imposter match, the first impression of 

each finger is compared with the first impression of other fingers. The size of the 

image is 300×480 pixels with a resolution of 500 dpi. The performance of the 

proposed algorithm on this database is shown in Figure 4.13. 
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a) FVC2004 DB3_A: 8_8.tif, 100_7.tif, 58_7.tif 

 

 

b) FVC2006 DB3_A: 62_12.bmp, 44_7.bmp, 115_1.bmp 

 

Figure 4.12: Fingerprint examples from FVC databases. 
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a) FMR(t) and FNMR(t)                       b) Score distributions 

 

c) ROC curve                                   d) ROC FVC2004 

Figure 4.13: Experimental results of our algorithm on FVC2004 DB3_A. Part d) 

shows the ROC results from the participants in FVC2004. 

 
 

The database FVC2006 DB3_A consists of 1680 fingerprint images from 140 

fingers with 12 fingerprints each. The number of the genuine match and the 

imposter match is 9240 and 9730. The size of the image is 400×500 pixels with a 

resolution of 500 dpi. The performance of the proposed algorithm on this 

database is shown in Figure 4.14. 
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a) FMR(t) and FNMR(t)                b) Score distributions 

 

c) ROC curve                                 d) ROC FVC2006 

Figure 4.14: Experimental results of our algorithm on FVC2006 DB3_A. 

 

In the Figure 4.13 and Figure 4.14, the last parts contain the ROC results of the 

first 15 participants. The detailed comparisons with the best 5 participants’ 

algorithms in FVC2004 and FVC2006 can also be referred in Table 4.1 and 

Table 4.2. The hardware environment for our test is PC INTEL PENTIUM 4 – 2.8 

GHz – 1.00 GB RAM, which is shown in Table 4.4 and also compared with the 

hardware environment of FVC2004 and FVC2006. A high-level description of the 

corresponding algorithms in FVC2004 is listed in Table 4.3. 
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  Proposed P047 P101 P071 P039 P075 P108 

EER 1,07% 1,18% 1,20% 1,64% 1,78% 1,85% 2,92% 

FMR 100 1,18% 1,68% 1,32% 1,86% 2,32% 1,89% 4,43% 

FMR 1000 5,14% 2,68% 3,11% 4,96% 5,64% 50,79% 9,11% 

Zero FMR 21,00% 4,89% 3,79% 9,89% 99,61% 53,96% 11,04% 

Average Enroll  
Time (s) 

0,106 2,310 0,070 0,400 0,820 0,330 0,240 

Average Match  
Time (s) 

0,008 2,300 0,850 0,810 1,090 0,680 0,250 

Average Model  
Size (byte) 

768 1.5K 18.6K 18.8K 3.0K 0.6K 1.6K 

Max Model Size 
(byte) 

1160 2.7K 18.6K 28.1K 3.5K 1.2K 1.6K 

 

Table 4.1: Performance comparison with FVC2004 DB3_A 

 

 

  Proposed P015 P058 P009 P074 P045 P133 

EER 1,88% 1,53% 1,61% 1,65% 1,68% 1,89% 1,63% 

FMR 100 2,61% 1,75% 1,79% 1,94% 1,85% 2,47% 1,74% 

FMR 1000 5,55% 2,76% 2,41% 3,03% 3,27% 5,26% 3,01% 

Zero FMR 7,42% 7,18% 3,76% 3,93% 4,72% 7,59% 4,33% 

Average Enroll  
Time (s) 

0,091 1,682 0,307 0,583 0,235 0,194 0,054 

Average Match  
Time (s) 

0,005 1,678 0,307 0,641 0,242 0,223 0,056 

Average Model  
Size (byte) 

646 5.88K 4.34K 1.81K 4.73K 8.32K 1,71K 

Max Model Size  
(byte) 

1113 10.67K 12.31K 3.06K 10.12K 12.79K 1,71K 

 

Table 4.2: Performance comparison with FVC2006 DB3_A 
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P002 √ √ D NL √       √       √ √       

P009 √ √ BD DRS √ √ √ √ √ √     √         

P016   √ - - √   √           √       √ 

P026     - DR √     √ √       √         

P027 √ √ D DRS             √         √ √ 

P039 √ √ D N √       √ √     √         

P041 √ √ D DR √   √               √     

P047 √   D DRSN √ √ √ √ √ √ √ √ √ √   √   

P049 √ √ D DR √ √ √   √ √     √ √       

P050 √ √ B DR √       √       √         

P051 √ √ D DR √ √   √ √       √ √     √ 

P067 √ √ D DRN √       √       √         

P068 √ √ D DR √   √           √       √ 

P071 (√) √ D DR(N) √ √ √ √ √     (√)   √ √   (√) 

P072 √ √ D DR √ √     √       √         

P075 √ √ B DR √                 √       

P078 √ √ D DRS √               √         

P087 √ √ D DR √       √ √ √   √ √ √     

P097 √   D DR √ √     √ √     √ √       

P099 √ √ D DRN √               √         

P101 (√) √ BD DRS   √ √ √ √ √   √     √   √ 

P103 √ √ - - √       √         √       

P104 √ √ D DR √                 √       

P105 √ √ B DR √ √     √         √ √     

P106     - - √   √             √       

P107   √ D DRS √ √             √ √       

P108 √ √ D DR √ √     √         √       

P111 √ √ D DR √       √       √         

P113 √ √ D N √ √ √   √ √   √ √ √     √ 

Proposed √ √ D DRS √ √ √ √ √ √     √ √ √     

 

Table 4.3: Comparison of the high-level description of the algorithms between the 

29 participants in FVC2004 and the proposed algorithm[94] 
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Intel Pentium 4 521 Intel Pentium 4 640 

Bus Speed 800 MHz 800 MHz 

L2 Cache Size 1 MB 2MB 

CPU Speed 2.80 GHz 3.20 GHz 

 

Table 4.4: Hard difference between FVC (right) and us (left) 

 

