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Abstract

The work of this thesis is centered around corticomuscular coherence (CMC), a neu-
rophysiological phenomenon that refers to the phase synchronization between cortical
and muscular activity. Aiming at improving the detection of CMC both in healthy
subjects and in stroke patients, this thesis introduces the new method regression CMC
(R-CMC) for the extraction of spatial filters that optimize the coherence. The R-CMC
method thereby outperformed other conventional methods such as Laplacian filtering
in terms of CMC amplitude measures and sensitivity with respect to recovering rele-
vant sources. The thesis further provides empirical evidence against the full-wave EMG
rectification, a commonly used but highly disputed pre-processing step in CMC analy-
sis. Moreover, this thesis addresses basic neurophysiological questions in healthy sub-
jects, such as the role of local and distal neuronal synchronization in corticospinal inter-
action. Here, it was shown that amplitude-envelope correlations may serve as a com-
plementary measure of non-linear relationship. We also applied the R-CMC method in
a clinical setting. In stroke patients, experiments were performed both directly after the
stroke and 6 months later to obtain a CMC pattern at different stages of motor recovery
and to identity cortical areas that are relevant for establishing a strong CMC. Build-
ing on the knowledge gained from offline recordings, CMC was used in the form of
a neurofeedback, where online CMC was visualized enabling subjects to learn how to
modify their CMC strength and thus voluntarily control the efficacy of corticomuscular
interactions. The results contribute to neurophysiological understanding and open up
new perspectives for clinical application by providing a basis for a novel motor rehabil-
itation approach in stroke patients: using CMC neurofeedback could allow associating
CMC strength with certain motor commands, and thereby facilitating the process of
motor recovery.
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Zusammenfassung

Im Mittelpunkt dieser Arbeit steht die kortikomuskuläre Kohärenz (englisch cortico-
muscular coherence, Abk.: CMC), ein neurophysiologisches Phänomen, das sich auf
die Phasensynchronisation zwischen kortikaler und muskulärer Aktivität bezieht. Mit
dem Ziel, die Erkennung von CMC sowohl bei gesunden Probanden/innen als auch
bei Schlaganfallpatienten/innen zu verbessern, stellt diese Arbeit die neue Methode
regression-CMC (R-CMC) zur Extrahierung räumlicher Filter, die die Kohärenz opti-
mieren, vor. Die R-CMC-Methode übetraf dabei andere übliche Methoden wie Laplace-
Filter im Bezug auf CMC-Amplitudenwerte und Sensibilität bei der Wiederherstellung
relevanter Quellsignale. Diese Arbeit liefert desweiteren empirische Hinweise gegen
die Vollwellen-Rektifikation des EMG-Signals, ein weit verbreiteter und zugleich kon-
trovers diskutierter Schritt bei der Vorverarbeitung der Daten in der CMC-Analyse. Au-
ßerdem geht diese Arbeit auf grundsätzliche neurophysiologische Fragen bei gesunden
Probanden/innen ein, wie die Rolle von lokaler und distaler Synchronisation bei der
kortikomuskulären Interaktion. Hier wurde gezeigt, dass die Korrelation der Amplitu-
denhüllkurven ein ergänzendes Maß nonlinearer Zusammenhänge darstellen könnte.
Die R-CMC-Methode wurde auch in klinischer Umgebung angewendet: Bei Schlag-
anfallpatienten/innen wurden Experimente sowohl direkt nach dem Schlaganfall als
auch 6 Monate später durchgeführt, um ein CMC-Muster in verschiedenen Stadien
der Wiedererlangung motorischer Fähigkeiten zu erhalten und die kortikalen Areale
zu identifizieren, die relevant für die Erzeugung einer starken CMC sind. Basierend
auf dem Wissen der offline-Messungen, wurde CMC in Form eines Neurofeedbacks
angewendet, bei dem CMC online visualisiert wurde, sodass Probanden/innen in der
Lage waren, die Stärke ihrer CMC zu beeinflussen und damit die Effizienz kortikomus-
kulärer Interaktion willentlich zu steuern. Die Ergebnisse tragen zum neurophysiolo-
gischen Verständnis bei und eröffnen neue Perspektiven zur klinischen Anwendung,
indem sie eine Grundlage für einen neuartigen Rehabilitationsansatz bei Schlaganfall-
patienten/innen bieten: CMC-Neurofeedback könnte es ermöglichen, die CMC-Stärke
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mit bestimmten motorischen Befehlen in Verbindung zu bringen und dabei den Prozess
der motorischen Genesung zu erleichtern.
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Introduction 1
The phenomenon of corticomuscular coherence (CMC)1 is a well established neuro-
physiological measure which relates to the coupling between cortical activity and mo-
tor neuron firing (Conway et al., 1995). CMC occurs (mostly) within the beta-frequency
range during sustained muscle contraction but is absent during the movement phase
(Kilner et al., 2000; Riddle and Baker, 2006); it can be measured using electroencephalog-
raphy (EEG) or magnetoencephalography (MEG) and electromyography (EMG) to ac-
cess cortical and muscle activity, respectively. Figure 1.1 gives an example of such a
CMC spectrum obtained with EEG/EMG.
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Figure 1.1.: Coherence spectrum peaking around 20 Hz. Signals were measured between EEG
(channel C3) and EMG (channel on the APB muscle) during sustained contraction of the right
thumb.

While its general importance in fine motor control is widely accepted (e.g. Baker, 2007),
the underlying neurophysiological mechanisms leading to the formation of CMC re-
main largely unknown. A better understanding of CMC and its functional role could

1within the included papers corticomuscular coherence is also spelled cortico-muscular coherence or referred
to as EEG-EMG coherence
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1. Introduction

also contribute to an improvement of therapy in clinical conditions where CMC is al-
tered. This relates to e.g. stroke where many patients suffer from a persistent motor
dysfunction such as motor paresis (Rathore et al., 2002). Our knowledge on neuroplas-
ticity in the motor system could be improved by identifying the functional relevant con-
tribution of reorganized cortical areas as measured by CMC. Elucidating mechanisms
related to motor disabilities would help developing better rehabilitation approaches
and support motor recovery after stroke.
Although, CMC has been quite extensively studied in healthy people, its role in stroke
recovery is less explored. The description of CMC behavior in stroke, particular at acute
stage, is crucial for the understanding of CMC. Its proper description thereby benefits
from methods optimized for its detection. Optimal detection relates also to the question
whether to apply the controversially discussed pre-processing step of EMG rectifica-
tion. In addition, measures of non-linear relationships can complement our knowledge
of corticospinal interaction. Building on the knowledge of CMC behavior in stroke re-
covery, one can develop new rehabilitation approaches to support the recovery process.
Here, neurofeedback could provide an interesting tool that allows the access to one’s
own brain activity and manipulate it in order to facilitate the recovery process.

1.1. Outline of the Thesis

Chapter 2 provides the background for the following chapters which are assigned to
one publication each. Besides the neurophysiological basis, this chapter includes the
theoretical signal processing and machine learning foundations of coherence estimation
and other methodological aspects of relevance for the subsequent chapters. Moreover,
it gives a comprehensive overview of the phenomenon of CMC including influencing
factors, functional role and neuropathological conditions.
A fundamental factor of the project is to optimally detect CMC in offline analysis as well
during real-time CMC-neurofeedback. Chapter 3 introduces the newly developed pro-
cedure regression corticomuscular coherence (R-CMC) for the extraction of spatial fil-
ters which allow to obtain the maximized coherence between cortical and muscle activ-
ity. The method was published in ’Optimal imaging of cortico-muscular coherence through a
novel regression technique based on multi-channel EEG and un-rectified EMG’ (Bayraktaroglu
et al., 2011). Another important aspect of this publication is related to the current dis-
pute in CMC research, namely the use of EMG rectification. Traditionally, the EMG
signal is rectified before coherence analysis. However until recently its justification
was neither thoroughly tested experimentally nor theoretically. In Bayraktaroglu et al.
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1. Introduction

(2011), the effect of EMG rectification on CMC estimation was examined with experi-
mental data comparing different approaches including the R-CMC method.
In addition, to exploring phase-locking between cortical and muscle activity, Chapter
4 of this thesis aimed at studying how local neuronal interaction in the motor cortex
can be reflected in the local activity at the spinal cord (as indirectly measured on the
basis of muscle activity). In ’It is not all about phase: Amplitude dynamics in corticomus-
cular interactions’ (Bayraktaroglu et al., 2013) the correlation of amplitude modulations
between beta oscillations in the sensorimotor cortex and the hand muscle was investi-
gated. These amplitude dynamics might convey additional information on how local
neuronal dynamics at the cortical and spinal cord levels relate to each other.
There are only a few stroke-related CMC studies, which were all performed at the
chronic stage, mostly at least one year after the stroke when many compensatory pro-
cesses already took place. Longitudinal CMC studies following stroke patients from
acute to chronic period could provide new insight into the temporal evolution of cor-
ticomuscular interaction after stroke and add to the understanding of mechanisms un-
derlying motor recovery. In Chapter 5, the study ’Corticomuscular coherence in acute and
chronic stroke’ (von Carlowitz-Ghori et al., 2014) examined for the first time the changes
in the dynamics of corticomuscular interaction both at acute and early chronic stage of
stroke.
On the basis of the experiments for offline CMC detection, the aim was to develop a
paradigm for online CMC monitoring which could be used as a visual neurofeedback
in a novel rehabilitation approach for motor recovery. It is not known whether (without
changing motor output parameters) CMC can be voluntarily modified by intrinsically
learning to associate the CMC strength with a certain activation pattern using mental
imagery. In ’Voluntary control of corticomuscular coherence through neurofeedback: a proof-
of-principle study’ (von Carlowitz-Ghori et al., 2015), Chapter 6, we show that healthy
people are able to voluntarily modify their CMC strength using neurofeedback inde-
pendent of motor output parameters.
The final Chapter 7 provides a summary of the papers and their relation to each other
and a conclusion of this thesis.
The experimental setup was only slightly varied between the series of studies; for illus-
trative purposes additional pictures of the setup are provided in Appendix A.
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1. Introduction

1.2. Scientific Contributions

Objectives The work of this thesis is driven by the following main objectives which
are also depicted in Figure 1.2:

Voluntary
control of

CMC

Optimize the
detection of

CMC

1st objective

2nd objective

Non-linear
interactionEMG

rectification

Optimal
method of
detection

Clinical data

Figure 1.2.: Objectives

1. Optimize the detection of CMC. This objective was fundamental to all four pub-
lications of this thesis and comprised

• An appropriate method to improve the detection of CMC first offline and
later also online for instantaneous feedback.

• Empirically addressing the dispute of EMG rectification as pre-processing
step

• Testing for the existence of non-linear relationships in corticospinal interac-
tions.

• The inclusion of clinical (stroke) data to gain knowledge about CMC behav-
ior in motor recovery.
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1. Introduction

2. Voluntarily control CMC. This thesis aimed at showing the feasibility of CMC
manipulation by means of mental strategies, i.e. in a neurofeedback paradigm.
This objective was subject to the last paper.

Achievements The current thesis is submitted as cumulative work and based on the
following publications in peer-review journals:

I) Bayraktaroglu, Z., von Carlowitz-Ghori, K., Losch, F., Nolte, G., Curio, G., and
Nikulin, V. V. (2011). Optimal imaging of cortico-muscular coherence through
a novel regression technique based on multi-channel EEG and un-rectified EMG.
NeuroImage, 57(3):1059-1067. (Chapter 3), doi: 10.1016/j.neuroimage.2011.04.071

II) Bayraktaroglu, Z., von Carlowitz-Ghori, K., Curio, G., and Nikulin, V. V. (2013).
It is not all about phase: Amplitude dynamics in corticomuscular interactions.
NeuroImage, 64:496-504. (Chapter 4), doi: 10.1016/j.neuroimage.2012.08.069

III) von Carlowitz-Ghori, K., Bayraktaroglu, Z., Hohlefeld, F. U., Losch, F., Curio, G.,
and Nikulin, V. V. (2014). Corticomuscular coherence in acute and chronic stroke.
Clinical Neurophysiology, 125(6):1182-1191. (Chapter 5),
doi: 10.1016/j.clinph.2013.11.006

IV) von Carlowitz-Ghori, K., Bayraktaroglu, Z., Waterstraat, G., Curio, G., Nikulin,
V. V. (2015). Voluntary control of corticomuscular coherence through neurofeed-
back: A proof-of-principle study in healthy subjects. Neuroscience, 290:243-254.
(Chapter 6), doi: 10.1016/j.neuroscience.2015.01.013

For paper I, the first two authors conducted experiments, analysis was performed by
the first author, I contributed with ideas and discussion to study design and manuscript.
The subjects of paper II were largely identical with subjects in paper I, analysis was per-
formed by the first author, I contributed with ideas and discussion to study design and
manuscript.
The healthy subjects in paper III were largely identical with the subjects of the papers I
and II, both first authors conducted the experiments in stroke patients and performed
analysis, I wrote the manuscript.
For paper IV, I designed the study, performed measurements and analysis, and wrote
the manuscript, co-authors contributed with ideas and discussion to study design and
manuscript, the third author helped with experiment preparation.

5



1. Introduction

1.3. List of all publications

The following list contains all publications (co-)authored by me.

Journal articles

1. von Carlowitz-Ghori, K. M. B., Hohlefeld, F. U., Bayraktaroglu, Z., Curio, G., and
Nikulin, V. V. (2011). Effect of complete stimulus predictability on P3 and N2
components: an electroencephalographic study. Neuroreport, 22(9):459-463

2. Bayraktaroglu, Z., von Carlowitz-Ghori, K., Losch, F., Nolte, G., Curio, G., and
Nikulin, V. V. (2011). Optimal imaging of cortico-muscular coherence through a
novel regression technique based on multi-channel EEG and un-rectified EMG.
NeuroImage, 57(3):1059-1067.

3. Bayraktaroglu, Z., von Carlowitz-Ghori, K., Curio, G., and Nikulin, V. V. (2013).
It is not all about phase: Amplitude dynamics in corticomuscular interactions.
NeuroImage, 64:496-504.

4. von Carlowitz-Ghori, K., Bayraktaroglu, Z., Hohlefeld, F. U., Losch, F., Curio, G.,
and Nikulin, V. V. (2014). Corticomuscular coherence in acute and chronic stroke.
Clinical Neurophysiology, 125(6):1182-1191.

5. von Carlowitz-Ghori, K., Bayraktaroglu, Z., Waterstraat, G., Curio, G., Nikulin, V.
V. (2015). Voluntary control of corticomuscular coherence through neurofeedback:
A proof-of-principle study in healthy subjects. Neuroscience, 290:243-254.

Contribution to conferences

1. Bayraktaroglu, Z., von Carlowitz-Ghori, K., Curio, G., Losch, F., Nolte, G., Nikulin,
V. V. (2011). Rectification of surface EMG impairs cortico-muscular coherence es-
timation, DGKN, Münster, Germany.

2. Bayraktaroglu, Z., von Carlowitz-Ghori, K., Losch, F., Nolte, G., Curio, G., Nikulin,
V. V. (2011). Rectification of EMG reduces cortico-muscular coherence: multichan-
nel EEG study. ECCN, Rome, Italy.

3. Bayraktaroglu, Z., von Carlowitz-Ghori, K., Curio, G., Nikulin, V. (2012). Ampli-
tude dynamics in corticospinal interactions. DGKN, Köln, Germany.
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4. von Carlowitz-Ghori, K., Bayraktaroglu, Z., Hohlefeld, F. U., Losch, F., Curio,
G., and Nikulin, V. V. (2014). Corticomuscular Coherence in Acute and Chronic
Stroke. DGKN, Berlin, Germany.

5. von Carlowitz-Ghori, K., Bayraktaroglu, Z., Waterstraat, G., Curio, G., Nikulin,
V. V. (2014). Neurofeedback based on corticomuscular coherence. HBMO, Ham-
burg, Germany.
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Background 2
In 1995, Conway et al. (1995) were the first to demonstrate the phenomenon of CMC
in a systematic study with human subjects using MEG and EMG. Further studies in
humans followed using (whole-scalp) MEG (Salenius et al., 1997), EEG (Halliday et al.,
1998) and local field potential (LFP) recordings in monkeys (Baker et al., 1997).
CMC relates to the synchronization between muscle activity and the activity over the
(contralateral) sensorimotor cortex. There is a clear distinction between sources relating
to hand and foot; for different upper limb muscles there were no differences in spatial
location detectable (Salenius et al., 1997). Some studies found phase lags between cortex
and muscle that were in agreement with the conduction velocity from cortex to muscle
(Salenius et al., 1997) while other studies did not (Riddle and Baker, 2005).
CMC occurs predominantly in the beta frequency range (13-30 Hz) during isometric
contraction but some healthy subjects show CMC also in the alpha frequency band
(Mima et al., 1999; Ushiyama et al., 2011b). In contrast, CMC in the gamma-band was
assigned a different functional significance (See Section 2.3.1 for more details). CMC
shows both a large within-subject variability (Pohja et al., 2005) and between-subject
variability (Ushiyama et al., 2011b). Particularly the strength of CMC can vary sub-
stantially between different days; the peak frequency is more stable (Pohja et al., 2005).
Interestingly, there seems to be no effect of handedness (Schoffelen et al., 2011; von
Carlowitz-Ghori et al., 2011). However, several behavioral and cognitive factors can
influence CMC strength and frequency which are reviewed in Section 2.3.1.
While CMC is broadly seen as a mechanism of the motor system that plays a role in fine
motor control, its exact functional role remains unclear (more details on potential roles
will be given in section 2.4).

8



2. Background

2.1. Neurophysiological basis of corticomuscular coherence

2.1.1. Control of voluntary muscle movement

Voluntary interaction with the environment is one of the main functions of the brain.
The motor cortex which is situated in the frontal lobe of the cerebral cortex, plays a crit-
ical role in planning, control and execution of voluntary movement. Here the abstract
plan of action is converted to motor commands. To perform the movement accurately,
external sensory information has to be continuously integrated (Kalaska and Rizzo-
latti, 2012; Dum and Strick, 2002; Rizzolatti and Luppino, 2001). In primates, voluntary
movement is mediated by direct, monosynaptic projections from the motor cortex onto
motor neurons in the spinal cord enabling skillful hand and relatively independent fin-
ger movement control. These motor neuron fibers, of which 30-40% originate in the
primary motor cortex, form the major descending pathway for voluntary motor activ-
ity, the corticospinal tract, also called the pyramidal tract. In the medulla oblongata,
most descending fibers cross to the opposite side at the pyramidal decussation; about
10% of the fibers remain uncrossed until the spinal cord (Amaral, 2012; Lemon, 2008).

Figure 2.1.: Pyramidal decussation and the formation of the corticospinal tract in the
spinal cord. Retrieved from http://www.britannica.com/EBchecked/media/48418/The-
decussation-of-the-medullary-pyramids-and-the-formation-of

9



2. Background

From motor unit firing to surface EMG Muscle activity is regulated by the recruit-
ment of motor units. A motor unit (MU) denotes a motor neuron and the group of
muscle fibers it innervates and constitutes the basic functional unit for the control of
movement. The number of innervated fibers can vary substantially with muscle type
and function; the smaller the number, the finer the control that can be achieved by vary-
ing the number of activated MUs. The force exerted by a muscle depends (not only)
on the number of activated MUs (Burke, 1975; Enoka and Pearson, 2012; Monti et al.,
2001). When a motor neuron generates an action potential (AP), neurotransmitters are
released leading to an action potential in the muscle fibers. The action potentials in
all fibers of a MU occur almost simultaneously adding to extracellular currents which
sum up to generate a field potential. Most contractions involve the activation of many
MUs, whose currents produce signals that can be detected by surface electromyogra-
phy (EMG), i.e. an electrode placed on the skin (see Figure 2.2 for an example of an
EMG signal during voluntary muscle contraction). EMG signals essentially consist of
the superimposed motor unit action potentials (MUAPs). The timing and amplitude
of EMG signal therefore reflects the activation of muscle fibers by the motor neurons
(Enoka and Pearson, 2012).
Besides the number activated MUs, MU firing rates modulate the strength of muscle
contraction. The rates at which a MU fires ranges between 6-35 Hz (Freund, 1983); only
in certain cases and for a short time firing rates up to 50 Hz are reached (Mima and
Hallett, 1999a).
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Figure 2.2.: EMG signal during voluntary muscle contraction in the interval around 0-10 s

Oscillatory activity in the sensorimotor cortex Oscillatory or rhythmic activity can
be observed with EEG or MEG and subserves important functions in the brain. On-
going oscillations are traditionally subdivided into five frequency bands: delta (0.5-3.5
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2. Background

Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (13-30 Hz) and gamma (30-70 Hz), as dis-
played in Fig. 2.3. Oscillatory activity in these different frequency bands are thought to
have distinct physiological roles and have been assigned to specific perceptual, senso-
rimotor or cognitive operations.

Broadband EEG

Delta

Theta

Alpha

Beta

Time [s]

Gamma

0 1 2 3 4 5 6 7 8

Figure 2.3.: Frequency bands of the EEG signal. From the top down: the original signal; the
signal after digital filtering with bandpass filters 0.5–3.5 Hz (delta), 4–7 (theta), 8–12 Hz (alpha),
13-30 (beta) and 30–70 Hz (gamma).

Beta-band oscillations have been linked to motor functions being pronounced dur-
ing steady contractions, especially during periods of holding directly following phasic
movements and they are attenuated by voluntary movements (Baker, 2007; Baker et al.,
1997). Interestingly they are also inhibited by motor imagery (Schnitzler et al., 1997;
De Lange et al., 2008), which is of particular relevance for brain-computer interfaces
(BCIs). While beta rhythms, which are observed in all parts of the motor system, have
been related to a steady motor state, during the preparation and the actual execution

11



2. Background

of movements, faster rhythms in the gamma-band are predominating. Therefore, beta
oscillations were suggested to be an ’idling’ rhythm, a resting state of the neurons in the
motor area (Pfurtscheller et al., 1996). More recently, however, Engel and Fries (2010)
promoted the idea of beta oscillations as active process to maintain the existing mo-
tor set while preventing neuronal processing of new movements. Further, the authors
suggest a similar functional role of beta-band activity also in cognitive processing. At
the same time, abnormal enhancement of beta-band activity would result in a abnor-
mal persistence of the current state, as it is the case in Parkinson’s disease, leading to
a declined flexible behavior and cognitive control. It remains unclear through which
mechanisms, beta-band oscillations inhibit changes and promote the maintenance of
the current motor set (Engel and Fries, 2010).

2.2. Synchronization as binding mechanism over distance

Synchronization of neural oscillatory activity is thought to reflect functional communi-
cation between spatially separate regions (Gray et al., 1989) and was suggested to be
a basic mechanism for brain integration that mediates the formation of dynamic links
over multiple frequency bands (Varela et al., 2001). Oscillations at different frequencies
might enable dynamic interactions across neuronal populations over different spatial
dimensions: while gamma-band interactions are prevalent in relatively local synchro-
nization, interactions in beta-band involve more distant structures (Kopell et al., 2000).
The following section 2.2.1 gives the mathematical definition of coherence and aspects
of phase synchronization; the functional role of synchronization in corticospinal inter-
actions is then discussed in Section 2.4.

2.2.1. Coherence and phase synchronization

Coherence is a measure of linear coupling between two time signals: two waves are
coherent if they have a constant phase difference, see Figure 2.4. Coherence analy-
sis is widely used in neurophysiology where coherence between two signals originat-
ing from two different spatial locations is interpreted as functional connection between
them.
Coherence or magnitude-squared coherence between two time series x(t) and y(t) is an
extension of the Pearson’s correlation coefficient in the frequency domain.
If Fx(ω) and Fy(ω) are the (complex) Fourier transforms of the signals x and y, then the
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Figure 2.4.: Coherence of two signals. The blue oscillatory signal precedes the red one by a
constant phase shift (marked in green). Note that this illustration is simplified: the phase lag
does not allow to draw any conclusion on which signal is the leading one.

cross-spectrum is defined as:

Sxy(ω) =< Fx(ω)F
∗
y (ω) > (2.1)

where * denotes complex conjugation and <> the expectation value.

Coherence is defined as the crosspectrum Sxy(ω) normalized by the autospectra Sxx(ω)
and Syy(ω) of the two signals x and y, respectively:

Cohxy(ω) =
|Sxy(ω)|2

Sxx(ω)Syy(ω)
(2.2)

Values of coherence always satisfy 0 ≤ Cohxy(ω) ≤ 1 reflecting the consistency of the
phase difference between the two signals at a given frequency ω; 0 corresponds to ran-
domly changing phase shifts and 1 to a constant phase shift indicating perfect linear
correlation (as in Figure 2.4). Note that this ideal case does usually not occur in coher-
ence analysis of neurophysiological data: Coherent signals always jitter around a con-
stant phase difference as displayed in Figure 2.5 showing the example of corticospinal
interaction. Reasons for coherence values always being < 1 may be due to additive
noise and desynchronization between processes.
In practice, to obtain a meaningful coherence estimate and to reduce variance, spectra
are usually calculated by averaging over the windowed periodograms for subsegments
of equal length, i.e. Welch’s periodogram method (Welch, 1967). Without averaging,
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Figure2.5.:DistributionofphasedifferencebetweenEEGandEMGprocesses

coherencewouldresultin1forallfrequencies.

Generally,coherenceisregardedasameasureofphasesynchronizationintheanalysis

ofbrainactivity. However,coherencedependsalsoonthesignal-to-noiseratio(SNR),

i.e.inpractice,coherenceanalysishastheadvantagetogivestrongerweighttosignals

withbetterSNR.

WithinpaperII(Chapter4)alsothephasesynchronizationindex(SI)(Rosenblumetal.,

2001),quantifyingthedistributionofphasedifferenceasillustratedinFigure2.5,is

calculatedwhichdoesnottakeamplitudesintoaccount.Inpracticehowever,coherence

andphasesynchronization wereshowntogivesimilarresults(MezeiováandPaluš,

2012).

Whenthesignals xωandyωarebandpass-ilteredsignalsaroundthefrequencyωand

Θ(t) =φx(t)−φy(t)isthephasedifferencebetweenxω andyω (phasesareextracted

withHilberttransform,seeSection2.2.2)attimetwiththetotalnumberofsamplesT

andtheimaginaryunitj,thenSIisestimatedas:

SI=
1

T

⏐
⏐
⏐
⏐
⏐

T∑

t=1

ejΘ(t)

⏐
⏐
⏐
⏐
⏐

(2.3)

where0≤SI≤1;0and1correspondingtoabsentandperfectphasesynchronization,

respectively.
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Effect of volume conduction on coherence estimation Coherence between two
signals does not necessarily show the presence of synchronization between two sources
(Rosenblum et al., 2001; Nolte et al., 2004). Due to volume conduction brain activity
originating from one single source can be measured at many channels. This may lead to
the detection of spurious brain connectivity. As an alternative to examining connectiv-
ity in source space, Nolte et al. (2004) proposed to use the imaginary part of coherency
to study true brain interactions. They show that for different signals originating from
the same source the imaginary part of (complex) coherency is necessarily zero since ar-
tifactual coherence due to volume conduction occurs with zero phase lag (Grosse and
Brown, 2005; Nolte et al., 2004). The real-valued function of coherence is the magnitude
squared of the complex coherency Cohxy(ω) = |Cxy(ω)|2, thus coherency is defined as

Cxy(ω) =
Sxy(ω)√

Sxx(ω)Syy(ω)
(2.4)

Note that the terms coherence and coherency are not defined consistently and are also
used interchangeably. Coherence may further refer to the absolute (but not squared)
value of coherency Cohxy(ω) = |Cxy(ω)|. In all publications of this thesis, coherence is
employed as given in Equation 2.2.
For spatially remote sources such as cortex and muscle, the detection of spurious con-
nectivity is generally less of an issue; artifactual contamination from e.g. scalp muscle
activity can quite easily be identified. Mima and Hallett (1999b), however, found that
re-referencing to a common electrode led to a spurious coherence peak in the case of
corticospinal interaction, possibly due to volume conduction.

2.2.2. Amplitude dynamics

Amplitude (or power) and phase are generally independent measures of oscillatory
signals although cortical dynamics may lead to a relationship between them. While the
amplitude of an analytic signal is the length of a vector in a complex plane, phase is the
angle in the same plane (see Figure 2.6). Consequently, length and angle can change
independently of each other; the two measures provide information about different
aspects of the underlying processes. While the amplitude of cortical activity is typically
associated with local synchronization (see Figure 2.7), phase synchronization reflects
locking of spatially remote neuronal activities (Varela et al., 2001).
In paper II (Bayraktaroglu et al., 2013, Chapter 4) the amplitude-envelope of beta oscil-
lations are used as a measure of local cortical and spinal cord synchronization and the
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Figure 2.6.: Amplitude and phase of signals correspond to the length and angle of a vector, re-
spectively. The two measures constitute two aspects of a process and can change independently
of each other.

Figure 2.7.: Local synchronization influences the signal amplitude: the more neurons are active
at a time the larger is the amplitude of the signal. Triangles represent neurons; filled triangles
indicate active neurons.

relationship between the amplitude-envelope correlation and CMC is investigated. In
contrast to coherence, which measures linear coupling, amplitude-envelope correlation
relates to the measurement of non-linear relationships.
By means of the Hilbert transform, the amplitude envelope of a signal can be calculated
(see Figure 2.8). The Hilbert transform H[x(t)] of function x(t) is defined as

H[x(t)] = x̃(t) =
1

π
p.v.

