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Gutachter: Prof. Wei Yu, Ph.D. (University of Toronto, Canada)
Gutachter: Prof. Dr.-Ing. Thomas Kürner (TU Braunschweig, Germany)
Gutachter: Dr.-Ing. Anastasios Giovanidis (CNRS, France)

Tag der wissenschaftlichen Aussprache: 21. November 2016

Berlin 2016



This thesis is dedicated to all people who have supported me all the way

My parents

Winfried & Qijing

Haotian



Acknowledgements

This thesis was written during my time as a research associate in Fraunhofer

Institute for Telecommunications, Heinrich Hertz Institute and as a doctoral

candidate at Technical University of Berlin.

First and foremost, I would like to thank my supervisor, Prof. Dr.-Ing. S lawomir
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Abstract

Self-organizing network, considered as a starting point toward self-aware cogni-

tive network, is an automation technology designed for automated configuring,

monitoring, troubleshooting and optimizing for the next generation mobile net-

works. Its main functionalities include: self-configuration, self-optimization and

self-healing. With the emergence of new wireless devices and applications, the

increasing demand for mixed types of services motivates extremely dense and

heterogeneous deployments. As a result it is expected that a large amount

of measurements and signaling overhead will be generated in future networks.

Partial and inaccurate network knowledge, together with the increasing com-

plexity of envisioned wireless networks, pose one of the biggest challenges for

self-organizing network (SON) – maintaining perfect global network informa-

tion at the level of autonomous network elements is simply illusive in large-scale,

highly dynamic wireless networks. Another big challenge is the network-wide

optimization of interacting or conflicting SON functionalities, with the goal of

improving the efficiency of total algorithmic machinery on the network level.

This thesis studies SON in the context of erroneous and incomplete local infor-

mation on network state, as well as possibly conflicting and abstractly defined

objectives of different SON functions. We design novel mathematical models

and statistical methods for enhancing network awareness at the locality of net-

work elements through statistical learning, intelligent monitoring, and dynamic

network feedback collection amidst network uncertainties. The extracted knowl-

edge is used to optimize the network performance by adjusting to internal and

exogenous network variations, critical network conditions, and different network

anomalies.

Context-aware frameworks are proposed for automatic configuration and tun-

ing of network elements with minimal operator intervention to achieve timely

detection of network abnormal states such as coverage holes, and to carry out

a network-wide optimization of different SON functions. The results prove the

benefits of the developed self-healing and self-optimization functions, including



cell outage detection, network state classification and anomaly detection, ran-

dom access channel (RACH) optimization, mobility robustness optimization,

mobility load balancing, interference reduction, and coverage and capacity op-

timization. We achieve timely detection and identification of network abnormal

states based on the analysis of data extracted from the network. The anomaly

detection algorithm automatically activates the corresponding self-healing and

self-optimization algorithms for single or multiple SON use cases, which frees up

operational resource and improves user-centric quality of service.
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Zusammenfassung

In der nächsten Generation von Mobilfunknetzen werden selbstorganisierende

Netzwerke zum Einsatz kommen, in denen die Netzwerkaufgaben: Konfigura-

tion, Überwachung, Fehlerbehebung und Optimierung automatisiert durchge-

führt werden. Mit den Eigenschaften zur Selbst-Konfiguration, Selbstoptimierung

und Selbstheilung wird ein selbstorganisierendes Netzwerk auch als Vorstufe zu

einem kognitiven Netzwerk betrachtet. Um die steigende Nachfrage nach mo-

bilen Services zu erfüllen werden neue Netzinfrastrukturen ausgerollt, die zusam-

men mit bestehenden Netzwerken heterogene Strukturen bilden. Infolge von der

Komplexität des Netzwerks werden große Mengen an zusätzlichen Protokoll-

Overhead und Netzwerkkontrolldaten erhoben. Unvollständige sowie ungenaue

Netzwerkkenntnisse sowie die zunehmende Komplexität stellen eine der größten

Herausforderung eines selbstorganisierenden Netzwerks dar. Das Pflegen einer

globalen Information über den Netzwerkzustand auf der Ebene der Netzwerkele-

mente ist illusorisch in großen, hochdynamischen Mobilfunknetzen. Eine weitere

Herausforderung ist die netzwerkweite Optimierung der untereinander verflocht-

enen Eigenschaften eines selbstorganisierenden Netzwerks.

Die vorliegende Arbeit untersucht ein selbstorganisierendes Netzwerk im Zusam-

menhang mit fehlerhafter und unvollständiger Informationen über den Netzw-

erkzustand sowie unter bestimmten Bedingungen widersprüchliche und abstrakt

definierte Optimierungsziele. Wir entwickeln neuartige mathematische Mod-

elle und statistische Methoden zur Verbesserung der Netzwerk-Bewusstsein bei

der Netzelementen durch statistisches Lernen, intelligente Überwachung und

dynamische Netzwerk-Feedback-Sammlung inmitten Netzwerk Unsicherheiten.

Die extrahierte Wissen wird verwendet durch Einstellen der internen und exo-

gene Netzwerk Variationen, kritische Netzwerkbedingungen und verschiedenen

Netzanomalien, um die Netzwerkleistung zu optimieren.

Ein Lösungsansatz wird zur Lösung der automatischen Konfiguration und Op-

timierung von Netzwerkeelementen mit minimalem Benutzereingriff vorgeschla-

gen, welches ebenfalls eine rechtzeitige Erkennung von abnormen Netzwerkzustän-

den beinhaltet. Die erzielten Ergebnisse belegen, dass die Netzwerkleistung



profitiert von der neuen entwickelten Funktionalität der Selbstheilung und der

Selbstoptimierung, einschließlich Zellausfall Erkennung, Netzwerkstatus Klas-

sifizierung und Erkennung von Anomalien, Optimierung von Kanal mit wahl-

freiem Zugriff (RACH), Mobilität Robustheit Optimierung, Mobilität Lastaus-

gleich, Interferenzunterdrücken, und Abdeckung und Kapazitätsoptimierung.

Wir erreichen rechtzeitige Erkennung und Identifizierung von Netzwerk anor-

male Zustände basierend auf der Analyse von Daten, die aus dem Netzwerk ex-

trahiert werden. Die Anomalie-Detektionsalgorithmus aktiviert automatisch die

entsprechenden Selbstheilung und Selbstoptimierungsalgorithmen für einzelne

oder mehrere SON Szenarien, und dadurch die operativen Ressourcen entlastet

und die benutzerorientierte Servicequalität verbessert.

vii



Contents

List of Figures xiv

List of Tables xviii

List of Symbols xix

Acronyms xxi

I Introduction and Background 1

1 Introduction 2

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Outline and Contributions of the Thesis . . . . . . . . . . . . . . . . . . . . 6

2 Background 11

2.1 Key Performance Indicators and Network Measurements . . . . . . . . . . . 11

2.1.1 Control Plane KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 User Plane KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 X2 Interface KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 UE Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.5 ENB Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 SON Functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Self-Healing Functionalities . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Self-Optimizing Functionalities . . . . . . . . . . . . . . . . . . . . . 14

2.3 Interactions between SON Functionalities . . . . . . . . . . . . . . . . . . . 15

viii



II Self-Healing 18

3 Cell Outage Detection with Composite Hypothesis Testing 19

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3 Optimal Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Statistics Relevant to CQI Reports . . . . . . . . . . . . . . . . . . . 23

3.4.2 Statistics Relevant to RRQs . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.3 Statistics Relevant to Traffic Load . . . . . . . . . . . . . . . . . . . 24

3.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Hypothesis Test on Distribution of CQI . . . . . . . . . . . . . . . . 25

3.5.2 Hypothesis Test on Time Correlation of CQI Differential . . . . . . . 26

3.5.3 Hypothesis Test on RRQ Frequency . . . . . . . . . . . . . . . . . . 27

3.5.4 Combination of Hypothesis Tests . . . . . . . . . . . . . . . . . . . . 27

3.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Network State Awareness and Proactive Anomaly Detection 32

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Definitions and System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Algorithmic Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.1 Dimension Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Kernel-Based Semi-Supervised Fuzzy Clustering . . . . . . . . . . . 35

4.3.3 Proactive Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Selected Parameters and Metrics . . . . . . . . . . . . . . . . . . . . 40

4.4.2 Generation of Experimental Samples . . . . . . . . . . . . . . . . . . 40

4.4.3 Evaluation of Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III Self-Optimization 48

5 Measurement-Adaptive Random Access Channel Self-Optimization 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ix



5.2.1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Action Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.3 Success Probability, Failure Event and Dropping . . . . . . . . . . . 56

5.2.4 System States and Transition Probabilities . . . . . . . . . . . . . . 57

5.3 Problem Statement as Drift Minimization . . . . . . . . . . . . . . . . . . . 58

5.4 Five Steps of the Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.1 Step 1: Measurements and User Reports . . . . . . . . . . . . . . . . 62

5.4.2 Step 2: Estimation of Unknowns in the Objective function . . . . . . 62

5.4.3 Step 3: Solving the Problem . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.4 Step 4 and 5: Broadcast of Information to the Users and Action

Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Description of the Simulations Setting . . . . . . . . . . . . . . . . . 67

5.5.2 Comparison to a Fixed “Open Loop” Power Fixed Backoff Protocol 68

5.5.3 Performance Evaluation: Lyapunov Function and Number of Efforts 68

5.5.4 Performance Evaluation: Delay, Power Consumption and Dropping

Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.5 Protocol Temporal Adaptation to Channel Fluctuations and Deep Fades 70

5.5.6 Protocol Temporal Adaptation to Traffic Load Fluctuations . . . . . 70

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6 Mobility Robustness Optimization 80

6.1 Motivation and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 System Model and Problem Statement . . . . . . . . . . . . . . . . . . . . . 81

6.2.1 HO Process and Parameters . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.2 Handover Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2.3 Problem Statement and Our Approach . . . . . . . . . . . . . . . . . 83

6.3 MRO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Handover Problem Detection . . . . . . . . . . . . . . . . . . . . . . 84

6.3.2 Handover Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.3 Global MRO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3.4 Local MRO Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3.5 Interaction between Global and Local MRO Algorithms . . . . . . . 87

6.4 Extended Multi-Objective P-Algorithm . . . . . . . . . . . . . . . . . . . . 87

6.4.1 Multi-Objective P-Algorithm . . . . . . . . . . . . . . . . . . . . . . 87

6.4.2 Modeling with Gaussian Processes . . . . . . . . . . . . . . . . . . . 88

x



6.4.3 Independence Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.4 Non-Separable Dependence Model . . . . . . . . . . . . . . . . . . . 90

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Distributed Interference-Aware Mobility Load balancing Algorithm 97

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3.1 Linearization of the Constraint Set . . . . . . . . . . . . . . . . . . . 101

7.4 Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.4.1 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 A Lagrangian Relaxation Approach . . . . . . . . . . . . . . . . . . . . . . . 103

7.5.1 Solution for Given Prices . . . . . . . . . . . . . . . . . . . . . . . . 103

7.5.2 Optimal Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.5.3 Ascent Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Cellular Network Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6.1 Choice of OL-TR Pair . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.6.2 Handover Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.6.3 Candidate User Subsets . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6.4 Optimal User Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.6.5 Distributed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.7 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

IV Multi-Objective SON Function Optimization 115

8 Joint Optimization of Coverage, Capacity and Load Balancing 116

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2.1 Inter-Cluster and Intra-Cluster Power Sharing Factors . . . . . . . . 118

8.2.2 Signal-to-Interference-Plus-Noise Ratio . . . . . . . . . . . . . . . . . 119

8.3 Utility Definition and Problem Formulation . . . . . . . . . . . . . . . . . . 119

8.3.1 Cluster-Based BS Assignment and Power Allocation . . . . . . . . . 120

8.3.2 BS-Based Antenna Tilt Optimization and Power Allocation . . . . . 122

8.4 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xi



8.4.1 Joint Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . 125

8.5 Uplink-Downlink Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.6 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.7 Conclusions and Further Research . . . . . . . . . . . . . . . . . . . . . . . 129

9 Service-Centric Joint Uplink and Downlink Optimization for Uplink and

Downlink Decoupling-Enabled HetNets 133

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

9.1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.2.1 Constrained Per-Cell Load and Per-Transmitter Power . . . . . . . . 139

9.2.2 Link Gain Coupling Matrix . . . . . . . . . . . . . . . . . . . . . . . 140

9.2.3 Models of SINR and Rate . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2.4 Link Association Policies . . . . . . . . . . . . . . . . . . . . . . . . 142

9.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.4 Joint Uplink and Downlink Resource Allocation . . . . . . . . . . . . . . . . 144

9.4.1 Algorithm for Bandwidth Allocation . . . . . . . . . . . . . . . . . . 145

9.4.2 Optimization to Achieve Maximum Load . . . . . . . . . . . . . . . 146

9.5 Joint Uplink and Downlink Power Control . . . . . . . . . . . . . . . . . . . 147

9.5.1 Algorithm for Link-Specific Power Control . . . . . . . . . . . . . . . 147

9.5.2 Algorithm for Cell-Specific Power Control . . . . . . . . . . . . . . . 149

9.5.3 Algorithm for Energy Efficient Power Control . . . . . . . . . . . . . 151

9.6 Algorithm for Joint Optimization . . . . . . . . . . . . . . . . . . . . . . . . 152

9.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.7.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 153

9.7.2 Convergence of the Algorithm . . . . . . . . . . . . . . . . . . . . . . 155

9.7.3 Network Performance Evaluation . . . . . . . . . . . . . . . . . . . . 156

9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

V Conclusion 164

10 Conclusion and Future Studies 165

10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

xii



Appendix 169

A Some Concepts and Results from Matrix Analysis 171

A.1 Scalars, Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 171

A.2 Matrix Spectrum and Spectral Radius . . . . . . . . . . . . . . . . . . . . . 173

A.3 Perron-Frobenius Theory of Nonnegative Matrices . . . . . . . . . . . . . . 173

A.3.1 Proof of Proposition 8.1 . . . . . . . . . . . . . . . . . . . . . . . . . 175

B Some Concepts and Results from Markov Problem Solution 177

B.1 Relationship between Solution of Markov Decision Problem and Solution of

Drift Minimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

B.1.1 Proof of Proposition B.1 . . . . . . . . . . . . . . . . . . . . . . . . . 178

C Some Concepts and Results from Statistical Learning 180

C.1 Composite Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . 180

C.1.1 Generalization of Stein’s Lemma . . . . . . . . . . . . . . . . . . . . 180

C.1.2 Universal Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.2 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 181

C.3 Gaussian Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

D Some Concepts and Results from Contraction Mapping 184

D.1 Mathematical Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

D.2 Fixed Point Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

D.3 Contractive Mappings with or without Monotonicity . . . . . . . . . . . . . 187

D.3.1 Approximation of Overlap Factor . . . . . . . . . . . . . . . . . . . . 187

D.3.2 Standard Interference Function . . . . . . . . . . . . . . . . . . . . . 188

D.3.3 Proof of Lemma 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.3.4 Proof of Theorem 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.3.5 Proof of Prop. 9.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

D.3.6 Proof of Prop. 9.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

D.3.7 Proof of Prop. 9.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

List of Publications 192

List of Patents 194

Bibliography 195

xiii



List of Figures

1.1 Framework of learning and optimization in SON . . . . . . . . . . . . . . . 5

1.2 Content and methodology of material . . . . . . . . . . . . . . . . . . . . . 6

2.1 Interactions and dependencies between SON functionalities . . . . . . . . . 16

3.1 Statistics of channel quality indicator (CQI) . . . . . . . . . . . . . . . . . . 30

3.2 Example: load profile for cell s on d-th weekday . . . . . . . . . . . . . . . . 30

3.3 Example: weight β as erfc function of load . . . . . . . . . . . . . . . . . . . 31

3.4 Hypothesis on CQI distribution (M is the decision latitude) . . . . . . . . . 31

4.1 Pixel-based statistics in 500 seconds. . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Probability mass function of control parameters . . . . . . . . . . . . . . . . 44

4.3 Performance of PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Quality of semi-supervised clustering depending on α. . . . . . . . . . . . . 46

4.5 Kernel-based semi-supervised fuzzy c-means (FCM) with α = 0.6. The filled

markers with solid lines are the labeled samples, while unfilled circles with

slashed lines stand for the unlabeled samples. Labeled samples associated to

classes SAFE, L CAP, L COV, OL, L HO and E HO are represented by red

square, yellow diamond, green right-pointing triangle, sea green six-pointed

star, process blue circle, blue violet upward-pointing triangle respectively. . 46

4.6 Evolution of network state when increasing the average arrival rate in neigh-

boring cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Comparison of the average occurence of idle slot per scheme. The dynamic

scenario with A = 0.05 is the closest to follow the chosen fixed one. . . . . . 74

5.2 Comparison of performance measure, equal to the chosen function V as

t → ∞. The measure improves with increasing idle probability bound A.

Furthermore, all DPDB schemes outperform the FPDB ones. . . . . . . . . 75

xiv



5.3 Comparison of the average number of efforts until success. The behaviour of

these curves follows closely the performance metric curves, due to the specific

choice of the Lyapunov function V as sum of user states. . . . . . . . . . . . 75

5.4 Evaluation of total average delay up to success (including backoff slots) in

the case of (a) FPDB protocols and (b) DPDB protocols. The higher the

parameter A, the higher the allowed delay. For A = 0.05, the protocol delay

approaches the one of the FPFB protocol. In general power control improves

the delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Evaluation of average Tx Power consumption up to success in the case of

(a) FPDB protocols and (b) DPDB protocols. In the case of FPDB, the

consumed power is always lower than the FPFB case. Both cases exhibit

benefits in Tx power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Comparison of the average dropping rate (DR) in the case of (a) FPDB

protocols and (b) DPDB protocols.. The abrupt increase of the rate after a

certain user number is an indicator that the system is not anymore stable for

a further increase in the cell user number. Higher values of A can increase

the point when the instability appears, at the cost of delay. (For a single

user, the dropping rate may be non-zero if the event of miss-detection occurs

M consecutive times due to bad channel conditions and poor transmission

power.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Comparison of miss-detection rate DMR for the two protocols (a) FPDB and

(b) DPDB. Benefits are evident only in the case (b) where the MIAD rule is

applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.8 Comparison of contention rate CR for the two protocols (a) FPDB and (b)

DPDB. Both schemes exhibit improvements compared to the FPFB case, due

to the backoff optimal choices. The case DPDB is slightly worse than the

FPDB due to the fact that a larger number of packets are detected, so that

the CR appears lower. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.9 Protocol adaptation with respect to power and DMR . . . . . . . . . . . . . 78

xv



5.10 Protocol adaptation over time when the traffic load varies from an average of

5 [users/sec] to an average of 10 [users/sec] and back. Value of idle parameter

A = 0.25 and chosen window size W = 200 slots. The benefits of the protocol

over the fixed case are apparent for the delay and dropping rate, with almost

the same power consumption. The DPDB case is definitely superior compared

to the FPFB case regarding the performance measure in (b). A certain

overshoot and delayed response in both (c) and (d) is due to the choice of

large window size W and the power step ∆p, which can be further optimally

tuned to adapt to each scenario of expected traffic change. . . . . . . . . . . 79

6.1 Illustration of a handover process . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 HO process: blue solid curve - source pilot; green solid curve - first candidate

pilot; red solid curve - second candidate pilot; blue dashed curve - source

pilot + HOM; magenta vertical lines - TTT counting started; purple vertical

lines - TTT counting terminated; cyan horizontal line - TTT . . . . . . . . 94

6.3 Simulation scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 HO metrics depending on mobility classes. . . . . . . . . . . . . . . . . . . . 95

6.5 Performance comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.1 Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Convergence of algorithm and aggregate utility improvement. . . . . . . . . 114

8.1 Algorithm convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2 Trade-off between utilities depending on µ. . . . . . . . . . . . . . . . . . . 131

8.3 Performance of proposed algorithm: coverage. . . . . . . . . . . . . . . . . . 132

8.4 Performance of proposed algorithm: capacity. . . . . . . . . . . . . . . . . . 132

8.5 Performance of proposed algorithm: per-BS power budget. . . . . . . . . . . 132

9.1 Time-varying UL and DL data traffic volume (aggregated every 15 minutes)

for a week from Mar. 01 to Mar. 08, 2015 in a spatial grid in Rome, Italy.

Data source from Telecom Italia’s Big Data Challenge [Tel15]. . . . . . . . . 160

9.2 Difference between the traditional FDD (or TDD) technology and proposed

dynamic UL/DL resource partitioning. The RBs assigned to UL is colored in

red while to DL in green. The guard band and guard interval are not plotted. 160

9.3 Inter-cell inter-link interference between UL (red) and DL (green). The guard

band is not displayed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

xvi



9.4 One possible approach to estimate the overlap factor based on the historical

load measurements. The overlap factor between downlinks served by cell i

and the uplinks served by cell j is computed by cDL
i cUL

j = 0.49, while the

overlap factor between the uplinks served by cell i and the downlinks served

by cell j is computed by cUL
i cDL

j = 0.09. . . . . . . . . . . . . . . . . . . . . 161

9.5 Inter-cell interference coupling on the per-user basis. UE i is associated to n

in UL and to cell m in DL. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

9.6 DeUD-enabled wireless network. Macro BSs - blue solid triangles; pico cells -

blue hollow triangles; UEs - white circle with blue edge; downlink association

- green dashed line; uplink association - red dashed line. . . . . . . . . . . . 161

9.7 Algorithm convergence (K = 500, DeUD P). . . . . . . . . . . . . . . . . . 162

9.8 Optimized utility depending on association policy (K = 100). . . . . . . . . 162

9.9 Performance evaluation of Algorithm 6. . . . . . . . . . . . . . . . . . . . . 163

D.1 Representation of mathematical spaces . . . . . . . . . . . . . . . . . . . . . 185

xvii



List of Tables

2.1 SON FUNCTIONALITIES AND CORRESPONDING PARAMETERS . . 17

3.1 HYPOTHESIS ON TIME CORRELATION OF CQI DIFFERENTIAL . . 29

3.2 HYPOTHESIS ON RRQ FREQUENCY . . . . . . . . . . . . . . . . . . . . 29

4.1 SELECTED PARAMETER AND METRICS . . . . . . . . . . . . . . . . . 43

4.2 SUPERVISED CLASSES BASED ON A PRIORI KNOWLEDGE . . . . . 43

5.1 GENERAL SELF-OPTIMIZATION ALGORITHM . . . . . . . . . . . . . 73

5.2 PARAMETER TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 TUNABLE FACTORS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.1 NOTATION SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

9.1 NOTATION SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xviii



List of Symbols

X Matrix
(xij) Matrix
|X| Matrix determinant
diagX Diagonal of matrix
(X)ij Matrix entry
G(X) Direct graph of X ∈ Rn×n

X ◦ Y Hadamard product of two matrix X and Y
X−1 Matrix inverse
X ⊗ Y Kronecker product
‖X‖ Matrix norm
ρ(X) Spectrum radius
σ(X) Matrix spectrum
Tr(X) Trace of matrix
XT Transpose matrix
x Scalar over R

x̄ Conjugate complex of scalar x
X Set
A× B Cartesian product of two sets A and B
x Vectors
diag(x) Diagonal matrix with diagonal x
〈x,y〉 Inner product of two vectors x and y
‖x‖p lp Norm on a vector space

‖x‖ Norm on a vector space

fn := f ◦ fn n-fold composition of function f : Rk
+ → Rk

+

x ∼ N (µ,Σ) x follows multivariate Gaussian distribution
with mean vector µ and covariance matrix Σ

lg Common logarithm with base 10
log Binary logorithm

R Real numbers
R+ Nonnegative real numbers
R++ Positive real numbers
Rn an n-dimensional vector space over R

xix



I Identity matrix
x 
 y x ≥ y with x 6= y

x+ c entry wise addition x+ (c, . . . , c)

xx



Acronyms

3GPP 3rd generation partnership project
5G fifth generation

ACPCI automated configuration of physical cell iden-
tity

AIMD Additive Increase Multiplicative Decrease
ANRF automatic neighbor relation function
AWGN additive white Gaussian noise

BS base station

CBR call blocking rate
CCO coverage and capacity optimization
CDR call drop rate
CHT composite hypothesis testing
CIO cell individual offset
CoUD coupled uplink and downlink
CP collision probability
CQI channel quality indicator
CS SR call setup success rate
CSMA/CA Carrier sense multiple access with collision

avoidance

DeUD decoupled uplink and downlink
DL downlink
DMP detection miss probability
DP dropping probability
DUDe downlink/uplink decoupling

E-RAB E-UTRAN radio access bearer
eNB evolved Node B
ERAB SR E-UTRAN radio access bearer setup success

rate
ES energy savings

FCM fuzzy c-means
FDD frequency-division duplex

xxi



GLS generalized least square
GP Gaussian process

HetNet heterogeneous networks
HF handover failure
HFR handover failure rate
HO handover
HO PPR handover ping-pong rate
HOI SR handover (incoming) success rate
HOM handover margin
HOO SR handover (outgoing) success rate
HRQ handover request

ICI inter-cell interference
ICIC inter-cell interference coordination
ID identification
IR interference reductions

KKT Karush-Kuhn-Tucker
KL Kullback-Leibler
KPI key performance indicator

LB load balancing
LRT likelihood ratio test
LTE long-term evolution
LTE-A long-term evolution advanced

MBB mobile broadband
MCC mission critical communications
MIAD Multiplicative Increase Additive Decrease
MLBO mobility load balancing optimization
MLE maximum-likelihood estimator
MMC massive machine communications
MRO mobility robustness optimization
MSE mean square error
MTC machine type communications

NRMSE normalized root mean square error

OFDM orthogonal frequency-division multiplexing
OFDMA orthogonal frequency-division multiplexing

access
OL overloaded

PC principal component
PCA principal component analysis
PHY physical layer

xxii



PPHO ping-pong handover
PRB physical resource block
PSD power spectral density

QCI QoS class identifier
QoS quality of service

RACH random access channel
RAT radio access technology
RB resource block
RLF radio link failure
RLFR radio link failure rate
RRC radio resource control
RRCS SR RRC setup success rate
RRQ registration request
RSRP reference signal received power
RSRQ reference signal received quality
RSSI received signal strength indication

SAT service average throughput
SC subcarrier
SINR signal-to-interference-plus-noise ratio
SMT service maximum throughput
SNR signal-to-noise ratio
SON self-organizing network
SP success probability
SVD singular value decomposition

TBS transport block size
TDD time-division duplex
TR target
TTI transmission time interval
TTT time-to-trigger
Tx transmission

UE user equipment
UL uplink

VoIP voice over IP

xxiii



Part I

Introduction and Background

1



Chapter 1

Introduction

1.1 Motivation and Objectives

With the emergence of new wireless devices and applications, there has been a dramatic

increase in demand for radio spectrum and network capacity over the past few years. This

exponential trend, which is expected to continue in the coming years, together with the

high costs of deploying additional base stations (BSs), motivate the development and com-

mercialization of new types of wireless networks with a large number of network elements.

These developments are expected to increase network management complexity by orders

of magnitude, particularly so because these technologies release the network elements from

tight network control. Efficient network management becomes a crucial priority for smooth

network operation, while it accounts for a fairly significant fraction of network operating

costs. The principal objective of SON is to significantly reduce the human interventions,

and with it the capital and operation expenditures: less manual effort for planning, con-

figuring, optimizing and maintaining provides clear competitive advantages in the mobile

business.

Existing approaches to network management and self-organization are inadequate to

cope with the growth of autonomous network elements and a paradigm shift is necessary

in order to prevent a slowdown in network development due to that inadequacy. How to

extract knowledge about the network states and build predictive models from large amount

of collected data poses one of the biggest challenges for self-organizing wireless networks

because maintaining perfect global network information at the level of autonomous network

elements is simply illusive in large-scale, highly dynamic wireless networks. Another big

challenge is a network-wide optimization of isolated SON functionalities to identify and

avoid conflicts of different SON functionalities as well as to improve the efficiency of the

total algorithmic machinery on the network level.
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Many works have been carried out on the optimization of SON use cases in the EU

FP7 SOCRATES project [SOC08b, SOC08a, SOC09, ALS+08]. However, self-organization

has not been sufficiently studied in the context of erroneous and incomplete local informa-

tion, and possibly conflicting and abstractly defined objectives of different SON function-

alities. Such a network perspective is necessary to uncover potential objective conflicts of

different use cases, identify procedural synergies on the network level and provide insights

in infrastructural and dimensioning requirements of multiple simultaneously enabled SON

functionalities.

The ongoing developments show a clear trend to rethink SON and essentially redesign

wireless network management by incorporating statistical learning, sensing, control and op-

timization theory principles; these fields are mature now and have well-defined techniques

and metrics. This thesis exploits these methods to deliver novel approaches to the challenge

of extracting knowledge from the network at a node level, developing node awareness about

network surroundings, and leveraging it to drive the system to a desired operational point

in a self-coordinated fashion, with the goal of reducing human involvement in network oper-

ational tasks for 3rd generation partnership project (3GPP) long-term evolution advanced

(LTE-A) and beyond. We also develop multi-objective algorithms to jointly optimize dif-

ferent SON functionalities by considering network-wide interactions between them. The

following network functionalities lie in the focus of this thesis:

• Outage detection: The objective is to automatically detect and localize unpredictable

failures from collected performance measurements feedback without a priori knowledge

at network elements.

• Supervised network state inference and anomaly detection: We target efficient net-

work state monitoring and proactive cell anomaly detection by incorporating a priori

knowledge based on historically collected information.

• RACH optimization: The aim is to provide a sufficient number of random access

opportunities for any user equipments (UEs) or mobile devices operating within the

cell, by reducing the preamble detection miss probability and contention probability

of the new arrivals.

• Mobility robustness optimization: The objectives are to detect handover (HO)-related

radio link failures and to recognize an inefficient use of network resources, and to

reduce HO-related failures and the inefficient use of network resources due to unnec-

essary or missed handovers.
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• Load balancing: The objectives are to identify the congested areas, to cope with

the unequal traffic load, and to achieve load balancing with minimum number of

handovers. The basic idea is to divert traffic in one (possibly congested) area to other

(non-congested) areas by adjusting the mobility parameters.

• Coverage optimization: The objectives are to detect coverage holes based on the anal-

ysis of coverage related parameters like call drops and failures on random access chan-

nels, and to compensate the detected coverage holes by adjusting the network control

parameters such as transmission power and antenna downtilt.

• Capacity: The aim is to enhance capacity of the existing network through the reallo-

cation of wireless resources and power control for the affected BSs. To accommodate

the asymmetric uplink and downlink traffic with mixed service types, our interest lies

in the improvement of joint uplink and downlink performance.

1.2 Approach

In this thesis, we exploit the statistical learning, detection and optimization theory principles

to design the following two types of SON functionalities:

• Cognition, learning and detection: Functionality of a network element with which it

gradually becomes aware of its surroundings, and makes accurate and robust decisions

under abnormal network states.

• Multi-objective optimization in high dimensional space: Functionality of a network

element with which it jointly optimizes interrelated or conflicting performance metrics

over interacting variables in a certain SON use case, or between multiple interacting

SON use cases.

The general framework composed of the Network State Classifier/Estimator/Predictor

and the Network Optimizer is shown in Fig. 1.1. The former function module collects the

measurements, feedback and the extracted key performance indicators (KPIs) from the net-

work, and achieves network inference, awareness and fast detection of the network anomalies.

If one or more network anomalies are detected, the Classifier/Estimator/Predictor sends a

message to the optimizer to trigger the corresponding self-healing and self-optimization func-

tionalities. The module also learns from the collected data the mathematical and statistical

model of the complex network system, and further provides the model to the optimizer for

the task of network performance optimization. The latter function module, i.e., the opti-

mizer, performs individual or multiple SON functions, that are triggered by the learning
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Optimizer 

Figure 1.1: Framework of learning and optimization in SON

module, by leveraging the extracted information and inferred mathematical model from the

learning module.

The above mentioned self-organizing functionalities call for the development of stochastic

protocols/algorithms that operate on a relatively large time scale, and therefore are based

on the statistics rather than the actual information of all or some of the underlying random

processes.

The work presented in this thesis provides novel ideas, mathematical models, optimiza-

tion tools and related building blocks for network state inference, classification, anomaly

detection, and self-optimization of multiple SON use cases. A comprehensive study covers

five most challenging SON use cases: cell outage detection, RACH optimization, mobility

robustness optimization, mobility load balancing, and coverage and capacity optimization.

A variety of mathematical tools for modeling and optimization are developed, covering a

wide range of techniques in statistics, data analysis, matrix algebra, and functional analysis.
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Figure 1.2: Content and methodology of material

1.3 Outline and Contributions of the Thesis

Fig.1.2 shows the roadmap for this thesis, which consists of five parts, dealing with pre-

requisites and individual aspects of SON in particular with respect to self-healing and self-

optimization. Part I provides an introduction and background knowledge on SON including

the self-healing and self-optimization functions. Note that the related works and the state-

of-the-art are investigated for distinct SON functionalities in each chapter respectively. In

Part II we present the self healing algorithms for cell outage detection and network anomaly

detection. Self optimization algorithms for use cases RACH optimization, mobility robust-

ness optimization and mobility load balancing are presented in Part III. In Part IV we

present the multi-objective optimization algorithm for joint optimizing of coverage, capac-
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ity and load balancing, and the approach for joint uplink and downlink optimization for

flexible duplex-enabled fifth generation (5G) networks. The final conclusions and the out-

look are presented in Part V.

This thesis begins with the introduction and background of SON. In Chapter 2, we

introduce the definitions of the commonly used KPIs and network measurements according

to the 3GPP standardization, as well as the objectives of the self-healing and the self-

optimization functionalities. We also address the interaction and conflicts between the

SON functionalities, and the challenges for joint optimization of multiple SON use cases.

Part II presents the self-healing algorithms for detecting two types of network anoma-

lies. The first type of anomaly is usually caused by an unexpected operation fault as a rare

event. Such an event is difficult to detect due to the lack of a priori knowledge. Chapter

3 presents a novel cell outage detection algorithm with composite hypothesis testing based

on statistics and performance metrics, which enables the evolved Node B (eNB) to detect

an outage of a neighbor cell, and is applicable in the lack of exact knowledge of the fault

event. The second type of anomaly is caused by performance degradation, where a priori

knowledge of various classes of anomalies can be found in the dataset. In Chapter 4 we

propose a framework of proactive cell anomaly detection based on dimension reduction and

fuzzy classification techniques. By associating the new network state to the SON use case-

related clusters, we can timely detect the network anomaly and further provide guideline

for self-optimizing functionalities to deal with the interaction and conflicts.

Parts of the material in this chapter were previously published in [2,10].

Part III focuses on the optimization of individual SON use cases. Chapter 5 aims

at improving RACH procedure by maximizing throughput or alternatively minimizing the

user dropping rate. Protocols based on minimization of the state-dependent stochastic drift

for Markov chains are proposed to exploit the information from measurements and user

reports in order to estimate current values of the system unknowns and broadcast global

action-related values to all users. Chapter 6 exploits the framework of multivariate stochas-

tic processes to develop a novel method of successively choosing a sequence of multivariate

training points for mobility robustness optimization (MRO). Chapter 7 suggests a novel

decentralized algorithm for load balancing in the downlink based on the solution of a mixed

integer optimization problem solved using Lagrangian - but not Linear Programming - re-

laxation, which allows the solution to be binary for the user assignment variables.

Parts of the material in this chapter were previously published in [3,4,14].
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Part IV solves challenges in the joint optimization of multiple SON use cases or ob-

jectives by coordinately handling multiple control parameters. Chapter 8 aims to ensure

efficient network operation by a joint optimization of coverage, capacity and load balancing

based on the axiomatic framework of standard interference functions. To provide a service-

centric network optimization, Chapter 9 proposes an optimization algorithm to jointly opti-

mize the uplink and downlink bandwidth allocation and power control in a flexible duplex-

enabled next generation wireless networks, using the fixed point approach for nonlinear

(contraction) operators with or without monotonicity.

Parts of the material in this chapter were previously published in [15,16].

In Part V, we summarize the main findings and conclusions, and discuss open research

questions for future research.

Further results not included in this thesis

During my time at Fraunhofer Heinrich Hertz Institute and Bell Laboratories, we work

on a broad range of problems which leverage context information to forecast the evolution

of network conditions and, in turn, to improve network performance in the next generation

wireless network enabled by disruptive architectures and new technologies. The following

publications should be highlighted and represent a good overview of the different aspects,

although they are not included in this thesis.

• Predictive modeling for proactive optimization. Anticipatory networking extends the

idea to communication technologies by studying patterns and periodicity in human

behavior and network dynamics to optimize network performance. In [17], we identify

the main prediction and optimization tools adopted in this body of work and link

them with objectives and constraints of the typical applications and scenarios. Un-

derstanding human mobility is an emergent research field, especially in the last few

years, that has significantly benefited from the rapid proliferation of wireless devices

that frequently report status and location updates. In [7,23], we propose frameworks

for predicting base station identification (ID) and staying time by using the variable

order Markov models which includes a variety of universal lossless compression algo-

rithms. The predicted mobility and trajectory-related context is used in [1,5,6,18] to

derive closed-form expressions of outage probabilities related to the events of too-early

and too-late HO. By minimizing the weighted sum of the two outage probabilities, we
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can achieve a good trade-off between minimization of HO-related radio link failures

and reduction of unnecessary HOs.

In [8,22], we develop predictive models of the physical wireless channel, i.e., the channel

quality and its specific parameters, by exploiting spatial and temporal correlation in

a Bayesian framework, so that it is possible either to take advantage of future link

improvements or to counter bad conditions before they impact the system.

Despite the aforementioned works obtaining promising results for predicting lower-

layer physical radio propagation-related metrics, in [9,19–21] we investigate functional

time series prediction methods for various higher-layer performance metrics, including

the transport block size, number of required physical resource blocks, and modulation

and coding schemes.

• Towards 5G technologies. In the 5G era, besides the support for mobile broad-

band (MBB), the network systems should also manage machine type communications

(MTC), which are mostly characterized by small packet transmissions, and have very

different requirements from MBB traffic. For example, two representative use cases

of MTC are massive machine communications (MMC) and mission critical communi-

cations (MCC). Handling new types of traffic has become a challenging task.

In [12], we aim at developing a true user-centric approach that provides a flexible

tradeoff between mixed types of services (where UEs generate either MBB or MCC

traffic in both uplink and downlink) to meet their specific requirements in both uplink

and downlink for dynamic time-division duplex (TDD) systems. The formulation of

a convex optimization problem takes into consideration the individual requirements of

each single user in terms of sustainable latency and desired throughput, thus imple-

menting a real user-centric scheduling approach to jointly optimize: a) the duplexing

mode, i.e., either downlink or uplink, b) the transmission time interval (TTI) length,

and c) the UEs to be served and the resources allocated in each TTI.

In [11, 13], we deal with the always-on applications and MTC which generate new

types of background traffic, being more sporadic in nature. In [13], we analyze the

tradeoff between the connected and idle states with respect to energy consumption

and signaling cost, and develop a closed-form mathematical model of state transition

process, based on the framework of alternating renewal process. The novel concept of

user-centric mobility tracking area is proposed in [11], to minimize the core network

signaling related to connection transitions, paging and handover.

A complete list of all publications can be found in the appendix.

9



Copyright Information

Parts of this thesis have already been published as journal articles and in conference and

workshop proceedings as listed in the publication list in the appendix. These parts, which

are, up to minor modifications, identical with the corresponding scientific publication, are

©2011-2016 IEEE.

10



Chapter 2

Background

SON is essential for today’s complicated cellular networks to configure, organize, optimize

performance, and to provide self healing capabilities when faults occur. The main function-

ality of SON includes: self-configuration, self-optimization and self-healing [3GPa]. Self-

configuration is defined as the process of automatic installation and configuration of the

newly deployed nodes. Self-optimization collects measurements and KPIs to auto-tune the

control parameters to optimize the network performance. The features of self-healing in-

clude automatic detection and removal of failures and automatic adjustment of configuration

parameters. In the following we introduce the concepts of KPIs and SON functionalities,

and the interactions and conflicts between SON functionalities.

2.1 Key Performance Indicators and Network Measurements

The inference of the network states, anomaly detection and self-optimization are based

on the extracted knowledge from the KPIs and reported measurements. Various KPIs

are defined to describe the accessibility, retainability, integrity, availability, and mobility

of the network [3GPb, 3GPc]. Network measurements, on the other hand, indicate the

network environment, including the radio propagation environment and network traffic.

The KPIs are collected at different planes or interfaces and the measurements are measured

and reported at UE or eNB.

2.1.1 Control Plane KPIs

Accessibility KPIs measures the probability whether services requested by a user can be

accessed within specified tolerances in the given operating conditions. One of the main

procedures for accessibility KPIs is the radio resource control (RRC) connection. RRC

setup success rate (RRCS SR) can be calculated for service or signaling respectively, using
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the formula

RRCS SR :=
#RRC Connection Success

#RRC Connection Attempt
× 100%, (2.1)

where the symbol # denotes “the number of”hereafter. Other important accessibility KPIs

are E-UTRAN radio access bearer setup success rate (ERAB SR) and call setup success

rate (CS SR). Note that here the E-UTRAN radio access bearer (E-RAB) includes both

the E-RAB radio bearer and S1 bearer.

Retainability KPIs are used to evaluate the network capability of retaining services

requested by a user for a desired duration once the user is connected to the services. One

example is the call drop rate (CDR) for voice over IP (VoIP). Any abnormal release on

E-RAB causes call drop and is counted into the CDR, given by

VoIP CDR :=
#VoIP ERAB Abnormal Release

#VoIP ERAB Release
× 100%. (2.2)

Excluding CDR of VoIP, the retainability KPIs also include CDR for other data service.

Mobility KPIs are crucial for the user’s experience. The metrics indicating the frequency

of HOs are defined based on the HO types: intra-frequency, inter-frequency, and inter-radio

access technology (RAT). The handover (outgoing) success rate (HOO SR) and handover

(incoming) success rate (HOI SR) are defined as

HOO SR :=
#Outgoing HO Success

#Outgoing HO Attempt
× 100% (2.3)

HOI SR :=
#Incoming HO Success

#Incoming HO Attempt
× 100%. (2.4)

Note that HOO SR can be defined for different types of inter-RAT HO.

The metric of handover ping-pong rate (HO PPR) indicates the level of redundancy of

the handover event based on the counting of ping-pong handovers. Ping-pong handover is

a potentially undesirable phenomenon, in which the terminal performs frequent handovers

between the same pair of cells back and forth. We define the HO PPR as

HO PPR :=
#Ping-Pong HO

#Total HO Success
× 100%. (2.5)

Availability KPIs indicate the radio network availability rate. One possible KPI is the

call blocking rate (CBR), provided by

CBR :=
#Call Requests−#Admitted Request

#Call Requests
× 100%. (2.6)

2.1.2 User Plane KPIs

Integrity KPIs indicate the service quality provided to the end user. For example, service

average throughput (SAT) and service maximum throughput (SMT) (in kbit/s) are defined

for uplink (UL) and downlink (DL), and, for each QoS class identifier (QCI), respectively.
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2.1.3 X2 Interface KPIs

The utilization of the resource is evaluated by load per cell. We define load as the resource

block (RB) utilization rate, defined by

Load :=
#Occupied RB

#Available RB
× 100%. (2.7)

2.1.4 UE Measurements

In long-term evolution (LTE) or beyond radio networks, UE reports the measurements based

on the reference signal for various scheme of decision making, for example, cell selection,

power control and handover decisions. The most common measurements are given below.

UE sends reports of RRC measurement including reference signal received power (RSRP)

in a binned format ranging from −140 to −44 dBm with 1 dBm resolution.

Unlike RSRP, which is the absolute received strength of the reference radio signals,

reference signal received quality (RSRQ) is the signal-to-noise ratio. Both of them can be

used as the criterion for initial cell selection or handover. RSRQ is defined from −19.5 to

−3 dB with 0.5 dB resolution.

The calculation of RSRQ follows:

RSRQ = 10 lg
#RB× RSRP

RSSI
, (2.8)

where lg denotes the common logarithm of base 10, and received signal strength indication

(RSSI) is the DL noise level measured at the UE’s radio receiver antenna.