The FVC has two different categories: Open category and Light category. The 

difference between them is that the open category has no limits on memory 

requirements and template size, so that most all of the participants can obtain 

better results. For example, when P101 and P071 in FVC2004 limit their average 

template sizes from 18.6K and 18.8K to 1.1K and 1.3K respectively, the EERs 

drop down from 1.2% and 1.64% to 3.57% and 4.69%. And the corresponding 

Zero FMRs are also two to three times worse (3.79%  8.14% and 9.89%  

21.11%). Overall the top 10 participants from the open category of FVC2004 gain 

the average performance drop more than 40 percent on EER and 35 percent on 

Zero FMR [94] when template size and memory requirement are restricted. To 

implement our algorithm in embedded hardware environment, we firstly confirm 

that the memory usage of our algorithm meets the memory requirement of the 

light category – 4MBytes (In actuality: Max Enroll Memory < 768KByte, Max 

Match Memory < 256KByte). Based on this condition, our algorithm is compared 

with the results from the open category of some participants and only the best 

result from the light category. 

 

As for FVC2004 in Table 4.1, the performance of our algorithm is a little better 

than P047 and P108, which are the best in the open and light category 

respectively, except the higher Zero FMR, caused by one imposter comparison 

which results in a high score. Besides the performance, the efficiency, i.e. the 

Average Enroll and Match Time, is also remarkable. Template sizes less than 

0.5KB are related to those algorithms based only upon minutiae. The size in the 

range of 1KB to 2KB indicates that not only minutiae points but also other 
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features are used in matching process. The other template formats with larger 

sizes contain the storage of some portions of the fingerprint image itself [94]. As 

shown in Table 4.3, P047, P101 and P071 store raw/enhanced image parts for 

later matching or use correlation-based matching algorithm, which causes either 

increase of template size or lower matching speed. P039 and P075 use only 

minutiae to match. However P075 is not much reliable by FMR 1000 in spite of 

small template size and P039 is just the opposite. The best one P108 in the light 

category uses also only minutiae to match, which has a relative low matching 

speed and is still not suitable for embedded application.  

 

As for FVC2006 in Table 4.2, the performance of our algorithm is near to the best 

results on both open and light category. Therefore the efficiency and the template 

size should be further compared. Our Average Enroll Time is 0,091s, higher than 

P133 from the light category and lower than other participants from the open 

category. On the other hand our Average Match Time 0.005s is at least 10 times 

faster than all other algorithms. Moreover our template size is comparable with 

most of other participants from the light category. 

 

In general the performance of our algorithm exhibits a good tradeoff between 

speed and accuracy. Taking the EER as the reference, we have used relative 

less information to describe the similarity between two templates than most 

participants in FVC2004 and FVC2006. Excluding the factor that we have scaled 

the input fingerprint images to a certain degree, our match algorithm is still much 

efficient for even larger images (Max Matching Time: 34ms in FVC2004_DB3_A, 

77ms in FVC2006_DB3_A). This makes it possible for further research on 

hardware platform with more limited resources.  
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FVC2006 DB3_A: 18_3.bmp, 18_4.bmp 

 

 

Figure 4.15: Matching failed due to insufficient overlap. 
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FVC2004 DB3_A: 19_5.bmp, 19_3.bmp 

 

 

Figure 4.16: Matching failed due to global distortion. 
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In the databases that we have used, besides those which have very poor 

qualities, the fingerprint images shown in Figure 4.15 and Figure 4.16 are the two 

principal kinds which lead to the failure in matching. In Figure 4.15 the overlap 

area exists only above the core point and in this area of the second fingerprint 

image no enough minutiae can be extracted unfortunately. Therefore a positive 

decision cannot be made. The final minutiae’s overlap image indicates that only 

three minutiae pairs are correlated. In addition in Figure 4.16 the overlap area is 

large enough and also many minutiae are extracted. The nonlinear distortion by 

fingerprint image acquisitions causes the matching failure. Altogether 11 minutiae 

pairs have been found; nevertheless the difference of minutia directions and the 

spatial distance decrease their contributions to the final matching score.  

 

4.5  Summary 
 

We have proposed a minutiae-based multiple-matching method for fingerprint 

matching. The fingerprint template is represented by feature vectors composed 

of every two minutiae points and their connecting line. The similarity of two 

templates can be simplified to find the translation and rotation parameters with 

which the two templates have the most feature vectors pairs coincided with each 

other. After the best transformation parameters are obtained, a multiple matching 

evaluation criterion is applied in the similarity decision. Finally for such matching 

with uncertainty two other approaches based on the characteristics of each 

minutia itself are proposed to amend the matching score.  

 

The proposed algorithm has been evaluated with both FVC2004 and FVC2006 

DB3 databases, which have relative large distortion and poor quality. The EER 

are 1.07% and 1.88% respectively. It works well for most of fingerprint images by 

experiment; however this algorithm still needs to be improved to deal with those 

images which have too much global distortion or insufficient minutiae. 
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Chapter 5 

Fingerprint Embedded System 

 

5.1  Hardware Architecture 
 

5.1.1 Introduction 
 

A complete Automated Fingerprint Identification Systems (AFIS) contains not 

only an effective fingerprint feature extraction and matching algorithm but also 

appropriate hardware environment where the algorithm can be executed. PC has 

very high processing speed, but is not competent for those offline applications 

such as access control system, fingerprint ID card etc. An embedded system, 

which has low-cost, relative high speed and runs independently, provides a 

better selection for the applications of fingerprint techniques. 

 

During the development of an embedded system, to select one suitable 

embedded processor is a most crucial step. Different processor may have great 

difference in use. The Microcontroller Unit (MCU) has sufficient peripheries and 

low-cost but limited computing performance. Digital Signal Processor (DSP) 

dedicates to signal processing such as signal filtering, FFT etc. due to its special 

computing oriented design. Micro Processor Unit (MPU) is high-integrated 
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general processor expert in computing, which has no such peripheries like MCU. 

The System on Chip (SoC) utilizes hardware programming language to design 

more modules besides MCU or MPU through simulation and synthesis with 

special software and integrates into one chip, which is a real mono-chip 

computer to some extent. 