∫ ∞

−∞

x(y)

t− y
dy (2.5)

where p.v. denotes the Cauchy principal value. Alternatively, the Hilbert transform of
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Figure 2.8.: Amplitude envelope of an analytic signal

x(t) can be written as the convolution of x(t) with the signal 1/πt.:

H[x(t)] = x̃(t) = x(t) ∗ 1

πt
(2.6)

This envelope detection method involves creating the analytic signal using the Hilbert
transform. An analytic signal is a complex measure, where the real part is the original
signal and the imaginary part is the Hilbert transform of the original signal:

ψ = x(t) + jx̃(t) = A(t)ejφ(t) (2.7)

The instantaneous amplitude A(t) of the signal x(t) is defined as the magnitude of the
analytic signal:

A(t) =
√
x2(t) + x̃2(t) (2.8)

where x̃(t) is the Hilbert transform of the signal x(t).
The instantaneous phase of the signal can be obtained by:

φ(t) = arctan
x̃(t)

x(t)
(2.9)

Note that only for narrow-band signals the instantaneous amplitude A(t) corresponds
to the envelope of x(t) (Rosenblum et al., 2001; Boashash, 1992).

17



2. Background

2.3. Factors influencing CMC strength and frequency

2.3.1. Effects of motor behavior and cognition

Since 1995 factors influencing (beta-band) CMC have been investigated extensively.
The magnitude of CMC was shown to be unaffected by changes in the force level for
low to moderate forces, i.e. for force levels up to about 60% of maximum voluntary
contraction (MVC) (Brown et al., 1998; Mima et al., 1999). However, CMC strength was
found to be influenced by a range of other parameters related to fine motor control.
CMC showed a task-dependent modulation (Baker et al., 1999): it was present only
during the steady hold phase while it is abolished during the ramp phase. The mag-
nitude of CMC increased with better motor performance (Witte et al., 2007). Further, a
compliant object, i.e. when subjects move a lever against a spring-like load, yielded a
larger CMC magnitude than a simple isometric contraction (Kilner et al., 2000; Riddle
and Baker, 2006) which was due to the digit displacement rather than the compliance
of the object as such (Riddle and Baker, 2006). CMC was shown to increase after (short-
term) motor learning/adaptation and CMC even became visible due to motor learning
in subjects who previously did not present CMC (Mendez-Balbuena et al., 2012; Perez
et al., 2006). Besides, CMC-modulation was reported to be influenced by muscle fa-
tigue, the results were however controversial. While some studies found increased
CMC (Ushiyama et al., 2011a; Tecchio et al., 2006), others report that CMC decreased
(Yang et al., 2009; Siemionow et al., 2010) due to muscle fatigue. The discrepancy may
be explained by the task which included sustained contraction with maximal (Tecchio
et al., 2006) or submaximal (Yang et al., 2009; Ushiyama et al., 2011a) force until exhaus-
tion or intermittent handgrip contractions (Siemionow et al., 2010) or by the involved
muscle.
Moreover, CMC peaks can also occur in other frequency ranges than beta. In some
healthy people, CMC can be found in alpha frequency range; alpha-band CMC has
however not been attributed any other functional meaning than CMC in beta frequency
range. In contrast, gamma CMC has been linked to different motor behavior, in partic-
ular dynamic force output. While steady-state isometric contraction is associated with
CMC in the beta frequency range, periodically-modulated dynamic force output leads
to a shift of the dominant CMC peak to the high beta/low gamma frequency range (30-
45 Hz) (Omlor et al., 2007). Omlor et al. (2007) concluded that during dynamic force
the corticospinal oscillation mode of the sensorimotor system shifts towards the higher
gamma frequencies to rapidly integrate visual and somatosensory information required
to produce the appropriate motor command. Gamma-band CMC was not influenced

18



2. Background

by the amplitude of the dynamic force (Andrykiewicz et al., 2007); it could however
not always been identified as a peak distinct from beta CMC at different low levels of
dynamic force (Chakarov et al., 2009). In addition, Salenius et al. (1996) demonstrated
CMC at 40 Hz for one subject performing slow movements. Moreover, for very strong
contractions, i.e. 80% of MVC, Mima et al. (1999) detected CMC within the gamma fre-
quency range, however, only in a few subjects. The topographical distribution of beta-
band CMC during weak contractions differed from gamma-band CMC during strong
contraction suggesting a different neuronal origin of beta and gamma CMC.
Besides influences of motor-related behavior, CMC has also been shown to be affected
by motor-unrelated, cognitive processes such as attention, cognitive effort and antic-
ipation. Divided attention due to a secondary task led to decreased CMC strength
(Kristeva-Feige et al., 2002; Safri et al., 2007). In contrast, CMC strength increased when
cognitive effort was required to ignore a visual distractor (Safri et al., 2006, 2007). More-
over, Schoffelen et al. (2005, 2011) demonstrated that gamma-band CMC could be selec-
tively modulated by cognitive demands, i.e., by the subjects’ expectation of performing
a movement. The gamma-CMC modulation occurred during a period of isometric con-
traction prior to the anticipated change in movement; CMC in beta frequency range
remained unaffected. In contrast to Mima et al. (1999), the authors report a very simi-
lar topography for beta-band and gamma-band CMC which suggests the involvement
of the same or spatially highly overlapping neuronal groups. Taken together, these
studies give evidence that CMC is not a purely motor-related phenomenon but can be
modulated by cognitive demands.

2.3.2. Afferent mechanisms

It has been suggested that CMC may not solely originate from cortical output pathways
but also involve feedback afferent pathways (Baker, 2007).
Indeed, some studies indicated that an alteration of somatosensory inputs affected co-
herence. Intermuscular (EMG-EMG) coherence was shown to be decreased by digital
nerve anesthesia blocking cutaneous input (Fisher et al., 2002). At the same time, how-
ever, also task performance was markedly reduced which has been related to a decrease
in coherence strength (Witte et al., 2007, see also section 2.3.1). Note that EMG-EMG
coherence may give comparable information about descending cortical drives as cor-
ticomuscular coupling (Grosse et al., 2003; Grosse and Brown, 2005) since it is at least
partially of cortical origin (Kilner et al., 1999). Riddle and Baker (2005) employed a
paradigm which increased the peripheral motor conduction time by cooling the arm.
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Figure 2.9.: Ascending (blue) and descending (red) pathways possibly mediating CMC. While
the cortical output pathway (red) alone has been shown to be sufficient for the generation of
CMC, feedback from the periphery might form an additional route which at least might have
an modulatory effect on CMC. The picture has been retrieved from Baker (2007)

As a result, the delay calculated from the coherence phase increased twice as much
as one would expect from just a change of the efferent pathway indicating afferent
feedback pathways may contribute to the generation of CMC. Another study (Pohja
and Salenius, 2003) found CMC to be reduced under temporary sensory deafferentia-
tion; the peak frequency remained unchanged. Further evidence comes from the case
of a deafferented patient who showed reduced EMG-EMG coherence while task per-
formance under visual control was comparable to controls (Kilner et al., 2004). These
studies demonstrate an effect on CMC strength by manipulation of peripheral input.
As CMC is however only reduced and not abolished, an afferent feedback loop can-
not be essential for the generation of corticomuscular synchrony. The efferent motor
information alone is sufficient to establish beta-band CMC. The study conducted by
Gerloff et al. (2006) supports this view: in the brain-lesioned patients, primary mo-
tor and somatosensory cortex could be clearly differentiated due to a relocation of the
primary motor cortex to the other hemisphere. The authors found no contribution of
the primary somatosensory cortex to beta CMC indicating that beta-range CMC repre-
sents efferent drive from the primary motor and not reafferent feedback processing. For
the same deafferented patient as studied by Kilner et al. (2004), Patino et al. (2008) re-
ported the absence of gamma CMC during dynamic force task; instead CMC remained
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in the beta frequency range. During the static isometric force condition, beta CMC was
comparable to controls. For both task conditions, the patient showed marked deficits
in performance. The authors conclude that controlling dynamic force output poses a
more complex task which makes proprioceptive information mandatory for the gener-
ation of gamma-band CMC. At the same time, when afferent feedback is absent, CMC
in the beta-band can operate in an efferent motor mode to maintain a steady motor
output during static and dynamic force.

2.3.3. Developmental changes

Several studies have examined CMC at different stages of development and aging
(Graziadio et al., 2010; Kamp et al., 2011; Kanazawa et al., 2014; James et al., 2008). Dur-
ing the time from early development until adoloscence, CMC magnitude was found
to increase with age (Kanazawa et al., 2014; Graziadio et al., 2010) despite EEG power
in alpha and beta frequency range showing the opposite trend (Graziadio et al., 2010).
In newborns, CMC magnitude in the beta frequency range correlated with postnatal
age (Kanazawa et al., 2014) which implies a relationship between beta CMC and neu-
ral maturation during neonatal development. In addition this could be an indication
of corticomuscular communication beginning to develop, a process which may facili-
tate sensory-motor integration and activity-dependent development (Kanazawa et al.,
2014). Besides lower amplitudes, CMC in newborns also showed larger variation in
peak frequencies compared to young children or adults which Kanazawa et al. (2014)
attributed to the immature corticomuscular functional connectivity during the devel-
opmental stage. Young children (4-12 years) more often showed multiple peaks with
a broad spread of frequencies including alpha frequencies compared to young adults
(Graziadio et al., 2010). Topographical CMC distributions and power changes were
further indicative of larger, more distributed cortical networks being activated and re-
lates to more non-specific cortical activation in children. In early adulthood, CMC was
then characterized by a single peak within the beta frequency range (Graziadio et al.,
2010). In contrast to younger and older age groups, the amplitude of CMC in young
adults inversely correlated with motor performance. In adults (22-77 years), Kamp et al.
(2011) found CMC frequency to be negatively and CMC amplitude to be positively cor-
related with age. For the age groups above 40 years there was however no difference in
CMC frequency. Yet, there was a trend of CMC amplitude to be higher in elderly (58-77
years) compared to middle-aged people (41-55 years). Kamp et al. (2011) suggested that
increased coherence amplitude might denote a compensatory mechanism to maintain
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isometric contraction. Graziadio et al. (2010), however, found no difference in CMC
amplitude when comparing elderly (>55 years) with young adults (20-35 years). Yet,
as for children, peak frequencies were again more broadly spread and multiple peaks
occurred more often, which the authors related to a breakdown of recurrent inhibition.
They further found that a greater deviation from 23 Hz corresponded to poorer motor
performance. The authors assumed that networks become less tuned including break-
down in their integration which may be likely to contribute to a decrement in motor
control.
Age effects had to be considered for paper III (von Carlowitz-Ghori et al., 2014, Chapter
5) where stroke patients were compared to a healthy control group including middle-
aged to elderly subjects.

2.3.4. CMC in stroke and other movement disorders

It is important to understand the functional coupling between cortical commands and
the consequential muscle activation in movement disorders in order to add to the un-
derstanding of underlying mechanisms and aid in restoring normal motor function.
CMC can be used as a tool to identify and characterize changes in functional coupling
related to motor deficits. CMC alterations have been reported in a number of motor
disorders including stroke (Mima et al., 2001; Braun et al., 2007; Fang et al., 2009; Meng
et al., 2009; Graziadio et al., 2012; Rossiter et al., 2013), various types of tremor (Raeth-
jen et al., 2002; Caviness et al., 2006; Raethjen et al., 2013) or myoclonus1 of Parkinson’s
disease (Caviness et al., 2003).
The optimized detection of CMC in acute and chronic stroke was one topic of this the-
sis. The abovementioned CMC studies in stroke were only performed at chronic stage,
i.e. from about one year post-stroke. The reported results regarding CMC amplitude
changes on the ipsilesional and contralesional side varied; interhemispheric differences
in CMC peak frequencies were not reported. The results of these studies will be dis-
cussed in more detail within paper III (von Carlowitz-Ghori et al., 2014, Chapter 5) of
this thesis.

2.4. Functional role of CMC

There is substantial evidence that corticospinal synchronization evolves not just from
cortical signals being transmitted to the muscle.

1quick involuntary muscle contraction (jerk)
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Studies suggest a bidirectional connectivity in the corticomuscular system: in addition
to the efferent pathway, an afferent feedback loop may allow the ongoing motor ac-
tivity being modulated by the sensory feedback signals (Riddle and Baker, 2005; Pohja
and Salenius, 2003; Campfens et al., 2013). As already discussed in Section 2.3.2, CMC
strength can be manipulated by peripheral input. While the afferent pathway might
not be essential for establishing CMC, it still suggests that CMC does not simply arise
from the propagation of cortical activity to the muscle.
Moreover, some studies demonstrated a dissociation between CMC and the power of
beta oscillations. The sedative Diazepam, which has inhibitory effects (GABAA recep-
tor agonist), slightly reduced beta-CMC amplitude while the power of beta oscillations
doubled (Baker and Baker, 2003). In contrast, the opposite reaction was caused by ad-
ministering the antiepileptic drug Carbamazepine, which inhibits sustained repetitive
firing (blocker of voltage-gated sodium channels in the axon): beta-CMC amplitude
increased whereas beta power and also CMC frequency remained unchanged (Riddle
et al., 2004). Similarly, also a dissociation between power and CMC in the gamma-band
frequency range has been reported (Schoffelen et al., 2005). As discussed in Section
2.2.2 power and coherence are generally independent measures: While the power is
associated with local synchrony, coherence between distant sources is not necessarily
reflected in amplitude. For a further discussion of this issue, please be referred to paper
II (Bayraktaroglu et al., 2013, Chapter 4).
CMC is likely to reflect functional connectivity within the motor system, in particu-
lar efferent commands from the cortex to muscle (Kanazawa et al., 2014). Generally,
beta-band CMC is considered to be of some importance for fine motor control. As it is
however absent during the movement itself, it is presumably not crucial for motor per-
formance. MacKay (1997) proposed the idea that descending oscillations could function
as a motor ’test pulse’ (MacKay 1997) such that sensorimotor areas of the brain would
be informed of current muscle conditions. Another complimentary idea suggested that
beta-band oscillations could act to ’recalibrate’ the sensorimotor system by providing
updated information following a movement (Baker, 2007). Schoffelen et al. (2005) hy-
pothesized that coherence is as mechanism of effective corticospinal interaction: In a
simple reaction-time task, the subjects’ readiness to respond was closely correlated with
the strength of gamma-band CMC. The authors conclude that (gamma-band) CMC may
contribute to an effective corticospinal interaction and shortened reaction times. They
speculate that in general, selective coherence could be a mechanism for regulating the
efficiency of input. Gamma-band CMC may further function to provide rapid integra-
tion of attention resources and afferent mechanisms (Lattari et al., 2010).
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Figure 2.10.: Effect of rectification on EMG power spectrum. Rectification led to an increased
peak at about 15 Hz

2.5. Further methodological aspects of analysis

2.5.1. Rectification of surface EMG as pre-processing step

The full-wave rectification of the EMG signal, i.e. taking the absolute value of the signal,
has been widely applied as pre-processing procedure prior to CMC estimation. EMG
rectification results in a shift of the EMG power spectrum towards lower frequencies
which correspond to the MU firing rate (Myers et al., 2003, see also Section 2.1.1). This
effect is illustrated in Figure 2.10 where rectification led to an increased peak at about
15 Hz in the EMG power spectrum; the figure closely resembles e.g. Figure 4 by Myers
et al. (2003). Due to the shift in the power spectrum, EMG rectification was concluded
to enhance MU firing rate information while suppressing frequency contents related to
the MUAP wave shape.
Despite the routine use of rectification, the rationale behind this step had for a long
time hardly received any attention. Recently however, the applicability of EMG recti-
fication has been challenged (Neto and Christou, 2010) starting a still ongoing debate
(Boonstra, 2010; Halliday and Farmer, 2010; Stegeman et al., 2010; Christou and Neto,
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Figure 2.11.: Rectification of an amplitude-modulated signal. The left hand side shows the
power spectra of the simulated signals S1 and S2. Signal S1 is an amplitude-modulated signal
plus additive noise, the frequency of the carrier wave is 40 Hz and the modulation frequency
15 Hz. The modulating signal is a time-shifted version of S2. Only after rectification, the 15-Hz
peak is visible in the power spectrum. The (unmodulated) signal S2 has a frequency of 15 Hz.
On the right hand side, the coherence spectrum shows a peak at 15 Hz only after the rectification
of S1.

2010; Bayraktaroglu et al., 2011; Boonstra and Breakspear, 2012; McClelland et al., 2012;
Ward et al., 2013; Farina et al., 2013; Dakin et al., 2014; McClelland et al., 2014; Farmer
and Halliday, 2014).
The full-wave rectification provides an approximation of the signal envelope (Myers
et al., 2003). As noted by Boonstra (2010), amplitude modulations of higher frequency
contents, which may result from periodic input to the MU pool, can be retrieved by rec-
tification. Amplitude modulation is only visible in the Fourier spectrum with but not
without rectification (or Hilbert/wavelet transform), as illustrated on the left-hand side
of Figure 2.11. When the frequency of the second signal corresponds to the frequency
of the amplitude modulation, coherence is also only detectable after rectification (see
right-hand side of Figure 2.11).
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Arguing against rectification, McClelland et al. (2012) pointed out that rectification con-
stitutes a non-linear step and should therefore not be applied in coherence analysis
which detects linear coupling. Rectification was shown to distort the frequency con-
tent (Neto and Christou, 2010) and introduce a frequency dependency (Stegeman et al.,
2010).
EMG rectification is one focus of this thesis as part of paper I (Bayraktaroglu et al., 2011,
Chapter 3) At the time when paper I was prepared for publication, studies largely ad-
dressed the issue from a theoretical viewpoint (Myers et al., 2003; Neto and Christou,
2010; Stegeman et al., 2010). Paper I provided experimental evidence against the rec-
tification of the EMG signal as it resulted in a significant reduction of the coherence
peak. The issue of EMG rectification continues to be highly debated. More recently,
studies have been conducted providing further evidences both in favor (Boonstra and
Breakspear, 2012; Ward et al., 2013; Farina et al., 2013; Dakin et al., 2014) and against
(McClelland et al., 2012) EMG rectification. Therefore, I will update the reader on these
more recent findings in Section 3.1.

2.5.2. Principal Component Analysis (PCA)

Principal component analysis (PCA) (Pearson, 1901; Jolliffe, 2002) is a popular multi-
variate technique in machine learning for feature extraction and data analysis/reduc-
tion which aims at explaining the data by a linear combination of uncorrelated vari-
ables, the principal components.
By this linear transformation the data is projected into a new coordinate system where
the principal components are the coordinate axes; the first principal component thereby
accounts for the largest variance in the data, the second principal component being or-
thogonal to the first component accounts for the most of the remaining variation and
so forth. A simple two-dimensional example is given in Figure 2.12.
Due to volume conduction, the same sources in the brain may be recorded at several
scalp EEG channels resulting in a correlation of EEG signals. By removing redundan-
cies, i.e collinearity among variables/EEG signals, in the data, PCA allows to reduce
dimensions while keeping most of the information.
Given a data set of EEG signals x(t) = (x1(t), x2(t)...xn(t))

T where n is the number of
EEG channels, the principal components can be determined by the eigenvalue decom-
position of the (n× n) covariance matrix Σ derived from the data.
This is done by finding the eigenvectors ei and their associated eigenvalues λi of Σ such
that
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Figure 2.12.: Two-dimensional example of the PCA procedure. The left hand shows the original
data and the corresponding principal components (blue). On the right hand side, the data was
projected into a new coordinate system with the two principal components as axes; the 1st
principal component accounts for the vast majority of variation in the data.

Σei = λei, i = 1, 2, ...n (2.10)

If the eigenvectors are sorted according to their eigenvalues (= variances) in descending
order, then the first eigenvector (with the largest eigenvalue) is the first principal com-
ponent. For dimension reduction, a number of k components can be selected (k ≤ n)
that account for the desired amount of variability in the data, typically above 95%. The
data is then projected into the new coordinate system:

m(t) = x(t)V (2.11)

where V is the n× k matrix containing the k selected eigenvectors.
Figure 2.13 illustrates how dimensions are reduced by PCA on an example of EEG sig-
nals. In contrast to e.g. Independent Component Analysis (ICA) which find statistically
independent components, PCA is unlikely to produce components which reflect source
signals.
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Figure 2.13.: Dimension reduction of EEG signals by PCA. The left hand side shows the original
signals; the right hand side shows the projected data which has been reduced by one dimension,
i.e. two of the three eigenvectors had been selected.

2.5.3. Spatial filters and patterns

Generally, EEG signals provide only a low spatial resolution. Due to volume conduc-
tion, information is spread over several channels. Therefore, spatial filters are applied
as pre-processing step in order to improve the SNR of relevant EEG activity. In the
context of BCI, spatial filters can serve to optimize the discrimination between two con-
ditions; one of the most popular algorithms for classification in motor-imagery BCI is
e.g. the Common Spatial Pattern (CSP) approach or variants of it (Koles, 1991; Ramoser
et al., 2000; Blankertz et al., 2008; Tomioka et al., 2006) which aims to find spatial filters
that maximize the difference in variance between the two conditions.
In CMC analysis, Laplacian filters (Hjorth, 1975) are commonly applied (Mima and
Hallett, 1999b; Saǧlam et al., 2008). Laplacian filters are basic spatial filters based on
the fixed sensor position: for each channel, the signals of the neighboring channels are
subtracted (see Figure 2.14). They act as spatial high-pass filter amplifying localized
activity. More advanced filters are individually optimized for the specific neurophysio-
logical measure such as the R-CMC method (Chapter 3) introduced in this thesis for op-
timizing the detection of CMC. Results obtained with Laplacian filtering will be shown
in comparison. The R-CMC method is based on Multiple Linear Regression which is
described in section 2.5.4.
The weights of spatial filters which serve to extract the relevant EEG activity cannot be
interpreted as neurophysiologically meaningful, i.e. a stronger weight does not need
to correspond to a larger contribution to the process and vice versa. In contrast, spatial
patterns reflect how the strength of activity is topographically distributed and therefore
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Figure 2.14.: Laplacian spatial filter. From the signal of each channel (red), the signals of the
neighboring channels (green) are substracted.

allow for an interpretation of the origin of the neural processes (for a detailed elabora-
tion on this issue see Haufe et al., 2014). Figure 2.15 shows filter and pattern in compar-
ison.
The R-CMC method employs an approach by Parra et al. (2002) to derive the pattern
(of CMC activity) from the spatial filter: for a (n×t) data matrixX (for n channels and t
time samples) and the optimized filter weights b, the spatial pattern P can be calculated
as

P =
Xv

vT v
(2.12)

where the component v results from the projection of the data by the weights v =

(bTX)T . The pattern P represents the coupling between the activity of component v
and the sensor-space data.

2.5.4. Multiple Linear Regression

Multiple linear regression is one of the most widely used predictive models in the field
of machine learning. The procedure, which requires only minimal computational effort,
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2. Background

Figure 2.15.: Spatial filters and patterns. The left hand side shows a spatial filter which serves
to improve the SNR of relevant activity. The right hand side displays the corresponding spatial
pattern (of CMC activity). Only the pattern is neurophysiologically interpretable.

models the relationship between one dependent/response variable or regressand and
several independent/predictor variables or regressors. Figure 2.16 shows an example
of multiple linear regression for two independent variables. In the case of only one
predictor, the method is referred to as simple linear regression.
For a target variable y and n predictor variables x1, x2, ...xn, the multiple linear regres-
sion model can be described as

ŷ = β0 + β1x1 + β2x2 + ...+ βnxn + ϵ (2.13)

where ŷ is the estimated value of y, β1, β2, ...βn are the regression coefficients, β0 is the
intercept and ϵ is a random variable (noise).
The model parameters can be estimated by the least-square criterion which minimizes
the sum of squared residuals, i.e. the squared deviation of the estimated from the ob-
served values

n∑
i=1

(yi −Xβ)2 (2.14)

where X is a matrix containing the predictor variables and β a vector containing the
unknown regression parameters.
The matrix solution of this minimization problem is given by the least-square estimator
b of the parameters

b = (XTX)−1XT y (2.15)
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2. Background

Figure 2.16.: Example of multiple linear regression with two independent variables where a
plane is fit to the data such that the (squared) distances between the data points and the plane
is minimized.
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2. Background

The goodness of fit of the multiple linear regression model can be measured by the
coefficient of determination usually denoted as R2 or r2

R2 = 1− SSres
SStot

(2.16)

where SSres is the explained and SStot the total variance, i.e. R2 indicates the explained
variability of the model. The coefficient of determination is such that 0 ≤ R2 ≤ 1; the
larger the value, the better the model fits to the data.

Collinearity One issue of multiple linear regression analysis is collinearity (or multi-
collinearity) which occurs when two or more predictor variables are highly intercorre-
lated. For perfect collinearity, the matrix X does not have full rank and XTX becomes
singular; therefore (XTX)−1 does not exist; as a result there is no unique solution. Per-
fect collinearity e.g. due to duplicates in the data is easily eliminated. In practice, high
but not perfect collinearity tends to be more of an issue. Though there exists an unique
solution (XTX is invertible), high collinearity makes the parameter estimates less sta-
ble: the estimates may change drastically upon slight variations in the data and are
therefore little accurate. The problem of collinearity is illustrated in Figure 2.17. The
fitted plane is not well supported by the data points. See in contrast Figure 2.16 where
the predictor variables are uncorrelated.

Regularization Regularization refers to techniques that can be applied to prevent
overfitting which reduces the predictability of the model. For multidimensional data,
overfitting can occur due to the number of parameters being too high relative to the
amount of data. Further, regularization allows to restrict the impact of outliers/strong
noise (Müller et al., 2003). Common regularization methods for linear models are Ridge
Regression (Hoerl and Kennard, 1970) and Lasso (Tibshirani, 1996) which constrain the
size of the estimated regression coefficients. At the same time, regularization may intro-
duce a bias to the model. The regularization parameters, which can be adjusted using
cross-validation, are therefore chosen such that they provide a trade-off between bias
of the model and variance of estimates.
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2. Background

Figure 2.17.: Example of collinearity. The fitted plane is not well supported: little changes in
the data could have a large effect on the parameter estimates. In contrast, Figure 2.16 shows an
example where the plane is well supported by the data points.
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Methodology for optimal detection

of CMC and Rectification 3
This chapter introduces the method Regression CMC (R-CMC) in comparison to other
methods commonly used for CMC analysis. The method allows the extraction of spatial
filters that optimize the detection of CMC. Thereby also differences concerning EMG
rectification could be detected (see below) which emphasizes the importance of im-
proving CMC detection. Due to the positive results, the R-CMC method was also used
for CMC analysis of the remaining three publications of this thesis. Some parameters
have been varied, particularly in the last publication on CMC-based neurofeedback
(Chapter 6) where the method is adjusted for online presentation. While the technical
details of the method will be extensively introduced within the following publication,
the flowchart of Figure 3.1 is meant to provide a schematic overview of the method.
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3. Methodology for optimal detection of CMC and Rectification
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Figure 3.1.: R-CMC method. For the bandpass-filtered EEG signals (A) the linear combination
of channels with specific weights is found which best explain the EMG signal. The regression
coefficients serve as spatial filters (B) to project the EEG signals resulting in one projected signal
rEEG and the EMG signal (C). Coherence is the calculated between the two signals (D).
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Cortico-muscular coherence (CMC) reflects interactions between muscular and cortical activities as detected
with EMG and EEG recordings, respectively.Most previous studies utilized EMG rectification for CMC calculation.
Yet, recent modeling studies predicted that EMG rectification might have disadvantages for CMC evaluation. In
addition, previously the effect of rectification on CMC was estimated with single-channel EEG which might be
suboptimal for detection of CMC. In order to optimally detect CMCwith un-rectified EMG and resolve the issue of
EMG rectification for CMC estimation, we introduce a novel method, Regression CMC (R-CMC), which
maximizes the coherence between EEG and EMG. The core idea is to use multiple regression where narrowly
filtered EEG signals serve as predictors and EMG is the dependent variable. We investigated CMC during
isometric contraction of the abductor pollicis brevis muscle. In order to facilitate the comparison with previous
studies, we estimated the effect of rectification with frequently used Laplacian filtering and C3/C4 vs. linked
earlobes. For all three types of analysis, we detected CMC in the beta frequency range above the contralateral
sensorimotor areas. The R-CMC approachwas validatedwith simulations and real data andwas found capable of
recovering CMC even in case of high levels of background noise. When using single channel data, there were no
changes in the strength of CMC estimated with rectified or un-rectified EMG— in agreement with the previous
findings. Critically, for both Laplacian and R-CMC analyses EMG rectification resulted in significantly smaller
CMC values compared to un-rectified EMG. Thus, the present results provide empirical evidence for the
predictions from the earlier modeling studies that rectification of EMG can reduce CMC.

© 2011 Elsevier Inc. All rights reserved.

Introduction

Oscillatory neuronal activity in the beta frequency range (15–30 Hz)
has been shown to be important for themovement control (Baker et al.,
1999; Donoghue et al., 1998; Murthy and Fetz, 1992; Penfield, 1954).
Particularly, cortico-muscular coherence (CMC) in the beta range has
beenhypothesized tounderlie amechanism throughwhich the cortex is
able to achieve fine motor control (Baker, 2007; Jackson et al., 2002;
Schnitzler et al., 2000). In its essence, CMC shows how electrical cortical
and muscle activities are correlated at a specific frequency range.
CMC during isometric muscle contractions was demonstrated by both
non-invasive MEG (Conway et al., 1995; Salenius et al., 1997) and EEG

recordings (Baker and Baker, 2002; Graziadio et al., 2010; Halliday et al.,
1998; Kristeva-Feige, et al., 2002; Mima and Hallett, 1999) in healthy
subjects and confirmed with intracortical local field potential (LFP)
recordings in monkeys (Baker et al., 1997). CMC is diminished during a
movement and appears predominantly during periods of isometric
contraction following the movement (Kilner et al., 2000; Riddle and
Baker, 2006) and reaches itsmaximumpeak in the beta frequency range
(16–32 Hz) over the primary sensorimotor cortices contralateral to the
innervated limb (Salenius et al., 1997; Tsujimoto et al., 2009; Witham
et al., 2010).Across studies CMCmagnitude rangesbetween0.02and0.2
(Conway et al., 1995; Riddle and Baker, 2005; Salenius and Hari, 2003).
CMC peak frequency, spectral distribution and magnitude show task,
attention and age related modulations (Graziadio et al., 2010; Kristeva-
Feige et al., 2002; Riddle and Baker, 2006).