CQI is an indicator carrying the information on how good/bad the quality of communi-

cation channel is. In LTE, 15 values of CQI are defined, ranging from 1 to 15. The mapping

between CQI and modulation scheme (including QPSK, 16QAM and 64QAM), code rate,

and transport block size (TBS) is defined in [3GPe].

2.1.5 ENB Measurements

The traffic KPIs measured at eNB indicate the density of the users, including DL/UL traffic

volume, average number of users, and maximum number of users.

2.2 SON Functionalities

2.2.1 Self-Healing Functionalities

The self-healing aims at solving or mitigating the faults which could be solved automatically

by triggering appropriate recovery actions. The major functionality of self-healing is to

monitor the network states and to detect the anomalies, especially the cell outage [3GPd].
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• Cell outage detection and compensation. In the cell outage scenario, where there is a

loss of total radio services in the outage cell, all the UEs cannot establish or maintain

any of the radio bearers via that particular cell, i.e., all the UEs cannot establish the

RRC connection in the outage cell. The objective is to timely detect the problem

of cell outage and to detect the best set of cells that can compensate for the cell

outage. The possible parameters to be optimized are the antenna tilt and downlink

transmission power of the neighboring cells.

2.2.2 Self-Optimizing Functionalities

There are nine self-optimizing use cases defined in [3GPa]: coverage and capacity optimiza-

tion (CCO), energy savings (ES), interference reductions (IR), automated configuration

of physical cell identity (ACPCI), MRO, mobility load balancing optimization (MLBO),

RACH, automatic neighbor relation function (ANRF) and inter-cell interference coordina-

tion (ICIC). In this thesis we focus on the functionalities related to the following topics:

RACH optimization, mobility load balancing, interference reduction, mobility robustness

optimization and coverage and capacity optimization.

• RACH optimization. RACH is an uplink unsynchronized channel, used for initial

access or uplink synchronization. Random Access performance influences the call

setup delay, handover delay, data resuming delay, call setup success rate and handover

success rate. The objectives are reducing the delay and increasing the success rate.

• Load balancing. This use case aims at identifying the congested areas and achieving

load balancing with fair interference distribution and minimum number of handovers.

Algorithms need to be designed to adjust the distribution of the load by tuning the

handover and/or cell reselection parameters such as time-to-trigger (TTT), cell indi-

vidual offset (CIO) and hysteresis.

• Interference reduction. Capacity can be enhanced through interference reduction by

switching off those cells which are not needed at some point of time, in particular

home eNBs when the user is not at home. Possible solutions are automatic activation

and deactivation of cells.

• Mobility robustness optimization. Updating the mobility related parameters after

the initial deployment is too costly. The objectives are listed as following: 1) to

detect handover-related radio link failures (too late or too early) and to recognize

an inefficient use of network resources, and 2) to minimize the unnecessary handovers

which cause a waste of resource. Possible parameters to be optimized are the handover-

related parameters TTT, CIO and hysteresis.
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• Coverage and capacity optimization. Two main objectives are: 1) compensating the

detected weak coverage region and providing optimal coverage, and 2) enhancing the

capacity of the network. While coverage optimization has higher priority than capacity

optimization, the trade-off between the two is also a challenge in the optimization.

The outputs of the optimization function may include the antenna tilt and downlink

transmission (Tx) power.

The detection of the network anomalies related to different SON functionalities are

based on a set of the KPIs and measurements, while the automatic optimization of the

network is performed by tuning a set of control parameters. Table 2.1 illustrates the SON

functionalities and their corresponding crucial KPIs and possible control parameters.

2.3 Interactions between SON Functionalities

From Table 2.1, we can observe strong interactions and dependencies between the SON

functionalities. These interactions or dependencies can be categorized in the following three

types:

• Trigger. The first functionality triggers other functionalities that do not need to be

coordinated. In Fig. 2.1, Algorithm A adjusts Control Parameter 2, which influences

KPI 1, 2 and 3, and then triggers Algorithm B as a “side effect”. An example is

that triggering algorithm for CCO requires optimization of the control parameters

DL Tx power or/and antenna tilt, which may lead to unbalanced load, or too-early

(or too-late) handover problem, and may further trigger algorithms for MLBO or/and

MRO.

• Co-operate. The degradation of the same set of KPIs triggers multiple functionalities,

that need to coordinate with each other. In Fig. 2.1, degradation of KPI 2 may trigger

both Algorithm A and B. The challenge is how to coordinate both functionalities to

maximize the desired performance metrics without decreasing the others. For example,

increase of CDR may trigger both CCO and MRO, because the radio link failure could

be caused by either poor coverage at the cell edge, or the inappropriate configuration

of handover parameters. The objective is to enhance the coverage, while still satisfying

the requirements of the mobility-related KPIs.

• Co-act. Different functionalities require to optimize the same set of control parame-

ters, which may lead to continuously conflicting actions. For instance, both Algorithm

A and B in Fig. 2.1 optimize Parameter 2. Coordination between the two functional-

ities is needed to avoid conflicting outputs. In practical system, Table 2.1 shows that
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Table 2.1: SON FUNCTIONALITIES AND CORRESPONDING PARAMETERS
Functionality KPI and Measurement Control Parameter

RACH optimization

· Success rate · Tx power
· Drop rate · Backoff probability
· Detection miss rate · Preamble allocation
· HOI SR

Cell outage detection and
compensation

· HOI SR · Antenna tilt
· RRCS SR · Tx power
· CS SR
· ERAB SR
· DL/UL traffic volume
· Average/maximum num-
ber of users
· RSRP/RSRQ distribu-
tion

Coverage and capacity op-
timization

· VoIP CDR · Tx power
· Data service CDR · Antenna tilt
· UL/DL SAT · Beamforming parameters
· UL/DL SMT
· RSRP/RSRQ distribu-
tion

Mobility load balancing

· Load · TTT
· CBR · CIO
· SAT · Hysteresis
· RRCS SR · Tx power
· DL/UL traffic volume · Antenna tilt
· Average/maximum num-
ber of users

Interference reduction

· SAT · BS on/off
· SMT · Tx power
· Load
· RSRP/RSRQ distribu-
tion

Mobility robustness opti-
mization

· HOI SR · TTT
· HOO SR · CIO
· HO PPR · Hysteresis
· VoIP CDR
· Data service CDR
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Part II

Self-Healing
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Chapter 3

Cell Outage Detection with

Composite Hypothesis Testing

In this chapter we present a novel cell outage detection algorithm based on statistics and

performance metrics, which enables an eNB to detect an outage of a neighbor cell. The

algorithm is a weighted combination of three hypothesis tests based on: 1) the distribution

of the CQI, 2) the time correlation of the CQI differential, and 3) the registration request

(RRQ) frequency. The weights of the combined test are functions of the predicted traffic

load in neighboring cells, which is motivated by the fact that the reliability of an individual

test depends on the load state. To detect the change-point in the CQI distribution, we use

an efficient discriminant function related to the “universal code” proposed by [Ziv88], which

can be shown to be asymptotically optimal in the sense of the modified Neyman-Pearson

criterion. The simulation results indicate that the proposed algorithm can detect the outage

problem in a real-time and reliable manner.

Parts of this chapter have already been published in [2].

3.1 Motivation

Reliability and disposability are ones of the most important requirements in SONs. In this

work we focus on the challenge of detecting a cell outage, which covers for instance the

detection of sleeping cells or poor service in a cell caused by hardware and software failures,

or external failures such as electrical power outage. Although a great deal of effort has been

spent, the problem remains to design fast and robust cell outage detection algorithms. When

developing such algorithms, a system designer faces several inherent challenges including:

• (Universality) A cell outage is usually caused by an unexpected operation fault that

is a rare event.
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• (Detectability) It may take too long for a base station to realize that there is a service

outage in its cell.

• (Separability) It is in general difficult to separate a cell outage from other faulty events.

As far as universality is concerned, we need an algorithm that efficiently solves the

hypothesis testing problem when at least one of the probability measures is unknown. Such

problems are classified as composite hypothesis testing (CHT) problems, to which Bayesian

or conventional hypothesis testing methods are not directly applicable because of the lack

of a priori probability for faulty states. In this paper, we apply a promising CHT method,

under which the abnormal state is reliably detected even if a priori knowledge of the fault

state is not known. The CHT method involves an application of the universal code length

function into the discriminant function. (Fast) detectability can be achieved by means of

detection algorithms performed in a distributed fashion by neighbor cells. The detectability

process involves the identification of a cell in outage. Finally, in order to separate a cell

outage event from other events, we combine three hypothesis tests to delineate the outage

in time and space.

Notice that there are three main observations at a base station if a neighbor cell is

in outage: 1) The CQI distribution (especially that of cell edge users) changes due to a

change in the interference structure, 2) the time correlation of the CQI differential increases,

and 3) the frequency of RRQ connection reestablishment requests from users of an outage

cell increases. Our algorithm is a weighted sum of hypothesis tests based on the three

observations, where the weights depend on the predicted load of a neighbor cell to take into

account the fact that the reliability of each test depends on the cell load. Each eNB learns

its load profile and exchanges it with its neighbor cells, which in turn allows the cell to

estimate the load of its neighbor cells.

3.2 Problem Statement

Consider a sequence Xn = (xi)
n
i=1 ∈ A

n with each xi in a finite set A. The sequence obeys

one of the two statistical hypotheses

H0 : xi ∼ P0, i = 1, 2, . . . , n,

H1 : xi ∼ P1, i = 1, 2, . . . , n,

where P0 and P1 are two distinct probability distributions. We assume that Pi, i = 0, 1

belongs to a family of ergodic probability measures P, which includes all finite stationary

ergodic Markov processes of a finite order. Given an observation Xn, the problem is that
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of deciding whether its underlying source is P0 or P1. Let Pj(Xn), j = 0, 1, denote the

probability of a sequence Xn under Pj . A decision rule Λn is a set of sequence Xn such that

if Xn ∈ Λn, then Xn is classified under the distribution P1 (faulty state), otherwise under

the distribution P0 (healthy state). There are two types of errors:

• Type I (false alarm): Let P0(Λn) denote the probability of deciding P = P1 while P0

is true.

• Type II (misdetection): Let P1(Λn) denote the probability of deciding P = P0 while

P1 is true, where Λn denotes the complement of Λn.

Due to the trade-off between the two error probabilities, the objective is to minimize

one of them while constraining the other. If both P0 and P1 were known, then the Neyman-

Pearson lemma would provide an optimality criterion on decision rule Λn that minimizes

P1(Λn) under the condition P0(Λn) ≤ 2−λn for a given λ > 0 [CT91, pp. 305-306]. The

optimum test is called likelihood ratio test (LRT) and the optimal decision rule is given

by [CT91, pp. 304-309]

Λ∗n =

{
Xn :

1

n
logP1(Xn)−

1

n
logP0(Xn) ≥ Tn(λ)

}
, (3.1)

where log denotes the binary logarithm of base 2, Tn(λ) is a threshold function, depending

on n, λ, P0 and P1. However, in contrast to P0 can be learned, P1 usually remains unknown

because the cell outage events are rare and in-expectable. In this work, therefore, we assume

that P1 belongs to the family P, the hypothesis test is then P = P0 against a composite

alternative P ∈ P. Since the LRT is not applicable in this case, Hoeffding [Hoe65] first

formulated the problem by giving a generalized Neyman-Pearson criterion (for details see

Appendix C.1.1), which follows

Problem 3.1. Among all decision rules {Λn}n≥1 independent of the unknown P1, the prob-

lem is how to select a rule such that the type II error exponent − lim supn→∞
1
n logP1(Λn)

is maximized under the condition

− lim sup
n→∞

1

n
logP0(Λn) > λ. (3.2)

Note that Condition (3.2) means that the type I error exponent must be above some

predefined threshold λ > 0.
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3.3 Optimal Tests

Hoeffding [Hoe65] provided an optimal decision test that satisfies the criterion (3.2), by

proving that a set of sequences whose Kullback-Leibler (KL) divergence from the healthy

state hypothesis distribution P0 is larger than λ defines an optimal set of hypothesis tests.

In this section, we briefly describe the approach of [Ziv88], which simplified the practical

implementation of Hoeffding’s test by using the Lempel-Ziv algorithm.

Let the decision rule Λn be determined by a function h : An → R such that Λn = {x :

h(x) > 0}, where x , Xn for ease of notation. This function is called the discriminant

function [Han81]. As P0 can be estimated by the training samples but P1 is unknown, the

discriminant function depends only on P0(·) and x, and is of the form

h(x, λ) =
1

n
(− logP0(x)− u(x))− λ . (3.3)

Here and hereafter, λ is a predefined threshold, and u(x) is the length function of a

universal code. Note that a code c(x) of x is a mapping from An to a set of the binary

sequences and the length function u(x) has to satisfy the Kraft’s inequality :
∑

x∈An 2−u(x) ≤

1 [CT91, p. 82]. Roughly speaking, a code is said to be universal for the family P if, for any

source with probability measure P ∈ P, the average code length converges to the entropy

of P as n tends to infinity [Ziv88] (for details see Appendix C.1.2).

The following theorem for optimal discriminant function h(x) = h(x, λ) is proved in

[Ziv88] by exploiting Kraft inequality and the properties of universal codes with respect to

the length function u(x).

Theorem 3.1 ( [Ziv88]). Let D(P1||P0) denote the KL divergence between two probability

distributions P1 and P0 [CT91], and let u(x) be the length function of a universal code for

class P. We define

h(x, λ) ,
1

n
(− logP0(x)− u(x))− λ. (3.4)

For every P0(·), P1(·) ∈ P, the type I error is then constrained by

P0 (h(x, λ) > 0) ≤ 2−λn, (3.5)

and the successful detection probability satisfies

lim
n→∞

P1 (h(x, λ) > 0) ≥ 1− ε (3.6)

for 0 ≤ ε < 1 whenever

D(P1‖P0) > λ. (3.7)
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3.4 System Model

In what follows, Um is a set of UEs in active mode served by eNB m, Sm denotes a set of

neighbor cells s ∈ Sm, s 6= m of cell m, Em is the class of cell edge UEs served by eNB m, and

Vm is used to denote a set of UEs which provides statistics for detection algorithm at eNB

m. In a special case, we have Vm = Um or Vm = Em. In this study, we consider a cellular

wireless network, in which each eNB, say eNB m, collects CQI reports from UEs i ∈ Vm

and the number of RRQs periodically. The report intervals are labeled by n, l, r ∈ N+ and

are assumed to be larger than the channel coherence time. We use t, τ ∈ R to denote the

continuous time, while tn is the time point at which the n-th interval ends. Therefore,

the nth report interval corresponds to the measurements at time t with tn−1 < t < tn.

Furthermore, we assume that for every new RRQ, the ID of the preceding cell is known.

ENBs cooperate in the sense that they learn their traffic load profiles per weekday and

exchange them with the neighboring eNBs. The cell outage detection algorithm has a

decision latitude of M report intervals and is based on the measurements and statistics of

CQI reports, RRQs and traffic loads, which is discussed in the following.

3.4.1 Statistics Relevant to CQI Reports

CQI is a mapping from the signal-to-interference-plus-noise ratio (SINR) observed by a user

to an N -bit integer (e.g., N = 4 for LTE system). In our setting, in time interval n, each user

i ∈ Vm(n) reports its current CQI Qi(n) to the serving eNB. These reports are collected for

a sufficiently long window of W time intervals QW
i (n) = (Qi(l))

n
l=n−W+1 to generate a his-

togram Qi at the n-th time interval, which serves as the baseline (healthy state) distribution.

We drop the time index for brevity and use Hq
i ≡ H

q
i (n) = (Hq

i,1(n), . . . , Hq
i,2N

(n)) to denote

the histogram. Throughout the work, it is assumed that if Hi,j = 0, then Hi,j = Hi,j + ε for

some sufficiently small ε� 1. Finally, the histogram is normalized to yield
∑2N

j=1H
q
i,j = 1.

Instead of computing an individual histogram for each user, we can alternatively consider

a weighted sum of the CQIs reported by all users

QΣ(n) =
∑

i∈Vm(n)

αiQi(n) (3.8)

where αi ≥ 0 is a weight of user i with
∑

i∈Vm
αi = 1. It reflects the relevance of a user in

the sense that larger weights are assigned to cell edge users since the inter-cell interference

is expected to have the strongest impact on the CQIs of such users. The histogram of QΣ

is denoted as Hq = (Hq
1 , . . . , H

q
2N

).
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Finally, we consider the CQI differential of user i defined to be dQi(n) = Qi(n)−Qi(n−

1). We capture the time correlation of the CQI differential by

Cor(n) =
∑

i∈Vm(n)

∑

j∈Vm(n),j 6=i

dQi(n)dQj(n), (3.9)

and let Hc = (Hc
1, . . . , H

c
2N

) be the histogram of Cor. An alternative to (3.9) is to consider

the histogram of

Cor(n) =
∑

i∈Vm(n)

dQi(n). (3.10)

An example of the histograms of CQI and CQI differential are shown in 3.1.

3.4.2 Statistics Relevant to RRQs

A user i that has been served by s sends a RRQ to cell m if the connection to s is lost and

the user requires a handover to m. We defined the RRQ frequency to be

dfs(n) =
1

n−X + δ
(3.11)

where X is the time index of the last RRQ, δ � 1 is a parameter used to avoid zero in the

denominator. The corresponding histogram is then Hf
s = (Hf

1,s, . . . , H
f
2N ,s

).

Alternatively, we can use the average number of RRQs per time interval, which is cal-

culated by averaging the number of RRQs over a short window of w intervals

As(n) =

w−1∑

l=0

as(n− l) (3.12)

where as(n) is the number of RRQs from neighboring cell s at time n. The histogram of

As is denoted by HA
s = (HA

1,s, . . . , H
A
2N ,s

).

3.4.3 Statistics Relevant to Traffic Load

Each eNB learns its daily traffic load profile by averaging the load measurements from a

number of week samples, and exchanges the profile with its neighbor cells, so that a cell can

predict the load of any neighbor cell with exchanged profiles. Define the load of the j-th

week sample of the d-th weekday in cell s, where 1 < d < 7, as follows.

Gj
s,d(t) =

1

T

∫ t

t−T
Lj
s,d(τ)dτ (3.13)

where T is either some time window or decision latitude (M report intervals). L(τ) is the

actual load at time τ . The load profile for d-th weekday in cell s is given by

Gs,d(t) =
1

J

J∑

j=1

Gj
s,d(t). (3.14)

An example of a load profile is shown in Fig. 3.2.
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3.5 Algorithm

We propose a cell outage detection algorithm as a weighted combination of three hypotheses

based on: 1) the distribution of CQI, 2) the time correlation of CQI differential, and 3) the

RRQ frequency. The weight of each discriminant function is calculated by a function of

load, considering that the performance of each individual test depends on the load. In the

following we present each individual test separately to present the final combined test in

the last subsection.

3.5.1 Hypothesis Test on Distribution of CQI

This test is designed for early warning of changes in the distribution of CQI caused by

neighbor cell outage. The approach introduced in Section 3.3 is applicable because: 1) The

CQI values are taken from a finite set {1, 2, . . . , 2N}, 2) Although the CQI distribution under

faulty state P1 is not known, we can still assume that it belongs to a family of distributions

P, where P0, P1 ∈ P. The decision latitude is M report intervals, M � W , where W is a

long window to learn the histogram.

Denote QM
i (n) = (Qi(l))

n
l=n−M+1 as the CQI reports of user i in the last M intervals.

The discriminant function (3.3) for user i takes then the following form

h
(
QM

i (n), λi
)

=
1

M

(
− logP

(
QM

i (n)
)
− ui

(
QM

i (n)
))
− λi (3.15)

where P
(
QM

i (n)
)

is given by

P
(
QM

i (n)
)

=
n∏

l=n−M+1

Hq
i,Qi(l)

. (3.16)

The second term ui
(
QM

i (n)
)

on the right-hand side of (3.15) is the length of a universal

code of the sequence QM
i (n). In this work we use the code introduced by Davisson [Dav73],

inspired by Lempel-Ziv coding scheme [ZL78]. The calculation of the length function, which

is based on finding the recurrence relations among the blocks, is provided in Appendix

C.1.2. Assuming that M is divisible by B ∈ N+, the code length function ui
(
QM

i (n)
)

can

be written as follows

ui
(
QM

i (n)
)

= −
n−B∑

r=n−M+1

vi,r
(
QM

i (n)
)

log
(
vi,r
(
QM

i (n)
))

+ γB log(M/B + 1) (3.17)

where the parameter γ satisfies γ ≤ 2λM to keep the discriminant function optimal [Ziv88],

and

vi,r
(
QM

i (n)
)

=

M/B∑

m=1

1
{

(Qi(l))
r+B−1
l=r = (Qi(l))

r+(m+1)B−1 mod M
l=r+mB mod M

}
. (3.18)
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The last term λi in (3.15) is chosen to fulfill (3.7), but it is emphasized that the divergence

cannot be derived since P1 is not known. Therefore we use instead the negative entropy of

the histogram Hq
i , which is a tighter upper bound of λi

λi ≤
2N∑

j=1

Hq
i,j logHq

i,j . (3.19)

Now using the discriminant function h(QM
i (n), λi) and the weights αi of users defined

by (3.8), the hypothesis test on CQI distribution becomes

H1 = 1 if
∑

i∈Vm(n)

αih
(
QM

i (n), λi
)
> 0. (3.20)

An alternative is to use (3.8) instead of the individual Qi(n) to simplify the algorithm.

In this case we formulate the discriminant function h(QM
Σ (n), λΣ) in an analog way, and the

hypothesis test is given by

H1 = 1 if h
(
QM

Σ (n), λΣ
)
> 0. (3.21)

3.5.2 Hypothesis Test on Time Correlation of CQI Differential

Another symptom of neighbor cell outage is a high correlation among CQI differentials

of different users, because a global influence on the CQI change is with high probability

caused by a neighbor cell outage. Let the arithmetic mean of CorM (n) = (Cor(l))nl=n−M+1

be denoted by CorM (n), which is the average correlation among CQI differentials of different

users over the last M time interval. The discriminant function h
(
CorM (n), Xc

)
to detect

a high correlation, constraining to a small type I error probability Xc, is chosen to be

h
(
CorM (n), Xc

)
= |CorM (n)− Ec| −

√
V arc

Xc
(3.22)

where Ec =
∑2N

j=1 jH
c
j is the expectation of Cor and V acc =

∑2N

j=1(j − Ec)2Hc
j is its

variance.

With this discriminant function in hand, the hypothesis test on time correlation of CQI

differential takes the form

H2 = 1 if h
(
CorM (n), Xc

)
> 0. (3.23)

It is easy to show by using the Chebyshev bound that this test satisfies the constraint

on the type I error probability

P0

(
h
(
CorM (n), Xc

)
> 0
)
≤ Xc. (3.24)
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3.5.3 Hypothesis Test on RRQ Frequency

An obvious indicator of a neighbor cell outage is an increase of the frequency of RRQs

received by an affected cell. Denote the RRQ frequency from a neighbor cell s ∈ Sm in the

last M intervals by dfMs (n) = (dfs(l))
n
l=n−M+1, with the arithmetic mean dfMs (n), and let

the discriminant function be defined as

h
(
dfMs (n), Xf

)
= |dfMs (n)− Ef

s | −

√
V arfs
Xf

(3.25)

where Xf is the threshold for type I error probability, Ef
s =

∑2N

j=1 jH
f
j,s is the expectation

of dfs, and V acfs =
∑2N

j=1(j − E
f
s )2Hf

j,s is the variance. An application of the Chebyshev

bound shows that the type I error probability is constrained by

P0

(
h
(
dfMs (n), Xf

)
> 0
)
≤ Xf . (3.26)

The hypothesis on RRQ frequency is therefore given by

H3 = 1 if max
s∈Sm

h
(
dfMs (n), Xf

)
> 0,

and s∗ = arg max
s∈Sm

h
(
dfMs (n), Xf

)
, (3.27)

where s∗ is the detected outage cell.

3.5.4 Combination of Hypothesis Tests

The decision on cell outage is made based on a hypothesis test that is a combination of the

hypothesis tests introduced in Sections 3.5.1,3.5.2, and 3.5.3. We formulate the test running

in eNB m on the d-th workday at time tn as follows.

H(d, tn) = 1 if max
s∈Sm

Hs(d, tn) > 0, (3.28)

and s∗ = arg max
s∈Sm

Hs(d, tn), (3.29)

Hs(d, tn) = max
s∈Sm

(
β
(
Gs,d(tn)

)

2
H1 +

β
(
Gs,d(tn)

)

2
H2 +

(
1− β

(
Gs,d(tn)

))
Hs

3

)
. (3.30)

In (3.30) the weight β is a monotone decreasing function of predicted traffic load Gs,d(tn)

to take into account the fact that the reliability of each test depends on the load state.

Accordingly, the tests on CQI statistics prevail if the cell s is predicted to be lightly loaded.

Since then the changes in RRQs is not significant and the test result on RRQs frequency

may not be reliable. In contrast, CQI statistics still provide enough information to make

reliable decisions (especially on the cell edge), because a neighbor cell outage definitely
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affects the interference structure in the observing cell. On the other hand, in case of a

heavily loaded cell, the RRQs test is more reliable than the CQI statistic tests due to a

large number of RRQs. A reasonable choice of the weight function is the normalized erfc

function. We define the average load of cell s at d-th workday to be

Gs,d =
1

24h

∫ 24h

τ=0
Gs,d(τ)dτ (3.31)

while the weight function takes the form

β(Gs,d(t)) = max

(
0.33,

1

2
erfc

(
Gs,d(t)−Gs,d

σ2

))
(3.32)

where σ is a tunable parameter to choose the sensitivity of the influence of load. As shown

in Fig.3.3, a small value of σ allows the algorithm to take a radical choice of weight (either

1 or 0.33) easily by deviating a little from the mean Gs,d. And a large value of σ allows a

smooth evolution of the weight function. If the load is zero, the RRQ frequency test does

not play a role because then the weight of H3 is zero.

3.6 Numerical Results

Simulations are done by implementing the algorithm into a LTE simulation environment

consisted of 19 regular hexagonal sites. The CQI and RRQ reports are updated per second

and the decision latitude M is a tunable parameter. The reports from the cell edge users

are collected, i.e., Vm = Em. We use the simplified version (3.8) and (3.10) to process the

statistics of CQI reports. The cell outage is generated by setting the transmission power of

a cell to zero at some time point.

Fig.3.4 shows that with a proper observation latitude, the hypothesis test on CQI can

detect the neighbor outage cell on time. The parameter γ in (3.17) is set to be 1. A

short latitude M = 50 leads to unreliable detection with all test results positive, while the

detection based on long observing window is more promising. However, there is always a

trade-off between the fast detection and reliability.

Table 3.1 records the test results of time correlation of CQI differential of the first

detection latitude after the cell outage happens. We notice that the traffic load, which

is indicated by user arrival rate, does not affect this test much, but a rigid type I error

probability threshold Xc makes the test more conservative to give a positive detection.

Table 3.2 shows the dependency of the RRQ frequency test on load and the threshold

Xf . The test is unreliable under light load state (low arrival rate) by giving the negative

results (misdetection). The threshold Xf works similarly as Xc.
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These results verify that when cell s is lightly loaded, the CQI statistic tests are more

reliable than the RRQ frequency test. Thus, our proposal of the weight function in (3.32)

is a reasonable choice, and the combination test is more robust than a single test.

TABLES

Table 3.1: HYPOTHESIS ON TIME CORRELATION OF CQI DIFFERENTIAL
Xc

Arrival rate 0.05 0.1 0.15 0.2
0.1 users/s 0.0593 0.1216 0.1470 0.1781
1 users/s 0.0623 0.0951 0.1217 0.4671
2 users/s 0.1121 0.1412 0.4627 0.6851

Table 3.2: HYPOTHESIS ON RRQ FREQUENCY
Xf

Arrival rate 0.05 0.1 0.15 0.2
0.1 users/s −0.0392 −0.0122 0.0441 0.0624
1 users/s 0.0923 0.1946 0.2400 0.2670
2 users/s 0.1441 0.2842 0.3462 0.3832
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Figure 3.1: Statistics of CQI

0 500 1000 1500
40

60

80

100

120

140

160

180

Active Mode Users

t [min]
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Chapter 4

Network State Awareness and

Proactive Anomaly Detection

In Chapter 3 we propose a scheme for cell outage detection using the composite hypothesis

testing method, which does not require the experts to have a priori knowledge. This is be-

cause, cell outage is a rare event, and the historical records may not be available before such

an event occurs. However, other types of network anomalies, which occur more frequently,

can be detected by exploiting the a priori knowledge. Thus, inference of network state

and detection of anomaly network behavior using a priori knowledge based on historically

collected information play important roles in the self-healing mechanisms for SON. In this

chapter, we propose a novel framework of efficient network monitoring and proactive cell

anomaly detection based on dimension reduction and fuzzy classification techniques. The

enhanced semi-supervised classification algorithm allows adaptation of new behavior pat-

terns, while incorporating a priori knowledge. The experimental results suggest that (i) our

proposed method proactively detects the network anomalies associated with various fault

classes, and (ii) the trajectory of the network states moving toward or away from a safe or

fault class can be visualized, using the projected data onto a low-dimensional subspace.

Parts of this chapter have already been published in [10].

4.1 Introduction

We focus on automatic anomaly detection and root cause identification based on the col-

lected KPIs , network measurements and control parameters using a priori knowledge in the

network. Most prior research in this area has focused on determining the cell performance

status by identifying the KPI degradation level [CLNS13,KG10,TLJ10], and providing the

outputs that indicate only the severity of the degradation. We are interested in obtaining

more information on classified network states associated with SON use cases, that can be

further used as guidelines on self-optimization functionalities.
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The major challenges to SON use case-related classification and anomaly detection are,

firstly, the high-dimension of the dataset of KPIs and, secondly, the strong interactions

and vague boundaries between the use cases. We propose a novel framework based on

dimension reduction and semi-supervised fuzzy classification techniques to overcome the

challenges. Our contributions are summarized as follows.

1) We select a set of metrics to characterize the network states, and show that the

data can be mapped to a much lower dimensional space by applying the principal

component analysis (PCA).

2) We enhance the kernel-based semi-supervised FCM algorithm introduced in [BP06]

by optimizing the kernel parameters. The enhanced algorithm is ideally suited to deal

with the vague knowledge about the classes, as it learns the hidden clustering pattern

related to the SON use cases, while incorporating a priori knowledge provided by the

experts.

3) We propose a proactive anomaly detection scheme based on the fuzzy classification

associated with fault classes.

4) The proposed algorithms are implemented in a LTE system-level simulator. Simu-

lation results show that the projection onto the first 3 principal components (PCs)

captures the majority of the variance, and that the pattern of use case-related clusters

can be observed. Thus, it is possible to visualize and to track the real-time network

states in the 3-dimensional space. By analyzing the cluster memberships of the newly

collected metrics, we can proactively detect the network anomalies.

4.2 Definitions and System Model

The data collected in the LTE and beyond cellular networks falls into three major groups:

control parameters, KPIs and network measurements [HSS12]. The control parameters,

such as transmission power and antenna tilt, are optimized by the self-organization solu-

tions. Various KPIs are defined to describe the performance of accessibility, retainability,

integrity, availability and mobility. The most interested KPIs are call drop rate, call block-

ing rate, throughput, traffic load, and mobility-related KPIs such as HO rate. Network

measurements are collected at both the eNB and the UE. The statistics extracted from the

network measurements indirectly reflect the traffic distribution and network environment.

For example, cell-specific measurement such as estimate of UE arrival rate provides the

information of the UE density. We jointly consider the KPIs and the extracted statistics

from the network measurements as network metrics. We then use a set of network metrics
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to characterize the network states, to indicate the network performance under given network

environment.

The task is to design flexible statistical methods for enhancing network awareness and

for detecting network anomalies at the locality of network elements, by using the available

data. We select D network metrics, and collect sample mk ∈ RD at the kth observing

period. Assume that we have collected a dataset of K historical samples D := {mk}
K
k=1

at an eNB. Let M := [m1 m2 . . . mK ] ∈ RD×K be the matrix formed by stacking the

samples as its column vectors, with each mk characterizing some network state.

To identify the network states, we classify them into clusters associated with different

labels. In practical system, some labels can be identified based on a priori knowledge (e.g.,

provided by human experts) collected through historical operations. For example, the label

“safe” is given to the samples if all KPIs satisfy the requirements for quality of service

(QoS), and the label “coverage hole” is given if a cell outage is detected. Assume that H

classes of labels are defined, and that a subset of the historical samples S ⊂ D is associated

with labels. For the rest of the samples, the associated labels are unknown. We define an

H × K binary matrix L := [lhk], where lhk = 1 if sample k is labeled with class h, and

lhk = 0 otherwise. Note that a sample is labeled with not more than one class, we have
∑H

h=1 lhk ≤ 1 for each k.

4.3 Algorithmic Framework

We propose the following two steps to group the high-dimensional network states into clus-

ters, taking into account the partially labeled samples.

1) Dimension reduction: The data of network metrics M is transformed into a new

dataset X ∈ Rd×K with much lower dimensionality d� D, while retaining the geom-

etry of the data, for the visualization purpose and for the efficiency of the classifier.

2) Semi-supervised FCM: The projected samples in dataset X are classified into C clus-

ters, by exploring the hidden structure in data with a certain limited fraction of labeled

pattern. Each cluster is associated with at most one class.

The above-mentioned two steps are described in Section 4.3.1 and 4.3.2 respectively. The

proactive anomaly detection based on the classification is introduced in Section 4.3.3.

4.3.1 Dimension Reduction

We explore PCA for dimension reduction, which can be interpreted in the way of minimizing

the reconstruction error between the original data and its estimates projected to the d-

dimensional affine subspace [Jol02]. The details of PCA are given in Appendix C.2.
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A classical solution to PCA via singular value decomposition (SVD) is as follows:

1) replacing each row of matrix M with z-scores for the row, to standardize the metrics

for feature scaling,

2) performing SVD of M , i.e., M = GΣW T ,

3) computing the solution X := (x1 x2 . . . xN ) ∈ Rd×N , where xk is the kth column of

the top d×K submatrix ΣdW
T
d of the matrix ΣW T . Note that xk as the transfor-

mation of the original data mk can also be computed as the kth column of the top

d×K submatrix GT
dM , where Gd is exactly the first d columns of G.

Matrix X is used for efficient classification in Section 4.3.2. Note that for d ≤ 3 the network

states can be visualized, which is a great advantage for monitoring the network performance.

4.3.2 Kernel-Based Semi-Supervised Fuzzy Clustering

The objective is to classify the K samples into C clusters, taking into account the limited

fraction of labeled samples associated with H classes of labels. The labeled pattern is given

in the binary matrix L as defined in Section 4.2. It is worth mentioning that each class h

may contain a set of clusters Ch 6= ∅ with cardinality |Ch| = Ch, such that
∑H

h=1Ch = C.

This is because, although the experts may provide a priori knowledge, the information is

incomplete and the classes are coarsely constructed. Introducing C ≥ H clusters achieves

fine classification and further improves the anomaly detection. Although each class has at

least one subordinate cluster, a cluster is associated with at most one class. If all samples

assigned to a cluster are unsupervised, the cluster is associated with none of the classes and

a new class is created. In this way we learn new classes to compensate for the incomplete

a priori knowledge.

We enhance the kernel-based semi-supervised FCM algorithm in [BLM05] by adapting

the kernel parameter, to optimize the cluster centroids V := (v1 . . .vC) ∈ Rd×C and par-

tition matrix U := (ui,k) ∈ RC×K , where each entry ui,k denotes the membership degree,

which indicates the probability that sample k belongs to cluster i. The kernel-based clus-

tering method is applied here, because it performs a nonlinear mapping that transforms

nonlinearly separable data (patterns) in the input space into their linearly separable coun-

terpart arising in the high-dimensional space. In our scenario, this corresponds to the strong

nonlinear interactions between the network states related to various SON use cases.

The augmented objective function, aiming to bring together labeled and unlabeled pat-

terns while subjected to the probabilistic constraints on membership degrees, is written
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as

J(U ,V ,λ) = α

C∑

i=1

K∑

k=1

u2i,k‖φ(xk)− φ(vi)‖
2

+ (1− α)
C∑

i=1

K∑

k=1

(ui,k − ũi,k)2‖φ(xk)− φ(vi)‖
2 −

K∑

k=1

λk

(
C∑

i=1

ui,k − 1

)
(4.1)

where λ := (λ1, . . . , λK)T denotes the Lagrangian multipliers, and the reference member-

ship ũi,k helps to optimize the membership using the labeling information in contrast to

ui,k as explained in (4.4). The mapping φ : Rd → RF is a (nonlinear) mapping from a

d-dimensnional space to F -dimensional space such that d � F . Note that an explicit rep-

resentation for φ is not required. Using the kernel trick [SS98, p. 38] in the inner product

space k(x,v) = φ(x)Tφ(v), and defining the Gaussian radial basis function kernel

k(x,v) := exp(−‖x− v‖2/σ) (4.2)

where σ > 0 is the kernel parameter, the distance between sample xk and centroid vi in the

projected feature space is given by

‖φ(xk)− φ(vi)‖
2 = k(xk,xk) + k(vi,vi)− 2k(xk,vi)

= 2(1− k(xk,vi)) (4.3)

Thus, substituting (4.2) and (4.3) into (4.1), the objective function J(U ,V ,λ, σ) depends

on variables {U ,V }, Lagrangian multipliers λ, and the kernel parameter σ.

To represent the labeled pattern, the reference memberships Ũ := (ũi,k) are iteratively

updated by optimizing the objective

Q(Ũ) =

H∑

h=1

K∑

k=1

δk


lh,k −

∑

i∈Ch

ũi,k




2

, ũi,k ∈ [0, 1] (4.4)

where δk :=
∑H

h=1 lh,k takes value one if sample k is labeled and zero otherwise. The

binary matrix L := (lh,k) indicating the labeling information is predefined according to the

a priori knowledge. The set of clusters associated with class h denoted by Ch is iteratively

updated depending on the partition matrix U as described later in this section. Ideally,

when optimizing Q(Ũ), the sum of the reference memberships of sample k to the clusters

associated with class h is one if sample i is labeled with class h, otherwise the sum is zero.

The algorithm consists of two iterative optimization phases:

• Optimize Q(Ũ) to update Ũ , and

• Optimize J(U ,V ,λ, σ) to update {U ,V , σ}.
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The solution based on the gradient descent and the coordinate descent methods is provided

as follows.

1) Optimization of Q(Ũ). The matrix Ũ is updated by

ũ
(n+1)
i,k = ũ

(n)
i,k − β

∂Q(Ũ)

ũi,k

= ũ
(n)
i,k + 2βδk

H∑

h=1

1
{i∈C

(n)
h
}


lh,k −

∑

j∈C
(n)
h

ũ
(n)
j,k


 (4.5)

where n refers to the index of iterations, 1{A} denotes the indicator function that takes value

one if event A holds true, and zero otherwise, and β > 0 is the step size that controls the

process of step-wise optimization over Ũ , which is optimized via backtracking line search.

In (4.5), set Ch is updated according to the partition matrix U . To derive Ch, we first

define a C ×K binary matrix B := (bi,k), such that bî,k = 1 if î = arg maxi ui,k, and zero

otherwise. Matrix B indicates whether a sample belongs to a cluster or not. We construct

matrix P := LBT ∈ RH×C , where ph,i is the number of samples in cluster i labeled with

class h. Let i ∈ Cĥ for each cluster i if ĥ = arg maxh ph,i. Note that Ch 6= ∅, if none of the

clusters is assigned to class h, then h is allowed to take a cluster îh = arg maxi ph,i/
∑C

i=1 ph,i

from the other class.

2) Optimization of J(U ,V ,λ, σ). The objective function is optimized by computing the

partial derivatives of (4.1) with respect to the parameters ui,k, vi, λk, and σ respectively

and performing the coordinate descent.

By setting ∂J(U ,V ,λ, σ)/∂ui,k = 0, we have

ui,k =
λk

4(1− k(xk,vi))
+ (1− α)ũi,k (4.6)

Setting ∂J(U ,V ,λ, σ)/∂λk = 0, we obtain the probabilistic constraint

C∑

i=1

ui,k = 1 (4.7)

Substituting (4.6) into (4.7), we derive

λk =
4
(

1− (1− α) ·
∑C

i=1 ũi,k

)

∑C
i=1 (1− k(xk,vi))

−1
(4.8)

We update ui,k by substituting (4.8) into (4.6), written as

ui,k =





(1− α)ũi,k +
1−(1−α)

∑C
j=1 ũj,k

∑C
j=1

1−k(xk,vi)

1−k(xk,vj)

if xk 6= vi

1 if xk = vi

(4.9)
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To update vi, we set ∂J(U ,V ,λ, σ)/∂vi = 0, which gives

vi =

∑K
k=1

(
αu2i,k + (1− α)(ui,k − ũi,k)2

)
k(xk,vi)xk

∑K
k=1

(
αu2i,k + (1− α)(ui,k − ũi,k)2

)
k(xk,vi)

(4.10)

To update u
(n+1)
i,k and v

(n+1)
i at the (n+1)th iteration, we use ũ

(n)
i,k , v

(n)
i , u

(n)
i,k and σ(n) from

the last iteration on the right side of the equations (4.9) and (4.10), respectively. Moreover,

note that in (4.10) variable vi also appears on the right side of the equation, a sequence of

updated vi is computed by the fixed point iteration.

Using gradient descent, the kernel parameter σ is iteratively updated as follows

σ(n+1) = σ(n) − ρ
∂J(U ,V ,λ, σ)

∂σ

= σ(n) + 2ρα

C∑

i=1

K∑

k=1

u2i,k
k(xk,vi)‖xk − vi‖

2

σ(n)
2

+ 2ρ(1− α)
C∑

i=1

K∑

k=1

(ui,k − ũi,k)2
k(xk,vi)‖xk − vi‖

2

σ(n)
2 (4.11)

where ρ > 0, similar to β in (4.5), is the step size.

The kernel-based semi-supervised FCM algorithm with adaptive kernel parameter is

provided in Algorithm 1. To determine the number of clusters C, we start with a sufficiently

large value of C(0), and fuse the clusters iteratively, if the distance between any pair of cluster

centroids is small enough.

4.3.3 Proactive Anomaly Detection

To associate the newly collected sample m′ to a class, the following steps are proposed:

1) computing the normalized value m̃′, with the mean and variance obtained from the

z-score in Section 4.3.1,

2) computing the projection onto PCs x′ = GT
dm

′,

3) computing the membership degree to clusters u(x′,vi) for i = 1, . . . , C with (4.9).

The class membership is defined as ωh(x′) :=
∑

i∈Ch
u(x′,vi), which indicates the probability

that sample m′ is associated to a class h. For real-time anomaly detection, we associated

the sample with class ĥ if ĥ = arg maxh ωh(x′).

Furthermore, by analyzing the trajectory of a sequence of recent collected samples

{xn−l, . . . ,xn}, we can predict the network anomalies. Define a metric of percentage change

for the class memberships νh,k := (ωh(xk)− ωh(xk−1)) /ωh(xk−1). Assume that xn is as-

sociated with the safe class h∗, i.e., h∗ = arg maxh ωh(xn). However, if the successive
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Algorithm 1: Kernel-based semi-supervised FCM with adaptive kernel parameter.

Data: Dataset {xk}
K
k=1, labeling matrix L

Result: Partition U , centroids V , kernel parameter σ
Initialization: number of classes H, number of clusters C(0), thresholds τ1, τ2, τ3, d0,
maximum number of iterations Nmax, C ← C(0);

while
(
C = C(0)

)
or (∃i 6= j such that dij < d0) do

Iteration step n = 0;

Standard FCM to entire dataset to compute initial U (0),V (0);

Determine C
(0)
h for all h using U (0), and C

(−1)
h = ∅;

Initialize Ũ (0) = U (0), σ(0) > 0;

while C
(n)
h 6= C

(n−1)
h for all h do

while ‖Ũ (n+1) − Ũ (n)‖ ≥ τ1 do

Compute Ũ (n+1) with (4.5)

while ‖σ(n+1) − σ(n)‖ ≥ τ2 do

Compute σ(n+1) with (4.11)

while ‖U (n+1) −U (n)‖ ≥ τ3 do

a) Compute V (n+1) with (4.10);

b) Compute U (n+1) with (4.9)

Update C
(n+1)
h for all h;

n← n+ 1;
if n ≥ Nmax then

break

Compute [dij ] where dij := ‖v
(n)
i − v

(n)
j ‖;

C ← C − 1

{νĥ,k}
n
k=n−l are positive for some fault class ĥ, while {νh∗,k}

n
k=n+1 are negative for the safe

class h∗, an alarm is triggered for the potential fault class ĥ.