 

The stand-alone AFIS that we design should not only provide fingerprint image 

acquisition and processing but also communicate with its additional subsystems 

such as relay board, alarm device or door-motor. In view of these practical 

applications, the SOC ARM9G20 from ARM, which will be introduced in later 

sections, has been selected for our main hardware development. 

 

ARM9g20 Processor

400Mhz

SRAM 2x16KB

SPI FLASH

2MB

FPT Database

Management

Atmel 

Sensor

Program
 Start

Aquire

Image

SDRAM

8MB

RS232/485

BioKey4000 Architecture

I
2
C

GPIO Infrared

 

Figure 5.1: Hardware architecture based on ARM9G20. 
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As shown in Figure 5.1, the core module consists of ARM9G20 processor and 

several essential components such as sweep sensor, serial flash, SDRAM etc. 

The fingerprint identification and verification software will be compiled under PC 

platform and be stored in serial flash. After power up, the bootloader program in 

serial flash will firstly be executed, which copies the main program to SDRAM. 

Then the main program, running in SDRAM, communicates with ARM9G20 to 

process various commands such as fingerprint image acquisition from sensor, 

fingerprint template read from or write to database located in serial flash or 

different requests from I/O of processor. 

 

5.1.2 Sensor Techniques 
 

In AFIS fingerprint sensor acts as the data input device to acquire images 

through reading the ridge pattern on the finger surface and converting the analog 

signal to digital through an A/D converter. The sensors can be generally 

classified into several types based on their technologies, e.g. optical, solid-state, 

ultrasound, etc. A fingerprint encoding and matching algorithm with definite 

parameters can obtain recognition accuracy with great difference if various 

sensors are used. Optical sensors and ultrasound sensors can obtain images 

with good quality and high resolution, but the considerable packaging size or high 

cost limits their use in embedded system. Some solid-state sensors based on the 

thermal technology can overcome the above problems; furthermore unlike the 

optical sensor no latent fingerprint is left on the sensor. The sensor in our AFIS 

system belongs to the solid-state sensors based on thermal technology. In Figure 

5.2 shows a sensor of this kind from ATMEL[95]. 

 

Some special pyro-electric materials are used in these sensors to generate 

current based on temperature differential[96]. When sweeping on the sensor, the 

ridges of the fingerprint generate a temperature differential against the valleys for 

the reason that the ridges and the valleys have different distance from the sensor 
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surface. The sensor continues to heat up and amplifies the temperature 

differential and converts it to an image to indicate the fingerprint. After fingerprint 

sweeping there is no more temperature differential on the sensor surface, the 

sensor returns back to normal temperature. A typical character of this sensor is 

that fingerprint image has to be reconstructed from all acquired slice images 

since the area of the temperature differential which can be recorded at one time 

is limited to the valid surface of the sensor. 

 

 

Figure 5.2: FingerChip packages of AT77C102B. 

 

 

Figure 5.3: AT77C102B pin description. 
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Figure 5.3 shows the schematic diagram of fingerprint sensor AT77C102B. 

Sensor initialization should be firstly executed through toggling RST pin (high to 

low) and adding additional clock pulses to synchronize the pipe-line and skip the 

first dummy frame. However it is not necessary between each slice acquisition. 

The pin TPE will be set to turn on heating during the entire acquisition. While 

fingerprint sweeps, the 8-bit data is transferred through Do0-Do3 and De0-De3 in 

sequence. If a slice has acceptable variance, it will be stored for later image 

reconstruction. Otherwise it will be discarded. When the number of received 

slices reaches the slice limit, the acquisition is completed. The sensor returns to 

idle state through setting pins RST and OE. In the end all slices will be 

reconstructed to one fingerprint image through computing the global horizontal 

and vertical translations of two consecutive slices and combining the slices with 

these parameters. Figure 5.4 indicates the flow diagram of one fingerprint 

acquisition. 

 

sensor init

data read

slice 

finished?

No

slice good?

Yes

No

save slice

Yes
All slices 

acquired?

No

sensor exit

Yes

fingerprint 

image 

reconstruction

 

Figure 5.4: Flow diagram of fingerprint image acquisition. 
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5.1.3 ARM Processor 
 

In consideration of both performance and cost, AT91SAM9G20, which derives 

from AT91SAM9260 with the same core ARM926EJ-S but faster ROM and RAM 

memories, is selected in our hardware application. Figure 5.5 shows the block 

diagram of AT91SAM9G20. As follows lists some features of this processor.  

 

 400 MHz frequency on the core and 133MHz on the bus;  

 32-KByte Data Cache and 32-Kbyte Instruction Cache;  

 Memory Management Unit (MMU);  

 Two 16-Kbyte internal SRAM;  

 Debug Unit;  

 Watchdog Timer  

 Other peripherals such as 32-bit PIO controller, UART, Master/Slave SPI 

and 16-bit Timer/Counter etc.  

Since a fingerprint image acquired from sensor has the resolution of 300×400, 

more than 2-MByte memory should be allocated for intermediate results of image 

processing and templates matching. Limited to the internal memory size, a 32-bit 

8-MByte SDRAM from Micron is used for loading program and executing 

fingerprint image processing and a 2-MByte SPI serial flash for storing program 

and fingerprint template database. 

 

As described in Figure 5.1, our system based on AT91SAM9G20 has the 

following routines. After system starts, a bootloader program in serial flash is 

firstly activated, which makes some important initializations and copies the main 

program from serial flash to SDRAM and then this main program runs in SDRAM. 

