

Low Complexity Embedded

Fingerprint Verification and

Identification System

Vorgelegt von

M.Sc.

Wei Sun

Von der Fakultät IV – Elektrotechnik und Informatik –

der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften

– Dr.-Ing –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Reinhold Orglmeister, TU-Berlin

Gutachter: Prof. Dr.-Ing. Thomas Sikora, TU-Berlin

Gutachter: Prof. Dr. Atta Badii, University of Reading

Gutachter: Dr.-Ing. Ivo Keller, TU-Berlin

Tag der wissenschaftlichen Aussprache: 24.November 2015

Berlin 2016

D83

iii

Erklärung

Hiermit versichere ich an Eides statt, die vorliegende Arbeit
selbständig, ohne fremde Hilfe und ohne Benutzung anderer als der
von mir angegebenen Quellen angefertigt zu haben. Alle aus fremden
Quellen direkt oder indirekt übernommenen Gedanken sind als
solche gekennzeichnet. Die Arbeit wurde bisher in gleicher oder
ähnlicher Form keiner Prüfungsbehörde vorgelegt.

Berlin, den 9. Sep. 2013 ________

(Wei Sun)

iv

Acknowledgement

This research work would not have been possible without the
continuous support and assistance of some people.

First of all, I would like to thank my mentor Mr. Prof. Sikora, who
offered me this opportunity to pursue this dissertation research. I am
very grateful for his wise guidance, advice and suggestions all the
time.

I would also like to thank my boss and supervisor Mr. Dipl. Zeng.
Through several years’ team work, I have learned a lot from him not
only in researching field. Moreover many troublesome problems could
almost be smoothly resolved after each discussion.

My sincere thanks go also to all the members of my family. Without
my wife’s great support, understanding and love I could not finish this
work. To my son, your smile is the best encouragement and power
for me.

v

Abstract

A qualified fingerprint verification and identification system should
resolve most of the problems of fingerprint image enhancement and
fingerprint matching. In practice, the fingerprint images are not ideal
and may have totally different qualities when the fingers are too moist
too dry, improperly placed, or from some users who are engaged in
heavy manual work. Furthermore nonlinear deformations in
fingerprint images by reason of the elasticity of the skin as well as the
pressure and the movement of the finger during image acquisition,
result in bad matching results in verification and identification even
from the same finger.

In this thesis I designed a fingerprint-based biometric system in order
to solve most of the above problems in both software and hardware
application. Fingerprint identification and verification algorithms were
first developed for PC, then optimized and implemented in an ARM9-
based embedded system.

vi

Zusammenfassung

Ein gutes Fingerabdruck Verifikations- und -Identifikationssystem
sollte die meisten Probleme bei Verbesserung und Vergleich von
Fingerabdruckbildern lösen. In der Praxis sind Fingerabdruckbilder
jedoch nicht ideal und können völlig unterschiedliche Eigenschaften
haben, wenn die Finger zu feucht oder zu trocken sind, falsch auf den
Sensor gelegt wurden oder abgenutzt sind. Zusätzlich treten durch
die Elastizität sowie Druck und Bewegung des Fingers während der
Bilderfassung nichtlineare Verzerrungen in Fingerabdruckbildern auf,
die zu schlechten Ergebnissen bei Identifizierung und Verifikation
führen.

In dieser Arbeit wurde ein Fingerabdruck-basiertes biometrisches
System entworfen, das die meisten der genannten Probleme lösen
soll. Algorithmen zur Identifizierung und Überprüfung von
Fingerabdrücken wurden zuerst auf dem PC entwickelt, und dann
optimiert und auf einem ARM9-basierten eingebetteten System
implementiert.

Contents

vii

Contents

1 Introduction .. 1

1.1 Biometrics .. 1

1.2 Embedded System .. 7

1.3 Overview of the Thesis .. 8

2 Fingerprint Image Enhancement .. 10

2.1 Introduction .. 10

2.2 State of the Art ... 11

2.2.1 Segmentation .. 11

2.2.2 Normalization .. 12

2.2.3 Ridge Orientation Estimation ... 13

2.2.4 Ridge Frequency Estimation ... 16

2.2.5 Filtering ... 18

2.3 Experimental Improvements .. 20

2.3.1 Directional Image Filtering ... 20

2.3.2 Noise Image Evaluation .. 24

2.3.3 Frequency Image Improvement .. 26

Contents

viii

2.4 Summary ... 28

3 Fingerprint Feature Extraction .. 31

3.1 Introduction .. 31

3.2 State of the Art ... 33

3.2.1 Binarization ... 33

3.2.2 Thinning .. 35

3.2.3 Minutiae Extraction .. 37

3.2.3.1 Extraction with Unthinned Binarized Images 38

3.2.3.2 Skeletonization-based Methods .. 40

3.2.3.3 Extraction with Grey-Level Images ... 43

3.3 Application and Optimization ... 44

3.3.1 Grey-Level Image Binarization .. 44

3.3.2 Minutiae Extraction .. 49

3.3.3 Minutiae Post-processing .. 51

3.4 Experimental Improvements .. 54

3.5 Summary ... 61

4 Fingerprint Matching... 62

4.1 Introduction .. 62

4.2 State of the Art ... 65

4.3 Application and Optimization ... 68

4.4 Experimental Results ... 89

4.5 Summary ... 99

5 Fingerprint Embedded System.. 100

5.1 Hardware Architecture ... 100

5.1.1 Introduction ... 100

Contents

ix

5.1.2 Sensor Techniques ... 102

5.1.3 ARM Processor ... 105

5.1.4 SPI and Flash Organization .. 107

5.1.5 Serial Interface .. 109

5.1.6 I2C ... 114

5.1.7 Infrared Keypad ... 116

5.2 Software Implementation and Optimization ... 119

5.2.1 System Boot .. 119

5.2.2 MMU and Caches.. 121

5.2.3 Interrupt Handling .. 124

5.3 Summary ... 125

6 Conclusions and Future Work ... 126

6.1 Conclusions ... 126

6.2 Future Work ... 128

Appendix A: FVC – Fingerprint Verification Competition 129

Bibliography .. 133

List of Figures

x

List of Figures

Figure 1.1: Deployment of biometrics systems at border crossings for

immigration control: a) face recognition system (Smart Gate) at Sydney

airport; b) iris recognition system at Amsterdam Schiphol airport; c) at

Manchester airport (UK); d) at UAE airport; e) fingerprint recognition

using index fingers at airports in Japan; f) ten fingerprint acquisition at

airports in the United States; g) fingerprint based immigration clearance

for passengers at Hong Kong airport; h) vehicular clearance using

fingerprint and face in Hong Kong.[3] ... 4

Figure 1.2: The relations between EER, FAR and FRR. 6

Figure 1.3: The ARM and Cortex families. ... 8

Figure 2.1: Fingerprint images with various qualities from FVC2006_DB3_A.

a) A good quality fingerprint; b) A medium quality fingerprint; c) A poor

quality fingerprint. ... 11

Figure 2.2: Image normalization. a) Original image; b) Image after

normalization. ... 13

Figure 2.3: Ridge orientation estimation. a) Original image; b) Orientation

image. ... 14

Figure 2.4: A 9×9 window in slit-based approach. 15

Figure 2.5: Ridge frequency estimation. a) Original image; b) Frequency

image. ... 17

Figure 2.6: Ridge frequency computation. ... 17

List of Figures

xi

Figure 2.7: Image filtering. a) Original image; b) Filtered image. 18

Figure 2.8: Gabor Filter with the parameters θ = 135°, f = 1/5, σx = σy = 4.

 ... 20

Figure 2.9: Image direction layout. ... 21

Figure 2.10: Computation window (w = 12). ... 21

Figure 2.11: Directional image filtering. a) Fingerprint grey-scale images; b)

Images before directional image filtering; c) Images after directional

image filtering. .. 23

Figure 2.12: Noise image evaluation. a) Original noise image; b) Optimized

noise image; c) Original binary image; d) Optimized binary image. 25

Figure 2.13: 33×33 windows with different local frequencies. 26

Figure 2.14: Frequency image improvement. a) Original frequency image; b)

Filtered frequency image; c) Quantized frequency image..................... 28

Figure 2.15: Results of fingerprint image enhancement with optimized

algorithm: a) Input image; b) Directional filtered image; c) Directional

filtered image with ridge estimation. ... 29

Figure 3.1: Various singularities of fingerprint in FVC2006_DB3_A. 31

Figure 3.2: Termination minutia x0, y0, θ0 and bifurcation minutia x1, y1, θ1. 32

Figure 3.3: Efficiency of binarization-based method for images with different

quality and acquisition condition: a) A medium quality fingerprint with

scratches and ridge breaks; b) A poor quality fingerprint with too much

acquisition noise. .. 32

Figure 3.4: Fingerprint images with different contrast: a) Appropriate for

global threshold; b) Appropriate for local threshold. 34

Figure 3.5: Binarized image thinning. a) Binarized image; b) Thinning image.

 ... 35

Figure 3.6: Neighbour of P5 in OPTA. ... 36

Figure 3.7: Restoring patterns in OPTA. .. 37

Figure 3.8: Thinning patterns in OPTA. ... 37

Figure 3.9: Classifications of minutiae extraction techniques. 38

Figure 3.10: Minutiae extraction using contour tracing in binary image. 39

List of Figures

xii

Figure 3.11: 3×3 window for Crossing Number scanning. 41

Figure 3.12: Types of Crossing Number. ... 42

Figure 3.14: The structure element sequence for ridge bifurcations. 43

Figure 3.15: Stages of the proposed grey-level image binarization algorithm.

 ... 45

Figure 3.16: Results of various stages in grey-level image binarization. 48

Figure 3.17: Thinning patterns improvements.. 50

Figure 3.18: The proposed thinning patterns. .. 51

Figure 3.19: One minutia pair for post-processing. 52

Figure 3.20: Comparison of binarization from a fingerprint of good quality

with various methods. ... 55

Figure 3.21: The sample set of fingerprints referred in [8] and used in our

comparison. All the fingerprints (except no. 6, 7 and 8) have dimensions

256×256 with 256 grey levels. The fingerprints no. 6, 7 and 8 have

dimensions 190×250 with 256 grey levels. ... 56

Figure 3.22: Automatic minutiae detection in fingerprint no.1 - class good

using approach A, the proposed, B and E (from left to right). The first

row is the input image successively with its smoothing, binarization,

thinning and minutiae extraction results. .. 57

Figure 3.23: Automatic minutiae detection in fingerprint no.13 - class poor

using approach A, the proposed, B and E (from left to right). The first

row is the input image successively with its smoothing, binarization,

thinning and minutiae extraction results. .. 58

Figure 4.2: Feature vector between two minutiae. 71

Figure 4.3: Minutiae filtering using block direction image. 73

Figure 4.4: Minutiae filtering using block direction image. 73

Figure 4.5: Minutiae similarity decided with singularity. 76

Figure 4.6: Minutiae similarity decided with midpoint. 77

Figure 4.7: Minutiae local orientation descriptor. ... 80

Figure 4.8: Minutiae local neighbour descriptor. .. 80

List of Figures

xiii

Figure 4.9: Comparisons of feature vectors before and after optimization for

Finger Distortion: a) Original grey fingerprint image; b) Feature vectors

before optimization; c) Feature vectors after optimization. 83

Figure 4.10: Correlations between a selected minutia and one singularity or

two singularities. ... 85

Figure 4.11: Minutiae selection for transformation parameters using spatial

distance, minutia score and curvature. ... 88

Figure 4.12: Fingerprint examples from FVC databases. 90

Figure 4.13: Experimental results of our algorithm on FVC2004 DB3_A. Part

d) shows the ROC results from the participants in FVC2004. 91

Figure 4.14: Experimental results of our algorithm on FVC2006 DB3_A. 92

Figure 4.15: Matching failed due to insufficient overlap. 97

Figure 4.16: Matching failed due to global distortion. 98

Figure 5.1: Hardware architecture based on ARM9G20. 101

Figure 5.2: FingerChip packages of AT77C102B. 103

Figure 5.3: AT77C102B pin description. .. 103

Figure 5.4: Flow diagram of fingerprint image acquisition. 104

Figure 5.5: AT91SAM9G20 block diagram. ... 106

Figure 5.6: SPI data transmission. ... 107

Figure 5.7: SPI connections between MX25L1605 and AT91SAM9G20. .. 107

Figure 5.8: SPI data transmission with DMA.. 109

Figure 5.9: Serial flash organizations. .. 109

Figure 5.10: USART to RS-485 transceiver. .. 110

Figure 5.11: Flow diagrams of USART communications. 112

Figure 5.12: Data structure of USART. .. 112

Figure 5.13: Schematic diagram of the I2C relay board. 115

Figure 5.14: Infrared receiver and remote controller. 117

Figure 5.15: Remote output waveform of NEC format. 118

Figure 5.16: Interrupt vector table. ... 120

Figure 5.17: MMU section descriptor. .. 121

Figure 5.18: Enabled interrupts in BioKey4000. ... 124

List of Figures

xiv

List of Tables

Table 3.1: Minutiae extraction comparison .. 59

Table 3.2: Average error percentage relative to the fingerprint of class good.

 ... 59

Table 3.3: Average error percentage relative to the fingerprint of class poor.

 ... 60

Table 3.4: Average error percentage relative to the fingerprint of the whole

sample set. ... 60

Table 4.1: Performance comparison with FVC2004 DB3_A 93

Table 4.2: Performance comparison with FVC2006 DB3_A 93

Table 4.3: Comparison of the high-level description of the algorithms

between the 29 participants in FVC2004 and the proposed algorithm . 94

Table 4.4: Hard difference between FVC (right) and us (left) 95

Table 5.1: Internal memory mapping ... 120

Table 5.2: Translation table definition .. 122

Table 5.3: Comparisons of the encoding performance with or without ICache

and DCache .. 123

1

Chapter 1

Introduction

1.1 Biometrics

Biometrics is the technology that uses unique and measurable physiological and

behavioural characteristics to distinguish one person from the others. From these

unique features many different research fields have been expanded, the major of

which are fingerprint recognition, hand geometry recognition, facial recognition,

iris recognition, voice recognition, keystroke recognition and signature

recognition.

These biometric technologies can be also separated into two categories:

behavioural biometrics and physical biometrics [1]. Although behavioural

biometrics includes all of the mannerisms or behaviour from an individual, it

cannot be captured by a biometric system. Signature as well as keystroke

recognition belongs to this category. On the other side physical biometrics has so

many biological and physiological features, which can be captured by a biometric

system. Fingerprint recognition, hand geometry recognition, facial recognition, iris

recognition, voice recognition belong to this category.

1.1 Biometrics

2

Fingerprint recognition has been used for over a century and given criminal

investigations a great aid. Every fingerprint has its own ‘ridges’ and ‘valleys’,

which compose the loops, arches and swirls in some special positions. The

ridges and valleys have different kinds of breaks and discontinuities. They are

called ‘minutiae’, most of which will not change during a person’s life. The

direction, location and type information of the reliable minutiae will be computed

and used to compare with these from another finger.

Hand geometry recognition is based on the structure of the hand such as its

shape, size of palm, the length, width and thickness of the finger, the distances

between finger joints. Hand geometry-based verification systems are simple,

inexpensive and relatively easy to use. Dry weather or individual anomalies such

as dry skin will not make the verification accuracy of the hand geometry-based

systems worse. But its physical size limits its use. It cannot be used in many

embedded systems such as laptop, cell phone etc.

Facial Recognition uses facial images as biometric characteristic to distinguish

one person from another. This biometric characteristic is perhaps the most

prominent and intuitive of all recognition methods. Two basic clues of this

approach are that: 1) the location and shape of facial attributes such as the eyes,

ears, nose, lips and chin, and their spatial relationships, or 2) the global analysis

of the face image that represents a face as a weighted combination of a number

of standard faces. The result of facial recognition depends much on the capture

angle of facial images. [2]

Iris recognition relies on the distinctive features of the iris. The iris, which is one

colour region, is located between the pupil and the sclera. Its texture such as

freckles, furrows, rings, and the corona is stable and unique to an individual,

which are also very difficult to tamper.

Introduction

3

Voice recognition utilizes the characteristic of the sound, which is different from

person to person, to identify an individual. The vibration of the words from the

vocal tract as well as the shapes and sizes of the articulators change at all times.

By this mean it is also one of the behavioural biometrics to some extent. Voice-

based recognition is sensitive to the background noise.

Keystroke recognition is applied by comparing the particular way in which an

individual types on a computer keyboard. Each individual has its own typing

speed, the favourite time of some keys down and the interval between two

continuous keystrokes.

Signature recognition makes records of the way and the manner in which we sign

our name. Signature recognition system analyses the timing, pressure and speed

during the signing process and surely the signature itself. But the signature may

change at every time even by the same person. Moreover, professional forgers

can simulate the signature precisely.

According to the development of biometrics technologies, they can be separated

into several generations. Before the first generation of automatic fingerprint

identification system (AFIS) came into use in 1970s, the earlier generation has

limited performance and lack of interconnectivity (standalone). The first

generation systems including all the technologies mentioned above have then

widely used in civilian and commercial systems. Some examples are shown in

Figure 1.1, which are mostly used at international border crossings. In spite of

the advancement in sensor technology, computer speed and memory storage,

the first generation still cannot meet the request of real-time computation in some

cases and vulnerable to be attacked. Therefore the second generation biometrics

systems in the present aim at firstly solving such left problems and then

developing more techniques to improve such as data acquisition environment,

user convenience, data acquisition quality and the capability to handle poor

quality data, and to protect user privacy more efficiently.[3]

1.1 Biometrics

4

 a) b) c) d)

e) f)

g) h)

Figure 1.1: Deployment of biometrics systems at border crossings for immigration

control: a) face recognition system (Smart Gate) at Sydney airport; b) iris

recognition system at Amsterdam Schiphol airport; c) at Manchester airport (UK);

d) at UAE airport; e) fingerprint recognition using index fingers at airports in

Japan; f) ten fingerprint acquisition at airports in the United States; g) fingerprint

based immigration clearance for passengers at Hong Kong airport; h) vehicular

clearance using fingerprint and face in Hong Kong.[3]

Introduction

5

In each kind of biometrics people are concerned with two problems: identification

and verification. In identification, the enrolled templates try to tell the biometric

system whether they are authenticated members by being compared with the

other templates in the database, which is a one-to-N process. In verification, the

enrolled templates with definite identification (ID) codes are compared with the

templates with the same ID in the database in order to verify whether these

newly enrolled templates are agreeable with the ID that they have, which is a

one-to-one process. In contrast with popular identification methods, such as

identification cards, personal identification numbers (PINs), or passwords, the

most evident advantage of biometrics is that it is more secure and difficult to

forger. Furthermore, it is more convenient for the users who utilize such biometric

systems every day.

Both identification and verification must supply a YES or NO as the answer,

which is based on some matching algorithm. The latter generates a score which

represents the similarity between the template to identify or verify and the

matched template in the database. Each biometric system has at least one

threshold for this matching score. If the score is lower than this threshold, the

template will not be accepted by this biometric system.

In order to give a standard performance evaluation of these matching algorithms,

three important factors are introduced – the false acceptance rate (FAR), the

false rejection rate (FRR) and the equal error rate (EER).

The FAR is defined as the percentage of individuals who are not correctly

identified:

𝐹𝐴𝑅(%) =
𝑛𝑢𝑚 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑
× 100%

 (1.1)

1.1 Biometrics

6

The FRR is defined as the percentage of individuals who should be identified, but

are not:

𝐹𝑅𝑅(%) =
𝑛𝑢𝑚 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑜𝑓 𝑓𝑎𝑙𝑠𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑
× 100%

 (1.2)

The EER which is also called crossover rate is the point where the FAR and the

FRR have the same value, see Figure 1.2.

Figure 1.2: The relations between EER, FAR and FRR.

In addition, there are some other standards such as the failure to enroll rate

(FTER) and the ability to verify rate (ATV). The FTER is defined as the statistical

probability that an individual is unable to enroll successfully in a biometric system:

𝐹𝑇𝐸𝑅(%) =
𝑛𝑢𝑚 𝑜𝑓 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡𝑠 𝑜𝑓 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑛𝑟𝑜𝑙𝑙𝑚𝑒𝑛𝑡 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠
× 100%

 (1.3)

Introduction

7

The ATV implies the overall percentage of how difficult users can be verified by a

biometric system. It is also related with the FTER and the FRR described above:

𝐴𝑇𝑉 = [(1 − 𝐹𝑇𝐸𝑅) × (1 − 𝐹𝑅𝑅)]

 (1.4)

1.2 Embedded System

Embedded system is actually such a software-hardware system which faces on

practical application and puts emphasis on its main processor. The hardware as

the basic platform of the whole embedded system provides exhaustive physical

communicating interfaces, on the other side the software including operating

system and application software, which are the controlling centre of this system,

provides the operation of Human-Machine Interaction. Therefore, the

development of embedded system includes two different parts. Hardware design

contains the selection of processor, memory, communication interfaces, I/O and

power supply. Software design refers to the programming of operating system

and application program, especially software-interrupt debugging, code

optimization and robustness.

The aim of hardware selection is actually to search suitable microprocessor. The

ARM processor, which is a 32-bit reduced instruction set computer (RISC)

instruction set architecture (ISA), is considered as the most popular and universal

embedded processor at the moment. The ARM processor has various families

with different performance, the principal of which are the following: ARM7, ARM9,

ARM11 and ARM Cortex.

The ARM7 processor family was introduced in 1994 and continuous to be used

today for simple 32-bit devices. Its successor is the ARM9 processor family,

which enables single processor solutions for microcontroller, DSP and Java

1.2 Embedded System

8

applications, offering savings in chip area and complexity, power consumption

etc. The representative core of the ARM9 processor family is ARM926EJ-S with

enhanced 32-bit RISC CPU, flexible size instruction and data caches, tightly

coupled memory (TCM) interfaces and memory management unit (MMU).

Parallel with classic arm families, ARM Cortex family has its special advantages

such as lower power consumption, higher code density etc. The ARM11 family

and other later ARM Cortex processors are used for higher performance

application and will not be discussed in this thesis.

Figure 1.3: The ARM and Cortex families.

1.3 Overview of the Thesis

In this thesis a minutiae-based fingerprint encoding and matching approach is

proposed and implemented in ARM9-based embedded system. Through further

optimizations of the generation of binarized- and skeletonized- fingerprint image,

more reliable minutiae are extracted and unreliable minutiae are rejected. And

then a novel multiple-matching algorithm is developed to improve traditional

minutiae-based fingerprint matching approaches. The main contribution of this

thesis is that it provides a reliable and fast fingerprint identification and

verification method applicable not only on PC platform but also on embedded

hardware system.

Introduction

9

This thesis is organized as follows. Chapter 2 and Chapter 3 give a general

review of image enhancement, feature extraction methods and our improvements.

Chapter 4 introduces various fingerprint matching algorithms and our hardware

oriented fingerprint matching. Chapter 5 emphasizes the implementation of the

fingerprint feature extraction and matching on embedded hardware platform.

Chapter 6 summarizes the main work of thesis and gives some suggestions of

future work.

10

Chapter 2

Fingerprint Image Enhancement

2.1 Introduction

During the acquisition of fingerprint images some undesired factors such as

moist or dry fingers, cuts, bruises and incorrect finger pressure will lead the input

images to bad quality. In contrast with an ideal fingerprint, a practical fingerprint

has discontinuous ridges and valleys with unequalled width. In Figure 2.1

different fingerprints from the same Atmel senor indicate great difference of

quality.

The degradation of fingerprint images makes the ridge extraction and minutiae

extraction very unreliable. As a consequence many spurious minutiae instead of

genuine minutiae are extracted. Furthermore even the extracted genuine

minutiae may have false position and orientation.

The enhancement algorithm aims to find various methods to recover the ridges

and valleys as much as possible. Some classic image enhancement techniques,

such as contrast stretching, histogram manipulation, normalization[4], have been

used as the initial preprocessing. Besides more sophisticated enhancement

algorithms have also been developed for better results.

Fingerprint Image Enhancement

11

a) 79_6.bmp b) 64_9.bmp c) 20_1.bmp

Figure 2.1: Fingerprint images with various qualities from FVC2006_DB3_A. a) A

good quality fingerprint; b) A medium quality fingerprint; c) A poor quality

fingerprint.

2.2 State of the Art

2.2.1 Segmentation

Segmentation, as the initial step of fingerprint image preprocessing, aims to

separate fingerprint area (foreground) from the original image background, which

makes the preprocessing only valid for the foreground and reduces the

preprocessing time quite a lot. Moreover the extraction of false features in noisy

areas, which will greatly degrade the latter enhancement, can be avoided.

