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Abstract

The broadcasting attribute of the wireless communication channel poses severe security

vulnerabilities since any adversary node in the range of reception is able to listen as well as

to disrupt the ongoing communication. This dissertation considers the problem of security

from two different perspectives: The information-theoretic approach at the physical-layer

to avert eavesdropping and centralized and decentralized detection algorithms to detect

the presence of a jammer.

In the first part, we apply the available tools in information-theoretic security to study

the achievable secrecy rate region of the following channel models: the discrete memo-

ryless broadcast channel with two confidential messages for each of the two users, the

discrete memoryless interference channel with two confidential messages, and the discrete

memoryless untrusted relay channel with decode-and-forward (DF) relays (DMURC). For

the first two scenarios, we extend the existing results on the weak secrecy to the strong

secrecy criterion. Owing to its definition, the strong secrecy has a practical interpretation,

whereas weak secrecy provides asymptotic results. In the third scenario, we apply a pre-

coder and a post-decoder in addition to the common channel coding required to provide

secrecy, to deal with the dishonest nature of the relays. An achievable secrecy rate region

for DMURC is established.

We revisit the untrusted relay scenario with some different assumptions: with Gaussian

channel and both DF and amplify-and-forward (AF) relaying. The objective, however, is

to develop a secure scheme that allows for weaker secrecy than Shannon’s perfect secrecy

but with a higher transmission rate. We propose a new measure for secrecy, referred to as

α-secrecy (0 ≤ α ≤ 1), where α = 1 represents the perfect secrecy, whereas α = 0 denotes

no secrecy at all. We suggest using a cross-layer design where at the physical layer the

information-theoretic security is applied and some higher layer scheme, e.g. secure network

coding, allows to obtain any point in the transmission rate and α-secrecy trade-off. The

analysis of performance achievable by the scheme leads to a mixed-integer optimization

problem. Moreover, we study the problem asymptotically to gain some insights.

Active security attacks are the main focus of the second part of this thesis. We study

the problem of joint jamming detection and spectrum sensing. The problem arises in the

cognitive radio scenario, where the secondary users (SU)s sensing the channel to detect
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Abstract

the primary users (PU)s. We model the problem as a multiple-hypothesis testing problem

where the observations from the SUs experience spatial channel correlation. The opti-

mal test statistic is derived according to Neyman-Pearson lemma. We derive the exact

probability distribution of the test statistic in terms of Meijer’s G-functions. We con-

sider a practical application where the SUs’ power efficiency is analyzed. This leads to a

non-convex optimization problem that addresses the power efficiency and detection per-

formance trade-off. The detection performance in the exact form is too complex to be

handled analytically, therefore, we consider the asymptotic regime. Two heuristics are

proposed to tackle the optimization problem; one based on the projected gradient method

and the other one is motivated by the KKT conditions.

All of the algorithms mentioned above are designed for a centralized system. Taking into

account the susceptibility of centralized systems to the Byzantine attacks, we study the

decentralization of eigenvalue-based detection algorithms in the last chapter of this thesis.

We use generic consensus algorithm as a building block in decentralizing an eigenvalue

estimator algorithm. The algorithm estimates all eigenvalues of a covariance matrix,

which is available only partly to each node. We further modify the algorithm for two

special practical scenarios, including the channel probing for admission control problem.
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Zusammenfassung

Die Broadcast-Eigenschaft des drahtlosen Funkknals stellt eine empfindliche Schwach-

stelle der Kommunikationssicherheit dar, da jeder schädliche Knoten in Reichweite die

übertragene Information mithören, oder die Übertragung stören kann. Die vorliegende

Dissertation befasst sich mit dem Problem der Sicherheit von Kommunikation aus zweier-

lei Perspektiven: der informationstheoretischen Sicherheit auf der physikalischen Schicht

zur Abwehr von Lauschangriffen, sowie zentralisierten und dezentralizierten Detektionsal-

gorithmen zur Erkennung von Störsendern.

Im ersten Teil werden Methoden der informationstheoretischen Sicherheit angewandt,

um erreichbare Sicherheitsratenregionen für den diskreten gedächtnislosen Zweinutzer-

Broadcast-Kanal mit zwei vertraulichen Nachrichten je Nutzer, den diskreten gedächtnislosen

Interferenzkanal mit zwei vertraulichen Nachrichten, sowie den diskreten gedächtnislosen

Kanal mit nicht vertrauenswürdigen decode-and-forward (DF) Relais (DMURC) zu ermit-

teln. Für die ersten beiden Fälle werden bestehende Resultate basierend auf dem Konzept

schwacher informationstheoretischer Sicherheit hin zum Konzept strenger informations-

theoretischer Sicherheit erweitert. Aus der Definition strenger informationstheoretischer

Sicherheit ergibt sich eine direkte praxisnahe Möglichkeit zur Interpretation, während das

Konzept schwacher informationstheoretischer Sicherheit für asymptotische Einsichten ge-

nutzt werden kann. Im dritten Fall wird die Vor- und Nachkodierung gemeinsam mit der

üblicherweise zur Wahrung der Vertraulichkeit verwendeten Kanalkodierung eingesetzt,

um dem nicht vertaulichen Charakter der Relais beizukommen. Für den DMURC wird

dabei die erreichbare Sicherheitsratenregion bewiesen.

Danach wird die Kommunikation über nicht vertrauenswürdige Relais unter der Annah-

me eines Gauß-Kanals und DF sowie amplify-and-forward (AF) Relais analysiert. Hierbei

wird zwar verglichen mit der perfekten Sicherheit nach Shannon nur ein schwächeres Kon-

zept informationstheoretischer Sicherheit entwickelt, dafür werden im Gegenzug höhere

Übertragungsraten ermöglicht. Dazu wird ein neues Maß, die sog. α-Sicherheit (0 ≤ α ≤ 1),

eingeführt, wobei α = 1 den Fall perfekter informationstheoretischer Sicherheit, und

α = 0 den Fall keiner informationstheoretischen Sicherheit beschreibt. Mit Hilfe eines

schichtübergreifenden Entwurfs aus informationstheoretischer Sicherheit auf der physika-

lischen Schicht, sowie einer weiteren Methode auf höheren Schichten (bsp. sichere Netz-
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werkcodierung), können alle Punkte des Abtauschs zwischen Übertragungsrate und α-

Sicherheit erreicht werden. Zur Bewertung der dadurch erzielbaren Güte wird ein gemischt-

ganzzahliges Optimierungsproblem aufgestellt, wobei dessen asymptotische Analyse wei-

tere Einsichten liefert.

Aktive Angriffe auf die Systemsicherheit stehen im Fokus des zweiten Teils dieser Ar-

beit. Dabei wird das Problem der gemeinsamen Störererkennung und spektralen Messung

analysiert, welches im Bereich kognitiver Funksysteme auftritt, bei denen Sekundärnutzer

(SU) die Aktivität von Primärnutzern (PU) detektieren müssen. Das Problem wird als

Hypothesentest mit räumlicher Kanalkorrelation in den Messungen der Sekundärnutzer

modelliert, wobei die optimale Teststatistik im Neyman-Pearon Sinn abgeleitet wird. Die

Wahrscheinlichkeitsverteilung der Teststatistik wird in analytischer Form mit Hilfe der

Meijer’schen G-Funktion hergeleitet. Als Anwendung wird die Analyse der Energieeffizi-

enz von Sekundärnutzern herangezogen, welche zu einem nicht-konvexen Optimierungs-

problem als Abtausch zwischen Energieeffizienz und Detektionsgüte führt. Da die Detek-

tionsgüte für die analytische Betrachtung zu unhandlich erscheint wird sie asymptotisch

betrachtet. Das Optimierungsproblem wird heuristisch durch ein projiziertes Gradienten-

verfahren sowie eine KKT-basierte Methode gelöst.

Die genannten Algorithmen sind üblicherweise für den Einsatz in zentralisierten System

gedacht. Aufgrund der Anfälligkeit solcher Systeme für Angriffe durch byzantinische Fehler

werden im letzten Kapitel dieser Arbeit dezentralisierte und Eigenwert-basierte Detekti-

onsalgorithmen untersucht. Dabei werden generische Konsensalgorithmen als Baustein zur

dezentralisierten Berechnung aller Eigenwerte einer gegebenen Kovarianzmatrix, die nur

zum Teil an den Knoten bekannt ist, herangezogen. Durch weitere Modifizierungen wird

der Algorithmus an praktische Einsatzfälle, wie die Kanalmessung für das Zutrittskon-

trollproblem, angepasst.
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1. Introduction

1.1. Motivation

The advent of mobile communication and the subsequent high penetration rate of mobile

internet connectivity via smartphones in the world realize the idea of the global village

more than ever. Instantly sharing ideas, photos, videos, and even (recently) live broad-

casting of videos have become a reality for every person, despite being once considered

far-fetched. The colossal amount of users on the Internet, sharing data and communicating

with each other demands a strong measure of data privacy and security. Mobile commu-

nication systems use the wireless channel as the medium of communication, which poses

exceptional opportunities and challenges regarding security and privacy issues. The in-

nate omnidirectional propagation of electromagnetic waves, as referred to as the broadcast

property of the wireless channels, jeopardizes the security of the communication system

since the messages can be overheard by a potential eavesdropper. Jamming attacks, on

the other hand, can exploit the openness of the wireless channel by transmitting high

power electromagnetic waves to disrupt the communication. Eavesdropping without any

attempt to sabotage the communication system is categorized as a passive attack, whereas,

jamming a communication system is regarded as an active attack.

Against this background, the wireless channel allows us to conceive countermeasures by

exploiting the intrinsic randomness, the diversity from multiple antennas, the cooperative

communications, and the relaying. The inherent randomness in the wireless channel state

information allows designing encryption keys and proper secure channel codes. Further-

more, the use of multiple antennas enables vector communication by steering the wave

propagation in a specific direction, which can nullify the signal strength at the eaves-

dropper. We can benefit from cooperative communications for detecting an active attack,

whereas, the redundancy from relaying can enhance secrecy against active and passive

attacks. In the following, we briefly introduce some tools and research works available

to analyze particular types of passive and active attacks and develop countermeasures to

them.

Information-theoretic security commenced with Shannon’s work in [Sha49] as a tech-

nique to combat passive attacks, in particular, eavesdropping. Despite being an inspiring
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breakthrough, the work of Shannon [Sha49] does not consider the intrinsic characteristics

of wireless communications. Shannon concluded that perfect secrecy is only achievable

when the size of the key at least as equal as the size of the message. Wyner, how-

ever, considers noise in his seminal paper ”The wiretap channel” [Wyn75]. Under the

assumption that the eavesdropper’s channel is a degraded version of the legitimate user’s

channel, Wyner achieves a positive secrecy rate. The work of [Wyn75] was followed

up by Csiszár and Körner [CK78], who extended the results to a non-degraded broad-

cast channel with only one confidential message and a common message. Since then

many other works have embraced the realization of information theoretic security, e.g.

[LMSY08,LP09,XCC09,HY13,HY10b,BP15,HY10a,CBA15].

How to deal with the jamming attacks has been researched vastly in different directions,

including but not limited to: channel surfing based on spread spectrum frequency hop-

ping [XWZ,PL12], jammer localization [LLXC12] for re-routing [MZL+12], and jamming

detection in [LLK09,ZHSA05,SDČ10], in which they perform detection based on the pa-

rameters at the physical layer as well as at the higher layers. In this thesis, we mainly

focus on jamming detection techniques based on the parameters at the physical layer. The

problem of physical layer jamming detection is fundamentally not much different from the

problem of spectrum sensing for cognitive radio [MGKP09,LH09]. The spectrum sensing

entails detecting the primary users’ (PU) communication by some secondary users (SU)s

[PHH+12]. The SUs observe the channel at the physical layer to infer the presence of

the PUs’ communication [LH09,LH10]. The practical solutions for the jamming detection

consider the cooperation of multiple transceivers as well as their energy restrictions. Since

the transceivers are usually distributed over a given area, a decentralized implementa-

tion of such solutions is of great importance (we refer to Part II of this thesis for further

references).

1.2. Thesis outline

In Part I of this dissertation, we study the countermeasures that safeguard the commu-

nication against passive attacks using tools from information-theoretic security. Part II

is dedicated to detection methods dealing with active attacks, in particular, jamming de-

tection. We further elaborate on practical concerns (such as decentralization and energy

efficiency) of a jamming detection algorithm.

We begin with a brief recap on information-theoretic tools for security in Chapter

2. We introduce typical sequences and some useful lemmas, which are used in proving

achievable secure rate regions in the Chapter 3. We further introduce two of the most

important lemmas in the information theory; the so-called covering lemma and packing
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lemma. Since we use the Kullback-Leibler divergence later in Chapter 3, we provide the

formal definition and a useful lemma, which will be used later. After providing the basic

tools, we provide the definition of the well-studied wiretap channel. The purpose is to

familiarize the reader with the simplest scenario in information-theoretic security. We

further provide an achievable secrecy rate and a concise achievability proof. Chapter 2 is

in large parts based on the content of [GK12].

Chapter 3 presents the main results of Part I on information-theoretic secrecy. The

emphasis is placed on developing results to strong secrecy for the following two scenarios:

The discrete memoryless broadcast channel with two receivers, each with one confidential

message, is studied first in Section 3.3. Then the discrete memoryless interference channel

with two senders communicating a confidential message to one of the two receivers is

studied in Section 3.4. The weak secrecy requires upper-bounding the information that is

leaked to the adversary by an arbitrarily small number while it is averaged over the message

block length size. On the other hand, the strong secrecy demands a stronger condition: the

information leakage must be upper-bounded by an arbitrarily small number without being

averaged by the message block length. We fulfill this requirement by upper-bounding not

only the information leakage, but also an extra non-negative term known as ‘non-stealth’

[HK14]. We conclude that the strong secrecy achievable rate region matches that of the

weak secrecy, which is proposed by [LMSY08].

In addition to these scenarios, in Section 3.5 we consider a discrete memoryless untrusted

relay channel, in which a sender transmits a confidential message via the untrusted decode-

and-forward relays to a destination (the diamond network). We assume that there are

no direct channels available between the sender and the destination, as well as, among

the relays. Since the relays are decode-and-forward, we require a scheme to protect the

messages at each relay. Basically in Section 3.5, we use the results developed in Section 3.3

with a precoder at the sender and an extra post-decoder at the destination to deal with

this challenge. The results that are developed for the untrusted relay scenario, however,

do not satisfy the strong secrecy criterion, and thus fall into weakly secure criterion. The

content of this chapter has been published in [1, 4].

Chapter 4 considers, similar to Section 3.5, the untrusted relay model, however, from

a different point of view; a cross-layer secrecy design. We consider two-hop Gaussian

relay channels, where the relays are untrusted. Two different types of relays have been

considered: the decode-and-forward (DF) and the amplify-and-forward (AF). The goal in

this chapter is to provide a weaker form of security than that of Shannon’s perfect secrecy

(even weaker than the weak secrecy), with the help of some higher-layer schemes. This is

motivated by the applications where perfect secrecy is not the highest priority, whereas, the

transmission rate is. Note that, perfect secrecy comes at the expense of transmission rate

3
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[Wyn75]. A new measure of security, referred to as the α-secrecy is proposed in Section 4.3,

where 0 ≤ α ≤ 1. According to this scheme 1-secrecy is equivalent to Shannon’s perfect

secrecy (either weak or strong), whereas, 0-secrecy represents the state of no physical layer

security.

Thanks to some additional higher layer schemes, e.g. secure network coding, we propose

a framework in Section 4.3 to achieve any α-secure system. This framework is then applied

to the untrusted DF relay channels in Section 4.4 and the untrusted AF relay channels

in Section 4.5. The optimal achievable rate for a given α requires solving a mixed-integer

optimization problem, which is dealt with in Section 4.5 after some relaxation. We further

analyze the asymptotic behavior of the mixed-integer problem along with the secrecy out-

age probability in Section 4.6. With this analysis, we conclude Part I of this dissertation.

The content of this chapter has been published in [7, 9].

The focus of Part II, i.e. Chapter 5 and Chapter 6, is to study detection algorithms to

combat a particular active security attack: jamming.

Chapter 5 studies the joint problem of jamming detection and spectrum sensing in a

cognitive radio scenario. This problem is motivated by vulnerabilities of cognitive radio

systems to jamming. We assume a set of SU nodes sense the spectrum to both detect

the presence of the PUs and a jammer. Modeling the scenario as a multiple hypothesis

testing problem, we analyze the probability of detection of the optimal detector in the

sense of Neyman-Pearson theorem in Section 5.3. The probability of detection is derived

in the following forms: one exact form in terms of a series and a closed-form version.

Moreover, we evaluate the asymptotic probability of detection, as it results in a simpler

form to handle. In all of the above analyzes, we assumed the data collected by the SUs

are spatially correlated but temporally independent. In practice, power constraints on

SUs limit their versatility to adopt any detection algorithm, since they might run out of

energy. Building upon the asymptotic probability of detection developed in Section 5.3 we

study the trade-off between transmission power and detection performance in Section 5.4.

The problem studies the optimal node placement for power efficient detection in a wireless

network scenario. The resulting optimization problem is non-convex; thus, we propose

suboptimal numerical approaches to tackle it. We use both a projected gradient method

and a heuristic method developed based on the Karush-Kuhn-Tucker (KKT) conditions.

The content of this chapter has been published in [MPS13,MSZ15].

The detection algorithms mentioned so far are based on the premise that we have a safe

and secure fusion center that collects the data and performs the detection algorithms on

them. However, a central processing of the data might not be secure against Byzantine

attacks or directed jamming attacks on the fusion center. These arguments and many

others motivates the study of a decentralized detection algorithm, which is the topic of
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Chapter 6. We focus our attention in Chapter 6 on decentralization of some eigenvalue-

based detection algorithms. We assume a number of sensors that cooperatively detect a

phenomena, e.g. jamming. Each sensor locally stores a vector containing the observations

of the channel over time. We need to compute the eigenvalues of the covariance matrix of

the observations from all of the sensors. In particular, we develop an algorithm to calculate

all of the eigenvalues of the covariance matrix in a decentralized fashion, i.e. each sensor

performs the calculations using only parts of the matrix. The proposed algorithm is

based on a generalization of the power iteration method. The decentralized version of

this algorithm is developed using the generic average consensus algorithm. The consensus

algorithms are a family of decentralized iterative methods that accept a vector as input,

where each element of the vector is available at a sensor and estimates the average of

the vector as the output at each sensor. Using an average consensus, we can compute

‘summation’ over the values that are available at each sensor locally.

For special application, where the matrix is structured, we propose using a fast con-

verging consensus algorithm. A generic consensus algorithm, does not take the special

constellations that the nodes can form into account. In Section 6.4 we exploit a particu-

lar graph shape to obtain a fast converging consensus algorithm, therefore estimating the

eigenvalues in a faster way. We further demonstrate the applications of these techniques in

channel probing for power admission control in Section 6.5. Channel probing is a process

that tests the admissibility of a new link joining some established links. The test reduces

to estimating the spectral radius of a matrix which is not available at every link. The

matrix is combination of the channel matrices of the existing nodes and the new nodes.

Using the result developed in Section 6.3, we determine the admissibility of multiple new

users at once and with few iteration. The content of this chapter has been published in

[MSCE11,2].

1.3. Additional results

In the following we present some results that are not a part of this dissertation.

• In [3], we study the design of a joint sender precoding matrix and the amplify-

and- forward relay precoding matrix optimization. We consider a Gaussian two-hop

multiple-input-multiple-output (MIMO) relay network. The goal is to find a pair of

matrices in order to minimize the power consumption and at the same time meet

pre-selected quality of service constraints that are defined as the mean square er-

ror of each data stream. The resulting optimization problem is difficult to solve

in the closed form. Therefore, we apply some tools from the majorization theory,

which defines relationships between ordered vectors, to simplify the optimization
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problem. Thanks to some inequalities and lemmas in majorization theory we sim-

plify the original matrix-valued optimization problem into a scalar-valued one. We

then propose a lowerbound and an upperbound of the original problem, both in

convex forms. Owing to the practical reasons, we focus on solving the upperbound.

Using the equations imposed by the KKT conditions we propose an iterative fast

converging algorithm similar to a multi-level water-filling algorithm. We analyze the

convergence and the optimality of the solutions mathematically. Numerical exam-

ples corroborate the proposed studies and also demonstrate the tightness of both

bounds to the original problem.

• In cooperation with Steffen Limmer in [5] we contemplate distributed computation

over multiple access channel (CoMAC). One of the missing techniques in CoMAC re-

search is how to convert an arbitrary function intro pre-and post-processing functions

that are feasible to be computed via the CoMAC scheme. In this work we propose

a scheme which has the potential to be considered as a solution for this problem. In

particular we introduce a novel algorithmic solution for the approximation of a given

continuous multivariate function by a nomographic function that is composed of a

one-dimensional continuous and monotone outer function and a sum of univariate

continuous inner functions. The direct application of this approach is in the CoMAC

scenario, where the multivariate function is to be estimated by exploiting the super-

position property of the wireless channel. We show that a suitable approximation

can be obtained by solving a cone-constrained Rayleigh-Quotient optimization prob-

lem. The proposed approach is based on a combination of a dimension-wise function

decomposition known as Analysis of Variance (ANOVA) and optimization over a

class of monotone polynomials. An example is given to show that the proposed al-

gorithm can be applied to solve problems in distributed function computation over

multiple-access channels.

• The results in [10] were co-authored with Meng Zheng. A key to efficient mobile

communication networks is an efficient utilization of scarce resources, which includes

mechanisms for resource allocation and interference management. In practice, time

sharing methods such as Time Division Multiple Access (TDMA) are often exploited

to create orthogonal connections. TDMA schemes, however, are inflexible and not

suitable for decentralized implementation. In this context, approaches based on

concurrent transmissions in the same frequency spectrum admitting the interference

offer a promising and attractive alternative. Yet, their performances deteriorate

dramatically if the underlying interference coefficients are relatively large. Assum-

ing a Gaussian Interference Channel (GIC), this paper characterizes the so-called
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TDMA region which is defined as a set of all interference coefficient matrices for

which TDMA outperforms concurrent transmissions. We use the dimensional lift-

ing method to prove the convexity and monotonicity of the TDMA region, which
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Information-Theoretic Security
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2. Preliminaries on information-theoretic

secrecy

In this chapter, we review some preliminary results in information theory. We use these

results to study the wiretap channel [Wyn75]. Studying the wiretap channel paves the

way to better understanding the results in Chapter 3. A complete review and proofs of

the results in this chapter can be found in [GK12].

Traditionally, communication standards treat the problems of communication reliabil-

ity and communication security separately. More precisely, the reliability is handled by

the physical layer, whereas the security is guaranteed through higher layers including

the application layer. At the physical layer channel coding techniques ensure a reliable

communication; on the other hand, at the application layer encryption algorithms ad-

minister the security of a communication system. Information-theoretic security alters

this paradigm by providing security at the physical layer with the help of proper channel

coding. Information-theoretic security, however, does not relinquish the encryption algo-

rithms. As the encryption and the information-theoretic security are applied in different

layers, they can be used alongside each other.

We give a brief introduction to a generic encryption system in the following; a more com-

prehensive one can be found in [BB11,MVOV96]. Let Alice, Bob and Eve be three parties

of a communication system, where Alice intends to send a confidential message to Bob

while keeping it secret from Eve. In cryptographic terminology, Alice’s message is called

plaintext, and the encrypted version is ciphertext. To securely send a message (plaintext),

Alice feeds the plaintext into an encryption algorithm. The encryption algorithm requires

a key as well as the plaintext to produce the ciphertext. At the receiving side, Bob has a

decryption algorithm, which requires a key to decrypt the ciphertext. There are different

notions of secrecy in the literature. The so-called computational security is measured by

the number of computations required for an eavesdropper to decipher a ciphertext. For

instance, the computational security of a typical encryption algorithm is compared to the

complexity of prime factorization of large numbers [BB11].

Shannon in [Sha49] addressed a stronger notion of secrecy known as the perfect secrecy

in the context of information-theoretic secrecy. Information-theoretic secrecy utilizes chan-
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Figure 2.1.: An illustration of the three party communication scenario starring Alice, Bob,
and Eve representing the legitimate sender, the legitimate receiver, and the
eavesdropper.

nel coding not only to overcome the channel’s impairments at the physical layer but also

to tackle the security problem. This results in a fundamental trade-off between the com-

munication rate, reliability and security. Furthermore, information-theoretic secrecy can

provide security without a secret key by, for instance, taking advantage of the intrinsic ran-

domness of the wireless communication channel. The secrecy is measured by the amount

of information leakage to the eavesdropper. Intuitively, Shannon’s perfect secrecy implies

that Eve’s observation of the codewords is not helpful to draw any conclusion about the

content of the message; thus, the best Eve can do, is to guess the message.

In the first sections the notation and the very basic form of the main lemmas, namely

the packing lemma and the covering lemma, are introduced. To understand the lemmas,

we also mention the definition of typical sequences and the joint typicality lemma. We

use these lemmas to establish the wiretap’s channel capacity [Wyn75]. The coding scheme

applied in this section is the building block of the more complicated coding schemes which

are introduced in Chapter 3.

2.1. Notation

Throughout this dissertation, we use the following notational conventions unless otherwise

is specified. We denote the sets of natural, real and complex numbers as N, R and C,

respectively. We further let R+ represent the non-negative real number set and R++ the

positive real number set. Sets of N -fold Cartesian products are denoted by the superscript

(·)N . The ‘equality by definition’ is denoted by ”:=”, whereas, ∀, ∃, and | · | denote ‘for

all’, ‘there exists’, and the absolute value of a real number1, respectively.

1 As described later it also denotes the cardinality of a set.
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We denote matrices by capital bold letters, e.g. X, and their Hermitian with XH . We

define the operator Diag : CK → CK×K. We denote by Diag[x1, . . . , xK ] a K×K diagonal

matrix, with [x1, . . . , xK ] as its diagonal elements. The operator diag : CK×K → CK

is used to denote the diagonal elements of X as diag[X]. Furthermore, by det[X] and

trace[X] we denote the determinant and the trace of matrix X, respectively. We denote

the Frobenius norm of X by ∥X∥F . By [X]i,j we denote the (i, j)-th element of X.

The largest (absolute) eigenvalue of a matrix is denoted by λmax[X] and the smallest by

λmin[X]. Rank of a square matrix X is indicated by rank[A].

We depict the random variables (RV) with the capital case, e.g. X, and their realizations

with small letters. Finite sets are represented by calligraphic letters, e.g. X , and their

cardinality with |X |. Sequences are denoted by the bold small case, e.g. x, which stands

for xn := (x1, . . . , xn). The set of all probability distributions defined on the finite set X
is indicated with P(X ). The probability mass function (pmf) of X is given by PX(x) or

in short by P (x), and the n-product of PX(x) is denoted by Pn
X(x) :=

∏n
i=1 PX(xi). The

probability of an event E is Pr(E). The expected value of a function f(X), where X is a

RV, is EX [f(X)] :=
∑

x PX(x)f(x). Further, we define Var[X] := E[(X − E[X])2] as the

variance of X.

For the RVs X and Y we denote their joint pmf as PX,Y (x, y) and their conditional

pmf as PX|Y (x|y). Based on the joint and conditional pmfs of X and Y we have:

the information entropy H(X) = −EX [log P (X)], the conditional entropy H(X|Y ) =

−EX,Y [log P (X|Y )], and the mutual information I(X;Y ) = H(X)−H(X|Y ).

2.2. Basic concepts

The following content is considered to be the only tools needed to understand the results

of this dissertation.

2.2.1. Typical sequences

Definition 1 (Typical sequences). Let X be a finite alphabet. For X ∼ PX(x) on X and

some ϵ ∈ (0, 1), the set of all ϵ-typical n-sequences x ∈ X n, or simply the set of typical

sequences, is defined as [GK12, Chapter 2.4],

T n
ϵ (PX) =

{

x : |NX(a | x)− PX(a)| ≤ ϵPX(a), ∀a ∈ X
}

,

where NX(a | x) := |{i : xi=a}|
n is the empirical distribution of x on X .
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When the underlying probability distribution is fixed we drop the PX and proceed with

T n
ϵ for simplicity. This definition can be extended to joint and conditional probability

distributions as well.