In the present study we aimed at elucidating the issue of EMG
rectification for CMC calculation. Using simulations, Neto and Christou
(2010) showed that rectification impairs estimation of EMG activity.
Moreover, a recent modeling study (Stegeman et al., 2010) predicted
that EMG rectification should lower CMC values. In contrast, an earlier
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empirical study (Yao et al., 2007) using EEG signals derived from
electrode C3 (referenced to linked mastoids) found no significant CMC
differences when using either rectified or un-rectified EMG signals.
Neuronal activity recorded by a single EEG channel represents a
superposition of multiple sources which might obscure specific cortical
oscillations engaging neurons in the spinal cord. An obvious step in
dealing with such superposition is to use spatial filters for sharpening
the sensorimotor oscillations. In this study,we utilized a novel approach
on the basis of multiple regression for the optimal detection of cortico-
muscular interactions. Such optimization allows reduction of irrelevant
neuronal oscillations and background noise which might impair CMC
estimation and obscure possible differences between rectified and un-
rectified EMG. In addition, we also used Laplacian filtering which is
commonly used in CMC studies (Andrykiewicz et al., 2007; Graziadio
et al., 2010; Mima and Hallett, 1999; Sağlam et al., 2008) to verify the
notion that spatial high-pass filtering is indeed required for the
demonstration of the rectification effects. Since EMG rectification is a
standard preprocessing step in many CMC studies, the present results
have direct implications for the interpretation of oscillatory control of
muscle activity.

Methods

Subjects

We studied 10 healthy volunteers (9 males and 1 female), and
mean age was 46±10.8 (mean±SD). Subjects were without any
history of neurological or psychiatric disorders. The experimental
protocol was approved by the Institutional Review Board of Charité,
Berlin, and the subjects gave their written informed consent prior to
the experiments. All subjects were right-handed according to the
Edinburg Handedness Inventory (Oldfield, 1971) and had normal or
corrected to normal vision.

Paradigm

We have chosen a digit displacement paradigm including
manipulation of a compliant object which requires the subject to
move the levers against a load and then hold. Previous studies
reported that the coherence was smaller when the task involved an
isometric condition rather than a compliant condition (Kilner et al.,
2000; Riddle and Baker, 2006).

Subjects were seated in a comfortable chair; arms were rested on
the chair handles, forearms flexed at 60° and hands were pronated.
The task required pressing a spring-loaded lever with the left or right
thumb at 0.5 N force. The force level was measured with a Honeywell
Load Sensor (FSG15N1A). Visual feedback for the force level was
provided on a computer screen as a horizontal bar of a varying lateral
extent proportional to the exerted force. A cross in the center of the
screen served as an eye-fixation point. The displacement of the
spring-loaded lever was ~3.5 cm.

The task was performed with each hand separately and the hand
order was counter-balanced between the subjects. One hundred trials
were recorded for each hand in four blocks. The subjects were
instructed to reach the desired force level as fast as possible after a
single tone and hold it constant until a double tone. Each trial lasted
9 s in total (5 s active and 4 s rest). There were sixty seconds of rest
between the blocks.

Data acquisition

EEG and EMG data were recorded with BrainAmp MR plus (Brain
Products, Germany) amplifiers, filtered in the frequency range 0.015–
250 Hz and sampled at 1000 Hz. Voltage resolution for EEG and EMG
channels was 0.1 μV and 0.5 μV, respectively.

EEG

During the acquisition, EEG was referenced to physically linked
earlobes and recorded with an EEG cap (61 electrodes, EasyCap™)
where electrodes had a higher density between frontal and parietal
areas over the sensorimotor cortex. As verified empirically, physically
linked-earlobes did not lead to the distortion of voltage topographies
(Gonzalez Andino et al., 1990). Ag/AgCl sintered ring electrodes
12 mm in diameter were used (EasyCap GmbH, Germany). Ocular
artifacts were recorded with two electrodes placed on the right
zygomatic and supraorbital processes.

EMG

Six EMG electrodes were placed over the thenar side of each hand
and EMG was recorded from the Abductor Pollicis Brevis (APB)
muscle. Ag/AgCl sintered electrodes 4 mm in diameter were used. The
skin surface was abraded with NuPrep (Weaver and Co., CO, USA)
before electrode application. The electrode-skin conductive contact
was established with Ten20 electrode paste (Weaver and Co., CO,
USA) and the electrodes were secured to the skin with adhesive
medical tape.

An EMG reference electrode was placed on the styloid process of
the ulnar bone and a ground electrode on the inner surface of wrist at
the midline. Ag/AgCl sintered electrodes 12 mm in diameter were
used as reference and ground.

Analysis

All data and statistical analyses were performed offline in MATLAB
(Mathworks Inc., MA, USA) environment with custom written
functions.

Data preprocessing

The analysis was focused on the stable hold period of the task, in
which the strongest coherent activity in beta band has been shown
before (Baker et al., 1997; Kristeva et al., 2007; Riddle and Baker,
2006). This period corresponded to the post-stimulus interval
between 2000 and 5000 ms after the start tone. The data were
visually inspected for the presence of strong abrupt force changes in
the hold period. If the force output deviated from 0.5±0.1 N range,
the epoch was discarded. After artifact rejection 207±34.32 s and
201.3±41.22 s of data were utilized for the analysis of the left and
right hand tasks, respectively.

Regression — cortico-muscular coherence (R-CMC)

Our novel R-CMC method employs two steps: dimension reduc-
tion and multiple linear regression with the delay optimization.

Dimension reduction

Since coherence is analogous to the calculation of correlation in a
narrow frequency band, we found it useful to perform the following
calculations in the time domain. When fitting a regression model to
the data, the number of variables (in our case number of EEG
channels) is an important factor. In order to avoid collinearity of the
predictors (EEG from different channels) and to make the estimation
of covariance matrices more robust, we first reduced the number of
dimensions with Principal Component Analysis. We start with the
measurement matrix M of size l×n where l is the number of time
samples and n is the number of channels.We then proceedwith band-
pass filtering each column/channel inM in the specific frequency band
around a frequency f (the band is defined as f±2 Hz) creating the
matrixMf. The columns inmatrixMf are centered to have a zeromean.
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Next, we estimate the time-averaged covariance matrices for Mf:

C f =
MT

f Mf

l
ð1Þ

where l is the number of samples. Then, we calculate orthogonal basis
by finding eigenvectors ei and eigenvalues λi of the matrix Cf such
that:

C f ei = λiei; i = 1;2;3…n: ð2Þ

Let Pf be the matrix containing first k eigenvectors as columns. The
number k is selected to account for 99% of variability in the data. We
then project our original data into a new coordinate system:

T f = MfPf : ð3Þ

Multiple linear regression

R-CMC is based on multiple linear regression, which finds linear
combination of all input variables (EEG activity)maximally explaining
the EMG activity. This in turn translates into the maximization of
linear correlation/coherence between EEG and EMG activities (see
below). The R-CMC procedure was performed separately for each of
the six EMG electrodes.

Let g be the vector containing EMG activity which is filtered
around the same frequency f as in the case of EEG. The linearmodel for
EMG can then be expressed as:

g = β1tf1 + β2tf1 + … + βktfk + ε ð4Þ

where tfi are columns in the Tf matrix and ε is a random variable
(noise).

In a matrix form Eq. (4) can be written as:

g = T fβ + ε: ð5Þ

We estimate β by minimizing the difference between the observed
and the modeled data

b = argminβ

����gτ−T fβ
���� ð6Þ

where jj∙jj indicates L2 norm and τ indicates a time-delayed EMG signal
in the range of −τmax to τmax, where τmax is defined according to the
center frequency f of the band-pass filter (see below for further details
on “Delay optimization”).

The least-squares solution to Eq. (6) is:

b = TT
f T f

� �−1
Tf gτ: ð7Þ

Here we also explain why minimization in Eq. (6) leads to the
maximization of correlation.

Recall that the coefficient of determination (R2 value) is defined as:

R2≡1− SSres
SStot

ð8Þ

where SSres is the residual sum of squares related to Eq. (6) and SStot is
the total variance of the regressand (EMG activity). The coefficient of
correlation R is then simply obtained by taking a square root of R2 (the
sign of the correlation is irrelevant). Since SStot depends only on the
EMG values, R2 value can be maximized through the decrease in SSres,
which is achieved in Eq. (6).

Tf data is then projected using b, leading to:

y = T fb: ð9Þ

Delay optimization

Since the interactions between cortex and muscle are not
instantaneous, a certain delay τ is expected between the activities at
these two levels. In order to take into account this delay EEG and EMG
data were band-pass filtered with 2 Hz steps and 4 Hz bandwidth at
center frequencies f between 10 and 34 Hz using a Butterworth filter
of 4th order. The filtered EMG signal was shifted relative to EEG
between −π (−τmax) and +π (τmax) with π/6 steps. Separately for
each EMG electrode and delay, a multiple regression was performed
and the coherence, corresponding to the best EMG channel and delay
was selected for further analysis. The coherence across segments was
estimated as:

Cohg;y =

��sg;y
��2

��sg
��2��sy

��2 ð10Þ

where sg and sy are complex Fourier transforms for EMG and projected
EEG data (y), respectively, and sg,y is a cross-spectrum. For the
calculation of the Fourier transforms, the data was divided into
500 ms non-overlapping segments and windowed with a Hanning
window.

Localization of coherent activity

We employed an approach proposed by Parra et al. (2002) for the
calculation of patterns from the spatial filter b. For Tf data (related to
PCA components), the pattern pPCA can be calculated as:

pPCA =
TT
f y

y′y
: ð11Þ

Thus pPCA can be considered as a coupling/correlation of projected
y vector with the EEG activity in matrix Tf.

Next we have to obtain the final pattern pEEG taking into account
previous PCA decomposition:

pEEG = PfpPCA: ð12Þ

For further analysis and delay optimization we excluded compo-
nents with pEEG patterns showing abnormal activity such as the
presence of mosaic like high-frequency spatial frequencies or strong
activity at the temporal or frontal edges of the patterns (a typical
indication for the presence of the scalp muscle activity). After
obtaining pEEG patterns one can perform localization of neuronal
sourceswith different inversemodelingmethods. In the present study
we used the sLORETA algorithm (Pascual-Marqui, 2002) to localize
neuronal sources related to the specific patterns pEEG corresponding to
the strongest cortico-muscular coherence and mapped these sources
using the standard MNI305 head (Collins et al., 1994). For compar-
ative purposes, sLORETA maps were normalized by dividing the
power in each voxel by the sum of power from all voxels.

Un-rectified and rectified EMG activity

As mentioned earlier R-CMC was estimated for raw EMG activity
filtered around different frequencies f as in the case of EEG (see
above). In addition to this R-CMC was also calculated for rectified
EMG. In this case, EMG was high-pass filtered at 10 Hz, band-stop
filtered at 50 Hz and rectified. Then the R-CMC procedure was applied
to the rectified EMG as in the case of raw EMG.
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Cortico-muscular coherence assessed with Laplacian filtering

Laplacian filtering of EEG for CMC estimation has been used
frequently (Andrykiewicz et al., 2007; Graziadio et al., 2010; Mima
and Hallett, 1999; Sağlam et al., 2008). In addition to the R-CMC
method, we estimated coherence between Laplacian-filtered EEG for
both rectified and un-rectified EMG data. The Laplacian-based
coherence was calculated on the same data epochs as in the case of
R-CMC analysis. The Laplacian filtering of 61 channels resulted in 22
Laplacian derivations. CMC with Laplacian filtering was estimated for
each of six EMG channels and for rectified and un-rectified EMG. The
highest coherence values in the frequency range 13 to 33 Hz over the
hemisphere opposite to the performing hand were selected for the
further analysis.

Cortico-muscular coherence on the basis of EEG with linked-earlobes as
a reference

For the replication of earlier results (Yao et al., 2007), we also
calculated the coherence between channels C3/C4 and the EMG
channel located over the belly of APB muscle. Cortico-muscular
coherencewas calculated for both rectified and un-rectified EMG data.

Significance of coherence

The confidence limit (CL) for the coherence obtained on the basis
of Laplacian filtering and linked ear-lobe approach can be estimated as
proposed by Rosenberg et al. (1989),

CLγ = 1− 1− γ
100

h i 1
N−1½ � ð13Þ

where γ is the significance level set to 5%, N is the number of epochs,
and CL is a confidence limit above which the coherence is significant.
For the coherence obtained with R-CMC approach, we used
permutation tests (Hesterberg et al., 2005). For this procedure, we
repeated all the steps of R-CMC such as PCA, multiple regression and
delay optimization but EMG segments were shuffled with respect to
the EEG data. For each permutation, we obtained a specific coherence
value and altogether 500 permutations were performed. The
significance was determined as percentage of coherence values
exceeding the coherence value corresponding to unpermuted data.

Simulations

We tested CMC with Laplacian and R-CMC methods in the
presence of strong background noise and interfering oscillatory
activity. We simulated EEG recordings for 61 channels, which were
fitted to the outermost layer of the standard Montreal Neurological
Institute (MNI) head (Evans et al., 1994). The head model was based
on a three compartment realistic volume conductor and was used for
calculation of EEG forward solutions (Nolte and Dassios, 2005). The
source of coherent activity was modeled as a single tangential cortical
dipole placed at the primary hand motor area in the pre-central gyrus
of the right hemisphere. The sources of beta oscillations were
generated by band-pass filtering white noise in the 18–22 Hz
frequency range. The coherent EMG activity was a time-shifted
version of the cortical oscillations with the addition of white noise.
The resulting original coherence between cortical source and EMG
activity was ~0.14. Note that for these simulations rectification of
EMG is not relevant because R-CMC anyway works with band-pass
filtered data which is obtained with or without rectification. This
simulation addresses the ability of R-CMC to obtain spatial filters
which maximize coherence between EMG and the extracted neuronal
source. For the generation of background noise, we used 500
uncorrelated dipoles with random orientation and distribution on

the cortex. The noise sources had 1/f type spectra. Additionally, we
simulated an interfering uncorrelated dipole with either equal or 20
times stronger amplitude than the amplitude of CMC source. This
dipole had the same frequency and location as CMC dipole, but
different orientation (thus also leading to different scalp patterns,
Fig. 8). The simulated data was 90 s long and sampled at 1000 Hz. The
SNR of the CMC source was set to 0.05. The SNR was calculated as the
ratio between the mean variance across channels for the projected
dipole and the mean variance of additive 1/f noise (produced by all
noise dipoles) in the center frequency of the coherent source.

The error between the original pattern and the pattern recovered
by R-CMC was calculated according to:

Err = 1−
��aTorar

������aor
����⋅
����ar

���� ð14Þ

where aor is the original simulated pattern and ar is a pattern
recovered by R-CMC.

Results

Performance

The subjects were able to keep the required force level during the
active period of the trials. The trials, which exceeded ±0.1 N of the
desired force in the analyzed period (2000 to 5000 ms), were
removed from the analysis. On average, the subjects were able to
stay within ±12.5% of the required force level. Fig. 1 shows an
example of motor performance for one subject.

PCA components

The number of PCA components (explaining 99% of variance)
ranged from 19 to 36 (mean±SD: 25.9±4.8) which translates to 41
to 69% decrease in the number of channels.

Cortico-muscular coherence

Single-channel analysis (linked earlobes as a reference)
An example of the coherence spectrum for one subject is presented

in Fig. 2. The mean and the standard error of the mean for the
coherence, calculated for rectified and un-rectified EMG, are shown in

Fig. 1. Force output during task performance. Bold and thin lines show mean±SD for
one typical subject. The vertical lines at 2 and 5 s mark the analyzed period. The force
was measured in N (Newtons).
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Fig. 3. There was no significant difference between the strength of
CMC related to rectified or un-rectified EMG (pN .05; a confidence
interval for two-tailed paired t-test at 95% (CI): [−0.070 0.008]). The
mean frequency of the coherence peaks for the single-channel
analysis is shown in Fig. 4. There were no significant differences
between the peak frequencies related to rectified vs. un-rectified EMG
(pN .05; CI: [−0.505 1.076]).

Laplacian filtering
The maximum of the coherence values in the beta range (13 to

33 Hz) was found in the hemisphere contralateral to the performing
hand. The mean and standard error of the coherence for rectified and
un-rectified EMG are shown in Fig. 3. The statistical analysis showed
that the coherence was smaller when being based on rectified EMG
compared to the un-rectified EMG (pb .05; CI: [0.005 0.023]). The
coherence spectrum for a representative subject is shown in Fig. 2.
Topographical distributions of the coherence values for the Laplacian
filtering are shown in Fig. 5. Note that the number of electrode

locations is limited to 22 Laplacian derivations. Themean frequency of
the coherence peaks for the Laplacian analysis is shown in Fig. 4. There
were no significant differences between the peak frequencies related
to rectified vs. un-rectified EMG (pN .05; CI: [−2.615 2.187]).

R-CMC
Fig. 2 shows a characteristic enhancement of coherence spectrum

at beta frequency for R-CMC in comparison to single-channel and
Laplacian-filtered data. Corresponding spatial topographies, obtained
with the R-CMC procedure for the un-rectified EMG (Fig. 6A), are
shown in Fig. 6B. Note the pronounced contralateral activations with
respect to the left or right hand performance. The strongest coherence
peak was at about 27 Hz.

Themeanvalues of the coherence for R-CMC approachwith rectified
and un-rectified EMG are shown in Fig. 3. For all the extracted
components it was possible to show the presence of significant peaks
in the coherence spectrumwhen using the permutation procedure. The
R-CMC method showed that there was a significant effect of EMG
rectification. In agreement with the data from the Laplacian filtering,
coherence based on the R-CMC approachwas smaller by about 14.4% for
the rectified than un-rectified EMG (pb .05; CI: [.006 .026]). The mean
frequency of the coherence peaks for R-CMC analysis is shown in Fig. 4.
There were no significant differences between peak frequencies related
to rectified vs. un-rectified (pN .05; CI: [−4.180 1.038]).

To determine the cortical sources corresponding to the patterns
obtainedwith the R-CMCmethod, we used sLORETA (Pascual-Marqui,
2002). Fig. 6C shows sLORETA solutions for the individual topography
presented in Fig. 6B on average MNI head. Fig. 7 shows also a grand-
average of sLORETA solutions across all subjects. For this grand-
average, the voxels for each individual subjects were normalized by
the sum of activity in all voxels (for a given subject). The results of the
source reconstruction revealed the presence of the strongest activity
in the contralateral sensorimotor cortex with a maximum in the pre-
central gyrus — corresponding to motor cortex.

Simulations

Fig. 8 presents the simulation results. Fig. 8B, shows that when the
amplitude of an interfering source is weak both R-CMC and Laplacian
methods detect peaks in the simulated frequency range, yet they are
much weaker for the Laplacian approach. In the presence of a strong
interfering source only the R-CMC approach recovered a clear and
significant (permutation tests) peak. No significant peaks were
detected with Laplacian filtering. Importantly, for both high and low

Fig. 2. CMC spectra calculated for single channel, Laplacian-filtered and R-CMC using
rectified (rEMG) and un-rectified (uEMG) EMG data in a typical subject. Thick and thin
lines correspond to un-rectified and rectified EMG, respectively.

Fig. 3. Comparison of CMC values from three analysis methods when using rectified
(rEMG) and un-rectified (uEMG) EMG. The error bars indicate standard error of the
mean. The analysis was based on data across all subjects and left/right hand
performances (* paired t-test, pb0.05).

Fig. 4. CMC peak frequencies estimated by the three different analysis methods.
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amplitudes of the interfering source R-CMC errors in the recovery of
the original patterns were quite small (Errb0.1, Eq. (14)).

Discussion

In this study we presented and tested a novel method for CMC
analysis based on multiple linear regression (R-CMC) which finds the
spatial projection for EEG data maximizing the coherence between
cortical and muscle activities. R-CMC and Laplacian filtering provided
new insights on the contested necessity to rectify EMG for CMC
analysis. Below we elaborate on the specific points of the study.

Estimation of CMC based on multiple regression

R-CMC is based on the idea of finding the linear combination of
multiple EEG signals best explaining EMG. When finding a spatial
filter (regression coefficients) one can use all EEG channels, which
makes R-CMC distinctly different from other frequently used
estimates of local EEG activity such as bipolar and Laplacian filtering.
In the present study in order to reduce over-fitting and multi-
collinearity between the predictor variables, we used PCA as a pre-
processing step. Multi-collinearity occurs when the predictors,
included in the regression model, are strongly correlated with each
other, which often occurs in EEG recordings due to the volume

Fig. 5. The topographical distribution of CMC values estimated at 22 Laplacian derivations during left and right hand tasks from one typical subject. Locations of electrodes are
marked with black points and Laplacian derivations (where CMC was calculated) are encircled.

Fig. 6. R-CMC analysis for left and right hand performances of a typical subject (upper and lower panels, respectively). A) CMC spectrum. B) Scalp distribution of the component
extracted with R-CMC, and C) cortical sources for the topography presented in B. CL: upper limit of the confidence limit (mean+1.96 standard deviation of the shuffled data), a.u.—
arbitrary units.
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conduction. In case of multi-collinearity the covariance matrix tends
to be singular and this affects the validity of the regression model. In
the present study, we used as many PCA components as necessary to
explain 99% of the variance in the EEG data. This allowed up to ~70%
reduction in the number of the used variables.

R-CMC showed that CMC peak frequencies were primarily in the
beta range, with the mean values not being very different across
different analysis techniques. This indicates that similar neurophysio-
logical processes were detected by all three types of CMC approaches.
However, advantageously R-CMC allows recovery of the EEG topogra-
phies related to the cortical sources coherent with muscle activity. This
in turn allows reconstructing neuronal sources with inverse modeling,

e.g., the sLORETA algorithm, which showed that the R-CMC topogra-
phies were modeled best by neuronal sources located at contralateral
sensorimotor areas, with strongest activity in the pre-central gyrus
corresponding to motor cortex. This finding is in agreement with
previous studies where inverse modeling was used for localization of
sensorimotor oscillations synchronouswithmuscle activity (Gross et al.,
2001; Salenius et al., 1997; Schoffelen et al., 2008). Even using standard
MNI template, we obtained functionally meaningful results for the
location of the coherent cortical activity. This is due to the fact that
sLORETA has low spatial resolution and thus, smoothes differences in
individual locations of cortical sources between subjects providing
approximate “center of gravity” localization.

R-CMC is different from approaches related to CMC estimation
based on single channel (Yao et al., 2007), bipolar (Graziadio et al.,
2010; Riddle and Baker, 2005), or Laplacian derivations (Mima and
Hallett, 1999). In case of single channels the major drawback is that
the recorded activity represents a massive superposition of the signals
from multiple sources of beta oscillations, thus not allowing studying
activity from specific cortical areas. Bipolar and Laplacian derivations
act as spatial high-pass filters and partially alleviate the superposition
problem. However, since these techniques do not take into account
information from EMG, they can filter out neuronal oscillations
contributing to CMC. Alternatively, beamformer techniques proved
useful for CMC estimation (Gross et al., 2001; Schoffelen et al., 2008),
yet they require massive statistical testing performed for each voxel.
In addition, for very accurate results, at least in the case of EEG,
beamforming requires detailed (e.g., MRI-based) information about
the brain conductivity, which is not always available.

EMG rectification and CMC

Farmer et al. (1993) estimated coherence between individual
motor unit pairs of the same or separate intrinsic hand muscles and
demonstrated a significant association between motor unit firings in

Fig. 8. A. Original patterns for the simulated CMC source (top) and a strong interfering source (bottom). B. Coherence spectra for the conditions in which the interfering source was
equal (top) and 20 times stronger (bottom) than the CMC source. The thick black line represents the coherence spectrum estimated by the R-CMC approach and the colored lines
represent coherence spectra estimated by Laplacian filtering at different EEG derivations. C. The patterns recovered by R-CMC in the presence of the equal (top) and 20 times stronger
(bottom) interfering source, the recovery errors for the patterns were 0.033 and 0.092, respectively.

Fig. 7. Cortical sources of the coherent activity estimated with sLORETA. The normalized
source maps were averaged across 7 subjects.
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the 1–12 Hz and 16–32 Hz ranges. By comparing recordings from
healthy subjects, and patients with peripheral and central lesions,
they concluded that the synchronization between motor units at
16–32 Hz was a result of central input rather than peripheral afferent
pathways. Conway et al. (1995) supported this hypothesis and
demonstrated for the first time the existence of CMC between MEG
and rectified surface EMG. Only in a separate paper, Halliday et al.
(1995) stated that the surface EMG is rectified in order to remove
waveform artifacts. Although it has been recognized that it is difficult
to interpret a rectified EMG signal, the authors stated the rationale
behind EMG rectification as an approach to enhance detectability of
motor unit action potential (MUAP) timing, and for this reason limited
their analysis to the frequency range below 50 Hz. Although these low
frequencies are related to MUAP firing rate, EMG signals are usually
high pass filtered and rectified in order to shift the spectral power
from higher frequencies (mostly related to MUAP shape) towards the
lower frequency range as shown by Myers et al. (2003) and Neto and
Christou (2010).

Although rectification has been widely used as pre-processing
step, its effect on CMC was explicitly addressed for the first time by
Myers et al. (2003) who validated the hypothesis of Halliday et al.
(1995) in a simulation study. They suggested that enhancing MUAP
timing by rectification could also make coherence more visible but
they did not confirm this idea with empirical data.

Yao et al. (2007) studied the effect of rectification empirically,
using EEG and MEG recordings. They confirmed that rectification
improved the identification of motor unit firing rates in the EMG
power spectrum; nevertheless, there was no difference in coherence
estimates between rectified and un-rectified signals. Notably, this
conclusion might be limited by suboptimal spatial filtering, which we
discuss below.

In the present study, we utilized single-channel, Laplacian filtering
and R-CMC in order to address the effect of EMG rectification on CMC.
For single channel data we found no significant changes in CMC
strength when comparing rectified to un-rectified EMG, thus
reconfirming the results of Yao et al. (2007). On the contrary, for
both Laplacian and R-CMC methods EMG rectification resulted in
significantly decreased coherence values compared to the un-rectified
EMG. Such reduction has been suggested by recent simulation study
(Stegeman et al., 2010). In a detailed modeling study, Stegeman et al.
(2010) showed that the transmission of central rhythmic activity to
EMG relates directly to the spectral content of EMG and the coupling
strength between alpha motor neurons and EMG is not frequency
dependent in a relatively broad frequency range. On the other hand,
EMG rectification resulted in a frequency dependence of the spectral
content of EMG with respect to the varying central rhythms.
Moreover, EMG rectification significantly attenuated the coherence
between the alpha-motor neuron pool and EMG. In addition, Neto and
Christou (2010) showed in their modeling study that the power
spectrum of un-rectified EMG correctly detects changes in the
oscillatory input, while the power spectrum of rectified EMG did
not. These results from Stegeman et al. (2010) and Neto and Christou
(2010) indicate that EMG rectification could strongly impair the
estimation of CMC, which indeed was observed in the present study.

We provide the following explanation for why Laplacian filtering
and the new R-CMC method are superior for the detection of EMG
rectification effects on CMC compared to single-channel results as
reported here and in Yao et al. (2007). Laplacian and R-CMC methods
act as spatial high-pass filters thus eliminating interference from
other CMC-irrelevant neuronal sources. The latter are usually adding
up to neuronal activity directly related to CMC. Such superposition of
EEG activity from multiple sources leads in turn to smaller CMC
values. In case of excessive amounts of such additive undesirable
activity, a “floor” effect might occur when the true CMC is so heavily
affected/reduced by the irrelevant neuronal activity that there might
be simply no possibility to see differences in CMC strength with or

without EMG rectification. Indeed, our analysis revealed that the
smallest CMC values were obtained for the single channel data
(Fig. 3). As we have shown in our simulation, Laplacian filtering is
susceptible to interfering sources and thus, the R-CMC approach
provides a safety margin for dealing with interfering sources. For
datasets with exceedingly high levels of interfering sources (both
neuronal and extra-neuronal origin, e.g. from scalp muscles) the use
of only Laplacian filtering can miss the effects of EMG rectification as
in the case of the single-channel approach. Therefore, methods more
robust than Laplacian filtering (e.g., beamformers or R-CMC) should
be used.