The classic segmentation algorithms are based on the variance of each block

and oriental information from the directional image. Ridge orientation is estimated

at each pixel and a histogram is computed for each 16 × 16 block[5]. According

to the distribution of the signal in the histogram, oriented ridges and valleys can

be located at the peak signal and isotropic areas are represented as a flat region.

When a block has no ridge information such as a background block, grey-scale

2.2 State of the Art

12

variance of this block is needed to be computed[6, 7] since the background area

has uniform grey value and also low-variance. A more efficient method proposed

in [8] is to use the average magnitude of the gradient in each image block. Since

gradient response uses the differential between the grey value of the two

neighbor pixels in horizontal and vertical orientation, it can differentiate the

fingerprint area and background area faster than grey-scale variance method.

Apart from this, some other theories are also applied in this field such as Gabor-

filters-based[9], Fourier-spectrum-based[10] and Harris-corner-detector-

based[11]. And in [12-15] more accurate segmentation approaches based on

feature value threshold are proposed, whereas their computational complexity is

relatively higher.

2.2.2 Normalization

In the normalization, input fingerprint images are normalized to limit the dynamic

range of the grey scale between ridges and valleys of the images, which

facilitates the processing of the following steps such as orientation image

estimation and filtering. Figure 2.2 shows an image before and after

normalization.

The input image is divided into sub-blocks with the size 𝑁 × 𝑀. As described in

[4], a fingerprint image 𝐼 is defined as 𝑁 × 𝑀 matrix and 𝐼(𝑖, 𝑗) is the grey value of

the pixel at the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column:

𝐼′(𝑖, 𝑗) =

{

𝑀0 + √

𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) − 𝑀̂)2

𝑉𝐴𝑅̂
 𝐼(𝑖, 𝑗) > 𝑀̂

𝑀0 − √
𝑉𝐴𝑅0(𝐼(𝑖, 𝑗) − 𝑀̂)2

𝑉𝐴𝑅̂
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.1)

Fingerprint Image Enhancement

13

In (2.1) 𝑀0 and 𝑉𝐴𝑅0 are the desired mean and variance values; 𝑀̂ and 𝑉𝐴𝑅̂ are

the computed mean and variance of the given image. The desired 𝑀0 and 𝑉𝐴𝑅0

should be pre-computed from the origin image, which is reliable but maybe also

of poor quality.

a) FVC2000_DB2_B:104_1.tif b)

Figure 2.2: Image normalization. a) Original image; b) Image after normalization.

2.2.3 Ridge Orientation Estimation

The fingerprint orientation image, which is also called directional image,

demonstrates the local orientation of the fingerprint ridges. The orientation of the

ridges supply important clues to the completeness of each ridge, with which most

of the cuts, creases and bruises can be found and repaired. In Figure 2.3 a

block-wise orientation image is shown with its corresponding original input image.

The prominent approach to determine local ridge orientation is from the

computation of gradients in the fingerprint images. The gradient ∇(𝑥𝑖, 𝑦𝑖) is one

two-dimensional vector [∇𝑥(𝑥𝑖, 𝑦𝑖), ∇𝑦(𝑥𝑖, 𝑦𝑖)] at point [𝑥𝑖, 𝑦𝑖] in the image, where

∇𝑥 and ∇𝑦 denote the derivatives with reference to the x and y directions,

2.2 State of the Art

14

respectively. The gradient orientation is actually the direction of the maximum

pixel-intensity at point [𝑥𝑖, 𝑦𝑖] . Therefore its orthogonal angle represents the

direction of the ridges at point[𝑥𝑖 , 𝑦𝑖].

a) FVC2000_DB2_B: 104_1.tif b)

Figure 2.3: Ridge orientation estimation. a) Original image; b) Orientation image.

In [7, 16] such gradient-based method is proposed within each 17 × 17 block

centered at point[𝑥𝑖 , 𝑦𝑖]:

𝜃𝑖𝑗 = 90° +
1

2
arctan (

2𝐺𝑥𝑦

𝐺𝑥𝑥 − 𝐺𝑦𝑦
)

𝐺𝑥𝑦 = ∑ ∑ ∇𝑥(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘) ∙

8

𝑘=−8

8

ℎ=−8

∇𝑦(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘)

𝐺𝑥𝑥 = ∑ ∑ ∇𝑥(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘)
2

8

𝑘=−8

8

ℎ=−8

𝐺𝑦𝑦 = ∑ ∑ ∇𝑦(𝑥𝑖 + ℎ, 𝑦𝑗 + 𝑘)2

8

𝑘=−8

8

ℎ=−8

 (2.2)

Fingerprint Image Enhancement

15

where ∇𝑥 and ∇𝑦 are the x- and y-gradient components computed with 3×3 Sobel

or Prewitt masks.

Another novel one called slit-based approach has been proposed by [5, 17, 18]

which is to select the best slit based on the pixel grey-values along the slits. It

was firstly used in local threshold binarization and then in computation of local

ridge orientation with some revision of this threshold. The algorithm of this

method is that pixels along the ridge orientation obtain small sum of grey-values,

whereas along the valley orientation relative high. Its computational complexity is

relatively higher than gradient-based approach.

The basic principle is shown in Figure 2.4. The center 𝐶 is the pixel whose

direction is to be computed. The 9×9 window which is also variable is selected

around 𝐶. The sum of the four pixel values 𝑠𝑖 along the direction marked as 𝑖 will

be firstly computed (𝑖 = 1⋯8) . The direction is then selected based on the

following formula:

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝐶) = {
𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑠𝑚𝑎𝑥) 𝑖𝑓 4𝐶 + 𝑠𝑚𝑎𝑥 + 𝑠𝑚𝑖𝑛 >

3

8
∑𝑆𝑖

8

𝑖=1

𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛(𝑠𝑚𝑖𝑛) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.3)

Figure 2.4: A 9×9 window in slit-based approach.

2.2 State of the Art

16

The direction of the local ridges and valley is computed at each pixel where the

direction of the slit with the minimal sum of 𝑠𝑖 is assigned if this pixel is defined as

a black ridge point and otherwise the direction of slit with the maximal sum of 𝑠𝑖 is

assigned for the pixel as a white valley point.

Another projection-based approach proposed in [19] is one relative intuitive

method. Similar to the following slit-based approach, a rectangle window is

defined around one pixel and then rotated to 8 or 16 directions. At each direction

this window is projected to y axis of the image. When the x axis of this window is

perpendicular to the local ridge, this projection obtains the maximal change.

When the x axis of this window is parallel to the local ridge, this projection

obtains the minimal change. But its computational complexity is usually higher

than gradient-based methods.

2.2.4 Ridge Frequency Estimation

Alternate ridges and valleys constitute a line-shaped fingerprint image. In some

certain local area of a fingerprint image, the grey values are distributed

approximately in sinusoidal shape along the direction orthogonal to local ridge

orientation. The frequency of this sinusoid can be considered as the frequency of

the ridges in this local area, with which some latter enhancement can be

executed such as filtering. In Figure 2.5 ridge frequency image is shown with an

original input image.

In Figure 2.5 b) light areas signify higher frequencies. One popular approach for

ridge frequency estimation proposed in [4] is to estimate local ridge frequency by

analyzing the period of the ridges along the direction orthogonal to local ridge

orientation. In Figure 2.6 the frequency 𝑓𝑖𝑗 at [𝑥𝑖, 𝑦𝑖] can be obtained by

accumulating the grey values along a rotated orientation window (32×16 in this

figure). Between the two dash lines a valley of grey values can be computed,

Fingerprint Image Enhancement

17

with which the period of ridges and valleys within this window is computed as the

frequency at [𝑥𝑖 , 𝑦𝑖].

a) FVC2000_DB2_B: 104_1.tif b)

Figure 2.5: Ridge frequency estimation. a) Original image; b) Frequency image.

Figure 2.6: Ridge frequency computation.

Besides this approach some other methods such as in [20] with a high-order

spectrum technique, [21] with scale space theory are proposed to locally

estimate ridge width.

2.2 State of the Art

18

2.2.5 Filtering

Normalization introduced in section 2.2.2 belongs to pixel-wise method. In

practice this is far not enough to represent a perfect fingerprint image. Another

kind of enhancement based on section 2.2.3 and 2.2.4 which is called contextual

filters. These filters execute convolution operations with different parameters

based on local information of ridge direction and frequency. Furthermore, in order

to get better computation efficiency such convolution matrixes are pre-computed.

The principal thought of this enhancement is to perform low-pass (averaging)

filtering along the ridge direction to connect the discontinuous line or to perform

band-pass filtering along the direction orthogonal to the ridges to separate

neighbour ridges where they are too close to each other. In Figure 2.7 filtered

image is shown with its original view.

a) FVC2000_DB2_B: 104_1.tif b)

Figure 2.7: Image filtering. a) Original image; b) Filtered image.

Some earlier approaches[22, 23] are proposed which defined a set of bell-

shaped filters (16 sub-filters along each 22.5°) to convolute each point of the

Fingerprint Image Enhancement

19

image with one from this filter-set which has the best matched direction with the

local ridge and in [24] which processed the fingerprint image in the frequency

domain using Fourier transform under the help of the local ridge orientation to

select the best enhancement.

Subsequently Gabor filters became the most popular approach in contextual

filters because of its frequency-selective and orientation-selective properties[25].

After Gabor proposed 1-dimention Gabor-transform in 1946 and Daugman 2-

dimention Gabor-transform in 1985, [4] developed a method based on this theory.

Such Gabor filters, whose spatial extent, frequency and orientation as well as

bandwidths can be configured with the parameters generating themselves, can

reach the lower bound of the uncertain relation simultaneously in space and

frequency fields[26]. In [4] a Gabor filters is defined in the following form and

shown in Figure 2.8.

𝑔(𝑥, 𝑦: 𝜃, 𝑓) = 𝑒𝑥𝑝 (−
1

2
[
𝑥𝜃

2

𝜎𝑥
2
+

𝑦𝜃
2

𝜎𝑦
2
]) ∙ cos(2𝜋𝑓 ∙ 𝑥𝜃)

 (2.4)

where 𝜃 is the orientation of the filter, [𝑥𝜃, 𝑦𝜃] are the coordinates of [𝑥, 𝑦] after a

clockwise rotation of the Cartesian axes by an angle of (90° − 𝜃) , 𝑓 is the

frequency of a sinusoidal plane wave, and 𝜎𝑥, 𝜎𝑦 are the standard deviations of

the Gaussian envelop along the x- and y-axes, respectively.

[
𝑥𝜃

𝑦𝜃
] = [

cos(90° − 𝜃)

− sin(90° − 𝜃)

sin(90° − 𝜃)

cos(90° − 𝜃)
] [

𝑥

𝑦
] = [

sin 𝜃

− cos 𝜃

cos 𝜃

sin 𝜃
] [

𝑥

𝑦
]

 (2.5)

However, when local ridge orientation and frequency are not reliable in the

fingerprint image with many bad areas, convolution with Gabor filters will bring

side effect because of unsuitable parameters based on this local ridge’s

information. Some other approaches based on Gabor filters proposed in [19, 27-

2.2 State of the Art

20

29] etc. aim to optimize the above parameters - 𝜎𝑥, 𝜎𝑦 in order to obtain better

tolerate errors or avoid generating spurious ridges and valleys.

Figure 2.8: Gabor Filter with the parameters 𝜃 = 135°, 𝑓 = 1/5, 𝜎𝑥 = 𝜎𝑦 = 4.

2.3 Experimental Improvements

Besides some enhancement approaches mentioned above, some other attempts

have also been adopted by us in order to obtain a more qualified fingerprint

image for minutiae extraction.

2.3.1 Directional Image Filtering

The fingerprint directional image extracts the characteristics of the distribution of

ridges and valleys and provides the image’s textural structure, with which images

can be directionally filtered. To obtain more reliable filtered image, we firstly use

the intermediate noise image, to be discussed in next section, to restrain the

Fingerprint Image Enhancement

21

direction image to the valid range. Then Gabor filter is used to filter the fingerprint

image.

The direction corresponds to horizontal direction that goes to the left and

increment of the direction gives counterclockwise turn. But in fact to simplify the

computation, each direction and its reverse direction are regarded as the same

direction, so that only four main directions (0°, 45°, 90°, 135°.) are counted to

represent the direction info at each pixel. The direction layout is shown in Figure

2.9.

Figure 2.9: Image direction layout.

In directional image computation the sum of pixel values around each pixel along

different directions should be firstly obtained within a pre-defined window shown

in Figure 2.10.

Figure 2.10: Computation window (𝑤 = 12).

0º

45º

90º

135º

180º

225º

270º

315º

2.3 Experimental Improvements

22

𝑆𝑖𝑗 = ∑ ∙ ∑

(

|𝐼𝑦 𝑥−1 − 𝐼𝑦𝑥| + |𝐼𝑦 𝑥+1 − 𝐼𝑦𝑥|

|𝐼𝑦−1 𝑥−1 − 𝐼𝑦𝑥| + |𝐼𝑦+1 𝑥+1 − 𝐼𝑦𝑥|

|𝐼𝑦−1 𝑥 − 𝐼𝑦𝑥| + |𝐼𝑦+1 𝑥 − 𝐼𝑦𝑥|

|𝐼𝑦−1 𝑥+1 − 𝐼𝑦𝑥| + |𝐼𝑦+1 𝑥−1 − 𝐼𝑦𝑥|)

𝑗+𝑤𝑖𝑛𝑑𝑜𝑤

𝑥=𝑗−𝑤𝑖𝑛𝑑𝑜𝑤

𝑖+𝑤𝑖𝑛𝑑𝑜𝑤

𝑦=𝑖−𝑤𝑖𝑛𝑑𝑜𝑤

 (2.6)

From (2.2) and (2.6) the orientation of each pixel can be computed. In practice

this direction image is not quite acceptable because of noise which may disturb

the orientation of the local ridges. A low-pass filter which is performed in each

3×3 block is used to smooth this directional image shown in the following (2.7).

𝑆𝑥 = ∑ ∑ cos 2𝜃(𝑢, 𝑣)

𝑗+1

𝑣=𝑗−1

𝑖+1

𝑢=𝑖−1

𝑆𝑦 = ∑ ∑ sin2𝜃(𝑢, 𝑣)

𝑗+1

𝑣=𝑗−1

𝑖+1

𝑢=𝑖−1

𝜃(𝑖, 𝑗) =
1

2
𝑡𝑎𝑛−1 (

𝑆𝑦

𝑆𝑥
) 𝑖𝑓 𝜃(𝑖, 𝑗) < 0, 𝜃(𝑖, 𝑗) = 𝜃(𝑖, 𝑗) + 𝜋

 (2.7)

According to (2.4), a set of horizontal Gabor filter templates

(𝜔−𝑁/2, ⋯ , 𝜔−1, 𝜔0, 𝜔1, ⋯ , 𝜔𝑁/2) are firstly generated and then rotated to all of the

other pre-defined directions, where 𝑁 is the template size. If the input fingerprint

image is defined as 𝐼(𝑥, 𝑦) and the filtered image is 𝑂(𝑥, 𝑦), the directional image

filtering can be described in (2.8) and (2.9).

𝑂(𝑥, 𝑦) = 𝜑0𝐼(𝑥, 𝑦) + ∑𝜑𝑗(𝐼(𝑥 − 𝑠, 𝑦 − 𝑠) + 𝐼(𝑥 + 𝑠, 𝑦 + 𝑠))

𝑁
2

𝑠=1

 (2.8)

𝑂(𝑥, 𝑦) = 𝜑0𝐼(𝑥, 𝑦) + ∑𝜑𝑗(𝐼 (𝑥 −
𝑠

𝜇
, 𝑦 − 𝑠) + 𝐼 (𝑥 +

𝑠

𝜇
, 𝑦 + 𝑠))

𝑁/2

𝑠=1

 (2.9)

Fingerprint Image Enhancement

23

When the direction is along the x-axis at [𝑥, 𝑦] , the convolution filtering is

implemented with (2.8). Otherwise the input fingerprint image is filtered with (2.9)

at [𝑥, 𝑦] along 𝑦 = 𝜇𝑥,𝑤ℎ𝑒𝑟𝑒 𝜇 = 𝑡𝑎𝑛𝜃. If the coordinates in (2.9) fall between two

neighbor pixels, linear interpolation will be used to obtain its approximate

coordinates.

FVC2006_DB3_A: 4_3.bmp

FVC2006_DB3_A: 9_12.bmp

 a) b) c)

Figure 2.11: Directional image filtering. a) Fingerprint grey-scale images; b)

Images before directional image filtering; c) Images after directional image

filtering.

2.3 Experimental Improvements

24

It is evident from Figure 2.11 that most undesired noise is removed and the

ridges and valleys are preserved and improved.

2.3.2 Noise Image Evaluation

In fingerprint images regular ridges and valleys are regarded as the foreground

and the other areas filled with smudge or shadow generated from sensor as the

background which is also called noisy regions. To separate noisy regions from

the original fingerprint image or other intermediate images is very gainful such as

computational complexity and precision. The basic assumption for this

segmentation is that in a given block noisy regions have no dominant direction

while clear regions lie in a particular direction[30]. Moreover, foreground regions

have a very high variance in a direction orthogonal to the orientation of the

pattern and a very low variance along its dominant ridge direction.

We obtain the original noise image during directional image computation

according to the following assumption. There should be a dominant direction at

each foreground pixel. This direction has a nearest neighbor direction and a

furthest neighbor direction among the four main directions listed in Figure 2.9.

The difference between the gradients along these two directions represents the

ridge quality at this pixel. Since they are orthogonal, the direction at this pixel is

not evident and the ridge quality is low if they are close and vice versa. The noise

image records such difference at each pixel. Afterwards the obtained noise

image is optimized using the values at each pixel and a finite 33×33 window

around each pixel in order to divide those areas with poor ridge quality into

background quickly.

According to the judgment that whether a dominant direction at each pixel exists,

two rules are proposed in this thesis to differentiate background and foreground

in a noise image:

Fingerprint Image Enhancement

25

1) At [𝑥𝑖, 𝑦𝑖], if the maximal gradient 𝑓𝑚𝑎𝑥 in all directions is below a pre-defined

threshold 𝑓𝑡ℎ𝑟𝑒𝑠1, this point will be set to background.

2) In a 31×31 window centered at [𝑥𝑖 , 𝑦𝑖], if the sum of the pixels with unreliable

directions, i.e. their respective quality in noise image is below a pre-defined

threshold 𝑓𝑡ℎ𝑟𝑒𝑠2, is more than 50% and in addition it is not a singular point,

this point will be reset to background.

a) b)

 c) d)

Figure 2.12: Noise image evaluation. a) Original noise image; b) Optimized

noise image; c) Original binary image; d) Optimized binary image.

2.3 Experimental Improvements

26

If [𝑥𝑖 , 𝑦𝑖] in a noise image is marked as the background, this pixel is considered

as the unreliable position. The following operation such as grey-image filtering,

binarization and minutiae extraction will ignore such area (Figure 2.12).

2.3.3 Frequency Image Improvement

The fingerprint ridge distributes with special orientation feature. Particularly

perpendicular to the local ridge orientation, the grey values alter with the period

of approximate to some kind of sine wave[31]. Besides the indication of the

period of ideal parallel ridges, the local ridge frequency (density) image provides

the ridge’s filling rate inside one window. Figure 2.13 shows three 33×33

windows in a pre-binarized image with different local density. To define the

difference of these windows can help for the selection of the threshold for

binarization for the reason that if the density is too high, a relative small

binarization window should be selected to avoid interacting between two

neighboring ridges and if the density is too low, a relative big binarization window

can include more ridge orientation information.

a) Low b) Middle c) High

Figure 2.13: 33×33 windows with different local frequencies.

We propose a method to find this local ridge frequency by accumulating the edge

pixels of the ridges inside this window. The frequency 𝑓𝑖𝑗 is computed as follows.

Fingerprint Image Enhancement

27

1) A filtered input image is firstly pre-binarized with the simple algorithm:

𝑖𝑓 𝑂(𝑥, 𝑦) ≥ (
1

(2𝑚 + 1)2
∑ ∑ 𝑂(𝑥, 𝑦)

𝑚

𝑥=−𝑚

𝑚

𝑦=−𝑚

+
1

(2𝑛 + 1)2
∑ ∑ 𝑂(𝑥, 𝑦)

𝑛

𝑥=−𝑛

𝑛

𝑦=−𝑛

)/2

 𝐵(𝑥, 𝑦) = 255

𝑒𝑙𝑠𝑒

 𝐵(𝑥, 𝑦) = 0

 (2.10)

where 𝑂(𝑥, 𝑦) is the filtered input image, 𝐵(𝑥, 𝑦) is the pre-binarized image

and m, n is the window size.

2) A 36×36 window centered at [𝑥𝑖, 𝑦𝑖] is defined in horizontal-vertical coordinate

system in this pre-binarized image.

3) Another 3×3 window is scanned from left-top to right-bottom in the above

36×36 window. If the sum of the grey values in this 3×3 window 𝑆3×3 is

between 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥, the window counter 𝑛𝑆3×3 will be accumulated.

4) If [𝑥𝑖 , 𝑦𝑖] in noise image is not in background field, 𝑛𝑆3×3 from step 2 will be

limited to [0⋯255] and then projected to horizontal or vertical axis using

directional image.

5) A local mean filter is performed after frequency estimation in step 3 to reduce

noise.

6) The filtered frequency image is then quantized with a finite quantization step

(in this thesis step = 8) if [𝑥𝑖, 𝑦𝑖] is not a singular point.

Since frequency image describes the density of the ridges, the binarization

presented in the next chapter will be more effectively performed with this

information. Some intermediate results for frequency image improvement are

shown in Figure 2.14.

2.3 Experimental Improvements

28

 a) b) c)

Figure 2.14: Frequency image improvement. a) Original frequency image; b)

Filtered frequency image; c) Quantized frequency image.

2.4 Summary

Some earlier work in fingerprint enhancement is introduced in this chapter, which

includes general-purpose image processing techniques such as segmentation,

normalization, image smoothing and also special-purpose method for fingerprint

such as contextual filtering, ridge frequency estimation. Based on the previous

work, we have optimized the fingerprint enhancement algorithm and the new

algorithm will be more robust to noise. Figure 2.15 presents some enhancement

results using our optimized algorithm. Images are from FVC2006 DB3 with the

resolution 500 dpi and the size 400×500.

Fingerprint Image Enhancement

29

FVC2006_D3_A: 1_3.bmp

FVC2006_D3_A: 6_5.bmp

FVC2006_D3_A: 124_2.bmp

 a) b) c)

Figure 2.15: Results of fingerprint image enhancement with optimized algorithm:

a) Input image; b) Directional filtered image; c) Directional filtered image with

ridge estimation.

2.4 Summary

30

We note that our algorithm can find and repair most of the cuts, dryness but for

those extreme unrecoverable regions such as the creases in the image of the

first row not very well. These regions have to be marked and not used for the

next fingerprint feature extraction.

31

Chapter 3

Fingerprint Feature Extraction

3.1 Introduction

Fingerprint features include minutiae, singularity (see Figure 3.1) and local ridge

alignment etc. Minutiae, which exist where the ridges become somehow

discontinuous, constitute the unique characteristic of one fingerprint. According to

the structure of this discontinuity, minutiae can be classified into terminations and

bifurcations (see Figure 3.2)[32]. The x- and y- coordinates and the angle

between the tangent to the ridge line at the minutia position and the horizontal

axis.

2_12.bmp 3_6.bmp 6_3.bmp 62_11.bmp 80_10.bmp

Figure 3.1: Various singularities of fingerprint in FVC2006_DB3_A.

3.1 Introduction

32

Figure 3.2: Termination minutia (𝑥0, 𝑦0, 𝜃0) and bifurcation minutia (𝑥1, 𝑦1, 𝜃1).

a) (FVC2006_DB3_A: 31_12.bmp)

b) (FVC2006_DB3_A: 4_6.bmp)

Figure 3.3: Efficiency of binarization-based method for images with different

quality and acquisition condition: a) A medium quality fingerprint with scratches

and ridge breaks; b) A poor quality fingerprint with too much acquisition noise.

Fingerprint Feature Extraction

33

Most of the past research on fingerprint feature extraction is based on minutiae,

which is still the principle criterion in fingerprint comparison. Therefore, to obtain

the credible minutiae is the key to fingerprint matching. Various approaches have

been proposed in minutiae detection, which can be concluded into two types:

grey-scale based and binarization-based. Grey-scaled based method aims to

extract minutiae directly from grey-scale images where image information keeps

unchanged and more reliable especially for low-quality images. However

binarization-based method has to process enhanced even skeletonized image.

The advantage of this method is that the background noise because of smudges

or acquisition and the discontinuity of the ridges because of bruises and cuts can

be better improved (see Figure 3.3).