4.4 Experimental Results

We apply the proposed algorithms to the data collected from an OFDMA-based LTE system-

level simulator aided by the IKR-Tools Library [SS10]. The IKR-Tool Library is an object-

oriented class library for event-driven simulation available in both C++ and JAVA. The

simulation is a wrap-around configuration of 7 hexagonal 3-sectored eNBs, with the LTE

carrier bandwidth of 10 MHz. The physical layer is abstracted by simplified models that

capture its characteristic with high accuracy and low complexity. The link measurements

such as pathloss, shadow fading and antenna gain are modeled according to 3GPP specifica-

tions [3GPj, Table A.2.1.1-2], while the fast fading is neglected. Proportional fair scheduling

algorithm with QoS constraints is implemented.

Two types of traffic are generated spatially uniformly on the playground: VoIP and
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data streaming traffic. The VoIP traffic has a QoS requirement of 30 kBit/s, while the data

streaming user has no such requirement. With probability 0.8 the generated traffic belongs

to the mobility group “pedestrian” with the speed of 3 km/h, and with probability 0.2 the

traffic is generated as “urban vehicular” with the speed of 30 km/h. The traffic generator

follows Poisson distribution, with configurable arrival rate for VoIP and streaming traffic.

Fig. 4.5 illustrates the pixel-based number of UEs and average SINR during 500 seconds.

4.4.1 Selected Parameters and Metrics

The network system is configurable by tuning a set of control parameters (e.g., antenna tilt

and transmit power) or a set of network variables (e.g., traffic arrival rate). The statistics

of network metrics are collected every 500 seconds. The selected parameters and metrics

are listed in Table 4.1.

1) Control parameters. Adaptation of antenna tilt and transmit power is the possible

solution to SON functionalities CCO, ES and IR. Optimization of HO-related parameters

TTT and hysteresis is among the possible solutions to MRO and MLBO.

2) Key performance indicators. The selected KPIs are among the most important in-

dicators for coverage, capacity and mobility-related performance. Note that here the load

indicator is defined as the fraction of the number of occupied physical resource blocks

(PRBs) to the total number of the PRBs.

3) Statistical network measurements. The selected statistical network measurements

indirectly reflect the network environment. We also include the statistics collected from

the neighboring cells, to consider the interference distribution and the coupling between the

sites. It is required that the neighboring eNBs exchange the following information with each

other: 1) estimates of UE arrival rate, and 2) the mean and variance of RSRQ distribution.

We abuse notation and compute the mean and variance of RSRQ distribution in cell b by

r̄b := (1/Kb) ·
∑

k∈Kb
rk and vb := (1/Kb) ·

∑
k∈Kb

(rk − r̄b)
2 respectively, where rk denotes

the average RSRQ value of user k over an observation period, and Kb denotes the set of

users served by cell b, with |Kb| = Kb. The mean and variance of RSRQ distribution in

all neighboring cells of cell b are calculated as r̄Nb
:= (1/K) ·

∑
n∈Nb

Knr̄n and vNb
:=

(1/K) ·
∑

n∈Nb
Knvn respectively, where Nb denotes the set of neighboring cells of cell b,

and K =
∑

n∈Nb
Kn. We consider the statistical distribution of RSRQ because it indirectly

indicates the signal and interference distribution.

4.4.2 Generation of Experimental Samples

The default parameters for the configuration settings are provided as follows: antenna tilt of

10 degrees, transmission power of 42 dBm, hysteresis of 0 dB and TTT of 256ms. To intro-
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duce randomness into the samples, we generate 400 random configurations, with the major-

ity of the control parameters near from the default values. The probability mass functions

of the control parameters are shown in Fig. 4.2. Among the 400 random configurations, we

provide 150 labeled samples and define 6 labels, including “safe state”, “low capacity”, “low

coverage”, “overload”, “too late HO”, and “too early HO”, simplified as “SAFE”, “L COV”,

“L COV”, “L HO” and “E HO” respectively. Each labeled sample is associated with one

of the labels according to the expert’s knowledge based on the operator-defined quality of

requirement (QoS). The design principles of the labeling are shown in Table 4.2.

4.4.3 Evaluation of Algorithm

Fig. 4.5 illustrates the performance of PCA on the total number of 400 samples of 16-

dimensional network metrics (including KPIs and statistical network measurements defined

in Table 4.1), and shows that we can visualize the network states by using the projections

onto the first 3 principal components (PCs). Fig. 4.3(a) illustrates that the first 3 eigenval-

ues capture over 70% of the variance. Thus, it may be adequate to use the projected data

points in the 3-dimensional space for clustering. Fig. 4.3(b) shows the mean square error

(MSE) for the low-rank approximation. Fig. 4.3(c) illustrates the normalized root mean

square error (NRMSE) of the approximation of each network metric. We observe that some

network metrics have a good approximation in 3-dimensional linear subspace, such as the

average throughput of the VoIP user and the streaming user, and the mean and variance

of RSRQ distribution (red circles with indices 9, 10, 13 and 14 on x-axis in Fig.4.3(c)). Fig.

4.3(d) illustrates the contribution of the 16 network metrics to the top 3 PCs: (i) the load-

related metrics (load, number of UEs) contribute most to PC1, (ii) the QoS-related metrics

(RSRQ, throughput) contribute most to PC2, and (iii) the neighboring cell-related metrics

(HR in, RSRQ distribution in neighboring cells) contribute most to PC3.

The quality of the semi-supervised clustering is quantified in terms of accuracy and

entropy of the clusters. The accuracy is defined as the ratio of the number of correctly

classified labeled samples to the total number of the labeled samples. The entropy of

cluster i, i = 1, . . . , C is defined as

Ei = −
1

lnH

H∑

h=1

K̃i,h

K̃i

ln
K̃i,h

K̃i

(4.12)

where K̃i denotes the number of the labeled samples in cluster i, and K̃i,h denotes the

number of labeled samples that are associated with class h. The entropy Ei ∈ [0, 1] measures

the distribution of classes in cluster i. A low entropy is desired, which provides a good purity

within the cluster. The entropy value close to one indicates a uniform distribution of classes

in a cluster leading to a bad split.
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By adjusting the tuning parameter α in objective function (4.1), we can minimize the

number of misclassified samples. Fig. 4.4 illustrates the dependence of accuracy and entropy

of cluster on α.

Fig. 4.5 shows the semi-supervised clustering with α = 0.6. We choose α = 0.6 to

achieve a good accuracy for the labeled samples, while exploring the hidden clustering

pattern in the unlabeled samples. We start with a large number of clusters C(0) = 25 for

initialization, and end up with a number of 17 clusters as shown in Fig. 4.5, by iteratively

fusing the clusters if the distance between two cluster centroids is small enough.

To examine the performance of tracking and anomaly detection, we simulate a scenario

of real-time detection of coverage and capacity problem, caused by the high interference

received from the neighboring cells. We set the control parameters to be the default values,

while step-wise increasing the average arrival rate in the neighboring cells from 0.35 to 0.75

call/sec. Fig. 4.6(a) shows the trajectory of network states, starting from a cluster associ-

ated with a SAFE class, moving toward the cluster associated with the L COV class. The

black left-pointing triangle indicates the real-time network state. The class memberships of

the trajectory is shown in Fig. 4.6(b), which illustrates a significant increase in member-

ship to class L COV, slight increase in membership to class L CAP, and almost constant

decrease in membership to class SAFE.

4.5 Summary

we propose a novel framework of proactive anomaly detection based on dimension reduction

and fuzzy classification techniques. The dimension reduction is applied for visualization

purpose and for the quality and efficiency of the classification of high-dimensional data.

The enhanced kernel-based semi-supervised FCM explores the complex pattern hidden in

the unlabeled samples, while taking into account the a priori knowledge provided by the

labeled samples. The experimental results show that the proposed framework proactively

detects network anomalies associated with various fault classes.
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TABLES

Table 4.1: SELECTED PARAMETER AND METRICS
Control
Parameter

KPI
Statistical Network
Measurements

1. antenna tilt 1. CDR 11. number of UEs
2. transmit
power

2. CBR
12. average UEs arrival rate
in neighboring cells

3. TTT 3. HOI SR
13. mean of RSRQ
distribution

4. hysteresis 4. HOO SR
14. variance of RSRQ
distribution

5. HO PPR
15. mean of RSRQ
distribution in

6. CS SR neighboring cells
7. VoIP load 16. variance of RSRQ
8. streaming load distribution in
9. VoIP SAT neighboring cells
10. streaming SAT

Table 4.2: SUPERVISED CLASSES BASED ON A PRIORI KNOWLEDGE
Class A priori knowledge

1. SAFE all KPIs satisfy the requirements of QoS

2. L COV
high CDR, low SAT low mean of RSRQ, high
variance of RSRQ

3. L CAP low SAT, normal CDR

4. OL high CBR, high load, low SAT

5. E HO high HO PPR, high HOI SR and HOO SR

6. L HO low CS SR, low HO PPR
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Figure 4.1: Pixel-based statistics in 500 seconds.
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Figure 4.2: Probability mass function of control parameters
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Part III

Self-Optimization
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Chapter 5

Measurement-Adaptive Random

Access Channel Self-Optimization

In this chapter, we consider single-cell RACH in cellular wireless networks. Communications

over RACH take place when users try to connect to a base station during a handover or

when establishing a new connection. Within the framework of SONs, the system should

self-adapt to dynamically changing environments (channel fading, mobility, etc.) without

human intervention. For the performance improvement of the RACH procedure, we aim

here at maximizing throughput or alternatively minimizing the user dropping rate. In the

context of SON, we propose protocols which exploit information from measurements and

user reports in order to estimate current values of the system unknowns and broadcast

global action-related values to all users. The protocols suggest an optimal pair of user

actions (transmission power and back-off probability) found by minimizing the drift of a

certain function. Numerical results illustrate considerable benefits of the dropping rate, at

a very low or even zero cost in power expenditure and delay, as well as the fast adaptability

of the protocols to environment changes. Although the proposed protocol is designed to

minimize the amount of discarded users per cell, our framework allows for other variations

(power or delay minimization) as well.

Parts of this chapter have already been published in the coauthored work [14].

5.1 Introduction

Random multiple access schemes have traditionally played an important role in wireless

communication systems. Their use has been established especially in cases of bursty source

traffic, where a multiplicity of users requires access from a central receiver. Starting

with the ALOHA protocol [Abr70], several modifications have been suggested in the years

to come aiming at performance improvement [EH98]. A very common application is in
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wireless LANs, such as the IEEE 802.11 protocol (see [Bia00], [GSS], [SGK06] and ref-

erences therein). The random access channel (RACH) is also included in the 3rd Gen-

eration Partnership Project (3GPP) as an important element within the LTE of cellular

systems [3GPf], [3GPa], [3GPh].

In the case of wireless cellular networks, a very limited frequency resource is reserved

for the cases when a user requests for access from a base station (BS) or in order to be

synchronized for uplink/downlink data transmission. RACH communications further occur

during the hand-over phase [1], because of user mobility, or when a user is (re-)initiating

some new service. RACH channel can be used as well during the load balancing procedure

[3], when cell-edge users are pushed to migrate to a neighboring BS after modification of

the cell individual offset. Hence, as many users as possible should be served by this limited

resource, for an important number of connectivity-related actions.

Due to limited resources, connection failure can occur in cases when the system is not

well adapted to the incoming traffic. Consider for example large spaces in cities where

occasionally a vast amount of requests for service can be demanded, although normaly the

system is not heavily loaded (e.g. metro stations, market streets, stadiums, city squares,

areas close to concert and conference halls etc.). In such places, it is very common that the

system fails to support the service for all users and one of the reasons can be high collision

rate in the RACH channel. It is thus necessary, within the context of SON [3GPa], [OG12]

that the system can adapt to abrupt environmental changes that influence its functionality.

Thus the RACH self-optmization problem is identified as an important case in the LTE

standardization process [3GPa, paragraph 4.7].

Unfortunately, in all such cases, the cellular system has almost zero user-specific in-

formation. Each BS can however broadcast certain information with cell-specific access

details [AFG+SA], which allow the users to adapt their operation. Furthermore, carrier

sensing as understood in the 802.11 is here not possible, which provides limitations to the

design of high performance protocols. This is because, the possibility for a user to sense

whether the channel is idle or not, is not provided and collision events cannot be avoided.

The procedure is called random access, due to the fact that the users access the channel

in a random fashion. In the ALOHA case, when more than one user transmit simultaneously

and their signals are detected we say that a collision occurs and all efforts are considered

unsuccessful. LTE standardization, instead, provides the possibility for each user to ran-

domly choose over a common pool of orthogonal frequencies [3GPf] and a collision takes

place when at least two users make the same choice during the same transmission interval.

After a failure, each source enters a back-off mode. The period of user silence is usually

chosen having an exponential distribution but other possibilities can be used when such
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choice is adapted dynamically. This back-off time can generally be modeled in the slotted

case by a per slot probability of transmission, less than 1. Using this technique, an increase

in throughput is achieved at the cost of additional delay. Furthermore, since the detec-

tion or not of a user signal is also critical for the success, an important parameter is the

transmission power of each user as well.

In short, the access (back-off) probability and the signal power are the two user actions,

with the aim to optimally exploit the random access resource, in the sense of maximizing the

rate of served users and minimizing the dropping user rate. An interesting idea to improve

the decision making is to make certain global information of the system state available by

broadcasting it from the base station. This is compatible with LTE standards where other

type of information is already considered as globally known [3GPf]. The information should

represent the current system situation, so that users may adapt their actions dynamically.

In this way the delay-throughput tradeoff can be enhanced. The cost is certain signaling

and computations for the updates at the BS side. Furthermore, the BS should have a

way to gather relevant empirical information from its environment, related to the RACH

functionality.

Based on the above idea, the current work suggests a dynamically adaptive RACH pro-

tocol for the cellular systems focused on LTE design, which maximizes a sense of throughput

and minimizes dropping. Empirical information is gathered through measurements and user

reports. After certain processing at the BS side global system parameters are broadcast to

users who require access. The protocol suggested, which is based on adaptation of the

system to changes in the environment, guarantees near-optimal performance related to a

certain throughput-related metric.

5.1.1 Related Literature

Bianchi [Bia00] has been the first to provide a precise performance analysis for a random

access protocol, which uses exponential back-off times. His approach considers a saturated

system model, where the number of users is kept fixed to N and all have a packet to send at

each time slot. The results are based on the key approximation that the collision probability

of a packet transmitted is constant and independent, which decouples the evolution of the

system to N 1-dimensional Markov Chains.

A different approach has been suggested by Sharma et al. [SGK06], where more general

back-off strategies (generalized geometric) are considered for the IEEE 802.11 protocol in

order to take service differentiation into account. One of the major differences is that the

system state is described by the current number of users per effort, while the collision

probability is not independent per user.
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First suggestions for dynamically controlling multiple access protocols can be found in

Hajek and van Loon [HvL82] as well as Lam and Kleinrock [LK75]. More recently Markov

Decision Processes (MDPs) have been used in [dAF04] to derive optimal power and back-off

policies for a set of backlogged users in slotted ALOHA random access systems. Cases of

unknown user number have also been taken into account.

Gupta et al [GSS] have recently suggested a dynamic back-off adaptation mechanism,

where contention is regulated by broadcasting a so called contention level to the users.

This is similar to the idea used in our approach. Works of particular interest are also

those of Liu et al [LYP+09] and Cheung et al [CMRWS10] which use the framework of

utility-optimization for the optimal choice of transmission probabilities.

Channel-aware scheduling approaches in conjunction with random access mechanisms

(which do not find application here due to the lack of such information in the system)

include [DSZ04], [TZM01], and more recently [AHBW11].

How random access works in the 3GPP-LTE systems is thoroughly described in [AFG+SA],

where certain suggestions are presented, related to a self-organizing mechanism with infor-

mation exchange between users and the Base Station. Investigations on the RACHpower

control include [LKC+12] and references therein, whereas an analytical framework for RACH

modeling and optimization is given in [YHH11].

Finally, rather interesting for the Carrier sense multiple access with collision avoidance

(CSMA/CA) case is the dynamic adaptation mechanism suggested in [HRGD05] where users

adapt their time window based on measurements and estimation of the average number of

idle time slots of the random access channel. It involves an Additive Increase Multiplicative

Decrease (AIMD) rule for the updates. Unfortunately, such a technique cannot be directly

applied to the cellular system due to the unavailability of the sensing mechanism, it can

however give ideas for application of a similar mechanism for the power updates.

5.1.2 Contributions and Outline

We investigate a saturated system model, where a number of N users are always present

within a wireless cell and try to gain access to the Base Station. An effort is successful

when the user transmits a certain sequence, which is detected at the Base Station and at

the same time no collision occurs. The event of collision will happen when the transmitted

sequence of another user is also detected. Furthermore, LTE standards allow for orthogonal

sequences randomly chosen by the users, so that even when two user signals are detected,

access to both may be granted.

In our analysis the miss-detection probability and collision probability are left as un-

known variables. However, higher power increases the chances for detection and reduces
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collision probability, whereas use of access (otherwise back-off) probabilities reduces the

collision events. Transmission power and access probability are the user action pair.

After description of the action space and state space, the transition probabilities are

given and the evolution of the system is described by a Markov Chain. The event of

dropping, when the users exhaust the maximum number of efforts allowed, plays a crucial

role. Unfortunately, due to the unknown expression for the success probability no steady-

state analysis is possible. The above are analytically presented in Section 5.2.

What we can do however, is to choose the actions myopically optimal, in the sense

that they optimize the expected change in one time-slot for some function of the state

space. For this we introduce in our analysis the drift of a delay-related function. To

motivate further our formulation, it is shown in the Appendix B how the solution of the

drift minimization problem is related to the solution of an ideal Markov Decision Problem

for optimal performance in the steady-state. Our problem formulation is found in Section

5.3.

The function chosen in this work is related to a sense of throughput, and is chosen such

that the ratio of dropped users can be minimized. Other performance measures, by choice of

an appropriate function, can also be incorporated within our analysis with slight variations.

To solve the problem online a protocol is introduced. Its steps are presented in Sec-

tion 5.4. The BS collects measurements as well as user reports to estimate the unknown

probabilities (miss-detection, contention, success) at the Base Station side, as well as the

current number of users, which is actually unknown in a real system. After solution of an

optimization problem and a close-loop control problem, the BS broadcasts two values, the

current contention level and the current power transmission level, so that the users can

update their action pair.

Numerical simulations for the performance of the protocol in a wireless cell are presented

in Section 5.5. Advantages and trade-offs in dropping rate, delay and power expenditure

are discussed and explicitly illustrated in plots. Finally, Section 5.6 concludes our work.

5.2 System Model

5.2.1 General Description

We consider an arbitrary but fixed total number of N users labeled by n = 1, . . . , N trying

to randomly obtain access to a cell BS over the wireless channel. The time is slotted, with

each slot interval normalized to 1 and indexed by t. At each time slot all users belonging to

the user set have the possibility to access the channel by transmitting a preamble sequence
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(as specified in the LTE standards). There are two criteria that determine the success of

an attempt.

• The signal-to-noise ratio (SNR) at the BS exceeds a predefined detection threshold γd.

If the SNR is below the threshold, we assume that a miss-detection occurs and the

user has to retry. The detection miss probability (DMP) can be written as the

probability of an outage event

Qo
n (pn, t) = P [SNRn (pn (t) , hn (t)) ≤ γd] (5.1)

where pn is the chosen transmission power and the probability is taken over the random

channel quantity denoted by hn and is i.i.d. over time t. In general we will consider

that the BS does not approximate somehow the expression for outage. This is rea-

sonable since the information over the user positions and the exact fading statistics is

not known a priori.

• No collision of transmitted signals occurs. Typically in the slotted ALOHA protocol

[Abr70], when more than one user attempts to access the channel during the same

time slot a collision occurs and all affected users have to repeat the effort. In more

recent wireless protocols, such as those suggested in LTE standards [3GPh], a pool

of orthogonal sequences (e.g. Zadoff-Chu) is made available to all users. Each user

chooses one sequence from this set randomly (uniform distribution) and the probability

of collision can be made less than 1 when two users transmit simultaneously.

In our model, the probability of collision is conditional on the transmission and the

detection of signals at the BS side. That is, a user may collide only if he transmits

at time slot t and his signal is detected. Assuming that N users transmit at time

slot t with transmission probability vector 1N := [1, . . . , 1]T and k-out-of-N (we write

k \N) are detected, the overall collision probability (CP) - the probability that at

least one collision occurs - is an increasing function of both N and k

Qc (N,1N , k, t) (5.2)

As in the case of the DMP we consider that the base station does not have an ex-

act closed form expression to calculate the CP and the above quantity is in general

unknown.

54



5.2.2 Action Space

There are two actions that user n can take for transmission at time slot t.

• The choice of the transmission power level pn (t), which influences the detection

of the transmitted signal at the BS, as shown in (5.1) and eventually the collision

probability (through the number of detections k). In general Qo
n exhibits a monotone

decreasing behavior with respect to power.

• The choice of the access (or transmission) probability bn (t) per user, at a given

slot t. This influences the number of simultaneously transmitting users in the cell and

therefore directly affects the collision probability in (5.2). The back-off probability

simply equals 1− bn (t).

The set of actions for the entire system of N users at t is denoted by the 2N -dimensional

vector A (t) :=
[
bN (t)T ,pN (t)T

]T
. The action space per time-slot is denoted by A and is

the Cartesian product [0, 1]N × [0, P1] × . . . × [0, PN ], where Pn is a given individual user

power constraint per slot. Furthermore, Ã = {A(1), . . . ,A(t), . . .}.

Until the end of the subsection, we provide a discussion on the influence of choice for the

back-off probability. In the definition (5.2) no back-off action is taken, bn (t) = 1, ∀n and

all users transmit simultaneously. On the other hand, assigning bn (t) ≤ 1 to some users,

displaces the transmissions in time and the effect of collision is mitigated. Since less than

N users simultaneously compete for the access of the medium in some slot t, the collision

probability is reduced. This can also be shown analytically.

The overall collision probability ofN users present within the cell, with access probability

N -length vector bN , bn ≤ 1 and exactly k users detected, equals

Qc (N,bN , k, t) =
N∑

J=0

Qc (J,1J , k, t) ·Q
t (bN , J \N) (5.3)

where Qt (bN , J \N) is the probability that - given a probability vector bN - exactly J-out-

of-N users in the cell transmit. The equality follows from the total probability theorem, since

the union of events J = 0, . . . , N transmissions exhaust the sample space. The transmission

probability of J \N users equals

Qt (bN , J \N) =

L(N,J)∑

l=1

J∏

i=1

bqJ.i
l

N−J∏

j=1

(1− b
q̂J.j
l

)

where the summation over l is taken over all possible L (N, J) =

(
N
J

)
combinations

(sampling without replacement) of J users transmitting and N − J users remaining silent,
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qJ.il is the index of user i belonging to combination l that transmits and q̂J.jl is the index for

the user j that does not transmit.

Proposition 5.1. Given bN < 1N (the inequality means that bn < 1 for at least one n)

and exactly 1 ≤ k ≤ N detections, we have that

Qc (N,bN , k, t) < Qc (N,1N , k, t) (5.4)

Proof. : The events J = 0, . . . , N exhaust the sample space and we have that their probabil-

ity sum equals
∑N

J=0Q
t (bN , J \N) = 1. Furthermore, for J < k it holds Qc (J,1J , k, t) = 0

since there cannot be more detections than transmissions. The higher the number of trans-

missions, the higher the collision probability, which means Qc (J,1J , k, t) ≤ Q
c (N,1N , k, t),

∀J and the inequality is strict for J < k. From (5.3) we have

Qc (N,bN , k, t) < Qc (N,1N , k, t) ·
N∑

J=0

Qt (bN , J \N)

= Qc (N,1N , k, t)

which concludes the proof. �

5.2.3 Success Probability, Failure Event and Dropping

From the above, success of a transmission is an event which occurs when (i) a user trans-

mits, (ii) the user signal is detected and (iii) no collision occurs. In the use of orthogonal

sequences/preambles, it suffices that no two users sharing the same sequence collide. In

general, conditioned that a user transmits, the success probability (SP) equals

Qs
n (N, k,bN , pn, t) = (1−Qo

n (pn, t)) · (1−Q
c (N,bN , k, t)) (5.5)

Observe, that the success probability of a single user does not depend only on his own action

set (bn, pn), but also on the choices of access probabilities of the other users, as well as the

number of detected users k. The latter is further dependent on the transmission power

chosen for j 6= n, so we can instead write

Qs
n (N,bN ,pN , t) (5.6)

In the case of an unsuccessful effort the user may retry. Each user is constrained to at most

M access efforts and the efforts are indexed by m. After M unsuccessful efforts the user is

considered discarded and replaced by a new-coming one, so that the total user number in

the system always remains equal to N . The same holds when a user leaves the system after
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success. Therefore, we say that the system is saturated. The number of users at effort m in

time slot t is denoted by Xm (t) and from the above it follows that

M∑

m=1

Xm (t) = N, ∀t. (5.7)

We occasionally write in the following that a user at effort m ∈ {1, . . . ,M} belongs to user

class m.

5.2.4 System States and Transition Probabilities

We define the state of user n at slot t as the current transmission effort Sn (t) ∈ {1, . . . ,M},

whereas the system state as the N -dimensional vector

S (t) = [S1 (t) , . . . , SN (t)]T . (5.8)

Altogether, there are M different user states and MN different system states (e.g for a

cell with 10 users and maximum 5 efforts, the number is approximately 10 million). The

entire state space is denoted by S. It is easy to verify that the system state forms an

N -dimensional Markov chain.

We group the transitions for each user into (a) returning to state 1 in case of transmission

and success, (b) moving to the next effort in case of transmission and failure and (c) backing-

off and remaining in the same state. The expressions for the transition probabilities are

given below. (Dependence of the functions on other parameters except the time index is

omitted for brevity of presentation.)

• For 1 ≤ m < M :

P [Sn (t+ 1) = 1|Sn (t)] = bn (t) ·Qs
n (t) (5.9)

P [Sn (t+ 1) = Sn (t) + 1|Sn (t)] = bn (t) · (1−Qs
n (t)) (5.10)

P [Sn (t+ 1) = Sn (t) |Sn (t)] = 1− bn (t) (5.11)

• For the user boundary state m = M :

P [Sn (t+ 1) = 1|Sn (t) = M ] = bn (t) (5.12)

P [Sn (t+ 1) = M |Sn (t) = M ] = 1− bn (t) (5.13)

A user in state M will either back-off, in which case he remains in the same state,

or transmit. When a user transmits, he will either succeed or fail. In both cases the

next state is set to 1, the user is removed from the system and is replaced by a new

one so that the total number is always equal to N . The transition probabilities in
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(5.12)-(5.13) for m = M coincide with those for m < M , given by (5.9)-(5.11) when

Qs
n (t) = 1. In other words, to keep the system saturated, the Markov Chain evolves

as if transmission at state M always results in success.

This is why, it is further important for the analysis to specify the user dropping proba-

bility (DP)

Qd
n (N,bN ,pN ,M, t) = bn (t) · (1−Qs

n (t)) · P [Sn (t) = M ] (5.14)

If the exact expressions for the DMP and CP were available, it would be possible to calculate

the steady state probabilities of the system, by forming the MN×MN transition probability

matrix and using the Perron-Frobenius theory [BP94, Ch. 2 and 8] (for details see Appendix

A.3). Since the number of states is finite, and for each user the probabilities (5.9)-(5.11) and

(5.12)-(5.13) sum up to
∑M

m=1 P [Sn (t+ 1) = m|Sn (t)] = 1 (stochastic matrix), a steady

state with probability sum equal to 1 always exists, although certain states may be transient

and have zero probability.

5.3 Problem Statement as Drift Minimization

Since the exact expressions for the detection miss probability Qo
n as well as contention

probability Qc are unknown (hence the success probability Qs
n, which appears in (5.9) and

(5.10)), it is not possible to use the standard steady-state analysis as followed in [TK85],

[BKMS87], [PYC08], [PVP+07], [KL75] and [LYP+09] (among others) to derive long-term

performance measures and optimize the system. Even if this would be possible however,

the solution of a system of such an immense number of variables would bring difficulties

(remember the number of 10 million variables for N = 10 and M = 5). The same problems

are met in a Markov Decision Problem (MDP) formulation, as followed e.g. in [LK75]

and [dAF04].

Furthermore, in a realistic setting, we would like to propose a protocol, which takes

into consideration the fact that within the wireless cell, users appear and leave the system

after a while, whereas the fading situation changes unpredictably. These two factors greatly

influence the miss-detection and collision probabilities, which do not remain fixed until

infinity, but exhibit large fluctuations over time. This falls within the concept of SON’s

which should self-adapte and self-optimize the wireless system parameters as a reaction to

such unpredictable changes from outside without human intervention.

For the above reasons we make use of the notion of drift for the Markov Chain under

study, in order to achieve an improvement in the system performance by appropriate choice

of actions. The idea of drift is commonly used in the literature of stability of systems
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with infinite states [TE93], [TE92], [NMR03], [NMR05]. In such cases, if we can find, for

a given positive Lyapunov function, an action policy which keeps the drift negative for the

entire state space - except possibly for some finite subspace - the system is guaranteed to

remain stable. This comes from direct application of Foster’s theorem (see [Asm00, Prop.

5.3(ii)]). Intuitively the negative drift gives the function of states a tendency to decrease in

expectation at each step, as long as it is outside the aforementioned subspace, so that in the

long run the value a state can take will not be unbounded (and the stability is guaranteed).

In our case the state space is finite due to the finiteness of M . However, since the amount of

users that exceed M efforts are eventually dropped, stability of the system refers to keeping

the number of dropped users finite. (Alternative application of the drift minimization to a

problem with M →∞ and no dropping does not change much the policy and results).

The drift equals per definition, the expected change in the Lyapunov function from t

to t + 1. By choosing an appropriate non-negative function of the system state V (S (t))

related to some performance criterion, we can choose actions that optimize performance at

each time-slot. Since it is impossible to know how the system will evolve in future slots,

and since expressions for DMP and CP are not available, the best thing we can do is to

provide an one-step look-ahead (myopic) policy for the system, given its current state and

measurements performed on time t, which estimate unknown parameters. Specifically, given

that the system state at t is S (t), the drift is defined as

D (V (S (t)) ,A (t)) := E [V (S (t+ 1))− V (S (t)) |S (t)] (5.15)

and is also a function of the action set A (t), since the actions control the system state

transition probabilities pst→st+1 .

The function V to be used is the sum of user states and is linear. It can be rewritten as

the sum of cardinalities of users at a state, weighted by their effort index.

V (S (t)) =
N∑

n=1

Sn (t) =
M∑

m=1

m ·Xm (t) (5.16)

A user who is currently at a higher effort, contributes more to the function, than users

at lower ones. By minimizing the drift of such function we wish to choose appropriate

actions in order to have success with as few efforts as possible. This has following objectives:

• keep a good trade-off between power consumption and delay until success per user

• diminish the proportion of users who are dropped

• maximize a notion of total system throughput
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To understand the last point, observe that each user n contributes a ratio 1
m∗

n
to the total

system throughput if m∗n ≤ M efforts are required for success and contributes nothing

if the user is dropped. Consider now as a single virtual user, the set N of users in the

network. By use of the Renewal-Reward theorem [GWB08], the long-term throughput of

such a virtual user (considering only number of efforts and not the total number of time-

slots required including user silence slots) will be the ratio N
E[V (S)] . Alternative Lyapunov

function could change the objective of the minimization, giving emphasis to total delay or

power consumption and can be understood as alternative formulations of the same general

problem and solution methodology.

Let us consider state-dependent, rather than user-dependent actions, in the sense that

all users who are at class m in slot t should make the same choice for transmission power

and back-off. The specific drift expression can now be derived to yield

D (V (S (t)) ,A (t)) =
N∑

n=1

{1 · P [Sn (t+ 1) = 1|Sn (t)] +

(Sn (t) + 1) · P [Sn (t+ 1) = Sn (t) + 1|Sn (t)] +

Sn (t) · P [Sn (t+ 1) = Sn (t) |Sn (t)]− Sn (t)}

(5.9)−(5.13)
=

N∑

n=1

bn (t) · [1− Sn (t) ·Qs
n (N,bN ,pN , t)]

state dep.
=

M∑

m=1

Xm (t) bm (t) · [1−mQs
m (N,bN ,pN , t)] (5.17)

The drift minimization problem at each time slot t is

min D (V (S (t)) ,A (t))
s.t. A (t) ∈ A

(5.18)

A further motivation to pose the problem as a drift minimization is provided in the Appendix

B. It is shown that (5.18) is a myopic solution of an MDP with objective the minimization of

the expected Lyaponov function at the steady-state (for t →∞). For the formulation and

solution of the MDP, the expression for Qs
n, ∀n should be available and the channel/user

statistics should remain unchanged over the entire time horizon.

What is needed to solve the above problem per slot? It follows from (5.17) that the

following information should be available at the BS side:

1. The cardinality Xm (t) of users at each effort m.

2. The current value of Qo
m (t) at each m.

3. The current value of Qc (t).
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Using 2. and 3. and the product in (5.5) the actual value of Qs
m (t) can be obtained.

Although the BS does not know these values it may estimate the variables and with it

approximate the objective function, using measurements related to channel and service

quality, as well as information reported directly by the user set. The goal is to use these

estimates for optimization, in order to achieve significant performance gains, while keeping

an additional overhead of exchanged information as small as possible.

In this way, a sequence of problems with different numbers of users, contention and

miss-detection probabilities can be solved over time, which help the cell to follow and

adapt to dynamic unpredictable changes. The steps of the proposed adaptive protocol are

summarized in Table 5.1.

5.4 Five Steps of the Protocol

Before proceeding to the algorithm, we first discuss over the action pair of access probabil-

ities and transmission powers. Considering the access probabilities, we adopt the approach

in [GSS] (similar functions are also found in [LYP+09] and references therein), with per

effort probability given by

bm (t) = min

{
f(m)

L (t)
, 1

}
, ∀m. (5.19)

Here and hereafter, L is called contention level and f(m) is some fixed function of the

transmission effort. In this way, a simple variable L can simultaneously define the entire

set of transmission probabilities. By choosing f to be monotone increasing in m, priority

is given to users with higher efforts, while such users obtain lower priorities when f is

strictly monotone decreasing. Typical back-off protocols follow the exponential rule, which

reduces by half the probability of accessing the channel after each failure, so in this case

f(m) = 2−m+1 and b1 = 1/L. Other possible choice could be f(m) = m−a, a ∈ R+ (in this

work and the simulations to follow the case a = 1 is mostly used). Exponents a > 1 will

lead to an overly conservative system with large delays for users in higher states, whereas

a << 1 tends to treat users of all classes with the same priority. In the following, the

expression in (5.19) will sometimes be replaced by bm(t) = f(m)/L (t) and the constraint

bm (t) ≤ 1 is taken into account in the constraint set of the minimization problem.

We consider, furthermore, the transmission power to vary per effort as a ramping func-

tion. This approach is often considered in practice (for related approaches, the reader is

referred to [AFG+SA] and references therein). The power level for the first effort is given

by p and for all efforts by the expression

pm (t) = p (t) + (m− 1) ·∆p, ∀m (5.20)
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where ∆p is the ramping step with a fixed (tunable) value. Thus, analogously to the case of

the backoff probabilities, the vector of power actions can be defined by appropriate choice

of the power level p (t) per time slot.

5.4.1 Step 1: Measurements and User Reports

When users attempt to randomly access the channel, we assume that the BS counts the

overall number of detected user efforts, as well as the overall number of successful efforts.

Given an observation window of length W , both the quantities depend on the time interval

[t−W + 1, t] and are denoted by Nd (t) and Ns (t) respectively. Furthermore, after every

successful effort, the users are assumed to report to the BS, the total number of trials

required to get access. In this way, the BS can keep track of the number of successes at

effort m, within the observation window, denoted by ns,m (t) , ∀m. The reports over the

success state also provide information over the overall number of transmissions of users being

at some state m. As an example, if within the observation period two users report success

at effort 3 and 2 respectively, the BS can estimate the number of transmissions at state

m = 1 by 2, at m = 2 by 2 and at state m = 3 by 1, without considering users that have

yet not declared success, or are dropped. We denote these estimates by nt,m (t) , ∀m and

their sum, which equals approximately the number of access efforts within the observation

window, by Nt (t) =
∑M

m=1 nt,m. Altogether, the set of gathered empirical information,

updated per time slot, is represented by

I (t) := {Nd(t), Ns(t), Nt(t), ns,m(t), ∀m, nt,m(t), ∀m} (5.21)

5.4.2 Step 2: Estimation of Unknowns in the Objective function

Using the above counters, we can now approximate the unknowns in the expression (5.17)

that are briefly discussed in points 1. - 3. in the previous Section.

As far as the unknowns in 2. and 3. are concerned, the actual overall contention

probability Qc (t) and per effort success probability Qs
m (t) in (5.5), can be estimated by

contention and success rates, an idea which has already appeared in [AFG+SA]. Observe

that the additional information about the per effort miss-detection probabilityQo
m (t) cannot

be deduced from the above measurements. What can be calculated, instead, is an overall

rate of miss-detection (DMR), without differentiating between efforts, which we denote by
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Ro (t).

Rc (t) = 1−
Ns (t)

Nd (t)
(contention rate) (5.22)

Rs
m (t) =

ns,m (t)

nt,m (t)
, ∀m (success rate per effort) (5.23)

Ro (t) = 1−
Nd (t)

Nt (t)
(miss− detection rate). (5.24)

Regarding the number of users currently within the cell (discussed in 1.) and their

estimation, we proceed as follows. Instead of attempting to find integer values, we consider

arrival rates. As the total arrival rate of users we consider the ratio Ns(t)
W , which is the time

dependent ratio of accepted users, divided by the observation window. The above is used

under the assumption that only a very small fraction of the users are dropped throughout

the process, so that almost all users appearing within the cell, will eventually have at some

point a success. Taking dropped users into account requires an additive correcting term

that may be deduced from empirical observations.

The window is considered long enough, so that the resulting success rates per state,

Rs
m (t) in (5.23), approach the actual success probability per effort. These can replace the

entries in the one-step transition probability matrix in equations (5.9)-(5.11) and (5.12)-

(5.13). The steady state probability distribution is found by solving the system π = π · P̂M,

where π is the row vector of the unknown probabilities for the M states with ||π||1 = 1 and

P̂M is the transition probability matrix. The solution equals

π1 (t) =

(
1 +

M∑

i=2

b1
bi

(1−Rs
1 (t)) · . . . · (1−Rs

i−1 (t))

)−1
(5.25)

πm (t) = π1 (t) ·

(
b1
bm

(1−Rs
1 (t)) · . . . · (1−Rs

m−1 (t))

)
, 2 ≤ m ≤M. (5.26)

The ratios of the unknown backoff probabilities b1/bm are involved in the expression above.

From the previous discussion b1/bm = f(1)/f(m), which is known since the function f is

chosen a priori. With these observations and definitions at hand, we can estimate the user

arrivals per effort according to

Xm (t)

W
≈ πm (t) ·

Ns (t)

W
(5.27)

where the πm’s are the probabilities given by (5.25) and (5.26).

5.4.3 Step 3: Solving the Problem

Once step 2 is performed, we can formulate the objective function to approximately solve

problem (5.18) and with it find the optimal actions per time slot. To this end, we break
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down the problem into two subproblems and propose two sub-algorithms based on the

measurements and estimated quantities described above.

Backoff Probability Problem: The objective function at the base station is estimated

by

D̂ (V (S (t)) , L (t)) :=
1

L (t)
·

[
M∑

m=1

πm
Ns (t)

W
f (m) · (1−m ·Rs

m (t))

]
, (5.28)

where the success probability Qs
m is substituted by the success rate Rs

m in (5.23) and the

average user number Xm

W by the expression in (5.27). As long as such estimates are close to

the actual values and are considered reliable, the BS can solve a problem with parameters

adapted to the changing environment.

When the expression in brackets above [. . .] is positive, the objective function is convex

and decreasing in the contention level variable L (behaves as + 1
L). When [. . .] is negative,

the objective is concave and increasing in L (behaves as − 1
L). Due to the monotonicity and

concavity/convexity, the optimization will have as a result either maximum or minimum

value of L depending on the sign of the term inside the square brackets.

In the following we provide the boundary values Lmin and Lmax of the domain of L. The

lower bound on L follows from the fact that all access probabilities are less than or equal

to 1:

f (m)

L (t)
≤ 1, ∀m ⇒ L (t) ≥ Lmin := max {f(m)} . (5.29)

To obtain an upper bound, we further provide a constraint on the probability of a time slot

being idle (no user transmits). This probability is less than or equal to A, which is a design

factor for the system.

P [IDN ] =
M∏

m=1

(
1−

f(m)

L (t)

)Xm(t)
W

≤ A ⇒

M∑

m=1

πm
Ns (t)

W
· log

(
1−

f(m)

L (t)

)
≤ log(A) . (5.30)

The left handside is increasing with L, thus the inequality provides an upper bound on L.

If we solve (5.30) for equality, we then derive the value of Lmax. Notice furthermore that,

all values of L within the interval [Lmin, Lmax] are feasible solutions of the contention level.

Proposition 5.2. Considering the problem of minimizing D̂ in (5.28) subject to the upper

and lower bound constraints on L, the following necessary and sufficient optimality condi-

tions hold:
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• if
[∑M

m=1 πm
Ns(t)
W f (m) · (1−m ·Rs

m (t))
]
≥ 0 then the optimal contention level equals

Lmax and is found by solving

M∑

m=1

πm
Ns (t)

W
· log

(
1−

f(m)

L∗ (t)

)
= log(A) (5.31)

• if
[∑M

m=1 πm
Ns(t)
W f (m) · (1−m ·Rs

m (t))
]
< 0 then the optimal contention level equals

Lmin

L∗ (t) = max {f(m)} . (5.32)

Power Control Problem: In order to identify optimal transmission levels, one could

proceed along similar lines as above, to formulate an optimization problem, given the back-

off probabilities f(m)/L∗(t) and the contention rates Rc(t) from (5.22). In order to deter-

mine the objective function based on (5.17), which is denoted by D̃ (V (S (t)) , p (t)), the

closed form expression for the detection-miss probability Qo
m (t) as a function of power may

be necessary. It is however unlikely that the channel’s fading behavior in practical systems

can be accurately represented by a closed-form expression, especially since in the random

access cellular system the user position is not known to the BS.

A different approach - which is adopted here - is to use a Multiplicative Increase Additive

Decrease (MIAD) control rule, as in the case of congestion control protocols in TCP [CJ89].

In this way, the BS reacts to the change of the estimated DMR stepwise, by increasing or

decreasing the power level p(t) per time slot, depending on the current value Ro (t). We

set two levels of action, a high detection-miss level DMRH and a low one DMRL. The

control loop then works as follows: When DMRH is exceeded, the power level is increased

by multiplication with a tunable factor 1 + δ1. This action increases considerably the

transmission power since miss-detection is highly non-desirable. When the ratio falls under

the low level DMRL, which is considered satisfactory for the system performance, the power

is reduced in a conservative way, to reduce the energy consumption on the mobile devices,

by subtracting a constant tunable amount of δ2. For instance δ2 can be set equal to the

ramping step ∆p in (5.20). The control loop is then described by the power updates

p∗ (t) =

{
p∗ (t− 1) · (1 + δ1), if Ro (t) > DMRH

p∗ (t− 1)− δ2, if Ro (t) < DMRL . (5.33)

Obviously, updates on the per-effort ramping steps or user-specific power control could

be much more beneficial instead of the update in the global power level p (t). Further-

more, it is obvious that by varying p (t) globally, power consumption will increase not only

for users in higher efforts but also for those in their first effort, which may not be neces-

sary. However, there are certain difficulties in providing a different type of feedback. Most
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importantly, there is no user channel state information available at the BS and channel

adaptation is impossible. Furthermore, based on the possible approximations that - given

the measurements and the reports - are suggested, only a global miss-detection rate Ro

can be estimated in (5.24) and no state-specific or user-specific rates (say Ro
m). We cannot

approximate, in other words, the rate of miss-detection for a user at different states and as

a result we cannot suggest different state-dependent power levels. Finally, state-dependent

power control would increase considerably the feedback information broadcast to all users.

