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Abstract

The concept of self-organizing networks is a promising approach to address funda-

mental challenges in current and future wireless networks. Not least the dense and

heterogeneous nature of the networks, the scarcity of resources, and high costs of man-

ual configurations necessitate efficient self-organization techniques that autonomously

adapt crucial system parameters to changing traffic and network conditions. This thesis

is concerned with key aspects of self-organizing networks, in particular the generation

of the required knowledge, and the design of particular self-optimization mechanisms

in wireless networks.

Any self-organization functionality depends on knowledge about the current system

state. The first part of this thesis deals with learning techniques that enable a wide

range of self-optimization and self-configuration functions. In particular, we investi-

gate the generation of knowledge in form of geographical radio maps. The radio maps

are generated based on user measurements, which arrive sequentially and continuously

over time. To process this persistent data stream, low-complexity online estimation

and learning techniques are needed. We employ powerful kernel-based adaptive filter-

ing techniques, which are robust to measurement errors. To demonstrate how addi-

tional context information can be taken into account, we show, how knowledge about

anticipated user routes can be incorporated in the learning process. Moreover, we in-

vestigate the performance of the algorithms in different scenarios; more specifically, we

apply these techniques to the problem of path-loss estimation and to the problem of

estimating interference maps. Such radio maps are considered invaluable for network

planning and optimization tasks. Furthermore, we demonstrate how interference maps

can be used to support network-assisted device-to-device communications.

In addition to the aspect of knowledge generation, the second and third part of the

thesis deal with particular self-optimization techniques. The second part of the thesis

is concerned with self-optimization in interference-limited networks, motivated by the

trend towards densely deployed heterogeneous cellular networks, which are expected to

become prevalent in the next generations of wireless communication systems. Especially

in multi-antenna networks, inter-cell interference coordination poses a major challenge,

since not only temporal and spectral resources, but also the spatial dimension has to

be taken into account. To address this challenge, we propose distributed coordination
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ii Abstract

algorithms for inter-cell (and intra-cell) interference coordination in SDMA-based cel-

lular networks. Based on a local maximization of a network-wide utility function over

average user rates, the proposed algorithms autonomously adapt the transmit power

budgets of particular resources. Using system-level simulations, we show that, espe-

cially in networks with high user mobility, the control of average power budgets for

particular time-frequency-space resources is superior to a direct control of the transmit

powers.

In the last part of the thesis, we consider more general network topologies with

a stochastic traffic modeling. We derive a framework to design network-layer control

policies based on a suitable cost function. Thereby, the framework adapts scheduling

and routing decisions to the requirements of different services and applications, while

ensuring queueing theoretic stability. As particular applications, we investigate the

cost function based control approach for networks with minimum buffer constraints

(e.g., in case of multimedia streaming), and for networks with energy limited nodes. In

addition, we show how existing cross-layer control algorithms can be adapted to our

control framework.



Zusammenfassung

Das Konzept selbstorganisierender Kommunikationsnetze, die zentrale Systemparam-

eter automatisch an veränderliche Datenverkehrs- und Netzbedingungen anpassen, ist

ein vielversprechender Ansatz um fundamentalen Herausforderungen in aktuellen und

zukünftigen drahtlosen Kommunikationsnetzen zu begegnen. Insbesondere die dichte

und heterogene Natur zukünftiger drahtloser Netze, die Begrenztheit der Kommunika-

tionsressourcen, sowie hohe Kosten manueller Konfiguration und Wartung werden den

Einsatz von Selbstorganisationstechniken unverzichtbar machen. Diese Arbeit befasst

sich mit zentralen Aspekten selbstorganisierender Kommunikationsnetze und unter-

sucht dabei sowohl die Schaffung einer Informationsgrundlage als auch den Entwurf

konkreter Selbstoptimierungsmechanismen.

Jeder Algorithmus zur Selbstorganisation ist auf aktuelle Informationen über den

Zustand des Gesamtsystems angewiesen. Im ersten Teil der Arbeit werden maschinelle

Lernverfahren entwickelt um diese Informationen autonom erzeugen zu können und

damit die Voraussetzung für zahlreiche Selbstoptimierungs- und Selbstorganisationsver-

fahren zu schaffen. Speziell werden Algorithmen zur Erzeugung einer Wissens- und

Entscheidungsgrundlage in Form von ortsbasierten Radiokarten formuliert und analysiert.

Die Erzeugung der Radiokarten basiert auf der Verarbeitung nutzergenerierter Mess-

daten, welche kontinuierlich und sequentiell zur Verfügung gestellt werden. Um diesen

kontinuierlichen Datenstrom verarbeiten zu können, werden echtzeitbasierte Schätz-

und Lernverfahren mit niedriger Komplexität benötigt. Zu diesem Zweck wird der

Einsatz kernelbasierter adaptiver Filtertechniken vorgeschlagen und evaluiert, welche

zudem eine hohe Robustheit gegenüber Messungenauigkeiten besitzen. Beispielhaft für

die Einbeziehung zusätzlich verfügbarer Kontextinformationen wird gezeigt, wie die

Kenntnis voraussichtlicher Nutzerrouten in den Lernprozess integriert werden kann.

Die Performanz der entwickelten Algorithmen, insbesondere im Zusammenhang mit

der Schätzung von Pfadverlustkarten und Interferenzkarten, wird im Hinblick auf ver-

schiedene Netz- und Anwendungsszenarien untersucht. Derartige Radiokarten sind

speziell für die adaptive Netzplanung und -optimierung von großer Bedeutung. Darüber

hinaus wird gezeigt, wie insbesondere Interferenzkarten zur Unterstützung von net-

zgestützter Gerät-zu-Gerät-Kommunikation eingesetzt werden können.

Ergänzend zum Aspekt der Wissensgenerierung werden im zweiten und dritten
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iv Zusammenfassung

Teil der Arbeit konkrete Selbstorganisationsverfahren untersucht. Motiviert durch

den anhaltenden Trend zu immer dichteren heterogenen zellularen Netzen, behan-

delt der zweite Teil dieser Arbeit Selbstoptimierungsverfahren zur Koordinierung von

Inter-Zell-Interferenz in interferenzbegrenzten Netzen. Die Koordinierung von Inter-

Zell-Interferenz bedeutet insbesondere in Mehrantennensystemen eine große Heraus-

forderung, da nicht nur Zeit- und Frequenzressourcen sondern auch die räumliche

Dimension in die Koordinierung mit einbezogen werden muss. Für derartige zellu-

lare Mehrantennennetze werden selbstorganisierende verteilte Koordinationsalgorith-

men entworfen, welche die Sendeleistungsbudgets einzelner Ressourcen basierend auf

der Maximierung einer netzweiten, über mittleren Nutzerübertragungsraten definierten,

Nutzwertfunktion anpassen. Dabei wird gezeigt, dass es in Netzen mit mobilen Nutzern

vorteilhafter ist, mittlere Sendeleistungsbudgets zu adaptieren, als die Sendeleistungen

direkt zu kontrollieren.

Im letzten Teil dieser Arbeit werden allgemeinere Netztopologien mit stochastis-

cher Modellierung der Datenaufkommen betrachtet. Vorgestellt wird ein Konzept zum

Entwurf von Kontrollstrategien auf der Netzwerkschicht, die, auf Basis einer geeignet

gewählten Kostenfunktion, Scheduling- und Routingentscheidungen an die Anforderun-

gen vorherrschender Anwendungen und Dienste anpassen können und gleichzeitig Sta-

bilität im Sinne der Warteschlangentheorie garantieren. Als konkrete Anwendungen

werden der kostenfunktionsbasierte Entwurf von Kontrollstrategien für Netze mit Min-

destanforderungen an Pufferfüllstände (z.B. im Fall von Multimedia-Streaming), sowie

für Netze aus Knoten mit begrenzter Energie untersucht. Darüber hinaus wird gezeigt,

wie bestehende Algorithmen zur schichtübergreifenden Kontrolle an das vorgestellte

Konzept angepasst werden können.
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Chapter 1

Introduction

1.1 Motivation

The widespread use of mobile broadband services, not least due to the ubiquitous

prevalence of smartphones, tablets, and other mobile broadband devices, poses serious

challenges to wireless network operators. It is expected that the proliferation of such

devices is nowhere near its peak and that their number will further increase. This

development is intensified by the growing use of machine-type communications. In fact,

current prognoses assume 10s of billions of devices [FA14] that have to be handled by the

Fifth Generation (5G) of cellular networks. As the number of wireless devices increases,

so does their demand for wireless transmission capacity. These increasing throughput

demands, but also the great variety of other requirements on wireless communication

networks (low latency, energy efficiency, etc.) that are brought by new services and

machine-type communications, require new types of network design and optimization

procedures, in particular in presence of rapidly changing environmental and operational

conditions.

In general, the growing demands for wireless capacity can be addressed in different

ways. A straight-forward, traditionally used option is to increase the bandwidth of

the system. However, wireless spectrum has become a scarce and expensive resource.

Consequently, operators are concerned about maximally exploiting the available spec-

trum. Another solution is to build ever more dense and complex networks, which

provide higher spectral efficiencies by reducing the distances between transmitters and

receivers. In particular, heterogeneous network architectures, where small cells comple-

menting the traditional macro-cellular infrastructure are deployed in regions with great

throughput demands, are a promising concept in this respect [LPGD+11]. However,

this option comes not without a price. Inter-cell interference and backhauling are se-

rious challenges, but also the operational costs of designing, operating, and optimizing

such networks are significant. The manual execution of configuration, maintenance, and

optimization procedures produces tremendous costs and is therefore no longer feasible

1



2 Chapter 1. Introduction

in such networks.

As a consequence, general purpose wireless networks have to show a great level

of adaptivity by automatically reconfiguring crucial system parameters. This can be

realized by embedding autonomic features into the networks, and so enabling wireless

networks to self-organize. This concept is called the Self-Organizing Network (SON)

paradigm. Systems incorporating SON features will be better suited to handle sud-

den variations in system conditions (traffic demands, propagation conditions, network

failures, etc.), and, even more important, such networks will be able to meet major

challenges of current and future cellular networks. These challenges include high levels

of heterogeneity, network densification, flexible spectrum use, and possibly the concur-

rent use of different physical layers [FA14]. Moreover, the realization of throughput

increases or energy savings, which are crucial objectives for the next generation of

wireless networks [OBB+14], will rely heavily on self-organization features.

A higher level of self-organization will not only increase the quality of future net-

works, but it will also decrease Capital Expenditure (CAPEX) (e.g., by avoiding overdi-

mensioning of networks) and Operational Expenditure (OPEX) (e.g., where manual

configuration turns out to be too costly) [ERX+13, vdBLE+08, JPG+14]. This is par-

ticularly crucial in networks, where base stations are placed at locations where physical

access is difficult, or where manual configuration is difficult or infeasible. In fact,

the use of SON becomes inevitable in heterogeneous, multi-vendor networks with the

need to optimize an overwhelming number of parameters and their interdependencies

[JPG+14]. Therefore, major industrial organizations and standardization bodies have

put SON on the agenda [NGM07, 3GP11a, JPG+14].

Almost all types of wireless networks can benefit from self-organization capabilities.

Not only dense and heterogeneous cellular networks should be mentioned in this context

[CAA12], but also cognitive radio networks [ZLW13], sensor networks, and (mobile)

ad-hoc networks [Dre08]. Usually, self-organization functionalities are categorized into

several major branches (also called self-X capabilities), the three most frequently used

categories are self-configuration, self-optimization, and self-healing [HSS12] (however,

different classifications of SON functionalities exist). The work presented in this thesis

has overlaps with all three categories, however, the main focus lies on the aspect of

self-optimization.

Putting the concept of self-organizing networks into practice comes with a number

of conceptual and practical challenges (see, e.g., [JPG+14]). To begin with, any self-

organization mechanism depends on a certain degree of knowledge about the current

system state, but this knowledge is not always trivial to obtain. Classical network

management and monitoring procedures rely on expensive and time-consuming direct

measurement campaigns (drive tests). The desire to reduce costs but also the limited

flexibility of this approach has recently put the minimization of explicit drive tests in the

focus of research and standardization [JHKB12]. A much more economic approach than
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to conduct explicit measurements is to extract the required information from data that

is already available in the networks, e.g., from user terminal signalling. This has the

additional advantage that operators can obtain data about locations (e.g., the interior

of buildings) that are otherwise inaccessible. Current mobile networks already generate

huge amounts of data, which can be used for self-organization purposes. This is already

recognized by the Third Generation Partnership Project (3GPP) and gradually finds its

way into standardization [3GP14a]. Especially in dense networks, such as future (5G)

networks, the amount of available measurements is expected to further grow. Including

also data from the user and the core network level, these huge data sets, sometimes

called “big data”, can be harnessed to improve network operations and user experiences.

Consequently, mechanisms are required that enable the network to distributively learn

from this huge amount of available information and measurements. Many different

self-organization capabilities can benefit from the ability to learn from information

available in the network, ranging from interference management, coverage and capacity

optimization, mobility and load balancing, to advanced topology management schemes.

On top of that, learning abilities are highly advantageous to support location-aware

applications and services, and new communication paradigms such as network assisted

Device-to-Device (D2D) communications. Moreover, they enable networks to carry out

proactive resource allocation in order to increase the Quality of Service (QoS) and the

quality of experience of the users.

But also on the level of particular SON functionalities, there is still need for efficient

algorithms that maximally exploit the available resources, including interference coor-

dination, adaptive routing, and other self-optimizing resource allocation techniques.

A particularly crucial aspect of self-optimization in cellular networks is inter-cell in-

terference coordination [3GP11a], which is of utmost importance in future dense and

heterogeneous cellular networks, but also in current Long Term Evolution (LTE) net-

works [JPG+14, HZZ+10, DGG+10]. In classical cellular networks, interference mainly

affects users at the cell-edge. However, in heterogeneous networks, the unplanned de-

ployment of small cells and the fact that the particular topology of these networks

renders almost all users vulnerable to interference makes interference management par-

ticularly challenging. The need for interference management is aggravated by the recent

trend towards a universal frequency reuse, where all cells use the same bandwidth. In

fact, inter-cell interference is one of the major limiting factors in terms of throughput

and spectral efficiency, and it can drastically reduce the perceived QoS. Interference

management is even further complicated in multi-antenna systems, where, in addition

to the out-of-cell interference, spatial intra-cell interference has to be coordinated.

Another challenge is to incorporate SON functionalities into higher layer control

algorithms. Future wireless networks will, more than today, be deployed with only

few a-priori planning. Moreover, in dense heterogeneous networks, the classical wired

backhaul is increasingly being replaced by wireless links. These wireless backhaul links
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also have to scale with the growing throughput demand in future networks. There-

fore, network-layer control issues such as adaptive routing are regarded as critical SON

functionalities [ZLW13]. Self-organizing network-layer control policies that govern, e.g.,

routing decisions, need to be robust and dynamic regarding node or link failures, since

supporting network elements such as relays and small base stations are more likely to

fail, or may not even be controlled by the operator. This applies even more to ad-

hoc networks, which operate without pre-planned infrastructure. In all such networks,

stability is a critical design factor. However, not only stability should be taken into

account, but also efficiency in terms of operating costs and energy. For example, main-

taining all parts of the wireless backhaul (small cells) active at all times is not optimal

from an energy efficiency point of view. By contrast, relays should be powered off,

when the traffic conditions allow it. This, in turn, alters the network topology in a

dynamic way, which is a serious problem for statically designed control policies. Also

dynamics in application level requirements (e.g., on delays or buffers) and user QoS

demands force network operators to consider adaptive network control policies.

1.2 Outline and Contributions of the Thesis

This thesis deals with both prerequisites and individual aspects of SON, in particular

with respect to self-optimization and self-configuration. More specifically, we focus on

three major aspects.

Chapter 2 introduces adaptive online learning techniques, which provide self-

organization entities with information about the network state and environmental con-

ditions that are necessary for their operation. Therefore, the proposed techniques

serve as enablers to various self-optimization capabilities. More specifically, we address

the problem of reconstructing geographic radio maps from user measurements in cel-

lular networks. This concept describes a mapping from a geographic location to the

magnitude of a certain radio-propagation feature of interest (e.g., path-loss or average

interference power) that a user at this location observes. We propose and evaluate two

kernel-based adaptive online algorithms, which are more suitable to this task than state-

of-the-art offline methods. The proposed algorithms are application-tailored extensions

of powerful iterative methods such as the adaptive projected subgradient method and

a state-of-the-art adaptive multikernel method. Assuming that the moving trajectories

of users are available, it is shown by way of example how side information can be in-

corporated in the algorithms to improve their convergence performance and the quality

of estimation. The complexity of the proposed algorithms is significantly reduced by

imposing sparsity-awareness in the sense that the algorithms exploit the compressibility

of the measurement data to reduce the amount of data which is saved and processed.

We present extensive simulations based on realistic data to show that our algorithms
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provide fast and robust estimates in real-world scenarios. Several exemplary applica-

tions of the learning techniques are demonstrated. As a first application, we consider

path-loss prediction along trajectories of mobile users (e.g., as a building block for an-

ticipatory buffering or traffic offloading) based on the learning of path-loss maps. As a

second application, we consider the learning of interference maps. We demonstrate the

use of such maps by applying them in the prediction of D2D channel conditions, with

application to a typical car-to-car video streaming application.

Parts of the material in this chapter were previously published in [1].

Chapter 3 introduces distributed resource allocation techniques for interference

mitigation in cellular multi-antenna networks based on Space Division Multiple Ac-

cess (SDMA). We discuss practical self-optimizing power-control schemes for such net-

works with codebook-based beamforming. The proposed schemes extend the existing

adaptive fractional frequency reuse paradigm to spatial resources (beams). Moreover

they are based on a virtual, utility-based, optimization layer providing a simplified

long-term network view that is used to gradually adapt transmit power budgets for

particular spectral and spatial resources, which leads to an autonomous interference

minimization. Different distributed algorithms are proposed, where the granularity of

control ranges from controlling frequency sub-band power via controlling the power

on a per-beam basis, to a granularity of only enforcing average power budgets per

beam. The performance of the distributed algorithms is compared in extensive system-

level simulations and evaluated based on different user mobility assumptions. Since

the proposed algorithms provide approximations to the solution of the underlying net-

work utility maximization problem, we additionally attempt to assess how close the

distributed algorithms come to the global optimal solution. To investigate this devia-

tion, we design a near-optimal algorithm based on branch-and-bound and compare its

outcome to the distributed solution in different interference regimes.

The material in this chapter was previously published in [2, 3, 4].

Chapter 4 investigates self-organization from a network-layer perspective. In con-

trast to Chapter 3, which treats cellular networks with best effort traffic and uses a

full-buffer traffic assumption, Chapter 4 investigates network control (which incorpo-

rates routing and scheduling of traffic flows) in general multi-hop network topologies

using stochastic traffic models. For the design of control policies in wireless networks,

we introduce a framework that combines queueing-theoretic stability with flexibility re-

garding additional requirements, induced by prevalent services or by user QoS demands.

The flexibility is achieved by using a cost function based approach, while stability can

be shown using readily verifiable sufficient stability conditions. Using different cost

functions, the policy can be adapted to different application and network dependent

requirements. We investigate typical examples of such requirements: the reduction of
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buffer underflows (which is particularly relevant in case of streaming traffic) and the

problem of energy efficient routing in networks of battery powered nodes. In this re-

spect, we investigate various candidate cost functions concerning their suitability as a

basis for corresponding control policies. Moreover, we demonstrate how a connection to

physical layer resource allocation and interference mitigation in wireless multihop net-

works can be established by adapting a popular cross-layer optimization scheme. This

involves the necessity to solve non-convex optimization problems; for this, we apply a

recently developed successive convex approximation technique.

Parts of the material in this chapter were previously published in [5, 6, 7, 8].

In Chapter 5, we summarize the main findings and conclusions, and give an outlook

on open research questions.

Further results that are not part of this thesis

During my time at Fraunhofer Heinrich Hertz Institute, we obtained a number of

results that are not part of this thesis, mainly as part of the European 5GNOW project.

The following publications should be highlighted and represent a good overview of the

different aspects that were considered in this project.

• In the coauthored study [9], we provide an overview about the ideas of 5GNOW,

including a new concept for a 5G random access channel that allows instanta-

neous “one-shot” transmission of small portions of data in addition to the normal

random access operation.

• In [10], we investigate new physical layer waveforms suitable for the novel 5G

random access channel concept. In particular, we follow a waveform design ap-

proach based on bi-orthogonal frequency division multiplexing. This approach

allows to transmit data in frequencies that otherwise have to remain unused; in

particular, frequencies that in LTE have to be used as guard bands can be used

for data transmission in addition to the conventional random access procedures.

• In the coauthored study [11], we develop a link-to-system interface in order to

carry out system-level simulations of the new non-orthogonal waveforms that are

investigated in the project. In particular, the Filter Bank Multi-Carrier (FBMC)

waveform, using a suitably defined frame structure, is compared to Orthogonal

Frequency Division Multiplex (OFDM) on system-level.

A complete list of all publications can be found in the appendix.
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Copyright Information

Parts of this thesis have already been published as journal articles and in conference

and workshop proceedings as listed in the publication list in the appendix. These

parts, which are, up to minor modifications, identical with the corresponding scientific

publication, are c©2010-2015 IEEE.

1.3 Notations

Throughout the thesis, let R, Z, N, and C denote the sets of real numbers, integer

numbers, natural numbers, and complex numbers, respectively. In addition, we let

R+ and Z+ denote the sets of non-negative real numbers and non-negative integers,

respectively.

We denote vectors by bold face lower case letters and matrices by bold face upper

case letters. Thereby, [x]i stands for the ith element of vector x and [A]i,j stands for the

element in the ith row and jth column of matrix A. Let I denote the identity matrix of

appropriate dimension. An inner product between two matrices A,B ∈ R
l×m is defined

by 〈A,B〉 := tr(ATB) where (·)T denotes the transpose operation and tr(·) denotes the

trace. The Frobenius norm of a matrix A is denoted by ‖A‖ = 〈A,A〉 1
2 , which is the

norm induced by the inner product given above. By H we denote a (possibly infinite

dimensional) real Hilbert space with an inner product given by 〈·, ·〉 and an induced

norm ‖·‖ = 〈·, ·〉 1
2 . Note that we consider different Hilbert spaces (namely of matrices,

vectors, and functions) but for notational convenience we use the same notation for

their corresponding inner products and induced norms. (The respective Hilbert space

will be then obvious from the context.) In order to simplify notation, if not stated

otherwise we will use ‖·‖ to denote the l2-norm (dropping the subscript). E{x} denotes

the expected value of random variable x and Var{x} denotes its variance. The indicator

function I{·} equals 1 if the argument is true and equals 0 otherwise. Moreover, we

define [x]+ := max{0, x}, which is defined element-wise in case of vectors.

In addition to the above defined nomenclature, we use the following symbols:
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Further notations

:= equal by definition
∀ for all
exp exponential function
loga logarithm function with respect to base a
Pr{·} probability
|·| absolute value of a scalar or cardinality of a set
1 vector of all ones
0 vector of all zeros
PC(·) projection on set C
Ac complement of a set A
∇f gradient of a (multivariate) function f
diag(x) diagonal matrix, built using the elements of vector x



Chapter 2

Adaptive Learning for

Self-Organizing Communication

Networks

In this chapter, we investigate algorithms for information acquisition and knowledge

creation in SON. In particular, we investigate the application of machine learning

techniques for this purpose. Wireless networks generate huge amounts of data in form

of user measurements and network control information exchange, and the amount of

available data is expected to further grow in future (e.g., 5G) dense heterogeneous

network architectures. Efficient methods to extract relevant information, will be a

crucial prerequisite for self-organization in such networks. In fact, these methods will

have to predict system status and behavior in an online (i.e., live) fashion. Also,

instead of simply reacting to network problems, prediction capabilities will be required,

in order to proactively avoid potential problems. Our approach is to use adaptive

learning techniques as means to provide the knowledge that is needed to carry out

self-optimization.

This chapter deals with the reconstruction of radio maps, since geographic knowl-

edge about radio propagation conditions can support the use of many different SON

functions (in particular in the context of 5G [DMR+14]). The term radio map describes

a mapping from a geographic location to the magnitude of a certain radio-propagation

feature of interest (regarding one or more transmitters). Typical radio-propagation

features are, for example, path-loss, average signal strength, and average interference

power. We attempt to design learning algorithms that use possibly erroneous obser-

vations or measurements of the radio feature at specific locations (and time instances)

to reconstruct the unknown global mapping. The overall goal is to predict, or track

(in case of time-variability), the considered feature at arbitrary locations. Thereby, we

explicitly include locations that are unobserved, or even that cannot be observed at

all. Since networks are dynamic, not all information is available at once; by contrast,

9
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(a) (b)

Figure 2.1: Exemplary radio map (of path-losses, in dB) with respect to two exemplary
transmitters.

measurements are usually conducted sequentially in regular intervals, and they become

available to prediction algorithms continuously over time. Hence, we need adaptive

learning techniques, to reconstruct radio maps in an online fashion from measure-

ments.

An exemplary illustration of the radio-map concept is given in Figure 2.1. It depicts

the radio propagation feature of interest (in this example, path-loss is used) with respect

to two different transmitters. For network optimization, it may be useful to have

a map that, similar to the perspective of a user in the network, considers only the

“strongest” (i.e., the serving) base station at each particular location. An example of

such a “network-perspective” map is given in Figure 2.2, where the same feature as in

Figure 2.1 is depicted. A user that takes a measurement at a particular location reports

the measurement to the serving base station. Using this procedure, all base stations

jointly learn the overall map in Figure 2.2 in a distributed fashion; the network wide

map can be assembled by exchanging this information if necessary.

Accurately predicting radio maps, such as path-loss, in wireless networks is an on-

going challenge [PSG13]. For example, researchers have proposed many different path-

loss models in various types of networks, and there are also approaches to estimate

the path-loss from measurements [PSG13]. Regarding measurement-based learning ap-

proaches, so far mainly Support Vector Machines or Artificial Neural Networks have

been employed [PR11]. Aside from that, Gaussian processes [DMR+14] and kriging

based techniques [GEAF14] have recently been successfully used for the estimation of

radio maps. In [DKG11], kriging based techniques have been applied to track channel

gain maps in a given geographical area. The proposed kriged Kalman filtering algo-

rithm allows to capture both spatial and temporal correlations. However, these studies

use batch schemes; i.e., all (spatial) data needs to be available before applying the

prediction schemes. Although there are approaches [RSK08] that use measurements
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Figure 2.2: Exemplary radio map (of path-losses, in dB) from a network perspective. For
each location x, only the strongest base station is considered.

to iteratively refine the current path-loss model in an online fashion, the application

of online estimation mechanisms for radio maps using kernel-based adaptive filtering

methods has not been investigated so far. In fact, in [PSG13, Section VI] the au-

thors expect “general machine learning approaches, and active learning strategies” to

be fruitful, however, “applying those methods to the domain of path loss modeling and

coverage mapping is currently unexplored.” Using such methods, we aim at developing

algorithms that can be readily deployed in arbitrary scenarios, without the need of

initial tailoring to the environment.

We would like to emphasize that our scope in this chapter is the reconstruction of

radio maps, assuming suitable measurements are available. Moreover, our objective is

to reconstruct long term averages as required in network planning and optimization by

SON algorithms. Given the fact that network planning is currently often carried out

statically, we consider our methods as a potential way to optimize the planning in an

online fashion. Therefore, we are not concerned with variations of the wireless channel

on a small time scale.

2.1 Preliminaries: Essential Convex Analysis Tools and

Reconstructing Kernel Hilbert Spaces

The main task of this section is to summarize essential mathematical preliminaries that

are needed for the machine learning tools presented in subsequent sections. In a brief

manner, we introduce important concepts from convex analysis, which is our main tool

in this chapter, and we provide several important definitions.
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Definition 2.1 (Convex set). A set C ⊂ H is called convex if ∀y1,y2 ∈ C and ∀λ ∈
[0, 1]

λy1 + (1 − λ)y2 ∈ C.

If a set C contains all its boundary points, it is called closed. We use d(x, C) to

denote the Euclidean distance of a point x to a closed convex set C. Thus,

d(x, C) := inf{‖x− y‖ : y ∈ C}.

Note that the infimum is always achieved by some y ∈ C when we are dealing with

closed convex sets in a Hilbert space.

Definition 2.2 (Convex function). A function f : H → R is called convex if ∀y1,y2 ∈
H and ∀λ ∈ (0, 1)

f(λy1 + (1 − λ)y2) ≤ λf(y1) + (1 − λ)f(y2).

If the inequality holds strictly, f is called strictly convex.

The projection of x onto a nonempty closed convex set C, denoted by PC(x) ∈ C,

is the uniquely existing point in the set

argminy∈C‖x− y‖.

Later, if argminy∈C‖x−y‖ is a singleton, the same notation is also used to denote the

unique element of the set.

Definition 2.3 (RKHS). A Hilbert space H is called a Reproducing Kernel Hilbert

Space (RKHS) if there exists a (kernel) function κ : R
m × R

m → R for which the

following properties hold [STC04]:

1. ∀x ∈ R
m, the function κ(x, ·) : Rm → R belongs to H, and

2. ∀x ∈ R
m, ∀f ∈ H, f(x) = 〈f, κ(x, ·)〉,

where the second property is called the reproducing property.

Calculations of inner products in a RKHS can be carried out by using the so-called

“kernel trick”:

〈κ(xi, ·), κ(xj , ·)〉 = κ(xi,xj).

Thanks to this relation, inner products in the high (or infinite) dimensional feature

space can be calculated by simple evaluations of the kernel function in the original

parameter space. Typical examples of reproducing kernels in the sense of Defini-

tion 2.3 are, for example, the linear kernel κ(x1,x2) = xT
1 x2 or the Gaussian kernel

κ(x1,x2) = exp
(
−‖x1−x2‖2

2σ2

)
(in which case the resulting RKHS is of infinite dimension



2.1. Preliminaries and Essential Convex Analysis Tools 13

[TK08]), where x1,x2 ∈ R
m, and the kernel parameter σ > 0. A thorough overview

and discussion of valid kernel functions is given in [Ras06].

Definition 2.4 (Lower semicontinuous function). A function f : H → R is called lower

semicontinuous if for any sequence {xn} ⊂ H with xn → x ∈ H,

f(x) ≤ lim inf
n→∞ f(xn).

Definition 2.5 (Lipschitz continuity). A function f is called Lipschitz continuous on

R
m, if

‖f(x1) − f(x2)‖ ≤ L‖x1 − x2‖, ∀x1,x2 ∈ R
m.

Thereby L is called the Lipschitz constant of f .

Given a mapping T : H → H, the set {x ∈ H : T (x) = x} is called the fixed point

set of T . We say a mapping T is nonexpansive, if

‖T (x1) − T (x2)‖ ≤ ‖x1 − x2‖, (∀x1,x2 ∈ H).