3.2 State of the Art

3.2.1 Binarization

The purpose of the binarization is to convert grey-value fingerprint image to

binary-value image with the pixel value of “0” and “255”. Thus the geometric

characteristic of the image is only concerned with the distribution of “0” and “255”,

which simplifies the latter processes. One simple approach is to set a global

threshold 𝑡, with which the pixels whose grey-level is lower than 𝑡 are set to 0 and

the others to 255. When a fingerprint image has good contrast and the statistic

histogram can acquire two apparent peaks (see Figure 3.4.a), this approach is

feasible. Nevertheless it is very sensible to noises. Moreover, this threshold is not

easy to decide and maybe inexistent for the reason that the contrast and intensity

in local areas of one image may have great difference (see Figure 3.4.b). From

the point of this view, local-threshold-based approach has been widely used only

to improve the quality of the binarization image.

3.2 State of the Art

34

a) (FVC2006_DB3_A:48_3.bmp) b) (FVC2006_DB3_A: 15_3.bmp)

Figure 3.4: Fingerprint images with different contrast: a) Appropriate for global

threshold; b) Appropriate for local threshold.

A binarization approach using Laplacian operator and dynamic thresholds was

proposed in [33, 34]. The image is convolved with a Laplacian operator and the

intensity of each pixel is computed. If this intensity value is not between the two

pre-defined thresholds, the relative pixel will be set to 0 or 255 according to the

above comparison.

An approach which uses the edges information around each ridge combined with

the grey-scale image was designed in [35]. An edge image is firstly computed

and then the fingerprint ridges are tracked separately in grey-scale image and

edge image. Finally these two tracked image will be combined with the OR

operation.

Another one based on peak detection from grey-scaled image is from [7]. After

the computation of the orientation field, the input image is divided into 16×16

pixel blocks. For each block the maximum variance of the grey level projection

Fingerprint Feature Extraction

35

appears along the orientation perpendicular to the local ridge orientation. Thus

the peaks are obtained with the variance and ridges are located and thinned

along the same orientation with an adaptive morphological filter. Meanwhile the

peaks and its two neighbouring pixels are set to 0 and the remaining to 255.

One topological approach proposed in [36] considers a fingerprint image as

continuous surface of noise, which is generated from Chebyshev polynomials.

From the curvatures of this surface ridges and valleys areas can be determined

with the help of its second-order derivatives.

Some other documents related to fingerprint image binarization can be found in

[4, 24, 30, 37, 38].

3.2.2 Thinning

a) FVC2000_DB2_B: 104_1.tif b)

Figure 3.5: Binarized image thinning. a) Binarized image; b) Thinning image.

Thinning, also called skeletonization, aims to extract one-pixel-width ridge

structure from binarized image which is composed of multi-pixel-width ridges and

3.2 State of the Art

36

valleys (see Figure 3.5). A qualified thinning method should preserve the profile

and connectivity of the ridges, the distribution of the minutiae and locate each

skeleton in the centre of its relational ridge. Some research has been done in [7,

39-46] by filling holes, eliminating small breaks, deleting bridges between ridges

and smudges. For example, in [45, 46] some arithmetic-logic operations are used

in elimination and relative smooth skeletons can be obtained, however [45] loses

some ridge structure and [46] generates much deformation for those slanting

ridges.

The approach OPTA (One-pass Parallel Thinning Algorithm) proposed in [44] is a

popular method for thinning. It uses eight 3 × 3 thinning patterns (see Figure 3.8)

to remove edges pixels and two restoring patterns (1 × 4 and 4 × 1) (see Figure

3.7) to preserve continuity. For one binarized fingerprint image, the pixel of

background will be set to 0 and foreground to 1. This algorithm starts from the

left-top of the image, extracts neighbour pixels around each foreground element

(see Figure 3.6, P5). These neighbour pixels are then compared with the eight

thinning patterns. If one from the eight thinning patterns coincides with these

neighbour pixels, this pixel will be marked as “deleted”, otherwise as “restored”.

In view of the continuity, this pixel will also be compared with the other two

restoring patterns. If the second row in Figure 3.6 matches with the second row

of a) in Figure 3.7 or the second column in Figure 3.6 matches with the second

column of b) in Figure 3.7, this pixel will be marked as “restored”, otherwise as

“deleted”. However, this algorithm raises such a problem that it generates biased

skeletons and is more easily to remove convex corners than concave corners

[47].

𝑃1 𝑃2 𝑃3 ×

𝑃4 𝑃5 𝑃6 𝑃14

𝑃7 𝑃8 𝑃9 ×

× 𝑃11 × ×

Figure 3.6: Neighbour of P5 in OPTA.

Fingerprint Feature Extraction

37

a) b)

Figure 3.7: Restoring patterns in OPTA.

Figure 3.8: Thinning patterns in OPTA.

In [48 , 49] this algorithm is optimized by using more reliable restoring and

thinning patterns. These new patterns can remove edge pixels including convex

corner pixels, but not very helpful to those concave corner pixels.

3.2.3 Minutiae Extraction

Many different minutiae extraction methods have been proposed in the past

years (see Figure 3.9). And the effective detection approaches can be on the

whole concluded into the following two categories based on image domain for

detection. The first group extracts minutiae using binarized images. The second

group extracts minutiae directly from grey-scale images [7], and ignores the

above section 3.2.1 and 3.2.2 mentioned binarization and thinning processes.

3.2 State of the Art

38

Minutiae

Extraction

Techniques

Gray Scale

Images

Binarized

Images

Ridge Line

following

based

Ridge Line

following

based

Crossing

Number Based

Morphology

Based

Thinned

Binarized

Images

Unthinned

Binarized

Images

Run

Representation

Based

Chaincode

Based

Figure 3.9: Classifications of minutiae extraction techniques.

3.2.3.1 Extraction with Unthinned Binarized Images

One extraction algorithm depended on unthinned binarized images makes use of

the closed contours of the ridges in fingerprint images [17, 50, 51]. These ridge

contours will be consistently traced in a counter clockwise fashion and marked

with a special grey value except 0 (foreground) and 255 (background). When we

arrive at one point where exists a sharp turn, we mark this point as a candidate

for a ridge-ending or bifurcation point.

A binary image (0 – foreground, 255 – background) is scanned from left-top to

right-down row by row. In order to avoid data overflow and keep all ridges closed,

pixels at the outermost rows and columns will be omitted in scanning. The

scanning procedure is described as follows:

Fingerprint Feature Extraction

39

Figure 3.10: Minutiae extraction using contour tracing in binary image.

1) If the first scanned foreground pixel at [𝑥𝑖 , 𝑦𝑖] is not inside one ridge field, this

pixel will be set to the starting point of one contour tracing.

2) A 3 × 3 window is defined where the central point is 𝑇, see Figure 3.10.

3) Set [𝑥𝑖 , 𝑦𝑖] as the coordinate of the central point 𝑇, and trace the pixels around

𝑇 from index 0 to 7. The first non-background pixel will be assigned as the

next neighbouring central point, whose value will also be modified to a special

value (e.g. 253).

4) From the new neighbouring central point step 3 will be repeated until the next

central point reaches the starting point at step 1 where a complete ridge

contour is obtained.

5) Along the computed contour of the ridge three points 𝑃0, 𝑃1 and 𝑃2 with the

same step length are defined in order to compute the local minimum angle 𝜃.

𝑃1 will be marked as a candidate of the expected minutiae when the following

conditions are met:

𝑆 = (𝑥0 − 𝑥1) × (𝑥2 − 𝑥1) × (𝑦0 − 𝑦1) × (𝑦2 − 𝑦1)

𝑆 > 𝑆𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (3.1)

3.2 State of the Art

40

6) From all above candidates the pixel 𝑃𝑚𝑎𝑥with 𝑆𝑚𝑎𝑥 is selected as the minutiae

position. And the minutiae angle can be extracted from the vector 𝑃⃑ 𝑚𝑎𝑥 in

(3.2):

𝑃⃑ 𝑚𝑎𝑥 = 𝑃1𝑃0
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ + 𝑃1𝑃2

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑

 (3.2)

Another effective algorithm utilizes the horizontal and vertical run-length

encoding from binary images instead of a computationally expensive thinning

process[52, 53]. After run-length encoding Fingerprint images are represented as

a cascade of runs. In this method, fingerprint images should also be pre-

processed: using Gabor filters to enhance the ridges oriented in the direction of

local orientation at each pixel and to reduce noise with parameters for the

orientation and the frequency; and using adaptive image binarization with an

optimal threshold. After the binary image is generated, a run-length encoding of

this binary image is executed horizontally to define successive black pixels as a

run. Each run has its starting location and ending location or running length.

Moreover each run has its special case as follows:

1) No adjacent runs both on previous and the next scan line.

2) Two adjacent runs on previous and the next scan line.

3) One adjacent runs on either the previous or the next scan line.

4) Two adjacent runs on either the previous or the next scan line.

5) More than two adjacent runs on either the previous or the next scan line.

From the case of each run, the characteristics of these successive black pixels

can be concluded as 1) one pixel spot or one pixel width line; 2) ridgeline; 3)

ridge termination, i.e. the starting or ending point of one ridge; 4) ridge bifurcation;

5) not yet considered according to the features of ridge’s distribution.

3.2.3.2 Skeletonization-based Methods

Skeletonization-based methods require not only the procedures described in last

section such as image enhancement and binarization, but only one additional

Fingerprint Feature Extraction

41

process – thinning. The thinning algorithm reduces pixels along the ridges up to

one pixel width (see section 3.2.2). In this category two principal approaches

have been widely utilized to process such thinned binary images, which are

crossing number based and morphology based.

The Crossing Number (CN) method is a popular skeletonization-based method.

In the literature [34, 54-59] this method is used for minutiae extraction. The

advantage of this method lies in its computational efficiency and theoretical

simplicity. Since the ridge flow pattern in the skeleton image is 8-distance,

scanning can be made in the local neighbourhood of each ridge pixel with a 3×3

window (see Figure 3.11), through which CN value is computed as follows:

𝐶𝑁(𝑝) =
1

2
∑|𝑃𝑖 − 𝑃𝑖−1|

8

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝑃0 = 𝑃8

 (3.3)

𝑃8 𝑃7 𝑃6

𝑃1 𝑃 𝑃5

𝑃2 𝑃3 𝑃4

Figure 3.11: 3×3 window for Crossing Number scanning.

Half the sum of the difference between two adjacent pixels in the 8-distance

neighbourhood is counted, for the reason that each pixel has to be used twice in

(3.3). From the value of the CN, the ridge pixel can be classified as a ridge

ending, bifurcation or an intermediate ridge point (see Figure 3.12).

3.2 State of the Art

42

Figure 3.12: Types of Crossing Number.

Another commonly used technique is based on mathematical morphology. Some

special morphological operators are used[60, 61] to remove isolated islands,

spurs, spurious bridges and holes and then to extract true minutiae with Hit or

Miss Transformation.

𝐴 ⊗ 𝐵 = (𝐴 ⊝ 𝐵1)⋂(𝐴𝑐 ⊝ 𝐵2)

 (3.4)

In (3.4) 𝐴 is the binarized fingerprint image, while 𝐵 is a structuring element

pair 𝐵 = (𝐵1, 𝐵2). The foreground pixels can be located by erosion with 𝐵1 and

the background pixels by erosion of the complement with 𝐵2. As mentioned in

[61], ridge endings have the property that there is only one foreground pixel in

their 3 × 3 neighbour, whose element pair is composed of the elements (i)-(viii)

and (ix)-(xvi) in Figure 3.13. And ridge bifurcations have the property that there

are three nonadjacent foreground pixels in their 3 × 3 neighbour, whose element

pair is composed of the elements (i)-(viii) and (ix)-(xvi) in Figure 3.14.

Fingerprint Feature Extraction

43

Figure 3.13: The structure element sequence for ridge endings.

Figure 3.14: The structure element sequence for ridge bifurcations.

3.2.3.3 Extraction with Grey-Level Images

Some recent researches have shown that minutiae extraction directly from grey-

level images without binarization and thinning can obtain better results in some

database especially with low quality images. Some other considerations for this

idea are that binarization and thinning bring degradation of image details and

time consuming, furthermore a fair number of spurious minutiae will be generated

during these processes.

Ridge lines are the most prominent feature in a grey-level fingerprint image,

which are composed of a set of pixels with local maxima along one direction.

Based on this idea, [8, 62] extract the minutiae directly from the grey-level image

by following the ridge flow lines according to their local orientation field. From a

pre-defined starting point with its definite direction, this algorithm calculates the

ending point by moving given step from the current point along the local direction.

3.2 State of the Art

44

Then the median point with its median direction between the starting point and

the ending point is computed as the next starting point. The process is iterated

until all ridge lines are followed and can meanwhile be interrupted when a ridge

line terminates or intersects another ridge line (minutiae point). Thence when all

ridge lines are scanned, minutiae with its type, coordinates and direction are also

obtained.

The above method was improved by using dynamical step[63] instead of given

step. The step length is decided by the change of the ridge contrast. If the

contrast (intensity variations) is small, a relative large step will be used, otherwise

a small step will be used. Another optimized method[64] is proposed, which

tracks not only the central ridge line but also its two adjacent valleys

simultaneously. At each step, both local maxima and its two parallel local minima

are located. Minutiae should be extracted where the relation of these three

extreme values changes. Linear Symmetry filter[65, 66] was also used to extract

minutiae directly from grey-level images for the reason that minutiae leads to the

local discontinuities from the view of the symmetry filter. A local window is built to

compute filter response. If the response is greater than pre-defined threshold,

minutiae will be located.

3.3 Application and Optimization

3.3.1 Grey-Level Image Binarization

Among the approaches mentioned in 3.2.1, direct gray-scale extraction method

depends on the quality of fingerprint image and cannot present the correct trend

of ridges in poor quality image especially when image has much noise. Another

direction-image-based extraction method utilizes the direction at each pixel to

supply an amendment for the accumulations of the gray value in a window for the

decision of background or foreground. This method can deal with most parts of

one fingerprint image, whereas it gains not good results in such areas with not

Fingerprint Feature Extraction

45

enough or irregular direction information. To solve the above problems, an

optimized noise image (see 2.3.2) is firstly used to mark all invalid noise area as

background, and all further operations are processed only in other valid area.

Moreover the frequency of directional filtering and the window size of adaptive-

local-threshold for binarization also change according to the filling rate inside one

window, i.e. ridge density, to reconcile the binarization result and computation

speed. Through multiple directional filtering in such areas with uncertain direction

information excluding background area, the binarization in these areas is

remarkably improved by reconnecting broken ridges or separating two adjacent

parallel ridges. The approach we propose performs binarization using not only

grey-level and orientation image but also noise and frequency image.

Furthermore the morphological dilation operators are also used to improve the

binarization of non-fingerprint-area and fingerprint centre area where might

produce some unexpected holes etc. The details of various procedures of the

proposed algorithm are described as follows and in Figure 3.15.

Adaptive threshold

binarization

Frequency image

computation

Adaptive window

binarization

Binary image

direction filtering

New direction and

noise image

Adaptive window

binarization

Background

binarization

Foreground

dilating

Background

elimination

Figure 3.15: Stages of the proposed grey-level image binarization algorithm.

1) Define windows (𝑤1 = 7,𝑤2 = 15) in image 𝐺 1, the mean value of all pixels in

windows can be computed:

3.3 Application and Optimization

46

𝑇1 =

∑ ∑ 𝐺1(𝑢, 𝑣)
𝑗+

𝑤1
2

𝑣=𝑗−
𝑤1
2

𝑖+
𝑤1
2

𝑢=𝑖−
𝑤1
2

𝑤1 × 𝑤1

𝑇2 =

∑ ∑ 𝐺1(𝑢, 𝑣)
𝑗+

𝑤2
2

𝑣=𝑗−
𝑤2
2

𝑖+
𝑤2
2

𝑢=𝑖−
𝑤2
2

𝑤2 × 𝑤2

𝑖𝑓 𝐺1(𝑢, 𝑣) ≥
(𝑇1 + 𝑇2)

2

 𝐺2(𝑢, 𝑣) = 255

𝑒𝑙𝑠𝑒

 𝐺2(𝑢, 𝑣) = 0

 (3.5)

If the pixel 𝐺1(𝑢, 𝑣) is a noise point in the orientation image, it will not be

computed in this step.

2) Define windows (𝑤1 = 3,𝑤2 = 36) in image 𝐺2 , and compute the ridge

frequency image 𝐺3 according to the proportion of window 𝑤1, when it’s not all

0 or 255 in the window 𝑤1 (see 2.3.3).

3) Smooth image 𝐺3 with window (𝑤1 = 33).

𝐺4(𝑢, 𝑣) =

∑ ∑ 𝐺3(𝑢, 𝑣)
𝑗+

𝑤1
2

𝑣=𝑗−
𝑤1
2

𝑖+
𝑤1
2

𝑢=𝑖−
𝑤1
2

𝑤1 × 𝑤1

 (3.6)

4) Using the smoothed frequency image 𝐺4 the pre-filtered fingerprint image can

be binarized again in windows of different size (𝑤1 = 7,𝑤2 = 11,𝑤3 = 15).

𝑖𝑓 𝐺4(𝑢, 𝑣) ≥ 𝑡ℎ𝑟𝑒𝑠1 𝑤 = 𝑤1

𝑖𝑓 𝑡ℎ𝑟𝑒𝑠1 ≥ 𝐺4(𝑢, 𝑣) ≥ 𝑡ℎ𝑟𝑒𝑠2 𝑤 = 𝑤2

𝑖𝑓 𝑡ℎ𝑟𝑒𝑠2 ≥ 𝐺4(𝑢, 𝑣) 𝑤 = 𝑤3

 (3.7)

In this window 𝑤, 𝐺5(𝑢, 𝑣) is obtained as step 1.

5) Directional image filtering on image 𝐺 5 . With the algorithm in 2.3.1 a

binarized-directional-filtered image 𝐺 6 is computed.

Fingerprint Feature Extraction

47

6) From the binarization image 𝐺 6 , the directional image 𝐺 7 and frequency

image 𝐺 8 is recomputed and updated.

7) The binarization image 𝐺 6 is selectively filtered to image 𝐺 9 with new

directional image in those areas where more noise exists.

8) With the new directional image and images 𝐺 4, 𝐺 6, the optimized binarization

image 𝐺 10 is computed as step 4.

9) Define windows (𝑤1 = 3) in image 𝐺 10, and compute the sum of the grey

values in each window and the binarization image 𝐺 11 as follows (edge pixels

are not included here and set to 255):

𝑆(𝑢, 𝑣) = ∑ ∑ 𝐺10(𝑢, 𝑣)

𝑗+
𝑤1
2

𝑣=𝑗−
𝑤1
2

𝑖+
𝑤1
2

𝑢=𝑖−
𝑤1
2

𝑖𝑓 𝑆(𝑢, 𝑣) < 𝑤1 × 𝑤1 × 128

 𝐺11(𝑢, 𝑣) = 0

𝑒𝑙𝑠𝑒

 𝐺11(𝑢, 𝑣) = 255

 (3.8)

10) At each foreground pixel in image 𝐺 11 a 4-distance area is built and dilated

along its horizontal and vertical directions until ending condition satisfies.

When the central pixel and the pixel at one of its 4-distance position are

background, dilation algorithm will set it to foreground and make a record at

this pixel and locate it as the next starting point. When the ending condition

satisfies i.e. the sum of the records reaches a pre-defined threshold, all of

these pixels will be set back to background otherwise these pixels will be

dilated to foreground (compare delta area in image 𝐺11 and dilated image 𝐺12

in Figure 3.16).

11) In the directional image 𝐺7 pixels with uncertain direction have been specially

marked. With this information the noise areas in dilated image 𝐺12 can be

easily removed (set pixel value to background 255 in noise areas) and final

binarization image 𝐺13 is generated.

3.3 Application and Optimization

48

G1 G2 G3 G4

G5 G6

G9 G10

G7 G8

G11 G12

G13

Figure 3.16: Results of various stages in grey-level image binarization.

Fingerprint Feature Extraction

49

3.3.2 Minutiae Extraction

As described in previous chapters minutiae extraction can make use of original

grey-level image, contour traced binary image or skeletonized binary image.

Among these approaches using a binarized and skeletonized image is the most

popular one for minutiae extraction and thinning is the important step of minutiae

extraction in this method.

As discussed in 3.2.2, the approach in [44] generates many biased skeletons,

which has been improved in [48] by using some new patterns listed in Figure

3.17 b) instead of patterns in 3.17 a). Nevertheless the thinning patterns in Figure

3.17 a) are not suitable for the image thinning process, our experiment has

shown that they are still helpful to amend the thinned image and make the

skeleton corners smoother instead. Based on this idea, we have implemented

the existing thinning patterns and given some improvements with our proposed

thinning patterns subsequently, which are shown in Figure 3.17 c).

The thinning process can be concluded that when a pixel and its neighbour are

examined and this central pixel is flagged as a boundary pixel, both the flag and

the result image in this iteration will be updated for the next iteration process.

The proposed thinning algorithm is described as follows:

1) For each pixel and its neighbours decide whether it matches one of the

thinning patterns in Figure 3.18 a). If it matches, make a flag.

2) Delete all flags and update the binary image at each flagged location as a

background pixel.

3) Repeat step 1 and step 2 until no pixel can be deleted or the maximal

repetition number reaches.

4) For each pixel and its neighbours decide whether it matches one of the

thinning patterns in Figure 3.18 b). If it matches, update it as a background

pixel.

3.3 Application and Optimization

50

Step 1 to step 3 aims to trim the ridges to one-pixel wide with the criteria that no

end pixel is deleted; no connectedness is violated; no excessive erosion occurs.

Step 4 tries to repair such convex corner pixels along a thinned ridge line in order

to make this corner smoother.

The thinned skeleton image of fingerprint is then scanned and all possible

minutiae such as ridge endings and ridge bifurcations are detected using the

method of Cross Number described in earlier section.

Figure 3.17: Thinning patterns improvements.

Fingerprint Feature Extraction

51

Figure 3.18: The proposed thinning patterns.

3.3.3 Minutiae Post-processing

For those fingerprint images of poor quality, many spurious minutiae can be

extracted due to noise. Consequently, a post-processing algorithm is designed to

optimize the result of minutiae extraction. The proposed post-processing

algorithm makes use of the extracted minutiae information such as

coordinates (𝑥𝑖, 𝑦𝑖), direction 𝜃𝑖, and distance between two minutiae and score 𝑠𝑖

of each minutiae (see Figure 3.19) as well as directional image 𝐺1 and direction

variance image 𝐺2.

3.3 Application and Optimization

52

Figure 3.19: One minutia pair for post-processing.

The proposed minutiae post-processing rules are described as follows:

1) If two minutiae are close and have quite different direction, they are

considered as from a broken ridge and should be deleted.

{

𝑑𝑖𝑗 < 𝐷𝑡ℎ𝑟𝑒𝑠1

|𝜃𝑖 − ∆𝜃𝑖𝑗| > 𝜃𝑡ℎ𝑟𝑒𝑠1

|𝜃𝑗 − ∆𝜃𝑖𝑗| > 𝜃𝑡ℎ𝑟𝑒𝑠1

 (3.9)

2) If the number of one minutia’s neighbours within a definite distance exceeds

the threshold 𝑇1, it should be deleted.

𝑇|𝑑𝑖𝑗<𝐷𝑡ℎ𝑟𝑒𝑠2| > 𝑇𝑡ℎ𝑟𝑒𝑠1

 (3.10)

3) If one minutia has one or more neighbours with closer distance, both or all of

them should be deleted.

𝑑𝑖𝑗(𝑖≠𝑗) < 𝐷𝑡ℎ𝑟𝑒𝑠3

 (3.11)

4) If one minutia is too close to the image borders, it should be deleted.

Fingerprint Feature Extraction

53

𝑑𝑖,𝑏𝑜𝑟𝑑𝑒𝑟𝑠 < 𝐷𝑡ℎ𝑟𝑒𝑠4

 (3.12)

5) If one pixel is close enough to one minutia but it has no reliable direction in

the directional image, this minutia is not reliable as well and should be deleted.

{
𝑑𝑖,(𝑥,𝑦) < 𝐷𝑡ℎ𝑟𝑒𝑠5

𝐺1(𝑥, 𝑦) 𝑖𝑠 𝑛𝑜𝑖𝑠𝑒

 (3.13)

6) If one minutia is too close to one singularity, it should be deleted.

𝑑𝑖,𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟𝑖𝑡𝑦 < 𝐷𝑡ℎ𝑟𝑒𝑠6

 (3.14)

7) If two close minutiae have similar direction and not ideal minutia scores, they

should both be deleted.

{

 𝑑𝑖𝑗 < 𝐷𝑡ℎ𝑟𝑒𝑠7

|𝜃𝑖 − 𝜃𝑗| < 𝜃𝑡ℎ𝑟𝑒𝑠2

𝑠𝑖 < 𝑆𝑡ℎ𝑟𝑒𝑠1

𝑠𝑗 < 𝑆𝑡ℎ𝑟𝑒𝑠1

 (3.15)

8) If one minutia and its several neighbouring minutiae have worse scores even

though they are further in distance, it should be deleted when such

neighbours exceed the threshold 𝑇2.