For all the above reasons, the suggestion of the MIAD rule was considered more appropriate.

5.4.4 Step 4 and 5: Broadcast of Information to the Users and Action

Calculation

The last two steps of the proposed algorithm involve the broadcasting of the action-related

information to the users and the choice of appropriate actions by them. The broadcast

information includes the pair consisting of the contention level and the power level

J (t) := {L∗ (t) , p∗ (t)} . (5.34)

Let us assume that the expressions in (5.19) and (5.20) for the success probability and the

power level per effort are known a priori to the mobile stations. Since each user is aware of

its current individual state Sn (t), calculation of its own action pair is possible, according

to

An (Sn (t) ,J (t)) = (bn(t), pn(t)) =

(
f(Sn(t))

L∗(t)
, p∗(t) + Sn(t)∆p

)
. (5.35)

Note that if the required power and access functions (f (•) and the ramping step ∆p) is

not available at the mobiles, the BS could broadcast the entire vector of computed transmis-

sion powers and access probabilities to the users so that they choose the actions according

to their current effort.

A remark considering implementation issues of such protocols is that the updates of

these two levels are not expected to take place very frequently, but rather only at the rate

of estimated change of user traffic and fading conditions. Furthermore, user reports and

broadcast feedback from the BS is already suggested in standardization reports, so that the

proposed protocol complies fully with the existing standardization literature [3GPf], [3GPa],

[3GPh], without introducing additional protocol information.
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5.5 Numerical results

5.5.1 Description of the Simulations Setting

The proposed algorithm has been implemented in a single cell scenario. The users are

randomly positioned, with a 2D uniform distribution and the algorithm is initially evaluated

for the cases of N = 1, 2, . . . , 14 [users/time slot] present in the cell. Considering the

transmission scenario, each user randomly chooses at each attempt one sequence, out of

a pool of 10 orthogonal sequences, and transmits with a chosen backoff probability and

transmission power. The number 10 is used for simulation purposes, whereas the actual

number suggested in the LTE literature equals 64; however not all users have access to

the entire pool of sequences (see [3GPf]) since the sequence allocation procedure is more

complicated than the simple uniform choice we use here.

The signal experiences path loss due to the user-BS distance. Fast fading is initially not

modeled (this will be considered in the second part of the Section for the power consumption

evaluation) but the channel is considered additive white Gaussian noise (AWGN) with

noise mean equal to −133.2 dBm. We have to note that in case fast-fading were also

implemented, a further randomness in the channel would affect the signal detection and

the protocol performance. To keep things simple, we consider first only the randomness

of user positioning which affects the slow-fading coefficients - also unknowns during the

procedure. The evaluation of the protocol’s performance will not change much by adding

more randomness factors.

An effort is successful when among the detected sequences there exists no pair that

collides, in the sense that no two detected users choose the same sequence for transmission.

A user is dropped when the effort fails at the maximum access effort M = 5. After a success

or an event of dropping, users are removed from the waiting-for-transmission list, and the

same number of newly arriving users are added, each given a random position on the plane.

Power and access probability for the users are computed per slot equal to the action

pair in (5.35), for f (m) = m−1. The choice of exponent −1 is not conservative (whereas a

higher exponent would be) while at the same time it takes class differentiation into account.

Important is to notice that the expression of the function f greatly affects the delay. On

the other hand, the delay can be controlled by the parameter A which is system-operator-

dependent and tunes the expected idle period. The set of values for the parameters of the

system simulation are summarized in Table 5.2.

Several factors for the protocol design have been left open for choice. One of them, as

mentioned already, has been the desired idle probability A. The higher factor A is, the more

the delay suffered by the system but the higher the benefits in dropping rate and power
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consumption are. Other important parameters are the steps δ1, δ2 and bounds DMRH ,

DMRL of the MIAD rule, the access function f and the adaptive window length W , which

defines how fast should the protocol adjust to environmental changes. A summary of these

tunable factors and how they are chosen within the simulation setting under consideration

is provided in Table 5.3.

5.5.2 Comparison to a Fixed “Open Loop”Power Fixed Backoff Protocol

The suggested algorithm is compared to a scenario, where access probabilities and target

power are held fixed, while the ramping step for the transmission power is predifined and

same for all efforts. The fixed scenario is in other words an ”open-loop” control scheme, with

predefined constant (p,∆p). The choice for the fixed backoff probability in the comparison

scenario, equals [b1, b2, b3, b4, b5] = [0.5, 0.4, 0.3, 0.2, 0.1] and is such that the average occu-

rance of an idle slot is less than A = 0.05, hence the channel is kept busy with user efforts for

access during most of the time . In this sense, the comparison between the adaptive-protocol

suggested and a fixed protocol is more fair for a tunable factor of A = 0.05 or less. How

the average idle probability changes between A = {0.05, 0.25, 0.5} and the fixed case can be

seen in Fig. 5.1. We refer the reader to the Parameter Table 5.2 for the actual values used

throughout these simulations. The above fixed scenario is denoted by (FPFB) for Fixed

Power Fixed Backoff. Two types of protocols are used for performance comparison:

• Fixed Power Dynamic Backoff (FPDB) protocols. In this case the ”open loop”

power control of the protocol is the same as in the fixed scenario FPFB case. The

backoff mechanism adapts to measurements as suggested in the protocol description

of this work (Paragraph 4.3, Backoff Probability Problem).

• Dynamic Power Dynamic Backoff (DPDB) protocols. In this case both back-

off and power are adapted as the protocol suggests in Paragraph 4.3. The backoff

comes from the solution of the drift minimization problem, while the target power p

is adapted according to the MIAD rule.

5.5.3 Performance Evaluation: Lyapunov Function and Number of Ef-

forts

The performance of the scheme and its comparison to the fixed scenario FPFB is initially

illustrated in the plots of the performance metric in Fig.5.2 and the plots of the average

number of access efforts until success in Fig.5.3. The two figures show a close relation to

each other, due to the choice of the specific Lyapunov function V . Since V was chosen as the

sum of user efforts, lower values translate into better performance for the protocol. In all six

68



curves, our protocol outperforms the FPFB scenario in the metric chosen as well as in the

average number of user efforts. Furthermore, all DPDB cases show improved performance

compared to FPDB, given a certain value of the parameter A. The higher the value of

tunable factor A, the better the performance and the less the average efforts required up to

packet reception.

5.5.4 Performance Evaluation: Delay, Power Consumption and Dropping

Rate

The three most important performance measures in random access that can illustrate the

improvements of the suggested protocol are the total delay suffered by a packet until success

(including backoff slots), the total transmission power used until success as well as the

percentage of users dropped because the maximum number M of efforts is exceeded. These

are shown in Fig.5.4(a), 5.4(b), 5.5(a), 5.5(b) and 5.6(a), 5.6(b) respectively, for (a) the

FPDB case and (b) the DPDB case.

From the plots, it is illustrated how an increase of the parameter A influences positively

power consumption and dropping rate at the cost of delay. Furthermore, the DPDB schemes

perform better than the FPDB schemes in terms of delay and dropping, but have a cost

in power consumption. Altogether, the performance of the protocol is tunable, to the

requirements of the service provider. If the delay is not an issue, power can be considerably

saved and the number of users dropped is reduced. As long as delay becomes an issue,

transmission power can still be saved by using only the FPDB protocols. The dropping rate

is also improved in such a case.

The most important observation is the fact that the suggested protocol in all cases

considerably reduces the dropping rate of the incoming users. Hence, the random access

resource is better exploited than in the FPFB case. This is due to the specific choice

of performance function that we chose to incorporate in the drift minimization (sum of

states). Other functions could potentially minimize different system performance measures

(e.g. power or delay). Dynamic backoff, in our protocol, generally allows the system to

remain stable - in the sense that the rate of dropped users does not tend to ”explode” -

for a higher value of N . The behavior of this measure also improves for higher A, which

is reasonable since allowing a higher idle probability, distributes the transmissions of users

among a larger number of time-slots.

A more detailed comparison of the schemes is given in the following figures. Specifically,

Fig.5.7(a) and Fig.5.7(b) illustrate the beneficial use of the MIAD power control for the

detection miss ratio, which leads to a drastic reduction of the average number of miss-

detected signals in the system for DPDB protocols. Obviously the miss-detection curves
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for FPDB are similar to the FPFB case, since no power control is applied. Furthermore,

considering the contention ratio CR, both Fig.5.8(a) and Fig.5.8(b) show benefits compared

to the fixed FPFB case. Interestingly, the DPDB cases are slightly worse than the FPDB.

This is because a higher number Nd (t) is detected for the same window size W , so that the

CR calculated as in (5.22) appears higher.

5.5.5 Protocol Temporal Adaptation to Channel Fluctuations and Deep

Fades

In the current subsection, we further illustrate the performance of our protocol - which

operates with parameters given in Table 5.3 - for a scenario with fluctuations and abrupt

changes of the fading conditions. Such investigation shows how fast and with which cost in

power expenditure can the protocol adapt to environmental changes. Specifically, we use a

factor β to multiply the long-term fading of each user. Initially the factor has an expectation

1 and its value fluctuates uniformly within the interval [0.7, 1.3]. After a certain time-interval

we initiate a sudden deterioration of the channel to an average of 0.8, which returns to 1

after some time. The realization of such fading scenario for a given user is presented in Fig.

5.9(a).

Very important here is to show how the protocol performs over time and adapts to the

changes. Compared to the fixed power scenario, our suggested protocol can react very fast

to the changes by an increase in power consumption during the period of the deep fade,

which keeps the DMR always within the defined interval
[
DMRL,DMRH

]
. This can be

observed in Fig.5.9(b) and Fig.5.9(c).

5.5.6 Protocol Temporal Adaptation to Traffic Load Fluctuations

To complete the evaluation of our protocol, we illustrate the temporal behavior of the DPDB

protocol compared to the fixed case FPFB, when the arrival traffic load varies with time.

The chosen idle parameter is A = 0.25. All other parameters follow Table 5.3, noticing

that the window size is W = 200 slots. Specifically, we consider a scenario where from 0

to 1000 time slots the users arrive in the cell with an average value of 5 [users/sec], the

average arrival rate increases to 10 [users/sec] from 1000 to 2000 slots and reduces again to

10 [users/sec] from 2000 to 3000 slots. The traffic scenario over time can be found in Fig.

5.10(a) and the temporal evaluation of FPFB and DPDB in Fig. 5.10(b), 5.10(c), 5.10(d),

5.10(e).

Specifically, the improvement of DPDB compared to the FPFB over the performance

measure is evident in Fig. 5.10(b). As a consequence of the chosen performance function, a

considerable improvement in the dropping rate is shown in Fig. 5.10(e), where the dropping
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rate, even with the abrupt change of the average traffic load from 5 to 10 [users/slot] does

not exceed the 0.1% for DPDB. This is achieved with almost zero cost in power consumption

as shown in Fig. 5.10(d) and usually even better delay as shown in Fig. 5.10(c) compared

to the FPFB case. As the plots show, our protocol functions as promised with reference to

the dropping rate and hence the optimal exploitation of the available resources, in order to

serve the maximum possible rate of incoming users.

One may observe an overshoot and a delayed response in Fig. 5.10(c) and 5.10(d)

starting at the beginnings of the abrupt changes from 5 to 10 [users/sec] and from 10 to 5

[users/sec]. The reason is the choice of a long window W = 200 slots, and the power control

factors δ1 and δ2 which we left as in the previous evaluation plots - for coherence reasons

- and shown in Table 5.3. If we optimally select these values and choose the parameter

A appropriately, we can adapt our protocol to different scenarios of traffic load variations.

Furthermore, we may choose whether we wish to save in power or delay, while aiming for

maximum user service, but this depends on the system needs.

5.6 Conclusions

We have suggested a dynamically adaptive protocol which updates the user access probabil-

ities and transmission powers in cellular random access communications for LTE systems,

with the aim to maximize the served load of the cell. The protocol is based on measure-

ments and user reports at the base station side, which allow for an estimation of the number

of users present within the cell, as well as the quantities of detection-miss and contention

probability. The protocol updates take place per time slot in a myopic fashion. By solving

a drift minimization problem for the contention level and using closed loop updates for the

transmission power level by a MIAD rule, the BS coordinates the actions chosen by the

users, by broadcasting the pair (L∗ (t) , p∗ (t)).

The protocol was constructed based on a specific choice of performance function - the

sum of system states. This function aimed at maximizing the usage of the restricted random

access resource in the cellular system and consequently at minimizing the ratio of dropped

users. Simulations results have shown the considerable performance increase of the protocol

with minimum cost and occasionally even benefit in delay and power consumption. The

performance of our protocol is tunable with paramaters that can be controlled by a system

designer, such as the idle parameter A and the power steps δ1, δ2 and ∆p to achieve the

desired performance depending on the actual scenario.

The algorithmic steps, together with the methodology of the drift minimization for a cer-

tain measure of interest, provide a general suggestion to treat problems of self-organization

in wireless networks. Considering the specific scheme, a large variation of algorithms can

71



be extracted, by choosing e.g. some different state function for the performance measure,

or by introducing other kinds of user reports, which may provide more information to the

central receiver, at the cost of increase in signaling. Furthermore, a larger action set can

definitely provide a higher performance, compared to the proposed one - which introduces

two possible values for the contention level (high/low) and two actions for the power level

(increase/decrease). Even in this scheme however, which is characterized by an “economy”

of signaling and information exchange, the results - as illustrated by numerical examples -

are very beneficial, especially as the user number in the cell increases.
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TABLES

Table 5.1: GENERAL SELF-OPTIMIZATION ALGORITHM
STEP 1 Gather empirical information I at the BS.
STEP 2 Estimate unknown factors (see 1. - 3. above).
STEP 3 Solve the resulting optimization problem in (5.18).
STEP 4 Broadcast action-related information J .
STEP 5 Calculate at the user side the required actions, based on J .

Table 5.2: PARAMETER TABLE
Parameters Value

Wireless Network Single cell
User distribution Uniform within cell
Number of users in cell {1, 2, . . . , 14}
Sequence pool size 10
Fixed Tx Power 250 mW
Power ramping step ∆p 20 mW
Maximum Tx Power 500 mW
Path loss PL 128.1 + 37.6 log(D km) dB
Noise −133.2 dBm
SNR threshold 8 dB
Maximum effort M 5
Fixed backoff probability [0.5, 0.4, 0.3, 0.2, 0.1]
Number of slots 15000 slots

Table 5.3: TUNABLE FACTORS TABLE
Tunable Factors Value

Window length W 200 slots
Backoff factor A {0.05, 0.25, 0.5}
Access Function f (m) m−1

Power control factor δ1 2× 10−4

Power control factor δ2 8 mW

DMRH 3.5%

DMRL 2.5%
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Figure 5.1: Comparison of the average occurence of idle slot per scheme. The dynamic
scenario with A = 0.05 is the closest to follow the chosen fixed one.
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Figure 5.2: Comparison of performance measure, equal to the chosen function V as t→∞.
The measure improves with increasing idle probability bound A. Furthermore, all DPDB
schemes outperform the FPDB ones.
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Figure 5.3: Comparison of the average number of efforts until success. The behaviour of
these curves follows closely the performance metric curves, due to the specific choice of the
Lyapunov function V as sum of user states.
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(a) Total delay in FPDB protocols.
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(b) Total delay in DPDB protocols.

Figure 5.4: Evaluation of total average delay up to success (including backoff slots) in the
case of (a) FPDB protocols and (b) DPDB protocols. The higher the parameter A, the
higher the allowed delay. For A = 0.05, the protocol delay approaches the one of the FPFB
protocol. In general power control improves the delay.
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(a) Tx power in FPDB protocols.

2 4 6 8 10 12 14
0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

Number of users/ time slot

T
x
 p

o
w

e
r 

(i
n

 W
a

tt
)

Performance comparison: Tx power (DPDB)

 

 

DPDB, A=0.05

DPDB, A=0.25

DPDB, A=0.5

(b) Tx power in DPDB protocols.

Figure 5.5: Evaluation of average Tx Power consumption up to success in the case of (a)
FPDB protocols and (b) DPDB protocols. In the case of FPDB, the consumed power is
always lower than the FPFB case. Both cases exhibit benefits in Tx power.

76



2 4 6 8 10 12 14
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Number of users/ time slot

D
R

Performance comparison: dropping ratio (FPDB)

 

 

FPFB

FPDB, A=0.05

FPDB, A=0.25

FPDB, A=0.5

(a) Dropping rate in FPDB protocols.
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(b) Dropping Rate in DPDB protocols.

Figure 5.6: Comparison of the average dropping rate (DR) in the case of (a) FPDB protocols
and (b) DPDB protocols.. The abrupt increase of the rate after a certain user number is
an indicator that the system is not anymore stable for a further increase in the cell user
number. Higher values of A can increase the point when the instability appears, at the cost
of delay. (For a single user, the dropping rate may be non-zero if the event of miss-detection
occurs M consecutive times due to bad channel conditions and poor transmission power.)
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(a) Miss-detection rate in FPDB.
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(b) Miss-detection rate in DPDB

Figure 5.7: Comparison of miss-detection rate DMR for the two protocols (a) FPDB and
(b) DPDB. Benefits are evident only in the case (b) where the MIAD rule is applied.
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(a) Contention rate rate in FPDB.

2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of users/ time slot

C
R

Performance comparison: contention ratio (DPDB)

 

 

DPDB, A=0.05

DPDB, A=0.25

DPDB, A=0.5
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Figure 5.8: Comparison of contention rate CR for the two protocols (a) FPDB and (b)
DPDB. Both schemes exhibit improvements compared to the FPFB case, due to the backoff
optimal choices. The case DPDB is slightly worse than the FPDB due to the fact that a
larger number of packets are detected, so that the CR appears lower.
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(a) Scenario with channel fluctuations and deep fades.
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(b) Temporal adaptation of transmission power to
a deep fade.
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Figure 5.9: Protocol adaptation with respect to power and DMR
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(a) Scenario with load varying over time.
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(b) Temporal evaluation of the performance mea-
sure for FPFB and DPDB.
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(c) Temporal evaluation of delay for FPFB and
DPDB.
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(d) Temporal evaluation of power consumption for
FPFB and DPDB.
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(e) Temporal evaluation of dropping rate for FPFB
and DPDB.

Figure 5.10: Protocol adaptation over time when the traffic load varies from an average of
5 [users/sec] to an average of 10 [users/sec] and back. Value of idle parameter A = 0.25
and chosen window size W = 200 slots. The benefits of the protocol over the fixed case are
apparent for the delay and dropping rate, with almost the same power consumption. The
DPDB case is definitely superior compared to the FPFB case regarding the performance
measure in (b). A certain overshoot and delayed response in both (c) and (d) is due to the
choice of large window size W and the power step ∆p, which can be further optimally tuned
to adapt to each scenario of expected traffic change.
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Chapter 6

Mobility Robustness Optimization

The MRO problem in LTE SON is a multi-objective optimization problem, which involves

a set of non-convex contradicting objective functions that depend on multiple variables

such as handover (HO) parameters and user mobility classes. In this chapter we exploit

the framework of stochastic processes to develop a novel method of successively choosing a

sequence of multi-variate training points for multi-objective optimization. Combined with

the collected statistics and a priori knowledge, the proposed method is used in the design of

an efficient MRO algorithm. The performance of the algorithm is evaluated by simulations

to illustrate significant improvements with respect to both HO-related radio link failure

(RLF) and unnecessary HOs.

Parts of this chapter have already been published in [4]

6.1 Motivation and Related Work

A key objective of MRO is to improve the HO performance by reducing the number of

HO-related RLFs and the number of unnecessary or missed handovers caused by incorrect

HO decisions. The main desired functionalities include detection of “too early HO”and

“too late HO”, and improving the overall handover performance by tuning the HO-related

parameters.

Although some approaches to the problem have already been proposed, most of them

are not based on systematic methods but rather on engineering intuition and simulations.

Second, most of the existing algorithms such as those in [Jea10, Jea11, Bea11] adjust only

the two global HO parameters hysteresis and TTT so that they impact the HO performance

in the whole cell. Such approaches are therefore inadequate to cope with HO problems that

pertain only to a specific cell pair, in which case it is more appropriate to adjust the local HO

parameter such as CIO. Last but not least, the HO performance of a user strongly depends

on the mobility class to which the user belongs. The authors of [SWZZ10, Lea11, Kea11]
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take the mobility classes into account, but they do not differentiate between local and global

HO problems, and consider only the global HO parameters.

We are motivated to formulate the MRO problem as a multi-objective optimization

problem, in which the objective functions are in general unknown, non-convex, and depend

on multiple variables. The unknown functions can be explored at selected training points

by taking measurements (called trials). The training points can possibly be corrupted by

some Gaussian noise due to the missing or delayed measurements. The maximum allow-

able number of trials is strongly restricted, because each trail results in a relative high

cost, for instance, in terms of wireless resources. We therefore consider an extension of

the so-called P-algorithm which was introduced by Kushner [Kus64] and Žilinskas [Ž85] for

single-objective global optimization; this algorithm, which models an unknown function as

a stochastic process defined by the noisy training set, has been shown to be an efficient

method for minimizing unknown functions. Recently, using Gaussian processes for statis-

tical modeling, the P-algorithm has been generalized to multi-objective optimization [Ž12].

In this work, however, all components of the multi-objective functions are assumed to be

independent processes, which is not satisfied in our MRO scenario since different HO perfor-

mance measures are highly dependent on each other. For this reason, using the framework

of multivariate Gaussian process (GP), we extend the method of [Ž12] to incorporate the

inter-dependencies between different HO performance measures. The algorithm provides

optimized local and global HO parameters per user mobility class. The collected local

statistics and a priori knowledge are utilized to improve the efficiency of the algorithm.

Simulation results show significant performance gains.

6.2 System Model and Problem Statement

We consider a multi-cell scenario consisting of one central (serving) cell surrounded by m

neighbor cells j ∈ S, |S| = m. Let the set of users served by the central cell be denoted

by K. In the remainder of this section, we briefly describe the HO process, introduce HO

metrics and parameters, and state the optimization problem.

6.2.1 HO Process and Parameters

A HO process of user k ∈ K from the serving cell to cell j is illustrated in Fig.6.1. UE

reports the raw measurement of RSRP from each detected cell j at physical layer (PHY)

layer qj(n) at the n-th time unit, and provides results to RRC layer for averaging once every

N0 ms. A nominal measurement period from L3 point of view is N0 = 200 ms [LPGC12].
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The filtered RSRP Pj(n) is computed with

Pj(n) := (1− β)Pj(n− 1) + βqj(n), (6.1)

where Pj(0) := qj(0) and parameter β := 2−k/4 depending on the filter coefficient k is

optionally signaled to UE in RRC measurement configuration message.

While moving towards cell j, UE waits for a time t1 to trigger a counter for handover

request (HRQ) until the HO condition Pj(n) ≥ P0(n) + Mj is satisfied, where Pj is the

filtered RSRP of user k from neighbor cell j, P0 is the filtered RSRP from serving cell, and

Mj is the handover margin (HOM) given by

Mj = H −Oj , (6.2)

Here and hereafter H is the hysteresis in serving cell to ensure strong signals from the

candidate cells, and Oj is the pairwise CIO to give a higher preference to a candidate cell

to take over the user.

If the condition holds for a time t2 = T called TTT, then a HRQ is sent to cell j. A

HRQ is considered successful if after requesting it, the user moves into a coverage area (a

region where Pr{SINR ≥ γ0} ≥ λ is satisfied for some predefined thresholds γ0 and λ) of

cell j; otherwise we have a HO failure. In contrast, a HO-related RLF occurs when a user

leaves the coverage area of the serving cell before a successful HO is completed 1. This is

the case when t1 or t2 is too long for the velocity vk. Hereafter for brevity we use RLF to

represent the HO-related RLF in the serving cell. Finally, a ping-pong handover (PPHO) is

defined to be a handover to a neighbor cell that returns to the original cell after a short time

Tcrit. Fig. 6.2 illustrates the examples of a normal HO process, a RLF caused by too-late

HO, a HF caused by too-early HO, and a PPHO (unnecessary HO) caused by too-early HO.

6.2.2 Handover Metrics

The HO performance is generally evaluated by three HO metrics: radio link failure rate

(RLFR) denoted by R1, handover failure rate (HFR) denoted by R2 and HO PPR denoted

by R3. According to [3GPa], these are defined as

R1 =
NRLF

|K|
, R2 =

NHF

NHRQ
, R3 =

NPPH

NHRQ
. (6.3)

Here and hereafter, |K| is the cardinality of K, while N(·) is used to denote the number

of occurrences of event (·).2 The HO metrics in (6.3) are global metrics for the entire

1In [3GPa] a handover failure (HF) is also defined as a RLF which occurs in the target cell after the HO
process. To distinguish the too-late and too-early indicators, in this chapter we name the RLF in the serving
cell before sending a HRQ as RLF, whereas the RLF in the target cell after sending a HRQ as HF.

2For instance, NHRQ is the number of handover requests, while NHRQj
used in (6.4) is the number of

handover requests to neighbor cell j.
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serving cell. In contrast, the HO performance between the serving cell and neighbor cell j

is expressed in terms of local HO metrics defined to be

rj,1 =
NRLFj

|Kj |
, rj,2 =

NHFj

NHRQj

, rj,3 =
NPPHj

NHRQj

. (6.4)

Since |K| =
∑m

j=1 |Kj | and NHRQ =
∑m

j=1NHRQj
, the global metrics can be seen as the

weighted average of the local metrics:

Ri =
m∑

j=1

aj,irj,i, where aj,i =





|Kj |
|K| , i = 1
NHRQj

NHRQ
, i = 2, 3 .

(6.5)

While the estimates of rj,2 and rj,3 can be obtained from HRQs between the cells as proposed

in [3GPa], the estimate of rj,1 cannot be directly obtained from the measurements. There-

fore, we propose that each user k reports the cell ID of the best neighbor j∗ = arg maxj P̄j

periodically, where P̄j is the averaged value of Pj over the last predefined τ time frames

(e.g., in simulations, τ = 10). During an observation time period, we estimate |Kj | and

NRLFj
as follows:

• If a call is dropped and the last report before the call drop is j, increment both NRLFj

and |Kj | by 1.

• Increment |Kj | by 1 either if a call is handed over to j-th neighbor cell, or a call is

ended and the last report is j, or if a call remains in serving cell and the latest report

is j.

6.2.3 Problem Statement and Our Approach

Our objective is to minimize the HO metrics while satisfying some given requirements on

them. Once a violation of the requirements is detected and the HO problem is identi-

fied/classified, a MRO algorithm is initiated with appropriate parameters to resolve the

problem by adapting the HO control parameters, including the global parameters {H,T}

(hysteresis and TTT) and the local parameter Oj (CIO).3 To this end, we model the un-

known relationship between the HO performance metrics and the HO control parameters as

a multivariate Gaussian process and apply different multi-objective P-algorithms of [Ž85]

(see Section 6.4 for more detail). The choice of the algorithm and its initial parameters de-

pend on the type of a detected HO problem. As described in Section 6.3.1, we differentiate

between global and local problems on the one hand, and too-late and too-early problems

on the other hand.

3Note that the global parameters affect the HO performance at all cell edges, while Oj has impact only
on the jth cell edge.
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Finally, we point out that we differentiate between C = 3 user mobility classes classified

based on users’ reported mobility states as suggested in [3GPg]: normal, medium and

high. The HO metrics are collected per mobility class so that the optimization problem

decomposes in C independent sub-optimization problems with HO parameters defined per

user mobility class. For convenience, however, we confine our attention in Section 6.3

to one arbitrary mobility class and point out that the following problem formulation and

optimization strategies based on the collected local statistics can be applied individually to

each mobility class. Thus, the output of the algorithm is a set of optimized HO parameters

per user mobility class per cell.

6.3 MRO Algorithm

6.3.1 Handover Problem Detection

As aforementioned, HO problems are classified in two groups, either of which contains two

sub-groups:

1. Too-late and too-early HO problems: Larger values of t1 + t2 (see Fig.6.1) lead to too-

late decisions and higher RLFs, while smaller values of t1 + t2 result in too-early HO

decisions in strongly overlapped serving area, thereby increasing HFR and HO PPR.

2. Global and local HO problems: Roughly speaking, there is a global HO problem if there

are sufficiently many local HO problems of the same type, while other boundaries do

not suffer from a conflicting type of local HO problems; otherwise a local HO problem

is declared to be dealt with local HO control parameters.

Note that for some predefined requirements δi > 0, i = 1, 2, 3, there is a local HO problem

associated with the jth neighbor cell if either rj,1 > δ1 (too many RLFs caused by too-late

decisions) or if
∑

i=2,3 rj,i >
∑

i=2,3 δi (too many RLFs and HO PPRs due to too-early

decisions). Based on this, given {rj,i}, the proposed detection algorithm summarized in

Algorithm 2 classifies detected HO problems in four classes.

Based on the output of this algorithm, we tune either global or local parameters at each

step. The distinction between too-late and too-early HO problems allows us to confine the

search domain to certain regions.

6.3.2 Handover Optimization

We introduce the following assumption, which is justified at the network level where opti-

mization periods are relatively long.
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Algorithm 2: HO problem detection and classification

1: loop
2: Collect {rj,i : j = 1, . . . ,m, i = 1, 2, 3}
3: Find the sets B(l) = {j : rj,1 > δ1} and B(e) = {j :

∑
i=2,3 rj,i >

∑
i=2,3 δi}

4: if |B(l)| ≥ m/2 and for ĵ /∈ B(l),
∑

i=2,3 rĵ,i ≤
∑

i=2,3 δi − ε2 then
5: Global, too-late
6: else if |B(e)| ≥ m/2 and for ĵ /∈ B(e), rĵ,1 ≤ δ1 − ε1 then
7: Global, too-early
8: else if B(l) 6= ∅, for each j in B(l) then
9: Local, too-late, boundary j

10: else if B(e) 6= ∅, for each h in B(e) then
11: Local, too-early, boundary h
12: else if B(l) ∪ B(e) = ∅ then
13: Normal
14: end if
15: end loop

Assumption 6.1. The moving direction and speed of each mobility class are random sta-

tionary processes over every optimization period.

Under Assumption 6.1, for each boundary j, the local metrics defined in (6.4) depend

only on vj = (Mj , T )T . Let us denote the global HO control vector by x = (H,T )T ∈ X0 =

[Hmin, Hmax]× [Tmin, Tmax], while zj = (Oj , 0)T ∈ O0 = [Omin, Omax]× {0} contains only

the local HO control parameter.4 The functions

fj,i(vj) = fj,i(x− zj), i ∈ {1, 2, 3}, 1 ≤ j ≤ m.

determine the relationship between rj,i and the HO control parameters x and zj .

6.3.3 Global MRO Algorithm

We define F (x) = (f1(x− ẑ1), . . . ,fm(x− ẑm))T for any fixed {ẑj}
m
j=1 where

fj(x− ẑj) = (fj,i(x− ẑj) : i = 1, 2, 3)T (6.6)

contains the local HO metrics for boundary j. Then the global MRO problem is given by

min
x∈X0

F (x) (6.7)

To apply the multi-objective version of P-algorithm introduced in Section 6.2.3, the following

assumption is made.

Assumption 6.2. During each optimization period, the observations of F (x) are assumed

to be a Gaussian random field Ψ(x). The components {ψj(x)}mj=1 are independent and each

ψj(x) is considered an tri-variate GP.
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Algorithm 3: Searching strategy for global MRO problem.

Input: The predefined system performance requirements for RLFR, HFR and HO PPR:
δi > 0, i = 1, 2, 3

1: Collect n initial sample points of local HO metrics, including the input set
Vj,n = {vj,l = (xl − zj,l)}

n
l=1 and the output set Yj,n = {yj,l}

n
l=1, where the l-th

observation is yj,l = (r
(l)
j,i : i = 1, 2, 3)T ∈ R3.

2: loop
3: if global too-late HO problem is detected then
4: Confine the search domain X = X0 \ [Hn, Hmax]× [Tn, Tmax], where (Hn, Tn)

denotes the HO global parameters at the nth observation.
5: else if global too-early HO problem is detected then
6: Search domain X = X0 \ [Hmin, Hn]× [Tmin, Tn]
7: end if
8: Choose the next observation point

xn+1 = arg max
x∈X

m∏

j=1

Pr{ψj(x) ≤ yonj |Vj,n,Yj,n} . (6.8)

yonj = (yonj,1, y
on
j,2, y

on
j,3)

T , yonj,i = max{ymin
j,i , δi

aj,im
}, and ymin

j,i = min1≤l≤n r
(l)
j,i .

9: n← n+ 1, collect new sample and update Vj,n,Yj,n.
10: Stops if Ri ≤ δi, ∀i.
11: end loop

The assumption implies that each HO performance metric is a smooth function corrupted

by Gaussian noise. Moreover, it captures the fact that HO metrics for different boundaries

are jointly independent, whereas the observation processes for RLFR, HFR and HO PPR

are dependent for any boundary j – indeed, fj,1 and (fj,2, fj,3)
T are contradicting objective

functions of the same variables.

With Assumption 6.2, the algorithm described in Section 6.4 is applied to the global

MRO problem in (6.7). In more detail, a search strategy is formulated in Algorithm 3.

With independence assumption on ψj(x), we can easily compute (6.8) based on the

independence model in Section 6.4.3. Since the HO parameters are chosen from a set of

finite size [3GPi], the conditional probability in (6.8) can be computed numerically according

to the multivariate GP modeling in Section 6.4.4. The differentiation between too-late and

too-early HO problems provides additional constraints on the search domain. Since fj,1 on

the one hand and (fj,2, fj,3)
T on the other one are contradicting objectives, and therefore

difficult to minimize at the same time, we use yonj instead of ymin
j in (6.11) to enforce

rj,i ≤
δi

aj,im
, ∀j, i, from which we have ∀i, Ri =

∑m
j=1 aj,irj,i ≤ δi. The algorithm is stopped

when all global metrics defined in (6.3) fall below the threshold δi, i = 1, 2, 3.

4The second entry of zj is 0 so that we can write vj = x− zj (recall that Mj = H −Oj).
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6.3.4 Local MRO Algorithm

If a HO problem is detected at boundary ĵ, with fixed global parameter x̂, the local MRO

algorithm is triggered of the form

min
z
ĵ
∈O
fĵ(zĵ)

fĵ(zĵ) = (fĵ,i(x̂− zĵ) : i = 1, 2, 3)T . (6.9)

The problem is equivalent to that stated in (6.10), and can be approached by the algorithm

in (6.11). Similar to Algorithm 3, the search domain O is constrained based on the a priori

knowledge about the type of detected HO problems. Accordingly, if too-late problem is

detected, then zĵ ∈ O, O = O0 \ [Omin, Oĵ,n]×{0}, where Oĵ,n is the current CIO assigned

to boundary ĵ. Also the cumulative distribution function is calculated up to yon
ĵ

, where

yon
ĵ,i

= max{ymin
ĵ,i

, δi}. The algorithm is stopped if the system requirements δ on local metrics

in (6.4) are satisfied. The system requirements δ are the same for global and local metrics,

since the global metrics are the weighted average of the local metrics, as shown in (6.5).

6.3.5 Interaction between Global and Local MRO Algorithms

The global MRO algorithm improves the general HO performance but it may lead to some

side effects on a few boundaries. For example, if a “global, too late” problem is detected,

the global MRO algorithm is triggered, and the HO performance on most boundaries is

improved. However, a few boundaries may suffer from this global optimization and have

“too early” problem, in which case a local MRO algorithm is then triggered to compensate

the detrimental impact of the global changes. This does not affect the HO performance on

other boundaries due to the independence according to Assumption 6.2. Thus, the overall

HO performance benefits from a global optimization followed by some local compensation

actions.

6.4 Extended Multi-Objective P-Algorithm

6.4.1 Multi-Objective P-Algorithm

Consider the following optimization

min
x∈A

f(x), f(x) =
(
f1(x), . . . , fm(x)

)T
(6.10)

where A ⊂ Rd denotes a feasible set of d ≥ 1 control parameters, and f : A → Rm,m ≥ 1, is

the unknown vector-valued objective function. Since f is unknown, we model this function

using a random field ψ : A → Rm so that ψ(x),x ∈ A, is a random vector. Now we can

define the multi-objective P-algorithm.
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Definition 6.1. (Multi-objective P-algorithm [Ž12]) Suppose Xn = {x1, . . . ,xn} ⊂ A are

available training points up to step n, and Yn = {y1 = ψ(x1), . . . ,yn = ψ(xn)} are realiza-

tions of ψ(x) on these points where ∀iψ(xi) = (yi,1 = ψ1(xi), . . . , yi,m = ψm(xi))
T . The

P-algorithm is then defined by the following iteration

xn+1 = arg max
x∈A

Pr
{
ψ(x) ≤ ymin|Xn,Yn

}
, n ∈ N (6.11)

where ymin = (ymin
1 , . . . , ymin

m ), and ymin
j = min1≤i≤n yi,j.

Note that at step n, the P-algorithm chooses the next test point xn+1 so as to maximize

the conditional probability for yn+1 = ψ(xn+1) ≤ y
min, where ymin is a vector containing

the minimum values among all observed values up to step n.

6.4.2 Modeling with Gaussian Processes

In [Ž12], the iteration in (6.11) is performed under the assumption that the components of

ψ(x) are independent Gaussian random variables for every x ∈ A. Since this assumption is

not necessarily satisfied in the MRO context due to strong dependencies between different

components, we extend the model of [Ž12] to include the interdependencies.

To this end, assume that ψ(x) is a multivariate GP

ψ(x) = Aφ(x) + b (6.12)

where A ∈ Rm×m is a symmetric positive definite matrix which determines the variance-

covariance matrix of ψ(x), φ(x) = (φ1(x), . . . , φm(x))T is used to denote a vector of mutu-

ally independent stationary GP with zero mean and unit variance, and b ∈ Rm is the mean

of the process ψ(x). It is assumed that the correlation function of ψj(x) yields

cj(xl,xk) = exp

(
−

1

2
(xl − xk)TMj(xl − xk)

)
(6.13)

where Mj = diag(θj),θj ∈ Rd. The parameters {A, b,θ1, . . . ,θm} are called hyperparam-

eters and can be freely chosen. Reference [RW06] provides various methods to determine

the hyperparameters and one possible method is to optimize the marginal likelihood. By

(6.13), we have

Klk := Cov(yl,yk) = Cov (ψ(xl),ψ(xk)) = ACmA
T (6.14)

where Cm = diag(c1(xl,xk), . . . , cm(xl,xk)) ∈ Rm×m. Note that if xl = xk, then

Σ0 := Cov(yl,yl) = AAT . (6.15)
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Notice that the assumption of the correlation function in (6.13) leads to Klk = Kkl, the

covariance matrix Σmn ∈ Rmn×mn of the output vector ymn := (yT1 , . . . ,y
T
n )T ∈ Rmn is

given by

Σmn = Σ(ymn,ymn) =




Σ0 K12 . . . K1n

K12 Σ0 . . . K2n
...

...
. . .

...
K1n K2n . . . Σ0


 . (6.16)

Given a test input x∗, let the corresponding output be denoted by y∗. The m × mn

covariance of the test point output y∗ and the training output vector ymn is given by

Σ∗,mn = Σ(y∗,ymn) = (Cov(y∗,y1), . . . ,Cov(y∗,yn)) .

In Section 6.3 we model the objective function using both dependent and independent

models. The following section introduces the independence model based on [Ž12], whereas

the non-separable dependence model is considered thereafter.

6.4.3 Independence Model

If the components of ψ(x) are independent, A = diag(σ21, . . . , a
2
m), in which case the regres-

sion of f(x) decomposes in m separate GP regressions: ψj(x) for each fj(x). In this special

case, the covariances matrix for each process ψj(x) gives Σn ∈ Rn×n, with the (l, k)-th

entry equal to cj(xl,xk), and Σ0 = cj(xl,xl) = 1. Given training points (Xn,Yn) for a

test point x∗, it follows that Σ∗,n = (cj(x∗,x1), . . . , cj(x∗,xn)). So the joint conditional

distribution of y∗,j and yn,j = (y1,j , . . . , yn,j)
T given b is

[ ( y∗,j
yn,j

)
bj ,Xn,x∗

]
∼ N

(
bj1,

[
1 Σ∗,n

ΣT
∗,n Σn

])
(6.17)

where b can be estimated by the generalized least square (GLS) estimators:

b̂j =
1TΣ−1n yn,j

1TΣ−1n 1
. (6.18)

With estimated hyperparameters {b̂j , σ̂j , θ̂j}, given the test point input, the conditional

mean of the test point output mj(x∗|·) := m(y∗,j |yn,j ,Xn,x∗) and the conditional variance

of the test point output sj(x∗|·) := s(y∗,j |yn,j ,Xn,x∗) (the predictive equations for single

variate GP regression) are

y∗,j |yn,j ,Xn,x∗ ∼N
(
mj(x∗|·), s

2
j (x∗|·)

)

where mj(x∗|·) =b̂j + ΣT
∗,nΣ

−1
n (yn,j − 1b̂j) (6.19)

s2j (x∗|·) =σ2j

[
1−ΣT

∗,nΣ
−1
n Σ∗,n +

(1− 1TΣ−1n 1)2

1TΣ−1n 1

]
. (6.20)
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The above the conditional distributions are derived with the properties of the multivariate

Gaussian distribution described in Appendix C.3. Thus, the probability in (6.11) can be

computed as

Pr{ψ(x) ≤ ymin|Xn,Yn} =

m∏

j=1

Pr{ψj(x) ≤ ymin
j |·}

=
m∏

j=1

G

(
ymin
j −mj(x|·)

sj(x|·)

)
(6.21)

where G(·) denotes the CDF of the standard normal distribution, while mj(x|·) and sj(x|·)

are given by (6.19) and (6.20), respectively.

6.4.4 Non-Separable Dependence Model

For the non-separable dependence model, let A be the unique square root of Σ0, which is

by definition positive semidefinite. We therefore use the Cholesky decomposition A = LLT

and ensure that all the elements on the main diagonal of L are non-negative, i.e., the

constraints li,i ≥ 0, i = 1, . . . ,m are given in the maximum-likelihood estimator (MLE).

The joint distribution of y∗ and ymn is

[ (
y∗
ymn

)
b,Xn,x∗

]
∼ N

([
Im
Imn

]
b,

[
Σ0 Σ∗,mn

ΣT
∗,mn Σmn

])
(6.22)

where Imn := 1n⊗ Im. Assume that b follows a non-informative uniform distribution; then

the conditional mean and variance of ψ(x∗) = y∗, given a set of training points (Xn,Yn),

denoted by m(x∗|·) := m(y∗|Xn,Yn,x∗) and S(x∗|·) := S(y∗|Xn,Yn,x∗) respectively,

yields

ψ(x∗)|Xn,Yn ∼ N (m(x∗|·),S(x∗|·)) (6.23)

m(x∗|·) =b̂+ Σ∗,mnΣmn(ymn − Imnb̂) (6.24)

S(x∗|·) =Σ0 −Σ∗,mnΣ
−1
mnΣ

T
∗,mn + (Im −Σ∗,mnΣ

−1
mnImn)

× (ITΣ−1mnImn)−1 × (Im −Σ∗,mnΣ
−1
mnImn)T (6.25)

where b̂ = (ITmnΣ
−1
mnImn)−1ITmnΣ

−1
mnymn. The mathematical properties in Appendix C.3 is

used to derived the above conditional probabilities. The hyperparameters {A,θ1, . . . ,θm}

are estimated by the MLE. With the conditional mean in (6.24) and the conditional variance

in (6.25), we can estimate the conditional probability in Algorithm 6.1 (via a cumulative

distribution function) numerically (e.g., multivariate normal cumulative distribution func-

tion implemented in MATLAB is based on [Dre94, GB02]). For details of the Gaussian

identities please refer to Appendix C.3.

In summary, the steps of the multi-objective version of P-algorithm are
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1. Collect initial training points {Xn,Yn}.

