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Abstract

A new class of stream processing engines has recently established itself as a
platform for applications in numerous domains, such as personalized content-
and ad-serving, online recommender systems or social media analytics. These
new engines draw inspiration from Big Data batch processing frameworks
(Google’s MapReduce and its descendants) as well existing stream processing
engines (e.g. Borealis and STREAM). They process data on-the-ŕy without
őrst storing it in a őle system and their core programming abstractions hide
the complexity of distributed-parallel programming.

Although stream processing applications commonly need to process ingested
data within time bounds, this new class of engines so far computes results
łas fast as possiblež. As variations in workload characteristics are often hard
to predict and outside the control of the application, this may quickly lead
to a situation where łas fast as possiblež becomes łnot fast enoughž for the
application.

This thesis revisits the design of this new class of stream processing engines.
The core question addressed by this thesis is how latency requirements can
be speciőed and continuously enforced within these engines in a resource-
eicient manner. To this end, this thesis contributes (1) a formalism and
associated semantics for expressing latency requirements for stream process-
ing applications, (2) a set of techniques for engines to enforce them and (3)
an evaluation of the efectiveness of the presented techniques. The proposed
techniques optimize resource eiciency by automatically adjusting the data
shipping strategy between data ŕow tasks and adapting the mapping between
tasks and execution threads at runtime. Furthermore, based on workload
statistics measured at runtime, they adapt the application’s parallelism by
exploiting the elasticity of shared, resource-managed compute clusters. To
evaluate their efectiveness, they have been implemented in a research proto-
type and an experimental evaluation with several application workloads has
been conducted on a large commodity cluster.





Zusammenfassung

In den vergangenen Jahren hat sich eine neue Generation von Systemen
zur Streamdatenverarbeitung etabliert, die ihre Anwendung zum Beispiel in
Echzeit-Empfehlungssystemen, personalisiertem Online-Marketing und der
Analyse von Daten aus sozialen Netzwerken őndet. Diese neuartigen Syste-
me vereinen Eigenschaften batch-orienter Datenanalysesyssteme aus dem Big
Data Bereich (z.B. Google MapReduce), mit denen klassischer Systeme zur
Streamdatenverarbeitung (z.B. Borealis und STREAM). Zumeist handelt es
sich hierbei um Software-Frameworks deren Programmierabstraktionen die
Komplexität paralleler Programmierung kapseln und deren Fokus die Verar-
beitung eingehender Daten ohne vorherige persistente Speicherung ist.

Obwohl konkrete Anwendungen der Streamdatenverarbeitung eingehende Da-
ten für gewöhnlich innerhalb enger Zeitgrenzen verarbeiten müssen, ist der
Fokus der existierenden Systeme diese Verarbeitung łso früh wie möglichž
durchzuführen. Schwer vorhersagbare und unkontrollierbare Schwankungen
in der Verarbeitungslast führen jedoch schnell zu einer Situation in der łso
früh wie möglichž sich als łnicht früh genugž für die Anwendung erweist.

Aufbauend auf dem aktuellen Design von Systemen zur Streamdatenverar-
beitung, behandelt diese Arbeit im Kern die Frage, wie sich die Latenzan-
forderungen von Anwendungen speziőzieren and zur Laufzeit ressourcenei-
zient garantieren lassen können. Die wissenschaftlichen Beiträge dieser Ar-
beit sind (1) ein Formalismus zur Speziőkation von Latenzanforderungen
von Anwendungen der Streamdatenverarbeitung, (2) ein Satz an Verfahren,
die derart speziőzierte Latenzanfordungen zur Laufzeit umsetzen und (3)
eine experimentelle Evaluation dieser Verfahren. Die in dieser Arbeit be-
schriebenen Verfahren optimieren die Ressourceneizienz durch Anpassung
der Datenübertragungsstrategien und der Abbildung von Anwendungsteilen
auf Threads zur Laufzeit. Basierend auf Messungen bestimmter Aspekte der
Anwendungslast, passen sie zudem die Parallelität dieser Anwendungen zur
Laufzeit an, unter Ausnutzung der Ressourcen-Elastizität aktueller Cluster
Management Systeme. Die genannten Verfahren sind im Rahmen dieser Ar-
beit prototypisch implementiert und in mehreren Anwendungsszenarien auf
einem großen Rechencluster experimentell evaluiert worden.
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Chapter 1: Introduction
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Many computing applications in the areas of industry and science require

large volumes of streamed data to be processed with low latency. These

applications are often ’under-the-hood’ components of large websites, where

they provide personalized content- and ad-serving [94, 120], recommender

systems [110], or social media analytics [118]. However, similar technology

is also being applied to sensor data processing [79] and network security

management [31]. The emergence of the Internet of Things with its plethora

of internet-connected embedded devices is expected to be another signiőcant

driver for new applications of this type [123]. Smart meters, that measure

utility consumption (electricity, gas, water), are currently being deployed in

growing numbers at consumer homes are expected to provide energy utilities

with a wealth of streamed data that could potentially be analyzed, e.g. for

power usage forecasting and energy grid monitoring [59, 96]. Furthermore,

major cloud providers begin to ofer stream processing as a Platform-as-a-

Service (PaaS) ofering [89, 7, 43], promising to simplify the development

and operation of such applications. These services are available on demand

and without long-term commitment or upfront capital expenditures on the

customer side, thus allowing companies that cannot aford their own data

center to operate such stream processing applications.

All of these applications share a common set of requirements. They have

to continuously ingest data streams arriving at high and varying rates and

process them within certain time bounds. The sources of these data streams

are usually external to the application, and of diverse origins ranging from

mobile phones over web browsers to sensor networks. Both the volume of

such data streams and the complexity of their processing is steadily increas-

ing [112, 94]. Hence a model of horizontal scaling [88] has become popular [94]

for these applications, supported by the favorable price-performance ratio of
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inexpensive commodity server hardware. Since these applications usually

run continuously or for extended periods of time, cost-eicient techniques

are required to adapt to variations in the stream rate and deal with software

and hardware faults. Once inside the application, ingested data needs to be

processed within application-speciőc time bounds, ranging from milliseconds

to seconds. In many cases, if processing is delayed beyond a certain thresh-

old, the service quality of application degrades or the results are not useful

anymore. The processing inside such applications can involve complex combi-

nations of transformation, aggregation, analysis and storing. Hence support

for general-purpose processing is required, that goes beyond what algebraic

continuous query languages [14] and pattern-detection languages [128] can

express.

The popular łprocess-after-storež model [112] inherent to today’s large-scale

batch processing engines [11, 61, 24, 20] is not a good őt for these applications.

In the łprocess-after-storež model, incoming data is őrst persistently stored

and its analysis is deferred to a possibly much later (minutes to days) point

in time. This mismatch has led to the creation of a new type of data process-

ing engines, that draw inspiration from batch processing engines as well as

previous Data Stream Management System (DSMS) [1, 2, 90]. Examples of

such engines are the Apache systems Storm [13], Flink [10], S4 [94] and Spark

Streaming [132], numerous research prototypes [91, 32, 29, 101, 129, 81] and

industrial systems [4, 60]. From batch processing engines they have adopted

the principle of hiding the complexity of distributed-parallel programming

incurred by the shift towards horizontal scaling. Speciőcally, they allow ap-

plication developers to write pieces of sequential code in the form of User-

Deőned Functions (UDFs) and provide parallel and distributed execution on

large clusters of commodity servers. From DSMS however, they have adopted

the active model of processing, where data is processed immediately without

persisting it őrst.

Often, such applications are part of large websites operated by Internet com-

panies like Yahoo [120], Twitter [118] or Spotify [110]. Hence these engines

run on very large clusters comprising hundreds or up to several thousands

of machines [105, 36]. As it is very expensive to build and operate large

clusters, it is an economic priority to maintain a high utilization of the clus-

ter’s resources. A common way of increasing cluster utilization is to employ

a cluster resource manager such as YARN [122] or Mesos [52]. A cluster

2
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resource manager increases cluster utilization by providing the possibility of

multi-tenancy. To this end, it ofers a generic interface that any data pro-

cessing engine (and other systems as well) can use to allocate and use clus-

ter resources, e.g. CPU cores, memory, storage or networking. Analogous

to a Infrastructure-as-a-Service (IaaS) cloud where a large pool of servers

is shared between virtual machines, the cluster resource manager shares a

pool of available cluster resources between multiple competing engines. Ac-

cording to predeőned policies it mediates between the resource demands of

engines with possibly very diferent workload characteristics, e.g. continu-

ous and time-sensitive stream processing and (comparably) short-lived batch

processing workloads.

1.1 Problem Definition

The key question this thesis is going to address can be summarized as follows:

“Given a large and resource-managed commodity cluster, how can

the new class of highly distributed, parallel and general-purpose stream

processing engines provide latency guarantees to applications they

execute?”

Obtaining results within time bounds is a common non-functional require-

ment of stream processing applications and a notion of latency is the per-

formance metric that determines, whether or not time bounds can be met.

Indeed, the speciőc time bounds depend very much on the application itself.

For an application that performs computation for dashboard-style monitor-

ing, a latency of up to several seconds may be acceptable. An application

that is part of a user-interactive system, 100 ms is the time limit for the

application to be perceived as responding instantaneously [95]. Consider an

application that recommends potentially interesting news articles to visitors

of a large news website. If such recommendations appear too late for the user

to see them, because the application cannot compute them fast enough, this

will decrease the click-through rate, an important website performance met-

ric. Delayed results thus not only negatively impact user experience, but may

also have direct negative economic impact such as lost advertising revenue.

Today’s general-purpose stream processing engines provide a data flow pro-

gramming abstraction. Application developers are thus expected to structure

3
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their application like a graph. Data ŕows along the graph’s edges between

UDFs that perform computation on consumed data and may produce output

data. The stream processing engine executes the data ŕow graph in a highly

parallel and distributed fashion, exploiting massive data, task and pipeline

parallelism [54]. The main focus here has been the highly parallel, distributed

and fault-tolerant execution of arbitrary user code. Many of these engines

have so far interpreted stream processing in the sense that results should be

computed as fast as possible [13, 10, 69, 12, 94, 60, 132]. However, situations

in which the computational load overwhelms the amount of provisioned CPU

resources must be resolved manually and entail notoriously diicult tuning

to obtain the desired performance. Other engines can adapt to workload

variations, but the proposed schemes are designed to prevent overload or op-

timize the execution towards a target CPU utilization [4, 104, 41, 29, 129].

However, which speciőc target CPU utilization leads to a suitable latency for

the application must still be determined manually. Hence the őrst challenge

this thesis addresses, is to őnd a suitable formalism for stream processing

applications to express latency requirements. It should be able to express

the requirement in way that is meaningful to the application and measur-

able as well as enforceable by a stream processing engine that executes the

application.

Given an application that explicitly declares a latency requirement, a stream

processing engine now has the possibility of organizing the application’s

execution towards fulőlling the requirement. Given the environment of a

shared resource-managed commodity cluster and variations in application

workload characteristics, the main challenges for the engine are adaptiveness

and resource-efficiency.

Adaptiveness in stream processing means responding to variations in appli-

cation workload characteristics, such as the arrival rate of incoming data

streams and the resulting computational load inside the application. Many

data streams vary heavily in their rate over the course of time. For user-

facing applications, the day-night rhythm often drives stream rates. Real-

world events in particular can be a signiőcant source of rate peaks. For

example, while the rate of Tweets per second averaged at ca. 5700 in 2013,

Twitter cites a rate of ca. 144,000 Tweets per second as a signiőcant peak

in 2013 [119]. Traditional techniques such as load-shedding [17, 114], where

excess data is dropped may often not be desirable for the use case at hand.

4



1.2. Contributions

A the same time, an a priori resource provisioning for peak load may be

prohibitively expensive and lead to low resource utilization.

Resource efficiency refers to the challenge of minimizing the amount of al-

located cluster resources during processing. Finding the łrightž amount of

resources for any given workload is non-trivial, as the demands of the work-

load may be unknown or unknowable in advance. Even for non-streaming

workloads, őnding the minimum required resource allocation has proven to

be very diicult [21], as evidenced by the low resource utilization even on

shared, multi-tenant clusters in use at many companies. For example, the

average CPU utilization of a large production cluster at Twitter has been

found to be 20% [36]. Similar utilization őgures ranging from 20% to 30%

have been reported for a production cluster at Google [103]. This problem

becomes even more pronounced for stream processing applications, due to

their variations in computational load. A static resource provisioning may

thus leave the application in a state of permanent over- or under-provisioning.

Both states are equally undesirable. Over-provisioning conŕicts with the goal

of high cluster utilization, which is an economic priority for the operation of

a large compute cluster. On the other hand, under-provisioning leads to a

situation where an application’s latency requirements cannot be fulőlled.

A shared, resource-managed cluster is a major opportunity to addressing

these two challenges. It allows the stream processing engine to abandon

static resource provisioning in favor of resource elasticity i.e. to adapt its

allocation of cluster resources depending on the current workload character-

istics. Although current engines [94, 13, 132] already provide integration with

cluster resource management software such as Mesos [52] and YARN [122],

they do not yet exploit resource elasticity at all [10, 69, 12, 94, 60, 132] or

make limited use of it [13, 4, 104, 41, 29, 129].

1.2 Contributions

This thesis proposes a set of solutions to the challenges described above.

Based on a deőnition of latency for UDF-heavy data ŕows, latency con-

straints are proposed as a formalism with clearly deőned semantics to express

an applications latency requirements. This allows application developers to

annotate their application with non-functional latency requirements, so that

5
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the engine can enforce them at execution time without manual performance

tuning.

Second, the challenges of resource-efficiency and adaptiveness are addressed

from two angles. First, the focus is on making the most eicient use of cur-

rently allocated resources. To this end, this thesis proposes techniques for

stream processing engines to minimize continuously and automatically the

resource consumption of an application, while guaranteeing the latency con-

straints that the application declares. At the heart of the proposed scheme is

a feedback-cycle. It continuously measures the workload characteristics of a

running application and then applies techniques to optimize the execution to

better match the current workload with deőned latency constraints. The op-

timization techniques proposed in this thesis are adaptive output batching and

dynamic task chaining. They reduce the overhead of the producer-consumer

model with intermediate queues, that is commonly used for communication

between running tasks of an application. These two techniques enforce la-

tency constraints by themselves as long as computational resources are suf-

őciently provisioned, relative to the current workload. Second, the thesis

proposes a policy for elastic scaling, that deőnes when and how to adapt the

application’s resource allocation inside a shared compute cluster. In situa-

tions of over- (or under-) provisioning, the elastic scaling technique adapts

the parallelism of the application so that the latency constraints can still (or

again) be enforced. To this end, it employs a latency model based on queuing

theory, that allows to estimate the latency of a data ŕow, when the degrees

of parallelism of the tasks within the data ŕow are changed.

The above techniques have been implemented in a research prototype, derived

from the Apache Flink engine. They have been experimentally evaluated

with several application workloads at high degrees of parallelism on a large

commodity cluster with 130 worker nodes at TU-Berlin.

Parts of this thesis have been published in the following publications:

Journal:

Björn Lohrmann, Daniel Warneke, Odej Kao

Nephele Streaming: Stream Processing under QoS constraints at Scale

In: Cluster Computing, Volume 17, Number 1, pp. 61ś78, Springer, 2014

6
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Proceedings:

Björn Lohrmann, Odej Kao

Processing Smart Meter Data Streams in the Cloud

In: 2nd IEEE PES International Conference and Exhibition on Innova-

tive Smart Grid Technologies (ISGT Europe 2011), pp. 1ś8, IEEE, 2011

Björn Lohrmann, Daniel Warneke, Odej Kao

Massively-Parallel Stream Processing under QoS Constraints with Nephele

In: Proceedings of the 21st International Symposium on High-Performance

Parallel and Distributed Computing (HPDC 2012), pp. 271ś282, ACM,

2012

Björn Lohrmann, Peter Janacik, Odej Kao

Elastic Stream Processing with Latency Guarantees

In: The 35th International Conference on Distributed Computing Sys-

tems (ICDCS 2015), accepted for publication

1.3 Outline of the Thesis

The remainder of this thesis if structured as follows:

Chapter 2: Background

Chapter 2 summarizes the requirements of stream processing applica-

tion, and provides an overview of models for the creation of such appli-

cations. The chapter focuses on UDF-heavy data ŕows, the currently

predominant model for highly parallel and distributed stream processing

on large and shared commodity clusters. A formal deőnition of Appli-

cation Graphs is provided. Application Graphs are the formalism for

describing UDF-heavy data ŕows within this thesis.

Chapter 3: State of the Art

Chapter 3 provides an overview of state of the art infrastructure for

massively parallel stream processing. After summarizing the typical

execution environment of a resource managed commodity cluster, the

7



Chapter 1. Introduction

chapter focuses on a broad overview of state of the art massively parallel

stream processing engines that execute UDF-heavy data ŕows. Here, a

general understanding of core functionality and cross-cutting concerns in

such engines is combined with a summary of state of the art approaches.

Chapter 4: Stream Processing with Latency Constraints

Chapter 4 deőnes a notion of latency for UDF-heavy data ŕows and in-

troduces both a formalism and semantics for latency constraints. Then a

set of core techniques ś adaptive output batching, dynamic task chain-

ing and elastic scaling ś is presented. They aim at enforcing latency

constraints and complement each other by dealing with various aspects

of adaptiveness and resource-eiciency.

Chapter 5: Experimental Evaluation

Chapter 5 experimentally evaluates the presented techniques from Chap-

ter 4 on a large compute cluster. To this end, a set of benchmark ap-

plications is described with their relevant workload characteristics. The

efects of each technique are evaluated based on these benchmark appli-

cations.

Chapter 6: Related Work

Chapter 6 surveys relevant related work with respect to the use of batch-

ing, chaining, and elastic scaling techniques, in streaming applications

and beyond.

Chapter 7: Conclusion

Chapter 7 provides an outlook on future research topics in massively

parallel stream processing and concludes the thesis with a summary of

the contributions and results.
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Based on the problem deőnition of this thesis, this chapter begins with an

outline of the requirements of stream processing applications. Then it de-

scribes the currently predominant abstractions to create such applications.

Further, we introduce UDF-heavy data ŕows as the principal abstraction for

stream processing, that guide the creation of stream processing applications

on today’s massively parallel stream processing engines. Finally, this chap-

ter formally deőnes Application Graphs ś a concrete type of UDF-heavy data

ŕows ś in order to provide consistent terminology for use within the thesis.

2.1 Application Requirements

According to Andrade et al. [9], stream processing applications are high-

lighted by the following requirements:

Dealing with high-volume live (also: streamed or real-time) data

from external sources

In stream processing applications, input data arrives at high volume just in

time for processing. Due to the high data volume, such applications would

quickly overwhelm existing relational database systems, that store and index

data in relational form for later querying with SQL. In fact, the volumes

of stream data in personalized content- and ad-serving in the web [120],
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recommender systems [110], social media analytics [118], sensor data pro-

cessing [79] and the emergent Internet of Things [123], require large-scale

distributed systems to merely be reliably persisted on disks. Data sources

are usually external to the application itself, can be of diverse type and ge-

ographically distributed. Examples are distributed environmental sensors,

network monitoring equipment, servers generating logging data, cell phones,

stock exchanges and RFID tags.

Data heterogeneity

The data processed by stream processing applications is in heterogeneous

formats and can be of any type (e.g. structured, semi-structured or unstruc-

tured). Incoming stream data can for example be text, images, video, audio

or XML data.

Complex processing to obtain actionable information

Stream processing applications perform complex computational operations

on their input data including but not limited to transformation, aggrega-

tion, őltering, pattern matching or correlating data of fundamentally difer-

ent types and origins (e.g. live video and textual data from a social website).

Often, incoming data needs to be integrated with stored data. Such pro-

cessing is performed on moving data, i.e. without storing it on disks őrst.

Often, the goal of such processing is to yield new insights that can be acted

upon. For example, an application performing security monitoring of traic

in a large enterprise network, must (1) search for anomalous patterns in live

traic and (2) mitigate network security threats by warning network admin-

istrators or autonomously initiating counter-actions. A online recommender

system at a large music streaming website must be able to (1) continuously

update a personalized recommendation model for each user that predicts

music preferences based on past listening behavior and (2) use the model to

instanteously recommend new music tracks to website users.

Fault-Tolerant Execution

Stream processing applications typically have service characteristics, i.e. they

are long-running, continuous processes. At the same time, the high data vol-

umes and complex processing they perform necessitate a distributed and

parallel system. The combination of these two aspects, make tolerance to

faults in hardware and software a requirement for reliable operation.

10
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Latency Constraints

These applications need to be able to process and analyze data at its ar-

rival rate, and deliver the results of this analyis within time bounds. This

is a complex requirement due to (1) variations in the arrival rate of incom-

ing data and (2) variations in the computational work performed on that

data. Financial trading applications that monitor market data and buy or

sell when trading opportunities are detected, are certainly at the very ex-

treme end with microsecond latency requirements [133]. The authors of the

same paper describe the highly bursty nature of option price quotes in a

US options market data feed. They state 907,000 messages per second as

a peak rate recorded in 2008 and highlight the fact that the peak rate has

been increasing by a factor of roughly 1.9 per year since the beginning of the

decade. For stream processing applications directly tied into user-interaction

(for example web applications), 100 ms has been found as a time constant in

human perceptual processing, so that a response of a computer system is per-

ceived as instantaneous [95]. The same class of applications also incurs large

variations in message rates due to the human day-night rhythm and real-

world events. For stream processing application providing dashboard-style

infrastructure monitoring (e.g. a data center) a sub-second or multi-second

latency may be suicient. The concrete notions of łhighž arrival rate and

łlowž latency is therefore relative to the application itself and its properties

e.g. computational intensity, and (user) requirements.

2.2 Abstractions for Stream Processing

For more than a decade, continuous processing of ingested data has been the

subject of vivid research and development in multiple research communities,

each one bringing forth its own abstractions and systems. In [86] Cugola et

al. provide a comprehensive overview of abstractions and systems prior to

2012. The following subsections őrst summarize the established (pre 2012)

abstractions and then shifts the focus on those provided by current (post

2012) massively parallel stream processing engines.

11
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2.2.1 Data Stream Management Systems (DSMSs)

Early models came from the database community with active databases [38].

These systems provide so-called Event-Condition-Action (ECA) rules, where

changes in a persistent database (called łeventsž) trigger subsequent changes

(called łactionsž) under deőned conditions. Current relational database sys-

tems still provide ECA rules in the form of SQL triggers. The research on

active databases eventually led to DSMS [1, 90, 30], where an asynchronous

push-based model with on-the-ŕy data ingestion was introduced. Here, stand-

ing queries are continuously evaluated over streams of structured data [16]

without prior persistence or indexing. Models in DSMSs are transformation-

oriented and employ declarative (often SQL-like) or imperative languages. As

an example of a declarative stream processing language we take a brief look at

CQL [14] with an example inspired by the Linear Road Benchmark [15]. Con-

sider a stream SegSpeedStr of tuples with attributes (vehicleId, speed,

seg, hwy) that provides push updates of vehicle locations (segment) and

speeds on a highway. The following CQL query computes a stream indicat-

ing new traic congestions on highway segments:

SELECT IStream(hwy, seg, Avg(speed))

FROM SegSpeedStream [Range 5 Minutes]

GROUP BY hwy, seg

HAVING Avg(speed) < 40

The FROM clause deőnes that a time-based sliding window shall be created

for every incoming tuple on SegSpeedStr. The window is an intermediate

relation that contains all stream tuples of the last őve minutes. At this point,

GROUP BY and HAVING are applied to the intermediate relation with regular

SQL semantics creating another intermediate relation containing all highway

segments with slow traic. IStream turns the resulting series of intermediate

relations back into a stream that contains only new tuples. CQL further

supports other window types, and SQL elements such as joins.

2.2.2 Complex Event Processing (CEP)

At around the same time that DSMSs were created, researchers from other

communities proposed the idea of Complex Event Processing (CEP) [84] and

12
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created a new breed of systems [83, 128, 18, 25]. Here, incoming data is inter-

preted as events generated by external sources. The CEP model emphasizes

the detection of complex events that manifest themselves as patterns of the

input events. CEP languages are detection-oriented and are predominantly

declarative. As an example consider the following example using the SASE

event language [128]. The example assumes a retail store scenario with RFID

tagged products. RFID readers that are installed at the shelves, checkout

counters and exits produce a reading whenever an item comes into their

range. SASE processes typed events. The following query detects theft:

EVENT SEQ( SHELF-READING x,

!(COUNTER-READING y),

EXIT-READING z)

WHERE x.id = y.id AND x.id = z.id

WITHIN 12 hours

SEQ deőnes a temporal pattern, and matches items that were őrst detected at

shelves (type SHELF-READING) and later at a store exit (type EXIT-READING)

without having been checked out inbetween (type COUNTER-READING). The

WHERE clause ensures that the pattern only matches events from the same

item, and the WITHIN clause deőnes a time period of 12 hours in which the

events must (not) occur.

Despite several eforts, standard languages with broad adoption have neither

evolved for DSMS nor for CEP systems. Commercial systems often support

elements of both abstractions within the same system, thus blurring the

distinction between the two.

2.2.3 UDF-Heavy Data Flows

In recent years, a new class of stream processing systems has emerged, driven

by the demand of growing amounts of streamed data. Inspired by distributed

batch-processing models such as MapReduce [35], their models are centered

around data ŕows consisting of UDFs. To create a stream processing appli-

cation, an application developer writes UDFs in an object-oriented program-

ming language by implementing a system-provided interface. Afterwards,

the UDFs are programmatically assembled into a data ŕow graph.

13
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The following subsections őrst describe the underlying design principles that

guide UDF-heavy data ŕows. Afterwards, the currently existing variants of

this model are discussed.

Design Principle I: Black-Box UDFs

Being inspired by the MapReduce programming model [35], these engines

are centered around the execution of opaque UDFs. A UDF is a piece of ś

often, but not always ś sequential code that is called by the engine following

the inversion of control paradigm. Within this call, the UDF processes input

data and may produce output data. There is no conceptual limit on the type

of data that can be processed. In general UDFs

• perform complex operations such as transformation, aggregation, ől-

tering, analysis and storing,

• process and correlate data of fundamentally diferent types and origins,

e.g. live video and textual data from a social network website,

• utilize existing libraries of the programming language they were written

in,

• perform stateful computation with side-efects, such as interaction with

databases, caches, őle systems or messaging middleware.