In conclusion, we have developed a novel method for CMC
detection based on multiple regression. The method maximizes
CMC and allows the extraction of EEG topographies, which can be
used for an inverse localization of neuronal sources. In agreement
with previous predictions from modeling studies, both R-CMC and
Laplacian filtering provided converging evidence suggesting that CMC
can be reduced for rectified EMG.
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3. Methodology for optimal detection of CMC and Rectification

3.1. Update on the EMG-rectification debate

After publication of the current paper, the very active debate on EMG rectification con-
tinued (Boonstra and Breakspear, 2012; McClelland et al., 2012; Farina et al., 2013; Ward
et al., 2013; Dakin et al., 2014; McClelland et al., 2014; Farmer and Halliday, 2014; Ne-
gro et al., 2015). Boonstra and Breakspear (2012) suggested that the effect of rectifi-
cation may depend on the heterogeneity of MUAP shapes. The simulation data was
supported by experimental recordings of intermuscular coherence in subjects standing
quietly. The authors concluded that in heterogeneous MUAP populations rectification
improved coherence because the common drive, which has been canceled out, was
recovered by rectification. Further, Ward et al. (2013) found rectification to be advan-
tageous at very low force levels, i.e. finger extension against gravity. At higher force
levels there was no difference for rectified and raw EMG signal. Aiming at elucidating
the issue when to rectify or not, the degree of amplitude cancellation was accounted for
the effectiveness of rectification in extracting common oscillatory inputs (Farina et al.,
2013; Negro et al., 2015): rectification was identified as advantageous when the level
of amplitude cancellation was low. The level of amplitude cancellation changes with
contraction level, fatigue, or across subjects and muscles making comparisons across
conditions that differ in the level of cancellation complicated. At the same time, such
a dependency on amplitude cancellation was not found using the raw EMG signal. In
line with the amplitude-cancellation hypothesis, the advantageous effect of rectifica-
tion at low force levels (Ward et al., 2013) can be attributed to little amplitude cancel-
lation (Farina et al., 2013). The hypothesis also explains the observation by Boonstra
and Breakspear (2012): the uniformity of MUAP shapes influences the degree of can-
cellation. Thereby, the amplitude cancellation is maximal when shapes all are the same
and decreases with increasing heterogeneity of the shapes. Adding to their previous
study (Farina et al., 2013), Negro et al. (2015) concluded that rectification is beneficial
for studying low frequency oscillations (delta and alpha frequency bands) with short-
duration action potentials and low level of amplitude cancellation. However, as also
McClelland et al. (2014) pointed out, it may be difficult to tell whether a change in
coherence is due to a genuine physiological change or the variable effect of rectifica-
tion. Further, Negro et al. (2015) noted that rectification may distort the estimation of
common synaptic inputs at beta and gamma frequency bands. However, these are the
frequency bands where CMC is generally studied.
In conclusion, several cases where EMG full-wave rectification might be beneficial have
been identified by the abovementioned studies. They presented simulations to predict
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3. Methodology for optimal detection of CMC and Rectification

empirical results (Boonstra and Breakspear, 2012) and supported them with theoreti-
cal framework (Farina et al., 2013; Negro et al., 2015). However, the non-linear step of
rectification does have a very complex effect on the signal leading to a distortion of the
frequency content of the signal. The effectiveness of rectification depends on a range of
factors including the force level and the frequency band at which coherence is studied.
In consequence, the effect of rectification becomes inconsistent which is particularly
problematic when comparing conditions where those factors differ.
In addition, some papers find no negative effect of rectification, e.g. at slightly higher
force levels (Ward et al., 2013). However, paper I shows that this might be due to the
method used to detect coherence. Methods like R-CMC that employ spatial filtering
may be more sensitive to detect differences that are otherwise buried by a superposi-
tion of unrelated cortical sources (this point is more extensively discussed in paper I).
Thus, to safeguard against potentially unpredictable effects, in many cases the use of
the unrectified EMG signal may be the preferential choice. Consequently, the general
statement of paper I rather arguing against rectification is not to be reinterpreted in
view of studies published afterwards. There could however be additional cases where
rectification may prove beneficial. Therefore, in new paradigm settings it may be ap-
propriate to compare results from both analyses. Nevertheless, it remains interesting
that despite rectification being a non-linear step with complex, unpredictable effects on
the frequency content, the obtained peak frequencies of CMC are very similar for the
rectified and unrectified EMG signal.

3.2. Limitations and outlook

The current paper presented a new method for the extraction of spatial filters optimiz-
ing CMC detection. The method is based on multiple linear regression taking all EEG
channels into account at a time. In addition, the topography of CMC-related activity
can be retrieved which allows for source localization. Furthermore, the paper provided
empirical evidence that EMG rectifications impairs CMC estimation as it had been pre-
dicted from simulation studies.

Sensitivity of the method The paper compared the results of the R-CMC method to
those obtained from Laplacian filtering which has spatially fixed weights (see also Sec-
tion 2.5.3). The R-CMC method individually optimizes the channel weights resulting
in CMC peak amplitudes that were significantly larger. One potential problem of such
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3. Methodology for optimal detection of CMC and Rectification

optimization is overfitting which will be discussed in the next section.
Yet, in simulations, where background noise was very strong, R-CMC could still reli-
ably detect coherence and thereby outperformed Laplacian filtering. Nevertheless, in
empirical data, some subjects still remained where CMC could not be detected using
the R-CMC method. One explanation is that these people simply do not have CMC.
However, at least in some of these subjects, this may also be due to a great day-to-day
variability (Pohja et al., 2005; von Carlowitz-Ghori et al., 2015): on some days CMC
may be detectable and on others not. Thus, these cases offer the possibility to enhance
the detectability of CMC. The method SPoC (Dähne et al., 2014) allows to extract neu-
ronal components whose power highly correlate with a target variable. However, sam-
ple tests did not indicate a better CMC estimation than the R-CMC method (data not
shown).

Overfitting One problem that might occur when optimizing spatial filters is over-
fitting, i.e. the filter optimizes to fluctuations in the data caused by noise/unrelated
activity. In the current paper, the spatial filter was optimized on the very same data as
it was later applied to. Therefore, precautions were taken to avoid overfitting:

• In order to avoid collinearity of predictors (EEG channels) PCA was employed
after visual inspection of the data and prior to regession significantly reducing
the number of predictors.

• CMC peak values were verified using permutation tests (Hesterberg et al., 2005)
where EMG segments were shuffled destroying the temporal relationship be-
tween projected EEG and EMG signals.

Another way to show generalizability of the method would have been e.g. (leave-one-
out) cross validation. At the time point of analysis however, this method was too time-
consuming and results of permutation tests were comparable.
In addition to the precautions taken, the results of the R-CMC analysis make overfitting
for several reasons unlikely:

• CMC peaks values, usually, exceeded the values obtained from random/per-
muted data by far (and were not just barely above significance level).

• CMC patterns corresponding sLORETA solutions were neurophysiologically mean-
ingful indicating sources in the contralateral sensorimotor areas.
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3. Methodology for optimal detection of CMC and Rectification

• Generalizability of the filters is demonstrated in the neurofeedback study (pa-
per IV, Chapter 6): spatial filters which were applied during online feedback had
been optimized on a preceding training session; subjects were able to use them
successfully for neurofeedback.

Increasing the number of EMG channels In the current paper (as well as in the
other three papers), the one EMG channel was always selected among the three or
more channels which resulted in the largest coherence. This selective choice however
means that additional information corresponding to corticomuscular interaction might
still be contained in the data which is however weaker and therefore disregarded by
the R-CMC method. Therefore, multiple regression could be replaced by canonical cor-
relation allowing to include both all EEG channels and all EMG channels into analysis.
Possibly, these may lead to the identification of multiple sources associated with the
different positions on the muscle due to different corticomuscular innervation patterns.
In addition, with canonical correlation one could also obtain a pattern that corresponds
to the muscular activity. Here, the number of EMG channels could be greatly enlarged,
e.g. using a high-density surface EMG grid (Steeg et al., 2014).
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Amplitude modulation in

cortico-spinal interaction 4
The previous chapter was concerned with the detection of coherence as a measure of
phase-relationship in corticospinal interaction. The current paper now also consideres
amplitude modulations of sensorimotor oscillations in their relationship between cor-
tex and spinal cord. Generally, amplitude and phase are two measures of a signal that
can change independently of each other (see also Section 2.2.2). Thus, mathematically
the presence of phase synchronization between cortex and muscles does not allow con-
clusions to be drawn regarding amplitude modulations; a relationship between the two
measures in corticospinal interaction may arise due to cortical dynamics and can there-
fore only be addressed empirically.
Amplitude modulations are thought to reflect local synchronization within neuronal
groups. Figure 4.2 illustrates how amplitude dynamics reflecting local neuronal syn-
chronization can also correlate between cortex and spinal cord. Such a relationship of
amplitude modulation could be detected in the majority of subjects in the current paper
using amplitude-envelope correlations of beta oscillations.
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4. Amplitude modulation in cortico-spinal interaction

Cortex Spinal cord

Figure 4.1.: Correlation of local cortical and spinal-cord synchronization: the amplitude en-
velopes of the signals derived from two neuronal populations show the same modulation.

Cortex Spinal cord

Figure 4.2.: Local cortical and spinal-cord synchronization are uncorrelated: the amplitude en-
velopes of the signals show a different modulation.
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Corticomuscular interactions are studied mostly with EEG/EMG coherence, which, however, does not allow
quantification of amplitude dynamics of sensorimotor oscillations. Here, we investigated the amplitude dy-
namics of sensorimotor EEG beta oscillations during an isometric task and their relation to corticomuscular
coherence (CMC). We used amplitude envelopes of beta oscillations, derived from multichannel EEG and
EMG recordings, as a measure of local cortical and spinal-cord synchronization. In general, we showed that
the amplitude of cortical beta oscillations can influence CMC in two ways. First, we showed that the
signal-to-noise ratio of pre-stimulus beta oscillations affects CMC. Second, we demonstrated that the attenu-
ation of beta oscillations upon imperative stimulus correlated with the CMC strength. Attenuation of cortical
beta oscillations was previously hypothesized to reflect increased motor cortex excitability. Consequently,
this correlation might indicate that high cortical excitability, produced by imperative stimulus, facilitates
the recruitment of neuronal networks responsible for establishing reliable corticospinal control manifested
in larger CMC. Critically, we demonstrated that the amplitude envelopes of beta oscillations in EEG and EMG
are positively correlated on time scales ranging from 50 to 1000 ms. Such correlations indicate that the ampli-
tude of cortical beta oscillations might relate to the rhythmic spiking output of both corticospinal neurons
and their spinal targets. Compared to CMC, however, amplitude-envelope correlations were detected in
fewer cases, which might relate to a higher susceptibility of these correlations to signal-to-noise ratio. We
conclude that EEG beta oscillations, originating from the sensorimotor cortex, can transmit not only their
phase but also amplitude dynamics through the spinal motoneurons down to peripheral effectors.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Corticospinal interactions in humans are usually studied with
corticomuscular coherence (CMC, Baker, 2007; Jackson et al., 2002;
Kilner et al., 2000; Kristeva et al., 2007; Salenius et al., 1997;
Schnitzler et al., 2000). While the presence of CMC indicates that the
phase of sensorimotor beta oscillations tightly relates to the spiking of
muscle motor units, little is known about the relation of beta oscilla-
tions' amplitude to the amplitude of muscular oscillations and to CMC
in general. Yet, amplitude dynamics are as important for understanding
neuronal interactions as frequently used phase synchronization as has
been demonstrated in recent modeling experiments (Daffertshofer
and van Wijk, 2011). The present study investigated the relation be-
tween the amplitude dynamics of cortical and muscle beta oscillations
as well as the effect of beta-oscillation amplitude reactivity on CMC.

It has long been assumed that the amplitude of local field potentials
(LFP) and EEG signals represents spatially averaged synaptic activity
(Mitzdorf, 1985). Recently, it was shown that LFPs reflect fluctuation

in membrane potential due to a common synaptic drive to a given net-
work (Okun et al., 2010; Poulet and Petersen, 2008). In general, stronger
synchronization between neurons corresponds to larger amplitude in
LFP/EEG signals (Denker et al., 2011; Elul, 1971; Pfurtscheller and
Lopes da Silva, 1999). In contrast, EMG reflects primarily motor-unit ac-
tion potentials and therefore increased amplitude of EMG bursts in a
relatively narrow frequency band indicates a larger number of synchro-
nously firing spinal motor units (Christou et al., 2007; Halliday et al.,
1995). Therefore, studying amplitude envelopes of neuronal oscil-
lations might clarify whether the dynamics of local synchroniza-
tion on the cortical level are accompanied by similar changes in
the synchronization between motoneurons in the spinal cord. Crit-
ically, the presence of CMC per se does not indicate whether the
strength of local dynamics (reflected in amplitude) in the spinal
cord and cortex are related as well. Fig. 1 illustrates how phase
synchronization (measured for instance with coherence) can be
present with and without concurrent amplitude-envelope correla-
tions. An important feature of amplitude-envelope correlations
(also known as transient coding, Friston, 1997) is that it is not re-
ducible to rate or synchrony coding. It rather shows how intrinsic
dynamics of two distinct spatially remote neuronal populations
can be similarly modulated.
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Therefore, we investigated how the amplitude of beta oscillations
can affect CMC. In general, the amplitude of sensorimotor oscillations
can influence CMC in two different ways. On the one hand, the
signal-to-noise ratio (SNR) of these oscillations may have an
effect on the extraction of phase information from the signals
(Muthukumaraswamy and Singh, 2011), thus contributing to a better
estimation of CMC. For studying the effects of SNR on CMC we used
the relative power of beta oscillations in the pre-stimulus interval.
On the other hand, amplitude dynamics of neuronal oscillations
(due to the task performance) can also neurophysiologically relate
to the changes in CMC. To study this dependency we used the corre-
lation of CMC with event related desynchronization (ERD), the latter
being a measure of amplitude reactivity (Pfurtscheller and Lopes da
Silva, 1999). The relationship between the reactivity of oscillations
and CMC might provide a plausible explanation for how specific pre-
ceding neuronal states affect upcoming performance requiring pre-
cise coordination between phases and amplitudes of cortical and
spinal cord neuronal populations.

Materials and methods

Subjects

We studied 11 healthy volunteers (7 males and 4 female), and
mean age was 47.7±7.6 (mean±SD). Subjects were without any his-
tory of neurological or psychiatric disorders. The experimental proto-
col was approved by the Institutional Review Board of Charité, Berlin,
and the subjects gave their written informed consent prior to the ex-
periments. All subjects were right-handed according to the Edinburg
Handedness Inventory (Oldfield, 1971) and had normal or corrected
to normal vision.

Paradigm

We used a digit displacement paradigm, which includes a manip-
ulation of a compliant object because CMC was found larger when the

task involved a compliant object compared to a simple isometric con-
dition (Kilner et al., 2000; Riddle and Baker, 2006).

During the experiment the subjects were seated in a comfortable
chair, with their arms resting on the chair handles, forearms flexed
at 60°, and hands pronated. Subjects were instructed to press a
spring-loaded lever with the left or right thumb with a 0.5 newton
(N) force, requiring a lever displacement of ~3.5 cm. The force was
measured with a load sensor (FSG15N1A, Honeywell, USA). Visual
feedback of the force level was provided on a computer screen as a
horizontal bar of varying lateral extents proportional to the exerted
force with fixed vertical lines indicating the target value. A cross in
the center of the screen served as an eye-fixation point.

The task was performed with each hand separately and the hand
order was counter-balanced between the subjects. In total, one hun-
dred trials were recorded for each hand in four blocks. The subjects
were instructed to reach a 0.5 N force level as fast as possible after a
single tone andmaintain it constant until the presentation of a double
tone. In 6 subjects each trial lasted 9 s (5 s pressing and 4 s rest) and
in 5 subjects the trial lasted 8 s (4 s pressing and 4 s rest). There were
60 s of rest between the blocks.

Data acquisition

EEG and EMG data were acquired with BrainAmp MR-plus (Brain
Products, Germany) amplifiers, filtered in the frequency range of
0.015–250 Hz and sampled at 1000 Hz. The voltage resolution for
the EEG and EMG channels was 0.1 μV and 0.5 μV, respectively.

EEG
During the acquisition, the EEG was referenced to physically

linked earlobes and recorded using an EEG cap (61 Ag/AgCl sintered
ring electrodes, EasyCap, Germany) with electrodes having a higher
density above the sensorimotor cortices. As verified empirically,
physically linked-earlobes did not lead to the distortion of voltage to-
pographies (Gonzalez Andino et al., 1990). Ocular artifacts were
recorded with two electrodes placed on the right zygomatic and su-
praorbital processes.

EMG
We recorded EMG from the abductor pollicis brevis (APB) muscle

with three EMG electrodes (Ag/AgCl sintered electrodes 4 mm in di-
ameter) over the thenar side of each hand. The skin surface was
abraded with NuPrep (Weaver and Co., USA) before the electrode ap-
plication. The electrode-skin conductive contact was established with
a Ten20 electrode paste (Weaver and Co., USA), and the electrodes
were secured to the skin with an adhesive medical tape.

An EMG reference electrode was placed on the styloid process of
the ulnar bone and a ground electrode on the inner surface of the
wrist at the midline. Ag/AgCl sintered electrodes 12 mm in diameter
were used for reference and ground. The following analysis has
been performed for all three EMG electrodes located over the thenar
side while each of them was referenced to the reference electrode.

Analysis

All data and statistical analyses were performed offline using
MATLAB (Mathworks Inc., USA) with custom written functions.

Data preprocessing
The analysis was based on the stable hold period of the task, dur-

ing which the strongest CMC in the beta band has been shown before
(Baker et al., 1997; Kristeva et al., 2007; Riddle and Baker, 2006). For
the following statistical analysis we chose the data in the
post-stimulus interval between 2 and 4 s after the start tone as a pe-
riod showing a stable force production. The data were visually
inspected for the presence of abrupt force changes in the hold period.

Fig. 1. A scheme for showing a dissociation between phase synchronization and
amplitude-envelope correlation. A. A casewhere amplitude envelopes (red) covary between
the two oscillatory processes (blue and black), also there is a constant phase lag (i.e. phase
synchronization) between the phases of the processes (lower sub-fig.). B. Phase locking is
still present, but amplitude envelopes do not covary. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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If the force output deviated from the range 0.5±0.1 N, the epoch was
discarded. After artifact rejection 322±54 and 311±41 segments
(500-ms duration) for the left and right hands, respectively, were uti-
lized for the further analysis.

Signal processing

Corticomuscular coherence. In this study, we used our recently devel-
oped technique – Regression CMC (R-CMC) – for the optimal detec-
tion of corticomuscular coherence (Bayraktaroglu et al., 2011). In
short, R-CMC analysis utilizes a least-squares approach in order to
maximize the correlation in a narrow frequency band between a
band-pass filtered set of multichannel EEG signals and an EMG signal.
The core idea is thus to find a spatial filter for multichannel EEG data
which maximally explains EMG activity in a given frequency range.
Such optimization is performed in the time domain where a correla-
tion of narrow-band signals is equivalent to the calculation of coher-
ence in the Fourier domain. In the present study we used unrectified
band-pass filtered EMG, as previous studies showed that EMG rectifi-
cation might have disadvantages for CMC estimation (Bayraktaroglu
et al., 2011; McClelland et al., 2012; Stegeman et al., 2010).

R-CMC analysis is performed in two steps: (1) To avoid collinear-
ity of predictors (EEG from different channels) and to make the esti-
mation of covariance matrices more robust, a dimension reduction
was performed using principal component analysis (PCA). PCA com-
ponents were selected to account for 99% variability in the data.
(2) To account for the conduction delay between the cortex and
muscle, least-squares assessments were performed for different de-
lays. The delay was estimated for frequencies between 8 and 44 Hz
with 2-Hz steps and 4‐Hz band-width. For this estimation EMG was
shifted relative to EEG between −π and +π in π/6 steps. Separately
for each EMG electrode, frequency and delay, a multiple regression
was performed and the strongest coherence corresponding to the
combination of a specific EMG channel, frequency band and delay
was selected for further analysis.

Let y be the projected EEG data which is maximally synchronous
with the EMG data in g, then the coherence between the projected
data (y) and EMG (g) across segments is estimated as:

Cohg;y ¼
sg;y
���

���2

sg
���

���2 sy
���

���2
ð1Þ

where sg and sy are Fourier transforms for EMG and projected EEG
data, respectively, and sg,y is a cross-spectrum. For the calculation of
the Fourier transforms, the post-stimulus data (stable post-stimulus
period 2–4 s) was divided into 500-ms non-overlapping segments
and windowed with a Hanning window.

In order to calculate the spatial pattern corresponding to the EEG
vector we utilized an approach proposed by Parra et al. (2002).

During the optimization procedure we excluded components with
patterns showing abnormal activity such as mosaic like high-frequency
spatial features or strong activity at the temporal or frontal edges of the
patterns (a typical indication for the presence of the scalp muscle
activity).

We used permutation tests for determining the significance level of
the coherence (Hesterberg et al., 2005). For this procedure, we repeated
all the steps of R-CMC but using EMG segments that were shuffled with
respect to the EEG data. Five-hundred permutations were performed
for each set of data, and a specific coherence value was obtained for
each permutation. The coherence for un-permuted datawas considered
significant if it exceeded the 95-percentile value obtained from the co-
herence distribution derived from the permuted data.

We also calculated time-resolved CMC from −2 to 7 s around the
start tone. The coherence was calculated with 500-ms windows
which were translated along the whole epoch length with 100 ms

steps. The spatial filter obtained for the stable active period (2–4 s)
was used for all time windows.

Phase synchronization index. In addition to coherence, we also calcu-
lated the phase synchronization index (SI; Rosenblum et al., 2001).

Let yf and gf be vectors corresponding to signal y (EEG component)
and g (EMG) which were band-pass filtered around the frequency f
corresponding to the strongest CMC. We use then the Hilbert trans-
form to extract the phases for yf and gf. Let θ(t) be the phase differ-
ence between yf and gf at time t and T is a total number of samples,
and j is an imaginary unit. SI was then estimated as:

SI ¼ 1
T

XT

t¼1

ejθ tð Þ
�����

�����: ð2Þ

The phase synchronization index takes values between 0 and 1,
where 0 corresponds to absent and 1 to a perfect phase synchrony.
We created 500 shuffled data sets and calculated SI. The SI for
un-shuffled data was considered significant if it exceeded the
95-percentile value obtained from the SI distribution derived from
the shuffled data.

Localization of cortical CMC sources. Patterns corresponding to the op-
timized EEG components were used for finding neuronal sources with
the sLORETA algorithm (Pascual-Marqui, 2002). Consequently, the
sources were mapped using the standard MNI305 head (Collins et
al., 1994). In order to compensate for inter-individual differences,
sLORETA maps for each subject were normalized by dividing the
power in each voxel by the mean of power from all voxels.

Amplitude-envelope correlation. Amplitude envelopes of the beta oscil-
lations were calculated as follows. After finding the frequency band
corresponding to the strongest CMC, for each band-pass filtered yf
(EEG) and gf (EMG) we obtained vectors ay and ag, respectively,
representing the instantaneous amplitude (envelope) of the signals
on the basis of the Hilbert transform. The amplitude of the analytic
signal is the length of a vector in a complex plane, while phase is
the angle in the same plane. Clearly one can change either length or
angle without affecting the other measure. Therefore, measuring
phase synchronization or amplitude envelope provides information
about different aspects of the underlying processes.

Previous studies showed that amplitude-envelope correlations be-
tween neuronal activities at different brain areas depend on the time
scale at which they were measured, being usually stronger for larger
time scales (Nikouline et al., 2001; Nir et al., 2008). Therefore, in
order to estimate the correlation between ay and ag we introduced
a coarse-graining procedure where the data were divided into seg-
ments of varying sizes from 50 to 1000 ms with a step of 50 ms,
and the mean value was calculated in each segment separately for
ay and ag. Amplitude-envelope correlations were calculated in the
time interval of 2–4 s after the presentation of stimulus when the
force levels were stabilized. Then the Spearman coefficient of correla-
tion was calculated for coarse-grained ay and ag for a given window
size.

The following procedure was used for the calculation of correla-
tion significance. We created 500 shuffled data sets with permuted
position of the windows (with a given size) and calculated the
correlation as above, thereby obtaining distributions of correlation
coefficients for 500 random sets. The correlation coefficient was con-
sidered significant if it exceeded the 95-percentile value obtained
from the distribution of rectified correlation coefficients for the shuf-
fled data (Hesterberg et al., 2005).

Reactivity of neuronal oscillations. The ay signal, reflecting cortical EEG
beta oscillations, was segmented into epochs from −2 to 7 s around
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the start tone and the epochs were averaged. The reactivity of the
signal in the post-stimulus interval was expressed in % with respect
to the amplitude in the preceding pre-stimulus interval (−700 to
−200 ms). Below we refer to the attenuation of the amplitude as
event related desynchronization (ERD, Pfurtscheller and Lopes da
Silva, 1999). ERD measures the strength of the oscillatory response,
and it is a dynamic measure since it shows how the neuronal activity
changes with respect to some reference interval. Power/amplitude by
itself just shows how pronounced the oscillations are. Without know-
ing what were the preceding values of power it is difficult to say
whether the power in a given segment was decreased, increased or
stayed the same after the stimulus presentation.

Connectivity analysis. The direction of corticomuscular interactions
was estimated with the phase slope index (PSI, Nolte et al., 2008)
which allows a reliable estimation of the causal relationships be-
tween the two signals. An advantage of the method is that it is not
sensitive to volume conduction and provides an estimate of the infor-
mation flow even if it is difficult to determine a conventional slope in
a frequency-phase coordinate system (Halliday et al., 1998; Witham
et al., 2010). While the phase slope index (PSI) is superior to conven-
tional measures of directionality detection in EEG, the absolute values
of PSI are not indicative of the actual delay. The sign of PSI indicates
the direction of interactions. In the statistical analysis we used a bino-
mial test in order to verify whether the majority of cases had a de-
scending or ascending direction of interaction between EEG and
EMG. PSI was calculated in the 2–4 s interval, the same time interval
used for the calculation of CMC and amplitude-envelope correlations.

Results

Performance

All subjects were able to perform the task and maintained the re-
quired force level. When all of the epochs were taken into account,
the force level in the 2–4 s interval (the interval used for the calculation
of CMC) was 0.49±0.011 N (mean±SEM). As mentioned in the
Materials and methods section, trials which deviated by more than
0.1 N from the required level were rejected in order to avoid attenua-
tion of CMC due to ongoing movement (Kilner et al., 2000; Riddle and
Baker, 2006). After removal of such epochs the mean level of force
was 0.49±0.007 N. Fig. 2A shows the grand-average time-course
(across subjects and hands) of the applied force.

Corticomuscular coherence

Significant CMC was detected in the beta frequency range (12.5–
28.5 Hz) in all subjects, as assessed by the permutation procedure de-
scribed above. The mean CMC peak frequency was 20.9±1.1 Hz
(mean±SEM), and the CMC strength was 0.13±0.016. There were no
significant differences in the magnitude of CMC corresponding to the
left and right hand performance (Wilcoxon sign rank test, p=0.12).
Fig. 2A shows the CMC time-course as an average across subjects
where coherence was calculated in individually defined frequency
ranges. The coherence did not reach its plateau right after the imperative
stimulus, it rather showed a gradual buildup over the first 2 s, i.e., after
the target (hold) force level was achieved. Please note that Fig. 2A

Fig. 2. A. Grand average (mean±SEM, dotted) of force, envelope amplitudes of beta-EEG and EMG, and time-resolved CMC (normalized to subject's peak value) during the task. The
vertical gray line marks the start signal. The notch appearing on all curves after 4 s relates to the fact that in 5 of the subjects the active period was 4 s. B. The CMC spectrum between
EMG and the extracted EEG component along with its spatial topography in a representative subject during the task execution with the left hand. C. Grand averages of sLORETA
inverse solutions for the left and right hands, displaying contralateral pericentral activations visualized on the MNI305 average cortical surface, au — arbitrary units.
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shows the grand average across all subjectswhile the inter-measures re-
lationship (e.g., CMC vs ERD)was addressed using Spearman correlation
(please see the sections below). The spatial topographies of the CMC
components showed a clear lateralization to the hemisphere contralat-
eral to the performing hand, representing either tangential or radial
sources. Fig. 2B shows an example for the coherence spectrum between
EMG (left hand performance) and EEG components along with its
topography. Fig. 2C shows the grand average (across all subjects) for
sLORETA solutions separately for the left and right hands. One can
observe a clear lateralization of the sources which were located in the
sensorimotor cortex with a maximum in the precentral gyrus.

Amplitude-envelope correlation between EEG and EMG

We investigated the EEG/EMG amplitude-envelope correlation on
different time scales by introducing a coarse-graining procedure
where the mean amplitude was calculated in segments with varying
sizes (cf. Materials and methods). The analysis showed significant
EEG/EMG envelope correlations in 12 hands of 7 subjects. In these
subjects at least 90% of the segment sizes, varying between 50 and
1000 ms, showed a significant correlation (as assessed by the permu-
tation tests) between amplitude envelopes of beta oscillations in
EMG and EEG. Fig. 3 shows a single-subject example where the active
period (2–4 s) was subdivided into 500-ms segments and the mean
amplitude was calculated for each segment in EEG and EMG. The re-
lationship between the EEG and EMGmean amplitudes across all seg-
ments of different sizes is shown in the figure. Fig. 4 shows the
grand-average of Fisher's Z-transformed correlation values across all
subjects and hands where a significant (pb0.05) correlation was ob-
served. Triangles show the strength of the correlation as a function
of the segment size for the real data and crosses for the average of
shuffled data across all permutations. Both curves show a slight in-
crease of the correlation with the increasing segment size. To a
large extent this is due to the fact that smaller degrees of freedom
(number of windows with a given size) even for random data might
lead to higher correlation values. Note, however, that regardless of
this increase, the strength of the correlation corresponding to the

shuffled data was considerably smaller. We then obtained the slope
of the regression line from the shuffled data and subtracted it from
the real data, thus compensating for the technical change of the cor-
relation due to the smaller number of samples for a longer time seg-
ment. Diamond symbols show real data after this subtraction. The
corrected figure shows only marginal remaining dependency of the
correlation on the segment size (Fig. 4).