{

𝑇|𝑑𝑖𝑗<𝐷𝑡ℎ𝑟𝑒𝑠8| < 𝑇𝑡ℎ𝑟𝑒𝑠2

𝑠𝑖 < 𝑆𝑡ℎ𝑟𝑒𝑠2

𝑠𝑗 < 𝑆𝑡ℎ𝑟𝑒𝑠2

 (3.16)

9) All other undeleted minutiae are kept according to the distance between the

minutiae and the singular region or the coordinates in the original image.

3.4 Experimental Improvements

54

3.4 Experimental Improvements

To achieve better minutiae extraction representation, we have improved the

classic grey-level image binarization approach described in 3.3.1. Figure 3.20

shows the various results using different binarization methods aiming at filling

holes, removing small gaps and other artifacts produced by the noise.

In evaluation of the minutiae extraction algorithm we make a 1:1 comparison

between the proposed algorithm and the other existing algorithms in [8] (A), [67]

(B), [33] (C), [68] (D), [23] (E). The dataset is also the same as what is used in [8]:

7 fingerprints (no. 3, 4, 5, 11, 12, 13 and 14 in Figure 3.21) taken from the NIST

fingerprint database[69], 4 fingerprints (no. 1, 2, 9 and 10 in Figure 3.20) from an

FBI sample set, and 3 fingerprints (no. 6, 7 and 8 in Figure 3.21) acquired

through an opto-electronic device based on a prism.

The approach A uses ridge-line following technique directly on grey-scale

fingerprint image. The approaches B, C, D and E use the binarization and

thinning method similar to the proposed in this thesis. Figure 3.22 and Figure

3.23 show two fingerprint images, which are also used for comparison in [8], and

their minutiae extraction process using our approach and the approaches A, B

and E.

Table 3.1 gives the results of the number of undetected minutiae (dropped), non-

existent minutiae (false) and type-exchanged minutiae (exchanged) from the

algorithms listed above. Table 3.2, 3.3 and 3.4 give the results of the average

error percentage from the classes - good, - poor and from the whole sample set.

The average error percentage of total error is computed as follows[70]:

𝐴𝐸𝑃 =
1

𝑁
× (∑

𝑑𝑟𝑜𝑝(𝑖) + 𝑓𝑎𝑙𝑠𝑒(𝑖) + 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑑(𝑖)

𝑡𝑜𝑡𝑎𝑙

𝑁

𝑖

) × 100

 (3.17)

Fingerprint Feature Extraction

55

1 Proposed

4 Local threshold

7 [33]

 2 [23]

 5 [19]

 8 [67]

 3 [68]

 6 [71]

 9 [37]

Figure 3.20: Comparison of binarization from a fingerprint of good quality with

various methods.

3.4 Experimental Improvements

56

 1 2 3 4

 5 6 7 8

 9 10 11 12

 13 14

Figure 3.21: The sample set of fingerprints referred in [8] and used in our

comparison. All the fingerprints (except no. 6, 7 and 8) have dimensions 256×256

with 256 grey levels. The fingerprints no. 6, 7 and 8 have dimensions 190×250

with 256 grey levels.

Fingerprint Feature Extraction

57

Figure 3.22: Automatic minutiae detection in fingerprint no.1 - class good using

approach A, the proposed, B and E (from left to right). The first row is the input

image successively with its smoothing, binarization, thinning and minutiae

extraction results.

3.4 Experimental Improvements

58

Figure 3.23: Automatic minutiae detection in fingerprint no.13 - class poor using

approach A, the proposed, B and E (from left to right). The first row is the input

image successively with its smoothing, binarization, thinning and minutiae

extraction results.

Fingerprint Feature Extraction

59

Proposed A B C D E

fingerprint minutiae d f x d f x d f x d f x d f x d f x

1 33 0 0 5 0 2 7 0 25 2 1 102 7 0 53 6 0 5 4

2 29 0 4 3 3 1 4 0 20 2 2 24 1 1 34 2 2 4 0

3 28 0 1 4 1 2 4 0 24 0 1 35 1 1 28 2 0 4 4

4 37 2 2 0 3 0 4 0 15 3 4 32 0 1 42 3 2 2 2

5 22 0 2 5 0 0 3 0 38 1 0 80 2 1 18 0 0 8 2

6 23 0 0 3 0 0 4 0 3 2 0 25 3 0 19 2 0 2 1

7 31 0 1 6 2 1 2 3 13 2 2 27 2 0 40 3 2 0 2

8 31 1 0 4 1 0 3 0 2 0 1 10 3 0 5 4 0 0 3

9 21 0 10 3 1 10 1 1 115 1 0 180 1 0 153 1 0 24 2

10 22 0 4 4 1 0 4 0 53 1 0 104 3 0 100 1 0 8 4

11 32 0 2 3 3 5 4 1 22 4 2 22 3 3 73 4 1 5 2

12 33 2 3 2 3 8 2 0 23 3 4 45 1 1 79 3 0 10 5

13 20 0 3 2 0 0 4 0 48 2 0 57 3 0 81 2 0 7 5

14 37 0 0 6 0 5 6 1 43 5 3 67 5 1 57 4 0 11 2

Table 3.1: Minutiae extraction comparison

The first column is the fingerprint index. Fingerprints 1...8 belong to the class

good; fingerprints 9...14 belong to the class poor. The second column is the

minutiae number detected manually. The d, f and x denote the number of

dropped minutiae, false minutiae and exchanged minutiae, respectively [8].

Proposed A B C D E

1.48% 4.27% 1.28% 4.70% 1.71% 2.56%

4.93% 2.56% 59.83% 143.16% 102.14% 10.68%

14.78% 13.25% 5.13% 8.12% 9.40% 7.69%

21.18% 20.09% 66.24% 155.98% 113.25% 20.94%

good

dropped minutiae

false minutiae

exchanged minutiae

total error

Table 3.2: Average error percentage relative to the fingerprint of class good.

3.4 Experimental Improvements

60

Proposed A B C D E

1.21% 4.85% 1.82% 5.45% 3.03% 0.61%

13.33% 16.97% 184.24% 287.88% 329.09% 39.39%

8.48 12.73% 9.70% 9.70% 9.09% 12.12%

23.03% 34.55% 195.76% 303.03% 341.21% 52.12%

poor

dropped minutiae

false minutiae

exchanged minutiae

total error

Table 3.3: Average error percentage relative to the fingerprint of class poor.

Proposed A B C D E

1.36% 4.51% 1.50% 5.01% 2.26% 1.75%

8.70% 8.52% 111.28% 203.01% 195.99% 22.56%

11.96% 13.03% 7.02% 8.77% 9.27% 9.52%

22.01% 26.07% 119.80% 216.79% 207.52% 33.83%

whole set

dropped minutiae

false minutiae

exchanged minutiae

total error

Table 3.4: Average error percentage relative to the fingerprint of the whole

sample set.

The results from Table 3.1 to Table 3.4 show that the proposed method is

comparable to other mentioned methods. The AEPs of the dropped minutiae and

false minutiae are much remarkable for the reason that they play important roles

in fingerprint matching and have direct effect on the matching result. Considering

these two factors our method is the best one in the above list. On the other hand

we also notice that the AEP of exchanged minutiae is not quite satisfying

because of some excessive directional filtering by pre-processing. Moreover in

the computation of noise image, the four corners of the fingerprint image are

regarded as noise region, which causes the loss of minutiae in this area.

Fingerprint Feature Extraction

61

3.5 Summary

Our fingerprint minutiae extraction algorithm is introduced in this chapter. When

the direction field is computed and the grey-level image is directionally filtered,

this binarization-based algorithm generates a binarized image from the input

image and uses our optimized thinning patterns to obtain a skeleton image for

minutiae extraction. After all the possible minutiae are extracted, false minutiae

are excluded using the proposed deletion criteria. A comparison between our

algorithm and some other existing algorithms shows that this algorithm is

comparable and acceptable.

62

Chapter 4

Fingerprint Matching

4.1 Introduction

In most Automated Fingerprint Identification Systems (AFIS), fingerprint matching

is the crucial step, which compares two fingerprints and gives the similarity

between them. According to this similarity one matching score is computed to

decide whether these two fingerprints are from the same finger.

Some fingerprint matching algorithms use only the greyscale fingerprint images

for the reason that without pre-processing the greyscale fingerprint images retain

reliable original feature information. However more other algorithms generate

templates from binarized images and matching is processed with two prepared

templates. A template contains the info of the coordinates, angles and qualities of

the minutiae and ridges in a fingerprint image. It also includes some auxiliary info

such as core type, ridge frequency and block directional image etc.

In practice fingerprint matching is quite troublesome due to some unexpected

factors. (1) Nonlinear distortion by fingerprint image acquisitions is directionally

random and difficult to reconstruct mathematically. By acquisition the three-

dimensional elastic surface of a finger is pressed onto a flat sensor interface.

Fingerprint Matching

63

a) FVC2006 DB3_A: 5_4.bmp, 81_9.bmp

b) FVC2006 DB3_A: 122_9.bmp, 140_7.bmp

Figure 4.1: Image in a) and b) are from two different fingers in FVC2006 DB3_A

respectively, which are falsely matched in our preceding matching algorithm.

This 3D-2D conversion introduces nonlinear distortion, especially when the

power is not orthogonally applied to the sensor[72]. (2) The translation and

rotation in successive enrolments from the same finger give these images

different appearance. (3) There might be only a partial overlap between the two

4.1 Introduction

64

fingerprint images because of the translation and rotation. In our system a kind of

small solid-state senor is used and this problem becomes much evident. (4)

Finger conditions such as dryness, wetness, and injury often result in false

contact and minutiae info. (5) The imperfect fingerprint algorithms also generate

false minutiae, omit the true minutiae, and bring some deviation in coordinates’

location computation. (6) According to some matching algorithms, a few of

fingerprint images from different fingers are still difficult to distinguish due to their

high similarity (Figure 4.1).

In recent years, the challenge of fingerprint matching algorithms is not the

optimization in matching good quality fingerprint images, but the robustness in

matching poor quality fingerprint images[73]. On the one hand fingerprint

acquisition devices are not intelligent enough to dispose of fingers with different

conditions such as dryness, wetness and especially distortion, on the other such

original poor fingerprint images with cuts, bruises and gaps on ridges or parallel

ridge intercepts are still the main sources of false match and no-match errors.

Fingerprint matching algorithms can be mainly classified into the following types

[73]: Correlation-based matching – the fingerprint images to be matched are

superimposed and the corresponding pixels are computed to retrieve the

variation of the translations and rotations and compared with this info. Minutiae-

based matching – mainly based on two kinds of minutiae – ridge ending and

ridge bifurcation. Through analysing the similarity of the coordinates and rotation

angles of these matched minutiae pairings, a global matching is obtained. Non-

Minutiae feature-based matching makes use of some other features (e.g. local

orientation and frequency, ridge shape, texture information) to differentiate

fingerprint images. Based on not enough minutiae info, minutiae-based matching

algorithm cannot mostly make reliable decision. This kind of approach helps

especially in these databases which have small image size and few minutiae.

Besides these methods there are some other matching techniques such as

graph-based, genetic-based, hybrid feature-based and etc.

Fingerprint Matching

65

The rest of this chapter is organized as follows. The next section introduces the

main existing methods of fingerprint matching mentioned above. And then our

proposed matching algorithm will be described in detail. Performance analysis

and experiment results are discussed subsequently. The databases that are

used in this chapter are mostly from FVC2004_DB3 and FVC2006_DB3,

because the main research in this thesis is focused on fingerprint images from

ATMEL sensor.

4.2 State of the Art

Correlation-based approach makes use of the invariance of the rotation and

translation of a fingerprint image. This approach uses the classical pre-

processing techniques to extract the minutiae, ridges and the orientation field of

the input fingerprint image[74]. If 𝐼(∆𝑥,∆𝑦,𝜃) is defined as a rotated image from

original image 𝐼 with the rotation angle 𝜃 and the translation (∆𝑥, ∆𝑦) , the

similarity between these two images 𝑇 and 𝐼 can be defined [73] as

𝑆(𝑇, 𝐼) = max
∆𝑥,∆𝑦,𝛽

𝐶𝐶(𝑇, 𝐼(∆𝑥,∆𝑦,𝛽))

 (4.1)

Where 𝐶𝐶(𝑇, 𝐼(∆𝑥,∆𝑦,𝛽)) = 𝑇𝑇𝐼 is the cross-correlation between 𝑇 and 𝐼. Through

computing the maximization of (4.1) the optimal rotation angle 𝜃 and the

translation (∆𝑥, ∆𝑦) can be obtained. Since each acquisition has its particular

condition as mentioned in last section, these factors such as finger pressure,

image quality can lead most of the matching to false result in practice. In [75]

instead of global correlation local or block-wise correlation is used to improve a

non-linear distortion for the reason that such elastic distortion does not alter

fingerprint pattern in local area significantly, however its accumulation differs the

distributions of ridges between two fingerprint images. In [76, 77] some more

sophisticated correlation measures such as normalized cross-correlation and

4.2 State of the Art

66

differential correlation are applied to optimize the results in view of the influence

from the brightness, contrast and ridge thickness of a input fingerprint image.

Furthermore to reduce the computational complexity local correlation and global

correlation are also applied in Fourier domain which is described in [78, 79].

Minutiae-based approach plays the most important role in fingerprint matching

field and is most widely used for fingerprint matching especially as a proof of

identity in the courts of law. Similar to the correlation-based matching in this

approach minutiae are certainly extracted from fingerprint images and stored in

templates. Each minutia in a template consists of at least its coordinates and

direction, and in addition maybe also its type, quality and neighbour minutiae info,

which can be used to weight the matching score from the coordinates and

direction of the minutiae pairs themselves.

Hough transform-based approach is one of the most popular minutiae-based

methods. It is firstly proposed in [80, 81] to convert point pattern matching to the

problem of detecting peaks in the Hough space of transformation parameters 73.

The parameters - transformations of angles and coordinates of minutiae - are

discretized and accumulated. According to Hough transform theory the most

consistent transformation of these parameters gains the most overlap in their

Hough spaces each and thus the optimal parameters are obtained. In [82] Hough

transform-based minutiae matching approach is proposed with one additional

parameter – scale besides translation and rotation. Another alternative approach

in [83] determines the optimal parameter with the maximum Matching Pair

Support, which is computed using the difference of the angle and scale of the

possible minutiae pairs from the two templates each.

Another minutiae-based approach makes use of not only common minutiae but

also some special pre-aligned characters associated with some minutia.

Singularities such as core, delta or other core types can be stored in template to

identify two different fingerprints. In [16, 31] the orientation of the core or around

Fingerprint Matching

67

the core and the orientations of the singularities are individually used as a

measurement to differentiate two different fingerprints. In [84] the pre-aligned

ridges, where the minutiae reside, are used to assist minutiae matching. By

iterative matching these ridges between two templates, the best rotation angle

and translation coordinates can be obtained. However this kind of approach has

relative high computational complexity, furthermore the biggest problem of it is

that how reliable are those singularities and ridges since there are still many false

minutiae in a to-be-matched template or even in the reference template in

database.

One more effective minutiae-based approach is local minutiae matching, which

consists of a central minutia and its several neighbouring minutiae within a

predefined distance. Since the relative angle and the distance between the

central minutia and its one neighbour is absolute and independent of the image

rotation and the translation and even distortion to some extent, this approach

offers great assistance to the global minutiae matching mentioned above when a

minutia pair cannot be confidently determined. In [55] the neighbours of the

central minutiae are filtered and its 𝑁 spatially nearest minutiae are reserved in

distance order. When 𝑁 is small, this approach is very efficient. In [85] this

approach is developed that the 𝑁 spatially nearest minutiae are sorted not by

their distance to the central minutiae but their angles due to the reason that if two

of its neighbours have similar distance to the central minutiae, the sequence of

the final neighbours could be false. The approach mentioned in [86] selects the

nearest neighbour minutiae within a fixed radius. In addition, local matching is

also implemented using minutiae triangles [87-89]. The triangle features such as

the length of each side, the ridge count between each pair of vertices, type,

direction or even the average deviation of the local orientations in the

neighbourhood of each triangle vertex are used for measuring the similarity of the

triangles between two templates. Another local matching approach proposed in

[90] gathers sampling points around each minutia along a set of circles with

different radii. The orientation information at these points is recorded and the

4.2 State of the Art

68

average angular difference between corresponding orientations is used to weigh

the similarity.

Non-Minutiae feature-based approaches include the utilization of the features

such as texture information[91], spatial relationship of the ridge lines [86, 92],

sweat pores and etc. For those small size sensors it is difficult to generate

enough minutiae, moreover in low quality fingerprint images most of the

extracted minutiae are not reliable enough. This kind of approaches has just an

edge under such situations. In [91] the fingerprint area of interest is set around

the core point and divided into several neighbouring sectors. The local texture

information in each sector is decomposed into separate channels with a Gabor

filter bank. Through gaining the local texture information and the global

relationship among local sectors each fingerprint is encoded as a vector called

Finger Code. This approach acts as assistance to minutiae-based matching. In

[86, 92] the spatial relationship of ridges is used to verify how exact a minutiae

pair is. In this approach the relative ridges are also matched to compensate the

final matching score generated from a minutiae pair. If the relative ridges have

similar length and curvature, this compensation is positive and vice versa.

Another distinctive approach uses the reliable detection of sweat pores. Since

this approach requires high-resolution scanners, it is not the range of our recent

research and not discussed in this thesis.

4.3 Application and Optimization

To develop an efficient fingerprint verification and identification approach

depends on its real application environment. We aim to discover one approach

suitable for implementation in embedded system with limitations of computational

capability and also available memory resources. As described in last section,

various fingerprint matching algorithms can be classified into three categories. In

correlation-based fingerprint matching, the reference image and the query image

are correlated to estimate the degree of similarity between them. If the rotation

Fingerprint Matching

69

and displacement between these two images are unknown, the correlation must

be computed over all possible rotations and displacement, which is very

computationally expensive. Moreover the non-linear distortion and noise

decrease the global correlation degree between these two images extraordinarily.

However the ridge feature-based methods suffer from their low discrimination

capability, which are generally suitable for such applications with small

acquisition area and only 4-5 minutiae available. In minutiae-based matching, the

similarity between two templates depends on the matching of each minutia pair

and therefore be proportional to the number of the minutia pairs. Although

minutiae contain most of the fingerprint discriminatory information, the missing or

spurious minutiae in minutiae extraction because of fingerprint image acquisition

and pre-processing deteriorate the eventual matching result. [73] The complexity

of this method can be different. Some earlier researches based on only the

location and orientation of the minutiae are comparatively faster but lack of

robustness [82, 83]. Later researches combine the minutiae features and some

other features such as the orientation and frequency of ridges, the type of

singularities to improve this kind of method and obtain better robustness at cost

of more computational complexity.

As a trade-off between the computational complexity and discrimination

capability in view of our hardware environments such as fingerprint sensor and

processor speed, we have developed one minutiae-based fingerprint matching

approach. In this approach several improvements have been made to overcome

the shortcomings mentioned above. (1) Feature vector pairs are used instead of

minutia pairs to find the best translation and rotation parameters since each

feature vector pair contains two minutia pairs and provides a factor of n2 with

respect to n of one minutia pair, which make these parameters more precise. (2)

Fingerprint identification is a 1:𝑁 matching process, which consists of most

matching between two templates from different fingers. Several accelerating

algorithms are designed to discriminate two different fingers and end the

matching process quickly through calculating the scores of all raw matched

4.3 Application and Optimization

70

feature vectors, comparing the different of the directional image blocks which

contain the valid feature vectors and counting the proportion of the corresponding

directional blocks in directional images. (3) Additionally two more similarity

arbitration algorithms are designed to re-evaluate the matching score if matching

fails with the standard algorithm. One hypothesis is that if two templates are from

the same finger, one block directional image and another block direction image

after rotating and translating according to some parameters should obtain the

best overlap. To find these parameters, each reliable minutia from one template

will be compared with each minutia from another. If they are similar enough, i.e.

with similar curvature and limited difference of minutia angle and location, the

difference between them will be considered as the parameters to transform the

corresponding block directional image. Finally all possible parameter sets are

recorded and one best set is selected as the translation and rotation parameters

to execute the standard algorithm again. Another hypothesis is that since

singularities are usually characterized by high curvature [73], the minutia point

with higher curvature can represent the distinctive shapes of the original

fingerprint image better. Therefore all minutiae are rearranged and several

minutiae with higher curvature are selected as candidates, which are used one

by one to find the best matched minutia on the other template. If a matched

minutia can be found, the similarity of this minutia pair is recorded. The

translation and rotation parameters of the minutia pair with the best similarity will

be used to execute a simplified standard matching algorithm.

The proposed minutiae-based multiple-matching algorithm can be summarized

into two main steps: (1) template location and (2) template multiple-matching. In

the template location step the translation and rotation between the reference

template and the template to be matched are computed and the most reliable

feature vector pairs are obtained as the input of the next step. In the template

multiple-matching step the similarity between two templates is arbitrated with

different matching algorithms for the reason that some single matching algorithm

Fingerprint Matching

71

cannot discriminate the two templates as expected. The key steps of our

algorithm are described as follows.

A. The Translation and Rotation Location and the Feature Vector Pairs

Investigation

i. To find the optimal translation and rotation parameters, each minutia is

connected with another (𝑃⃑ 𝑖𝑗, see Figure 4.2) within each template. The

feature vector of this line segment is defined as 𝑃⃑ 𝑖𝑗 = {𝜃𝑖𝑗 , 𝛿𝑖 , 𝛿𝑗 , 𝑙𝑖𝑗} where

𝜃𝑖𝑗 denotes the angle from this line segment to x-axis anticlockwise; and

(𝛿𝑖, 𝛿𝑗) indicates the direction from the vector 𝑃⃑ 𝑖𝑗 to minutia 𝑖 and the

direction from the vector 𝑃⃑ 𝑖𝑗 to minutia 𝑗 ; 𝑙𝑖𝑗 presents the length of the

vector 𝑃⃑ 𝑖𝑗 . These parameters are independent of the translation and

rotation between two templates. If one minutia in a vector is not reliable

enough, which means that its minutia score is relative low, or if the length

of this vector is outside our predefined threshold, the vector will be not

included. And then all qualified vectors are rearranged and sorted by their

length and updated for later use.

Figure 4.2: Feature vector between two minutiae.

4.3 Application and Optimization

72

ii. The unreliable minutiae are filtered using block direction image and the

vectors from the previous step are updated. To compare the respective

direction image in block requires such a transformation of one block

direction image 𝐹 as to reach a better overlap between the two images 𝐹

and 𝐺. The correlation between the core points from the two templates is

used to retrieve the approximate transformation parameters. So this step

can be ignored for those templates without core. In general there may be

three possibilities of core condition:

{

𝑎) 𝑁1 = 1,𝑁2 = 1
𝑏) 𝑁1 = 1,𝑁2 = 2 𝑜𝑟 𝑁1 = 2,𝑁2 = 1
𝑐) 𝑁1 = 2,𝑁2 = 2

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡:
𝑖𝑓 𝑁1 = 𝑁2 = 1

 {
𝛼 = 𝑑𝑖𝑟2 − 𝑑𝑖𝑟1
𝑐𝑥 = 𝑥2 − 𝑥1

𝑐𝑦 = 𝑦2 − 𝑦1

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑁1 = 𝑁2 = 2

{

𝛼 = 𝑑𝑖𝑟2(𝑐𝑜𝑟𝑒12̅̅ ̅̅ ̅̅ ̅̅ ̅) − 𝑑𝑖𝑟1(𝑐𝑜𝑟𝑒12̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝑐𝑥 =
𝑥2 𝑐𝑜𝑟𝑒1 + 𝑥2 𝑐𝑜𝑟𝑒2

2
−

𝑥1 𝑐𝑜𝑟𝑒1 + 𝑥1 𝑐𝑜𝑟𝑒2

2

𝑐𝑦 =
𝑦2 𝑐𝑜𝑟𝑒1 + 𝑦2 𝑐𝑜𝑟𝑒2

2
−

𝑦1 𝑐𝑜𝑟𝑒1 + 𝑦1 𝑐𝑜𝑟𝑒2

2

𝑒𝑙𝑠𝑒
 𝑖𝑓 𝑁1 = 1

 {

𝛼 = 𝑑𝑖𝑟2(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) − 𝑑𝑖𝑟1
𝑐𝑥 = 𝑥2(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) − 𝑥1

𝑐𝑦 = 𝑦2(𝑚𝑎𝑡𝑐ℎ𝑒𝑑) − 𝑦1

 𝑖𝑓 𝑁2 = 1

 {

𝛼 = 𝑑𝑖𝑟2 − 𝑑𝑖𝑟1(𝑚𝑎𝑡𝑐ℎ𝑒𝑑)

𝑐𝑥 = 𝑥2 − 𝑥1(𝑚𝑎𝑡𝑐ℎ𝑒𝑑)

𝑐𝑦 = 𝑦2 − 𝑦1(𝑚𝑎𝑡𝑐ℎ𝑒𝑑)

 (4.2)

Fingerprint Matching

73

Figure 4.3: Minutiae filtering using block direction image.

a) FVC2006 DB3_A: 115_12.bmp

b) FVC2006 DB3_A: 115_11.bmp

Figure 4.4: Minutiae filtering using block direction image.