Clearly, every nonexpansive mapping is Lipschitz continuous (with Lipschitz constant

L ≤ 1). Moreover, if there exists some α ∈ [0, 1) and a nonexpansive mapping N :

H → H that satisfies T = (1 − α)I + αN , where I is the identity mapping, T is called

α-averaged nonexpansive. If a mapping T satisfies

‖T (x1) − T (x2)‖2 ≤ 〈x1 − x2, T (x1) − T (x2)〉, (∀x1,x2 ∈ H),

it is called firmly nonexpansive. Note that a firmly nonexpansive mapping is 1
2 -averaged

nonexpansive [PB13].

A well-known generalization of the convex projection operator is the proximity

operator.

Definition 2.6 (Proximity operator). The proximity operator proxγf : H → H of a

scaled function γf , with γ > 0 and a continuous convex function f : H → R, is defined

as

proxγf (x) = argminy

(
f(y) +

1

2γ
‖x− y‖2

)
.

Proximity operators have a number of properties that are especially suited for the

design of iterative algorithms. In particular, the proximity operator is firmly nonex-

pansive [CP11], i.e., (∀x,y ∈ H)

‖proxfx− proxfy‖2 + ‖(x− proxfx) − (y − proxfy)‖2 ≤ ‖x− y‖2, (2.1)

and its fixed point set is the set of minimizers of f . A comprehensive summary on

the properties of proximity operators is given in [CP11]. A related concept to obtain a
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smooth approximation of a non-smooth function is the Moreau envelope, which is also

called Moreau-Yosida regularization (see, e.g., [CW05] for an introduction).

Definition 2.7 (Moreau envelope). Given a proper, lower semi-continuous function

f : H → R and a scalar γ > 0, the Moreau envelope of index γ is given by

γf(x) = inf
y∈H

{
f(y) +

1

2γ
‖x− y‖2

}
≤ f(x).

The Moreau envelope is a continuously differentiable function that approximates f

with any accuracy and has the same set of minimizing values than f [PB13]. Moreover,

it has a Lipschitz continuous gradient over H. It can be also expressed in terms of the

proximity operator as

γf(x) = f(proxγf (x)) +
1

2γ
‖x− proxγf (x)‖2.

2.2 Online Reconstruction of Radio Maps With Side In-

formation

In this section, we propose novel kernel-based adaptive online methods by tailoring

powerful approaches from machine learning to the problem of reconstructing radio

maps. In the proposed schemes, each base station maintains a prediction of the radio

feature in its respective area of coverage and this prediction process is carried out as

follows. We assume that each base station in the network has access to measurements,

which are periodically generated by users in the network. Whenever a new measure-

ment arrives, the corresponding base station updates its current approximation of the

unknown function in its cell. To make this update quickly available to SON functions

in the network, the radio map reconstruction needs to be an online function itself.

Thus, we need to consider machine learning methods, which provide online adaptivity

at low complexity. The requirement of low complexity is particularly important because

measurements keep arriving continuously, and they have to be processed in real time.

The online nature of the algorithm in turn ensures that measurements are taken into

account immediately after their arrivals to continuously improve the prediction and

estimation quality.

In addition, we exploit side information to further enhance the quality of the pre-

diction. By side information, we understand any information in addition to concrete

measurements at specific locations. We exploit knowledge about the user’s trajectories,

and we show how this information can be incorporated in the algorithm. Measurements

used as input to the learning algorithm can be erroneous due to various causes. One

source of errors results from the fact that wireless users are usually able to determine

their positions only up to a certain accuracy. On top of this, the measured values them-

selves can also be erroneous. Another problem is that users performing the measure-
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ments are not uniformly distributed throughout the area of interest and their positions

cannot be controlled by the network. This leads to a non-uniform random sampling,

and as a result, data availability may vary significantly among different areas. The de-

signed system has to handle such situations, and therefore we exploit side information

to perform robust prediction for areas where no or only few measurements are avail-

able. Our overall objective is to design an adaptive algorithm that, despite the lack of

measurements in some areas, has high estimation accuracy under real-time constraints

and practical impairments. This is another reason to choose kernel-based methods, due

to their amenability to adaptive and low-complexity implementation [TSY11]. In the

following, we show how to enhance such methods so that they can provide accurate

radio maps. In particular, we design sparsity-aware kernel-based adaptive algorithms

that are able to incorporate side information.

We pose the problem of reconstructing radio maps from measurements as a regres-

sion problem, and we use the users’ locations as input to the regression task. This is

mainly motivated by the increasing availability of such data in modern wireless net-

works due to the wide-spread availability of low-cost GPS devices. Moreover, many

radio features of interest, such as path-loss, are physical properties that are predomi-

nantly determined by the locations of transmitters and receivers. However, the methods

we propose are general enough to be used with arbitrary available input. In addition,

our methods permit the inclusion of further information as side information. (We ex-

emplify this fact in Section 2.2.4, where we incorporate knowledge about the users’

trajectories.) To avoid technical digressions and notational clutter, we, for now, con-

sider that all variables are deterministic. Later, in Section 2.3, we drop this assumption

to give numerical evidence that the proposed algorithms have good performance also

in a statistical sense.

Let us now formulate the regression problem in a more formal way. We assume that

a mobile operator observes a sequence

{(x̃n, yn)}n∈N ⊂ R
2 × R,

where x̃n := xn + εx ∈ R
2 is an estimate of a coordinate xn ∈ R

2 of the field, εx ∈ R
2

is an estimation error, and yn ∈ R is a noisy measurement of the radio property at

coordinate xn with respect to a particular base station (e.g., the base station that

provides the strongest received signal), all for the nth measurement reported by a user

in the system. The relation between the measurement yn and the coordinate xn ∈ R
2

is given by

yn := f(xn) + εy, (2.2)

where f : R2 → R is an unknown function and εy ∈ R is an error in the measurement of

the radio property of interest. Measurements (x̃n, yn) arrive sequentially, and they are

reported by possibly multiple users in the network. As a result, at any given time, op-
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erators have knowledge of only a finite number of terms of the sequence {(x̃n, yn)}n∈N,

and this number increases quickly over time. Note that, although the proposed algo-

rithms are able to treat coordinates as continuous variables, in digital computers, we

are mostly interested in reconstructing radio maps at a discrete set of locations, in the

following called pixels.

The objective of the proposed algorithms is to estimate the function f in an online

fashion and with low computational complexity. By online, we mean that the algorithms

should keep improving the estimate of the function f as measurements (x̃n, yn) arrive,

ideally with updates that can be easily implemented.

In this chapter, we investigate two algorithms having the above highly desirable

characteristics. The first algorithm is based on the adaptive projected subgradient

method for machine learning [TSY11, ST08], and the second algorithm is based on

the more recent multikernel learning technique [YI13]. The choice of these particular

algorithms is motivated by the fact that they are able to cope with large scale problems

where the number of measurements arriving to operators is so large that conventional

learning techniques cease to be feasible because of memory and computational limita-

tions. Note that, from a practical perspective, typical online learning algorithms need

to solve an optimization problem where the number of optimization variables grows

together with the number of measurements (x̃n, yn). The algorithms developed in this

section operate by keeping only the most relevant data (i.e., the most relevant terms of

the sequence {(x̃n, yn)}n∈N) in a set called dictionary and by improving the estimate

of the function f by computing simple projections onto closed convex sets, proximal

operators, or gradients of smooth functions. We note that the notion of relevance de-

pends on the specific technique used to construct the dictionary, and, for notational

convenience, we denote the dictionary index set at time n as

In ⊆ {n, n− 1, . . . , 1}. (2.3)

2.2.1 The APSM-Based Algorithm

In this section, we give details on the Adaptive Projected Subgradient Method (APSM)-

based algorithm tailored to the specific application of radio map estimation. APSM is

a recently developed tool for iteratively minimizing a sequence of convex cost functions

[YO05]. It generalizes Polyak’s projected subgradient algorithm [Pol69] to the case

of time-varying functions, and it can be easily combined with kernel-based tools from

machine learning [YO05, TSY11]. APSM generalizes well-known algorithms such as

the affine projection algorithm or normalized least mean squares [Say03]. APSM was

successfully applied to a variety of different problems, for example, channel equaliza-

tion, diffusion networks, peak-to-average power ratio reduction, super resolution image

recovery, and nonlinear beamforming [TSY11].

To develop the APSM-based algorithm, a set-theoretic approach, we start by as-
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suming that the function f belongs to a RKHS H. As the nth measurement (x̃n, yn)

becomes available, we construct a closed convex set Sn ⊂ H that contains estimates of

f that are consistent with the measurement. A desirable characteristic of the set Sn is

that it should contain the estimandum f ; i.e., f ∈ Sn. In particular, in this study we

use the hyperslab

Sn := {h ∈ H : |yn − 〈h, κ(x̃n, ·)〉| ≤ ε}, (2.4)

where ε ≥ 0 is a relaxation factor used to take into account noise in measurements,

and κ : R2 × R
2 → R is the kernel of the RKHS H. In the following, we assume that

f ∈ Sn for every n ∈ N.

Unfortunately, a single set Sn ⊂ H is unlikely to contain enough information to

provide reliable estimates of the function f . More precisely, the set Sn ⊂ H typically

contains vectors f̃ ∈ Sn that are far from f , in the sense that the distance ‖f̃ − f‖
is not sufficiently small to consider f̃ as a good approximation of f . However, we can

expect an arbitrary point in the closed convex set

S� := ∩n∈NSn � f

to be a reasonable estimate of f because S� is the set of vectors that are consistent with

every measurement we can obtain from the network. As a result, in this set-theoretic

approach, we should aim at solving the following convex feasibility problem:

Find a vector f̃ ∈ H satisfying f̃ ∈ ∩n∈NSn.

In general, solving this feasibility problem is not possible because, for example, we are

not able to observe and store the whole sequence {(x̃n, yn)}n∈N in practice (recall that,

at any given time, we are only able observe a finite number of terms of this sequence).

As a result, the algorithms we investigate here have the more humble objective of

finding an arbitrary vector in the set∗

S :=

∞⋃
t=0

⋂
n>t

Cn � f,

where, at time n, Cn is the intersection of selected sets from the collection {S1, . . . , Sn}
(soon we come back to this point). We can also expect such a vector to be a reasonable

estimate of f because S corresponds to vectors that are consistent with all but finitely

many measurements.

Construction of the set S is also not possible because, for example, it uses infinitely

many sets Cn. However, under mild assumptions, algorithms based on the APSM

are able to produce a sequence {f̂n}n∈N of estimates of f that i) can be computed

∗Here, the overline denotes the closure of a set.
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in practice, ii) converges asymptotically to an unspecified point in S, and iii) has the

monotone approximation property, i.e.,

‖f̂n+1 − f‖ < ‖f̂n − f‖

for every n ∈ N [SYO06].

APSM was originally introduced in [YO05]. We propose a variation of the adaptive

projected subgradient method described in [TSY11, ST08]. In more detail, at each

iteration n, we select q sets from the collection {S1, . . . , Sn} with the approach described

in [TSY11]. The intersection of these sets is the set Cn described above, and the index

of the sets chosen from the collection is denoted by

In,q := {i(n)rn , i
(n)
rn−1, . . . , i

(n)
rn−q+1} ⊆ {1, . . . , n}, (2.5)

where n ≥ q and rn is the size of dictionary. (Recall that the dictionary is simply the

collection of “useful” measurements, which are stored to be used later in the prediction.

Thus, in our case, the dictionary comprises a set of Global Positioning System (GPS)

coordinates corresponding to the respective measurements of the radio property of

interest.) With this selection of sets, starting from f̂0 = 0, we generate a sequence {f̂n}
by

f̂n+1 := f̂n + μn

⎛
⎝ ∑

j∈In,q

wj,nPSj (f̂n) − f̂n

⎞
⎠ , (2.6)

where μn ∈ (0, 2Mn) is the step size, Mn is a scalar given by

Mn :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑

j∈In,q

wj,n‖PSj (fn)− fn‖2

‖
∑

j∈In,q

wj,nPSj (fn)− fn‖2
, if fn /∈ ⋂

j∈In,q
Sj,

1, otherwise,

and wj,n > 0 are weights satisfying

∑
j

wj,n = 1. (2.7)

The projection onto the hyperslab induced by measurement n (as specified in (2.4)) is

given by

PSn(f) = f + βfκ(x̃n, ·),

where

βf :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y−〈f,κ(x̃n,·)〉−ε
κ(x̃n,x̃n)

, if 〈f, κ(x̃n, ·)〉 − y < −ε,

y−〈f,κ(x̃n,·)〉+ε
κ(x̃n,x̃n)

, if 〈f, κ(x̃n, ·)〉 − y > ε,

0, if |〈f, κ(x̃n, ·)〉 − y| ≤ ε.
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For details of the algorithm, including its geometrical interpretation, we refer the reader

to [TSY11].

Due to the huge amounts of data generated in current and future wireless networks,

an efficient implementation of online prediction algorithms is essential. This includes

suitable approaches for sparsification of the dictionary set. For the sparsification of the

dictionary used by the APSM, more specifically to decide whether a measurement x̃n is

added to the dictionary, we use the heuristic described in [ST08]. To be more precise,

let us define the distance

dn := ‖κ(x̃n, ·) − PMn(κ(x̃n, ·))‖,

where Mn is the subspace of H spanned by the dictionary elements at time n. Note

that in general a (possibly large) system of linear equations has to be solved to calculate

the projection PMn , however, an efficient method is provided in [ST08]. We compute

dn upon obtaining measurement n and we compare it against a defined “measure of

linear independency” αsp. If dn is larger than αsp, we consider the new data point to be

sufficiently linearly independent from the already existing elements in the dictionary,

and the new element is added to the dictionary. Consequently, if dn is smaller than, or

equal to αsp, the new element is discarded. A more detailed exposition of this procedure

can be found in [ST08].

2.2.2 The Multi-Kernel Approach

We now turn our attention to an alternative approach based on a state-of-the-art mul-

tikernel algorithm. In the algorithm based on APSM, the choice of the kernel κ is left

open, but we note that different choices lead to algorithms with different estimation

properties. Choosing an appropriate kernel for a given estimation task is one of the

main challenges for the application of kernel methods, and, to address this challenge in

the radio map estimation problem, we propose the application of the multikernel algo-

rithm described in [YI13]. Briefly, this algorithm provides good estimates by selecting,

automatically, both a reasonable kernel (the weighted sum of a few given kernels) and

a sparse dictionary.

In more detail, let κm be a given kernel function from a set indexed by m ∈ M :=

{1, . . . ,M}. At time n, the approach assumes that the function f can be approximated

by

f̂n(x) =
∑
m∈M

|In|∑
i=1

α
(m)
i,n κm(x̃i,x) (2.8)

if α
(m)
i,n ∈ R are appropriately chosen scalars. At coordinate xn, (2.8) can be equivalently

written as

f̂n(xn) = 〈An,Kn〉,
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where n is the time index, rn = |In| is the size of the dictionary In defined in (2.3),

and An and Kn ∈ R
M×rn are matrices given by [An]m,i := α

(m)

j
(n)
i ,n

and [Kn]m,i =

κm

(
xn, x̃j

(n)
i

)
, respectively. Here, j

(n)
i denotes the element that at time n is at the ith

position of the dictionary. In addition, matrices Ãn, K̃n ∈ R
M×rn+1 incorporate the

update of the dictionary set, thus, [Ãn]m,i := α
(m)

j
(n+1)
i ,n

and [K̃n]m,i = κm

(
xn, x̃j

(n+1)
i

)
.

This update entails the potential removal of columns due to the sparsification of the

dictionary and the potential inclusion of the latest received measurement into the dic-

tionary (both will be explained in greater detail further below).

Let us further define

d(A, Sn) := min
Y ∈Sn

‖A− Y ‖,

where

Sn :=
{
A ∈ R

M×rn+1 : |〈A, K̃n〉 − yn| ≤ εMK

}
(2.9)

is a hyperplane defined for matrices, and εMK is a relaxation factor to take into account

noise in measurements. For notational convenience, we denote the ith column of A as

ai and the mth row of A as ξm. At time n, similarly to the study in [YI13], the

coefficients α
(m)
i,n ∈ R are obtained by trying to minimize the following cost function:

Θn(A) :=
1

2
d2(A, Sn)︸ ︷︷ ︸
φn(A)

+λ1

rn+1∑
i=1

wi,n‖ai‖︸ ︷︷ ︸
ψ
(1)
n (A)

+λ2

M∑
m=1

νm,n‖ξm‖
︸ ︷︷ ︸

ψ
(2)
n (A)

, (2.10)

where λ1 and λ2 are positive scalars used to trade how well the model fits the data,

the dictionary size, and the number of atomic kernels κm being used. In turn, wi,n and

νm,n are positive weights that can be used to improve sparsity in the dictionary and

in the choice of kernels, respectively. Note that the first term φn(A) is responsible for

fitting the function to the training set. The second term ψ
(1)
n (A) is used to discard

irrelevant data points over time, thus promoting sparsity in the dictionary (even when

the underlying data is changing). In turn, the third term ψ
(2)
n (A) is designed to reduce

the influence of unsuitable kernels. This provides us with an online model selection

feature that not only provides a high degree of adaptivity, but it also helps to alleviate

the overfitting problem [YI13].

The main challenge in minimizing (2.10) is that the optimization problem changes

with each new measurement (note the presence of the index n in the cost function).

As a result, we cannot hope to solve the optimization problem with simple iterative

schemes at each n because, whenever we come close to a solution of a particular instance

of the optimization problem, it may have already changed because new measurements

are already available. However, we hope to be able to track solutions of the time-

varying optimization problem for n sufficiently large by following the reasoning of the
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forward-backward splitting method for time-varying functions at each update time.

In more detail, consider the time-invariant optimization problem:

min.
x∈H

φ(x) + ψ(x), (2.11)

where φ, ψ are lower semicontinuous convex functions, where φ is a differentiable func-

tion and ψ is possibly non-differentiable. We also assume that the set of minimizers is

nonempty and ∇φ is Lipschitz continuous with Lipschitz constant L. By using prop-

erties of the proximal operator, as introduced in Section 2.1, the following iterative

algorithm can converge to a solution of (2.11) [YYY11]

xn+1 := prox μ
L
ψ

(
I − μ

L
∇φ

)
(xn), (2.12)

with step size μ ∈ (0, 2). For fixed problems such as that in (2.11), the sequence {xn+1}
produced by (2.12) converges to the solution of (2.11). To see this, note that, by using

Property (2.1), the operator

T := prox μ
L
ψ

(
I − μ

L
∇φ

)
is a concatenation of two α-averaged nonexpansive† operators T1 := prox μ

L
ψ and T2 :=

I− μ
L∇φ, i.e., T = T1T2. Convergence of (2.12) to a fix point of T , which is the solution

to (2.11), then follows from [YYY11, Proposition 17.10].

The main idea of the multikernel learning approach is to use the above iteration

for fixed optimization problems in adaptive settings, with the hope of obtaining good

tracking and estimation capabilities. In our original problem with time varying func-

tions, (2.10) comprises of a differentiable function with Lipschitz continuous gradient

and two non-differentiable functions for which the proximal operator can be computed

easily. In order to apply the proximal forward-backward splitting method outlined

above, we first modify Θn to take a similar form to the cost function in (2.11). To this

end, we approximate (2.10) by

Θ̃n(A) := φn(A) +γ ψ(1)
n (A)︸ ︷︷ ︸

smooth

+ ψ(2)
n (A)︸ ︷︷ ︸

proximable

(2.13)

with γψ
(1)
n (A) being the Moreau envelope of ψ

(1)
n (A) of index γ ∈ (0,∞) [YI13]. The

problem of minimizing the function in (2.13), comprising a smooth and a proximable

part, has now a similar structure to the problem in (2.11). Therefore the following

iterative algorithm can be derived by using known properties of proximal operators:

An+1 = prox
ηψ

(2)
n

[
Ãn − η

(
∇φn(Ãn) + ∇γψ(1)

n (Ãn)
)]

. (2.14)

†Note that an operator being a firmly nonexpansive mapping implies that it is an α-averaged non-
expansive mapping with α = 1

2
[YYY11].
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The step size η ∈ (0, 2/L2) is based on the Lipschitz constant L2 of the mapping

T : RM×rn+1 → R
M×rn+1 , An �→ ∇φn(An) + ∇γψ(1)

n (An).

Note that (2.14) is the iteration in (2.12) with time-varying functions.

The applied sparsification scheme is a combination of two parts (which combine

the two approaches from [Yuk12]). First, a new measurement xn is added to the

dictionary only if it is sufficiently new (similar to the sparsification scheme used in the

APSM algorithm). More precisely, in order to test its novelty, the following coherence

criterion (as in [YI13]) is used:

c(xn, In) := max
j∈In,m∈M

|κm(xn,xj)|√
κm(xn,xn)κm(xj ,xj)

,

where In denotes the dictionary set at time n. Only if

c(xn, In) < ρ, (2.15)

i.e., when the coherence is smaller than some pre-defined threshold ρ ∈ R+, the new

measurement is added to the dictionary. Second, the proximity operators in (2.14)

shrink column and row vectors of An that have a minor contribution in the estimation

problem. Therefore, columns of An with a Euclidean norm close to zero can be simply

removed. (we use a threshold of 10−2 in the numerical evaluations of Section 2.3). By

doing so, irrelevant data is discarded from the dictionary. For further details on the

algorithm and the sparsification scheme, please refer to [YI13].

2.2.3 Computational Complexity

In general, the computational complexity of the APSM method, per projection, is

linear with respect to the dictionary size [TSY11]. In addition, the correlation-based

sparsification scheme has quadratic complexity in the dictionary size [ST08]. For the

multikernel scheme, as derived in [Yuk12], the complexity regarding memory is given

by (L + M)rn, where L denotes the dimensions of the input space, M is the number

of kernels, and rn is as usual the size of the dictionary at time n. Similarly, the

computational complexity increases roughly with a factor of M [Yuk12]. Note that, as

we will demonstrate in the numerical evaluations part, the dictionary in both algorithms

grows at a significantly lower rate than the number of available measurements and even

tends to stay below a certain finite value in the long term (cf. Figures 2.9 and 2.12b).

2.2.4 Adaptive Weighting

In this section, we focus on the choice of weights, which can be efficiently exploited in

the proposed application to improve the performance of the algorithm. We propose two
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weighting schemes. One is designed to incorporate side information, e.g., in APSM. The

second scheme is an iterative weighting scheme designed to enhance sparsity. Moreover,

we provide a novel analytical justification for the iterative weighting scheme, which

previously has been mainly used as a heuristic.

2.2.4.1 Weighting of parallel projections based on side information

Suppose we want to improve the prediction given by the estimated radio map for a

particular User Of Interest (UOI) (or a particular region of the map). Assigning a

large weight wj,n (in comparison to the remaining weights) to the projection PSj in

(2.6) has the practical consequence that the update in (2.6) moves close to the set Sj .

Therefore, previous studies recommend to give large weights to reliable sets. However,

in many applications, defining precisely what is meant by reliability is difficult, so

uniform weights wj,n = 1/q are a common choice [ST08]. In the proposed application,

although we do not define a notion of reliability, we can clearly indicate which sets are

the most important for the updates. For instance, sets corresponding to measurements

taken at pixels farther away from the route of the UOI should be given smaller weights

than measurements of pixels that are close to the user’s trajectory. The reason is that

estimates should be accurate at the pixels the UOI is expected to visit because these

are the pixels of interest to most applications (e.g., video caching based on channel

conditions). Therefore, we assign large weights to measurements close to the UOI’s

route by proceeding as follows. Let XUOI ⊂ N
2 be the set of pixels that belong to the

path of the UOI. Then, for each weight wi,n, we compute

wi,n =
1

dmin(x̃i,XUOI) + εw
, (2.16)

where dmin(x̃i,XUOI) denotes the minimum distance of measurement x̃i to the area of

interest, and εw > 0 is a small regularization parameter. This distance can be obtained

for each pixel x̃i by considering the distances of every pixel in XUOI to x̃i and by taking

the minimum of these distances. Subsequently, the weights are normalized to ensure

the condition shown in (2.7). To improve the performance in cases with varying data

or to exclude pixels that the user has already been present, we can also replace the set

XUOI in (2.16) by the area of interest. Compared to an equal choice of the weights, the

proposed method provides fast convergence to a given prediction quality for the UOI,

but at the cost of degraded performance in other areas of the map.

2.2.4.2 Multi-kernel: sparsity based on iterative weighting

To improve the performance of the multikernel algorithm, we propose a different weight-

ing of rows and columns of A in the sparsity-enforcing parts of the cost function (2.10).

We employ the idea of iterative re-weighting that has also been used in compressive
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sensing [CWB08]. As a first step to determine the weights of the sparsity related

cost-term in (2.10), we use

ŵi,n =
1

‖ai,n‖ + ε1
, (2.17)

with ε1 > 0 being a small regularization parameter to ensure stability. The weights

have to be normalized in order to keep the balance between the different terms in (2.10),

such that the final weights are given by

wi,n =
ŵi,n

w̄n
,

where w̄n =
∑

i ŵi,n. The same iterative weighting can also be applied to the weights

νm,n of the row sparsity enforcing term of the cost function (2.10).

The reasoning behind this approach, which is inspired by majorization minimization

algorithms [STL11], becomes clear when observing the connection to the l0-norm. Let

us go back to the cost function we aim to minimize, which is

Θn(A) :=
1

2
d2(A, Sn) + λ1

rn+1∑
i=1

wi,n‖ai‖. (2.18)

For simplicity, we consider only the term inducing column sparsity. However, the

following argumentation carries over to the row sparsity inducing term as well.

Note that the weighted block-l1 norm in (2.18) to enforce block-sparsity is only

used as a simple convex approximation of the l0 (quasi-)norm. Therefore, (2.18) should

ideally be replaced by

Θn(A) :=
1

2
d2(A, Sn) + λ1‖|A|T∗ 1‖0, (2.19)

where the | · |∗ operator stands for element-wise absolute value, and 1 denotes a vector

of ones of appropriate dimension. Using a similar expression for the l0 norm as in

[STL11, PCS13], we can write

‖|A|T∗ 1‖0 = lim
ε2→0

∑
i

log(1 + ‖ai‖ε−1
2 )

log(1 + ε−1
2 )

. (2.20)

Fixing ε2 > 0 in (2.20), we can obtain the following approximation to the minimization

of (2.19)

min.
A

[
1

2
d2(A, Sn) + λ

∑
i

log (ε2 + ‖ai‖)

︸ ︷︷ ︸
g0(A)

]
. (2.21)

The constant λ incorporates both λ1 from (2.18), and the omitted constants from

(2.20). Introducing a vector of auxiliary variables z, where each element corresponds
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to a column of A, Problem (2.21) can be equivalently written as

min.
A,z

[
1

2
d2(A, Sn) + λ

∑
i

log (ε2 + zi)︸ ︷︷ ︸
g(A,z)

]
, (2.22)

s.t. ‖ai‖ ≤ zi (∀i).

Note that in (2.22) we are minimizing the sum of a convex and a concave function.

To address this intractable optimization problem, we use a majorization minimiza-

tion algorithm, which relies on constructing a convex majorizing function. In more

detail, for the general problem

min.
v1,v2

g1(v1) + g2(v2), (2.23)

s.t. v1 ∈ C1,v2 ∈ C2,

where C1, C2 are convex sets, g1 is a convex function, and g2 a concave function, the

following iteration can be applied to approximate a solution of (2.23)(
v
(l+1)
1 ,v

(l+1)
2

)
∈ arg min

v1,v2

ĝ(v1,v2,v
(l)
2 ), (2.24)

s.t. v1 ∈ C1,v2 ∈ C2,

where

ĝ(v1,v2,w) := g1(v1) + g2(w) + ∇g2(w)T (v2 −w)

is a convex majorizer of the function g(v1,v2) := g1(v1)+g2(v2) in (2.23). This function

fulfills the properties

g(v1,v2) ≤ ĝ(v1,v2,w), ∀v1 ∈ C1,v2,w ∈ C2
g(v1,v2) = ĝ(v1,v2,v2), ∀v1 ∈ C1,v2 ∈ C2

which can be used to show that the iteration in (2.24) satisfies

g1(v
(l+1)
1 ) + g2(v

(l+1)
2 ) ≤ g1(v

(l)
1 ) + g2(v

(l)
2 ).

Coming back to our original problem (2.22), with [∇g2(z)]i = λ
ε+zi

and eliminating

additive constants, we have that the iteration in (2.24) takes the particular form

(
A(l+1), z(l+1)

)
∈ arg min

A,z

[
1

2
d2(A, Sn) + λ

∑
i

zi

ε2 + z
(l)
i

]
,

s.t. ‖ai‖ ≤ zi (∀i).
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Substituting back the auxiliary variable z, it becomes clear that we find an approxi-

mation to the solution of (2.21) by using the iteration

A(l+1) ∈ arg min
A

[
1

2
d2(A, Sn) + λ

rn∑
i=1

‖ai‖
‖a(l)

i ‖ + ε2

]
,

which produces a monotone nonincreasing sequence {g0(A(l))}, and the choice of the

weights (2.17) applied to (2.18) as a means of trying to solve (2.19) becomes apparent.

Note that, although widely used in the literature, the concave approximation in

(2.21) is only one of many options to approximate the l0 norm in (2.20). For instance,

[Man96, Rin11] propose algorithms based on various alternative concave approxima-

tions. The chosen approach of iterative reweighting the block-l1 norm is a practical

and popular approach to support sparsity by eliminating elements that are close to

zero. For the sake of completeness, it should be noted that different approaches have

been suggested in the literature. For example, the FOCUSS algorithm of [GR97] ap-

plies a reweighted l2 minimization at each iteration to enforce sparsity. However, as

was pointed out in [CWB08], numerical experiments suggest that the reweighted l1-

minimization can recover sparse signals with lower error or fewer measurements. The

author of [Rin11] reports good performance by using a concave approximation of the

l0 norm together with a Frank-Wolfe type algorithm.

2.3 Applications

In this section, we will investigate two applications for the methods described above:

(1) the learning of path-loss maps and (2) the learning of interference maps. Both path-

loss and interference maps, whose prediction may involve the reconstruction of data at

a large scale, are well-suited as components of an SON protocol, for example, to con-

figure and adapt crucial network parameters (including transmit powers, antenna tilts,

etc.). Beyond that, there are a multitude of further applications, in particular with

regard to the challenges of the next generation of cellular networks, such as D2D com-

munications. In fact, reconstructing radio maps is particularly promising in the context

of network-assisted D2D communication, where no or only partial measurements are

available for D2D channels [FDM+12]. In this case, some channel state information

must be extracted or reconstructed from other measurements available in the network

and provided to the D2D devices for a reliable decision making process. To illustrate

this, we examine a network-assisted D2D communications scenario and use interference

map prediction in the estimation of D2D channels. Thereby, we particularly investigate

the channel-aware adaptation of a car-to-car video streaming transmission that is used

as part of an overtaking assistance system.
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Table 2.1: APSM simulation parameters

Simulation Parameter Value

Concurrent projections q 20
ε 0.01
Step size μn 1Mn

Sparsification αsp [ST08] 0.01
Projection weights Based on side information
Kernel width σ2 0.05

2.3.1 Application to Path-loss Learning

A reliable and accurate path-loss estimation and prediction, not least for the reconstruc-

tion of coverage maps, have attracted a great deal of attention from both academia and

industry; in fact the problem is considered as one of the main challenges in the design

of radio networks [PSG13, DMR+14].