Design Principle II: Data Flow Graphs

All applications are modeled as data ŕow graphs, whether directly in a pro-

grammatic fashion or indirectly through a declarative language [53]. A data

ŕow graph consists of vertices and edges, where vertices represent computa-

tion and encapsulate the application’s functionality in the form of a UDF.

Edges represent a directional ŕow of data between UDFs. Data ŕow graphs

are directed graphs and some systems allow cycles, others do not. Data

ŕow graphs provide the basis for parallel execution, by encapsulating three

types of parallelism shown in Figure 2.1, called pipeline-, task- and data-

parallelism [54]. Pipeline parallelism is concurrency between pipelined UDFs,

i.e. between one that produces data and one that consumes it. Task paral-

lelism is concurrency between two UDFs that are not pipelined. And őnally,

data-parallelism is concurrency between distinct instances of the same UDF,

where each instance processes a distinct part of the data.

14
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A B

(a) Pipeline parallel
UDFs (A & B)

E

C

D

F

(b) Task parallel UDFs
(D & E)

H(2)

G

H(1)

I

(c) Data-Parallel UDF
instances (H(1) & H(2))

Figure 2.1: Types of UDF parallelism found in data ŕows (adopted from [54]).

Design Principle III: Scalability by Massive Data Parallelism

The UDF-heavy data ŕow model is designed to naturally scale with growing

stream data volume and computational load. Easy-to-use data parallelism

is the tool employed to achieve this goal, causing the data ŕow graphs to be

typically much wider than long.

Variations of Programming Abstractions

Similar to DSMS and CEP systems, there is no consent on a standard abstrac-

tion for writing stream processing applications. The models of of currently

availabe systems however seem have converged to three types. In order of

decreasing generality and increasing ease-of-use and semantic richness, the

model variants are as follows.

Operator API
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Figure 2.2: Variants of models for massively parallel stream processing.

Message Handling API – All UDFs implement the same interface with a

message-handling method. This method takes a single message and pro-

duces zero or more output messages. The framework invokes the handler

method for each arriving message and routes its output messages. Examples

of frameworks with this type of API are Apache Storm [13] (łBolt APIž) and

Samza [12], Google’s MillWheel [4] as well as the prototype developed as part
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of this thesis.

Operator API – Each UDF implements an interface speciőc to an operator

type. It is then wrapped in a framework-provided higher order function that

enforces operator semantics by deciding when and how to call the UDF. Op-

erator APIs usually provide stream-relational operators (project, őlter, join,

windows, aggregations) or functionally-inspired operators (map, ŕatMap, re-

duce). Examples of frameworks with this type of API are Apache Storm [13]

(łTrident APIž), Apache Flink [10] and mupd8 [70].

Declarative Query Language with embedded UDFs – In the spirit of DSMSs,

in this model a declarative language allows the user to express queries, with

the option to embed code written in an imperative programming language.

The only system providing such a model is Microsoft’s TimeStream [101]

prototype that uses the declarative LINQ query language [87].

Finally, it shall be noted that many engines follow a łstackingž approach,

where a semantically richer abstraction is implemented via a more low-level

one. The technical realization of this approach exploits the black-box nature

of UDFs and has the beneőt of simplifying the engine’s runtime that is con-

cerned with organizing the eicient execution of an abstraction. Depending

on whether an abstraction is designed for public or just internal use, this

may lead to a system with multiple available abstractions. An example of

this is Apache Storm that has stacked public abstractions, i.e. a Message-

Handling API call łBolt APIž and an Operator API called łTridentž, which is

implemented using the Message-Handling API. Another example is Apache

Flink, that has one public Operator API called łFlink Streamingž and an

internal ś therefore unnamed ś Message-Handling API. In both cases the

Message-Handling API forms the basis of execution.

2.3 Application Graphs

The following formally introduces Application Graphs, a type of UDF-heavy

data ŕow used in the remainder of this thesis. Application Graphs as deőned

in the following are an instantiation of the łMessage-Handling APIž abstrac-

tion from Section 2.2.3. Therefore, Application Graphs ofer a maximum in

generality and a minimum in semantic richness, while maintaining the pos-

sibility of creating semantically richer model on top of it. Our deőnition is
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derived from models found in real-world stream processing engines [13, 10].

Within this thesis, Application Graphs are the abstraction that is optimized

by the techniques for stream processing under latency constraints. To this

end, reducing them to only the strictly necessary concepts is useful for clarity

of presentation. After a deőnition of formalisms and terminology, this section

also introduces a graphical notation for Application Graphs.

2.3.1 Definition

An Application Graph is a data ŕow graph that resembles a directed acyclic

graph (DAG), but is not a pure DAG. It captures the application at two

diferent levels of detail, the template level and the runtime level. On the

template level, the graph’s vertices are tasks, and its edges are streams. On

the runtime level, the graph’s vertices are subtasks and edges are channels.

The template level is fully speciőed by the application developer and deőnes

the overall structure of the data ŕow. It provides suicient information to

generate the runtime level in an automated fashion (hence the name łtem-

platež).

To formally deőne the Application Graph we őrst need a few prerequisite

deőnitions:

Definition: Data Item

A data item is a discrete portion of data of an arbitrary but őxed size and

arbitrary type. A data item must be serializable into a byte sequence, so

that it can be stored or sent over a network.

Examples of data items are integer numbers, strings, lists, hash tables and

images.

Definition: UDF and UDF instance

A UDF is a function provided by the application developer, that processes

data items. We shall distinguish three types of UDFs:

• Source-UDFs take no input and output zero or more data items per

invocation.

• Inner-UDFs take one data item and output zero or more data items

per invocation.
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• Sink-UDFs take one data item per invocation and produce no output.

For each produced data item a UDF speciőes one or more UDF instances

(see below) that the data item shall be delivered to. A UDF is not a pure

function because it may have side-efects. A UDF may retain state between

invocations and has access to an environment, from which it can obtain

information about the available subtasks it can send data items to. A UDF

has full API access to the standard libraries of the language it is written in

and may come with its own custom libraries. It can use the capabilites of

the underlying hardware and software platform, e.g. access local őles or open

network sockets.

While a UDF encapsulates functional behavior in the shape of code, a UDF

instance combines the behavior of its UDF with a concrete state and environ-

ment. The relationship between a UDF and a UDF instance is thus analogous

to the one between class and object in object-oriented programming.

Definition: Tasks and Subtasks

A task is a function that provides the łgluež between a UDF and the stream

processing engine. It reads incoming bytes from a queue, deserializes the

bytes into a data item, and invokes a UDF with it. It then serializes any data

items resulting from the UDF invocation, and routes the resulting bytes to

the receiver subtasks designated by the UDF. A subtask is a concrete instance

of a task and wraps a UDF-instance.

Definition: Application Graph

An Application Graph consists of two directed acyclic graphs: the template

graph G and the runtime graph G. The template graph G = (V,E,p, w)

consists of

• a set of vertices V = {v1, . . . , vn}, representing tasks,

• a set of edges E ⊆ V2 representing streams,

• a function p : V→ N+ that speciőes a task’s degree of data parallelism,

• and a wiring function w : V2 × N2 → {T, F} that speciőes which

subtasks shall be allowed to send messages to each other. For example,

if w(v1, v2, 1, 2) = T then v1’s őrst subtask shall be able to send data

items to v2’s second subtask.
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Now, let vk,i denote the i-th subtask of the k-th task vk in V. A given template

graph G = (V,E,p, w) induces the runtime graph G = (V,E) consisting of a

set of subtasks

V =


k∈|V|

{vk,1, . . . , vk,p(vk)}

that are the graph’s vertices, and a set of channels

E =


(vk,vl)∈E

{(vk,i, vl,j)|w(vk, vl, i, j) = T}

that are the graph’s edges. Channels indicate the possibility of shipping data

items between subtasks and exhibit FIFO behavior. If and when a channel

is actually used to transfer data items is up to the UDF instance of the

sending subtask. To distinguish elements of the template and runtime graph

in a formal context visually, we shall always use a bold, sans-serif font for

template graph elements (G,V,E, v, e) and a regular, italic font for runtime

graph elements (G, V,E, v, e).

TweetSource

p=2

DashboardSink
p=3

Filter
p=3

Channel

Task

Subtasks
of task "Filter"Task name (informal)

Degree of parallelism

Stream name (informal) Tweets

FilteredTweets

UDF instances

Figure 2.3: Graphical notation for Application Graphs.

2.3.2 Graphical Notation

Depending on the context, we may also describe Application Graphs in a

graphical way. Figure 2.3 shows a graphical example of a simple Application

Graph with three tasks and two streams. In a graphical context, tasks and

streams will be given informal names that capture the functionality of the

task and the data that ŕows through the stream respectively. The graphical

representation omits the explicit display of streams as lines between tasks,

because the lines representing channels already convey the same information.
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This chapter provides an overview of state of the art stream processing en-

gines that execute UDF-heavy data ŕows on resource managed clusters. The

contributions of this thesis presented in Chapter 4 assume some pre-existing

engine functionality. Hence, it is the goal of this chapter to establish a gen-

eral understanding of such core functionality, i.e. to describe the involved

challenges and summarize state of the art approaches.

First, Section 3.1 provides a high-level overview of the layered architecture

current massively parallel stream processing have converged to. Proceed-

ing in a bottom-up manner, Section 3.2 takes a look at cluster resource

management. It summarizes state of the art systems and describes the spe-

ciőc approach of Apache Hadoop YARN as an example. Section 3.3 gives

an overview of massively parallel stream processing engines for UDF-heavy

data ŕows. Based on state of the art systems, it summarizes engine core

functionality, cross cutting concerns such as fault tolerance and workload

adaptivity.
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3.1 Overview

Despite diferences between conrete systems, the new class of stream process-

ing systems has converged to a common layered architecture. The converged

architecture can be divided into layers and functional components. Figure 3.1

provides an overview of the typically available layers and components.
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Figure 3.1: Layers involved in massively parallel stream processing.

On the Infrastructure Layer a compute cluster comprising up to hundreds or

thousands of commodity servers provides the basis for both streaming and

non-streaming workloads. Cluster Resource Managers [122, 52, 36, 105] fa-

cilitate multi-tenancy on very large compute clusters and thus are considered

important for their economic operation. A Cluster Resource Manager keeps

track of the available resources such as servers, CPU cores, RAM, disk, and

network and allows them to be leased and released through an API. Sec-

tion 3.2 describes this layer in more detail.

The Engine Layer is concerned with organizing the highly parallel and dis-

tributed execution of UDF-heavy data ŕows. Typically, there will at least be

a Scheduler, and a Runtime. The Scheduler prepares the application’s exe-

cution by mapping the elements of the data ŕow graph to resources. Based

on this mapping, the Runtime executes the data ŕow, monitors the execu-

tion and deals with software- or hardware faults that may occur. Section 3.3

describes this layer in more detail.

On the Application Layer, software engineers or domain experts such as Data
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Scientists [34, 37] create stream processing applications using the concrete

abstraction ofered by an engine. The possible abstraction variants have

already been described in Section 2.2.3 and will not be discussed further at

this point.

3.2 Cluster Resource Management

Since the advent of the UNIX operating system in the early 1970s, compute

clusters consisting of computers connected via packet-switched networks have

been a platform for data processing in research and industry [99]. Today’s

compute clusters comprise up to many thousands of servers and are domi-

nated by low-end shared-nothing servers [19], due to their favorable price-

performance ratio. As of this writing, this implies servers with multi-core x86

CPUs, memory in the two-digit GB range as well as local hard disks or ŕash

drives [19]. Typically, these servers run a Unixoid operating system such as

Linux and communicate via commodity packet-switched networks such as

Ethernet and TCP/IP or UDP/IP. The networking fabric inside these clus-

ters is typically a hierarchical structure, that arranges switching and routing

elements in multiple layers [19, 5]. This thesis assumes a commodity cluster

such as the one just described as the execution environment for massively

parallel stream processing.

Due to their size, these clusters are expensive to build and operate, hence it is

an economic priority to maintain a high utilization of the cluster’s resources.

The commonly accepted solution to this is to share the cluster between mul-

tiple tenant applications. Cluster resource managers solve this by providing

a middleware that arbitrates cluster resources between the resource demands

of multiple tenant applications.

This thesis assumes a cluster resource manager as a piece of existing soft-

ware infrastructure installed on a compute cluster. While a comprehensive

overview of cluster management is therefore out of scope, it is still important

to understand which aspects of the functionality provided by cluster man-

agers are relevant to this thesis. Section 3.2.1 thus describes the relevant

functionality this thesis assumes to be provided by a cluster manager, and

Section 3.2.2 gives an brief overview of state of the art systems. Section 3.2.3

summarizes Apache YARN [122] as a concrete example of a suitable cluster
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resource manager.

3.2.1 Key Functionality

A cluster resource manager is a middleware that facilitates sharing a compute

cluster between multiple tenant applications. In the context of commod-

ity compute clusters, the term resource typically refers to CPUs (or cores

thereof), RAM, disk space and network bandwidth. To this end, a clus-

ter resource manager is mainly concerned with (i) resource monitoring (ii)

resource allocation, (iii) resource assignment as well as (iv) facilitating the

execution of applications on top of assigned cluster resources.

Resource allocation is the process of determining the amount of resources to

use for a tenant application. The main challenge here is to enforce operational

policies e.g. a notion of resource fairness. Resource assignment deals with

assigning concrete resources to an allocation, e.g. speciőc cluster nodes. The

challenges in resource assignment are

1. resource heterogeneity, due to multiple server generations being de-

ployed within the same cluster,

2. placement constraints such as data locality, because applications often

need to access data stored at speciőc locations in the cluster,

3. and interference minimization, due to applications being colocated on

the same resource.

Once a resource has been assigned to an application, the cluster resource

manager is responsible for triggering and monitoring the application’s execu-

tion on the resource. Resource monitoring is the process of maintaining an

up-to-date view of the resource use inside the cluster and detecting resource

failures, e.g. defective cluster nodes.

3.2.2 State of the Art

Early cluster resource managers such as Condor [78], NQS [66], EASY [75],

LoadLeveler [58], Torque [3] and others have long been used to organize

batch job computation, i.e. jobs that perform computation and then termi-

nate. In recent years, the growing popularity of data processing frameworks

such as Hadoop [11] led to the creation of new commodity cluster resource

managers, such as the Mesos [52], YARN [122], Omega [105] systems or
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research-prototypes such as Quasar [36]. These newer resource managers are

capable of colocating many diferent application workloads within the same

cluster, e.g. batch jobs and services that run indeőnitely or for extended

periods of time. While a Hadoop MapReduce job őts in the former category,

stream processing applications typically have the characteristics of a service,

because they process unbounded streams of data. In all of the newer sys-

tems, existing allocations can be changed at runtime of the application, thus

allowing for resource elasticity.

Managers like YARN [122] and Mesos [52] take a reservation-centric ap-

proach to resource allocation. Here the manager provides an API that allows

applications to reserve amounts of resources. These reservations are however

subject to limitations deőned by a policy. YARN supports fairness and ca-

pacity policies. In the former case, the resource manager allows each tenant

allocation to use a roughly equal share of the cluster, while in the latter case

applications are guaranteed a minimum share plus an option to obtain ex-

cess resources that would otherwise remain unused. Mesos also supports fair

allocations and additionally application prioritization. Mesos is offer-based,

while YARN is request-based. In the former case, the manager only ofers re-

sources that are in line with the deőned policy and lets the application decide

on whether it takes the allocation or not. In the latter case, applications issue

resource requests, and the manager honors them only within the boundaries

of the policy. Other managers such as Quasar [36] do not use reservations. In-

stead, applications deőne performance goals e.g. completion time (for batch

job applications) or request latency (for a web server application). Quasar

then infers a suitable resource allocation by proőling and a classiőcation

technique based on collaborative őltering [73]. In Google’s Omega [105] the

resource manager is a thin abstraction that provides a transactional inter-

face over shared cluster state, and hence does not enforce allocation policies.

Using the transaction mechanism, application-speciőc schedulers can then

access this state and allocate resources to their applications as needed.

With respect to resource assignment, Mesos delegates challenges (1) and (2)

(see Section 3.2.1) to an application-speciőc scheduler, that decides which

conrete ofers to accept and which not, whereas challenge (3) is mainly ad-

dressed by the use of lightweight operating-system level virtualization [109]

techniques, such as Linux Containers [74]. YARN addresses (1) and (2)

by preferences declared by the application via the resource-request mech-
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anism and (3) by optional operating-system level virtualization. Quasar’s

techniques for workload classiőcation address (1), (2) and (3). In Google’s

Omega, resource assignment is delegated to application-speciőc schedulers

that handle issues (1)-(3) internally.

3.2.3 Example: Apache Hadoop YARN

Apache Hadoop YARN [11, 122] is an open-source cluster resource manager.

It is the result of decoupling resource management functionality from the

MapReduce batch computation framework, that used to be integrated in the

őrst versions of the Hadoop platform. YARN has evolved into a generic

cluster resource manager, thus łdemotingž the MapReduce framework to a

tenant application. As YARN supports arbitrary tenant applications, many

existing distributed computation frameworks such as Apache’s Spark, Storm

and Flink implement a binding to YARN’s resource management API and

can therefore be deployed as tenant applications.
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Figure 3.2: Application deployment process in YARN.

A YARN cluster has a central Resource Manager (RM) process running on

a cluster head node, and one Node Manager (NM) process per cluster node.
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The NM describes the resource properties (hostname, rack location, CPU

cores, RAM) of its cluster node to the RM and sends regular heartbeats to

indicate liveness. Figure 3.2 shows the steps of running a tenant application

on top of a YARN-managed cluster. In step ❶ an application client regis-

ters the application with the RM and issues a resource request and a launch

description to start an Application Master (AM) process. Via the resource

request it describes desired properties of the cluster node that shall run the

AM. A resource request must specify desired hardware properties (CPU cores

and amount of RAM) and may specify additional locality properties such as

hostname or rack location. The launch description contains all information

necessary to launch the AM process, e.g. shell commands, environment vari-

ables and őles that must be made available to the process. In step ❷ the RM

allocates the requested resources, assigns them to a suitable cluster node and

orders the NM to launch the AM. As already mentioned, resource allocation

and assignment in YARN are governed by conőgurable policies. By default,

YARN has a capacity policy, where the resource requests of each application

are put into one of possibly several queues. Each queue is a guaranteed a

(conőgurable) percentage of the cluster’s resources. Resources may also be

allocated to a queue beyond its conőgured percentage, as long as they are

unallocated. In step ❸ the NM launches the AM process inside a container.

By default, a container in YARN is only a reservation of CPU cores and RAM

on a cluster node. The NM may terminate the AM if it consumes more RAM

than reserved to its container (CPU limits are currently not enforced). Once

the AM is running, in step ❹ it requests additional cluster resources from

the RM in order to launch worker processes. As usual the RM checks the

resource requests against its policy and assigns containers on cluster nodes

as soon as possible. Once this is done, in step ❺ the AM can directly order

the respective NMs to launch worker processes inside these containers. In

steps ❻ - ❽ NMs start the containers and report their status to the AM.

Due to cluster sharing between multiple tenant applications, it is likely that

there are containers of other tenant applications on the cluster at the same

time. This may result in colocation of containers on cluster nodes as shown

in Figure 3.2.
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3.3 Stream Processing Engines

This section surveys state of the art massively parallel stream processing

engines that execute UDF-heavy data ŕows. First, this section summarizes

eastablished approaches to providing engine core functionality i.e. deploy-

ment (Section 3.3.1), scheduling (Section 3.3.2) and execution (Section 3.3.3)

of UDF-heavy data ŕows. Further, this section summarizes challenges and

established approaches in addressing the major cross-cutting concerns fault

tolerance (Section 3.3.4) and workload adaptiveness (Section 3.3.5). For clar-

ity of exposition, whenever possible, the terminology introduced for Applica-

tion Graphs is employed. Finally, since each of the existing systems and re-

search prototypes occupies a diferent place in the design space, Section 3.3.6

summarizes state of the art systems in tabular form.

3.3.1 Deployment Architecture

A deployment architecture provides a high-level assignment of engine func-

tionality to engine processes running on the cluster. The state of the art

engines I surveyed follow the master-worker pattern or are decentralized, i.e.

all processes of the running engine share the same functionality.

Master-Worker

The master-worker deployment architecture is predominant in the engines

I surveyed [13, 10, 69, 12, 4, 101, 104, 60, 129]. It consists of a master

process that coordinates the execution of the application, and a set of worker

processes that perform the execution (see Section 3.3.3). The functionality

of the master process always involves at least the following:

1. Scheduling (see Section 3.3.2)

2. Monitoring, which involves collecting and storing monitoring data about

worker liveness and at least some application workload characteristics

(e.g. stream rates or CPU utilization).

3. In fault tolerant engines (see Section 3.3.4), the master coordinates the

engine’s response to failures.

4. In elastic engines (see Section 3.3.4) the master deőnes the elastic be-

havior and if necessary (de)allocates cluster resources for worker pro-

cesses via the cluster resource manager.
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Figure 3.3 provides an overview of the steps involved in running a stream

processing application on such a deployment architecture.
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3Monitoring data

Figure 3.3: Cooperation between client, master and workers of a stream
processing engine.

First, an external client process submits the stream processing application

to the master. The submission contains the Application Graph with all of

the UDF code, conőguration data as well as any required libraries referenced

by the UDFs. After computing a schedule (see Section 3.3.2), the master

forwards subtasks including UDF code and conőguration data to the worker

processes. Now, the workers start to execute the application and are respon-

sible for monitoring their subtasks for failures and eiciently shipping data

between them along channels, which usually requires establishing pairwise

network connections. During execution, the master process collects moni-

toring monitoring data and uses it to detect and mitigate failures or further

optimize the execution.

Decentralized

A decentralized deployment architecture is employed by the S4 [94] engine.

Here, all engine processes have a worker role and also additional responsibil-

ities to provide automatic failover. S4 requires a cluster coordination service

such as Zookeeper [56] to coordinate the worker processes. A client submits

the application data to an arbitrary engine process, that puts it into a re-

spository and notiőes the other workers of the application. All of them pull
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the application data and start executing the data ŕow. Failure monitoring

and mitgation during the execution is also organized via the coordination

service.

3.3.2 Scheduling

A scheduler assigns subtasks to worker processes on cluster nodes. A schedule

for the example from Section 2.3.2 could look as displayed in Figure 3.4. De-

pending on the scheduling strategy used by an engine, schedules may however

look very diferent. In the current state of the art engines that I surveyed, I

found several scheduling strategies described in the following subsections.

A

p=2

C

p=3

Worker Worker 

B

p=3

Worker

Figure 3.4: Exemplary schedule for Application Graph from Figure 2.3.

Round-Robin Scheduling

Round-Robin scheduling is widely used by the stream processing engines

I surveyed [13, 12, 4, 104]. Given a template graph G = (V,E) and the

corresponding runtime graph G = (V,E), the scheduler enumerates all tasks

v1, . . . , vn and builds a list of subtasks [v1,1, . . . , v1,p(vk), . . . , vn,1, . . . , vn,p(vn)].

It then performs round-robin assignment of the subtasks to a set of workers.

Round Robin scheduling has the beneőt of simplicity, but may exhibit bad

locality properties, because it does not consider the communication structure

of the runtime graph. This may unnecessarily increase latency and lead to

congested network interfaces.

Constrained Scheduling

Some engines allow application developers to constrain the scheduler’s de-

grees of freedom by annotating the application with scheduling constraints.
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Scheduling constraints found in the literature belong to the following cate-

gories:

• Co-location constraints specify that certain subtasks must be executed

within the same worker process or cluster node. Subtask co-location can

be used to ensure access to resources shared between subtasks on the

same node, such as disks or memory segments. Additionally co-location

can reduce communication overhead, because inter- and intra-process

communication is considerably more eicient than communication via

network.

• Ex-location constraints specify that certain subtasks must not be exe-

cuted within the same worker process or cluster node. Ex-location can

be used to guard against worker or node resource limits such as RAM

or disk space, and to improve reliability in the face of failures.

• Capability constraint specify that certain subtasks must be scheduled

for execution on cluster nodes with certain capabilities, e.g. speciőc

hardware such as GPUs. In case of heterogeneous cluster nodes, this

can be used to ensure that subtasks which require access to such re-

sources are always executed on suitable nodes.

At the time of this writing, co-location constraints can be expressed in

the two stream processing engines Apache Flink [10] and IBM Infosphere

Streams [60]. Ex-location and capability constraints are speciőc to only IBM

Infosphere Streams.

Hash-Based Scheduling

Some engines perform no explicit a-priori scheduling of subtasks to workers.

Such engines [94, 69] rely on a richer data model, where every data item has

a key. Here, every worker is potentially capable of executing every subtask.

The concrete łschedulež is determined at runtime by consistent use of a hash

function, that hashes an emitted data item’s key to a destination worker.

When the destination worker receives a data item with a speciőc key for the

őrst time, it creates the consuming subtask on-the-ŕy by instantiating the

respective UDF.
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3.3.3 Runtime

The runtime of a stream processing engine executes a scheduled application

in a distributed-parallel fashion. Figure 3.5 provides an overview of the

typical components found in many engine runtimes. A network transport

component abstracts away the details connection management. This includes

őnding the IP addresses and TCP/UDP ports of other worker processes as

well as the low-level details of sending and receiving application data over

TCP and UDP sockets between workers. Each data item that arrives via the

network is dispatched to a queue for processing. At a later point in time, a

thread dequeues the data item and invokes the message-handling method of a

subtask with it. Any resulting data items from the message-handling method

are then given to the dispatcher. Depending on whether the recipients of a

data item are local or not, the dispatcher either locally enqueues it or sends

it over the network to the worker process executing the respective recipient

subtask.
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Figure 3.5: Anatomy of a stream processing engine runtime.

Depending on the engine, there may be one or multiple queues per worker,

one or multiple threads per queue, and one or mutiple subtasks bound to each

thread. A full per-system overview of this aspect is given in Section 3.3.6.