When a fingerprint sweeps on the sensor, the fingerprint data is transferred from 

sensor to SDRAM via processor. The fingerprint data is then processed in both 

SDRAM and internal SRAM. The notification or result is finally sent out through 

peripherals such as UART for Relay Board or PC, SPI for serial flash, and also 

PIO for some other different usage. 
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Figure 5.5: AT91SAM9G20 block diagram. 
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5.1.4 SPI and Flash Organization 
 

The serial flash in our system is a 2-MBytes CMOS serial flash MX25L1605D 

from Micron. Its pins are fully compatible with the processor’s serial peripheral 

interface (SPI). This interface includes two data lines and two control lines. The 

MOSI and MISO lines supply the data shift between the master (processor) and 

the slave (serial flash). The other two control lines are clock and chip select 

respectively. The master and the slave have a serial shift register each. The 

master starts one transmission through writing data to its serial shift register. The 

data is then transmitted to the slave via MOSI line and the slave transmits the 

data in its register back through MISO line simultaneously. Figure 5.6 shows the 

basic process of SPI data transmission. Figure 5.7 shows the connections of the 

SPI between the processor and the flash. 
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Figure 5.6: SPI data transmission. 

 

 

Figure 5.7: SPI connections between MX25L1605 and AT91SAM9G20. 
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The SPI timings and operation modes have been designated by SPI controller of 

the processor. What needs to be implemented is to initialize related registers 

such as control register, data receive and transfer register, interrupt enable and 

disable register and chip select register etc. Each complete SPI transmission 

consists of command and related data packet, which are stored in a 16-bit 

transmit data register successively. The data is transmitted from master to slave, 

processed in slave and then the new data will be sent back to a 16-bit receive 

data register of the master. If the command is a write operation, the received 

data can be ignored. However such transmission is not perfect for the reason 

that in data transferring by master mode the processor must check the transmit 

empty status or trigger the interrupt of this status frequently and refill the transmit 

buffer if needed to avoid the transmission delay, i.e. if the next 16-bit data cannot 

be sent to the transmit buffer in time, the transmission is delayed. One better 

approach is to use its Direct Memory Access (DMA). If DMA is enabled in SPI 

transmission, the corresponding DMA channel will receive a request from its SPI 

controller and send an answer back. Subsequently the pointer address of the 

command and related data packet will be copied to 32-bit DMA register for SPI 

transmission. In this case the data is transmitted continuously without the check 

of transmit empty status by the processor, which accelerates the SPI speed 

especially in high frequency. Figure 5.8 shows the process of SPI data 

transmission with DMA. 

 

The flash organization is shown in Figure 5.9. The bootloader program locates at 

the starting address of the flash, which occupies 8 Kbytes memory. The next 

sector is allocated to configuration, which contains the diverse parameters with 

which the fingerprint algorithm can be properly executed. The AFIS software is 

stored in the next several sectors, whose size is dependent on the complexity of 

the fingerprint verification and identification algorithm and the additional usages. 

The reserved sector is for some special usage and the backup sector for a 

temporary backup of template copy operation. The residual memory is used to 

store fingerprint templates. 
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Figure 5.8: SPI data transmission with DMA. 
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Figure 5.9: Serial flash organizations. 

 

5.1.5 Serial Interface 
 

The AT91SAM9G20 processor supplies five standard Universal Synchronous 

Receiver Transmitters – USART, with which the system can communicate with 

other devices e.g. PC or relay board. In view of various interfaces of the devices 
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and the transmission distance, the TTL level USART interface with insufficient 

signal intensity and anti-interference ability should be converted to RS-485 

differential signal with a converter. Figure 5.10 shows a 3.3-V RS-485 transceiver 

of TI and its schematic diagram. Through setting or clearing the RTS0 pin to 

enable delivery or receive, data can be sent with TXD0 or received with RXD0 in 

half-duplex mode. 

 

 

Figure 5.10: USART to RS-485 transceiver. 

 

The data transmission can be trigged from either the kern system or another 

controller which is connected to it, e.g. this system can be set as a master or a 

slave device. If one request packet is to send out, the USART controller 

communicates actively through enabling two different bits TXRDY (Transmit 
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Ready) and RXRDY (Receive Ready) of USART Interrupt Enable Register 

alternatively to send this request packet and receive the corresponding answer 

packet (The RXRDY bit should always enabled unless there is data to send out 

since the slave cannot evaluate when a request packet is sent from the master.). 

If the request packet is sent from the other side, the signal will be firstly scanned 

by an IO interrupt in order to start a data receive progress. If no data exists on 

the TXD or RXD line, the USART will be switched to idle state through clearing 

USART interrupt and enabling IO interrupt. The details of the data transmission 

and the related interrupt can be referred in Figure 5.11. 
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Figure 5.11: Flow diagrams of USART communications. 

 

The data packet is implemented with 8 bits data; LSB (Least Significant Byte) (bit 

0) first; no parity and 1 stop bits at various baud rates from 9600 to 115200. The 

data structure is shown in Figure 5.12. The packet length may vary but is limited 

to a maximum of 1024 data bytes. 

 

 

 

Figure 5.12: Data structure of USART. 

 

START 

1 byte start symbol marks the beginning of a packet.  

 

LENGTH 

2 bytes packet length (bits 0…7 first), contains the number of data bytes DATA in 

packet.  Not counted are START, LENGTH, CMD, SENDER, DESTINATION and 
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ERRCHK, so a packet with 30 data bytes has a length value of 30. Maximum 

packet length is 1024.  

 

CMD 

1 byte contains command for receiver.  

 

SENDER 

1 byte contains sender’s address.  

Address range: 0x00 … 0xFF (The Modules share range 0x01 … 0xEF; Host PC 

in bus mode uses 0x00; 0xF0 … 0xFF reserved) 

 

DESTINATION 

1 byte contains receiver’s address.  

Address range: 0x00 … 0xFF (Modules share range 0x01 … 0xEF; Host PC in 

bus mode uses 0x00; 0xF0 … 0xFF reserved)  

 

DATA 1…x 

0 … x bytes contain the data to be transmitted.  

A packet can consist of 0 to 1024 data bytes.  

 

ERRCHK 

1 byte contains a CRC check sum for error detection. 

 

The check sum is computed with the functions of CRC. All packet bytes in the 

given order (START, LENGTH, CMD, SENDER, DESTINATION, and DATA 

(1) … DATA (x)) are used for CRC calculation.  