We consider an arbitrary cellular network and address the problem of estimating a

two-dimensional map of path-loss values at a large time scale. As mentioned before,

in digital computers, we are mostly interested in reconstructing path-loss maps at a

discrete set of pixels. Therefore, to devise practical algorithms for digital computers,

we define H ∈ RX1×X2 (X1, X2 ∈ N) to be the path-loss matrix, where each element

of the matrix is given by the path-loss function f at the given location. Based on

the current estimate of f , we can construct an approximation H̃ of the true path-loss

matrix, and we note that this estimate has information about the path-loss of future

locations where a set of users of interest (UOI) are expected to visit. The objective is

to estimate H from noisy measurements related to f according to (2.2). Note that in

practice, e.g., in LTE systems, Reference Signal Received Power (RSRP) measurements

can be used to estimate the path-loss. In LTE, these measurements are given by the

linear average of reference signal power (in Watts) across the given bandwidth. Due to

noisy observations, at every iteration i ∈ N, an estimate H̃(i) of H is a matrix-valued

random variable and we use a normalized Mean Square Error (MSE) to measure the

quality of the estimation. To be precise, given a path-loss matrix H �= 0, the MSE at

iteration i is defined to be

MSEi := E

{
1

‖H‖2 ‖H − H̃(i)‖2
}

. (2.25)

Since the distribution of H̃(i) is not known, we approximate MSEi by averaging a

sufficiently large number of simulation runs for every iteration. As a result, the MSE

values presented here are empirical approximations of the MSE defined above.

We consider four communications scenarios with different path-loss data.

• Rural scenario: A rural cellular network divided into hexagonal cells based on a

simple, empirical path-loss model.
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Table 2.2: Multi-kernel simulation parameters

Simulation Parameter Value

Number of Kernels M 10
εMK 0.01
λ1 0.1
λ2 0.25
Sparsification δ [YI13] 0.9995
Kernel widths σ2

m {10−4, 5 · 10−4, 10−3, . . . , 0.5, 1, 5}

• Campus network scenario: A campus network with real-world measurements and

high spatial resolution.

• Urban scenario: A real-world urban network with a pixel-based mobility model

and realistic collection of data for the city of Berlin [MOM04].

• Heterogeneous network scenario: A typical neighborhood in an urban city center

with a very dense base station deployment and a high number of users. A realistic

collection of ray-tracing based path-loss data is available for this scenario, which

was proposed for the evaluation of 5G use cases.

Thereby, the first scenario is based on simulated path-loss, while the other three sce-

narios are based on publicly available data sets, which renders the performance of our

algorithms easily comparable. Specific simulation parameters can be found in the cor-

responding subsections. Although our results are applicable to arbitrary kernels, we

confine our attention here to Gaussian kernels of the form

κ(x1,x2) := exp

(
−‖x1 − x2‖2

2σ2

)
, (2.26)

where the kernel width σ2 is a free parameter. Default values of this and other param-

eters for the APSM algorithm and for our multikernel algorithm can be found in Table

2.1 and Table 2.2, respectively. These parameters are common for all scenarios if not

explicitly stated otherwise.

2.3.1.1 Rural scenario

In this section, we assume a regular network of hexagonally shaped cells. Further-

more, we use an empirical path-loss model according to [3GP06] (macro-cell deployment

model) specifying the path-loss in dB by

PL(d) = 128.1 + 37.6 · log(d) + X, (2.27)

where d > 0 denotes the distance (in km) to the serving base station and X > 0 is an

independent log-normally distributed random variable that is used to model shadowing
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Table 2.3: Simulation parameters for the rural scenario

Simulation Parameter Value

Distribution of Measurements equal
Number of measurements 5000
Number of base stations 3
Size of playground 4500 m × 1500 m
Inter-site distance 1500 m
Size of pixel 30 m × 30 m
Measurement frequency λ 0.1
Shadowing (std. dev.) log-normal (10 dB)
Number of simulation runs 50

effects. We assume a shadowing process with a 10 dB standard deviation and summarize

other main simulation parameters in Table 2.3. We simulate a network of three cells in

a row with an inter-site distance of 1500 m. This can serve, for example, as a model of

a highway scenario where users traverse large rural cells with an approximately regular

shape. For simplicity, we assume in this section that the measurements are uniformly

i.i.d. distributed over the area and arrive according to a Poisson distribution, with

parameter λ = 0.1.

Figure 2.3 illustrates the decay of the MSE (averaged over 50 simulation runs)

for the APSM algorithm and the multikernel algorithm as the number of measure-

ments/iterations increases. Thereby, we apply the iterative weighting scheme of Section

2.2.4. First of all, we note that both algorithms behave as desired because the MSE

decreases fast with the number of measurements. While the multikernel approach ex-

hibits a better initial convergence speed, the APSM algorithm achieves a lower MSE

in the steady state. It is, however, important to emphasize that the APSM parameters
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Figure 2.3: Comparison of kernel-based algorithms’ performance in rural setting.
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Table 2.4: Simulation parameters for the campus network scenario

Simulation Parameter Value

Number of unique data points 1274
Number of simulation runs 100
Amount of training data 70% of data points
Amount of test/validation data 30% of data points
Simulation duration (iterations) 2500
Semivariogram fitting model Gaussian

and, in particular, the kernel width have been tailored to this specific scenario with the

regular path-loss model given by (2.27). As demonstrated later, the conclusions drawn

from Figure 2.3 are no longer valid when the underlying data is irregular.

2.3.1.2 Campus network scenario

To demonstrate the capabilities of the proposed methods with real-world data from a

publicly available data-set, we now use the cu/cu wart dataset available in the CRAW-

DAD project [cu-11]. The dataset provides traces of Received Signal Strength (RSS)

measurements collected in a 802.11 network at the University of Colorado Wide-Area

Radio Testbed, which spans an area of 1.8× 1.4 kilometers. These traces are measured

at a high spatial resolution; in fact, over 80% of the measurements were taken less than

3 meters apart. We used 70% of the data points (chosen uniformly at random) for

training and the remaining 30% of the data points for testing and performance evalu-

ation. This scenario has available less data than the other scenarios (in particular, the

large-scale urban scenario of Section 2.3.1.3). This gives us the opportunity to compare
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Figure 2.4: Comparison of kernel-based algorithms’ performance in CRAWDAD scenario.
As a baseline, a curve based on a popular but non-realtime geostatistical method (kriging) is
shown.
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the performance of our low-complexity online methods with (more complex) state-of-

the-art batch-processing methods. With reduced data, numerical issues due to finite

precision do not arise. In particular, we choose a popular method from geostatistics

for comparison; namely, ordinary kriging [Ste99, Cre90]. For example, in [GEAF14],

this method was applied to the estimation of radio maps (in particular, Signal to Noise

Ratio (SNR) maps). In Appendix A, we provide a short introduction to the kriging

method.

Figure 2.4 illustrates the decay of the MSE for the APSM algorithm and the mul-

tikernel algorithm as the number of measurements increases. Thereby, the MSE is

calculated using only the test data points, which were not used in the learning pro-

cess. We note that both algorithms behave as desired; the MSE decreases fast with

the number of measurements. (Our methods perform only one iteration per measure-

ment due to their online nature, however, we may re-use training data points multiple

times. Therefore, the number of measurements in Figure 2.4 is larger then the number

of available training data points.) The multikernel approach seems to be outperformed

by the APSM algorithm with respect to the convergence speed in this scenario. As

demonstrated in Section 2.3.1.3, this result does not seem to hold when the underlying

data is more irregular.

Not only is the estimation quality important but also the complexity, which grows

fast with the amount of data and the number of kernels. Therefore, in order to reduce

the complexity, we proposed in Section 2.2.4 an iterative weighting scheme that exploits

sparsity of the multikernel algorithm. In addition to the comparison to APSM, Figure

2.4 indicates that our iterative weighting approach significantly outperforms that of

[YI13] with respect to the convergence speed.

So far, we have only compared the two proposed kernel-based online learning

schemes with each other. However, it is also of interest to compare the proposed

methods with state-of-the-art approaches in the literature. Therefore, Figure 2.4 also

includes the MSE performance of the kriging approach. We highlight that kriging is

essentially an offline scheme where all measurements have to be available beforehand,

so a comparison is difficult and not entirely fair. In order to make a direct comparison

possible, we apply the kriging technique at certain time instances with all (at those

points in time) available measurements. Despite providing highly precise results given

the amount of available measurements (see Figure 2.4), this method has a serious draw-

back, which is inherent to all batch methods: the computational complexity does not

scale, since it grows fast with the number of data points available. In fact, all calcula-

tions have to be carried out from scratch as soon as a new measurement arrives. We

apply an ordinary kriging estimator with a Gaussian semivariogram model. The most

important simulation parameters can also be found in Table 2.4. The reader is referred

to [GEAF14] for further details.

In Figure 2.4, we can observe that, naturally, the kriging scheme shows very good
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Table 2.5: Simulation parameters for the large-scale urban scenario

Simulation Parameter Value

Number of users 750, 1500
Simulation duration [s] 5000
Number of base stations 187, 20
Size of simulation area 7500 m × 7500 m
Size of pixel 50 m × 50 m
Measurement frequency λ 0.1
Number of simulation runs 10

results even with few measurements, but from a certain point in time, more measure-

ments do not significantly improve the quality of estimation. Moreover, we observe that

our kernel-based schemes, after a sufficient number of measurements (i.e., iterations),

achieves almost the same level of accuracy, but at a much lower complexity and in an

online fashion. To be more precise, we note that the kriging method needs to solve

a dense system of linear equations in every iteration. This has a complexity of O(n3)

(with n being the number of available samples). In addition, to obtain the results in

Figure 2.4 a parametric semivariogram model needs to be fitted to the sample data (see

Appendix A for details) which is a (non-convex) problem of considerable complexity.

2.3.1.3 Large-scale urban scenario

To assess their performance in real-world, large-scale, cellular networks, we also eval-

uated the algorithms using a realistic collection of data for the city of Berlin. The

data was assembled within the European project MOMENTUM and it is available in

Extensible Markup Language (XML) at [MOM04]. The data sets, which include pixel-

based mobility models, have been created to meet the need for more realistic network

simulations.

To be more precise, we resorted to the available data set for an area of 150 × 150

pixels, each of size 50 m× 50 m. This area represents the inner city of Berlin. For each

pixel, there was path-loss data for 187 base stations. This data was generated by ray

tracing based on real terrain and building information. Since we only need a single

path-loss value for each location, each pixel is assigned to a single base station with the

lowest path-loss value. This so-called strongest server assignment (assuming all base

stations transmit with equal power) determines the geometrical shape of cells because

each user reports its measurement only to the assigned base station. Moreover, each

base station estimates only the path-loss of assigned users, which defines the coverage

area of this base station. Path-loss measurements are assumed to be reported by each

user according to a Poisson distribution.

As far as the mobility model is concerned, it is assumed that users move on trajec-

tories with randomly chosen start and end points along a real street grid. To produce
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(b) Estimated path-loss map.

Figure 2.5: Visualization of original and snapshot of online-learned path-loss map in urban
scenario. The colorbar indicates the path-loss value in dB.

realistic movement traces, we used the street data from OpenStreetMap [URL14] in

conjunction with the vehicular mobility simulator SUMO [BBEK11]. The trajectories

were calculated using duarouter, a routing tool that is part of the SUMO simulator.

This combination allows us to generate movement traces with realistic speed limits,

traffic lights, intersections, and other mobile users. Furthermore, the traces enable us

to perform long simulations over time intervals of several hours with standard proces-

sors. It is emphasized that since some roads are more frequently used than others, the

distribution of measurements over the area of interest is not uniform. As a result, the

quality of estimation is not uniform. Finally, note that the trajectory of the UOI is

also generated randomly using SUMO.

In the following, we study the estimation performance of the APSM algorithm and

the multikernel approach. The simulation parameters are given in Table 2.5. Figure

2.5 provides a first qualitative impression of the estimation capabilities of the proposed

algorithms. We compare the original path-loss matrix H (Figure 2.5a) to the estimated

path-loss matrix H̃ (Figure 2.5b) produced by the APSM algorithm after 5000 s of sim-

ulated time. Although each base station only learns the path-losses in its respective

area of coverage, the figure shows the complete map for the sake of illustration. A

visual comparison of both figures reveals significant similarities between the estimated

and the original path-loss maps. The path-loss maps estimated by the base stations

can now be used to provide predictions of path-loss conditions to particular users in

the system. To confirm the first impression of good performance by Figure 2.5, we

examine the estimation results along a route generated by the SUMO software between

two arbitrary locations. Figure 2.6 illustrates the path-loss prediction for an exemplary

route. While the dashed-dotted blue and red lines represent a particular sample of the

predicted path-loss, obtained using APSM and the multikernel algorithm, respectively,

the solid green lines represent the mean of the predicted path-loss traces (calculated
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Figure 2.6: Comparison of true path-loss experienced by UOI and path-loss predicted by
kernel-based methods in urban scenario.

from 100 runs of the simulation). In addition, we depict twice the standard error of

the mean as shaded area around the mean, which is calculated for each time instance.

Figure 2.6 compares the true path-loss evolution along the route with the predicted

path-loss evolutions for the two algorithms. The results are promising since the esti-

mated path-loss values closely match the true ones. Furthermore the estimation results

are expected to improve for routes along frequently used roads due to the large number

of available measurements. For the sake of completeness, we additionally computed the

MSE to complement Figure 2.6. By taking into account only the pixels that belong to

the specific route, we obtain a (normalized) MSE (as defined in (2.25) of 0.0037 for the

APSM algorithm and 0.0027 for the multikernel algorithm.

Now we turn our attention to the question of how much time the algorithms require
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Figure 2.7: Comparison of the MSE performance in urban scenario.
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(a) Sensitiveness against errors in reported loca-
tions. The relative error is defined to be the max-
imum possible error in the measured coordinates
(in meter) divided by the total dimension of the
area (7500m).
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(b) Sensitiveness against errors in path-loss mea-
surements. The relative error is the ratio of the
maximum possible error per path-loss measure-
ment to the average path-loss value (averaged
over the path-loss values of all pixels). Thereby
a relative error of 0.1 corresponds to a maximum
path-loss error of (roughly) 10 dB.

Figure 2.8: Impact of errors on the MSE performance in urban scenario. Error bars represent
95% confidence intervals under the assumption that the sample average of the MSE after 5000 s
is normally distributed.

for sufficiently accurate estimation. To this end, we studied the evolution of the MSE

over time. One result of this study is presented in Figure 2.7, where we observe a

fast decrease of the MSE for both algorithms. The multikernel algorithm, however,

outperforms APSM, in terms of the MSE, with only a negligible loss in convergence

speed. This is in contrast to the observation made in the Rural or the Campus scenario.

We see two reasons for this changing behavior. Both are related to the fact that the

data, e.g., of the Campus scenario is more regular than that of the Berlin scenario.

The path-loss does not have sudden spatial changes. In this case, it is easier to tailor

the parameters of the APSM method, and, in particular, the kernel width to the data

at hand. In fact, with highly irregular data, a very narrow kernel is needed by the

APSM to achieve good performance, which is detrimental to the convergence speed.

In contrast, the multi-kernel algorithm has the advantage of offering multiple different

kernels to adapt automatically to the data, without manual tuning of parameters.

The measured value and the reported location can be erroneous. Therefore, it is

essential for the algorithms to be robust against measurement errors. Figures 2.8a and

2.8b depict the impact of incorrect location reports and erroneous path-loss measure-

ments on the MSE, respectively. This errors are chosen uniformly at random, with

a variable maximum absolute value that is investigated in Figure 2.8. Note that a

location error of less than 5% means an offset in each reported coordinate of at most

375 m (i.e., up to 8 pixels). Such large errors are usually not encountered in modern

GPS devices. From these simulations, we can conclude that both algorithms are robust
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Figure 2.9: Comparison of dictionary sizes using APSM and multikernel approach (with
iterative weighting).

to the relevant range of errors but they are more sensitive to path-loss measurement

errors than to inaccurate location reports. In general, we can say that the multikernel

algorithm is more robust than the APSM algorithm. Finally, we show that the multik-

ernel algorithm, using our proposed iterative weighting approach, achieves an accuracy

similar to that of the APSM algorithm using a drastically smaller dictionary. This

can be concluded from Figure 2.9. For an exemplary simulation run, it shows that the

evolution of the dictionary sizes over time for the APSM algorithm and the multikernel

algorithm. We observe that the dictionary size of the multikernel algorithm is even

decreasing with the time, which is due to the block sparsity enforced by the second

term in the cost function given by (2.10).

The parameters of the algorithms have been tailored to the scenario at hand to

obtain the best possible estimation results. This however raises the question of how

sensitive the estimation performance is to parameter changes. To provide insight into

this problem, we performed experiments for selected parameters. As far as the APSM

algorithm is concerned, the parameters are the tolerable error level ε in (2.4), the step

size μ of the update in (2.6), the measure of linear independency αsp (cf. [ST08, Section

5.3]), which is used for sparsification, and the kernel width σ of the Gaussian kernel in

(2.26). In case of the multikernel algorithm, we study the impact of the error level εMK

in (2.9), the step size η, and the sparsification criterion δ (defined in [YI13, Equation

9]). Inspired by the principle of 2k factorial design [LK00, Chapter 12], we chose for

each parameter a very low value, indicated by the subscript l, and a very high value,

Table 2.6: Parameter choice in Figure 2.10a.

Parameter εl,APSM εh,APSM μl μh αl αh σl σh
Value 0.0001 0.9 0.1 1.99 0.001 0.9 0.0001 1
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Table 2.7: Parameter choice in Figure 2.10b.

Parameter εl,MK εh,MK ηl ηh δl δh
Value 0.0001 0.9 0.01 1.99 0.5 0.99999

indicated by the subscript h (the particular parameter values are given in Tables 2.6

and 2.7). Then the algorithms were evaluated with all the parameter choices and the

resulting estimation accuracy was compared to accuracy of the default choice.

The results are summarized in Figure 2.10. In particular, Figures 2.10a and 2.10b

show the influence of important design parameters on the APSM algorithm and the

multikernel algorithm, respectively. From these figures, we can conclude that the MSE

improves by choosing a very small μ (cf. Figure 2.10a). However, these performance

gains are in general achieved at the cost of a worse convergence speed, which is ignored

in Figure 2.10. This observation is a manifestation of the known tradeoff between

convergence speed versus steady-state performance of adaptive filters [Say03].

2.3.1.4 Heterogeneous network scenario

An important scenario that is currently being investigated in the context of 5G is that

of dense heterogeneous networks. A typical scenario for evaluation of such networks is

the Madrid grid scenario proposed by the European METIS project [MET13]. The

simulation area, which is depicted in Figure 2.11a, has the dimensions 387 m × 552 m

and features 15 buildings, a park, and a pedestrian area. To avoid border effects, a

wrap-around model is applied. We assume a single 3-sectorized macro base station and

12 pico base stations, placed according to Figure 2.11a. The most important scenario

specifications (and other simulation parameters) are summarized in Table 2.8.
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Figure 2.10: Effect of the algorithm parameters on the MSE in urban scenario. For each
relevant parameter, a very small value and a very large value are investigated.
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Table 2.8: Simulation parameters for the heterogeneous network scenario

Simulation Parameter Value

Transmit power of macro/pico base station 46 dBm / 30 dBm
Antenna height of macro/pico base station 53 m / 10 m
Number of base stations (sectors) 3 (macro) , 12 (pico)
Size of simulation area 387 m × 552 m
Size of pixel (resolution of data) 3 m × 3 m
Percentage of training/test data variable
Number of simulation runs 30

In the following, we present results obtained with a corresponding state-of-the-art

(path-loss) data set, which is publicly available online at [MET15], provided by METIS

for this scenario. More specifically, ray-tracing based path-loss data is provided for

the three-sectorized macro base-station located at height of 52, 5 m (red markers in

Figure 2.11a), and the 12 pico base-stations (orange markers in Figure 2.11a)) located

at heights of 10 m. The path-loss data is provided for three different receiver heights

(1st floor, 8th floor, 12th floor). The path-loss data has a granularity of 184×129 pixel,

i.e., each pixel has a resolution of 3 m × 3 m.

In the following simulations, we try to reconstruct path-loss maps using the ground

floor data of the METIS data set described above. The main simulation parameters are

summarized in Table 2.8. We consider for each pixel the “strongest server” among all

macro and pico base stations, determined by the received power. That is, we calculate

for each pixel i the product pjgij , where pj ∈ R is the transmit power of base station

j (as given in Table 2.8) and gij ∈ R is the path-loss between base station j and

pixel i. Doing so, we can generate a map of strongest server path-loss values for each

pixel, which is depicted in Figure 2.11b. Please note that, in contrast to the previously

investigated scenarios, the data provided in the METIS data set comprises negative

path-loss values (which therefore could be also called path-gains).

We divide the available data into a fraction τ of the available data, which will

constitute the training data set and a corresponding fraction 1−τ , which will constitute

the test data set. For example, a training data ration of τ = 0.6 means that 60% of the

total available data (chosen at random) is used as training data and the remaining 40%

as test data. We generate a sequence of measurements by taking uniformly random

distributed samples from the training data. The measurements are arriving sequentially

in a random order, and we evaluate the normalized MSE as performance metric, as

defined in (2.25), for all data points in the test set. The results are averaged over 30

simulation runs, and the MSE value of a particular simulation run is thereby calculated

after receiving the last training data sample.

To give a first visual impression on the prediction performance of the proposed al-

gorithm using the METIS data set, Figure 2.11 illustrates the simulation area (Figure

2.11a), the (strongest server) path-loss data (Figure 2.11b), and gives an exemplary
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(a) Simulation sce-
nario (source: METIS
[MET13])

(b) True path-loss map (c) Estimated path-loss map
(APSM)

Figure 2.11: Illustration of simulation area and path-loss data (original and prediction). The
colorbars in (b) and (c) indicate the path-loss value in dB. In (a), the light gray, shaded, areas
indicate buildings, the green area is a park, black areas are streets, and the dark gray area
indicates a pedestrian shopping street. Red markers in (a) indicate macro base station sector
antennas, while the orange circles indicate the locations of pico base stations.

path-loss map that was predicted by the APSM algorithm (Figure 2.11c) using a train-

ing data ratio of τ = 0.6. The figure shows the complete map for the sake of illustration,

although parts of the prediction can be carried out locally in each base station, wher-

ever the measurements of path-losses in the respective area of coverage are available. A

visual comparison reveals significant similarities between the estimated and the original

path-loss maps, using this recent comparatively high-resolution data set.

In the following, we compare the performances of the two kernel-based algorithms

(with configurations given in Tables 2.1 and 2.2) in terms of the normalized MSE, and

additionally include the performance of the same ordinary kriging algorithm that was

introduced and described in the Campus scenario (Section 2.3.1.2). First, we compare

the normalized MSE produced by the algorithms for different amounts of training data

under the assumptions that measurements are taken and reported without errors. The

results are depicted in Figure 2.12.

Figure 2.12a compares the MSE (calculated over different total amounts of training

data) produced by the APSM, the multi-kernel, and the kriging algorithms for the

error free case. As noted before, the kriging algorithm is a batch algorithm, while the

other two algorithms perform online prediction. Therefore, we can only compare the

performance once all measurements are received (while the APSM and multi-kernel

algorithms can provide a prediction at any time). As we observe in Figure 2.12a, the

kriging method outperforms the other two algorithms in the error-free case, which is,

however, no surprise since the kriging method is not designed to enforce data sparsity,
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Figure 2.12: Performance comparison of kernel-based algorithms in METIS dense urban
scenario (error-free case) in terms of the MSE and the number of measurements used in the
estimation process. As a baseline, a performance curve generated using the kriging method is
shown.

but can use all information that is available. This gain, however, comes at the cost of

significantly increased complexity and unfavorable scaling behavior due to its batch-

processing nature. This becomes more clear in Figure 2.12b, which depicts the actual

number of data points used in the prediction. This number is significantly smaller

using the APSM than in the kriging approach, which uses all available data. However,

the multikernel approach needs even less data and gets along with only a small frac-

tion compared to the kriging algorithm. The reason for this economical way of using

the available data is the sparsification approach (enhanced by the iterative weighting

method described in Section 2.2.4.2), which is an indispensable feature considering the

huge amounts of available measurements (and other data) in future dense networks.
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Figure 2.13: Performance comparison of kernel-based algorithms in METIS dense urban
scenario (erroneous measurements). As a baseline, a performance curve generated using the
kriging method is shown.
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Another major advantage of the multikernel algorithm becomes apparent when we

carry out the same comparison as above in a scenario, where we assume that the

measurements are superimposed with some measurement error. Thereby we model

the error term in a realistic fashion that also includes the possibility of strong outliers

(e.g., in cases where the user generated measurements are made at locations of bad

coverage or at times of bad fading conditions). For this reason, we use the following

error distribution. We add a random measurement error term ey given by

ey =

⎧⎨
⎩n1, with probability a, and

n2, with probability (1 − a),

to each measurement yn. Thus, the error is chosen from one of two different (log-)

normally distributed random variables n1 and n2, which have standard deviations of

5 dB and 65 dB, respectively. The results of the simulations with measurement errors

are depicted in Figure 2.13. We consider two scenarios, which differ in the frequency

of high-error outliers: error distribution 1 (shown in Figure 2.13a), with a = 0.99, and

error distribution 2 (shown in Figure 2.13b), with a = 0.8. In Figure 2.13, we observe

that in particular the multikernel algorithm shows a significantly higher robustness

to measurement errors than the kriging algorithm (in case of very high errors, the

kriging performance initially even decreases with additional measurements). While

the performance of the multi-kernel algorithm deteriorates only gently (in particular

comparing Figure 2.12a with Figure 2.13a), the performance of the kriging baseline

rapidly deteriorates. The high susceptibility of the kriging algorithm to outliers in the

data can be explained by the fact that, as described in greater detail in Appendix A,

the kriging approach is designed to minimize the MSE of the prediction error variance.

Moreover, the MSE is known to be highly sensitive to outliers in the data [CMA94].

In contrast, the behavior of the multi-kernel approach is highly desirable, because

robustness regarding errors in the reported data is one of the main design criteria for

practical online learning schemes.

Extension to coverage maps The concept of coverage maps is closely related to

the prediction of path-loss maps. In general, we define coverage in terms of the received

power compared to a certain threshold. More precisely, we say that a location with

coordinates xj belongs to the coverage area of base station i if for a given threshold

η ∈ R the following relation holds:

fi(xj)p
max
i ≥ η, (2.28)

where pmax
i ∈ R is the maximum transmit power of base station i, and fi(xj) is the

function describing the path-loss of base station i, evaluated at location xj . Obviously,

there is a strong connection between coverage and path-loss. Coverage maps can be,
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(a) Estimated path-loss of exemplary base
station

(b) Corresponding estimated coverage

Figure 2.14: Estimated path-loss and coverage maps (using a threshold of η = −110 dBm) of
an exemplary base station in the METIS dense urban scenario (depicted in Figure 2.11a). In
(a), the colorbar indicates the negative path-loss in dB. In (b), areas of coverage are colored
blue, while areas of no coverage are colored red.

for example, used as a pre-processing stage to decrease the dimensionality of energy

optimization problems, where one of the objectives is to define user-base station as-

signments in order to free and shut-down as many base station as possible. The main

idea is to use these maps to discard impossible location to base station assignments.

To determine the coverage of a given location is straight-forward if a base station has

access to path-loss information, e.g., from previously estimated path-loss maps. Thus,

the above described path-loss estimation procedure can be easily used to determine

coverage maps, by using the estimated path-loss instead of the true path-loss in (2.28).

Figure 2.14 shows a coverage map (Figure 2.14b) for an exemplary base station (located

south of the park area) that was obtained based on an estimated path-loss map (shown

in Figure 2.14a) with respect to this base station. Thereby, we assume the full transmit

power according to Table 2.8, and we (arbitrarily) choose a threshold of η = −110. This

threshold can be adapted to the particular scenario and application under consideration.

In Figure 2.14b, areas of coverage are colored blue, while coverage holes are marked

red. It can be observed that coverage holes appear mainly inside of buildings (note that

the scenario layout is depicted in Figure 2.11a). Based on such information network

operators can carry out measures to avoid connectivity problems, e.g., by increasing

transmit power, or by deploying additional femto-cells inside of buildings. Since the

prediction of the underlying path-loss maps (and therefor also the estimation of coverage

maps) is carried out in an online fashion, problem detection and self-healing algorithms

based on such maps can be easily incorporated into autonomous SON procedures.
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Figure 2.15: Illustration of the interference situation in the network. Red regions indicate
high interference.

2.3.2 Interference Estimation With Application to Device-to-Device

Communications

As a further application of the proposed kernel-based online estimation techniques, we

consider the problem of online interference estimation in cellular networks. Knowledge

of interference maps can be exploited in many different ways. This holds particularly

for SON, for example, to enable efficient network adaptation and resource utilization

by detecting problematic areas in the network. To illustrate this concept, Figure 2.15

depicts a snapshot of the interference situation generated using the Berlin scenario sim-

ulation tool introduced in Section 2.3.1.3 (details on the simulations will be provided

further below). In the figure, red areas indicate a high average interference in a typical

urban area with high numbers of mobile users. Geographic interference information can

be highly relevant for the adaptive control of dense cellular networks. If the informa-

tion contained in this map is accessible by some SON controller, self-optimization and

self-configuration mechanisms can autonomously resolve such problematic areas, e.g.,

by power control or antenna tilt optimization algorithms. In this section, we investigate

the estimation of interference maps in cellular networks with additional D2D commu-

nications and we will apply the estimated interference maps for channel estimation of

network assisted D2D communications.

D2D communications is a promising networking paradigm and a key enabling

technology for next generation wireless networks. Suitably selected wireless devices

can establish direct communication links without the need to transmit via macro-cell

base stations or other network elements. Two principle modes can be distinguished:

infrastructure-free D2D and network-assisted D2D. Infrastructure-free D2D communi-

cations is no solution for general purpose wireless services; therefore, in particular in

the context of 5G, network-assisted D2D communications [FDM+12] receives increas-
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ing attention. Although D2D communications as an enhancement of cellular networks

(such as LTE/LTE-A) is being heavily discussed, currently, there is no standard for

network-assisted D2D communications. However, the D2D communication paradigm

is considered as part of 3GPP Release 12 [Eri13, 3GP14b], where it is also known as

proximity services.