With the exception of Samza [12], all surveyed engines use multiple queues

per worker process and at least one thread per queue. This approach makes

the best use of current multi-core CPUs. Since inter-thread communication

has much less overhead than inter-process communication, which is again

much cheaper than network communication, this structure also eiciently

exploits data locality of colocated subtasks. Moreover, it gives the underlying
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operating system various degrees of freedom in scheduling the threads among

the individual CPU cores. For example, if a thread cannot fully utilize its

assigned CPU resources or is waiting for an I/O operation to complete, the

operating system can assign the idle CPU time to a diferent thread/process.

The surveyed systems slightly difer in the way that subtasks are bound to

threads. In [13, 12, 94] the subtasks associated with a thread all belong to

the same task from the template graph, i.e. their output is always handed to

the dispatcher. Conversely, in [10, 60] if a thread is associated with multiple

subtasks, then they form a pipeline. This means that output produced by the

őrst subtask of the pipeline can directly be handed to the second without

dispatching, thus reducing the number of data items dispatched between

threads (via queues) and worker processes (via network).

Thus the communication model of stream processing engines follows the

producer-consumer pattern. Commonly, implementations of this pattern em-

ploy queues to achieve asynchronous message passing between threads. As

depicted in Figure 3.6, the data items produced by subtasks are passed to

and consumed by successor subtasks along channels.

Channel

Subtask

Thread
Queue

Worker B

Worker A

Worker C

Figure 3.6: Producer-Consumer pattern in massively parallel stream process-
ing.

Furthermore, a typical engine runtime has a local monitoring component

that monitors the status of subtasks and creates statistics about them, e.g.

processed data items or CPU usage. This data is usually shipped to the

master to create a global view of the application status.

Finally, some engines include a component for state management. State

management is a technique that allows subtasks to externalize their internal

state in order to better deal with failures and elasticity. State management

is covered in more detail in the next section.
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3.3.4 Fault Tolerant Execution

Due to their continuous nature and highly-parallel and distributed execu-

tion, stream processing applications are particularly sensitive to node fail-

ures, software crashes and network outages. Although individual elements

such as nodes, worker processes or subtasks have a small probability of fail-

ing, the probability that at least one such part fails is not so small. The

ability to provide some degree of fault tolerance is therefore an important

non-functional requirement for any stream processing engine. Current state

of the art engines provide diferent recovery guarantees to applications. Re-

covery guarantees have been broadly categorized by Hwang et al. in [57]

as precise recovery, rollback recovery and gap recovery. In engines providing

precise recovery guarantees, the post-failure output of an application is iden-

tical to the output without failure, thus the efects of a failure are masked

except for a temporary increase in latency. In engines with a rollback recov-

ery guarantee, the application experiences no data loss in case of failures, but

its output may difer from the output without failure, e.g. it may contain

duplicates. Finally, in engines with a gap recovery guarantee, the application

may experience data loss. To provide recovery guarantees, several recovery

techniques have been developed. Techniques such as active or passive standby

nodes described in [57] efectively double the resource consumption of an ap-

plication and are rarely used in massively parallel engines. The techniques I

found to be in use are summarized in the following.

Amnesia (AS)

The amnesia technique introduced in [57] detects and subsequently restarts

each failed subtask on a diferent worker process. The advantage of this

approach is its simplicity and that it introduces no overhead at runtime.

However, amnesia recovery implies the loss of data items that have not been

fully processed at the time of failure as well as the loss of the internal state

of failed subtasks. Due to this, the amnesia technique is only applicable to

applications that are tolerant to temporary data and state loss (or main-

tain no state). The amnesia technique is limited to providing gap recovery

guarantees. S4 [94] and mupd8 [69] employ the amnesia technique.
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Upstream Backup (UB) / Upstream Backup with Duplicate Elim-

ination (UBD)

In the upstream backup technique introduced in [57], upstream subtasks

log their output before shipping it to downstream subtasks. The logged

data items are retained until they have been fully processed by downstream

subtasks. This requires an acknowledgement protocol between neighboring

subtasks to determine when logged data items can be safely discarded. If

subtasks, workers or cluster nodes fail, the afected subtasks are restarted

with an empty state and the logged data items are replayed by upstream

subtasks in order to reconstruct the subtask state at the time of failure.

Upstream backup introduces some runtime overhead due to the continuous

logging of data items. Upstream backup alone provides rollback recovery.

If subtasks are deterministic, i.e they produce the same output every time

they have a particular state, upstream backup can be combined with the

elimination of duplicate outputs to provide precise recovery. The eiciency

of precise recovery via upstream backup is however dependent on how much

logged data needs to be replayed.

State Management (SM)

State management is a technique that externalizes the internal state of sub-

tasks. Externalized state is then periodically checkpointed to a location

considered safe. In case of a failure, restarted subtasks can reconstruct

their internal state using a checkpoint. Some engines persist state to a

distributed and replicated key-value store [4, 69] while others use a shared

őlesystem [94, 101, 104, 60]. The SEEP system [29] transfers state check-

points to upstream workers. State management alone only provides gap

recovery because data items in transit may still be lost due to the use of the

amnesia technique [94, 69]. In careful combination with upstream backup in-

cluding duplicate elimination, state management can provide eicient precise

recovery [29, 101, 4, 13] even for subtasks whose state depends on the whole

history of input data. Without duplicate elimination, state management still

improves the eiciency of rollback recovery [12].

3.3.5 Workload Adaptiveness

Many stream processing applications ingest data from sources at rates that

may be unknown or unknowable in advance, and which may signiőcantly

35



Chapter 3. State of the Art

vary over the course of time. Additionally, even under steady ingestion rate,

the cost (processor cycles or time) of processing data items can change due to

complex behavior exhibited by UDFs. Unforeseen changes in workload can

lead to overload where a stream processing application cannot keep up with

the arrival rate of new input data. In consequence, the application’s results

may be become less useful or even useless.

Due to this, several stream processing engines have been proposed [13, 4,

101, 104, 41, 129, 29] that are runtime elastic, i.e. they adapt the amount

of allocated cluster resources to the current workload without requiring a

restart or redeployment of the application.

Horizontal and Vertical Elasticity

A horizontally elastic system is able to seamlessly, i.e without restart of the

engine or the application, change the number of running worker processes

and ad-hoc schedule subtasks on them. Since starting new worker processes

requires allocation of new servers or containers, this also horizontally scales

the amount of allocated cluster resources. Horizontal elasticity is the pre-

dominantly found form [13, 4, 101, 104, 41, 129, 29] of elasticity. Conversely,

a vertically elastic stream processing system is able to seamlessly increase and

make use of cluster resources (CPU cores, memory) allocated to already run-

ning worker processes, e.g. utilize more CPU cores sharing the same virtual

memory space. Chronostream [129], which is built on a cluster resource man-

ager with operating-system level virtualization (e.g. Linux containers) that

provides ad-hoc resizable containers, is currently the only vertically elastic

engine I am aware of. In the context of cloud computing, the act of allocat-

ing more/less servers has been called scaling out/in, while the act of using

more/less powerful servers has been called scale up/down [88].

Resource Pools for Horizontal Elasticity

Both horizontal and vertical elasticity require a managed pool of resources

(servers, virtual machines or containers) that can be allocated and deallo-

cated on demand. The availability of a cloud or a large resource-managed

cluster is therefore a requirement for elastic stream processing. For com-

mon IaaS clouds such as Amazon EC2 or the Rackspace cloud, a 2012

study [85] has shown that provisioning and starting a new VM takes time on

the order of minutes, assuming common őlesystem image sizes in the lower
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gigabyte range. While the SEEP [29] engine builds on the Amazon EC2

IaaS cloud, the authors note that VM instances had to preallocated to deal

with the minute-range provisioning time. The other elastic systems I sur-

veyed [13, 4, 101, 104, 41, 129] relied on resource-managed clusters where

container provisioning times are in the second range, because no őlesystems

have to be copied, and no operating systems need to boot.

Scaling Policies

An elastic stream processing engine must deőne a scaling policy that de-

termines when elastic scaling is triggered and how much to scale in/out or

up/down. Current state of the art engines employ the following scaling po-

lices with the goal of preventing overload and resolving bottlenecks. Note

that Section 6.3 discusses scaling policies found in in the broader thematic

scope of cloud computing.

CPU Utilization-Based A scaling policy based on CPU utilization targets,

monitors the CPU utilization of subtasks and/or worker processes and trig-

gers scaling actions when the measured CPU utilization signiőcantly diverges

from a predeőned utilization target. SEEP [29] continuously measures the

CPU utilization of subtasks and scales out if a predeőned utilization thresh-

old is crossed. A policy for scaling in is however not speciőed. Google’s

Millwheel [4] paper hints towards a CPU target based policy to adjust data

parallelism, but does not provide speciőcs other than it being based on the

measured CPU utilization of worker processes.

Rate-Based A scaling policy based on stream rates monitors stream rates

and triggers scaling actions when the consumption rate of tasks cannot keep

up with the arrival rate of new data items. Inspired by [124], the AnduIN

engine [104] uses this technique to detect bottlenecks and then rewrites the

application graph using rewriting patterns that adjust data parallelism or

pipeline-parallelism.

Congestion-Based A congestion based scaling policy detects the efects of

subtasks that are not able to process data as fast as it comes in, and triggers

scaling actions to alleviate congestion. In a recent paper Gedik et al. [41]

propose such a scaling policy with SASO [51] properties (stability, accuracy,

short settling time, overshoot avoidance) for stream processing applications

running on IBM Infosphere Streams [60]. Given an upstream and a down-
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stream task, the policy measures and memorizes for each degree of scale of

the downstream task, how often an upstream task is blocked due to conges-

tion (backpressure) and what throughput was achieved. If the congestion

frequency is too high, the downstream task will be scaled out (accuracy

property) unless scaling out from the current point yielded no improvement

in throughput in the past (stability property). If the congestion frequency

is too low, the downstream task will be scaled in (overshoot avoidance), un-

less scaling in from the current point has resulted in congestion in the past

(stability property). Further, past measurements are discarded if workload

characteristics change. To provide short settling times, the downstream task

is not scaled out/in one subtask at a time, but in superlinearly increasing

steps.

External An external scaling policy requires an entity other than the en-

gine to determine how the stream processing application shall be scaled.

The Storm [13] engine currently supports this simple type of policy by via

command-line tooling1 that allows users or other processes to scale out/in as

well as scale up/down. In the TimeStream[101] engine, scaling policies can

be deőned by the stream processing application.

3.3.6 State of the Art Systems

Table 3.1 provides a tabular overview of the state of the art stream processing

engines that execute UDF-heavy data ŕows. All terminology and abbrevi-

ations used in the table have been introduced in the previous sections. To

brieŕy describe the thread model, the table uses a notation of the form q/t/s

with q, t, s ∈ {1, n} where

• q is the number of queues per worker,

• t is the number of threads consuming from each queue,

• s is the number of subtasks bound to each thread.

For example, a n/1/n thread model implies that there are multiple queues

per worker, one consumer thread per queue and multiple subtasks bound to

each thread.

1http://storm.apache.org/documentation/Command-line-client.html
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Table 3.1: Properties of state of the art massively parallel stream processing engines executing UDF-heavy data ŕows.
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3.3.7 Requirements Review

This section brieŕy reviews how the requirements of stream processing appli-

cations described in Section 2.1 are addressed by the state of the art engines

surveyed in this chapter.

Requirement 1: Dealing with high-volume stream data from exter-

nal sources

All state of the art systems provide the necessary horizontal scalability to

ingest high volumes of data, i.e. they are capable of exploiting pipeline-,

task- and data-parallelism as well as scheduling and exuting parallelized data

ŕows on large compute clusters. UDF-heavy data ŕows faciliate the ingestion

of data from external sources. In many cases engines provide ready-to-use

adapters for external data sources, e.g. Storm provides standard connectors2

for popular data sources such as the Kafka3 messaging middleware. By en-

capsulating the required functionality within UDFs it is generally possible to

ingest data from arbitrary external sources.

Requirement 2: Data heterogeneity

The surveyed engines are capable of processing and transmitting arbitrary

data, whether its structured, semi-structured or unstructured. The only

condition the object representation of data items that UDFs operate with

must be serializable to a byte stream representation.

Requirement 3: Complex Processing

UDF-heavy data ŕows cover a wide range of application classes. Stream-

relational operators such as projection, selection, as well as windowed aggre-

gations and joins are generally expressible within this model, as evidenced

by the powerful declarative SPL language of IBM Infosphere Streams [60]

and several Operator APIs the include stream-relational operators [10, 13].

It shall however be noted that the open-source engines currently lack con-

venient declarative frontends. Beyond purely stream-relational processing,

UDFs allow developers to integrate existing libraries to address complex ap-

plication requirements, e.g. text mining, video de- and encoding, image

manipulation to name just a few.

2https://github.com/apache/storm/tree/master/external/
3http://kafka.apache.org/
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Requirement 4: Fault-Tolerant Execution

Most engines ofer a type of fault-tolerance guarantee, such as rollback [13,

12, 104] or precise recovery [13, 4, 101, 60, 29, 129]. To achieve precise

recovery guarantees, UDF state needs to be restored in the event of failues.

For this reason all engines with precise recovery checkpoint UDF state and

can recover from failures based on those checkpoints.

Requirement 5: Latency Constraints

As pointed out in Section 2.1, any notion of łlowž or łhighž latency is entirely

application-speciőc. Despite that, none of the surveyed engines has the capa-

bility to deőne or enforce any type of application-speciőc latency constraints.

Conversely, their goal is to provide the łlowest latency possiblež. Generally,

it is the developer or operator of a particular stream processing application,

who must estimate the efects of engine conőguration and cluster resource

provisioning on application latency. Some of the state of the art engines are

elastic [13, 4, 101, 129, 104, 29], while some are not (yet) [10, 70, 94]. The

unelastic ones require cluster resources to be permanently provisioned for

peak-load in order to remain low latency in the face of varying and bursty

application workload. Furthermore, the particular workload characteristics

of an application are often unknown or unkowable in advance, which makes

peak-load provisioning both expensive and ineicient. The elastic engines

either do not specify a scaling policy [13, 101], or employ a policy that is

based on CPU utilization, stream rates or congestion. While all of these

policies prevent situations of overload, managing the execution towards ful-

őllment of application-speciőc latency constraints is not in their scope. In

order to obtain a desired latency, the parameters for these scaling policies ,

e.g. the target CPU utilization, must be obtained by estimated guesses or

trial-and-error.
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Chapter 4. Stream Processing with Latency Constraints

Today’s stream processing engines as presented in Section 3.3 excel at the

highly parallel, fault-tolerant and low latency execution of UDF-heavy data

ŕows. Although latency constraints are a common requirement of stream

processing applications [9], state of the art engines currently do not provide

facilities to formally express and enforce application-speciőc latency con-

straints.

This chapter addresses this gap and constitutes the principal contribution

of this thesis. The overarching question of this chapter is łHow can latency

constraints be enforced with minimal resource footprint?ž The challenge lies

in the conŕicting nature of the goals postulated in this question. Latency

constraints are much simpler to enforce if the resource footprint does not

matter. Conversely, if application latency is not much of a concern for the

application, there are no detrimental efects to resource underprovisioning.

The general approach in this chapter is to build on ś and occasionally mod-

ify ś several engine core functionalities that were summarized in Section 3.3.

First, Section 4.1 and Section 4.2 deőne a formal notion of latency and latency

constraints for UDF-heavy data ŕows. Section 4.3 introduces a distributed

feedback cycle that optimizes the execution of a stream processing applica-

tion towards fulőllment of application-deőned latency constraints. Each such

feedback cycle begins with the collection and aggregation of workload statis-

tics, which is covered in Section 4.4. The collected statistics provide input

for three optimization techniques that complete the feedback cycle. The őrst

one is Adaptive Output Batching (AOB), which is covered in Section 4.5.

The AOB technique reduces the often substantial data item shipping over-

head without violating latency constraints. The second technique is Elastic

Scaling (ES) and covered in Section 4.6. The ES technique adjusts the par-

allelism of an UDF-heavy data ŕow so that application-speciőc latency con-

straints are fulőlled. The third and őnal technique is Dynamic Task Chaining

(DTC) and covered in Section 4.7. The DTC technique reduces data ŕow

latency by dynamically switching the communication between subtasks from

queue-based asynchronous message passing to synchronous message passing

at selected locations in the data ŕow.
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Figure 4.1: Exemplary ŕow of data items in the Twitter Sentiments applica-
tion from Section 5.1.3.

4.1 Latency in UDF-heavy Data Flows

This section őrst discusses the challenges that need to be addressed in order to

obtain a useful notion of latency in UDF-heavy data ŕow graphs. Afterwards,

it provides a deőnition designed to address these challenges.

Let us őrst take a look at the data ŕow of the exemplary Twitter Sentiments

application from Section 5.1.3, that will also used during the experimental

evaluation in Chapter 5. Figure 4.1 maps a possible ŕow of data items to

wall-clock time. The TweetSource subtask emits each tweet twice into the

data ŕow: one copy to the branch that performs sentiment analysis, and one

to the hot topics branch, that computes the most popular topics people are

tweeting about. On the sentiment analysis branch, both Filter and Sentiment

subtasks operate on a per-data-item basis. On the hot topics branch, both the

HotTopics and HotTopicsMerger subtasks perform windowed aggregation,

hence data items they produce are based on a history of data items consumed

in the past.

How can we deőne a notion of latency for such an application? A őrst obser-

vation is that the Application Graph model for UDF-heavy data ŕow graphs

as described in Section 2.3 is time-agnostic. UDFs can choose to embed
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timestamps in data items if relevant to application semantics. For stream-

relational queries such as those found in CQL [14], notions of application

time have been described by Srivastava et al. in [111]. However, such seman-

tics are out of scope for an engine that executes UDF-heavy data ŕows, due

to the opaqueness of the application payload. In order to maintain the gen-

erality of the UDF-heavy model, a more natural notion of time is wall-clock

time. Consequently, latency can be deőned via the diference between points

in wall-clock time. In Figure 4.1 the time diference B − A is an example of

latency caused by data item transfer, including any network and queueing

delay. For subtasks such as Sentiment and Filter, that operate one a per-

data-item basis, a time diference such as E − D in Figure 4.1 adequately

captures the latency caused by processing. Still, several issues need to be

addressed for a useful notion of latency:

1. How to define latency for UDFs that perform aggregation operations?

UDFs such as those in the HotTopics and HotTopicsMerger subtasks

bufer consumed data items in order to produce an aggregate result at a

possibly much later point in time. Figure 4.1 shows an example of this.

Data item transfer 12 contains aggregated information from transfers 2

and 8. While the time diference C−B captures the amount of time the

őrst HotTopics task is busy with computation, it does not adequately

capture latency. Rather, the data item from transfer 2 incurs a latency

of G− B in the HotTopics subtask, while the data item from transfer

8 incurs a latency of G− F . Hence any attempt at a proper deőnition

of latency must not only account for time the UDF is busy, but also be

able to capture time intentionally łlostž during aggregation.

2. What is a useful notion of end-to-end latency? End-to-end latency is

an important performance metric for stream processing applications.

Hence a latency constraint should be deőned with respect to a notion

of end-to-end latency. Since UDF-heavy data ŕows can be arbitrarily

shaped DAGs, the semantic relationship between data items emitted at

sources and consumed at sinks is generally unknowable to the engine,

without making strong assumptions on application semantics. In the

Twitter Sentiments application, end-to-end latency for the hot topics

branch intuitively starts at the TweetSource and łendsž at the Filter

subtask, not at the Sink subtask. To complicate matters further, we
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may not only have multiple data parallel source and sink subtasks in

the application’s runtime graph, but also multiple task parallel source

and sink tasks in the template graph.

3. How to identify time critical parts of an application? A notion of end-

to-end latency is necessary but not suicient to enforce latency con-

straints. Any notion of end-to-end latency useful towards this goal

must be a composite value, that allows to clearly identify the time

critical portions of the data ŕow graph.

In summary, we need a composite deőnition of end-to-end latency for UDF-

heavy data ŕow graphs, that captures the delays caused by (i) data item

transfer (including message-passing and serialization overhead) and (ii) UDF

behavior (per-data-item vs. aggregation).

The remainder of this section őrst deőnes channel and subtask latency, that

capture delay caused by data item transfer and UDF behavior respectively.

From these two deőnitions, sequence latency is deőned as a composite notion

of end-to-end latency.

Definition: Channel Latency

Given two subtasks vi, vj ∈ V connected via channel e = (vi, vj) ∈ E, we

deőne the channel latency le(d) as the diference in wall-clock time between

the data item d exiting the UDF of vi and entering the UDF of vj. Channel

latency may vary signiőcantly between data items on the same channel due

to diferences in item size, network congestion, environmental efects (e.g.

JVM garbage collection) and queues that need to be transited on the way in

between.

Definition: Subtask Latency

Let us assume a subtask v with an inbound channel ein and an outbound

channel eout. We deőne the subtask latency lv(d, ein, eout) incurred by data

item d that is consumed from channel ein by task v as either Read-Ready or

Read-Write task latency.

Read-Ready (RR) subtask latency is the diference in wall-clock time between

(1) data item d being consumed from channel ein and (2) subtask v becoming

ready to read the next data item from any of its input channels. This deőni-
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tion is a good match for subtasks executing UDFs that perform per-data-item

computation. RR subtask latency is only deőned for subtasks with ingoing

channels, which rules out source subtasks.

Read-Write (RW) subtask latency is the diference in wall-clock time between

(1) data item d being consumed from channel ein and (2) the next time sub-

task v writes any data item to eout. This deőnition is a good match for UDFs

that perform computation based on more than one previously consumed data

item, e.g. aggregation. This deőnition has several implications. First, RW

subtask latency is undeőned on source and sink subtasks because they lack

incoming or, respectively, outgoing channels. RW subtask latency can be

inőnite if the subtask never emits for certain combinations of ingoing and

outgoing channels. Moreover, RW subtask latency can vary signiőcantly be-

tween subsequent data items, for example, if the task reads two items but

emits only one item after it has read the last one of the two. In this case the

őrst item will have experienced a higher task latency than the second one.

A UDF is expected to declare to the engine, which one of the two options

shall be used to measure subtask latency. By convention, we will quietly

assume RR subtask latency as the default and only explicitly mention the

use of RW subtask latency.

Definition: Runtime Sequence

A runtime sequence S = (s1, . . . , sn) with n ≥ 1 shall be deőned as an n-tuple

of connected subtasks and channels within the same runtime graph, i.e. each

si is either a subtask or a channel. For example, if s2 is a subtask, then s1
needs to be one of its ingoing and s3 one of its outgoing channels.

The őrst element of a runtime sequence is allowed to be either a non-source

subtask or a channel. The last element is allowed to be any type of subtask

or a channel.

Definition: Runtime Sequence Latency

Let us assume a runtime sequence S = (s1, . . . , sn), n ≥ 1 of connected

subtasks and channels. For a data item d entering s1, we can deőne the

runtime sequence latency lS(d) that the item d incurs as l∗S(d, 1) where
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l∗S(d, i) =



lsi(d) + l∗S(si(d), i+ 1) if i < n

lsi(d) if i = n

If si is a subtask, then lsi(d) is equal to its subtask latency lsi(d, si−1, si+1)

and si(d) is the next data item emitted by si to be shipped via the channel

si+1. If si is a channel, then lsi(d) is its channel latency and si(d) = d.

Runtime sequence latency hence provides a notion of end-to-end latency with

respect to a runtime sequence. Further, runtime sequence latency is fully

decomposable into channel and subtask latencies.

4.2 Latency Constraints

This section deőnes latency constraints as a formal expression of a non-

functional stream application requirements. In order to specify latency con-

straints, an application developer must be aware how much latency his or

her application can tolerate in order to still be useful.

First, this section introduces runtime constraints in order to obtain runtime

graph semantics for latency constraints. The subsequent deőnition of tem-

plate constraints utilizes these semantics to express latency requirements for

a template graph.

Definition: Runtime Constraint

A runtime constraint is a tuple c = (S, ℓ, t), where

• S is a runtime sequence,

• ℓ is a desired latency bound in an arbitrary but őxed time unit (e.g.

milliseconds),

• and t is a time span in an arbitrary but őxed time unit (e.g. seconds).

A runtime constraint expresses a desired upper latency bound ℓ for the arith-

metic mean of the runtime sequence latency lS(d) over all the data items

d ∈ Dt that enter S during any time span of t time units:



d∈Dt
lS(d)

|Dt|
≤ ℓ (4.1)
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For runtime graphs with high degrees of data parallelism, many runtime con-

straints may need to be speciőed to cover all runtime sequences. Therefore,

runtime constraints are neither directly speciőed nor explicitly materialized

at execution time. They are however relevant to the semantics of template

constraints, which we will deőne next.

Definition: Template Sequence

Analogous to a runtime sequence, a template sequence S shall be deőned as

an n-tuple of connected streams and tasks within a template graph. The őrst

element can be either a non-source task or a stream, while the last element

can be any type of task or a stream. Analogous to the way the template graph

fully induces the runtime graph (see Section 2.3), each template sequence S

induces a set of runtime sequences {S1, . . . , Sn}.

By tasksOf(S) we shall refer to the set of tasks within the template sequence

S. For example, if S = (v1, e1, v2, e2), then tasksOf(S) = {v1, v2}.

Definition: Template Constraint

A template constraint c = (S, ℓ, t) induces a set of runtime constraints

{c1, . . . , cn}, where ci = (Si, ℓ, t) is a runtime constraint on the i-th runtime

sequence Si induced by template sequence S.

Figure 4.2 presents an example that clariőes the relationship between tem-

plate and runtime constraints. Template constraints can be attached to a

template graph by an application developer. Attaching multiple template

constraints shall be possible under the condition that (i) their template se-

quences do not share any streams and (ii) the time span t is the same for all

template constraints.

Discussion

Usually, the degree of parallelism of a large scale stream processing applica-

tions is so high, that manual speciőcation or even just the explicit materializa-

tion of all possible runtime constraints is prohibitively expensive. The reason

for this is the combinatorial łexplosionž of possible runtime sequences within

such graphs. Hence, runtime constraints are strictly a backend concept, and

provide required semantics, but are not speciőed by an application developer

directly. Conversely, template sequences and constraints are frontend con-

cepts. An application developer can use template sequences to conveniently
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Figure 4.2: Relationship between template constraints, runtime constraints
and their respective sequences.

identify latency critical portions of the template graph, and template con-

straints to specify their concrete latency requirements. The engine can then

take steps to enforce the induced runtime constraints.