 

To ensure the reliability of the transmission, the receiver sends an ACK 

(acknowledge) which is not a packet but a single byte after the reception of an 

error-free packet. If the analysis of the check sum shows an erroneous 

transmission, the receiver ignores the packet. After a timeout the sender has to 
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retransmit the packet. If the module is busy it replies a NAK (negative 

acknowledge). In this case the sender can retransmit the packet immediately 

until an ACK is replied. If the sender receives an undefined or no answer, the 

packet is retransmitted up to 2 times. In case the sender does not receive a 

positive acknowledgement again, the process is terminated as the connection or 

the receiver might be faulty. If the sender receives an ACK and the packet from 

the sender requires an answer packet, the sender has to wait up to 5 seconds for 

the answer.  

 

5.1.6 I
2
C 

 

I2C is the kind of protocol which allows multi-master on the same bus and has no 

arbitrary logic but only two signal lines – SDA (serial data) and SCL (serial clock). 

It stipulates that each I2C device has a unique 7-bit address, a data frame has 8 

bit length and some bits in data frame are used for the controlling signals such as 

start, end, the direction of R/W, and acknowledge. According to its data rate, I2C 

can be divided into various modes e.g. standard (100 kb/s), fast (400 kb/s), high 

speed (3.4 Mb/s) and some other variants. 

 

There are two different I2C components in the relay board: a serial EEPROM 

(24C01) and an 8-bit I/O expander for I2C bus (PCF8574T). The EEPROM stores 

the matching code between the kern module and this relay board; the I/O 

expander analyses I2C signal and converts it to 8-bits parallel signal to control 

different relays. They are connected to the same I2C bus, which is shown in 

Figure 5.13. Pins A0-A2 are the input address lines of the chips, which are the 

low 3 bits of the complete address. The high 4 bits of the address of each chip 

have been programmed by the manufacture in advance, therefore these two 

chips can be easily differentiated according to these 4 bits and the pins A0-A2 

are simply connected to the ground.   
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Figure 5.13: Schematic diagram of the I2C relay board. 

 

In practice software simulated I2C with GPIO has been implemented instead of 

hardware I2C on the kern module side, which has better operability and stability.  

The substance of the implementation is to simulate the timings of I2C bus. In idle 

state SDA and SCL are pulled up by pull-up resistors. The master can control the 

both lines, but the slave can only control the SDA. The detailed timings are 

described as follows. When the master issues a START, it pulls down the SDA 

line, which will be detected by the slave and regarded as a signal for the slave to 

prepare for data receive. Then the master issues 1 Byte data bitwise through 

pulling down the SCL, updating 1 bit on the SDA and pulling up the SCL. When 

the slave detects the change of the SCL, it receives this bit from the SDA at once 

and stores it in its shift register. The master will pull down the SCL again for the 
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transfer of the next bit until 8 bits data are transferred. At this moment, SCL is at 

low level for a short time and SDA is at high level i.e. released. The slave will 

now issue an ACK through pulling down the SDA and holding on this signal until 

the master switches the level of SCL to high and then low again, which means 

that the master has received the ACK or NACK. If no more data is to issue, the 

master prepares a STOP signal to end the transmission through pulling down 

SDA in time of SCL at low level, and then pulling up the SCL and SDA in the end. 

The SCL and SDA return to idle state.  

 

5.1.7 Infrared Keypad 
 

The infrared component is an additional block of this system, which realizes 

some basic functions e.g. fingerprint enrollment and deletion, database 

administration and parameter modifications etc. instead of being executed with 

the commands from PC through RS485 interface. On the kern module side a 

miniaturized infrared receiver from VISHAY shown in Figure 5.14 is used for 

infrared signal detection, which has 38 kHz center frequency of the band-pass, 

and supports different kinds of infrared remote control transmission ICs such as 

NEC, RC5 and RC6 etc. On the remote control side an infrared keypad also 

shown in Figure 5.14 is designed integrated with a remote control transmission 

CMOS IC using the NEC transmission format.  

 

In general there are two different infrared remote control formats: Pulse Width 

Modulation (PWM) and Pulse Position Modulation (PPM). PWM represents the “0” 

and “1” using the duty cycle of the infrared carrier, however PPM using the 

detection of the rising or falling edge of one bit period of the infrared carrier. 

Figure 5.15 shows the transmission code of the NEC format which is used in our 

infrared Keypad. The NEC format has the following characteristics: the frequency 

of the carrier wave is 38 kHz and duty cycle is 1/3; the interval of the Leader 

Code is 9ms + 4.5ms; the Custom Code has 16 bits; the Data Code has 16 bits; 

both the Custom Code and the Data Code include an 8-bits original code and its 
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reversed 8-bits code.  If a key is kept pressed, only the Leader Code will be 

iteratively transmitted. Each 8-bits data unit is transmitted from LSB to MSB, and 

so each data byte should be bit-reversed after reception.  

 

 

Figure 5.14: Infrared receiver and remote controller. 

 

To capture the infrared signal, two different kinds of approaches can be used, 

which are polling and interrupt. By polling mode, the period of the polling should 

be firstly decided. Since the least interval of the signal is 0.56ms, the polling 

interval should not be greater than 0.56ms. The system has a general timer, 

which has 16 kHz in frequency.  Therefore a suitable polling interval can be 

obtained through scaling this timer with a factor such as 4 (4 / (16 kHz) = 0.25ms). 

If the level is unchanged, only the counter for the level will be accumulated. If the 

level alters, the counter will be analyzed with the level before and after this 

alternation. By interrupt mode, the extern interrupt of the GPIO connected to the 

output pin of the receiver should be set as edge-trigged. Through measuring the 

interval between the rising edge and the next falling edge, the length of a logic 1 

can be extracted and vice versa.  
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Figure 5.15: Remote output waveform of NEC format. 
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5.2  Software Implementation and Optimization 

5.2.1 System Boot 
 

In PC system the hardware initializations and configurations are performed by 

BIOS (Basic Input / Output System). However in the embedded system such 

program, also called bootloader, cannot entirely completed by the chip 

fabricators for the reason that even the same processor can be applied in many 

embedded environments with different peripherals which need different 

initialization codes. Therefore one microcontroller can only have a serial of 

general initialization commands programmed in internal ROM, with which a 

second-level bootloader or the main program can be successfully loaded and 

executed.  