4.3 Application and Optimization

74

In (4.2) the core numbers 𝑁𝑖 can be different. The aim is to find which core

is matched in one template with which core in another. Subsequently block

direction image 𝐹 is transformed to block direction image 𝐹′ (see Figure

4.3) and the corresponding template too. In images 𝐹′ and 𝐺 the blocks

with indefinite direction, i.e. noise, are temporarily marked as invalid. Any

minutia, which is located in such a noise area i.e. there are no valid

direction blocks around with threshold radius 𝑟 or the two relative central

direction blocks have too much difference, will be eliminated.

In Figure 4.4 shows the result of the method - original fingerprint image,

continuous direction image and minutiae with binarized image. Block

direction image uses the direction at the centre of each block from

continuous direction image. Minutia 1 in a) and minutiae 1-4 in b) are

deleted for the lack of the overlap of direction blocks and minutia 5 in b) is

deleted for too much difference of relative direction blocks between two

block direction images.

iii. In this step all qualified feature vectors 𝑃⃑ 𝑖𝑗 in both templates are compared

in all possible directions and every comparison score will be accumulated.

Since (𝛿𝑖, 𝛿𝑗) in 𝑃⃑ 𝑖𝑗 is independent of the direction of a template, the

feature vectors with similar (𝛿𝑖, 𝛿𝑗) can be directly matched without rotation

previously. In view of the influence of distortion the feature vectors from

the second template are chosen not only at the precise (𝛿𝑖, 𝛿𝑗) but also its

upper and lower deviations to obtain better focus. The score of each

matched vector pair will be evaluated under a 3-D Guess distribution

according to the difference of the features (𝛿𝑖, 𝛿𝑗 , 𝑙𝑖𝑗). Then the score is

further optimized with some features from the related minutiae themselves.

The procedure of this step is described as follows.

Fingerprint Matching

75

{

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 ∈ (0,2𝜋)
 𝑡1 = 𝑖 − 𝑇1, 𝑡2 = 𝑖 + 𝑇1

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛿𝑖𝑗 𝑖𝑛 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 1

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 ∈ (𝑡1, 𝑡2)

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝛿𝑖𝑗
′ 𝑖𝑛 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 2

 𝑖𝑓 |𝛿𝑖 − 𝛿𝑖
′| > 𝑇2 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

 𝑖𝑓 |𝛿𝑗 − 𝛿𝑗
′| > 𝑇2 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

 𝑖𝑓 |𝑙𝑖𝑗 − 𝑙𝑖𝑗
′ | > 𝑇3 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒

 𝑠𝑐𝑜𝑟𝑒 = 𝐺(|𝛿𝑖 − 𝛿𝑖
′|, |𝛿𝑗 − 𝛿𝑗

′|, |𝑙𝑖𝑗 − 𝑙𝑖𝑗
′ |)

 𝑠𝑐𝑜𝑟𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 …

 𝑎𝑛𝑔𝑙𝑒[|𝛿𝑖 − 𝛿𝑖
′|]+= 𝑠𝑐𝑜𝑟𝑒

 𝑎𝑛𝑔𝑙𝑒[|𝛿𝑗 − 𝛿𝑗
′|]+= 𝑠𝑐𝑜𝑟𝑒

 𝑝𝑎𝑖𝑟𝑙𝑖𝑠𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 …
 𝑖𝑓 𝑠𝑐𝑜𝑟𝑒 > 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥

 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 𝑢𝑝𝑑𝑎𝑡𝑒 …

 ∑𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥 𝑢𝑝𝑑𝑎𝑡𝑒 …

 (4.3)

In (4.3) the constants 𝑇1 − 𝑇3 are predefined thresholds and function 𝐺

submits to Gauss distribution. Array 𝑎𝑛𝑔𝑙𝑒[] records the statistic

arrangement of rotation between two templates. Score optimization is here

applied with five algorithms.

Algorithm 1:

𝐶𝑥𝑦 =
∑ |𝑑𝑖𝑟0 − 𝑑𝑖𝑟𝑖𝑗, 𝑖𝑓 (𝑑𝑖𝑟𝑖𝑗 ∉ 𝑛𝑜𝑖𝑠𝑒)|

(𝑥,𝑦)+𝑤
𝑖,𝑗=(𝑥,𝑦)−𝑤

𝑁

 (4.4)

Define 𝐶𝑥𝑦 in (4.4) as the curvature of one minutia at the position (𝑥, 𝑦).

The variants 𝑑𝑖𝑟0 and 𝑑𝑖𝑟𝑖𝑗 indicate the direction at position (𝑥, 𝑦) and its

neighbours. The denominator 𝑁 denotes the number of pixels with

qualified direction. If 𝐶𝑥𝑦 and 𝐶𝑥𝑦
′ from the corresponding feature vectors

are not the same. The score is scaled according to the difference.

Furthermore, if these two minutiae are reliable enough, i.e., the minutia

4.3 Application and Optimization

76

scores are greater than a threshold, their minutia types are also

considered as a factor to scale the score.

Algorithm 2:

As shown in Figure 4.5, define 𝑙𝑖𝑗−𝑐𝑜𝑟𝑒 as the distance between the

midpoint of feature vector 𝑃⃑ 𝑖𝑗 and the core point, and 𝜃𝑖𝑗 also in Figure 4.2

as the angle of 𝑃⃑ 𝑖𝑗 , and 𝜃𝑖𝑗as the direction of core point. If the feature

vectors 𝑃⃑ 𝑖𝑗and 𝑃′⃑⃑ ⃑
𝑖𝑗 are a correct pair, ∆𝑙𝑖𝑗−𝑐𝑜𝑟𝑒 and ∆(𝜃𝑖𝑗 − 𝜃𝑐𝑜𝑟𝑒) should

be within a threshold as shown in (4.5). If (4.5) is not supplied, the score of

this minutiae pair is scaled.

{
|𝑙𝑖𝑗−𝑐𝑜𝑟𝑒 − 𝑙𝑖′𝑗′−𝑐𝑜𝑟𝑒′

′ | < 𝑇4

||𝜃𝑖𝑗 − 𝜃𝑐𝑜𝑟𝑒| − |𝜃𝑖′𝑗′
′ − 𝜃𝑐𝑜𝑟𝑒′

′ || < 𝑇5

 (4.5)

FVC2006 DB3_A: 111_8.bmp, 111_12.bmp

Figure 4.5: Minutiae similarity decided with singularity.

Fingerprint Matching

77

 Algorithm 3:

As shown in Figure 4.6, define 𝜃𝑚𝑖𝑑 as the direction of the midpoint of the

feature vector 𝑃⃑ 𝑖𝑗. If (4.6) is not supplied, the score of this minutiae pair is

scaled.

{

𝛿 = |𝜃𝑖𝑗 − 𝜃𝑚𝑖𝑑|

𝛿′ = |𝜃𝑖′𝑗′
′ − 𝜃𝑚𝑖𝑑′

′ |

|𝛿 − 𝛿′| < 𝑇6

 (4.6)

FVC2006 DB3_A: 111_8.bmp, 111_12.bmp

Figure 4.6: Minutiae similarity decided with midpoint.

Algorithm 4:

In this step frequency block image 𝐹 is used to measure the difference

between the two feature vectors. If the minutiae from the corresponding

feature vectors don’t have similar frequency in their frequency blocks (see

(4.7)), the score of this minutiae pair is also scaled.

4.3 Application and Optimization

78

{
|𝑓𝑖 − 𝑓𝑖′| < 𝑇7

|𝑓𝑗 − 𝑓𝑗′| < 𝑇7

 (4.7)

Algorithm 5:

Figure 4.7 and Figure 4.8 show two different descriptors, which symbolize

the relation between a central minutia and its neighbours. Some

parameters are extracted and matched. The similarity is then converted to

standard similarity score. If either of these two descriptors is not well

matched, the score of this minutiae pair is to some extent scaled.

The descriptor in Figure 4.7 denotes that the direction blocks around the

minutia should also be consistent between two to-be-matched templates.

These blocks are divided into several different groups according to the

distance to the central minutia. The farther the direction blocks are to the

central minutia, the more detailed they will be segmented. The differences

of the minutia direction and such 16×16 direction blocks at each circle with

radius from 𝑟𝑖 to 𝑟𝑘 are recorded and matched. In order to minimize these

differences, the corresponding direction blocks in these two templates

should be independent of rotation. Therefore the first direction block is

located along the direction of the minutia and at the circle with the first

radius 𝑟𝑖. If some direction block is marked as noise previously, it will also

be recorded but with invalidity.

{

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟 ∈ (𝑖, 𝑘)

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛 ∈ (1, 𝑁𝑟)

 𝑜𝑟𝑖𝑒𝑛𝑡𝑚 = 𝑜𝑝𝑡1(𝜃0, 𝜃𝑟𝑛)

𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑜𝑟𝑖𝑒𝑛𝑡 = ∑ 𝑜𝑝𝑡2(𝑜𝑟𝑖𝑒𝑛𝑡1(𝑛), 𝑜𝑟𝑖𝑒𝑛𝑡2(𝑛))

𝑁

𝑛=0

 (4.8)

In (4.8) (𝑖, 𝑘) gives the possible distances between central minutia and its

neighbour direction blocks. Function 𝑜𝑝𝑡1 normalizes each difference of

Fingerprint Matching

79

the minutia direction and the block direction. Function 𝑜𝑝𝑡2 converts the

orientation difference to a measurable score. And the variable 𝑁 denotes

the number of all neighbour direction blocks.

The descriptor in Figure 4.8 denotes relation between the central minutia

and its neighbour minutiae within radius 𝑟. The similar approach called

local structure matching can also be referred in [55]. A constant radius 𝑅 is

defined in advance. Two angle parameters will be extracted from the

central minutia 𝑚0 and its neighbour 𝑚𝑖, which has the distance within 𝑅 to

the central minutia. One parameter is the alpha, which presents the angle

difference of minutia 𝑚0 and vector 𝑚0𝑚𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑. Another parameter is the delta,

which shows the angle difference of minutia 𝑚0 and minutia 𝑚𝑖 . The

comparison of the alpha and delta for a minutia pair is shown in (4.9).

{

𝛼𝑖 = |𝜑𝑖 − 𝜃0|

𝛿𝑖 = |𝜃0 − 𝜃𝑖|

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖, 𝑗𝜖(0,𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑖𝑗)

 𝑝𝑎𝑖𝑟𝑖[𝑖] = 0

 𝑝𝑎𝑖𝑟𝑗[𝑗] = 0

𝑖𝑓 (|𝛼𝑖 − 𝛼𝑗| < 𝑇8 𝑎𝑛𝑑 |𝛿𝑖 − 𝛿𝑗| < 𝑇8 𝑎𝑛𝑑 |𝑟𝑖 − 𝑟𝑗| < 𝑇9)

 𝑝𝑎𝑖𝑟𝑖[𝑖] = 1

 𝑝𝑎𝑖𝑟𝑗[𝑗] = 1

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖, 𝑗𝜖(0,𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑖𝑗)

 𝑖𝑓(𝑝𝑎𝑖𝑟𝑖[𝑖] == 1) 𝑛𝑁𝑢𝑚𝑖 + +

 𝑖𝑓(𝑝𝑎𝑖𝑟𝑗[𝑗] == 1) 𝑛𝑁𝑢𝑚𝑗 + +

𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 = 𝑜𝑝𝑡3 (
(𝑛𝑁𝑢𝑚𝑖 + 1) × (𝑛𝑁𝑢𝑚𝑗 + 1)

(𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑖 + 1) × (𝑚𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑗 + 1)
)

 (4.9)

Evidently each minutia pair 𝑚0𝑚𝑖⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑ in one template is compared with each

pair from another. Moreover, the condition of the comparison consists of

the difference not only of angles alpha and delta but also of the Euclidean

distance of the minutia pair. In this thesis the radius 𝑟 in Figure 4.7 is set

to 27, 45, 63 and 81 and the radius 𝑅 in Figure 4.8 is set to 80.

4.3 Application and Optimization

80

a) b)

FVC2006 DB3_A: 111_8.bmp

Figure 4.7: Minutiae local orientation descriptor.

FVC2006 DB3_A: 111_8.bmp

Figure 4.8: Minutiae local neighbour descriptor.

Fingerprint Matching

81

iv. As discussed in step (iii) all feature vectors 𝑃⃑ 𝑖𝑗 from two templates are

cross-matched according to their intrinsic parameters {𝜃𝑖𝑗 , 𝛿𝑖, 𝛿𝑗 , 𝑙𝑖𝑗} at all

possible rotations. The matching scores of two feature vectors are

accumulated in array 𝑎𝑛𝑔𝑙𝑒[] . In this step the final translation and

rotation parameters will be extracted based on (i) - (iii).

To gain precise rotation parameter, array 𝑎𝑛𝑔𝑙𝑒[] is firstly locally

focused, i.e. each matching score here is amplified in a limited field (see

(4.10) (a)). Hereafter the angle which has the maximal matching score is

set as the focus and its neighbouring angles, which have only limited

angle difference from the focus, use such difference as weighted factors

for computing the final rotation angle (see (4.10) (b) and (c)).

𝐴𝑛𝑔𝑙𝑒′[𝑖] = ∑ 𝐴𝑛𝑔𝑙𝑒[𝑗]

𝑖+𝑤

𝑗=𝑖−𝑤

 (a)

𝑛𝑓𝑜𝑐𝑢𝑠 = 𝑡ℎ𝑒 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑀𝑎𝑥(𝐴𝑛𝑔𝑙𝑒′[𝑖], 𝑖 ∈ (0,2𝜋)) (b)

𝑎𝑛𝑔𝑙𝑒𝑟𝑜𝑡

= 𝑜𝑝𝑡 (
∑ (𝐴𝑛𝑔𝑙𝑒′[𝑖] × 𝑖)

𝑛𝑓𝑜𝑐𝑢𝑠+𝑤

𝑖=𝑛𝑓𝑜𝑐𝑢𝑠−𝑤
 (𝑖𝑓 𝐴𝑛𝑔𝑙𝑒′[𝑖] > 𝐴𝑛𝑔𝑙𝑒𝑀𝑎𝑥

′ /2)

∑ 𝐴𝑛𝑔𝑙𝑒′[𝑖]
𝑛𝑓𝑜𝑐𝑢𝑠+𝑤

𝑖=𝑛𝑓𝑜𝑐𝑢𝑠−𝑤

) (𝑐)

 (4.10)

v. With the rotation angle the template to be matched is rotated to the

optimal direction to the reference template. Before computing the

translation, one preparation step is essential. Each matched pair from pair

list in (4.3) should be checked whether their slopes are similar. If the two

slopes from a pair are quite different (∆𝜑 >
𝜋

12
), this pair will be removed

from the pair list. And the translation parameters can then be computed as

(4.10).

4.3 Application and Optimization

82

vi. Some post-processing are implemented in this step to further optimize the

feature vector pairs in view of computing more reliable matching score

later. From this step, the template to be matched and its related direction

blocks have been rotated and translated to the best position to the

reference template.

The direction blocks are firstly used as the reference of the reliability of a

matched feature vector pair. The percentage of the non-noise blocks of

the two templates is recorded as 𝑝𝑐 and the average similarity of all the

corresponding blocks, whose similarities are beyond the

threshold (∆𝑑𝑖𝑟 >
𝜋

24
), is recorded as 𝑝𝑏 . If either of 𝑝𝑐 and 𝑝𝑏 is below

pre-defined threshold 𝑇10 and 𝑇10 , it can be directly decided that the

matching of these two templates is rejected.

When 𝑝𝑐 and 𝑝𝑏 are satisfied the condition, the minutiae of both templates

will be checked again according to their corresponding block direction

image. If one minutia lies in a noise block, it should be removed and the

related feature vector too.

Another optimization is a compromise to the finger distortion. We define

the feature vector 𝑃⃑ 𝑖𝑗 = (𝑥1, 𝑦1, 𝑥2, 𝑦2) and the feature vector 𝑃⃑ 𝑖𝑗
′ =

(𝑥1
′ , 𝑦1

′ , 𝑥2
′ , 𝑦2

′), which are a matched pair from two templates respectively. If

either of the conditions in (4.11) is not supplied, this pair will be removed

because of too much distortion. The result is shown in Figure 4.9.

{

∆𝑥1 = |𝑥1 − 𝑥1

′ | < 𝑇12

∆𝑦1 = |𝑦1 − 𝑦1
′ | < 𝑇12

∆𝑥2 = |𝑥2 − 𝑥2
′ | < 𝑇12

∆𝑦2 = |𝑦2 − 𝑦2
′ | < 𝑇12

 (4.11)

Fingerprint Matching

83

FVC2006 DB3_A: 42_8.bmp

FVC2006 DB3_A: 42_9.bmp

a) b) c)

Figure 4.9: Comparisons of feature vectors before and after optimization

for Finger Distortion: a) Original grey fingerprint image; b) Feature vectors

before optimization; c) Feature vectors after optimization.

Furthermore there might be a special situation that more than one feature

vector in one template are matched with the same feature vector in

another template. Generally only one pair among these matched pairs is

correct, and the others are caused by associated false minutiae or too

dense minutiae. In this event the matching scores of all pairs with one

4.3 Application and Optimization

84

same component are compared and the pair with the best score is kept

and others are removed from the pair list.

B. Matching Score Computation with Multi-matching Algorithms

After the template to be matched is transformed to the optimal position as

described in last section, two templates can be further matched with various

approaches. In this section the matching score 𝑠𝑐𝑜𝑟𝑒_𝑚𝑎𝑥 obtained above will be

temporarily stored for reference, and new matching score will then be computed

and evaluated in the following steps.

i. A fast algorithm is firstly proposed in order to finish matching between two

templates with high similarity. Several minutiae (we define 𝑁 = 7) from the

reference template are chosen randomly, which should have enough

distance (𝑑 > 30) from each other. Figure 4.10 shows the correlation

between a minutia 𝑚 and core points of different number. The selected

minutiae in the reference template have their own parameters (𝑑, |𝜃𝑚 −

𝜃𝑐𝑜𝑟𝑒|). If the template has two singularities, 𝜃𝑐𝑜𝑟𝑒 means the slope of

vector from one core to another. Each parameter will be set as a reference

and used to find the best matched minutia in another template. If such

qualified minutia exists in the template to be matched, this template will be

transformed again according to the difference between this pair and the

matching result is marked as a candidate 𝑠𝑐𝑜𝑟𝑒𝑖 . The best of the

candidates from 𝑠𝑐𝑜𝑟𝑒𝑖 (𝑖 ∈ (0, 𝑁)) is chosen as the final score 𝑠𝑐𝑜𝑟𝑒𝑓 of

this algorithm. If 𝑠𝑐𝑜𝑟𝑒𝑓 and 𝑠𝑐𝑜𝑟𝑒_𝑚𝑎𝑥 are both beyond their thresholds,

the two templates are regarded as from the same finger.

Fingerprint Matching

85

FVC2006 DB3_A: 111_8.bmp, 17_8.bmp

Figure 4.10: Correlations between a selected minutia and one singularity

or two singularities.

ii. If the algorithm in (i) cannot offer one positive decision, local matching [55,

93] is applied to obtain a negative one with celerity. This method makes

use of the relations, also shown in Figure 4.8, between one minutia and its

neighbour minutiae within definite spatial distance. The starting threshold

of this distance is 𝑑𝑚𝑎𝑥1 = 100. If no enough minutiae (𝑛𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 < 8) can

be obtained in this area, the distance will be enlarged up to 𝑑𝑚𝑎𝑥𝑁 = 200.

When all minutiae pairs from the related feature vectors are scanned and

their neighbours are recorded, a local matching will be executed between

these minutiae with enough neighbours in respective templates. Different

from [93], we just count the number of matched minutia pairs instead of

accumulating the similarities. If the count cannot reach our threshold, the

two templates are regarded as from different fingers.

iii. If the decision cannot be made in (i) and (ii) that the two templates are

from the same finger or different fingers, another reference score 𝑠𝑐𝑜𝑟𝑒𝑑

will be generated in this step using the descriptors described in section - A

4.3 Application and Optimization

86

(iii) algorithm 5. The scores 𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑜𝑟𝑖𝑒𝑛𝑡 and 𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒

will be computed for each minutia pair and accumulated in (4.12).

𝑠𝑐𝑜𝑟𝑒𝑑 = ∑
𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑜𝑟𝑖𝑒𝑛𝑡(𝑖) × 𝑠𝑐𝑜𝑟𝑒𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟_𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒(𝑖)

100

𝑁𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑚𝑖𝑛𝑢𝑡𝑖𝑎𝑒 𝑝𝑎𝑖𝑟𝑠

𝑖=0

 (4.12)

Combined with 𝑠𝑐𝑜𝑟𝑒𝑑 and block scores 𝑝𝑏 and 𝑝𝑐 the score 𝑠𝑐𝑜𝑟𝑒_𝑚𝑎𝑥

will be revised. Finally based on a set of parameters (𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑥, 𝑠𝑐𝑜𝑟𝑒𝑓 , 𝑝𝑏 ,

𝑝𝑐, 𝑁, 𝑓𝑟𝑖𝑑𝑔𝑒) a reliable matching score 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑖𝑛 will be generated.

iv. After 𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑖𝑛 is obtained, our main matching algorithm is completed. If it

is beyond a moderate threshold (𝑇 = 50), a final matching score is made.

However in order to improve the FRR in statistic result, some

optimizations are developed in this step to process the matching with

score below this threshold.

Algorithm 1:

The rotation and translation parameters will be recomputed with one

approach described in (4.13). On condition that two minutiae from the

reference and the to-be-matched template have similar curvature, every

minutia in reference template is compared with every minutia in another.

The minutia 𝑚𝑟𝑒𝑓 in the reference template is then rotated according to the

difference of the direction of a minutia pair. The new coordinate of this

minutia 𝑚𝑟𝑒𝑓
′ is compared with the coordinate of another 𝑚𝑠𝑒𝑎𝑟𝑐ℎ and the

translation (∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟) is obtained. If this translation is not beyond the

threshold, the block direction image of the reference image is rotated

according to this rotation and translation and matched with another block

Fingerprint Matching

87

direction image. If the matching of block direction images returns a reliable

score, these transformation parameters and their corresponding scores of

block image matching are recorded in arrays 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 and 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒.

According to the similarities of the minutiae from array 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠, the

array 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒 will be accumulated and the optimal rotation and

translation parameters are extracted.

{

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1⋯𝑁

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑟𝑒𝑓 ∈ (𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚𝑠𝑒𝑎𝑟𝑐ℎ ∈ (𝑡𝑜 − 𝑏𝑒 − 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)

 𝑖𝑓 |𝑐𝑢𝑟𝑣𝑟𝑒𝑓 − 𝑐𝑢𝑟𝑣𝑠𝑒𝑎𝑟𝑐ℎ| < 𝑇13

 𝑚𝑟𝑒𝑓
′ = 𝑟𝑜𝑡1(𝑚𝑟𝑒𝑓, |𝑑𝑖𝑟𝑟𝑒𝑓 − 𝑑𝑖𝑟𝑠𝑒𝑎𝑟𝑐ℎ|)

 𝑖𝑓 |𝑥𝑟𝑒𝑓
′ − 𝑥𝑠𝑒𝑎𝑟𝑐ℎ| < 𝑇14 𝑎𝑛𝑑 |𝑦𝑟𝑒𝑓

′ − 𝑦𝑠𝑒𝑎𝑟𝑐ℎ| < 𝑇14

 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑅𝑒𝑓′ = 𝑟𝑜𝑡2(𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑅𝑒𝑓, ∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟)

 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑐𝑜𝑟𝑒 = 𝑚𝑎𝑡𝑐ℎ(𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑅𝑒𝑓′, 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑒𝑎𝑟𝑐ℎ)

 𝑖𝑓 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑐𝑜𝑟𝑒 > 𝑇15

 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖] = (∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟)

 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖] = 𝐵𝑙𝑜𝑐𝑘𝐼𝑚𝑔𝑆𝑐𝑜𝑟𝑒
 𝑖 = 𝑖 + 1
𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1⋯𝑛𝑢𝑚𝑖

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑗 = 𝑖 + 1⋯𝑛𝑢𝑚𝑖

 𝑖𝑓 ∆(𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖], 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖]) < (𝑇16(∆𝑥, ∆𝑦), 𝑇17(∆𝑑𝑖𝑟))

 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖]+= 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑗]

 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑗]+= 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖]

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1⋯𝑛𝑢𝑚𝑖

 𝑖𝑓 𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒[𝑖] == 𝑀𝑎𝑥(𝑏𝑙𝑜𝑐𝑘𝑠𝑐𝑜𝑟𝑒)

 (∆𝑥, ∆𝑦, ∆𝑑𝑖𝑟)𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠[𝑖]

 (4.13)

With these parameters the reference block image and template are

transformed. The new reference template and the to-be-matched template

are scanned and the minutiae located in the noise block in the

corresponding block direction images will be removed. Finally these two

new obtained templates are matched with the algorithms mentioned in

section A and B again.