Runtime constraints do not specify a hard upper latency bound for every

single data item, but a statistical upper bound on mean runtime sequence

latency. In this context the purpose of the time span t is to provide a time

frame, in which constraint violations can be detected. With t → ∞ a run-

time constraint would cover all data items to ever pass through the runtime

sequence. In this case, it is not possible to evaluate during the execution

of the application, whether or not a runtime constraint has been violated.

The time frame t should be chosen low enough to ensure fast detection of

constraint violations and changes in workload characteristics, but also high

enough so that a reasonable amount of measurement data can be gathered.

In practice, choosing t = 5 s produced reasonable results.

It may be desirable to enforce harder latency bounds than mean latency, e.g.

a 99th latency percentile. While such performance metrics are relevant, it

is questionable whether meaningful hard upper bounds can be enforced in

practice, considering the complexity of most real-world setups and the violent

changes in workload characteristics, e.g. bursty stream rates, that real-world

applications have to deal with.
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4.3 Latency Constraint Enforcing: Overview

As described in the previous section, latency constraints can express the non-

functional latency requirements of a stream processing application. This sec-

tion őrst outlines the assumptions on engine architecture that the techniques

for constraint enforcing (AOB, ES and DTC) depend on. The remainder of

the section gives an overview of the three techniques and how they collab-

oratively optimize the execution of a stream processing application towards

application-deőned latency constraints.

4.3.1 Assumptions on Engine Architecture

As previously mentioned, a deliberate choice in the design of the AOB, ES

and DTC techniques is to build on ś and occasionally modify ś established

approaches to provide engine core functionalities as described in Section 3.3.

Unlike a clean-slate design approach, this has been beneőt of facilitating

the integration of the techniques into existing engines. In this spirit, the

techniques make the following assumptions on engine architecture:

• Deployment Architecture (see Section 3.3.1): A Master-Worker

deployment architecture is assumed. Not only is it the most common

deployment architecture in today’s engines, it also allows to create a

consistent view of the whole application on the master, which is useful

to some of the techniques presented in the remainder of this chapter.

• Scheduler (see Section 3.3.2): A scheduler with round-robin schedul-

ing or ś preferably ś colocation constraints shall be assumed. The DTC

technique relies on a schedule with colocated and pipeline-parallel sub-

tasks. While such a schedule can be the result of a round-robin sched-

uler, colocation constraints can be used to consciously create such a

schedule. Furthermore, the scheduler shall be able to (de)commission

new workers on-the-ŕy from a cluster resource manager, which is as-

sumed by the ES technique.

• Runtime (see Section 3.3.3): A runtime with a n/1/m thread model

to execute subtasks shall be assumed, i.e. n input queues per worker,

one thread per input queue and m adjacent, pipeline-parallel subtasks

bound to each thread. Despite n/1/m support, the initial default during
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execution shall always be m=1. The DTC technique in Section 4.7

adaptively adjusts the value of m during execution. Data items shall be

passed via asynchronous message passing between all threads, i.e. via

queues between subtasks on the same worker and via TCP/IP between

subtasks on diferent workers.

• Elasticity (see Section 3.3.5): The engine shall be able to horizon-

tally scale tasks at runtime. The ES technique described in Section 4.6

provides a scaling policy that controls horizontal scaling and relies on

the underlying scheduler to start and stop subtasks accordingly.

• Fault-Tolerance (see Section 3.3.4): Fault-tolerance functionality

is not assumed but considered orthogonal, as it is out of the scope of

this chapter.

4.3.2 Distributed Latency Constraint Enforcing

Let us assume an arbitrary stream processing application with a set of at-

tached latency constraints as deőned in Section 4.2. Figure 4.3 gives a bird’s

eye overview of how latency constraints are enforced at runtime. It shows a

distributed feedback cycle that starts with measurements of workload statis-

tics on workers. These workload statistics go through several aggregation

steps. The output of each step serves as input to the techniques for con-

straint enforcing. The techniques trigger actions that optimize the execution

of a stream processing application towards constraint fulőllment. This feed-

back cycle is completed once every conőgurable adjustment interval, in order

to obtain a system that adapts quickly to variations in application workload.

The adjustment interval should be chosen low enough so as to obtain a sys-

tem that adapts quickly, and high enough so that there is a suicient amount

of fresh workload statistics to act upon. In practice, an adjustment interval

of 5 s yielded a reasonably responsive system. In the following, we will take

a brief look at the components from Figure 4.3 in the order as they appear

in the feedback cycle.

Statistics Reporters

Statistics Reporters measure a set of workload statistics and report then to

Runtime Graph Aggregators (RGAs) once per measurement interval. Each

Statistics Reporter is tied to a subtask and its measurement logic is invoked
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Figure 4.3: Overview of distributed latency constraint enforcing.

from the subtask via callbacks. Statistics Reporters are described in more

detail in Section 4.4.

Runtime Graph Aggregators (RGAs) and Adaptive Output Batch-

ing (AOB) Managers

The task of tracking and enforcing runtime constraints on any central node

may impose undue overhead for this node or overwhelm it, especially for

large data ŕows with many subtasks and channels. Therefore, this task is

divided between workers. RGAs collect and cache workload statistics for all

subtasks and channels of a speciőc set of runtime constraints. The work-

load statistics within each RGA serve two purposes. First, they are used by

an AOB Manager on the same worker to reduce the often substantial data

item shipping overhead without violating latency constraints. The respec-

tive AOB technique as well as the placement of RGAs and AOB Managers

is described in detail in Section 4.5. The second purpose is summarization

to obtain runtime statistics for template graph entities (tasks and streams).
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Each RGA forwards so-called partial-summaries to the Template Graph Ag-

gregator (TGA) on the master. The process of summarization is described

in detail in Section 4.4.2.

Template Graph Aggregators (TGAs)

On the master, the TGA collects and caches the partial summaries received

from RGAs. Once per adjustment interval it merges the partial summaries

into one global summary per template constraint (see Section 4.4.2).

The Elastic Scaling (ES) Manager

Once per adjustment interval, the Elastic Scaling (ES) manager uses the

global summaries to determine whether scaling actions need to be taken in

order maintain a minimal but suicient resource footprint to fulőll the tem-

plate constraints of the application. The details of the ES technique are

described in Section 4.6. While the ESs manager determines when and how

much to scale, the engine’s scheduler determines where to start or stop spe-

ciőc subtasks. This may require the allocation of new workers from the Clus-

ter Resource Manager, or may lead to empty workers that can be terminated

to free unused cluster resources.

The Dynamic Task Chaining (DTC) Manager

Analogous to the ES Manager, a DTC Manager runs on the master and

acts upon the global summaries obtained once per adjustment interval. It

can decide to chain or unchain subtasks in order to reduce data ŕow la-

tency. Chaining removes intermediate queues between connected subtasks

and causes those subtasks to be executed within the same thread. Section 4.7

describes the Dynamic Task Chaining (DTC) technique in detail.

4.3.3 The Nephele Stream Processing Engine

The Nephele Stream Processing Engine (SPE) was developed as part of this

thesis and implements the overall engine architecture described in the pre-

vious sections, as well as the techniques for latency constraint enforcing de-

scribed in this chapter. Its name is derived from the parallel data processing

framework Nephele [20], that executes DAG-based data ŕow programs on

compute clouds and clusters. Although the Nephele SPE shares some of

the codebase with the Nephele framework, it has been heavily modiőed and
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extended for latency-constrained stream processing. In particular, the sched-

uler of the Nephele SPE is capable of reserving cluster resources on-demand

from the YARN cluster resource manager, using the deployment process al-

ready described in Section 3.2.3.

Note that the focus of this chapter is on concepts rather than engine-speciőc

implementations. Despite that, occasional implementation aspects will be

mentioned in this chapter, that intend to shed light on practical issues that

arose when creating the Nephele SPE.

4.4 Workload Statistics and Summaries

Each feedback cycle begins with the collection of workload statistics, that

are subsequently reported and summarized. They provide the input that the

AOB, ES and DTC techniques require to optimize the execution of a stream

processing application towards constraint fulőllment.

This section describes the process of workload statistics measurement, report-

ing and summarization in a bottom up fashion. Section 4.4.1 describes how

Statistics Reporters create workload statistics, while Section 4.4.2 describes

how workload statistics are summarized by RGAs and the TGA.

4.4.1 Statistics Reporters and Workload Statistics

A Statistics Reporter measures and reports a set of workload statistics to

RGAs once per adjustment interval. Conceptually, each Statistics Reporter

belongs to a subtask from which it receives callbacks to perform measure-

ments. Inside these callbacks it measures several aspects of the subtask as

well as of its channels. Once per adjustment interval, it aggregates those

measurements into workload statistics.

A workload statistic is a statistic (e.g. the mean) of a measurable aspect of a

subtask or channel and computed over the measurements performed during

an adjustment interval. For example, the mean channel latency le is the

mean of the channel latencies over all the data items sent through e during

the last adjustment interval. Additional workload statistics ś mostly means

and variances ś are required by each of the three techniques (AOB, ES, DTC).

Their full description is out of context at this point, as often their use can
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only be motivated in the context of the respective technique. Appendix A

lists and describes all collected workload statistics and shall serve as a point

of reference.

All workload statistics are measured using the same methodology. Each mea-

surable aspect of the workload is considered a random variable with generally

unknown probability distribution. Measurements are obtained by random

sampling, in order to minimize the measurement overhead. The sampling

procedure uses a Bernoulli design, where each candidate is sampled with the

same conőgurable probability. The workload statistic is estimated by com-

puting the respective statistic over the measured samples using numerically

stable algorithms, such as Knuth’s online algorithm for computing mean and

variance [67].

Implementation Notes

The sampling procedure for subtask statistics (e.g. mean subtask latency)

can be implemented by having subtasks invoke callback functions on their

respective Statistics Reporter. Via those callbacks, the Statistics Reporter

encapsulates the sampling procedure without any changes to the subtask

code. For example, let us assume that a data item is read from a channel by

subtask with Read-Ready subtask latency. Right after reading the data item,

the subtask invokes the callback of the Statistics Reporter, whose sampling

procedure might decide that a subtask latency sample should be taken. In

this case the Statistics Reporter memorizes the current system time. After

the UDF has processed the data item and all resulting data items have been

sent, the subtask invokes another callback. Now, the Statistics Reporter

can complete the sample by computing the diference between the previously

memorized and the current system time and adding the diference to the

mean subtask latency statistic. Channel statistics such as mean channel

latency can be estimated using tagged data items. A tag is a small piece

of data that contains a creation timestamp and a channel identiőer. Before

the sending subtask ships a data item it invokes a callback of the Statistics

Reporter, whose sampling procedue might decide to tag the data item. In

this case the tag is evaluated in a callback of a Statistics Reporter at the

receiving subtask, just before the data item enters the receiving UDF. While

the sender decides which data items to tag (sample), the receiver computes

the statistic. If the sending and receiving subtasks run on diferent workers,
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clock synchronization is required.

To further reduce overhead, the workload statistics collected on a worker

are grouped by the receiving RGA. Statistics Reporters on the same worker

merge their statistics into the same reports, so that only one report per

receiving RGA is sent per adjustment interval.

4.4.2 Workload Statistics Summaries

A so-called summary is an aggregation of workload statistics for the tasks and

streams of a template constraint. Once per adjustment interval each RGA

aggregates the workload statistics it has received into one partial summary

per template constraint. All partial summaries are shipped to the TGA on

the master and merged into one global summary per template constraint.

Global summaries are consumed by the ES and DTC techniques described

in Section 4.6 and Section 4.7.

Let us assume a template graph G = (V,E), a runtime graph G = (V,E)

and a template constraint c = (S,_,_). If stream e is part of the template

sequence S, then the global summary for constraint c contains

le =
1

n

n

i=1

lei , (4.2)

where e1, . . . , en are the n channels of e and lei is the mean channel latency

of ei. The global summary contains several other values that are computed

from their respective workload statistics. Analogous to workload statistics,

the concrete member values in summaries can only be properly motivated in

the context of the respective technique. For this reason, the description of

each technique in Section 4.6 and Section 4.7 brieŕy lists the values required

from the global summary.

Partial summaries are structurally identical to the respective global summary

created by the TGA. However, each RGA has workload statistics only for a

subset of all constrained subtasks and channels and hence computes a partial

summary from that data. In the above example, the value for le in each

partial summary is computed over a subset of of the channels of e. The

TGA merges those values to obtain the result of Equation 4.2.
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Note that RGAs are not deployed on every worker. Instead, they are deployed

in pairs with AOB Managers, as these require direct access to workload

statistics. The placement of AOB Managers (and therefore also RGAs) is

described in detail in Section 4.5.4.

4.5 Adaptive Output Batching (AOB)

Current state of the art stream processing engines such as Apache Storm [13]

ship data items immediately between producing and consuming subtasks.

This shipping strategy is natural őt with their goal to ofer the lowest pos-

sible latency. However, it is not optimal when designing a system that can

enforce latency constraints, while at the same time reducing cluster resource

consumption.

The łimmediate shippingž strategy does not account for the often high over-

head of network transport in many parts of the commodity technology stack,

especially for small data items. Shipping small data items one-by-one via

TCP/IP causes high overhead due to data item metadata, memory man-

agement, thread synchronization, ISO/OSI layer headers, system calls and

hardware interrupts.
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Figure 4.4: Efect of diferent data item sizes on achievable channel through-
put.

To illustrate the magnitude of this efect, consider a small stream processing

application that consists of only two subtasks: a sender and a receiver sub-

task connected by a single channel. The sender creates data items of őxed

size as fast as possible and sends them to the receiver subtask on a remote
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worker. The experiment was run several times for a range of data item sizes.

The results are depicted in Figure 4.4 that shows the effectively achievable

throughput in MBit/s for various data item sizes. The őgure shows that

the achievable throughput grows with data item size. With large data items

of 64 or 32 KB in size, we are able to almost fully saturate the 1 GBit/s

network link between the sender and the receiver. However, with small data

item sizes such as 128 bytes, the engine is unable to attain a data item

throughput of more than 10 MBit/s. This behavior is inherent to TCP/IP

networks, which is why the Nagle algorithm [93] has been designed to lower

the amount of small packets sent over the network. The mechanism by which

this is achieved ś bufering up outgoing data before shipping it ś increases

achievable throughput at the cost of increased latency.
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Figure 4.5: The efect of diferent output bufer sizes on channel throughput
and latency.

In the spirit of the Nagle algorithm, we can use this behavior towards enforc-

ing latency constraints ś if the constraints leave łslack timež. Sending data

items in larger batches trades of latency against achievable throughput. To

demonstrate this efect, consider a modiőed version of the previous example

application. Now, both the send rate as well as the data item size1 are őxed,

1Data item size is fixed at 128 bytes.
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and the sending subtask employs a simple batching strategy, that puts data

items into an output bufer of őxed size. The bufer is shipped only once it

is full. Figure 4.5 shows the achieved channel latency and throughput for

various send rates. The average latency from the creation of a data item

at the sender until its consumption at the receiver depends heavily on the

sending rate and the size of the output bufer. With only one created data

item per second and an output bufer size of 64 KB, it takes more than 222

seconds on average before a data item arrives at the receiver. At low send

rates, the size of the output bufer has a signiőcant efect on the latency.

With increasing send rate, the latency converges towards a lower bound. At

a rate of 108 data items per second, the system is again saturated resulting

in an average data item latency of approximately 50ms, almost independent

of the output bufer size. As a baseline, we also executed separate runs of

the application, where data items are shipped immediately. As a result, the

average data item latency was uniformly 38ms, independent of the sending

rate.

In summary, the simple batching strategy highlights an interesting trade-of

that exists in distributed stream processing: Output batching can be used

to trade of channel against achievable channel throughput. The resources

freed by the lower overhead of data shipping can then be used to lower the

resource footprint of the stream processing application, while still fulőlling

constraints. Putting the application developer in charge of this trade-of

assumes that (a) the engine allows him to specify output bufer or batch

sizes, (b) he can estimate the expected sending rates for all channels in the

application, and (c) the expected sending rates do not change over time.

For complex applications with many subtasks and channels this is not a

realistic expectation. Therefore, an automated and adaptive strategy for

output batching could alleviate this burden from the application developer.

4.5.1 Overview

The AOB technique trades of shipping throughput against shipping latency

in a workload-adaptive manner, so that the latency constraints of an appli-

cation are met with the lowest possible overhead. It consists of four parts,

each of which is covered in its own subsection:

• A modiőed data item shipping strategy for subtasks, where data items
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are batched until a certain output batch lifetime is reached. This part

is described in Section 4.5.2.

• The AOB Manager, that analyzes the workload statistics collected by

an RGA in order to set the output batch lifetime of latency constrained

channels. This part is covered in Section 4.5.3.

• A setup algorithm, that splits a runtime graph into subgraphs along

latency constrained runtime sequences. Each subgraph is assigned to an

AOB Manager, in order to distribute the overhead of latency constraint

enforcing. This part is described in Section 4.5.4.

4.5.2 The Output Batching Mechanism

The output batching mechanism shown in Figure 4.6 is a low-level mechanism

of the engine runtime to ship data items in a deadline-driven manner. At

any time, each channel e shall have up to one output batch as well as a

conőgured output batch lifetime oblte ≥ 0, with an initial default of oblte = 0

(immediate shipping). An output batch is a container data structure for

serialized data items and has a shipping deadline. Each subtask has an

associated Flush Thread, where output batches can be scheduled for shipping.

Once the deadline of a batch has expired, the Flush thread ships the batch

by handing it to the dispatcher of the engine runtime. Thus, shipping a data

item via a channel encompasses the following steps:

1. Check whether the channel has an existing output batch and, if not,

open a new batch. If oblte > 0, schedule the new batch at the Flush

Thread with deadline t + oblte, where t is the current system time. If

no new batch was opened, or oblte = 0, proceed with the next step.

2. Serialize the data item and add it to the output batch.

3. If oblte = 0, ship the batch immediately.

Note that the output batch lifetime of a channel is controlled by one or more

AOB Managers. In case of conŕicting output batch lifetimes requested by

two or more AOB Managers, the output batching mechanism always chooses

the lowest output batch lifetime.

Output batches can be eiciently implemented by serializing data items into

a large, őxed-size byte bufer. In this case, step (3) needs to be modiőed

to also ship an output batch if its underlying byte bufer is full, which may
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happen before its ŕush deadline expires. In general, a reasonable default size

for these byte bufers is in the 32 ś 64 KB range, because larger batches

do not yield a signiőcant increase in throughput (see Figure 4.4). However,

if data item sizes and rates can be accurately estimated prior to execution,

lower bufer sizes may yield similar results at lower memory consumption.
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Figure 4.6: Overview of the output batching mechanism.

4.5.3 Managing Output Batching

An AOB Manager controls the output batch lifetime of the channels in a

subgraph of a runtime graph. Its purpose is to enforce all runtime constraints

in that subgraph, while at the same time minimizing shipping overhead.

An AOB Manager analyzes the workload statistics collected by an RGA on

the same worker and conőgures the output bufer lifetime of channels in

its subgraph. The discussion of where to place AOB Managers and which

subgraphs to assign to them is deferred until Section 4.5.4.

For the remainder of this section, let us assume a template graph G = (V,E)

with induced runtime graph G = (V,E), as well as a template constraint c =

(S, ℓ, t) with induced runtime constraints C. An AOB Manager is responsible

for enforcing a subset C ′ ⊆ C of all runtime constraints. It is assumed that

its RGA receives workload statistics for a subgraph G′ = (V ′, E ′) of G that

contains all subtasks and channels part of the runtime constraints in C ′. At
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the end of each adjustment interval, the RGA holds the following workload

statistics:

lv ∀v ∈ V ′

(le, oble) ∀e ∈ E ′,

where

• lv is the mean subtask latency of v,

• le and oble are the mean channel latency and mean output batch latency

of e.

Please see Appendix A for a detailed description of the above workload statis-

tics.
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Figure 4.7: Example of the downstream/upstream subtask latency values
computed by Algorithm 1 and Algorithm 2. These values values are com-
puted by backward- and forward-propagation of subtask latency along the
template constraint.
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At the end of every adjustment interval, the AOB Manager executes Algo-

rithm 3, which sets an output bufer lifetime for each channel in G′. First, it

computes the downstream and upstream subtask latency for each constrained

element x ∈ E ′ ∪ V ′. The downstream subtask latency x.dsl of element x is

deőned as the maximum amount of subtask latency, that data items experi-

ence after having passed through x. Note that each element x may be part

of several runtime sequences, each one with its own total subtask latency.

As we do not know beforehand which way data items take, the downstream

subtask latency deőnition provides a worst case calculation. Downstream

subtask latency (dsl) is computed in Algorithm 1 by backward-propagation

of subtask latency through the subtasks and channels in G′. In the context

of the algorithm several helper functions are used:

• isStream(xi) tests whether element xi is a stream or not.

• channels(xi, E
′) returns the set of all channels in E ′ that belong to

stream xi.

• subtasks(xi, V
′) returns the set of all subtasks in V ′ that belong to task

xi.

Upstream subtask latency is deőned in an analogous manner and Algorithm 2

computes it by forward-propagation of subtask latency. Figure 4.7 shows an

example of downstream/upstream subtask latency values as computed by

Algorithm 1 and Algorithm 2.

Once usl/dsl values have been computed, Algorithm 3 proceeds by setting

a target output bufer lifetime e.oblt for each channel e of each stream in S.

By setting output batch lifetime e.oblt, we want to inŕuence the workload

statistic mean output batch latency oble, which is the mean delay data items

incur on the channel due to output batching.

Given a channel, line 6 őrst computes a desired mean output batch latency

targetObl for the channel, by subtracting the channel’s precomputed dsl and

usl from the available łtime budgetž given by the constraint ℓ, and equally

distributing the remainder over the channels of the constrained sequence.

This yields the available time budget per channel. In order to account for

the fact that channel latency also includes queueing and possibly network

transfer, we multiply this value with a factor 0 ≤ wob ≤ 1. The so called

output batching weight wob is a conőguration constant, that determines the

fraction of the time budget that should be spent on output batching.
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Algorithm 1 SetDownstreamSubtaskLatencies(G′, S)

Require: Runtime subgraph G′ = (V ′, E ′) and template sequence S =
(x1, . . . , xn)

1: x.dsl ← 0 for ∀x ∈ channels(xn, E
′) ∪ subtasks(xn, V

′)
2: for all i = n− 1, . . . , 1 do
3: if isStream(xi) then
4: for all e = (va, vb) in channels(xi, E

′) do
5: e.dsl ← vb.dsl + lvb
6: if va.dsl = undef then
7: va.dsl ← e.dsl
8: else
9: va.dsl ← max{va.dsl, e.dsl}

10: end if
11: end for
12: end if
13: end for

Algorithm 2 SetUpstreamSubtaskLatencies(G′, S)

Require: Runtime subgraph G′ = (V ′, E ′) and template sequence S =
(x1, . . . , xn)

1: x.usl ← 0 for ∀x ∈ channels(x1, E
′) ∪ subtasks(x1, V

′)
2: for all i = 2, . . . , n do
3: if isStream(xi) then
4: for all e = (va, vb) in channels(xi, E

′) do
5: e.usl ← va.usl + lva
6: if vb.usl = undef then
7: vb.usl ← e.usl
8: else
9: vb.usl ← max{vb.usl, e.usl}

10: end if
11: end for
12: end if
13: end for
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Algorithm 3 AdjustOutputBuferLifetimes(G′, C)

Require: Runtime subgraph G′ = (V ′, E ′) and template constraint C =
(S, ℓ,_) with template sequence S = (x1, . . . , xn)

1: SetDownstreamSubtaskLatencies(G′,S)
2: SetUpstreamSubtaskLatencies(G′,S)
3: for all xi in x1, . . . , xn do
4: if isStream(xi) then
5: for all e ∈ channels(xi, E

′) do
6: targetObl ← max{0, wob× (ℓ− e.dsl− e.usl)/countStreams(S)}
7: ∆← targetObl − oble
8: e.oblt← max{0,min{2× targetObl, e.oblt+∆}}
9: end for

10: end if
11: end for

Directly choosing the correct value of e.oblt that achieves oble ≈ targetObl

requires us to know the underlying distribution of data item inter-emission

times, which however is generally unknown and may change over time. Lines

(7) and (8) of Algorithm 3 address this challenge in an adaptive way. They

exploit the following property of the output batching mechanism. Let us

assume that output batches get ŕushed after an unknown number of n data

items have been written to it. Given that d1, . . . , dn are the individual delays

that the data items incur due to output batching, the equality

1

n

n

i=1

(∆ + di) = ∆ +
1

n

n

i=1

di

  

≈oble

(4.3)

holds. Adjusting the output batch lifetime by ∆, changes the delay of each

data item from di to di + ∆. The workload statistic oble gives us an esti-

mation of 1
n

n

i=1 di. Hence, from Equation 4.3 follows that adjusting e.oblt

by ∆ = targetObl − oble can be expected to yield the desired mean out-

put batch latency targetObl. Algorithm 3 thus őnds the correct value of

e.oblt to achieve oble ≈ targetObl within two adjustment intervals. The

őrst interval starts with the default e.oblt = 0 (immediate shipping) which

results in oble = 0 being measured. After the őrst interval, the algorithm

sets e.oblt = targetObl. After the second interval, the algorithm will com-
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pute the correct ∆ to achieve oble ≈ targetObl. In subsequent intervals,

e.oblt only needs to be adjusted if the workload changes, e.g. the data item

inter-emission time distribution or subtask latencies.

As mentioned in Section 4.5.2, some channels may not be able to batch data

items up to a desired output batch deadline, e.g. because the underlying

byte bufer of the batch is full before the deadline expires. In this case the

workload statistic oble is insensitive to changes in e.oblt ś no matter how high

we set e.oblt, we will never obtain oble ≈ targetObl. This case is dealt with

in line (8) of Algorithm 3 that limits e.oblt to a sensible range.

In terms of runtime complexity, Algorithm 3 is a multi-pass algorithm. The

channels of a runtime subgraph G′ = (V ′, E ′) are traversed twice to precom-

pute upstream/downstream subtask latencies. Afterwards, the channels are

traversed once more to set output batch lifetimes. The asymptotic runtime

complexity is however O(|E ′|).