 

The boot strategies of AT91SAM9G20 can be described in Table 5.1. The 

system always boots at address 0x0 and which memory is assigned to this 

address depends on the pin BMS (Boot Mode Select) and Remap operation in 

the Remap Control Register. Therefore the state of the BMS pin by reset decides 

the boot mode, since the Remap can only be done after the system boots. If 

BMS is 0, the system boots with 16-bit data bus on 16-bit non-volatile memory, 

which is not compatible with our serial flash. If BMS is 1, which has been 

implemented through pull-up in our system, ROM occupies the address 0x0 and 

0x100000 by start, and the pre-programmed boot program is executed to search 

available bootloader from supported interface such as serial flash, NandFlash, 

SD Card or EEPROM etc. Then the bootloader will be downloaded and executed 

from the external storage media into internal SRAM0 by the special initialization 

commands mentioned above. The code size of the bootloader should not exceed 

the size of the SRAM0. For this reason the size is pre-defined in the sequence of 

the exception vectors located at the first 8 words in serial flash. By serial flash 

boot, these 8 words will be firstly read into SRAM and checked whether they are 

valid exception vectors shown in Figure 5.16 and have valid size. If a valid 
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sequence is found, the bootloader will be loaded into SRAM0 and executed from 

the address 0x0 in SRAM0 after the boot program issues a Remap command. 

 

Remap = 1

BMS = 1 BMS = 0

0x00000000 ROM EBI_NCS0 SRAM0 16K

0x00100000

0x00200000

0x00300000

0x00500000 USB Host User Interface

Address
Remap = 0

ROM

SRAM0 16K

SRAM1 16K

 

Table 5.1: Internal memory mapping 

 

 

Figure 5.16: Interrupt vector table. 

 

The bootloader executed in SRAM0 includes the following steps. After the 

interrupt vector table is defined at the address 0x0 in SRAM0, some hardware 

initializations should be made to switch the running bootloader program from 

slow clock (32,768Hz) to fast clock (132MHz Master Clock) through setting 

PRES and PDIV bits in Master Clock register. Then the interrupt stack and 

system stack are set up under corresponding special arm modes, since such 

operations of Current Program Status Register (CPSR) cannot be processed 

SECTION .vectors:CODE:NOROOT(2) 

resetVector: 

   LDR      pc, =resetHandler ; Reset 

   LDR      pc, Undefined_Addr ; Undefined instructions 

   LDR      pc, SWI_Addr  ; Software interrupt (SWI/SYS) 

   LDR      pc, Prefetch_Addr ; Prefetch abort 

   LDR      pc, Abort_Addr  ; Data abort 

   DC32    0x4000   ; Bootloader size (16 Kbyte) 

   LDR      pc, =irqHandler  ; IRQ 

   LDR      pc, FIQ_Addr  ; FIQ 
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under user mode. Finally the program pointer will branch to the main program of 

the bootloader, in which SDRAM and serial flash are configured and the main 

embedded fingerprint firmware will be copied from flash to the SDRAM and set 

as the next level program to execute. 

 

5.2.2 MMU and Caches 
 

The ARM926EJ-S has an ARM architecture v5 MMU and contains a 32KB 

Instruction Cache (ICache), a 32KB Data Cache (DCache) and a write buffer. 

This MMU has standard mapping size of 1MB (sections), 64KB (large pages), 

4KB (small pages) and 1KB (tiny pages)[97]. Because this core is a 32-bit 

processor, its virtual address space has the size of 232 = 4𝐺  and the whole 

space can be divided into 
4𝐺

1𝑀
= 4𝐾  sections. Each section is recorded with 4 

bytes shown in Figure 5.17. Therefore a block of memory with the length of 

4𝐾 × 4 = 16𝐾 should be allocated to this TTB (Translation Table Base) used by 

MMU. Due to the reason that other descriptors except section descriptor have 

been removed in the ARMv6 architecture, to ease the porting of code in future, 

only section descriptor will be used in our system, which can be differentiated 

from other descriptors with the last two bits - 10 of this descriptor. 

 

 

Figure 5.17: MMU section descriptor. 

 

In Figure 5.17 the three fields “Section base address”, “C” and “B” must be 

correctly configured for each section. The “Section base address” occupies 12 

bits, which stores the most important 12 bits of the address of each section to 

differentiate from other sections. The combination “C” and “B” field indicates that 

this section may be write-back cacheable, write-through cacheable, noncached 
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buffered, or noncached nonbuffered section. The difference between the write-

back and the write through operations is that, when a cache write hit occurs, the 

write-through operation updates not only the DCache line but also the external 

memory, which avoids inconsistency between memory and cache at cost of 

efficiency (writing speed and bus busy time).  

 

 

Memory Address Range Cacheable Buffered

Boot 0x00000000 ... 0x000FFFFF

ROM 0x00100000 ... 0x001FFFFF

SRAM0 0x00200000 ... 0x002FFFFF

SRAM1 0x00300000 ... 0x003FFFFF

UHP 0x00500000 ... 0x005FFFFF

0x20000000 ... 0x200FFFFF

0x20100000 ... 0x201FFFFF

0x20200000 ... 0x202FFFFF

0x20300000 ... 0x203FFFFF

0x20400000 ... 0x204FFFFF

0x20500000 ... 0x205FFFFF

0x20600000 ... 0x206FFFFF

0x20700000 ... 0x207FFFFF

Internal Peripherals 0xFFF00000 ... 0xFFFFFFFF 0 0

0 0

SDRAM (8MB) 1 1

 

Table 5.2: Translation table definition 

 

Table 5.2 shows the related memory spaces with cache and buffer features in 

Translation table. After system boot code and data will be transferred to SDRAM 

and executed in SDRAM. The complete SDRAM is therefore set as cacheable 

and write-back enabled except some buffers for special usage such as DMA 

transfer buffer for serial flash. The DMA controller serves as a master device 

connected to the AHB bus like ARM core. They can both access the internal or 

external via APB bridge memory interface shown in Figure 5.4. On a single-layer 

AHB bus such simultaneous accesses are exclusive. If the destination address of 

one DMA transmission triggers cache hit, one conflict will occur. In view of this 
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reason, the DMA transfer buffer can be allocated in SRAM0 which is noncached 

buffered. Another method to avoid this conflict is to flush the related source 

cached address before transmitting and flush the related destination cache 

address after transmitting. Another memory space, which should not be cached 

or buffered, is internal peripherals. Since write-back operation has delay and two 

successive reading from the same I/O may be different, these registers should be 

set as noncached and nonbuffered. 