4.3 Application and Optimization

88

Algorithm 2:

The rotation and translation parameters will be recomputed with another

approach described in Figure 4.11.

FVC2006 DB3_A: 111_8.bmp

Figure 4.11: Minutiae selection for transformation parameters using spatial

distance, minutia score and curvature.

All minutiae, which have good minutia scores, in the reference template

will be rearranged in descending order according to the curvature of each

minutia. From the first minutia of this rearranged template, several

minutiae (we define 𝑁 = 10) will be selected, which should have a spatial

distance more than a threshold (we define 𝐷𝑡ℎ𝑟𝑒𝑠 = 30) from each other.

Since these selected minutiae have good minutia scores and relative long

distance, they can be considered as reliable and independent from each

other. Then every minutia will be compared with all minutiae in another

template. If one minutia from the selected has a pair in another template

with similar curvature and limited difference of minutia direction, the

reference template will be transformed with the difference of these two

Fingerprint Matching

89

minutiae, and a candidate matching score is obtained. Then the

transformation with the best candidate matching score is used as the new

parameters for repetitive matching. In addition block direction image

should be matched if this score is below pre-defined threshold. When this

score and the block direction image matching score are both unreliable,

the matching of these two templates will be rejected. With this best

translation and rotation parameters the reference template is transformed

and the both templates are filtered to remove those minutiae located in

noise area.

As described in Algorithm 1, these two new obtained templates are

matched with the algorithms mentioned in section A and B again but with

more flexible thresholds.

4.4 Experimental Results

Since the proposed algorithm aims to improve the identification system based on

the thermal sweeping sensor by ATMEL, in our experiments, the FVC2004

DB3_A and FVC2006 DB3_A have been selected as the testing database for

statistics and algorithm comparison. The introduction of FVC can be referred in

Appendix A. Figure 4.12 indicates some examples from these two databases.

The database FVC2004 DB3_A consists of 800 fingerprint images from 100

fingers with 8 fingerprints each. The number of the genuine match and the

imposter match is 2800 and 4950. For imposter match, the first impression of

each finger is compared with the first impression of other fingers. The size of the

image is 300×480 pixels with a resolution of 500 dpi. The performance of the

proposed algorithm on this database is shown in Figure 4.13.

4.4 Experimental Results

90

a) FVC2004 DB3_A: 8_8.tif, 100_7.tif, 58_7.tif

b) FVC2006 DB3_A: 62_12.bmp, 44_7.bmp, 115_1.bmp

Figure 4.12: Fingerprint examples from FVC databases.

Fingerprint Matching

91

a) FMR(t) and FNMR(t) b) Score distributions

c) ROC curve d) ROC FVC2004

Figure 4.13: Experimental results of our algorithm on FVC2004 DB3_A. Part d)

shows the ROC results from the participants in FVC2004.

The database FVC2006 DB3_A consists of 1680 fingerprint images from 140

fingers with 12 fingerprints each. The number of the genuine match and the

imposter match is 9240 and 9730. The size of the image is 400×500 pixels with a

resolution of 500 dpi. The performance of the proposed algorithm on this

database is shown in Figure 4.14.

4.4 Experimental Results

92

a) FMR(t) and FNMR(t) b) Score distributions

c) ROC curve d) ROC FVC2006

Figure 4.14: Experimental results of our algorithm on FVC2006 DB3_A.

In the Figure 4.13 and Figure 4.14, the last parts contain the ROC results of the

first 15 participants. The detailed comparisons with the best 5 participants’

algorithms in FVC2004 and FVC2006 can also be referred in Table 4.1 and

Table 4.2. The hardware environment for our test is PC INTEL PENTIUM 4 – 2.8

GHz – 1.00 GB RAM, which is shown in Table 4.4 and also compared with the

hardware environment of FVC2004 and FVC2006. A high-level description of the

corresponding algorithms in FVC2004 is listed in Table 4.3.

Fingerprint Matching

93

 Proposed P047 P101 P071 P039 P075 P108

EER 1,07% 1,18% 1,20% 1,64% 1,78% 1,85% 2,92%

FMR 100 1,18% 1,68% 1,32% 1,86% 2,32% 1,89% 4,43%

FMR 1000 5,14% 2,68% 3,11% 4,96% 5,64% 50,79% 9,11%

Zero FMR 21,00% 4,89% 3,79% 9,89% 99,61% 53,96% 11,04%

Average Enroll
Time (s)

0,106 2,310 0,070 0,400 0,820 0,330 0,240

Average Match
Time (s)

0,008 2,300 0,850 0,810 1,090 0,680 0,250

Average Model
Size (byte)

768 1.5K 18.6K 18.8K 3.0K 0.6K 1.6K

Max Model Size
(byte)

1160 2.7K 18.6K 28.1K 3.5K 1.2K 1.6K

Table 4.1: Performance comparison with FVC2004 DB3_A

 Proposed P015 P058 P009 P074 P045 P133

EER 1,88% 1,53% 1,61% 1,65% 1,68% 1,89% 1,63%

FMR 100 2,61% 1,75% 1,79% 1,94% 1,85% 2,47% 1,74%

FMR 1000 5,55% 2,76% 2,41% 3,03% 3,27% 5,26% 3,01%

Zero FMR 7,42% 7,18% 3,76% 3,93% 4,72% 7,59% 4,33%

Average Enroll
Time (s)

0,091 1,682 0,307 0,583 0,235 0,194 0,054

Average Match
Time (s)

0,005 1,678 0,307 0,641 0,242 0,223 0,056

Average Model
Size (byte)

646 5.88K 4.34K 1.81K 4.73K 8.32K 1,71K

Max Model Size
(byte)

1113 10.67K 12.31K 3.06K 10.12K 12.79K 1,71K

Table 4.2: Performance comparison with FVC2006 DB3_A

4.4 Experimental Results

94

Preprocessing Alignment Features Comparison

P
a

rt
ic

ip
a

n
t

S
e

g
m

e
n

ta
ti
o
n

E
n

h
a
n

c
e

m
e
n

t

B
e

fo
re

 M
a
tc

h
in

g
,

D
u
ri
n

g
 M

a
tc

h
in

g

D
is

p
la

c
e

m
e

n
t,

 R
o
ta

ti
o
n

,

S
c
a

le
,

N
o
n

-l
in

e
a

r

M
in

u
ti
a

e

S
in

g
u

la
r

p
o

in
ts

R
id

g
e

s

R
id

g
e

 c
o
u

n
ts

O
ri
e

n
ta

ti
o
n

 f
ie

ld

L
o

c
a

l
ri
d
g
e

 f
re

q
u

e
n

c
y

T
e
x
tu

re
 M

e
a

s
u

re
s

R
a
w

/E
n

h
a

n
c
e
d

 i
m

a
g
e

 p
a

rt
s

M
in

u
ti
a

e
 (

g
lo

b
a

l)

M
in

u
ti
a

e
 (

lo
c
a

l)

R
id

g
e

 p
a

tt
e

rn
 (

g
e
o

m
e

tr
y
)

R
id

g
e

 p
a

tt
e

rn
 (

te
x
tu

re
)

C
o
rr

e
la

ti
o
n

P002 √ √ D NL √ √ √ √

P009 √ √ BD DRS √ √ √ √ √ √ √

P016 √ - - √ √ √ √

P026 - DR √ √ √ √

P027 √ √ D DRS √ √ √

P039 √ √ D N √ √ √ √

P041 √ √ D DR √ √ √

P047 √ D DRSN √ √ √ √ √ √ √ √ √ √ √

P049 √ √ D DR √ √ √ √ √ √ √

P050 √ √ B DR √ √ √

P051 √ √ D DR √ √ √ √ √ √ √

P067 √ √ D DRN √ √ √

P068 √ √ D DR √ √ √ √

P071 (√) √ D DR(N) √ √ √ √ √ (√) √ √ (√)

P072 √ √ D DR √ √ √ √

P075 √ √ B DR √ √

P078 √ √ D DRS √ √

P087 √ √ D DR √ √ √ √ √ √ √

P097 √ D DR √ √ √ √ √ √

P099 √ √ D DRN √ √

P101 (√) √ BD DRS √ √ √ √ √ √ √ √

P103 √ √ - - √ √ √

P104 √ √ D DR √ √

P105 √ √ B DR √ √ √ √ √

P106 - - √ √ √

P107 √ D DRS √ √ √ √

P108 √ √ D DR √ √ √ √

P111 √ √ D DR √ √ √

P113 √ √ D N √ √ √ √ √ √ √ √ √

Proposed √ √ D DRS √ √ √ √ √ √ √ √ √

Table 4.3: Comparison of the high-level description of the algorithms between the

29 participants in FVC2004 and the proposed algorithm[94]

Fingerprint Matching

95

Intel Pentium 4 521 Intel Pentium 4 640

Bus Speed 800 MHz 800 MHz

L2 Cache Size 1 MB 2MB

CPU Speed 2.80 GHz 3.20 GHz

Table 4.4: Hard difference between FVC (right) and us (left)

The FVC has two different categories: Open category and Light category. The

difference between them is that the open category has no limits on memory

requirements and template size, so that most all of the participants can obtain

better results. For example, when P101 and P071 in FVC2004 limit their average

template sizes from 18.6K and 18.8K to 1.1K and 1.3K respectively, the EERs

drop down from 1.2% and 1.64% to 3.57% and 4.69%. And the corresponding

Zero FMRs are also two to three times worse (3.79%  8.14% and 9.89% 

21.11%). Overall the top 10 participants from the open category of FVC2004 gain

the average performance drop more than 40 percent on EER and 35 percent on

Zero FMR [94] when template size and memory requirement are restricted. To

implement our algorithm in embedded hardware environment, we firstly confirm

that the memory usage of our algorithm meets the memory requirement of the

light category – 4MBytes (In actuality: Max Enroll Memory < 768KByte, Max

Match Memory < 256KByte). Based on this condition, our algorithm is compared

with the results from the open category of some participants and only the best

result from the light category.

As for FVC2004 in Table 4.1, the performance of our algorithm is a little better

than P047 and P108, which are the best in the open and light category

respectively, except the higher Zero FMR, caused by one imposter comparison

which results in a high score. Besides the performance, the efficiency, i.e. the

Average Enroll and Match Time, is also remarkable. Template sizes less than

0.5KB are related to those algorithms based only upon minutiae. The size in the

range of 1KB to 2KB indicates that not only minutiae points but also other

4.4 Experimental Results

96

features are used in matching process. The other template formats with larger

sizes contain the storage of some portions of the fingerprint image itself [94]. As

shown in Table 4.3, P047, P101 and P071 store raw/enhanced image parts for

later matching or use correlation-based matching algorithm, which causes either

increase of template size or lower matching speed. P039 and P075 use only

minutiae to match. However P075 is not much reliable by FMR 1000 in spite of

small template size and P039 is just the opposite. The best one P108 in the light

category uses also only minutiae to match, which has a relative low matching

speed and is still not suitable for embedded application.

As for FVC2006 in Table 4.2, the performance of our algorithm is near to the best

results on both open and light category. Therefore the efficiency and the template

size should be further compared. Our Average Enroll Time is 0,091s, higher than

P133 from the light category and lower than other participants from the open

category. On the other hand our Average Match Time 0.005s is at least 10 times

faster than all other algorithms. Moreover our template size is comparable with

most of other participants from the light category.

In general the performance of our algorithm exhibits a good tradeoff between

speed and accuracy. Taking the EER as the reference, we have used relative

less information to describe the similarity between two templates than most

participants in FVC2004 and FVC2006. Excluding the factor that we have scaled

the input fingerprint images to a certain degree, our match algorithm is still much

efficient for even larger images (Max Matching Time: 34ms in FVC2004_DB3_A,

77ms in FVC2006_DB3_A). This makes it possible for further research on

hardware platform with more limited resources.

Fingerprint Matching

97

FVC2006 DB3_A: 18_3.bmp, 18_4.bmp

Figure 4.15: Matching failed due to insufficient overlap.

4.4 Experimental Results

98

FVC2004 DB3_A: 19_5.bmp, 19_3.bmp

Figure 4.16: Matching failed due to global distortion.

Fingerprint Matching

99

In the databases that we have used, besides those which have very poor

qualities, the fingerprint images shown in Figure 4.15 and Figure 4.16 are the two

principal kinds which lead to the failure in matching. In Figure 4.15 the overlap

area exists only above the core point and in this area of the second fingerprint

image no enough minutiae can be extracted unfortunately. Therefore a positive

decision cannot be made. The final minutiae’s overlap image indicates that only

three minutiae pairs are correlated. In addition in Figure 4.16 the overlap area is

large enough and also many minutiae are extracted. The nonlinear distortion by

fingerprint image acquisitions causes the matching failure. Altogether 11 minutiae

pairs have been found; nevertheless the difference of minutia directions and the

spatial distance decrease their contributions to the final matching score.

4.5 Summary

We have proposed a minutiae-based multiple-matching method for fingerprint

matching. The fingerprint template is represented by feature vectors composed

of every two minutiae points and their connecting line. The similarity of two

templates can be simplified to find the translation and rotation parameters with

which the two templates have the most feature vectors pairs coincided with each

other. After the best transformation parameters are obtained, a multiple matching

evaluation criterion is applied in the similarity decision. Finally for such matching

with uncertainty two other approaches based on the characteristics of each

minutia itself are proposed to amend the matching score.

The proposed algorithm has been evaluated with both FVC2004 and FVC2006

DB3 databases, which have relative large distortion and poor quality. The EER

are 1.07% and 1.88% respectively. It works well for most of fingerprint images by

experiment; however this algorithm still needs to be improved to deal with those

images which have too much global distortion or insufficient minutiae.

100

Chapter 5

Fingerprint Embedded System

5.1 Hardware Architecture

5.1.1 Introduction

A complete Automated Fingerprint Identification Systems (AFIS) contains not

only an effective fingerprint feature extraction and matching algorithm but also

appropriate hardware environment where the algorithm can be executed. PC has

very high processing speed, but is not competent for those offline applications

such as access control system, fingerprint ID card etc. An embedded system,

which has low-cost, relative high speed and runs independently, provides a

better selection for the applications of fingerprint techniques.

During the development of an embedded system, to select one suitable

embedded processor is a most crucial step. Different processor may have great

difference in use. The Microcontroller Unit (MCU) has sufficient peripheries and

low-cost but limited computing performance. Digital Signal Processor (DSP)

dedicates to signal processing such as signal filtering, FFT etc. due to its special

computing oriented design. Micro Processor Unit (MPU) is high-integrated

Fingerprint Embedded System

101

general processor expert in computing, which has no such peripheries like MCU.

The System on Chip (SoC) utilizes hardware programming language to design

more modules besides MCU or MPU through simulation and synthesis with

special software and integrates into one chip, which is a real mono-chip

computer to some extent.

The stand-alone AFIS that we design should not only provide fingerprint image

acquisition and processing but also communicate with its additional subsystems

such as relay board, alarm device or door-motor. In view of these practical

applications, the SOC ARM9G20 from ARM, which will be introduced in later

sections, has been selected for our main hardware development.

ARM9g20 Processor

400Mhz

SRAM 2x16KB

SPI FLASH

2MB

FPT Database

Management

Atmel

Sensor

Program
 Start

Aquire

Image

SDRAM

8MB

RS232/485

BioKey4000 Architecture

I
2
C

GPIO Infrared

Figure 5.1: Hardware architecture based on ARM9G20.

5.1 Hardware Architecture

102

As shown in Figure 5.1, the core module consists of ARM9G20 processor and

several essential components such as sweep sensor, serial flash, SDRAM etc.

The fingerprint identification and verification software will be compiled under PC

platform and be stored in serial flash. After power up, the bootloader program in

serial flash will firstly be executed, which copies the main program to SDRAM.

Then the main program, running in SDRAM, communicates with ARM9G20 to

process various commands such as fingerprint image acquisition from sensor,

fingerprint template read from or write to database located in serial flash or

different requests from I/O of processor.

5.1.2 Sensor Techniques

In AFIS fingerprint sensor acts as the data input device to acquire images

through reading the ridge pattern on the finger surface and converting the analog

signal to digital through an A/D converter. The sensors can be generally

classified into several types based on their technologies, e.g. optical, solid-state,

ultrasound, etc. A fingerprint encoding and matching algorithm with definite

parameters can obtain recognition accuracy with great difference if various

sensors are used. Optical sensors and ultrasound sensors can obtain images

with good quality and high resolution, but the considerable packaging size or high

cost limits their use in embedded system. Some solid-state sensors based on the

thermal technology can overcome the above problems; furthermore unlike the

optical sensor no latent fingerprint is left on the sensor. The sensor in our AFIS

system belongs to the solid-state sensors based on thermal technology. In Figure

5.2 shows a sensor of this kind from ATMEL[95].

Some special pyro-electric materials are used in these sensors to generate

current based on temperature differential[96]. When sweeping on the sensor, the

ridges of the fingerprint generate a temperature differential against the valleys for

the reason that the ridges and the valleys have different distance from the sensor

Fingerprint Embedded System

103

surface. The sensor continues to heat up and amplifies the temperature

differential and converts it to an image to indicate the fingerprint. After fingerprint

sweeping there is no more temperature differential on the sensor surface, the

sensor returns back to normal temperature. A typical character of this sensor is

that fingerprint image has to be reconstructed from all acquired slice images

since the area of the temperature differential which can be recorded at one time

is limited to the valid surface of the sensor.

Figure 5.2: FingerChip packages of AT77C102B.

Figure 5.3: AT77C102B pin description.

5.1 Hardware Architecture

104

Figure 5.3 shows the schematic diagram of fingerprint sensor AT77C102B.

Sensor initialization should be firstly executed through toggling RST pin (high to

low) and adding additional clock pulses to synchronize the pipe-line and skip the

first dummy frame. However it is not necessary between each slice acquisition.

The pin TPE will be set to turn on heating during the entire acquisition. While

fingerprint sweeps, the 8-bit data is transferred through Do0-Do3 and De0-De3 in

sequence. If a slice has acceptable variance, it will be stored for later image

reconstruction. Otherwise it will be discarded. When the number of received

slices reaches the slice limit, the acquisition is completed. The sensor returns to

idle state through setting pins RST and OE. In the end all slices will be

reconstructed to one fingerprint image through computing the global horizontal

and vertical translations of two consecutive slices and combining the slices with

these parameters. Figure 5.4 indicates the flow diagram of one fingerprint

acquisition.

sensor init

data read

slice

finished?

No

slice good?

Yes

No

save slice

Yes
All slices

acquired?

No

sensor exit

Yes

fingerprint

image

reconstruction

Figure 5.4: Flow diagram of fingerprint image acquisition.

Fingerprint Embedded System

105

5.1.3 ARM Processor

In consideration of both performance and cost, AT91SAM9G20, which derives

from AT91SAM9260 with the same core ARM926EJ-S but faster ROM and RAM

memories, is selected in our hardware application. Figure 5.5 shows the block

diagram of AT91SAM9G20. As follows lists some features of this processor.

 400 MHz frequency on the core and 133MHz on the bus;

 32-KByte Data Cache and 32-Kbyte Instruction Cache;

 Memory Management Unit (MMU);

 Two 16-Kbyte internal SRAM;

 Debug Unit;

 Watchdog Timer

 Other peripherals such as 32-bit PIO controller, UART, Master/Slave SPI

and 16-bit Timer/Counter etc.

Since a fingerprint image acquired from sensor has the resolution of 300×400,

more than 2-MByte memory should be allocated for intermediate results of image

processing and templates matching. Limited to the internal memory size, a 32-bit

8-MByte SDRAM from Micron is used for loading program and executing

fingerprint image processing and a 2-MByte SPI serial flash for storing program

and fingerprint template database.

As described in Figure 5.1, our system based on AT91SAM9G20 has the

following routines. After system starts, a bootloader program in serial flash is

firstly activated, which makes some important initializations and copies the main

program from serial flash to SDRAM and then this main program runs in SDRAM.

When a fingerprint sweeps on the sensor, the fingerprint data is transferred from

sensor to SDRAM via processor. The fingerprint data is then processed in both

SDRAM and internal SRAM. The notification or result is finally sent out through

peripherals such as UART for Relay Board or PC, SPI for serial flash, and also

PIO for some other different usage.

5.1 Hardware Architecture

106

Figure 5.5: AT91SAM9G20 block diagram.

Fingerprint Embedded System

107

5.1.4 SPI and Flash Organization

The serial flash in our system is a 2-MBytes CMOS serial flash MX25L1605D

from Micron. Its pins are fully compatible with the processor’s serial peripheral

interface (SPI). This interface includes two data lines and two control lines. The

MOSI and MISO lines supply the data shift between the master (processor) and

the slave (serial flash). The other two control lines are clock and chip select

respectively. The master and the slave have a serial shift register each. The

master starts one transmission through writing data to its serial shift register. The

data is then transmitted to the slave via MOSI line and the slave transmits the

data in its register back through MISO line simultaneously. Figure 5.6 shows the

basic process of SPI data transmission. Figure 5.7 shows the connections of the

SPI between the processor and the flash.

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7S
P

I
D

at
a

R
eg

is
te

r

S
P

I
D

at
a

R
eg

is
te

r

Master (Processor) Slave (Data Flash)

MOSI

MISO

Figure 5.6: SPI data transmission.

Figure 5.7: SPI connections between MX25L1605 and AT91SAM9G20.

5.1 Hardware Architecture

108

The SPI timings and operation modes have been designated by SPI controller of

the processor. What needs to be implemented is to initialize related registers

such as control register, data receive and transfer register, interrupt enable and

disable register and chip select register etc. Each complete SPI transmission

consists of command and related data packet, which are stored in a 16-bit

transmit data register successively. The data is transmitted from master to slave,

processed in slave and then the new data will be sent back to a 16-bit receive

data register of the master. If the command is a write operation, the received

data can be ignored. However such transmission is not perfect for the reason

that in data transferring by master mode the processor must check the transmit

empty status or trigger the interrupt of this status frequently and refill the transmit

buffer if needed to avoid the transmission delay, i.e. if the next 16-bit data cannot

be sent to the transmit buffer in time, the transmission is delayed. One better

approach is to use its Direct Memory Access (DMA). If DMA is enabled in SPI

transmission, the corresponding DMA channel will receive a request from its SPI

controller and send an answer back. Subsequently the pointer address of the

command and related data packet will be copied to 32-bit DMA register for SPI

transmission. In this case the data is transmitted continuously without the check

of transmit empty status by the processor, which accelerates the SPI speed

especially in high frequency. Figure 5.8 shows the process of SPI data

transmission with DMA.

The flash organization is shown in Figure 5.9. The bootloader program locates at

the starting address of the flash, which occupies 8 Kbytes memory. The next

sector is allocated to configuration, which contains the diverse parameters with

which the fingerprint algorithm can be properly executed. The AFIS software is

stored in the next several sectors, whose size is dependent on the complexity of

the fingerprint verification and identification algorithm and the additional usages.

The reserved sector is for some special usage and the backup sector for a

temporary backup of template copy operation. The residual memory is used to

store fingerprint templates.

Fingerprint Embedded System

109

Enable SPI Clock

Disable Transmitter

and Receiver

Enable Chip Select

Init DMA Buffer

Enable Transmitter

and Receiver

Enable Buffer

Complete Interrupt

Buffer Complete

Flag Valid?

Delay

No

Disable Transmitter

and Receiver

Disable SPI Clock

Disable Buffer

Complete Interrupt

Yes

Figure 5.8: SPI data transmission with DMA.

Bootloader

Configuration

Reserved

Backup

Fingerprint Database

Firmware

Figure 5.9: Serial flash organizations.