Definition 2. Let X ,Y be a pair of finite sets. For (X,Y ) ∼ PXY (x, y) on X × Y and

some ϵ ∈ (0, 1), the set of jointly ϵ-typical n-sequences (x,y) ∈ X n × Yn is defined as

[GK12, Chapter 2.4]

T n
ϵ (PXY ) =

{

(x,y) : | NXY (a, b | x,y) − P (a, b)| ≤ ϵP (a, b), for all (a, b) ∈ X × Y
}

,

where NXY (a, b | x,y) := |{i : (xi,yi)=(a,b)}|
n is the joint empirical distribution of (x,y) on

X × Y.

The following lemma, known as the Joint Typicality Lemma, is a prerequisite for un-

derstanding the packing lemma which follows right after.

Lemma 1 (Joint typicality lemma). For an arbitrary joint distribution of (X,Y,Z) ∼
PXY Z(x, y, z) and 0 < ϵ′ < ϵ, there exists δ(ϵ) > 0 that tends to zero as ϵ → 0 such that

the following statements hold:

1. If (a,b) is a pair of arbitrary sequences and Cn ∼
∏n

i=1 PZ|X(ci|ai) then

Pr{(a,b, Cn) ∈ T n
ϵ (PXY Z)} ≤ 2−n(I(Y ;Z|X)−δ(ϵ))

2. If (x,y) ∈ T n
ϵ′ and Cn ∼

∏n
i=1 PZ|X(ci|xi), then for n sufficiently large,

Pr{(x,y, Cn) ∈ T n
ϵ (PXY Z)} ≥ 2−n(I(Y ;Z|X)+δ(ϵ))

The proof is given in [GK12, Chapter 2.5].

2.2.2. Packing and covering lemmas

Packing lemma is the key tool to bound the probability of decoding error. The bound is

then used to prove achievability results.

Lemma 2 (Packing lemma). Let (U,X, Y ) ∼ PUXY (u, x, y) and let (An, Bn) ∼ PAB(an, bn)

be a pair of arbitrarily distributed random sequences, not necessarily distributed according

to
∏n

i=1 PUY (ai, bi). Let Xn(m), m ∈ A where |A| ≤ 2nR, R ∈ R+, be random sequences

each distributed according to
∏n

i=1 PX|U (xi|ai). Further assume that Xn(m), m ∈ A is

pairwise conditionally independent of Bn given An, but is arbitrarily dependent on other

14
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Xn(m) sequences. Then, there exists δ(ϵ) that tends to zero as ϵ → 0 such that

lim
n→∞

Pr
{

(An,Xn(m), Bn) ∈ T n
ϵ for some m ∈ A

}

= 0

if R < I(X;Y |U)− δ(ϵ).

The proof is given in [GK12, Chapter 3.2].

Lemma 3 (Covering lemma). Let (U,X, Y ) ∼ P (u, x, y) and 0 < ϵ′ < ϵ. Let (Un,Xn) ∼
P (un, xn) be a pair of random sequences with limn→∞Pr{(Un,Xn) ∈ T n

ϵ′ (U,X)} = 1, and

let Y n(m),m ∈ A where, |A| ≥ 2nR, R ∈ R+ be random sequences, conditionally indepen-

dent of each other and of Xn given Un, each distributed according to
∏n

i=1 PY |U(yi|ui).
Then there exists δ(ϵ) that tends to zero as ϵ → 0 such that:

lim
n→∞

Pr
{

(Un,Xn, Y n(m)) /∈ T n
ϵ for all m ∈ A

}

= 0

if R > I(X;Y |U) + δ(ϵ).

The proof is given in [GK12, Chapter 3.7].

2.2.3. Kullback-Leibler divergence

The Kullback-Leibler divergence of two probability distributions P and Q defined on a set

A is given by,

D(P∥Q) :=

{∑

a∈A P (a) log P (a)
Q(a) if P ≪ Q

+∞ if P ≪̸ Q
(2.1)

where, P ≪ Q means: Q(a) = 0 implies P (a) = 0 for a ∈ A, while P ≪̸ Q is used if the

implication does not hold.

2.2.4. Set of Π-type sequences

Definition 3. Let PX be the set of all probability distributions defined on a finite alphabet

X . For a distribution Π ∈ PX , the set of all Π-type sequences x ∈ X n is

KΠ :=
{

x : Π(a) = NX(a|x) ∀a ∈ X}.

The following lemma is beneficial in the achievability proof in Chapter 3.
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2. Preliminaries on information-theoretic secrecy

Lemma 4. For all Π-type sequences of x ∈ X and the probability distribution QX ∈ PX

we have

Qn
X(x) = 2−n(D(Π∥QX )+H(Π)) if x ∈ KΠ.

The proof is provided in [CK82][Chapter 2].

2.3. The wiretap channel

The main objective of this section is to concisely review a coding scheme that achieves

positive secrecy rate in a wiretap channel. This will help to obtain insights in the results

of the next chapter. A comprehensive proof of the converse and of the secrecy leakage is

offered in [Wyn75,GK12].

The term ’wiretap channel’ was coined by Wyner in [Wyn75], and the presented results

here are due to Wyner [Wyn75] as well as Csiszár and Körner [CK78]. The wiretap channel

Channel

P (y, z|x)

Xn

Y n

Zn

Encoder

f(xn|m)

Decoder

Decoder

W̃

W

Transmitter

Receiver

Evesdropper

Figure 2.2.: The schematic of the network for the Wiretap channel

is a three party communication channel with a sender (Alice) and two receivers; one of

which is the legitimate (Bob) and the other is an eavesdropper (Eve), as depicted in Figure

2.2. More precisely we consider a discrete memoryless (DM) multi-terminal channel with

an input alphabet X for the sender and output alphabets Y and Z at Bob’s receiver and

Eve’s receiver, respectively. The channel is assumed to be memoryless in the sense that

P (y, z|x) =
n
∏

i=1

P (yi, zi | xi), (2.2)

for each, x ∈ X n,y ∈ Yn, and z ∈ Zn. We consider a stochastic encoder. Intuitively, the

stochastic encoder can be seen as a source of randomness that is needed to confuse the

eavesdropper.
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2.3. The wiretap channel

Definition 4. The stochastic encoder is a mapping fw : M → P(X n) such that,

∑

x∈Xn

fw(x | m) = 1, ∀ m ∈ M (2.3)

where M := {1, . . . ,M} is the message set used by Alice and P(X n) denotes the set of all

probability distributions on X n.

We assume that the messages are uniformly distributed over M.

Definition 5. The decoder of Bob is a mapping gw : Yn → M from the set of channel

outputs Yn to the message set.

Before presenting the coding schemes we require to introduce the performance metrics.

The probability of error is

Pe(n) :=
1

M

∑

m∈M

Pr[gw(y) ̸= m | m is sent].

A code (n,M,Pe(n)) is consist of an encoder fw, a decoder gw, and a message set

M := {1, . . . ,M}.

Definition 6 (Weak secrecy). [MW00] The system is weakly secure if for all ϵ > 0 there

exists a natural number N(ϵ) such that for all n > N(ϵ) we have

1

n
I(W ;Zn) ≤ ϵ. (2.4)

The mutual information in (2.4) is defined according to the following probability distribu-

tion

P (m; z) =
1

M

∑

x∈Xn

fw(x | m)P (z | x).

Definition 7 (Strong secrecy). [Mau94,MW00] The system is strongly secure if for all

ϵ > 0 there exists a natural number N(ϵ) such that for all n > N(ϵ) we have

I(W ;Zn) ≤ ϵ. (2.5)

Definition 8. The rate R is achievable if for all ϵ > 0, ϵ′ > 0 and δ > 0 there exists a

17



2. Preliminaries on information-theoretic secrecy

code (n,M,Pe(n)), such that each of the followings holds for sufficiently large n

Pe(n) < ϵ′

1

n
I(W ;Zn) ≤ ϵ

1

n
logM < R− δ.

Definition 9. The secrecy capacity is defined as the supremum of all of the achievable

secrecy rates R.

Theorem 1. The secrecy capacity of the discrete memoryless wiretap channel is

Cs = max
P (u,x)

(I(U, Y )− I(U,Z))

where U is an auxiliary set with |U| ≤ |X |.

Proof. The achievability proof is presented in the following [GK12].

The coding scheme

For a fixed PU (u) we generate independently and randomly 2nRt sequences from Pn
U (u) =

∏n
i=1 PU (ui). We cluster them into 2nR bins each with 2n(Rt−R) sequences un(l), l ∈ [(m−

1)2n(Rt−R) + 1 : m2n(Rt−R)]. Each bin serves as a subcodebook C(m) where m ∈ [1 : 2nR]

is the message. In order to send a message m, from the corresponding bin C(m) we choose

a sequence un(l) at random. For simplicity we select l = 1 2. Then we generate the

codeword according to Xn(m) ∼
∏n

i=1 PX|U (xi|ui(1)) and transmit it. At the decoder

side, we find a message such that (un(l), yn) ∈ T (n)
ϵ for some un(l) ∈ C(m̂).

Reliable decoding

Two sorts of error might arise. The first one E1 := {(un(l), yn) /∈ T (n)
ϵ }. Based on the

definition of the typicality set, and the law of large numbers Pr(E1) → 0 as n → ∞.

The second type of error is E2 := {(un(l), yn) ∈ T (n)
ϵ , un(l) /∈ C(m)}. Here we use the

Packing Lemma since the codewords satisfy the terms of the packing lemma on the mutual

independence. Therefore, Pr(E2) → 0 as n → ∞ if Rt < I(U ;Y )− δ(ϵ).

Equivocation rate

Let’s m = 1 be the transmitted message and the randomly chosen index in C(1) is also

l = 1. We assume that the eavesdropper knows C in advance. To prove secrecy we bound

2without loss of generality (w. l. g.)
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2.3. The wiretap channel

the average equivocation rate, which is the information leakage averaged over the entire

codebooks,

1

n
I(M ;Zn). (2.6)

This has been done in [GK12][22.1.1] with extensive detail. It turns out that

lim sup
n→∞

1

n
I(M ;Zn) ≤ δ(ϵ) (2.7)

holds for δ(ϵ) > 0 and Rt − R < I(U ;Z). This concludes the proof of achievability since

there exist a code that if R < I(U ;Y )− I(U ;Z) − δ(ϵ) then Pr(E2) goes to zero and the

secrecy criterion is fulfilled.
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3. Achievable strong secrecy rate region of

broadcast and interference channel

In this chapter we use information-theoretic tools, which are reviewed in the previous chap-

ter, to further develop some results on secrecy achievable rate regions of three scenarios:

a discrete memoryless broadcast channel with two confidential messages (DMBCC), a dis-

crete memoryless interference channel with two confidential messages (DMICC), a discrete

memoryless untrusted relay channels (DMURC). Our main concern here is privacy rather

than security. Privacy problems consider the leakage of one user’s data to another user,

whereas in security problems we consider leakage of information to an unknown adversary

called the eavesdropper.

The DMBCC consists of two receivers and a sender, which has one private message for

each receiver. The sender has to transmits the private message via a discrete memoryless

broadcast channel reliably to the intended receiver, while keeping it secret from the unau-

thorized receiver. As for the second model, the DMICC, we assume two senders and two

receivers communicating in a discrete memoryless interference channel where each sender

has a message for one intended receiver, while treating the other receiver as an eaves-

dropper. The DMICC has applications in cognitive radio scenario, where both reliability

and security of two communication parties become prominent. Finally, the DMURC, is

consist of a sender and a receiver communicating through two decode and forward (DF)

relays. We further assume there is no direct link between the sender and the receiver. The

relays are untrusted, in a sense that they might be hijacked by an adversary, however, they

commit to their task of relaying. From information-theoretic point of view the DMURC

can be decomposed to a DM broadcast channel that is cascaded to a DM multiple access

channel (MAC). This problem is challenging since the relays possess all the information

the sender transmits to the receiver. The receiver must be able to reliably decode the

message, whereas the relays must be unable to draw any conclusion about the message.

We consider a stronger notion of secrecy, the so called effective secrecy. Effective secrecy

essentially includes stealth and strong secrecy together. Stealth or covert communication

is roughly the situation where the eavesdropper can not distinguish if a meaningful com-

munication is undergoing or not. The formal definition relates to hypothesis testing as
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3. Achievable strong secrecy rate region of broadcast and interference channel

well. This topic, however, is not the scope of this dissertation and is a by-product of the

effective secrecy.

3.1. Background and contributions

3.1.1. Related work

Broadcast channels are single-input-multi-output channels where a transmitter sends data

to many users. The broadcast channel’s capacity is unknown in general form, however, for

some special cases there are well defined capacity regions. For instance in the case of two

users, if one transmitter-user channel is degraded with respect to the other transmitter-

user channel then superposition coding obtains capacity region thoroughly [Gal74]. In

terms of security, researchers consider different models for broadcast scenario, which are

analysed mostly based on the seminal works of Wyner [Wyn75] and Csiszár and Körner

[CK78]. The authors in [EU12] consider multiple receivers each with different degradation

channels and an external eavesdropper. In this scenario the goal is to hide information

from the eavesdropper only; Other users can decode each others messages. On the other

hand, the authors in [LMSY08, LP09] assume two users with two confidential messages

each intended for one user while kept secret from the other user; In other words, user

privacy is considered. This is an extension of Csiszár and Körner’s model to the case

with two confidential messages and no common message. An inner and outer bound on

the achievable secrecy region is derived in [LMSY08]. A rather complete model with

confidential messages and one common message has been considered in [XCC09].

The interference channel is a rather more complicated scenario than the broadcast chan-

nel to investigate information-theoretically. Han and Kobayashi in [HK81] provided the

closest result to the capacity of the interference channel. The authors in [ETW08] further

developed more tractable Han-Kobayashi type outer-bounds. As for secrecy rate region,

the authors in [LSBP+07, HY09a, LMSY08] have published some results on the matter.

The authors in [LSBP+07] considered a two transmitter two receiver scenario with two

common messages from each transmitter to both of the receivers and one confidential mes-

sage at one of the transmitters. Liu et al. extends the model to two confidential messages

(each transmitter has a confidential message for one receiver) criterion with weak secrecy.

The strong secrecy using structural codes has been studied by [HY09a], however with only

one confidential message intended for a receiver.

The authors in [HY13, HY10b,HY09b,HY10a,KMS13] have considered the untrusted

relay problem. Untrusted relay is a term used to described a relay channel where the relay

obeys its tasks while potentially eavesdropping the data. A variety of relaying strategies,
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3.1. Background and contributions

i.e. amplify-and-forward (AF) [HMS13], decode-and-forward (DF), compute and forward

(CF) [VKT15,RSEJ15] and, more recently module-and-forward (MF) [ZFPP15], have been

investigated by researchers. Under the direct link availability condition, the authors in

[HY10b,HY10a] have demonstrated that the untrusted AF and the compress-and-forward

relaying strategies obtain positive secrecy rate. On the other hand with no direct link

available, i.e. all of the data from the transmitter has to go through the relay to reach the

destination, has been studied by the authors in [HY09b]. In order to increase the equiv-

ocation rate at the relay, thus providing secrecy, the destination produces pseudo noise.

In most of the research works aforementioned, either the legitimate receiver (destination)

or an external node (e.g. ’friendly’ jammer) broadcast some ’pseudo noise’ to confuse the

relay in the receiving phase; and thus increase the equivocation rate at the relay. Having

received the superposition of the pseudo noise and the message, the relay then transmits

the superposition to the destination. The destination is able to decode the actual mes-

sage by knowing the pseudo noise sequence. This method exploit the interference and its

natural superposition characteristics of the wireless channel to hide the message. A bidi-

rectional untrusted relay is considered in [ZFPP15,VKT15], where the problem is handled

with lattice codes.

The secrecy criterion used in [LMSY08], as well as in [Wyn75,CK78], is the normalized

mutual information ( 1nI(X;Z) < ϵ) between the message and the received signal at the

unintended user. Strong secrecy, however, demands the unnormalized mutual information

(I(X;Z) < ϵ) to be bounded by a small number for a given code length n. Strong secrecy,

first introduced by Maurer and Wolf [Mau94], provides a practical meaning to the secrecy

level of a system whereas weak secrecy has not yet been linked to any practical meaning.

Strong secrecy has been studied by many researchers thus far [Mau94,BL13,Csi96,HK14],

of which we focus on the work of Hou and Kramer in [HK14].

3.1.2. Results and contributions

The main contributions of this chapter are provided in the following.

1. We characterize an achievable rate region with strong secrecy for broadcast chan-

nels with two confidential messages for each user. Our results are an extension

of those in [LMSY08] for weak secrecy to strong secrecy. We utilize the results

in [HK13, HK14] to inaugurate an upperbound on D(PX,Z∥PXQZ). This result

provides a bound that is even stronger than the notion of strong secrecy, since

it includes the stealth communication as well. To be more specific we consider,

D(PX,Z∥PXQZ) = I(X;Z) +D(PZ∥QZ), in which all of the terms are non-negative

based on the definition. Therefore, bounding D(PX,Z∥PXQZ) addresses the strong
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3. Achievable strong secrecy rate region of broadcast and interference channel

secrecy and the stealth communication whereas bounding only I(X;Z) points to the

strong secrecy only. We use the encoding suggested by [LMSY08], which imposes a

joint distribution on the channel inputs corresponding to each user, however, to ad-

dress the stealth communication the channel input of the users must be independent

from each other. This results in some complexity, which is handled in this chapter.

It turns out that the secrecy rate region proposed by [LMSY08] holds for strong

secrecy criterion as well.

2. We upgrade the weak secrecy criterion in [LMSY08] to the strong secrecy one for IC

with two confidential messages. The analysis is quite similar to that of BC, however,

owing to the disjoint independent encoders the analysis does not require considering

joint and independent distributions for the input channels; and thus it is simpler to

study. It turns out, the achievable rate region with the strongly secure criterion is

equivalent to that proposed by [LMSY08] for the weakly secure criterion, i.e. strong

secrecy at no cost.

3. The untrusted DF relay channel without an external helper, the destinations help

or the direct link between the sender and the destination, has not been studied

yet. Building upon the results developed for BC with confidential messages, we

characterize the achievable secrecy rate region for the DF relay channel with two

untrusted relays. We propose to use a precoder at the sender to cope with the

untrusted characteristic of the relays. We further extend this to multiple relays and

propose a construction method to design the precoder.

3.2. Problem statement and system model

3.2.1. The broadcast channel with confidential messages

The broadcast channel consists of a transmitter with two receivers each with one private

message as depicted in Figure 3.1. We assume the channel is discrete memoryless, i.e.

P (y1,y2|x) =
n
∏

i=1

P (y1i, y2i|xi), (3.1)

where, x ∈ X n,y1 ∈ Yn
1 , and y2 ∈ Yn

2 and X and Y1,Y2 are the input and output channel

alphabets, respectively, which are assumed to be finite sets.
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3.2. Problem statement and system model

The joint probability distribution governing the discrete memoryless broadcast channel

(DMBCC), for a given PX ∈ P(X ), is written as

PXY1Y2(x, y1, y2) = PX(x)P (y1, y2|x). (3.2)

Definition 10. The stochastic encoder at the transmitter is given by,

f : M1 ×M2 → P(X n), (3.3)

and further, we have,

∑

x∈Xn

f(x|m1,m2) = 1, ∀(m1,m2) ∈ M1 ×M2 (3.4)

where, m1 ∈ M1 := {1, . . . ,M1} and m2 ∈ M2 := {1, . . . ,M2} are the message sets for

receiver 1 and receiver 2, respectively.

Channel

P (y1, y2|x)
Xn

Y n
1

Y n
2

Encoder

f(xn|m1,m2)

Dec 1

Dec 2

W̃1

W̃2

W1

W2

Transmitter

Receiver 1

Receiver 2

Figure 3.1.: The schematic of the network for Broadcast channel with confidential messages

Definition 11. The decoder at the tth node, t ∈ {1, 2}, is defined as

gt : Yn
t → Mt.

Definition 12 (Strong Secrecy [Mau94]). For any given ϵ > 0 there is a N(ϵ) such that

for all n ≥ N(ϵ),

max
m2∈M2

I(W1;Y
n
2 |W2 = m2) ≤ ϵ, (3.5)

max
m1∈M1

I(W2;Y
n
1 |W1 = m1) ≤ ϵ (3.6)
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3. Achievable strong secrecy rate region of broadcast and interference channel

where, the random variables W1, W2 are distributed uniformly over M1, M2,, respectively.

Besides, the random variables Y n
1 , and Y n

2 are drawn from Yn
1 , and Yn

2 , respectively. The

mutual information quantities are evaluated with respect to the following distribution

PW1W2Y n
1 Y n

2
(m1,m2,y1,y2) =

1

M1

1

M2

∑

x∈Xn

f(x|m1,m2)P (y1,y2|x),

with the stochastic encoder given in definition (10).

Each message m1 (m2) has to be decoded reliably by receiver 1 (2) while kept secret

from receiver 2 (1). The probability of error at each node t is

Pn
e t =

1

M1M2

∑

(m1,m2)∈M1×M2

Pr[gt(Y
n
t ) ̸= mt|(m1,m2) is sent], t ∈ {1, 2}.

Definition 13. A rate pair (R1, R2) is said to be achievable, if for every ϵ′ > 0, ϵ > 0,

δ > 0, there exists a code (M1,M2, n, P(en, 1), P(en, 2)) for sufficiently large n ,in addition

to (3.5) and (3.6), we have

Pn
e t ≤ ϵ′ and

1

n
logMt ≥ Rt − δ, t ∈ {1, 2}.

3.2.2. The interference channel with confidential messages

Figure 3.2 illustrates two transmitters and two receivers communicating through an inter-

ference channel. The channel input and output alphabets are chosen from the finite sets

X1,X2 and Y1,Y2, respectively. For given probability distributions PXt ∈ P(Xt), t ∈ {1, 2}
and channel P (y1, y2|x1, x2), Yt ∈ Yt,Xt ∈ Xt, t ∈ {1, 2} the joint probability distribution

governing the discrete memoryless interference channel (DMIC) is:

PX1X2Y1Y2(x1, x2, y1, y2) = P (y1, y2|x1, x2)PX1(x1)PX2(x2).

By ”memoryless” we mean:

P (y1,y2|x1,x2) =
n
∏

i=1

P (y1i, y2i|x1i, x2i),

where, xt ∈ X n
t , yt ∈ Yn

t , and t ∈ {1, 2}.

Definition 14. The stochastic encoder at the tth transmitter is defined as,

ft : Mt → P(X n
t ),
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and further, we have,

∑

xt∈Xn
t

ft(xt|mt) = 1, ∀mt ∈ Mt, t ∈ {1, 2},

where, M1 := {1, . . . ,M1} and M2 := {1, . . . ,M2} are the message sets for transmitters

1 and 2, respectively.

Channel

P (y1, y2|x1, x2)

Y n
1

Y n
2

Enc 1 Dec 1

Dec 2

W̃1

W̃2

W1

Transmitter 1 Receiver 1

Receiver 2

Enc 2

Transmitter 2

W2

Xn
1

Xn
2

Figure 3.2.: The schematic of the interference channel with input/output distributions.

Definition 15. The decoder at the tth receiver, t ∈ {1, 2}, is a function, given by

lt : Yn
t → Mt.

The strong secrecy criterion imposes the following, if for every ϵ > 0 there is a N(ϵ)

such that for all n ≥ N(ϵ),

I(W1;Y
n
2 ) ≤ ϵ and I(W2;Y

n
1 ) ≤ ϵ (3.7)

where W1 and W2 are RVs distributed uniformly over M1 and M2 and further, Y n
1 ∈ Yn

1

and Y n
2 ∈ Yn

2 are RV’s corresponding to the output of the channel. The mutual information

values are computed with respect to the following distribution

PW1W2Y n
1 Y n

2
(m1,m2,y1,y2) =

1

M1

1

M2

∑

x1∈Xn,x2∈Xn

f1(x1|m1)f2(x2|m2)P (y1,y2|x1,x2).

We do not condition on the decodability of the legitimate message, i.e. I(W1;Y2|W2), since,

the codewords are produced independently from each other and there is no cooperation

assumed between the transmitters.
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3. Achievable strong secrecy rate region of broadcast and interference channel

The probability of error at each node t is

Pn
e t =

1

M1M2

∑

m1,m2

Pr[lt(Y
n
t ) ̸= mt|(m1,m2) is sent], t ∈ {1, 2}.

Definition 16. A rate pair (R1, R2) is achievable if for any δ, ϵ′, ϵ > 0 there exists a code

(M1,M2, P(en, 1) P(en, 2), n) such that (3.7) holds, and further,

Pn
e t ≤ ϵ′

1

n
logMt ≥ Rt − δ t ∈ {1, 2},

holds for n sufficiently large.

The transmitter t sends a confidential message mt intended to the receiver t, while

keeping it secret from the other receiver r ∈ {1, 2}, r ̸= t.

3.2.3. The decode-and-forward untrusted relay channel

Consider a sender (S) that communicates through a number of decode and forward (DF)

relays to a destination (D) as in Figure 3.3. We assume there is no direct channel between

S and D. Although the relays obey to DF relaying paradigm, they are untrusted in a sense

that they might eavesdrop on the content of the data. Further, there are no channels

between the relays, thus, the relays do not cooperate to enhance the relaying task or to

advance eavesdropping capabilities. According to the model in Figure 3.4, all of the data

has to go through the untrusted relays. We further restrict ourselves to avoid using any

side-channel information. For simplicity, we assume there are only two relays (K = 2).

The finite sets X , Ŷ1, Ŷ2 denote the input alphabets and the finite sets Y1,Y2 Z represent

the output alphabets. The discrete memoryless untrusted relay channel (DMURC) con-

sists of a DMBCC-phase, a DF-phase, and a discrete memoryless multiple access channel

(DMMAC)-phase. The DMURC is memoryless, thus

DMBCC-phase, P (y1,y2|x) =
n
∏

i=1

P (y1i, y2i|xi), and

DMMAC-phase, P (z|ŷ1, ŷ2) =
n
∏

i=1

P (zi|ŷ1i, ŷ2i).

where, x ∈ X n, yt ∈ Yn
t , ŷt ∈ Ŷn

t , z ∈ Zn, and t ∈ {1, 2}.

Definition 17. The encoding process at S consists of
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Figure 3.3.: The decode-and-forward untrusted relay channel

1. Two precoders θt : Mt × Ut → M̂t, t ∈ {1, 2} with the message sets Mt :=

{1, . . . ,Mt}, t ∈ {1, 2} and the auxiliary finite sets Ut, t ∈ {1, 2}, and M̂t :=

θt(Mt,Ut).

2. A stochastic encoder,

φ : M̂1 × M̂2 → P(X n).

3. To send the message pair (m1,m2) ∈ M1×M2 the sender selects (u1, u2) ∈ U1×U2,

and uses φ(θ1(m1, u1), θ2(m2, u2)) as the channel input. We further have

∑

x∈Xn

φ(x|θ1(m1, u1), θ2(m2, u2)) = 1, ∀(m1,m2) ∈ M1 ×M2.

Remark 1. The two auxiliary sets, U1 and U2, assist securing the messages chosen from

M1 and M2 at the relays as in the following. Since every message is decoded at the

DF relays, to provide secrecy we require some sort of randomness (key) encoded with

the messages. A common approach [HY10b,HY10a] is to have an external node jam the

relays with a pseudo noise that is known to the destination, to confuse the relays. While

this method proves effective in securing the message it requires elaborated coordination

among the nodes, therefore, we present a simpler way. We introduce some randomness at

the sender, which is modelled here as the auxiliary sets U1 and U2. We later illustrate how

the destination can decode the actual messages. The encoder φ is a stochastic encoder,

which is proven to be effective in achieving positive secrecy rates [CK78].

Definition 18. The decoders at tth relay t ∈ {1, 2} is a map ψt : Yn
t → M̂t, where,

M̂t := {1, . . . , M̂t} are given by Definition 17.

Definition 19. We further define the encoder at the tth relay as a mappingϖt : M̂t → Ŷn
t .
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3. Achievable strong secrecy rate region of broadcast and interference channel

Definition 20. The decoder at D is a mapping υ : Zn → M1 ×M2.