In network-assisted D2D scenarios, certain users can establish independent com-

munication links among each other, in addition to ordinary cellular communications.

These links may suffer from interference that is caused by the cellular communica-

tions, and in the same way, the D2D links may also cause interference to cellular users.

Thus, D2D communications poses additional challenges that result from the lack of

global knowledge at D2D transmitters and receivers. To control this interference, to

guarantee a sufficient robustness in critical applications, and to avoid wasting avail-

able resources, a certain amount of channel knowledge at D2D transmitters is needed.

Moreover, D2D channel knowledge enables base stations to actively support D2D users,

e.g., by reducing the interference between cellular and D2D communication links.

Therefore, obtaining such estimates is considered a major challenge in D2D commu-

nications. On a conceptual level, measurement based approaches (in conjunction with

data accumulation at the base stations) have been considered mainly in the context of

resource allocation. For example, [JKR+09] investigates D2D resource allocation based

on direct measurements of the interference levels (caused by cellular users and base

stations). In the context of LTE/LTE-A networks, a D2D channel estimation based

on reference signals, similar to the demodulation reference signal (DMRS) in the LTE

uplink, is proposed [FDM+12]. However, direct measurements of D2D channels may

not always be possible. A proper design is needed to avoid frequency collisions between

D2D and neighbor-cell cellular reference signals. Such a design might turn out to be

infeasible in certain situations. In fact, channel measurements and reporting for all

D2D pairs, and cellular users in the same cell, may not scale well as the number of

D2D pairs in the cell increases [FDM+12]. Therefore, further below, we propose to

generate estimates of the channel conditions of D2D users based on the prior learning

of geographic interference maps.

Subsequently, we investigate the learning of interference maps in network-assisted

D2D scenarios using the kernel-based algorithms introduced in Section 2.2.

2.3.2.1 Online interference estimation

As we have done for the estimation of path-loss maps, we model the problem of in-

terference map estimation as a regression problem. More precisely, we try to estimate

a mapping from geographic coordinates to a corresponding interference value, which

can be interpreted as the average interference that a cellular or D2D user (typically)

experiences when he travels across this geographic location. To model the interference

estimation problem, we will use the same notation as before (introduced in Section 2.2).
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The estimation of the interference maps is based on measurements (x̃n, yn) at times

n, where x̃n := xn + εx ∈ R
2 is the estimated coordinate of the reporting user and

yn ∈ R is a noisy interference measurement at coordinate xn. We will provide more

details on the practical measurements and the interpretation of this interference value

further below in this section. The relation between yn and the coordinate xn is given by

(2.2), where f : R2 → R is the unknown function that we attempt to learn. Moreover,

εx and εy model errors in the reported location and the reported interference value,

respectively.

Again, we are mainly interested in learning the interference at a discrete set of

locations (pixels). Therefore, we define

V ∈ R
X1×X2 ,

to be the interference matrix (where, X1, X2 ∈ N specify the spatial extent of the

simulation area), which is composed of the values of the unknown interference mapping

function f evaluated at a given discrete set of locations. Each element of the matrix V

can be understood as the average aggregated interference at the corresponding location

(pixel). At each time instance, the base stations maintain an estimate Ṽ (based on the

current estimate of f) of the true interference mapping V , and this estimate is updated

whenever new measurements arrive.

At the user side, information that is readily available in current LTE networks can

be used to measure the interference, such as Received Signal Strength Indicator (RSSI)

measurements [3GP14c]. In LTE, the RSSI information is the total power that a user

observes across the whole band, containing not only power from the own (serving)

base station, but also power from other other cells (plus noise). It can therefore be

used as an estimate of the overall interference. Both the APSM-based algorithm and

the multi-kernel approach are suitable for the interference estimation task (a thorough

comparison between the two methods has been carried out in Section 2.3.1); in this

section, we use the APSM as a basis for the proposed algorithm, using the configuration

provided in Table 2.1 (except the kernel width parameter, which is specified further

below).

To demonstrate the performance of the resulting interference estimation method,

we carry out numerical simulations using the Berlin simulation environment that was

introduced in Section 2.3.1.3. The main simulation parameters are summarized in

Table 2.9. We use the already introduced SUMO simulator [BBEK11] (cf. Section

2.3.1.3) to generate movement traces based on an actual street map of the city center

of Berlin (from the OpenStreetMap project [URL14]), to obtain realistic movements of

vehicular users (at realistic velocities between 0 and 50 km/h). We consider a simulation

area of 7.5 km × 7.5 km, with 75 (macro-) base stations distributed in this area, and a

total number of 750 vehicular users. We further assume an LTE-based system with a



46 Chapter 2. Adaptive Learning for SON

Figure 2.16: Screenshot of simulation environment used to evaluate the online interference
estimation algorithm. D2D-users move along a street grid (left) and the corresponding inter-
ference is illustrated (right). The red circles mark the positions of D2D transmitters, while the
blue triangles mark the positions of cellular base stations.

carrier frequency of 2 GHz and with 5 MHz available for D2D communications (which

corresponds to 25 LTE resource blocks). Note that within a cell, this band is assumed

to be reserved exclusively for D2D, however, different cells may use different portions

of the total system spectrum for this purpose. The base station has a transmit power

of 40 dBm, while the vehicular users transmits at a power of 10 dBm. The simulations

are illustrated by Figure 2.16, where base stations are indicated by blue triangles in the

left side of Figure 2.16, and D2D users are indicated by red circles. On the right side

of Figure 2.16, we depict the aggregated interference at each point on the map. The

value at a given pixel, which is indicated by different colors, is thereby the interference

(both from other base stations than the serving base station, and from D2D users) that

a user associated to the strongest base station experiences at this point. Thereby, it

is assumed that all cellular base stations are fully loaded (thus, no frequency band is

idle).

In our simulations, the channel is modeled as a superposition of pathloss and shad-

owing effects. We assume that the pathloss can be calculated as [3GP06]

PL(d) = 128.1 + 37.6 · log(d),

where d denotes the distance (in km) between sender and receiver. In addition we

assume a log-normal distributed shadowing process as specified in Table 2.9. Cellular

users, not depicted in Figure 2.16, are assumed to deliver RSSI measurements on a

regular basis. For the sake of simplicity, the measurements are assumed to arrive

according to a Poisson distribution (with parameter λ = 0.1) in time with a uniform

randomly chosen location. Note that in practical LTE systems, such measurements are

provided at an even higher frequency, which will further improve the prediction.
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Table 2.9: Simulation parameters (interference prediction)

Simulation Parameter Value

Distribution of (RSSI) measurements uniform random
Simulation duration (#measurements) 2000
Number of base stations 75
Size of simulation area 7500 m × 7500 m
Size of pixel 50 m × 50 m
Measurement frequency λ 0.1
Shadowing (std. dev.) log-normal (10 dB)
Base station transmit power 40 dBm
D2D user transmit power 10 dBm

The learning performance of APSM is depicted in Figure 2.17. Again, we evaluate

the normalized MSE, as defined in (2.25) (replacing H and H̃ by the interference

matrix V and its estimate Ṽ , respectively), averaged over 70 simulation runs. To

obtain performance estimations independent of the reporting frequency, we depict the

MSE over the number of reported measurements. It can be observed that initially the

MSE decreases fast and already after roughly 200 to 500 measurements (depending on

the particular kernel function), a reasonable performance level is reached.

In Figure 2.17, using a practical example, we have the opportunity to highlight a

particular issue in the design of kernel-based learning algorithms that we mentioned

already in the previous Section 2.3.1: the choice of the kernel parameters. Here, we

investigate the choice of the kernel-width σ2 of the Gaussian kernel (2.26) that we use

in the APSM. We can observe a manifestation of a well-known fundamental tradeoff

in kernel adaptive filtering between the initial convergence speed and the accuracy of
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Figure 2.17: MSE between true interference matrix and approximation, using different kernel
parameters.
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the prediction in the long term [Say03]. Although a smaller kernel-width leads to a

much higher accuracy after 2000 measurements, this accuracy is achieved at the cost

of an initially slower decrease of the MSE. Thus, in practical scenarios the prediction

accuracy after only a few measurements has to be balanced against the long-term

performance.

2.3.2.2 D2D channel estimation and adaptive video streaming

Let us now consider a particular application of the above described online interference

estimation techniques: the estimation of D2D users’ channel conditions at the base

stations. As of today, the application of kernel-based online learning techniques in this

context is yet unexplored. The general idea is that the base stations use the proposed

radio map estimation algorithms to learn a mapping from geographic locations to the

average interference at the corresponding location. Based on the estimated interference

maps, together with suitable reports from D2D receivers, such as total received power

reports, the base stations can derive estimates of the (average) channel conditions of

active D2D users. Moreover, we demonstrate how this channel estimates can be used

in a very particular use-case: the adaptation of D2D video streaming transmissions,

e.g., as part of a later described “see-through” use case.

In addition to the measurements used by the learning algorithm, for the estima-

tion of D2D channels, we additionally assume that base stations have access to total

received power reports from D2D receivers in the system (e.g., RSSI measurements in

LTE/LTE-A). We denote the total received report at time t from D2D receiver r as

γ(t,xs,xr) = pshsr(t) + V (t,xr). (2.29)

Although in (2.29) we use the time index t to emphasize the time-dependence of channel

gains and interference power, our method is designed to obtain estimates of average

channel gains (on the same time scale as the prediction of interference) rather than

to track the influence of fast fading. Moreover, xs ∈ R
2 is the location of the D2D

transmitter, xr ∈ R
2 is the location of the D2D receiver, ps ∈ R is the transmit power

of the D2D transmitter, and hsr(t) ∈ R is the channel gain between the communicating

D2D devices. Using (2.29), the base station can use the knowledge of Ṽ (t,xr) and ps

to obtain an estimate of hsr(t) by

h̃sr(t) =
γ(t,xs,xr) − Ṽ (t,xr)

ps
.

Compared to measurement based methods, a major advantage of the method is its high

scalability and the avoidance of issues such as reference signal collisions. Compared to

non channel-aware schemes (i.e., in scenarios where measurements of D2D channels

are infeasible), the D2D transmitter is able to adapt transmission parameters (trans-
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Figure 2.18: Schematic illustration of see-through use-case.

mit powers, modulation and coding, application-dependent parameters such as video

coding, etc.) to the estimated channel.

In the following, we numerically investigate the proposed procedure in a D2D video

streaming scenario. The video streaming transmission enables the driver of the receiving

vehicle to “see through” a vision obstructing vehicle (e.g., bus, truck) that is driving

ahead of his vehicle. This is illustrated in Figure 2.18. Using the generated channel

estimates, the transmitter is able to adapt its transmission to estimated average channel

conditions in order to increase the robustness, or to reduce the playback delay.

To obtain a realistic simulation of the see-through video transmission, we use a

publicly available video trace of appropriate resolution (“Sony Demo”, available at

[Vid14]). The video parameters are summarized in Table 2.10. In this configuration,

the video has a duration of approximately 10 minutes and requires a bitrate of on

average 5.8 Mbps (the bitrate at a given point in time depends on the sizes of the

corresponding frames to be transmitted). Due to the time-critical nature of the see-

through application, we assume that frames cannot be buffered at the transmitter and

erroneous frames cannot be retransmitted. In case of missing frames, the receiver

simply repeats the last correctly received frame in order to achieve the required frame

rate.

We model the D2D channels according to specifications by the METIS project

[MET13] for the urban micro scenario. We consider both Line-of-Sight (LOS) and

Non-Line-of-Sight (NLOS) communication scenarios, where the NLOS case is modeled

by a 10 dB higher path-loss [MET13]. In practice, the type of vehicles and the posi-

Table 2.10: Video streaming parameters (see-through scenario)

Video Parameter Value

Video Resolution HD 1280 × 720
Codec H.264/AVC High Profile (VBR)
Frames-per-second (FPS) 30
Frame compression ratio 57.17
Mean frame size 24181.9 bytes
GoP-Size 12 (G12B2)
No. of frames 17680
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tion of antennas, etc., determine whether LOS or NLOS propagation conditions are

predominant. All simulation parameters relevant for the “see-through” scenario are

summarized in Table 2.11. Based on our choice of simulation parameters, deducting

the control overhead, the maximum achievable transmission rate (using 64-QAM 3/4)

is 567 data bits per resource block, or 14.18 Mbps in total. Please note that the

Maximum Transmission Unit (MTU) is set to 1500 bytes. To render the simulation

tractable, we use a worst-case interference assumption, where the D2D transmission

suffers from interference from all (but the “serving”) base stations, and from all other

vehicular users (which are potential D2D users).

For the prediction part, we apply the APSM algorithm with the configuration de-

scribed in Section 2.3.2.1. Since the interference learning is a continuous process in-

dependent of the application, we can assume a certain “learning phase” before the

application starts, i.e., a certain knowledge about the interference situation already

exists. In our simulations we assume a learning phase of 10000 iterations of the APSM

prior to the D2D communication of interest.

In the following simulations, the channel-aware algorithm adapts the modulation

and coding scheme used for the video transmission (cf. Table 2.11) according to the

estimated (average) channel gain. As performance metrics we consider

1. frame error rates, and

2. the average playback delay per frame,

where we define the latter as the number of frame repetition events at the receiver

(caused by missing frames, which force the receiver to repeat the last correctly received

frame), multiplied by the frame duration (which is the reciprocal of the FPS value given

in Table 2.10), and divided by the total number of frames.

Moreover, we consider two baseline schemes for performance comparison. The first

base line is a static baseline, which transmits using a constant (pre-defined) Modulation

and Coding Scheme (MCS). Thereby, it chooses the minimum MCS that is able to

support the required average bit rate. The second baseline is an adaptive baseline, which

chooses the MCS according to instantaneous frame sizes, i.e., video bitrate demands

(but not according to the channel conditions). While the choice of MCS in the static

baseline does not change over time, the adaptive baseline chooses the minimum MCS

that theoretically allows a sufficiently high transmission rate in order to convey the

current block of video data. Given the current channel estimates, the channel-aware

scheme, however, can choose the maximum MCS (independent of the instantaneous

video transmission requirements) that allows to comply with a certain target Block

Error Rate (BLER). In the simulations, we use a target BLER of 0.1.

In Figure 2.19, we depict CDFs of the frame error rates (left) and the average delay

per frame (right), where only D2D transmissions are considered with communication

distances in the range between 7.5m and 25m (here, the LOS case is investigated). We
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Table 2.11: Simulation parameters (see-through scenario)

Simulation Parameter Value

MCSs QPSK 1/2, QPSK 2/3, QPSK 3/4, 16-QAM
1/2, 16-QAM 2/3, 64-QAM 1/2, 64-QAM 2/3,
64-QAM 3/4

MTU 1500 bytes
Target BLER 0.1
D2D distance 7.5m to 25m
Learning phase 10000 iterations
Measurement frequency λ 0.1

note that this range of distances is highly relevant for the considered “see-through” ap-

plication. Comparing the mean error produced by the adaptive learning-based scheme

to the mean error of the adaptive baseline, a reduction in the average frame error prob-

ability of around 35% is possible. Compared to the static baseline, the reduction is

around 18%, however, at the cost of a significantly worse delay performance. In fact,

we observe that the static baseline, which is only adapted to the average required video

rate, has a significantly worse delay performance than the other two approaches. When

the instantaneous channel conditions are good and the instantaneous rate requirements

are high (higher than the average video rate), resources are wasted since less data is

transmitted than possible and necessary. Although this leads to fewer frame errors

(a lower MCS is chosen than actually possible), it results in a high delay (number of

discarded frames) since not all of the 30 FPS can be transmitted. More frames are

discarded at the transmitter, since buffering is not possible. Moreover, the adaptive

baseline shows a higher frame error probability than the static baseline. This, however,

can be explained by the fact that the adaptive baseline adapts the transmission rate to

the instantaneous rate requirements (but not to the instantaneous channel conditions).
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Figure 2.19: CDFs of relative frequency of frame errors and average delay per frame in LOS
case for communication distances between 7.5 m and 25 m.
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Figure 2.20: CDF of relative frequency of frame errors for a communication distance of 10 m.
Comparison between the LOS case and the NLOS case.

When the instantaneous channel conditions are insufficient, but large frames have to

be transmitted (i.e., the adaptive baseline chooses a high MCS in contrast to the static

baseline), a larger number of frame errors occur.

In Figure 2.20, we compare the LOS and the NLOS case in terms of frame error

rates for a fixed communication distance of 10 m. In the NLOS scenario, a reduction

in the mean frame error rate of 30% can be achieved.

Note that in the numerical experiments described above we are primarily interested

in relative gains. For practical purposes, the frame error rates in Figures 2.19 and 2.20

may still be too large, in particular for the NLOS case. This results from the fact that,

in practice, the transmitter would not only adapt its MCS to the channel, but also the

video source coding rate, while in our simulations, we assume the video is encoded at

a constant rate (for high quality) as specified in Table 2.10.

2.3.3 Discussion

In all the different fields of applications that were considered in this chapter, we ob-

served that kernel-based adaptive filters are a promising tool for the design of adaptive

learning algorithms in wireless networks. As numerical results confirm, the proposed

methods fulfill important requirements for the usage in SON mechanisms, e.g., high

convergence speed, and robustness with respect to errors in the measurement data

and with respect to a non-uniform spatial distribution of measurements. Moreover,

considering the results of numerical experiments with different data sets lead us to

the conclusion that their prediction accuracy is largely independent of the resolution

of the underlying data. Furthermore, compared to state-of-the-art batch processing

algorithms (such as kriging), updates are made fast in an online nature and the incor-

porated sparsification mechanisms further reduce their complexity. Another advantage
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is that side information can be easily incorporated to increase the prediction accuracy.

The estimated radio maps can be a valuable tool in all areas of SON. This includes

self-optimization approaches such as mobility management, load balancing, or direct

network topology adaptation. A reliable reconstruction of radio maps will also enable

future networks to better utilize scarce wireless resources and improve the QoS experi-

enced by the users. Moreover, radio maps are required in self-configuration and network

planning algorithms, since future cellular networks will have to be deployed with much

less a-priori planning than today, and without expensive measurement campaigns and

drive tests. Eventually, interference maps and similar radio maps, which can point

towards critical areas in the network, can be also valuable ingredients to self-healing

functions.

Beyond their direct application in SON, specifically the path-loss estimation is a

key ingredient in the reconstruction of coverage maps, which can provide a basis for

the development of proactive resource allocation schemes. Here, resource allocation

decisions are made, not only based on present channel state information, but also

based on information about future propagation conditions. In particular, the quality

of service experienced by mobile users can be significantly enhanced if the information

about future path-loss propagation conditions along the users’ routes is utilized for

proactive resource allocation. Possible applications of proactive resource allocation

are:

1. Anticipatory buffering: Assure smooth media streaming by filling the playout

buffer before a mobile user reaches a poorly covered area.

2. Anticipatory handover: Avoid handover failures by including a coverage map in

the decision-making process.

3. Anticipatory traffic offloading: Reduce cellular traffic load by postponing trans-

mission of a user until it has reached an area covered by Wireless Local Area

Network (WLAN) technology.





Chapter 3

Self-Optimizing Resource

Allocation in

Interference-Limited Networks

While the previous chapter was concerned with techniques to generate the required

system-wide knowledge for SON algorithms, in this chapter, we consider particular

self-optimization techniques for interference limited cellular networks.

As mentioned before, interference management in cellular networks is a crucial

SON mechanism [LPGD+11, AIIE12], especially in view of the trend towards dense

heterogeneous networks, since the particular dynamics of such networks render manual

configuration and optimization infeasible. Already state-of-the-art cellular networks,

such as LTE, are severely interference limited [BPG+09], not least due to increasing

bandwidth requirements by handheld devices with high data rate consumption. More-

over, next generation (5G) networks are expected to amplify the need for self-organizing

interference management even further [OBB+14].

At the same time, bandwidth has become an increasingly scarce resource. There-

fore, cellular networks experienced a paradigm change towards a frequency reuse of

one, which, consequently, increases the susceptibility of cellular users to interference.

Especially users at the cell-edge are affected by high Inter-Cell Interference (ICI).

This situation is further aggravated by the application of modern multiuser Multiple

Input Multiple Output (MIMO), also called SDMA, techniques in wireless networks.

SDMA allows to exploit the spatial distribution of users by using multiple transmit

antennas to transmit several downlink data streams on the same time-frequency re-

source. In addition to inter-cell interference, these schemes additionally suffer from

intra-cell interference (self interference). A potential solution to this problem are coordi-

nated transmission schemes, such as Coordinated Multi-Point (CoMP) in LTE [3GP13].

Such schemes can be divided into two categories: joint transmission, where neighbor-

ing base stations act as a large distributed antenna array, and coordinated schedul-

55
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ing/beamforming. While, in theory, joint transmission schemes promise huge gains

[FKV06], they have high requirements on synchronization and backhaul bandwidth.

In fact, solutions to several challenges (such as reducing the costs of base station syn-

chronization, feedback compression and delay, handling of out-of-cluster interference,

efficient user selections, and many more) need to be resolved before the promised gains

from such schemes can be realized in practice [IDM+11]. Additionally, a centralized

control is difficult in the presence of multiple operator networks, small cells, and pos-

sibly privately operated femto-cells. As an alternative to fully coordinated schemes,

simpler SDMA schemes, with per-cell precoding and a certain level of coordination

have gained considerable attention [HAH09, BJ13].

There is a significant amount of research on coordination and interference mitigation

in cellular networks, for an overview the reader is referred to, e.g., [BPG+09, GHH+10].

A classical approach to avoid interference is to use a frequency reuse factor greater

than one, i.e., to assign different subbands of the available bandwidth to adjacent

cells based on a particular pattern. This, however, significantly limits the amount

of bandwidth available in each cell, which is undesired in current and future cellular

networks, owing to the scarcity of bandwidth. A straightforward extension of the

frequency reuse concept are fractional frequency reuse schemes [NGGA11], where the

available bandwidth is partitioned into regions with different reuse factors, e.g., for

cell-edge and cell-center users. In current frequency reuse-1 networks, interference

mitigation by power control and suitable resource allocation becomes inevitable.

There have been a variety of suggestions for joint multicell power control and

scheduling in cellular OFDM(A) based networks, such as the work in [GKGI07, HSAB09,

VPW09]. Recently, also multi-antenna systems have been considered; for example,

[YKS13], which investigates multicell coordination via joint scheduling, beamforming,

and power adaptation. Other directions include interference pricing and game theo-

retic approaches [SSB+09, YKS13, MHLT11]. It is commonly accepted that the un-

derlying joint optimization problems, which are non-convex in general, can be solved

optimally only for a limited set of problems and utilities in reasonable time. While

sub-optimal successive approximation techniques have become a popular tool to tackle

this non-convexity [PDE08, PE09], globally optimal solutions are often investigated

using branch-and-bound-based approaches [SLC08, JWCLA12, ASW12] or monotonic

optimization [UB12], however at a high computational complexity. Due to the large sig-

nalling overhead of centralized approaches, distributed coordination schemes in cellular

networks have gained increasing popularity [SLYC11, SV09, VPW09].

However, a distributed implementation, which is a well investigated aspect (as in

many of the aforementioned references), is not the only requirement. To be used in

current (and next generation) cellular networks, interference management schemes for

multiuser MIMO systems need to be dynamic (e.g., to cope with mobile users and

varying propagation conditions) and self-optimizing, in the sense that no-prior planning
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or human interaction is required. Moreover, fairness among users (often enforced by

concave utility functions of user rates) has to be an integral component.

In this chapter, we aim to establish distributed and autonomous (in the sense that

no human interaction is necessary) interference management schemes for multi-antenna

cellular networks, which exploit the freedom in terms of resource and power allocation

offered by SDMA. Our algorithms jointly consider adaptive power control and suitable

resource allocation to users, and they are are built upon, and significantly extend ideas

presented in [SV09] for Single Input Single Output (SISO) networks. We evaluate

and compare our algorithms using a sophisticated LTE-based system-level simulation

platform, capable of mapping a high system complexity and investigating large network

sizes.

3.1 System Model

We consider the downlink of an LTE-like cellular network based on the concept of Or-

thogonal Frequency Division Multiple Access (OFDMA). (See, e.g., [STB09, GZAM10]

for a summary on OFDM/OFDMA in the context of LTE/LTE-A.) Each cell is sub-

divided into three sectors; in total, our cellular network is partitioned into M sectors

m ∈ {1, . . . ,M}. We assume base stations are equipped with nT transmit antennas

and in total there are I single-antenna users randomly distributed throughout the sys-

tem. Let Im be the number of users associated to Sector m. In the following, we adopt

some terminology from 3GPP LTE specifications. In particular, we assume slotted time

with time slots t ∈ Z+, which we call Transmission Time Interval (TTI). Moreover,

OFDM sub-carriers are grouped into J sub-bands, which we call Physical Resource

Block (PRB)s. Each PRB has a total length of 1 TTI in time.

While we use the term “base station” to refer to the entity that governs operations in

an entire cell, we use the term sector controller to refer to the entity that is responsible

for user selection and resource allocation in a particular sector. The (non-trivial) task of

each sector controller is to find scheduling decisions (being an assignment of available

resources on PRBs to users) and suitable power allocations that maximize a global

network utility function. Thereby, we employ a full-buffer traffic model where each

user has pending data at all times. Due to its simplicity this model is widely used for

performance evaluation of cellular networks in research and standardization [3GP10].

As mentioned before, we design interference management schemes for practical

SDMA networks. The concept of SDMA is illustrated in Figure 3.1. Users are separated

in the spatial dimension and parallel data streams can be transmitted to these users

by suitable precoding techniques. This allows to multiplex several users on the same

time-frequency resource. We assume a practical scheme, where the sector controllers

perform linear precoding and precoding vectors for beamforming are taken from a fixed
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Figure 3.1: Conceptual illustration of spatial multiplexing (based on a geometric interpre-
tation of beamforming). Parallel data streams can be transmitted to multiple users on the
same time-frequency resource by suitable precoding techniques. The parallel beams may cause
intra-sector interference (indicated by the dashed lines).

N -element codebook

CN := {u1, ...,uN} ,

which is publicly known. Using fixed codebooks, SDMA can be realized with limited

feedback from the users [HAH09]. A popular scheme is Per User Unitary Rate Control

(PU2RC) [SE06], which uses orthogonal beamforming vectors; however, other codebook

designs with non-orthogonal beamforming vectors have been proposed as well [3GP07].

In this chapter, we will adopt the latter case and assume that users scheduled on the

same time-frequency resource may cause interference to each other. In the following,

we identify a beamforming vector ub ∈ C
nT by its index b ∈ {1, ..., N}. The different

precoding vectors of the codebook are called ‘beams’ and can be used to simultaneously

support multiple users on the same time-frequency resource.

Using fixed codebooks is a practical assumption and allows us to compare our

algorithms with transmission schemes that are used in current MU-MIMO based cellular

systems [3GP11b]. From a sector controller’s perspective, this makes a beam b on

a specific PRB j a possible resource for user selection and power allocation. This

relationship is depicted schematically in Figure 3.2. In order to provide channel state

information to the sector controllers, users report feedback messages. This feedback

comprises a Channel Directional Information (CDI) and a Channel Quality Information

(CQI) value. The CDI value is a log2(N)-bit-value and signals the index of the preferred

precoding vector (beam) b∗, which is determined based on common pilot signals. The

CQI value reports the Signal to Interference and Noise Ratio (SINR) that the user

measured on the beam b∗, which is a (pilot-based) estimate of the users’ true SINR,

since scheduling decisions and resulting interference cannot be known in advance.

We allow resource allocation and power control to be carried out on a per-beam

granularity. Consequently, let pmjb ∈ R+ be the transmit power assigned to beam b on

PRB j in sector m. Moreover, let hm
ij (t) ∈ C

nT be the vector of instantaneous complex

channel gains from sector controller m to user i on PRB j. We assume frequency-flat
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Figure 3.2: Resource grid from the scheduler’s perspective using a fixed transmit codebook. In
each time slot, resource allocation and power control can be performed on a per-PRB-per-beam
granularity.

channels within a PRB. The noise power at the mobile terminals is denoted as σ2 ∈ R+.

For the duration of a time slot, the system is in a fixed fading state from a finite

set F . We denote by Pr{l} the probability of fading state l (with
∑

l Pr{l} = 1).

Fading state l, in turn, induces a finite set of possible scheduling decisions K (l), i.e.,

assignments of available transmission resources to users.

3.2 Network Utility Maximization

We assume that the network operator tries to maximize a network-wide increasing

concave utility function

U(x) :=

M∑
m=1

Um(xm), (3.1)

which is the sum of concave sector utility functions Um : RIm
+ → R, defined over average

user rates xm ∈ R
Im
+ . Since we are obviously not interested in a specific ‘snapshot’ of

the system but in ergodic average rates, a possible control algorithm should not adapt

to a specific system state but should be able to optimize the system performance over

time.

Problem (3.1) can be decomposed in individual per-sector utility maximization

problems; the particular optimization problem for Sector m can be stated as

max.
xm∈F

Um (xm) , (3.2)

where F ⊂ R
Im
+ is the convex and compact set of all possible average service rate vectors
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(cf. [Sto05b]). The average rates can be modelled by the following constraints to (3.2):

xm ≤
∑
l

Pr{l}
∑

k∈K(l)

φlm
k rl (k) , (3.3)

∑
k

φlm
k = 1 (∀l,m). (3.4)

Thereby, Pr{l} denotes the probability of the system being in the particular fading state

l, and φlm
k > 0 denotes the fraction of time slots that scheduling decision k is chosen,

provided the system is in fading state l. A scheduling decision is thereby a feasible

assignment of available (time/frequency/space) resources to users. More precisely, the

decision index k can be considered as an index of the (finite) set of all such assignments.

Furthermore, rl (k) ∈ R
Im
+ is the instantaneous rate vector comprising elements rli (k),

which represent the (sum-)rate that user i obtains when the system is in fading state l

and scheduling decision k is chosen.