4.5.4 AOB Setup

Each AOB Manager enforces a subset of the runtime constraints in a runtime

graph. This is a deliberate design decision to make the AOB technique

itself horizontally scalable, as the work of tracking and enforcing runtime

constraints can overwhelm any central node for large runtime graphs2. This

section describes a setup algorithm to determine how many AOB Managers

to instantiate and on which workers to place them.

Problem Definition

Let us assume a runtime graph G = (V,E), a template constraint c and its

set of induced runtime constraints C = {c1, . . . , cn}. It is the goal of the AOB

setup algorithm to split the runtime graph into m subgraphs Gi = (Vi, Ei)

with i = 1, . . . ,m each of which is to be assigned to an AOB Manager/RGA

pair. We shall say that Gi contains a runtime constraint c = (S,_,_), if

and only if e ∈ Ei and va, vb ∈ Vi for each channel e = (va, vb) in S. Lastly,

by constr(Gi, C) we shall denote the set of those runtime constraints in C

that Gi contains. The chosen subgraphs must fulőll the following conditions:

2An early version of the AOB technique published in [80] employed a single AOB Man-
ager that ran on the master, which caused the master to be overwhelmed for applications
with very high degrees of parallelism.
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1. For each runtime constraint c ∈ C there is exactly one subgraph Gi

with c ∈ constr(Gi, C), which implies



1≤i≤m

constr(Gi, C) = C.

2. A subgraph Gi does not contain any subtasks or channels that are not

part of the constraints in constr(Gi, C).

The subgraphs shall be optimized towards the following objectives:

1. The number m of subgraphs is maximized. This objective ensures that

the amount of work to be done by each AOB Manager is minimized

and thus reduces the impact on the application.

2. The number of common subtasks between subgraphs should be mini-

mized:

minimize
G1,...,Gm



1≤i≤m



j ̸=i

|Vi ∩ Vj|

If a subtask is part of more than one subgraph Gi, multiple AOB Man-

agers require workload statistics for it and its channels. This objective

reduces the amount of workload statistics that have to be shipped be-

tween workers.

For some runtime graphs, objectives (1) and (2) are contradictory. Since

the network traic caused by the Statistics Reporters can be assumed to be

negligible, the AOB setup algorithm prioritizes objective (1).

Setup Algorithm

After the engine has scheduled all subtasks, the master computes the sub-

graphs Gi = (Vi, Ei) and sends each one to a worker so that it can set up

the AOB Manager/RGA pair. Algorithm 4 describes a heuristic algorithm

to compute the subgraphs. It computes a set of AOB Manager allocations

in the form of tuples (wi, Gi), where wi is the worker supposed to run an

AOB Manager responsible for the runtime subgraph Gi. For each given

template constraint, it invokes GetAllocationsForSequence() that computes

AOB Manager allocations for a single constraint. If allocations from diferent
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constraints afect the same worker, the subgraphs of the two allocations are

merged using mergeGraphs().

Algorithm 4 ComputeAOBSetup(G, C)

Require: Template graph G and a set of template constraints C =
{c1, . . . , cn}

1: allocs← ∅
2: for all ci = (S,_,_) in C do
3: for all (wi, Gi) in GetAllocationsForSequence(G,S) do
4: if ∃(wi, G

∗
i ) ∈ allocs then

5: allocs← (allocs− {(wi, G
∗
i )}) ∪ {(wi,mergeGraphs(G∗

i , Gi))}
6: else
7: allocs← allocs ∪ {(wi, Gi)}
8: end if
9: end for

10: end for
11: return allocs

Algorithm 5 describes GetAllocationsForSequence() that computes AOB

Manager allocations for the template sequence of a single template constraint.

First, it invokes Algorithm 6 to determine an anchor task on the template

sequence. An AOB Manager will be allocated to each worker executing a

subtask of the anchor task. The function PartitionByWorker() partitions

the subtasks of the anchor task into disjoint subsets Vi of subtasks that run

on the same worker. With RuntimeGraphExpand() each such set Vi of sub-

tasks is then expanded to the runtime subgraph that the AOB Manager on

that worker shall be responsible for. RuntimeGraphExpand() can be imple-

mented by traversing the runtime graph in forward and reverse direction in a

depth-őrst manner, starting from the subtasks in Vi. Every constrained sub-

task and channel encountered during traversal is then added to the runtime

subgraph.

Finally, Algorithm 6 describes GetAnchorTask() that employs a simple heuris-

tic to pick an anchor task for a given template sequence. It starts with an

initial candidate set that contains all tasks covered by the template sequence,

which is determined by tasksOf() (see Section 4.2). The heuristic then re-

duces the candidate set in two steps. First, it retains only tasks whose

subtasks are executed on the highest number of workers. Then it invokes

cntChannels() to count the number of ingoing and outgoing channels each
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Algorithm 5 GetAllocationsForSequence(G, G, S)

Require: Template graph G, runtime graph G and template sequence S

1: v← GetAnchorTask(G,S)
2: allocs← ∅
3: for all V ∗ in PartitionByWorker(v) do
4: allocs← allocs∪{(worker(V ∗[0]), RuntimeGraphExpand(G, V ∗,S))}
5: end for
6: return allocs

candidate task has on the constrained sequence. It retains only the candi-

dates with the lowest number of channels. Finally, one of the remaining can-

didate tasks is chosen as anchor task in a random but deterministic fashion.

The rationale of this algorithm, is that the őrst reduction of the candidate set

maximizes the number of AOB Managers, which is the primary optimization

objective. The second reduction heuristically minimizes the overlap between

subgraphs of diferent AOB Managers, which is the secondary optimization

objective from Section 4.5.4. Choosing tasks with low numbers of channels

yields smaller and possibly less overlapping runtime subgraphs during expan-

sion by RuntimeGraphExpand() in Algorithm 4.

Algorithm 6 GetAnchorTask(G, S)

Require: Template graph G and a template sequence S

1: ret← tasksOf(S)
2: maxWorkers← max{cntWorkers(v)|v ∈ ret}
3: ret← ret \ {v ∈ ret|cntWorkers(v) < maxWorkers}
4: minChannels← min{cntChannels(v,S)|v ∈ ret}
5: ret← ret \ {v ∈ ret|cntChannels(v,S) > minChannels}
6: return ret[0]

In summary, the AOB setup algorithm splits the latency constrained part of

a runtime graph into a maximum number runtime subgraphs, whose overlap

is heuristically minimized. This is achieved by choosing an anchor vertex

and then building one runtime subgraph for each worker the anchor vertex

has been scheduled on. If there are multiple constraints, the procedure is

repeated once per constraint.

To determine the runtime complexity of the AOB setup, let us assume k

template constraints and a schedule that executes the application on m
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workers. The asymptotic worst case runtime complexity of Algorithm 4

is O(k(|V| + m(|V | + |E|))). The worst case occurs when the constraints

cover the whole template graph and the subtasks of adjacent tasks are con-

nected in an all-to-all manner. In this case the subgraphs of the AOB

Managers mostly overlap, which results in a complexity of O(|V | + |E|) per

RuntimeGraphExpand() invocation.

4.5.5 Summary

It is well known that the transmission latency and achievable throughput in

commodity TCP/IP networks are linked via the amount of bytes that are

sent per packet [93].

This section proposes a strategy to ship data items in batches that are as

large as possible, while still meeting latency constraints. The hypothesis

is that batching makes it possible to run stream processing applications on

fewer cluster resources at a higher utilization (compared to immediate data

item shipping), while still meeting application-deőned latency constraints.

Moreover, this section has presented a setup algorithm that distributes the

overhead of the AOB technique over as many AOB Managers as possible, in

order to make the technique itself horizontally scalable. The setup algorithm

splits the runtime graph into subgraphs and assigns each subgraph to an AOB

Manager, heuristically optimizing for a maximum number of subgraphs with

minimal overlap.

4.6 Elastic Scaling (ES)

So far, this chapter has discussed stream processing under the assumption of a

static but suicient cluster resource provisioning. The additional exploitation

of resource elasticity is necessary to support application workloads, where a

static, a-priori resource provisioning is impossible or prohibitively expensive.

In the following, we will motivate the ES technique based on experimenta-

tion with the PrimeTest application, that showcases the challenges of stream

processing under varying workload. Figure 4.8 shows the Application Graph

and respective schedule. The Source subtasks shall produce data items at a

step-wise varying rate, so that we can observe steady-state workload statis-
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tics at each step. Please refer to Section 5.1.2 for a full description of the

PrimeTest application.

Source
p=50

Prime Tester
p=200

Sink
p=50

Latency Constraint
(only in Nephele-20ms

configuration) ℓ=20 ms

Worker 1

...

Worker 50

...

Figure 4.8: Application graph and schedule of the PrimeTest application.

Experimental Setup

The PrimeTest application was implemented for Apache Storm [13] and the

Nephele SPE. Each run of the application was performed on the cluster

testbed described in Appendix B, with a static resource provisioning of 50

cluster nodes (200 CPU cores). The application was run with the following

four configurations :

• Storm: The application was run on Apache Storm3 with default set-

tings and deactivated fault tolerance functionality. Storm is optimized

towards the lowest latency possible, because it ships produced data

items immediately.

• Nephele-IS: The application was run on the Nephele SPE conőgured

with immediate shipping (no output batching). This conőguration is

equivalent to the Storm conőguration and ensures comparability be-

tween the Storm conőguration and those based on the Nephele SPE,

as the engines have diferent codebases.

• Nephele-16KiB: The application was run on the Nephele SPE mod-

iőed to use a simple őxed output batching strategy. Output batches

are implemented using 16KiB byte bufers on each channel. Each data

item is serialized into the bufer, and each bufer is only shipped when

full. This conőguration is optimized towards maximum throughput by

3Version v0.9.2-incubating
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sending data items in large batches. Larger bufer sizes than 16KiB

had no measurable impact on throughput.

• Nephele-20ms: The application was run on the Nephele SPE ex-

tended with the AOB technique as described in Section 4.5. In this

conőguration, the PrimeTest application declares a latency constraint

(S, 20ms, 5s), where the template sequence S is chosen as shown in

Figure 4.8. This conőguration trades of latency against maximum

throughput, by batching as much as possible while attempting to guar-

antee the 20 ms constraint.

Discussion of Results

Figure 4.9 shows the results of running the PrimeTest application with the

previously described conőgurations. It plots the performance metrics latency

and throughput for each conőguration (see description of Figure 4.9).

In the Warm-Up phase, all conőgurations can keep up with the attempted

throughput. Storm and Nephele-IS have the lowest latency of 1-2ms, due

to their use of the immediate shipping strategy. Nephele-20ms batches data

items as necessary to guarantee the 20 ms latency constraint. Nephele-16KiB

has a latency of almost 3s, because the 16KiB bufers on each channel take

a long time to be őlled.

During the őrst steps of the Increment phase, each conőguration has a step-

wise increasing but otherwise steady latency. This latency is caused by the

input queues of Prime Tester subtasks, that grows with each step. At later

steps the Prime Testers subtasks eventually turn into bottlenecks and their

input queues loose steady-state and grow until full. At this point backpressure

throttles the Source subtasks and each conőguration settles at its individual

throughput maximum. Backpressure is an efect that starts at overloaded

subtasks and propagates backwards through the runtime graph via input

queues and TCP connections.

When looking at the latency plot, Storm and Nephele-IS are the őrst conőgu-

rations to loose steady-state queue waiting time at roughly 180 s, as evidenced

by a sharp increase in latency. They are followed by Nephele-20ms at 300s

and by Nephele-16KiB at 360s. Once bottlenecks have manifested, the la-

tency of a conőguration is mainly afected by how long the input queues can

become. Since resources such as RAM are őnite, both Nephele and Storm
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Figure 4.9: Experimental results of running the PrimeTest application. The
plotted latency is the mean time that elapses between the emission of a data
item at a Source subtask and its consumption at a Sink subtask. The plotted
throughput is deőned as the mean rate at which the Source subtasks emitted
data items. In the throughput plot, solid lines indicate the effectively achieved
throughput. Conversely, the dotted line indicates the attempted throughput
as dictated by the current phase step.
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limit the maximum input queue length that bounds maximum latency. It is

noteworthy that a linear increase in throughput leads to a super-linear in-

crease in input queue waiting time at the Prime Tester subtasks. This efect

is present in every conőguration, but dominates latency in conőgurations

geared towards low latency. Moreover, it is important to note for Nephele-

20ms, that at the 240s threshold, the AOB technique fails to enforce the

constraint, because the steady-state queue waiting time has become domi-

nant.

When looking at the throughput plot, one can see that the conőgurations

with immediate shipping peak at ca. 40 × 103 data items per second. The

conőgurations using batching show a higher throughput, i.e. Nephele-20ms

peaks at 52× 103 data items per second (a 30% improvement), and Nephele-

16KiB peaks at 63× 103 data items per second (a 58% improvement).

In conclusion, while the AOB technique has a measurable impact on max-

imum efective throughput, it can only guarantee latency constraints up to

a certain point. This point is reached when either the steady-state input

queues have become so long, that the resulting waiting times make the con-

straint impossible to enforce, or when queues have lost steady-state length

and are growing due to bottlenecks. Thus, an engine that enforces latency

constraints has to also address the issue of queue waiting time. Preventing

bottlenecks is equally important, but rather mandatory than suicient.

4.6.1 Overview

The remainder of this section describes the ES technique that adjusts the

data parallelism of tasks with the goal of managing queue waiting time so

that latency constraints are fulőlled. It complements the AOB and DTC

techniques, because it ensures that a suicient amount of cluster resources is

provisioned at any time. It consists of two parts, each of which is covered in

its own subsection:

1. Once per adjustment interval (see Section 4.3), the TGA computes

a global summary per template constraint (see Section 4.4). The ES

Manager on the master uses the global summaries to initialize a latency

model. Its purpose is to estimate the amount of queueing latency of a

UDF-heavy data ŕow, when the degrees of parallelism of the tasks in
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the data ŕow are changed. The latency model and its assumptions are

described in Section 4.6.2.

2. The ES Manager then initiates the Elastic Scaler, that leverages the

latency model to decide how the parallelism of elastically scalable tasks

shall be adjusted. As a result, the Elastic Scaler issues scaling actions

to the scheduler of the engine. It is up to the scheduler to decide which

speciőc subtasks to start and stop on which workers. The Elastic Scaler

is covered in Section 4.6.3.

4.6.2 The Latency Model

The latency model is a core component of the ES Manager. Once initialized

with a global summary, it can be used to estimate the efects of scaling actions

on queue waiting time within a latency constrained template sequence. It is

based on the following assumptions:

1. Homogeneous Worker Nodes Workers that execute subtasks of the

same task must be suiciently similar in their main performance prop-

erties, i.e. CPU core speed and NIC bandwidth. Worker nodes that

are signiőcantly slower than their peers will introduce hot spot subtasks

that lag behind.

2. Effective Stream Partitioning The exploitation of data-parallelism

requires a way of partitioning data streams, so that each data item is

assigned to one or more partitions. A partitioning shall be effective, if it

avoids hot spot subtasks that incur a signiőcantly higher computational

load than other subtasks of the same task. Per the deőnition of Appli-

cation Graphs in Section 2.3, an upstream UDF instance decides which

downstream UDF instance(s) a data item shall be delivered to. Hence,

UDFs decide on the partitioning scheme to use, which is a natural

őt since an efective stream partitioning strategy is often application-

speciőc. As this is a load-balancing problem, existing solutions may be

applicable. A random or round-robin partitioning often delivers good

load-balancing properties. Some applications however require a stream

partitioning with grouping behavior, where data items have a key of

some sort and each downstream UDF processes only the data items
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with certain keys. In [46] Gulisano et al. present a load-balancing ap-

proach for data-parallel, stream-relational operators such as grouped

aggregates and equijoins. While not in the scope of the ES technique

presented in this section, such approaches are orthogonal.

3. Elastically Scalable Tasks A task shall be elastically scalable, when

changing the number of its subtasks does not impact the correctness

of the results it produces. Data-parallel subtasks may depend on their

stream partitioning scheme not only for load-balancing, but also to

maintain the correctness their results. During a scaling action, the

mapping between stream partitions and downstream subtasks has to

be adaptable ad-hoc. For stateless UDFs, e.g. simple mappers where

the input stream is partitioned in a round-robin fashion, this is not an

issue. The input of stateful UDFs, such as windowed joins, is usually

partitioned by a key and all data items with a particular key need to

be sent to the same subtask. An approach for data-parallel, stream-

relational operators can again be found in [46]. For stateful UDFs,

ChronoStream [129] describes a transparent state migration protocol

with low overhead. Again, these approaches are orthogonal to the ES

technique, as they ofer the underlying mechanisms to safely execute

scaling actions with stateful tasks.

Let us assume a template graph G = (V,E), its induced runtime graph

G = (V,E), a template constraint c = (S,_,_) and a global summary for

constraint c. Given that v1, . . . , vn are the constrained tasks in S, the global

summary shall contain

(Av, Sv, cAv , cSv , wv, lv) ∀v ∈ {v1, . . . , vn}

where

• Av is the mean inter-arrival time of data items at the input queues of

the subtasks in v,

• Sv is the mean service time4 of the subtasks in v,

4Service time is a queueing theoretic term, which describes the mean time a subtask is
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• cAv is the mean coeicient of variation of the data item inter-arrival

time of the subtasks in v,

• cSv is the mean coeicient of variation of the service time of the subtasks

in v,

• wv is the mean waiting time of data items at the input queues of the

subtasks in v,

• and lv is the mean subtask latency of the subtasks in v5.

All values in the global summary are computed from their respective work-

load statistics described in Appendix A.

Each subtask shall now be modeled as a so-called single-server queueing

system. The assumptions of homogeneous worker nodes and effective stream

partitioning minimize the diferences between workload statistics of subtasks

of the same task. Hence, we can apply available formulae from queueing

theory to the values in the global summary. Speciőcally, each subtask shall

be modeled as a GI/G/1 qeueing system, i.e. the probability distributions

of data item inter-arrival and service times are unknown. For this case,

Kingman’s formula [65] approximates the queue waiting time of the average

subtask in task v as

WK
v =


Svρv

1− ρv


c2Av

+ c2Sv

2



, (4.4)

where ρv = Sv

Av
is the mean utilization of the subtasks in v. The actual queue

waiting time wv of the average subtask in v has been obtained from the global

summary. Given that

wv =
wv

WK
v



:=ev

WK
v (4.5)

= evW
K
v , (4.6)

busy with a data item it has read from its input queue.
5This value is not required by the latency model, but by the Elastic Scaler later in this

section.
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we can use the newly introduced coeicient ev to łőtž Kingman’s approxima-

tion to the measured workload statistics. The core idea of the latency model

is to predict wv when v’s degree of parallelism changes. In this context, ev

ensures that we at least obtain the currently measured queue waiting time

for the current degree of parallelism. Without ev the model might lead to a

scale-down, when a scale-up would actually be necessary (or vice versa).

From the assumption of an efective stream partitioning, it follows that chang-

ing the parallelism of a task, anti-proportionally changes the average data

item arrival rate at its subtasks. Hence the utilization ρv becomes a function

ρv(p
∗) =

Svp(v)

Avp∗

where p∗ ∈ N>0 is a new degree of parallelism for v and p(v) is its current

degree of parallelism for which we have measurements in the global summary.

Since the utilization ρv is part of the Kingman formula in Equation 4.4, we

can estimate the queue waiting time as a function of p∗:

Wv(p
∗) := ev


Svρv(p

∗)

1− ρv(p∗)


c2Av

+ c2Sv

2



:= ev



Sv
2
p(v)

Avp∗ − Svp(v)


c2Av

+ c2Sv

2



Without loss of generality we shall assume all constrained tasks v1, . . . , vn

in S to be elastically scalable. By pmin
i ≤ p∗i ≤ pmax

i , i = 1, . . . , n we shall

denote their respective new degrees of parallelism to be chosen within user

speciőed limits pmin
i and pmax

i . The total estimated queue waiting time in S

can therefore be modeled as

WS(p
∗
1, . . . , p

∗
n) =

n

i=1

Wvi
(p∗i ). (4.7)

We can now use WS as a rough predictor of queue waiting time in a latency

constrained template sequence S, when varying the degrees of parallelism of
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the tasks within.

Note, that this makes the reasonable assumption that the service time Sv

and its coeicient of variation cSv are unafected by the change in parallelism.

The same assumption is made for cAv . One might argue that by changing

the data item inter-arrival time Av, its coeicient of variation cAv will also

change. Since the GI/G/1 queueing formula itself is an approximation, I have

chosen to neglect this efect and accept it as a source of prediction error.

4.6.3 The Elastic Scaler

After initialization of the latency model, the ES Manager triggers the Elastic

Scaler that decides how much the tasks of a stream processing application

shall be scaled. The Elastic Scaler consists of a set of algorithms that leverage

the latency model to determine such scaling actions.

In a bottom up fashion we will őrst take a look at the Rebalance and Resolve-

Bottlenecks algorithms. The top-level algorithm ScaleReactively őnalizes the

description of the Elastic Scaler, by showing when and how to employ Re-

balance and ResolveBottlenecks.

The Rebalance Algorithm

Based on an initialized latency model, the Rebalance algorithm shown in

Algorithm 7 chooses new degrees of parallelism for the tasks of a latency-

constrained template sequence. The goal is to minimize parallelism, while

satisfying the constraint. Rebalance is applicable if we have a global summary

for S and no bottlenecks exist, i.e. the utilization ρv of each constrained task

v is suiciently smaller than 1. See the ResolveBottlenecks algorithm for a

discussion of bottlenecks and their removal.

For a single template constraint (S, ℓ,_) with constrained tasks v1, . . . , vn

in S, the goal of Rebalance can be formulated as an optimization problem,

with a linear objective function and several side conditions. We must choose

new degrees of parallelism p∗1, . . . , p
∗
n ∈ N so that the total parallelism

F (p∗1, . . . , p
∗
n) =

n

i=1

p∗i (4.8)
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is minimized and the side conditions

WS(p
∗
1, . . . , p

∗
n) ≤ (1− wob)



ℓ−
n

i=1

lvi



(4.9)

p∗i ≤ pmax
i , ∀i = 1, . . . , n (4.10)

p∗i ≥ pmin
i , ∀i = 1, . . . , n (4.11)

hold, where the output batching weight ≤ wob ≤ 1 is a conőguration constant,

that determines the fraction of available channel latency that should be spent

on output batching. The output batching weight has been previously intro-

duced as part of the AOB technique in Section 4.5.3. Figure 4.10 shows an

example of the above optimization problem. While the example has multiple

optimal solutions, note the problem may also not be solvable due to the side

conditions.
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Figure 4.10: Example of the Rebalance optimization problem with three
exemplary tasks v2, v2, v3 with degrees of parallelism p1, p2, p3. The left plot
shows a hypothetical Wvi

(pi) for each of the exemplary tasks. For the right
plot, let us assume that the tasks are in a latency-constrained sequence S =
(v2,_, v2,_, v3), so that Inequation (4.9) is WS(p1, p2, p3) ≤ 15 ms. The
right plot shows a surface consisting of points (p1, p2, p3) where Inequation
(4.9) holds and p3 is minimal for given values of p1 and p2. Hence all points
below the surface do not fulőll Inequation (4.9), while all points above the
surface do not minimize the total parallelism F (p1, p2, p3). The lighter the
coloration of the surface, the lower the total parallelism. Optimal solutions
in the example have F (p1, p2, p3) = 153 and are marked in red. Note that
multiple optimal solutions exist.

The Rebalance algorithm in Algorithm 7 solves the above optimization prob-

lem. It is given a template constraint c and assumes that the values from

the global summary are available. Additionally, it is handed a set Pmin, that

contains a minimum required parallelism for each constrained task. Since

each invocation of Rebalance only deals with a single constraint, the parame-

ter Pmin ensures that the chosen degrees of parallelism of a Rebalance(c1, ...)

invocation, are not overwritten with lower degrees of parallelism by another

Rebalance(c2, ...) invocation. See the top-level ScaleReactively algorithm

for further details.
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Algorithm 7 Rebalance(c, Pmin)

Require: A template constraint c = (S, ℓ,_) where sequence S has tasks
v1, . . . , vn, and a set Pmin with minimum degrees of parallelism.

1: Ŵ ← (1− wob) (ℓ−
n

i=1 lvi
)

2: p← Array[pmax
1 , . . . , pmax

n ]
3: if WS(p[1], . . . , p[n]) ≤ Ŵ then
4: p[i]← p for ∀(vi, p) ∈ Pmin

5: while WS(p[1], . . . , p[n]) > Ŵ do
6: C = {i|i = 1, . . . , n where p[i] < pmax

i }
7: ∆i ← Wvi

(p[i] + 1)−Wvi
(p[i]) for ∀i ∈ C

8: ∆min ← min{∆i|i ∈ C}
9: idx← min{i ∈ C|∆i = ∆min}

10: p[idx]← p[idx] + 1
11: end while
12: end if
13: return {(vi, p[i])|i = 1, . . . , n}

Lines (2) and (3) in Algorithm 7 check whether it is possible to solve the opti-

mization problem, by testing if Inequation (4.9) can be fulőlled at maximum

parallelism. If so, it searches for a solution in a greedy manner, starting with

the minimum degrees of parallelism given by Pmin. The general idea of the

while-loop is to increment the parallelism of the task that yields the highest

decrease in queue waiting time, i.e. where the increment in parallelism is

most efective. More formally, a task vidx is chosen, so that incrementing its

parallelism p[idx] yields the highest decrease ∆idx in queue waiting time.

As previously described, the goal of the Rebalance algorithm is to őnd an op-

timal solution p∗1, . . . , p
∗
n, that minimizes the total parallelism F (p∗1, . . . , p

∗
n)

under certain side conditions. Rebalance achieves this goal, if the opti-

mization problem is solvable and Pmin = {(v1, p
min
1 ), . . . , (vn, p

min
n )}, i.e.