Definition 21 (Secrecy). For all of the encoding and the decoding processes we impose

the following secrecy conditions: For every ϵ > 0 there is a non-negative integer n ≥ N(ϵ)

such that

I(Wt; Ŵt) < ϵ, t ∈ {1, 2}, (3.8)

I(Ŵ2;Y
n
1 |Ŵ1) < ϵ (3.9)

I(Ŵ1;Y
n
2 |Ŵ2) < ϵ (3.10)

whereWt, Ŵt, t ∈ {1, 2}, are uniformly distributed RVs with values taken fromMt,M̂t, t ∈
{1, 2} respectively; and Y n

t , t ∈ {1, 2} are RVs at the output of the tth relay.

R1

R2

DS x z

y2

y1

ŷ2

ŷ1

Figure 3.4.: The graph of our network

Remark 2. The criterion I(Wt; Ŵt) < ϵ ensures that the tth relay can not recover mt from

m̂t, t ∈ {1, 2}, however, it is weaker than the strong secrecy. On the other hand, (3.9)

and (3.10) are strongly secure criteria guaranteeing relay 1 (2) can not decode m̂2 (m̂1).

The probability of error at D is given by

Pn
e t =

1

M1M2

∑

m1,m2

Pr[ρt(υ(Z
n)) ̸= mt|(m1,m2) is sent], t ∈ {1, 2}.

Definition 22. A rate pair (R1, R2) is achievable if for any δ, ϵ′, ϵ > 0 there exists a code

(M1,M2, P(en, 1) P(en, 2), n) such that (3.8), (3.9), and (3.10) hold, and further,

Pn
e t ≤ ϵ′,

1

n
logMt ≥ Rt − δ, t ∈ {1, 2},

holds for n sufficiently large.
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3.3. Strong secrecy for broadcast channels

3.3. Strong secrecy for broadcast channels

In this section we present secure rate region with strong secrecy criterion for a DMBCC.

The following proposition presents this section’s result:

Theorem 2. The rate pair (R1, R2), is achievable for a DMBCC with confidential mes-

sages and strong secrecy criterion, if:

0 ≤R1, 0 ≤ R2

R1 <I(V1;Y1|U)− I(V1,X;Y2|V2, U)

R2 <I(V2;Y2|U)− I(V2,X;Y1|V1, U)

R1 +R2 <I(V1;Y1|U)− I(V1,X;Y2|V2, U) + I(V2;Y2|U)− I(V2,X;Y1|V1, U)− I(V1;V2|U)

for some probability distribution PU (u)PV1,V2|U(v1, v2|u)PX|V1,V2
(x|v1, v2)P (y1, y2|x), with

P (y1, y2|x) given as the channel and PV1V2|U a probability distribution on a finite set V1 ×
V2.

Proof. We prove the achievablity in the following subsections. The achievablity proof

borrows techniques inspired by [HK13,LMSY08,Mar79,GP80,HK14].

3.3.1. Coding scheme

We perform double binning encoding on the messages (m1,m2) ∈ M1 ×M2 and send mt

as confidential messages to the tth receiver t ∈ {1, 2}.
For t = 1, 2 and Rt, R′

t ∈ R≥0 we set Mt := 2nRt , Jt := 2nR
′
t and Mt := {1, . . . ,Mt},

St := {1, . . . , Jt}. Let Rco,t ∈ R≥0, t = 1, 2, be such that

Rco,t ≥ Rt +R′
t =: Rt+ (3.11)

holds for t = 1, 2. We fix a probability distribution PV1V2 on a finite set V1 × V2 and a

function f : V1 × V2 → X . Define X := f(V1, V2). Finally, let 0 < ϵ < ϵ′.

Codebook generation

For t = 1, 2 and any (mt, st) ∈ Mt × St we consider random variables V n
t (mt, st, kt),

kt ∈ {1, . . . 2n(Rco,t−Rt+)}, which are assumed to be independent and distributed according

to Pn
Vt
(vt) =

∏n
i=1 PVt(vt,i) for vt ∈ Vn

t .

The realizations of V n
t (mt, st, kt) are denoted by vt(mt, st, kt).
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3. Achievable strong secrecy rate region of broadcast and interference channel

For t = 1, 2 and (mt, st) ∈ Mt × St find an index pair (k1, k2) such that

(v1(m1, s1, k1),v2(m2, s2, k2)) ∈ T n
ϵ (PV1V2),

holds. If no such (k1, k2) exists then choose (1, 1). Generate code word x(m1, s1,m2, s2)

as

x(m1, s1,m2, s2) := fn(v1(m1, s1, k1),v2(m2, s2, k2)) (3.12)

where fn denotes the component-wise application of function f .

Encoding

To send the pairs (mt, st) ∈ Mt × St, t = 1, 2, transmit x(m1, s1,m2, s2).

Decoding at the receivers

The decoder t declares that (mt, st) is sent if it is unique pair such that

(vt(mt, st, kt),yt) ∈ T n
ϵ′ (PVtYt)

for some kt. Otherwise an error is declared.

3.3.2. Error Analysis

The first error arises when the encoder can not find k1 and k2 that are jointly typical,

E1 ! {(v1(m1, s1, k1),v2(m2, s2, k2)) /∈ T n
ϵ (PVtYt)∀k1, k2}.

It follows from the mutual covering lemma [GK12] that

(Rco,1 −R1+) + (Rco,2 −R2+) > I(V1;V2) (3.13)

implies

Pr(E1) ≤ C · 2−nc (3.14)

with positive constants c, C ∈ R.

In the following we assume without loss of generality that (v1(1, 1, k1),v2(1, 1, k2)) is sent.
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3.3. Strong secrecy for broadcast channels

At the receiver t, the error events are

E2t !{(vt(1, 1, kt),yt) /∈ T n
ϵ′ (PVtYt)},

E3t !
⋃

(mt,st)̸=(1,1)
kt

{(vt(m1, st, kt),yt) ∈ T n
ϵ′ (PVtYt)}.

By the basic properties of typical sequences we have

Pr(E2t) ≤ C1 · 2−nc1 (3.15)

with some positive constants c1, C1 ∈ R.

The packing lemma [GK12] shows that

Rco,t < I(Vt;Yt) (3.16)

for t = 1, 2 implies

Pr(E3t) ≤ C2 · 2−nc2 (3.17)

with positive constants c2, C2 ∈ R. Thus the probability of error of receiver t = 1, 2 can

be bounded as

Pr(Et) ≤ Pr(E1) + Pr(E2t) + Pr(E3t) ≤ C3 · 2−nc3 (3.18)

with suitable positive constants C3, c3.

From (3.13), (3.16), and (3.11) we obtain,

R1 +R′
1 < I(V1;Y1) (3.19)

and

R2 +R′
2 < I(V2;Y2) (3.20)

as well as

R1 +R′
1 +R2 +R′

2 < I(V1;Y1) + I(V2;Y2)− I(V1;V2). (3.21)

The bounds on R′
1 and R′

2 are derived in the following subsection.
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3. Achievable strong secrecy rate region of broadcast and interference channel

3.3.3. Strong secrecy criterion

Remark 3. For the secrecy analysis we drop the random variable U for the sake of nota-

tional simplicity. It can be introduced, if desired, via standard arguments at the end of

the proof [CK78,HK14].

Before we further continue, we define a deterministic function φτ on pairs {v1(m1, s1, k1)}2
nRco,1

k1=1

×{v2(m2, s2, k2)}2
nRco,2

k2=1 that returns a pair (k1, k2) such that

(v1(m1, s1, k1),v2(m2, s2, k2)) ∈ T n
ϵ (PV1,V2).

In the case that there are many such pairs, we choose one arbitrarily. However, if there

are no such pairs, the function φτ returns (1,1). From now on, we denote the codeword

pairs simply (v1(m1, s1),v2(m2, s2)) based on condition φτ ̸= (1, 1).

We extend the framework in [HK13,HK14] to find a condition that bounds

D(PW1Y n
2 |V2

||PW1Q
n
Y2|V2

) ≤ ξ (3.22)

where the left hand side is known as the effective secrecy, ξ > 0 is arbitrarily small,

PW1,Y2|V2
is the joint distribution of W1 and Y2 given v2, which is expressed as

P (y2|m1,v2) :=
J1∑

s1=1

1

J1
Pn(y2|v1(m1, s1),v2(m2, s2)),

and further

P (y2|v2) :=
M1∑

m1=1

J1∑

s1=1

1

M1.J1
Pn(y2|v1(m1, s1),v2(m2, s2)).

Further, QY2|V2
is distribution of Y2 given v2 while no meaningful message is transmitted

for W1,

Qn
Y2|V2

(y2|v2) =
∑

v1

Pn
V1
(v1)P

n
Y2|V1,V2

(y2|v1,v2) (3.23)

and finally, PW1 is marginal distribution of W1. The following is useful.

Lemma 5. We can further expand (3.22) as

D(PW1,Y2|v2
||Qn

Y2|v2
PW1) = I(W1;Y2|v2) + D(PY2|v2

||Qn
Y2|v2

), (3.24)

The proof is given in the Appendix 3.7.1.
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3.3. Strong secrecy for broadcast channels

Remark 4. The expansion in (3.24), reveals that (3.22) addresses not only the strong

secrecy notation by bounding I(W1;Y2|v2), but also bounds D(PY2|V2
||Qn

Y2|V2
) which cor-

responds to stealth of the communication.

Remark 5. The difference between PY2|V2
and Qn

Y2|V2
is in the absence of a message (a

meaningful message) W1. This in terms of the coding scheme it can be elaborated as in

the following. For the case of Qn
Y2|V2

, the encoder only has secret message for the receiver

2, thus v2 produced according to a message m2. On the contrast, the codeword v1 is

chosen completely arbitrarily, since we do not communicate any meaningful message to

the first receiver.

Based on chain rule for informational divergence we have,

D(PW1Y n
2 |V2

||PW1Q
n
Y2|V2

) = D(PW1 ||PW1) + D(PY n
2 |W1V2

||Qn
Y2|V2

|PW1), (3.25)

where, according to the definition of D(·∥·) in (2.1), the first term above equals to zero, thus

we proceed with D(PY2|V2,W1
||Qn

Y2|V2
|PW1). The following lemma provides an upperbound

on D(P∥Q), which is useful for the rest of the proof.

Lemma 6. For probability distributions P and Q, defined on a finite set A, with P ≪ Q,

we have,

D(P∥Q) ≤ log
1

πQ
, (3.26)

where, πQ = min{Q(a) : Q(a) > 0}.

The proof is given in the Appendix 3.7.6.

Splitting the expectation with respect to (V1, V2) of D(PY2|V2,W1
||Qn

Y2|V2
|PW1) into two

cases of φτ = (1, 1) and φτ = (1, 1), we get,

E[D(PY n
2 |V2W1

||Qn
Y2|V2

|PW1)] = E
[

(φτ = (1, 1))D(PY n
2 |V2W1

||Qn
Y2|V2

|PW1)

+ E
[

(φτ ̸= (1, 1))D(PY n
2 |V2W1

||Qn
Y2|V2

|PW1), (3.27)

where, (·) is an indicator function. The first term of right hand side (3.27) yields,

E
[

(φτ = (1, 1))D(PY n
2 |V2W1

||Qn
Y2|V2

|PW1)
]

≤ Pr
(

φτ = (1, 1)
)

log
1

(πQn
Y2|V2

)n
(3.28)

= Pr
(

φτ = (1, 1)
)

(−n) log(πQn
Y2|V2

)

≤ 2−nα (3.29)
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3. Achievable strong secrecy rate region of broadcast and interference channel

for all sufficiently large n, where, we apply Lemma 6 in (3.28). The last inequality, (3.29),

comes from the mutual covering lemma, where α > 0 is a constant independent of n. With

(3.25) and (3.29), therefore, we have:

E[D(PY n
2 |V2W1

||Qn
Y2|V2

|PW1)] ≤ E
[

(φτ ̸= (1, 1))D(PY n
2 |V2W1

||Qn
Y2|V2

|PW1) + 2−nα. (3.30)

Hence, in the following we focus on bounding the first term in the right hand side of (3.30).

Lemma 7. Taking an expectation over Y n
2 , V1, and S1 yields,

E[D(PY n
2 |W1,v2

||Qn
Y2|v2

|PW1)] ≤ E

[

log

(
P (Y n

2 |V n
1 ,v2)

J1Qn
Y2|V2

(Y n
2 |v2)

+ 1

)]

(3.31)

The proof is provided in Appendix 3.7.2. Before proceeding with the bounds on the

informational divergence, we introduce the following lemma.

Lemma 8. Let PV1V2Y2(v1, v2, y2) = PV1V2(v1, v2)PY2|V1V2
(y2|v1, v2) be a probability distri-

bution on V1 × V2 × Y2. For ϵ ∈ (0, 12) and distribution

Q(y2|v2) :=
∑

v1

PV1(v1)PY2|V1V2
(y2|v1, v2) (3.32)

it holds for (v2,y2) ∈ T n
ϵ (PV2Y2) that

Qn(y2|v2) ≥ 2−n(H(Y2|V2)+I(V1;V2)+δ(ϵ)) (3.33)

with δ(ϵ) > 0 and limϵ→0 δ(ϵ) = 0.

The proof is given in the Appendix 3.7.3. The equation (3.31) can be split up as follows:

(Recall that the expectation is taken over those codewords with φτ ̸= (1, 1))

∑

v1
(v1,v2)∈Tϵ0

Pn
V1
(v1)

∑

Y n
2

Pn
Y2|V1,V2

(y2|v1,v2) log

(Pn
Y2|V2,V1

(y2|v2,v1)

J1Qn
Y2|V2

(y2|v2)
+ 1

)

= e1 + e2 (3.34)

where,

e1 :=
∑

v1
(v1,v2)∈Tϵ0

Pn
V1
(v1)

∑

Y n
2

(y2,v2,v1)/∈Tϵ

Pn
Y2|V1,V2

(y2|v1,v2) log

(
Pn(y2|v2,v1)

J1Qn(y2|v2)
+ 1

)

(3.35)

e2 :=
∑

v1
(v1,v2)∈Tϵ0

Pn
V1
(v1)

∑

y2
(y2,v2,v1)∈Tϵ

Pn
Y2|V1,V2

(y2|v1,v2) log

(
Pn(y2|v2,v1)

J1Qn(y2|v2)
+ 1

)

(3.36)
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3.3. Strong secrecy for broadcast channels

We upperbound e1 in (3.35) as

e1 ≤
∑

v1
(v1,v2)∈Tϵ0

Pn
V1
(v1)

∑

y2
(y2,v2,v1)/∈Tϵ

Pn
Y2|V1,V2

(y2|v1,v2) log

(

(
1

πY2|V2

)n + 1

)

(3.37)

≤ 2|Y2||V1||V2|2
−2nϵ2π2

(Y2|V2,V2)(−n) log(πY2|V1
). (3.38)

where πY2|V2
and πY2|V2V1

are derived from (3.26). The (3.38) implies that as n → ∞,

e1 → 0.

On the other hand, to upperbound e2 in (3.36) we need to use the Lemma 8, since,

(v1,v2,y2) ∈ Tϵ defined on PY2,V2,V1 . Therefore we have,

e2 ≤
∑

v1
(v1,v2)∈Tϵ0

Pn
V1
(v1) log

(
2−n(H(Y2|V1,V2)−δ1(ϵ))

J12−n(H(Y2|V2)+I(V1;V2)+δ2(ϵ))
+ 1

)

≤
∑

v1
(v1,v2)∈Tϵ0

2−n(H(V1)+I(V1;V2)−δ3(ϵ)) log

(
2−n(H(Y2|V1,V2)−δ1(ϵ))

J12−n(H(Y2|V2)+I(V1;V2)+δ2(ϵ))
+ 1

)

(3.39)

≤2n(H(V1)+δ4(ϵ))2−n(H(V1)+I(V1;V2)−δ3(ϵ)) log

(
2−n(H(Y2|V1,V2)−δ1(ϵ))

J12−n(H(Y2|V2)+I(V1;V2)+δ2(ϵ))
+ 1

)

(3.40)

≤2−n(I(V1;V2)−δ3(ϵ)−δ4(ϵ)) log

(
2−n(H(Y2|V1,V2)−δ1(ϵ))

J12−n(H(Y2|V2)+I(V1;V2)+δ2(ϵ))
+ 1

)

(3.41)

≤2−n(I(V1;V2)−δ3(ϵ)−δ4(ϵ)) log

(

2−n(R′
1+H(Y2|V1,V2)−H(Y2|V2)−I(V1;V2)−δ1(ϵ)−δ2(ϵ)) + 1

)

(3.42)

≤ log(e)2−n(R′
1−I(Y2;V1|V2)−δ5(ϵ)), (3.43)

where, δ5(ϵ) := δ1(ϵ) + δ2(ϵ) + δ3(ϵ) + δ4(ϵ). We have to impose R′
1 > I(Y2;V1|V2) + δ5(ϵ)

in order to assure e2 → 0 with n → ∞. This condition, thus, evokes strong secrecy.

Combining R′
1 > I(Y2;V1|V2), and symmetrically R′

2 > I(Y1;V2|V1), (3.19) and (3.20),

we obtain the rate region as in the theorem 2.

Remark 6. The typicality set Tϵ above is considered with respect to the true distribution

PV1V2Y2 (as opposed to the stealth distribution Qn
Y2|V2

), therefore we need to use Lemma

8 to upperbound the probability value of Q. The difference in the two distribution comes

from the fact the our encoding structure, which dictates the distribution PV1V2Y2 , imposes

P (v1,v2) ̸= P (v1)P (v2). The stealth distribution Qn
Y2|V2

, however, needs P (v1,v2) =

P (v1)P (v2) by definition.
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3. Achievable strong secrecy rate region of broadcast and interference channel

3.4. Strong secrecy for interference channel

The main result of this section is summarized in the following theorem.

Theorem 3. A rate pair (R1, R2) is achievable for the interference channel under the

strong secrecy criterion if

0 ≤ R1, 0 ≤ R2

R1 < I(V1;Y1|U)− I(V1;Y2|V2, U)

R2 < I(V2;Y2|U)− I(V2;Y1|V1, U)

with some probability distribution

PU (u)PV1|U(v1|u)PV2|U (v2|u)PX1|V1
(x1|v1)PX2|V2

(x2|v2)P (y1, y2|x1, x2),

where the channel P (y1, y2|x1, x2) is given.

Proof. We present the achievability proof in the following subsections. The proof is in-

spired by techniques used in [HK13,LMSY08,Mar79,GP80,HK14].

3.4.1. Code generation, encoding and decoding

Codebook

For a fixed distribution P (u), we randomly generate a sequence u according to P (u) =
∏n

i=1 P (ui), which is assumed to be known by all transmitters and receivers. Each trans-

mitter t, given the random sequence u, forges 2Rt+R′
t independent sequences from prob-

ability distributions P (vt|u) =
∏n

i=1 P (vt,i|ui), where Pvt|u is fixed. We divide each set

of sequences vt into 2Rt bins each with 2R
′
t sequences. We refer to each sequence with

vt(mt, st), where mt ∈ {1, . . . , (Mt = 2nRt)} and st ∈ {1, . . . , (Jt = 2nR
′
t)}.

Encoding

To send a messagemt ∈ Mt, we select randomly and independently from the bin vt(mt, i) i ∈
{1, . . . , Jt} an index i = st, thus, vt(mt, st). Then for each codeword vt(mt, st) the stochas-

tic encoder sends a channel input based on P (xt|vt) =
∏n

i=1 P (xt,i|vt,i).

Decoding

The decoder in receiver t observes yt. If there is a unique mt and some st such that

(u,yt,vt(mt, st)) ∈ T n
ϵ (PYt,Vt,U ), (3.44)
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3.4. Strong secrecy for interference channel

we have decoded the message mt, otherwise, declare an error.

Error analysis

We send w. l. g. v1(1, 1). There are two error events, which are specified as:

EIF1,t := {(u,yt,vt(1, 1)) /∈ T n
ϵ , |v1(1, 1) sent} (3.45)

EIF2,t :=
⋃

mt ̸=1
st

{(u,yt,vt(mt, st)) ∈ T n
ϵ , |v1(1, 1) sent}. (3.46)

The union bound on total error events results in,

P(en, t) ≤ Pr(EIF1,t) +
∑

mt ̸=1,st

Pr(EIF2,t). (3.47)

The first term Pr(EIF1,t) < ϵ for large n, from typicality [GK12]. From Packing Lemma

the second term can be small up to a given ϵ > 0 for n sufficiently large if

R1 +R′
1 < I(V1, Y1|U) and (3.48)

R2 +R′
2 < I(V2, Y2|U). (3.49)

3.4.2. Strong secrecy criterion

In order to ensure the strong secrecy, we are required to show that for ϵ > 0 and a

sufficiently large n,

I(W1;Y2) < ϵ and I(W2;Y1) < ϵ,

hold under some conditions on the rates.

Remark 7. For the secrecy analysis we drop the random variable U for the sake of nota-

tional simplicity. It can be introduced, if desired via standard arguments at the end of

the proof [CK78,HK14].

We extend the framework in [HK13,HK14] to find a condition that bounds

D(PW1,Y2 ||PW1Q
n
Y2
) ≤ ξ (3.50)
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3. Achievable strong secrecy rate region of broadcast and interference channel

where the left hand side is known as the effective secrecy, ξ > 0 is arbitrarily small, PW1,Y2

is the joint distribution of W1 and Y2, which is expressed as

P (y2|m1) =
J1∑

s1=1

1

J1
Pn(y2|v1(m1, s1)),

and further

P (y2) =
M1∑

m1=1

J1∑

s1=1

1

M1.J1
Pn(y2|v1(m1, s1)).

Further, Qn
Y2

is distribution of Y2 while no meaningful message is transmitted for W1,

Qn
Y2
(y2) =

∑

v1

Pn
V1
(v1)P

n
Y2|V1

(y2|v1) (3.51)

and finally, PW1 is marginal distribution of W1. We can further expand (3.50) as

D(PW1,Y2 ||PW1Q
n
Y2
) =

∑

m1,y2

PW1,Y2(m1;y2) log

(
PW1,Y2(m1;y2)

Qn
Y2
(y2)PW1(m1)

)

= I(W1;Y2) + D(PY2 ||Qn
Y2
). (3.52)

Remark 8. The expansion in (3.52), reveals that (3.50) addresses not only the strong

secrecy notation by bounding I(W1;Y2), but also bounds D(PY2 ||Qn
Y2
) which corresponds

to stealth of the communication.

Remark 9. The difference between PY2 and Qn
Y2

is in the absence of (a meaningful) message

W1.

Based on chain rule for informational divergence we have,

D(PW1,Y2 ||PW1Q
n
Y2
) = D(PW1 ||PW1) + D(PY2,W1 ||Qn

Y2
|PW1), (3.53)

where, according to the definition of D(·∥·) in (2.1), the first term above equals to zero,

thus we proceed with D(PY2,W1 ||Qn
Y2
|PW1).

Lemma 9. Taking an expectation over Y n
2 , V1, and S1 yields:

E[D(PY2|W1
||Qn

Y2|v2
|PW1)] ≤ E

[

log

(Pn
Y2|V1

(Y n
2 |V1)

J1Qn
Y2
(Y n

2 )
+ 1

)]

, (3.54)

The sketch of the proof is provided in the Appendix 3.7.4.
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3.4. Strong secrecy for interference channel

The equation (3.54) can be split up as follows:

∑

y2,v1

Qn
Y2,V1

(y2,v1) log

(Pn
Y2|V1

(y2|v1)

J1Qn
Y2
(y2)

+ 1

)

= e1 + e2

where,

e1 :=
∑

(y2,v1)/∈Tϵ

Qn
Y2,V1

(y2,v1) log

(
Pn(y2|v1)

J1Qn(y2)
+ 1

)

(3.55)

e2 :=
∑

(y2,v1)∈Tϵ

Qn
Y2,V1

(y2,v1) log

(
Pn(y2|v1)

J1Qn(y2)
+ 1

)

(3.56)

We upperbound e1 in (3.55) as

e1 ≤
∑

(y2,v1)/∈Tϵ

Qn
Y2,V1

(y2,v1) log

(

(
1

πY2

)n + 1

)

≤ 2|Y2||V1|2
−2nϵ2π2

(Y2)(−n) log(πY2|V1
). (3.57)

where πY2 and πY2|V1
are derived from (3.26). The (3.57) implies that as n → ∞, e1 → 0.

On the other hand, to upperbound e2 in (3.56) we need to use the Lemma 8, since,

(v1,y2) ∈ Tϵ defined on PY2,V1 . Therefore we have,

e2 ≤
∑

(y2,v1)∈Tϵ

Qn
Y2,V1

(y2,v1) log

(
2−n(H(Y2|V1)−δ1(ϵ))

J12−n(H(Y2)+δ2(ϵ))
+ 1

)

≤ log

(
2−n(H(Y2|V1)−δ1(ϵ))

J12−n(H(Y2)+δ2(ϵ))
+ 1

)

≤ log

(

2−n(R′
1+H(Y2|V1)−H(Y2)−δ1(ϵ)−δ2(ϵ)) + 1

)

≤ log(e)2−n(R′
1−I(Y2;V1)−δ3(ϵ)),

where, δ3(ϵ) := δ1(ϵ) + δ2(ϵ). We have to impose R′
1 > I(Y2;V1) + δ3(ϵ) in order to assure

e2 → 0 with n → ∞. This condition, thus, evokes strong secrecy.

Combining R′
1 > I(Y2;V1), and symmetrically R′

2 > I(Y1;V2), (3.48) and (3.49), we

obtain the rate region as in the theorem 3.
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3. Achievable strong secrecy rate region of broadcast and interference channel

3.5. Applications to untrusted two-hop relay channel

We consider the transmission of messages in DMURC as two phases; the first phase is a

DMBCC, which is studied in Section 3.3 and the second phase is a DMMAC, which is

given in the following. The achievable rate region of DMMAC is given as union of all the

rate pairs (R1MAC , R2MAC) such that [GK12],

R1MAC ≤ I(Ŷ1;Z|Ŷ2, Q), (3.58)

R2MAC ≤ I(Ŷ2;Z|Ŷ1, Q),

R1MAC +R2MAC ≤ I(Ŷ1, Ŷ2;Z|Q),

where, P (ŷ1, ŷ2, q) := P (q)P (ŷ1|q)P (ŷ2|q), and q ∈ Q, |Q| ≤ 2.

We present an achievable rate region for a two-hop decode-and-forward untrusted relay

channel in the following.

Theorem 4. The RDMURC is achievable for a DMURC with confidential messages if:

0 ≤ Rt ≤ min
{

I(Vt;Yt|U)− I(Vt;Vk|U)− I(Vt;Yk|Vk, U),

I(Ŷt;Z|Ŷk, Q),
1

2
I(Ŷt, Ŷk;Z|Q)

}

,

t, k ∈ {1, 2}, k ̸= t,

for some probability distributions PU (u)PV1,V2|U (v1, v2|u)PX|V1,V2
(x|v1, v2) with P (y1, y2|x)

given as the DMBCC channel, and PQ(q)PŶ1|Q(ŷ1|q)PŶ2|Q(ŷ2|q) with P (z|ŷ1, ŷ2) given as

the DMMAC channel. where, U , Vt, and Q are auxiliary random variables.

Proof. The achievable rate region is

RDMURC ⊆ RBCC ∩RMAC, (3.59)

where RBCC is the achievable rate region for DMBCC in Section 3.3, and RMAC is the

underlying multiple access channel between the relays and the D.

In designing the encoder φ we take U1 = U2 = {1, . . . ,min{M1,M2}}. The choice of the

mapping part is non-trivial since it has to fulfil the conditions (3.8), (3.9) and (3.10). We

propose the following

θ1(m1,m2) = m̂1 = m1 ⊕m2 and θ2(m1,m2) = m̂2 = m1 ⊖m2. (3.60)

where, ⊕ and ⊖ are modulo plus and modulo minus operations defined in ring of size

qF := min{M1,M2}. Therefore we have m̂1, m̂2 ∈ M̂, where M̂ := {1, . . . , qF }.
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3.5. Applications to untrusted two-hop relay channel

Codebook Generation

We use the codebook generation similar to the one proposed in Section 3.3, with the

message sets M̂1 and M̂2 defined according to the mapping in (3.60). 1

Encoding at the Sender

We apply similar encoding as in the Section 3.3 with small modifications. Note that since

|M̂1| = |M̂2| = qF the messages sets are imposed to be the same size.