5.1.5 Serial Interface

The AT91SAM9G20 processor supplies five standard Universal Synchronous

Receiver Transmitters – USART, with which the system can communicate with

other devices e.g. PC or relay board. In view of various interfaces of the devices

5.1 Hardware Architecture

110

and the transmission distance, the TTL level USART interface with insufficient

signal intensity and anti-interference ability should be converted to RS-485

differential signal with a converter. Figure 5.10 shows a 3.3-V RS-485 transceiver

of TI and its schematic diagram. Through setting or clearing the RTS0 pin to

enable delivery or receive, data can be sent with TXD0 or received with RXD0 in

half-duplex mode.

Figure 5.10: USART to RS-485 transceiver.

The data transmission can be trigged from either the kern system or another

controller which is connected to it, e.g. this system can be set as a master or a

slave device. If one request packet is to send out, the USART controller

communicates actively through enabling two different bits TXRDY (Transmit

Fingerprint Embedded System

111

Ready) and RXRDY (Receive Ready) of USART Interrupt Enable Register

alternatively to send this request packet and receive the corresponding answer

packet (The RXRDY bit should always enabled unless there is data to send out

since the slave cannot evaluate when a request packet is sent from the master.).

If the request packet is sent from the other side, the signal will be firstly scanned

by an IO interrupt in order to start a data receive progress. If no data exists on

the TXD or RXD line, the USART will be switched to idle state through clearing

USART interrupt and enabling IO interrupt. The details of the data transmission

and the related interrupt can be referred in Figure 5.11.

Transmit Start

USART Idle?
No

Delay

Receiver Disable

YES

Set RTS

Copy one Byte

Data to Send

Buffer

Enable TXRDY

Interrupt

Transfer still

running?
Delay

Idle

YES

No

Receive Start

IO Line

Interrupt

Trigged?

Receiver Disable

Receive one Byte

Packet

Complete?

No

Idle

YES

5.1 Hardware Architecture

112

USART Interrupt

Transmit

Progress

Finished?

Data Send

Finished?
Send Next Byte

NoNo

Transmitter

Disable

YES

Receiver Enable

Enable RXRDY

Interrupt

Read one Byte

from Receive

Buffer

RXRDY

Trigged?

YES

Figure 5.11: Flow diagrams of USART communications.

The data packet is implemented with 8 bits data; LSB (Least Significant Byte) (bit

0) first; no parity and 1 stop bits at various baud rates from 9600 to 115200. The

data structure is shown in Figure 5.12. The packet length may vary but is limited

to a maximum of 1024 data bytes.

Figure 5.12: Data structure of USART.

START

1 byte start symbol marks the beginning of a packet.

LENGTH

2 bytes packet length (bits 0…7 first), contains the number of data bytes DATA in

packet. Not counted are START, LENGTH, CMD, SENDER, DESTINATION and

Fingerprint Embedded System

113

ERRCHK, so a packet with 30 data bytes has a length value of 30. Maximum

packet length is 1024.

CMD

1 byte contains command for receiver.

SENDER

1 byte contains sender’s address.

Address range: 0x00 … 0xFF (The Modules share range 0x01 … 0xEF; Host PC

in bus mode uses 0x00; 0xF0 … 0xFF reserved)

DESTINATION

1 byte contains receiver’s address.

Address range: 0x00 … 0xFF (Modules share range 0x01 … 0xEF; Host PC in

bus mode uses 0x00; 0xF0 … 0xFF reserved)

DATA 1…x

0 … x bytes contain the data to be transmitted.

A packet can consist of 0 to 1024 data bytes.

ERRCHK

1 byte contains a CRC check sum for error detection.

The check sum is computed with the functions of CRC. All packet bytes in the

given order (START, LENGTH, CMD, SENDER, DESTINATION, and DATA

(1) … DATA (x)) are used for CRC calculation.

To ensure the reliability of the transmission, the receiver sends an ACK

(acknowledge) which is not a packet but a single byte after the reception of an

error-free packet. If the analysis of the check sum shows an erroneous

transmission, the receiver ignores the packet. After a timeout the sender has to

5.1 Hardware Architecture

114

retransmit the packet. If the module is busy it replies a NAK (negative

acknowledge). In this case the sender can retransmit the packet immediately

until an ACK is replied. If the sender receives an undefined or no answer, the

packet is retransmitted up to 2 times. In case the sender does not receive a

positive acknowledgement again, the process is terminated as the connection or

the receiver might be faulty. If the sender receives an ACK and the packet from

the sender requires an answer packet, the sender has to wait up to 5 seconds for

the answer.

5.1.6 I
2
C

I2C is the kind of protocol which allows multi-master on the same bus and has no

arbitrary logic but only two signal lines – SDA (serial data) and SCL (serial clock).

It stipulates that each I2C device has a unique 7-bit address, a data frame has 8

bit length and some bits in data frame are used for the controlling signals such as

start, end, the direction of R/W, and acknowledge. According to its data rate, I2C

can be divided into various modes e.g. standard (100 kb/s), fast (400 kb/s), high

speed (3.4 Mb/s) and some other variants.

There are two different I2C components in the relay board: a serial EEPROM

(24C01) and an 8-bit I/O expander for I2C bus (PCF8574T). The EEPROM stores

the matching code between the kern module and this relay board; the I/O

expander analyses I2C signal and converts it to 8-bits parallel signal to control

different relays. They are connected to the same I2C bus, which is shown in

Figure 5.13. Pins A0-A2 are the input address lines of the chips, which are the

low 3 bits of the complete address. The high 4 bits of the address of each chip

have been programmed by the manufacture in advance, therefore these two

chips can be easily differentiated according to these 4 bits and the pins A0-A2

are simply connected to the ground.

Fingerprint Embedded System

115

Figure 5.13: Schematic diagram of the I2C relay board.

In practice software simulated I2C with GPIO has been implemented instead of

hardware I2C on the kern module side, which has better operability and stability.

The substance of the implementation is to simulate the timings of I2C bus. In idle

state SDA and SCL are pulled up by pull-up resistors. The master can control the

both lines, but the slave can only control the SDA. The detailed timings are

described as follows. When the master issues a START, it pulls down the SDA

line, which will be detected by the slave and regarded as a signal for the slave to

prepare for data receive. Then the master issues 1 Byte data bitwise through

pulling down the SCL, updating 1 bit on the SDA and pulling up the SCL. When

the slave detects the change of the SCL, it receives this bit from the SDA at once

and stores it in its shift register. The master will pull down the SCL again for the

5.1 Hardware Architecture

116

transfer of the next bit until 8 bits data are transferred. At this moment, SCL is at

low level for a short time and SDA is at high level i.e. released. The slave will

now issue an ACK through pulling down the SDA and holding on this signal until

the master switches the level of SCL to high and then low again, which means

that the master has received the ACK or NACK. If no more data is to issue, the

master prepares a STOP signal to end the transmission through pulling down

SDA in time of SCL at low level, and then pulling up the SCL and SDA in the end.

The SCL and SDA return to idle state.

5.1.7 Infrared Keypad

The infrared component is an additional block of this system, which realizes

some basic functions e.g. fingerprint enrollment and deletion, database

administration and parameter modifications etc. instead of being executed with

the commands from PC through RS485 interface. On the kern module side a

miniaturized infrared receiver from VISHAY shown in Figure 5.14 is used for

infrared signal detection, which has 38 kHz center frequency of the band-pass,

and supports different kinds of infrared remote control transmission ICs such as

NEC, RC5 and RC6 etc. On the remote control side an infrared keypad also

shown in Figure 5.14 is designed integrated with a remote control transmission

CMOS IC using the NEC transmission format.

In general there are two different infrared remote control formats: Pulse Width

Modulation (PWM) and Pulse Position Modulation (PPM). PWM represents the “0”

and “1” using the duty cycle of the infrared carrier, however PPM using the

detection of the rising or falling edge of one bit period of the infrared carrier.

Figure 5.15 shows the transmission code of the NEC format which is used in our

infrared Keypad. The NEC format has the following characteristics: the frequency

of the carrier wave is 38 kHz and duty cycle is 1/3; the interval of the Leader

Code is 9ms + 4.5ms; the Custom Code has 16 bits; the Data Code has 16 bits;

both the Custom Code and the Data Code include an 8-bits original code and its

Fingerprint Embedded System

117

reversed 8-bits code. If a key is kept pressed, only the Leader Code will be

iteratively transmitted. Each 8-bits data unit is transmitted from LSB to MSB, and

so each data byte should be bit-reversed after reception.

Figure 5.14: Infrared receiver and remote controller.

To capture the infrared signal, two different kinds of approaches can be used,

which are polling and interrupt. By polling mode, the period of the polling should

be firstly decided. Since the least interval of the signal is 0.56ms, the polling

interval should not be greater than 0.56ms. The system has a general timer,

which has 16 kHz in frequency. Therefore a suitable polling interval can be

obtained through scaling this timer with a factor such as 4 (4 / (16 kHz) = 0.25ms).

If the level is unchanged, only the counter for the level will be accumulated. If the

level alters, the counter will be analyzed with the level before and after this

alternation. By interrupt mode, the extern interrupt of the GPIO connected to the

output pin of the receiver should be set as edge-trigged. Through measuring the

interval between the rising edge and the next falling edge, the length of a logic 1

can be extracted and vice versa.

5.1 Hardware Architecture

118

Figure 5.15: Remote output waveform of NEC format.

Fingerprint Embedded System

119

5.2 Software Implementation and Optimization

5.2.1 System Boot

In PC system the hardware initializations and configurations are performed by

BIOS (Basic Input / Output System). However in the embedded system such

program, also called bootloader, cannot entirely completed by the chip

fabricators for the reason that even the same processor can be applied in many

embedded environments with different peripherals which need different

initialization codes. Therefore one microcontroller can only have a serial of

general initialization commands programmed in internal ROM, with which a

second-level bootloader or the main program can be successfully loaded and

executed.

The boot strategies of AT91SAM9G20 can be described in Table 5.1. The

system always boots at address 0x0 and which memory is assigned to this

address depends on the pin BMS (Boot Mode Select) and Remap operation in

the Remap Control Register. Therefore the state of the BMS pin by reset decides

the boot mode, since the Remap can only be done after the system boots. If

BMS is 0, the system boots with 16-bit data bus on 16-bit non-volatile memory,

which is not compatible with our serial flash. If BMS is 1, which has been

implemented through pull-up in our system, ROM occupies the address 0x0 and

0x100000 by start, and the pre-programmed boot program is executed to search

available bootloader from supported interface such as serial flash, NandFlash,

SD Card or EEPROM etc. Then the bootloader will be downloaded and executed

from the external storage media into internal SRAM0 by the special initialization

commands mentioned above. The code size of the bootloader should not exceed

the size of the SRAM0. For this reason the size is pre-defined in the sequence of

the exception vectors located at the first 8 words in serial flash. By serial flash

boot, these 8 words will be firstly read into SRAM and checked whether they are

valid exception vectors shown in Figure 5.16 and have valid size. If a valid

5.2 Software Implementation and Optimization

120

sequence is found, the bootloader will be loaded into SRAM0 and executed from

the address 0x0 in SRAM0 after the boot program issues a Remap command.

Remap = 1

BMS = 1 BMS = 0

0x00000000 ROM EBI_NCS0 SRAM0 16K

0x00100000

0x00200000

0x00300000

0x00500000 USB Host User Interface

Address
Remap = 0

ROM

SRAM0 16K

SRAM1 16K

Table 5.1: Internal memory mapping

Figure 5.16: Interrupt vector table.

The bootloader executed in SRAM0 includes the following steps. After the

interrupt vector table is defined at the address 0x0 in SRAM0, some hardware

initializations should be made to switch the running bootloader program from

slow clock (32,768Hz) to fast clock (132MHz Master Clock) through setting

PRES and PDIV bits in Master Clock register. Then the interrupt stack and

system stack are set up under corresponding special arm modes, since such

operations of Current Program Status Register (CPSR) cannot be processed

SECTION .vectors:CODE:NOROOT(2)

resetVector:

 LDR pc, =resetHandler ; Reset

 LDR pc, Undefined_Addr ; Undefined instructions

 LDR pc, SWI_Addr ; Software interrupt (SWI/SYS)

 LDR pc, Prefetch_Addr ; Prefetch abort

 LDR pc, Abort_Addr ; Data abort

 DC32 0x4000 ; Bootloader size (16 Kbyte)

 LDR pc, =irqHandler ; IRQ

 LDR pc, FIQ_Addr ; FIQ

Fingerprint Embedded System

121

under user mode. Finally the program pointer will branch to the main program of

the bootloader, in which SDRAM and serial flash are configured and the main

embedded fingerprint firmware will be copied from flash to the SDRAM and set

as the next level program to execute.

5.2.2 MMU and Caches

The ARM926EJ-S has an ARM architecture v5 MMU and contains a 32KB

Instruction Cache (ICache), a 32KB Data Cache (DCache) and a write buffer.

This MMU has standard mapping size of 1MB (sections), 64KB (large pages),

4KB (small pages) and 1KB (tiny pages)[97]. Because this core is a 32-bit

processor, its virtual address space has the size of 232 = 4𝐺 and the whole

space can be divided into
4𝐺

1𝑀
= 4𝐾 sections. Each section is recorded with 4

bytes shown in Figure 5.17. Therefore a block of memory with the length of

4𝐾 × 4 = 16𝐾 should be allocated to this TTB (Translation Table Base) used by

MMU. Due to the reason that other descriptors except section descriptor have

been removed in the ARMv6 architecture, to ease the porting of code in future,

only section descriptor will be used in our system, which can be differentiated

from other descriptors with the last two bits - 10 of this descriptor.

Figure 5.17: MMU section descriptor.

In Figure 5.17 the three fields “Section base address”, “C” and “B” must be

correctly configured for each section. The “Section base address” occupies 12

bits, which stores the most important 12 bits of the address of each section to

differentiate from other sections. The combination “C” and “B” field indicates that

this section may be write-back cacheable, write-through cacheable, noncached

5.2 Software Implementation and Optimization

122

buffered, or noncached nonbuffered section. The difference between the write-

back and the write through operations is that, when a cache write hit occurs, the

write-through operation updates not only the DCache line but also the external

memory, which avoids inconsistency between memory and cache at cost of

efficiency (writing speed and bus busy time).

Memory Address Range Cacheable Buffered

Boot 0x00000000 ... 0x000FFFFF

ROM 0x00100000 ... 0x001FFFFF

SRAM0 0x00200000 ... 0x002FFFFF

SRAM1 0x00300000 ... 0x003FFFFF

UHP 0x00500000 ... 0x005FFFFF

0x20000000 ... 0x200FFFFF

0x20100000 ... 0x201FFFFF

0x20200000 ... 0x202FFFFF

0x20300000 ... 0x203FFFFF

0x20400000 ... 0x204FFFFF

0x20500000 ... 0x205FFFFF

0x20600000 ... 0x206FFFFF

0x20700000 ... 0x207FFFFF

Internal Peripherals 0xFFF00000 ... 0xFFFFFFFF 0 0

0 0

SDRAM (8MB) 1 1

Table 5.2: Translation table definition

Table 5.2 shows the related memory spaces with cache and buffer features in

Translation table. After system boot code and data will be transferred to SDRAM

and executed in SDRAM. The complete SDRAM is therefore set as cacheable

and write-back enabled except some buffers for special usage such as DMA

transfer buffer for serial flash. The DMA controller serves as a master device

connected to the AHB bus like ARM core. They can both access the internal or

external via APB bridge memory interface shown in Figure 5.4. On a single-layer

AHB bus such simultaneous accesses are exclusive. If the destination address of

one DMA transmission triggers cache hit, one conflict will occur. In view of this

Fingerprint Embedded System

123

reason, the DMA transfer buffer can be allocated in SRAM0 which is noncached

buffered. Another method to avoid this conflict is to flush the related source

cached address before transmitting and flush the related destination cache

address after transmitting. Another memory space, which should not be cached

or buffered, is internal peripherals. Since write-back operation has delay and two

successive reading from the same I/O may be different, these registers should be

set as noncached and nonbuffered.

FVC2006 DB3_B
ICache = 0

DCache = 0

ICache = 1

DCache = 0

ICache = 1

DCache = 1

1_1.bmp 14.76s 6.66s 0.78s

2_1.bmp 13.71s 6.00s 0.76s

3_1.bmp 11.94s 5.42s 0.63s

4_1.bmp 9.51s 4.30s 0.52s

5_1.bmp 8.97s 4.09s 0.49s

6_1.bmp 9.73s 4.45s 0.50s

Table 5.3: Comparisons of the encoding performance with or without ICache and

DCache

ICache and DCache can be independently enabled and disabled. If ICache is

enabled, all memory space used by CPU read instruction can be cached. If

DCache is enabled, MMU must also be enabled since its translation table

manages the whole memory space to decide which section should be cached or

buffered. Table 5.3 indicates the various performance of the ARM926EJ-S core

with or without ICache and DCache. Several images are selected from FVC2006

DB3_B database, which have 500 dpi with image size 400×500. On average,

ICache doubles the encoding speed meanwhile DCache and MMU increase the

encoding speed by about 10 times. With enabled ICache and DCache this

system can achieve real-time requirements.

5.2 Software Implementation and Optimization

124

5.2.3 Interrupt Handling

TC0 (IR, LED,

System Clock)

TC1 (Timepiece)

TC2 (I
2
C Timer)

SPI0 (SPI Flash)

PIOB

USART0 (Relay Board)

DBGU (Debug)

USART2 (PC)

APB

Figure 5.18: Enabled interrupts in BioKey4000.

As shown in Figure 5.18 BioKey4000 uses different interrupts to communicate

with external devices or implement internal functions. If several interrupt sources

are pending and enabled, they should be processed sequentially according to

their significance. Some external functions such as data transmission via USART

are bit-sensitive and therefore should not be delayed by other interrupts.

The ARM9G20 has an 8-level priority controller to drive the IRQ line of the

processor. Each interrupt source can have a programmable priority level. To

avoid losing packet by data transmission, external interrupts, especially USART2,

are given relative higher priority. During the execution of the lower priority

interrupts, such high priority interrupt can be inserted and handled in advance

with a nested interrupt handler, in which the current interrupt number and its

priority level are pushed into an embedded hardware stack and later restored

when the higher priority interrupt is finished.

Fingerprint Embedded System

125

5.3 Summary

The BioKey4000 module is a standalone fingerprint identification and verification

system. It uses ATMEL FingerChip AT77C102B to acquire fingerprint image and

process this image with ARM9G20 processor. The module extends a 32-bits 8-

MByte SDRAM and a 2-MByte serial flash for program execution and storage

respectively. RS485 hardware driver is also integrated optionally, with which

BioKey4000 can communicate with PC for fingerprint database management and

software update and with relay board to supply identification signal for access

control. In addition an infrared block is developed for operating convenience.

126

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis main work can be described in following sequence:

i. Fingerprint image enhancement – in order to give a better representation

of the input image. Contrast extending, normalization, and filters with both

frequency-selective and orientation-selective properties will be discussed.

ii. Features extractions – obtaining features such as the position, angle and

type of the minutiae and also ridge distribution from binary image. In this

part we have used a special kind of method to locate minutiae, which is

based on the contour of the ridges, instead of traditional method from

thinning images. Through enclosing each singular ridge, we have located

the possible minutiae positions at the turning points. After that, minutiae

post-processing has been used to eliminate the spurious minutiae.

iii. Features matching – based mainly on matching of feature vector pairs

theory making the decision between two fingerprint images whether they

are from the same finger. According to the angel where the maximum of

the number of matched feature vector pairs reach, the translation and

Conclusions and Future Work

127

rotation parameters will be extracted. Thereafter the similarity between

two templates is computed based on our multiple-matching algorithm.

iv. Algorithms implementation in embedded environment – ARM core based

system is designed, with which real-time fingerprint identification and

verification operation is expected. Before fingerprint verification and

identification algorithm is applied in our embedded systems, some

important hardware devices should be adequately selected.

Fingerprint sensor is the first one. Although optical sensors can obtain

better image quality and resolution, its size and cost restrict its application

in embedded devices. As an alternative solid-state sensors which

overcome the size and cost problems are widely used in embedded

devices. The swipe sensor selected from ATMEL is part of this kind and

based on thermal technology. It has limited width which might be even

narrower than some fingers. Therefore the reconstructed fingerprint image

maybe be only part of instead of a whole finger.

The second important part in the system is the processor. ARM9g20

(400MHZ) is used to build hardware environments, with which a relative

good performance of fingerprint verification and identification is obtained.

v. Finally we have made some statistical test with standard databases e.g.

FVC2004, FVC2006 and also captured databases by ourselves. The

statistic results of our experiments are built based on the above hardware

platform, which has shown that the system can obtain satisfying

performance in various databases.

6.2 Future Work

128

6.2 Future Work

To make this fingerprint identification and verification system more robust and

better for use, we believe there are still a lot of work to do. According to the

significance, some of work is listed as follows.

i. Real-time is a most important feature of this system. In order to

accomplish fingerprint identification between an actual template and a

large template database, the time of each single matching is relative

crucial. To optimize the matching algorithm further can realize a real-time

identification with larger database.

ii. A typical ATMEL solid-state sensor is used in this thesis. There are still

some different kinds of sensors widely used. The algorithm based on

ATMEL sensor cannot process the images generated from other sensors

very well. Aiming at those images with small size, few minutiae and bad

contrast, the algorithm still needs to be corrected.

iii. One optional further development is to develop a LCD block on

BioKey4000, since the acknowledgement of menus and messages can

only be shown from three different LEDs currently. Some conflict occurs

occasionally.

iv. Another optional further development is to develop an Ethernet block

based on TCP/IP protocol directly on BioKey4000 Module, with which this

system can be accessed into a local network as a network terminal.

129

Appendix A: FVC –

Fingerprint Verification

Competition

Fingerprint Verification Competition (FVC) is an international competition focused

on fingerprint verification software assessment. The registered participants can

test their algorithms and adjust the parameters in advance according to a subset

of the database, acquired with various sensors, for competition. Enroll and Match

algorithms should be compiled separately to executable files to submit, which will

be used for the competition with the whole database. The result of this

competition presents an overview of the state-of-the-art in fingerprint techniques.

Till now FVC has been held four times in 2000, 2002, 2004 and 2006

respectively.

The software and hardware environment for the competition in 2006 is Windows

XP Professional O.S. on PC INTEL PENTIUM 4 - 3.20 GHz - 1.00 GB RAM. The

competition is divided into two categories: Open and Light. In Open category

memory requirements and template size have no limits. The maximum enroll

time is 5 seconds and the maximum matching time is 3 seconds. In Light

category the maximum memory that can be allocated by the processes is 4M-

Appendix A: FVC –Fingerprint Verification Competition

130

Bytes. The maximum template size is 2K-Bytes. The maximum enroll time is 0.3

seconds and the maximum matching time is 0.1 seconds. In the earlier

competitions such limitations vary with the software and hardware environment at

that time.

Competition
Number

of
databases

Size of each
Database:

A - Evaluation set
B - Training set

Notes

FVC2000 4
A: 100 × 8
B: 10 × 8

- Volunteers are mainly unhabituated students.

- Two sessions, no quality-check.

- Low/Medium difficulty (DB1, DB2, DB4);

Medium/High difficulty (DB3).

FVC2002 4
A: 100 × 8
B: 10 × 8

- Volunteers are mainly unhabituated students.

- Three sessions, no quality-check.

- Voluntarily exaggerated perturbations:
displacement, rotation, wetness and dryness.

- Low difficulty (DB1, DB2, DB3, DB4).

FVC2004 4
A: 100 × 8
B: 10 × 8

- Volunteers are mainly unhabituated students.

- Three sessions, no quality-check.

- Voluntarily exaggerated perturbations:
distortion, wetness and dryness.

- Medium difficulty (DB1, DB2, DB3, DB4).

FVC2006 4
A: 140 × 12
B: 10 × 12

- Heterogeneous population also includes
unhabituated manual workers and elderly
people. No quality check.

- The final datasets were selected from a larger
database by choosing the most difficult
fingerprints according to a quality index.

- High difficulty (DB1), Medium difficulty (DB3),
Low difficulty (DB2, DB4).

Table A.1: A summary of FVC database. In the database size the notation M×N,

denotes M fingers and N samples per finger. In all the competitions the first three

databases were acquired by selecting commercial scanners of different types,

including large-area optical, small area optical, solid state capacitive and thermal

sweep. The fourth database was synthetically generated by using the SFinGe

tool. [73]

Appendix A: FVC –Fingerprint Verification Competition

131

Every competition contains four distinct databases for the benchmark: DB1, DB2,

DB3 and DB4, which are acquired from heterogeneous people and different

sensors (see Table A.1). Each database has two subsets DB_A and DB_B.

DB_A contain more fingers and samples and are used for the algorithm

performance evaluation. DB_B contains fewer fingers and are used for

parameter tuning by the participants. All fingerprint images in databases are

stored in 256 gray-levels, uncompressed BMP or Tiff format.