Assuming an isolated sector with fixed powers and assuming stationarity and ergod-

icity of the fading process l(t), it is well-known that problem (3.2) can be asymptotically

solved by applying a gradient scheduler [Sto05b] at each time instance, without know-

ing the fading distribution. The gradient scheduler chooses the best scheduling decision

k∗ according to

k∗ (t) ∈ arg max
k∈K(l)

∇TUm (x̄m (t)) rl(t) (k) . (3.5)

Moreover, the gradient scheduler tracks average user rates x̄m (t) by updating them in

each time slot according to

x̄m (t + 1) = (1 − β) x̄m (t) + βrl(t) (k∗ (t)) , (3.6)

where the fixed parameter β > 0 determines the size of the averaging window. Please

note that in case logarithmic utilities are used (as in our numerical experiments), i.e.,

Um =

Im∑
i=1

log(xmi ), (3.7)

the gradient scheduler is identical to the well-known proportional fair scheduler. Also

note that (as, e.g., in [SV09]) in case of OFDMA the gradient scheduler is simultane-

ously applied to each PRB. For a fixed power allocation (and assuming stationarity

and ergodicity of the fading process), the gradient scheduler is known to asymptotically

solve problem (3.2) [Sto05b] (i.e., the average rates x̄m converge to the optimal average

rates xm
opt that solve (3.2)) for β → 0. Since, in this chapter, we consider multicell net-

works with dynamic power control, we cannot hope to find efficient and globally optimal

algorithms. However, we will present efficient schemes that increase the network-wide

utility in a distributed way by suitably assigning available time/frequency/space re-
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Figure 3.3: General network control approach. Each sector controller maintains a virtual
model of the network based on long-term feedback. Optimization in this model generates
sensitivity messages, which are exchanged among sector controllers and which are used to
adjust power allocations.

sources to users and controlling the transmit power budgets of the particular resources.

3.3 Interference Mitigation by Autonomous Distributed

Power Control

To tackle the problem of inter-cell and intra-cell interference we propose three different

self-organizing power control schemes based on long-term feedback from the mobiles.

Figure 3.3 depicts the general approach. The long-term feedback can be provided in

much larger intervals than the CDI/CQI short-term feedback described above. We note

that the assumption of such additional (infrequent) feedback reports is not far from

state-of-the-art cellular networks. Current standards, such as LTE-advanced, already

foresee advanced feedback concepts, where feedback reports are not even limited to the

serving base station [3GP13]. In addition to the long-term feedback reports of users, we

permit a limited message exchange between sectors. In the example of LTE networks,

this can be realized using the X2-interface [STB09, Section 2.6].

The proposed schemes are designed to pursue autonomous interference management

and to enable network entities to locally pursue the optimization of the global network

utility. The main difference between the three algorithms is the granularity of power

control.

• The first algorithm uses an opportunistic scheduler which only adapts power
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budgets per frequency sub-band, which is then distributed equally among acti-

vated beams. We call this Opportunistic Algorithm (OA). It leaves full choice

to the actual scheduler as to which beam to activate at what time. The sched-

uler can therefore decide opportunistically. The power budgets per PRB, which

are equally distributed among activated beams, are determined by an associated

control procedure, which we will explicitly describe further below.

• The second algorithm is the Virtual Subband Algorithm (VSA), which enforces

the adherence to strict power budgets on each beam and consequently requires all

beams to be switched on at all times. The particular power values are derived by

a corresponding extended per-beam power control procedure. Having all beams

activated at all times has the advantage of making the interference predictable

when the power values are known. However, it leaves only limited freedom for the

actual scheduler, whose task is reduced to select a user for each beam. Since it

is always turned on, each beam (on each PRB) can be treated as an independent

resource for scheduling, just like a ‘virtual’ sub-band.

• The third algorithm is a hybrid approach, which permits opportunistic scheduling

at each time instance but, in addition, establishes average power budgets per

beam. We call it Cost-Based Algorithm (CBA). It leaves more freedom for

opportunistic scheduling than the virtual sub-band algorithm, which requires the

use of all beams at all times with strict power values. By contrast, CBA only

requires that target beam power values are kept on average. Instantaneously, the

scheduler is free to make opportunistic decisions based on its knowledge about

the current system state. In order to enforce that the power budgets are kept on

average, an additional cost term is introduced in the underlying utility function.

As we demonstrate later, the performance of the three algorithms is highly dependent

on the mobility assumptions on the users. In particular, we show that in scenarios

with high user mobility, it is more beneficial to impose average rather than strict power

budgets.

All proposed algorithms have the following general control procedure, or control

plane, in common. The control plane adapts power budgets using estimates of partial

derivatives of the network utility with respect to the power allocation of particular

resources. That is, estimates of the sensitivity of the network utility to changes of

the allocation strategies are generated. The particular allocation strategy can differ

between the algorithms. For example, the OA controls the power budget of an entire

PRB, while the VSA and the CBA control the power budgets of individual beams.

In all algorithms, the control plane is based on averaged, long-term, feedback of

users in order to avoid tracking fast-fading. The long-term feedback is used to calcu-

late corresponding virtual user rates and, in a second step, virtual average rates. The

virtual average rates do not have an immediate physical meaning in the ’real world’.
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However, these rates are a good representation of the interference coupling throughout

the network and are used to calculate the ‘sensitivities’ to power changes on particular

resources both in the own sector and in other sectors. The sensitivity information is

compiled in messages and exchanged between the sectors. To reduce messaging over-

head, sector controllers could limit the message exchange to neighboring base stations.

Upon reception of the message vectors, the sector controllers calculate the desired esti-

mates of the system utility’s sensitivity to power changes on particular resources, and

adjust the power budgets accordingly.

Subsequently, we will focus on how the virtual average rates, which together form a

virtual model of the network, are calculated. In fact, besides the granularity of power

budgets, the derivation of the virtual model constitutes another main difference between

the proposed algorithms. In the following, we will discuss the particular algorithms in

greater detail.

3.3.1 Opportunistic Algorithm

OA is a direct extension of the Multisector Gradient (MGR) algorithm in [SV09] to

multi-antenna networks. Although OA is designed for SDMA networks, where multiple

users can be scheduled on the same PRB, it does not perform power control on a per-

beam basis (as opposed to the other two algorithms, which will be introduced in the

following two sub-sections). Instead, it controls the power budget per PRB. Moreover,

it allows the sector controllers to choose which beams to activate at every given time

instance.

As with any of the proposed algorithms, long-term feedback from users is required,

which in case of OA comprises long-term gains

gmij = max
b

〈
h̄m
ij ,ub

〉
, (3.8)

where h̄m
ij is the channel from user i to its sector controller on PRB j, averaged to

eliminate the influence of fast-fading. Moreover, a corresponding codebook index is

reported, which is the maximizing index b∗ in (3.8). Based on this feedback, the sector

controllers calculate a set of virtual user rates (the virtual model), which are used in

the process to derive the transmit power updates. In the following, in order to avoid

confusion with the instantaneous scheduling process outlined in Section 3.2, we denote

(wherever ambiguities occur) all virtual quantities using a tilde (∼). Let us define the

virtual user rates (time index omitted), given (virtual) scheduling decision k̃, by

r̃mij

(
k̃
)

= ρ
(
Fm
ij

)
,with Fm

ij :=
gmij p̄

m
j

(
k̃
)

σ2 +
∑

m′ 	=m p̄m
′

j gm
′

ij

, (3.9)

with ρ : R → R being a function that maps SINRs to data rate, e.g., ρ(x) = log(1 +x).
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Of course, if PRB j is not assigned to user i under k̃, r̃mij

(
k̃
)

= 0. Moreover, p̄mj

(
k̃
)

denotes the current power value of PRB j divided by the number of users scheduled

(hence also depending on the scheduling decision k̃), and p̄m
′

j gm
′

ij represents a long-term

estimate of the interference of sector m′ on PRB j.

Based on definition (3.9), the sector controllers can derive corresponding virtual

average user rates x̃m ∈ R
Im . The sector controller can use these rates to obtain

estimates of the gradient of it’s local utility function with respect to power allocations

throughout the network (note that the utility function given in (3.2) is defined over

average user rates). Subsequently, these estimates (called sensitivities) are exchanged

in order to update the power budgets. In OA, the sensitivities are derived by virtual

scheduling (based on a similar procedure in [SV09]), which allows their computation

in an efficient and distributed way. Thereby, each sector continuously runs a (virtual)

gradient scheduler, which is known to locally maximize the sector utility. Similar to

the real scheduling process, the task to determine the virtual scheduling decision k̃

amounts to choosing the best subset of users to be scheduled on a PRB, subject to the

constraint that each user can only be scheduled exclusively on its reported beam (the

feedback scheme is explained in Section 3.1). We run the following gradient scheduling

steps nv times per TTI (in each sector m and for all J PRBs simultaneously).

1. Determine the virtual scheduling decision k̃∗ according to

k̃∗ ∈ arg max
k

∇TUm

(
x̃m

(
t

nv

))
r̃j

(
k̃,

t

nv

)
.

2. Update virtual average user rates according to

x̃

(
t + 1

nv

)
= (1 − β1) x̃

(
t

nv

)
+ β1J r̃j

(
k̃∗,

t

nv

)
.

3. Update sensitivities according to

D
(m̂,m)
j

(
t + 1

nv

)
= (1 − β2)D

(m̂,m)
j

(
t

nv

)
+ β2

Im∑
i=1

∂Um (x̃m)

∂x̃mi

∂r̃mij

(
k̃∗, t

nv

)
∂p̄m̂j (t)

.

(3.10)

Thereby, β1 and β2 are small averaging parameters. Since the parameter nv determines

how long the virtual scheduler runs before accepting the sensitivities, a larger value

means more overhead by the virtual layer but a better approximation of average user

rates. Using (3.9), the derivatives in (3.10) are given by

∂r̃mij

∂p̄m̂j
=

⎧⎪⎨
⎪⎩

ρ′
(
Fm
ij

)
Fm
ij

p̄m̂j
m̂ = m,

−ρ′
(
Fm
ij

)
(Fm

ij )
2

p̄mj

gm̂ij
gmij

m̂ �= m.
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The adaptation of the PRB powers can be summarized as follows. Starting with a

feasible power budget (e.g., equal powers), the sensitivities are occasionally exchanged.

Upon reception, the sensitivities are, for each PRB, summed up by each sector con-

troller. Each D
(m̂,m)
j in (3.10) is an estimation of the sensitivity of sector m’s utility to

a power change on PRB j in sector m̂. Consequently, the sum Dm
j :=

∑M
m̂=1D

(m,m̂)
j

gives an estimate of the network utility’s sensitivity to the power allocation on PRB

j in sector m. Subsequently, the power in each sector m is increased by some Δ > 0

on the PRB with the highest value of Dm
j and decreased by Δ on the PRB with the

lowest value of Dm
j (we will provide a more detailed description of the power adaptation

procedure within the following paragraph on VSA).

3.3.2 Virtual Subband Algorithm

Our second approach, VSA, allows power control on a per-beam granularity. As in

OA, the control plane of VSA that is responsible for determining the power budgets is

based on long-term Channel State Information (CSI). To this end, it requires long-term

feedback that comprises average link gains per beam and sector from each mobile. We

define

gmijb =
∣∣∣〈hm

ij ,ub

〉∣∣∣2 (3.11)

to be the average link gain (the bar denotes empirical averaging over time) of mobile

terminal i on beam b and PRB j to sector controller m. Given average gains in (3.11),

each sector controller calculates corresponding virtual rates according to

r̃mijb = ρ(Fm
ijb), (3.12)

with

Fm
ijb =

gmijbp
m
jb

σ2 +
∑

b′ 	=b g
m
ijb′p

m
jb′ +

∑
m̂ 	=m

∑
b′′ p

m̂
jb′′g

m̂
ijb′′

. (3.13)

Thereby, ρ : R → R denotes again the function that models the mapping of SINR to

data rate. Note that, since all beams are active at all times, we have an additional intra-

sector interference term (as opposed to the OA approach, where intra-sector interference

is assumed negligible by suitably choosing sub-sets of active beams, see also Section

3.4.2), which can no longer be eliminated by switching off beams. Based on the rates

in (3.12), the virtual average rates x̃mi of user i in sector m can be calculated as

x̃mi =

J∑
j=1

N∑
b=1

φm
ijbr̃

m
ijb. (3.14)
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Here, φm
ijb ∈ [0, 1] represent optimal time fractions of resource usage for sector m. These

time fractions are determined as a solution to the optimization problem

f(r̃) := max
φm
ijb

∑
i

Um

⎛
⎝∑

j

∑
b

φm
ijbr̃

m
ijb

⎞
⎠, (3.15)

subject to
∑

i φ
m
ijb = 1 and 0 ≤ φm

ijb ≤ 1 (for given virtual user rates r̃). We rely on an

explicit solution to (3.15) since, as the resources for scheduling (which are individual

beams here) are no longer orthogonal but cause interference to each other, we cannot

apply the virtual scheduling procedure proposed in [SV09] (as done, PRB-wise, by the

other two approaches). Based on the virtual user rates, the sector controllers calculate,

for all sectors (including self) and all beams, sensitivities to per-beam power changes,

which are given by

D
(m̂,m)
jb =

∑
i

∂Um

∂x̃mi

∂x̃mi
∂pm̂jb

=
∑
i

∂Um

∂x̃mi

∑
b′

φ̃m
ijb′

∂r̃mijb′

∂pm̂jb
, (3.16)

where

∂r̃mijb′

∂pm̂jb
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ′
(
Fm
ijb′

) Fm
ijb′
pm̂
jb′

m̂ = m, b′ = b,

−ρ′
(
Fm
ijb′

) (
Fm
ijb′

)2

pm
jb′

gmijb
gm
ijb′

m̂ = m, b′ �= b,

−ρ′
(
Fm
ijb′

) (
Fm
ijb′

)2

pm
jb′

gm̂ijb
gm
ijb′

m̂ �= m.

The such generated sensitivities are exchanged in a regular, but not necessarily very

frequent manner between all sector controllers (depending on the availability of long-

term feedback (3.11) from users). Thereby, every sector m receives J · N sensitivity

values from all other (M−1) sectors, in addition to the J ·N values from its own sector.

Consequently, sector m calculates

Dm
jb =

M∑
m̂=1

D
(m,m̂)
jb , (3.17)

which can be either positive or negative. Since the particular Dm,m̂
jb represent estimates

of the sector utilities to a power change on the resource jb in sector m, Dm
jb clearly is an

estimate of the sensitivity of the system’s utility to a power change on the respective

beam. Based on these quantities, each sector can adjust its power allocation, thereby

steering the system operating point towards a greater utility in the virtual model.

The power adjustment is carried out in small fixed steps of Δ > 0. Let Pm(t)

denote the total allocated power in sector m at time t, and Pmax the upper bound on

the total sector powers. Then, the following procedure is applied.

1. Pick a virtual resource (jb)∗ (if there is one) such that D
(m)
(jb)∗ (t) is the smallest
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among all virtual resources jb with D
(m)
jb (t) < 0 and pmjb (t) > 0. Now, set

pm(jb)∗ (t + 1) = max
{
pm(jb)∗ (t) − Δ, 0

}
.

2. If Pm (t) < Pmax, pick (jb)∗ (if there is one) such that D
(m)
(jb)∗ (t) is the largest

among those resources jb with D
(m)
jb (t) > 0. Set

pm(jb)∗ (t + 1) = pm(jb)∗ (t) + min {Δ, Pmax − Pm (t)} .

3. If Pm (t) = Pmax and maxjbD
(m)
jb (t) > 0, pick a pair ((jb)∗, (jb)∗) (if there is

one) such that D
(m)
(jb)∗ (t) is the largest, and D

(m)
(jb)∗ (t) is the smallest among those

virtual resources jb with pmjb (t) > 0 and D
(m)
(jb)∗ (t) < D

(m)
(jb)∗ (t). Set

pm(jb)∗ (t + 1) = max
{
pm(jb)∗ (t) − Δ, 0

}
, and

pm(jb)∗ (t + 1) = pm(jb)∗ (t) + min
{

Δ, pm(jb)∗ (t)
}
.

Obviously, the algorithm reallocates power to beams with a large positive sum of sensi-

tivities. Note that, for numerical reasons, it may be necessary to specify a small positive

minimum power value per beam instead of allowing beam powers to be reduced to zero.

In this case, the changes to the algorithmic notation above are straight forward, so we

do not explicitly state them here.

3.3.3 Cost-Based Algorithm

The policy implemented by the VSA that requires the compliance with strict power

budgets per beam is very restrictive. The CBA is designed to enforce power budgets on

average, which instantaneously leaves a certain freedom for opportunistic scheduling.

This leads to the non-trivial problem of how to take average power budgets into account

in the scheduling process. For this, unlike the other two approaches, CBA also changes

the operation of the actual instantaneous scheduling algorithm. More precisely, CBA

introduces the following additional constraint to the Network Utility Maximization

(NUM) problem (3.2):

∀j, b : p̄mjb ≥
∑
l

Pr{l}
∑
k

φlm
k cjb

(
k, p̄mj

)
. (3.18)

Thereby, the terms cjb

(
k, p̄mj

)
represent the power cost, or power consumption, of

beam b (on PRB j) given scheduling decision k and the total power budget of PRB j

given by p̄mj . We assume that each beam that is activated gets an equal share of the

available total PRB power p̄mj . Thus, if nj(k) is the number of beams that are activated
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on PRB j if decision k is chosen, the ‘cost’ of activating beam b on PRB j becomes

cjb(k, p̄
m
j ) =

1

nj(k)
p̄mj ,

with p̄mj =
∑

b p̄
m
jb.

To solve problem (3.2) with constraints (3.3), (3.4), and (3.18), we also have to

modify the gradient scheduler (3.5)-(3.6). For each PRB j, the modified gradient

scheduler now chooses the scheduling decision k∗ at time t according to

k∗ ∈ arg max
k

[
∇TUm (x̄m (t)) ·

∑
b

r
l(t)
jb (k) −

∑
b

λjb (t) cjb
(
k, p̄mj

)]
, (3.19)

where r
l(t)
jb (k) ∈ R

Im
+ are the instantaneous rates of all users on PRB j and beam b in

sector m, given scheduling decision k and fading state l(t). Dual parameters λjb (t),

tracking the deviation of powers from the target power values on a particular beam,

are updated according to

λjb (t + 1) =
[
λjb (t) + β3

(
cjb

(
k∗, p̄mj

)− p̄mjb (t)
)]+

. (3.20)

Average user rates x̄m (t) are maintained and updated as in (3.6). We note that the

above algorithm is of similar structure to the well-known Greedy Primal Dual (GPD)

algorithm [Sto05a], however, with power budgets playing the role of queueing states.

Having discussed the changes to the instantaneous scheduler, we now focus our

attention on how to generate and adapt the average power budgets. For this, we

use a similar concept of a virtual control plane as in the before-presented algorithms.

However, also the virtual control plane differs, e.g., from VSA, where every beam

is switched on all the time. First, in contrast to VSA, CBA uses a similar virtual

scheduling approach as OA to calculate sensitivity values (however, here, on a per-

beam granularity). Second, since the virtual schedulers mimic the operation of the

actual schedulers, the virtual scheduler is able to instantaneously (i.e., in a particular

iteration) deviate from the current target power budgets. To enable the calculation

of derivatives of the virtual rates with respect to beam powers (which are needed in

(3.24)), we introduce scaling factors αm
jb

(
k̃
)

, which scale target beam powers p̄mjb to

power ‘costs’ c̃mjb

(
k̃
)

, which are the power values per beam that are instantaneously

employed by the virtual scheduler. Thus, αm
jb

(
k̃
)
p̄mjb = c̃mjb

(
k̃
)

. Again, we denote

variables from the virtual scheduler with a tilde (∼), wherever necessary.

Given average gains per beam similar to VSA, defined in (3.11), the sector con-

trollers calculate (virtual) user rates given by

r̃mijb

(
k̃
)

= ρ
(
Fm
ijb(k̃)

)
, (3.21)
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with

Fm
ijb(k̃) =

αm
jb

(
k̃
)
gmijbp̄

m
jb

σ2 +
∑

b′ 	=b α
m
jb′

(
k̃
)
gmijb′ p̄

m
jb′ +

∑
m̂ 	=m

∑
b̂ g

m̂
ijb̂
p̄m̂
jb̂

. (3.22)

Virtual average user rates are calculated by CBA as follows:

x̃mi =
∑
j

∑
k̃

φ̃m
jk̃

∑
b

r̃mijb(k̃). (3.23)

Again, φ̃m
jk̃

are optimal time fractions of resource usage for sector m. To determine the

virtual average rates (and implicitly the time fractions), the following virtual scheduling

process is applied. In each TTI, the virtual scheduler performs nv scheduling runs. In

each run, the following steps are carried out on each PRB j:

1. Determine the virtual scheduling decision k̃∗ similar to (3.19).

2. Update virtual average rates similar to (3.6).

3. Update the virtual average power costs for each beam b similar to (3.20).

4. Update sensitivities for each beam b and sector m̂ (β2 > 0 small) according to

D
(m̂,m)
jb

(
t + 1

nv

)
= (1 − β2)D

(m̂,m)
jb

(
t

nv

)
+ β2

Im∑
i=1

∂Um (x̃m)

∂x̃mi

∑
b′

∂r̃mijb′
(
k̃∗, t

nv

)
∂p̄m̂jb (t)

.

(3.24)

Using (3.21) to (3.22), the derivatives in (3.24) are given by

∂r̃mijb′

∂pm̂jb
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρ′
(
Fm
ijb′

) Fm
ijb′
p̄m̂
jb′

m̂ = m, b′ = b

−ρ′
(
Fm
ijb′

) (
Fm
ijb′

)2

p̄m
jb′

gmijbα
m
jb

gm
ijb′α

m
jb′

m̂ = m, b′ �= b

−ρ′
(
Fm
ijb′

) (
Fm
ijb′

)2

p̄m
jb′

gm̂ijbα
m̂
jb

gm
ijb′α

m
jb′

m̂ �= m

.

The power adaption is then carried out similar to the other algorithms. For each

resource, each sector m sums up the received sensitivity values D
(m,m̂)
jb from all sectors

according to (3.17) and increases the power level on the beam with the highest positive

value of Dm
jb in (3.17) while decreasing the power level on the beam with the largest

|Dm
jb| among those beams with Dm

jb < 0. However, CBA adapts only power budgets per

beam, not actually used beam powers.

To find out whether CBA really complies with the average power budgets, Figure 3.4

gives a sketch of power trajectories (generated using the simulation environment de-

scribed in Section 3.4). Thereby, we exponentially average instantaneously used powers

per beam with the same time constant used for scheduling and compare the result to

the target power values determined by the virtual model. The left side of Figure 3.4
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Figure 3.4: (Averaged) power trajectories of ‘real’ scheduler (left) and target powers given
by virtual model (right). The power allocations of four exemplary beams are compared. The
‘zoom’ indicates the averaging of powers over time. The four curves (red, green, light blue, and
dark blue) indicate the averaged per-beam powers over time of the beams (here, a codebook
with four entries was used) of an arbitrary chosen PRB, both for the ’real’ scheduler (left), and
for the virtual layer (right).

shows the averaged powers, as actually used by the ‘real’ scheduler, while the right

side shows the target power values determined by the virtual scheduling procedure.

Note that since scheduling is opportunistic, instantaneously, the power levels fluctuate

highly and beam powers can differ from the target values (or a beam can be completely

turned off). This is illustrated by the ‘zoomed-in image’ in Figure 3.4 (left), where

actual powers without averaging are shown. It turns out that on average, the power

budgets are kept remarkably well.

3.4 Performance Evaluation

In order to compare the performance of the three algorithms in a setting close to prac-

tice, we conduct system-level simulations based on an LTE-like configuration. We focus

on the applicability in different fading environments, comparing the overall performance

with respect to a network-wide utility function as well as the performance of cell-edge

users.

3.4.1 Simulation Configuration

We employ a grid of seven hexagonal cells, each comprising three sectors of 120◦. To

guarantee similar interference conditions in each sector, a wrap-around model is used

at the system borders. The inter-site distance is 500 m and the minimum base station
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Table 3.1: System-level simulation parameters (evaluation of distributed algorithms)

Parameter Value

Number of sectors (M) 21
Total number of terminals (I) 105 to 315
Mobile terminal velocity 0 km/h, 3 km/h
Number of PRBs (J) 8
Number of beams (N) (coordination) 4
Number of beams (N) (baseline) 8
Base station antennas (nT) 4
Number of terminal antennas (nR) 1
Simulation duration 10, 000 TTI
Power adaption step size (Δ) 0.5% of the initial power
Traffic model Full buffer

to user distance is 35 m. Users are distributed randomly over the whole area. For

example, in case of a total number of 210 users in the system, we obtain an average

of 10 users per sector; however, the actual number of users in the particular sectors

may differ. A detailed description of the applied precoding codebooks can be found in

[3GP07]. As channel model, we use the WINNER model [WIN05], Scenario C2 (urban

macro) with a distance-dependent path-loss component calculated according to

PL(d) = 128.1 + 37.6 log(d),

with d being the distance in km, and a shadowing component with 8 dB standard

deviation. Each base station is equipped with 4 antennas (with 1
2λ antenna spacing) and

the maximum transmit power per base station is 46 dBm. All simulations are performed

with realistic link adaptation based on Mutual Information Effective SINR Mapping

(MIESM) [BAS+05] and a target BLER of 30%; moreover, we use explicit modeling

of Hybrid Automatic Repeat Request (HARQ) using chase combining (see [GZAM10,

Chapter 7] for details). Available modulation and coding schemes are QPSK, 16-QAM,

and 64-QAM. For efficiency reasons, we simulate a smaller number of PRBs (we use

J = 8) than in a real-world system; however, the results are expected to scale to a

higher number of PRBs. The carrier frequency is set to 2 GHz. The most relevant

parameters for the subsequent simulations can be also found in Table 3.1.

3.4.2 Baseline Algorithm

As baseline, we use a non-coordinative scheduling algorithm called Greedy Beam Dis-

tance (GBD) algorithm, with a codebook size of N = 8. GBD requires feedback from

each user, comprising a CDI and a CQI value. Note that the CQI can only be an

estimate of a user’s SINR, since the scheduling decisions cannot be known in advance.

More precisely, it is calculated based on the assumption that the user is scheduled alone
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on the respective PRB and with full power. Therefore, it does not contain intra-sector

interference and can only estimate the magnitude of the inter-sector interference. On

each PRB, the users are assigned to beams in a greedy manner by using their best

beams feedback (CDI) and are selected using a proportional fair scheduling algorithm

based on their CQI feedback. Thereby, a minimum beam distance has to be kept, in

order to minimize the interference between users scheduled on the same PRB. This

distance is based on a geometrical interpretation of beamforming; therefore, given a

user is scheduled on a certain beam, adjacent beams (up to a certain ‘distance’) are

blocked and users that reported one of those beams are excluded from the list of can-

didates for the respective PRB. We use a minimum distance of three, that is, assuming

an eight-beam codebook, at most three users can be scheduled on the same PRB. No

adaptive power allocation is performed: the power is distributed equally among the

PRBs, and further among the thereon scheduled users / activated beams.

3.4.3 Global Utility Versus Cell-Edge User Performance

As mentioned before, we use two essential performance metrics. First, since we maxi-

mize a proportional fair utility, we compare the geometric mean of average user rates, in

the following called Geometric Mean of Average Throughputs (GAT), as a measure of

the increase of the overall utility. Maximizing the GAT is equivalent to maximizing the

sum utility as given in (3.7), since the geometric mean of a set of rates is equal to the

exponential average of the logarithm of the rates: the sum of logarithms is maximized

precisely if the geometric mean is maximized. Second, the performance of cell-edge

users, which we measure by the 5% quantile of average user throughputs, is a natural

benchmark for each distributed interference coordination algorithm.

Figure 3.5 shows cell-edge user throughput over GAT of the evaluated algorithms in

a scenario with user mobility (and therefore with fast fading), while Figure 3.6 depicts

the simulation results in a setting without user mobility. A problem that arises with

increased mobility is that the (virtual) model lacks behind the actual network state.

Especially when the controllers are restricted to a gradual power adaption process on a

per-beam granularity, they might not always be able to fully exploit multiuser diversity.

Since the proposed algorithms put different emphasis on opportunistic scheduling in

power adaption and resource allocation decisions, they perform differently when facing

user mobility and fast fading.

We compare the three self-optimization schemes to the uncoordinated baseline de-

scribed above. The performance curves are generated using different average number

of users per sector. More precisely, from left to right, the markers of the particular

curves in the figure represent average numbers of 5, 8, 10, 12, and 15 users per sector

(corresponding to total numbers of 105, 168, 210, 252, and 315 users in the network,

respectively). Obviously, increasing values on the ordinate correspond to increased fair-

ness with respect to the 5% quantile metric; moreover, higher values on the abscissa
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Figure 3.5: Cell-edge user throughput vs. GAT in a fading environment. The averaged
cell-edge users’ throughputs vs. the geometric mean of users’ throughputs are plotted for a
fast-fading scenario with users moving at 3 km/h. The three proposed distributed algorithms
are compared with a baseline algorithm without coordination. For each algorithm, the total
number of users in the network is varied. In particular, the markers in the figure, from left to
right, represent an average number of 5, 8, 10, 12, and 15 users per sector. This corresponds
to a total number of 105, 168, 210, 252, and 315 users in the network, respectively.

correspond to a higher sum utility with respect to the GAT metric. In both figures, we

observe that a higher number of users leads to an increased sum utility (due to the mul-

tiuser diversity effect); however, the cell-edge users suffer from a reduced performance

in this case (due to an increased competition for resources).

In case of user mobility (Figure 3.5), we observe that the CBA clearly outperforms

the other algorithms. In fact, for every simulated user density, either the 5% fairness

(low user densities) or both metrics are improved (higher user densities). For example,

in the case of 210 users in the network (corresponding to the third marker on the curves

in Figure 3.5), the CBA algorithm improves the performance with respect to GAT by

about 10% and in cell-edge user throughput by more than 35%. It can also be observed

that the VSA algorithm works best at high user densities, while in case of only a few

users in the cell, the OA algorithm (which requires the least overhead with respect to

additional feedback and signaling) and even the no-power control baseline show a better

performance, at least with respect to the cell-edge performance. The decreased GAT

shown by VSA in the fading case is an effect of leaving no freedom to the schedulers

for opportunistic scheduling, but to strictly specify the powers to be used for all beams

and time instances.

Figure 3.6 depicts the simulation results in a setting without user mobility. We can

observe that the OA offers already quite high performance gains, both in terms of GAT

and in terms of cell-edge user throughput, although being the least complex algorithm

(since power control is carried out PRB-wise instead of beam-wise). However, the

performance is even further improved by the other two algorithms. VSA can improve

especially the gains of cell-edge users, for example, in the case of 210 users in the
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Figure 3.6: Cell-edge user throughput vs. GAT in a static environment. The averaged cell-
edge users’ throughputs vs. the geometric mean of users’ throughputs are plotted for a scenario
without user mobility. Thereby, the proposed three distributed algorithms are compared with
a baseline algorithm without coordination. For each algorithm, the total number of users in
the network is varied. In particular, the markers in the figure, from left to right, represent an
average number of 5, 8, 10, 12, and 15 users per sector. This corresponds to a total number of
105, 168, 210, 252, and 315 users in the network, respectively.

network to more than 200% compared with no-power control. CBA again shows the

best performance by significantly improving the global utility compared with VSA (and

even more compared with no-power control). Again, this gain increases with increasing

number of users in the network.