Decoding at the Relays

We apply the identical decoding in the Section 3.3.

Encoding at the Relays

We use the encoding from [GK12].

Decoding at the Destination

We apply MAC simultaneous decoding in [GK12].

3.5.1. Decodability at D

In order to obtain (m1,m2), after successfully decoding (m̂1, m̂2) at the destination, we

define a mapping function as

ρ(m̂1, m̂2) = (m1,m2) (3.61)

such that (m1,m2) is a unique solution of (3.60). The calculation procedure includes the

following steps:

ρ1 : 2m1 = (m̂1 ⊕ m̂2), ρ2 : 2m2 = (m̂1 ⊖ m̂2). (3.62)

The following lemma ensures that ρ1 and ρ2 in (3.62) are capable of recovering the trans-

mitted messages uniquely.

Lemma 10. The mapping 3.61 is well defined, if gcd(2, qF ) = 1, i.e. qF is odd.

The proof is given in Lemma A.1.9 in [vT93].

1Instead of M1 and M1, which are used in Section 3.3
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3. Achievable strong secrecy rate region of broadcast and interference channel

Remark 10. For a general θ1, θ2 and ρt, where the divisors can be any number in the ring,

the safe choice is qF to be a prime number. However, for large qF we do not know the

prime number’s density. 2 In (3.60) this problem do not appear since qF can be any odd

number that qF ≥ 2.

3.5.2. Security at the relays

On term of the security is that relay 1 is incapable of decoding relay 2’s message, which

is guaranteed with strong secrecy measures based on Section 3.3.

As far as the second secrecy criterion, in (3.8), is concerned, the following lemmas shed

light on the properties of the mapping in (3.60) in more details.

Lemma 11. Following the secrecy criterion, and the condition (3.8), M1 = M2 = qF

must hold.

This lemma is proved in the Appendix 3.7.5.

Lemma 12. For the random variables Wt ∈ Mt and Ŵt ∈ M̂t, which correspond to the

messages mt and the precoded messages m̂t respectively, the following holds in (3.60)

I(Wj ; Ŵi) = 0 (3.63)

H(Ŵi) = H(Wj), i, j ∈ {1, 2} (3.64)

Proof. We prove that the Ŵi is independent of Wj. We first consider m̂1 ! m1 ⊕m2.

pŴ1,W1
(m̂1,m1) = Pr(Ŵ1 = m̂1,W1 = m1) (3.65)

= Pr(W2 = m̂1 ⊖m1,W1 = m1)

= Pr(W2 = m̂1 ⊖m1)Pr(W1 = m1)

Now we have show that pŴ1
(m̂1) = pW2(m̂1 ⊖ m1), for every choice of m1. This follows

directly from the fact that W2 is uniformly distributed over the set, Pr(W2 = m̂1⊖m1) =

2Imagine for our message alphabet size of Mt = 2nR we have to choose a prime qF which is qF > Mt
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3.5. Applications to untrusted two-hop relay channel

1
qF

, which yields,

Pr(Ŵ1 = m̂1) = Pr(W1 +W2 = m̂1)

=

|W2|
∑

l=1

Pr(W2 = m̂1 ⊖ nl|W1 = nl)Pr(W1 = nl)

=
qF∑

l=1

Pr(W2 = m̂1 ⊖ nl)Pr(W1 = nl)

= Pr(W2 = m̂1 ⊖ nl).

where, we use the assumption that pW1(nl) and pW2(nl) are uniformly distributed over the

same sets (Lemma 11). For m̂2 and other combinations of the lemma it is a similar proof

according to Lemma 11.

Consequently, from independence we infer that H(mj |m̂i) = H(mj). The second part

(3.64) follows immediately from above by considering that m̂j is also uniformly distributed

over the same size of alphabet qF as a result of modulo operations.

Remark 11. The Lemma 11 can be interpreted as follows. To secure a set of messages Mt

with a set of key, the size of the key alphabet must be equal to the size of the sender to

have strong secrecy. In our case the key set is also a messages set itself. This is a corollary

of Shannon’s perfect secrecy. The only difference is that the key’s here are also messages.

Therefore, we do not spend resources on sending random keys.

Lemma 13. The proposed mapping scheme, θ1, θ2 and ρt, does not provide perfect secrecy

for both (W1,W2), since3

H((W1,W2)|Ŵj) = H(W1) ≤ H((W1,W2)) j ∈ {1, 2} (3.66)

Proof. Since the mapping is one to one, and uniform distribution of Ŵjs are guaranteed

by Lemma 12, the inequality is straightforward to show. As for the first part we can write:

Pr
(

(W1,W2) = (m1,m2)|Ŵj = m̂j
)

=
Pr

(

(W1,W2) = (m1,m2)
)

Pr(Ŵj = m̂j)
(3.67)

=
Pr(W1 = m1)Pr(W2 = m2)

Pr(Ŵj = m̂j)
(3.68)

=Pr(W1 = m1). (3.69)

3In order to accomplish the perfect secrecy we have to use random keys as the auxiliary sets U1 and U2.
Then, however, we require make the random key available at the destination somehow.
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3. Achievable strong secrecy rate region of broadcast and interference channel

Thus, we deduce the lemma. Note that we used M1 = M2.

Lemma 11 implies that Rt = min{R1, R2}. Moreover, since the relays do not have large

buffers, the rates has to be min{R̂t, Rt}. Combining them with theorem 2 and (3.58) we

conclude the proof.

3.6. Conclusions

We have analysed the achievable secrecy rate regions of three scenarios: a discrete memo-

ryless broadcast channel with two confidential messages (DMBCC), a discrete memoryless

interference channel with two confidential messages (DMICC), a discrete memoryless un-

trusted relay channels (DMURC).

We have considered a stronger notion of secrecy, the so called effective secrecy, which

includes stealth and strong secrecy together. An achievable rate region with strong secrecy

for DMBCC and DMICC has been developed. We used the results in [HK13, HK14]

to impose an upperbound on D(PX,Z∥PXQZ) = I(X;Z) + D(PZ∥QZ), in which all of

the terms are non-negative by definition.We have used a random binning channel coding

suggested in [LMSY08], which imposes a joint distribution on the channel inputs. The

term denoting non-stealth, D(PZ∥QZ), however, requires the independent relationship

between the channel inputs. This conflict results in some complexity, which has been

handled in this chapter. This problem, however, arises only for the DMBCC scenario.

We have showed that the achievable secrecy rate region with strong secrecy and stealth

criteria are exactly the same as the ones with weak secrecy criterion, which is proposed in

[LMSY08].

We have studied the DMURC scenario, where there are two possibilities for information

leakage. The first case is when transmitting a message to a specific relay the other re-

lay(s) can eavesdrop. The second case occurs after the target relay received the message.

Unprotected messages can be eavesdropped before being forwarded to the destination.

To protect against the first case we used the strongly secure channel coding proposed

for DMBCC. In order to deal with the second case we have developed a pre-coder and

a post-decoder. The pre-coder protects the messages at the sender by combining them

with other independent messages such that they are information-theoretically protected

and also reliably recovered at the destination. We use the uniform random messages in

set as keys to protect the messages in the other set. The proposed scheme is, however,

not strongly secure overall.
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3.6. Conclusions

Future work

The following research directions based on the results in this chapter are proposed.

• We propose to apply the same approaches that are developed for DMBCC and

DMICC to achieve the strong secrecy region of some other discrete memoryless

channels.

• Extend the results to Gaussian channels instead of discrete memoryless channels.

• We suggest to investigate if the method of Output Statistic of Random Binning

(OSRB) leads to similar results.

• Relays with capacity limited channel between them is worth investigation.
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3. Achievable strong secrecy rate region of broadcast and interference channel

3.7. Appendix

3.7.1. Derivation of Lemma 5

D(PW1,Y2|V2
||PW1QY2|V2

) =
∑

m1,y2

PW1,Y2|V2
(m1;y2|v2) log

(
PW1,Y2|V2

(m1;y2|v2)

QY2|V2
(y2|v2)PW1(m1)

)

=
∑

m1,y2

PW1,Y2|V2
(m1;y2|v2) log

(
PW1,Y2|V2

(m1;y2|v2)

QY2|V2
(y2|v2)PW1(m1)

·
PY2|V2

(y2|v2)

PY2|V2
(y2|v2)

)

=
∑

m1,y2

PW1,Y2|V2
(m1;y2|v2) log

(
PW1,Y2|V2

(m1;y2|v2)

PW1(m1)PY2|V2
(y2|v2)

·
PY2|V2

(y2|v2)

QY2|V2
(y2|v2)

)

(α)
=

∑

m1,y2

PW1,Y2|V2
(m1;y2|v2) log

(
PW1,Y2|V2

(m1;y2|v2)

PW1(m1)PY2|V2
(y2|v2)

)

+
∑

y2

PY2|V2
(y2|v2) log

(
PY2|V2

(y2|v2)

QY2|V2
(y2|v2)

)

= I(W1;Y2|v2) + D(PY2|V2
||QY2|V2

), (3.70)

in (α) we substitute the marginal distribution of PW1,Y2|V2
(m1;y2|v2).

3.7.2. Proof of Lemma 7

We take the expectation over V n
1 (m1, s1), m1 = 1, . . . ,M1, s1 = 1, . . . , J1, for a given

realization v2 := v2(m2, s2)
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3.7. Appendix

E[ (φτ ̸= (1, 1))D(PY n
2 |W1v2

||Qn
Y2|v2

|PW1)] =

E

[

(φτ ̸= (1, 1))
∑

y2

M1,J1∑

m1,s1

1

M1.J1
P (y2|v1(m1, s1),v2)×

log

∑J1
s′=1 P (y2|v1(m1, s′),v2)

J1Qn
Y2|V2

(y2|v2)

]

=
∑

v1(1,1)∈Tϵ(PV n
1 |v2

)

· · ·
∑

v1(M1,J1)∈Tϵ(PV n
1 |v2

)

M1,J1∏

e,i

PV1(v1(e, i))
∑

y2

M1,J1∑

m1=1
s1=1

1

M1.J1
P (y2|v1(m1, s1),v2)×

[

log

∑J1
s′=1 P (y2|v1(m1, s′),v2)

J1Qn
Y2|V2

(y2|v2)

]

we can rearrange the above and write the residual terms as,

E[ (φτ ̸= (1, 1))D(PY n
2 |W1v2

||Qn
Y2|v2

|PW1)] =

M1,J1∑

m1=1
s1=1

∑

y2

∑

v1(m1,s1)∈Tϵ(PV n
1 |v2

)

1

M1.J1
PV1(v1(m1, s1))P (y2|v1(m1, s1),v2)

×
b(m1,s1)∑

v1(1,1),...,v1(M1,J1)∈Tϵ(V n
1 |v2)

M1,J1∏

l ̸=m1
k ̸=s1

PV1(v1(l, k))

×
[

log

∑J1
s′=1 P (y2|v1(m1, s′),v2)

J1Qn
Y2|V2

(y2|v2)

]

.

where,
∑b(m1,s1)

v1(1,1),...,v1(M1,J1)∈Tϵ(PV n
1 |v2

) denote the series of sums of

∑

v1(1,1)∈Tϵ(PV n
1 |v2

)

. . .
∑

v1(M1,J1)∈Tϵ(V n
1 |v2)
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3. Achievable strong secrecy rate region of broadcast and interference channel

without
∑

v1(m1,s1)∈Tϵ(V n
1 |v2)

. In the next step we use the Jensen’s inequality and concavity

of log to obtain,

E[ (φτ ̸= (1, 1))D(PY n
2 |W1v2

||Qn
Y2|V2

|PW1)] ≤ (3.71)

M1,J1∑

m1=1
s1=1

∑

y2

∑

v1(m1,s1)∈Tϵ(PV n
1 |v2

)

1

M1.J1
PV1(v1(m1, s1))P (y2|v1(m1, s1),v2)

×
[

log

(
P (y2|v1(m1, s1),v2)

J1Qn
Y2|V2

(y2|v2)

+
J1∑

s′ ̸=s1

∑

v1(e,s′)∈Tϵ(V n
1 |v2)

PV1(v1(s′, e))P (y2|v1(s′, e),v2)

J1Qn
Y2|V2

(y2|v2)

)]

=
M1,J1∑

m1=1
s1=1

∑

y2

∑

v1(m1,s1)∈Tϵ(PV n
1 |v2

)

1

M1.J1
PV1(v1(m1, s1))P (y2|v1(m1, s1),v2)

×
[

log

(
P (y2|v1(m1, s1),v2)

J1Qn
Y2|V2

(y2|v2)
+

J1 − 1

J1

)]

(3.72)

≤
M1,J1∑

m1=1
s1=1

∑

y2

∑

v1(m1,s1)∈Tϵ(PV n
1 |v2

)

1

M1.J1
PV1(v1(m1, s1))P (y2|v1(m1, s1),v2)

×
[

log

(
P (y2|v1(m1, s1),v2)

J1Qn
Y2|V2

(y2|v2)
+ 1

)]

= E

[

(Tϵ(V n
1 |v2)) log

(
P (Y n

2 |V n
1 ,v2)

J1Qn
Y2|V2

(Y n
2 |v2)

+ 1

)]

,

where in (3.72) we used the definition (3.23). To summarize we have so far derived the

following inequality for every pair (m2, s2)

E[ (φτ ̸= (1, 1))D(PY n
2 |W1,v2

||Qn
Y2|v2

|PW1)] ≤ E

[

(Tϵ(V n
1 |v2)) log

(
P (Y n

2 |V n
1 ,v2)

J1Qn
Y2|V2

(Y n
2 |v2)

+ 1

)]

(3.73)

3.7.3. Proof of Lemma 8

According to Lemma 2.6 in [CK82] we have for all (v2,y2) ∈ Vn
2 × Yn

2 ,

Qn(y2|v2) = 2−n(H(P e
V2,Y2

)−H(P e
V2

)+D(P e
V2,Y2

∥P e
V2

Q)) (3.74)

where,
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1. P e
V2,Y2

denotes the empirical distribution or type of the sequence pair (v2,y2)

2. P e
V2

is the empirical distribution generated by the sequence v2

3. the distribution P e
V2
Q is the joint distribution computed with respect to P e

V2
and Q

Uniform continuity of the entropy (Lemma 2.7 in [CK82]), (v2,y2) ∈ T n
ϵ (PV2Y2), and the

fact that ϵ ∈ (0, 12 ), yield

|H(P e
V2,Y2

)−H(P e
V2
)−H(Y2|V2)| ≤ δ1(ϵ), (3.75)

where, δ1(ϵ) > 0 with limϵ→0 δ1(ϵ) = 0. Moreover,

|D(P e
V2,Y2

∥P e
V2
Q)−D(PV2,Y2∥PV2Q)| ≤ δ2(ϵ), (3.76)

with δ2(ϵ) > 0 and limϵ→0 δ2(ϵ) = 0.

Inequality (3.76) can be seen as follows: In a first step we show that P e
V2,Y2

≪ P e
V2
Q. To

this end we assume

P e
V2
Q(v2, y2) = P e

V2
(v2)Q(y2|v2) = 0.

Then either P e
V2
(v2) = 0 and then P e

V2Y2
(v2, y2) = 0 automatically. Or Q(y2|v2) = 0 and

then

0 =Q(y2|v2) (3.77)

=
∑

v1

PV1(v1)PY2|V1V2
(y2|v1, v2)

≥
∑

v1

PV1V2(v1, v2)PY2|V1V2
(y2|v1, v2)

=
∑

v1

PV1V2Y2(v1, v2, y2)

=PV2Y2(v2, y2),

51



3. Achievable strong secrecy rate region of broadcast and interference channel

which, again, implies P e
V2Y2

(v2, y2) = 0 by definition of typical sequences, and thus P e
V2Y2

≪
P e
V2
Q. Since P e

V2Y2
≪ P e

V2
Q we have

D(P e
V2Y2

∥P e
V2
Q) (3.78)

=
∑

v2,y2

P e
V2Y2

(v2, y2) log P
e
V2Y2

(v2, y2)

−
∑

v2,y2

P e
V2Y2

(v2, y2) log P
e
V2
(v2)

−
∑

v2,y2

P e
V2Y2

(v2, y2) logQ(y2|v2)

and applying again the uniform continuity of entropy along with the properties of typical

sequences we obtain (3.76).

To finish the proof we need to show D(PV2Y2∥PV2Q) ≤ I(V1, V2) which can be derived as

follows,

D(PV2Y2∥PV2Q)

=
∑

a,b

PV2Y2(a, b) log
PV2Y2(a, b)

PV2(a)
∑

c PV1(c)PY2|V1V2
(b|c, a)

=
∑

c,a,b

PV1V2Y2(c, a, b) log

∑

c PV1V2Y2(c, a, b)
∑

c PV2(a)PV1(c)PY2|V1V2
(b|c, a)

≤
∑

c,a,b

PV1V2Y2(c, a, b) log
PV1V2Y2(c, a, b)

PV2(a)PV1(c)PY2|V1V2
(b|c, a) (3.79)

=
∑

c,a,b

PV1V2Y2(c, a, b) log
PV1V2(c, a)PY2|V1V2

(b|c, a)
PV2(a)PV1(c)PY2|V1V2

(b|c, a)

=
∑

c,a,b

PV1V2Y2(c, a, b) log
PV1V2(c, a)

PV2(a)PV1(c)

=
∑

c,a

PV1V2(c, a) log
PV1V2(c, a)

PV2(a)PV1(c)

=I(V1, V2), (3.80)

where (3.79) is by the Log-Sum-Inequality (Lemma 3.1 in [CK82]).

Combining (3.75), (3.76), (3.80), and (3.74) leads to the claim of the lemma.
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3.7.4. Proof of Lemma 9

E[D(PY2|W1
||QY2|V2

|PW1)] = E

[

log

∑J1
j=1 P (Y n

2 |V1(W1, j))

J1QY2|V2
(Y n

2 )

]

=
∑

m1,s1

1

J1M1
E

[

log

∑J1
j=1 P (Y n

2 |V1(m1, j))

J1QY2(Y
n
2 )

∣
∣
∣
∣
W1 = m1, S1 = s1

]

≤
∑

m1,s1

1

J1M1
E

[

log
P (Y n

2 |V1(m1, s1))

J1QY2(Y
n
2 )

+
J1 − 1

J1

∣
∣
∣
∣
W1 = m1, S1 = s1

]

(3.81)

≤
∑

m1,s1

1

J1M1
E

[

log
P (Y n

2 |V1(m1, s1))

J1QY2(Y
n
2 )

+ 1

∣
∣
∣
∣
W1 = m1, S1 = s1

]

≤ E

[

log

(
PY2|V1

(Y n
2 |V1)

J1Qn
Y2
(Y n

2 )
+ 1

)]

, (3.82)

where, in (3.81) we used Jensen’s inequality applied to the part of the expectation over

V1(m1, i) for i ̸= s1. The RV S1 ∈ {1, . . . , J1} is distributed uniformly.

3.7.5. Proof of Lemma 11

We prove that for the conditions (3.8) and (3.10), the cardinality of set of two messages

groups must be equal. From Fano’s inequality we have,

nϵn ≥ H(W1|W2, Y1)

= H(W1;W2, Y1)−H(W2, Y1)

= H(W1, Y1) +H(W2|W1, Y1)−H(W2, Y1)

≥ H(W1, Y1)−H(W2, Y1)

≥ H(W1) +H(Y1)− I(W1, Y1)−H(W2, Y1)

= H(W1)−H(W2|Y1)− I(W1, Y1)

We substitute H(W2|Y1) = H(W2), as well as, I(W1, Y1) ≤ ϵ1 which further yields,

H(W1) ≤ H(W2) + nϵn + ϵ1.

We haveH(W1) = nR1 andH(W2) = nR2, thus for arbitrary small ϵ we have R1 ≤ R2+ϵn.

Based symmetry we have R2 ≤ R1 + ϵn at the same time.
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3. Achievable strong secrecy rate region of broadcast and interference channel

3.7.6. Proof of Lemma 6

By definition the KL divergence can be written as:

D(P ||Q) =
∑

x

P (x) log(
P (x)

Q(x)
) ≤

∑

x

P (x) log(
1

πQ
) ≤ log(

1

πQ
), (3.83)

where πQ = min{Q(a) : Q(a) > 0}.
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4. Secrecy for diamond network with

untrusted relays

In the previous chapter, we have studied information-theoretic secrecy for different sce-

narios, including the discrete memoryless two-hop untrusted relay channel (DMURC).

We devote this chapter chiefly to the Gaussian untrusted relay channel, however, from

a cross-layer security perspective. Cross-layer design for security takes into account re-

strictions, conditions, and techniques of different communication layers and use them to

provide security. This chapter’s intention is not achieving perfect secrecy (in the Shannon

sense) but a weaker secrecy with a larger achievable rate region. We present a framework

for designing secrecy schemes for both decode-and-forward (DF) and amplify-and-forward

(AF) two-hop untrusted relay channels that ensure some pre-defined level of secrecy.

We introduce the notion of cross-layer security, where only parts of transmitted infor-

mation are protected at the physical layer (in an information-theoretical sense) against

potential eavesdropping at relay nodes. On top of the information-theoretical (or physical-

layer) security, we assume that there is an additional upper-layer scheme to provide the

desired level of secrecy, but these additional security measures are not in the scope of this

chapter (see also Section 4.3).

4.1. Background and contributions

Shamir in [Sha79] introduced the idea of secret sharing, which was well received by re-

searchers in cryptography and computer science. The idea was to distribute a secret

among different parties such that each party would not be able to reconstruct the whole

secret, without having other parties information. Similar ideas have been developed for

secure network coding by Cai et al. in [CY02], in which a combination of messages (e.g.

linear combinations) are transmitted as the coded messages to increase both reliability

and secrecy throughout the network.
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4. Secrecy for diamond network with untrusted relays

4.1.1. Related work

The work of [LMB07] introduces a security scheme for network coding, which is referred

to as algebraic security. In [LMB07] the encoded messages are a linear combination of

original messages so that they protect each other (Shannon key length). This approach

is more elaborated in an information-theoretic sense in Section 4.3. More fundamental

works in secure network coding are presented by Cai et al. in [CY02,CY11]. In [CY11],

the authors have studied network coding ideas of security utilizing information-theoretic

security techniques. Besides the network coding community, untrusted relays draw some

attention in information theory community, for example, [JKK12,HMS12] and [HY10a].

A more comprehensive overview of secure untrusted relay schemes is provided in Chapter

3.

The idea behind the cross-layer security is that only a certain proportion of the entire

data stream is information-theoretically secure with respect to each entity (in our case

relay). Building upon that, an additional upper-layer scheme is expected to provide the

required notion of secrecy. This can be achieved via schemes like network coding [LMB07]

or secrecy sharing [LK10], and in effect no parts of the entire data stream are available to

any of the relays in plain text. This way, the proposed scheme can achieve different points

on the trade-off between perfect secrecy and the performance expressed in terms of the

transmission rate.

Finding the secrecy capacity region in closed form is challenging and still an open prob-

lem, particularity for our setup. Therefore, some authors study the asymptotic behaviour

of achievable rates as certain system parameters tend to infinity [Khi04, JL06,ANDH08].

Khisti [Khi04] shows the scaling behaviour of multicast channel while the number of users

increases. Developing the results of [Khi04], the authors in [JL06] considered other trans-

mission techniques for multicast case such as beamforming, spatially white, and orthogonal

transmission.

4.1.2. Contributions

We study both DF and AF relaying strategies. In the first case, we prove simple bounds de-

scribing how much secrecy can be provided at the physical layer, and propose a framework

for designing protocols with the required properties. As for the AF strategy, we propose a

scheme providing perfect information-theoretic secrecy and analyse the problem of finding

the optimal transmit beamformer. Based on these results, we present two schemes with

partial secrecy. Building upon the works of Khisti and Jindal et al. in [Khi04,JL06] we in-

vestigate the asymptotic behaviour of the achievable secrecy rate of the broadcast channel
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4.2. System model

with different sets of legitimate relays and untrusted relays. This provides insights on the

cross-layer design problem. We list detailed contributions of this chapter in the following.

• We introduce a framework for designing cross-layer security schemes. We further

introduce a notion of secrecy as referred to as α-secrecy.

• We provide solutions that achieve α-security for the AF and DF untrusted re-

lay Gaussian channels. The design problem reduces to a convex problem using a

Charnes-Cooper transform, whereas, in a more general case it is an untraceable

mixed-integer optimization problem.

• To provide further insights into the mixed-integer problem, we study its asymptotic

behaviour in terms of increasing number of antennas and increasing number of relays.

We further consider the secrecy outage probability for some simple scenarios.

4.2. System model

We consider the downlink of a relay network consisting of K + 2 nodes: a base station

(sender) node S, a destination node D and K > 1 relay nodes, depicted in Figure 4.1. The

set of all relay nodes is denoted by K := {1, 2, . . . ,K}. The sender node S is equipped

with NT transmit antennas, whereas, each relay and the destination D have a single

antenna element. The channels from S to the relays are denoted by hk ∈ CNT , k ∈ K and

ek ∈ C, k ∈ K are used to represent the channels from the relay nodes D. Furthermore,

it is assumed that the direct link between the sender and the destination as well as the

links among the relay nodes cannot be used or do not exist. All channels are assumed

to be randomly chosen constants that are perfectly known to the sender. The entries of

vectors hk and channels ek are i.i.d. random variables drawn from the circular-symmetric

Gaussian distribution CN (0, 1). We further assume that the adversary potentially has

access to the signals received and forwarded at some relays, but cannot change relays’

operation, e.g. report false channel state information or receive transmissions from other

relays.

Taking the half-duplex constraint into account, it is assumed that the transmission from

the sender S to the relays (Phase I) and the transmission from the relays to destination

D (Phase II) are always separated (using, e.g. TDMA). In Phase I the signal received by

relay k is given by:

yk = hH
k vd+ nk, k ∈ K, (4.1)

where d ∈ C denotes the scalar transmit signal, v ∈ CNT is the transmit beamforming

vector with ||v||2 ≤ 1 and nk ∼ CN (0,σ2
n), k ∈ K is the additive Gaussian noise, which is
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4. Secrecy for diamond network with untrusted relays

assumed to have equal variance at all relays. In Phase II, with the signal transmitted by

relay k denoted by xk, the destination receives:

yD = ekx+ nD, (4.2)

where, nD ∼ CN (0,σ2
n) is the Gaussian noise at the destination. We further define e :=

[e1, . . . , eK ] and x := [x1, . . . , xK ]. The noise variables nk, k ∈ K and are assumed to

be i.i.d. distributed with variance σ2
n = 1, without loss of generality. For simplicity, we

assume unit transmit powers at all nodes. Individual power constraints at the relays are

assumed1.

k = 1

k = K

hi,j

ek

S D

k = 2

Figure 4.1.: Two-hop wireless Gaussian relay network.

4.3. Cross-layer security

In Section 3.5 we have shown that applying a precoding scheme to the independent sets

of messages can provide (weak) secrecy against untrusted relays. Building upon this

background, in this chapter, we propose a cross layer scheme that yields security. We

assume L independent streams of data denoted by d′L := (d′1, . . . , d
′
L) ∈ F ′L, where F ′

is a finite ring, to be transmitted via the K relays. We assume there exists a similar

scheme to that of Section 3.5 that protects the data against the relays. In other words,

we assume there exist L functions fl : F ′L → F , ∀l ∈ {1, . . . , L}, where F is a finite ring.

We use dl := fl(d′l) as the transmit streams. We assume that an inverse mapping at the

destination exists and the fls fulfil security conditions2.

1 If ‘fairness’ in terms of total transmit power is required, sum power constraints could be assumed.
2For an example of such a mapping we refer to Section 3.5.
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4.4. Decode-and-forward

The following conditions hold while transmitting each stream:

• The stream dl is transmitted with a rate Rl where, RSD :=
∑L

l=1Rl is the total

transmission rate from S to D.

• We transmit the stream dl via the relays in set Sl while keeping it secret from Ŝl,

with Sl ∩ Ŝl = ∅ and Sl ∪ Ŝl = K.3

The set of all streams that regard the relay k as an eavesdropper is represented by

M(k) :=
{

l : k is an eavesdropper for stream dl
}

. (4.3)

From (4.3), the total rate of the streams that are kept secret from the relay k is given by,

Ru(k) =
∑

l∈M(k)Rl.