Pmin contains the user-speciőed minimum parallelism for each task. In this

case, line (4) begins the search for an optimal solution with p[i] = pmin
i

for i = 1, . . . , n. With each iteration of the loop, the parallelism of a

task is incremented that delivers the current maximum possible decrease

of the total queue waiting time WS. The monotonously decreasing nature

of WS and the Wvi
functions, renders the achievable decrease of WS smaller

with each iteration. Since each iteration chooses the task with the maxi-

mum achievable decrease of WS, we obtain an optimal solution at the last
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iteration. The presence of multiple optimal solutions is due to the dis-

crete nature of the p∗i values, which may result in the existence of an al-

ternative optimal solution p̂1, . . . , p̂n with F (p̂1, . . . , p̂n) = F (p∗1, . . . , p
∗
n) and

Ŵ ≥ WS(p̂1, . . . , p̂n) ≥ WS(p
∗
1, . . . , p

∗
n). If Pmin does not contain the user-

speciőed minimum for each task, Rebalance degrades to a heuristic.

Implementations of Rebalance can exploit the fact that all but one value

of C and ∆i can be reused between iterations of the while-loop. This en-

ables implementations to use standard data structures such as sorted sets,

that ofer add, remove and peek operations with log(n) runtime complexity.

Hence, Rebalance can be implemented with a worst-case runtime complexity

of O(n log(n)m), where n is the number of tasks in S and m is their highest

degree of parallelism.

The ResolveBottlenecks Algorithm

The previously presented Rebalance algorithm is only applicable if no bottle-

necks exist. Conversely, the ResolveBottlenecks algorithm is applicable when

we have a fresh global summary and at least one bottleneck task exists. Its

goal is to resolve the bottleneck by increasing the parallelism of the respective

task, so that Rebalance becomes applicable again at a later feedback cycle.

A task v shall be a bottleneck if it has a utilization ρv ≥ ρmax, where ρmax

is a value close to 1. For each such task we shall choose a new degree of

parallelism

p∗ = min{pmax, 2p(v)×max{1, ρv}}. (4.12)

The new degree of parallelism chosen by Equation 4.12 can be expected to

have a new utilization lower or equal to 50%. ResolveBottlenecks returns a

set, which contains a tuple (v, p∗) for each bottleneck task v it has found.

In general, ResolveBottlenecks is supposed to be a last resort. A bottleneck

task causes input queue growth, that eventually leads to backpressure, which

subsequently throttles upstream tasks. This degrades the usefulness of the

collected workload statistics due to several anomalies. First, while interme-

diate queues are not yet full, an upstream task can emit at a rate higher than

the service rate of the bottleneck task. This leads to a utilization higher than

100% at the bottleneck task, rendering the queueing formulae of the latency
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model unusable (see Equation 4.4). Second, once intermediate queues are

full, backpressure sets in and forces upstream tasks to wait before sending.

This manifests itself in an artiőcial increase of service time and subtask la-

tency at upstream tasks. In both cases, Rebalance is either not applicable

or will exhibit erratic scaling behavior, as accurate values in the global sum-

mary are not available. Due to this, ResolveBottlenecks will at least double

the parallelism of the bottleneck task, hopefully alleviating the bottleneck.

Putting it all together: ScaleReactively

ScaleReactively is the top-level algorithm, that decides when to apply Re-

balance and ResolveBottlenecks. Therefore, it encapsulates the core logic to

enforce latency constraints at a minimal degree of parallelism.

Algorithm 8 describes ScaleReactively in pseudo-code. Given a set of tem-

plate constraints, it iterates over the constraints in a random but determin-

istic order. For each constraint, line (3) tests whether the template sequence

of the constraint contains a bottleneck task. If necessary, line (4) invokes the

ResolveBottlenecks algorithm to alleviate bottlenecks. If no bottlenecks were

found, the Rebalance algorithm is invoked. Line (6) ensures that the set

Pmin given to Rebalance contains all tasks of the current template sequence

S, and that the user-speciőed minimum parallelism as well as the scaling de-

cisions of previous Rebalance invocations are respected. After all constraints

have been considered, the scaling actions resulting from the new degrees of

parallelism are triggered with doScale().

For applications with a single constraint or multiple non-overlapping con-

straints, Rebalance can őnd the minimum degrees of parallelism. In case of

template constraints that have a task in common, Rebalance degrades to a

heuristic, because Pmin will not contain the user-speciőed minimum for each

task. Template constraints that have streams in common are forbidden as

mentioned in Section 4.2.

The asymptotic worst-case runtime complexity of ScaleReactively is domi-

nated by the invocations of Rebalance. It becomes O(|C|n log(n)m) when

Rebalance is invoked for each constraint, where n is the highest number of

tasks among the constraints in C, and m is the highest possible degree of

parallelism among the tasks constrained by C.
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Algorithm 8 ScaleReactively(C)

Require: A set of template constraints C

1: P ← EmptyMap()
2: for all c = (S, ℓ,_) ∈ C do
3: if hasBottleneck(S) then
4: P.v← max{P.v, p∗} for ∀(v, p∗) ∈ ResolveBottlenecks(S)
5: else
6: Pmin ← {(v,max{pmin

v , P.v})|v ∈ tasksOf(S)}
7: P.v← p∗ for ∀(v, p∗) ∈ Rebalance(c, Pmin)
8: end if
9: end for

10: doScale(P )

4.6.4 Implementation Considerations

The ES technique as presented above has been implemented inside the Nephele

SPE. Like any implementation of a complex strategy in a dynamic system,

it needs to cope with some technical corner cases when scaling up and down.

Nephele’s scheduler can start new subtasks in parallel, hence large scale-ups

can be executed quickly, even if this requires the allocation of several new

workers from the cluster manager. However, the desired effects of scale-ups

are not instantly visible in workload statistics, especially after load bursts

have already caused long queues. Also, starting new tasks may initially

worsen channel latency, because new TCP/IP connections need to be estab-

lished. To give the application time to work of the backlog in queues and

stabilize workload statistics, the Nephele implementation of the ES tech-

nique remains inactive for three adjustment intervals after scale-ups have

been completed.

Conversely, Nephele’s scheduler can terminate subtasks only one-by-one, be-

cause intermediate queues need to be drained and the termination of each

subtask needs to be signaled to and conőrmed by upstream as well as down-

stream subtasks. However, no inactivity phase is required afterwards, be-

cause the efects of scale-downs have proven to be almost instantly visible in

workload statistics.

ES technique trades of utilization against queue waiting time, due to its

queueing theoretic nature. Latency constraints with a lot of łslackž time
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hence allow for very long queues, which implies very high utilization. Unfor-

tunately, a utilization close to 100% makes the application however suscepti-

ble to bottlenecks caused by minor ŕuctations in load and system dynamics.

The implementation of the ES technique deals with this issue, by setting

the minimum parallelism pmin of each task to either (a) the user-speciőed

minimum, or (b) the degree of parallelism that yields a utilization of 90%,

whichever value is higher. While this utilization threshold is conőgurable,

choosing it as 90% gives satisfactory results.

4.6.5 Summary

Both the AOB and DTC techniques depend on suiciently provisioned clus-

ter resources. In the context of enforcing latency constraints, a resource

provisioning is sufficient only if it prevents long input queues at subtasks,

that lead to constraint violations. It is a well known result from queueing

theory, that the waiting time at input queues depends on the queueing the-

oretic notion of utilization, which is the ratio of service time to data item

inter-arrival time.

This section has proposed the ES technique that employs elastic scaling as a

mean to manage utilization in a way that prevents long input queues from

violating the latency constraints declared by a stream processing application.

The ES technique therefore provides a scaling policy that triggers scaling

actions to be executed by the scheduler of an engine. The ES technique

is built around a queuing theoretic latency model to estimate the efects of

scaling actions on queue waiting time. At the end of each adjustment interval,

the latency model is initialized from summarized workload statistics. At this

point, an optimization algorithm (Rebalance) uses the latency model to őnd

the minimal degree of parallelism for each constrained task, so that latency

constraints are still fulőlled. Although the queueing formulae of the latency

model are meant for steady state systems, the hypothesis is that the repeated

execution of Rebalance (once per adjustment interval) makes the overall

approach reasonably adaptive to changes in application workload. Despite

that, it is still possible that bottleneck tasks occur due to abrupt changes

in application workload. As the resulting backpressure negatively impacts

the correctness of workload statistics, the Rebalance algorithm cannot be

applied. In this case the ES technique employs a simple fallback procedure

to resolve bottlenecks.
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4.7 Dynamic Task Chaining (DTC)

State of the art stream processing engines as described in Section 3.3 typically

map diferent subtasks to diferent threads and operating system processes.

While this facilitates natural scalability and load balancing between CPUs

and CPU cores, it also raises the communication overhead between subtasks.

In the most lightweight case, where subtasks are mapped to diferent threads

within the same process and communication is performed via shared memory,

the overhead consists of data item (de)serialization as well as the synchro-

nization and and scheduling of threads. Depending on the computational

complexity of the subtasks, the communication overhead can account for a

signiőcant fraction of the overall processing time.

A common approach to address this form of communication overhead is to

chain (also: fuse, group) communicating subtasks by executing them in a

single thread. This approach sacriőces pipeline parallelism to reduce com-

munication overhead. Examples can be found in numerous engines, such as

IBM’s System S [40] or COLA [64], an optimizer for System S stream process-

ing applications. A popular example in the area of large scale parallel data

processing are also the chained mapper functions in Hadoop MapReduce.

With regard to stream processing, chaining is an interesting approach to re-

duce overhead and processing latency at the same time. Typically, chains are

constructed before the application executes, so once it is running each chain

is statically bound to a single thread. In applications with steady load this

might be beneőcial since communication overhead is decreased and latency

constraints can be met more easily. However, when the workload varies over

the lifetime of the application, static chaining prevents the underlying op-

erating system from distributing the application workload over several CPU

cores. As a result, task chaining can also be disadvantageous if (a) the com-

plexity of the chained subtasks is unknown in advance or (b) the workload

the application has to handle is unknown or changes over time. This section

describes an approach for dynamic chaining, where chains are established

and dissolved at runtime.
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4.7.1 Overview

The Dynamic Task Chaining (DTC) technique reduces the latency of a

stream processing application by dynamically changing the binding of sub-

tasks to execution threads. It consists of the following parts:

1. A chaining mechanism, which is implemented on workers and provides

the underlying functionality to chain and unchain subtasks. This part

is described in Section 4.7.2.

2. Once per adjustment interval (see Section 4.3), the TGA on the master

computes global summaries (see Section 4.4). The DTC Manager uses

the summaries to compute how the current chaining setup should be

adjusted and informs workers of the new chaining setup. After intro-

ducing formal prerequisites in Section 4.7.3, an algorithm for dynamic

chaining is described in Section 4.7.4.

4.7.2 The Chaining Mechanism

By default, workers execute each subtask in its own thread of execution. Each

thread has an input queue that conceptually serves two purposes. First, it

provides the desired FIFO behavior of channels, i.e. it ensures that the data

items of each channel are consumed in the same order they were sent in. Sec-

ond, it enables thread-safe asynchronous message passing between subtasks.

The chaining mechanism replaces the queue between two adjacent subtasks

with a synchronous function call, which eliminates the cost of asynchronous

message passing, while maintaining FIFO behavior.

Worker

Execution ThreadInput Queue

(a) Unchained execution

Worker

(b) Chained execution

Figure 4.11: Chained and unchained execution of subtasks.

Figure 4.11 illustrates the diference between chained and unchained subtasks

for a worker running two pipeline-parallel subtasks. At runtime, workers

shall not only support chaining communicating subtasks, but also merging
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and splitting of chains. Adjacent chains on the same worker can be merged,

which requires the worker to take care of the input queue between them.

Simply dropping the content of the queue may not be acceptable, depending

on the nature of the application. Hence, the worker shall temporarily halt

the execution of the őrst chain and wait until the input queue of the second

chain has been drained. The thread of the second chain and its queue can now

be removed without loss of application data. This will temporarily increase

latency in this part of the runtime graph due to a growing input queue at the

őrst chain, that needs to be worked of after the chains have been merged.

Splitting a chain also requires the worker to brieŕy halt the respective thread

in order to move the subtasks after the split point to their own thread. This

is however a quick operation with negligible impact on latency.

Note that data items are passed by reference between the subtasks of a chain.

In order to make this safe and fully transparent to subtasks, we shall assume

data items to be immutable, i.e they cannot be altered after creation.

4.7.3 Formal Prerequisites

For the following deőnitions let us assume a stream processing application

with a template graph G = (V,E), induced runtime graph G = (V,E) and a

set of template constraints C. By vij we shall denote the j-th subtask of task

vi, whereas by w(vij) we shall denote the worker that vij has been scheduled

on.

Definition: Chain

A chain shall be a tuple (v1, . . . , vn) ∈ Vn with n ≥ 1 where

• vi ∈


(S,_,_)∈C tasksOf(S) for 1 ≤ i ≤ n,

• (vi, vi+1) ∈ E for 1 ≤ i < n,

• ∄(vi, v) ∈ E with v ̸= vi+1 for 1 ≤ i < n,

• ∄(v, vi) ∈ E with v ̸= vi−1 for 1 < i ≤ n,

• p(vi) = p(vj) for 1 ≤ i, j ≤ n,

• and for all 1 ≤ i < n and 1 ≤ j ≤ p(vi)

– |{(vij, v)|(vij, v) ∈ E}| = 1

– and ∃(vij, v) ∈ E with w(vij) = w(v).
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Less formally, a chain is a latency constrained path in the template graph,

where the inner tasks only have one ingoing and outgoing stream. All tasks

on the path have the same degree of parallelism, their subtasks are connected

by channels in a one-to-one pattern and run on the same worker.

Figure 4.12 shows an example of an application with multiple chains. Note

that for each constrained task, multiple chains may exist, depending on the

graph structure, constraints and decisions made by the scheduler. Moreover,

there is at least one chain per constrained task, since a chain can by deőnition

consist of only one task.

Definition: Primary Chain

The primary chain pc(v) of a latency constrained task v is the longest possible

chain the task is a part of.

Note that we can uniquely determine the primary chain for each constrained

task. This property follows directly from the deőnition of chains. Consider a

task v with two chains of equal length, e.g. (v0, v) and (v, v1). In this case,

(v0, v, v1) is also a chain for v and is longer. Unless v is part of another chain

with length three, (v0, v, v1) is its primary chain.

Definition: Primary Chain Partitioning

A primary chain partitioning for a constrained task v is a tuple (cn1, . . . , cnn)

where

• cn1, . . . , cnn are chains that do not have any tasks in common,

• and cn1 ⋊⋉ cn2 ⋊⋉ . . . ⋊⋉ cnn = pc(v), where ⋊⋉ merges two chains into

a new chain.

Less formally, a primary chain partitioning splits the primary chain of a

task into smaller chains. The longer the primary chain, the larger the space

of possible primary chain partitionings. The dynamic chaining algorithm

presented in the next section searches for a partitioning that best matches

certain optimization criteria.

4.7.4 Dynamic Chaining

The dynamic chaining algorithm presented in this section decides when and

which constrained tasks of a stream processing application to chain. Us-
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A
p=2

B
p=3

C
p=3

E
p=1

Worker 1 Worker 2

Worker 3

D
p=3

Chains:
(B), (C), (D), (E), 
(B,C), (C,D),
(B,C,D)

Primary Chain of B, C, D:
(B,C,D)

Primary Chain Partitionings:
((B),(C),(D)),
((B,C),(D)),
((B),(C,D)),
((B,C,D))

Figure 4.12: Example of chains, primary chains and primary chain partition-
ings.

ing the terminology of the previous section, the algorithm selects a suitable

primary chain partitioning for each primary chain in the template graph.

Problem Definition

The dynamic chaining algorithm shall optimize each primary chain partition-

ing towards the following objectives:

1. Minimize the number of chains in each primary chain partitioning with-

out introducing bottlenecks.

2. Minimize the diference in utilization between the chains in each pri-

mary chain partitioning.

The őrst objective ensures that chains are as long as possible without in-

troducing bottlenecks, which minimizes the number of intermediate queues.

The second objective ensures that the application workload is distributed as

evenly as possible over the chains in each primary chain partitioning. This

objective is motivated by the known behavior of queueing systems, where

the queue waiting time rises superlinearly with utilization. For example, it is

generally better to have two chains with medium utilization than to have one
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with low and one with high utilization. In some situations, the two objectives

may be contradictory, hence the őrst objective shall be the primary goal.

Dynamic Chaining Algorithm

Once per adjustment interval the DTC Manager on the master invokes Al-

gorithm 9 to compute the primary chain partitionings for a given template

graph and constraint set. First, findPrimaryChains() computes the set

of all primary chains within the template graph. Primary chains can be

computed by enumerating the tasks of constrained template sequences and

testing for the chain properties described in Section 4.7.3. Subsequently,

Algorithm 10 is invoked in order to determine a primary chain partitioning

for each primary chain. The function establishChains() issues requests to

workers to chain or unchain subtasks and merge or split existing chains, so

that the computed primary chain partitioning is established. The required

primitives for merging and splitting have been previously described in Sec-

tion 4.7.2.

Algorithm 9 chainTasks(G, G, C)

Require: A template graph G with induced runtime graph G and set of
template constraints C.

1: for all pc ∈ findPrimaryChains(G, G,C) do
2: establishChains(computePrimaryChainPartitioning(pc))
3: end for

Algorithm 10 computePrimaryChainPartitioning(pc)

Require: A primary chain pc = (cn1, . . . , cnn)
1: stdPcp← ((cn1), . . . , (cnn))
2: for all i = 1, . . . , n− 1 do
3: for all pcp ∈ enumeratePartitionings(pc, i) do
4: if maxUtil(pcp) ≤ ρmax and utilV ar(pcp) < utilV ar(stdPcp) then
5: return pcp
6: end if
7: end for
8: end for
9: return stdPcp

For a given primary chain, Algorithm 10 őnds a primary chain partitioning

that is heuristically optimized towards the objectives stated in the prob-
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lem deőnition at the beginning of this section. The algorithm relies on

enumeratePartitionings(pc, i) to enumerate all theoretically possible pri-

mary chain partitionings with i chains for a given primary chain pc. The

pseudo-code of this function is omitted for brevity. A simple way of enumer-

ating all possible partitionings is as follows. To partition a primary chain of

length n into i subchains, we need to choose i− 1 distinct split indices from

n− 1 available split indices. For example, if n = 5 and i = 3, then the split

indices can be enumerated as tuples (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).

Line (4) in Algorithm 10 checks whether the current partitioning is (i) safe

with regard to bottlenecks and (ii) has a utilization variance better than that

of stdPcp. To this end the utilization of a chain cn = (v1, . . . , vk) shall be

deőned as

util(cn) =
k

i=1

ρmax
vi

, (4.13)

where ρmax
vi

is the maximum utilization among the subtasks of vi and ex-

pected to be part of the global summaries. Please see Appendix A for a full

description of the related workload statistic, from which ρmax
vi

is computed.

Now, we can deőne the maximum utilization of a primary chain partitioning

pcp = (cn1, . . . , cnp) as

maxUtil(pcp) = max{util(cni)|i = 1, . . . , p}. (4.14)

Hence, maxUtil(pcp) estimates the maximum chain utilization to be ex-

pected, if the partitioning pcp were to be established. The value 0 < ρmax < 1

on the left side of line (4) shall be a conőguration constant that sets an upper

bound for maximum chain utilization. Its purpose is to provide a margin of

safety, so that minor variations in application workload do not immediately

cause bottlenecks. Choosing ρmax = 0.9 has been empirically determined to

be a safe setting.

On the right side of line (4) the utilization variance of a primary chain par-
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titioning pcp = (cn1, . . . , cnp) shall be deőned as

utilV ar(pcp) =
1

p

p


i=1



util(cni)−
1

p

p


j=1

util(cnj)

2

(4.15)

In summary, an enumerated partitioning will only be chosen as a solution if

(1) the partitioning does not introduce any bottlenecks (including a margin

of safety) and (2) it its utilization variance is lower than that of the default

partioning where each task is its own chain. The latter condition optimizes

the partitioning towards the second optimizaton objective, i.e. minimization

of the utilization diference between chains. At the same time, the order in

which partitionings are enumerated optimizes towards the őrst and primary

optimization objective, i.e. as few chains as possible.

The runtime complexity of Algorithm 10 is dominated by the number of

enumerated partitionings. The number of partitionings of a primary chain of

length n into i subchains can be determined using a combinatorial formula.

The number of partitionings equals the number of subsets with size i− 1 of

a set with n− 1 elements, which is

n−1
i−1


. At the same time, computing the

functions maxUtil() and utilV ar() has complexity O(n). Thus an invocation

of Algorithm 10 takes

n−1

i=1

n


n− 1

i− 1



= n


n−1

i=0


n− 1

i



−

n− 1

n− 1



= n2n−1 − n

computational steps. Hence Algorithm 10 has an asymptotic runtime com-

plexity of O(2|V|) in the worst-case. Algorithm 9 has therefore an asymptotic

worst-case runtime complexity of O(|E|+2|V|). Note that in practice, the ex-

ponential runtime complexity of Algorithm 10 should not be an issue. Com-

mon UDF-heavy data ŕows have rather low numbers of tasks, e.g. the largest

Storm-based stream processing application at Twitter has eight tasks [117].

Furthermore, in most real-world template graphs, the longest primary chain

will most likely be signiőcantly shorter than |V|.
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4.7.5 Summary

The overhead of data item (de)serialization as well as the synchronization and

and scheduling of threads can be a signiőcant source of latency, especially for

computationally lightweight subtasks. This section has proposed the DTC

technique, which is designed to reduce such overhead for subtasks running

on the same worker, that exclusively communicate with each other.

The decision where to establish a chain is made based on global summaries

and hence a chain is modeled with tasks (not subtasks). In order to es-

tablish such a chain, workers employ the chaining mechanism described in

Section 4.7.2, that changes the local mapping of subtasks to threads. The

dynamic chaining algorithm described in Section 4.7.4 decides which chains

to establish by heuristically trading-of two optimization goals. The primary

goal is to produce chains that are as long as possible without introducing

bottleneck tasks. The secondary goal is to distribute the workload as fairly

as possible over the chains, which minimizes the input queue length of the

threads that execute chained subtasks. The underlying hypothesis is that

this approach does lead to an overall reduction in latency, that makes la-

tency constraints easier to enforce.

4.8 Chapter Summary

This chapter presents a novel approach to express and enforce application-

speciőc latency constraints in UDF-heavy data ŕows.

The őrst challenge addressed in this chapter is to őnd a notion of latency

that (i) is capable of capturing the rich semantics of UDF-heavy data ŕows,

(ii) is measureable with low overhead, and (iii) provides suicient detail to

be instrumental in bounding latency. The proposed notion is based on av-

erage latency, which makes it possible to independently measure the latency

of subtasks and channels and compose an estimation of end-to-end (i.e. se-

quence) latency from these values. While measuring average latency may not

achieve the same signiőcance as measuring a high latency percentile, it also

provides several advantages. First, unlike online percentile calculation [63],

online average calculation has linear runtime and constant space complexity.

This has the beneőt of minimizing the measurement overhead. Second, since

queues are a major source of latency, the focus on average latency permits us
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to reason about queueing latency using the existing body of work in queueing

theory, which is instrumental in estimating the efects of elastic scaling.

This chapter further introduces a notion of latency constraints. Latency

constraints can be attached to an application by its developer and explicitly

declare the otherwise implicit latency requirements of the application to the

stream processing engine.

The main contribution of this chapter are however three techniques ś Adap-

tive Output Batching (AOB), Dynamic Task Chaining (DTC) and Elastic

Scaling (ES) ś that collaboratively enforce latency constraints. Based on

workload statistics that are continuously measured at runtime, they are de-

signed to autonomously optimize important execution parameters towards

constraint fulőllment.

The AOB technique decides when and how to ship data items in batches,

which trades of latency against shipping overhead. Its goal is to batch data

items as much as possible without violating the application speciőc latency

constraints.

The ES technique is a novel elastic scaling policy for distributed stream

processing engines. Based on a queueing theoretic model of the applica-

tion it scales-up or -down as required to bound queue waiting time, so that

application-deőned latency constraints are fulőlled. The ES technique opti-

mizes the parallelism of the application in manner that minimizes both over-

and underprovisioning with respect to what is required to enforce latency

constraints.

The DTC technique reduces the communication overhead between subtasks

scheduled on the same worker, by dynamically adapting the subtask-to-

thread mapping depending on measured workload statistics.

While each technique optimizes a separate aspect of the execution of a

massively-parallel stream processing application, they are designed to com-

plement each other. In particular, the ES and the AOB technique are tightly

coupled as they manage channel latency towards a common goal.
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This chapter conducts an experimental evaluation of the techniques for la-

tency constraint enforcing described in Chapter 4. The Nephele stream pro-

cessing engine, that has been developed as part of this thesis, as well as a

resource-managed commodity compute cluster at TU-Berlin are the basis of

all experiments in this chapter.

As a prerequisite and later point of reference, Section 5.1 describes three

exemplary stream processing applications that are used to investigate the

efectiveness of the techniques. Each of the following sections then shifts

the focus to one of the techniques, beginning with the AOB technique in

Section 5.2 and followed by the ES and DTC techniques in Section 5.3 and

Section 5.4 respectively. Section 5.5 summarizes the most important results

and concludes the evaluation.

The recommended reading order for this chapter is to start with the introduc-

tion of Section 5.1 and then proceed with the evaluation of the techniques,

starting with Section 5.2. The detailed descriptions of the applications used
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during the evaluation can serve as a point of reference while progressing

through the evaluations of the three techniques.

5.1 Experimental Stream Processing Applica-

tions

To experimentally evaluate the efectiveness of the techniques described in

Chapter 4, three stream processing applications were implemented on top of

the Nephele SPE. The table below gives a short overview of their deőning

properties. Each of the following sections describe an application in more

detail.

Livestream PrimeTest TwitterSentiments

Input Video feeds Random numbers JSON data (tweets)

Workload Multimedia

(Compute-intensive)

Numeric

(Compute- and I/O

intensive)

Natural Language

Processing & top-k

aggregation

(Compute-intensive)
Load Pattern Steady Stair-case Day/night & bursts

Constraints One (Src to Sink) One (Src to Sink) Two

Elastic No Yes Yes

Chainable Yes No No

5.1.1 Application 1: Livestream

The őrst example application is motivated by the idea of łcitizen journalismž,

where website users produce and broadcast live media content to a large

audience. The Livestream application groups related video feeds (e.g. by

GPS location), merges each group of video feeds into a single feed, and

augments the merged feeds with additional information, such as Twitter posts

or other social network content. The idea is to provide the audience of the

merged feeds with a broader view of a situation by automatically aggregating

related information from various sources. Figure 5.1 shows the structure of

the Application Graph.