We also calculated the correlation between the coefficient of var-
iation of amplitude envelope of cortical beta oscillations and the force
during the task. This correlation was not significant in any of the seg-
ment sizes (50–1000 ms). For the 500-ms time windows (which we
later used for correlation with phase synchronization index) we also
compared the strength of amplitude-envelope correlation corre-
sponding to the left and right hand performance and found no signif-
icant differences (Wilcoxon sign rank test, p=0.17).

Phase synchronization index

In addition, we studied the dependency between the strength of
phase synchronization and envelope correlation (500-ms windows)
across subjects. According to the permutation tests, phase synchroniza-
tion indexwas significant (pb0.05) for all subjects and hands. Encircled
points in Fig. 5 show data where significant amplitude-envelope corre-
lations occurred. Please note that in many instances significant and
non-significant values of amplitude-envelope correlations occurred
for similar values of phase synchronization index. The correlation be-
tween phase synchronization index and envelope correlation was pos-
itive and significant: ρ=0.56; pb0.01 (Fig. 5). The correlation between
the magnitudes of CMC and synchronization index was also strong and
significant (ρ=0.59; pb0.005).

Pre-stimulus power and strength of CMC

In general the strength of any coherence measure depends on how
well the phase portrait of the signals is defined (Muthukumaraswamy
and Singh, 2011), which in turn also corresponds to howwell the spec-
tral peak stands above the noise level (Nikulin et al., 2011). Consequent-
ly, for the estimation of the spectral peaks we used the relative spectral
power (RSP) of the extracted EEG components (with R-CMC). The
values for RSP were calculated as a ratio between the mean power in
the 4-Hz wide band (centered around the frequency peak optimized
for CMC) and the mean power in the 5–35 Hz frequency range. Fig. 6
shows an example of two spectra from two subjects corresponding to

Fig. 3. The correlation of theEEGandEMGenvelope amplitudes for the500-ms integration
window in one subject with pronounced amplitude-envelope correlation, au — arbitrary
units.

Fig. 4. Average of the EEG–EMG envelope correlations for all subjects with a significant
correlation (Z-transformed) for 20 integration windows. The correlation values are
given for real EEG–EMG envelopes (triangles) and for shuffled envelopes (crosses).
Diamond symbols present the corrected correlation coefficients where the slope of
the line from the shuffled data set was taken into account.
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larger and smaller relative powers of EEG beta oscillations. In order to
assess the dependency of the CMC strength on the pre-stimulus RSP,
we calculated the Spearman correlation between these two measures

and found it to be positive and significant: ρ=0.6; pb0.005 (Fig. 7A).
The Spearman correlation between RSP in the active period (2–4 s)
and CMCwas also positive and significant (ρ=0.65; pb0.002). In addi-
tion, the correlation between RSP and the amplitude-envelope correla-
tion was positive and significant (ρ=0.47; pb0.03).

Reactivity of neuronal oscillations

The amplitude of cortical beta oscillations showed a characteristic
attenuation (event-related desynchronization, ERD) upon the presenta-
tion of the imperative stimulus and a following return to the baseline
(Fig. 2A, showing grand average data across subjects and hands). The
peak latency of this attenuation was 0.85±0.45 s after the start of the
auditory tone and its peak strength was −35.3±14.5% relative to the
baseline level. Fig. 7B, shows that the strengths of ERD and CMC (the lat-
ter was calculated in the 2–4 s post-stimulus interval) were significant-
ly and negatively correlated (ρ=−0.73; pb0.001). In addition, Fig. 7C
demonstrates that ERD was also correlated with the relative spectral
power (RSP) (ρ=−0.74; pb0.001). In contrast to EEG, the amplitude
of EMG beta oscillations showed a rapid increase upon the presentation
of the imperative stimulus and a relatively stable amplitude level
throughout the hold period (Fig. 2A).

Disambiguating the relationship between RSP, CMC and ERD

As mentioned above, our results demonstrated an intriguing corre-
lation between ERD and CMC. Yet, RSP was also correlated with both
CMCand ERD. Thus, one possibilitywas that CMC and ERDmight be cor-
related because of their correlation with RSP. In order to verify that the
correlation between ERD and CMC remains even when the correlation
with RSP is eliminated, we performed a partial rank correlation analysis.
After controlling for the effect of correlation of RSP with CMC and ERD,
there was still a significant negative correlation between CMC and ERD
albeit slightly attenuated (ρ=−0.53 pb0.013).

Fig. 5. Synchronization index and EEG–EMG amplitude-envelope correlation.

Fig. 6. The power spectra of the EEG components for the pre-stimulus rest period in two subjects. The left (right) panel shows the spectrum of the EEG component with high (low)
relative spectral power. In addition, red curves show CMC spectra with peaks for which RSP was calculated. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Phase slope index

The phase slope indexmeasures the direction of information flowbe-
tween the two processes. We performed a statistical evaluation of the
sign of phase slope index taking into account all cases (11 subjects×2
hands=22 cases) using a binomial test and found a near-significant in-
formation flow from cortical to muscle oscillations (p=0.052).

Discussion

The present study showed that corticospinal oscillatory interac-
tions are not only due to the phase coupling but that the amplitude
envelopes of beta oscillations in the sensorimotor cortex and muscle
are also positively correlated. Moreover, we also demonstrated that
the amplitude reactivity of the sensorimotor neuronal oscillations as
well as the pre-stimulus spectral relative power relate to the strength
of corticomuscular synchronization. Below we elaborate on these
new findings.

Corticomuscular coherence

The basic CMC features in the present study are in agreement with
the previous results (Kristeva et al., 2007; Mima and Hallett, 1999a;
Riddle and Baker, 2006), in particular concerning: (a) both frequency
range and CMC magnitude, (b) the spatial maximum of cortical
sources coherent with muscle activity in the sensorimotor cortices,
and (c) the preferential flow of information from the cortex to the pe-
riphery in a directionality analysis. This set of congruent findings se-
cures a reliable anchoring of the present data set in the established
CMC knowledge and thereby provides a framework for the novel in-
sight presented here.

Technical details of calculation of coherence

While coherence reflects primarily phase synchronization (Nolte et
al., 2004), it also measures amplitude correlation between the two sig-
nals. In fact, coherence can be considered as phase synchronization
weighted by another term which reflects amplitude co-modulation
(Friston et al., 2012; Nolte et al., 2004). In practice, however, phase syn-
chronization (measured through synchronization index) and coherence
might give similar results (Mezeiová and Paluš, 2012). Moreover, Nolte
et al. (2004) observed that for real and not theoretically constructed sig-
nals, it is not clear whether there might be always independence be-
tween the amplitude and phase. In addition, they argue that for very

weak signals the noise can destroy the phase and thus coherence
(which takes into account amplitude) can give more robust results
than the synchronization index.

Correlation of relative spectral power with ERD and CMC

The magnitude of the relative spectral power at the pre-stimulus
interval provides a measure for the signal-to-noise ratio (SNR) by in-
dicating how strongly a given spectral peak stands above the back-
ground neuronal activity (Nikulin et al., 2011). Different levels of
RSP, as we hypothesize and explain below, can in turn affect both
ERD and CMC, and produce a spurious relationship between them. If
this is the case we should observe RSP of oscillations being correlated
with both ERD and CMC. Indeed, we found that the CMC strength can
be predicted from the RSP of beta oscillations in the pre-stimulus in-
terval because higher RSP is associated with better SNR of the oscilla-
tory signals and thus with a better defined phase portrait of
oscillations (Muthukumaraswamy and Singh, 2011). The latter is a
prerequisite for measuring phase synchronization (Rosenblum et al.,
2001). The differences in the level of RSP provide a plausible explana-
tion for previously documented but unaccounted variability of the
CMC strength across subjects (Mima and Hallett, 1999b; Pohja et al.,
2005). Predictability of CMC on the basis of pre-stimulus neuronal ac-
tivity indicates that the presence of ongoing beta oscillations, which
can later undergo phase-locking with the active muscle, might be a
prerequisite for observing a pronounced CMC. A correlation of RSP
during the active period (2–4 s) with CMC also indicates that the
signal-to-noise ratio might affect CMC. Yet, since both CMC and RSP
are calculated in this case at the same time interval, no predictions
can be made on the necessity of having pre-stimulus ongoing beta os-
cillations for obtaining stronger CMC.

Accordingly, pre-stimulus RSP is also likely to be the factor con-
tributing to the ERD strength. Small RSP reflects a weak oscillatory
process which hardly can demonstrate pronounced attenuation due
to a “floor effect”. On the contrary, signals with high RSP can show
strong attenuation, i.e., larger ERD values (Lemm et al., 2009). In
agreement with this prediction, we observed a negative correlation
between ERD and RSP.

The correlation between ERD and CMC might thus be spurious as
both are affected by the pre-stimulus RSP. However, when we con-
trolled for the effect of RSP on ERD and CMC, there still remained a
significant correlation between ERD and CMC, which would then in-
dicate a functional relationship between the latter two.

Fig. 7. A. Correlation between CMC and pre-stimulus RSP. B. Correlation between ERD and CMC. C. Correlation between ERD and RSP. au — arbitrary units. Red lines indicate
least-squares fits. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The relationship between neuronal reactivity and strength of corticomuscular
interactions

We showed that the strength of beta ERD negatively correlated
with CMC indicating that stronger attenuation of beta oscillations re-
lated to larger CMC. Changes in the amplitude of beta oscillations
were hypothesized to reflect cortical excitability (Chen et al., 1998;
Mäki and Ilmoniemi, 2010; Pfurtscheller and Lopes da Silva, 1999)
and thus our findings show a functional relationship between the
stimulus-related level of cortical excitation and CMC strength. The
initial attenuation of the cortical CMC beta oscillations, observed in
the present study, could indicate a breakdown of local spatial syn-
chronization that in turn might be associated with a more robust re-
cruitment of cortical neurons for the performance of the following
steady-state contraction. Mäki and Ilmoniemi (2010) showed that
motor evoked potentials, produced by TMS, were larger for smaller
beta oscillations, thus implying that higher motor excitability related
to smaller beta oscillations. In this sense stronger post-stimulus beta
ERD (resulting in a smaller amplitude of oscillations) would be asso-
ciated with higher motor excitability, which in turn might facilitate
the recruitment of neuronal networks responsible for establishing re-
liable corticospinal control manifested in larger CMC. This is in line
with previous findings showing that the strength of CMC correlates
with the amount of the preceding desynchronization in the beta fre-
quency range (Omlor et al., 2011): if a steady state contraction was
preceded by an unpredictable dynamic force task, then CMC was ele-
vated. At the same time the authors observed a correlation between
beta power attenuation and CMC. Here, we extend these findings by
showing that not only the power difference between the tasks, but
also the instantaneous change in the amplitude of beta oscillations
upon the imperative stimulus can shape the strength of the upcoming
corticomuscular interactions.

Correlation of beta amplitude envelopes

Fig. 5 shows that although the amplitude-envelope correlation
and phase synchronization index correlate, the correlation has only
a value of 0.56, thus indicating that the amplitude-envelope correla-
tion is not reducible to the phase synchronization, but can reflect ad-
ditional features of neuronal interactions, such as the strength of local
spatial synchronization.

Changes in the amplitude of oscillations reflect the strength of spa-
tial synchronization as shown in both experimental (Denker et al.,
2011; Elul, 1971) and modeling studies (Telenczuk et al., 2010). These
amplitude changes are used conventionally as an index of local spatial
desynchronization or synchronization between neurons (Pfurtscheller
and Lopes da Silva, 1999). Muscle activity in turn reflects discharges of
spinal motoneurons where stronger beta-oscillatory EMG bursts reflect
a larger number of synchronously firing motoneurons (Conway et al.,
1995; Farmer et al., 1993). Thus, the experimental observation of an
amplitude co-modulation of beta oscillation in EMG and EEG, as
presented here, shows that the strength of local spatial synchronization
at the cortical level relates to the strength of synchronization between
spinal motoneurons. This in turn indicates that the amplitude of beta
oscillations in the sensorimotor cortexmight reflect the strength of syn-
chronization among the alpha motor neurons in the spinal cord. Taken
together our study provides the first evidence that the changes in the
amplitude of cortical beta oscillationsmight relate to the spiking output
of corticospinal neurons.

The results of our study showed that in approximately half of the
cases one could observe a significant positive correlation between the
amplitude envelopes of beta oscillations in the sensorimotor cortex
and muscle activity. The correlation between pre-stimulus RSP and
amplitude-envelope correlations was positive and significant, which
might attest to the detrimental effect of noise on the extraction of am-
plitude envelopes. A proper recovery of the EEG beta components

affects the estimation of both phase and amplitude dynamics, which
in turn can be the basis of the observed correlation between CMC and
amplitude-envelope correlations. A smaller percentage of the cases
showing amplitude-envelope correlations can be due to both neuro-
physiological reasons and to the higher susceptibility of amplitude en-
velope correlations to SNR because of the additional nonlinearity
introduced by calculation of amplitude envelopes. This sensitivity to
SNR, however, is difficult to assess since in general rectification intro-
duces complex modifications of the input signals (containing signal
and noise) and because of the finite length of the data.

Previous studies showed that amplitude-envelope correlations be-
tween narrow-band neuronal signals became stronger with increasing
time scale at which the correlations were measured (Nikouline et al.,
2001; Nir et al., 2008). A weak dependence of amplitude-envelope cor-
relations on the segment size indicates that the co-fluctuation of ampli-
tudes occurs both at very short and long time scales and that even very
fast changes in the amplitude of beta oscillations (i.e., for 50-ms integra-
tion windows), are transferred to the oscillatory muscle activity.

Dissociation from CMC and functional interpretation of
amplitude-envelope correlation

Moderate strength of amplitude-envelope correlation (~0.2–0.3)
indicates that corticospinal interactions only partially define the dy-
namics of EMG and that other descending tracts, e.g. reticulospinal
tract, can also shape the activity of the spinal neurons (Riddle and
Baker, 2010; Soteropoulos et al., 2012) and thus be responsible for
changes in EMG amplitude. In this case changes in EMG can originate
at least partly not from the activity of cortical cells and thus the am-
plitude envelope of muscle and cortical oscillations would not be
tightly related. One can hypothesize that depending on the involve-
ment of different descending tracts into the generation of the move-
ment, different subjects might show some variance in the coupling
of cortical and spinal cord dynamics. A previous study on reproduc-
ibility of CMC can indeed serve as an evidence for subject-specific
manifestation of corticospinal interactions (Pohja et al., 2005).

As mentioned above, the amplitude of cortical oscillations reflects
an amount of synchronously firing cortical neurons. Importantly,
while corticomuscular phase synchronization relates to a limited sub-
set of somatotopically relevant neuronal activation, the amplitude of
oscillations can reflect a far larger number of active neurons not all
of them participating in the generation of a given muscular activity.
The fact that often values of corticomuscular coherence are less
than 0.1 (Kilner et al., 2000; Kristeva et al., 2007; Salenius et al.,
1997) indeed indicates that there is only a relatively weak association
between cortical and muscular activities. Under such scenario ampli-
tude modulation of cortical beta oscillations can reflect not only the
corticospinal descending activity, but also the intrinsic cortical dy-
namics, which are known to produce a diversity of spatio-temporal
clusters leading to amplitude fluctuations on different time scales
(Linkenkaer-Hansen et al., 2001; Nikulin and Brismar, 2005). Such in-
trinsic neuronal dynamics might give rise to changes in amplitude en-
velopes, which do not relate to corticomuscular control, thus leading
to some dissociation between phase synchronization and amplitude
dynamics in cortical and muscular activities.

In respect to corticospinal interaction, amplitude dynamics might
add to phase synchronization in the following way. Riddle and Baker
(2006) showed that the CMC strength is rather correlated with the
spatial extent of the preceding movement. The authors observed
that beta oscillations were abolished during the movement and
were recovered with steady contraction — a result which was also
found in the present study. They suggested that CMC can reflect the
operation of a testing system which sends probing pulses and evalu-
ates the state of the periphery for the integration in the consecutive
motor performance (Baker, 2007; Favorov et al., 1988). Building on
this hypothesis, the amplitude-envelope correlation, observed in the
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present study, might thus indicate that such probing is a dynamic
process, reflecting varying numbers of cortical and spinal cord neu-
rons being synchronous at a given time. This in turn, can reflect a
varying spatial extent subserved by the probing pulses.

In conclusion, our study demonstrated that corticomuscular inter-
actions can be transmitted not only by phase synchronization of beta
oscillations but also by amplitude dynamics. The latter were
expressed in the amplitude-envelope correlations which, however,
might be more susceptible to the detrimental effect of noise than
CMC. In addition, we found that corticomuscular coherence can be
influenced both by the amplitude reactivity of cortical neuronal oscil-
lations (most likely due to the changes in cortical excitability) and by
signal-to-noise ratio of the ongoing neuronal oscillations.
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4. Amplitude modulation in cortico-spinal interaction

4.1. Limitations and outlook

The current paper demonstrated amplitude-envelope correlation of beta oscillation in
corticospinal interaction and thereby provided evidence that in corticospinal interac-
tion information may not only be transmitted by phase but also by amplitude. Am-
plitude-envelope correlation did show a correlation with phase synchronization which
raises the question whether this measure does provide any information in addition to
CMC. This point is extensively addressed within the paper. In conclusion, as the corre-
lation with phase synchronization is rather weak, amplitude-envelope correlation may
provide a complementary measure of non-linear relationship in corticospinal interac-
tion.
In addition, the current paper extended on previous findings (Muthukumaraswamy
and Singh, 2011) that SNR, which is here measured by pre-stimulus relative spectral
power (RSP), can affect the extraction of phase information in corticospinal interaction.
As a consequence, the subsequent papers III and IV (Chapter 5 and 6, respectively)
could use this knowledge to exclude possible effects of SNR on changes in CMC.
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CMC in stroke 5
The previous chapters (Chapters 3 and 4) were concerned with the detection of corti-
cospinal interaction in healthy people. In the current study, the previously acquired
knowledge was applied to the detection of CMC in stroke patients. Generally, conduct-
ing a study with patients impose higher demands in terms of finding suitable subjects
as particularly elderly subjects might suffer from additional disabilities, conducting the
experiments (sometimes still in the stroke intensive care unit) and analyzing the data,
as often the quality of clinical data is lower than data from healthy people.
However, this study allowed to move from basic neurophysiology closer to a potential
clinical application of CMC, namely as a rehabilitation approach in the form of CMC-
based neurofeedback. While the next chapter (Chapter 6) will then be concerned with
the realization of the neurofeedback, the current paper applied the R-CMC method to
clinical data to describe the changes of CMC in the post-stroke period. Based on this
’descriptive’ result one can move on to develop methods/strategies which intervene
and support the recovery.
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h i g h l i g h t s

� We studied corticomuscular coherence (CMC) in the acute and chronic stroke following up the course
of recovery.

� In acute stroke CMC frequency was decreased on the affected side and CMC amplitude was increased
on the unaffected side.

� In the chronic period there was no inter-hemispheric difference in CMC parameters.

a b s t r a c t

Objective: Motor recovery after stroke is attributed to neuronal plasticity, however not all post-stroke
neuronal changes relate to regaining fine motor control. Corticomuscular coherence (CMC) is a measure
allowing to trace neuronal reorganizations which are functionally relevant for motor recovery. Contrary
to previous studies which were performed only in chronic stage, we measured CMC in patients with
stroke at both acute and chronic stroke stages.
Methods: For the detection of CMC we used multichannel EEG and EMG recordings along with an
optimization algorithm for the detection of corticomuscular interactions.
Results: In acute stroke, the CMC amplitude was larger on the unaffected side compared to the affected
side and also larger compared to the unaffected side in the chronic period. Additionally, CMC peak fre-
quencies on both sides decreased in the acute compared to the chronic period and to control subjects.
In chronic stage, there were no inter-hemispheric or group differences in CMC amplitude or frequency.
Conclusions: The changes in CMC parameters in acute stroke could result from a temporary decrease in
inhibition, which normalizes in the course of recovery. As all patients showed very good motor recovery,
the modulation of CMC amplitude and frequency over time might thus reflect the process of motor recov-
ery.
Significance: We demonstrate for the first time the dynamical changes of corticomuscular interaction
both at acute and chronic stage of stroke.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Motor dysfunction is the most frequent consequence of stroke
(Rathore et al., 2002) that dramatically affects the everyday life

of patients. Appropriate treatment and rehabilitation procedures
of motor paresis strongly depend on our understanding of the neu-
ronal processes related to recovery of normal motor functioning. It
is generally believed that motor recovery after stroke is due to
massive neuronal reorganization occurring both locally and remo-
tely to the lesion site (Talelli et al., 2006; Jang, 2007; Nudo, 2007;
Grefkes and Fink, 2011). Thus, new areas that were previously not
engaged are recruited in a motor activity. Neuroimaging studies re-
ported the involvement of ipsi- and contralesional brain regions in
the recovery process (Ward, 2005; Dancause, 2006; Nudo, 2007).
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However, not every change in brain activation and wiring after
stroke can be considered as functionally relevant for re-establish-
ing motor performance. Some alterations in the neuronal dynamics
can be unspecific/maladaptive – as a consequence of compensatory
movements, ipsilateral involvement and inter-hemispheric com-
petitive interaction (Takeuchi and Izumi, 2012). Maladaptive plas-
ticity interferes with motor recovery and should be differentiated
from neuronal processes which are specifically associated with
regaining normal motor control. Studies utilizing neuroimaging
techniques such as fMRI and PET provide rather an indirect refer-
ence with respect to the involvement of activated cortical areas
into the recovery processes (Calautti and Baron, 2003; Assaf and
Pasternak, 2008).

In the present study we use corticomuscular coherence (CMC)
as a tool to identify functionally relevant contributions of reorga-
nized cortical areas to motor recovery. CMC is a well-established
neurophysiological measure, which indicates the amount of syn-
chronization between cortical and spinal cord activities during
the execution of a movement (Brown et al., 1998; Mima and Hal-
lett, 1999; Salenius and Hari, 2003). CMC appears predominantly
during periods of isometric contraction (Kilner et al., 2000; Riddle
and Baker, 2006) and reaches its maximum in the beta frequency
range (16–32 Hz) over the primary sensorimotor cortices contra-
lateral to the innervated limb (Salenius et al., 1997; Tsujimoto
et al., 2009; Witham et al., 2010).

There are only a few stroke-related CMC studies (Mima et al.,
2001; Braun et al., 2007; Fang et al., 2009; Meng et al., 2009;
Graziadio et al., 2012) and all of them were performed at the
chronic stage, mostly at least 1 year after the stroke when many
compensatory processes already took place (Rijntjes, 2006). Cur-
rently, longitudinal CMC studies following stroke patients from
acute to chronic period are missing. Such studies could provide
new insight into the temporal evolution of corticomuscular inter-
action after stroke and add to the understanding of mechanisms
underlying motor recovery. The present study demonstrates for
the first time the changes in the dynamics of corticomuscular
interaction both at acute and early chronic stage of stroke.

2. Materials and methods

The experimental protocol was approved by the Institutional
Review Board of the Charité, Berlin, and the subjects gave their
written informed consent prior to the experiments. All subjects
were right-handed according to the Edinburgh Handedness Inven-
tory (Oldfield, 1971) and had normal or corrected to normal vision.

2.1. Patients

Eleven ischemic stroke patients (5 female, mean age ± SD:
71.7 ± 11.3 years) with hemiparesis were recruited in 12 months
of the study. Only patients with first ever acute ischemic lesions
localized in cortical or subcortical regions were included in the
study. The lesion location was confirmed with MRI; four patients
had left, seven right hemispheric strokes. Exclusion criteria were
multiple scattered lesions, previous stroke or lesion, muscle disor-
ders, peripheral neuropathy, hemorrhagic stroke, cognitive impair-
ment and complete plegia. The mean time for the recordings was
3.5 (range: 2–5) days after the stroke. Motor strength of the target
muscles (abductor pollicis brevis, APB) was graded according to the
Medical Research Council (MRC) scale. To be selected for the study,
the patients had to have moderate to severe hemiparesis at the on-
set of the stroke. On the day of experiment, patients had regained
their muscle strength such that it was greater than 3 on the MRC
scale except for one patient. The details of the patients are summa-
rized in Table 1.

The same group of patients was contacted 6 months post-
stroke and asked to participate in the follow-up study. Seven pa-
tients agreed and were recorded 194.6 (range: 174–250) days
after the first experiment. In the follow-up period the force level
was assessed again and found to be 5 (on the MRC scale) for all
patients.

2.2. Controls

Fourteen healthy subjects (4 female, mean age ± SD:
51.7 ± 10.35 years) without any history of neurological or psychiat-
ric disease served as control.

2.3. Paradigm

We used a digit displacement paradigm, which includes the
manipulation of a compliant object because CMC was found to
be larger when the task involved a compliant object compared to
a simple isometric condition (Kilner et al., 2000; Riddle and Baker,
2006).

During the experiment the patients stayed in the bed, reclined
at 60�. Control subjects were seated in a comfortable chair with
their arms resting on the chair handles. The subjects were in-
structed to press a spring-loaded lever with the left or right thumb
with 0.5 N force, requiring a lever displacement of �3.5 cm. The
force was measured with a load sensor (FSG15N1A, Honeywell,
USA). Visual feedback of the force level was provided on a com-
puter screen as a horizontal bar of varying lateral extent propor-
tional to the exerted force with fixed vertical lines indicating the
target value. A cross in the center of the screen served as an eye-
fixation point.

The task was performed with each hand separately and the
hand order was counter-balanced between the subjects. The sub-
jects were instructed to reach the required force level as fast as
possible after a single tone and hold it constant until the presenta-
tion of a double tone. Subjects performed 4 blocks of 25 trials per
hand with 60 s of rest between the blocks. Each trial lasted 9 s con-
sisting of 5 s pressing and 4 s rest.

2.4. Data acquisition

EEG and EMG data were acquired with BrainAmp MR-plus
(Brain Products, Germany) amplifiers, filtered in the frequency
range of 0.015–250 Hz and sampled at 1000 Hz. The voltage reso-
lution for the EEG and EMG channels was 0.1 lV and 0.5 lV,
respectively.

2.4.1. EEG
During the acquisition, the EEG was referenced to physically

linked earlobes and recorded using an EEG cap (61 Ag/AgCl sin-
tered ring electrodes, EasyCap, Germany) with a denser electrode
configuration complying with the 10–5 system (Oostenveld and
Praamstra, 2001) above the sensorimotor cortices. Ocular artifacts
were recorded with two electrodes placed on the right zygomatic
and supraorbital processes.

2.4.2. EMG
EMG was recorded from the abductor pollicis brevis (APB) mus-

cle with three EMG electrodes (Ag/AgCl sintered electrodes 4 mm
in diameter) over the thenar side of each hand. The skin surface
was abraded with NuPrep (Weaver & Co., USA) before the electrode
application. The electrode–skin conductive contact was established
with Ten20 electrode paste (Weaver & Co., USA) and the electrodes
were secured to the skin with adhesive medical tape.

An EMG reference electrode was placed on the styloid process
of the ulnar bone and a ground electrode on the inner surface of
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the wrist at the midline. Ag/AgCl sintered electrodes 12 mm in
diameter were used for reference and ground.

2.5. Data analysis

2.5.1. Preprocessing
Data analyses were performed offline in MATLAB (Mathworks

Inc., USA) environment with custom written functions. The analy-
sis was based on the stable hold period of the task, during which
the strongest coherent activity in the beta band has been shown
before (Baker et al., 1997; Riddle and Baker, 2006; Kristeva et al.,
2007). We chose the post-stimulus interval between 2 and 4 s after
the tone onset as a period showing a stable force production (Bay-
raktaroglu et al., 2011, 2013). The data were visually inspected for
the presence of major abrupt force changes in the hold period. If
the force output deviated from the range 0.5 ± 0.1 N, the epoch
was discarded. Further, epochs containing large-amplitude arti-
facts in the frequency range of interest (8–44 Hz) were excluded
by means of visual inspection. After artifact rejection, the 2-s
epochs were divided into segments of 500 ms length yielding
206.5 ± 62.3 and 208.4 ± 62.8 segments for the affected and unaf-
fected hand of the patients, respectively, in the acute period, and
259.4 ± 17.1 and 270.3 ± 18.6 segments for affected and unaffected
hand of the patients, respectively, in the chronic period. To take
into account that differences in CMC strength may relate to the
number of epochs across the subjects, we performed bootstrapping
to select an equal number of epochs. The lowest number of arti-
fact-free 2-s epochs among all subjects was 34. Therefore, we se-
lected 30 epochs randomly one-hundred times from all artifact-
free epochs and then calculated the CMC spectrum on the resulting
120 segments (30 epochs � 4 = 120 segments). The CMC peak was
finally calculated as the average of one hundred bootstrap
sequences.

2.5.2. Corticomuscular coherence
In this study, we used our recently developed technique –

Regression CMC (R-CMC) – for the optimal detection of cortico-
muscular coherence (Bayraktaroglu et al., 2011, 2013). The core
idea of R-CMC is to find a spatial filter for multichannel EEG data
which maximally explains EMG activity in a given frequency range.
Such an optimization is performed in the time domain where the
correlation of narrow-band signals is equivalent to the calculation
of phase coherence in the Fourier domain. For CMC estimation the
EMG signal was not rectified as EMG rectification has been recently
shown to have a detrimental effect on CMC estimation in both
experimental and theoretical studies (Stegeman et al., 2010; Bay-
raktaroglu et al., 2011; McClelland et al., 2012; Farina et al., 2013).