Definition 23 (α-secrecy). Consider a transmission scheme between S and D, comprising

L physical-layer streams d1, d2, . . . , dL. If

Ru(k) ≥ αRSD ∀k ∈ K, (4.4)

for a fixed α ∈ [0, 1], the transmission is said to be α-secret for the largest α.

Remark 12. According to Definition 23, Shannon’s perfect secrecy corresponds to 1-

secrecy, in which non of the relays are able to decode any of the streams dl, ∀l ∈ {1, . . . , L}.
On the other hand, 0-secrecy implies that at least one relay receives all the streams d′Ls,

thus, all of the streams are exposed to a potential eavesdropper.

4.4. Decode-and-forward

Achieving 1-secrecy is not possible with DF relays since by definition DF relays have to

be able to decode a message before forwarding it. However, the α in α-secrecy can be

made arbitrarily close to 1 by using an appropriate number of relay nodes and transmit

antennas at the base station, as stated by the following proposition.

Proposition 1. Assume that NT ≥ K. Then, α-secrecy with α = αmax = 1 − 1
K is

achievable with a Decode-and-Forward scheme, while no DF scheme can achieve α > αmax.

Proof. Achievability is proven by using Zero-Forcing (ZF) beamforming in Phase I of the

transmission (from the BS to the relays), with L = K different data streams and TDMA

3The range of the cardinalities of the sets Sl and Ŝl in general determined by f , however, we do not
specify any rule at this point.
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4. Secrecy for diamond network with untrusted relays

multiplexing among the streams. In each stream dl, all relays k ̸= l are treated as eaves-

droppers, and the mutual information between the base station and these eavesdroppers

is 0 by the application of ZF. Thus, using appropriate time slot durations (among the

streams and for both phases of each stream), rates R1 = R2 = . . . = RK = 1
KRSD with

Ru(k) = 1− 1
K , k ∈ K can be obtained.

On the other hand, α > αmax = 1− 1
K would imply that each relay can decode less than

1
KRSD, thus, there is at least one data stream Ri which cannot be decoded by any relay.

This results in a contradiction which completes the proof.

When NT < K, in general we cannot achieve α-secrecy with α = 1 − 1
K , however, in

the following Proposition we formulated some simple bounds.

Proposition 2. Assume that NT < K. Using DF-relaying, the largest achievable secrecy

factor α is lower bounded by NT−1
K and upper bounded by 1− 1

K .

Sketch of the proof. According to the definition, we conclude that to achieve the best α,

we must have Rl = R ∀l. This infers the following:

Ru(k) ≥ αRSD

∑

l∈M(k)

Rl ≥ α
K
∑

l=1

Rl

|M(k)| ≥ αK

|M(k)|
K

≥ α,

To maximize the value for α we need to maximize |M(k)|, i. e. the number of the streams

that consider each relay eavesdropper. Using ZF results in nullifying only NT − 1 relays

for each stream, from which the secrecy factor α = NT−1
K follows. As for the upper bound,

the result from the proof of Proposition 1 holds.

The general optimization problem for DF transmission with α-secrecy constraints could

be formulated as in the following. Given network topology, channels, and the desired

optimization goal (maximize RSD given α or maximize α given rate requirements), find

optimal values of the number of data streams L as well as the corresponding transmit

beamforming vectors, subsets of forwarding nodes and power allocations in each stream.

Such a general problem seems analytically intractable; we, therefore, propose a possible

design for creating DF-based α-secret protocols and consider two specific ones of them in

more detail.
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4.4. Decode-and-forward

Consider L data streams, multiplexed using time-sharing, such that the time assigned to

data stream l is equal to τl and
∑L

l=1 τl = 1. Furthermore, each stream is again subdivided

into Phase I (transmission from the sender S to the relays) and Phase II (transmission

from the relays to the destination D), with time durations τ (1)l and τ (2)l , respectively, such

that τ (1)l + τ (2)l = τl.

Now, consider a given stream dl. We define the set Sl ⊂ K as the intended receivers of

the data stream which are supposed to decode it, and the set Ŝl = K \Sl as the set of the

relay nodes which are treated as eavesdroppers. Let the transmit beamformer in Phase

I be denoted as vl. Thus, finding the optimal transmit beamformer corresponds to the

multicast problem with multiple eavesdroppers [MKSS12,LM11]:

R(1)
l = τ (1)l log

⎛

⎜
⎝max

vl

min
i∈Sl

j∈Ŝl

1 + hH
i vlv

H
l hi

1 + gH
j vlv

H
l gj

⎞

⎟
⎠

+

(4.5)

where, we define gj , j ∈ {1, . . . , |Ŝl|} as the channels of the relays that belong to Ŝl and

(a)+ := max(a, 0). Note that the problem can be solved efficiently via a convex relaxation

and semidefinite programming. In Phase II since all relays k ∈ Sl are supposed to have

decoded the transmitted data, the signal transmitted by relay k is xk = rkldl, k ∈ Sl. The

achievable rate is therefore equal to:

R(2)
l = τ (2)l max

rl
log(1 + eHl rlr

H
l el), (4.6)

with rl := (rkl)k∈Sl
and el := (ek)k∈Sl

, and ||rl||∞ ≤ 1 under individual power constraints.

Note that the above optimizations in (4.5) and (4.6) can be done independently for each

data stream dl, provided that sets Sl and Ŝl are fixed. By appropriately choosing τ (i)l , l ∈
{1, 2, . . . , L}, i ∈ {1, 2}, we can obtain R(1)

l = R(2)
l = Rl and R1 = R2 = . . . = RL.

Furthermore, we require that sets Sl and Ŝl are chosen in such a way that |M(1)| =

|M(2)| = . . . = |M(K)|. Basing on the proposed design, we consider two protocols.

4.4.1. Partially-secure decode-and-forward I (PSDF1)

We assume L = 2 streams, and the set of all relays is assumed to be partitioned into

two subsets of similar size. In general, finding a good partition is a complex problem, for

simplicity we assume the following rule:

S1 = {1, . . . , ⌊K/2⌋}, Ŝ1 = {⌊K/2⌋ + 1, . . . ,K}

S2 = Ŝ1, Ŝ2 = S1
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4. Secrecy for diamond network with untrusted relays

From the above, it follows that M(k) = {l}, k ∈ Ŝl, l = 1, 2..

Observation 1. Protocol PSDF1 is 0.5-secret.
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Figure 4.2.: Transmission rate as a function of the number of relays K for Scheme PSDF1
for achieving 0.5-secrecy.

In Figure 4.2, the rate achievable by protocol PSDF1 with 0.5-secrecy is presented as

the function of the number or relays in the network. We can observe that, for a given

number of transmit antennas NT at the sender the transmission rate initially increases

and assumes its maximum value for the number of relays K approximately equal to the

number of antennas NT , and subsequently it falls. This interesting behaviour is caused

by the fact that the number of resolvable beams is essentially equal to the number of

transmit antennas; if we have more relays than antennas then it is difficult to direct the

energy towards the intended receivers and away from the eavesdroppers at the same time.

4.4.2. Partially-secure decode-and-forward II (PSDF2)

In scheme PSDF2, we have L = K so that the number of streams is equal to the number

of relays. An additional parameter nev < K specifies the number of eavesdroppers per

stream. The sets Sl and Ŝl are constructed using the following “circular shift” rule such
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4.5. Amplify-and-forward

that |Sl| = K − nev and |Ŝl| = nev:

Sl = {1, . . . , l − nev − 1, l, . . . ,min(K + l − nev − 1,K)}

Ŝl = {max(1, l − nev), . . . , l − 1,K + l − nev, . . . ,K}

With this construction, we have |M(k)| = nev, k ∈ K.

Observation 2. Protocol PSDF2 is nev

K -secret.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

secrecy factor α

ra
te

 R

 

 
K=2
K=3
K=4
K=6
K=8
K=10

Figure 4.3.: Transmission rate as a function of the secrecy factor α for Scheme PSDF2.

In Figure 4.3 we illustrate the performance of PSDF2, with the number of antennas

NT equal to the number of relays K. It can be seen that although, as expected, the

transmission rate decreases when the secrecy requirement rises, α-secrecy with α values

up to approximately 0.7-0.8 can be achieved with virtually no performance loss, compared

to the of transmission insecure schemes – especially if the number of transmit antennas is

sufficiently high. Combining such transmission with an appropriate upper-layer security

protocol, this shows that secrecy can be achieved almost “for free”.

4.5. Amplify-and-forward

We introduce three schemes for an AF setup to obtain different α-secrecy levels. The

first scheme provides 1-secrecy and includes the optimum transmit beamforming problem.

63



4. Secrecy for diamond network with untrusted relays

Further, It serves as the basis for two other approaches to design an α-secret (α < 1)

system.

4.5.1. Secure amplify-and-forward (SAF)

Assume a single data stream d, such that the signal received at the relays is expressed in

the vector notation as:

y = Hvd+ n, (4.7)

with y := [y1, y2, . . . , yK ]. H := [h1,h2, . . . ,hK ]H and n := [n1, n2, . . . , nK ] as the noise

vector.

Each relay is subsequently supposed to forward the received signal by multiplying it

with factor fk. Now, the signal received by the destination D is given as

yD = eHFy + nD = eHFHvd+ eHFn+ nD, (4.8)

where we define the diagonal forwarding matrix F := Diag[f1, f2, . . . , fK ]. Note that no

data communication between relays is required as each relay k forwards only its received

signal yk. The forwarding factors fk should be in general determined according to the

channel states hk, k ∈ K and ek, k ∈ K, which may require exchanging this values between

the relays or with some designated entity. Joint data processing by the relays, however, is

not considered. According to (4.8), the signal-to-noise ratio (SNR) at the destination is

equal to

SNRD =
|eHFHv|2

1 + ∥eHF∥22
, (4.9)

in which, without loss of generality, unit noise power and unit transmit power is considered.

On the other hand, if a relay k attempts to decode the data stream individually, the

achieved SNR is given by

SNRk = |hH
k v|2. (4.10)

Using the above, we conclude that the following rate can be achieved with perfect secrecy

(i.e. we have 1-secrecy):

RSAF = max
v,F

[log(1 + SNRD)− log(1 + max
k∈K

SNRk)]
+ (4.11)
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4.5. Amplify-and-forward

Optimum transmit beamformer and relay forwarding factors

After substituting (4.10) and (4.9) into (4.11) and dropping the log function, the optimal

beamformer and relay forwarding matrix are given by the solution of

max
v,F

min
k

1 + ||FHe||22 + |eHFHv|2

(1 + ||FHe||22)(1 + |hH
k v|2)

(4.12)

s.t. ∥v∥2 ≤ 1,

|fk|2 ≤
1

|hkv|2 + 1
, k ∈ K,

where the constraints on fk result from individual power constraints at the relays.

The problem above is difficult to solve jointly for F and v. Therefore, we propose to

solve the problem in an iterative fashion where in each iteration we solve the problem with

either F or v fixed.

First, assume that the forwarding matrix F is fixed. With further simplification and

variable change we obtain

max
v

min
k

1 + ζeHFHvvHHHFHe

1 + |hH
k v|2

(4.13)

s.t. vHv ≤ 1,

in which ζ = 1/(1 + eHFFHe).

In order to solve it numerically we can reformulate it using Charnes-Cooper transfor-

mation [CC62,LM11].

Proposition 3. Optimization problem (4.13) is equivalent to:

min
W,ϑ,µ

ϑ (4.14)

s.t. µ+ hH
k Whk ≤ ϑ, ∀k ∈ K

µ+ ζeHFHWHHFHe = 1,

trace[W] ≤ µ,

µ > 0,W ≽ 0,

where W := µvvH and µ > 0.

Based on the results in [LM11] the rank-1 constraint for W is fulfilled at the optimum

point. The proof is similar to the one provided by [LM11]. Note that the above problem

is convex and can be solved efficiently using semi-definite programming.
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4. Secrecy for diamond network with untrusted relays

We proceed by considering the problem (4.12) with fixed v. The problem (4.12) with v

as a given fixed parameter is not trivial. We propose to use maximum transmit power at

each relay and phases to be aligned at the destination, such that

fk = ejφk/
√

|hH
k v|2 + 1 (4.15)

where φk = − arg(e∗kh
H
k v). Numerical experiments have shown that in most cases iterating

(4.14) and (4.15) converges after one to three iterations, even if no specific monotonicity

has been observed.
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Figure 4.4.: Transmission rate as a function of the number of relays K for scheme SAF.

In Figure 4.4 we show that the rate achieved by Scheme SAF (which guarantees 1-

secrecy), increases with the number of relays. In order to achieve the best possible per-

formance for a given number of relays K, the number of transmit antennas NT should be

at least at the order of K.

4.5.2. Partially-secure amplify-and-forward I (PSAF1)

In this approach we transmit two streams from sender S to destination D in a TDMA fash-

ion: stream d1 at rate RSAF and stream d2 at rate Rc. RSAF is an achievable information-

theoretically secure (1-secret) rate (4.11), and Rc = maxv,F log(1+SNRD) is a non-secure
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4.5. Amplify-and-forward

achievable transmission rate (0-secret scheme). The overall rate is

RPSAF1 = τ1Rc + τ2RSAF ≥ RSAF

in which τ1+ τ2 = 1. Therefore, by appropriately choosing the time sharing factors τ1 and

τ2, we can obtain a higher transmission rate than with Scheme SAF, at the expense of a

decreased secrecy coefficient α. The secrecy parameter α becomes

α =
τ1Rc

τ1Rc + τ2RSAF
.

Note that under the assumption that τ1Rc = τ2RSAF, the specific design for an upper-layer

security scheme proposed in Section 4.3 can be used on top of Scheme PSAF1 to obtain

perfect secrecy.

4.5.3. Partially-secure amplify-and-forward II (PSAF2)

Another method to achieve α-secret communication using multiple relays consists again

in using L data streams, d1, d2, . . . , dL. In each stream l, we define only the subset of

users Ŝl ⊂ K as the eavesdroppers of the stream. Apart from that, the transmission as

in scheme SAF is performed. By carefully constructing the sets Ŝl, we can obtain the

desired levels of security. The general principle adopted in this family of protocols follows

the approach considered when designing the DF schemes in Section 4.4.

Since in stream l the nodes k ∈ Ŝl are considered to be eavesdroppers, the beamformer

optimization problem to compute transmit vector vl (assuming fixed F) becomes

max
vl

min
k∈Ŝl

1 + eHFFHe+ |eHFHvl|2

(1 + eHFFHe)(1 + |hH
k vl|2)

(4.16)

s.t. vH
l vl ≤ 1.

Remark 13. Note that in general the optimization involves selecting optimal subsets Ŝl.The

problem is a mixed integer programming, therefore some closed-form solutions are unlikely

to exist. However, a solution of the problem for given subsets Ŝl can be reduced to solving

(4.14).
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Figure 4.5.: Transmission rate as a function of the number of relays K for schemes PSAF1
and PSAF2 with 0.5-secrecy, compared to SAF with 1-secrecy.

In Figure 4.5, we present the performance results obtained for Schemes PSAF1 and

PSAF2, both configured to achieve 0.5-secrecy. As for the scheme PSAF2, we used L = 2

streams and a simple subset construction rule from Scheme PSDF1.

4.6. Asymptotic analysis

As discussed in previous sections, obtaining the optimal solution for (4.5) involves mixed

integer programming, thus, it is difficult. Instead we study the asymptotic behaviour of

(4.5) to gain some insights on the number of relays that are regarded as eavesdropper, i.e.

|Ŝl| and the number of relays that are considered to be legitimate receiver of the message,

i.e. |Sl| and the number of transmit antenna NT . In more detail, we analyse the following

cases:

• Increasing |Sl| while keeping NT and |Ŝl| constant4.

• Increasing |Ŝl| for some fixed NT and |Sl|.

• Increasing number of antennas NT while keeping |Sl| and |Ŝl| fixed.

4Note that in this section we do not fix the total number of the relays K.
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4.6. Asymptotic analysis

We further present some basic results on outage probability for the following cases: For

NT = 1 with multiple legitimate users (|Sl| > 1) and eavesdroppers (|Ŝl| > 1) and for

NT > 1 when |Sl| = 1 and |Ŝl| = 1. The achievable secrecy rate is given by [KW10]:

Rsc = log

⎛

⎜
⎝ max

trace[Σ]≤1
Σ≽0

min
hi∈Sl

gj∈Ŝl

1 + hH
i Σhi

1 + gH
j Σgj

⎞

⎟
⎠ (4.17)

where Σ ∈ CNT×NT is the transmit covariance matrix and by gj we refer to the relay

channels that belong to the eavesdropper set Ŝl.

We further define NE := |Ŝl| and NL := |Sl|.

Remark 14. According to [SU07], at the optimum point we either transmit with full power

(trace[Σ] = 1) or do not transmit at all (trace[Σ] = 0, Rsc = 0). The achievable secrecy

rate, therefore, can be equivalently represented as

Rsc = max(0, R̃sc)

with

R̃sc ! log

⎛

⎝ max
trace[Σ]=1

Σ≽0

min
i,j

1 + hH
i Σhi

1 + gH
j Σgj

⎞

⎠ . (4.18)

Our goal is to provide some insights into the asymptotic behaviour of R̃sc knowing that

when the number of users NL and/or number of eavesdroppers NE is large, R̃sc is expected

to be negative which corresponds to the optimal secrecy rate Rsc equal to 0. However,

the scaling of R̃sc allows us to analyse the order at which Rsc decreases to 0. Finally, we

discuss the application of the presented results to find the bounds on the probability of

obtaining a positive secrecy rate, i.e. Pr(Rsc > 0).

4.6.1. Bounds on the achievable secrecy rate

In this section we develop some bounds for R̃sc that are used for our scaling analysis.

Lower bound

For any Σ ≽ 0 with trace[Σ] ≤ 1, we have

R̃sc ≥ min
i,j

{

log(1 + hH
i Σhi)− log(1 + gH

j Σgj)
}

. (4.19)
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4. Secrecy for diamond network with untrusted relays

In particular, choosing Σ = 1
NT

I yields

R̃sc ≥ log(1 +
1

NT
min
i

||hi||22)− log(1 +
1

NT
max

j
||gj ||22). (4.20)

This bound basically uses the definition of maxΣ in (4.18).

Upper bounds

An examination of the closed-form solution given by [SU07] for the case of a single

user and a single eavesdropper together with the general inequality maxxminy f(x, y) ≤
miny maxx f(x, y), shows that

R̃sc ≤ log(min
i,j

λmax[B
−1/2
j AiB

−1/2
j ])

≤ log(min
i,j

λmax[B
−1
j ]λmax[Ai]), (4.21)

where Ai ! I + hih
H
i and Bj ! I + gjg

H
j . We substitute the eigenvalue decomposition

(EVD) hih
H
i := Uhi

Λhi
UH

hi
, which yields:

Ai = I+Uhi
Λhi

UH
hi

= Uhi
(I+Λhi

)UH
hi
. (4.22)

Since hih
H
i is a rank one matrix Λhi

has only one non-zero element, which is ∥hi∥22 ≥ 0.

Therefore, from (4.22) we realize that the largest eigenvalue of Ai is λmax[Ai] = 1+∥hi∥22.
Using the same procedure for B−1

j , it yields λmax[B
−1
j ] = 1. Substituting λmax[Ai] and

λmax[B
−1
j ] in (4.21), we obtain

R̃sc ≤ log(min
i
{1 + ∥hi∥22}). (4.23)

Another family of bounds can be obtained from

max
Σ

{f(Σ)− g(Σ)} ≤ max
Σ

f(Σ)−min
Σ

g(Σ).

This yields

R̃sc ≤ Rmc −Rev (4.24)

where we defined Rmc ! maxΣmini log(1+hH
i Σhi) and Rev ! minΣmaxj log(1+gH

j Σgj)

with Σ ≽ 0 and trace[Σ] = 1. Rmc can be interpreted as the multicast rate in a system
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4.6. Asymptotic analysis

without eavesdroppers. For Rmc we clearly have [JL06]

Rmc ≤ log(1 +
1

NL
λmax[HHH ]) (4.25)

in which H = [h1h2 . . .hNL
] ∈ CNT×NL .

As far as Rev is concerned we obtain the following lower bound

Rev ≥ log(1 +
1

NE
λmin[GGH ]), (4.26)

where G = [g1g2 . . . gNE
] ∈ CNT×NE . The proof is provided in Appendix 4.8.1.

4.6.2. Scaling of achievable secrecy rate

The objective of this section is to provide insights on scaling behavior of the expected

value of R̃sc using the bounds introduced in the previous section. Since

E[Rsc] ≥ E[R̃sc] and E[Rsc] ≥ 0,

we have E[Rsc] ≥ max(E[R̃sc], 0). Therefore, max(E[R̃sc], 0) is a lower bound for E[Rsc].

In the following, we consider three cases. In each of these, one parameter, e.g. number

of users, eavesdroppers, or antennas, is increasing while the others remain constant.

Increasing legitimate users for a constant number of eavesdroppers and antennas

Proposition 4. Let the number of eavesdroppers and antennas be arbitrary but fixed.

Then, as NL → ∞, E[R̃sc] can be lower-bounded by c1(
1

NL
)

1
NT − c2, for some appropriate

constants c1, c2 > 0.

Remark 15. According the Proposition 4 E[R̃sc] scales at least as Ω(1).

The standard approach to prove the result is to apply the extreme value theory to

(4.17) directly. The alternative approach is to exploit the lower bound (4.19) and the

upper bound (4.23).

Before starting with the proof of Proposition 4, we present the following lemma that is

used in the proof.

Lemma 14. E[log(1 + 1
NT

maxj ||gj ||22)] is upper bounded by log(1 +NE).

The proof is deferred to Appendix 4.8.2.

Proof. We first consider the lower bound in (4.20). From Lemma 14, we conclude that the

lower bound scales as (NT !)
1

NT (( 1
NL

)
1

NT )− log(1+NE), where the scaling of the first part
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4. Secrecy for diamond network with untrusted relays

is given by [ANDH08]. Now, choosing c1 = (NT !)
1

NT and c2 = log(1+NE) and considering

that limNL→∞( 1
NL

)
1

NT = 0 completes the proof.
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Figure 4.6.: Scaling of R̃sc as the function of number of legitimate users for NT = 2 and
NE = 2: average values of R̃sc in the linear axes.

In Figure 4.6, the average rate of R̃sc is plotted for 2 transmit antennas and 2 eaves-

droppers and in Figure 4.7 for NT = 8 and NE = 8. In order to better illustrate scaling

behaviour we leverage the fact that if R̃sc scales as
(

1
NL

) 1
NT +C, then log(R̃sc−C) is pro-

portional to − 1
NT

logNL. Therefore, a double logarithmic plot of log(R̃sc−C) as a function

of logNL shows asymptotically a straight line with the slope − 1
NT

, which is presented in

Figure 4.7.

Increasing eavesdroppers, constant legitimate users and antennas

Proposition 5. If the number of eavesdroppers NE increase and the number of legitimate

users and antennas remain constant, then E[R̃sc] scales as Ω(log(logNE)−1).

Proof. Reasoning along similar lines as in the proof of Proposition 4, we analyze the

scaling rate of (4.20) as the lower bound. We proceed with applying some results in

extreme value theory on the log(1+ 1
NT

maxj ||gj ||22). Theorem 8.3.2 in [ABN92] indicates
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Figure 4.7.: Scaling of R̃sc as the function of number of legitimate users for NT = 8 and
NE = 8: R̃sc − C in double-logarithmic axes together with the scaling terms.

that if F (x) is given as the probability distribution of ||gj ||22, then E[maxj∈{1,...,NE} ||gj ||22]
scales according to

F−1(1− 1

NE
). (4.27)

Therefore, E[ 1
NT

maxj ||gj ||22] approximately scales as log(NE). We conclude that as NE →
∞, R̃sc can be lower-bounded by C − log(1 + logNE) for some constant C, which results

in a scaling law of Ω(− log logNE).

The average values of R̃sc together with the corresponding scaling laws for this study

case are presented in Figure 4.8.

Increasing number of transmit antennas, constant legitimate users and eavesdroppers

Proposition 6. E[R̃sc] scales as O(logNT ) while the number of antennas NT increases

and NE and NL are constants.
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Figure 4.8.: Scaling of R̃sc as a function of the number of eavesdroppers, together with the
scaling term.

Proof. We apply the upper bound introduced in (4.23). The minimization in (4.23) is on

a limited number of random variables (since N is constant), therefore, the scaling of

min
i
{1 + ∥hi∥22}

is asymptotically equal to

{1 + ∥h∥22}

for any h ∈ {h1,h2, ...,hNL
}.

When NT grows larger, based on law of large numbers, we have limNT→∞
∥h∥22
NT

= 1.

Thus, we infer the scaling rate of λmax[A] is (NT ).

Combining the results we conclude the proof with the achievable secrecy rate scaling at

O(log(NT )).

The average values of R̃sc along with the corresponding scaling law for this study case

is depicted in Figure 4.9.
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4.6.3. Outage probability

As discussed in the previous sections, under unfavourable channel conditions there may be

no positive rate achievable in the system, an event which is known as outage. Note that

Rsc ≥ 0 is a random variable which has a mixed type distribution with Pr(Rsc = 0) > 0

while Pr(Rsc = r) = 0, ∀r > 0. The performance measure of interest is the outage

probability defined as Pr(Rsc = 0). As a complementary measure we sometimes use the

probability of obtaining a positive rate Pr(Rsc > 0) = 1− Pr(Rsc = 0).

First, we present outage probability for two simple special cases.

Single transmit antenna

In the case of NT = 1, we have

Pr(Rsc = 0) = 1− Pr(Rsc > 0)

= 1− Pr
(

min
i,j

1 + |hi|2

1 + |gj |2
> 1

)

= 1− Pr(min
i

|hi|2 > max
j

|gj |2).
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Single legitimate user, single eavesdropper

Since in this special case the minimum operator does not appear, we can make use of the

closed-form solution from [SU07]. This leads directly to

Pr(Rsc = 0) = Pr(λmax[B
−1/2AB−1/2] ≤ 1)

= Pr(λmax[B
−1A] ≤ 1)

with A = I + hhH and B = I + ggH . However, directly finding the spectral radius is

difficult.

In the following, we provide some bounds on the probability of positive rate in the

general case. Since there holds Pr(Rsc = 0) = Pr(R̃sc ≤ 0), we can use the bounds on

the R̃sc introduced in Section 4.6.1. In particular, for any lower bound L(R̃sc) and upper

bound U(R̃sc) such that L(R̃sc) ≤ R̃sc ≤ U(R̃sc), we have

Pr(U(R̃sc) ≤ 0) ≤ Pr(R̃sc ≤ 0) ≤ Pr(L(R̃sc) ≤ 0).

Therefore, using (4.20) we obtain the following upper bound

Pr(Rsc = 0) = 1− Pr(R̃sc > 0)

≤ 1− Pr(min
i

||hi||2 > max
j

||gj ||2) (4.28)

where the result follows analogously as in the single antenna special case. As for the lower

bound, considering (4.24) with (4.25) and (4.26) there holds

Pr(Rsc = 0) = Pr(R̃sc ≤ 0)

≥ Pr
(1 + 1

NL
λmax[HHH ]

1 + 1
NE

λmin[GGH ]
≤ 1

)

= Pr
( 1

NL
λmax[HHH ] ≤ 1

NE
λmin[GGH ]

)

.

Although exact computation of extreme eigenvalues is challenging, the presented bounds

can be applied to characterizing conditions on outage probability in the large system limit,

when NL, NE , NT → ∞. The outage probability and the upper bound based on (4.28) are

plotted in Figure 4.10. The bounds are independent of the number of transmit antennas

and, in consequence, are relatively tight only for low NT .
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4.7. Conclusions

A framework for designing cross-layer security schemes has been developed. We proposed

a new measure of security, referred to as α-secrecy. The idea is to use information-theoretic

secrecy in conjunction with a higher layer scheme, e.g. secure network coding, to provide

security. The resulting secrecy scheme does not necessarily fulfil the Shannon’s perfect

secrecy, but it provides higher transmission rates. We have studied two main scenarios

with DF relays and AF relays.