 

FVC2006 DB3_B
ICache = 0 

DCache = 0

ICache = 1 

DCache = 0

ICache = 1 

DCache = 1

1_1.bmp 14.76s 6.66s 0.78s

2_1.bmp 13.71s 6.00s 0.76s

3_1.bmp 11.94s 5.42s 0.63s

4_1.bmp 9.51s 4.30s 0.52s

5_1.bmp 8.97s 4.09s 0.49s

6_1.bmp 9.73s 4.45s 0.50s  

Table 5.3: Comparisons of the encoding performance with or without ICache and 

DCache 

 

ICache and DCache can be independently enabled and disabled. If ICache is 

enabled, all memory space used by CPU read instruction can be cached. If 

DCache is enabled, MMU must also be enabled since its translation table 

manages the whole memory space to decide which section should be cached or 

buffered. Table 5.3 indicates the various performance of the ARM926EJ-S core 

with or without ICache and DCache. Several images are selected from FVC2006 

DB3_B database, which have 500 dpi with image size 400×500. On average, 

ICache doubles the encoding speed meanwhile DCache and MMU increase the 

encoding speed by about 10 times. With enabled ICache and DCache this 

system can achieve real-time requirements. 
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5.2.3 Interrupt Handling 
 

TC0 (IR, LED, 

System Clock)

TC1 (Timepiece)

TC2 (I
2
C Timer)

SPI0 (SPI Flash)

PIOB

USART0 (Relay Board)

DBGU (Debug)

USART2 (PC)

APB
 

Figure 5.18: Enabled interrupts in BioKey4000. 

 

As shown in Figure 5.18 BioKey4000 uses different interrupts to communicate 

with external devices or implement internal functions. If several interrupt sources 

are pending and enabled, they should be processed sequentially according to 

their significance. Some external functions such as data transmission via USART 

are bit-sensitive and therefore should not be delayed by other interrupts.  

 

The ARM9G20 has an 8-level priority controller to drive the IRQ line of the 

processor. Each interrupt source can have a programmable priority level. To 

avoid losing packet by data transmission, external interrupts, especially USART2, 

are given relative higher priority. During the execution of the lower priority 

interrupts, such high priority interrupt can be inserted and handled in advance 

with a nested interrupt handler, in which the current interrupt number and its 

priority level are pushed into an embedded hardware stack and later restored 

when the higher priority interrupt is finished.   
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5.3  Summary 
 

The BioKey4000 module is a standalone fingerprint identification and verification 

system. It uses ATMEL FingerChip AT77C102B to acquire fingerprint image and 

process this image with ARM9G20 processor. The module extends a 32-bits 8-

MByte SDRAM and a 2-MByte serial flash for program execution and storage 

respectively. RS485 hardware driver is also integrated optionally, with which 

BioKey4000 can communicate with PC for fingerprint database management and 

software update and with relay board to supply identification signal for access 

control. In addition an infrared block is developed for operating convenience. 
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Chapter 6 

Conclusions and Future Work 

 

6.1  Conclusions 
 

In this thesis main work can be described in following sequence:  

i. Fingerprint image enhancement – in order to give a better representation 

of the input image. Contrast extending, normalization, and filters with both 

frequency-selective and orientation-selective properties will be discussed. 

 

ii. Features extractions – obtaining features such as the position, angle and 

type of the minutiae and also ridge distribution from binary image. In this 

part we have used a special kind of method to locate minutiae, which is 

based on the contour of the ridges, instead of traditional method from 

thinning images. Through enclosing each singular ridge, we have located 

the possible minutiae positions at the turning points. After that, minutiae 

post-processing has been used to eliminate the spurious minutiae. 

 

iii. Features matching – based mainly on matching of feature vector pairs 

theory making the decision between two fingerprint images whether they 

are from the same finger. According to the angel where the maximum of 

the number of matched feature vector pairs reach, the translation and 
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rotation parameters will be extracted. Thereafter the similarity between 

two templates is computed based on our multiple-matching algorithm. 

 

iv. Algorithms implementation in embedded environment – ARM core based 

system is designed, with which real-time fingerprint identification and 

verification operation is expected. Before fingerprint verification and 

identification algorithm is applied in our embedded systems, some 

important hardware devices should be adequately selected.  

 

Fingerprint sensor is the first one. Although optical sensors can obtain 

better image quality and resolution, its size and cost restrict its application 

in embedded devices. As an alternative solid-state sensors which 

overcome the size and cost problems are widely used in embedded 

devices. The swipe sensor selected from ATMEL is part of this kind and 

based on thermal technology. It has limited width which might be even 

narrower than some fingers. Therefore the reconstructed fingerprint image 

maybe be only part of instead of a whole finger.  

The second important part in the system is the processor. ARM9g20 

(400MHZ) is used to build hardware environments, with which a relative 

good performance of fingerprint verification and identification is obtained.  

 

v. Finally we have made some statistical test with standard databases e.g. 

FVC2004, FVC2006 and also captured databases by ourselves. The 

statistic results of our experiments are built based on the above hardware 

platform, which has shown that the system can obtain satisfying 

performance in various databases. 
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6.2  Future Work 
 

To make this fingerprint identification and verification system more robust and 

better for use, we believe there are still a lot of work to do. According to the 

significance, some of work is listed as follows. 

i. Real-time is a most important feature of this system. In order to 

accomplish fingerprint identification between an actual template and a 

large template database, the time of each single matching is relative 

crucial. To optimize the matching algorithm further can realize a real-time 

identification with larger database. 