R-CMC analysis is performed in two steps: (1) to avoid collin-
earity of the predictors and to make the estimation of covariance
matrices more robust, a dimension reduction was performed using
Principal Component Analysis (PCA). PCA components were se-
lected to account for 99% variability of the data. (2) To account
for the conduction delay between cortex and muscle, least-squares
assessments were performed for different delays. The delay was
estimated for frequencies between 8 and 44 Hz with 2 Hz steps
and 4 Hz band-width. For this estimation EMG was shifted relative
to EEG between �p and +p in p/6 steps. Separately for each EMG
electrode and delay, multiple regression was performed and the
coherence corresponding to the best EMG channel and delay was
selected for further analysis.

Let y be projected EEG data which is maximally synchronous
with the EMG data in g, then the coherence between projected data
(y) and EMG (g) across segments is estimated as:

Cohg;y ¼ jsg;yj2
sg � sy

ð1Þ

where sg and sy are averaged Fourier powers for EMG and projected
EEG data, respectively, and sg,y is the averaged cross-spectrum. For
the calculation of the Fourier transforms, the data was divided into
500-ms non-overlapping segments and windowed with a Hanning
window. When presenting results, we refer to CMC amplitude and
frequency corresponding to the highest peak in the coherence
spectrum.

In order to calculate the spatial pattern of the optimized EEG
vector, i.e. the topographical distribution corresponding to the
strongest coherent activity, we utilized an approach proposed by
Parra et al. (2002). During the optimization procedure we excluded
components with patterns showing abnormal activity such as mo-
saic like high-frequency spatial features or strong activity at the
temporal or frontal edges of the patterns (a typical indication for
the presence of the scalp muscle activity).

We used permutation tests for determining the significance le-
vel of the coherence (Hesterberg et al., 2005). For this procedure,
we repeated all the steps of R-CMC but used EMG segments that
were shuffled with respect to the EEG data. One-hundred permuta-
tions were performed for each set of data, and a specific coherence
value was obtained on 30 epochs randomly chosen for each per-
mutation. The coherence was considered significant if the hundred
coherence values of unpermuted data (see above) were signifi-
cantly larger than the coherence values of permuted data (t-test).

Further, we calculated the temporal evolution of CMC from �2
to 7 s around the start tone. The coherence was calculated with
500-ms windows which were translated along the whole epoch
length with 100-ms steps. The spatial filter obtained for the stable
active period (2–4 s) was used for all time windows.

Table 1
Clinical information of patients.a

Subject Age Sex MRC Lesion location Recording day

Affected Unaffected Acute Chronic

1 70 F 4 5 Right gyrus pre and post centralis, MCA, M3 occlusion Cortical 5 181
2 72 F 4 5 Right MCA, subcortical, gyrus frontalis inferior and precentralis, M1 stenosis Cortical 3 183
3 76 M 4 4 Right gyrus precentralis, subcortical boundary, MCA, M2 stenosis Cortical 5 –
4 44 M 5 5 Right gyrus precentralis, gyrus frontalis medius, ACA/MCA boundary Cortical 3 220
5 81 F 5 5 Right gyrus precentralis and parietal cortex, MCA, M4 occlusion Cortical 4 178
6 90 F 3 5 Left juxtacortical postcentral Subcortical 3 –
7 74 M 4 5 Right capsulothalamic Subcortical 3 186
8 71 M 5 5 Left AChA, posterior limb of capsula interna Subcortical 3 –
9 68 M 5 5 Left centrum semiovale Subcortical 3 253

10 67 M 5 5 Right centrum semiovale Subcortical 5 187
11 76 F 4 5 MCA M2, left corona radiata, superior parietal lobul left > right Subcortical 3 –

a F, female; M, male; MCA, middle cerebral artery; M1–4, segments of MCA; ACA, anterior cerebral artery; AchA, anterior choroidal artery.
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2.5.3. Localization of cortical CMC sources
Patterns corresponding to the optimized EEG components were

used for finding neuronal sources with the sLORETA algorithm
(Pascual-Marqui, 2002). For comparing sources of the affected
and unaffected side, the data were mapped to correspond to the
same hand side of performance. The individual EEG patterns were
flipped such that the lesion was always in the right hemisphere
corresponding to left hand performance. Accordingly, performance
of the unaffected hand was mapped to right hand performance.
Consequently, the sources were mapped using the standard
MNI305 head (Collins et al., 1994). For comparative purposes, sLO-
RETA maps were normalized by dividing the power in each voxel
by the sum of power from all voxels.

2.5.4. Event-related desynchronization (ERD)
The EEG signals were segmented around the starting tone from

�2 to 7 s and bandpass-filtered around the peak frequency ob-
tained for the highest CMC value with a bandwidth of ±2 Hz. Then
the spatial filter obtained from CMC estimation was applied. There-
after, the absolute value of the Hilbert transformed signal was ob-
tained and the epochs were averaged. We refer to the response of
the post-stimulus amplitude expressed in percentage with respect
to the pre-stimulus (�700 to �200 ms) amplitude as event-related
desynchronization (ERD; Pfurtscheller and Lopes da Silva, 1999).

2.5.5. Power and frequency of ongoing oscillations
We determined also two measures of ongoing oscillations in the

pre-stimulus interval (�2 to 0 s). For both measures, the analysis of
spectral power of ongoing oscillations was based on the projected
EEG component, which was optimized for CMC estimation. For the
first measure, relative spectral power (RSP) corresponded to the ra-
tio of the mean power in the 4 Hz-wide frequency band around the
highest CMC value to the mean power in the broad frequency
range of 5–35 Hz. For the second measure, we determined the larg-
est spectral peak (of the R-CMC projected component) in the 8–
35 Hz range; this peak was not necessarily corresponding to the
peak of the strongest CMC but rather reflecting the largest power
in ongoing EEG.

2.5.6. Statistical analysis
Statistical analyses of values for CMC amplitude and frequency

were carried out in SPSS (IBM SPSS Inc., USA). For statistical com-
parison of the CMC parameters within the patient group, a linear
mixed model was employed including the repeated variables SIDE
(affected and unaffected) and TIME (acute and chronic). The same
analysis was performed for force, coefficients of variation of force,
ERD amplitude and latency, pre-stimulus RSP, and peak frequency
of power. If not indicated otherwise, statistical results are given as
mean values ± standard error of mean (SEM).

3. Results

3.1. Performance

All patients were able to perform the task and maintain the re-
quired force level. When all epochs were taken into account, the
force level in the 2–4 s interval (which was used for the calculation
of CMC) was 0.46 ± 0.03 N and 0.49 ± 0.02 N for the affected and
unaffected side of the patients, respectively, in the acute period,
and 0.53 ± 0.03 N and 0.50 ± 0.03 N for the affected and unaffected
side, respectively, in the chronic period. As mentioned in Section 2,
epochs which deviated by more than 0.1 N from the required level
were rejected in order to avoid attenuation of CMC due to ongoing
movement (Kilner et al., 2000; Riddle and Baker, 2006). After re-
moval of such epochs the mean level of force was 0.50 ± 0.01 N

and 0.52 ± 0.02 N for the affected and unaffected side, respectively,
in the acute period, and 0.53 ± 0.03 N and 0.51 ± 0.03 N for the af-
fected and unaffected side, respectively, in the chronic period. Nei-
ther before nor after the artifact removal the mean force level
differed statistically between side of lesion or time points. Before
artifact removal, the coefficients of variation of force levels were
0.36 ± 0.07 and 0.29 ± 0.05 for the affected and unaffected side,
respectively, in the acute period, and 0.15 ± 0.02 and 0.15 ± 0.03
in the chronic stage. There was a significant effect of the factor
TIME (p < 0.01). Pairwise comparison between acute and chronic
period was significant for both unaffected (p < 0.05) and affected
sides (p < 0.05). After the removal of artifacts, the coefficients of
variation of force levels were 0.13 ± 0.02 and 0.13 ± 0.01 for the af-
fected and unaffected side, respectively, in the acute period, and
0.10 ± 0.01 and 0.10 ± 0.02 for the affected and unaffected side,
respectively, in the chronic period. There was still a significant
interaction effect of SIDE � TIME (p < 0.05). On the affected side,
the difference between acute and chronic period was near signifi-
cant (p = 0.05).

3.2. Corticomuscular coherence

3.2.1. CMC amplitude
In the acute period, CMC amplitude in patients was 0.15 ± 0.02

and 0.20 ± 0.02 for the affected and unaffected side, respectively;
and in the chronic period CMC amplitude was 0.16 ± 0.03 and
0.14 ± 0.02 for the affected and unaffected side, respectively. For
the 7 patients, that were measured at both time points, the CMC
spectra of both sides in acute and chronic stroke are shown in
Fig. 1 to illustrate the observed changes in CMC amplitude and fre-
quencies. As an example, the spatial CMC patterns of subject 10 are
shown for both sides and both stroke stages in Supplementary
Fig. S2. The time course of CMC (averaged across subjects) is dis-
played in Fig. 2 confirming that the post-stimulus interval 2–4 s
was optimal for the calculation of CMC since it corresponded to
the strongest coherence. Fig. 3 shows the grand average (across
all subjects) for sLORETA solutions separately for the affected and
unaffected sides at both acute (A) and chronic (B) stages. For com-
parative purposes, the single sLORETA solutions were mapped such
that the lesion was always in the right hemisphere. For both sides
and time points of measurement, CMC sources were localized in
the sensorimotor cortices contralateral to the performing hand.

In controls, CMC amplitude was 0.16 ± 0.02 and 0.17 ± 0.02 for
left and right hands, respectively. There were no differences in
CMC amplitude or frequency between hands. For comparison with
the patient group, CMC values corresponding to left and right
hands of the controls were therefore averaged to obtain one value
for each subject, resulting in a CMC amplitude of 0.16 ± 0.02.

In patients, statistical comparison showed a significant effect
for the factor TIME (p < 0.05). The interaction effect of TIME � SIDE
was also near significant (p = 0.056). Pairwise comparison showed
that in the acute period, the CMC amplitude for the unaffected side
of the patients was significantly larger than for the affected side
(p < 0.01). Additionally, on the unaffected side, the CMC amplitude
was significantly larger in the acute period compared to the
chronic period (p < 0.01). The comparison with the control group,
showed no difference of CMC amplitude between controls and af-
fected or unaffected side of patients for acute and chronic stage (t-
tests). Fig. 4A illustrates the statistical results for the comparison of
CMC amplitudes.

3.2.2. CMC frequency
In the acute period of stroke, CMC was in the range of 8–18 Hz

and 8–26 Hz on the affected and unaffected side, respectively, the
mean CMC peak frequency being 12.0 ± 0.8 Hz and 14.4 ± 1.5 Hz,
respectively. In the chronic period, CMC ranges were 12.5–28 Hz
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and 10–28 Hz with a mean peak frequency of 19.6 ± 2.4 Hz and
18.6 ± 2.6 Hz on the affected and unaffected side, respectively.

CMC peak frequencies in controls were in the frequency range
of 9–29 Hz. The mean CMC peak frequency was 18.9 ± 1.5 and
20.1 ± 1.5 Hz for left and right hands, respectively. The average of
peak frequencies corresponding to left and right hands resulted
in a CMC frequency of 19.5 ± 1.4 Hz.

The statistical comparison of peak frequencies in patients
showed a significant effect for the factor TIME (p < 0.05). Pairwise
comparison of the acute and chronic period revealed a significant

increase of CMC peak frequency on the affected side (p < 0.05) in
the chronic period. At acute stage, peak frequencies of CMC on both
the affected and unaffected side of patients were significantly
smaller than in the control group (t-tests, p < 0.001 and p < 0.05,
respectively). The CMC peak frequency was not significantly differ-
ent between the affected and unaffected sides at acute and chronic
stages of stroke. In the chronic period, there was no difference of
CMC frequencies between patients and controls. The results of
the statistical comparison are displayed in Fig. 4B.

3.2.3. Age effect on CMC
We performed a correlation analysis to see whether there was

an age effect on CMC. There was no significant correlation between
CMC amplitude and age for the affected and unaffected side of pa-
tients (q = �0.42, p = 0.09 and q = �0.44, p = 0.07, respectively) or
for controls (q = 0.08, p = 0.79). Further, there was no significant
correlation between CMC frequency and age for the affected and
unaffected side of patients (q = �0.16, p = 0.52 and q = 0.05,
p = 0.85, respectively) or for controls (q = �0.32, p = 0.26).

3.3. ERD

The mean values of ERD peak strength in the post-stimulus
interval of 0–2000 ms were �28.7 ± 2.1% and �28.4 ± 4.1% relative
to the baseline value for the affected and unaffected side of pa-
tients, respectively, in the acute period, and �24.1 ± 8.0% and
�32.4 ± 4.3% for the affected and unaffected side, respectively, in
the chronic period. The peak latencies of the ERD component were
1421 ± 134 ms and 1015 ± 188 ms for the affected and unaffected
side, respectively, in the acute period; and 1151 ± 167 ms and
891 ± 180 ms, respectively, in the chronic period. There were no

Fig. 1. Individual CMC spectra for both affected and unaffected sides of the 7 subjects who were measured in acute and chronic stroke. Note that curves tend to peak at lower
frequencies for the acute period compared to the chronic period. In most cases, the CMC peak amplitude of the unaffected side in the acute period exceeds the three other
peaks. AS, affected side; US, unaffected side.

Fig. 2. Grand-average of time-resolved CMC (normalized to the subject’s peak
value). AS, affected side; US, unaffected side.
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significant statistical main or interaction effects for ERD amplitude.
For ERD latency the effect for the factor SIDE was near significant
(p = 0.057). In the acute period, latencies on the unaffected side
tended to be shorter than on the affected side (p = 0.062). The
time-course of ERD is shown in Supplementary Fig. S1.

3.4. Peak frequencies and power of ongoing oscillations

In the pre-stimulus interval, relative spectral power (RSP) of
ongoing oscillations was 1.03 ± 0.18 and 1.16 ± 0.23 for the af-

fected and unaffected side of patients, respectively, in the acute
period; and 1.04 ± 0.19 and 1.24 ± 0.25 for the affected and unaf-
fected side, respectively, in the chronic period. There were no sig-
nificant statistical differences of pre-stimulus RSP between sides
and time points of measurement.

Peak frequencies of ongoing oscillations in the pre-stimulus
interval were 16.6 ± 2.7 Hz and 17.2 ± 2.9 Hz for the affected and
unaffected side, respectively, in the acute period; and
18.8 ± 3.1 Hz and 17.5 ± 3.5 Hz for the affected and unaffected side,
respectively, in the chronic period. There were no significant differ-
ences for peak frequencies in the pre-stimulus period. The peak
frequencies were primarily in the frequency range of beta oscilla-
tions (13–35 Hz).

4. Discussion

Our aim was to study corticomuscular coherence in patients
with unilateral stroke both in the acute and chronic stage to gain
knowledge about the temporal dynamics of corticomuscular inter-
actions in post-stroke recovery. We found a significant slowing of
CMC peak frequencies on both sides in the acute period. At the
same time, CMC amplitudes were larger on the unaffected side
compared to the affected side, and CMC amplitudes on the unaf-
fected side were larger in the acute compared to the chronic peri-
od. In the chronic period, CMC peak frequencies had increased and
CMC amplitudes did not differ between the affected and unaffected
sides. In both acute and chronic stage as well as for both left and
right movements, CMC sources of grand-averaged sLORETA solu-
tions were localized primarily in the contralateral sensorimotor
cortices.

4.1. The patient group

The patients in the current study were selected for their clinical
symptoms. They all suffered from a moderate to severe hemipare-
sis on the contralesional hand at the onset of stroke. Thus, despite
patients having different lesion locations including cortical and
subcortical regions, the impaired transmission along the efferent
pathway of the corticospinal tract was a common factor in all pa-
tients. The recruitment of cortical areas during motor performance
(Ward et al., 2006, 2007) and motor function (Stinear et al., 2007)
have been shown to depend on corticospinal integrity post-stroke.
Therefore, functional impairment rather than lesion location seems
to be a feasible selection criterion.

Fig. 3. Grand-averaged (across subjects) sLORETA solutions for the affected and
unaffected side in acute (A) and chronic (B) stage. The sLORETA solutions of the
patients were mapped such that the lesion was always in the right hemisphere. The
sLORETA solutions of both sides and time points showed CMC sources that were
localized in the sensorimotor cortices contralateral to the performing hand. au,
arbitrary units.

Fig. 4. The results of the statistical comparison of CMC amplitude and frequency. (A) Pairwise comparison of CMC amplitude showing that on the unaffected side in acute
stage, CMC amplitudes were significantly increased compared to the affected side in acute stage (p < 0.01) and the unaffected side in chronic stage (p < 0.01) and (B) pairwise
comparison of CMC peak frequencies revealed a significant increase of peak frequencies on the affected side in chronic stage compared to acute stage (p < 0.05). In acute stage,
CMC peak frequencies on both the affected and unaffected side of patients were significantly smaller than in the control group (p < 0.001 and p < 0.05, respectively). AS,
affected side; US, unaffected side.

K. von Carlowitz-Ghori et al. / Clinical Neurophysiology 125 (2014) 1182–1191 1187



Note that on the day of the first recording, patients had already
regained enough muscle strength (assessed by MRC scores) to per-
form the experiment. Thus, we were able to detect changes in CMC
between acute and chronic stage while MRC scores were not sen-
sitive enough for this differentiation.

4.2. CMC in acute stroke

To our knowledge, this study is the first to measure CMC in the
acute stage of stroke. We found lower CMC frequencies on both
sides compared to the chronic period and the control subjects.

It is unlikely that the shift to lower frequencies is caused by an
artifact such as scalp muscle activity. We addressed the problem of
interfering strong sources already in our previous study
(Bayraktaroglu et al., 2011) where we performed simulations using
realistic head modeling. In these simulations we had one cortical
dipole interacting with muscle activity and an interfering, uncorre-
lated dipole which was up to 20 times stronger. For background
neuronal noise, we added 500 dipoles producing 1/f noise. Our re-
sults showed that R-CMC reliably extracted the cortical sources
showing CMC, avoiding the extraction of the interfering source.

Interestingly, Mima et al. (2001), Fig. 1B) showed the example
of a chronic stroke patient with CMC frequency at lower frequency
(11 Hz) which they however did not elaborate on. Slowing of CMC
frequencies can be interpreted in two different ways. Firstly, the
CMC peak in the low frequency range might reflect an underlying
process different from the CMC peak in the higher frequency range.
In this case, the relation between these two processes would have
changed in the post-stroke period: while in the acute period the
process at low frequency was more dominant than the process at
the higher frequency, in the chronic period the relation was re-
versed. Secondly, the CMC peak might have progressively shifted
from lower to higher frequencies in the course of post-stroke
recovery. As the current study involved only two measurements,
both possibilities could apply. Thus, by referring to slowing of
CMC frequencies we imply both interpretations. Slowing of CMC
frequencies and increased CMC amplitudes have been related to
healthy aging (Graziadio et al., 2010; Kamp et al., 2011). The
authors argue that M1 power increase and the shift towards lower
frequencies might represent a neurophysiological marker of
healthy aging which is possibly compensated by an increased
CMC amplitude. The underlying functional alterations causing
these changes in CMC in aging could be the same as for stroke. This
would affirm that in the current study the CMC amplitude is in-
creased on the unaffected side in the acute period rather than
CMC amplitudes being decreased on the other side/time point of
measurement. An increase in CMC amplitude on the unaffected
side is also supported by the comparison with the control group
in the current study (Fig. 4A). Graziadio et al. (2010) related a
broader spread of frequencies including coherence in the alpha
range in elderly (>55 years) to a breakdown of recurrent inhibition.
They found that a greater deviation from 23 Hz corresponded to
poorer performance. We hypothesize that slowing of CMC fre-
quency in the acute stage of stroke might result from a temporary
decrease of inhibition. A potential role of inhibition leading to the
changes in CMC will be addressed in further detail below.

4.3. CMC in chronic stroke

Previous CMC studies were performed at the chronic stage of
stroke and included patients with various degrees of recovery
(Mima et al., 2001; Braun et al., 2007; Fang et al., 2009; Meng
et al., 2009; Graziadio et al., 2012). They consistently indicated a
functional involvement of the lesioned hemisphere; the results
about the CMC amplitude and peak frequency were however less
consistent. Mima et al. (2001) and Meng et al. (2009) reported sig-

nificantly lower CMC amplitudes for affected hand movements,
including spatial shifts without any changes in CMC peak fre-
quency. Braun et al. (2007) showed that CMC amplitudes did not
differ between recovered patients and controls, but in patients
CMC was larger in amplitude and distributed over a broader fre-
quency interval on the affected side compared to the unaffected
side. In a dynamic reaching task, Fang et al. (2009) compared
CMC between cortical regions and upper limb muscles in poorly
recovered stroke patients and controls. They found that while mo-
tor coordination deficits abolished gamma band CMC in stroke pa-
tients, there were only small differences in beta-band CMC
between the two groups. Graziadio et al. (2012), who included pa-
tients with various degrees of recovery, found no difference be-
tween stroke patients and controls in CMC amplitudes or
frequencies but hemispheric symmetry of CMC correlated with
recovery. Only Fang et al. (2009), who found no hemispheric differ-
ences in CMC amplitude, included poorly recovered patients but at
the same time also used a different experimental task. The others
(Mima et al., 2001; Braun et al., 2007; Meng et al., 2009) found dif-
ferences in CMC amplitude despite good recovery. Therefore, the
degree of recovery does not seem to be the only explanation for
the differences in CMC amplitude. It is more likely that a mixture
of several parameters including the recovery of the patients, the
time elapsed after the stroke occurrence and specific motor para-
digms utilized by different researchers led to the diverse outcomes
in CMC amplitude in these studies, making a comparison of the re-
sults difficult.

Although the results of CMC amplitude in stroke vary, a com-
mon finding – consistent with the results of the present study –
is that there are no inter-hemispheric differences in CMC peak fre-
quency in chronic stroke among the studies that report on CMC
peak frequencies (Mima et al., 2001; Meng et al., 2009; Graziadio
et al., 2012).

Our measurements at chronic stage were performed on average
194.6 days after the stroke, this time interval being the earliest
among the time intervals used in the previous studies on CMC in
stroke. Importantly, our results showed that already after this com-
paratively short time interval there were no inter-hemispheric dif-
ferences in the amplitude of CMC or its peak frequencies.

4.4. Factors potentially contributing to the modulation of CMC

Although we found the stated significant differences in the
parameters of CMC between sides and between stroke stages,
one could also observe a certain variability across subjects in
amplitude and frequency of CMC. The inhomogeneity among the
patients can most likely be attributed to the general inter-individ-
ual variability of CMC which also occurs in healthy people includ-
ing the occurrence of CMC in alpha range in some cases (Mima and
Hallett, 1999; Ushiyama et al., 2011).

In the following we elaborate on factors that were shown to be
related to differences in CMC and which might be of relevance for
the current study.

4.4.1. Age
Previous studies have shown an age effect on CMC (Graziadio

et al., 2010; Kamp et al., 2011). Kamp et al. (2011) found CMC fre-
quency to be negatively and CMC amplitude to be positively corre-
lated with age. For the age groups above 40 years there was
however no difference in CMC frequency. Yet, there was a trend
of CMC amplitude to be higher in elderly (58–77 years) compared
to middle-aged people (41–55 years). Graziadio et al. (2010) did
not find a difference in CMC amplitude when comparing elderly
(>55 years) with young adults (20–35 years). In the current study
the control group was younger than the patients group; however,
there was no correlation of CMC amplitude or frequency with
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age. A possible explanation would be that the youngest subject in
the control group was 39 years old. Thus, both patient and control
group corresponded to those studies’ middle-aged and elderly
groups where no significant differences were found. Taken
together, the CMC changes found in the current study cannot be
related to age. Changes in CMC amplitude occurred for the with-
in-subject comparison and related only to the unaffected side.
Moreover, while at acute stage peak frequencies were significantly
lower, they aligned with the peak frequencies of controls at chronic
stage. The increase in the chronic period thus argues against an ef-
fect of age.

4.4.2. Motor performance
CMC changes depend on the exerted force (Brown et al., 1998;

Mima et al., 1999), however CMC amplitude is not affected by
weak to moderate forces (Mima et al., 1999). To ensure further that
our findings were not due to different motor performance of the
paretic and non-paretic hands, we excluded trials deviating more
than 0.1 N from the required force level such that there were no
significant differences between the mean force levels either be-
tween affected/unaffected hand or between time points of mea-
surement (acute vs. chronic stages). Coefficients of variation of
force had a tendency to be larger on the affected side in acute com-
pared to chronic stage. CMC amplitude changes, however, occurred
on the unaffected side and can therefore not be attributed to vari-
ations in force levels.

We controlled for equal force levels by choosing a fixed force le-
vel of 0.5 N rather than, as often used, a percentage of maximum
voluntary contraction (MVC). A certain percentage, i.e. 5%, of
MVC could have led to very small force levels for some of the pa-
tients, especially at acute stage, making performance difficult. Fur-
ther, while the motor system in the stroke patients was affected,
the majority of patients did not show any tactile impairment. Tak-
ing MVC as a reference for the target force level would have in-
creased the tactile stimulation (due to recovered motor strength)
in the second measurement. As feedback afferent pathways poten-
tially play a role in CMC generation (Riddle and Baker, 2005; Baker,
2007), thus equal force levels in the current study ensured that
somatosensory feedback did not induce the differences in the mea-
sured CMC.

4.4.3. ERD and power of beta oscillations
Findings on movement-related ERD in paretic stroke subjects

vary (Platz et al., 2000; Gerloff et al., 2006; Stępień et al., 2011).
Here, we did not find any significant differences in the magnitudes
or latencies of ERD comparing sides and time point of measure-
ment. Thus, ERD, which is considered to be an electrophysiological
correlate of activated neuronal networks (Pfurtscheller and Lopes
da Silva, 1999), is unlikely to explain the differences in the CMC
parameters.

Engel and Fries (2010) suggested that beta oscillations relate to
the maintenance of the current sensorimotor set, while in contrast,
an abnormal enhancement of beta activity would be likely to result
in a persistence of the current sensorimotor set and a deterioration
of flexible behavioral and cognitive control. Previously, the recov-
ery of stroke patients was shown to be positively correlated with
the hemispheric symmetry of beta-band power (Graziadio et al.,
2012). In acute stroke patients, Tecchio et al. (2005) found smaller
relative beta-band power at rest in the affected compared to the
unaffected hemisphere. This inter-hemispheric difference in rela-
tive but not in absolute beta-band power was also observed in
chronic patients (Tecchio et al., 2006). Here, we compared relative
spectral power (RSP) of beta oscillations before movement onset
and found it to be not different between sides and time points of
measurement (acute vs. chronic stage). We therefore can exclude
that changes in CMC are caused by changes in the amplitude of

neuronal oscillations, which in turn relate to the signal-to-noise ra-
tio (Nikulin et al., 2011) and thus can effect the estimation of CMC
(Bayraktaroglu et al., 2013).

4.5. Dissociation of CMC and beta oscillations

Our finding is in line with the earlier studies suggesting a func-
tional dissociation between different components of beta oscilla-
tions (Pfurtscheller et al., 1997; Hall et al., 2011) as well as
between the power of beta oscillations and CMC (Baker and Baker,
2003; Riddle et al., 2004). Diazepam, a GABAA receptor agonist,
slightly reduced beta CMC amplitude while EEG beta power dou-
bled (Baker and Baker, 2003). On the contrary, Riddle et al.
(2004) showed the opposite reaction when administering the anti-
convulsive drug Carbamazepine: CMC amplitude increased
whereas beta power and also CMC frequency remained unchanged.

In the present study not only the magnitude of beta power, but
also the peak frequencies of ongoing pre-stimulus beta oscillations
during rest remained unchanged between the sides and time
points of measurement. In comparison, CMC frequencies were low-
er on both sides in acute stage thus further reinforcing the assump-
tion of a dissociation between beta oscillation and CMC.

4.6. Potential role of GABA-mediated inhibition

Wehypothesize that the changes in CMC, observed in the present
study, might relate to the time-course of changes in cortical inhibi-
tion following stroke. The modulation of GABA availability is
thought to be important for the cortical reorganization in the acute
period of functional recovery after a lesion (Levy et al., 2002). This is
supported by Clarkson et al. (2010) who showed that reducing
excessive GABA-mediated tonic (extrasynaptic) inhibition pro-
motes the recovery after stroke inmice. Such a reduced tonic inhibi-
tion might lead to slowing frequency of beta oscillations as shown
by Jensen et al. (2005). They demonstrated in a simulation that
inhibitory current to inhibitory interneurons led to an increase in
beta power, widening of the spectral peak and slowing of frequency.
Consistent with this finding, in another simulation study lacking
recurrent inhibition was shown to result in an enlarged CMC peak
at 10 Hz (Williams and Baker, 2009). Here we argue that in success-
fulmotor recovery the general slowing of CMC frequency and the in-
crease of coherence amplitude on the unaffected sidemight reflect a
reduction of tonic inhibition by GABAA receptors. Inhibition was
shown to be decreased in either only ipsilesional (Swayne et al.,
2008) or both contra- and ipsilesional motor cortices (Bütefisch
et al., 2008;Huynhet al., 2013) in acute and subacute strokepatients
and became correlated with functional recovery 3 months post-
stroke (Swayne et al., 2008). An imbalance of transcallosal inhibition
(Bütefisch et al., 2008) could explain the hemispheric asymmetry of
CMC amplitudes in the acute period shown in the current study.
These CMC changes in amplitude and frequency potentially might
be a sign of cortical reorganization in the acute period after stroke
and beneficial formotor recovery as, on the contrary, the GABA-ago-
nist Diazepamslightly reduces CMC (Baker andBaker, 2003) andhas
a negative effect on stroke recovery (Goldstein, 1998). The changes
of CMC at acute stage are then followed by the return to higher CMC
peak frequencies and inter-hemispherically symmetric amplitudes
in the chronic phase of stroke. The modulation of CMC amplitude
and frequency over time might thus reflect the course of motor
recovery.
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5. CMC in stroke

5.1. Limitations and outlook

The current study demonstrated changes of CMC amplitude and frequency in the course
of post-stroke recovery. I want to discuss some points that were not or only briefly men-
tioned within the paper.