In the case of DF relays, we proposed two schemes that can achieve any arbitrary

0 ≤ α < 1. For the case of AF relays, we proposed an optimization problem that achieves

α = 1. A partially secure scheme is suggested that can be tuned to obtain a given α.

The initial problem for AF relays results in a non-convex optimization problem, which is

tackled using Charnes-Cooper transformation. For the case of partially secure scheme, we

use beamforming to send each pre-coded message to some certain relays while assuming

the rest of the relays as eavesdroppers. The pre-coding uses a simple higher layer scheme.

The resulting optimization problem is of mixed-integer type, thus, difficult to solve.

To gain insight into the optimization problem, we study its asymptotic behaviour. We

considered three cases, namely: Increasing number of legitimate users while the number of

antennas and eavesdroppers remain constant, Increasing number of eavesdroppers while
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the number of antennas and legitimate users remain constant, and increasing number

of antennas while the total number of users remain constant. We have provided some

lowerbound and upperbound on the original problem since it is too complicated to study

the original problem directly.

Future work

A cross-layer design that combines the provided schemes is worth investigating in an

information-theoretic way. In Section 3.5 an initial attempt has been proposed, however,

more detailed studies are required. The definition of α-secrecy, although, provides some

flexibility in designing secure systems, does not provide a practical meaning in the sense

of information theoretic secrecy.

4.8. Appendix

4.8.1. Proof of inequality (4.26)

The goal is to show that

min
Σ

max
j

(1 + gH
j Σgj) ≥ (1 +

1

NE
λmin[GGH)]

where G is defined in Section III. First note

min
Σ

max
j

(1 + gH
j Σgj) ≥ min

Σ

1

NE

∑

j

(1 + gH
j Σgj) (4.29)

Now we prove the bound by solving the problem

min
trace[Σ]=1

Σ≽0

1

NE

∑

j

(1 + gH
j Σgj).

This can be reformulated as

min
trace[Σ]=1

Σ≽0

1 +
1

NE
trace[

∑

j

gH
j Σgj]

= min
trace[Σ]=1

Σ≽0

1 +
1

NE
trace[GHΣG] (4.30)

= min
trace[Σ]=1

Σ≽0

1 +
1

NE
trace[ΣGGH ]. (4.31)
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We rewrite the problem as

min
trace[Σ]=1

Σ≽0

1 +
1

NE
trace[Σ

′
Λ] (4.32)

where UGΛUH
G and Σ

′
! UH

GΣUG is the eigenvalue decomposition (EVD) of GGH . We

use trace[AB] = trace[BA] to achieve (4.32) from (4.30). The problem can be simplified

to a scalar one,

1 +
1

NE
min

∑
i σ

′
ii=1

∑

i

λiσ
′

ii

≥ 1 +
1

NE
min
i

λi

∑

i

σ
′

ii

= 1 +
1

NE
min
i

λi

where λis and σ
′

iis are diagonal elements of Λ and Σ
′
, respectively. Since this holds for

any Σ, the proof is complete.

4.8.2. Proof of Lemma 14

Using Jensen’s inequality, we have

E[log(1 +
1

NT
max

j
||gj ||22)] ≤ log(1 +

1

NT
E[max

j
||gj ||22]). (4.33)

In the following we determine an upper bound for E[maxj ||gj ||22].

The variables ||gj ||22 are i.i.d. chi-square random variables with NT degrees of freedom

and let fχ2,L(t) and Fχ2,L(t) denote their probability density function (pdf) and the cumu-

lative distribution function (cdf), respectively. Now the expected value of ||gj ||22 is given

by

E[||gj ||22] =
∫

tfχ2,L(t)dt = NT , ∀j ∈ {1, . . . NE}.

Consider τ ! maxj ||gj ||22 and note that its cdf is given by Fτ (t) = FNE

χ2,L(t) and its pdf

can be expressed as fτ (f) = NEF
NE−1
χ2,L (t)fχ2,L(t). Thus, the expected value of τ is also

79



4. Secrecy for diamond network with untrusted relays

bounded because

E[τ ] =

∫

tfτ (t)dt = NE

∫

tFNE−1
χ2,L (t)fχ2,L(t)dt

≤ NE

∫

tfχ2,L(t)dt = NENT , (4.34)

where the inequality follows from Fχ2,L(t) ≤ 1. We substitute (4.34) in (4.33) and obtain

the upper bound log(1 +NE).
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5. Anomaly detection algorithms for wireless

sensor networks

A wireless network’s security can be seized by means of two different types of attacks:

passive attacks and active attacks. So far, in Part I of this dissertation, we have considered

the passive attacks, where an adversary eavesdroppers the data. In Part II, on the other

hand, we focus on developing some techniques that deal with active security threats in a

wireless network. In this chapter, we consider the problem of jamming detection, whereas

in the next chapter we deal with distributed implementation of some detection algorithms.

Combating an active attack in the wireless sensor networks leads to many important

challenges, however, the first challenge is to be able to reliably detect the presence of

an intruder. A proper anomaly detection algorithm for a wireless sensor network has

to address the following problems in addition to detecting an anomaly. The first one is

implementing the algorithms on geographically distributed nodes such that they are robust

and scalable to the network’s size, which is the topic of the next chapter. The second issue

is power constraint at each node, which is studied in this chapter. This problem arises in

many practical scenarios where the sensors are operating on batteries.

This chapter chiefly focuses on the development of the multi-objective detection algo-

rithms. As for the power restriction, we study the fundamental trade-off between detection

performance and power consumption. The results in this chapter are presented in the con-

text of a cognitive radio (CR) scenario, because of their vulnerabilities to jamming attacks.

5.1. Background and contribution

Cognitive radio systems are designed to tackle the resource dearth in wireless communi-

cation systems by presenting a new approach to spectrum efficiency. Potential efficiency

gain stem from the dynamic spectrum use as opposed to traditional fixed spectrum assign-

ments. Traditionally the spectrum is divided into licensed sections and unlicensed ones.

The unlicensed spectrum is overwhelmingly occupied by different users, which caused a

huge spectrum shortage. The licensed spectrum, which is solely used by the primary users

(PU), is not fully occupied by the PUs at all times and all frequencies. In order to use the
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spectrum more efficiently, a set of users, called the secondary users (SU), is supposed to ex-

ploit the empty time-frequency spots in the licensed spectrum. The empty time-frequency

spots appear random in both time and frequency. Although we might be able to learn

the pattern of appearance of empty spots and predict them, to avoid any interference to

the PUs, the SUs perform spectrum sensing. Spectrum sensing is a detection technique

in which the SUs execute constantly to detect the presence of the PUs. Spectrum sensing

legalizes the SUs to scan the spectrum, consequently, to listen to the PU [Hay05], [SHT04].

Even though this feature of CR systems enables the possibility of utilizing the spectrum

in a more efficient manner, it may also introduce security vulnerabilities.

5.1.1. Related work

Researchers present different approaches for spectrum sensing. For instance, energy de-

tection, matched-filter, and cyclostationarity-based detection are presented respectively in

[2], [CTB06], and [ALLP12]. Among those, energy detection is a long-established method

since its performance is independent of the PU signal structure. In order to increase the

accuracy and robustness of the energy detector, the authors in [GS05] propose a coop-

erative energy detection. They apply hard decision rule, an “OR” fusion rule [GS05],

whereas in general the soft decision rules outperform the hard decision rules [VKP05].

The common assumption when applying energy detector is that the observation signals

are independent, however, for applications related to the wireless channel that data is

aggregated via multiple correlated nodes, this assumption is not accurate enough. In the

case of spatially correlated signals, the authors in [LZZQ11] show that the weighted energy

detector is optimal for the case that one hypothesis has correlated observations while the

other hypothesis has independent signals (null hypothesis). Moreover, [LZZQ11] does not

present the probability distribution of the weighted energy detector test statistic. Thus,

no analytical results on the performance are established.

As far as security is concerned, one may note that certain peculiarities of CR networks

make them quite vulnerable not only to the conventional threats targeted to wireless

communications but also to the specific type of attacks that are tailored to CR networks

[ATV+12]. One of the most common attacks that could target CR networks is jamming.

Jamming can be performed in different forms, for instance, constant jamming, random

jamming, reactive jamming, and so on, which can target both PU and the SUs [ATV+12].

There are also more intelligently designed jammers that deceive the SUs by mimicking the

signal characteristics of the PU to force the SUs to vacate the spectrum [HS14]. This is

known as primary user emulation attacks (PUEA) in [HS14,XS14].
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5.1.2. Results and contributions

In this chapter, we consider two of the main issues of the SUs, namely spectrum sensing

and jamming detection, jointly. In order to model the two problems simultaneously, we

adopt multiple hypothesis testing with four cases. Building upon the work of [LZZQ11], we

further derive the optimal detector when both of the hypotheses in each test are consists

of correlated signals. Furthermore, we derive the exact and the asymptotic probability of

detection of the optimal detector. We apply the generalized likelihood ratio test (GLRT)

for practical scenarios where either the power of the jammer is unknown or the noise

covariance matrix is unknown. Although there are similarities in the assumptions of this

work and the research on PUEA, our work does not fall into that category owing to its

different approach and objective.

We summarize the contributions of this chapter as in the following.

• We address the problem of joint detection of the jammer and the PU in the context

of a multiple hypothesis testing problem and analyse the performance.

• We derive the exact and the asymptotic probability distributions of the test statistic.

For the former, we present the cumulative distribution function (CDF) in terms of

Meijer’s G function.

• We present a correlated GLRT solution for the practical scenarios of unknown jam-

mer’s power and unknown noise’s power.

• We study the problem of node placement in the context of spectrum sensing perfor-

mance with limited power consumption.

• The node placement results in a non-convex optimization problem. Two heuristic

methods are proposed to tackle the problem.

5.2. Problem statement

We consider a pair of PU transceivers communicating in a licensed frequency band and

K SUs performing cooperative spectrum sensing. Furthermore, there is a jammer which

sends jamming signals in random intervals to interrupt the PU and the SUs as in Figure

5.1. The main goal of the SUs is to determine the presence of the PU and discriminate

it from the jammer. We assume the SUs send the data to a fusion center (FC) for the

decision-making process. The SUs are desired to distinguish the following spectrum states

out of the observation signal: the channel is idle, only the PU is present, only the jammer

is present, and both the PU and the jammer are present. The sensed signal at the ith SU
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FC
g1

h1

SU Jammer

PU

ν1

ν2

νK

h2

hK

g2
gK

Figure 5.1.: The system setup with K SUs, a PU, a Jammer, and a FC to make the
decision.

node, i ∈ {1, . . . ,K}, under four hypotheses at the nth time instant, n ∈ {1, . . . , N}, is

Ho : xi(n) = νi(n)

H1 : xi(n) =
√
w1hi(n)s(n) + νi(n)

H2 : xi(n) =
√
w2gi(n)u(n) + νi(n)

H3 : xi(n) =
√
w1hi(n)s(n) +

√
w2gi(n)u(n) + νi(n)

where, s(n) and u(n) are complex signals with average power 1 from the PU and the

jammer, respectively. The channel coefficients between the PU and the ith SU node and

between the jammer and the ith SU node are hi(n) and gi(n), respectively. Further, the

signal power received from the PU transmitter and the jammer is 0 < w1 and 0 < w2,

respectively. Further assumptions on the channels and the noise are provided as follows:

1. The channel coefficients hi(n) and gi(n) are assumed to be Rayleigh-distributed with

E[|hi(n)|2] = E[|gi(n)|2] = 1, ∀i ∈ {1, . . . ,K}, w. l. g. 1

2. We assume the channels are spatially correlated but independent temporally. The

channel correlation coefficient matrix for g := [g1, . . . , gK ] and h := [h1, . . . , hK ] is

defined as Σ := E[ggH ] = E[hhH ]. Further, the (i, j)th element of Σ, is approxi-

mated by

[Σ]i,j =

{

e−ρdi,j i ̸= j

1 i = j
(5.1)

1A more general case of E[|hi(n)|
2] ̸= E[|gi(n)|

2] with E[|hi(n)|
2] = E[|hj(n)|

2] and E[|gi(n)|
2] =

E[|gj(n)|
2], ∀i, j can be considered with no extra elaboration.
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where di,j is the Euclidean distance between nodes i and j which can be derived

from the node position matrix Y ! [y1, . . . ,yK ] ∈ R2×K as di,j = ∥yi − yj∥ and ρ

is the correlation constant depending on the environment [Gud91].

3. Since it is reasonable to assume that the locations of the jammer and the PU are

separated large enough2, it follows that the gis and his are mutually independent.

4. The noise at the time n and the node i is depicted by νi(n), which is assumed to be

i.i.d. circularly symmetric Gaussian with CN (0,σ2
ν). Further, we assume that s(n),

u(n), and νi(n) are, w. l. g., independent.

The distribution of the observation signal under Hl hypothesis becomes,

x ∼ CN (0, wlΣ+ σ2
νI), x ∈ Hl (5.2)

where x := [x1, . . . , xK ]T and for Hl, l ∈ {0, 1, 2, 3} we have w0 := 0 and w3 := w1 + w2.

We assume w1 ̸= w2 throughout this paper since distinguishing H1 from H2, with w1 = w2

and having the above conditions, using energy detector is absurd 3.

5.3. Optimal a posteriori detection

In the interest of optimally selecting the correct hypothesis, we find a hypothesis that

maximizes

P (x|Hl)Pr(Hl), l ∈ {0, 1, 2, 3}, (5.3)

where the Pr(Hl) is a priori probability ofHl [Kay93]. In order to evaluate argmaxl P (x|Hl)Pr(Hl)

we compare every two hypotheses using:

Hl
P (x|Hl)Pr(Hl)

P (x|Hj)Pr(Hj)
≷ 1, 0 ≤ l, j ≤ 3, l ̸= j (5.4)

Hj

Then we perform the binary search to find the maximum. We compare H0 and H1 and in

parallel H2 and H3 using (5.4). Then we compare the “winners” of each of the previous

tests to determine the overall selected hypothesis.

2More than half of the wavelength of the carrier frequency [TV05].
3One has to exploit other aspects of the jammer’s signal to be able to detect efficiently in such a condition
[HS14].
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In this section, we study the performance of the detection tests in (5.4). Based on

Section 5.3, we need to make decisions between every Hl and Hj, l, j ∈ {0, 1, 2, 3}. In the

following, we consider three cases, namely, the average power of the jammer and the noise

are known, the average power of the jammer is unknown while the noise power is given,

and the noise power is unknown while the jammer power is given.

5.3.1. Known jammer’s power and noise’s power

In this case, based on the Neyman-Pearson theorem, one can apply log likelihood ra-

tio (LLR) to achieve optimal detector. The following propositions present the optimal

detector’s performance for two hypotheses Hl and Hj where l, j ∈ {0, 1, 2, 3}.

Proposition 7. Assume that we are to decide between any two hypotheses Hl and Hj in

(5.2). The Neyman-Pearson optimal test statistic is given by,

Hl

Tl,j =
N
∑

n=1

K
∑

i=1

λi|zi(n)|2 ≷ ϑl,j, (5.5)

Hj

where Sl,j = Vdiag[λ1, . . . ,λK ]VH with,

Sl,j := (wjΣ+ σ2
νI)

−1 − (wlΣ+ σ2
νI)

−1, (5.6)

z := VHx and diag[·] returns a diagonal matrix with its argument as the diagonal elements.

Moreover, ϑl,j := − ln Pr(Hl)
Pr(Hj)

−N(ln det[wjΣ+ σ2
νI)]+N(ln det[wlΣ+ σ2

νI)], is the decision

threshold.

The proof is provided in the Appendix 5.7.1.

Note that for the case of correlated observations, conventional energy detector is not

only suboptimal in the sense of Neyman-Pearson theorem, but also, the derivation of the

probability distribution of the test statistic involves handling sum of correlated random

variables [KLWH09].

To calculate a sensing performance measure, e.g. the probability of detection, we need

to find the distribution of (5.5). The following propositions yield the two exact versions,

and an asymptotic version of Tl,j distribution.

Proposition 8. The CDF of (5.5) conditioned on Hl and tested against Hj, is given by

Pr(Tl,j ≤ ϑl,j|Hl) = C
∞
∑

q=0

∫ ϑl,j

t=0

δqt(NK+q−1)e
−t

λ1θ1

(λ1θ1)NK+qΓ(NK + q)
dt, (5.7)
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where C :=
∏K

i=1

(
λ1θ1
λiθi

)N
, λ1θ1 = mini{λiθi}, and θi is the ith largest eigenvalue of

(wlΣ+ σ2
νI). Further, we obtain δq using the following recursive formula,

δ0 = 1

δq+1 =
N

q + 1

q+1
∑

k=1

[
K
∑

i=1

(1− λ1θ1
λiθi

)k
]

δq+1−k,

k = 0, 1, 2, . . .

The proof is provided in the Appendix 5.7.2.

In practice, we need to truncate the series in (5.7) depending on the required precision

[Mos85]. To present a more compact and closed-form formula, we can apply the recent

results in [AYAK12].

Corollary 1. The exact CDF of (5.5) conditioned on Hl and tested against Hj, is given

by

Pr(Tl,j ≤ ϑl,j|Hl) =
K
∏

i=1

(
1

2λiθi
)N G1+NK,0

1+NK,1+NK

[

e−ϑl,j

∣
∣
∣
∣
∣

Ψ(1)
K , 1

Ψ(2)
K , 0

]

in which Ψ(1)
K , Ψ(2)

K ∈ R1×NK are defined as in the following,

Ψ(1)
K :=

{

N−times
︷ ︸︸ ︷

(1 +
1

2λ1θ1
), . . . , (1 +

1

2λ1θ1
), . . . (5.8)

. . . ,

N−times
︷ ︸︸ ︷

(1 +
1

2λKθK
), . . . , (1 +

1

2λKθK
)
}

Ψ(2)
K :=

{

N−times
︷ ︸︸ ︷

(
1

2λ1θ1
), . . . , (

1

2λ1θ1
), . . . ,

N−times
︷ ︸︸ ︷

(
1

2λKθK
), . . . , (

1

2λKθK
)
}

︸ ︷︷ ︸

K−times

and G1+NK,0
1+NK,1+NK is the Meijer’s G function which is given in [AYAK12][Corollary 3]

as,

Gm,n
p,q

[

z

∣
∣
∣
∣
∣

α1, . . . ,αp

β1, . . . ,βq

]

:=
1

2πi

∮

C

∏n
j=1 Γ(1− αj + s)

∏m
j=1 Γ(βj − s)

∏p
j=n+1 Γ(αj − s)

∏q
j=m+1 Γ(1− βj + s)

zsds
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interested readers can refer to [Ism80] for more details.

The proof is provided in the Appendix 5.7.3.

Considering (5.8), we obtain the exact probability of detection conditioned on Hl while

tested against Hj as

Pr(Tl,j > ϑl,j|Hl) = 1−
K
∏

i=1

(
1

2λiθi
)N G1+NK,0

1+NK,1+NK

[

e−ϑi,j

∣
∣
∣
∣
∣

Ψ(1)
NK , 1

Ψ(2)
NK , 0

]

(5.9)

Calculating the exact forms might be computationally involved. Moreover, the asymp-

totic behaviour of the distribution of (5.5) delivers useful insights on studying optimum

sensing strategies. Hence, in the following we present the distribution of (5.5) when

N → ∞.

Proposition 9. The asymptotic probability distribution of (5.5) when N → ∞, condi-

tioned on Hl tested against Hj, is

Tl,j ∼ N

(

N
K
∑

i=1

θiλi, N
K
∑

i=1

(θiλi)
2

)

, (5.10)

where θis are eigenvalues of wlΣ+ σ2
νI.

The proof is provided in the Appendix 5.7.4. Since we do not have the values for the

a priori probabilities, to determine ϑl,j we proceed as in the following. First, we define

the probability of false alarm. Then for a fixed probability of false alarm we obtain the

corresponding ϑl,j, which can be used to compute the probability of detection of different

hypotheses. The probability of false alarm of Hl tested against Hj, using the Proposition

9, is given by

Pr(Tl,j > ϑl,j|Hj) = Q

⎛

⎝
ϑl,j −N

∑K
i=1 θ̃iλi

√

N
∑K

i=1(θ̃iλi)2

⎞

⎠ , (5.11)

where, θ̃is are the eigenvalues of wjΣ+ σ2
νI and Q(x) = 1/

√
2
∫∞
x exp(−t2/2)dt is the tail

probability of the normal distribution.

5.3.2. Unknown jammer’s power

One of the most widely used methods to deal with an unknown parameter is GLRT. Basi-

cally, in GLRT one obtains an estimate of the unknown parameter by applying maximum

likelihood (ML) estimate.
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In typical scenarios, we have no information of the jammer; therefore, we need to esti-

mate the covariance matrix of the observed signal under H2 as well as H3. In our channel

model, however, we only need to know the average power of the jammer w2, because the

covariance matrix depends on the sensors’ locations.

Assuming other parameters are known, we estimate w2 in the following.

Proposition 10. Assuming the H2 in (5.2), the ML estimate of w2 is given by

ŵ2 =

∑K
i=1

∑N
n=1 |zi(n)|2 −NKσ2

ν

N
∑K

i=1 τi
, (5.12)

where, τis are defined the eigenvalues of Σ := VDiag[τ1, . . . , τK ]VH .

The proof is presented in Appendix 5.7.5.

Next, we need to substitute (5.12) into (5.27). Therefore, the LRT for H2 becomes:

−N(ln det[wjΣ+ σ2
νI)] +N(ln det[ŵ2Σ+ σ2

νI)]

−
N
∑

n=1

xH(n)
(

(wjΣ+ σ2
νI)

−1 − (ŵ2Σ+ σ2
νI)

−1
)

x(n) ≷ 0,

which is difficult to further analyse.

5.3.3. Unknown noise power

In the case of unknown noise, similar to the previous section, we use ML estimation. Based

on our assumption, we know that noise covariance matrix is diagonal with equal diagonal

elements. Hence, the matrix can be described with a single parameter.

Proposition 11. The ML estimate of σ2
ν for Hj

σ̂2
ν = argmax

σ2
ν

−NK ln π −N ln det (wjΣ+ σ2
νI) (5.13)

−Ntrace[wjΣ+ σ2
νI]

−1R

in which R := 1
N

∑N
n=1 x(n)x

H(n) is the sample covariance matrix of the received signal.

The ML estimated σ2
ν is

σ̂2
ν =

1

NK

K
∑

i=1

N
∑

n=1

|zi(n)|2 −
1

K

K
∑

i=1

wjτi (5.14)

The proof is similar to that of Proposition 10 given in Appendix 5.7.5.
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We need to substitute (5.14) in LRT to achieve the test statistic. This in turn is given

in the following,

−N(ln det[wjΣ+ σ̂2
νI]) +N(ln det[wlΣ+ σ̂2

νI])

−
N
∑

n=1

xH(n)
(

(wjΣ+ σ̂2
νI)

−1 − (wlΣ+ σ̂2
νI)

−1
)

x(n) ≷ 0,

which is difficult to analyse.

5.4. Application to power constraint detection

In the following we apply the some of the results in Section 5.3 to an energy constraint

detection problem. The details are presented in the following.

5.4.1. The power-detection performance trade-off

We are interested in the problem of SUs placement for detecting the presence of the PU

with power constraints at the SUs and the absence of the jammer. The detection problem

simplifies to the following binary hypothesis problem,

Ho : xi(n) = νi(n)

H1 : xi(n) =
√
w1hi(n)s(n) + νi(n)

The SUs need some power to transmit xi(n) to a fusion center via the wireless channel.

The fusion center is located at 0 and labelled as node 1.

According to Kim et al. in [KLWH09], the spatial correlation between the SUs degrades

the performance of detection. Therefore, the optimal node placement must minimize the

spatial correlation of the SUs. According to our channel correlation model, this translates

to placing the SUs as far as possible from each other. On the other hand, the power

consumption increases with the increase of distances of the SUs to the fusion center. This

is because of the pathloss characteristics of the wireless channel. More precisely, we model

this trade-off as the following optimization problem.

Problem I : max
Y

PD (5.15)

s.t.
∑

i

ui ≤ ω

ui ≤ ω̂ ∀i,
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where, PD := PD(α) is the probability of detection for a given probability of false alarm

PF = α, which, for N large enough, is given by proposition (9)

PD(ϑ) = Q

⎛

⎝
ϑ−N

∑K
i=1 λiθi

√

N
∑K

i=1 λ
2
i θ

2
i

⎞

⎠ , (5.16)

where and ϑ0,1 > 0 is the decision threshold. Evaluating the probability of false alarm PF

in the case of Gaussian noise is straightforward and is given by

PF := PF (ϑ0,1) = Q

(

ϑ0,1 −NKσ2
ν

√

NKσ4
ν

)

. (5.17)

In the spectrum sensing literature, the constraint is given in the sense of the probability

of false alarm since the level of noise is usually known. The performance of the test is

then compared by using the probability of detection. According to the same logic, and

since we need to have s statistical measure that considers the spatial correlation, we use

the probability of false alarm to obtain ϑ0,1 and apply it as a threshold for the probability

of detection. Therefore, PD for PF = α ∈ [0, 1] yields (PD := PD(ϑ∗) where ϑ∗ is defined

to be α = PF (ϑ∗)), which is given as,

PD = Q

⎛

⎝
Q−1(α)

√

NKσ4
ν +NKσ2

ν −N
∑K

i=1 λiθi
√

N
∑K

i=1 λ
2
i θ

2
i

⎞

⎠ , (5.18)

where, Q−1(·) is the inverse of Q(·).

5.4.2. Optimization problem

In this section, we propose some heuristic approaches to the optimization problem in (5.15)

with objective function given by (5.18). We assume a communication link between the

ith SU and the fusion center is established only if the signal to noise ratio (SNR) at the

receiver is larger than or equal to η. Assuming pathloss is associated with the squared

distance of ith SU and the fusion center (d2i,1), we have

ui = κd2i,1σ
2
νη (5.19)

where κ is the pathloss coefficient [TV05].

Problem I can be simplified according to the following proposition:
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Proposition 12. The problem in (5.15) is equivalent to

Problem II : min
Y

c1G(Y) (5.20)

s.t.
∑

i

d2i,1 ≤ ωc2

d21,i ≤ ω̂c2 ∀i,

where c1 :=
(

w1
√
N

Q−1(α)
√
NKσ4

ν+NKσ4
ν−w1NK

)2
, c2 := (σ2

νηκ)
−1

, and G(Y) is given by

G(Y) :=

{ ∑

i,j e
−2ρdi,j α > Q(

√
NK(w1

σ4
ν
− 1))

−
∑

i,j e
−2ρdi,j α < Q(

√
NK(w1

σ4
ν
− 1))

(5.21)

Proof. The proof is provided in the Appendix 5.7.6.

Remark 16. When α < Q(
√
NK(w1

σ4
ν
−1)) then the argument in (5.18) is non-negative and

since for x ≥ 0 we have Q(x) < 0.5, this corresponds to a rather trivial case of PD < 0.5.

Remark 17. The Problem II is non-convex, but the constraints are convex. For a given

setup (i.e. α,K,N,w1, and σ2
ν), G(Y) has one objective function which remains the same

for all Y. In the following, we propose two suboptimal methods to deal with this problem.

5.4.3. Projected gradient method (PGM)

Since the constraints are convex, we can execute PGM. Moreover, based on the results

in [CM87], because the objective function in (5.20) within each domain is continuously

differentiable, the PGM converges. In the following, we first investigate the projection

and then we proceed with the algorithm. The projection to domain of our constraints is

given by,

J(Y) = argmin{∥Y −W∥ : ∥W∥2 ≤ ωc2, ∥wi∥2 ≤ ω̂c2 ∀i},

where, ∥·∥ represents an inner product induced vector norm (here norm-2), and wi depicts

the ith column of W.