The competitions use each algorithm with each database to compute the False

Non Match Rate FNMR (also referred as False Rejection Rate - FRR) through

matching each sample in the subset DB_A against the remaining samples of the

same finger, and to compute the False Match Rate FMR (also referred as False

Acceptance Rate – FAR) through matching the first sample of each finger in the

subset DB_A against the first sample of the remaining fingers in this subset.

Furthermore other important indicators are also reported:

 REJENROLL (Number of rejected fingerprints during enrollment)

 REJNGRA (Number of rejected fingerprints during genuine matches)

 REJNIRA (Number of rejected fingerprints during impostor matches)

 Impostor and Genuine score distributions

 FMR(t)/FNMR(t) curves, where t is the acceptance threshold

 ROC(t) curve

 EER (equal-error-rate)

 EER* (the value that EER would take if the matching failures were

excluded from the computation of FMR and FNMR)

 FMR100 (the lowest FNMR for FMR<=1%)

 FMR1000 (the lowest FNMR for FMR<=0.1%)

 ZeroFMR (the lowest FNMR for FMR=0%)

 ZeroFNMR (the lowest FMR for FNMR=0%)

 Average enrollment time

 Average matching time

Appendix A: FVC –Fingerprint Verification Competition

132

 Average and maximum template size

 Maximum amount of memory allocated

Table A.2 shows a comparative summary of the performances (EER) obtained in

the past four FVC competitions.

 DB1 DB2 DB3 DB4

FVC2000 2.30% 1.39% 4.34% 3.38%

FVC2002 0.20% 0.17% 0.63% 0.16%

FVC2004 1.61% 2.32% 1.34% 0.81%

FVC2006 5.88% 0.05% 1.59% 0.39%

Table A.2: Average accuracy (EER) of the three best performing algorithms over
the different FVC databases. [73]

133

Bibliography

[1]. Ravi Das, “An Introduction to Biometrics: -A Concise Overview of the Most

Important Biometric Technologies”, Keesing Journal of Documents & Identity,

Issue 17, 2006.

[2] . A. K. Jain (2004). “An Introduction to Biometric Recognition”, IEEE

Transactions on Circuits and Systems for Video, VOL. 14, NO. 1, January

2004.

[3]. A. K. Jain and A. Kumar, "Biometrics of Next Generation: An Overview",

Second Generation Biometrics (E. Mordini and D. Tzovaras, Eds.), Springer,

2011.

[4]. Hong, Wan, and Jain (1998). Hong L., Wan Y., and Jain A.K., “Fingerprint

Image Enhancement: Algorithms and Performance Evaluation,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp.

777-789, 1998.

[5]. Mehtre et al. (1987). Mehtre B.M., Murthy N.N., Kapoor S., and Chatterjee B.,

“Segmentation of Fingerprint Images Using the Directional Image,” Pattern

Recognition, vol. 20, no. 4, pp. 429-435, 1987.

[6]. Mehtre and Chatterjee (1991). Mehtre B.M. and Chatterjee B., “Segmentation

of Fingerprint Images – A Composite Method,” Pattern Recognition, vol. 22,

no. 4, pp. 381-385, 1989.

[7]. Ratha, Chen, and Jain (1995). Ratha N.K., Chen S.Y., and Jain A.K.,

“Adaptive Flow Orientation-Based Feature Extraction in Fingerprint Images,”

Pattern Recognition, vol. 28, no. 11, pp. 1657-1672, 1995.

Bibliography

134

[8]. Maio and Maltoni (1997). Maio D. and Maltoni D., “Direct Grey-Scale

Minutiae Detection in Fingerprints,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 19, no. 1, 1997.

[9]. Shen, Kot, and Koo (2001). Shen L., Kot A., and Koo W.M., “Quality

Measures of Fingerprint Images,” in Proc. Int. Conf. on Audio- and Video-

Based Biometric Person Authentication (3rd), pp. 266-271, 2001.

[10]. Pais Barreto Marques and Gay Thome (2005). Pais Barreto Marques A.C.

and Gay Thome A.C., “A Neural Network Fingerprint Segmentation Method,”

in Proc. Int. Conf. on Hybrid Intelligent Systems, 2005.

[11]. Wu, Tulyakov and Govindaraju (2007). Wu C., Tulyakov S. and Govindaraju

V., “Robust Point-Based Feature Fingerprint Segmentation Algorithm,” in

Proc. Int. Conf. on Biometrics, LNCS 4642, pp. 1095-1103, 2007.

[12]. Bazen and Gerez (2001b). Bazen A.M. and Gerez S.H., “Segmentation of

Fingerprint Images,” in Proc. Workshop on Circuits Systems and Signal

Processing (ProRISC 2001), 2001b.

[13]. Chen et al. (2004). Chen X., Tian J., Cheng J. and Yang X., “Segmentation

of fingerprint images using linear classifier,” EURASIP Journal on Applied

Signal Processing, vol. 2004, no. 4, pp. 480-494, 2004.

[14]. Yin, Wang and Yang (2005). Yin Y., Wang Y. and Yang X., “Fingerprint

Image Segmentation Based on Quadric Surface Model,” in Proc. Int. Conf.

on Audio- and Video-Based Biometric Person Authentication (5th), pp. 647-

655, 2005.

[15]. Zhu et al. (2006). Zhu E., Yin J., Hu C. And Zhang G., “A systematic method

for fingerprint ridge orientation and image segmentation,” Pattern

Recognition, vol. 39, no. 8, pp. 1452-1472, 2006.

[16]. Bazen and Gerez (2002b). Bazen A.M. and Gerez S.H., “Systematic

Methods for the Computation of the Directional Fields and Singular Points of

Fingerprints,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 7, pp. 905-919, 2002.

Bibliography

135

[17]. He et al. (2003). He Y., Tian J., Luo X. and Zhang T., “Image enhancement

and minutiae matching in fingerprint verification,” Pattern Recognition

Letters, vol. 24, no. 9, pp. 1349–1360, 2003.

[18]. Oliveira and Leite (2008). Oliveira M.A. and Leite N.J., “A multiscale

directional operator and morphological tools for reconnecting broken ridges

in fingerprint images,” Pattern Recognition, vol. 41, no. 1, pp. 367–377,

2008.

[19]. Sherlock, Monro and Millard (1994). Sherlock B.G., Monro D.M. and Millard

K., “Fingerprint enhancement by directional Fourier filtering,” IEE

Proceedings Vision Image and SignalProcessing, vol. 141, no. 2, pp. 87–94,

1994.

[20]. Jiang (2000). Jiang X., “Fingerprint Image Ridge Frequency Estimation by

Higher Order Spectrum,” in Proc. Int. Conf. on Image Processing, 2000.

[21]. Almansa and Lindeberg (1997). Almansa A. and Lindeberg T.,

“Enhancement of fingerprint images using shape-adapted scale-space

operators,” in Gaussian Scale-Space Theory, J. Sporring,M. Nielsen, L.

Florack and P. Johansen (Eds.), Kluwer, New York, pp. 21–30, 1997.

[22]. O’Gorman and Nickerson (1988). O’Gorman L. and Nickerson J., “Matched

Filter Design for Fingerprint Image Enhancement,” in Proc. Int. Conf. on

Acoustic Speech and Signal Processing, pp. 916–919, 1988.

[23]. O’Gorman and Nickerson (1989). O’Gorman L. and Nickerson J.V., “An

approach to fingerprint filter design,” Pattern Recognition, vol. 22, no. 1, pp.

29–38, 1989.

[24]. Sherlock, Monro and Millard (1992). Sherlock B.G., Monro D.M. and Millard

K., “Algorithm for enhancing fingerprint images,” Electronics Letters, vol. 28,

no. 18, pp. 1720, 1992.

[25]. Daugman (1985). Daugman J.G., “Uncertainty relation for resolution in

space, spatial-frequency, and orientation optimized by two-dimensional

visual cortical filters,” Journal Optical Society American, vol. 2, pp. 1160–

1169, 1985.

Bibliography

136

[26]. Turner M. “Texture discrimination by gabor functions,” Bio-logical

Cybernetics, 1986, 55: 71-82.

[27]. Greenberg et al. (2000). Greenberg S., Aladjem M., Kogan D. and Dimitrov

I., “Fingerprint Image Enhancement Using Filtering Techniques,” in Proc. Int.

Conf. on Pattern Recognition (15th), vol. 3, pp. 326–329, 2000.

[28]. Erol, Halici and Ongun (1999). Erol A., Halici U. and Ongun G., “Feature

selective filtering for ridge extraction,” in Intelligent Biometric Techniques in

Fingerprint & Face Recognition, L.C. Jain, U. Halici, I. Hayashi and S.B. Lee

(Eds.), CRC Press, Baco Raton, FL, 1999.

[29]. Yang et al. (2003). Yang J., Liu L., Jiang T. and Fan Y., “A modified Gabor

filter design method for fingerprint image enhancement,” Pattern

Recognition Letters, vol. 24, no. 12, pp. 1805–1817, 2003.

[30]. Mehtre (1993). Mehtre B.M., “Fingerprint image analysis for automatic

identification,” Machine Vision and Applications, vol. 6, no. 2–3, pp. 124–

139, 1993.

[31]. Maio and Maltoni (1998). Maio D. and Maltoni D., “Ridge-Line Density

Estimation in Digital Images,” in Proc. Int. Conf. on Pattern Recognition

(14th), pp. 1654–1658, 1998.

[32]. Wegstein (1982). Wegstein J.H., “An automated fingerprint identification

system,” U.S. Government Publication, U.S. Department of Commerce,

National Bureau of Standards, Washington, DC, 1982.

[33]. Moayer and Fu (1986). Moayer B. and Fu K., “A tree system approach for

fingerprint pattern recognition,” IEEE Transactions on Pattern Analysis

Machine Intelligence, vol. 8, no. 3, pp. 376–388, 1986.

[34]. Xiao and Raafat (1991). Xiao Q. and Raafat H., “Combining statistical and

structural information for fingerprint image processing classification and

identification,” in Pattern Recognition: Architectures Algorithms and

Application, R. Plamondon and H. Cheng (Eds.), World Scientific, Singapore,

pp. 335–354, 1991.

Bibliography

137

[35]. Coetzee and Botha (1993). Coetzee L. and Botha E.C., “Fingerprint

recognition in low quality images,” Pattern Recognition, vol. 26, no. 10, pp.

1441–1460, 1993.

[36]. Tico and Kuosmanen (1999a). Tico M. and Kuosmanen P., “A Topographic

Method for Fingerprint Segmentation,” in Proc. Int. Conf. on Image

Processing, 1999a.

[37]. Watson, Candela and Grother (1994). Watson C.I., Candela G.I. and

Grother P.J., “Comparison of FFT Fingerprint Filtering Methods for Neural

Network Classification,” Tech. Report: NIST TR 5493, Sept. 1994.

[38]. Abutaleb and Kamel (1999). Abutaleb A.S. and Kamel M., “A genetic

algorithm for the estimation of ridges in fingerprints,” IEEE Transactions on

Image Processing, vol. 8, no. 8, p. 1134, 1999.

[39]. Hung (1993). Hung D.C.D., “Enhancement and feature purification of

fingerprint images,” Pattern Recognition, vol. 26, no. 11, 1661–1671, 1993.

[40]. Fitz and Green (1996). Fitz A.P. and Green R.J., “Fingerprint classification

using hexagonal fast Fourier transform,” Pattern Recognition, vol. 29, no. 10,

pp. 1587–1597, 1996.

[41]. Wahab, Chin and Tan (1998). Wahab A., Chin S.H. and Tan E.C., “Novel

approach to automated fingerprint recognition,” IEE Proceedings Vision

Image and Signal Processing, vol. 145, no. 3, pp. 160–166, 1998.

[42]. Luo and Tian (2000). Luo X. and Tian J., “Knowledge Based Fingerprint

Image Enhancement,” in Proc. Int. Conf. on Pattern Recognition (15th), vol.

4, pp. 783–786, 2000.

[43]. Ikeda et al. (2002). Ikeda N., Nakanishi M., Fujii K., Hatano T., Shigematsu

S., Adachi T., Okazaki Y. and Kyuragi H., “Fingerprint Image Enhancement

by Pixel-Parallel Processing,” in Proc. Int. Conf. on Pattern Recognition

(16th), vol. 3, pp. 752–755, 2002.

[44]. Chin, Wan and Stover et al. (1987). “A one-pass thinning algorithm and its

parallel implementation [J],” Computer Image Processing, 1987, 40(1): 30-

40.

Bibliography

138

[45]. Zhang and Suen (1984). “A fast parallel algorithm for thinning digital

patterns [J],” Communication of ACM, 1984, 27(3): 236-239.

[46]. Guo and Richard (1989). “Parallel thinning with two-subiteration algorithms

[J],” Communication of ACM, 1989, 32(3): 359-373.

[47]. Weian Deng, S. Sitharama Iyengar and Nathan E. Brener (2000), “A Fast

Parallel Thinning Algorithm for the Binary Image Skeletonization,”

International Journal of High Performance Computing Applications 2000 14:

65.

[48]. Wu and Tsai (1992). “A new one-pass parallel thinning algorithm for binary

images,” Pattern Recognition Letters 13:715-23.

[49]. Li and Tian (2007). “Optimum cut-based clustering [J],” Signal Processing,

2007, 87(11): 2491-2502.

[50]. Wu, Z. Shi, and V. Govindaraju. “Fingerprint image enhancement method

using directional median filter,” Biometric Technology for Human

Identification, SPIE, volume 5404, pages 66–75, 2004.

[51]. Zhixin Shi, Venu Govindaraju, “A chaincode based scheme for fingerprint

feature extraction”, Pattern Recognition Letters, vol. 27, 2006, pp. 462–468.

[52]. Zenzo, L. Cinque, and S. Levialdi, “Run-Based Algorithms for Binary Image

Analysis and Processing”, IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 18, no. 1, 1996, pp. 83-88.

[53]. J Hwan Shin, H. Y. Hwang, S Chien, “Detecting fingerprint minutiae by run

length encoding scheme”, Pattern Recognition, vol. 39, 2005, pp. 1140-

1154.

[54]. J. Xudong and Y. Wei-Yun, “Fingerprint minutiae matching based on the

local and global structures”, in Proc. of International Conference on Pattern

Recognition (ICPR), vol. 2, 2000, pp. 1038–1041.

[55]. S. Prabhakar, A. K. Jain, and S. Pankanti, “Learning fingerprint minutiae

location and type”, Pattern Recognition, vol. 36(8), 2003, pp. 1847–1857.

[56]. S. Chikkerur, V. Govindaraju, S. Pankanti, R. Bolle, and N. Ratha, “Novel

approaches for minutiae verification in fingerprint images”, in Seventh IEEE

Bibliography

139

Workshops on Application of Computer Vision (WACV/MOTION’05), vol. 1,

2005, pp. 111–116.

[57]. Zhao Feng, Xiaou Tang, “Preprocessing and post processing for skeleton-

based fingerprint minutiae extraction”, Pattern Recognition, vol. 40, 2007, pp.

1270-1281.

[58]. R. Kaur, P. S. Sandhu and A. Kamra, “A Novel Method for Fingerprint

Feature Extraction”, In Proc. International Conference on Networking and

Information Technology, 2010.

[59]. A.R. Patil, M. A. Zaveri, "A Novel Approach for Fingerprint Matching Using

Minutiae," In Proc. Fourth Asia International Conference on

Mathematical/Analytical Modelling and Computer Simulation (AMS), 2010,

pp.317-322.

[60]. V. Humbe, S. S. Gornale, R. Manza and K. V. Kale, “Mathematical

Morphology approach for Genuine Fingerprint Feature Extraction”, Int.

Journal of Computer Science and Security (IJCSS), vol. 1, 2007, pp. 53-59.

[61]. R. Bansal, P. Sehgal, P. Bedi, “Effective Morphological Extraction of True

Fingerprint Minutiae based on the Hit or Miss Transform”, International

Journal of Biometrics and Bioinformatics(IJBB), vol. 4, 2010, pp. 71-85.

[62]. Maio and D. Maltoni, “Neural network based minutiae filtering in fingerprints”,

in Fourteenth International Conference Pattern Recognition, vol. 2, 1998, pp.

1654–1658.

[63]. X. Jiang, W.-Y. Yau, and W. Ser, “Detecting the fingerprint minutiae by

adaptive tracing the grey-level ridge”, Pattern Recognition, vol. 34(5), 2001,

999–1013.

[64]. L. Jinxiang, H. Zhongyang, and C. Kap Luk, “Direct minutiae extraction from

grey-level fingerprint image by relationship examination”, in International

Conference on Image Processing(ICIP), vol. 2, 2000, pp. 427–430.

[65]. K. Nilsson and J. Bign, “Using linear symmetry features as a pre-processing

step for fingerprint images”, in AVBPA, 2001, pp.247–252.

Bibliography

140

[66]. K. K. Hartwig Fronthaler and J. Bigun, “Local feature extraction in

fingerprints by complex filtering,” In Advances in Biometric Person

Authentication, LNCS, vol. 3781, 2005, pp.77–84.

[67]. R. M. Stock and C. W. Swonger, “Development and evaluation of a reader

of fingerprint minutiae”, Cornell Aeronautical Labaratory, Tecnical Report

CAL No. XM-2478-X-1:13-17, 1969.

[68]. M. R. Verma, A. K. Majumdar and B. Chatterjee, “Edge detection in

fingerprints”, Pattern Recognition, v. 20, no. 5, pp. 513-523, 1987.

[69]. C. I. Watson and C. L. Wilson. Fingerprint database. National Institute of

Standards and Technology, Special Database 4, April 18, 1992.

[70]. Angelo Chianese, Vincenzo Moscato, Antonio Penta, Antonio Picariello,

“Improving minutiae detection in fingerprints using multiresolution contrast

enhancement”, ICIAR'06 Proceedings of the Third international conference

on Image Analysis and Recognition - Volume Part II, pp.283.

[71]. Q. Xiao and H. Raafat (1991), “Fingerprint image postprocessing: a

combined statistical and structural approach”, Pattern Recognition, v. 24, no.

10, pp. 985-992.

[72]. A. M. Bazen and S. H. Gerez, “Fingerprint matching by thin-plate spline

modeling of elastic deformations,” Pattern Recognition, vol. 36, no. 8, pp.

1859–1867, 2003.

[73]. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S., “Handbook of Fingerprint

Recognition”. Springer, New York, pp.135-170, 2003.

[74]. K. Nandakumar , Jain, A.K., “Local Correlation-based Fingerprint Matching”,

in Proceedings of ICVGIP, Kolkata, pp.2, December 2004.

[75]. A. M. Bazen, G. T. B. Verwaaijen, S. H. Gerez, L. P. J. Veelenturf, and B. J.

van der Zwaag. “A Correlation-Based Fingerprint Verification System,”

Proceedings of Workshop on Circuits Systems and Signal Processing

(ProRISC 2000), pp. 205-213, 2000.

[76]. Crouzil, Massip-Pailhes and Castan (1996). Crouzil A., Massip-Pailhes L.

and Castan S., “A New Correlation Criterion Based on Gradient Fields

Bibliography

141

Similarity,” in Proc. Int. Conf. on Pattern Recognition (13th), pp. 632–636,

1996.

[77]. Hatano et al. (2002). Hatano T., Adachi T., Shigematsu S., Morimura H.,

Onishi S., Okazaki Y. and Kyuragi H., “A Fingerprint Verification Algorithm

Using the Differential Matching Rate,” in Proc. Int. Conf. on Pattern

Recognition (16th), vol. 3, pp. 799–802, 2002.

[78]. Ito et al. (2005). Ito K., Morita A., Aoki T., Higuchi T., Nakajima H. and

Kobayashi K., “A Fingerprint Recognition Algorithm Using Phase-Based

Image Matching for Low-Quality Fingerprints,” in Proc. Int. Conf. on Image

Processing, vol. 2, pp. 33–36, 2005.

[79]. Shuai, Zhang and Hao (2007). Shuai X., Zhang C. and Hao P., “The

Optimal ROS-Based Symmetric Phase-Only Filter for Fingerprint

Verification,” in Proc. Int. Conf. on Image Processing, vol. 2, pp.381–384,

2007.

[80]. Ballard (1981). Ballard D.H., “Generalizing the Hough transform to detect

arbitrary shapes,” Pattern Recognition, vol. 3, no. 2, pp. 110–122, 1981.

[81]. Stockman, Kopstein and Benett (1982). Stockman G., Kopstein S. and

Benett S., “Matching images to models for registration of and object

detection via clustering,” IEEE Transactions on Pattern Analysis Machine

Intelligence, vol. 4, no. 3, pp. 229–241, 1982.

[82]. Ratha et al. (1996). Ratha N.K., Karu K., Chen S. and Jain A.K., “A real-time

matching system for large fingerprint databases,” IEEE Transactions on

Pattern Analysis Machine Intelligence, vol. 18, no. 8, pp. 799–813, 1996.

[83]. Chang et al. (1997). Chang S.H., Cheng F.H., Hsu W.H. and Wu G.Z., “Fast

algorithm for point pattern matching: Invariant to translations, rotations and

scale changes”, Pattern Recognition, vol. 30, pp.311–320, 1997.

[84]. Jain, Hong, and Bolle (1997). Jain A.K., Hong L., and Bolle R., “On-line

Fingerprint Verification,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 19, no. 4, pp. 302−313, 1997.

Bibliography

142

[85]. Jea and Govindaraju (2005). Jea T.Y. and Govindaraju V., “A minutia-based

partial fingerprint recognition system,” Pattern Recognition, vol. 38, no. 10,

pp. 1672–1684, 2005.

[86]. Chen, Tian and Yang (2006). Chen X., Tian J. and Yang X., “A new

algorithm for distorted fingerprints matching based on normalized fuzzy

similarity measure,” IEEE Transactions on Image Processing, vol. 15, no. 3,

pp. 767–776, 2006.

[87]. Germain, Califano and Colville (1997). Germain R., Califano A. and Colville

S., “Fingerprint matching using transformation parameters,” IEEE

Computational Science and Engineering, vol. 4, no. 4, pp. 42–49, 1997.

[88]. Tan and Bhanu (2003). Tan X. and Bhanu B., “A robust two step approach

for fingerprint identification,” Pattern Recognition Letters, vol. 24, no. 13, pp.

2127–2134, 2003.

[89]. Chen et al. (2006). Chen X., Tian J., Yang X. and Zhang Y., “An algorithm

for distorted fingerprint matching based on local triangle feature set,” IEEE

Transactions on Information Forensics and Security, vol. 1, no. 2, pp. 169–

177, 2006.

[90]. Tico and Kuosmanen (2003). Tico M. and Kuosmanen P., “Fingerprint

matching using an orientationbased minutia descriptor,” IEEE Transactions

on Pattern Analysis Machine Intelligence, vol. 25, no. 8, pp. 1009–1014,

2003.

[91]. A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti., “Filterbank-Based

Fingerprint Matching,” IEEE Transactions on Image Processing, 9:846–859,

2000.

[92]. Xie, Su and Cai (2006). Xie X., Su F. and Cai A., “Ridge-Based Fingerprint

Recognition,” in Proc. Int. Conf. on Biometrics, LNCS 3832, pp. 273–279,

2006.

[93]. Ratha et al. (2000). Ratha N.K., Pandit V.D., Bolle R.M. and Vaish, V.,

“Robust Fingerprint Authentication Using Local Structural Similarity,” in Proc.

Workshop on Applications of Computer Vision, pp. 29–34, 2000.

Bibliography

143

[94]. Raffaele Cappelli, Dario Maio, Davide Maltoni, James L. Wayman, and Anil

K. Jain, “Performance Evaluation of Fingerprint Verification Systems,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.28, No.1, pp.

12, January 2006.

[95]. ATMEL Corporation, “AT77C102B FingerChip”.

[96]. Han and Koshimoto (2008). Han H. and Koshimoto Y., “Characteristics of

Thermal-Type Fingerprint Sensor,” in Proc. SPIE Conf. on Biometric

Technology for Human Identification V, 2008.

[97]. ATMEL Corporation, “ARM926EJ-S Technical Reference Manual”.

	Title Page
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Biometrics
	1.2 Embedded System
	1.3 Overview of the Thesis

	2 Fingerprint Image Enhancement
	2.1 Introduction
	2.2 State of the Art
	2.3 Experimental Improvements
	2.4 Summary

	3 Fingerprint Feature Extraction
	3.1 Introduction
	3.2 State of the Art
	3.3 Application and Optimization
	3.4 Experimental Improvements
	3.5 Summary

	4 Fingerprint Matching
	4.1 Introduction
	4.2 State of the Art
	4.3 Application and Optimization
	4.4 Experimental Results
	4.5 Summary

	5 Fingerprint Embedded System
	5.1 Hardware Architecture
	5.2 Software Implementation and Optimization
	5.3 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Appendix A: FVC –Fingerprint Verification Competition
	Bibliography