Severity of stroke Due to the measurement in the acute phase of stroke, we included
patients who had already regained enough muscle strength such that they were able
to perform the motor task. All of the patients showed very good recovery in the later
measurement. Thus, this study demonstrates CMC behavior in mostly successful mo-
tor recovery. This however means that the current study does provide little information
about patients who are more severely affected and possibly do not recover well. There-
fore, we do not know whether and how CMC behaves differently in these cases. At the
same time, patients with residual deficits may benefit more by a new rehabilitation ap-
proach than patients with good recovery. CMC however requires muscle contraction to
be measured which makes it hard to realize such a study in severely affected patients.
So the question remains as to how to take corrective action and whether CMC-based
neurofeedback could offer a possibility to intervene in order to aid a better recovery.

Link to behavioral measures Moreover, the current study could not link CMC changes
to behavioral changes, i.e. motor recovery, as e.g. Graziadio et al. (2012) found a corre-
lation between CMC symmetry and recovery. First, this also relates to the circumstance
that the measurements at acute stage required the patients to be able to perform move-
ment. Therefore, patients were also likely to have a good recovery later on which led to
little gradation within the group. Second, the MRC scale used in the study was prob-
ably not sensitive enough to account for residual deficits which possibly remained. At
the same time, changes in CMC were present. Here, a more sensitive behavioral mea-
sure is necessary which detects also slight difficulties in fine motor skills rather than
considering only motor strength. A link to a behavioral measure will be necessary to
judge the success of a rehabilitation approach.

Temporal pattern of CMC changes As already mentioned, the changes in CMC from
the acute to chronic phase of stroke could occur in two ways: Either CMC gradually
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5. CMC in stroke

shifts in frequency or in acute stroke one process dominates, while in the chronic phase
another process does. Having only two measurements we can not know which of the
two explanations is more likely. Therefore, as a next step, a more detailed temporal pat-
tern of CMC changes post-stroke might be obtained. Such a temporal pattern of CMC
would also be interesting in another respect: the second measurement of the current
study was already earlier than the measurements in other studies and already no more
differences in patients compared to normal subjects were present. More measurements
between these two time points could show when no more post-stroke changes in CMC
occur.

Heterogeneity of CMC changes The current paper mentioned the heterogeneity of
CMC changes among subjects meaning overall higher/lower peak frequencies, small
or large changes in peak frequencies or amplitudes between sides/time point of mea-
surement, etc. Such heterogeneity was explained by individual differences (Ushiyama
et al., 2011b). Additionally, there is a within-subject variability (Pohja et al., 2005) which
was also apparent in the study of the next chapter (von Carlowitz-Ghori et al., 2015).
Such variability can however only obscure effects; the main effect in this study may
therefore be despite the heterogeneity but not a consequence of it. Finding similarities
among subgroups (e.g. cortical vs. subcortical lesion location) could possibly explain
some of the inhomogeneity among CMC results. Nevertheless, comparisons between
groups are difficult, even if age-matched, because not all confounding variables might
be identified and controlled for. Particularly, with increasing age also other diseases be-
come more frequent again increasing the number of potentially confounding variables.
This is however a general limitation, not only of this study.

Being the first CMC study in acute stroke, we provided new insights into post-stroke
changes of CMC. At the same time this study also gave rise to a number of new ques-
tions. Further studies are required before the realization of CMC-based neurofeedback
as rehabilitation approach in stroke patients can be addressed.
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Neurofeedback on the basis of CMC 6
So far, the R-CMC method had been applied in offline data analysis. For this chapter
the method was adapted for the online detection of CMC in a neurofeedback approach.
Online detection of CMC means that coherence has to be estimated on short time seg-
ments. Here true phase interactions are masked by spurious/random interactions.
This fact may be illustrated by the following analogy:
Imagine pedestrians walking on a busy street. Over a short distance, there will be
many people walking at the same speed in the same direction. However, most of these
people will just happen to walk the same way without knowing each other; thus their
synchronous walking is purely accidental. Would one watch them for longer, their
ways would disperse. Only people walking at the same speed in the same direction for
a longer distance are likely to indeed be walking synchronously, i.e. they know each
other and walk together adjusting their speed and direction to each other. Over a short
distance, this truly synchronously walking people are, of course, also included, only
they will be concealed among all the people randomly walking synchronously.
Transferred to the online estimation of CMC, coherence values are higher being com-
posed of both true and random interactions. In the current study, subjects were pre-
sented with this online-estimated CMC value and asked to modulate it by a mental
strategy. Due to the random interactions, the presented value is also partially changing
randomly. This imposes difficulties both for the subjects and the analysis: subjects have
to identify their own contribution to changes; the analysis may not show an effect due
to masking of these spurious phase interactions.
Nevertheless, even for the short time segments an effect could be found, which was
confirmed by the analysis of the concatenated data. The results indicate that subjects
indeed gained voluntary control over CMC.
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Abstract—Corticomuscular coherence (CMC) relates to

synchronization between activity in the motor cortex and

the muscle activity. The strength of CMC can be affected by

motor behavior. In a proof-of-principle study, we examined

whether independent of motor output parameters, healthy

subjects are able to voluntarily modulate CMC in a neuro-

feedback paradigm. Subjects received visual online

feedback of their instantaneous CMC strength, which was

calculated between an optimized spatial projection of

multichannel electroencephalography (EEG) and electromy-

ography (EMG) in an individually defined target frequency

range. The neurofeedback training consisted of either

increasing or decreasing CMC strength using a self-chosen

mental strategy while performing a simple motor task.

Evaluation of instantaneous coherence showed that CMC

strength was significantly larger when subjects had to

increase than when to decrease CMC; this difference

between the two task conditions did not depend on motor

performance. The exclusion of confounding factors such as

motor performance, attention and task complexity in study

designprovides evidence that subjectswere able to voluntar-

ily modify CMC independent of motor output parameters.

Additional analysis further strengthened the assumption that

the subjects’ response was specifically shaped by the

neurofeedback. In perspective,we suggest thatCMC-based

neurofeedback could provide a therapeutic approach in clin-

ical conditions, such as motor stroke, where CMC is altered.

� 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: cortex, EEG, neurofeedback, oscillations,

synchronization.

INTRODUCTION

By means of electroencephalography (EEG),

magnetoencephalography (MEG) or real-time functional

magnetic resonance imaging (fMRI), neurofeedback

provides access to brain activity that usually is not

perceptible and thus cannot be modulated intentionally.

Given the access, however, subjects can learn to

voluntarily control brain activity associated with a specific

region or function. EEG-mediated neurofeedback

experiments are commonly based on brain rhythms

such as slow cortical potentials (SCP), sensorimotor

rhythms (SMR), theta/beta or alpha/theta ratios (e.g.,

Gruzelier et al., 2006; Arns et al., 2014). Coherence, how-

ever, has, to our knowledge, only been applied in one

recent neurofeedback study: Sacchet et al. (2012) dem-

onstrated that two healthy participants could modify their

interhemispheric coherence during a motor task by

choosing an appropriate movement and thereby control

a cursor on the screen. Prior to the experiment, two motor

behaviors had been identified that were associated with

the largest difference in coherence, i.e., left finger tapping

vs. bimanual alternative tapping or rest, respectively.

However, it is not known whether coherence can be

voluntarily modified using mental strategies without

changing motor output parameters.

In the current study, we provided subjects with their

instantaneous corticomuscular coherence (CMC) in a

neurofeedback paradigm. CMC relates to the amount of

synchronization between motor-cortical activity and the

activity in a contracting muscle (Conway et al., 1995;

Baker, 2007). For sustained isometric muscle contraction

with low to moderate force, synchronization occurs in the

beta-frequency range (13–30 Hz). CMC is thought to be

important for fine motor control (Schnitzler et al., 2000;

Jackson et al., 2002; Baker, 2007; Lattari et al., 2010).

Movement-dependent modulation, such as type, strength

and steadiness of motor contraction, was shown to affect

CMC strength and frequency (Conway et al., 1995; Baker

et al., 1997; Brown et al., 1998; Mima et al., 1999; Witte

et al., 2007). Further, CMC increased after (short-term)

motor learning/adaptation and CMC even became visible

due to motor learning in subjects who previously did not

present CMC (Perez et al., 2006; Mendez-Balbuena

et al., 2012). Besides movement-dependent modulation,

CMC strength was shown to be affected by motor-

unrelated, cognitive processes, including cognitive effort,

attention and anticipation. Safri et al. (2006, 2007)

demonstrated that when cognitive effort was required to

http://dx.doi.org/10.1016/j.neuroscience.2015.01.013
0306-4522/� 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
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ignore a visual distractor, CMC strength increased. In

contrast, divided attention because of a secondary task

led to decreased CMC strength (Kristeva-Feige et al.,

2002; Safri et al., 2007). Moreover, during isometric con-

traction, gamma-band CMC was shown to be selectively

modulated by cognitive demands, i.e., by the subjects’

expectation of performing a movement (Schoffelen

et al., 2005, 2011). This provides an evidence that CMC

could be modulated by a cognitive control.

The current knowledge about CMC led us to

hypothesize that CMC could be voluntarily modified in a

neurofeedback-based paradigm. At the same time, great

care has to be taken to ensure that CMC is indeed

modified per se and not merely changed by motor

output parameters, training or cognitive load of the

neurofeedback itself. The current study aimed at

providing a proof-of-principle that subjects are able to

modify their CMC when provided as neurofeedback.

EXPERIMENTAL PROCEDURES

Subjects

Eleven healthy individuals participated in the study (eight

female/three male, mean age ± SD: 37.8 ± 17.1 years).

Nine subjects were right-handed and two left-handed

according to the Edinburgh Handedness Inventory

(Oldfield, 1971). The procedures were approved by the

local ethics committee and all subjects gave informed

consent. The selection of subjects was either based on

a recording of an earlier CMC study (N= 5; von

Carlowitz-Ghori et al., 2014) or a test recording (compara-

ble to the force-feedback condition described below but

using only few electrodes; N= 6) showing well detect-

able CMC.

Paradigm

Subjects were seated in a comfortable chair with their

forearms placed on the armrests. The experiment

consisted of two main parts. The first part, which we

refer to as force-feedback condition was required to

calculate an optimized spatial filter which then was used

for the projection of EEG signals in the second part.

Subjects were instructed to perform a simple motor task

which required them to move a lever with their right

thumb against a load and then hold. This required a

lever displacement of approximately 3.5 cm. The

subjects were instructed to reach the target force level

as fast as possible after a single tone (2000 Hz,

duration 100 ms) and hold it constant until the

presentation of a double tone (2000 Hz/1000 Hz,

duration 100 ms). Previous studies reported that CMC

was larger when the task involved a compliant object

compared to a simple isometric condition (Kilner et al.,

2000; Riddle and Baker, 2006). The force was measured

with a load sensor (FSG15N1A, Honeywell, Golden

Valley, Minnesota, USA). Visual feedback of the force

was given on a computer screen (synchronized to the

monitor’s refresh rate) as a centered horizontal bar which

varied in length depending on the exerted force. There

was a fixation cross in the middle and two fixed vertical

bars indicated the target force which was set to 15% of

the maximum voluntary contraction (MVC). The distance

between the two vertical bars was approximately

8.5 cm. MVC was determined prior to the recording by

performing the motor task with maximum force.

The second part, referred to as neurofeedback
condition, involved the same motor task as in the force-

feedback condition but this time subjects were provided

with the visual feedback of their instantaneous CMC

strength. The instantaneous CMC strength was

displayed as a horizontally varying bar and updated

continuously. The resolution of the coherence values

was 0.01 which corresponded to approximately 0.85 mm

on the screen. The delay of CMC presentation on the

screen due to the data buffer refresh rate and CMC

estimation was in a few milliseconds range and thus

negligibly small. Fixed vertical bars indicated perfect

coherence of 1; the fixation cross corresponded to a

coherence of 0. Subjects were prompted to either

increase or decrease the instantaneous CMC strength

using a self-chosen mental strategy without changing

motor output parameters. Subjects were informed about

the measure of interest, CMC, and its basic principle. In

order to avoid influencing the subject’s choice of

strategy, there were, however, no examples of mental

strategies given. Prior to each trial, an upward or

downward facing triangle indicated whether the task was

to increase (NF_increase) or decrease (NF_decrease)

CMC. These two task conditions were chosen because

they are per se equal in cognitive load and task

complexity: for both conditions the task instructions

were identical except for prompting to either increase or

decrease CMC. NF_increase and NF_decrease trials

occurred in random order. If the force exceeded ±30%

of the target force, an error message prompted to

increase/decrease the force. After completion of each

block, subjects rated their concentration and how good

they judged their control over the bar. Further they were

questioned on the mental strategies used.

Each experimental session comprised one block of

the force-feedback condition and four blocks of

the neurofeedback condition. Each block had 50 trials of

14-s length which consisted of 10 s of pressing and

4 s of rest. The measurements were repeated on

three separate days over a period of on average

7.1 ± 2.8 days (range: 3–14 days).

Data acquisition

EEG and electromyography (EMG) data were acquired

with BrainAmp EEG amplifiers (Brain Products, Gilching,

Germany), hardware-filtered in the frequency range of

0.015–250 Hz and sampled at 1000 Hz. The voltage

resolution for the EEG and EMG channels was 0.1 lV
and 0.5 lV, respectively. For EEG data acquisition, an

EEG cap with 61 Ag/AgCl-sintered ring electrodes

(EasyCap, Herrsching, Germany) was used; the

electrode configuration was denser over sensorimotor

cortices. The reference electrode for the EEG was

placed on the nose. In addition, electrooculograms were

recorded by positioning two electrodes on the right

zygomatic and supraorbital processes. EMG was
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recorded from the abductor pollicis brevis (APB) muscle

on the right hand with three EMG electrodes (Ag/AgCl-

sintered, 4-mm diameter). Reference and ground

electrode (Ag/AgCl sintered, 12-mm diameter) for the

EMG were placed on the ulnar styloid process and the

inside surface of the wrist, respectively, and were fixed

with medical tape.

CMC estimation

For coherence estimation we used the R-CMC method

(Bayraktaroglu et al., 2011) which finds the spatial filter

for multi-channel EEG data that maximally explains

EMG activity in a given frequency range. The method is

applied on narrowly bandpass-filtered data and consists

of two steps. First, principal component analysis (PCA)

is applied for dimension reduction of EEG data. PCA com-

ponents are selected that account for 99% of the variance

in data. In the second step, multiple regression is per-

formed where the PCA components serve as predictors

for the EMG signal. Coherence is estimated using the

regression coefficients as spatial filter for EEG signals.

If x corresponds to the projected EEG signals which

are maximally synchronous with the EMG signal y, then
coherence is estimated as:

cohx;y ¼ jsx;yj2=ðsxxsyyÞ
where sxx and syy are the power spectral densities of the

projected EEG signals and the EMG signal, respectively,

and sx,y the cross-spectrum of x and y. For the

calculation of the cross- and autospectra, the data were

divided into 500-ms segments and windowed with a

Hanning window. The segments had a 50% overlap in

instantaneous coherence estimation and no overlap in

overall coherence estimation.

Instantaneous coherence estimation in the
neurofeedback condition

After recording of the force-feedback condition, data were

visually inspected for major artifacts and performance

errors. Further, noisy channels were excluded from

instantaneous coherence estimation. The individual

peak frequency ftarget had been determined on the basis

of earlier recordings and was reconfirmed by calculating

the coherence between Laplacian-filtered EEG data and

EMG signals. As the R-CMC optimization procedure as

described below in the section ‘Overall coherence

estimation’ was too time-consuming during the

experiment, for the calculation of the target frequency

we applied Laplacian filtering which provides a good

approximation for a local source. Furthermore, the EMG

channel yielding the largest coherence values in the

specified frequency range was selected. The R-CMC

spatial filter was calculated on the force-feedback data

which had been bandpass-filtered with a 4th-order

Butterworth filter in the range ftarget ± 2 Hz.

During neurofeedback, CMC was continuously

estimated in a moving window of 1500-ms length

between EEG signals projected with the R-CMC spatial

filter and the signal of the selected EMG channel. The

value represented by the bar was the mean CMC

strength in the frequency range ftarget ± 2 Hz in the

coherence spectrum.

For all three recording sessions ftarget and the selected

EMG channel were kept the same; the R-CMC spatial

filter was always calculated on the preceding force-

feedback condition.

Offline data analysis

Data analysis was performed in MATLAB (Mathworks

Inc., Natick, Massachusetts, USA) with custom-written

functions. The main focus of the analysis was the

comparison between the conditions NF_increase and

NF_decrease. Factors such as cognitive load, number

of epochs, motor performance differed between the

force-feedback and neurofeedback conditions and thus

did not allow for a direct comparison.

Preprocessing. The analysis was focused on the

stable hold period of the task in which the strongest

coherent activity in beta band had been shown (Baker

et al., 1997; Riddle and Baker, 2006). This period

corresponded to the post-stimulus interval of 2–10 s

after the start tone (Fig. 1B). Data of all four blocks

for each session were concatenated and visually

inspected for performance errors and artifacts in

the frequency range of interest. Furthermore, motor

performance was assessed using the mean force level

and the coefficient of variation (CV) of force as mea-

sures. To ensure equal motor performance between

NF_increase and NF_decrease, a stratification method

was applied (Roelfsema et al., 1998; Schoffelen et al.,

2011). Artifact-free epochs were binned according to

their mean force level. The eight bins were equally

spaced with the outer edges corresponding to the over-

all smallest or largest mean force value, respectively, in

that session/subject. From each bin, the same number

of epochs for both NF_increase and NF_decrease was

selected: for the condition with the lower number of

epochs in a given bin, all epochs were included; for

the other condition, the same number of epochs was

randomly drawn from the epochs in that bin. The proce-

dure is illustrated in Fig. 1A. As coherence strength is

affected by the length of data, this procedure has the

additional advantageous effect that data lengths for the

two conditions are equalized.

Muscle activity. Before and after the stratification

procedure, muscle output during the stable hold period

was analyzed for the EMG channel used for online-

coherence estimation. Two measures of the EMG

activity were taken. For the first, the EMG signal was

highpass-filtered at 10 Hz with a 4th-order Butterworth

filter and rectified. For the second, the EMG signal was

bandpass-filtered in the range ftarget ± 2 Hz. In both

cases, the trials were then averaged and the mean

value in the post-stimulus interval of 2–10 s was

selected for further analysis.

Instantaneous coherence estimation. A flowchart of

the following coherence analysis is given in Fig. 2.
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Instantaneous coherence estimation was evaluated

after stratification on non-overlapping 1500-ms data

periods in the post-stimulus interval 2–10 s. The data

segments were projected with the R-CMC spatial filter

used during online presentation, which we refer to as

online filter. CMC strength corresponded to the mean in

the frequency range ftarget ± 2 Hz in the coherence

spectrum. For each condition the instantaneous CMC

strength values were averaged.

Overall coherence estimation. For offline analysis of

overall CMC, all epochs of a condition were

concatenated after the stratification procedure, and

CMC was calculated over the entire length of the two

obtained datasets in the following two ways: (1) EEG

data were projected using the spatial filter which had

been applied online (online filter) and coherence was

estimated between the projected EEG data and the

selected EMG channel. As CMC strength, here we

report the maximum coherence in the frequency

range ftarget ± 2 Hz. (2) R-CMC spatial filters were

re-calculated for each condition on the neurofeedback

data itself. For each 2-Hz step between 8 and 35 Hz,

the EMG signal was shifted relative to EEG data

between �p and +p in p/6 steps. Coherence was

estimated by calculating R-CMC spatial filters for each

frequency step, delay and EMG channel. We refer to

the spatial filter, yielding the largest overall coherence

peak, as recalculated filter and to CMC strength and

frequency corresponding to the highest peak in the

resulting coherence spectrum. The recalculated filter

was optimized for every condition/session in order to

compare the obtained pattern and spectra to those

obtained by the online filter. Note that only information

provided through instantaneous coherence estimation
on the basis of the online filter was available for

subjects. While instantaneous and overall coherence

was estimated on same data, the crucial difference was

in the length of the data used for calculation of CMC. In

case of instantaneous coherence estimation, CMC

was performed in each 1500-ms period. Thus, random,

transient phase consistency had a tendency to produce

Fig. 1. (A) Stratification method for equalization of mean force level distributions between the conditions NF_increase and NF_decrease. The
procedure included the removal of epochs with extreme force levels. The upper panel shows the number of epochs of the two task conditions in

the eight bins before stratification using the first session of subject 1 as an example. For lower mean force levels more epochs belong to the

NF_decrease condition whereas for higher mean force levels there are more epochs in the NF_increase condition. After stratification, shown in the

lower panel, the number of epochs is the same in all bins for both conditions. (B) Grand-averaged force (across subjects/sessions, thin lines

represent ± SEM) over the course of the trial after stratification. Coherence was analyzed during the steady-hold phase which corresponded to the

post-stimulus interval of 2–10 s and is indicated by the two vertical dashed lines.

Fig. 2. Flowchart illustrating the different methods for coherence analysis. The upper boxes show the two approaches to optimize spatial filters: The

online and the recalculated filter. The two filters were applied on data which are either segmented into 1500-ms time windows or combined in one

data set per session (lower boxes). Arrows indicate the three types of analyses that were performed.
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a positive bias, which however, was the same for the

NF_increase and NF_decrease conditions. On the

contrary, the estimation of overall CMC was based on

the entire duration of the neurofeedback session (similar

to most CMC experiments in the literature) and thus

phase consistency was required for a much longer time

interval.

Topographical CMC patterns. The topographical

distribution corresponding to the strongest coherent

activity was obtained using an approach proposed by

Parra et al. (2002) which is based on the coupling of

CMC component activity with the sensor-space data. To

ensure that all artifact-afflicted epochs or noisy channels,

which would lead to unfavorable effects, were excluded,

patterns were examined for abnormal activity such as

mosaic-like high-frequency spatial features or strong

activity at the temporal or frontal edges of the patterns

(typically indicating scalp muscle activity). In case of the

recalculated filter, EEG components with such patterns

were disregarded.

Significance testing. The significance of the overall

CMC strength values was determined by permutation

tests (Hesterberg et al., 2005). For this procedure, we

repeated all steps of coherence estimation but EMG seg-

ments were shuffled with respect to EEG data, thereby

destroying the temporal relationship between the two sig-

nals. In the case of coherence values obtained by the

online filter, the online filter was used to project EEG data

in the permutation test and the permutation values corre-

sponded to the largest value in the frequency range

ftarget ± 2 Hz. The permutation test for coherence values

from recalculated filters included the delay optimization

procedure in the peak frequency range. For each coher-

ence value to be tested, five-hundred permutations were

performed. The coherence value was considered signifi-

cant if less than 2.5% of permutation values exceeded

it. Subjects were excluded from further analysis if there

was no significant coherence in at least one condition.

Relative spectral power (RSP) of beta oscillations. We

determined the RSP of ongoing beta oscillations in the

pre-stimulus interval (�2500 to �450 ms) and during

task performance (2–10 s). The analysis was based on

the projected EEG component, which was optimized for

CMC estimation online filter. RSP corresponded to the

ratio of the mean power in the 4-Hz-wide frequency

band centered at ftarget to the mean power in the broad

frequency range of 5–35 Hz.

Statistical analysis. For statistical analysis, which was

carried out in SPSS (IBM SPSS Inc., Armonk, New York,

USA), a repeated-measures ANOVA was employed with

the main factors CONDITION (NF_increase,

NF_decrease) and SESSION (1, 2, 3). Post-hoc

pairwise comparisons were Bonferroni-corrected. To test

for correlation of measures, they were averaged across

sessions and non-parametric Spearman’s rank

correlation coefficient was calculated in MATLAB.

RESULTS

Behavioral measures

As subjects could freely choose their mental strategy,

there was a wide range of strategies ranging from a

focus on the visual feedback or motor performance to

very abstract images or emotions. The focus on visual

feedback, i.e., imagining extending/shortening the

horizontal bar which displayed the instantaneous

CMC strength, was the strategy chosen most often. No

mental strategy/category of strategies could be

identified as being more effective than others. The

neurofeedback condition was generally considered more

demanding but also more engaging than the

force-feedback condition.

Motor performance was assessed using mean force

levels and the CV of force as measures; the values for

all the behavioral measures are summarized in Table 1.

Before the stratification procedure, there was a

significant effect for CONDITION (p= 0.014), mean

force levels in NF_increase were larger than in

NF_decrease in all three sessions (p= 0.017,

p= 0.043, p= 0.008). Further, the CV of force

demonstrated a significant effect of CONDITION

(p= 0.041), in session 1, the CV of force was smaller

in the NF_increase condition than in the NF_decrease

condition. Moreover, there was a significant main effect

of CONDITION for the number of epochs (p< 0.001);

due to artifact correction, there were less epochs in the

condition NF_increase than in NF_decrease in all three

sessions (p= 0.043, p= 0.001, p= 0.004).

The statistical analysis of EMG activity in the broad

frequency range showed a significant effect of

CONDITION (p= 0.005). For all three sessions values

were larger in the NF_increase than in the NF_decrease
condition (p= 0.006, 0 = 0.35, p= 0.008). For EMG

activity at ftarget there was a significant effect of

CONDITION (p= 0.035) with values being larger for

the NF_increase than for the NF_decrease condition but

no posthoc effects.

After the stratification procedure, there were no longer

any significant differences between conditions or

sessions for mean force levels and CV of force. The

number of epochs was identical for both conditions. The

grand-average (across subjects and conditions) of the

mean force levels are displayed in Fig. 1B as

percentage of the target force; the force levels of the

conditions NF_increase and NF_decrease do not show

a difference within the analysis window. EMG activity in

the broad frequency range still showed a significant

effect of CONDITION (p= 0.004) with values for the

condition NF_increase being larger than for

NF_decrease in sessions 1 and 2 (p= 0.014,

p= 0.027). EMG activity at ftarget did not show any main

or interaction effects. The difference in broad-band EMG

levels, however, was not associated with the changes in

CMC as we show below.

Table 1 summarizes mean force levels, CV of force,

EMG activity and number of epochs before and after

stratification for the NF_increase and NF_decrease
conditions and all sessions.
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Note that the reported results are for nine

subjects only, as two subjects were excluded from

analysis because of lacking coherence in some

conditions.

CMC

Instantaneous coherence estimation. The

instantaneous CMC strength values (mean ± SEM) are

displayed in Table 2. There was a significant main effect

of CONDITION (p= 0.012), with corresponding

mean values for NF_increase being larger than for

NF_decrease, and an interaction effect of

CONDITION⁄SESSION (p= 0.047). Post-hoc

comparisons revealed that in session 2, CMC strength in

NF_increase was significantly larger than in

NF_decrease (p< 0.001); and in session 1, CMC

strength in NF_increase tended to be larger than in

NF_decrease being close to significance (p= 0.063).

Overall coherence estimation. The CMC strength and

frequencies (mean ± SEM) for the different conditions

and sessions using both online and recalculated filters

are summarized in Table 2. Fig. 3 shows CMC spectra

and patterns obtained with the online and recalculated

filter in subject 1. For the online filter, CMC strength

values of all subjects are displayed in Fig. 4A. Note that

though tables and figures also include the force-

feedback condition, we did not directly compare it to the

neurofeedback condition for several reasons. The online

filter was optimized on the force-feedback data. Further

cognitive load, CV of force and number of epochs

differed. These factors may give a bias toward larger

CMC strength values in the force-feedback condition but

are unrelated to voluntary modulation of CMC.