To calculate the projection into the intersection of the hypersphere (∥W∥2 ≤ ωc2) and

the hyperplane (∥wi∥2 ≤ ω̂c2, ∀i) we require an iterative method that each time projects

Y into one of them. However, in practical scenarios, the more non-trivial dominant

constraint normally is the hypersphere. Therefore, we simplify the projection as,

J(Y) =
√
ωc2Y/∥Y∥. (5.22)
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Based on the aforementioned discussion the detailed algorithm for solving Problem II is

given Alg. 1. If the ∇G(Y) is Lipschitz continuous, then the 0 < {βm}∞m=1 < ∞ can be

Algorithm 1 Projected Gradient method (PGM)

Input: Random initial positions Ỹ(:) and the constants, i.e. K,N, c1, c2,ω, ω̂, ϵ, and
{βm}∞m=1.

Output: Suboptimal positions Y, which is a feasible stationary point of the problem.
repeat

Ym+1 ← Ym − βm∇G(Ym)
if ∥Y∥2 > ωc2 then

Ym+1 ←
√
ωc2Ym+1/∥Y∥m+1

end if

until ∥Ym+1 −Ym∥ ≤ ϵ

calculated using the method suggested by [Dun81].

5.4.4. Fixed constraint method (FCM)

In the following we provide the intuitive motivation for FCM, then we provide the detailed

algorithm in Alg. 2.

As in PGM, we assume in practical and non-trivial scenarios the total power constraint

dominants the individual power constraints. Furthermore, the optimal solution satisfies

the total power constraint with equality. The proof by contradiction is straightforward.

Motivated by Karush-Kuhn-Tucker (KKT) conditions for (5.20), we conclude that the

optimal constellation is geometrically symmetric around the fusion center. Building upon

these arguments, we infer that a circle or multiple concentric circles centred at the fusion

center are among the possible solutions. The radii of these circles are dictated by the

constraints of the problem.

In our algorithm first, we assume the nodes are uniformly scattered on one circle, r =
√

ωc2/K , which satisfies the main constraint with equality. Then in order to increase the

intra-node distances, we move some of the nodes toward the center and some outward the

center of the circle such that the constraint is kept with equality. This way we produce two

concentric circles in which the nodes consume the same power as one circle but provide

higher PD due to the increased intra-node distances. The algorithm for F is given in the

following.
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Algorithm 2 Fixed Constraint Method (FCM)

Input: The constants, i.e. K,N, c1, c2,ω, ω̂, ϵ, and {βm}∞m=1.
Output: Suboptimal positions Y(:).
1: r0 !

√

ωc2/K

2: θi =
2π(i−1)
K−1 i ∈ {2, . . . ,K}

3:

{

ri ← r0 − t i ∈ odd
ri ←

√

2r20 − (r0 − t)2 i ∈ even
(5.23)

4: solve

min
0≤t≤r0

G(Y(t)), (5.24)

where, di,j =
√

ri(t)2 + rj(t)2 − 2ri(t)rj(t) cos(θi − θj). Problem (5.24) can be han-
dled using a search algorithm.

5: ∀i :

yi =

[

ri(t) sin(θi)
ri(t) cos(θi)

]

(5.25)

5.5. Numerical examples

We provide numerical experiments to validate the results in this section. For testing the

results in Section 5.3, we have the following assumptions. There are K = 8 SUs spread

out in a square area of 10m×10m and we collect N = 10 independent time samples unless

otherwise is specified. The values for ρ are 10 (almost independent) and 0.01 (highly

correlated).

We first compare the exact CDF of Tl,j, given by (5.8), with the asymptotic CDF,

presented by (5.10), to study the accuracy of the results. This is depicted in Figure 5.2.

One can observe that with the increase in N and K the asymptotic results tend to be

more accurate.

For the case of known power of the jammer and noise, we depict the receiver operating

characteristic (ROC) of Pr(T1,0 ≥ ϑ1,0|H1) and Pr(T2,1 ≥ ϑ2,1|H2) in Figure 5.3. We

notice that in the fully correlated case the weighted energy detector (WED) outperforms

the conventional energy detector.

Unlike the case of Pr(T2,1 ≥ ϑ2,1|H2), in the case of Pr(T1,0 ≥ ϑ1,0|H1) , the performance

of WED boosts when correlation increases. One notes in the case of Pr(T2,1 ≥ ϑ2,1|H2),

both of H1 and H2 have correlated observations, whereas in the case of Pr(T1,0 ≥ ϑ1,0|H1),
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Figure 5.2.: The CDF of T versus its asymptotic CDF for the cases N = 3,K = 3 and
N = 10,K = 4.
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information.
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Figure 5.4.: ROC curve for Pr(T2,1 ≥ ϑ2,1|H2) when jammer power and noise power are
unknown.

H0 has independent observation. The performance of the case with unknown w2 is better

than the case with unknown noise power, as it is illustrated in Figure 5.4. The reason for

performance degradation in GLRT in comparison to LRT is the error in ML estimation of

the parameters. Since the ML estimation of noise appears in both hypotheses H1 and H2

the performance of the detector suffers more in comparison to the case that we incorporate

the ML estimate of w2, which appears only in H2.

As for the results of the section 5.4 We first investigate the accuracy of our results on the

probability of detection. Then we compare the performance of Alg.1 and Alg. 2 in solving

(5.20). The analytical and empirical results of CDF of (5.10) is evaluated by Monte Carlo

experiment of 6000 trials under random positioning of K = 8 nodes, N ∈ {40, 80, 120}
time samples, and ρ = 0.01. The outcome is given in Figure 5.5. We can observe the

effect of using central limit theorem estimation. As a line of comparison, we have also

depicted the distribution in the case of no signal (H0). In Figure 5.6 we compare the

receiver operating characteristic (ROC) curve of ED and WED with different ρs.

In Figure 5.7 we illustrate the performances of PGM and FCM in terms of PD versus

K for the case of α > Q(
√
NK(w1

σ2
ν
)). The experiment is repeated for different values of

ρ. The performances of the PGM and the FCM are equal. It’s noteworthy to mention

that the outcome of the PGM and FCM are usually different as shown in Figure5.9 . As

it is mentioned in [LZZQ11], with the increase of ρ (i. e. increase of correlation) the PD

increases as well because of the use of weighted energy detector. In order to observe the

performance of PGM and FCM under the rather trivial condition of α < Q(
√
NK(w1

σ4
ν
−1))
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we performed an experiment illustrated in Figure 5.8.
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Figure 5.9.: Node constellation results proposed by PGM and FCM for K = 19 when
α > Q(

√
NK(w1/σν − 1)).

5.6. Conclusion

We have modelled the joint problem of spectrum sensing and jammer detection using

multiple hypothesis testing. For the case of spatially correlated observations we have

derived the optimal test, which results in a weighted energy detector. Furthermore, The

probability of detection of the optimal detector is derived in two exact versions for a

given probability of false alarm. One of the exact versions is based on a series, where in

practice we need to truncate. The other exact form is in terms of Meijer’s G function. We

further developed an asymptotic expression of the probability of detection, which results

in a simpler formula. Numerical simulations showed that the asymptotic results are very

accurate for a moderate size of samples.

For the case of unknown variables, we used ML to estimate the unknown variables.

Using GLRT, we study the practical cases of, namely: unknown noise power and unknown

jammer power. By numerical simulations, we have illustrated the accuracy of ML in

estimating the unknown variables.

We have introduced the trade-off between power consumption and detection probability

as a practical scenario. An optimization problem has been proposed to find the optimal

locations of the nodes to achieve the maximum probability of detection while restricted

by the transmission power. The optimization problem is non-convex; thus, we proposed

two heuristic methods to solve it. The first method is based on the projected gradient

algorithm, whereas the second one is based on the KKT conditions. Both of the methods

provide the same probability of detection for a given power limitation even though with

different node locations.
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Future work

Node placement, which is the relaxed version of node selection problem, is of particular

significance in the context of combating jamming in a wireless sensor network with energy

restriction. To combat jamming, which mainly drains the nodes batteries, we can consider

a node selection problem that takes into account the jamming signal strength at each

location as well.
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5.7. Appendix

5.7.1. Proof of Proposition 7

Based on our assumptions in (5.2) we have,

P (x|Hl) =
N
∏

n=1

1

πK det[wlΣ+ σ2
νI]

× (5.26)

exp(−x(n)H(wlΣ+ σ2
νI)

−1x(n)).

We substitute (5.26) into (5.4) and take the log to achieve,

N(ln det[wjΣ+ σ2
νI])−N(ln det[wlΣ+ σ2

νI]) (5.27)

+
N
∑

n=1

xH(n)Sl,jx(n) + ln
Pr(Hl)

Pr(Hj)
≷ 0,

where, Sl,j is Hermitian and defined in (5.6). We proceed by keeping the data dependent

parts in the LHS as,

HlN
∑

n=1

x(n)HSl,jx(n) ≷ ϑl,j, (5.28)

Hj

in which, ϑl,j is the threshold that is defined in the proposition. We change the variable

as z := VHx, where V is a unitary matrix given by the eigenvalue decomposition of

Sl,j = VDiag[λ1, . . . ,λK ]VH . Therefore, the test statistic becomes the weighted energy

detector and is given as,

HlN
∑

n=1

z(n)HDiag[λ1, . . . ,λK ]z(n) ≷ ϑl,j, (5.29)

Hj

by which we can infer (5.5) directly. #

5.7.2. Proof of Proposition 8

We first find the distribution of ti =
∑N

n=1 λi|zi(n)|2, then we use it to find Tl,j .

Based on our assumption across time the observation symbols are independent. There-

fore, assuming xi(n) ∈ Hl, ∀i then the distribution of zi(n) is CN (0, θi). It follows then,
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the λi|zi(n)|2 is distributed according to Γ(1, 1
2θiλi

). Thus, based on the rule of summation

of i.i.d. gamma random variables, ti’s distribution is given as Γ(N, 1
2θiλi

).

In order to find the distribution of Tl,j =
∑K

i=1 ti we need to have the distribution of

the sum of independent but non-identical gamma random variables. This in turn, is given

by the work in [Mos85]. Therefore, we apply the results in [Mos85] with our parameters

and obtain (5.7). #

5.7.3. Proof of Corollary 1

Proceeding along similar lines as in Appendix 5.7.2, we find the probability of T =
∑K

i=1 ti,

where ti ∼ Γ(N, 1
2θiλi

). To this end, we directly apply Corollary 3 in [AYAK12]. #

5.7.4. Proof of Proposition 9

Since xis are Gaussian the distribution of z is Gaussian as well, although with different

correlation coefficient matrix. The correlation matrix of z, conditioned on Hl is given by

Σz = diag[θ1, . . . , θK ],

where θis are defined as wlΣ+σ2
νI := Vdiag[θ1, . . . , θK ]VH . The test statistic is weighted

sum of independent non-identical gamma random variables. According to [AAK01] the

moment generating function of Tn :=
∑K

i=1 λi|zi(n)|2 is given by

Mz(s) =
K
∏

i=1

(1− sθiλi)
−1. (5.30)

From (5.30) one can achieve the mean and the variance of Tn as,

E[Tn] =
K
∑

i=1

θiλi, Var[Tn] =
K
∑

i=1

(θiλi)
2. (5.31)

Based on the assumption that temporal observations, i.e. Tn, are i.i.d. and N is

sufficiently large, we apply the central limit theorem to approximate the distribution of T

as,

T ∼ N

(

N
K
∑

i=1

θiλi, N
K
∑

i=1

(θiλi)
2

)

.

#
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5.7.5. Proof of Proposition 10

The ML problem becomes,

ŵ2 =arg max
w2≥0

f(w2)

f(w2) := −NK lnπ −N
K
∑

i=1

ln (w2τi + σ2
ν)

−
N
∑

n=1

xH(n)V(w2Diag[τ1, . . . , τK ] + σ2
νI)

−1VHx(n).

Let us define f ′(w2) and f ′′(w2) to be the first and second derivatives of f(w2), respectively.

We denote the unique solution of f ′′(w2) = 0 as w∗
2. A simple analysis reveals:

⎧

⎨

⎩

f ′′(w2) < 0 w2 ∈ [0, w∗
2 ]

f ′′(w2) > 0 w2 ∈ (w∗
2,∞]

(5.32)

Thus, f(w2) is concave for w2 ∈ [0, w∗
2 ] and then it becomes convex for w2 ∈ (w∗

2,∞].

Therefore, we have a unique local maximum on w2 ∈ [0, w∗
2 ] which we indicate it with ŵ2.

In the following we obtain this local maximum by solving,

f ′(w2) =N
K
∑

i=1

τi(w2τi + σ2
ν)

−1

−
K
∑

i=1

N
∑

n=1

τi(w2τi + σ2
ν)

−2|zi(n)|2 =

K
∑

i=1

Nτi(w2τi + σ2
ν)− τi

∑N
n=1 |zi(n)|2

(w2τi + σ2
ν)

2
= 0 (5.33)

= NKσ2
ν +Nw2

K
∑

i=1

τi −
K
∑

i=1

N
∑

n=1

|zi(n)|2 = 0.

The equation in (5.33) yields ˆ̂w2 = ∞ and

ŵ2 =

∑K
i=1

∑N
n=1 |zi(n)|2 −NKσ2

ν

N
∑K

i=1 τi
. (5.34)

( ˆ̂w2 = ∞) results in a minimum for f , thus we only have one maximum which is (5.34).

In the following we prove that it is the global maximum.

For w2 ∈ [ŵ2,∞] we note that f ′(w2) ≤ 0, hence, f(w2) is non-increasing. This implies
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that ŵ2 is the global maximum. In the trivial case of (
∑K

i=1

∑N
n=1 |zi(n)|2 ≤ NKσ2

ν) due

to the non-negativity constraint, we select ŵ2 = 0. Therefore we conclude (5.12). #

5.7.6. Proof of Proposition 12

The two problems are equivalent when every solution of Problem I is a solution of Problem

II and vice versa. Substituting (5.18) and (5.19) in (5.15) yields,

max
Y

Q

⎛

⎝
Q−1(α)

√

NKσ4
ν +NKσ2

ν −N
∑K

i=1 λiθi
√

N
∑K

i=1 λ
2
i θ

2
i

⎞

⎠ (5.35)

s.t.
∑

i

d2i,1σ
2
νηκ ≤ ω

d2i,1σ
2
νκη ≤ ω̂ ∀i.

Since σ2
νηκ > 0, the constraints of both of the problems are obviously equivalent, thus we

have

max
Y

Q

⎛

⎝
Q−1(α)

√

NKσ4
ν +NKσ2

ν −N
∑K

i=1 λiθi
√

N
∑K

i=1 λ
2
i θ

2
i

⎞

⎠

s.t.
∑

i

d2i,1 ≤ ωc2

d21,i ≤ ω̂c2 ∀i,

where c2 := (σ2
νηκ)

−1
. We need to prove that for any point in (5.35) there is a point in

12. Because Q(x), x ∈ R is a strictly decreasing function, we can minimize the argument

of Q(·) in (5.35) instead. If we rule out the dull condition of Q−1(α)
√

NKσ4
ν +NKσ2

ν =

N
∑K

i=1 λiθi we can write (5.35) as a maximization of the inverse of its argument:

max
Y

√

N
∑K

i=1(λiθi)2

Q−1(α)
√

NKσ4
ν +NKσ2

ν −N
∑K

i=1 λiθi
(5.36)

s.t.
∑

i

d2i,1 ≤ ωc2

d21,i ≤ ω̂c2 ∀i,

The following lemma is needed to continue with the proof.

Lemma 15. For the correlation matrix Σ := UDiag[γ1, . . . , γK ]UH defined in (5.1) we
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have

K
∑

i=1

γ2i = trace[ΣTΣ] = ∥Σ∥2F =
∑

i,j

[Σ]2i,j =
∑

i,j

e−2ρdi,j , (5.37)

and further,

K
∑

i=1

γi = trace[Σ] = K. (5.38)

Substituting (5.38) in the denominator in (5.36) yields:

max
Y

√

N
∑K

i=1(w1γi/σ2
ν)2

(Q−1(α)
√

NKσ4
ν +NKσ2

ν −w1NK/σ2
ν)

s.t.
∑

i

d2i,1 ≤ ωc2

d21,i ≤ ω̂c2 ∀i,

max
Y

( w1

√
N

Q−1(α)
√
NKσ4

ν +NKσ4
ν − w1NK

)

√
√
√
√

K
∑

i=1

γ2i (5.39)

s.t.
∑

i

d2i,1 ≤ ωc2

d21,i ≤ ω̂c2 ∀i,

Note that Q−1(α)
√
NKσ4

ν +NKσ4
ν −w1NK < 0 gives α > Q(

√
NK(w1

σ4
ν
−1)). We square

the objective function in (5.39) and substitute (5.37) to obtain:

max
Y

− c1G(Y) (5.40)

s.t.
∑

i

d2i,1 ≤ ωc2

d21,i ≤ ω̂c2 ∀i,

where, c1 :=
(

w1
√
N

Q−1(α)
√
NKσ4

ν+NKσ4
ν−w1NK

)2
and

G(Y) :=

{ ∑

i,j e
−2ρdi,j α > Q(

√
NK(w1

σ4
ν
− 1))

−
∑

i,j e
−2ρdi,j α < Q(

√
NK(w1

σ4
ν
− 1))

(5.41)

This concludes the proof.
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wireless networks

We devote this chapter to developing decentralized computation techniques for the al-

gorithms that deal with active security threats. In particular, this chapter studies the

decentralization of the eigenvalue-based detection algorithms. From the implementation

point of view, the core problem of the eigenvalue-based detection algorithms is computing

the eigenvalues of the covariance matrix of some observation data. We address the general

problem concisely as follows. We are given multiple communication nodes with some pro-

cessing power, which are referred to as the agents. Each agent has a row (column) of an

observation matrix, which contains the measurements regarding some malicious activity,

e.g. a jammer. We are interested in finding the eigenvalues of the covariance matrix of the

observation data without the need to rebuild the whole matrix at every node. The appli-

cations of this problem include, but not limited to, channel probing for power admission

control [MSCE11], spectrum sensing [PS15a], and jamming detection.

In order to compute the eigenvalues, a straightforward approach is to collect all the data

and reconstruct the covariance matrix of the observations at a fusion center followed by a

centralized computation of the eigenvalues. In most cases, however, this is not a desirable

method according to the following arguments. Relying on a single fusion center is not

robust because of single node failure. Furthermore, a centralized architecture is more

susceptible to the Byzantine attacks. On the other hand, in a decentralized structure

a node failure or a Byzantine attack does not disrupt the whole network’s functionality.

Moreover, most of the decentralized algorithms believed to be scalable to the size of the

network easily, whereas a centralized regime faces a lot of problems when the network size

grows larger. Therefore, there is a need for a decentralized computation-communication

scheme that is able to estimate the eigenvalues without reconstructing the covariance

matrix at each node.

In this chapter, we first develop an algorithm for estimating all of the eigenvalues of

a given covariance matrix in the decentralized fashion by applying the generic average

consensus algorithm. Then motivated by an application, we propose applying a special

kind of consensus algorithm, which uses computation over multiple access channels (Co-
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MAC) technique. We further apply the results to the channel probing for power admission

control.

6.1. Background and contribution

6.1.1. Related work

Eigenvalue-based detection methods have been studied extensively in [NPG11,ZMcLM09].

Nadler at el. have considered two eigenvalue-based detection method, namely, the Roy’s

largest root test and generalized likelihood ratio test in [NPG11]. The authors in [ZMcLM09]

analyse the test of largest eigenvalue divided by smallest eigenvalue of the covariance ma-

trix.

Decentralized algorithms for eigenvalue computation has attracted many researchers’

attention recently, for instance in [PS15a,PS15b,LSM11]. Penna and Stanczak in [PS15a]

proposed a decentralized largest eigenvalue computation based on the power method. To

compute the other eigenvalues they propose using the Lanczos method. The building block

for the decentralization algorithm is the generic average consensus method, which inspired

the results of this chapter partly. Later in [PS15b] they provide some convergence analysis

of the two algorithms. The analysis suggests that the power method is robust against

numerical errors, whereas the Lanczos method is prone to error, and gives some ‘spurious’

eigenvalues, which needs extra post-processing.

The admissibility of the new links in the context of decentralized channel admission

control for cognitive radio is studied by [BCM95,XSC01,ZC01]. In [BCM95], admissibility

of a new link is verified by observing the variations in the SINR of the new link when its

respective transmitter changes the power in a controlled fashion. The main limitation of

this approach is that it can experience convergence problems if the variations of the SINR

of the new link are small. This problem has been addressed in [XSC01], which uses a

technique where a new user probes the channel by transmitting at a constant power level.

Then, to detect admissibility (i.e., the existence of a feasible power assignment), the new

user measures its received interference after the power admission control algorithm of the

existing users converges. A more general approach that allows multiple users to join the

system at the same time has been proposed in [ZC01]. However, this approach requires

a complex coordination scheme among users trying to join the system. To date, simple

channel probing schemes, where multiple users are allowed to join the system at the same

time (as required by many cognitive radio systems), remain an open problem.
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6.1.2. Contributions

This chapter exploits the power method (PM) [GL96] to find other eigenvalues of the

covariance matrix. Furthermore, we take advantage of the scalability and robustness of

average consensus to implement our algorithm in a decentralized fashion. Some analyses

on the convergence of the algorithm are provided; however, due to the complexity of the

algorithm a complete analytical proof of convergence is missing. The results are tailored

for two particular applications:

• A special scenario which induces a block diagonal structure on the covariance ma-

trix is considered. We exploit the eigenvalue properties of a block diagonal matrix

to further accelerate the convergence speed. Furthermore, we propose to utilize a

particular CoMAC protocol that enables the computation of certain functions over

the air and reaches consensus in only two iterations [ZGSY12,GS13,NG07,LMS15].

• The developed eigenvalue estimation technique is applied to the channel probing

problem. The proposed method verifies admissibility of secondary users in cognitive

radio systems (the new links to be added to the system) with a scheme that estimates

whether the spectral radius of the channel matrix is above or below a given threshold

(which is enough to detect admissibility). However, this estimation is done indirectly;

secondary users produces two sequences that converge to the spectral radius of a

matrix that has a close connection to the channel gain matrix.

6.2. Problem statement and preliminaries

We considerK sensors forming a connected graph, in which each edge represents a commu-

nication link. All links use a common wireless channel. The sensors sense some frequency

spectrum to detect the presence of primary users in a given sensing time, T . Each sen-

sor has a measurement vector y ∈ CN over N realizations of the wireless channel. The

observation matrix is defined to be

Y !
[

y(1), . . . ,y(N)
]

=

⎡

⎢
⎢
⎣

ŷ(1)T

...

ŷ(K)T

⎤

⎥
⎥
⎦
∈ C

K×N , (6.1)

where y and ŷT are used to denote columns and rows of Y, respectively. The sample

covariance matrix is given by

R !
1

N
YYH , (6.2)
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which is positive semi-definite by construction. We intend to compute the eigenvalues

λ1 > λ2 > · · · > λK ≥ 0 of R ∈ CK×K, in which we further assume that all eigenvalues

of R are distinct. Using PM, we can compute λ1 and its corresponding eigenvector v1.

However, some eigenvalue based inference methods require the knowledge of all eigenvalues

of R [MPS13,MSZ15]. So our objective is to show how the PM can be used to provide

estimates of all the eigenvalues. Furthermore, we show how to implement the proposed

scheme in a distributed manner, which boils down to transforming the computations into

local and global steps. We intend to benefit from the concept of consensus algorithms to

deal with the global computations. In the following, we provide a brief introduction to

the average consensus algorithm to be used later.

6.2.1. Average consensus algorithm

An average consensus algorithm can be defined on a network of nodes that form an undi-

rected connected graph. It is a distributed algorithm that takes scalars or vectors as input

from each node and delivers the overall average values of the input available at every node.

Various methods have been proposed [ZGSY12,NG07,OSFM07,LSMGC13]. In this work,

however, we are not interested in a particular average consensus algorithm. Instead, we as-

sume a generic algorithm that achieves consensus without errors. An exception is Section

6.4, where we exploit physical properties of the wireless channel to perform averaging.

In this chapter, the average consensus algorithm is assumed to be an operator CA[·] CK →
CK . The input is the vector with entries representing different measurements at each sen-

sor and the output is a vector with all entries equal to the average of the input vector.

This can be expressed more precisely as

y = CA[x] =
1

K

(

1Tx
)

1. (6.3)

One can generalized this notation to the case where each sensor’s input is a vector of size

m. Therefore the input is a matrix of CK×m. This is presented as

Y = CAm[X] =
1

K

(

11T
)

X. (6.4)

6.3. Techniques for eigenvalue computation

In this section we introduce a generalization of the power method that is based on a matrix

deflation technique (see e.g. [Saa11, Ch.4]). The generalized power method is capable of

computing all eigenvalues of a given Hermitian matrix with distinct eigenvalues λ1 >
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6.3. Techniques for eigenvalue computation

λ2 > · · · > λK ≥ 0. The method is shown to be amenable to distributed implementation

provided that a network-wide average consensus can be achieved efficiently.

6.3.1. Generalized power method (GPM)

Motivated by the appealing characteristics of the PM such as robustness [GL96], we intend

to develop an iterative algorithm based on the PM that is able to compute all eigenvalues

of some eigenvalue matrix.

We are interested in estimating the eigenvalues λ1 > λ2 > · · · > λK ≥ 0 of a hermitian,

positive semi-definite matrix R ∈ CK×K. Applying PM to R yields a robust estimate

of λ1 and the corresponding eigenvector v1. Now suppose that we have another matrix

R2 with the eigenvalues λ2 > · · · > λK ≥ λK+1 = 0 and the corresponding eigenvectors

identical to those of R except for λ1 and v1. Then, we can again use the PM to obtain

λ2. In the following, we explain further details on the construction of R2 from R.

An application of the PM to R provides the eigenvector v1 corresponding to the largest

eigenvalue λ1. If we subtract the rank-1 matrix λ1v1v
H
1 from R we can achieve a second

matrix R2,

R2 = R− λ1v1v
H
1 ,

which has the desired features with rank(R2) = rank(R) − 1. This procedure can be

repeated to obtain the rest of the eigenvalues. Algorithm 3 presents this method in more

details.

Algorithm 3 Generalized Power method (GPM)

Input: Initial vector q0
1 and hermitian PSD matrix R

Output: Eigenvalues λk ∀k and eigenvectors vk k ∈ {1..K} of R
1: R1 = R, k = 0
2: repeat

3: k ← k + 1
4: repeat

5: qi+1
k ← Rkq

i
k

6: λi
k ← qiH

k Rkq
i
k

∥qi
k∥2

7: i ← i+ 1
8: until |λi

k − λi−1
k | ≤ ϵ

9: vk ← qi
k, λk ← λi

k
10: Rk+1 ← Rk − λkvkv

H
k

11: qk+1 ← qk − vk(qH
k vk)

12: q0
k+1 ← qk+1/∥qk+1∥

13: until k = K
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6. Decentralized computation algorithms for wireless networks

In the Appendix 6.7.1, a note on the proof of convergence of GPM is presented.

To see the convergence of the GPM Algorithm, we observe the descent of absolute error

of each 4 estimated eigenvalues in Figure 6.1. We let each inner loop, i.e. PM, run for 50

iterations before moving to the next eigenvalue.
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Figure 6.1.: Convergence of GPM in terms of absolute error of estimation for first four
eigenvalues, λ1,λ2,λ3, and λ4 with K = 16.

6.3.2. Decentralized generalized power method (DGPM)

We can break down the eigenvalue computation into the steps which are possible to perform

locally and into the global steps, which require data exchange between sensors. For the

global steps we use a generic consensus algorithm. Building upon the results in [PS12],

we use the CA operator to perform GPM in a decentralized manner. We need to evaluate

the steps 5,6,10,11, and 12 using CA in Algorithm 3, which are described respectively in

the following. To compute step 5 we recall that in (6.1), ŷ(k), k ∈ {1, . . . ,K} is available

at each sensor. Thus,

Rq =
1

N
YYHq =

1

N
Y

⎡

⎢
⎢
⎣

y(1)Hq
...

y(N)Hq

⎤

⎥
⎥
⎦
, (6.5)
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6.3. Techniques for eigenvalue computation

where we dropped the indices for simplicity. We can perform y(n)Hq, n ∈ {1, . . . , N}
using the following command:

KCA1

[

diag
[

Diag[y(n)]Diag[q]
]
]

. (6.6)

To computeYHq we need to repeat (6.6) for every n ∈ {1, . . . , N}, which can be simplified

using the vector notation of consensus as

YHq = KCAN
[

YHDiag[q]
]

.