2. Estimate hyperparameters {b,A,θ1, . . . ,θm} with the training points by maximizing

the marginal likelihood.

3. Find xn+1 = arg maxx∈A Pr{ψ(x) ≤ ymin|Xn,Yn}.

4. Evaluate yn+1, increment n, repeat step 2) with updated training sample set, until a

stopping criterion is met.

6.5 Experimental Results

We consider a highway scenario as shown in Fig.6.3, where 50 users are randomly distributed

on a highway moving both ways at a speed of 150 km/h. The trajectory of these users follows

a wrap-around property, i.e., once a user moves out of the area, it appears on the other

side of the highway in the next time slot. There are 150 users uniformly distributed on the

playground, moving with random direction. The velocity distribution of the playground

users with three mobility classes: low (3 km/h), medium (50 km/h), and high (150 km/h)

is (0.4, 0.4, 0.2). The number of the users in each time slot are fixed, i.e., if a user is

dropped, or moves out of the playground, a new user is generated within the playground.

HO parameters H,T,Oj are chosen from the predefined pool T ∈ {4, 64, 80, 100, 128, 160,

256, 320, 480, 512, 640, 1024, 2560, 5120} in [ms], 0 ≤ H ≤ 15, H ∈ Z in dB, −24 ≤ Oj ≤

24, Oj ∈ Z, ∀j in [dB] [3GPi], and ping-pong criteria time is set as Tcrit = 5s.

The system is started with 25 uniformly distributed grid as initial training points, and

with initial state T0 = 64ms, H0 = 0dB, and Oj , ∀j randomly chosen in [0, 6]dB. The

thresholds are set as δ1 = 0.02, δ2 = δ3 = 0.04. The mobility dependent MRO algorithm

proposed in Section 6.3 is implemented, and its performance is compared against a con-

ventional scheme, which stepwise decreases or increases the same global parameter for all

mobility classes if a “too late” or “too early” HO problem is detected. The optimization

interval is 120s. The simulation results in Fig.6.5 shows that “global too early” problem

is detected first, and the global MRO algorithm is activated to minimize the HFR and

HO PPR. The trade off between the RLFR and HFR, HO PPR leads to the local problem

on the highway-boundaries to neighbor cell 3 and 6, and the local MRO algorithm is trig-

gered to further optimize the local HO performance. Fig.6.5(a) shows that our algorithm

outperforms the conventional stepwise method.
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6.6 Summary

We consider the MRO problem as a multi-objective optimization problem, where the objec-

tive functions are unknown except for a limited number of training samples. To solve the

problem, we modify the multi-objective version of P-algorithm by exploiting the framework

of multi-variate Gaussian processes, so that the algorithm is suitable for dependence model

in theMRO scenario. We present respectively the detection and optimization strategies for

global and local MRO problems based on the proposed local statistics. The algorithm is

implemented per user mobility class. Simulation results show significant improvements on

reduction of the RLFRs and unnecessary HOs.
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Figure 6.1: Illustration of a handover process

Figure 6.4 shows the empirical curves derived by Monte Carlo experiments. Two ob-

servations are made: 1) HO performance depends on the user mobility. With the same

HO parameters, RLFR increases with the increase of the user mobility, while the HFR and

HO PPR decrease. The values of optimal TTT and HOM or a higher mobility class are

generally lower than those for a lower mobility class. 2) As expected, HO metrics turn out

to be inter-dependent. The RLFR and HFR,HO PPR are contradicting objectives.
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(b) Too-late HO
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(c) Too-early HO
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Figure 6.2: HO process: blue solid curve - source pilot; green solid curve - first candidate
pilot; red solid curve - second candidate pilot; blue dashed curve - source pilot + HOM; ma-
genta vertical lines - TTT counting started; purple vertical lines - TTT counting terminated;
cyan horizontal line - TTT
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Figure 6.3: Simulation scenario
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Figure 6.4: HO metrics depending on mobility classes.
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Figure 6.5: Performance comparison.
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Chapter 7

Distributed Interference-Aware

Mobility Load balancing Algorithm

Within a cellular wireless network the unbalanced user load among cells, together with inter-

cell interference (ICI), constitute major factors responsible for poor overall performance. In

this chapter, we suggest a novel decentralized algorithm for Load Balancing in the downlink.

There are two major novelties in the analysis. (i) The algorithm is based on the so-

lution of a mixed integer optimization problem solved using Lagrangian - but not Linear

Programming - relaxation, which allows the solution to be binary for the user assignment

variables. (ii) Its implementation is based on exchange of certain prices among base stations

and allows each of them to make choices individually without the aid of a central controller.

The cell handover parameters are further adequately adjusted to enforce cell-edge users to

migrate to their optimal base station.

The algorithm aims at optimally balancing the load, while at the same time guaranteeing

low levels of ICI. Its performance is evaluated through simulations, which illustrate the

improvements provided on aggregate system utility.

Parts of this chapter have already been published in the coauthored work [3].

7.1 Introduction

In LTE networks, orthogonal frequency-division multiplexing access (OFDMA) eliminates

intra-cell interference by assigning users to orthogonal subcarriers. However, the high fre-

quency reuse factor among cells leads to ICI, which is a major cause of performance degra-

dation, especially for cell-edge users. Imbalanced load among cells further intensifies the

ICI problem, since a heavily loaded BS can cause strong interference to neighboring cells,

while at the same time not being able to provide full service to its own users.

In LTE SON [3GPa], load balancing (LB) aims at balancing the load among different

cells by adapting the cell reselection/HO parameters. In a conventional LB scheme, a pair
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of overloaded (OL) and target (TR) cell is initially specified, and afterwards some cell-edge

users of the OL cell are handed over to the TR cell by modifying the HO parameters.

In [Lea10], a cell is defined to be overloaded if the sum of the required bandwidth from

users is larger than the available total bandwidth. TR cell is chosen to be the one with

best RSRP for the cell edge users. In [SZC07], the OL cell selection is based on certain

congestion metrics from admission control, and the TR cell is chosen to be the lightest

loaded neighboring cell. Further relevant references include [SWMG08,ZRC+08,SAR+10].

However, none of them have considered that distributing the traffic load equally - while

assigning users to the BS with best channel quality - is not enough to improve the overall

spectral efficiency. This is because load balancing may cause severe ICI at the cell edge and

eventually deteriorate the overall performance.

Our objective in this work is to better balance the load among cells, while taking ICI

into consideration and introducing a utility per BS to model its satisfaction. For this pur-

pose, after presenting in Section 7.2 the system model under study, we pose in Section 7.3

a mixed integer optimization problem together with an equivalent transformation. The La-

grangian relaxation of certain constraints and its decomposition into simpler subproblems is

presented in Section 7.4. Several properties of the optimal Lagrangian solution are derived

in 7.5, which depend on the value of a load price and interference cost per BS. After relating

the mathematical model and solution more precisely to the actual network parameters, we

propose in Section 7.7 a novel LB scheme which maximizes the aggregate utility function

of the modified spectral efficiency. The algorithm allows the BSs to communicate in pairs

and make individual decisions. It results in an improved total BS satisfaction by ICI mit-

igation and appropriate user re-assignment which is illustrated in Section VII by means of

simulations.

7.2 System Model

We consider the downlink of an LTE multi-cell network with a set of BSs (or cells) M =

{1, . . . ,M} and a set of users N = {1, . . . , N}. Let Nm denote the set of users assigned to

BS m ∈ M. The binary assignment indicator an,m ∈ {0, 1} takes the value 1 if user n is

assigned to BS m, otherwise it is equal to 0. A user can be assigned to exactly one BS, and

therefore

∀m ∈M,
M∑

m=1

an,m = 1. (7.1)

The system under study implements an OFDMA scheme where all BSs share the same

spectrumW to support the users. If an,m = 1, that is user n is assigned to BSm, then the BS
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should allocate a part of the bandwidth, denoted by wn,m for transmission. The spectrum

allocation is considered here to be random and uniformly distributed over the entire W , as

a statistical effect of timely varying frequency selective channel and the frequency hopping

spread spectrum method. We have

∀m ∈M,
N∑

n=1

wn,m ≤W. (7.2)

The transmission power from the BS to the user has a fixed value per unit of frequency

equal to p and measured in [Joule/sec/Hz]. The total transmission power in [Joule/sec]

destined for a specific user n equals p · wn,m. The total power budget per BS thus equals

p ·W .

ICI arises when two or more neighboring cells operate on the same sub-carrier. The

closed form of ICI depends on the underlying sub-carrier allocation scheduling scheme.

Under the underlying model, the amount of interference created by BS s 6= m to user n

is a strictly increasing function of the allocated bandwidth in base station s 6= m. This

is reasonable since the more frequency resources are utilized by a BS the more probable

it is that the same subcarriers (SCs) are occupied by another BS, in which case inter-cell

interference appears.

The power density of the interference caused to user n in cell m from a neighboring BS

s is considered here an affine function In,s of the SC utilization ratio
∑N

j=1 wj,s

W at s

In,s = p · hn,s ·
(∑N

j=1wj,s

W

)
(7.3)

In the above, hn,s > 0 is the long-term channel gain from BS s to user n, possibly estimated

by RSRP measurements.

Considering a unit of bandwidth, the SINR of user n when served by BS m and with

σn the thermal noise power spectral density equals

SINRn,m :=
p · hn,m∑

s∈M\{m} In,s + σn
, ∀n,m. (7.4)

We set a minimum rate requirement for each user n, denoted by γn. Using the Shannon

capacity formula, the rate requirement of n should satisfy the constraint wn,m · log(1 +

SINRn,m) ≥ an,m · γn. The constraint is always fulfilled when an,m = 0, in which case n is

not connected to m. Taking into account that the RSRQ is distributed within [−19.5,−3]

dB for typical services such as voice [KG10], the approximation log(1 + x) ≈ x is valid, in

which case the constraint can be written as

wn,m · SINRn,m ≥ an,m · γn, ∀n,m. (7.5)
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The modified spectral efficiency for cell m is defined as xm =
∑N

n=1 an,m ·
γn

wn,m
.We use

the minimum rate requirement γn instead of the actual rate. In this way the expression

takes the targeted user load implicitly into account. The problem with such a definition is

however that the nonlinear relationship between variables an,m and wn,m for each n ∈ N

and m ∈ M makes the optimization problem difficult to handle. Moreover, xm becomes

unbounded when wn,m → 0. An alternative definition is therefore proposed, which is well

defined due to linearity

xm =
N∑

n=1

(
an,m · γn − δ · wn,m

)
, ∀m, (7.6)

where δ ≥ 0 is a tuning parameter. The higher the δ, the higher the cost of the band-

width resource. In the following we will use the terms ”spectral efficiency” and ”BS load”

interchangeably, when referring to xm. Since the load should be positive we get a further

limitation on wn,m according to

0 ≤ wn,m ≤ an,m ·min
{γn
δ
,W
}
, ∀n,m. (7.7)

7.3 Problem Formulation

Each BS is assigned to a utility function of the spectral efficiency Um(xm) which reflects the

level of satisfaction. The function is strictly increasing in xm and also strictly concave to

discourage the assignment of additional resources to BSs which already have relatively high

load. Different choice in the utility functions for the same set of constraints leads naturally

to a different operational point. Potential choices are [SWB09]

U (x) =

{
x1−β

1−β β > 1

log x β = 1
. (7.8)

The general optimization problem is to maximize the aggregate utility function, subject to

certain operational constraints:

maxx,a,w

M∑
m=1

Um (xm)

s.t. (7.1), (7.2), (7.5), (7.6), (7.7)
an,m ∈ {0, 1}, wn,m, xm ∈ R+.

(7.9)

Problem (7.9) is a mixed integer program which can be solved by a centralized optimizer.

However, we aim in this work at a distributed operation of the BSs which can approximate

the maximum of the objective function.
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7.3.1 Linearization of the Constraint Set

We first observe that the inequalities in (7.5) are non-linear for the variables an,m and wn,s,

for some s 6= m. We have to transform the constraint set into a set of linear inequalities so

that the problem obtains a form more easy to handle.

We have that for binary assignment variables an,m, the inequalities in (7.5) are equivalent

to linear constraints using the so-called big-M factor

p · hn,mwn,m ≥ γnan,m
[∑

s∈M\{m} In,s + σn

]
⇔

(1− an,m) ·Mn,m + p · hn,mwn,m ≥ γn
[∑

s∈M\{m} In,s + σn

]
, ∀n,m (7.10)

where

Mn,m := γn


 ∑

s∈M\{m}

Imax
n,s + σn


 (7.11)

and Imax
n,s is the maximum value that the interference function from s to user n can take -

considering assignment of user n to BS m. This equals

Imax
n,s

(7.3)
= p · hn,s · 1. (7.12)

Then (7.10) can be understood as follows. When an,m = 1 the QoS requirements for user

n should be satisfied by BS m. When an,m = 0 the constraint is automatically satisfied

due to the positive term activated at the left-hand side of the inequality. This is definitely

greater or equal to the right-hand side irrespective of wn,m. Then for an,m ∈ {0, 1} the two

inequalities are equivalent and the mixed-integer problem (7.9) can be rewritten as

maxx,a,w

M∑
m=1

Um (xm)

s.t. (7.1), (7.2), (7.10), (7.6), (7.7)
an,m ∈ {0, 1}, wn,m, xm ∈ R+.

(7.13)

The above constraint set is denoted by F . Let us further denote the optimal value of the

objective by Z∗. Observe that by relaxing the binary constraint for the assignment variables

(which we do not do however in our approach) so that an,m ∈ [0, 1] the above optimization

problem is a convex program with a concave objective function and linear constraint set

which can be solved by known techniques [BV04]. The optimal solution however does not

exhibit integrality. The optimal value of the objective for the linear relaxation is denoted

by Z∗L.
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7.4 Lagrangian Relaxation

We proceed by relaxing the equality in (7.6) which defines the BS load and the inequality

in (7.10) for the transformed QoS constraints. To do this we relate with each equality a

real Lagrange multiplier λm ∈ R and with each inequality a real non-negative Lagrange

multiplier µn,m ∈ R+ and add them to the objective. For given λm, µn,m, ∀n,m, we get the

Lagrangian of our problem

q (λ,µ) = max
x

∑

m

[Um (xm)− λmxm]

+ max
a

∑

m,n

[λmγnan,m + µn,m (1− an,m)Mn,m]

+ max
w

∑

m,n

[
− δλmwn,m + µn,mphn,mwn,m −

−µn,mγn


 ∑

s∈M\{m}

In,s + σn




 (7.14)

and the maximization above is taken over the constraint set

FLR := {an,m ∈ {0, 1} , wn,m, xm ∈ R+, ∀n,m|(7.1), (7.2), (7.7)}

An important property is that ∀ (λ,µ) it holds that q (λ,µ) ≥ Z∗ and hence the weak

duality property [BT97] holds

Z∗LR := min q (λ,µ) ≥ Z∗. (7.15)

7.4.1 Decomposition

In FLR the variables an,m and wn,m are related through (7.7). The constraint actually states

that when an,m = 0 then necessarily the bandwidth variable is also wn,m = 0 otherwise

0 ≤ wn,m ≤ min
{γn
δ
,W
}

(7.16)

In other words the solution is not allowed to give positive bandwidth when there is no

assignment. We can consider however an enlarged constraint set

F ′LR := {a,w,x|(7.1), (7.2), (7.16)} ⊇ FLR

where we replace the constraint in (7.7) by (7.16). By solving (7.14) over this, we can see

that the solution for the assignment variables will not be influenced. The possibility of

allocating positive bandwidth to (n,m) pairs where there is no assignment is now allowed.

We will see however in the next section that the optimality conditions do not allow such
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a case and the solution of the two problems is the same. A direct gain by this change in

constraints is that we achieve a decomposition of the problem into subproblems which are

easier to handle.

Proposition 7.1. Consider the mixed integer problem in (7.13) and replace inequality (7.7)

by (7.16). Then the Lagrangian of the problem which results by relaxing the constraints (7.6)

and (7.10) decomposes into three subproblems:

• Load Distribution: The optimal load per BS is given by solving over xm, ∀m

maxxm Um (xm)− λmxm (7.17)

• BS Assignment: The optimal assignment of each user n to a single BS is derived

by solving ∀n over an := [an,1, . . . , an,M ]

maxan

∑
m

[λmγnan,m + µn,m (1− an,m)Mn,m]

s.t.
∑
m
an,m = 1

(7.18)

• Bandwidth Allocation: The optimal bandwidth allocation is derived by solving over

w

maxw
∑
m

∑
n

[
−δλmwn,m + µn,mphn,mwn,m − µn,mγn

(
∑

s∈M\{m}

In,s + σn

)]

s.t.
∑
n
wn,m ≤W, ∀m

0 ≤ wn,m ≤ min
{γn

δ ,W
}
, ∀n,m

(7.19)

7.5 A Lagrangian Relaxation Approach

7.5.1 Solution for Given Prices

Given a set of Lagrange multipliers (λ,µ) named from now on also prices, we can find the

optimal values on load, BS assignment and bandwidth allocation by solving each one of the

above subproblems respectively.

• For the load distribution of the problem the optimal solution is given by solving (7.17),

which for a fixed value λm of load price per BS satisfies the expression

dUm (xm)

dxm
= λm (7.20)

Using as an example Um (xm) = log (xm), ∀m, the above results in the solution xm = λ−1m .

• The BS assignment problem is solved for each user. Problem (7.18) is a discrete

optimization problem which can be rephrased into finding for each user n the BS mn which

maximizes the expression
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mn = arg max
m



λm +

∑

k∈M\{m}

µn,k
Mn,k

γn



 (7.21)

(a)
= arg max

m

{
c+ λm − µn,m

Mn,m

γn

}

(7.11),(b)
= arg max

m



λm − µn,m


 ∑

s∈M\{m}

Imax
n,s + σn







where (a) comes by adding and subtracting the term µn,mMn,m/γn and c is a term constant

and equal to c :=
M∑
k=1

µn,kMn,k/γn and hence can be removed from the objective. (b) results

by further substituting the expression for the big-M factor.

It is obvious from (7.21.b) that user n is assigned to the BS with a maximum linear

combination of (i) positive load price and (ii) negative sum of maximum interference from

the other BSs, weighted by the price µn,m ≥ 0. This is reasonable because the user should

be given to a BS which still has enough ”room” to accept users (this is better understood

by considering the log-utility expression, where λm = x−1m ) and at the same time suffers by

as low interference as possible from the rest of the system.

• Considering the bandwidth allocation problem in (7.19), we simplify the constraints by

assuming that the total bandwidth available is large enough W >> 1 so that the constraint

(7.2) is always satisfied with strict inequality. Then our subproblem can be solved for each

wn,m, n ∈ N and m ∈ M. More specifically, by differentiating the objective in (7.19) over

wn,m we get the expression

εn,m := −δλm + µn,mphn,m − Jm (7.22)

where Jm is a characteristic value for each BS m, given a vector µ, and will be called from

now on the interference cost

Jm :=
∑

s 6=m

∑

j

µj,sγj
∂Ij,m
∂wn,m

(7.3)
=

∑

s 6=m

∑

j

µj,sγj
p · hj,m
W

≥ 0 (7.23)

Then the power allocation follows the rule:

wn,m =





min
{γn

δ ,W
}

if εn,m > 0
0 if εn,m < 0
ω ∈

(
0,min

{γn
δ ,W

})
if εn,m = 0

. (7.24)
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which is easy to be understood since the sign of εn,m defines the monotonicity of the objective

function depending on the Lagrange multipliers. To further get an intuition for the result

in (7.24), we see that the case εn,m ≥ 0 gives the condition

phn,m ≥
δλm + Jm
µn,m

which is a threshold rule for bandwidth assignment. If the power of the received signal is

above a price-dependent threshold and µn,m 6= 0, then the user is allocated the maximum

possible bandwidth from BS m, otherwise 0. If µn,m = 0 and either λm or one of the

µn,s, s 6= m multipliers is not zero then the assignment is always 0 bandwidth.

To summarize the results we provide the following proposition.

Proposition 7.2. Given a price vector (λ,µ) for the relaxed problem (7.14) under the

constraint set F ′LR and assuming W >> 1, the optimal load per BS is the solution to

U ′m (xm) = λm. (7.25)

Furthermore, each user n is assigned to BS mn s.t.

mn = arg max
m



λm − µn,m


 ∑

s∈M\{m}

phn,s + σn





 (7.26)

and is allocated bandwidth wm,n = γn
δ (or ω - see (7.24)) for each BS with channel quality

above the threshold

µn,mphn,m ≥ δλm + Jm & µn,m 6= 0. (7.27)

If µn,m = 0 then necessarily wn,m = 0.

We observe here that there may be a certain inconsistency between the assignment of a

user n to a single BS satisfying (7.26) and the allocation of positive bandwidth to possibly

more than one BS satisfying the thresholding rule in (7.27). The reason for this is the

change of the constraint set from FLR to F ′LR, which replaced (7.7) by (7.16). In the

following subsection we will see how this is resolved.

7.5.2 Optimal Solution

Denote by (λ∗,µ∗) and by (x∗,a∗,w∗) the optimal primal and dual solution of the La-

grangian problem in (7.15). Then the following complementary slackness conditions, related

to the relaxed QoS constraints ∀n,m, should be satisfied, µ∗n,m ≥ 0

µ∗n,m ·


(1− a∗n,m

)
·Mn,m + p · hn,mw

∗
n,m − γn


 ∑

s∈M\{m}

I∗n,s + σn




 = 0. (7.28)

105



The equality is fulfilled when

{
Case I: µ∗n,m = 0

Case II: µ∗n,m > 0 &
(
a∗n,m = 1 & SINR∗n,m = γn

)

The above implies that for the optimal solution there exists no difference between using

FLŔ instead of FLR. To see this, let for a user n be optimal not to be assigned to some BS

m, then a∗n,m = 0. The quantity in brackets (7.28) is non-zero and µ∗n,m = 0 necessarily.

But by Proposition 7.2 this further suggests that w∗n,m = 0. Another interesting property

for the optimal bandwidth allocation is given below.

Proposition 7.3. If a∗n,m = 1 then either w∗n,m = 0 or w∗n,m = ω ∈
(
0,min

{γn
δ ,W

}]
, such

that SINR∗n,m = γn.

If a∗n,m = 0 then w∗n,m = 0.

Proof. For a∗n,m = 1 the complementary slackness condition in (7.15) is satisfied either

when µ∗n,m = 0 or when µ∗n,m > 0 and SINRn,m = γn. If µ∗n,m = 0 then by Prop. 7.2

the bandwidth w∗n,m = 0. In the other case the bandwidth is chosen such that the QoS

constraint is fulfilled with equality. For the case of a∗n,m = 0 the arguments are given above

the Proposition. �

Proposition 7.4. For a user n the optimal BS to be assigned to is the one for which

m∗n = arg min
m∈Mλ

J ∗m (7.29)

where

Mλ =
{
m : λ∗m = max

m
λ∗m

}
(7.30)

Proof. Consider a user n and let m∗n be the optimal BS assignment a∗n,m∗
n

= 1. Furthermore

let m̂ 6= m∗n be one BS for which a∗n,m̂ = 0. From the note above Prop.7.3 we have that

µ∗n,m̂ = 0. Then (7.26) implies that

λ∗m∗
n
− µ∗n,m∗

n


∑

s 6=m∗
n

phn,s + σn


 ≥ λ∗m̂ ⇒

λ∗m∗
n
− λ∗m̂ ≥ µ

∗
n,m∗

n


∑

s 6=m∗
n

phn,s + σn


 ≥ 0

The above inequality implies that λ∗m∗
n
≥ λ∗m̂ and the user is assigned to the base station

with maximum λ∗m.

In the case that more than one BSs satisfy the above inequality for the case when

λ∗m∗
n

= λ∗m̂ = λ∗, we turn to the condition for the bandwidth allocation. Observe from (7.24)
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that non-negative bandwidth is assigned to the base station with non-negative derivative

ε∗n,m. Since we would like to choose only one, this is the BS for which

m∗n = arg max
m

{
−δλ∗ + µ∗n,mphn,m − J

∗
m

}

For all other m̂ we have µ∗n,m̂ = 0 and following inequality holds

−δλ∗ + µ∗n,m∗
n
phn,m∗

n
− J ∗m∗

n
≥ −δλ∗ − J ∗m̂ ⇒

J ∗m∗
n
− J ∗m̂ ≤ µ

∗
n,m∗

n
phn,m∗

n
, ∀m̂ 6= m∗n

Since the right-hand side is non-negative, the above set of inequalities will definitely be

satisfied if we choose as m∗n the BS with minimum J ∗m. �

7.5.3 Ascent Method

Consider again the initial problem in (7.13) with the concave objective and linear constraints

and discrete assignment variables, which we rewrite here as

max f (y) s.t. y ∈ F (7.31)

In the above f (y) :=
∑

m Um (xm) and y = (x,a,w).

The solution of the Lagrangian relaxation which was investigated in the previous sec-

tions, provides only an upper bound for the optimal value. Furthermore, the decomposition

is valid by assuming W >> 1, so that the constraint for total bandwidth per BS was con-

sidered always satisfied with strict inequality. Hence, a feasible solution is not guaranteed

when the W takes some realistic restricted values.

The Lagrangian solution however provides guidelines over the structure of the optimal

solution. To derive an algorithm which solves the problem, we will use in the following a

variation of the so-called ascent methods proposed in [BV04] and adapted here to the mixed

integer setting we have to deal with. Given any feasible vector y ∈ F , which is not the

optimal solution, we will call a feasible ascent direction d = ∆y = ŷ−y any d which fulfills

y + d ∈ F & f (y + d) ≥ f (y)⇒

ŷ ∈ F & f (ŷ) ≥ f (y) (7.32)

What we aim for is to generate a sequence of feasible vectors
{
yk
}

, k = 0, 1, . . . which

step-wise increases the value of the objective for the problem. The vector yk describes a

state of the system with assignment variables ak and bandwidth allocation wk. To choose

a feasible direction we will work as follows:
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• Choose an appropriate pair of overloaded BS (OL) and target BS (TR), using the

guidelines from the Lagrangian solution.

• Define all possible subsets of users Cq, which at iteration k are assigned to OL and is

possible to be shifted to TR, as long as the new vector is feasible ŷq ∈ F .

• Find the subset Cq∗ , which if reallocated provides the maximum improvement, in other

words

yk+1 = ŷq∗ = arg max
q

{
f (ŷq)− f

(
yk
)}

(7.33)

• Continue the iteration as long as no more improvement in the objective is possible.

Since we aim at providing an algorithm possible to be implemented in LTE advanced cellular

networks, the users should be encouraged to change cell by proper adaptation of the HO

parameters per cell. In the following sections we will explain how the HO parameters work

in the network and which adaptation is necessary to fulfill (7.33). An appropriate algorithm

will be finally derived.

7.6 Cellular Network Aspects

We consider that each step k of the algorithm depends on the following variables, which

will be explained in more detail in the following paragraphs

Sk :=
{
mk

+,m
k
−,λ

k,Jk,W k
mk

+
, Ckq∗

}
. (7.34)

7.6.1 Choice of OL-TR Pair

A first issue for the implementation of the algorithm suggested above is the choice of an

appropriate OL-TR pair of BSs. Then users from the OL cell could be removed towards

the TR cell for a better balance of the load. We will use the guidelines of Prop.7.4 which

gives the Lagrangian optimal BS assignment.

Based on that, during iteration step k a cell mk
+ is activated as a TR cell if

mk
+ = arg min

m∈M
λk

J k
m (7.35)

Mλk =
{
m : λkm = max

m
λkm

}
(7.36)

which means that we choose the cell with maximum utility derivative equal to the load price

and minimum interference cost towards the neighboring BSs. An alternative way used in
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the algorithm an simulations section on this work is by choosing the BS which maximizes

the linear combination

mk
+́ = arg max

m∈M

{
λkm − α · J

k
m

}
(7.37)

The OL cell is chosen anti-symmetrically as

mk
− = arg min

m∈M

{
λkm − β · J

k
m

}
(7.38)

where α, β ≥ 0 are tuning factors giving higher or lower weight on the interference cost.

For such choices to be made, knowledge of the vectors λk,Jk at the BS side is necessary.

We know that each BS can calculate its load price λkm using (7.25). For this it needs to

calculate the current load value xkm based on the subset of users it supports N k
m.

Considering the interference costs, we see from (7.23) that for each BS m these depend

on the Lagrangian dual variables µn,s for ∀s 6= m, ∀n. Furthermore, we know that for the

Lagrangian solution µn,m = 0 if an,m = 0. Setting all activated µn,m = 1 we get that the

value of J k
m can be written as

J k
m =

∑

n∈N\N k
m

γn
p · hn,m
W

(7.39)

which can be calculated by BS m if knowledge over the channel hn,m through RSRP mea-

surements is available.

7.6.2 Handover Criterion

The assignment of users to cells is controlled by the handover parameters of the cells. Using

the notation conventional in the 3GPP literature, RSRPn,m denotes the filtered received

signal strength (for more details see Section 6.2.1) of user n from BS m and is an indicator

of the SINR, Hysm is a cell-related hysteresis factor and CIOs→m is a control parameter

for the ordered BS pair (s,m) called Cell Individual Offset. Furthermore, let us define the

difference

∆RSRPn(s,m) := RSRPn,m − RSRPn,s (7.40)

A user belonging to BS mk
− (and we write n ∈ N k

mk
−

), can be handed over to BS mk
+ if the

following criterion is satisfied

CIOmk
−→mk

+
≥ −∆RSRPn(mk

−,m
k
+) + Hysmk

−
(7.41)

The above inequality says that a user n will be handed over to the TR cell if the value

of the control parameter denoted by CIOmk
−→mk

+
, is set greater or equal to the negative

difference of channel qualities for user n, increased by the hysteresis factor at the OL cell.
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To avoid the so called ping-pong effect, which would allow the user n already handed-

over, to return to its OL cell, the following condition for the mirror-parameter CIOmk
+→mk

−

should be satisfied

CIOmk
+→mk

−
≤ ∆RSRPn(mk

−,m
k
+) + Hysmk

+
. (7.42)

7.6.3 Candidate User Subsets

A user n ∈ Nmk
−

is included to the candidate set Ck if the required bandwidth for reallocation

from the OL to the TR cell - while the QoS criterion is fulfilled (see also Prop.7.3) - satisfies

the inequality

wn,mk
+
≤ min

{γn
δ
,W k

mk
+

}
. (7.43)

where W k
mk

+
is the available free bandwidth in BS mk

+. We denote the cardinality of this set

by |Ck|.

We construct |Ck| candidate subsets, each denoted as Ckq , q ∈ {1, . . . , |Ck|} by the follow-

ing procedure. We order the elements (users) of the set Ck by decreasing channel differences.

The order n1, n2, . . . , n|Ck| refers to the order ∆RSRPn1(mk
−,m

k
+) ≥ ∆RSRPn1(mk

−,m
k
+) ≥

. . . ≥ ∆RSRPn
|Ck|

(mk
−,m

k
+). From this, following sets can be constructed

Ck1 = {n1}

Ck2 = {n1, n2}

. . . . . .

Ck|Ck| =
{
n1, n2, . . . , n|Ck|

}

The HO parameters are then mapped to the above sets, so that (7.41) and (7.42) are

satisfied after the handover for all users belonging to some subset Cqk. Which will be the

optimal subset chosen will be defined in the following paragraph. The appropriate CIO

parameters become

CIOq

mk
−→mk

+
= −∆RSRPnq(mk

−,m
k
+) + Hysmk

−
(7.44)

CIOq

mk
+→mk

−
= ∆RSRPnq(mk

−,m
k
+) + Hysmk

+
(7.45)

7.6.4 Optimal User Subset

For all candidate user subsets, the vectors ŷkq = (xk
q ,a

k
q ,w

k
q ) can be easily calculated for

each q given the vector ŷk = (xk,ak,wk), by changing the assignment and bandwidth

variables for the possible handed-over users and re-calculating the load. The optimal user

subset Ckq∗ is chosen such that (7.33) is satisfied, in other words as the one with maximum

increase of the objective.

110



7.6.5 Distributed Algorithm

Based on the above we present in what follows an algorithm for the optimal load balancing

among BSs of a cellular wireless network, taking ICI and adaptation of the HO parameters

into consideration. The steps are given below

Algorithm 4: Distributed load balancing algorithm

Input: A possibly unbalanced but feasible BS-User association and BW allocation
y0

Output: Enhanced sum of utilities and adequate reconfiguration of the system HO
parameters

Initialization: Initial user assignment a0 and bandwidth allocation w0. All users N
gain knowledge over the channel through RSRP measurements. Afterwards they
communicate their channel quality vector hn := [hn,1, . . . , hn,M ] and QoS demand γn
to all BSs M. The channel is considered constant throughout the iterations.
Repeat at each step k

1. Each BS has knowledge of its set of assigned users N k
m. Then it calculates:

• The current load xkm using (7.6).

• The current load price λkm using (7.25).

• The current interference cost J k
m using (7.39).

2. The BSs exchange the current values of λkm and J k
m with their direct neighbors.

3. Using (7.35), (7.36) (or (7.37) alternatively) and (7.38) and the knowledge over the
other prices, each BS can decide whether it is a TR or OL cell for its neighborhood.

4. The OL cell initiates a communication process with the TR cell.

5. All possible candidate user subsets Ckq are defined using also (7.43) and the TR and

OL BSs calculate the possible change in load x̂kOL,q, x̂
k
TR,q and utility

∆U
(
x̂k
q ,x

k
)

= UTR

(
x̂kTR,q

)
+ UOL

(
x̂kOL,q

)
−

(
UTR

(
xkTR

)
+ UOL

(
xkOL,q

))

6. The user set Ckq∗ which maximizes ∆U
(
x̂k
q ,x

k
)

is chosen.

7. The CIOs are reconfigured based on (7.44) and (7.45) to force users to migrate form
OL to TR.

8. Update variables yk+1 = ykq∗

Until λk = λk−1 and Jk = Jk−1 for some k ≥ 1.
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7.7 Simulation Results

The algorithm is implemented on an LTE cellular network model with 19 cells artificially

wrapped around at the border, so that the edge-cells include the cells on the opposite side

in their neighborhood. Users with QoS requirement γn = 14.4 kbit/s are assumed to be

static but randomly distributed on the plane with average number per cell |Ncl| = 10. The

channel quality per user-BS pair is a random realization with Rayleigh distribution. The

transmission power density p is fixed and normalized to 1 Joule/Hz/s. The total bandwidth

W per cell is equal to 0.5 MHz and shared among all BSs. The utility function is chosen

for the implementations equal to U(x) = log(x).

The UE assignments before and after applying the proposed LB algorithm are presented

in Fig.7.1. The colored small circles represent the handed-over users, i.e., the initial assign-

ment and the optimized assignment. Fig.7.2(a) and Fig.7.2(b) illustrates how the prices λm

and the load xm for all BSs converge after just a few iterations. Thus, the algorithm can

be very practical and robust in real system implementations. Furthermore, in Fig.7.2(c)

the impact on the performance of the algorithm by modification of the tuning factors δ in

(7.6) and α in (7.37) is demonstrated. A higher δ makes the algorithm more conservative

considering bandwidth allocation, hence less re-assignments are performed while the total

utility exhibits a reduced value. By choosing δ small, the BSs are more flexible to offer the

free resource (to accept the handover users), as shown in Fig. 7.2(d). Higher α chooses BSs

as TR cells with the priority focused on low interference cost. We see that the benefits are

better for lower α since the reallocation of users becomes more dynamic by choosing TR

cells with emphasis on the load price λ. However, although not illustrated here, there is the

danger of exploiting very large amount of frequency resources for providing he desired QoS

when α is low, which could lead to infeasibility very fast as the number of users increases.

7.8 Summary

The chapter starts with a thorough investigation on the state of art of the LB scheme for

the self-organizing LTE networks. Notations and definitions are introduced with the system

model. The general problem and the relaxed convex optimization problem are formulated,

and the optimal solution is provided by solving the decomposited sub-problems with Karush-

Kuhn-Tucker (KKT) conditions and the steepest decent method, which helps to choose the

cell-pair distributedly and to select the UE groups to handover. The criterion for HO

parameter adaptation is presented. The algorithm is proposed with a flowchart, followed

by the simulation results and a complete analysis on the effects of the tuning factors δ and

α. The paper ends with conclusions of the work and the future studies.
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(a) Start assignment.
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(b) Balanced assignment for small δ. δ = 0.1, α = 0.2.

Figure 7.1: Assignments.
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Part IV

Multi-Objective SON Function

Optimization
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Chapter 8

Joint Optimization of Coverage,

Capacity and Load Balancing

This chapter develops an optimization framework for multi-objective optimization in SON.

The objective is to ensure efficient network operation by a joint optimization of coverage,

capacity and load balancing. Based on the axiomatic framework of standard interference

functions, we formulate an optimization problem for the uplink and propose a two-step

optimization scheme: i) per base station antenna tilt optimization and power allocation, and

ii) cluster-based base station assignment of users and power allocation. We then consider

the downlink, which is more difficult to handle due to the coupled variables, and show

downlink-uplink duality relationship. As a result, a solution for the downlink is obtained by

solving the uplink problem. Simulations show that our approach achieves a good trade-off

between coverage and capacity.

Parts of this chapter have already been published in [15].

8.1 Introduction

A major challenge towards SON is the joint optimization of multiple SON use cases by

coordinately handling multiple configuration parameters. Widely studied SON use cases

include CCO, MLBO and MRO [3GPa]. However, most of these works study an isolated

single use case and ignore contradictions among performance metrics [RKC10,3].

In contrast, in this chapter we consider a joint optimization of multiple SON function-

alities. The objective of this paper is to achieve a good trade-off between coverage and

capacity performance, while achieving load-balanced network. The SON functionalities are

usually implemented at the network management layer and are designed to deal with “long-

term” network performance. Short-term optimization of individual users is left to lower

layers of the protocol stack. To capture long-term global changes in a network, we consider

a cluster-based network scenario, where users served by the same BS with similar SINR

116



distribution are adaptively grouped into clusters. Our objective is to jointly optimize the

following variables:

1) Per-cluster BS assignment and power allocation.

2) Per-BS antenna tilt optimization and power allocation.

The joint optimization of antenna tilt, transmit power and BS assignment in multi-cell sce-

nario is an inherently challenging problem. The interference and the resulting performance

measures depend on these variables in a complex and intertwined manner. A few stud-

ies have investigated joint optimization of multiple antenna configurations. For example,

in [Kea12] a problem of jointly optimizing antenna tilt and cell selection to improve the

spectral and energy efficiency is stated. In [FKVF13] the authors propose the algorithms

that jointly adapt user association policies and antenna tilts based on an interference model.

In [SVY06] the authors address automated optimization of service coverage and antenna

configuration with three configuration parameters: transmit power, antenna tilt and an-

tenna azimuth. However, in this paper we try to take one more step in multi-objective

optimization based on the modeling of interference coupling. We aim to achieve a good

tradeoff between coverage and capacity and to achieve load balancing by jointly optimizing

antenna tilt, transmit power and BS assignment.

We propose a robust algorithmic framework built on a utility model, which enables fast

and optimal uplink solutions and sub-optimal downlink solutions by exploiting three prop-

erties: i) the monotonic property of standard interference functions, ii) decoupled prop-

erty of the antenna tilt and BS assignment optimization in the uplink network, and iii)

uplink-downlink duality. The first property admits global optimal solution with fixed-point

iteration for utility-based max-min fairness problems, while the second and third properties

enable decomposition of the high-dimensional optimization problem. Our main contribu-

tions in this work can be summarized as follows:

1) We tackle a multi-objective optimization problem over a high dimensional action

space. More specifically, We propose a max-min utility balancing algorithm for

capacity-coverage trade-off optimization over antenna tilts, BS assignments and trans-

mit powers. By distributing the interference fairly among the cells, load-balanced

network is also achieved.

2) We provide an efficient algorithm to provide the optimal solution in the uplink by

exploiting the interference patterns of standard interference function. Then, we de-

compose the high-dimensional optimization problem in downlink by utilizing uplink-

downlink duality, and propose an efficient sub-optimal solution in downlink. Unlike
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other studies which analyze the uplink-downlink duality for power control and beam-

forming in a max-min SINR fairness problem [BS06,SB05,HTR13,HHY+12], we for-

mulate the utility function as a convex combination of the coverage and the capacity

metrics to jointly optimize transmit powers, antenna tilts and BS assignments.

8.2 System Model

We consider a multi-cell wireless network composed of a set of BSs N := {1, . . . , N} and

a set of users K := {1, . . . ,K}. Using fuzzy C-means clustering algorithm [BEF84], we

group users with similar SINR distributions1 and served by the same BS into clusters. The

clustering algorithm is beyond the scope of this paper. Let the set of user clusters be denoted

by C := {1, . . . , C}, and let A denote a C×K binary user/cluster assignment matrix whose

columns sum to one. The BS/cluster assignment is defined by a N × C binary matrix B

whose columns also sum to one.

Throughout the paper, we assume a frequency flat channel. The average/long-term

downlink path attenuation between N BSs and K users are collected in a channel gain

matrix H ∈ RN×K . We introduce the cross-link gain matrix V ∈ RK×K , where the entry

vlk(θj) is the cross-link gain between user l served by BS j, and user k served by BS i, i.e.,

between the transmitter of the link (j, l) and the receiver of the link (i, k). Note that vlk(θj)

depends on the antenna downtilt θj . Let the BS/user assignment matrix be denoted by J

so that we have J := BA ∈ {0, 1}N×K , and V := JTH. We denote by r := [r1, . . . , rN ]T ,

q := [q1, . . . , qC ]T and p := [p1, . . . , pK ]T the BS transmission power budget, the cluster

power allocation and the user power allocation, respectively.

8.2.1 Inter-Cluster and Intra-Cluster Power Sharing Factors

We introduce the inter-cluster and intra-cluster power sharing factors to enable the transfor-

mation between two power vectors with different dimensions. Let b := [b1, . . . , bC ]T denote

the serving BSs of clusters {1, . . . , C}. We define the vector of the inter-cluster power shar-

ing factors to be β := [β1, . . . , βC ]T , where βc := qc/rbc . With the BS/cluster assignment

matrix B, we have q := BT
βr, where Bβ := B diag{β}. Since users belonging to the same

cluster have similar SINR distribution, we allocate the cluster power uniformly to the users

in the cluster. The intra-cluster sharing factors are represented by α := [α1, . . . , αK ]T with

αk = 1/|Kck | for k ∈ K, where Kck denotes the set of users belonging to cluster ck, while ck

denotes the cluster with user k. We have p := AT
αq, where Aα := A diag{α}. The trans-

formation between BS power r and user power p is then p := Tr where the transformation

matrix T := AT
αB

T
β .

1We assume the KL divergence as the distance metric
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8.2.2 Signal-to-Interference-Plus-Noise Ratio

Given V , the downlink SINR of the kth user depends on all transmission powers and is

given by

SINRDL
k :=

pk · vkk(θnk
)∑

l∈K\k pl · vlk(θnl
) + σ2k

, k ∈ K (8.1)

where nk denotes the serving BS of user k, σ2k denotes the noise power received in user k.

Likewise, the uplink SINR is

SINRUL
k :=

pk · vkk(θnk
)∑

l∈K\k pl · vkl(θnk
) + σ2k

, k ∈ K (8.2)

Assuming that there is no self-interference, the cross-talk terms can be collected in a matrix

[Ṽ ]lk :=

{
vlk(θnl

), l 6= k

0, l = k
. (8.3)

Thus the downlink interference received by user k can be written as IDL
k := [Ṽ Tp]k, while

the uplink interference is given by IUL
k := [Ṽ p]k.

A crucial property is that the uplink SINR of user k depends on the BS assignment

nk and the single antenna tilt θnk
alone, while the downlink SINR depends on the BS

assignment vector n := [n1, . . . , nK ]T , and the antenna tilt vector θ := [θ1, . . . , θN ]T . The

decoupled property of uplink transmission has been widely exploited in the context of uplink

and downlink multi-user beamforming [BS06] and provides a basis for the optimization

algorithm in this paper.

The notation used in this paper is summarized in Table 8.1.