The statistical comparison of CMC strength values

obtained with the online filter showed a significant main

effect for CONDITION (p= 0.044). In session 2, CMC

strength was significantly larger for NF_increase than

for NF_decrease (p= 0.022). The statistical results are

illustrated in Fig. 4B. In the force-feedback condition,

Table 1. Mean force levels, CV of force, EMG activity and number of epochs before and after stratification for all conditions and sessions. Data are

presented as mean ± SEM

Session Condition

Force-feedback NF_increase NF_decrease

Before stratification

Mean force [N] 1 0.830 ± 0.100 0.844 ± 0.107 0.776 ± 0.092

2 0.831 ± 0.101 0.832 ± 0.103 0.773 ± 0.093

3 0.826 ± 0.095 0.840 ± 0.106a 0.772 ± 0.099a

CV of force 1 0.050 ± 0.004 0.168 ± 0.014 0.187 ± 0.016

2 0.046 ± 0.005 0.179 ± 0.027 0.182 ± 0.021

3 0.046 ± 0.004 0.186 ± 0.029a 0.192 ± 0.029a

EMG activity [lV] 1 105.1 ± 14.4 113.9 ± 14.8 104.8 ± 13.1

2 120.7 ± 12.1 129.5 ± 21.6 117.2 ± 17.3

3 107.0 ± 11.9 117.0 ± 16.3a 106.9 ± 14.2a

EMG activity ftarget [lV] 1 18.7 ± 3.2 20.8 ± 3.4 19.1 ± 3.3

2 21.0 ± 3.3 21.5 ± 4.2 20.2 ± 3.6

3 19.7 ± 2.8 21.2 ± 3.6a 19.8 ± 3.1a

Number of epochs 1 46.3 ± 0.8 86.1 ± 2.7 90.8 ± 1.8

2 43.7 ± 1.0 84.4 ± 2.9 93.0 ± 2.8

3 45.4 ± 0.6 86.1 ± 2.2a 91.4 ± 2.4a

After stratification

Mean force 1 0.816 ± 0.102 0.816 ± 0.102

2 0.804 ± 0.097 0.801 ± 0.097

3 0.802 ± 0.102 0.801 ± 0.102

CV of force 1 0.166 ± 0.014 0.167 ± 0.016

2 0.177 ± 0.025 0.178 ± 0.022

3 0.176 ± 0.024 0.182 ± 0.031

EMG activity [lV] 1 112.4 ± 14.3 106.8 ± 13.4

2 128.4 ± 20.9 118.6 ± 17.8

3 113.2 ± 15.4a 109.2 ± 14.8a

EMG activity ftarget [lV] 1 20.7 ± 3.3 19.2 ± 3.1

2 21.6 ± 4.2 20.4 ± 3.6

3 20.5 ± 3.3 20.4 ± 3.3

Number of epochs 1 63.6 ± 3.9

2 62.2 ± 6.0

3 62.9 ± 5.5

a Significant main effect of CONDITION comparing NF_increase and NF_decrease (p< 0.05).
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there was no significant difference between sessions in

CMC strength.

DCMConline did not depend on the CMC strength of

force-feedback or neurofeedback conditions,

respectively, where DCMConline denotes the difference

in CMC strength between NF_increase and

NF_decrease averaged across sessions using the

online filter. In Fig. 5 the subjects’ sorted DCMConline
values are depicted, showing that the CMC strength in

NF_increase was larger than in NF_decrease in most of

the subjects. First, there were no significant correlations

of DCMConline with the mean force or CV of force

before stratification. Further, no correlation was present

between DCMConline and EMG activity either in the

broad or target frequency range. Before stratification

there was a negative correlation of DCMConline and

Depos (q= �0.77, p= 0.019), where Depos
corresponds to the difference in the number of epochs

between the NF_increase and NF_decrease conditions.

This effect was eliminated by the stratification procedure.

For CMC strengths and CMC frequencies, obtained

with the recalculated filter in the neurofeedback

condition, there were no significant differences for

conditions or sessions. The statistical results of the

CMC strength comparison are illustrated in Fig. 6B while

the individual values are depicted in Fig. 6A. In the

force-feedback condition, there was a main effect for

SESSION in CMC strength (p= 0.044); pairwise

comparison showed a significant increase in CMC

strength from the first to third session (p= 0.039); there

was no significant difference in CMC peak frequency.

Further, Spearman’s correlation between

DCMConline and DCMCrecalc was calculated, where

DCMCrecalc denotes – analogous to DCMConline – the

average pairwise difference in CMC strength between

NF_increase and NF_decrease using the recalculated

filter. There was no significant correlation between

DCMConline and DCMCrecalc.

RSP of beta oscillations

For the pre-stimulus period, the statistical analysis of beta

RSP showed that for the main factor CONDITION

(p= 0.077) values tended to be larger for NF_increase

than for NF_decrease. During task performance, beta

RSP did not show any significant main or interaction

effects. There was no significant correlation of

DCMConline with beta RSP before or during task

performance.

DISCUSSION

In the current study we provided a proof-of-principle

that healthy subjects were able to voluntarily modify

CMC in a neurofeedback-based paradigm independent

of motor output parameters. CMC strength in the

target frequency range was significantly larger when

subjects were prompted to increase than when to

decrease CMC. While cortico-cortical coherence as a

measure of functional connection has previously been

employed in a neurofeedback paradigm (Sacchet

et al., 2012), the current study demonstrates intentional

modulation of CMC independent of motor output param-

eters. From neurofeedback and brain-computer-inter-

face studies it is known that about 15–30% of

participants are unable to learn volitional control of

brain activity (Kober et al., 2013). Despite intra- and

inter-individual performance differences being present

also in the current study, we were able to show signif-

icant modulation of CMC on a group level. This effect

may not be considerably pronounced but nonetheless

reached statistical significance.

This difference between the two neurofeedback

conditions was present for both instantaneous and

overall CMC using the online filter. However,

instantaneous CMC was calculated on relatively short

time windows (1500 ms), where detection of spurious

Table 2. The CMC strength and frequencies for the different conditions and sessions using both online and recalculated filters. Data are presented as

mean ± SEM

Session Condition

Force-feedback NF_increase NF_decrease

Online filter

CMC strength (instantaneous) 1 0.245 ± 0.008 0.237 ± 0.007

2 0.252 ± 0.011 0.236 ± 0.010

3 0.251 ± 0.008a 0.247 ± 0.008a

CMC strength (overall) 1 0.066 ± 0.010 0.062 ± 0.018 0.045 ± 0.011

2 0.071 ± 0.015 0.078 ± 0.025 0.057 ± 0.021

3 0.085 ± 0.014 0.064 ± 0.013a 0.053 ± 0.010a

CMC frequency (ftarget) 1–3 20.3 ± 1.4 20.3 ± 1.4 20.3 ± 1.4

Recalculated filter

CMC strength 1 0.088 ± 0.015 0.101 ± 0.022 0.085 ± 0.016

2 0.099 ± 0.017 0.111 ± 0.029 0.101 ± 0.029

3 0.127 ± 0.015 0.124 ± 0.027 0.113 ± 0.021

CMC frequency [Hz] 1 20.1 ± 1.6 19.9 ± 1.7 21.3 ± 1.7

2 19.7 ± 2.0 19.4 ± 1.9 19.2 ± 1.8

3 18.4 ± 1.7b 18.2 ± 2.1 18.7 ± 2.0

a Significant main effect of CONDITION comparing NF_increase and NF_decrease (p< 0.05).
b Significant main effect of SESSION (p< 0.05).
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synchrony is more likely than for longer time intervals.

Therefore, functional phase relationships in

instantaneous CMC might to a varying degree be

masked by random interactions. Yet, despite this

masking effect, instantaneous CMC showed stronger

values in the NF_increase compared to the

NF_decrease condition. Overall CMC estimation, on the

other hand, reflects phase dynamics over a long time

interval (the entire neurofeedback session) where only

functionally consistent phase interactions survive the

averaging procedure. Since spurious/stochastic phase

interactions average out, the overall CMC values also

became smaller, as visible from Table 2. Nevertheless,

we yet again observed stronger CMC values for the

NF_increase compared to the NF_decrease condition.

The agreement of the results for instantaneous and

overall CMC excludes that a positive synchrony bias

(due to the short length of the segments) caused the

difference between the two conditions and therefore

argues against the results being due to spurious phase

interactions.

Addressing confounding factors

Potentially confounding factors were addressed by the

study design and preprocessing of the data to allow the

conclusion that the effect of CMC modulation can be

attributed to voluntary modification. The study was

designed such that subjects were prompted in random

order to either increase or decrease CMC (NF_increase/
NF_decrease). This allowed to directly compare the two

task conditions ensuring that differences in CMC

strength were not due to the neurofeedback condition

per se: the neurofeedback condition required more

cognitive effort than the force-feedback condition and

attention had to be divided between the CMC feedback

Fig. 3. CMC spectra and spatial patterns of subject 1 for the online filter (top) and the recalculated filter (bottom). The vertical dashed lines in the

CMC spectra correspond to the target frequency. Note, that for recalculated filters patterns correspond to CMC at peak frequency.
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and keeping the target force level – factors which were

shown to modulate CMC strength (Kristeva-Feige et al.,

2002; Safri et al., 2006, 2007). Besides the self-report of

subjects, also a higher CV of force could be an indication

that the neurofeedback condition was more demanding.

Therefore, we did not compare the neurofeedback to

the force-feedback condition directly. Furthermore, motor

adaptation (Perez et al., 2006; Mendez-Balbuena et al.,

2012) or muscle fatigue (Yang et al., 2009; Ushiyama

et al., 2011a) cannot be accounted for the difference

between the two neurofeedback-task conditions as the

order of conditions was randomized.

Besides EEG/EMG signals, the topographical CMC

patterns (as displayed in Fig. 3) were examined for

artifacts, e.g., due to scalp muscle activity, which could

have (unintentionally) been used to control the feedback

signal (Sherlin et al., 2011). There was no evidence that

CMC estimation was confounded by artifacts.

Further, we neither found changes in beta RSP

between conditions nor a correlation of beta RSP with

the difference in CMC strength values DCMConline
(NF_increase � NF_decrease) obtained with the online

filter. We therefore can exclude that CMC modulation is

confounded by amplitude changes of neuronal

oscillations which were shown to affect the estimation of

CMC (Bayraktaroglu et al., 2013) as they relate to the sig-

nal-to-noise ratio (Nikulin et al., 2011).

We found mean force levels to be larger in the

NF_increase than in the NF_decrease condition while

for the CV of force the relationship was reversed. For

low to moderate forces CMC strength was shown not to

be affected by force strength (Brown et al., 1998) but

rather by the precision of the exerted force (Witte et al.,

2007). In the current study, DCMConline was neither cor-

related with the difference in mean force level nor CV of

force, the latter being used as a measure of force stability.

To equalize both motor performance and number of

epochs for the conditions NF_increase and NF_decrease,
a stratification method was applied (Roelfsema et al.,

1998; Schoffelen et al., 2011). Though this meant discard-

ing some data, it ensured that CMC was not modulated as

such by the force parameters. Assessed motor output

parameters also included muscle activity measured with

EMG. Although quite small, we found differences between

Fig. 4. (A) Individual overall CMC strength values using the online filter. For each session, the values on the left hand side correspond to the

NF_increase condition and on the right hand side to the NF_decrease condition; each color represents one subject. (B) Statistical comparison of

CMC strength values. There was a significant main effect of CONDITION with CMC strength being larger for NF_increase than for NF_decrease
(p= 0.044). Post-hoc comparison showed that in session 2, CMC strength was significantly larger for NF_increase than for NF_decrease
(p= 0.022). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Subjects’ sorted DCMConline values. DCMConline denotes

the difference in overall CMC strength between the NF_increase and

NF_decrease conditions averaged across sessions using the online

filter. In most of the subjects, CMC strength in the NF_increase
condition was larger than in the NF_decrease condition.
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the two neurofeedback conditions for EMG activity in the

broad frequency. As there was no difference in EMG

activity at the target frequency, the activity modulation in

the broad frequency might be a concomitant factor, i.e.,

subjects associated CMC with force (as force was pro-

vided as feedback in the force-feedback condition) and

therefore had unintentionally a higher level of muscle

activity during the NF_increase condition compared to

the NF_decrease condition. Yet, these differences in

EMG levels were unlikely to cause difference in CMC as

neither of the two measures of EMG activity correlated

with CMC modulation (DCMConline) thus advocating

against a confounding effect of EMG activity.

Coherence strength

Subjects were only included into the study when they

presented CMC above a significance level. There is a

large between- and within-subject variability of CMC

strength (Pohja et al., 2005; Ushiyama et al., 2011b).

Two subjects were excluded from the analysis because

they did not present significant CMC in all of the condi-

tions/sessions. The rationale behind this selection crite-

rion is that spatial filters cannot be considered

meaningful when no coherence is present.

In the neurofeedback condition, there was no

significant change of CMC strength between sessions.

Against expectations, the difference between

NF_increase and NF_decrease was smallest in the third

session. The current study set priority on addressing

concomitant factors which might have contributed to

CMC modulation. Our study is the first to demonstrate

that neurofeedback on the basis of CMC is possible in

principle. On this basis, further research will address

how to optimize parameters which might increase

DCMConline and lead to an increasing effect over time.

Such parameters include varying the duration,

frequency or total number of sessions or the use of a

block design instead of a random order of condition.

Contrary to the neurofeedback condition, we found an

increase of CMC strength in the force-feedback

condition from the first to third session using the

recalculated filter. This could potentially be an effect of

the neurofeedback training or of motor adaptation as

previously reported (Perez et al., 2006; Mendez-

Balbuena et al., 2012). These authors, however, showed

motor adaptation only within a one-day session but did not

examine longer time periods. In the current study, CMC

strength increased over a time period of about a week.

Nevertheless, DCMConline did not depend on the coher-

ence strength of force-feedback or neurofeedback condi-

tion as such. Thus, a large CMC does not seem to be a

prerequisite for successfully manipulating it.

Significant difference for the online filter but not the
recalculated filter

We found a significant difference in both instantaneous

and overall CMC strength between NF_increase and

NF_decrease using the online filter; there was, however,

no significant difference using the recalculated filter. Let

us consider a possible effect of motor output on CMC

estimation. If the motor output had affected CMC

estimation, differences in CMC between the conditions

should also occur when the recalculated filter is applied

as the motor output for the two ways of analysis (online

and recalculated filter) was identical. One could even

expect a larger effect for the recalculated filter as it was

optimized on the neurofeedback data itself. Indeed,

recalculated filters resulted in a consistently larger

overall CMC peak strength than online filters and the

target frequency did not always match with the peak

frequency. Yet, there were no task-related differences in

CMC for the recalculated filter which led to the

conclusion that any remaining differences in motor

output, as the residual EMG difference between the

NF_increase and NF_decrease conditions, were not the

reason for changes in CMC. CMC changes are more

likely to be due to modulating the strength of the

corticomuscular coupling which was suggested to

Fig. 6. (A) Individual overall CMC strength values using the recalculated filter. For each session, the values on the left hand side correspond to the

NF_increase condition and on the right hand side to the NF_decrease condition; each color represents one subject. (B) Statistical comparison of

CMC strength values showed no significant main or interaction effects. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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contribute to effective interaction (Fries, 2005; Schoffelen

et al., 2005). Here, online and recalculated filters spatially

shape the EEG signals in a slightly different way. The dif-

ference in CMC between the two task conditions was only

significant when applying the spatial filter that was actu-

ally used online during task performance. This online filter

shaped the feedback which subjects were provided with

and subjects could only modify the signal they had access

to. Those neural oscillations which were relevant for the

significant difference between conditions using the online

filter could have been suppressed by the recalculated fil-

ter which was optimized to yield the largest possible

coherence and which disregarded effects of the neuro-

feedback. This finding provides further evidence that sub-

jects voluntarily modified their CMC.

Neurophysiological mechanisms underlying
neurofeedback

The effective volitional control of neural activity has been

demonstrated in numerous studies in both animals and

humans (Fetz, 2007) with neurofeedback being based

on different levels of neuronal activity (Orsborn and

Carmena, 2013). However, mechanisms underlying the

acquisition of self-regulatory capacity of brain activity

remain unclear.

In the current study, subjects increased/decreased

CMC, thus changing the functional coupling between the

cortex and the spinal cord. We found the CMC

modulation to be independent of motor performance,

which implies that subjects acquired self-regulation of

CMC strength using mental processes. From the

reported mental strategies it is not possible to infer

underlying strategies leading to the observed CMC

modulation. Such strategies may, however, include the

same neurophysiological structures as e.g., in motor

imagery (Jeannerod, 1995; Jeannerod and Frak, 1999;

Solodkin et al., 2004) or motor attention (Rushworth

et al., 2001, 2003). In addition, as a sensory/afferent con-

tribution to CMC is suggested (Baker, 2007), CMC modu-

lation might also share mechanisms with somatosensory

attention (van Ede and Maris, 2013). The self-regulatory

capacity in neurofeedback is thought to be irrespective

of the neurophysiological measure being manipulated.

Kober et al. (2013) associated neurofeedback perfor-

mance with implicit learning mechanisms. In their study,

successful subjects reported using no specific mental

strategy anymore which suggests the development of

automatic regulation skills. Effective strategies were

found to vary among individuals (Nan et al., 2012) which

is congruent with the results of our study showing variabil-

ity in mental strategies.

Clinical potential

Neurofeedback has been examined for its therapeutic

potential in a variety of disorders where it could provide

a non-invasive and well-tolerated alternative form of

treatment. Particularly in attention-deficit hyperactivity

disorder (ADHD), neurofeedback training seems to be a

promising alternative to pharmacological intervention

including evidence of long-term effects (for reviews see

Moriyama et al., 2012; Arns et al., 2014). In the current

study, we demonstrated that healthy people are able to

voluntarily modulate their CMC based on neurofeedback.

Building on the present results, CMC neurofeedback

could provide a therapeutic approach in conditions where

CMC was shown to be altered, such as in stroke (Mima

et al., 2001; Braun et al., 2007; Fang et al., 2009; Meng

et al., 2009; Graziadio et al., 2012; Rossiter et al., 2013;

von Carlowitz-Ghori et al., 2014). CMC allows directly

accessing functionally relevant contribution of cortical

areas that undergo massive reorganization in stroke

recovery. We conjecture that through neurofeedback

patients might be enabled to modulate CMC involving

functionally competent and relevant cortical areas partici-

pating in plastic changes following a stroke. Being pre-

sented with instantaneous CMC feedback, patients

could learn an association of specific motor commands

with the strength of CMC, which is to be calculated

between neuronal oscillations of unaffected cortical areas

and muscle activity. These in turn would allow for a facil-

itation of recovery processes where cortical areas, previ-

ously not active in the execution of a given movement,

would start to be engaged in the generation of motor con-

trol of the paretic body part.
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6. Neurofeedback on the basis of CMC

6.1. Limitations and outlook

The study was the first to apply CMC in a neurofeedback paradigm. The results indi-
cate an effect of voluntary control on CMC which was not influenced by motor output
parameters.

Optimizing design parameters As this was the first study of this kind aiming at
demonstrating the feasibility of CMC-based neurofeedback, the paradigm was not yet
optimized for yielding the largest possible effect. The design parameters such as length,
number and frequency of sessions, trial length and design of presentation (block design
vs. random order of conditions) were set following experiences from previous CMC
measurements and other neurofeedback studies. As already mentioned in the paper,
the priority of the study was to ensure that concomitant factors did not contribute to
the effect. Therefore, the choice of design parameters might have been suboptimal. Op-
timizing these parameters could give a larger effect, which was, though significant in
the current study, not particularly pronounced. A motivational incentive/reward may
also improve the effect of neurofeedback (Sherlin et al., 2011). Possibly, a online success
rate as implemented in the BCI-type paradigm by Sacchet et al. (2012) could serve this
purpose. Additionally, such a paradigm would have the advantage to provide individ-
ual learning curves.

Between-subject variability The current study showed a group effect of manipulat-
ing CMC strength; there was however a certain between-subject variability of CMC
control. Figure 5 of the paper demonstrates these individual differences in voluntary
control. This variability in control may be attributed to the so-called BCI-illiteracy
phenomenon (Kober et al., 2013; Blankertz et al., 2010): some subjects are not able to
learn voluntary control of brain signals; they could have diminished the group effect.
Their existence does not argue against CMC-based neurofeedback, however it might
be worthwhile to investigate individual success in learning the control of CMC. The
current study included two conditions asking the subjects in random order to increase
and decrease CMC strength. Changing between these two conditions does certainly
increase task difficulty which may inhibit learning voluntary control of CMC in some
subjects. An alternative design could include a sham-control group where feedback is
unrelated to the neurophysiological parameter.
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6. Neurofeedback on the basis of CMC

Lack of time effect Moreover, contrary to expectations, there was no effect of time,
i.e. the difference between the two conditions did not increase in the course of the three
sessions. Such an increased difference over time would be indicative of a learning effect
and strengthen the evidence for a voluntary control of CMC. The lack of a time effect
may be due to the choice of design which could have inhibited learning, e.g. a too large
time interval between sessions or reduced motivation after the first session. Optimiz-
ing the design parameters may therefore not only lead to a larger effect but also to an
increase over time. Further, there was also a large within-subject variability of CMC
strength which may have obscured a small effect of time. Here, increasing the number
of sessions could be a possibility to address this problem. In the current study, the num-
ber of sessions was a compromise due to the preparation time which may be reduced
by using less electrodes (see below). Though there is no effect of time in the course
of the three sessions, there still may be an effect of time within a session. Analysis of
smaller data segments however did not confirm this assumption (data not shown). This
may again be attributed to the large within-subject variability. In contrast to the neuro-
feedback task, there was an increase in CMC amplitude in the force-feedback task from
the first to third session. This may be due to neurofeedback or motor adaptation, why,
however an effect of time occurred only in the force-feedback task remains unclear.

Electrode setting A drawback of EEG experiments is that preparation is generally
quite time-consuming. The study included three sessions per subjects; for each session
more than sixty electrodes had to be prepared. Here, future studies could aim at reduc-
ing the number of electrodes without impairing CMC estimation significantly. Channel
reduction could be adapted from approaches as already applied in BCI classification
experiments (e.g. Sannelli et al., 2010; Arvaneh et al., 2011). Optimization based on
multiple regression, as implemented in the R-CMC method, generally yields better re-
sults using more explanatory variables (here: number of EEG signals). Yet, the method
still could be applied without significant loss to smaller but optimized electrode set-
tings. Less electrodes (and therefore less preparation time), would also allow for more
training sessions which instead could be shorter.
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6. Neurofeedback on the basis of CMC

Computer-aided learning In the current study, the spatial filter used for online CMC
estimation was obtained individually from the preceding offline training session. In
neurofeedback the measure is neurophysiologically meaningful aiming at changes in
the brain and behavioral correlates (in contrast to BCI classification aiming at control-
ling a device). Therefore, the computer system is not meant to closely adapt to the sub-
ject since the training of signal control has to remain on the subject’s side to provoke
changes in brain activity. This is particularly relevant e.g. in respect to stroke patients
where one would like to achieve/enhance the involvement of specific cortical regions
in establishing CMC. Nonetheless, adaptive online learning techniques (e.g. Vidaurre
et al., 2010; Shenoy et al., 2006) could aid the subjects’ learning, e.g. by updating spatial
filters online to adjust for changes in the activity pattern associated with a higher CMC.

The objective to demonstrate voluntary control of CMC was achieved by the current
study. In future, tuning the parameters of the design and CMC estimation may yield
better effects.
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Summary and Conclusion 7
The four papers constituting the work of my thesis were centered around phenomenon
of CMC: paper I (Chapter 3) introduced the new detection method R-CMC, paper II
(Chapter 4) investigated the relation of CMC to amplitude modulation of beta oscilla-
tions, paper III and IV (Chapters 5 and 6) were concerned with the more demanding
detection of CMC in clinical data and in real-time application, respectively.

One main objective of this thesis was to optimally detect CMC in offline analysis as well
during real-time CMC-neurofeedback. Paper I (Bayraktaroglu et al., 2011) introduced
the newly developed procedure R-CMC for the extraction of spatial filters which allows
to obtain the maximized coherence between cortical and muscle activity. R-CMC uses
multiple regression where narrowly filtered EEG signals serve as predictors for EMG
activity. This procedure includes the optimization for frequency and delay to find the
highest coherence. The obtained regression coefficients were applied as spatial filters
to data either offline (Papers I-IV) or online in neurofeedback on short-time intervals
(Paper IV). In the latter case, spatial filters were trained on a measurement recorded
prior to the neurofeedback. Another important aspect of paper I was related to the
issue of EMG rectification: the EMG signal is commonly rectified prior to coherence
analysis. However until recently its justification was neither thoroughly tested experi-
mentally nor theoretically. In paper I, we also examined the effect of EMG rectification
on CMC estimation with experimental data comparing different approaches including
the R-CMC method mentioned above. In all approaches, rectification led to similar or
significantly reduced CMC values arguing against the use of EMG rectification. The
detrimental effect of EMG rectification for CMC estimation is in line with other recent
theoretical and experimental studies (Farina et al., 2013; McClelland et al., 2012; Stege-
man et al., 2010).
In addition to phase-locking between cortical and muscle activity as measured by CMC,
in paper II (Bayraktaroglu et al., 2013) of this thesis we investigated how local neuronal
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interaction in the motor cortex can be reflected in the local activity at the spinal cord
(as indirectly measured on the basis of muscle activity). Generally, it is assumed that
distant neuronal populations may interact with each other by synchronization of os-
cillatory activity (Schoffelen et al., 2005; Womelsdorf et al., 2007). Coherence between
the two neuronal groups might reflect a mechanism of effective interaction. However,
also synchronization within a local neuronal group might have consequences for neu-
ronal interactions. The signal amplitude is modulated by the number of neurons in
synchrony. We found a correlation of amplitude modulations between beta oscillations
in the sensorimotor cortex and the hand muscle. These amplitude dynamics might con-
vey additional information for corticomuscular interactions.
All of the few stroke-related CMC studies (Braun et al., 2007; Fang et al., 2009; Meng
et al., 2009; Mima et al., 2001) were performed at the chronic stage, mostly at least one
year after the stroke when many compensatory processes already took place (Rijntjes,
2006). Longitudinal CMC studies following stroke patients from acute to chronic period
could provide new insight into the temporal evolution of corticomuscular interaction
after stroke and add to the understanding of mechanisms underlying motor recovery.
In paper III (von Carlowitz-Ghori et al., 2014) we demonstrated for the first time the
changes in the dynamics of corticomuscular interaction both at acute and early chronic
stage of stroke. In acute stroke, the CMC amplitude was larger on the unaffected side
compared to the affected side and also larger compared to the unaffected side in the
chronic period. Additionally, CMC peak frequencies on both sides were decreased in
the acute period. The changes in CMC parameters in acute stroke could result from a
temporary decrease in inhibition, which normalizes in the course of recovery. As all
patients showed very good motor recovery, the modulation of CMC amplitude and fre-
quency over time might thus reflect the process of motor recovery.
On the basis of the experiments for offline CMC detection, we developed a paradigm
for online CMC monitoring which could be used as a visual neurofeedback in a novel
rehabilitation approach for motor recovery: By means of EEG or fMRI, neurofeedback
provides feedback of a subject’s brain activity that is usually outside voluntary con-
trol because it cannot be consciously accessed. Given this access, subjects can learn to
voluntarily control brain activity associated with a specific region/function. Sacchet
et al. (2012) demonstrated that subjects could increase or decrease CMC by choosing
between different motor behaviors associated with low or high coherence. However,
it is not known whether (without changing motor behavior) CMC can be voluntarily
modified by intrinsically learning to associate the CMC strength with a certain activa-
tion pattern using mental imagery. In paper IV (von Carlowitz-Ghori et al., 2015), we
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showed that healthy people are able to voluntarily modify their CMC strength using
neurofeedback independent of motor output parameters: the instantaneous CMC of a
subject’s motor action is visualized on a screen in form an increasing/decreasing bar,
allowing to develop mental strategies and over the course of several days learning to
influence the CMC strength. In perspective, these measurements could provide a basis
for a novel motor rehabilitation approach in stroke patients: using CMC neurofeedback
could allow associating CMC strength with certain motor commands, and thereby fa-
cilitating the process of motor recovery.

Although the four papers covered different aspects of corticospinal interaction, they
complement each other. Several findings contributed to the subsequent publications
directly or indirectly (and partially also vice versa) as illustrated in Figure 7.1:

Paper IV
Voluntary control

of CMC

Paper II
Amplitude
dynamics

Paper I
R-CMC method

EMG rectification

artifact detection

Paper III
Stroke data

generalizability

relative power ~CMC

motivation

source reconstruction

Figure 7.1.: Relation of the papers to each other

• First of all, the R-CMC method which was applied in all of studies after its advan-
tages were apparent. This refers primarily to the better performance, i.e. larger
CMC peak amplitudes, in comparison with other commonly used methods.
One further advantage of the method is the possibility to use CMC topographies
for source reconstruction which was of particular relevance in stroke data (paper
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III) where sources contributing to corticospinal interactions might have been re-
localized.
In addition, spatial patterns of CMC allowed to detect artifact-contamination due
to volume conduction (e.g. from scalp or neck muscle activation) which applies
especially to paper IV as muscle activity could have been used unintentionally to
control the signal in neurofeedback.

• In return, paper IV confirmed the generalizability of the R-CMC method: spatial
filters optimized on the previously recorded training data were applied for online
feedback of CMC.

• The unfavorable effects of EMG rectification as demonstrated in paper I could be
avoided by using the unrectified EMG signal in all subsequent analyses.

• After the relation between pre-stimulus relative spectral power (RSP) and CMC
had been recognized in paper II, this knowledge could also support the findings
in the papers III and IV by excluding a potentially confounding effect of the SNR
on CMC estimation.

• The feasibility study of CMC-based neurofeedback in healthy subjects (paper IV)
was motivated by its potential application in stroke patients (paper III) to facilitate
motor recovery.

• Further mutual influences relate to parameter settings in the experimental design
and analyses.

In conclusion, this thesis introduced the new method R-CMC for the optimized de-
tection of CMC which could be applied in offline analysis for both normal subjects and
stroke patients. Moreover, it demonstrates the voluntary manipulation of CMC through
online feedback independent of motor output parameters.
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Experimental setup A

Figure A.1.: Experimental setup which only slightly varied between the studies. Subjects were
measured in a comfortable sitting position except for stroke patients in the acute phase (see
Chapter 5) who were measured in bed.
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A. Experimental setup

Figure A.2.: All subjects performed an isometric contraction following a movement. The task
required them to press the lever of the apparatus down with their (right or left) thumb and then
hold.

Figure A.3.: EMG was recorded from the abductor pollicis brevis (APB) muscle. The number of
electrodes varied between the studies.
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