The application consists of six distinct types of tasks. The őrst task is

VideoSource. Each of its subtasks acts as a TCP/IP server over which H.264

encoded video feeds enter the data ŕow. Each video feed has a resolution of
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Figure 5.1: Application Graph and schedule of Livestream application.

320×240 pixels and is H.264 encoded. VideoSource subtasks assign each feed

to a group of feeds, e.g. by GPS coordinates attached to the stream as meta

data. They chunk the binary data of each video feed into data items and

forward them to the Decoder subtask responsible for the group of the feed.

Decoder subtasks decompress the H.264 encoded video feeds into frames us-

ing the fmpeg library1 and forward the frames to a Merger subtask. Here,

the frames of each group are merged into a single frame, e.g. by tiling the

individual input frames in an output frame. After each merge, a Merger

subtask sends the merged frame to an Overlay subtask. An Overlay subtask

augments each frame with information from additional related sources, e.g.

it draws a marquee of Twitter feeds inside the merged video feed, which are

picked based on keywords or locations close to the GPS coordinates attached

to the merged video feeds. The resulting frames are then forwarded to an

Encoder subtask, that encodes them back to a H.264 video feed, resulting

in one H.264 encoded feed peer group. Finally, each of the encoded feeds is

forwarded in chunks to a BroadcastSink subtask, for distribution to a general

1http://www.ffmpeg.org/
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audience.

The Livestream application speciőes co-location constraints to the scheduler

of the Nephele SPE so that the depicted schedule is produced. As depicted

in Figure 5.1, the Decoder, Merger, Overlay and Encoder tasks have the

same degree of parallelism and their adjacent subtasks are scheduled on the

same worker. Each worker additionally runs one VideoSource and one Broad-

castSink subtask. As shown in Figure 5.1 the Livestream application has one

latency constraint that covers all tasks and streams between VideoSource and

BroadcastSink. As the Merger subtasks perform aggregation, their latency

shall be measured as Read-Write subtask latency (see Section 4.1).

Workload Characteristics

The Livestream application provides a workload with a steady computational

intensity. It provides an opportunity to observe the efects of the AOB tech-

nique on data item shipping latency eiciency. Moreover, the co-location

constraints lead to a primary chain that begins at the Decoder task and ends

at the Encoder task, thus creating an optimization opportunity for the DTC

technique. Due to implementation limitations, the Livestream application is

however not elastically scalable, as this would require the internal state of

the fmpeg de- and encoders to be migrated.

Application Parameters

Experiments that involve adaptive output batching use an output bufer size

of 32 KB in the implementation of the output batching mechanism. The

degree of parallelism of the latency constrained tasks is always 400. The

following parameters need to be set for each experiment:

• The number of incoming video feeds, which determines the load put on

Decoder subtasks.

• The group size, i.e. the number of video feed that are merged into the

same output video feed. Lower group sizes lead to more output video

feeds, which increases the load on Overlay and Encoder subtasks.

• The The upper runtime sequence latency bound ℓ of the constraint.

102



5.1. Experimental Stream Processing Applications

5.1.2 Application 2: PrimeTest

The PrimeTest application produces a step-wise varying computational load,

so that we can observe steady-state workload statistics at each step. Hence,

it is intended to be a micro-benchmark that clearly exposes certain aspects

of stream processing under varying load.
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(b) Schedule in elastic experiments.

Figure 5.2: Application graph and schedules of the PrimeTest application.

Figure 5.2 shows the application graph of the PrimeTest application. The

Source subtasks produce random numbers at a rate that varies over time, and

send them in a round-robin manner to Prime Tester subtasks, where they

are tested for probable primeness. The tested numbers are sent in a round-

robin manner to the Sink subtasks to collect the results. Testing for probable

primeness is a compute intensive operation if done many times. Hence, we

can control the computational load at the Prime Tester subtasks by control-

ling the send rate of the Source subtasks. The application progresses through

several phases and phase steps, each of which lasts one minute. During each

step, the Source subtasks send at the same constant rate, so we can brieŕy

observe a steady-state workload. The phases are deőned as follows:

1. Warm-Up: Numbers are sent at a low rate. This phase has one step

and serves as a baseline reference point.

2. Increment : Numbers are sent at step-wise increasing rates.

3. Plateau: Numbers are sent at the peak rate of the Increment phase for

the duration of one step.

4. Decrement : Numbers a sent at step-wise decreasing rates, until the

Warm-Up rate is reached again.
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The PrimeTest application shall have one template constraint as shown in

Figure 5.2, where the adjustment interval is set to t = 5s, and the constraint

time ℓ is varied between experiments.

Workload Characteristics

The PrimeTest application creates a workload with a stair-case load pattern.

The generated data items are small, as the only hold a 32 bytes random

number and some meta-data. Hence, the application generates a workload

where small data items are sent at high rates. Each incoming data items

triggers a compute intensive operation. Therefore, the overall computational

intensity of the application changes proportionally with the send rate of each

step. Since the UDF of the PrimeTester task is stateless, the task can be

elastically scaled if necessary for the purpose of the experiment.

Application Parameters

Several aspects of the PrimeTest workload can be varied between experi-

ments. For each experiment that involves adaptive output batching, the

output bufers used in the implementation of the output batching mecha-

nism shall have a őxed size of 16 KB. Note that choosing a larger size did

not have any efect.

The following parameters are őxed for each experiment, but can be varied

between experiments:

• The number of steps in the Increment and Decrement phases, as well

as the respective send rates.

• The degree of parallelism of all tasks and the type of schedule. We

shall use either an elastic or unelastic schedule, depending on the ex-

periment. The non-elastic schedule co-locates one Source and Sink

subtask as well as four PrimeTester subtasks on each worker. In con-

trast to that, the elastic schedule only co-locates a Sink subtask with

four PrimeTester subtasks on each worker.

• The upper runtime sequence latency bound ℓ of the constraint.
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5.1.3 Application 3: TwitterSentiments

The third example application is inspired by the many services that analyze

social media data to identify sentiments on speciőc topics, brands and com-

panies that may result in marketable trends234. The Merriam-Webster Dic-

tionary5 deőnes a sentiment as łan attitude, thought, or judgment colored or

prompted by feeling or emotion.ž According to [98], sentiment analysis łdeals

with the computational treatment of [...] opinion, sentiment, and subjectivity

in text.ž In the particular case of our example application, sentiment anal-

ysis is used to characterize a tweet’s sentiment with respect to a particular

topic as positive, neutral or negative. Figure 5.3 shows the structure of the

Application Graph. The application consists of six distinct types of tasks.

The TweetSource task receives JSON-encoded tweets via TCP/IP from out-

side the data ŕow and forwards each tweet twice: The őrst copy is sent

round-robin to a HotTopics subtask, that extracts popular topics such as

hashtags from the tweet. Each HotTopics subtask maintains its own list of

currently popular topics, sorted by popularity, and periodically forwards this

list to the HotTopicsMerger subtask. The HotTopicsMerger subtask merges

the partial lists it receives into a global one. The global list is periodically

broadcasted to all Filter tasks. The second copy of each incoming tweet is

sent round-robin to a Filter subtask that matches it with its current list of

popular topics. Only if the tweet concerns a currently popular topic, it is

forwarded to a Sentiment subtask, that attempts to determine the tweet’s

sentiment on the given topic. Our implementation of the Sentiment UDF

delegates sentiment analysis to a library6 for natural language processing.

Finally, the result of each sentiment analysis (positive, neutral, negative) is

forwarded to the SentimentSink subtask, that tracks the overall sentiment

on each popular topic.

As depicted in Figure 5.3, the TitterSentiment application has two latency

constraints. The őrst constraint convers the branch of the data ŕow that de-

tects popular topics, whereas the second one covers the branch that performs

sentiment analysis. The HotTopics and HotTopicsMerger subtasks perform

2http://www.buzztalkmonitor.com/
3https://semantria.com/
4http://www.webmd.com/
5http://www.merriam-webster.com
6http://alias-i.com/lingpipe/
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Figure 5.3: Application Graph structure and schedule of the TwitterSenti-
ments application with elastic tasks.

aggregation, hence their latency is measured as Read-Write subtask latency

(see Section 4.1).

The application contains three elastically scalable tasks, i.e. HotTopics, Filter

and Sentiment. To simplify subtask placement during scaling, only subtasks

of the same type are co-located on a worker. This increases the probability

that workers can be deallocated afer scale-downs.

Workload Characteristics

The workload of the TwitterSentiments application is driven by the rate of

arriving tweets. The TweetSource task replays a 69 GB dataset of JSON-

encoded, chronologically ordered English tweets from North America logged

via the public Twitter Streaming API during a two-week period in August
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2014. The tweet rate of the original data set is depicted in Figure 5.4. As

visible from the diagram, the tweet rate is highly variant with signiőcant daily

highs and lows and contains occasional bursts, such as the one on August

13th. Note that during the experiment the tweet rate is 200x that of the

original tweet rate.
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Figure 5.4: Tweet rate of the 69GB data set over a two week period. The
data set is replayed at 200x speed, so that the data from two weeks is replayed
within 100 minutes.

Application Parameters

Experiments that involve adaptive output batching use an output bufer size

of 16 KB in the implementation of the output batching mechanism. The

elastic tasks (Filter, Sentiment and HotTopics) have a minimum, maximum

and initial parallelism of 1, 100 and 4 respectively. While the slack times of

the two latency constraints are chosen individually for each experiment, the

adjustment interval is always t = 5 s.

5.2 Evaluation of the AOB Technique

This section conducts an experimental evaluation of the AOB technique de-

scribed in Section 4.5. To gain a better understanding of its efects, the AOB

technique is employed in isolation in this section. In Section 5.2.1 we begin

by an initial experiment that demonstrates the overall efect of the AOB tech-

nique. In Section 5.2.2 and Section 5.2.3 we evaluate the efectiveness and

limitations of the of the AOB technique for a range of application workloads.
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5.2.1 Experiment 1: Livestream

In the őrst experiment we take a look at the Livestream application run-

ning on the Nephele SPE with only the AOB technique (no DTC or ES).

For this experiment, cluster resources were manually provisioned to be sui-

cient. Figure 5.5 shows the results and describes the setup parameters of the

Livestream application with a 100 ms template constraint.

0
1
0

3
0

5
0

7
0

L
at

en
cy

 [
m

s]

0
5
0

1
0
0

W
or

ke
r 

C
P

U
U

ti
li

za
ti

on
 [

%
]

0 50 100 150 200 250 300 350 400 450 500 550 600

Application Runtime [s]

Mean:  38.9 % / Standard Deviation:  5.7 %

Encoder

Overlay

Merger

Decoder

Tansport & Queueing

Output Batching

Min / 95th Percentile 

Figure 5.5: Latency and worker CPU utilization of Livestream application
with 3200 video feeds, group size 4 and a 50 ms constraint. Please see
Section 5.1 for further details. Latency is plotted as one bar per adjustment
interval, based on values from the respectiv global summary. Hence, the bars
and their subars capture mean latencies. Additionally, the sink subtasks
track per-data item latency and compute the minimum and 95-th latency
percentile.

As visible in Figure 5.5 the engine starts with the default immediate shipping

strategy. The AOB technique determines the correct parameters for the

output batch lifetime after a few intervals and which stabilizes mean latency

after around 20 seconds. After stabilization, the average runtime sequence

latency (height of bars) settles at around 40 ms and remains there until the

application is terminated. This is due to two efects. The őrst is that the

AOB technique uses a őxed output batching weight to allow for some queueing

latency on each channel without endangering the constraint (see Algorithm 3

in Section 4.5.3). However due to low load, queueing latency is negligible in

this conőguration, therefore some of the łslack timež of the 50 ms constraint
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is not used. The second reason is the implementation strategy of the output

batching mechanism, which relies on őxed size output bufers of 32 KB in

this experiment. These bufers őll up very quickly on channels that transport

decoded images, especially between the Decoder and Merger subtasks, which

results in these bufers being shipped ahead of their deadline.

Note that this experiment does not yet show any benefits of adaptive output

batching over the default immediate shipping strategy. However, it shows

that the AOB technique works as expected, i.e. that it batches emitted data

items as much as application-speciőc latency constraints allow. In some cases,

output batches are shipped ahead of their deadline because the underlying

őxed size bufer was full. While this is an efect of the implementation of

the output batching mechanism, it has the positive side efect of preventing

batching beyond a point that will under no conditions improve throughput.

As already shown in Figure 4.4 in Section 4.5, bufers larger than 32 KB

show little impact on achievable channel throughput, hence making 32 KB a

reasonable choice.

5.2.2 Experiment 2: Load and Constraints (Livestream)

In a second experiment, we will vary the load and latency constraints of the

Livestream application in order to gain a better understanding of the efects

of the AOB technique under various conditions.

The results shown in Figure 5.6 compare the efects of the immediate shipping

strategy against adaptive output batching. Choosing the number of ingoing

video feeds and the group size afects the load of the application, hence each

subplot shows the results of a certain load level. Conőgurations with more

ingoing video feeds put a higher load on Decoder subtasks, whereas conőgu-

rations with lower group sizes put a higher load on the Overlay and Encoder

subtasks. While resources were suiciently provisioned in all the conőgura-

tions displayed in the plot, it can be observed that higher load leads to higher

variation in latency, regardless of whether constraints are set or not. In fact,

the őgure shows that adaptive output batching does not ofer any beneőt

over immediate shipping in the Livestream application. For each load level

(subplot), immediate shipping does give a lower and steadier latency. This is

likely due to the fact that data item sizes in the Livestream application are

already too large to reap the beneőts of output batching. Data items in this
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application are either compressed video frames, or uncompressed bitmaps.

In the őrst case, due to the way H.264 video compression works, key frames

appear in regular time intervals (e.g. every one or two seconds) in each video

feed. A key frame contains all the necessary information to decode on full

resolution image of the video feed and is hence several KB large. In the sec-

ond case, once video frames have been decompressed by a Decoder subtask,

they are bitmaps of approx. 300 KB size, thus each bitmap spans several

32KB output bufers, leaving little optimization potential for adaptive output

batching.
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Figure 5.6: The őgure shows the latency of the Livestream application under
various workload and constraint conőgurations. Each conőguration was run
three times for three minutes. The boxplot of each conőguration shows the
distribution of the mean runtime sequence latency (computed from the global
summary) over all adjustment intervals of all runs with that conőguration.
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5.2.3 Experiment 3: Load and Constraints (PrimeTest)

In the third experiment presented in this section we shall employ the Prime-

Test application to explore the efects of the AOB technique for a range of

load levels and constraints. In the PrimeTest application we can adjust the

load in a much more őne grained manner by choosing a őxed send rate at

the Source subtasks.

The results of the PrimeTest application are shown in Figure 5.7. Several as-

pects stand out in the results. The őrst is that conőgurations with immediate

shipping consistently have the highest CPU utlization, which indicates a sig-

niőcant overhead for immediate shipping of small data items. The dominant

pattern in the plot is that higher constraints lead to lower CPU utilization

and shift the manifestation of bottlenecks to higher send rates. As indicated

by the CPU utilization plot, bottlenecks manifest because the application

becomes I/O -bound rather than CPU-bound. With immediate shipping,

the highest send rate without bottlenecks is 40k data items per second. In

comparison to that, the last send rates without bottlenecks are 50k, 55k,

55k and 60k data items per second for the conőgurations with a 25 ms, 50

ms, 75 ms and 100 ms constraint respectively. When looking at the rates

where constraints are still fulőlled, a similar trend emerges. The higher the

constraint is chosen, the higher is rate at which the constraint can still be

enforced. For example, 25 ms constraint can be enforced at rates up to 45k

data items per second, whereas the 75 ms constraint can be enforced at rates

up to 55k data items per second.
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Figure 5.7: The őgure shows the latency and mean worker CPU utilization
of the PrimeTest application for various conőgurtions (send rate and con-
straint). The application was run with 50 Source and Sink subtasks as well as
200 PrimeTester subtasks, using the unelastic schedule shown in Figure 5.2,
which resulted in 50 allocated workers. The application was conőgured with
only one phase and with one step, in which data items are sent at a őxed
rate. Each data point is the result of running the application three times
for three minutes with the respective conőguration, and computing the mean
latency/CPU utilization over the adjustment intervals of those runs. Conőg-
urations with bottlenecks, where the achieved send rate was lower than the
attempted rate are marked in red.

In summary, adaptive output batching allows to operate the I/O intensive

PrimeTest application at higher rates with lower CPU utilization. Hence, in

suitable appplications, this efect can can be exploited by the ES technique to
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scale down while still fulőlling the constraint. Positive efects for CPU-bound

applications that ship data items at high rates can be expected as well.

5.3 Evaluation of the ES Technique

This section provides an experimental evaluation of the ES technique based

on the implementation inside the Nephele SPE described in Section 4.6.4.

While the ES technique is the focus of experimentation in this section, all

experiments also employ the AOB technique. The rationale behind this, is

that the optimization techniques in this thesis are designed to be used in

conjunction. Section 5.3.1 evaluates the ES technique based on the Prime-

Test micro-benchmark. Section 5.3.2 evaluates the technique based on the

TwitterSentiments application, that provides a heavily ŕuctation real-world

workload.

5.3.1 Experiment 1: PrimeTest

In this experiment we compare the results of running the PrimeTest appli-

cation in two conőgurations, each of which is scheduled with 32 Source and

Sink subtasks. The conőgurations are as follows:

• Elastic: In this conőguration, the application is attached with a 20 ms

latency constraint. The Nephele SPE tries to enforce the constraint by

applying the AOB and ES techniques. The Prime Tester task is elastic

with a parallelism ranging from pmin = 1 to pmax = 392.

• Unelastic with fixed buffers: This conőguration provides a point of

comparison to judge the resource eiciency of the elastic conőguration.

The unelastic conőguration is optimized towards maximum throughput

and implements a simple batching strategy with őxed-size 16KB byte

bufers on each channel. Each data item is serialized into a bufer, and

bufers are only shipped when full. The parallelism of the Prime Tester

task is őxed to 175 subtasks. This value has been manually determined

to be as low as possible, while at the same time not leading to overload

with backpressure at peak rates.
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In both conőgurations, the PrimeTest application goes through the phases

described in Section 5.1.2. The send rate of each Source subtask ranges

from 10k to 80k data items per second and changes in steps of 10k. Note

that running the application with lower constraints or immediate shipping

improved the 95th latency percentile, but also resulted in conőgurations that

were not able to sustain the peak send rate due to I/O bottlenecks.

Figure 5.8 shows the results of both running the application in both con-

őgurations. In the elastic conőguration, the constraint could be enforced

ca. 91% of all adjustment intervals. There is one signiőcant constraint vi-

olation when the send rate doubles from 10k to 20k data items per second,

while transitioning from the Warm-Up to the Increment phase. The rea-

son for this is that during the Warmup phase, the PrimeTester parallelism

dropped to 36 subtasks, which is a desired efect of the Rebalance algorithm,

as it is designed to minimize resource consumption while still fulőlling the

constraint. All other Increase phase steps resulted in less severe and much

shorter constraint violations that were quickly addressed by scale-ups, be-

cause the relative increase in throughput decreases with each step. Since

the ES technique is a reactive scaling strategy, constraint violations result-

ing from large changes in workload are to be expected. Most scale-ups are

slightly larger than necessary, as witnessed by subsequent scale-downs that

correct the degree of parallelism. The overscaling behavior is caused by (i)

the queueing formula we use, which is an approximation, and most impor-

tantly (ii) by the error coefficient ev (see Equation 4.5 in Section 4.6.2), which

can become overly large when bursts of data items increase measured queue

latency. However, we would argue that this behavior is useful, because it

helps to resolve constraint violations quickly, albeit at the cost of temporary

over-provisioning.

The 95th latency percentile is ca. 30 ms once scale-ups have resolved tem-

porary queue build-up, and is naturally much more sensitive to changes in

send rate than the mean latency. Since most of the latency is caused by

(deliberate) output batching, 30 ms is within our expected range.

The unelastic but manually provisioned baseline conőguration is optimized

towards maximum throughput and tuned to withstand peak load with mini-

mal resource consumption. In consequence, both mean latency and the 95th

latency percentile are much higher and do not go lower than 348 ms and
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Figure 5.8: Result of running the PrimeTester application with and without
elastic scaling.
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Constraint
20 ms 30 ms 40 ms 50 ms 100 ms

Intervals with fulfilled constraint 92.6% 92.2% 94.1% 94.1% 95.1%

95th latency percentile 30 ms 45 ms 56 ms 73 ms 128 ms
Subtask Hours (PrimeTester) 50.8 46.4 44.3 41.8 37.6
Worker Hours 21.9 23.8 20.2 19.7 18.6
Mean Worker CPU Utilization 65.9% 69.5% 70.2% 71.8% 73.9%

Table 5.1: Latency-resource trade-of for the elastic PrimeTest application.

564 ms respectively. We measure resource consumption in łsubtask hoursž

and łworker hoursž i.e. the amount of running subtasks and workers over

time. Despite manual tuning, the amount of consumed subtask hours is al-

most equal to the elastic conőguration. While the two conőgurations are at

par in this respect, we should consider that choosing a higher latency con-

straint can be expected to yield lower resource consumption. To investigate

the magnitude of this latency-resource trade of, the elastic conőguration was

executed again with the same workload but diferent constraints. The results

are summarized in Table 5.1. The tableshow savings in worker hours of up to

13% for a 100 ms constraint, compared to the unelastic conőguration, which

still has more than three times the latency.

In summary, this experiment has shown that the combination of the ES

and AOB techniques is efective at quickly reacting to ŕuctuations in load

and minimizing the resource provisioning of stream processing applications.

While the ES technique is reactive, and hence cannot anticipate constraint

violations before they occur, it still achieved constraint fulőllment in over

92% of all adjustment intervals across a multitude of diferent conőgurations

of the PrimeTest application. Moreover, this experiment has shown that in

combination with adaptive output batching, the ES technique is equally or

more resource eicient than manually optimized non-elastic conőgurations.

While the queueing theoretic latency model in Section 4.6.2 succeeds at ac-

curately estimating the efects of small scaling actions, it has the tendency

to overscale when large ŕuctuations in load occur, which somewhat lowers

its resource eiciency.
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5.3.2 Experiment 2: TwitterSentiments

This section evaluates the efectiveness of the ES technique based on the Twit-

terSentiments application, that provides a realistic workload, and is driven

by an accelerated, but otherwise time-accurate replay of recorded tweets.

Please refer to Section 5.1.3 for a detailed description of the application

Figure 5.9 shows the result of running the TwitterSentiments application.

Constraint (1) with ℓ = 215 ms was fulőlled in 93% of all adjustment inter-

vals. The 95th latency percentile stays close to the constraint throughout

the runtime of the application, because most of the latency results from the

windowed aggregation behavior of the UDFs of the HotTopics and HotTopic-

sMerger tasks. The parallelism of the HotTopics task is frequently adjusted

to variations in the tweet rate. Due to two reasons both mean and 95th

percentile latency on the constraint’s sequence are relatively insensitive to

tweet rate variations. First, the task latency caused by windowed aggrega-

tion dominates the constraint, which therefore leaves little room for output

batching. Second, bursts in the tweet rates are fully absorbed by HotTopics

tasks as they perform data-parallel pre-aggregation and produce őxed size

lists with popular topics in őxed time intervals.

Constraint (2) with ℓ = 30 ms was fulőlled during 96% of all adjustment

intervals, however there are signiőcant latency spikes caused by tweet bursts.

Outside of such bursts, the 95th latency percentile stays close to 25 ms. The

tendency of the ES technique to slightly over-provision with respect to what

would be necessary to fulőll the constraint, can be observed in this benchmark

as well. Here, the reason is the heavily varying tweet rate, that often changes

faster than the scaling strategy can adapt. Because scale-ups are fast and

scale-downs are slow, the application stays slightly over-provisioned. This is

further evidenced by a fairly low mean CPU utilization of 55.7% on workers.

Again, choosing a higher latency constraint would trade of utilization and

resource consumption against latency.

The tweet rate varies heavily between day and night, peaking with 6734

tweets per second at around 2400 s. Most notable about the peak is that its

tweets afected very few topics. In such a situation the Filter subtasks be-

come less selective, which results in a signiőcant load spike for the Sentiment

task. The resulting violation of Constraint (2) was mitigated by a signiőcant

Sentiment scale-up with ca. 28 new subtasks. Other tasks were not scaled
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Figure 5.9: Result of running the TwitterSentiments application with the
AOB and ES techniques.
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up to the same extent, because their relative change in load was not as high.

In summary, this experiment has shown that the combination of the ES and

AOB techniques successfully enforces latency constraints even for real-world

applications with a bursty workload. Compared to the PrimeTest evaluation

in the previous section, load bursts however seem to reduce resource eiciency,

due to the inertia of the scaling mechanism. One way of mitigating this efect

is to resort to latency constraints with more łslackž time, that can absorb

bursts to some degree. However, it depends on the latency requirements of

the application, whether this is a viable option or not.

5.4 Evaluation of the DTC Technique

This section provides an experimental evaluation of the DTC technique as

described in Section 4.7. While the DTC technique is the focus of experimen-

tation in this section, all experiments also employ the AOB technique. Much

like in the previous section, the rationale behind this, is that the optimization

techniques in this thesis are designed to be used in conjunction. Section 5.4.1

we begin by an initial experiment based on the Livestream application, that

demonstrates the overall efect of the DTC technique. Section 5.4.2 explores

the efects of the DTC technique for a range of Livestream-based workload

conőgurations.

5.4.1 Experiment 1: Livestream

The őrst experiment we take a look at the Livestream application running

on the Nephele SPE and observe the combined efects of the AOB and DTC

techniques. For this experiment, cluster resources were manually provisioned

to be suicient.