3.5 Global Optimality: A Branch-and-Bound Based So-

lution

The numerical evaluation above clearly shows a superior performance of the proposed

distributed algorithms when compared with the static-power baseline. However, the

underlying optimization problem is non-convex; therefore, the distributed algorithms

will most likely end up in a local maximum. Therefore, it is of utmost interest to assess

the performance of the distributed algorithms with respect to how much of the theo-

retically achievable performance gains by cooperation are actually realized. Therefore,

we will subsequently derive methods to compare their performances to the globally

optimal solution. However, in their numerical evaluation, we restrict the scenario to a

network with two PRBs, two sectors, and two users each, due to the high complexity

of finding a globally optimal solution.

To further simplify the subsequent analysis, we restrict ourselves to the SISO case,

which essentially reduces all algorithms to the MGR algorithm in [SV09]. Moreover,

let us define a system-wide power vector p ∈ R
(J ·M)
+ , containing the power allocations

for all PRBs in all sectors, and a system-wide vector of time-fractions φ ∈ R
(I·J)
+ ,
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containing the resource usage for all users and all PRBs in the system. In this case,

the optimization problem can be stated as

max.
p,φ

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1

φm
ij r

m
ij (p)

⎞
⎠ (3.25)

s.t. ∀j,m :

Im∑
i

φm
ij = 1 (3.26)

∀m :
J∑
j

pmj ≤ Pmax, (3.27)

with

rmij (p) = log

(
1 +

gmij p
m
j

σ2 +
∑

m′ 	=m gm
′

ij pm
′

j

)
. (3.28)

As mentioned before, (3.25)-(3.27) is a non-convex optimization problem. Moreover,

due to the joint optimization in time fractions φ and power values p, the complexity is

significantly increased compared to only optimizing powers. From now on we will relax

the equality constraint (3.26) and obtain

Im∑
i=1

φm
ij ≤ 1 (∀m, j). (3.29)

This gives us the possibility to treat all parameter pairs in the same way.

To gain insight into the deviation from the optimal solution of (3.25) with con-

straints (3.27) and (3.29), we can compare the distributed algorithm’s solution in sim-

plified settings to Branch-and-Bound (BNB), which is a popular global optimization

technique. Given a certain tolerance ε (which provides a trade-off between convergence

speed and accuracy of the solution), BNB converges to an optimal solution of (3.25).

BNB creates a search tree, where at each node, an upper and a lower bound to

the problem are evaluated. Details can be found for example in [HPT00]; see also

[ASW12] for an application to sum-rate maximization. The particular variant that we

apply can be summarized as follows. The algorithm is based on constantly sub-dividing

the feasible parameter region (called branching) and for each node of the resulting tree

calculating upper and lower bounds to the objective function (bounding). The process of

creating a particular node’s children by branching the corresponding parameter region

is called expanding the node. Nodes with upper bounds below the (globally) best lower

bound found so far can be deleted from the search tree (pruning) and do not have to

be considered any further (since they obviously do not contain the global optimum).

For the ease of notation, we combine all parameters to our objective function (that

is, powers and time fractions) in a single vector x̂ ∈ Rn
+, with n = J · (M + I). We

assume, without loss of generality, that the maximum sum power available in each cell
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in (3.27) is normalized to one. Let X (0) ⊂ R
n
+ denote our initial parameter region.

This region, determined by constraints (3.27) and (3.29), forms a convex n-dimensional

polytope with V (0) ∈ Z > 0 extreme points (or vertices) {x̂(0)
v }. We collect all extreme

points of the polytope X (0) in the corresponding set

V(0) = {x̂(0)
1 , . . . , x̂

(0)

V (0)}.

As mentioned before, BNB builds a search-tree by constantly branching the feasible-

parameter region. Thus a node l of the tree is associated with a certain parameter

region X (l) (with associated vertices V(l)) as well as a lower bound and an upper bound

on the objective value.

Remark 3.1. The parameter region X (l) can be expressed solely based on V(l), since

a point in a convex polyhedron can be expressed as a convex combination of the corner

points of the polyhedron. Therefore, each x̂ ∈ X (l) can be expressed by a set of λj ≥ 0

such that

x̂ =

|V(l)|∑
j

λjx̂
(l)
j ,

with x̂
(l)
j ∈ V(l), and

∑
j λj = 1.

Given a search-order based on a suitable search algorithm, the tree is traversed

node by node. Thereby the best lower bound among all nodes found so far, called

incumbent, has to be tracked. The parameters used to calculate the incumbent are

candidates for the optimal parameters. If the lower bound of a node is higher than the

current incumbent, it becomes the new global lower bound. If the upper bound of a

node l under inspection is lower than the incumbent, the optimal value can not be in

the associated parameter region X (l) and thus the node can be discarded (pruned).

In order to avoid infinite execution-time, a maximum difference ε between the real

optimum and the optimal value found by the algorithm is defined. If the upper bound

of a node is not more than ε above the highest lower bound, it is not further expanded

and the algorithm terminates when no further nodes have to be examined. Apart from

the value of ε and the quality of the bounds, the convergence speed is also heavily

influenced by the order of traversing the nodes of the tree. We use a best-first-search

in order to quickly obtain a good incumbent, to be able to prune as much nodes as

possible. That is, after expanding a node, we always choose the children with the

highest upper-bound next. If a node cannot be further expanded, the algorithm goes

up one level and proceeds with another child.

3.5.1 Bounding

Finding accurate and easy to compute upper and lower bounds is a crucial issue in the

design of BNB algorithms. Below, we explain how the upper and lower bounds to the
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sub-problems are found.

Let us begin with the upper bound. It is well-known [KTN12] that the (Shannon-)

rate expressions (3.28) can be written as a difference of concave (DC) functions (the

reader is referred to [HPT00, Chapter 4] for an introduction to DC functions and DC

programming) in the following way:

rmij (p) = log

(
σ2 +

M∑
m′=1

gm
′

ij pm
′

j

)
︸ ︷︷ ︸

:=ζmij (p)

− log

⎛
⎝σ2 +

∑
m′ 	=m

gm
′

ij pm
′

j

⎞
⎠

︸ ︷︷ ︸
:=ηmij (p)

. (3.30)

Using (3.30), our non-concave objective function (3.25) can be rewritten as

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1

φm
ij ζ

m
ij (p) − φm

ij η
m
ij (p)

⎞
⎠ . (3.31)

Unfortunately, the function φm
ij ζ

m
ij (p) and also the function φm

ij η
m
ij (p) are neither convex

nor concave, since f(a, b) := a · log(1 + b) is not a concave function. However, we can

define the concave function(s)

ζ̃mij (x̂) = φm
ij log

(
σ2 +

1

φm
ij

M∑
m′=1

gm
′

ij pm
′

j

)
,

and (in a similar same way) η̃mij (x̂). Using this, (3.31) can be upper bounded by

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1

ζ̃mij (x̂) − η̃mij (x̂)

⎞
⎠ . (3.32)

Equation (3.32) is still not concave since it includes a sum of the concave function

ζ̃mij (x̂) and the convex function −η̃mij (x̂). To obtain a concave objective function, we

replace η̃mij (x̂) by its convex envelope (cf. [HPT00]), defined as follows.

Definition 3.2. Let x1, . . . ,xV be the vertices of a polytope X . The convex envelope

γ(x) of a concave function g : X → R can be expressed as

γ(x) := min
λ

V∑
v=1

λvg(xv),

subject to
∑V

v=1 λvxv = x, with
∑V

v=1 λv = 1, and λv ≥ 0 (∀v).

Using this definition, the convex optimization problem that we have to solve in
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order to obtain our upper bound (at node l) is given by

max.
λ

M∑
m=1

Im∑
i=1

log

⎛
⎝ J∑

j=1

ζ̃mij (x̂) −
Vl∑
v=1

λvη̃
m
ij (x̂(l)

v )

⎞
⎠

s.t. x̂ =

Vl∑
v=1

λvx̂
(l)
v ,

Vl∑
v=1

λv = 1, λv ≥ 0 (∀v),

with λ = (λ1, . . . , λVl
), x̂ ∈ X (l), x̂v ∈ V(l), and Vl being the number of vertices

collected in V(l).

To obtain a lower bound at node l, we use three different approaches. The first

lower bound is obtained by taking the maximum of the objective function values at

each of the corner points of the respective parameter region. Second, we evaluate the

optimal parameter vector from calculating the upper bound. Third, we use a standard

solver to compute a (local) optimum of the original non-convex problem. If one of the

three methods leads to a higher value, the current global lower bound is replaced.

3.5.2 Numerical Results

In the following, we show numerical performance comparisons of the distributed al-

gorithm and the BNB method described above. Since the computational complexity

of the algorithm grows fast, BNB is only feasible in very small scenarios. To simplify

the analysis and due to the high computational complexity of the BNB algorithm, we

restrict ourselves to the simple SISO system of two sectors, two stationary users per

sector, and two PRBs.

In the subsequently described numerical experiments, we compare the proposed

distributed self-organizing scheme with a non-cooperative algorithm without power

control, and with the BNB algorithm described above. In Figure 3.7, the blue line

represents the GAT obtained with the coordination algorithm, while the red line rep-

resents the outcome of a non-cooperative equal-power scheduler. The solid black line

indicates the outcome of BNB. Finally, the dotted black line marks the maximum

positive deviation of the true optimum from the result of BNB (depending on the con-

figured ε parameter). Therefore, the true optimum lies in the region between the solid

and dotted black lines.

To get an overview of the influence of interference on the optimality gap, we investi-

gate three different interference scenarios, namely, weak interference, equal interference,

and high interference. In Figure 3.7, the left marker corresponds to the weak interfer-

ence case, the middle marker to the case of equal interference, while the right marker

corresponds to the case of strong interference.

The weak interference is characterized by gmij > gm
′

ij (m �= m′) for all i, j,m,m′;
thus, for all users, the link gains to the serving base station are higher than the gains to
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Figure 3.7: Comparison of the distributed power control with BNB solution for different
interference regimes.

the interfering base station. Note that this is, from a practical point of view, the more

interesting case since, e.g., due to handover algorithms, users are usually associated

to the strongest base station. It can be observed that the distributed power control

performs quite well since we see a significant improvement over equal power scheduling.

Moreover, in this case, the GAT of the distributed power control is closest to the BNB

algorithm.

In the ‘equal’ interference case, the gains to the interfering base stations are roughly

the same as the gains to the serving base station; thus, gmij ≈ gm
′

ij (m �= m′), for all

i, j,m,m′. It can be observed that the gap of the cooperativ scheme to BNB is larger,

compared to the weak interference case, although it shows significant improvements

over non-cooperative scheduling.

The strong interference case is characterized by gmij < gm
′

ij (m �= m′), for all i, j,m,m′;
that is, for all users, the link gains to the interfering base stations are higher than the

gains to the serving base station. Here, the gap in the non-cooperative algorithm’s

performance, compared to the BNB result, is significantly larger than in the other sce-

narios. By contrast, the power control algorithm shows roughly the same performance

gap than in the case of equal gains.

3.6 Discussion

In this chapter, we proposed distributed algorithms for interference coordination in cel-

lular networks, which is a major field of application for SON. The proposed algorithms

achieve a (soft) fractional frequency reuse [BPG+09, SV09] in an autonomous, self-

organizing manner by allocating different power levels to different frequency subbands

and extend this concept to the spatial dimension in multi-antenna networks.

Numerical system-level evaluations indicate that the proposed algorithms are appli-

cable in practice and show significant gains over the uncoordinated case. In particular
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for the CBA, these gains can be observed not only for cell-edge users but also in terms

of the network-wide utility. The simulations were carried out with an LTE parameter

set in order to show the applicability of the proposed methods for state-of-the art cellu-

lar networks. The results further motivate the use of considerably simpler distributed

coordinated beamforming and scheduling techniques as an alternative to complex joint

transmission schemes in multi-antenna networks. Furthermore, we can conclude that,

in particular when the users are mobile and fast-fading is considered, power budgets

should not be enforced strictly but rather on average, to instantaneously realize the full

multiuser diversity gains.

Although the network-wide power control is an intractable non-convex optimiza-

tion problems, the algorithms efficiently provide approximations to its solution, using

a virtual scheduling process based on long-term channel estimates. Comparisons to a

near-optimal branch-and-bound based solution show that, especially for practical in-

terference regimes, the self-organizing distributed algorithms significantly improve the

network’s operating point towards the optimal solution.



Chapter 4

Flexible Stochastic Network

Control

An implicit modeling assumption of the previous chapter is the so-called full buffer

assumption, i.e., there is an infinite amount of data to transmit for all users at all

times. This is a commonly made assumption, however, it masks some important issues

that arise in practical networks. In this chapter, we drop this idealized assumption and

consider stochastic traffic models, which allow to investigate additional characteristics

of wireless data networks, such as bursty arrivals of packets, idle times, and queueing

delays. Thereby, we do not restrict ourselves to the cellular networks paradigm, but

consider more general multi-hop network topologies. In such networks, self-organization

also plays a crucial role. In particular, new types of sensor networks, including smart

meters, direct D2D and machine-to-machine communications, but also particular re-

quirements from application layer data traffic induce the need for self-organization

capabilities. In the following, we assume that operations of the network, such as rate

allocations, traffic flow scheduling, and routing decisions, are determined by a control

policy, both on a global and on a local level. Adaptive control policies can support

self-optimization and self-configuration by adapting these operations, e.g., to varying

service requirements, queueing states, or battery levels.

We approach the design of control policies for wireless networks from a service

centric–or application centric–point of view. Thereby, we assume that the service layer

requirements can be expressed as constraints on buffer states. For example, a general

delay-sensitive application may require certain maximum levels of the buffer states,

while a multimedia streaming application will additionally need minimum buffer state

constraints at the user devices, such that the stream will not be interrupted due to

buffer underflows. While the first type of constraint is well investigated, the second

type bears serious challenges, especially in multihop networks.

When considering stochastic traffic models, it is of utmost interest to have control

policies that support as much data traffic as possible, while keeping the size of the data

81
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queues bounded. This property is also called throughput optimality (we will define this

more precisely further below). Following the seminal work of Tassiulas and Ephremides

[TE92], throughput optimal queueing control in stochastic networks, in particular the

throughput optimal MaxWeight policy, has gained considerable attention. A major

advantage of this algorithm is that it can perform resource allocation adaptively in

a self-organizing fashion, i.e., without prior planning. Despite its simplicity, its ap-

plication in practice turned out to be difficult, since it can lead to significant delays

[SL07]. Significant efforts followed on reducing the delay of MaxWeight-type policies

[BSS11, YSRL11]. A general class of throughput optimal policies with improved delay

performance was recently presented in [NZJ12].

However, delay is not the only relevant performance measure, in particular when

we consider modern multimedia applications. In fact, a policy that is designed to op-

timize only delay can be even harmful. Consider, e.g., the case where the receiver

buffers are strictly size-limited. Here, it can be better to absorb traffic peaks at inter-

mediate buffers instead of routing packets as fast as possible to the user. Moreover,

in cases where the application is satisfied with the offered performance, it is not nec-

essary to invest much in further incremental improvements of particular performance

measures. Therefore, a sophisticated control approach should be able to flexibly cope

with specific, possibly time-varying, requirements that are dictated by the actual appli-

cations (streaming services, gaming, etc.). Nevertheless, stability cannot be sacrificed.

Consider, for example, multimedia streaming traffic, which constitutes an ever larger

fraction of the traffic observed in nowadays wireless networks. Here, we have to ensure

that application buffers do not run empty, in order to avoid interrupting the playback

of the stream. This results in minimum buffer size constraints. However, it should be

also avoided that buffers grow too large (for example by transmitting content to the

user as fast as possible), since (1) buffers could be limited in size and (2) the user might

switch the video stream, which implies a waste of already invested resources.

While queueing networks with performance metrics, such as throughput [TE92],

delay [BSS11] (including deadline constrained traffic [LE12]), and fairness [Sto05b], are

well investigated in the literature, the problem of minimum buffer constraints was to

date mainly considered in the context of stochastic processing networks [HN11]. In the

domain of queueing networks, previous works consider underflow constraints in rather

simple network topologies, such as broadcast networks [MOHC10, SLW11]. For exam-

ple, in [MOHC10], the problem is investigated in a network of multiple transmitter-

receiver pairs with cooperating transmitters. The available resources per user are di-

vided into a fixed and a variable part; when the application buffer states are low, the

variable rate is increased, and decreased, when the application buffer states are high.

The approach in [MOHC10] requires that buffer levels for each user progress indepen-

dently of other users; therefore, it is limited to networks with broadcast or (multiple)

point to point links. It cannot easily be generalized to multihop networks (not even to
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the simple tandem network depicted in Figure 4.3).

Recently there has been some interest in queueing network control with an arbi-

trary underlying cost-metric [Mey08], allowing to incorporate application-dependent

constraints in the control policy. However, stability and cost performance crucially

depend on the parameter choice, which therefore has to be adapted in simulations.

In the following, we introduce a framework for the design of wireless queueing net-

work control policies with particular focus on combining stability with a cost function

based approach that provides the flexibility to incorporate constraints and requirements

of particular services or applications. Given the huge variety of different applications

and possible requirements on adaptive network control, we focus on a selected num-

ber of exemplary applications. In this respect, we consider the reduction of buffer

underflows in case of streaming traffic, and the maximization of idle times for energy

savings in networks of energy-constrained (e.g., battery powered) nodes. Moreover,

we demonstrate the application of our framework in cross-layer control problems for

wireless multihop networks. We compare various candidate cost functions and show

how the throughput optimality of corresponding policies can be verified using simple

conditions for stability. But first, let us introduce some important preliminaries.

4.1 Preliminaries

We begin with a brief summary of the concept of Markov chains, which provide pow-

erful means for the description and analysis of dynamic systems, and constitute the

basic theory for the concept of queueing networks. A discrete-time stochastic pro-

cess {q(t) : t ∈ Z+} with values in the countable state-space S is called (discrete-time)

Markov chain if only the present state contains information about future states, i.e,

Pr{q(t) = xt | q(t− 1) = xt−1, q(t− 2) = xt−2, . . .} = Pr{q(t) = xt | q(t− 1) = xt−1},

where all xj ∈ S. Knowledge about past states does not add any further information.

Let us define the transition matrix P of a Markov chain with countable state space as

[P ]x,y = Pr{q(t + 1) = y | q(t) = x}.

Applying this concept recursively, we can also define the t-step transition matrix

P t := PP t−1. An important concept is irreducibility, which, broadly speaking, im-

plies that all states of the Markov chain can be reached from any other state. In this

chapter, we consider the following definition.
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Definition 4.1. (cf. [Mey07, Chapter 8]) A Markov chain is said to be x∗-irreducible

if the given state x∗ ∈ S is reachable from each initial condition, i.e.,

∞∑
t=0

[P t]x,x∗ > 0, ∀x ∈ S.

If the chain is x∗-irreducible for each x∗ ∈ S, the chain is simply called irreducible.

Using the first return time τx∗ to the fixed state x∗ ∈ S, the chain is positive recurrent

if and only if E{τx∗} < ∞ [Mey07, Theorem A.2.1].

4.1.1 Queueing Model

The simplest example of a queueing network is a single queue, which comprises a server

and jobs that queue up at the server until served. A job leaves the system when the

service is complete. Single queues are often described using Kendall’s notation [Ken51].

In short form, a description according to this notation is given by A/B/m, where A

denotes the distribution of the arrivals, B denotes the distribution of the service times,

and m denotes the number of servers. The simplest example is the G/G/1 queue, which

describes a single server system with general inputs and service times (or GI/G/1, if

the independence of inputs shall be emphasized). A popular example is the M/M/1

queue, which has a single server, and where the jobs arrive following a Poisson process

with intensity α, and the service times of the jobs are determined by independent

exponentially distributed random variables with rate μ. This model is useful to describe

the behavior of a single queue; however, we need models that are suitable for networks

of queues.

In order to describe communication networks based on the concept of queueing

networks, we resort to a simple, discrete time, stochastic network model, which is

called Controlled Random Walk (CRW) model. Subsequently, we summarize the main

elements of this model (a detailed exposition of this model is also given in [Mey07]).

Let us consider a single queue first. In this case, the model is defined by the process

q(t + 1) = q(t) − s(t + 1)u(t) + a(t + 1), t ∈ Z+.

The service rate and arrival rate sequences {s(t)}t≥0 and {a(t)}t≥0, respectively, are

assumed to be independent and identically distributed (i.i.d.), and the control sequence

{u(t)}t≥0 is confined by 0 ≤ u(t) ≤ 1.

In general, however, we consider a queueing network that consists of m ∈ Z queues

in total. These queues represent physical buffers (with potentially unlimited storage

capacity). Let M be the set of queue indices. We arrange the queue backlogs at time t

in the vector q(t) ∈ X , with q(t) = [q1(t), . . . , qm(t)]T , which we refer to as the queue

state. The space X can be equal to Z
m
+ , but also constraints, e.g., limits on buffer levels,

can be incorporated. As in [TE92, Nee10], we assume per-destination queueing; that is,
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Figure 4.1: Exemplary queueing network.

each node maintains a (logical) First In, First Out (FIFO) queue for each destination

in the network. As before, suppose that the evolution of the queueing system is time

slotted with t ∈ Z+. Then, our model is defined by the queueing law:

q (t + 1) = [q (t) + B (t + 1)u (t)]+ + a (t + 1) . (4.1)

In what follows, the queueing system (4.1) is assumed to be a x0-irreducible Markov

chain, where x0 corresponds to the empty system state (i.e., x0 = 0). The vector

process a (t) ∈ Z
m
+ is the (exogenous) influx to the queueing system with mean α ∈ R

m
+ .

That is, a (t) is a vector of arrival rates in packets per slot. B (t) ∈ Z
m×l
0 is a matrix

process with mean value B, where l ∈ Z+ is the number of control decisions to be

made (that is, the number of links in the network). The matrix B (t) contains both

information about the network topology (that is, about connectivity or possible routing

paths in between queues) and service rates along the specific links. For the sake of

notational simplicity, we omit the time index wherever possible. Thus, throughout this

chapter, x := q(t) ∈ X denotes the instantaneous backlog.

In general, we assume that the control vector u := u (t) at time t is an element of

{0, 1}l. Moreover, we can impose further (linear) constraints on the control using the

binary constituency matrix C ∈ {0, 1}lm×l, where we denote the number of constraints

by lm > 0, and where each row of C corresponds to a particular controllable network

resource. More precisely, we require that

Cu ≤ 1, (4.2)

such that u(t) ∈ {
u ∈ {0, 1}l : Cu ≤ 1

}
.

Example As an example of the CRW network model in (4.1), consider the network

depicted in Figure 4.1. We have traffic arriving at queue q1 and leaving the network

after being processed at q4. Moreover in each time slot traffic from queue q3 can be
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routed either to q4 or to q5. This can be expressed by the linear constraint u3 +u4 ≤ 1,

where u3 controls the activation of the link from q3 to q4 and u4 controls the activation

of the link between q3 to q5. We assume that packets arrive with an average rate of

α > 0 and, for the sake of exposition, set all service rates equal to 1. Consequently, for

the network to be stabilizable, it is required that α < 1. In this example, the relevant

matrices of the CRW model are given by:

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0

1 −1 0 0 1 0

0 1 −1 −1 0 0

0 0 1 0 0 −1

0 0 0 1 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ and C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

4.1.2 Stability

Definition 4.2 ([LMNM03, Definition 3.1]). A queueing system is called weakly sta-

ble, if for every ε > 0, there exists a constant Ωε such that

lim
t→+∞ Pr{‖q(t)‖ > Ωε} < ε.

If a Markov chain is positive recurrent, it is also weakly stable [LMNM03]. Conse-

quently, a vector of average arrival rates α ∈ R
m
+ is called stabilizable under a specific

control policy when the corresponding queueing system is positive recurrent. Based on

this notion of stability, we can define a throughput-optimal policy as follows.

Definition 4.3. A control policy is called throughput-optimal if it keeps the Markov

chain positive recurrent for any vector of arrival rates α for which a stabilizing policy

exists.

We also apply the following stronger definition of stability.

Definition 4.4. A Markov chain is called f-stable, if there is an unbounded function

f : Rm
+ → R+, such that for any 0 < Ω < +∞ the set {x : f (x) ≤ Ω} is compact, and

furthermore it holds

lim sup
t→+∞

E {f (q (t))} < +∞. (4.3)

In Definition 4.4, the function f is unbounded in all positive directions so that

f (x) → ∞ if ‖x‖ → ∞.

4.1.3 Throughput-Optimal Control: The MaxWeight Policy

A prominent approach for throughput-optimal network control is the MaxWeight policy,

which was originally introduced by Tassiulas and Ephremides in [TE92]. It possesses

the desirable property that no knowledge about arrival rates is required to achieve
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stability. Note that, in terms of (multi-hop) queueing networks, the policy is also

called backpressure (routing) policy (while the term MaxWeight (scheduling) is often

used in case of single hop communications), however, in connection with the CRW

network model, we prefer to use the term MaxWeight also for multi-hop networks.

The basic idea is that the traffic is categorized according to its destination and each

node maintains per-destination queues. At a given node, for each outgoing link, the

traffic type that has the largest differential queue length (differential backlog) to the

respective receiver is chosen to be routed using that link. Stability of the MaxWeight

policy is usually proven using a quadratic Lyapunov function, whose negative drift is

maximized by this policy.

In terms of the CRW model, let us define the set of possible scheduling decisions

U(x), given system state x ∈ X , as

U := {u ∈ R
m
+ : Cu ≤ 1} ∩ {0, 1}m.

Moreover, let us define a (stationary) policy as a function

φ : X → U,

which chooses a control decision given the current system state x ∈ X . The MaxWeight

policy φMW selects a control decision according to

φMW ∈ arg min
u∈U(x)

〈Bu + α,Dx〉 (4.4)

(which is not necessarily unique), for some positive definite diagonal matrix D. A

highly useful property of MaxWeight is that it is stabilizing without any knowledge of

the arrival rates. In this respect, note that the arrival rate vector α is unimportant to

the optimization in (4.4) and is left only for the sake of exposition.

Despite it’s throughput-optimality, the MaxWeight policy is seldom used in practice

in its pure form, since it potentially leads to very large delays [BSS11]. In fact, under

low load and in networks containing loops and cycles, MaxWeight can behave entirely

irrational by looping single packets for a long period of time. A network (that was

originally presented in [SL07]) where it can be easily shown that MaxWeight shows

such behavior, is given in Figure 4.1. Here it is possible to construct a situation

[SL07] where selected packets are routed over and over again via node q5, and therefore

experience extraordinary delays.

4.1.4 Cost Minimization and Myopic Control

As mentioned before, stability alone might not be enough to satisfy the requirements

of services and users in wireless networks. Suppose that, in addition to stable network
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operations, we want to design control policies that minimize a given cost function. Let

us introduce a cost function

c : Zm
+ → R+, x ↪→ c (x) , (4.5)

assigning any queue state a non-negative number. Our goal is now to minimize the

average cost

JT (x0) := E

[
T∑
t=0

c(xt)

]

over a given finite time period T (or, alternatively, an infinite time period). The

optimal solution to the resulting cost minimization problem –which in discrete time can

be modeled as a Markov Decision Problem– can be found by dynamic programming,

which is, however, infeasible for large networks.

A simple approach to queueing network control is the myopic, or greedy, policy.

Such a policy selects the control decision that minimizes the expected cost only for the

next time slot. Given a function h : X → R+, the myopic policy φ with respect to this

function (also called h-myopic policy) is defined as

φ(x) ∈ arg min
u∈U(x)

E{h(q(t + 1)) | q(t) = x}

(see also [Mey07, Section 4.1]). Myopic policies are of high interest for the control of

complex queueing networks because of their simplicity.

4.1.5 Generalized MaxWeight

In [Mey08], a cost function based policy design framework called h-MaxWeight is in-

troduced, which is a generalization of the MaxWeight policy. It is based on a slightly

different definition of the CRW model that is characterized by the queueing law:

q (t + 1) = q (t) + B (t + 1)u (t) + a (t + 1) . (4.6)

The control vector u (t) ∈ Z
l
+ is an element of the region

U∗ (x) := U (x) ∩ {0, 1}l ,

with

U (x) :=
{
u ∈ R

l
+ : Cu ≤ 1, [Bu + α]i ≥ 0 for xi = 0

}
.

In the h-MaxWeight based control policy, the control vector is chosen to be an element

of

arg min
u∈U∗(x)

〈∇h(x),Bu + α〉. (4.7)
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Thus, the policy is myopic with respect to the gradient of some perturbation h of the

underlying cost function. Meyn develops two main constraints on the function h. The

first constraint requires the partial derivative of h to vanish when queues become empty:

∂h

∂xi
(x) = 0, if xi = 0. (4.8)

Second, the dynamic programming inequality has to hold for the function h:

min
u∈U(x)

〈∇h(x),Bu + α〉 ≤ −c(x).

When h is non-quadratic, the derivative condition (4.8) is not always fulfilled. There-

fore, a perturbation technique is used where h(x) = h0(x̃). Hence, h in (4.7) is chosen

as a perturbation of a function h0 in order to satisfy the boundary condition in (4.8).

Several examples of how to choose h0 are given in [Mey08]. Two perturbations are

proposed: an exponential perturbation, given by

x̃i := xi + θ
(
e−

xi
θ − 1

)
, (4.9)

with θ ≥ 1, and a logarithmic perturbation, defined as

x̃i := xi log
(

1 +
xi
θ

)
, (4.10)

with θ > 0. Using the first approach, the stability of the resulting policy depends

on the parameter θ > 0 being sufficiently large (which has to be determined in the

considered network setting). This issue is overcome by the second perturbation, which

is universally stabilizing for arbitrary θ > 0. However, it comes with the additional

constraint
∂h0
∂xi

(x) ≥ εxi, ∀i ∈ M,

with constant ε > 0. This aggravated monotonicity constraint, however, is a significant

limitation on the space of functions that can be chosen as h0.

4.2 Control Policy and Cost Function Design

In this section, we introduce a new framework for control policy design, which we call μ-

MaxWeight, that is motivated by [Mey08], but which alleviates the main drawbacks of

the approach summarized above. Control policies can be designed based on a underlying

cost function over the domain of buffer states, which adds significant flexibility to

the throughput optimal scheduling and routing paradigm. Moreover, the throughput

optimality of the resulting policies can be shown by invoking simpler stability conditions

than in [Mey08].
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In the following, we consider control policies of the form

u∗(x) ∈ arg min
u∈U

〈μ (x) ,Bu + α〉, (4.11)

where μ : Rm
+ → R

m
+ is a vector valued function, and μ(x) is called the weight vector

for an instantaneous queue state x ∈ X . Note that μ is reminiscent of a vector field

and can thus be interpreted as a scheduling field, for which we present a stability

characterization. By construction of the policy we can, without loss of generality,

normalize the weight vector as

μ̄(x) :=
μ(x)

‖μ(x)‖1
(4.12)

and hence ‖μ̄(x)‖1 = 1. Furthermore, we assume that the resulting policy is non-idling,

i.e., ‖μ(x)‖1 = 0 if and only if x = 0.