Now the vector YHq is available at every node and since the kth row of Y is the local

measurement of the sensor k, the rest of the operations can be done locally. This yields

Rq =
K

N
diag

[

YCAN
[

YHDiag[q]
]
]

. (6.7)

At this point we can write each step in terms of CA1 or CAN . Step 10 in Algorithm

3 requires reconstruction of the matrix at each step, which is redundant. Therefore, we

combine it with step 5. To obtain step 6 we reuse the available qi
k and qi+1

k from the

previous step and then apply the consensus operator as,

λi
k =

CA1

[

diag
[

Diag[qi
k]Diag[qi+1

k ]
]
]

CA1

[

diag
[

Diag[qi
k]Diag[qi

k]
]
] . (6.8)

As for steps 11 and 12 since we have vk locally available at every node after power iteration,

we can calculate them as in (6.7) and (6.8).

Reposing on these discussions the decentralized generalized power method is given in

Algorithm 4. In each step of using CA we loose a large amount of network resources until

eventually the nodes reach a consensus.

If we let the consensus algorithm converge up to a machine precision error, then DGPM

converges exactly like GPM. As far as the numerical analysis of DGPM is concerned, we

have considered the consensus algorithm proposed by [AYSS09]. However, for the sake

of interest, we truncate the consensus algorithm in an average error of 10−4 to plot its

convergence speed. Figure 6.2 illustrates this experiment. One can observe the effect

of small error in each round of consensus algorithm on the convergence of decentralized

GPM. When the value of error is more than a certain limit, the convergence for some

smaller eigenvalues might not occur at all.
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6. Decentralized computation algorithms for wireless networks

Algorithm 4 Decentralized Generalized Power method (DGPM)

Input: Initial vector q0
1 and Y ∈ CN×K

Output: Eigenvalues λk ∀k and eigenvectors vk k ∈ {1..K} of R = 1
NYYH

1: R1 = R, k = 0, i = 0
2: repeat

3: k ← k + 1
4: repeat

5: The kth eigenvector estimated as:

qi+1
k ←K

N
diag

[

YCAN
[

YHDiag[qi
k]
]
]

−
k−1
∑

j=1

λjKCA1

[

diag
[

Diag[vj ]Diag[qi
k]
]
]

vj

6: The kth eigenvalue estimation after i iterations:

λi
k ←

CA1

[

diag
[

Diag[qi
k]Diag[qi+1

k ]
]
]

CA1

[

diag
[

Diag[qi
k]Diag[qi

k]
]
]

7: i ← i+ 1
8: until |λi

k − λi−1
k | ≤ ϵ

9: vk ← qi
k, λk ← λi

k
10: The Gram-Schmidt update

q0
k+1 ← q0

k −KCA1

[

diag
[

Diag[q0
k]Diag[vk]

]
]

vk

11: Normalization

q0
k+1 ← q0

k+1/CA1

[

diag
[

Diag[q0
k]Diag[q0

k]
]
]

12: until k = K
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Figure 6.2.: Convergence of DGPM in terms of absolute error of estimation for first four
eigenvalues, λ1,λ2,λ3, and λ4 with K = 16.

6.3.3. Convergence analysis

Unlike PM, which has straightforward bounds on the estimation error, the convergence

properties of the truncated GPM is very involved to achieve. It depends on many variables

including the ratio of consecutive eigenvalues and the truncation error of each step. In

this section, we analyse the convergence of GPM for some special cases.

Throughout this section, the following assumptions are made. For the first (k − 2)th1

of PM rounds we let the algorithm run m iterations, where m → ∞, such that the error

of estimation is zero. For the (k − 1)th round of PM we let the algorithm run m < ∞
iterations. Therefore we have truncation error in estimation of λk−1 and vk−1. We are

interested in studying the convergence conditions of the next PM round, i.e. kth, PM

round which obtains an estimate of λk. We begin with,

R̂k = Rk−1 − λ̂k−1v̂k−1v̂
H
k−1

=
K
∑

j=k−1

λjvjv
H
j − λ̂k−1v̂k−1v̂

H
k−1, (6.9)

in which, λ̂k−1 and v̂k−1 denote the estimated λk−1 and vk−1 that are obtained from

truncation of PM iterations at m with Rk−1 as the input.

1where k − 2 < K.
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6. Decentralized computation algorithms for wireless networks

In the following, we study a simple case of error that influence the convergence of PM

with input R̂k.

The Estimated Subspace is Aligned

We assume that the error from the estimated subspace v̂k−1 is negligible, thus v̂k−1 =

vk−1. Substituting vk−1 in (6.9) we obtain,

R̂k =
K
∑

j=k−1

λjvjv
H
j − λ̂k−1vk−1v

H
k−1

=
K
∑

j=k

λjvjv
H
j + (λk−1 − λ̂k−1)vk−1v

H
k−1. (6.10)

The necessary conditions for R̂k to converge to λk using the PM algorithm is λk > |λk−1−
λ̂k−1|. A straightforward generalization of the result in Theorem 8.2.1 in [GL96] yields:

|λk−1 − λ̂k−1| ≤ ck−1(
λk

λk−1
)2m,

where, ck−1 := |λk−1 − λK |(K − k + 2). Thus, the necessary condition for convergence

becomes

ck−1(
λk

λk−1
)m < λk. (6.11)

Remark 18. Despite the oversimplification, the (6.11) provides an intuition on the con-

vergence behaviour. We observe that if we truncate PM iterations at a large m the

plausibility of convergence increases. On the other hand, for small m, i.e. large truncation

error, the convergence of the algorithm depends strongly on the ratio between consecutive

eigenvalues.

6.3.4. Iterative method of estimating the largest eigenvalue

In the following proposition, we propose an upperbound and a lowerbound that are con-

verging to the largest eigenvalue monotonically decreasing and monotonically increasing

with m, respectively. These bounds will be used later as the core of eigenvalue estimation

of a quick channel probing algorithm.
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Proposition 13. For any m ≥ 1, p ≻ 0 and R ≻ 0 we have

Lm = min
i

(Rmp)i
(Rm−1p)i

≤ ρ(R) ≤ max
i

(Rmp)i
(Rm−1p)i

= Um.

where (·)i denotes the ith element of its argument. In addition, for any p ≻ 0 and R ≻
0, Lm is monotonically increasing, and Um is monotonically decreasing. Furthermore,

limm→∞ Um = limm→∞ Lm = ρ(R).

Proof. The proof is shown in Appendix 6.7.2.

6.4. Application in structured networks

In some applications, especially when measuring a spatially correlated phenomenon, we

might deploy the sensors in the form of a tree with leaves being densely connected clusters

of sensor nodes. The motivation for this scenario can be, for instance, the physical limita-

tions imposed by obstacles such as buildings or maybe due to some a priori information.

This sort of applications imposes a structure on R. To achieve better performance in such

a condition we revisit the proposed algorithm, considering the structured R.

In more details, the set of all clusters C := {C1, ...C|C|} covers all the nodes and we further

assume ∀i, j Ci ∩ Cj = ∅ where Cj is the jth cluster. Note that the clusters are fixed. Two

nodes belong to two different clusters might be able to communicate since the graph is

connected. In each cluster Cl we define a cluster head 0l, which can be any node that has

a direct connection to all of the nodes in the cluster. The cluster head assumes to only be

able to reach the nodes in the cluster. As for most of the physical phenomena, this spatial

correlation greatly decays with the Euclidean distance between the sensors. We assume

sensors belong to different clusters receive almost uncorrelated observation data. There

is, at least, one node in each cluster that has a communication link with at least one node

from another cluster (implied by the connectivity of the graph).

For the aforementioned scenario, the structure of the resulting sample covariance matrix

R is the summation of a block diagonal matrix D ∈ CK×K and a structured error matrix

with very small elements E ∈ CK×K, where

[D]i,j :=

{
1
N yH

i yj i, j ∈ Cl
0 i, j /∈ Cl

(6.12)
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and

[E]i,j :=

{

0 i, j ∈ Cl
1
N yH

i yj i, j /∈ Cl
(6.13)

where, [D]i,j and [E]i,j are the i, jth element of matrices D,E. This model is motived as

in the following. For any two sensors i, j ∈ Cl, the i, jth element of R is given by 1
N yH

i yj.

The spatial correlation model and the structure of the graph suggests that for any node

k /∈ Cl we have yH
i yk ≪ yH

i yj .

In this work, we focus on the case that E ≈ 0. One can consider the effect of non-zero

E and study it by means of matrix perturbation tools.

We compute the eigenvalues of each block separately as they constitute the eigenvalues

of the whole matrix. Each block corresponds to a bunch of nodes (cluster Cl, l ∈ {1...|C|})
that are located close to each other, hence, have considerable data correlation. For calcu-

lating eigenvalues of the sample covariance matrix of the nodes in Cl we are not required

to communicate with other clusters. This allows for faster convergence in consensus steps

of the proposed algorithm since we have fewer nodes in the consensus algorithm. How-

ever, we can further excel the algorithm’s speed by using the recent results presented as

computation over MAC (CoMAC) [ZGSY12,NG07].

To be standalone work, we summarize the steps of CoMaC based consensus presented

by the authors in [ZGSY12].

1. The cluster head 0l wakes up according to an order. Then he wakes up all the nodes

in Cl.

2. Nodes send their values to be summed to 0l simultaneously.

3. The received signal at 0l is given by

y0l(t) =
∑

(k∈Cl\{0l})

xk(t), (6.14)

where, xk(t) is the observation data of node k at time t.

4. Then 0l broadcasts

z(t) =
1

|Cl|
(y0l(t) + x0l(t)) . (6.15)

After every cluster achieved the eigenvalues of their corresponding block, they need

to use a protocol to share it among other clusters. This can be performed by using an
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ordinary consensus type algorithm among all the nodes. In the following we summarize

the proposed algorithm for structured graphs:

Algorithm 5 Fast Decentralized Eigenvalue Computation (FDEC)

Input: Initial vector q0
1, clusters Cl, l ∈ {1, . . . , Z} and Y ∈ CN×K

Output: Eigenvalues λk ∀k and eigenvectors vk k ∈ {1..K} of R = 1
NYYH

1: l = 1, R1 = R, k = 0, i = 0
2: repeat

3: in lth cluster, 0l wakes the nodes up
4: run DGPM using CoMAC consensus.
5: move to the next cluster l ← l + 1
6: until l = Z
7: Use a generic CA(·) to share the outputs the ls cluster among other clusters.

Remark 19. In the FDEC algorithm, each step of CA(·) is done in only two communication

shots between nodes and the cluster head, namely a multiple access phase and a broadcast

phase. This is considerably faster than any traditional consensus algorithm that the

number of required iterations for convergence, grows with the number nodes [ZGSY12].

However, the conditions for this gains are idealized due to oversimplification of the wireless

channel.

Remark 20. The comparison between FDEC and DGPM does not shed light on eigenvalue

computation since the difference between them relates to the different consensus methods.

The method proposed in FDEC uses 2 rounds of iteration to reach a consensus, whereas

in our simulations the consensus method from [AYSS09] needs at least 50 iterations. For

a detailed comparison on cluster based consensus using CoMAC and traditional average

consensus we refer the reader to the works [ZGSY12,LSMGC13]. We highlight that the

clear advantage of FDEC because of using CoMAC and special graph topology does not

allow for a fair comparison.

6.5. Application in channel probing

We consider a system with M established links,2 which are referred to as primary links

(PLs). In addition, we assume the existence of K pairs of inactive transmitters/receivers,

which we call secondary links (SLs), that want to establish new links using the same chan-

nel of the PLs. The objective is to verify whether the secondary links can be established

without decreasing the SINR of primary and secondary links below a given value.

2Throughout this chapter, as in [ZC01], the terms link and transmitter/receiver pair are used interchange-
ably.
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In more detail, the channel gain between the ith transmitter and the jth receiver

(primary users) is denoted by ci,j ≥ 0, thus, the SINR measured by the primary link

i ∈ {1, ...,M} can be expressed as:

γi =
ci,ipi

ni +
∑M

j=1,j ̸=i ci,jpj
=

pi

vi +
∑M

j=1,j ̸=i gi,jpj
,

where pi (1 ≤ i ≤ M) is the power at which transmitter i operates. For brevity, we

denote by gi,j =
ci,j
ci,i

and vi =
ni
ci,i

the normalized channel gain and noise, respectively. The

following definition will be helpful to state the main results in this study.

Definition 24. A system with M users communicating in the same frequency and at

the same time is called feasible if and only if there exists a set of (non-negative) powers

p∗ = [p∗1, p
∗
2, ..., p

∗
M ]T such that γi ≥ γ∗ > 0, where γ∗ is the desired SINR threshold

common to all users [FM93], [Bam98].

In this study we assume that the PLs are using the classic power admission control

method proposed in [FM93, Bam98, RZ] to compute a feasible power assignment that

guarantees γi ≥ γ∗. (Note: more general schemes can be considered.) More precisely,

each PL updates its power iteratively according to

pi(m+ 1) =
γ∗pi(m)

γi
, (6.16)

where, m is the iteration index. If the system is feasible, by using the iteration in (6.16),

the users’ transmitted powers converge to the following feasible power allocation:

p∗
M = γ∗(I− γ∗G)−1v, (6.17)

where p∗
M = [p∗1, p

∗
2, ..., p

∗
M ]T is the feasible transmit power vector of the PLs, andG = [gi,j]

and v = [vi] are the normalized channel gain matrix and noise vector, respectively. The

following proposition is crucial to the results that follows.

Proposition 14 ([FM93,Bam98,RZ]). The users are feasible in the sense of Definition

24 if and only if the channel matrix G satisfies ρ(G) < 1
γ∗ , where ρ(·) denotes the spectral

radius of a matrix.

Now we assume that K SLs try to join the system. The system including both PLs

and SLs has a channel gain matrix of dimension (K + M) × (K + M). We use Z ∈
R
(K+M)×(K+M)
++ to denote this matrix, which is given by

Z =

[

G Gps

Gsp H

]

,
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where G ∈ R
M×M
++ , Gps ∈ R

M×K
++ , Gsp ∈ R

K×M
++ , and H ∈ R

K×K
++ .

In light of Proposition 14, the spectral radius of Z provides a necessary and sufficient

condition to verify the admissibility of the SLs (i.e., the system composed of primary and

secondary links are feasible in the sense of Definition 24). In the following, we establish a

biconditional relationship between the spectral radius of Z, ρ(Z) and the spectral radius

of a smaller matrix taking advantage of the fact that ρ(G) < 1
γ∗ .

In particular, suppose that the system including both SLs and PLs is feasible; then, by

using (6.17), the optimum power allocation is

pAll users = γ∗
[

I− γ∗G −γ∗Gps

−γ∗Gsp I− γ∗H

]−1

v.

Clearly, the power vector pAll users is positive for any vector v > 0 if and only if the

inverse matrix is positive. If one proceeds to evaluate the inversion of the matrix above,

the inverse matrix has all positive elements if and only if [ZC01]

(I− γ∗H− γ∗2Gsp(I− γ∗G)−1Gps)
−1 ≻ 0 .

where, ′ ≻′ denotes element-wise inequality. By the Neumann series, this is equivalent to

ρ(B) <
1

γ∗
, (6.18)

where

B ! (H+ γ∗Gsp(I− γ∗G)−1Gps) . (6.19)

Consequently, the whole system, including PLs and SLs, is feasible if and only if (6.18)

holds, which is the relation that the proposed approach tries to verify.

6.5.1. Bounding the spectral radius

In this section, we are going to establish a sequence of lower and upper bounds on the

spectral radius of the matrix B defined by (6.19). These bounds provide a basis for the

development of a novel channel probing algorithm presented in the next section. First, in

the following lemma, we prove a linear relationship between the interference and the SLs’

transmit power.

Lemma 16. At time k, let the SLs fix their transmitted powers to q(k) = [pM+1, . . . , pM+K ]T

and let r(k) = [rK+1, . . . , rK+M ]T , where ri = vi+
∑M+K

j=1,j ̸=i gi,jpj, be the interference mea-

sured at the ith link after the primary users respond to the power increase of SLs with the

power admission control in (6.16) (i.e., we assume that PLs are using the power allocation
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given by the point to which (6.16) converges when the transmitters of SLs fix their powers).

Then the following holds:

r(k) − r(0) = Bq(k), (6.20)

where we further assume that q(0) = 0. (In particular, r(0) represents the interference

power measured at the SL receivers when the SLs are silent.)

Proof. With the above settings, by using the results in [ZC01], we can show that the

transmit power level of the PLs converges to

p
(k)
N = (I− γ∗G)−1(v +Gpsq

(k)),

whereGps = [gpsij ] is the normalized channel gain between the secondary users’ transmitters

and primary users’ receivers. We can verify that the interference at the SLs’ receivers is

given by

r(k) = r(0) + (H+ γ∗Gsp(I− γ∗G)−1Gps)q
(k),

and we conclude that the linear relationship between q(k) and r(k) − r(0) is given by

r(k) − r(0) = Bq(k), (6.21)

which concludes the proof.

The linear relationship described in the above lemma is illustrated in Figure 6.3. Ap-

plying Lemma 16 and the Proposition 13, which introduces iteratively improvable bounds

for ρ(B), we design an algorithm to determine the feasibility of the system in the next

section.

Figure 6.3.: Our system model for channel probing; a system with SL transmit powers
shown as inputs and interference at the SLs receivers shown as outputs.

6.5.2. An iterative channel probing method

Now we introduce a channel probing algorithm to determine the feasibility of the system

by observing the system’s behaviour in response to channel probing. Based on Lemma

16, if an external user (e.g., the secondary users) increases its transmit power (and with

it the interference level to the PLs), we know that the PLs compensate the loss in SINR

by increasing their transmit powers. As a result, each receiver of the SLs experiences an
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increase in its measured interference. In our approach, starting at k = 0, each node of SL

measures the received interference power r(0)i and save this value for later use. Then, each

transmitter of the SLs sends a signal at fixed power level p(1)i , and their corresponding

receivers observe the interference power r(1)i for new power allocation of the PLs. At this

point, SLs compute L1 and U1 given in Proposition 13 to bound the spectral radius of B

from above and below. Admissibility of the system can thus be verified if either the lower

or the upper bound is above or below the value 1/γ∗ (see the discussion after (6.19)). If

admissibility cannot be determined with the given bounds, SLs repeat the above procedure

with the new fixed power allocation given by q(k+1) = r(k) − r(0) = Bq(k), and they again

compute Lm and Um. In doing so, we have a monotonically increasing/decreasing sequence

of lower/upper bounds ofB given by Lm and Um in Proposition 13. One of these sequences

crosses the value 1/γ∗ provided that ρ(Z) ̸= 1/γ∗, in which moment admissibility of the

secondary users can be determined. This approach is summarized below.

Note that, in the above algorithm, one of the main challenges is to implement step 5 in a

truly decentralized fashion. To do so, we can use cluster-based gossip consensus algorithms

[ZGSY12], which are algorithms that can efficiently compute averages of values reported

by users in a network. More precisely, step 5 can be computed (by using averages) with

the following approximation of the max function:3

max{x1, · · · , xn} ≈ 1
p

√

∥x1∥p + ∥x2∥p + ...+ ∥xn∥p

for some sufficiently large p ≥ 1. In other words, SLs reach consensus on ∥x1∥p+∥x2∥p+...+

∥xn∥p, from which moment a good approximation of max{x1, · · · , xn} is readily obtained.

We refer the reader to [ZGSY12] for details on consensus algorithms.

The simulations use CDMA systems similar to those in [ZC01]. In particular, we con-

sider M = 18 primary links transmitting, and K = 18 SLs probing the channel. The

transmitters are distributed uniformly in a square area of 10km by 10km. The receivers of

each link are distributed at random within a circle around their respective transmitters.

In the setup, the maximum radius of the circle ranges from 100m to 500m. The channel

gain from the ith receiver to the jth transmitter is given by cij = 1
d3ij

, where dij is the

Euclidean distance. The receiver noise power is 10−15W , which is assumed to be equal

for all sensors. The required SINR is γ∗ = 16dB. We assume that all required signalling

between receivers and transmitters is done in separate channels.

In the first experiment, we compare the performance of our algorithm with the scheme

in [ZC01]. Both algorithms perturb the system by transmitting a probing signal and

wait until the PLs converge. The convergence in both cases is asymptotical and the

3Min function can be computed by finding the maximum of inverted values.
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Algorithm 6 Iterative Distributed Channel Probing

Input: Initial powers p(1)i , i ∈ {M + 1...M +K}, k = 1, T = 0
Output: Feasibility/admissibility of the system

1: Each SU receiver measures the received interference r(0)i while being silent.
2: repeat

3: Each SU transmits with power p(k)i , and the corresponding receivers measure the
resulting interference.

4: After the power level of the PLs stabilizes, SU computes

(Bkq)i
(Bk−1q)i

using
Bkq = r(k) − r(0)

.
5: Each SU computes

Lk = min
i

(Bkq)i
(Bk−1q)i

and Uk = max
i

(Bkq)i
(Bk−1q)i

(6.22)

6: if Lk ≥ 1
γ∗ then

7: T = 1 (the SUs are infeasible and leave the system)
8: else if Uk < 1

γ∗ then

9: T = 1 (the SUs are feasible and proceed with an admission procedure)
10: else

11: Continue with the next step.
12: end if

13: Update the probing power to p(k+1)
i = r(k)i − r(0)i and k = k + 1 go to step (2)

14: until T = 1 or another termination condition is satisfied

126



6.6. Conclusions

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
101

102

103

104

E{ρ*(Z)}

N
um

be
r o

f i
te

ra
tio

ns
 

 

 

Our proposed scheme

Scheme proposed by [8]

Figure 6.4.: Average number of iterations that PLs require to converge in order to SLs
determine admissibility as a function of the expected value of γ∗ρ(Z).

algorithm that PLs use is given in [FM93,Bam98,RZ]. We investigate the average number

of iterations required by the PLs to stabilize their SIR within a range (ϵ = 10−4) in each

scheme. This criterion is more realistic than the overall algorithm’s number of iterations

because the most time-consuming step in both algorithms is the convergence of PLs. As it

is illustrated in Figure 6.4 our proposed algorithm needs significantly less number of PLs

iterations than the other scheme. This can be explained as follows. In each iteration of

[ZC01], at least, one SL is admitted. Since admitting a user causes a huge impact on the

system, the PLs require a large number of iterations to adapt their powers. However, our

algorithm only perturbs the PLs with small probing powers.

The second experiment focuses on the probability of reaching erroneous conclusions re-

garding the admissibility of secondary users when PLs use a fixed number of iterations

in (6.16). The results in Figure 6.5 shows that, for the implementation of the proposed

algorithm, few iterations of (6.16) are necessary to keep the probability of erroneous con-

clusions at low levels.

6.6. Conclusions

We have revisited the generalized power method and further developed a decentralized

version, which is referred to as DGMP. We have used the generic consensus algorithm as
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Figure 6.5.: Empirical probability of error as a function of the expected values of γ∗ρ(Z)
and the number of iterations used in the scheme in (6.16).

the building block for the decentralization. Furthermore, we have elaborated some analysis

on the convergence of GPM, however, providing more rigorous analysis is challenging for

this algorithm. We have modified this algorithm for two special applications.

We have motivated a scenario in which the covariance matrix is semi-block-diagonal.

This scenario arises when the sensors are spread out forming a tree of clusters. In this

scenario, we can expedite the convergence by taking advantage of CoMaC approach.

As far as the second application is concerned, we have developed a low-complexity dis-

tributed channel probing scheme. This algorithm generates two sequences that converge

to a value that indicates the spectral radius of the channel. This value is the largest

eigenvalue of a matrix, which determines the admissibility of the new nodes. One of

the sequences provides a monotonically decreasing upper bound, and the other provides

a monotonically increasing lower bound. The scheme allows multiple SLs to probe the

channel and to verify their admissibility by transmitting a low-power probing tone. Sim-

ulation results show that in practice few iterations are required to detect admissibility of

the secondary users in scenarios with a wide range of congestion levels of the channel.
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Future work

Studying joint jamming detection and channel probing seems to be an interesting direction

for some investigation. The response of the primary users to channel probing is known.

This knowledge can be used to further prevent malicious users from exploiting the cognitive

radios vulnerabilities. Therefore, achieving the channel probing and jamming detection

jointly.

6.7. Appendix

6.7.1. Proof of convergence of ideal GPM

The proof follows from the same token given in [GL96] since for every eigenvalue λk we

run the conventional power iteration. In order to satisfy the assumptions in the original

proof by [GL96], we need the following lemma to hold:

Lemma 17. The matrices Rk are all Hermitian, therefore diagonalizable.

It is straightforward if we write,

Rk = R−
k−1
∑

i=1

λiviv
H
i . (6.23)

Since R is Hermitian positive semi-definite, Rks are holding the same properties as well.

6.7.2. Proof of Proposition 13

The proof is given in two parts; first we prove that

lim
m→∞

(Rmp)i
(Rm−1p)i

= ρ(R) ∀i. (6.24)

We can reformulate (6.24) as

lim
m→∞

(Rmp)i
(Rm−1p)i

= lim
m→∞

(ρ(R)m

ρ(R)mRmp)i

(ρ(R)m−1

ρ(R)m−1Rm−1p)i
(6.25)

= lim
m→∞

ρ(R)((ρ(R)−1R)mp)i
((ρ(R)−1R)m−1p)i

(6.26)
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Define am ! ((ρ(R)−1R)mp)i. By the Perron theorem reproduced in Appendix 6.7.3, it

follows that

lim
m→∞

am = (xyTp)i. (6.27)

Thus, by considering (6.27), the limit in (6.26) yields

lim
m→∞

(Rmp)i
(Rm−1p)i

= ρ(R)
limm→∞ am

limm→∞ am−1

= ρ(R)
(xyTp)i
(xyTp)i

= ρ(R),

which proves (6.24).

Now we prove the monotonicity of Lm and Um. We start with the lower bound. The

objective is to prove that

min
i

(Rmp)i
(Rm−1p)i

≤ min
i

(Rm+1p)i
(Rmp)i

. (6.28)

Define q ! mini
(Rmp)i

(Rm−1p)i
= mini

∑

k bi,k
(Rm−1p)k
(Rm−1p)i

. We can manipulate the RHS of (6.28)

as follows:

min
i

(Rm+1p)i
(Rmp)i

=min
i

∑

j

bi,j
(Rmp)j
(Rmp)i

=min
i

∑

j

bi,j

∑

k bj,k(R
m−1p)k

∑

k bi,k(R
m−1p)k

.

Hence,

min
i

∑

j

bi,j

∑

k bj,k
(Rm−1p)k
(Rm−1p)j

(Rm−1p)j
∑

k bi,k(R
m−1p)k

≥ min
i

∑

j

bi,j
q (Rm−1p)j

∑

k bi,k(R
m−1p)k

= min
i

q

∑

j bi,j(R
m−1p)j

∑

k bi,k(R
m−1p)k

= q,

where the first inequality follows from the definition of q.

The proof for the upper bound is similar to that of the lower bound. In more detail, we
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want to prove that

max
i

(Rmp)i
(Rm−1p)i

≥ max
i

(Rm+1p)i
(Rmp)i

.

Define w ! maxi
(Rmp)i

(Rm−1p)i
= maxi

∑

k bi,k
(Rm−1p)k
(Rm−1p)i

. Therefore,

max
i

(Rm+1p)i
(Rmp)i

=max
i

∑

j

bi,j
(Rmp)j
(Rmp)i

=max
i

∑

j

bi,j

∑

k bj,k(R
m−1p)k

∑

k bi,k(R
m−1p)k

.

Therefore,

max
i

∑

j

bi,j

∑

k bj,k
(Rm−1p)k
(Rm−1p)j

(Rm−1p)j
∑

k bi,k(R
m−1p)k

≤ max
i

∑

j

bi,j
w (Rm−1p)j

∑

k bi,k(R
m−1p)k

= max
i

w

∑

j bi,j(R
m−1p)j

∑

k bi,k(R
m−1p)k

= w,

which concludes the proof.

6.7.3. The Perron theorem

For any primitive A (there exist a k such that Ak > 0 ) we have,

lim
m→∞

[ρ(A)−1A]m = xyT ,

where x and y are the normalized (yTx = 1) left and right Perron vectors of A.
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