Figure 5.10 describes the conőguration parameters in more detail and shows

the results of the experiment. As visible from the plot, the dynamic task

chaining algorithm chose to chain the Decoder, Merger, Overlay and Encoder

tasks, because the sum of their respective maximum subtask utilizations was

lower than the maximum allowed chain utilization ρmax.
7 After an initial

7See Algorithm 10 in Section 4.7.4. The rationale for choosing ρmax is similar to that of
the maximum utilization threshold in elastic scaling. Choosing ρmax = 0.9 is a relatively
safe trade-off that reduces the risk of bottlenecks, due to minor workload fluctuations.
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Figure 5.10: Latency and worker CPU utilization of Livestream application
with 3200 video feeds, group size 4 and a 50 ms constraint. Latency is
plotted as one bar per adjustment interval, based on the respective mean
values from global summaries. The sink subtasks additionally track per-data
item latency and compute the minimum and 95-th latency percentile, which
are included in the plot. The Nephele SPE was conőgured to apply both the
AOB and DTC techniques. The maximum allowed chain utilization of the
DTC technique was set to ρmax = 0.9.

calibration phase, the mean latency stabilized between 18-19 ms. This is

signiőcantly lower than the 50 ms constraint, because the delays caused by

serialization, output batching and queueing are eliminated in the chained

part of the data ŕow. Due to the generally low latency, the constraint was

fullőlled all the time.

Note that the parameters of the experiment as well as the structure of the

plot are intentionally identical to Figure 5.5 in Section 5.2.1, that shows

results of the exact same workload, however in an AOB-only conőguration.

In comparison with the AOB-only conőguration, it can be observed that the

mean worker CPU utilization is about 33% lower, when combining the AOB

and DTC techniques.

In summary, this experiment has shown that the DTC technique leads to

a signiőcant reduction in latency for the Livestream application. Due to

reduced data item shipping overhead, a 33% reduction in CPU utilization
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could be achieved for the Livestream application.

5.4.2 Experiment 2: Load and Constraints

Analogous to Section 5.2.2, in this section we vary the load and constraints 
of the Livestream application in order to gain a better understanding of the 
efects of combining the AOB and DTC techniques under various conditions.

The results shown in Figure 5.11 compare the efects of immediate shipping 
with DTC, against the combined use of the AOB and DTC techniques. All 
conőgurations with constraints we able to meet their constraint in 100% of all 
adjustment intervals - an efect that has already been observed in the previous 
experiment.

Note that the workload parameters of the Livestream application as well as 
the structure of the plot are intentionally identical to Figure 5.6 in Sec-tion 
5.2.2, which shows results for AOB-only conőgurations. As previously stated, 
choosing a group size of two instead of four, increases the load on the Overlay 
and Encoder tasks in the Livestream application. In these high-load scenarios, 
all conőgurations in Figure 5.6 resulted in a rather unstable latency. In 
contrast to that, all conőgurations in Figure 5.11 show a very steady latency. 
This highlights one aspect of the DTC technique. The sched-ule of the 
Livestream application as shown in Section 5.1.2 places 10 sub-tasks in each 
worker, but the underlying compute nodes in this experiment are equipped 
with only four cores. Oversubscribing the available CPU cores on a worker in 
this manner, causes the subtask threads to thrash under high load, which 
generally degrades performance. As the DTC technique reduces the number of 
threads, this also reduces thrashing, resulting in a steadier latency for the 
application.

In summary, this experiment has shown that dynamic task chaining is a useful 
not only towards reducing, but more importantly towards stabilizing latency, 
because it also reduces thread thrashing in schedules that oversubscribe CPU 
cores with subtasks.
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Figure 5.11: The őgure shows the latency of the Livestream application under
various workload and constraint conőgurations when concurrently applying
the AOB and DTC techniques. Since the DTC technique is also applicable
without constraints, conőgurations without constraint (łNonež) also employ
the DTC technique, but rely on immediate shipping. Each conőguration was
run three times for three minutes. The boxplot of each conőguration shows
the distribution of the mean runtime sequence latency (computed from the
global summary) over all adjustment intervals of all runs with that conőgu-
ration.
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5.5 Conclusions

In this chapter we have experimentally evaluated the techniques for latency 
constraint enforcement described in Chapter 4 with a range of diferent work-

loads.

The experiments have shown that using the AOB technique by itself to en-

force latency constraints can be expected to give mixed results, depending on 
the nature of the application. For applications that process small data items 
at high rates, the AOB technique provides several beneőts as it (i) reduces 
CPU utilization due to shipping overhead, and most importantly (ii) lowers 
the risk of I/O bottlenecks, that degrade latency and inhibit scaling. How-

ever, for applications where shipping overhead is negligible, adaptive output 
batching seems to ofer little beneőt.

In combination with adaptive output batching, the ES technique has been 
shown to enforce latency constraints most of the time, even in a real-world 
stream processing workload with a heavily ŕuctuating and bursty workload. 
In experiments, it successfully mitigated latency constraint violations within 
few adjustment intervals. However, especially during bursts, the estimation 
quality of the latency model degrades, causing the ES technique to temporar-

ily overprovision resources. Despite that, in experiments with the PrimeTest 
application, the ES technique had a resource footprint comparable or lower to 
that of a conőguration that was manually optimized to withstand peak-load 
with minimal resources.

The DTC technique complements the above techniques and leads to a lower 
and steadier latency in applications that are chainable. While some of this 
efect can be accredited to the reduced shipping overhead, the DTC technique 
is especially efective at mitigating the efects of thrashing in situations where 
CPU cores are oversubscribed with subtask threads.

In conclusion, the fact that all three techniques optimize separate aspects 
of stream processing makes them well-suited to be used in conjunction and 
enables them to enforce latency constraints for a wide range of application 
workloads. This constitutes an improvement over the current state of the 
art in stream processing, where engine conőguration settings and often also 
the resource provisioning need to be manually tuned to obtain the latency 
required by an application, which is a cumbersome and non-trival process.

123



Chapter 5. Experimental Evaluation

124



Chapter 6: Related Work

Contents
6.1 Batching Strategies . . . . . . . . . . . . . . . . . . 125

6.2 Chaining . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Elastic Scaling . . . . . . . . . . . . . . . . . . . . . 128

Section 3.3 has already provided extensive background on distributed stream

processing engines for UDF-heavy data ŕows. This chapter focuses on re-

lated work with respect to the use of batching, chaining, and elastic scaling

techniques.

6.1 Batching Strategies

Batching is a popular technique to amortize the often substantial overhead of

certain operations in stream/event processing over many data items. Choos-

ing appropiate batch sizes is generally a trade-of between increased latency

(batches need to őll up) and overhead reduction.

In [27] Carney et al. propose train processing to reduce the overall data

item processing costs in the centralized Aurora [1] DSMS in a multi-query

scenario. The Aurora system explicitly schedules when which query operator

shall process a data item. Thus, processing data items in trains (batches)

reduces the number of scheduling decisions that need to be made. Train

scheduling trades of train size against the impact of increased latency on a

user-deőned Quality of Service (QoS) function, that maps latency to a QoS

value.

In [126] Welsh et al. describe SEDA, a staged, event-driven architecture for

internet services. Each stage of a SEDA application runs on a single node

and has an input queue from where batches of events are dispatched to a pool

of worker threads. A batch controller within each stage adapts the number

of events per batch to the current workload. In SEDA, batching amortizes

the overhead of data item dispatching and improves data and instruction

cache locality (see also [71]). Since batching increases both throughput and
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latency, the batching controller adjusts the batch size to be as small as pos-

sible without choking throughput. Beginning with the largest batch size, it

observes the throughput of the stage and reduces its batch size until through-

put begins to degrade. This control-theoretic approach to batching strives

to őnd an optimal operating point.

Spark Streaming [132] and Comet [48] perform batched stream processing

(BSP) and occupy a middle ground in the design space between batch and

stream processing. In the BSP model arriving stream data is őrst put into

an input data set. In Comet, this input data set resides in a distributed őle

system, whereas in Spark Streaming the input data set is reliably stored in

the memory of cluster nodes. Once every time interval this input data set is

then processed with a mini-batch job. Conceptually, each input data set can

be seen as a coarse batch of input data. The BSP model enables the reuse of

batch programming models for incremental data processing, e.g. LINQ [87]

and the Spark programming model [132, 131]. Moreover, as noted in [48],

the BSP model prevents the overhead of multiple I/O intensive passes over

a large data set, when all that needs to be processed is a time-constrained

window of that data. In contrast to pure stream processing, the latency of

batched stream processing ranges from multiple seconds (Spark Streaming)

to minutes (Comet), as each triggered batch job needs to be scheduled on

a cluster. Recently, in [33] Das et al. have extended Spark Streaming to

adaptively minimize the latency of the BSP model by adjusting batch sizes to

the current data arrival rate, achieving a lower but still multi-second latency.

In the őeld of embedded systems, synchronous data flows [72] are a common

model for modeling stream computation. As the input and output rates of

each processing node in a synchronous data ŕow is known in advance, this

model suits itself to static optimizations. Execution scaling described in [106]

is a static compiler optimization that trades of instruction and data cache

locality by batching the execution of computations nodes in the data ŕow

graph.

All of the aforementioned batching approaches focus on processing data items

in batches, which requires the ability to exert control over when a data item

is processed. In contrast to that, the AOB technique presented in this the-

sis focuses on shipping data items in batches, that are as large as possible

without violating application-deőned latency constraints. The threads that
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process those data items are scheduled by the operating system and not the

engine. Therefore, it depends on the thread scheduling policy of the oper-

ating system whether this leads to batched processing or not. The Nephele

SPE developed as part of this thesis is Java-based, and since current Java

virtual machines use preemptive scheduling, a batch of data items is not

guaranteed to be processed without preemption.

6.2 Chaining

Chaining, also often called fusion, is a common optimization technique that

avoids the overhead of data item shipping by sacriőcing pipeline parallelism.

Commonly, chained operators are executed within the same thread, which is

safe as long they do not require more than the capacity of a single processor.

The authors of [40] describe SPADE, a declarative frontend for the System

S distributed stream-processing engine [8]. The compiler of SPADE chains

SPADE operators into processing elements (PEs) that are distributed over a

cluster. Based on proőling runs, it searches for an operator-to-PE mapping

that minimizes the number of PEs without overwhelming the processors on

cluster nodes. The authors of COLA [64] extend the default SPADE opti-

mization strategy to also balance the load across PEs.

Another compile-time application of chaining can be found in [44], that de-

scribes how to compile StreaMIT [116], a portable language for streaming

applications, for a range of diferent architectures such as embedded devices,

consumer desktops and servers. Based on input/output rates known prior

to compilation, StreaMIT chains adjacent operators, to őt the number of

operators to the number of processors of the underlying hardware platform.

This also enables further compiler optimizations, e.g. scalar replacement

and register allocation, that improve data access locality within the memory

hierarchy.

In [27] Carney et al. propose superbox scheduling, that reduces the schedul-

ing overhead in the centralized Aurora [1] DSMS when executing multiple

queries. Superboxes are equivalent to queries and scheduled as a whole.

Hence the operators within each superbox are executed in a chained manner.

A well-known example of chaining in the őeld of parallel data processing are
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the chained map functions of Apache Hadoop. Before starting a Hadoop job,

a user can specify a series of map functions to be chained. Hadoop will then

execute these functions in a single process, and invoke the user code of a map

function in the chain directly on the output of the previous map function. If

the chained mappers are stateless (as typically expected from map functions

in Hadoop), it is even safe to pass data items from one mapper to the other

by reference.

All of the above systems perform chaining statically, i.e. chains are con-

structed at compile-time or prior to execution. In constrast to that, the

DTC technique presented in this thesis adapts the chaining decision at run-

time, based on workload statistics. Dynamic chaining is also used by Flex-

tream [55], a compilation framework for streaming applications, that targets

multi-core platforms. It is highlighted by its capability to dynamically re-

compile the streaming application to better match the changing availablity of

system resources (cores and memory) on the underlying platform. As part of

the recompilation process, Flextream groups the actors in the stream graph

on cores in a manner that balances load as evenly as possible. While load

balancing is also one of the goals of the DTC technique, its primary goal is

to reduce latency by removing intermediate queues, rather than react to a

changing resource availability.

6.3 Elastic Scaling

The idea of elastic scaling, often also called auto-scaling, has been extensively

studied in the context of today’s IaaS and PaaS cloud platforms. Their abil-

ity to rapidly and automatically (de)provision resources, provides the oppor-

tunity to build services that adapt their resource allocation to the current

workload. A typical cloud-based web application consists of multiple tiers.

At each tier a load balancer distributes incoming requests to a pool of servers.

A plethora of auto-scaling techniques has been described for this scenario over

the course of the past decade. According to [82], the auto-scaling problem

can be split into two subproblems, i.e (1) the prediction of future load and

(2) making resource provisioning decisions to match that load. In the fol-

lowing, we will discuss some of the decision making strategies found in the

literature, as they address a problem that of the ES technique in Section 4.6.

The decision-making techniques found in literature are commonly based on
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(i) thresholds, (ii) reinforcement learning, (iii) control theory, (iv) queueing

theory, or a combination of these techniques.

A threshold-based technique tracks whether a performance metric (e.g. CPU

utilization, request rate, response time) crosses a user-deőned threshold (e.g.

CPU utilization larger than 90%) for a certain amount of time, and reac-

tively triggers a scale-up or scale-down. It is also common to specify an

inactivity time (łcool-downž) after each scaling action, in order to deal with

inertia. Treshold-based techniques are common in todays commercial cloud

platforms12 due to their apparent simplicity and ease-of-use, but have also

been explored in research [39, 47]. However, as noted in [39], choosing ap-

propiate thresholds and cool-down periods is tricky and must be done indi-

vidually for each application in order to avoid oscillations.

Reinforcement learning [113] is a model-free, predictive approach to auto-

mated decision making, that learns through the interaction between an agent

(i.e. the auto-scaler) and the environment (i.e. the cloud-based web appli-

cation). At each point in time, the environment has a state that the agent

can observe. Based on that state, the agent makes a decision that yields

a new environment state and a reward, e.g. a reduction in response time.

Decision are made basde on a table that maps each observed state to the ac-

tion that has previously produced the highest reward. To discover the best

actions, the agent has to occasionally execute an action that has not been

tried yet and observe its reward. The issues of vanilla reinforcement learning

for auto-scaling are (a) a bad-initial performance due to required training

time and (b) the size of the mapping table that grows exponentially with the

number of oberved state variables. In [115] Tesauro et al. address the őrst

issue by a combination of reinforcement learning with a queueing-theoretic

model, where the latter is only used during an oline training phase at the

beginning. The authors of [102] propose a scheme that reduces the train-

ing time by adapting several state-to-decision mappings after each decision.

Both publications [115, 102] approach the second issue by using a more space

eicient neural network to replace the lookup table.

Control theory [68] studies how a dynamic system can be controlled to ob-

tain a desired behavior and has been applied to the problem of auto-scaling

1Amazon Autoscaling, http://aws.amazon.com/autoscaling/
2Rightscale, http://www.rightscale.com/
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cloud-based services. Most of the published schemes are reactive feedback

controllers that observe a performance metric, e.g. response time, and issue

actions to correct deviations of the metric from a target value. A simple and

common type of feedback controllers are integral controllers, that adjust the

actuator value, e.g. the number of servers in a tier, proportionally to the

deviation of the performance metric from a target value. Lim et al. propose

proportional thresholding [76, 77] that combines threshold-based auto-scaling

with an integral controller. As in plain threshold-based auto-scaling, a change

in the actuator value only occurs when the performance metric is outside a

target range. Proportional thresholding narrows the desired target range as

the number of allocated resources increases. This allows for more precise

control, when scaling decisions are most needed, e.g. during a ŕash crowd.

Several papers [97, 6, 22] describe more complex controllers that do not as-

sume a linear relationship between actuator value and performance metric.

In queueing systems, requests arrive at an input queue and are processed by

one or more servers. Classical queuing theory [45] models the steady-state

behavior of queueing systems and allows to predict important performance

aspects such as queue lengths and queue waiting time. The most important

characteristics of a queueing system are usually expressed with the Kendall

notation in the form X/Y/Z, where X describes the probability distribution

of request inter-arrival times, Y describes the probability distribution of re-

quest distribution times (also called the service time distribution), and Z

is the number of servers that process incoming requests. For simple cases,

such as exponentially distributed inter-arrival and service times (M/M/Z in

Kendall notation), queuing theory gives precise formulae, whereas if such dis-

tributions are not known (denoted by łGž), the available queueing formulae

are an approximation. The authors of [115, 125] model a single-tier web ap-

plication with n servers as n queueing systems, each of which receives 1/n-th

of an exponentially distributed request load. Given functions that map re-

quest response time to a (possibly negative) economic value, both papers use

the queueing model to optimize the number of allocated servers towards an

economic optimum. In [115] the queuing-based optimization is however only

used during the oline training-phase of a reinforcement learning approach.

The authors of [121] describe a scheme for meeting response time targets by

elastically scaling multi-tier web-applications. After breaking down the end-

to-end response time into per-tier response times, they model each tier as n
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G/G/1 servers and determine for each tier the necessary number of servers

to achieve the previously determined per-tier response time. This approach

bears some resemblance to the ES technique in described in Section 4.6 of

this thesis. The main diferences are that (1) in [121] the per-tier target re-

sponse times are assumed to be given, whereas the ES technique chooses the

per-tier response times implicitly in a way that reduces the overall required

resource provisioning, and (2) the strategy in [121] provisions for expected

peak load, while the ES technique provisions only for the currently measured

load.

Section 3.3.5 of this thesis has already described several policies for elastic

scaling in the area of stream processing engines that execute UDF-heavy data

flows. In the closely related őeld of engines for stream-relational continuous

queries, the StreamCloud [46] engine also exploits cloud elasticity and can

dynamically change the parallelism of query operators at runtime. Its elastic

reconőguration protocol takes special care of stateful operators with sliding-

window semantics (e.g. a windowed aggregates). The goal of StreamCloud’s

auto-scaling policy is to avoid bottlenecks by evenly balancing CPU load

between operators. The authors of FUGU [50] optimize operator placement

towards a desired host CPU utilization, by migrating operators at runtime.

Migration decisions are made using reinforcement learning. In [49] FUGU

is extended to reduce the latency spikes caused by migration of stateful op-

erators, towards fulőlling an end-to-end latency constraint. In this thesis,

we have not looked at the problem of operator/subtask placement, as this

decision is delegated to a scheduler.
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Distributed stream processing plays an increasingly important role in do-

mains, where large volumes of data need to be analyzed with low latency,

such as real-time recommendation of website content [110, 120], social media

analytics [118] and network security management [31]. Today’s distributed

stream processing engines execute UDF-heavy data ŕows on large, resource

managed clusters and provide the technical foundation for such applications.

Although application-speciőc requirements on latency are usually implicitly

clear, today’s engines are optimized towards providing the lowest latency

possible, which (1) disregards any łslackž time that the application’s latency

requirements may leave, and (2) means that the cluster resource provision-

ing has to be manually determined, in order to meet these requirements with

minimal resource provisioning.

This thesis proposes a novel approach to automatically and eiciently enforce

application-speciőc latency requirements in stream processing applications

running on resource-managed clusters. The contributions of this thesis per-

tain to (i) the speciőcation of latency constraints in order to capture such re-

quirements, and (ii) optimization techniques that enforce latency constraints

in a resource-eicient manner, despite variations in workload characteristics,

e.g. data arrival rates.

The őrst contribution is a formal model to specify latency constraints in

UDF-heavy data ŕows. This enables application developers to intuitively

express application-speciőc latency requirements for critical parts of the data

ŕow. The underlying notion of latency is based on the mean delays caused

by data transfer and UDF behavior. It can be measured with low overhead

and provides vital input to the optimization techniques.

The main novelty of the thesis consists of three techniques ś Adaptive Output

Batching (AOB), Dynamic Task Chaining (DTC) and Elastic Scaling (ES)

ś that collaboratively enforce latency constraints in a resource-eicient and

workload-adaptive manner. They are tied into a feedback cycle that begins

with the collection of workload statistics about the execution elements of a
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UDF-heavy data ŕow. Based on this data, they determine and exploit the

łslack timež the constraints leave, to optimize the execution towards con-

straint fulőllment. While each technique optimizes a separate aspect of the

execution, they are carefully designed to complement each other. Speciő-

cally, the AOB and DTC techniques create the operating conditions for the

ES technique to be successful, and vice versa.

The AOB and DTC techniques reduce the substantial overhead of data ship-

ping present in many application workloads, however they depend on sui-

ciently provisioned cluster resources. The AOB technique batches emitted

data items as much as the constraints allow, which trades of latency against

shipping overhead. The evaluation conducted in this thesis has shown that

this not only maximizes the amount of useful work the application can per-

form, but also mitigates the risk of I/O bottlenecks. The latter property is

especially important, since I/O bottlenecks quickly lead to constraint viola-

tions and inhibit the efects of elastic scaling when they are most needed.

The DTC technique reduces the communication overhead between subtasks

running on the same worker. This is achieved by ad-hoc adaptation of the

subtask-to-thread mapping, so that the load of the subtasks is distributed

fairly over as few threads as possible, without introducing computational

bottlenecks. This advances the state-of-the art in stream processing, as the

existing engines perform chaining prior to execution, which assumes that

either the input/output rates are known prior to execution, or can be reliably

obtained in proőling runs [40, 60]. The experimental evaluation shows, that

the DTC technique leads to an overall reduction in latency and jitter, i.e.

variations in latency. Hence, the efects of the DTC technique can mitigate

situations with increased latency, e.g. during load bursts, which reduces

constraint violations.

The ES technique is a novel decision policy for elastic scaling in distributed

stream processing engines, that uses a queueing theoretic model of the ap-

plication to automatically őnd the minimum parallelism that still fulőlls

application-deőned latency constraints. In combination with a resource-

managed cluster, the engine scheduler can adapt the resource allocation to

the current application workload, by deallocating unused workers after a

scale-down, and by allocating new workers in response to a scale-up. Com-

pared to a static resource allocation, this improves resource eiciency during
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stream processing, especially for applications with large workload variations.

Unlike existing elastic scaling policies for stream processing engines that are

designed to prevent overload, the ES technique is the őrst policy of its kind

to explicitly model the efects of load on queueing latency.

Although the thesis addresses various research aspects of distributed stream

processing with latency constraints, there are several interesting directions

for further investigation in this area:

• Efficient Management of Tail Latency: As indicated in Section 4.2,

latency constraints as deőned in this thesis do not specify a hard upper

latency bound for every single data item, but an upper bound on mean

latency. This is at odds with the traditional notion of a real-time sys-

tem [108], where one would optimize for a certain latency percentile,

rather than mean latency. The challenge lies within the following obser-

vation. Let us assume a sequence of n connected subtasks and channels,

each of which has a 95th latency percentile of t. The probability that

a data item, which passes through the sequence, incurs a latency lower

or equal to n× t is 0.95n, given that processing and shipping times are

not correlated. Hence, to enforce the p-th latency percentile for the se-

quence, one has to enforce the q-th percentile for all of its channels and

subtasks, where q > p. It is an interesting open research question how

one can achieve this goal without signiőcant resource over-provisioning.

• Optimized Subtask Placement: As indicated in Section 4.3, the op-

timization techniques presented in this thesis rely on the engine’s sched-

uler to map subtasks to workers. While there is signőcant prior work

on optimizing such placement decisions [26, 100, 130, 127, 64], it is an

interesting research question how a latency-aware operator placement

strategy can be designed, that migrates subtasks to increase resource

eiciency. First publications have already picked up this idea [49].

• Proactive Elastic Scaling: In many stream processing applications,

the data arrival rate varies with a certain regularity or pattern. The

ES technique proposed in this thesis is however purely reactive, i.e. it

cannot anticipate recurring workload patterns. A proactive approach

to elastic scaling could reduce the number latency constraint viola-

tions due to foreseeable changes in the workload. This shares some
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resemblance to the challenge of proactive auto-scaling of cloud-based

applications, which has been extensively studied [23, 62, 28, 42, 107].

It is an interesting research question whether and how these methods

can be adapted for elastic scaling of distributed stream processing ap-

plications.
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Appendix A: Workload Statistics

The following table lists and describes the workload statistics required from

Statistics Reporters for each constrained subtask and channel.

Statistic Description

lv ∈ R+ Mean subtask latency of subtask v, which is the mean

of the subtask latencies over all the data items passed

to v during the last adjustment interval, via any of

its ingoing channels.

le ∈ R+ Mean channel latency of channel e, which is the mean

of the channel latencies over all the data items sent

through e during the last adjustment interval.

oble ∈ R+ Mean output batch latency of channel e’s, which is

deőned as the mean delay data items incurred due to

output batching during the last adjustment interval.

(see Section 4.5).

Sv, V ar(Sv) ∈ R+ Mean and variance of subtask v’s service time. Ser-

vice time is the queueing theoretic notion of how long

a subtask is busy with a data item. Service time is

sampled randomly over all data items read from the

subtask’s input queue, regardless of the channel or

stream they have originated from. For subtasks with

ingoing channels from only a single stream, service

time is equivalent to read-ready subtask latency. Sv

is a random variable with an unknown probability

distribution.

Av, V ar(Av) ∈ R+ Mean and variance of the data item inter-arrival time

at subtask v’s input queue. The inter-arrival time is

sampled over all data items arriving at the queue,

regardless of the channel or stream they have origi-

nated from. Av is a random variable with an unknown

probability distribution.
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wv ∈ R+ Mean queue waiting time of subtask v, which is de-

őned as the mean delay data items have incurred at

the input queue of subtask v during the last adjust-

ment interval. Mean queue waiting time is sampled

over all data items arriving at the input queue of v,

regardless of the channel or stream they have origi-

nated from.

Derived from above workload statistics.

cX =

√
V ar(X)

X
Coeicient of variation of X ∈ {Sv, Av}.

λv =
1
Av

Data item arrival rate at subtask v.

µv =
1
Sv

Service rate of subtask v, i.e. its maximum processing

rate.

ρv = λvSv Utilization of subtask v.
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Appendix B: Cluster Testbed

All experiments were conducted on a compute cluster with 130 available

commodity servers as well as a master node. Each server is equipped with an

Intel Xeon E3-1230 V2 3.3 GHz (four real CPU cores plus hyper-threading

activated) and 16 GB RAM. The servers were connected via regular Gigabit

Ethernet links to a central HP ProCurve 1800-24G switch.

On the software side, all nodes run Linux (kernel version 3.3.8) as well as and

Java 1.7.0_13. To maintain clock synchronization among the workers, each

server launched a Network Time Protocol (NTP) daemon. During the entire

experiments, the measured clock skew was below 2ms among the servers.

Moreover, Apache Hadoop YARN1 2.6.0 is installed on the cluster.

1http://hadoop.apache.org/

http://hadoop.apache.org/
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