The weight functions μ(x) should be chosen in order to minimize the cost in (4.5).

Hence, we will demonstrate further below how the weight functions can be designed

based on a given cost function c(x). In addition, we provide examples of cost functions

that can be used to improve different performance metrics beyond throughput optimal-

ity. But first, we will turn our attention to the issue of stability of the control policies

of type (4.11).

Based on the work [Zho09], in the following theorem, we state generalized sufficient

conditions for throughput optimality of the CRW system (4.1) under control policy

(4.11). These conditions are highly useful since they allow the stability of our control

framework, based on a particular weight function μ(x), to be verified in an uncompli-

cated way. Further below, we will extensively discuss how to design μ(x) based on a

given cost function.

Theorem 4.5 ([Zho09]). Consider the queueing system (4.1) driven by the control

policy (4.11) with some scheduling field μ. The policy is throughput optimal if the

corresponding normalized scheduling field (4.12) fulfills the following conditions:

(A1) Given any 0 < ε1 < 1 and C1 > 0, there is some B1 > 0 so that for any

Δx ∈Rm with ‖Δx‖<C1, we have |μ̄i (x + Δx) − μ̄i (x)| ≤ ε1 for any x ∈ R
m
+

with ‖x‖ > B1, ∀i ∈ M.

(A2) Given any 0 < ε2 < 1 and C2 > 0, there is some B2 > 0 so that for any x ∈ R
m
+

with ‖x‖ > B2 and xi < C2, we have μ̄i(x) ≤ ε2, for any i ∈ M.

Moreover, for any stabilizable arrival process, the queueing system is f-stable under the

given policy, where f is an unbounded function as defined in Definition 4.4. The exact

formulation of f depends on the field μ̄(x).

The proof follows from [Zho09].
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4.2.1 Cost Function Choice

A vital design choice in the proposed control approach is the underlying cost function.

Different applications induce different constraints on network control and thus require

different cost functions. As mentioned before, applications may impose both minimum

and maximum buffer constraints. Assume, e.g., we want to find a cost function that is

best suited to steer the buffer levels of application buffers towards a target buffer state

Q̃.

A straightforward choice is a weighted l1-norm of the buffer states, i.e., a linear cost

function of the form

c(x) =
∑
i

cixi. (4.13)

It is useful to minimize the total buffer occupancy. However, this cost function is

unsuitable to avoid buffer underflows since it does not penalize very small buffer states.

A simple and straight forward cost function choice that penalizes deviations from a

target buffer state Q̃ in both directions is the shifted quadratic cost function

c(x) =
∑
i

ci(xi − Q̃)2. (4.14)

However, (4.14) naively treats all buffers in the network in the same way, although

most likely only certain (application) buffers have minimum state constraints.

In fact, a better performance can be observed by combining (4.13) and (4.14), such

that only application buffers have quadratic cost terms, while all other buffers induce

linear costs. This composite cost function is given by

c(x) =
∑
i∈Iu

ci(xi − Q̃)2 +
∑
j /∈Iu

cjxj , (4.15)

where Q̃ denotes the desired target buffer level of the application buffers and Iu denotes

the set of all application buffer indices. For simplicity, we assume all application buffers

in (4.15) have the same target buffer level.

Naturally, the shifted quadratic terms in (4.15) are only one of many possibilities

to steer the buffers towards a desired working point. Intuitively, any cost function that

produces low costs around the target level and increasing costs for underflows and over-

flows should lead to the anticipated behavior. Another approach is to explicitly design

a cost function with desired properties. Motivated by this reasoning we additionally

consider a cost function which is inspired by the transfer function of a Butterworth

bandstop filter, which we subsequently call bandstop cost function. The resulting cost
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Figure 4.2: Cost function trajectories for a single buffer, Q̃ = 8 · 105

function is given by

c(x) =
∑
i∈Iu

cmax

⎛
⎜⎝1 − 1

1 +
(
xi−Q̃
w

)k

⎞
⎟⎠ +

∑
j /∈Iu

cjxj . (4.16)

Thereby, the parameter k corresponds to the filter’s order, w determines the width of

the interval of buffer state around the target buffer level that produce very low costs,

and cmax scales the function to the desired maximum cost value that occurs when the

deviation from the target buffer state is significantly large. For a single buffer system

the described cost functions are illustrated in Figure 4.2.

4.2.2 Policy Design

Having chosen an appropriate cost function, the question remains how to construct a

corresponding weight function μ. In order to guarantee stability, it is sufficient to show

that the weight function fulfills the stability conditions of Theorem 4.5, which enables

us to easily incorporate throughput optimality by design. A straight-forward way to

design a suitable weight function is to start based on the cost function and modify

the resulting policy such that stability can be shown. For this purpose, we employ a

perturbation technique similar to (4.9) and (4.10). However, the perturbations (4.9)

and (4.10) do not fulfill the stability conditions of Theorem 4.5; therefore, we propose

a different perturbation. More precisely, we propose to use the following perturbation

of variables:

x̃i := xi + exp

(
− xi
θ(1 +

∑
j 	=i xj)

)
. (4.17)
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Using this, we can come up with the following method to construct a suitable weight

function:

μ(x) = Pθ (x)∇h0(x), (4.18)

where we use the perturbation matrix

Pθ (x) := diag (px) ∈ R
m×m
+ .

Thereby, the elements of the vector px ∈ R
m
+ are given as follows:

[px]i := 1 − exp

(
− xi
θ(1 +

∑
j 	=i xj)

)
.

It can be verified that the stability conditions derived above hold for suitable positive

real-valued continuously differentiable functions h0 in (4.18), that is, the resulting policy

is throughput optimal for any θ > 0. We note that the above described method is only

one option to obtain a suitable function μ; in principle, we can use any method that

generates weight functions that satisfy the conditions of Theorem 4.5. In the following,

we use directly the underlying cost function as h0 in (4.18): for example, the shifted

quadratic cost function in (4.14).

Proposition 4.6. Suppose we choose our weight function as described in (4.18), us-

ing the shifted quadratic cost function in (4.14). Then, the resulting weight function

μ(x) := Pθ∇h0(x) with perturbation given in (4.17) fulfills the conditions of Theorem

4.5. Thus, the resulting policy is throughput optimal.

Proof. In order to show Condition (A1), given the normalization in (4.12), we have to

show that ∣∣∣∣∣ μi(x + Δx)∑
j∈M μj(x + Δx)

− μi(x)∑
j∈M μj(x)

∣∣∣∣∣ ≤ ε1, (4.19)

whenever ‖x‖ grows large and ‖Δx‖ is bounded. Using (4.18), a particular entry of

the weight function is given by

μi(x) = 2ci

(
xi − Q̃

)(
1 − exp

(
− xi
θ(1 +

∑
j 	=i xj)

))
. (4.20)

Obviously, exp
(
− xi

θ(1+
∑

j �=i xj)

)
∈ [0, 1]. Taking into account that each component of

Δx is bounded (since ‖Δx‖ is bounded) and Q̃ is fixed, (4.19) is fulfilled for any ε1 > 0,

since the influence of the bounded queues on μi(x) vanishes in the limit. Moreover,

by construction of the normalized weight function, it is obvious that Condition (A2)

holds.

As we will demonstrate, the choice of the underlying cost function is crucial for the
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q1 q2 qmα Ra

Figure 4.3: Tandem network

performance of the resulting control policy. We subsequently illustrate by a simple ex-

ample how buffer sizes of particular queues can be steered towards beneficial operating

points using a suitably chosen cost function choice.

4.2.3 Example: Controlling a Network of Queues in Tandem

Let us clarify the influence of the cost function choice by considering a very simple

network, known as tandem queue (cf. Figure 4.3), comprising a number of m buffers

in series. We assume that traffic arrives at the first buffer with mean rate α and

traffic is removed from the m’th buffer at a constant rate Ra. The output of buffers

1 through m − 1 can be regulated by the control policy. While general tandem queue

networks have been investigated thoroughly in the literature (see, e.g., [Mey07]), in this

particular network we have the additional difficulties that we have no explicit control

over the rate at which data is extracted from application buffer qm and that we want to

steer the level qm towards a certain target value. In case of a large number of queues, it

is not immediately obvious how to control the output of, for example, the first buffer.

This is even further complicated when different weights are assigned to the buffers.

Consider now the most simple network of m = 2, where the second queue is the

application queue with a fixed output rate. Figure 4.4 depicts queueing trajectories for

20000 time slots, using two of the previously described cost functions. For the sake of

exposition, we exponentially averaged the (strongly fluctuating) buffer values using a

time window of 100 time slots. The dashed lines represent policies based on the simple

linear cost function, given in (4.13), which weights both buffer states linearly and, thus,

does not stop the second buffer from growing. By contrast, the solid lines are obtained

using the composite cost function (4.15), which produces a quadratic cost at the second

buffer when the buffer state deviates from the target buffer level. Using this function,

the resulting policy ceases to send traffic to the second buffer as soon as it reaches a

given level. Instead, the excessive traffic is queued at the first buffer.

4.2.4 A Pick and Compare Approach for Reducing Complexity

Centralized throughput optimal scheduling and routing policies, such as MaxWeight,

usually suffer from a high computational complexity. This also applies to a μ-MaxWeight

based policy. More precisely, a large computational burden arises since the selection

of the best control vector in (4.11) has to be carried out in every time slot and the

number of candidate control vectors grows exponentially with the size of the vector. To

tackle the complexity issue, there are several known approaches, such as randomized
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Figure 4.4: Queue trajectories under different cost functions in tandem queue network.

pick-and-compare based methods [Tas98], which reduce complexity at the expense of

higher delay. Another approach is greedy maximal scheduling [JLS09], which has good

delay performance but achieves only a fraction of the network capacity region (also

called stability region, i.e., the set of all arrival rate vectors for which the network is

stabilizable).

To circumvent the complexity problem, we propose a randomized version of μ-

MaxWeight, based on the randomized pick-and-compare approach, which, as noted in

[Tas98] and [EAM07], can preserve throughput optimality. Tailored to μ-MaxWeight,

the approach can be summarized as follows: At t = 0, we use u(0) ∈ U chosen randomly.

Afterwards, in each time slot t > 0, we first pick a control û ∈ U randomly. Second,

we let the control u(t) of this particular time slot to be either the vector û, if

〈μ(x),Bû + α〉 < 〈μ(x),Bu(t− 1) + α〉,

or otherwise we choose u(t− 1). Above algorithm preserves throughput optimality as

long as

Pr {û = u∗} ≥ δ,

for δ > 0 [Tas98, EAM07] (which is trivially satisfied, since the set of possible control

decisions is finite). The reduced complexity, however, comes at the expense of a higher

convergence time, and hence higher average queue lengths and delays. Yet, a tradeoff

can be achieved by repeatedly applying the pick and compare steps in every particular

time slot. Note that the randomized algorithm was shown to be amenable as a basis for

implementing decentralized throughput optimal control policies in [EAM07, EOSM10].
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Figure 4.5: Illustration of in-flight multimedia network. The red circles represent selected
wireless access points, which serve a certain number of adjacent seats (marked green) and are
connected via a wired backbone network (indicated by black solid lines). Certain seats can be
served by multiple potential access points.

4.3 Applications

In the following, we discuss several exemplary fields of application for the proposed

control framework:

1. the control of a multimedia network carrying streaming traffic,

2. the design of an energy efficient policy for energy constrained networks, and

3. the cross-layer control of wireless networks for interference management.

The first two applications highlight the benefits of extending throughput optimal rout-

ing, when the traffic load is high, with the minimization of an underlying cost function,

which allows to incorporate additional performance targets. The third application

shows how to apply the proposed framework in cross-layer wireless networking, which

establishes a connection to physical layer resource allocation and interference manage-

ment by combining routing with power control.

4.3.1 Application to Large Multimedia Networks

As a first practical application for our framework, we evaluate the μ-MaxWeight ap-

proach in a network designed for entertainment purposes. Therefore, the network is

used to transport mostly streaming traffic. The considered system can, for example,

be used to model a wireless entertainment system, for example inside an aircraft cabin,

as depicted in Figure 4.5.

We have several wireless access points, each serving a certain number of user ter-

minals (associated to seats in the aircraft) in its area. The user terminals are assumed

to run streaming-based applications. Some terminals, which are located in between

several access points, can potentially be served by more than one access point. The ac-

cess points are connected by a wired backbone network to a central application server.

The server itself is connected to the Internet, thus, traffic for each user arrives in a
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Figure 4.6: Schematic representation of the considered multimedia network

random fashion. Each component in the system has a number of queues with different

requirements.

Figure 4.6 depicts the considered network schematically in the simplest layout that

captures all above-mentioned aspects. Packets are generated randomly at the server

with average rates α1, α2 and α3. The server is connected to the access points via

wired links of fixed maximum capacity of Rs. The links between access points and

user terminals are wireless and have time varying capacities of r1(t) to r4(t), where

we assume that only one of the rates r2(t) and r3(t) can be non-zero, depending on

which access point user 2 is associated to. We further assume that the applications

are removing packets from the user queues at fixed rates Ra. The chosen control u

vector must satisfy (4.2), given a consistency matrix C that incorporates constraints

on the routing/control decision. To further illustrate the role of the matrix C in the

CRW model, we assume the following constraints. In each time slot the server can send

only one packet to each of the access points, therefore links 1 and 2 cannot be active

simultaneously, and the same applies to links 3 and 4. Moreover, we assume that each

access point can only serve one user at a given time. These constraints result in the

following consistency matrix:

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where the first four columns correspond to the wired links in Figure 4.6, and the last

four columns correspond to the wireless links. Each row of C corresponds to one of the

above mentioned constraints.

To account for the anticipated multimedia applications, we define a notion of queue

outage, which serves as a performance measure of a given control policy (in addition to
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the average cost incurred by the application of a particular control policy). We denote

the total number of buffer underflow events and buffer overflow events up to time T as

Fmin
i (T ) and the Fmax

i (T ), respectively. The total sum of buffer outages is consequently

F̄ out(T ) =
∑
i∈Iu

(
Fmin
i (T ) + Fmax

i (T )
)
,

and the relative frequency of queue outage events is defined as

P̄ out(T ) =
1

T · |Iu| F̄
out(T ). (4.21)

Assume, we want to keep the buffer states between a minimum buffer state Q(1) and

a maximum buffer state Q(2), which can be flexibly adopted to the requirements of

the desired application. Then, a reasonable choice for the target buffer state is Q̃ =
1
2

(
Q(1) + Q(2)

)
.

Usually, queueing network models, such as the CRW model, assume static links.

However, we assume time-varying wireless links between access points and terminals.

To model these links, we apply results from [MSSC08], where the mutual information

distribution of a multi-antenna OFDM-based wireless system is determined. To obtain

rate expressions, we use (similar to [MSSC08, Sec. IV.B]) the notion of outage capacity

Iout,po , which is given by [BM04, Eq. (26)]

Iout,q = E {IOFDM} −
√

Var{IOFDM}Q−1(po),

for a given outage probability po and with Q(·) being the Gaussian Q-function. This

outage probability (not to be confused with the notion of queue outage defined in (4.21))

is defined as the maximum rate that is guaranteed to be supported for 100(1− po)% of

the channel realizations. Explicit expressions to calculate E {IOFDM} and Var{IOFDM}
are derived in [MSSC08] for the general SNR case and simplified expressions are given

for low and high SNR scenarios.

Subsequently, we evaluate the queue outage performance of the earlier defined cost

functions in a multimedia network that is structured according to Figure 4.6, however

considering a larger number of network elements. For details on the configuration of

the simulations please refer to Table 4.1. Note that, based on the reasoning in Section

4.2.4, we apply 100 pick-and-compare iterations per time slot. We compare different

cost functions with respect to two main aspects. First, we investigate how the queue

outage performance evolves with respect to varying traffic intensities, to assess the

robustness of the various cost functions. Second, we demonstrate how the proposed

framework can be used as a tool for wireless network design, for example, to determine

crucial system parameters for specialized networks such as the multimedia network

of Figure 4.5. Here, we evaluate how much bandwidth has to be provided in order



4.3. Applications 99

Table 4.1: General simulation parameters (control of multimedia networks)

Parameter Value

Simulation duration (T ) 100000 time slots
Number of users per Access Point (AP) 10
Number of APs 3
Wired link capacity (Rs) 100 Mbit/s
Wireless link-outage probability (po) 0.01

Target application buffer size (Q̃) 20 Mbit

Minimum application buffer size (Q(1)) 10 Mbit

Maximum application buffer size (Q(2)) 30 Mbit
Application rate (Ra) 3 Mbit/s
Iterations of pick-and-compare (ns) 100

to support service constraints that are expressed in terms of a given queue outage

probability target.

In Figure 4.7, we consider the buffer underflow probability of various cost functions,

since (as opposed to other state-of-the art control approaches) a major incentive is to

prevent service interruptions due to low buffer states. Since the application queues are

drained at a fixed rate, intuitively, one can expect that at average traffic rates lower

than this value, the influence of underflows dominates, while at average traffic rates

larger than this value overflows are more likely to occur. As a baseline, we additionally

show the performance of the classical MaxWeight policy in Figure 4.7. When the mean

arrival rate equals the application service rate Ra (or is larger), all policies produce low

underflow frequencies. However, we can already observe a lower underflow probability

from the policies based on cost functions with quadratic components. This gain sig-

nificantly grows when the arrival rates are slightly lower than Ra. While MaxWeight
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Figure 4.8: Relative frequencies of queue outage events obtained by different cost functions.

and the linear cost function (4.13) show almost the same high underflow frequency

(since both controls do not penalize low buffer states at the application buffers), the

shifted quadratic cost function (4.14) already shows improvements. The best perfor-

mance is obtained with the sophisticated bandstop and composite functions (given by

(4.16) and (4.15), respectively), which assign different costs to application buffers and

non-application buffers. Since the performance gap between the two policies is small,

we choose the much simpler composite function (4.15) in the following.

Not only buffer underflows have to be avoided, but it is usually desirable to avoid

large queues as well. Therefore, we subsequently investigate the performance with

respect to the queue outage probability defined in (4.21), which also includes buffer

overflows. Figure 4.8 summarizes the results. As long as the arrival rates are below

Ra, all cost functions produce a decreasing outage frequency when the arrival rates

increase, mainly since queue underflows are less frequent. Beyond the applications

service rate, the policies that are not based on a sophisticated cost function rapidly

increase the queue outages with increasing traffic, owing to higher number of overflows.

Only the composite cost function can further decrease the number of queue outages,

since exceeding traffic is stored at buffers that generate lower costs.

Suppose now a system needs to satisfy a certain required outage performance. Then

it is of paramount interest how many system resources have to be provided. For ex-

ample, for the planning of entertainment networks, such as the in-flight entertainment

system illustrated in Figure 4.5, estimates of the required bandwidth to support the

desired services is highly valuable. To demonstrated how to obtain such estimates, we

investigate the influence of the system bandwidth on the performance of control policies

derived with the proposed μ-MaxWeight framework. For this, we use the composite

cost function (4.15) and simulate MaxWeight as a baseline. Figure 4.9 compares the
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different policies. The dashed black line marks the target queue outage probability of 2%.

relative frequency of application buffer outages for varying wireless bandwidths. As-

sume, we want a queue outage probability (defined according to (4.21)) of 2% not to be

exceeded (marked by the dashed black line in Figure 4.9). Obviously, MaxWeight is not

able to push the outage performance below this limit. However, using μ-MaxWeight,

a wireless bandwidth of 20 MHz turns out to be sufficient to guarantee the desired

performance in the considered configuration.

4.3.2 Energy-Efficient Network Control

Energy efficient wireless communications is recently receiving increasing attention and

is an important field of application for SON [AIIE12]. In particular, wireless ad hoc net-

works, such as sensor networks, often comprise energy limited, battery operated, nodes.

In such energy constrained networks, routing policies have to take into account the life-

time of nodes. There has been considerable work on energy efficient routing [PNV13],

however, only few consider the combination of energy efficiency and throughput opti-

mality, e.g., [Nee06]. Subsequently, we demonstrate how the μ-MaxWeight framework

can be applied to enable energy efficient routing in networks of energy limited nodes.

Consider the exemplary system depicted in Figure 4.10. We have a source node that

generates data, a destination node, and three different routes between them (a similar

topology was investigated in [ZW11]). Assume, the intermediate notes (2 to 7) are

battery powered devices. Moreover, assume that a node can switch to an energy saving

mode whenever there is no traffic in its queues. In this case, an energy efficient routing

algorithm should maximize the overall total idle time. A similar challenge arises in

energy harvesting networks, where, assuming the energy can be stored, traffic should

be concentrated on a certain set of nodes, such that nodes that are not in this set can

switch to an energy harvesting mode.
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Figure 4.10: Network of battery powered nodes. An energy efficient control policy should
route the traffic from source to destination involving as few as possible nodes.

However, network stability cannot be sacrificed. Naturally, when the network load

is low, a suitable control policy should route as much traffic as possible using only a

single route. This enables devices on the other routes to switch to the energy-saving

mode. Only if the network load is high, all routes have to be used to avoid queue

instability. This behavior is certainly not achieved when MaxWeight is used, which

uses all routes in an (implicite) attempt to balance buffer states.

Subsequently, we apply the μ-MaxWeight framework with a suitable cost function in

order to induce the desired behavior at low traffic load. Suppose we want to encourage

the use of the central route. For this purpose, a straight forward cost function choice

is the linear cost function (4.13). Let ci be the cost factor associated with the buffer

of node i. In order to force the traffic towards the central route, weights of the cost

function are chosen as

cj >> ci, for j ∈ {2, 4, 5, 7}, i ∈ {3, 6}.

We simulate the system of Figure 4.10 with arrival rates α to queue 1 in the interval

of [0.1, 0.5]. (All other queues have no external arrivals.) In Figure 4.11, we show the

total aggregated idle time, defined as

T∑
t=1

∑
m

I{qm(t) = 0}, (4.22)

over the load α, where we only consider the energy-limited nodes, i.e., m ∈ [2, 7]. In

Figure 4.11a, we investigate a network where all links have the same service rate of 0.5,

while in Figure 4.11b, the capacities of the central route are higher than those of the

upper and lower route (more precisely, we reduce the service rate of the link connecting

nodes 2 and 5, and the link connecting nodes 4 and 7 to 0.1). As a benchmark, we

again show the performance of the MaxWeight policy.

We observe that the proposed control framework outperforms MaxWeight in terms
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Figure 4.11: Sum idle time as a measure of energy efficiency over network load for different
control policies.

of the accumulated idle time that we use to measure energy efficiency. Even in case of

equal routes, where the relative gains are smaller, the performance is still significantly

better. Note that the idle times resulting from the MaxWeight policies are constant

even with different traffic volumes, since the traffic is distributed equally among the

different routes and a particular node has to stay active even when there is only a

small amount of traffic in its buffer. As the traffic load increases, the behavior of

μ-MaxWeight gets closer to that of MaxWeight; this behavior is required to ensure

stability.

4.3.3 Application to Cross-Layer Control

As a last example, we show how the proposed network control framework can be com-

bined with physical layer resource allocation in a common cross-layer optimization

problem. Cross-layer optimization of wireless networks has made significant progress

over the last years, and was mainly investigated in conjunction with the MaxWeight

technique (see, for example, [GNT06]). Nevertheless, the combination of physical layer

interference mitigation techniques with queueing control remains challenging, although

queueing-state information is one of the most critical parameters to consider in the

design of cross-layer algorithms.

4.3.3.1 Cost function based cross-layer control

While in network models with fixed link capacities, there is no coupling of link rates

due to interference, in this example, we assume a fully coupled wireless network where

interference is treated as noise. Therefore, in order to relate to existing literature on

cross-layer control, such as [GNT06, MST12], we use a somewhat different notation

than that of the CRW model.

Consider a wireless multihop network comprising a set of nodes N . Traffic can
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potentially be generated at all nodes in the network and is categorized by its destination,

that is, all traffic which is destined for node c is subsequently called commodity-c traffic.

Nodes are connected by links l ∈ L, which are defined as ordered node tuples (i, j),

with i, j ∈ N . Let N := |N | and L := |L|. Furthermore, we denote O(j) the set of

all outgoing links of node j. The set of all incoming links is accordingly defined as

I(j). We define o(l) as the transmitter of link l and d(l) as the receiver of link l. Let

q
(c)
j (t) denote the queue state of the commodity-c queue at node j. Moreover, let glm

be the path gain from node o(l) to node d(m). Thus, the gain of link l is denoted gll.

Accordingly, let dlm be the distance between node o(l) and node d(m). A simple and

frequently used model for the path gains of a link (depending on the distance between

transmitter and receiver) is

glm =
1

(dlm)ρ
,

where ρ ∈ R denotes the path-loss exponent. Below, we assume a path-loss exponent

ρ = 4, which corresponds to a lossy environment typical for urban or sub-urban areas.

Each node j assigns a power value pl to each of its outgoing links l ∈ O(j). Let

p ∈ R
L be the vector comprising the current power allocation of all L links in the

network. Subsequently, we consider per-node power constraints, where all nodes have

a common maximum available power value of Pmax, thus

∑
l∈O(j)

pl ≤ Pmax, (∀j ∈ N ).

However, (as shown in [MST12]) the algorithm can be easily adapted to the case of

per-link power constraints as well. Let

γl(p) =
gllpl

σ2
l +

∑
j 	=l gjlpj

(4.23)

be the SINR experienced at node d(l), with σ2
l ∈ R being the noise power. The rate

of link l, depending on the current power allocation p, is then given by the Shannon

capacity formula

rl(p) = W · log2 (1 + γl(p)) , (4.24)

where W ∈ R is the available system bandwidth.

Our approach is based on the well-known cross-layer Backpressure Power Control

(BPPC) algorithm [GNT06, MST12]. We provide a summary of BPPC in Algorithm 1.

BPPC is known to be throughput optimal, however, in each slot a difficult non-convex

optimization problem has to be solved. The general procedure is as follows. First, we

determine for each link the commodity that maximizes the differential backlog between

transmitter and receiver (4.25). In case it is positive, this value becomes the weight

of the respective link (4.26). Having determined the weight of each link, we have to
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Algorithm 1 Backpressure Power Control [GNT06][MST12]

1: For all links l, find the commodity that maximizes the differential backlog:

c∗l (t) ∈ arg max
c

{
q
(c)
o(l)(t) − q

(c)
d(l)(t)

}
. (4.25)

2: For all l, calculate weights

w∗
l (t) = max

c

{
q
(c)
o(l)(t) − q

(c)
d(l)(t), 0

}
. (4.26)

3: Find a link-rates allocation vector r∗(t) that solves

max.
r

∑
l

w∗
l (t)rl. (4.27)

4: For all l, and for all commodities c, determine the service rates regarding particular
commodities as

r
(c)
l (t) =

{
r∗l (t), if c = c∗l (t),
0, otherwise.

(4.28)

find the rate allocation that maximizes the (global) weighted sum-rate in (4.27). Then,

each link allocates the complete resulting capacity to the commodity found in (4.25);

all other commodities obtain rate a rate of zero (see (4.28)).

To incorporate the flexibility gained by our cost function based control policies,

we will now combine the BPPC algorithm with our μ-MaxWeight approach. Thereby,

the main difference to BPPC, as described in Algorithm 1, is the calculation of the

link weights in (4.25)-(4.26). In contrast to the classical BPPC algorithm, which uses

only the buffer states to determine the weights, our modified algorithm determines the

weights using particular weight functions that are calculated as

[μ(x)]i = ci

(
1 − exp

(
− xi
θ(1 +

∑
j 	=i xj)

))
. (4.29)

Using this, we can replace the weights in (4.26) and (4.27) by weights ω∗
l (t), which are

given by (
[μ(x)]

(c)
o(l) − [μ(x)]

(c)
d(l)

)
u∗l . (4.30)

Thereby, u∗l is the element of the control vector (chosen according to the μ-MaxWeight

rule) that corresponds to link l and allows to remove links from the optimization that

are not supposed to be active, e.g., since their activation violates constraints on the

set U of possible control decisions. Note that in (4.29), for the sake of exposition, we

use weight functions based on the linear cost function in (4.13). However, any other

suitable cost function can be chosen (for example, from the functions introduced in

Section 4.2.1), depending on the network and requirements from dominant services. In
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this way, we can significantly increase the flexibility of the BPPC approach by allowing

cost function based policy design. The optimization problem replacing (4.27) that has

to be solved at physical layer is now given by

max.
p

∑
l

ω∗
l (t) · log (1 + γl(p)) (4.31)

s.t.
∑

l∈O(j)

pl ≤ Pmax, (∀j ∈ N ),

with weights defined in (4.30). Using rates defined in (4.24), we still have a difficult non-

convex problem, making a global optimization prohibitively complex in large networks.

In fact, with rates defined as in (4.24), backpressure power control can be shown to be

NP-hard [LZ08, MST12].

4.3.3.2 Successive convex approximation based power allocation

In [PE09], a Successive Convex Approximation (SCA) method was introduced to cope

with non-convex sum-rate maximization problems. Although originally proposed in the

context of Digital Subscriber Line (DSL)-optimization, these methods are also promis-

ing in the context of power control in wireless network. In particular they eliminate

the need to resort to the frequently used high-SINR approximation together with a

log-transform of variables (see, e.g., [XY10]). This is of particular importance, since

we in general cannot assume that an interference limited network operates in the high-

SINR regime. While in the context of NUM, the SCA approach in combination with

certain utility functions may even find the global optimum [PDE08], in our case, the

resulting power control algorithm is at least guaranteed to converge to a Karush-Kuhn-

Tucker (KKT) point of the (non-convex) optimization problem (this can be shown

using the same argument as in [PE09]). In [MST12], MaxWeight was already success-

fully combined with the above mentioned successive convex approximation technique.

Core of the SCA algorithm is to convexify the non-convex problem (4.31) in each

step by using an appropriate lower bound to the link capacity together with a subse-

quent logarithmic change of variables. The lower bound is hereby given as

αl log(γl(p)) + βl ≤ log (1 + γl(p)) , (4.32)

with parameters αl ∈ R and βl ∈ R chosen according to

αl =
z0

1 + z0
, and βl = log(1 + z0) − z0

1 + z0
log(z0),

with some z0 ∈ R. Note that the bound (4.32) is tight for z0 = γl(p). Figure 4.12

demonstrates the behavior of this approximation by showing the original Shannon rate
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Figure 4.12: Illustration of Shannon rate and several convex approximations.

curve, the popular high-SINR approximation

log (1 + γ) ≈ log (γ) , if γ � 1,

and convex approximation curves for different values of z0. The SCA algorithm, as used

in [PE09, MST12], is summarized in Algorithm 2. Note that p̃l indicates a logarithmic

transform of variables, thus,

p̃l := log(pl).