 

ii. A typical ATMEL solid-state sensor is used in this thesis. There are still 

some different kinds of sensors widely used. The algorithm based on 

ATMEL sensor cannot process the images generated from other sensors 

very well. Aiming at those images with small size, few minutiae and bad 

contrast, the algorithm still needs to be corrected. 

 

iii. One optional further development is to develop a LCD block on 

BioKey4000, since the acknowledgement of menus and messages can 

only be shown from three different LEDs currently. Some conflict occurs 

occasionally. 

 

iv. Another optional further development is to develop an Ethernet block 

based on TCP/IP protocol directly on BioKey4000 Module, with which this 

system can be accessed into a local network as a network terminal. 
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Appendix A: FVC –  

Fingerprint Verification 

Competition 

 

Fingerprint Verification Competition (FVC) is an international competition focused 

on fingerprint verification software assessment. The registered participants can 

test their algorithms and adjust the parameters in advance according to a subset 

of the database, acquired with various sensors, for competition. Enroll and Match 

algorithms should be compiled separately to executable files to submit, which will 

be used for the competition with the whole database. The result of this 

competition presents an overview of the state-of-the-art in fingerprint techniques. 

Till now FVC has been held four times in 2000, 2002, 2004 and 2006 

respectively. 

 

The software and hardware environment for the competition in 2006 is Windows 

XP Professional O.S. on PC INTEL PENTIUM 4 - 3.20 GHz - 1.00 GB RAM. The 

competition is divided into two categories: Open and Light. In Open category 

memory requirements and template size have no limits. The maximum enroll 

time is 5 seconds and the maximum matching time is 3 seconds. In Light 

category the maximum memory that can be allocated by the processes is 4M-
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Bytes. The maximum template size is 2K-Bytes. The maximum enroll time is 0.3 

seconds and the maximum matching time is 0.1 seconds. In the earlier 

competitions such limitations vary with the software and hardware environment at 

that time. 

 

Competition 
Number 

of 
databases 

Size of each 
Database: 

A - Evaluation set 
B - Training set 

Notes 

FVC2000 4 
A: 100 × 8 
B: 10 × 8 

- Volunteers are mainly unhabituated students. 

- Two sessions, no quality-check. 

- Low/Medium difficulty (DB1, DB2, DB4);            

Medium/High difficulty (DB3). 

FVC2002 4 
A: 100 × 8 
B: 10 × 8 

- Volunteers are mainly unhabituated students. 

- Three sessions, no quality-check. 

- Voluntarily exaggerated perturbations: 
displacement, rotation, wetness and dryness. 

- Low difficulty (DB1, DB2, DB3, DB4). 

FVC2004 4 
A: 100 × 8 
B: 10 × 8 

- Volunteers are mainly unhabituated students. 

- Three sessions, no quality-check. 

- Voluntarily exaggerated perturbations: 
distortion, wetness and dryness. 

- Medium difficulty (DB1, DB2, DB3, DB4). 

FVC2006 4 
A: 140 × 12 
B: 10 × 12 

- Heterogeneous population also includes 
unhabituated manual workers and elderly 
people. No quality check. 

- The final datasets were selected from a larger 
database by choosing the most difficult 
fingerprints according to a quality index. 

- High difficulty (DB1), Medium difficulty (DB3), 
Low difficulty (DB2, DB4). 

 

Table A.1: A summary of FVC database. In the database size the notation M×N, 

denotes M fingers and N samples per finger. In all the competitions the first three 

databases were acquired by selecting commercial scanners of different types, 

including large-area optical, small area optical, solid state capacitive and thermal 

sweep. The fourth database was synthetically generated by using the SFinGe 

tool. [73] 
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Every competition contains four distinct databases for the benchmark: DB1, DB2, 

DB3 and DB4, which are acquired from heterogeneous people and different 

sensors (see Table A.1). Each database has two subsets DB_A and DB_B. 

DB_A contain more fingers and samples and are used for the algorithm 

performance evaluation. DB_B contains fewer fingers and are used for 

parameter tuning by the participants. All fingerprint images in databases are 

stored in 256 gray-levels, uncompressed BMP or Tiff format.  

 

The competitions use each algorithm with each database to compute the False 

Non Match Rate FNMR (also referred as False Rejection Rate - FRR) through 

matching each sample in the subset DB_A against the remaining samples of the 

same finger, and to compute the False Match Rate FMR (also referred as False 

Acceptance Rate – FAR) through matching the first sample of each finger in the 

subset DB_A against the first sample of the remaining fingers in this subset. 

Furthermore other important indicators are also reported: 

 REJENROLL (Number of rejected fingerprints during enrollment) 

 REJNGRA (Number of rejected fingerprints during genuine matches) 

 REJNIRA (Number of rejected fingerprints during impostor matches) 

 Impostor and Genuine score distributions 

 FMR(t)/FNMR(t) curves, where t is the acceptance threshold 

 ROC(t) curve 

 EER (equal-error-rate) 

 EER* (the value that EER would take if the matching failures were 

excluded from the computation of FMR and FNMR) 

 FMR100 (the lowest FNMR for FMR<=1%) 

 FMR1000 (the lowest FNMR for FMR<=0.1%) 

 ZeroFMR (the lowest FNMR for FMR=0%) 

 ZeroFNMR (the lowest FMR for FNMR=0%) 

 Average enrollment time 

 Average matching time 
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 Average and maximum template size 

 Maximum amount of memory allocated 

Table A.2 shows a comparative summary of the performances (EER) obtained in 

the past four FVC competitions. 

 

 DB1 DB2 DB3 DB4 

FVC2000 2.30% 1.39% 4.34% 3.38% 

FVC2002 0.20% 0.17% 0.63% 0.16% 

FVC2004 1.61% 2.32% 1.34% 0.81% 

FVC2006 5.88% 0.05% 1.59% 0.39% 

 

Table A.2: Average accuracy (EER) of the three best performing algorithms over 
the different FVC databases. [73]
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