8.3 Utility Definition and Problem Formulation

As mentioned, the objective is to jointly optimize the performance of coverage, capacity

and load balancing. We capture coverage by the worst-case SINR, while the average SINR

is used to represent capacity. The load balancing can be achieved by distributing the inter-

cell interference fairly among the cells. Given the cluster/user assignment, the network

performance depends on: i) BS power allocation r and antenna downtilt θ, and ii) cluster

power allocation q and BS/cluster assignment b.2

In the following, we formulate a two-stage power allocation problem and then develop an

iterative algorithm for optimizing BS variables (r,θ) and cluster variables (q, b). We start

with the problem statement and algorithmic approaches for the uplink. We then discuss

the downlink in Section 8.5.

2The reader should note that user-specific variables (p,n) can be derived directly from cluster-specific
variables q and b, provided that cluster/user assignment A and intra-cluster power sharing factor α are
given.
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Table 8.1: NOTATION SUMMARY
N set of BSs
K set of users
C set of user clusters
A cluster/user assignment matrix
B BS/cluster assignment matrix
J BS/user assignment matrix
ck cluster that user k is subordinated to
Kc set of users subordinated to cluster c
H channel gain matrix
V interference coupling matrix

Ṽ interference coupling matrix without intra-cell interference

Ṽb interference coupling matrix depending on BS assignments b

Ṽθ interference coupling matrix depending on antenna tilts θ
r BS power budget vector
q cluster power vector
p user power vector
α intra-cluster power sharing factors
β inter-cluster power sharing factors
Aα transformation from q to p, p := AT

αq

Bβ transformation from r to q, q := BT
βr

T transformation from r to p, p := Tr

θ BS antenna tilt vector
b serving BSs of clusters
bc serving BS of cluster c
n serving BSs of the users
nk serving BS of user k
σ noise power vector

Pmax sum power constraint

8.3.1 Cluster-Based BS Assignment and Power Allocation

Assume the per-BS variables (r̂, θ̂) are fixed, let the interference coupling matrix depend

on BS assignment b in (8.3) be denoted by Ṽb. We define two utility functions indicating

capacity and coverage per cluster respectively.

Average SINR Utility (Capacity)

With the intra-cluster power sharing factor introduced in Section 8.2.1, we have p := AT
αq.

Define the noise vector σ := [σ21, . . . , σ
2
K ]T , the average SINR of all users in cluster c is
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written as

ŪUL,1
c (q, b) :=

1

|Kc|

∑

k∈Kc

SINRUL
k

=
1

|Kc|

∑

k∈Kc

qcαkvkk[
ṼbAT

αq + σ
]
k

≥
1

|Kc|

qc
∑

k∈Kc
αkvkk

∑
k∈Kc

[
ṼbAT

αq + σ
]
k

= UUL,1
c (q, b) (8.4)

The uplink capacity utility of cluster c denoted by UUL,1
c is measured by the ratio between

the total useful power and the total interference power received in the uplink in the cluster.

Utility UUL,1
c is used instead of ŪUL,1

c because of two reasons: First, it is a lower bound for

the average SINR. Second, it has certain monotonicity properties (introduced in Definition

D.8 in Appendix D.3.2) which are useful for optimization.

Introducing the cluster coupling termG
UL
b := ΨAṼbA

T
α, where Ψ := diag{|K1|/g1, . . . , |Kc|/gC}

and gc :=
∑

k∈Kc
αkvkk for c ∈ C; and the noise term z := ΨAσ, the capacity utility is

simplified as

UUL,1
c (q, b) :=

qc

J
(UL,1)
c (q, b)

(8.5)

where J (UL,1)
c (q, b) :=

[
G

UL
b q + z

]
c
. (8.6)

Worst-Case SINR Utility (Coverage)

Roughly speaking, the coverage problem arises when a certain number of the SINRs are

lower than the predefined SINR threshold. Thus, to improve the coverage performance is

equivalent to maximize the worst-case SINR such that the worst-case SINR achieves the

desired SINR target. We then define the uplink coverage utility for each cluster as

UUL,2
c (q, b) := min

k∈Kc

SINRUL
k = min

k∈Kc

qcαkvkk[
ṼbAT

αq + σ
]
k

=
qc

maxk∈Kc

[
ΦṼbAT

αq + Φσ
]
k

(8.7)

where Φ := diag{1/α1v11, . . . , 1/αKvKK}. We define a C ×K matrix X := [x1| . . . |xC ]T ,

where xc := e
j
K and eji denotes an i-dimensional binary vector which has exact one entry

(the j-th entry) equal to 1. Introducing the term GUL
b := ΦṼbA

T
α, and the noise term

z := Φσ, the coverage utility is given by

UUL,2
c (q, b) :=

qc

J
(UL,2)
c (q, b)

(8.8)

where J (UL,2)
c (q, b) := max

xc:=e
j
K
,j∈Kc

[
XGUL

b q +Xz
]
c
. (8.9)
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Cluster-Based Max-Min Utility Balancing

Let γ := [γ1, . . . , γC ]T denote the cluster utility targets. To achieve optimal load balancing,

we propose a power-constrained max-min utility balancing problem in the uplink in below.

Problem 8.1 (Cluster-Based Utility Balancing).

CUL(Pmax) = max
q≥0,b∈NC

min
c∈C

UUL
c (q, b)

γc
, s.t. ‖q‖ ≤ Pmax (8.10)

where CUL(Pmax) denotes the achievable balanced margin given fixed sum power contraint

Pmax. ‖ · ‖ is an arbitrary monotone norm, i.e., q ≤ q′ implies ‖q‖ ≤ ‖q′‖, Pmax denotes

the power constraint, and the joint utility UUL
c (q, b) is defined as

UUL

c (q, b) :=
qc

J UL
c (q, b)

(8.11)

where J UL

c (q, b) := µJ (UL,1)
c (q, b) + (1− µ)J (UL,2)

c (q, b). (8.12)

In other words, the joint interference IUL
c is a convex combination of IUL,1

c in (8.6) and

IUL,2
c in (8.9). The algorithm optimizes the performance of capacity when we set the tuning

parameter µ = 1 (utility is equivalent to the capacity utility in (8.5)), while with µ = 0 it

optimizes the performance of coverage (utility equals to the coverage utility in (8.8)). By

tuning µ properly, we can achieve a good trade-off between the performance of coverage and

capacity.

8.3.2 BS-Based Antenna Tilt Optimization and Power Allocation

The user transmission power p and the BS assignment n can be directly deduced from (q, b)

optimized on a per-cluster basis. However, the antenna tilt and BS power budget need to

be optimized per base station. Given the fixed (b̂, q̂), we compute the intra-cluster power

sharing factor β, given by βc := q̂c/
∑

c∈Cbc
q̂c for c ∈ C. We denote the interference coupling

matrix depending on θ by Ṽθ. In the following we formulate the BS-based max-min utility

balancing problem such that it has the same physical meaning as the problem stated in

(8.10). We then introduce the BS-based capacity and the coverage utilities interpreted by

(r,θ).

BS-Based Max-Min Utility Balancing

To be consistent with our objective function CUL(Pmax) in (8.10), we transform the cluster-

based optimization problem to the BS-based optimization problem:
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Problem 8.2 (BS-Based Utility Balancing).

C(u)(Pmax) = max
r≥0,θ∈ΘN

min
c∈C

UUL
c (r,θ)

γc

= max
r≥0,θ∈ΘN

min
n∈N

(
min
c∈Cn

UUL
c (r,θ)

γc

)

= max
r≥0,θ∈ΘN

min
n∈N

ÛUL

n (r,θ)

s.t. ‖r‖ ≤ Pmax (8.13)

where Θ denotes the predefined space for antenna tilt configuration. It is shown in (8.13)

that by defining

ÛUL
n (r,θ) := min

c∈Cn

UUL
c (r,θ)

γc
=

rn

Ĵ UL
n (r,θ)

(8.14)

Ĵ UL
n (r,θ) := max

c∈Cn

γc
βc
J UL
c (r,θ), (8.15)

the cluster-based problem is transferred to the BS-based problem, where J UL
c (r,θ) is ob-

tained from J UL
c (q, b) in (8.12) by substituting q with q := BT

βr, and Ṽb with Ṽθ.

The utility functions corresponding to (8.4) and (8.7) are provided below.

Average SINR Utility (Capacity)

According to (8.14), the capacity utility of BS n is defined as the minimum of the ratios of

cluster-based capacity utilities to the utility targets of the clusters assigned to BS n. With

(8.4), (8.5) and (8.6), and the power transformation p := Tr, we have

ÛUL,1
n (r,θ) := min

c∈Cbc

UUL,1
c (r,θ)

γc

=
rn

max
c∈Cbc

γc
βc

[
ΨAṼθTr + z

]
c

(8.16)

Define a N × C matrix S := [s1| . . . |sN ]T , where sn := e
j
C . Introducing the term Λ

UL
θ :=

DΨAṼθT and the noise term η := Dz, where D := diag{γ1/β1, . . . , γC/βC}, utility in

(8.16) can be simplified as

ÛUL,1
n (r,θ) :=

rn

max
sn:=e

j
C
,j∈Cn

[
SΛ

UL
θ r + Sη

]
n

(8.17)
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Worst-Case SINR Utility (Coverage)

The coverage utility of BS n is defined by

ÛUL,2
n (r,θ) := min

c∈Cn

UUL,2
c (r,θ)

γc

=
rn

max
c∈Cn

{
γc
βc

max
k∈Kc

[
ΦṼ UL

θ Tr + z
]
k

}

=
rn

max
k∈Kn

[
D̂ΦṼ UL

θ Tr + D̂z
]
k

(8.18)

where D̂ := diag{ATΓβ}, and Γ := diag{γ}. Define a N ×K matrix X̂ := [x̂1| . . . |x̂N ]T ,

where x̂n := e
j
K . Introducing the coupling term ΛUL

θ := D̂ΦṼ UL
θ T and the noise term

η := D̂z, we can write the coverage utility in (8.18) as

ÛUL,2
n (r,θ) :=

rn

max
x̂n:=e

j
K
,j∈Kn

[
X̂ΛUL

θ r + X̂η
]
k

(8.19)

8.4 Optimization Algorithm

We developed our optimization algorithm based on the fixed-point iteration algorithm pro-

posed by Yates [YH95], by exploiting the properties of the standard interference function

(see Definition D.8 in Appendix D.3.2).

Theorem 8.1. [Yat95] If I(p) is a standard interference function, and the utility target

γ := [γ1, . . . , γK ]T is feasible, under a sum-power constraint, then for an arbitrary initial-

ization p(0) ≥ 0, the iteration

p
(t+1)
k = γk · Ik(p(t)), ∀k (8.20)

converges to the optimum of the power minimization problem

inf
p>0
‖p‖, s.t.

pk
Ik(p)

≥ γk, ∀k. (8.21)

Define the utility Uk(p) := pk/Ik(p), the solution of (8.21) indirectly solves the following

max-min fairness problem

max
p>0

min
1≤k≤K

Uk(p)

γk
, s.t. ‖p‖ ≤ Pmax (8.22)

by scaling the utility target γk iteratively (for example, the one-dimensional bisection search

method) until the max-min utility boundary is achieved.
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8.4.1 Joint Optimization Algorithm

We aim on jointly optimizing both problems, by optimizing (q, b) in Problem 8.1 and (r,θ)

in Problem 8.2 iteratively with the fixed-point iteration. In the following we present some

properties that are required to solve the problem efficiently and to guarantee the convergence

of the algorithm.

Decoupled Variables in Uplink

In uplink the variables b and θ are decoupled in the interference functions (8.12) and (8.15),

i.e., J UL
c (q, b) := J UL

c (q, bc) and Ĵ UL
n (r,θ) := Ĵ UL

n (r, θn). Thus, we can decompose the

BS assignment (or tilt optimization) problem into sub-problems that can be independently

solved in each cluster (or BS), and the interference functions can be modified as functions

of the power allocation only:

J UL
c (q) := min

bc∈N
J UL
c (q, bc) (8.23)

Ĵ UL
n (r) := min

θn∈Θ
Ĵ UL
n (r, θn) (8.24)

Standard Interference Function

The modified interference function (8.23) and (8.24) are standard. Using the following three

properties: 1) an affine function I(p) := V p + σ is standard, 2) if I(p) and I
′(p) are

standard, then βI(p) + (1 − β)I ′(p) are standard, and 3) If I(p) and I
′(p) are stan-

dard, then I
min(p) and I

max(p) are standard, where I
min(p) and I

max(p) are defined as

Imin
j (p) := min{Ij(p), I ′j(p)} and Imax

j (p) := max{Ij(p), I ′j(p)} respectively [Yat95], we

can easily prove that (8.23) and (8.24) are standard interference functions.

Substituting (8.23) and (8.24) in Problem 8.1 and Problem 8.2, define UUL
c (q) :=

qc/I
UL
c (q) and UUL

n (r) := rn/I
UL
n (r), we can write both problems in the general frame-

work of the max-min fairness problem (8.22):

Problem 1. maxq≥0 minc∈C U
UL
c (q)/γc, ‖q‖ ≤ P

max.

Problem 2. maxr≥0 minn∈N U
UL
n (r), ‖r‖ ≤ Pmax

The above two properties enables us to solve each problem efficiently with two iterative

steps: 1) find optimum variable bc (or θn) for each cluster c (or each BS n) independently,

2) solve the max-min balancing power allocation problem with fixed-point iteration.
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Connections between Two Problems

Problem 8.1 and Problem 8.2 have the same objective achievable balanced margin CUL(Pmax)

as stated in (8.10) and (8.13), i.e., given the same variables (q̂, b̂, r̂, θ̂), using (8.14), we have

minc∈C U
UL
c /γc = minn∈N Û

UL
n . Both problems are under the same sum power constraint.

However, the convergence of the two-step iteration requires two more properties: 1) the BS

power budget r derived by solving Problem 8.2 at the previous step should not be violated

by the cluster power allocation q found by optimizing Problem 8.1, and 2) when optimizing

Problem 8.2, the inter-cluster power sharing factor β should be consistent with the derived

cluster power allocation q in Problem 8.1.

To fulfill the first requirement, we introduce an individual cluster power constraint Pmax
c

depending on the BS power budget rbc in Problem 8.1. Moreover, we propose a scaled version

of fixed point iteration similar to the one proposed in [VS11], to iteratively scale the cluster

power vector and achieve the power-constrained max-min utility boundary, as stated below.

q(t+1)
c = λ(t) min{Pmax

c
(t), γcI

UL
c (q(t))} (8.25)

where the scaling factor is given by λ(t) = maxc∈C I
UL
c (q(t))/Pmax

c
(t). To fulfill the second

requirement, once q(n+1) is derived, the power sharing factors β need to be updated for

solving Problem 8.2 at the next step, provided as

β(n+1) := Q−1BTr(n),where Q = diag{q(n+1)} (8.26)

The individual power constraint Pmax
c is updated at the previous step of optimizing Problem

8.2. The scaled fixed-point iteration to optimize Problem 8.2 is provided by

r(t+1)
n =

ÎUL
n (r(t))

‖Î
UL

(r(t))‖
. (8.27)

Alternatively, if per-BS power constraint P̂max
n for each BS n ∈ N is required by the system

instead of the sum power constraint Pmax, we can apply

r(t+1)
n = λ̂(t) min{P̂max

n , ÎUL
n (r(t))} (8.28)

where the scaling factor follows λ̂(t) = maxn∈N Î
UL
n (r(t))/P̂max

n , and Pmax = [Pmax
1 , . . . , Pmax

C ]T

should be calculated with

Pmax(n+1) = diag{β(n)}BTr(n+1). (8.29)

The joint optimization algorithm is given in Algorithm 5.
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Algorithm 5: Joint Optimization of Problem 8.1 and 8.2

1: broadcast the information required for computing V , predefined constraint Pmax and
thresholds ε1, ε2, ε3

2: arbitrary initial power vector q(t) > 0 and iteration step t := 0
3: repeat {joint optimization of Problem 8.1 and 8.2}
4: repeat {fixed-point iteration for every cluster c ∈ C}
5: broadcast q(t) to all base stations
6: for all assignment options bc ∈ N do
7: compute IUL

c (q(t), bc) with (8.12)
8: end for
9: compute IUL

c (q(t)) with (8.23) and update b
(t+1)
c

10: update q
(t+1)
c with (8.25)

11: t := t+ 1
12: until convergence:

∣∣q(t+1)
c − q

(t)
c

∣∣/q(t)c ≤ ε1
13: update β(t) with (8.26)
14: repeat {fixed-point iteration for every BS n ∈ N}
15: broadcast r(t) to all base stations
16: for all antenna tilt options θn ∈ Θ do
17: compute ÎUL

n (r(t), θn) with (8.15)
18: end for
19: compute ÎUL

n (r(t)) with (8.24) and update θ
(t+1)
n

20: update r
(n+1)
c with (8.27) or (8.28)

21: t := t+ 1
22: until convergence:

∣∣r(t+1)
n − r

(t)
n

∣∣/r(t)n ≤ ε2
23: update Pmax(t) with (8.29)
24: compute l(t+1) := minn∈N Û

UL
n (r(n+1))

25: until convergence: |l(t+1) − l(t)|/l(t) ≤ ε3

8.5 Uplink-Downlink Duality

We state the joint optimization problem in uplink in Section 8.3 and propose an efficient

solution in Section 8.4 by exploiting the decoupled property of V over the variables θ

and b. The downlink problem, due to the coupled structure of V T , is more difficult to

solve. As extended discussion we want to address the relationship between the uplink and

the downlink problem, and to propose a sub-optimal solution for downlink which can be

possibly found through the uplink solution.

Let us consider cluster-based max-min capacity utility balancing problem in Section
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8.3.1 as an example. In the downlink the optimization problem is written as

max
q,b

min
c

U
(d,1)
c (q, b)

γc

U (d,1)
c :=

qc

[ΨAṼ T
b A

T
αq + ΨzDL]

s.t. ‖q‖1 ≤ P
max (8.30)

The cluster-based received noise is written as zDL := AσDL.

In the following we present a virtual dual uplink network in terms of the feasible utility

region for the downlink network in (8.30) via Perron-Frobenius theory, such that the solution

of problem (8.30) can be derived by solving the uplink problem (8.31) with the algorithm

introduced in Section 8.4.

Proposition 8.1. Define a virtual uplink network where the link gain matrix is modified as

Wb := diag{α}Ṽb diag−1{α}, i.e., wlk := vlk
αl

αk
, and the received uplink noise is denoted by

σUL := [σ21
UL
, . . . , σ2K

UL
]T , where σ2k

UL
:= Σtot

|Kck
|·C for k ∈ K, and assume Σtot := ‖σUL‖1 =

‖σDL‖1 (which means, the sum noise is equally distributed in clusters, while in each cluster

the noise is equally distributed in the subordinate users). The dual uplink problem of problem

(8.30) is given by

max
q,b

min
c

U
(u,1)
c (q, b)

γc

U (u,1)
c :=

qc
[ΨAWbAT

αq + ΨzUL]

s.t. ‖q‖1 ≤ P
max (8.31)

where zUL := AσUL.

The proof of Proposition 8.1 is given in Appendix A.3.1.

Note that the optimizer b∗ for BS assignment in downlink can be equivalently found

by minimizing the spectral radius Λ(u)(b) in the uplink. Once b∗ is found, the associate

optimizer for uplink power qUL∗ is given as the dominant right-hand eigenvector of matrix

ΛUL(b∗), while the associate optimizer for downlink power qDL∗ is given as the dominant

right-hand eigenvector of matrix ΛDL(b∗). Proposition 8.1 provides an efficient approach

to solve the downlink problem with two iterative steps (as the one proposed in [BS06]):

1) for a fixed power allocation q̂, solve the uplink problem and derive the assignment b∗

that associated with the spectral radius of extend coupling matrix ΛUL, and 2) for a fixed

assignment b̂, update the power q∗ as the solution of (A.10).

Note that although we are able to find a dual uplink problem for the downlink problem

in (8.30) with our proposed utility functions under sum power constraints, we are not able
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to construct a dual network with decoupled properties for the modified problem under indi-

vidual power constraints (8.25). However, numerical experiments show that our approach to

the downlink based on the proposed uplink solution does improve the network performance,

although the duality does not hold between the downlink problem and our proposed uplink

problem under the individual power constraints.

8.6 Numerical Results

We consider a hexagonal network composed of 7 tri-sectored BSs with site-to-site distance

of 1 km. The pathloss is modeled with Okumura Hata model for urban areas. The SINR

threshold is defined as -6.5 dB. The power constraint per BS is 46dBm.

Fig. 8.1 illustrates the convergence of the algorithm. Our algorithm achieves the max-

min utility balancing, and improves the feasibility level C(u)(Pmax) by each iteration step.

In Fig.8.2 we show that the trade-off between coverage and capacity can be adjusted

by tuning parameter µ. By increasing µ we give higher priority to capacity utility (which

is proportional to the ratio between total useful power and total interference power), while

for better coverage utility (defined as minimum of SINRs) we can use a small value of µ

instead.

Fig. 8.3, 8.4 and 8.5 illustrate the improvement of coverage and capacity performance

and decreasing of the energy consumption in both uplink and downlink systems when the

numbers of the users per BS are {15, 20, 25, 30, 35}, by applying the proposed algorithm. In

Fig. 8.4 we further show that by optimizing the capacity utility, the actual average SINR

indicating the performance of capacity can be improved as well. Fig. 8.5 shows that by

applying the proposed algorithm, the BS power budgets can be adaptively adjusted. Thus,

compared to the fixed BS power budget scenario, our algorithm is more energy efficient.

Compared to the near-optimal uplink solutions, less improvements are observed for the

downlink solutions as shown in Fig. 8.3, 8.4 and 8.5. This is because we derive the downlink

solution by exploiting an uplink problem which is not exactly its dual due to the individual

power constraints (as described in Section 8.5). However, the sub-optimal solutions still

provide significant performance improvements.

8.7 Conclusions and Further Research

We present an efficient and robust algorithmic optimization framework build on the utility

model for joint optimization of the SON use cases coverage and capacity optimization and

load balancing. The max-min utility balancing formulation is employed to enforce the

fairness across clusters. We propose a two-step optimization algorithm in the uplink based
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on fixed-point iteration to iteratively optimize the per-base station antenna tilt and power

allocation as well as the per-cluster BS assignment and power allocation. We then analyze

the network duality via Perron-Frobenius theory, and propose a sub-optimal solution in

the downlink by exploiting the solution in the uplink. Simulation results show significant

improvements in performance of coverage, capacity and load balancing in a power-efficient

way, in both uplink and downlink. In our follow-up papers we will further propose a more

complex interference coupling model and the optimization framework where frequency band

assignment is taken into account. We will also examine the suboptimality under more

general form of power constraints.
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Figure 8.1: Algorithm convergence.
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Chapter 9

Service-Centric Joint Uplink and

Downlink Optimization for Uplink

and Downlink Decoupling-Enabled

HetNets

The concept of user-centric and personalized service in the 5G mobile networks encourages

technical solutions such as dynamic asymmetric uplink/downlink resource allocation and

elastic association of cells to users with decoupled uplink and downlink (DeUD) access.

In this chapter we develop a joint uplink and downlink optimization algorithm for DeUD-

enabled wireless networks for adaptive joint uplink and downlink bandwidth allocation and

power control, under different link association policies. Based on a general model of inter-

cell interference, we propose a three-step optimization algorithm to jointly optimize the

uplink and downlink bandwidth allocation and power control, using the fixed point approach

for nonlinear operators with or without monotonicity, to maximize the minimum level of

quality of service satisfaction per link, subjected to a general class of resource (power and

bandwidth) constraints. We present numerical results illustrating the theoretical findings for

network simulator in a real-world setting, and show the advantage of our solution compared

to the conventional proportional fairness resource allocation schemes in both the coupled

uplink and downlink (CoUD) access and the novel link association schemes in DeUD.

Parts of this chapter have already been published in [16].

9.1 Introduction

The high rate of growth in global mobile data traffic drives the operators to set foot on the

path of delivering the 5G of mobile networks, for user-centric and personalized service sup-

porting diverse and often conflicting KPIs, such as high-speed, low-latency, high reliability,
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high mobility, and low cost/energy consumption.

In the 5G era, the evolution of heterogeneous networkss (HetNets) results in cell densi-

fication with cells of different sizes. Due to the time- and spatial-dependent service require-

ments and traffic patterns, it is expected to have time-varying asymmetric traffic load in

both UL and DL in different cells (as shown in Fig. 9.1). Many optimization strategies are

designed to provide seamless coverage and QoS in DL, while little interest has been shown

in UL. However, the importance of UL grows along with the evolution of social networking

and information/resource sharing system. Therefore, it is of great interest to develop a

general framework for joint UL/DL optimization of resource allocation and power control,

to adapt to the traffic asymmetry between UL and DL.

Apart from dynamic UL/DL resource splitting, flexible UL/DL traffic distribution among

the cells with different transmission ranges is also crucial for improvement of joint UL/DL

performance. As proposed in [And13,BHL+14], one way to enable the flexible UL/DL traf-

fic distribution is to allow the user terminal to be associated to two different radio access

nodes in UL and DL, respectively. Such a DeUD access has the potential benefits including

improvement of performance in UL (without degradation of performance in DL), reduction

of energy consumption in mobile terminal, and network load balancing.

The joint UL/DL optimization framework can benefit from the user-centric context-

aware communication environment in 5G networks. More specifically, this includes dy-

namic splitting resources and distributing network traffic between UL and DL, based on the

awareness of the heterogeneity of UL and DL channel conditions and traffic demands.

The focus of this paper is to develop a general model of joint UL/DL interference, and

to design a joint UL/DL optimization algorithm for adaptive UL/DL bandwidth allocation

and power control under different association policies for DeUD-enabled wireless networks.

The objective is to optimize the minimum level of QoS satisfaction across all service links,

using the fixed point approach for nonlinear operators with or without monotonicity.

9.1.1 Related Work

Joint Uplink and Downlink Optimization

Although much work has been done on the joint UL/DL resource allocation in conventional

network with coupled uplink and downlink (CoUD) association [SHWL07, SB05, EHDS12,

AKAKDT11,CLL+09,KRC10], to the best of the author’s knowledge, none of the authors

has worked on the problem for the next-generation networks with disruptive architectural

design such as DeUD. For example, both of authors in [CH12] and [LCCZ15] propose user

association schemes in CoUD. The goal of the former is to jointly maximize the system

capacity in DL and to minimize transmitting power consumption in UL, while the aim of
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the latter is to minimize the sum of UL and DL average traffic delay and to reduce the

overall UL and DL power consumption.

Another restriction of the existing works is that they concern with the intra-cell commu-

nication either in the standard OFDMA-based networks or in the static or dynamic TDD-

based networks. For example, the authors in [EHDS12] proposed a subcarrier allocation

algorithm to maximize a utility function that captures the joint UL/DL QoS requirements,

by formulating the problem as a two-sided stable matching game. In [KL09], a network

utility maximization framework is proposed to solve the joint UL/DL resource allocation

problem considering systems with frequency-division duplex (FDD) or static TDD through

the user-level satisfaction.

Decoupled Uplink and Downlink Access

The concept of downlink/uplink decoupling (DUDe)1 is introduced in [And13, ADF+13,

BHL+14,BAE+15]. The recent contributions can be classified in three groups.

The first group of articles focuses on the architectural design and realization. The

pioneering contributions [BHL+14, BAE+15] identify and explain some key arguments in

favor of DUDe based on a blend of theoretical, experimental, and logical arguments.

The second group proposes varies link association policies and show the performance

gain with simulations based on LTE field trial network. In [EBDI14a], the notion of DUDe

is studied, where the downlink cell association is based on the downlink received power while

the uplink is based on the pathloss. The follow-up work [EBDI14b] considers the cell-load

as well as the available backhaul capacity during the association process. One other idea for

range extension of small cells in UL is to add a cell selection offset to the reference signals,

to increase the priority of the small cells to be selected [Qua08].

Last but not least, the third group of articles studies on the analytical evaluation of

a predefined association policy. The work in [SEP+14, SPG15] focuses on the analytical

characterization of the decoupled access by using the framework of stochastic geometry,

applying the same association criteria as in [EBDI14a]. In [SZA14], the authors propose a

model to characterize the uplink SINR and rate distribution as a function of the association

rules (assuming weighted pathloss for both UL and DL association) and power control

parameters (assuming fractional pathloss-inversion based power control).

1In this paper, we use a different term DeUD for “decoupled uplink/downlink”, in consistency with the
term CoUD for “coupled uplink/downlink”.
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Fixed-Point Based Framework for Max-Min Utility Maximization

Yates [Yat95, YH95] proposed a framework of power control that is based on the notions

of positivity, monotonicity, and scalability of standard interference functions (for details

see Appendix D.3.2), to solve the SIR balancing problem. Since then, the framework of

interference calculus is widely studied for the utility maximization involving only power and

rate control. In [UY98,LUE03,LUE05], the authors extend Yates’ framework to stochastic

power control algorithms.

The authors in [CB04,BSSW05,SBS05,BS08,SWB09] studied the max-min utility fair-

ness problem with deterministic interference function involving power or rate control, and

characterized the feasibility using the Perron-Frobenius theorem [FFFF12]. Recent work

[ZT14, HTZ+14] leverages the nonlinear Perron-Frobenius theory [LN12] and overcome

the non-convexity or non-monotonicity in special cases of wireless utility maximization.

In [ZT14], examples of SINR- or reliability-related non-convex utility optimization were in-

troduced involving power control only. In [HTZ+14], the author proposes a general frame-

work that enables rigorous treatment of nonlinear monotonic constraints in the utility fair-

ness resource allocation problems.

In [Nuz07], the properties of standard interference function are re-examined from a

contraction mapping point of view, where the convergence to a unique fixed point follows

by a version of the Banach fixed point theorem [Sma80]. The theory provided in [Nuz07]

can be extended to certain non-monotonic functions.

Interference Model Based on Power and Load Coupling

The above-mentioned work typically addresses the inter-cell interference model with power

coupling. In [SY12, Reaar, HYS14], the authors consider the inter-cell interference charac-

terized by the load coupling model, where cell load measures the average level of resource

usage in the cell and implies the probability of generating interference from a transmitter to

a receiver in orthogonal frequency-division multiplexing (OFDM) sytsems. The interaction

between power and load coupling are analyzed in [CPS14,HYLSon]. The authors in [CPS14]

derive an interference mapping having as its fixed point the power allocation including a

given load profile. The authors in [HYLSon] address an energy minimization problem, and

prove that operating at fill load is optimal in minimizing the sum energy.

9.1.2 Contribution

The main contributions of this paper are listed as follows.

We consider the next-generation wireless HetNets with disruptive architectural design

with respect to dynamic splitting of UL/DL resource and link association. A common set
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of resource blocks are considered joint resource for both UL and DL services, and adaptive

resource partitioning between UL and DL is enabled to adapt to the link-specific traffic

demand. The decoupled UL and DL access is further introduced to adapt to the link-

specific channel condition (as shown in Fig. 9.5).

We introduce a general model of inter-cell interference for joint UL/DL system. It

includes the inter-link interference between UL and DL and is power and load coupling-

aware. A general class of resource constraint is then formulated, applicable for various

types of power or load constraints. For example, the sum per-cell power budget constraint

in the downlink depends on both the power per resource block and the number of assigned

RB in the downlink. The per-cell load constraint depends on the number of RBs assigned

both in the uplink and downlink. We then develop a framework involving a fixed-point class

with nonlinear contraction operators (mainly motivated by the work in [Nuz07]), and an

optimizer for the utility of QoS satisfaction level, subjected to a general class of resource

constraints. A three-step optimization algorithm is proposed, to find the local optimum

of the joint variables bandwidth allocation and power spectral density on a per-link basis,

corresponding to the different link association policies.

To adapt the framework to the practical interest, we extend the work to cover the

following aspects: 1) per-transmitter power control instead of per-link power control, and

2) energy efficient power control.

The rest of the chapter is organized as follows. In Section 9.2 we introduce some basic

notations and system model. In Section 9.3, we present the utility fairness problem and

its decomposition into two subproblems. The solution to the subproblem of adaptive joint

UL/DL bandwidth allocation is provided in Section 9.4, while of joint UL/DL power control

(including the extension to the per-transmitter power control and energy efficient power

control) in Section 9.5. The joint algorithm to solve the main optimization problem is

summarized in Section 9.6. The performance of the proposed algorithms are evaluated

numerically in Section 9.7. We conclude the study in Section 9.8.

9.2 System Model

In this paper, we use the following standard definitions. The nonnegative and positive

orthant in k dimensions are denoted by Rk
+ and Rk

++, respectively. Let x ≤ y denote the

component-wise inequality between two vectors x and y. And let diag(x) denote a diagonal

matrix with the elements of x on the main diagonal. For a function f : Rk → Rk, fn denotes

the n-fold composition so that fn := f ◦fn. The k×k identity matrix is denoted by Ik and

the n × k zero matrix is denoted by 0n×k. The k-dimensional all-ones (all-zeros) vector is

denoted by 1k (0k). The horizontal concatenation of two matrices A ∈ Rn×k, B ∈ Rn×l is
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written as [A | B], while the vertical concatenation of two matrices A ∈ Rn×k, B ∈ Rm×k

is written as [A;B]. The cardinality of set A is denoted by |A|. The notation that will be

used in this paper is summarized in Table 9.1.

We consider an OFDM-based wireless system consisting of a set of BSs N with |N | = N

and a set of UEs K with |K| = K. We drop the usual assumption in wireless system design

that UL and DL transmissions are associated with the same BS, and assume that they can be

split. Let the UL(DL) cell-UE association matrix be denoted by AUL ∈ {0, 1}N×K(ADL ∈

{0, 1}N×K).

We assume the reciprocal UL and DL channels. The set of all links (including ULs

and DLs) is denoted by K := KUL ∪ KDL, where KUL and KDL are the sets of ULs and

DLs, respectively. Because ULs and DLs have different transmitters and receivers, we have

that KUL ∩ KDL = ∅. Without loss of generality, we assume that |KUL| = |KDL| = K

and |K| = 2K. We define the power spectral density (PSD) to be the transmit power

assigned per RB, and we use pUL ∈ RK
+ and pDL ∈ RK

+ to denote the vectors of uplink and

downlink PSDs, respectively. Accordingly, wUL ∈ [0, 1]K is used to denote fraction of the

allocated RBs (normalized by dividing the number of allocated RBs by the total number

of the available RBs), while wDL ∈ [0, 1]K is the vector for such fractions in the downlink.

We collect pUL and pDL in one power vector p := [pUL;pDL] ∈ R2K
+ , and collect wUL and

wDL in w := [wUL;wDL] ∈ [0, 1]2K . Let the total number of the RBs be denoted by W0.

We consider the flexible duplex mode that allows UL and DL transmissions to share a

joint set of RBs and to dynamically split between the RBs allocated to UL and DL. The

split ratio is time-variant and cell-specific. Flexible duplex mode is proposed as the next

step of FDD/TDD convergence in 5G networks [All15, DMP+14]. The rapid evolution of

subband-based splitting and filtering [ZM15] and full duplex technology [BJK14] makes

dynamic splitting of spectrum allocated to UL and DL realizable in the near future. The

main drawback results from the need for coping with more intricate inter-cell interference

structures: the interference is not only restricted to UL-to-UL and DL-to-DL interference,

but also includes the inter-link interference between UL and DL, as shown in Fig. 9.3.

Remark 9.1 (Adaptation to Dynamic TDD). Although in this paper the system model and

optimization algorithm are developed based on forward-looking assumption of flexible duplex,

they can be well adapted to more practical system with dynamic TDD configuration, by

interpreting wUL and wDL as fraction of time frames dedicated to UL and DL, respectively.

In this incident, we can see the resource on the horizontal axis in Fig.9.3 as time frames

instead of frequency subbands, and the inter-cell inter-link interference appears in the central

frames that are used for UL transmission in BS j, while for DL transmission in another BS

i.
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Table 9.1: NOTATION SUMMARY
N set of (macro and pico) BSs
K set of UEs

KUL (KDL) set of ULs (DLs)

K set of all service links
AUL (ADL) BS assignment matrix for ULs (DLs)

A BS assignment matrix for all service links
Π set of link association policies

bUL
k (bDL

k ) BS associated to the kth UL (DL)
pUL (pDL) PSD for ULs (DLs)

p PSD for all service links
qDL cell-specific PSD in DL
p per-transmitter PSD

wUL (wDL) fraction of allocated RBs for ULs (DLs)
w fraction of allocated RBs for all service links

dl traffic demand (bit rate) of the lth link, l ∈ K
rl spectral efficiency of the lth link, l ∈ K
W0 total number of RBs
V link gain coupling matrix

Ṽ link gain coupling matrix without intra-cell interference
g1(w) constraint function implying the constraint on load
g2(w,p) contraint function implying the contraint on transmit power

λ objective utility

9.2.1 Constrained Per-Cell Load and Per-Transmitter Power

Since the UL and DL transmissions share a common set of resource blocks, we define the

cell load to be the fraction of the total occupied frequency resource (in UL and DL) per cell.

We collect the per-cell loads in a vector ν := Aw ∈ [0, 1]N , where A :=
[
AUL | ADL

]
∈

{0, 1}N×2K is the binary association matrix. Since the per-cell load is bounded above by 1,

we have

R2K
+ → [0, 1] : g1(w) := ‖Aw‖∞ ≤ 1. (9.1)

This implies that for each cell, the sum of the fractions of allocated RBs for both UL and

DL is constrained, i.e., ∀n ∈ N we have
∑

k∈K

(
aUL
n,kw

UL
k + aDL

n,kw
DL
k

)
≤ 1.

Let pUL
max ∈ RK

++ and qDL
max ∈ RN

++ denote the maximum UL transmit power per UE and

the maximum DL transmit power per BS for the whole frequency band, respectively. Note

that the maximum transmit power of a macro BS and a pico BS can vastly differ from each

other in HetNets. We define the extended maximum power vector by pextmax := [pUL
max; qDL

max] ∈

RK+N
++ and the extended assignment matrix for transmitter-to-link association by Aext :=

[IK | 0K×K ;0N×K | A
DL] ∈ {0, 1}(K+N)×2K . The per-transmitter (including both UEs and
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BSs) power constraints imply that

R2K
+ × R2K

+ → R+ :

g2(w,p) := W0‖ diag(pextmax)−1Aext diag(w)p‖∞ ≤ 1, (9.2)

which is equivalent to
∑

k∈K a
DL
n,k(W0w

DL
k )pDL

k ≤ qDL
max,n, ∀n ∈ N , and (W0w

UL
k )pUL

k ≤ pUL
max,k,

∀k ∈ K. This means that the total transmit power per transmitter, computed as PSD2

multiplied by the total number of occupied RBs, is constrained by the predefined maximum

power budget. Note that diag(w)p and diag(p)w are interchangeable. Moreover, for any

fixed p̂ or ŵ, the function g2 over the joint variable (w,p) can be written as g2,ŵ(p) :

R2K
+ → R+ or g2,p̂(w) : R2K

+ → R+.

9.2.2 Link Gain Coupling Matrix

The interference coupling between users (as shown in Fig. 9.5) is characterized by a link gain

coupling matrix. To define this matrix, we define three channel gain matrices H0 ∈ RN×K
++ ,

H1 ∈ RN×N
++ and H2 ∈ RK×K

++ to indicate BS-to-UE, BS-to-BS, and UE-to-UE channel

gain, respectively. The link gain coupling matrix between the 2K transmission links (UL

and DL) is then defined to be

V :=

[
V UL←UL V UL←DL

V DL←UL V DL←DL

]
(9.3)

=

[
AULTH0 AULTH1A

DL

H2 HT
0 A

DL

]
. (9.4)

The matrices V X←Y :=
(
vX←Y
k,j

)
∈ RK×K

++ , X,Y ∈ {UL,DL}, determine the cross-link

couplings. For example, vUL←DL
k,j denotes the channel gain coupling between the transmitter

of the downlink to UE j and the receiver of the uplink from UE k as shown in Fig. 9.5.

Note that V UL←UL,V UL←DL and V DL←DL are in general not symmetric, while V DL←UL is

symmetric.

We assume that each base station employs an OFDM-based scheme for resource al-

location to schedule its users on orthogonal resources. As a result, there is no intra-cell

interference and the interference coupling is completely described by the modified link gain

matrix Ṽ , which is defined by (9.3) with V X←Y replaced by Ṽ X←Y :=
(
ṽX←Y
k,j

)
where

ṽX←Y
k,l :=

{
vX←Y
k,l if bYl 6= bXk

0 o.w.
. (9.5)

Here and hereafter, bXk , X ∈ {UL,DL} denotes the serving BS of UE k in UL or DL.

2Note that in this chapter the unit of PSD is Watt per RB.
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9.2.3 Models of SINR and Rate

To capture the dynamic inter-cell interference in OFDM systems, it is reasonable to assume

that the inter-cell interference increases as the fraction of the allocated RBs at the interfering

BSs increases as well. We interpret w as the probability of generating interference from

the transmitter of a link to the receiver of the other link (on any RB) [MNK+07]. More

precisely, we assume that the DL and UL SINR per RB of UE k is given by (respectively)

SINRDL
k :=

pDL
k vDL←DL

k,k∑
i∈K

ṽDL←DL
k,i wDL

i pDL
i +

∑
j∈K

ṽDL←UL
k,j wUL

j pUL
j + σ2

SINRUL
k :=

pUL
k vUL←UL

k,k∑
i∈K

ṽUL←DL
k,i wDL

i pDL
i +

∑
j∈K

ṽUL←UL
k,j wUL

j pUL
j + σ2

where σ2 > 0 denotes the background-noise power spectral density, which is assumed to

be the same for all receivers. Note that in this expression of SINRs w as the probabil-

ity has no unit, and both the numerator and denominator have the same units Watt per

RB. Let us define σ := σ212K , and collect the uplink and downlink SINR in a vector

SINR := [SINRUL
1 ; . . . ; SINRUL

K ; SINRDL
1 ; . . . ; SINRDL

K ] ∈ R2K
++. Using (9.3), (9.4), and

(9.5), the above expressions of SINR can be written in a general form

SINRl(p,w) :=
pl[

D−1
(
Ṽ diag{p}w + σ

)]
l

, l ∈ K, (9.6)

where D := diag{vUL←UL
1,1 , . . . , vUL←UL

K,K , vDL←DL
1,1 , vDL←DL

K,K } ∈ R2K
+ is a diagonal matrix. For

l = 1, . . . ,K, (9.6) is equal to the UL SINR, while the DL SINR is given by (9.6) for

l = K + 1, . . . , 2K.

We further assume that the spectral efficiency (bit rate per RB) of the virtual UEs

(includes both UL and DL transmission) is a strictly increasing function of the SINR given

by

rl(p,w) := B log2(1 + SINRl(p,w)), l ∈ K, (9.7)

where B denotes the effective bandwidth per RB.

Given the per-UE uplink and downlink traffic demands (bit rate)

d := [dUL
1 , . . . , dUL

K , dDL
1 , . . . , dDL

K ]T ∈ R2K
++,

it follows from (9.7) that the traffic demands are satisfied if and only if (note that wl ·W0

is equal to the number of RBs used by link l)

wl ≥
dl

W0rl(p,w)
, l ∈ K. (9.8)
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Remark 9.2 (Full Overlap or Partial Overlap). The SINR modeled in (9.6) is based on the

strategy that each UL or DL transmission is allocated a number of RBs in a joint frequency

band for both UL and DL, regardless of the location of the band. However, this may result in

a full overlap of frequency bands used by UL and DL transmissions leading to high probability

of inter-link interference. A more reasonable strategy is to allow only partial overlap, as

shown in Fig. 9.3, where the DL is preferred to allocated at the head of the band while

the UL at the tail of the band, or vice versa. In this case, the inter-link interference only

exists on the overlapping band, and the above-presented model overestimates the probability

of receiving inter-link interference. A more accurate readjustment is to multiply the term of

inter-link interference with an additional overlap factor. Some possible methods to define

the overlap factor are given in Appendix D.3.1. In the remainder of this paper, the analysis

and algorithms are still presented with the interference model in (9.6) for the simplicity of

the form. However, without loss of generality, we can easily adjust the model by introducing

the overlap factor into the coupling matrix Ṽ .

9.2.4 Link Association Policies

Assume that there are a finite set of link association policies Π := {πm : m = 1, . . . ,M}

implemented in the network, which can be dynamically selected by an operator. Each policy

defines the BS-UE assignment matrices AUL(πm) and ADL(πm), and further defines the link

gain coupling matrix Ṽ (πm) and link gain matrix D(πm) in (9.6).

As examples, in the following we list one conventional UL/DL coupled user association

policy and two types of decoupled UL/DL link association policies, respectively.

(1) CoUD: Conventional coupled UL/DL user association based on reference signal received

power (RSRP) in DL is given by

bUL
k = bDL

k = arg max
n∈N

RSRPn,k, ∀k ∈ K. (9.9)

(2) DeUD O: Decoupled UL/DL link association assisted with cell selection offset [Qua08].

A cell selection offset is added to the reference signals of the small cells to increase their

coverage in UL in order to offload some traffic from the macro cell. This can be formalized

as follows

bXk = arg max
n∈N

RSRPn,k + offsetXn , ∀k ∈ K,X ∈ {UL,DL} (9.10)

where offsetXn > 0 (in dB) if X = UL and n is a small cell BS with low transmit power;

otherwise the offset is set to zero if X = DL or n is a macro cell BS.

(3) DeUD P: Decoupled UL/DL link association based on DL received power and UL
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pathloss respectively [EBDI14a], where the association criteria in DL and UL are given by

(respectively)

bDL
k = arg max

n∈N
RSRPn,k, (9.11)

bUL
k = arg max

n∈N
PLn,k, ∀k ∈ K, (9.12)

where PLn,k denotes the pathloss estimate between BS n and UE k.

Note that in (9.10), by setting offsetXn = 0 for all n ∈ N and X = UL, the association

policy is equivalent to CoUD. And, by setting the offset (in dB) of the small cell BS in UL

as the difference between the transmit power (in dBm) of the macro cell BS and the small

cell BS, DeUD O is equivalent to DeUD P.

9.3 Problem Formulation

To achieve the service-centric network fairness, we define the objective utility λ to be the

minimum level of QoS satisfaction among all links, where the level of QoS satisfaction is

equal to the ratio of the per-link feasible transmission rate to the required traffic demand.

So we have

λ := min
l∈K

W0wlrl(p,w)

dl
, (9.13)

where rl(p,w) is given by (9.7).

Given a certain link association policy π′ and its corresponding UL(DL) assignment

matrix AUL(π′)( ADL(π′)), coupling matrix Ṽ (π′), and link gain matrix D(π′), the objec-

tive is to maximize the utility λ over the joint space of loads and powers subject to the

constraints on the maximum per-cell load (9.1) and the maximum per-transmitter power

(9.2). Moreover, if the optimized utility satisfies λ ≥ 1, then the vector of link-specific traffic

demands d is feasible; otherwise, the traffic demand cannot be satisfied for every service

link. Formally, the problem of interest in this paper can be stated as follows.

Problem 9.1.

max
w∈R2K

+ ,p∈R2K
+

λ (9.14a)

subject to w ≥ λf(p,w) (9.14b)

fl(p,w) :=
dl

W0rl(p,w)
, ∀l ∈ K (9.14c)

(9.1), (9.2), (9.14d)

where the vector function f : R2K
+ → R2K

++ in (9.14b) is a collection of fl defined in (9.14c),

i.e., f := [f1, . . . , f2K ]T . The utility λ depends on the joint variable (w,p) ∈ R2K
+ × R2K

+
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in an inextricably intertwined manner, which is due to the nonlinear power and resource

coupling relationship between links. We decompose Problem 9.1 into two subproblems in

Problem 9.2b by alternately optimizing over w or p, and provide computationally efficient

locally optimal solution to Problem 9.1, based on the optimal solution to each of the sub-

problems.

Problem 9.2.

9.2a Given fixed p′ ∈ R2K
+ , find w′ := w′(p′) such that

w′ = arg max
w∈R2K

+

λ (9.15a)

subject to w ≥ λfp′(w) (9.15b)

g1(w) ≤ 1, g2,p′(w) ≤ 1, (9.15c)

where fp′, g1, and g2,p′ are obtained by replacing p with p′ in (9.14c), (9.1) and

(9.2), respectively.

9.2b Given fixed w′ ∈ R2K
+ satisfying g1(w

′) ≤ 1, find p′ := p′(w′) such that

p′ = arg max
p∈R2K

+

λ (9.16a)

subject to w′ ≥ λfw′(p) (9.16b)

g2,w′(p) ≤ 1, (9.16c)

where fw′ and g2,w′ are obtained by replacing w with w′ in (9.14c) and (9.2), re-

spectively.

Prob.9.2a and Prob.9.2b are formulated in such a way that a common desired utility

λ is maximized subject to the common load and power constraints. Thus, for a given link

association policy π′, by sequentially solving Prob.9.2a and Prob.9.2b, we improve λ in each

step and achieve a local optimum of λ with respect to π′.

In Section 9.4 and 9.5 we provide the optimal solution to Prob.9.2a and Prob.9.2b,

respectively. The joint algorithm is summarized in Section 9.6.

9.4 Joint Uplink and Downlink Resource Allocation

In this section we develop the algorithms for joint UL/DL bandwidth allocation. In Sec-

tion 9.4.1 we develop an algorithm for Prob.9.2a in Prop. 9.1. Since a solution w to

Prob.9.2a must fulfill max{g1(w), g2,p′(w)} ≤ 1, some free resources may still be available,

i.e., g1(w) < 1 and g2,p′(w) = 1, even under optimal power allocation (in the sense of Prob.
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9.2a). Therefore, an additional step involving power scaling and bandwidth updating is

introduced in Prop. 9.2 in Section 9.4.2, to further improve the desired utility λ. Another

case of g1(w) = 1 and g2,p′(w) ≤ 1 is discussed in Prop. 9.3 in Section 9.5.

9.4.1 Algorithm for Bandwidth Allocation

The following lemma proves a key property of the vector function fp′ , which is necessary

to solve Prob. 9.2a.

Lemma 9.1. Given a fixed power vector p′, the function fp′ : R2K
+ → R2K

++ defined in Prob.

9.1 is a standard interference function.

The definition and some selected properties of standard interference function (SIF) are

provided in Appendix D.3.2. The proof of Lemma 9.1 following the proof of [Reaar, Ex. 2]

is provided in Appendix D.3.3.

We further prove the following theorem.

Theorem 9.1. Suppose

• g(x) : Rk
++ → R++ is monotonic, and homogeneous of degree 1 (i.e., g(αx) = αg(x)

for all α > 0),

• f(x) : Rk
+ → Rk

++ is a SIF.

Then, for each θ > 0 there is exactly one eigenvector x′ ∈ Rk
++ and associate eigenvalue ρ′

of f such that ρ′x′ = f(x′) and g(x′) = θ. The repeated iteration

x(t+1) =
θf(x(t))

g ◦ f(x(t))
, t ∈ N, (9.17)

converges to the unique vector x′, which is called the fixed point of f . The associate eigen-

value is ρ′ = g ◦ f(x′)/θ.

The proof of Theorem 9.1 is referred to Appendix D.3.4. It is an extension of the proof

of [Nuz07, Th. 3.2], where g was defined as any monotonic norm ‖ · ‖, while we define

two properties monotonicity, homogeneity and positivity on Rk
++. Note that the function

in (9.17) ψ := θf/g ◦ f : Rk
+ → Rk

++ is non-monotonic, while it preserves the property of

scalability of the mapping f .

Using Lemma 9.1 and Theorem 9.1, we prove the following proposition, which gives rise

to an algorithmic solution to Prob.9.2a.
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Proposition 9.1. Given a fixed p′ ∈ R2K
+ , let the set of solutions to Prob.9.2a be denoted

by Fw(p′). There exists one w′ ∈ Fw(p′) such that w′ ≤ w for all w ∈ Fw(p′). Moreover,

w′ is an eigenvector of fp′ satisfying max{g1(w
′), g2,p′(w′)} = 1 and can be obtained by

performing the following fixed point iteration:

w(t+1) =
fp′(w(t))

gp′ ◦ fp′(w(t))
, t ∈ N, (9.18a)

where gp′(w) := max{g1(w), g2,p′(w)}. (9.18b)

The iteration in (9.18) converges to w′, and λp′ = 1/gp′ ◦ fp′(w′).

The proof of Prop. 9.1 is provided in Appendix D.3.5.

9.4.2 Optimization to Achieve Maximum Load

As aforementioned, Prop.9.1 provides an algorithm that converges to the optimal solution

to Prob.9.2a. Let w′ be this solution. Since max{g1(w
′), g2,p′(w′)} = 1, it is possible that

g2,p′(w′) = 1, while g1(w
′) < 1, i.e., the maximum power per transmitter is satisfied with

equality, while free resources are still available. In this case, we propose an additional step

to further optimize λ by iteratively scaling down the fixed power vector p′, until g1(w
′) = 1

is achieved.

Proposition 9.2. Let w′ ∈ R2K
+ be the solution to Prob.9.2a and suppose that g2,p′(w′) = 1

and g1(w
′) < 1. Starting from p(0) = p′ and w(0) = w′, by iteratively performing the

following two steps:

(1) scaling down p by

p(t+1) = g1(w
(t)) · p(t), (9.19)

(2) updating w(t+1), as the unique fixed point of iteration (9.18), with updated p′ = p(t+1),

the sequence of utility λ is monotone increasing, until the maximum load constraint g1(w) =

1 is satisfied.

The proof of Prop. 9.2 is provided in Appendix D.3.6.

The optimization step provided in Prop. 9.2 further improves our desired utility λ if the

solution to Prob.9.2a w′ satisfies g2,p′(w′) = 1 and g1(w
′) < 1. Now assume the algorithm

defined in Prop. 9.2 converges to (p?,w?). Then, in addition to the full utilization of

resources in the sense that g1(w
?) = 1, we have g2(p

?,w?) ≤ 1 = g2,p′(w′), which means

that the allocation obtained under Prop. 9.1 is more power efficient than that of Prop. 9.1.
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Remark 9.3. It is worth mentioning that Ho [HYLSon] formulates a power minimization

problem, based on the cell-specific load and power coupling in the DL, and concludes that if

the minimum required rate is feasible, then the optimal solution to the power minimization

problem satisfies that the system is fully loaded [HYLSon, Th. 1]. In this paper, we formulate

a utility maximization problem, based on the link-specific bandwidth and power coupling

framework in joint UL/DL, with per-cell load and per-transmitter power constraints, and

conclude that if some minimum utility is feasible with cell load lower than one, we can scale

down the power vector using the algorithm presented in Prop. 9.2, to further increase the

desired utility, until the per-cell load constraint holds with equality.

9.5 Joint Uplink and Downlink Power Control

Now let us consider the problem of power control. In this section, we first present the

optimal solution to Prob.9.2b introduced in Section 9.5.1. Then, in Section 9.5.2 and 9.5.3,

we further examine two alternative algorithms for cell-specific power control and energy

efficient power control, respectively.

9.5.1 Algorithm for Link-Specific Power Control

Let us first consider Prob.9.2b. Given some fixed w′ ∈ [0, 1]2K , we first rewrite the rate

constraints in (9.16b). For p ∈ R2K
++, we have

w′ ≥ λfw′(p)⇔ pl ≥ λ
plfw′,l(p)

w′l
for l ∈ K. (9.20)

We further define the following vector function using (9.20)

f̃w′ :R2K
++ → R2K

++ : p 7→
[
f̃w′,1(p), . . . , f̃w′,2K(p)

]T

where f̃w′,l(p) :=
pl
w′l
fw′,l(p), l ∈ K. (9.21)

Note that the domain of f̃w′ defined in (9.21) is the positive orthant R2K
++. To extend it to

the non-negative orthant R2K
+ , we define the following extension for each l ∈ K:

f ′w′,l(p) :=




f̃w′,l, if pl 6= 0
dl ln 2

W0Bw′l
Iw′,l(p) o.w.

, (9.22)

where Iw′,l(p) :=
[
D−1

(
Ṽ diag{w′}p+ σ

)]
l
. (9.23)

The domain extension is derived by leveraging the linear approximation log2(1+x) ≈ x/ ln 2

for x → 0. As shown in (9.22), this approximation is only used for pl = 0 (which further

leads to SINRl = 0), otherwise if pl 6= 0, the nonlinear closed-form of f̃w′,l (9.21) is used.
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With (9.20), (9.22), and (9.23), Prob.9.2b is rewritten as

max
p∈R2K

+

λ, s.t. p ≥ λf ′w′(p), g2,w′(p) ≤ 1 (9.24)

The following lemma shows that f ′w′ has the same key property as fp′ , which is shown for

fp′ in Lemma 9.1.

Lemma 9.2. The vector function f ′w′ : R2K
+ → R2K

++ defined in (9.22) is SIF.

Proof. The proof follows directly from the previous results in [CPS14, Prop. 1], where a

cell-specific utility function over the cell-specific power vector in DL is shown to be positive

concave, and thus a SIF [Reaar, Prop. 1]. It is easy to see that our defined link-specific

function f ′π′,w′ shares the same form with the cell-specific function introduced in [CPS14,

Prop. 1]. Thus, we omit the details here and conclude that it is also a SIF. �

Note that in the expression of per-transmitter power constraint (9.2), the term diag(w)p

and diag(p)w are interchangeable. With some fixed w′, the function g2,w′ defined in (9.24)

is monotonic, positive and homogeneous of degree 1 on R2K
++. Thus, by leveraging Lemma

9.2 and Theorem 9.1, we can argue along similar lines as in Prop. 9.1 to conclude the

following: starting from an arbitrary p(1) ∈ R2K
+ , the following fixed point iteration

p(t+1) =
f ′w′(p(t))

g2,w′ ◦ f ′w′(p(t))
, t ∈ N (9.25)

converges to the solution of Prob.9.2b, denoted by p′′. And the utility λp′′ corresponding

to p′′ is given by λp′′ = 1/g2,w′ ◦ f ′w′(p′′).

Using (9.25), we can iteratively approach arbitrarily close to solution to Prob.9.2b given

fixed w′ as the solution to Prob.9.2a. However, for joint optimization over (w,p), we are

interested in whether or not this solution further improves the desired utility derived from

the solution to Prob.9.2a. We present the relationship between λ′′ := λp′′ and λ′ := λp′ in

Prop. 9.3.

Proposition 9.3. For some fixed p′, let w′ ∈ R2K
++ be the solution to Prob.9.2a and λ′ the

corresponding utility. Moreover, given w′, let p′′ ∈ R2K
++ be the solution to Prob.9.2b and

λ′′ the corresponding utility. Then, λ′ and λ′′ are related as follows.

• If g2,p′(w′) = 1, then, we have λ′′ = λ′ and p′′ = p′

• If g2,p′(w′) < 1, then, we have λ′′ > λ′
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The proof of Prop. 9.3 can be found in Appendix D.3.7.

Prop. 9.3 implies that given the solution (w′,p′) derived from the bandwidth updating

step (Prop. 9.1) or the power scaling step (Prop. 9.2), with fixed w′ at hand, solving

Prob.9.2b (by performing (9.25) ) can further improve the desired utility only if g2,p′(w′) <

1; otherwise if g2,p′(w′) = 1 the solution to Prob.9.2b with respect to w′ is equivalent to p′.

Remark 9.4. In this section, we rewrite the rate constraints w′ ≥ λfp(w′) in Prob. 9.2b

into a system of nonlinear inequalities p ≥ λf ′w′(p) as shown in (9.20)-(9.23). Hence

both the fixed point iterations in (9.18) and (9.25) (to solve Prob. 9.2a and Prob. 9.2b,

respectively) converge to the solutions that maximize the same λ defined in Prob. 9.3. Note

that if we treat the power control problems separately, as stated for instance in [BS05], the

rate constraint rl(p,w
′) ≥ λdl/(w

′
lW0) for all l ∈ K can be directly translate into a SINR

constraint by taking the exponential function of both sides. We write (9.20) into a system

of linear inequalities in powers:

pl ≥ η(λ)f
′′

w′(p)

where η(λ) := 2
λdl

W0Bw′
l − 1 is monotone increasing for any λ ∈ R2K

+ , and f
′′

w′ : R2K
+ → R2K

++

is of form of an affine transformation p 7→ D−1
(
Ṽ diag(w′)p+ σ

)
. We can agree along

similar lines as in Prop. 9.1 to maximize η by performing the fixed point iteration p =

f
′′

w′(p)/(g2,w′ ◦ f
′′

w′(p)) and thus indirectly maximize λ.

9.5.2 Algorithm for Cell-Specific Power Control

So far we have considered the case that the PSD p can be specified per service link. In

the practical system, however, in DL a transmitter determines constant cell-specific energy

per resource element across all DL bandwidth and subframes until it needs to be updated

[3GPe], while in UL a distinct transmission power can be assigned to each UE. Without

loss of generality, the developed power control algorithm can be easily modified to meet this

practical requirement. The objective is to optimize the per-transmitter PSD as a collection

of the per-UE UL and per-BS DL power vectors

p := [pUL; qDL]T ∈ RK+N
+ , (9.26)

where qDL ∈ RN
+ is the cell-specific PSD in DL, and the nth entry of qDL

l denotes the PSD

of all the DLs associated to cell n. Since all DLs served by the same cell share the same

PSD, we have

pDL = ADLTqDL. (9.27)
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The transformation between p and p is then given by

p = Λp, with Λ :=

[
IK 0K×N

0K×K ADLT

]
. (9.28)

In the following, we collect the per-UE rate constraint in UL and per-cell sum rate

constraint in DL depending on p in a set of K +N nonlinear inequalities, where for j ∈ K

the jth inequality implies the UL rate constraint for UE j, while for j ∈ N := {K +

1, . . . ,K +N}, the jth inequality implies the DL sum rate constraint for cell n = j −K.

Per-UE Rate Constraint in Uplink

Substituting (9.28) into (9.6), SINR of UE j in UL is simply given by

SINRj(p,w
′) :=

pj

Iw′,j(p)
, for j ∈ K, (9.29)

where Iw′,j(p) :=
[
D−1

(
Ṽ diag{w′}Λp+ σ

)]
j
. (9.30)

Substituting (9.29) into (9.7) and (9.8), the per-UE rate constraint in UL depending on p

is given by

pj ≥
pj
wj
·

dj
W0rj(p,w′)

=: f̃w′,j(p), for j ∈ K. (9.31)

Per-Cell Sum Rate Constraint in Downlink

Substituting (9.28) into (9.6), the DL SINR of UE k associated with cell n (depending on

p) can be rewritten as:

SINRDL
n,l (p,w

′) :=
pK+n

Iw′,l(p)
, ∀l ∈ K

DL
n , (9.32)

where Iw′,l(p) is defined in (9.30), K
DL
n denotes the set of DL transmissions associated with

cell n, and pK+n as the (K + n)th entry of p denotes the PSD in DL in cell n.

The spectral efficiency of UE k associated with cell n in DL and denoted by rDL
n,l (p,w′)

is computed by substituting (9.32) into (9.7). Then, using (9.8), the sum rate constraint

per cell in DL (depending on p) yields

ν ′n =
∑

l∈K
DL
n

w′l ≥
∑

l∈K
DL
n

dl
W0rDL

n,l (p,w′)
, ∀n ∈ N (9.33)

⇒ pj ≥
pj
ν ′j−K

∑

l∈K
DL
j−K

dl
W0rDL

j−K,l(p,w
′)

=: f̃w′,j(p), for j ∈ N (9.34)
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where ν ′n denotes fraction of the total allocated RBs of cell n in DL, note that for j ∈ N ,

the jth entry of p is equal to the PSD of cell n = j −K in DL.

Note that (9.34) defines the jth entry of function f̃w′,j for j = K + 1, . . . ,K +N , while

for j = 1, . . . ,K, the expression of f̃w′,j is given in (9.31).

Joint Downlink Cell-Specific and Uplink UE-specific Power Control

With (9.31) and (9.34) in hand, using the same techniques as shown in (9.20)-(9.23), the

optimization problem is written as

max
p∈RK+N

+

λ, s.t. p ≥ λfw′(p), g2,w′(p) ≤ 1 (9.35)

where g2,w′(p) is obtained by substituting (9.28) into (9.2), and fw′(p) is given by

fw′,j(p) :=




f̃w′,j(p) if pj 6= 0
dl ln 2

W0Bw′j
Iw′,j(p) if pj = 0, j ∈ K

∑

l∈K
DL
j−K

dl ln 2

W0Bν ′j−K
Iw′,l(p) if pj = 0, j ∈ N

(9.36)

Proceeding long similar lines as in Lemma 9.2, it is easy to show that fw′ : RK+N
+ → RK+N

++

is SIF, while g2,w′ : RK+N
++ → R++ is monotonic and homogeneous with degree 1. Therefore,

we can compute the solution to (9.35) by means of the fixed point iteration in (9.25), and

with f ′w′(p) replaced by fw′(p).

9.5.3 Algorithm for Energy Efficient Power Control

If the following assumption holds, the rate requirements are strictly feasible for all UL and

DL transmissions.

Assumption 9.1. The solution to Prob. 9.2 (w?,p?) satisfies λ? > 1.

Under Assumption 9.1, the problem of interest in the context of energy efficient networks

is that, instead of consuming high energy to achieve λ > 1, how to minimize the sum

transmit power, such that the per-link rate constraint is just satisfied, i.e., λ = 1. The

power minimization problem subjected to the rate and power constraints are defined in

Problem 9.3

Problem 9.3.

min
p∈R2K

+

ψ(p), s.t. p ≥ f ′w?(p), g2,w?(p) ≤ 1 (9.37)
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where ψ : R2K
+ → R+ can be any monotonic function (in each coordinate, i.e., ψ(x) ≥ ψ(y)

iff xi ≥ yi for each i) that is non-decreasing. For example, by setting ψ(p) = ‖ diag{w?}p‖1,

we aim at minimizing the sum transmit power over all occupied RBs and all transmitters.

Since f ′w? is SIF, Prob. 9.3 is a classical power minimization problem introduced in

[YH95], and we provide the solution in Prop. (9.4). We omit the proof because it follows

directly from [YH95, Thm. 2].

Proposition 9.4. Under Assumption 9.1, the fixed point iteration

p(t+1) = f ′w?

(
p(t)
)
, t ∈ N (9.38)

converges to the optimum solution p?? to Prob. 9.3.

Note that without loss of generality, (9.37) can be easily translated to the power mini-

mization problem over p by substituting (9.28) into (9.37) and replacing f ′w? with fw′ .

9.6 Algorithm for Joint Optimization

Now we provide an algorithm for joint optimization of bandwidth allocation w and power

control p per link, with respect to any fixed link association policy π′ ∈ Π. Based on Prop.

9.1, 9.2, and 9.3, we can compute the locally optimum of (w(π′),p(π′)). In the following

we explain in more detail the three main steps (S1, S2 and S3) of the algorithm.

S1. Updating Bandwidth

The algorithm starts with optimizing the bandwidth allocation w, given an initial PSD p′.

Prop. 9.1 provides the optimal solution w′ in the sense of maximizing λ for any fixed p′.

The algorithm converges to a solution w′, satisfying max{g1(w
′), g2,p′(w′)} = 1, i.e., either

g1(w
′) = 1, or g2,p′(w′) = 1, or both. Therefore, it remains to consider the following three

cases

(1) g1(w
′) < 1 and g2,p′(w′) = 1

(2) g1(w
′) = 1 and g2,p′(w′) < 1

(3) g1(w
′) = 1 and g2,p′(w′) = 1

Note that once the third condition is achieved, (w′,p′) is a local optimum. In contrast, in

the first case and the second case the algorithm is designed to further improve the utility

by proceeding with S2 and S3 (see Algorithm 6), respectively.

S2. Power Scaling to Achieve The Full Load Condition

The first condition leads to the power scaling step as described in Prop. 9.2. At this step,
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power scaling (9.19) and bandwidth updating (9.18) are performed iteratively, until the

solution (p′,w′) converges and satisfies g1(w
′) = 1 and g2,p′(w′) ≤ 1.

(1) If g2,p′(w′) = 1, then (p′,w′) is considered the local optimum.

(2) If g2,p′(w′) < 1, then the algorithm moves to the power updating step S3.

S3. Updating Power Budget

As shown in Prop. 9.3, the power updating step improves the utility if g2,p′(w′) < 1, where

(w′,p′) are derived from the bandwidth updating step S1. Therefore, the algorithm moves

to S3 if either of the following conditions holds.

(1) S1 returns g1(w
′) = 1 and g2,p′(w′) < 1, and the algorithm moves directly to S3.

(2) S1 returns g1(w
′) < 1 and g2,p′(w′) = 1, and the algorithm moves to S2. If S2 returns

g1(w
′) = 1 and g2,p′(w′) < 1, then, algorithm further moves to S3.

Remark 9.5 (Selection of The Initial Point). The initial point has in general a significant

impact on the outcome of the algorithm. We use the transmit power budget defined in the

3GPP specification [3GPe] as the reference to compute the initial PSD p′, such that the

optimized solution of (w,p) is guaranteed to provide a better performance than the standard

configuration. The power spectral density in dBm (per RB) of link l ∈ K is defined by

PSDl = min{PSDmax, SNRtar

l +Pnoise +αPLl}, where PSDmax denotes the maximum PSD,

SNRtar

l is the open loop SNR target for the lth link, Pnoise is the noise PSD in the receiver,

α is the pathloss compensate factor, and PLl := PLbl,l is the pathloss estimate of the link l

served by BS bl.

9.7 Numerical Results

In this section, we verify the propositions presented in Section 9.4 and 9.5, show the con-

vergence of Algorithm 6, and compare the performance with the proposed algorithm to the

conventional resource allocation schemes under different association policies presented in

Section 9.2.4 through simulations.

9.7.1 Simulation Parameters

To obtain practically relevant results, we study the real-world scenario as shown in Fig. 9.6.

This map shows the center of Berlin, Germany in the WGS 84 coordinate system. There

are 81 BSs, among which 45 of them are macro cell BSs (1 BS per sector) with directional

antenna and maximum transmit power of 43 dBm, while 36 of them are pico cell BSs with
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Algorithm 6: Joint Allocation of Bandwidth and Power

input : p′ ← p̂ ∈ R2K
++, w′ ← ŵ ∈ R2K

++, w ← 0, λ← 0, π′ ∈ Π, ε1, ε2, ε3
output: w?, p?

Compute AUL(π′), ADL(π′), Ṽ (π′) and D(π′);
% S1: Update w based on Prop.9.1;
while ‖w′ −w‖∞ ≥ ε2 do

w ← w′;
% Fixed point iteration (9.18);
w′ ← UpdateBandwidth(p′,w);

% S2: Update w to achieve full load based on Prop.9.2;
if g1(w

′) < 1&g2,p′(w′) = 1 then
while g1(w

′) < 1 do
p← p′;
% Power scaling in (9.19);
p′ ← ScalePower(w′,p);
while ‖w′ −w‖∞ ≥ ε2 do

w ← w′;
% Fixed point iteration (9.18);
w′ ← UpdateBandwidth(p′,w);

% S3: Update p;
if g1(w

′) = 1&g2,p′(w′) < 1 then
p← 0;
while ‖p′ − p‖∞ ≥ ε3 do

p← p′;
% Fixed point iteration (9.25);
p′ ← UpdatePower(w′,p);

w(π′)← w′; p(π′)← p′; λ(π′)← λ′;

omni-directional antenna and maximum transmit power of 30 dBm. We assume that a

total bandwidth of 5 MHz is subdivided into 25 RBs of 12 subcarriers each, and that the

frequency reuse factor is 1. The color map refers to the pathloss in dB. For each pixel

of 50 × 50m size, the channel gain over all received downlink signals from the macro cell

BSs is given according to the measured data of pathloss from [MOM04]. The pico cell BSs

are randomly placed on the cell edge of the macro cells. Based on the 3GPP LTE model

provided in [3GPj], we obtain the pathloss between the pico BSs and the UEs to compute

H0 (joint with the macro-to-UE pathloss), the pathloss between the BSs to compute H1,

and the pathloss between the mobile terminals to compute H2. On top of this realistic

pathloss, we implement uncorrelated fast fading characterized by Rayleigh distribution. We

assume reciprocal uplink and downlink channels.

The users are uniformly randomly distributed in the playground. The maximum trans-
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mit power of the user terminal is 22 dBm. We define 5 service classes, with the downlink

rate requirements of [300, 25, 50, 10, 0.01] Mbit/s, and the corresponding uplink rate require-

ments of [50, 50, 25, 10, 0.01] Mbit/s. These classes imply the following 5 services: 1) cloud

service video and other digital service, 2) HD video/photo sharing, 3) high-resolution video

and other digital services, 4) broadband data allowing video email and web surfing, and 5)

text, voice or video messages.

9.7.2 Convergence of the Algorithm

Let us first examine the convergence behavior of the algorithms presented in Prop. 9.1,

9.2 and 9.3 (corresponding to S1, S2, and S3) in Algorithm 6, respectively. In Fig.9.7

we verify the propositions and show the convergence of the algorithm 6 with the fixed

association policy DeUD P, at a single simulation snapshot (i.e., the users are assumed to

be static within one time interval). The number of users is K = 500. The desired numerical

precisions are set to εi = 1e− 7, for i = 1, 2, 3.

Fig. 9.7(a) illustrates the convergence behavior of three successive steps S1, S2, and

S3. The algorithm starts at step S1, where g1(w
(0)) < 1 and g2(p

(0),w(0)) < 1. The initial

power p(0) is chosen as described in Rem. 9.5, where PSDmax = 12 dBm, SNRtar = 12.2 dB,

α = 1, and Pnoise = −121.45 dBm. The initial bandwidth allocation is defined as w(0) = 0.

After performing the fixed point iteration (9.18) at S1, it converges to the fixed pointw′ such

that g2(p
(0),w′) = 1 while g1(w

′) is extremely small (approximately 0.01). The algorithm

moves therefore to S2 of power scaling. The algorithm at S2 converges to the point (w′′,p′),

where g1(w
′) = 1 and g2(w

′′,p′) < 1, which causes the algorithm to move to S3. By the end

of S3, the fixed point iteration (9.25) converges to p′′ such that g1(w
′′) = g2(w

′′,p′′) = 1,

and the algorithm terminates. At each step, the iteration improves the desired utility λ

monotonically.

An interesting observation we have made concerning the relationship between per-cell

power constraint and the feasible utility is illustrated in Fig. 9.7(b). The motivation is to

find out the tradeoff between the power consumption and the improvement of the utility.

Fig. 9.7(b) shows the increase of the utility as we increase the power constraint factor θ (θ

increases from 0.01 to 1.01 with step size of 0.01), under different self-noise power σ. As

shown in Thm. 9.1, θ is the scaling factor of the monotonic constraint g(x). As for S3, in

particular, θ is scaling factor of the maximum power constraint such that g2,w′(p) ≤ θ. For

small value of σ (i.e., in an interference-dominant system), small value of θ is sufficient for

the feasible utility, and increase of θ only leads to minor increase of utility (blue and red

curves for the noise power of −121 dBm and −100 dBm, respectively). Conversely, for the

large value of σ (i.e., in a noise-dominant system), increase of θ has a stronger effect on
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improving utility (green and black curves for the noise power of −80 dBm and −70 dBm,

respectively). The above observation can help us to choose a proper operation point, to

provide a good tradeoff between the total power consumption and the desired utility.

Fig. 9.7(c) and 9.7(d) are provided to illustrate the performance of algorithms presented

in Section 9.5.2 and 9.5.3. Fig. 9.7(c) shows a case that restricting cell-specific DL power

results in approximately 16% degradation of utility achieved by UE-specific DL power. Fig.

9.7(d) shows a specific example that for a certain snap shot of the network, over 90% of

power consumption can be saved if we only target at required utility λ = 1 instead of the

maximum feasible λ, by performing the step of energy efficient power control presented in

Section 9.5.3.

9.7.3 Network Performance Evaluation

Selection of Association Policy

Now let us examine the performance of Algorithm 6 under different link association policies.

The set of association policies Π, including CoUD, DeUD O (with variety of offsets) and

DeUD P as introduced in Section 9.2.4, is defined as follows. Note that all macro cell BSs

have maximum transmit power of 43 dBm, while all small cell BSs of 30 dBm. Thus, by

setting offsetUL
n = 13 dB for n as small cell BS, the policy DeUD O is equivalent to DeUD P,

while by setting offsetUL
n = 0 for all n ∈ N , the policy DeUD O is equivalent to CoUD. The

set of policy Π is then defined as a set of DeUD O policies with offsets {0, 1, 3, 5, . . . , 51} of

the small cell BSs in UL, where 0 corresponding to CoUD and 13 corresponding to DeUD P.

Fig. 9.8 shows the average performance of the algorithm under each policy π ∈ Π using

the Monte Carlo techniques. We run 500 independent tests, with uniform user distribution

of 100 static users in each test. Fig. 9.8(a) shows the percentage of the counts that a fixed

policy provides the utility among the top three maximum utilities achieved by all policies.

Fig. 9.8(b) shows the average utility of a fixed policy over the 500 tests (the high value

of utility is due to the lower number of the users compared to Fig. 9.7). The following

two observations are made. 1) Proper selection of DeUD policy can achieve approximately

2× improvements on desired utility, compared against CoUD. 2) Although DeUD P is not

always the best policy that provides maximum utility, it has a high chance to provide rel-

atively good performance (approximately 73% of counts among the top three maximum

utility). Thus, in case the operator wants to save the computational cost of exhaustive

searching for optimal association policies, always selecting DeUD P provides a suboptimal

compromises. However, we shall remind that in many cases, DeUD P is not the best asso-

ciation policy with respect to maximizing the desired utility, as shown in the two examples

of the single trial in Fig. 9.8(c) and Fig. 9.8(d) respectively.
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Effects of Overlapping Uplink/Downlink Frequency Bands

Note that in Section 9.7.3, the frequency band allocation follows the rule that only partial

overlap between UL/DL frequency band is allowed to mitigate the inter-link interference,

as shown in Rem. 9.2. Computation of the overlap factor is provided by Appendix D.3.1.

Since the overlap factor is estimated based on the historical measurements, the actual utility

λ derived using optimized (p,w) may not be as high as the computed λ in Algorithm 6. On

the other hand, if full overlap is allowed (i.e., each transmission can be allocated to any of

the RBs, regardless of whether it is in UL or DL), then, the overlap factor is one, and the

utility achieved by Algorithm 6 can be much lower due to the strong inter-link interference.

In Fig. 9.9(a) we show the utility achieved by our proposed joint UL/DL optimiza-

tion algorithm (represented by “Jo”), with the strategy of partial or full overlap. The

three subplots from left to right illustrate the utility when the association policies “Best”,

“DeUD P”and “CoUD”are applied, respectively. Policy “Best” denotes the policy where the

offset provides the maximum value of λ, i.e., π? = arg maxπ∈Π λ(π). For scenario of partial

overlap, the blue dashed line expresses the optimized λ computed with our algorithm, while

the green and red solid lines express the actual λ in UL and DL, respectively. Although the

algorithm aims at achieving fair user-specific UL and DL utility, a small gap between the

UL and DL utility can be observed due to the biased estimation of the overlap factor. For

scenario of full overlap, the magenta solid line expresses the achieved λ for both UL and

DL. Because the interference coupling model in (9.6) is accurate under the assumption of

full overlap, there is no gap between the computed λ and the actual achievable λ.

Furthermore, we make the following observations. 1) Using optimized (w,p) based

on estimated overlap factor, we can achieve the actual utility in DL only about 2% − 3%

lower than the computed maximum feasible λ from the proposed algorithm, and in UL

about 10% − 30% lower. 2) By regulating the frequency band allocated to UL and DL

transmission with partial overlap, we achieve a 50%−100% increase in utility than allowing

the full overlap. 3) By enabling UL and DL decoupling, we can achieve a two-fold increase in

the utility, compared to CoUD. Although DeUD P may not be the best association policies,

it still provides 60% − 75% increase. The same conclusion is reached by the analysis on

association policies in Section 9.7.3.

Comparison against QoS-Based Proportional Fairness

We use the proportional fairness (PF) algorithm as a baseline for evaluating the utility ben-

efits provided by our algorithm. To provide a fair comparison between the PF algorithm

and our proposed algorithm, instead of the rate-based PF algorithm [NH06], we replace the

rate with the metric of level of QoS satisfaction, i.e., W0wlrl/dl for link l ∈ K presented in
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(9.13). We run PF algorithm under default UL/DL bandwidth ratio under both associa-

tion policies CoUD and DeUD P, to compare with the proposed joint UL/DL optimization

algorithm. The default UL/DL bandwidth ratio is set to be 9 : 16, i.e., out of 25 RBs, 9 of

them are assigned for UL transmission while 16 for DL transmission.

Fig. 9.9(b) shows the performance comparison between our proposed algorithm and the

PF algorithm under DeUD P and CoUD. Conventional PF algorithm achieves fairness in

UL and DL independently, and the fixed ratio of UL/DL bandwidth ratio causes a large

gap between the achievable utility in UL and DL. Our proposed Algorithm 6 outperforms

the PF algorithm, in the sense that it jointly optimizes the level of QoS satisfaction in UL

and DL to the best closing levels. The utility in UL achieves three-fold increase than the

PF algorithm in both DeUD P and CoUD. We still observe a 20% − 50% increase in DL

utility in DeUD P, while in CoUD we sacrifice some DL utility to achieve a higher gain in

UL. However, as more UEs are served in the system, even in CoUD we achieve better utility

in both UL and DL than the QoS-based PF algorithm.

Another observation in reference to Fig. 9.9(b) is that, for both algorithms, by splitting

the UL/DL access, the performance can be further improved by about 60% − 70%. It

is worth mentioning that the gain of UL/DL decoupling is not as high as expected in

[BAE+15, EBDI14a] (more than two-fold increase). Our explanation is that although the

strength of the useful signal is increased by offloading more uplinks in small cells, the received

signal strength of the interference may also be increased because the small cells are normally

located on the cell edge. Therefore, it increases the need for the joint UL/DL optimization

algorithm allowing flexible UL/DL bandwidth ratio, as we proposed in Algorithm 6.

9.8 Conclusion

We studied the utility maximization problem for the uplink and downlink decoupling-

enabled HetNet, to jointly optimize the uplink and downlink bandwidth allocation and

power control, under different association policies. The utility is modeled as the minimum

level of the QoS satisfaction, to achieve fair service-centric performance. We develop a gen-

eral model of inter-cell interference, that includes inter-link interference between uplink and

downlink, with properties of power coupling and load coupling. Based on the interference

model, we develop a three-step optimization algorithm using the fixed point approach for

nonlinear operators with or without monotonicity. The algorithm benefits from the user-

centric context-aware communication environment in 5G networks, adapts the bandwidth

allocation and power spectral density according to the channel condition and traffic demand

in both UL and DL, and achieves jointly optimized utility in both UL and DL. Numerical
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results show that the performance of our algorithm outperforms the QoS-based proportional

fairness algorithm, and it is robust against heavily loaded system with high traffic demand.
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Figure 9.1: Time-varying UL and DL data traffic volume (aggregated every 15 minutes) for
a week from Mar. 01 to Mar. 08, 2015 in a spatial grid in Rome, Italy. Data source from
Telecom Italia’s Big Data Challenge [Tel15].
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Figure 9.2: Difference between the traditional FDD (or TDD) technology and proposed
dynamic UL/DL resource partitioning. The RBs assigned to UL is colored in red while to
DL in green. The guard band and guard interval are not plotted.
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Figure 9.3: Inter-cell inter-link interference between UL (red) and DL (green). The guard
band is not displayed.
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Chapter 10

Conclusion and Future Studies

10.1 Summary

The main functionalities of SON include: self-configuration, self-optimization and self-

healing. This thesis investigates multiple stages of self-organizing networks with respect

to self-healing and self-optimization by introducing novel inference, anomaly detection and

optimization techniques for the following functionalities:

• cognition, learning and detection for self-healing functions;

• context-aware statistical modeling and optimization for isolated SON functionalities;

• multi-objective optimization in high dimensional space for joint optimization of mul-

tiple SON functionalities.

The key to transform the SON paradigm from reactive to proactive is to exploit the

knowledge of the network states extracted from the available data. In the first part of the

thesis, we treated the problem of information extraction and model inference. Based on the

collected network measurements, self-healing algorithms are developed for detecting two

types of network anomalies. The first type of anomaly is usually caused by an unexpected

operation fault that is a rare event such as cell outage. To detect the anomaly without

a priori knowledge, we propose an information theory based anomaly detection algorithm,

using the composite hypothesis testing technique. We develop an efficient discriminant

function related to the universal code based on the modified Neyman-Pearson criterion,

which can be shown to be asymptotically optimal. The second type of anomaly is usually

caused by performance degradation, where a priori knowledge of the various classes of

anomalies can be found by analyzing a large set of data collected from the network. A

framework of proactive cell anomaly detection is proposed based on dimension reduction

and fuzzy classification techniques. The dimension reduction is applied for visualization

purpose and for the efficiency of the classification of high-dimensional data. The enhanced
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kernel-based semi-supervised FCM explores the complex pattern hidden in the unlabeled

samples, while taking into account a priori knowledge contained in the labeled samples.

The experimental results show that the proposed framework proactively detects network

anomalies associated with various fault classes.

Based on the extracted knowledge, the system should self-adapt to dynamically chang-

ing environments (channel fading, mobility, load distribution, etc.). The second part of the

thesis presents statistical modeling and optimization techniques that are used to develop

robust algorithms against time-varying network environments and noisy feedback for iso-

lated SON functionalities RACH optimization, MLBO, and MRO respectively. For RACH

optimization, we suggest an algorithm for decentralized control of user back-off probabili-

ties and transmission powers in random access communications. The algorithm is based on

measurements and user reports at the base station side, which allows for an estimation of

the number of users present within the cell, as well as the quantities of detection-miss and

contention probability. By solving a drift minimization problem for the contention level

and using closed loop updates for the transmission power level by an MIAD rule, the base

station coordinates the actions chosen by the users, by broadcasting the information pair

of contention level and power level. The algorithmic steps, as well as the methodology of

the drift minimization for a certain measure of interest referring to the steady state, pro-

vide a general suggestion to treat problems of self-organization in wireless networks. For

the use case of mobility robustness optimization, we exploit the framework of stochastic

processes to develop a novel method of successively choosing a sequence of multi-variate

training points for multi-objective optimization that involves a set of non-convex contra-

dicting objective functions depending on multiple variables such as HO parameters and user

mobility classes. The unknown functions can be explored at selected training points by tak-

ing measurements (called trials). The training points can be corrupted by some Gaussian

noise due to the missing or delayed measurements. The maximum allowable number of

trials is strongly restricted, because each trail results in a relative high cost, for instance, in

terms of wireless resources. We therefore consider an extension of the so-called P-algorithm

by Kushner and Žilinskas for single-objective global optimization. Using the framework of

multi-variate GP, we extend the method of P-algorithm with single objective to incorpo-

rate the inter-dependencies between multiple objectives of HO performance measures. The

algorithm provides optimized local and global HO parameters per user mobility class, and

achieves reduced number of HO-related radio link failures and number of unnecessary or

missed handovers caused by incorrect HO decisions. The collected local statistics and a

priori knowledge are utilized to improve the efficiency of the algorithm. To achieve the mo-

bility load balancing, together with inter-cell interference mitigation, we propose a mixed
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integer optimization problem solved using Lagrangian – but not Linear Programming – re-

laxation, which allows the solution to be binary for the user assignment variables. Several

properties of the optimal Lagrangian solution are derived, which depend on the value of a

load price and interference cost per BS. The implementation of the algorithm is based on

exchange of certain prices among base stations and allows each of them to make choices

individually without the aid of a central controller. The cell HO parameters are further

adequately adjusted to enforce cell-edge users to migrate to their optimal BS.

After solving problems for individual SON use cases, the next challenge is to ensure

the efficient and robust network operation by a joint optimization of multiple interacting

or conflicting SON use cases. Last but not least, the problems of multi-objective optimiza-

tion over a high dimensional action space are tackled in the final part of the thesis. In

this part, we mainly focus on the fixed point theory-based approach, as it is a powerful

tool to prove the existence and to determine uniqueness of solutions to dynamical multi-

agent systems. We first study on the problem of joint optimization of coverage, capacity

and load balancing. A robust algorithmic framework is built on a utility model, which

enables fast and optimal uplink solutions and sub-optimal downlink solutions by exploiting

three properties: a) the monotonic property of standard interference functions, b) decoupled

property of the antenna tilt and BS assignment optimization in the uplink network, and

c) uplink-downlink duality. The first property allows obtaining the global optimal solution

with fixed-point iteration for two specific problems: utility-constrained power minimization

and power-constrained max-min utility balancing. The second and third properties enable

decomposition of the high-dimensional optimization problem, such as the joint beamforming

and power control. Based on the three properties, we propose a max-min utility balancing

algorithm for capacity-coverage trade-off over a joint space of antenna tilts, BS assignments

and power in uplink. Then, to include the downlink, we analyze the uplink-downlink duality

by using the Perron-Frobenius theory. Utilizing optimized variables in the dual uplink al-

lows us to decompose the high-dimensional optimization problem and to obtain an efficient

sub-optimal solution for downlink. A further step is to jointly optimize uplink and downlink

performance with joint uplink and downlink resource allocation and power control. Due to

the time- and spatial-dependent service requirements and traffic patterns, it is expected to

have time-varying asymmetric traffic load in both uplink and downlink in different cells.

Apart from dynamic uplink/downlink resource splitting, flexible uplink/downlink traffic

distribution among the cells with different transmission ranges is also crucial for improve-

ment of joint uplink/downlink performance. One way to enable the flexible uplink/downlink

traffic distribution is to allow the user terminal to be associated to two different radio ac-

cess nodes in uplink and donwlink, respectively – so called DUDe. Such a DUDe access
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has the potential benefits including improvement of performance in uplink (without degra-

dation of performance in downlink), reduction of energy consumption in mobile terminal,

and network load balancing. We introduce a general model of inter-cell interference for

joint uplink/downlink system, which includes the inter-link interference between uplink and

downlink and is both power and load coupling-aware. We then develop a framework involv-

ing a fixed-point class with nonlinear contraction operators, with or without monotonicity,

and an optimizer for the utility of QoS satisfaction level, subjected to a general class of

resource (in both frequency and power domain) constraints. A three-step optimization al-

gorithm is proposed, to find the local optimum of the joint variables bandwidth allocation

and power spectral density on a per-link basis, corresponding to the different link associa-

tion policies. The algorithm benefits from the user-specific context-aware communication

environment in 5G networks, adapts the bandwidth allocation and power spectral density

according to the channel condition and traffic demand in both uplink and downlink, and

achieves jointly optimized utility in both uplink and downlink.

10.2 Future Research

The results presented in this thesis have demonstrated the effectiveness of our proposed

learning, detection and optimization algorithms. However, we would like to point out open

problems and research directions that are related to or result from the presented research.

The actual network will provide a critical role in providing the almost-real-time access

to data from a multitude of sensors and a augmented intelligence tools running on a massive

distributed set of muliti-dimensional resources. As the cost the data sets tends to decrease,

the hyperbole of the big data phenomenon will transition into new, small data applications

that provide real knowledge. As stated in [Wel16], big data will become “small”. How

to extract “just enough” data to make an informed and proper decision remains an open

question.

How to deal with error in modeling is another challenge. The limitation of deriving

accurate model is based on mathematical and statistical fact: the introduction of noise

increases the number of required observation samples for a reliable model. Further more,

what is more important is the decision making about the future based on the predictive

model. How to further utilize the predictive models obtained by self-healing to improve

the proactive anticipatory self-organizing networks attracts our attention. In the presented

framework, the inferred predictive models are used for proactively detecting the abnormal

network states to trigger the self-optimization functions. Introducing the predicted network

conditions and the KPIs into the optimization framework may enhance the performance of

self optimization.
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Last but not least, the concept of 5G networks enables new potential technologies and a

set of new configuration control parameters such as adaptive waveforms, scalable TTI and

numerologies, and flexible duplex. The service-centric requirements of the network define

the new KPIs such as reliability, security and extreme low latency. Formulating the new

objective functions under more dynamic and flexible network conditions brings numerous

challenges into the future self-organizing networks.
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Appendix A

Some Concepts and Results from

Matrix Analysis

A.1 Scalars, Vectors and Matrices

Throughput the dissertation, vectors and matrices are defined over the field of real num-

bers R, unless something otherwise stated. Elements of R are called scalars. We use R+

and R++ to denote the set of nonnegative and positive reals, respectively. We denote the

scalars with italic lower case letter, vectors with boldface lowercase letter, and matrix with

boldface uppercase letters. For example, x, x and X denote a scalar, a vector and a matrix,

respectively. For any x ∈ Rn and c ∈ R, the notation x + c is used throughout the thesis

to denote x+ (c, . . . , c), where (c, . . . , c) ∈ Rn. Similar convention is also used for matrices.

The Euclidean n-space denoted by Rn is a n-dimensional vector space over the field R.

For two (column) vectors x,y ∈ Rn, the partial ordering on Rn is defined as follows:

x ≥ y ⇔ ∀1≥i≥n xi ≥ yi, x > y ⇔ ∀1≥i≥n xi > yi,

x = y ⇔ ∀1≥i≥n xi = yi, x 
 y ⇔ ∀1≥i≥n xi ≥ yi and x 6= y.

All the norms used in this dissertation are lp-norms and the maximum norm. For any p ≤ 1,

the lp-norm and the maximum norm of x ∈ Rn, denoted by ‖x‖p and ‖x‖∞ respectively,

are defined to be

‖x‖p :=

(
n∑

i=1

|xi|
p

) 1
p

and ‖x‖∞ := max(|x1|, . . . , |xn|). (A.1)

respectively.

A n×m matrix is denoted by X := (xi,j)1≤i≤n,q≤j≤m or simply X :=(xij). The entries

of X are denoted as (X)ij . The n × n diagonal matrix X is denoted by X :=diag(x):=

diag(x1, . . . , xn). The diagonal of a matrix X is denoted by diagX. In particular, I:=
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diag(1) = diag(1, . . . , 1) denotes the identity matrix. A block diagonal matrix has the form

X =




X1 0 · · · 0
0 X2 · · · 0
...

. . .
...

0 0 · · · Xn


 .

We denote the transpose of matrix X by XT . Consider a n × n square matrix X, we

denote the trace of matrix X by Tr(X):=
∑n

i=1 xi,i, the inverse of the matrix by X−1 if

it exists, the determinant of X by |X|. For any two matrix X,Y ∈ Rn×m, the Hadamard

productX◦Y is the entry-wise product of matrixX and Y . For ant two matrixX ∈ Rn×m

and Y ∈ Ri×j , the Kronecker product of X and Y is denoted by X ⊗ Y .

Given a matrix X ∈ Rn×m, a matrix norm of X is denoted by ‖X‖. General matrix

norm satisfies (A.1), with the vector x replaced by some matrix. Additionally, if XY exists,

we have

‖XY ‖ ≤ ‖X‖‖Y ‖.

The Frobenius norm of matrix X ∈ Rn×m is given by

‖X‖2F :=
∑

i,j

|xi,j |
2 = Tr(XTX). (A.2)

Lemma A.1 (Matrix Inversion Lemma). The matrix inversion lemma, also known as the

Woodbury formula [PTVF96, p. 75], is given by

(Z +UWV )−1 = Z−1 −Z−1U(W−1 + V TZ−1U)−1V TZ−1 (A.3)

assuming the relevant inverse all exist. Here Z ∈ Rn×n, W ∈ Rm×m and U ,V ∈ Rn×m.

A =

[
P Q

R S

]
, A−1 =

[
P̃ Q̃

R̃ S̃

]
, (A.4)

where P , P̃ ∈ Rn1×n1 and S, S̃ ∈ Rn2×n2 , with n = n1 + n2. The submatrices of A−1 are

found by either the formulas [PTVF96, p. 77]

P̃ = P−1 + P−1QMRP−1

Q̃ = −P−1QM

R̃ = −MRP−1

S̃ = M





where M = (S −RP−1Q)−1

or equivalently

P̃ = N

Q̃ = −NQS−1

R̃ = −S−1RN

m̃S = S−1 + S−1RNQS−1





where N = (P −QS−1R)−1
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A.2 Matrix Spectrum and Spectral Radius

Definition A.1 (Matrix Spectrum). The set of distinct eigenvalues of X is referred to as

the spectrum of X and is denoted by σ(X).

Since the root s of a polynomial with real coefficients occur in conjugate pairs, λ ∈ σ(X)

implies that λ̄ ∈ σ(X) where x̄ denotes the conjugate complex. Furthermore, we have

[Mey00, p. 498]

σ(X) = σ(XT ) (A.5)

Definition A.2 (Spectral Radius). For any square matrix X ∈ Rn × n, we define ρ :

Rn×n → R as

ρ(X) := max{‖λ‖ : λ ∈ σ(X)}. (A.6)

The real number ρ(X) is called the spectral radius of X.

If ‖ · ‖ is any matrix norm, then ρ(X) = limk→∞ ‖X
k‖1/k. A rather crude (but cheap)

upper bound on ρ(X) is obtained by observing that ρ(X) ≤ ‖X‖ for every matrix norm

[Mey00, p. 497].

Theorem A.1 ( [SWB09, p. 355]). Let X ∈ Rn×n be arbitrary. Then, the following

statements are equivalent.

(i)
∑∞

k=0X
k converges.

(ii) ρ(X) < 1.

(iii) limk→∞X
k = 0.

In these cases, (I −X)−1 exists, and (I −X)−1 =
∑∞

k=0X
k.

A.3 Perron-Frobenius Theory of Nonnegative Matrices

Definition A.3 (Nonnegative matrix). Any square matrixX = (xij) ∈ Rn×n with xij ∈ R+

for 1 ≤ i, j ≤ n (or denoted by X ≥ 0) is called a nonnegative matrix. If xij ∈ R++ for

1 ≤ i, j ≤ n holds, then X is called a positive matrix.

Definition A.4 (Irreducible matrix). The graph of X ∈ Rn×n, denoted by G(X), is the

direct graph of the nodes {N1, . . . , Nn} in which there is a directed edge leading from Ni

to Nj if and only if xij 6= 0. Graph G(X) is strongly connected if for each pair of nodes

(Ni, Nk), there is a sequence of directed edges leading from Ni to Nk. The matrix X is said

to be reducible if there exists a permutation matrix P such that P TXP =

(
A B

0 C

)
,
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where A and C are both square matrices, and P TXP is the symmetric permutation of

X. Otherwise, X is said to be irreducible. G(X) is strongly connected if and only if X

is irreducible.

Theorem A.2 (Perron’s Theorem of Positive Matrices [Mey00, p. 667]). If Xn×n > 0 with

r = ρ(X), then the following statements are true.

(i) r > 0.

(ii) r ∈ σ(X) (r is called the Perron root).

(iii) alg multX(r) = 1, where alg multX(r), denoting the algebraic multiplicities of r,

is the number of times r is repeated as a root of the characteristic polynomial.

(iv) There exists an eigenvector p > 0 such that Xp = rp.

(v) The Perron vector is the unique vector defined by

Xp̂ = rp̂,p > 0, and ‖p̂‖1 = 1, (A.7)

and, except for positive multiples of p̂, there are no other nonnegative eigenvectors for

X, regardless of the eigenvalue.

(vi) r is the only eigenvalue on the spectral circle of X.

(vii) r = maxp∈N f(p) (Collatz–Wielandt formula), where

f(p) := min
1≤i≤n
pi 6=0

(Xp)i
pi

and N := {p|p ≥ 0 with p 6= 0} . (A.8)

Theorem A.3 (Perron-Frobenius Theorem of Nonnegative Matrices [Mey00, p. 673]). If

Xn×n ≥ 0 is irreducible with r = ρ(X), then the following statements are true.

(i) r ∈ σ(X) and r > 0.

(ii) alg multX(r) = 1

(iii) There exists an eigenvector p > 0 such that Xp = rp.

(iv) The Perron vector is the unique vector defined by

Xp̂ = rp̂,p > 0, and ‖p̂‖1 = 1,

and, except for positive multiples of p̂, there are no other nonnegative eigenvectors for

X, regardless of the eigenvalue.
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(v) The Collatz–Wielandt formula r = maxp∈N f(p), where

f(p) := min
1≤i≤n
pi 6=0

(Xp)i
pi

and N := {p|p ≥ 0 with p 6= 0} .

Theorem A.3 shows how adding irreducibility to nonnegativity recovers most of the

Perron properties in Theorem A.2. The only property in Theorem A.2 that irreducibility

is not able to salvage is (vi), which states that there is only one eigenvalue on the spectral

circle. The property of having (or not having)only one eigenvalue on the spectral circle

divides the set of nonnegative irreducible matrices into two important classes: primitive

matrices and imprimitive matrices, as defined as follows.

Theorem A.4 ( [SWB09, p. 371]). . Let Xn×n ≥ 0 be arbitrary, and let α > 0 be any

scalar. A necessary and sufficient condition for a solution p 
 0, to

(αI −X)p = b (A.9)

to exist for any b > 0 is that α > r = ρ(X). In this case, there is only one solution p,

which is strictly positive and given by p = (αI −X)−1b.

A.3.1 Proof of Proposition 8.1

For any fixed BS assignment b̂, denote Ŵ := W
b̂

and V̂ := Ṽb for convenience, the optimal

downlink power solution q̂DL for problem (8.30) satisfies [SWB09]

ΛDLq̂DL =
1

CDL(b̂, Pmax)
q̂DL, q̂DL ∈ RC

+ (A.10)

where ΛDL ∈ RC×C
+ is defined as

ΛDL := ΓΨ

[
AV̂ TAT

α +
1

Pmax
zDL1TC

]
. (A.11)

we denote Γ := diag{γ1, . . . , γC}, C
DL(b̂, Pmax) = maxq≥0 minc U

(d,1)
c /γc subject to ‖q‖1 ≤

Pmax, and 1C is a C-dimensional all-one vector. (A.10) and (A.11) are derived by writing the

utility fairness U
(d,1)
c /γc = CDL(b̂, Pmax) for all c ∈ C and the power constraint ‖qDL‖1 =

Pmax with matrix notation. Targets γ is feasible if and only if CDL(b̂, Pmax) > 1.

Similarly, the optimal uplink power solution q̂UL for uplink problem (8.31) needs to

satisfy

ΛULq̂UL =
1

CUL(b̂, Pmax)
q̂UL, q̂UL ∈ RC

+ (A.12)

where ΛUL ∈ RC×C
+ is defined as

ΛUL := ΓΨ

[
AŴAT

α +
1

Pmax
zUL1TC

]
. (A.13)
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where zUL := AσUL, i.e., zUL
c = Σtot/C for all c ∈ C.

The balanced level CDL(b̂, Pmax) and CUL(b̂, Pmax) are the reciprocal spectral radius of

the nonnegative extended coupling matrix ΛDL and ΛUL. Moreover, according to Perron-

Frobenius theorem, if both ΛDL and ΛUL are irreducible, they have unique real spectral

radius and their corresponding eigenvectors (power allocation) have strictly positive com-

ponents. By comparing the interference terms in (A.11) and (A.13), we have (AV̂ TAT
α)T =

AαV̂ A
T = A diag{α}V̂ IAT = A diag{α}V̂ diag−1{α} diag{α}AT = AŴ TAT

α. By

comparing the noise terms we have zUL = 1
C1Cz

DLT1C (by using zUL
c = Σtot/C for all

c ∈ C), thus zUL1TC = 1
C1Cz

DLT1C1
T
C = 1Cz

DLT = (zDL1TC)T . By using the properties of

spectral radius ρ(X) = ρ(XT ) and ρ(XY ) = ρ(Y X) we have that ρ(ΛDL) = ρ(ΛUL) and

thus CDL(b̂, Pmax) = CUL(b̂, Pmax). Notice that the network duality holds for any given

BS assignment b̂, the achievable utility regions are the same for both the downlink problem

(8.30) and uplink problem (8.31).

176



Appendix B

Some Concepts and Results from

Markov Problem Solution

In this chapter, we show how the solution of the drift minimization problem is related to the

solution of an ideal Markov Decision Problem for optimal performance in the steady-state

in Section 5.3.

We begin by considering an ideal setting, meaning that all expressions are known and

the system is fully controllable by the choice of actions. Let V (S (t)) be a non-negative

function of the system state and letM
(
V, Ã

)
be a performance metric related to the steady

state reached when t→∞, if the initial state is S (0). The metric is a function of the entire

set of actions Ã

M
(
V, Ã

)
:= lim

t→∞
E [V (S (t)) |S (0)] . (B.1)

If the actions are chosen per time-slot t from the set A (t), the following general MDP can

be posed:

min M
(
V, Ã

)

s.t. A (t) ∈ A, t = 0, 1, . . .
(B.2)

B.1 Relationship between Solution of Markov Decision Prob-

lem and Solution of Drift Minimization Problem

Proposition B.1. The MDP in (B.2) can be solved using the dynamic programming tools.

The optimal solution satisfies Bellman’s equation [Put05]

J (S) = min
A∈A

{
D (V (S) ,A) +

∑

Ś∈S

ps→śJ (Ś)

}
, ∀S ∈ S (B.3)

for the cost-to-go function J (S), where Ś is the possible state at the next time slot, while

the transition probabilities ps→ś are functions of the actions chosen. The solution is state-

dependent, meaning that the optimal actions depend on the system state and not on time.
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Corollary B.1. The solution of the drift minimization problem (5.18) at each time slot t,

is a suboptimal solution to the MDP in (B.2). It is called one-stage look-ahead (myopic),

in the sense that the actions are chosen per slot, considering only the transition to the next

state and not the entire cost-to-go.

B.1.1 Proof of Proposition B.1

We first need the following lemma

Lemma B.1. The performance measure can be written as an infinite sum of expected drifts

over the discrete time axis, given the initial state S (0)

M
(
V, Ã

)
= V (S (0)) +

∞∑

t=0

E [D (V (S (t)) ,A (t)) |S (0)] . (B.4)

Proof. : Let F (t) := {S (0) , . . . ,S (t)} be the information over the system realizations up

to slot t. Obviously F (0) ⊆ F (t) (formally we call
{
F (t), t ≥ 0

}
a filtration and F (0) is a

sub-σ-algebra of F (t)) and the tower property for expectations [Wil91, p.88] holds. Hence,

E [V (S (t+ 1)) |S (0)]
Tower

= E
[
E
[
V (S (t+ 1)) |F (t)

]
|F (0)

]

Markov
= E [E [V (S (t+ 1)) |S(t)] |S(0)]

(5.15)
= E [D (V (S (t)) ,A (t)) |S (0)] + E [V (S (t)) |S(0)]

and by repeating the process for t, . . . , 0 and taking the limits for t → ∞ we reach the

result. �

Now we can continue with the proof of the Proposition. Consider the series in (B.4) up

to a finite horizon T + 1 and denote the related sum by MT

(
V, Ã

)
. Then the expected

drift term for some τ ≤ T equals

E [D (V (S (τ)) ,A (τ)) |S (0)] =
∑

S(1)

. . .
∑

S(τ)

pso→s1 . . . psτ−1→sτD (V (S (τ)) ,A (τ))

It can be observed that psτ−1→sτ , which can be controlled by the actions A (τ − 1)

appear in all summands of MT

(
V, Ã

)
, for τ ≤ t̂ ≤ T and not for 0 ≤ t ≤ τ − 1. Following

this observation, the optimal choice of actions p∗sT→sT+1
are found by solving minA(T )∈A

MT

(
V, Ã

)
, the cost-to-go at T .

The cost-to-go can be verified to satisfy the recursion, ∀S (τ − 1) ∈ S:

J (S (τ − 1)) = min
A(τ−1)∈A

∑

S(τ)

psτ−1→sτ (V (S (τ))− V (S (τ − 1)) + J (S (τ))) .
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The expression holds as well, when we let the horizon T →∞. Thus taking τ →∞ results

in (B.3).
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Appendix C

Some Concepts and Results from

Statistical Learning

C.1 Composite Hypothesis Testing

C.1.1 Generalization of Stein’s Lemma

Theorem C.1 (Generalization of Stein’s Lemma [Hoe65]). For any P0, P1 ∈ P, let the

discriminant function h(x) be such that

P0(h(x) > 0) ≤ 2−λn. (C.1)

Then,

lim
n→∞

P1(h(x) > 0) ≥ 1− ε, (C.2)

for some ε < 1 if and only if

D(P1||P0) > λ, (C.3)

and condition (C.3) is sufficient for achieving (C.2) for all ε > 0 (i.e. achieving P1(h >

0)→ 1) if h(x) is the optimal discriminant function, provided as

h(x) , h(x, λ) ,
1

n
log

P1(x)

P0(x)
− λ. (C.4)

The divergence D(P1||P0) in Theorem C.1 is defined by

D(P1||P0) , lim
n→∞

1

n

∑

An

P1(x) log
P1(x)

P0(x)
. (C.5)
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C.1.2 Universal Code

Definition C.1 (Universal Code). A “universal code”for the class P is a sequence of codes

c(n), n = 1, 2, . . ., such that for every P (·) ∈ P,

lim
n→∞

P

[
x :

1

n
u(x) ≤ −

1

n
logP (x) + ε

]
= 1 (C.6)

for any ε > 0.

The expectation of 1
nu(x) approaches the minimal possible value as n → ∞, this value

being the entropy for P (·), given by

H , − lim
n→∞

1

n

∑

An

P (x) logP (x). (C.7)

For this reason, we say that every universal code is asymptotically optimal.

We introduce in below an example of universal code. Let x , xM , xl ∈ A, l =

1, 2, . . . ,M . Assume that B divides M to m blocks, and denote xBr = (xl)
r+B−1
l=r , tBr,m =

(xl)
r+(m+1)B−1 mod M
l=r+mB mod M . There exists a universal code for the class P with length function

u(x) given by [Dav73]:

u(x) =
M

B
H
(
vB(x)

)
+ γB log

(
M

B
+ 1

)
, (C.8)

where γ is a constant,

H
(
vB(x)

)
= −

M−B∑

r=1

vBr (xBr ) log
(
vBr (xBr )

)
, (C.9)

and vBr (xBr ) is defined as:

vBr (xBr ) =
B

M

M/B∑

m=1

1
{
tBr,m = xBr

}
, (C.10)

where the indicator function 1{·} is equal to 1 if {·} is true, and 0 otherwise.

C.2 Principal Component Analysis

Given a matrix X := [x1 . . .xk] ∈ RD×k, denoting a collection of k D-dimensional data

samples, we interpreted PCA in the way of minimizing the reconstruction error between the

original data X and its estimates projected to the d-dimensional affine subspace Y ∈ Rd×k,

with d� D 1.

1There are two other ways to formulate the problem: 1) maximizing the variance of projection, and 2)
Maximum likelihood estimates of a parameter in a probabilistic model.
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Let each point xk ∈ RD be approximated by the affine projection of yk in a d-dimensional

subspace, represented as

xk = (x0 +Udy0) +Ud(yk − y0) = x0 +Udyk (C.11)

where x0 ∈ RD is a fixed point, Ud ∈ RD×d is composed of d orthonormal column vectors,

and yk ∈ Rd is the vector of new coordinates of xk in the subspace. In order to obtain a

unique solution, we impose the constraint ȳ := (1/K)
∑K

k=1 yk = 0, and the optimization

problem is to minimize the sum of squared error between xk and its projection on the

subsapce, given by

min
x0,Ud,{yk}

N∑

k=1

‖xk − (x0 +Udyk)‖2 (C.12)

s.t. UT
d Ud = I and ȳ = 0

Assuming Ud is fixed, differentiating the objective function with respect to x0 and yk and

setting the derivatives to be zero, we have x̂0 = x̄ = (1/K)
∑K

k=1 xk and ŷk = UT
d (xk− x̄).

Substituting x̂0 and ŷk into (C.12), and defining x̃k := xk−x̄, the original problem becomes

one of finding an orthogonal matrix Ud that solves the problem

min
Ud

K∑

k=1

‖x̃k −UdU
T
d x̃k‖

2, s.t. UT
d Ud = I (C.13)

A classical solution to PCA via SVD is provided in Theorem C.2.

Theorem C.2 (PCA via SVD [Jol02]). Let X̃ := [x̃1 . . . x̃K ] ∈ RD×K be the matrix formed

by stacking the (zero-mean) data samples as its column vectors. Let X̃ = UΣV T be the

SVD of the matrix X̃. Then for any d < D, a solution to (C.13), Ûd is exactly the first

d columns of U ; and ŷ is the kth column of the top d×K submatrix ΣdV
T
d of the matrix

ΣV T .

C.3 Gaussian Identities

The multivariate Gaussian (normal) distribution is “non-degenerate” when the symmetric

covariance matrix Σ is positive definite. In this case the joint probability density is given

by

p(x|µ,Σ) = (2π)−D/2|Σ|−1/2 exp

(
−

1

2
(x− µ)TΣ−1(x− µ)

)
, (C.14)

where |X| denotes the matrix determinant, and µ ∈ RD denotes the mean vector and

Σ ∈ RD×D is the symmetric, positive definite covariance matrix. As a shorthand we write

x ∼ N (µ,Σ).
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Let x and y be jointly Gaussian random vectors

[
x

y

]
∼ N

([
µx

µy

]
,

[
A C

CT B

])
= N

([
µx

µy

]
,

[
Ã C̃

C̃T B̃

]−1)
, (C.15)

then the marginal distribution of x and the conditional distribution of x given y are (see

[VM14, sec. 9.3] and Equation (A.4) in Appendix A.1)

x ∼ N (µx,A), and x|y ∼ N (µx +CB−1(y − µy),A−CB−1CT )

or x|y ∼ N (µx − Ã
−1C̃(y − µy), Ã−1). (C.16)
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Appendix D

Some Concepts and Results from

Contraction Mapping

D.1 Mathematical Spaces

Definition D.1 (Metric Space). A metric space is a pair (X , d), where X is a set and d

is a metric on X (or distance function on X ), that is, a function defined1 on X × X such

that for all x, y, z ∈ X we have:

d : X × X → R+ (Non-negative, real), d(x, y) = 0⇔ x = y (Identity of indiscernibles),

d(x, y) = d(y, x) (Symmetry), d(x, y) ≤ d(x, z) + d(z, y) (Triangle inequality).

Definition D.2 (Vector Space). A vector space over a field K is a nonempty set X of

elements x,y, . . . (called vectors) together with two algebraic operations: vector addition

and multiplication of vectors by scalars.

Definition D.3 (Normed Space, Banach Space). A normed space X is a vector space with a

norm defined on it. A Banach space is a complete normed space. Here a norm on Euclidean

n-space Rn is a real-valued function on Rn whole value at an x ∈ Rn is denoted by ‖x‖,

and which has the properties

∀x∈Rn ‖x‖ ≥ 0, ∀α∈R,x∈Rn‖αx‖ = |α| · ‖x‖, ‖x‖ = 0⇔ x = 0,

∀x,y∈Rn‖x+ y‖ ≤ ‖x‖+ ‖y‖ (Triangle inequality).

Definition D.4 (Inner Product Space, Hilbert Space). An inner product space (or pre-

Hilber space) is a vector space X with an inner product defined on X . A Hilbert space is a

1The symbol × denotes the Cartesian product of sets A× B.
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Inner Product Space (X , 〈·, ·〉)

(isometry)

Hilbert Space

Complete MS

Banach Space

Metric Space (X , d)

Normed Space (X , | · |)

Figure D.1: Representation of mathematical spaces

complete inner product space (complete in the metric defined by the inner product). Here,

an inner product on X is a mapping of X × X into the scalar field K of X ; that is, with

every pair of vectors x and y there is associated a scalar which is written as

〈x,y〉

and is called the inner product of x and y, such that for all vectors x,y, z and scalars α we

have

〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉, 〈αx,y〉 = α〈x,y〉 (Linearity),

〈x,y〉 = 〈y,x〉 (Conjugate symmetry),

〈x,x〉 ≥ 0, 〈x,x〉 = 0⇔ x = 0 (Positive-definiteness).

An inner product on X defines a norm on X given by

‖x‖ =
√
〈x,x〉 (D.1)

and a metric on X given by

d(x,y) = ‖x− y‖ =
√
〈x− y,x− y〉. (D.2)

Hence, inner product space are normed space, and Hilbert spaces are Banach spaces.

A visual representation of the above-mentioned spaces is illustrated in Fig. D.1.
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D.2 Fixed Point Theorems

Definition D.5 (Nonexpansive, shrinking, contraction [Kre89]). A mapping f : X → X

from a metric space (X , d) to itself is said to be

• nonexpansive if d(f(x),f(y)) ≤ d(x,y) for x,y ∈ X ;

• shrinking (or contractive) if d(f(x),f(y)) < d(x,y) for x 6= y ∈ X ;

• a contraction if there is c < 1 such that d(f(x),f(y)) ≤ cd(x,y) for all x and y in

X .

Theorem D.1 (Banach Contraction Mapping [Kre89]). Let (X , d) be a complete metric

space and f : X → X be a contraction. Then f has a unique fixed point x∗ ∈ X , and for

any x ∈ X the sequence of iterations fn(x) converges to x∗.

Theorem D.2 (Edelstein Contractive Mapping [Ede62]). Let (X , d) be a compact metric

space and f : X → X be a contractive. Then f has a unique fixed point x∗ ∈ X , and for

any x ∈ X the sequence of iterations fn(x) converges to x∗.

Definition D.6 (Hilbert’s Projective Metric). Let C be a convex cone in a real vector space

X , and we have C = {x ∈ X : x ≥ 0}. We define Hilbert’s (projective) metric [Bir57,KP82],

dH : C × C → R≥0 ∪ {∞} on C, as follows: dH(0,0) = 0; when x,y ≥ 0, dH(x,0) =

dH(0,y) =∞ and

dH(x,y) ≡ log
M(x,y)

m(x,y)
(D.3)

where

M(x,y) ≡ inf{λ ≥ 0 : x ≤ λy} = max
i
xi/yi (D.4)

m(x,y) ≡ sup{λ ≥ 0 : x ≥ λy} = min
i
xi/yi (D.5)

clearly we have m(x,y) = 1/M(x,y) and dH can be written as

dH(x,y) ≡ max
i

log xi/yi + max
i

log yi/xi (D.6)

The metric dH is called projective on C because dH is constant on rays, that is,

dH(λx, µy) = dH(x,y) for λ, µ > 0, and dH(x,y) = 0 iff x = λy for some λ > 0. Using

the metric dH , Birkhoff [Bir57, Theorem 3] observe that every linear transformation with

a positive matrix may be viewed as a contraction mapping on the nonnegative orthant,

and this observation turns the Perron-Frobenius theorem into a special case of the Banach

contraction mapping theorem.
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In the following we introduce the other two metrics motivated by the projective metric

dH , which are important in the generalizations of Perron-Frobenius theory to monotonic

and subhomogeneous functions.

Definition D.7. We define the metrics dS and dM for x,y ∈ RK
+ as follows:

• dS(x,y) ≡ maxi | log xi/yi|

• dM (x,y) ≡ maxi(log xi/yi)
+ + maxi(log yi/xi)

+

where (x)+ denotes max{x, 0}.

Note that dS is derived by taking the component-wise logarithm of the supremum norm

ρS = ‖x − y‖∞ = maxi |xi − yi|, and dM is obtained by taking the component-wise loga-

rithm of ρM = maxi(xi − yi)
+ + maxi(yi − xi)

+. The component-wise logarithm defines an

isomorphism between (RK
+ , d) to (RK , ρ).

D.3 Contractive Mappings with or without Monotonicity

This section includes some concept and proofs from the max-min fairness problem using

contractive operators with or without monotonicity introduced in Chapter 9.

D.3.1 Approximation of Overlap Factor

One possible method is to compute the overlap factor proportional to the fraction of the

overlapping band. For example, the cell-pairwise directional overlap factor oX←Y
i,j for X,Y ∈

{UL,DL} and i, j ∈ N , i 6= j can be define by oX←Y
i,j := max{0, (νYj +νXi −1)/νXi } if X 6= Y, to

express the probability that a RB in cell i receives interference in UL (DL) from any DL (UL)

transmission signal in cell j (inter-cell inter-link interference); and oX←Y
i,j := max{1, νYj /ν

X
i }

if X = Y, to express the probability that a RB in cell i receives interference in UL (DL) from

any UL (DL) transmission signal in cell j (inter-cell intra-link interference). For example,

assuming νDL
i = 0.7, νUL

i = 0.3 for cell i and νDL
j = 0.3, νUL

j = 0.7 (as shown in Fig. 9.4),

we have oDL←UL
i,j = max{0, (νUL

j + νDL
i − 1)/νDL

i } = max{(0.7 + 0.7 − 1)/0.7, 0} ≈ 0.57,

while oUL←DL
ij = max{0, (νDL

j + νUL
i − 1)/νUL

i } = 0. Let us define the overlap matrix

OX←Y := (oi,j)
X←Y ∈ [0, 1]N×N , for X,Y ∈ {UL,DL}. To transform OX←Y to the per-link

basis matrix (between the UL and DL), we define ÕX←Y := (AX)TOX←YAY. The cross-

link coupling matrix is then modified by computing the Hadamard product (element-wise

product) of Ṽ X←Y and ÕX←Y, for X,Y ∈ {UL,DL}.

Unfortunately, the fraction of the overlapping bands depends on the cell-specific loads

νUL and νDL, which further depend on the dynamic UL and DL resource allocation w
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(as the variable to be optimized in Prob. 9.1). Thus, introducing such a modification

dramatically complicates optimization problem.

A compromise approach is to use the historical measurements of load νUL and νDL as

estimates to compute the cell-pairwise overlap factor oX←Y
ij for X,Y ∈ {UL,DL}, i, j ∈ N

as described above.

An alternative to the cell-pairwise overlap factor oX←Y
ij is to define a cell-specific over-

lap factor cXi , for X ∈ {UL,DL}, i ∈ N to express how likely a transmission in cell i

causes inter-link interference to the transmission in another cell, while the computation of

intra-link overlap factor remains the same as the approach above. This approach is more

error-tolerant in the sense that it does not return zero probability for inter-cell inter-link

interference. We define two vectors with constant values cUL ∈ [0, 1]N and cDL ∈ [0, 1]N ,

which can be chosen proportional to the historical measurements of νUL and νDL, re-

spectively. Further we can modify the cross-link coupling matrix by defining V UL←DL :=

(AUL)T diag(cUL)H1 diag(cDL)ADL, and V DL←UL := diag
(
(ADL)T cDL

)
H2 diag

(
(AUL)TcUL

)
,

such that the coupling between UL and DL is proportional to the multiplication of the cell

UL and DL overlap factors. For example, the overlap factor between the downlinks in cell

i and the uplinks in cell j is proportional to cDL
i cUL

j as shown in Fig. 9.4.

D.3.2 Standard Interference Function

Definition D.8. A vector function f : Rk
+ → Rk

++ is said to be a standard interference

function (SIF) if the following axioms hold:

1. (Monotonicity) x ≤ y implies f(x) > 0 ≤ f(y)

2. (Scalability) for each α > 1, αf(x) > f(αx)

The original definition of standard interference function is stated in [Yat95], which also

requires positivity. In Definition D.8 we drop the positivity f(x) > 0 for x ∈ Rk
+ because

it is a consequence of the other two properties [LSWL04].

Lemma D.1 (Selected Properties of SIF [Yat95]). Let f : Rk
+ → Rk

++ be a SIF. Then

1. There is at most one fixed point x ∈ Fix(f) := {x ∈ Rk
++|x = f(x)}.

2. The fixed point exists if and only if there exists x′ ∈ Rk
++ satisfying f(x′) ≤ x′.

3. If a fixed point exists, then it is the limit of the sequence {x(n)} generated by x(n+1) =

f(x(n)), n ∈ N, where x(1) ∈ Rk
+ is arbitrary. If x(1) = 0, then the sequence is

monotonically increasing (in each component). In contrast, if x(1) satisfies f(x(1)) ≤

x(1), then the sequence is monotonically decreasing (in each component).
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D.3.3 Proof of Lemma 9.1

The essential steps of the proof follow those in the proof of [Reaar, Ex. 2]. First we show

that fp′,l(w) := dl/ (W0B log(1 + SINRl(w))) is positive and concave. Function fp′,l(w) is

positive concave, because of the following facts: i) h(x) := 1/ log2(1 + 1/x) is a concave

function on R++, ii) composition of concave functions with affine transformations (see the

interference term in (9.6)) preserves concavity, and iii) a set of concave functions is closed

under multiplication and addition. Then, because a positive concave function is proved to

be a SIF in [Reaar, Prop. 1], fp′,l is SIF. As a collection of {fp′,l}, the vector function fp′

is SIF.

D.3.4 Proof of Theorem 9.1

Since the essential steps follow those in the proof of [Nuz07, Th. 3.2], we describe only

proof outlines and mention crucial lemmas in this paper, for lack of space. Using [Nuz07,

Lem. 3.3], we know that h := x/g(x) is non-expansive (see details in Definition D.5) on

(Rk
++, dM ), where the metric dM is defined in Definition D.7. Because f is SIF, by virtue

of [Nuz07, Lem. 2.2], ψ = θh ◦ f = θf/(g ◦ f) in (9.18) is shrinking (or contractive, see

details in Definition D.5) with respect to dM .

If ψ is a contractive mapping on a compact metric space on (Rk
++, µs), there exists a

unique fixed point x ∈ Rk
++ with ψ(x) = x [Sma80, Th.5.2.3]. In the following we show

that ψ is a mapping of a compact space to itself. For any input, since g is homogeneous

on Rk
++, we have g ◦ ψ = (θ/g ◦ f) · (g ◦ f) = θ. Because a monotonic vector function

has bounded level sets, we have that ψ(x) ≤ b for some finite b > 0. With ψ(x) ≤ b and

f(x) ≥ f(0) for all x ∈ Rk
+, we have ψ2(x) ≥ θf(0)/(g ◦ f(b)) = a > 0, and we see that

the range of ψn falls inside the finite positive rectangle R(a, b) for n ≥ 2. Hence, there is

exactly one eigenvector x ∈ Rk
++ to satisfy x′ = ρ′f(x′) where the associate eigenvalue is

given by ρ′ = θ/(g ◦ f(x′)), such that g(x′) = g(ψ(x′)) = θ.

D.3.5 Proof of Prop. 9.1

In the following part of this proof, for simplicity of notation, we omit the dependency on

p′, and denote f := fp′ , g := gp′ and λ := λp′ .

It is obvious that g defined in (9.18b) is positive and homogeneous of degree 1 on R2K
++.

By virtue of Theorem 9.1 and Lemma 9.1, we have that for θ = 1, there exist a unique fixed

point w′ = λ′f(w′) such that g(w′) = 1, where λ′ can be computed with iteration (9.18a).

Then we show that there exists no λ′′ > λ′ to satisfy w′′ ≥ λ′′f(w′′) and g(w′′) ≤ 1. We

proceed by contradiction. Suppose that there exists a λ′′ > λ′ to satisfy w′′ ≥ λ′′f(w′′) such

that g(w′′) ≤ 1. Let us define a function f ′ := λ′f . Because f is a SIF, f ′ is also a SIF. We
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then have f ′(w′′) = λ′f(w′′) < λ′′f(w′′) ≤ w′′, i.e., w′′ is a feasible point with respect to

the SIF f ′. Thus, the sequence starting from w′′ decreases monotonically to w′ (by using

the third property of SIF stated in Lemma D.1). Then we have w′ ≤ f ′(w′′) < w′′. Since

g(w) is monotone increasing on R2K
+ , we have g(w′′) > g(w′) = 1, which contradicts the

earlier statement g(w′′) ≤ 1.

Knowing that λ′ is the maximum feasible utility, now we show that for all w ∈ Fw(p′)

satisfying w ≥ λ′f(w) = f ′(w), we have w′ ≤ w. Because f ′ is also a SIF, w ≥ f ′(w) im-

plies that the sequence w decreases monotonically to w′ satisfying w′ = f ′(w′) = λ′f(w′).

Thus., w′ ≤ w.

D.3.6 Proof of Prop. 9.2

We will prove by induction that by using algorithm in Prop. 9.2, the sequence λ is mono-

tonically increasing until g1(w) = 1 is satisfied.

At the base step, suppose the solution to Prob.9.2a yields w′ = λ′fp′(w′) where λ′ :=

1/gp′(w′) and gp′(w′) = max{g1(w
′), g2,p′(w′)}, with g1(w

′) < 1 and g2,p′(w′) = 1. Let us

define g1(w
′) = a < 1 and p′′ = ap′. With fixed p′′, using Theorem 9.1, iteration (9.18)

converges to a unique fixed point w′′, satisfying

w′′ = λ′′fp′′(w′′) (D.7)

such that max{g1(w
′′), g2(p

′′,w′′)} = 1 (D.8)

It is clear that fp′′(w′) < fp′(w′) = w′/λ′, by dividing both the numerator and de-

nominator by a in (9.6), and substituting (9.6) in (9.7) and (9.14c). Now let us define

v′ = w′/a > w′. Moreover, knowing that fp′′ is also a SIF, we have fp′′(v′) = fp′′(w′/a) <

fp′′(w′)/a due to the scalability, that further leads to fp′′(v′) < fp′′(w′)/a < fp′(w′)/a =

w′/(aλ′) = v′/λ′. In other words, there exists v′ such that λ′fp′′(v′) < v′, and v′ is a

feasible point with respect to the SIF f ′p′′ := λ′fp′′ . Thus, starting from v′, the sequence of

v decrease monotonically to a unique fixed point (by using the third property of SIF stated

in Lemma D.1)

v′′ = f ′p′′(v′′) < f ′p′′(v′) < v′ (D.9)

Due to the monotonicity and homogeneity of g1 with respect to w, and the same properties

of g2 with respect to both p and w, we have

g1(v
′′) < g1(v

′) = g1(w
′/a) = g1(w

′)a = 1 (D.10)

g2(p
′′,v′′) < g2(ap

′,v′) = g2(ap
′,w′/a) = 1 (D.11)

We prove λ′′ > λ′ by contradiction. Suppose λ′′ ≤ λ′, then we have λ′′fp′′(v′′) ≤

λ′fp′′(v′′) = v′′, using (D.9). By defining f ′′p′′ := λ′′fp′′ which is also a SIF, since f ′′p′′(v′′) ≤
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v′′, starting from v′′, the sequence of w is monotonically decreasing to the unique fixed

point v? satisfying v? = f ′′p′′(v?) = λ′′fp′′(v?). Because v? is unique (by using the first and

second properties of SIF stated in Lemma D.1), using (D.7), we have w′′ = v? ≤ v′′, which

further leads to max{g1(v
′′), g2(p

′′,v′′)} ≥ max{g1(w
′′), g2(p

′′,w′′)} = 1. This contradicts

the inequalities (D.10) and (D.11). Thus, we have that λ′′ > λ′ if g1(w
′) < 1.

For the further iteration step, using (D.8), it remains to consider cases in which g1(w
′′) =

1, or g1(w
′′) < 1, g2(p

′′,w′′) = 1. The former case directly leads to g1(w
′′) = 1, and the

algorithm stops at λ′′ > λ′. The latter case yields g1(w
′′) < 1, The proof above shows that

the iteration step further increases λ, with scaled p′′′ = g1(w
′′)p′′.

D.3.7 Proof of Prop. 9.3

The solution to P.2a satisfies p′ = λ′fw′(p′) using the reformulation in (9.20). Since the

variables p and w are interchangeable in g2, we have g2,p′(w′) = g2,w′(p′).

Therefore, if g2,w′(p′) = 1, Theorem 9.1 implies that there is exactly one eigenvector

λ and associate eigenvector p of fw′ such that g2,w′(p′) = 1, and we have λ′′ = λ′ and

p′′ = p′.

Then we consider the case when g2,w′(p′) < 1. Because p′′ is the optimal solution to

P.2b, if we can find a p̂ ∈ R2K
++ such that λ̂ := minl∈K p̂l/fw′,l(p̂), g2,w′(p̂) ≤ 1 and λ̂ > λ′,

then we have λ′′ ≥ λ̂ > λ′. Thus, the remaining task is to find an arbitrary p̂ that fulfills

the above mentioned conditions. Let us define α = 1/g2,w′(p′) > 1 and p̂ := ap′. Then, we

have

λ̂ = min
l∈K

αp′l
fw′,l(αp′)

> min
l∈K

αp′l
αfw′,l(p′)

= λ′

The above inequality is due to the scalability of the SIF fw′ .
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