Algorithm 2 Successive convex approximation algorithm [PE09]

1: initialize
t = 0; α(0) = 1; β(0) = 0 (4.33)

2: repeat
3: solve:

p̃∗(t) ∈ arg max
p̃

∑
l

ω∗
l (t)r̃l(p̃, αl, βl) (4.34)

s.t. log

⎛
⎝ ∑

m∈O(j)

exp(p̃m)

⎞
⎠ ≤ log (Pmax) , (∀j ∈ N )

4: tighten approximation (∀l):

αl(t + 1) =
γl(p

∗(t))
1 + γl(p∗(t))

(4.35)

βl(t + 1) = log (1 + γl (p∗ (t))) − αl log (γl (p∗ (t)))

5: t ⇐ t + 1
6: until algorithm convergences
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Using this transform of variables in (4.32), the following concavified lower bound on

the rate of link l is used in (4.34):

r̃l(p̃, αl, βl) :=
∑
l

αl

⎛
⎝log(gll) + p̃l − log

⎛
⎝∑

j 	=l

gjle
p̃j + σ2

l

⎞
⎠
⎞
⎠ + βl.

The algorithm is initialized according to (4.33), which is equivalent to the high-SINR

approximation. Each iteration of the algorithm comprises two steps: a maximize-step

(4.34) and a tighten-step (4.35). In the maximize-step, we find a solution to the current

convexified version (4.34) of the power control problem. This solution is then used in

the tighten-step to update the convex approximation parameters αl and βl for each

link according to (4.35). The algorithm converges when the tighten-step (4.35) does

not produce any (significant) changes, thus,

r̂l (p∗(t),α(t),β(t)) ≈ r̂l (p∗(t),α(t + 1),β(t + 1)) .

It can be shown that the algorithm converges at least to a KKT point of (4.31) [PE09].

4.3.3.3 Numerical evaluation

In the following, we numerically evaluate the performance of the proposed cost function

based cross-layer control algorithm, and we compare it to various baselines in order to

investigate both the influence of the network layer control part and the physical layer

power allocation mechanism. More specifically, we consider μ-MaxWeight with high-

SINR based power control, and MaxWeight with both SCA based and high-SINR based

power control as baselines. All simulations are time slotted and run for T = 10000 time

slots. As we have seen before, a major advantage of the cost function based approach

is that every buffer can be weighted with different coefficients ci. Doing so, the use of

specific buffers (or entire routes) can be discouraged, for example, in cases where buffer

space is more expensive at selected nodes than elsewhere. In the following, we conduct

simulations both with unequal and equal weights for all buffers. We consider a network

with a layered structure similar to Figure 4.6, however, with a larger number of N = 9

nodes that are connected by L = 10 wireless links (here, we do not consider any wired

links). Consequently, we have a single source node, three intermediate nodes, and five

possible destination nodes. The bandwidth available for the wireless links is assumed

to be 20MHz and we further assume that the traffic streams for each destination all

have the same average arrival rate.

First, we show results that illustrate the SCA-based power control part of the cross-

layer control algorithm. Figure 4.13 shows the average power values of all links over the

first 1000 time slots. The average power levels of the different links converge to different

values, which are, of course, determined by a particular link’s frequency of activation
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Figure 4.13: Average link powers over time obtained by SCA-based power control.

(since only active links are considered in the power allocation problem). In Figure 4.14,

we compare the average sizes of all queues in the network over the first 200 time slots,

both with (left) and without (right) power control. In the latter case, each node simply

distributes the available power equally over the currently active outgoing links. In case

SCA-based power control is used, all queue trajectories tend towards a finite average

value, while in the no-power-control case some queues grow without bound. Therefore,

we can conclude that the stability region induced by the convex approximation based

power control algorithm is larger than the stability region without power control.

In Figure 4.15, we compare the time averaged cost incurred by the μ-MaxWeight

and SCA based policy with that of the corresponding MaxWeight-based policy (with

and without power control based on SCA). In addition, we show the performance

of the cross-layer algorithm when relying on the high-SINR assumption in the opti-
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Figure 4.14: Average buffer states over time obtained by μ-MaxWeight using SCA-based
(left) and no power control (right).
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Figure 4.15: Performance comparison of different policies (using equal weights). The top
figure depicts the average cost over the mean arrival rate, while the bottom figure depicts the
average cost over time for a selected average arrival rate of α = 2.5 Mbit/s.

mization. Similar to what we saw before, the stability region without power control

is much smaller than that based on the SCA algorithm. Although the high-SINR-

assumption-based algorithm can stabilize the network at higher arrival rates (unlike

no power control), the performance is still considerably worse than that of the SCA-

based algorithms. Note that the curves of the SCA-based can be hardly distinguished

in the top half of Figure 4.15 due to the high costs incurred by the other policies and

the consequent scaling of the ordinate axis. To allow a comparison of the SCA-based

MaxWeight and μ-MaxWeight algorithms, we show in the lower half of Figure 4.15 the

average cost over time for a fixed arrival rate of α = 2.5 Mbit/s. It turns out that (af-

ter the network reached a steady state) significant gains can be obtained compared to

traditional MaxWeight, also in case of equal weights. These gains are even larger when

the mean arrival rate is further increased. This obviously holds also for a comparison

with no-power-control policies (as shown in the top half of Figure 4.15), since the more

traffic traverses the network, the more links are active at the same time, which increases
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the overall interference levels.

4.3.4 Discussion

In this chapter, based on ideas on generalized MaxWeight type policies, we have pro-

posed a framework for cost function based control policy design. It incorporates sta-

bility by design and it inherits the inherent property of MaxWeight type policies to

manage without pre-defined routing tables. This property is highly valuable for the de-

sign of self-organizing network-layer control policies, which need to be robust and react

dynamically regarding node or link failures. The possibility to incorporate the mini-

mization of a given cost function further increases the suitability for self-configuring and

self-optimizing network-layer control. Operators, or SON mechanisms, can steer the

network simply by choosing appropriate cost functions that reflect the current network

requirements or predominant services.

We exemplified this flexibility by considering the design of control policies for mul-

timedia streaming and energy saving applications. In the former application, a major

challenge is the preservation of minimum buffer levels at receiving nodes, an aspect

which is rarely considered in wireless networking research. In the latter application, a

suitable cost function choice can discourage the use of certain routes when the traffic

volumes permit this. Note that this application can be extended to allow fully au-

tonomous self-configuration, when the weights of the nodes of particular routes in the

underlying cost function are not chosen statically (as in the example in this chapter)

but based on the instantaneous power supplies of the nodes.

In addition, a connection to physical layer issues such as power control and interfer-

ence management can be established using a suitable cross-layer control formulation.

This involves non-convex optimization problems, which, however, can be efficiently ap-

proximated using a successive convex approximation technique. Thereby, we observed

that this approach outperforms not only static power allocations but also solutions to

the cross-layer optimization that are based on the frequently used high-SINR assump-

tion.





Chapter 5

Summary and Outlook

5.1 Summary

Upcoming challenges in current and future wireless networks, such as network densifica-

tion and heterogeneity, the scarcity of available bandwidth, and also high costs of man-

ual planning, maintenance, and operation, have fostered the need for self-organization

capabilities in future generations of wireless communication systems. In this thesis, we

proposed solutions for several different aspects of SON: from the extraction of rele-

vant and usable knowledge out of the huge amounts of (measurement and signalling)

data, to the design of particular SON mechanisms. Two such mechanisms were ex-

plicitely studied: autonomous interference coordination and adaptive, flexible, and

stable network-layer control.

In the first part of the thesis, we treated the problem of information acquisition and

we have developed novel learning algorithms for current and future wireless cellular

networks. Thereby we exploited the location awareness of users and devices in wireless

networks, which is slowly becoming available in practice [DMR+14]. The algorithms,

which are based on the state-of-the-art framework for APSM-based and multikernel

techniques, were applied to the problem of reconstructing radio maps for any area cov-

ered by a large cellular network. Even areas for which no measurements are available

can be reconstructed. To improve the quality and robustness of the reconstruction

results, the proposed algorithms can smoothly incorporate side information in addition

to measurements performed by sparsely and non-uniformly distributed mobile users.

As an example, we demonstrated how to incorporate knowledge about the anticipated

routes of users into the prediction. Given that the measurements are carried out by

user terminals, which leads to a significant variance in the quality of measurements,

we have also demonstrated another major advantage of the kernel-based algorithms:

their robustness with respect to measurement errors, even in presence of large outliers.

Our numerical results suggest that the learning algorithms are particularly robust when

employing multiple kernel functions. Furthermore, low-complexity is ensured by im-

113
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posing sparsity on kernels and measurement data. We demonstrated how particularly

the multi-kernel approach is able to sparsify the dictionary of measurement data by or-

ders of magnitude. This behavior is paramount for the upcoming “big data” challenge:

being able to efficiently process huge amounts of data in an online fashion, i.e., using ef-

ficient update procedures that, given new data, do not rely on a complete re-calculation

of the estimate. Unlike current measurement-based solutions, the algorithms can op-

erate in real time and in a distributed manner. Only to carry out cell-overlapping

optimization, a data exchange between adjacent base stations becomes necessary. We

carried out numerical experiments using real-world data and realistic user movements.

Thereby, we observed the need to carefully choose kernel parameters, especially in the

APSM-based approach. This can be alleviated using the multi-kernel approach.

The presented learning techniques have several practical applications. The accu-

rate knowledge of radio maps, e.g., path-loss or coverage maps, allows to design robust

schemes for SON and proactive resource allocation. In particular when combined with

prediction of mobile users’ trajectories, the delay-tolerance of some applications can

be exploited to perform spatial load balancing along an arbitrary trajectory for a bet-

ter utilization of scarce wireless resources. We have demonstrated that the proposed

techniques can be used to reconstruct interference maps and provided an exemplary

application in the realm of network-assisted D2D communications. However, the major

application of the radio map concept is in self-organization. Thereby, all aspects, i.e.,

self-optimization, self-configuration, and self-healing, can profit from this knowledge,

in particular in dense heterogeneous networks. Network controllers can identify prob-

lematic areas and react accordingly, for example, by adjusting power and antenna tilt

parameters, by initiating load balancing procedures, or by dynamically (de-)activating

base stations.

In the following two parts of the thesis we dealt with particular aspects of SON. Ad-

dressing a major challenge in current and future dense cellular networks, we introduced

interference management mechanisms based on the maximization of a network-wide

utility function. Extending state-of-the-art SISO approaches, such as [SV09], we aimed

our attention at multi-antenna networks with coordinated beamforming. More pre-

cisely, we proposed three distributed self-organizing algorithms that can be applied to

OFDMA based multi-antenna networks. A main assumption is the use of fixed spatial

channels (by using fixed transmit codebooks), which renders interference predictable

and enables power control for particular time-frequency-space resources. The algo-

rithms operate by controlling the transmit power budgets on a per-resource-element

granularity. To allow the instantaneous application of opportunistic channel-aware

scheduling strategies, power budgets are determined using a so-called virtual model,

based on average channel gains, that is updated on a slower time scale than the actual

system evolution. The proposed algorithms differ in the granularity of power control

and consequently in the required long-term feedback and corresponding virtual model.
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All algorithms require a limited message exchange, which, however, can be confined

to neighboring base stations or strongest interferers. We evaluated the performance of

the proposed algorithms in extensive LTE-based system-level simulations. In general,

we have observed high gains of the algorithms over the use of static power allocations,

both in overall utility and in cell-edge user throughput, which are especially significant

in static environments (i.e., without user mobility). Based on the use of fixed transmit

codebooks, two of the proposed algorithms allow power control on a per-beam granu-

larity. A main conclusion thereby is that it is preferable to control only average power

budgets per beam (and instantaneously allowing opportunistic scheduling), over a strict

adherence to power budgets of particular transmission resources. Since the algorithms

are heuristics to approximate the solution of a complicated, non-convex, and global

optimization problem, we compared their performance in a simplified scenario, and for

different interference regimes, to solutions obtained by a branch-and-bound algorithm.

The comparison revealed that while in a low-interference regime the performance is

much closer to the optimal one than in a moderate or high interference regime, in the

high interference regime the gains over static power control are significantly larger.

Considering self-optimization from a higher layer perspective, in Chapter 4, we pre-

sented a framework for the design of network-layer control policies based on stochastic

traffic models. The framework is based on a generalization of the MaxWeight policy,

which is known to be throughput optimal, and the framework inherits this desirable

property. Moreover, the control policies have an inherent robustness to changes in

the network topology, e.g., due to failing node, since routes in the network are found

dynamically without any prior planning involved. Since in SON we need to include

further performance goals, beyond throughput optimality, our approach is additionally

based on the minimization of a given cost function. The cost function based approach

allows SON controllers to flexibly adapt the scheduling and routing mechanisms in the

network to changing requirements and services. We demonstrate how to design control

policies with special emphasis on service induced constraints that are usually not taken

into account by state-of-the-art routing policies. The throughput optimality of control

policies that are obtained from the proposed framework can be shown using readily

verifiable necessary stability conditions. We demonstrated that the control approach is

applicable to a variety of control problems, including stable network control with addi-

tional minimum buffer level constraints (which can be used for example to avoid buffer

underflows in a streaming-traffic based scenario). In this context, we demonstrated how

particular buffers can be steered to desired operating points with an appropriate cost

function choice. We compared different cost functions using numerical simulations, and

we demonstrated how the control approach can aid the network design process by a

priori determining the system resources needed to support given service requirements.

As a further application, we investigated energy efficient routing based on the proposed

control policy design. Eventually, we showed how the well-known cross-layer backpres-
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sure power control algorithm can be adapted to combine the benefits of the proposed

network control approach with physical layer power control. Thereby, solutions to the

occurring difficult and non-convex optimization problems have been efficiently approx-

imated using a successive convex approximation approach.

5.2 Outlook and Future Research

In this section, we point out open problems and research directions that are related to

or result from the research presented in this thesis.

A worthwhile enhancement of the work in Chapter 2 is to extend the radio map

concept towards the estimation of more general knowledge maps. This includes non-

physical network parameters, such as load and capacity. For example, (spatial) load

balancing and topology optimization mechanisms, which are important applications in

SON, can be further supported if, in addition to radio maps, the network load is pre-

dicted. This can be a key to SON applications in dense networks such as anticipatory

handovers, buffering, or traffic offloading. More robust decisions of certain SON func-

tionalities could be achieved by algorithms for online quantile estimation. Combining

the online learning approaches with ideas on quantile estimation that are presented

(e.g.) in [TLSS06], is a promising research direction. These algorithms could be used

to obtain probabilistic bounds to further support robust network optimization. In par-

ticular, online quantile estimates could be used to solve problems such as how many

resources need to be activated such that with a given probability the load stays below

a certain threshold. In Chapter 2, the algorithms were tested with realistic publicly

available data sets, however, real data from complex cellular networks is hard to obtain.

Testing the algorithms with real-world network data could give further insight in the

design of efficient learning algorithms.

The proposed concrete self-optimization methods, in particular the interference

management approach of Chapter 3, could be combined with the measurement based

learning mechanisms of Chapter 2. For example, we might replace the long-term feed-

back from users (which is required to construct the virtual model) by predictions that

are obtained from radio maps similar to the path-loss maps in Section 2.3. In Chapter 3,

we considered interference management mainly in LTE networks. To take into account

the specific characteristics of upcoming cellular standards, the performance could be

evaluated with respect to realistic (5G) specifications of dense heterogeneous networks

and in this context compared to other state-of-the-art approaches, e.g., [YKS13]. Also,

additional transmit codebook designs, such as [HAH09], could be taken into account.

The network control policy framework proposed in Chapter 4 still requires a central

decision making instance. A fruitful direction of research would therefore be to derive

distributed versions of the methods used in this chapter. A potential starting point

could be the pick-and-compare based algorithms studied in [EAM07, EOSM10]. As
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already mentioned in Chapter 4 (cf. Section 4.3.4), the practicability of the proposed

control policy for energy efficient routing can be significantly enhanced, in particular

with respect to self-configuration algorithms, when the cost function weights of the

nodes are not assigned in a manual way, but rather based on the actual energy supplies

of the nodes. Moreover, a detailed comparison to other recently developed generaliza-

tions of the MaxWeight policy, such as [NZJ12], should be carried out with respect to

particular metrics such as end-to-end delay, or energy efficiency.





Appendix A

Kriging Algorithm Summary

Spatial statistics provide powerful tools that have been successfully used in various

fields. In order to evaluate the performance of the online learning approaches proposed

in Chapter 2, we used kriging as a baseline, which is a state-of-the-art geostatistical

approach. While successfully applied in many different fields before, only very recently

conventional kriging has been applied to wireless communications [GEAF14, DKG11].

In the following, we summarize the essential idea behind the kriging approach, for

further details the reader is referred to, e.g., [Cre90, Ste99, GEAF14]. In the following,

we will mostly adopt the notation of [GEAF14].

Kriging performs geostatistical interpolation and is based on the assumption that

the unknown function f : Rn → R is a realization of a so-called random field, i.e.,

a family of random variables with index set R
n. Using a certain amount of known

samples, the prediction is performed at locations where no data is available in two steps:

estimating the random field variogram and providing a prediction (and estimating the

prediction error). More precisely, we observe a random field Z on R
n (in Chapter

2 we consider R
2, i.e., two-dimensional coordinates) at a certain number of locations

{xi} and want to predict Z(x) at arbitrary (non-observed) locations x. The random

field Z(x) is characterized by its mean function μ(x) := E{Z(x)}, and its covariance

function of K(xi,xj) := E{Z(xi)Z(xj)} − μ(xi)μ(xj).

Kriging is essentially an MMSE estimation algorithm that tries to minimize the

estimation variance. The kriging method is based on the concept of (semi-)variogram

calculations, which is a measure of spatial correlation. The semivariogram of two

variables (when the random field Z has constant mean) is given by

γ(x1,x2) =
1

2
E
{

(Z(x1) − Z(x2))
2
}
.

It is often used in geostatistics because it tends to filter the influence of a spatially

varying mean. If the random process Z is stationary, the semivariogram depends only

on the difference x1 - x2 between two points x1 and x2. Let us denote this difference
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by h and the corresponding semivariogram by γ̄(h).

The following three values are important when characterizing a semivariogram: sill,

nugget, and range. The nugget characterizes the non-zero limit, i.e.,

lim
‖h‖→0

γ̄(h).

The sill characterizes the variogram in the limit, i.e.,

lim
‖h‖→∞

γ̄(h),

and the range is used to characterize the typical spatial scale in which significant changes

in the variogram occur.

Several different variants of the kriging procedures exist, which essentially differ in

their assumptions on the mean of the stochastic field. The most important variants are

• Simple Kriging, which assumes μ(x) = 0,

• Ordinary Kriging, which assumes a constant mean, i.e., μ(x) = c , and

• Universal Kriging, which assumes a non-constant mean of the general form μ(x) =∑
i αigi(x), with known (basis) functions gi and unknown coefficients αi.

In the following (and also in Chapter 2), we focus on ordinary kriging, where the

random field Z(x) is assumed intrinsically stationary with constant mean μ(x) := μ.

Thus, ordinary kriging uses the following model for the random field Z:

Z(x) = μ + ε(x),

where ε is a zero-mean random field with known covariance structure.

A first step is usually to build an empirical semivariogram from the available data,

i.e., a discrete set of values that a suitable model can be fitted to. The most straight-

forward form, the so-called Matheron estimator [Cre90], is given by

γ̂(h) =
1

2N(h)

N(h)∑
i=j

[Z(xj + h) − Z(xj)]
2.

Thereby, the observations {xi} are grouped into a certain number of bins, depending

on their distance (lag). N(h) consequently denotes the number of pairs separated by

lag h. For the sake of kriging, we need to replace the empirical semivariogram with

a suitable model. Three often-used models are the exponential model, the Gaussian

model, and the linear model [GEAF14]. More complicated models can be build by linear

combining elemental models. The actual process of fitting a model to the empirical

data is challenging (although automated tools exist). A suitable way to do this is, e.g.,

least-squares fitting.
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An ordinary kriging estimator of the random value Z(x0) at location x0 is defined

as

Ẑ(x0) =
∑
i

λiZ(xi).

To obtain an unbiased estimate, ∑
i

λi = 1

is required. The challenge is now to determine these coefficients. As mentioned be-

fore, kriging minimizes the MSE of the prediction error variance. Therefore, using the

method of Lagrange multipliers, we need to minimize the expression

E

⎧⎨
⎩
(
Z(x0) −

∑
i

λiZ(xi)

)2
⎫⎬
⎭− 2β

(∑
i

λi − 1

)
,

where β is some Lagrange multiplier. The solution of this can be shown to be the

solution of the following system of equations [GEAF14]:

Γ̃λ̃ = γ̃, (A.1)

where λ̃ = [λ1, . . . , λN , β]T , γ̃ = [γ(x0,x1), . . . , γ(x0,xN ), 1]T , and

Γ̃ =

⎡
⎢⎢⎢⎢⎣
γ(x1,x1) . . . γ(x1,xN ) 1

. . . . . . . . . . . .

γ(xN ,x1) . . . γ(xN ,xN ) 1

1 . . . 1 0

⎤
⎥⎥⎥⎥⎦ ,

which is the matrix of measurement semivariograms, based on the semivariogram model

fitting. Using (A.1), we can obtain the prediction coefficients by

λ̃ =
(
Γ̃
)−1

γ̃. (A.2)

Note that since kriging minimizes the MSE of the estimation variance, in case of error-

free measurements, it naturally shows a very good performance in the numerical ex-

periments of Chapter 2, since we use the MSE as our main performance metric. Nev-

ertheless, kriging is an offline prediction scheme, and the complexity of (A.2) can be

significant (as described in Section 2.3.1.2).





Acronyms

3GPP Third Generation Partnership Project

5G Fifth Generation

AP Access Point

APSM Adaptive Projected Subgradient Method

BLER Block Error Rate

BNB Branch-and-Bound

BPPC Backpressure Power Control

CAPEX Capital Expenditure

CBA Cost-Based Algorithm

CDI Channel Directional Information

CDF Cumulative Density Function

CoMP Coordinated Multi-Point

CQI Channel Quality Information

CRW Controlled Random Walk

CSI Channel State Information

D2D Device-to-Device

DSL Digital Subscriber Line

FIFO First In, First Out

GAT Geometric Mean of Average Throughputs

GBD Greedy Beam Distance

GPD Greedy Primal Dual
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GPS Global Positioning System

HARQ Hybrid Automatic Repeat Request

ICI Inter-Cell Interference

i.i.d. independent and identically distributed

KKT Karush-Kuhn-Tucker

LOS Line-of-Sight

LTE Long Term Evolution

LTE-A Long Term Evolution Advanced

MCS Modulation and Coding Scheme

MGR Multisector Gradient

MIMO Multiple Input Multiple Output

MSE Mean Square Error

MTU Maximum Transmission Unit

MU-MIMO Multi-User Multiple Input Multiple Output

NLOS Non-Line-of-Sight

NUM Network Utility Maximization

OA Opportunistic Algorithm

OFDM Orthogonal Frequency Division Multiplex

OFDMA Orthogonal Frequency Division Multiple Access

PRB Physical Resource Block

PU2RC Per User Unitary Rate Control

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase Shift Keying

RKHS Reproducing Kernel Hilbert Space

RSSI Received Signal Strength Indicator
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RSRP Reference Signal Received Power

SCA Successive Convex Approximation

SDMA Space Division Multiple Access

SINR Signal to Interference and Noise Ratio

SISO Single Input Single Output

SNR Signal to Noise Ratio

SON Self-Organizing Network

TTI Transmission Time Interval

OPEX Operational Expenditure

UOI User Of Interest

VSA Virtual Subband Algorithm

WLAN Wireless Local Area Network





List of Publications

[1] Martin Kasparick, Renato L G Cavalcante, Stefan Valentin, Slawomir Stanczak,

and Masahiro Yukawa. Kernel-Based Adaptive Online Reconstruction of Coverage

Maps With Side Information. Accepted for publication in IEEE Transactions on

Vehicular Technology (preprint: arXiv:1404.0979), 2015.

[2] Martin Kasparick and Gerhard Wunder. Autonomous Algorithms for Central-

ized and Distributed Interference Coordination: A Virtual Layer Based Approach.

EURASIP Journal on Wireless Communications and Networking, 2014(1):120,

July 2014.

[3] Martin Kasparick and Gerhard Wunder. Autonomous Distributed Power Control

Algorithms for Interference Mitigation in Multi-Antenna Cellular Networks. In

17th European Wireless Conference, April 2011.

[4] G Wunder, M Kasparick, A Stolyar, and H Viswanathan. Self-Organizing Dis-

tributed Inter-Cell Beam Coordination in Cellular Networks with Best Effort Traf-

fic. In 8th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks (WiOpt), 2010.

[5] Martin Kasparick and Gerhard Wunder. Wireless Network Design Under Service

Constraints. In 50th Annual Allerton Conference on Communication, Control, and

Computing, Monticello, Illinois, 2012.

[6] G. Wunder and M. Kasparick. Universal Stability and Cost Optimization in Con-

trolled Queueing Networks. In IEEE Wireless Communications and Networking

Conference WCNC, Paris, France, 2012.

[7] Martin Kasparick and Gerhard Wunder. Combining Cost-Based Queueing Con-

trol With Resource Allocation In Wireless Networks. In 16th International ITG

Workshop on Smart Antennas (WSA), Dresden, 2012.

[8] Martin Kasparick and Gerhard Wunder. mu-MaxWeight Queueing Network Con-

trol With Application To In-Flight Entertainment Systems. In Future Network &

Mobile Summit, Berlin, 2012.

127



128 LIST OF PUBLICATIONS

[9] Gerhard Wunder, Peter Jung, Martin Kasparick, Thorsten Wild, Frank Schaich,

Yejian Chen, Stephan ten Brink, Ivan Gaspar, Nicola Michailow, Andreas Fes-

tag, Luciano Mendes, Nicolas Cassiau, Dimitri Ktenas, Marcin Dryjanski, Sla-

womir Pietrzyk, Bertalan Eged, Peter Vago, and Frank Wiedmann. 5GNOW:

Non-Orthogonal, Asynchronous Waveforms for Future Mobile Applications. IEEE

Communications Magazine, 52(2):97–105, 2014.

[10] Martin Kasparick, Gerhard Wunder, Peter Jung, and Dick Maryopi. Bi-orthogonal

Waveforms for 5G Random Access with Short Message Support. In Proc. European

Wireless Conference ’14, Barcelona, Spain, 2014.

[11] Gerhard Wunder, Martin Kasparick, Stephan ten Brink, Frank Schaich, Thorsten

Wild, Ivan Gaspar, Nicola Michailow, Gerhard Fettweis, Nicolas Cassiau, Marcin

Dryjanski, Slawomir Pietrzyk, and Bertalan Eged. System-Level Interfaces and

Performance Evaluation Methodology for 5G Physical Layer Based on Non-

orthogonal Waveforms. In Proc. 47th Annual Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, USA, November 2013.

[12] Gerhard Wunder, Martin Kasparick, and Peter Jung. Interference Analysis for

5G Random Access with Short Message Support. In Proc. European Wireless

Conference ’15, Budapest, Hungary, 2015.

[13] Nicolas Cassiau, Dimitri Ktenas, Gerhard Wunder, and Martin Kasparick. Feed-

back Scaling for Downlink CoMP with Orthogonal and Non-Orthogonal Wave-

forms. In European Conference on Networks and Communications (EuCNC),

Bologna, Italy, 2014.



Bibliography

[3GP06] 3GPP, TR-25.814, Technical Specification Group Radio Access Network;

Physical layer aspects for evolved Universal Terrestrial Radio Access

(UTRA), v.7.1.0, Tech. rep., September 2006.

[3GP07] Alcatel-Lucent 3GPP R1-073937, Comparison aspects of fixed and adap-

tive beamforming for LTE downlink, 3GPP TSG RAN WG1, 2007.

[3GP10] 3GPP, TR 36.814 Further advancements for EUTRA physical layer as-

pects, V9.0.0, Tech. report, 2010.

[3GP11a] , TR 36.902 Self-configuring and self-optimizing network (SON)

use cases and solutions, V9.3.1, Tech. report, 2011.

[3GP11b] , TS 36.211 Evolved Universal Terrestrial Radio Access (E-

UTRA); Physical channels and modulation, V10.2.0.

[3GP13] , TR 36.819 Coordinated multi-point operation for LTE physical

layer aspects, V11.2.0, Tech. report, 2013.

[3GP14a] , 3GPP TR 32.836 Telecommunication management; Study on

Network Management (NM) centralized Coverage and Capacity Optimiza-

tion (CCO) Self-Organizing Networks (SON) function, v12.0.0, Tech. re-

port, 2014.

[3GP14b] , TR23.703, Study on architecture enhancements to support

Proximity-based Services (ProSe) (Release 12), v.12.0.0, Tech. report,

Feb. 2014, 2014.

[3GP14c] , TS 36.214 LTE; Evolved Universal Terrestrial Radio Access (E-

UTRA); Physical layer; Measurements, V12.0.0, Tech. report, 2014.

[AIIE12] O Aliu, A Imran, M Imran, and B Evans, A Survey of Self Organisation

in Future Cellular Networks, IEEE Communications Surveys & Tutorials

(2012), no. 99, 1–26.

129



130 BIBLIOGRAPHY

[ASW12] H Al-Shatri and T Weber, Achieving the Maximum Sum Rate Using D.C.

Programming in Cellular Networks, IEEE Transactions on Signal Process-

ing 60 (2012), no. 3, 1331–1341.

[BAS+05] K Brueninghaus, D Astely, T Salzer, S Visuri, A Alexiou, S Karger, and

G.-A. Seraji, Link performance models for system level simulations of

broadband radio access systems, IEEE 16th International Symposium on

Personal, Indoor and Mobile Radio Communications (PIMRC), vol. 4,

2005, pp. 2306–2311.

[BBEK11] M Behrisch, L Bieker, J Erdmann, and D Krajzewicz, SUMO - Simulation

of Urban MObility: An Overview, The Third International Conference on

Advances in System Simulation (SIMUL 2011) (Barcelona, Spain), 2011.

[BJ13] Emil Björnson and Eduard Jorswieck, Optimal Resource Allocation in

Coordinated Multi-Cell Systems, vol. 9, Now Publishers, 2013.

[BM04] G Barriac and U Madhow, Characterizing outage rates for space-time

communication over wideband channels, IEEE Transactions on Commu-

nications 52 (2004), no. 12, 2198–2208.

[BPG+09] G Boudreau, J Panicker, Ning Guo, Rui Chang, Neng Wang, and S Vrzic,

Interference coordination and cancellation for 4G networks, IEEE Com-

munications Magazine 47 (2009), no. 4, 74–81.

[BSS11] L. X. Bui, R. Srikant, and A. Stolyar, A Novel Architecture for Reduc-

tion of Delay and Queueing Structure Complexity in the Back-Pressure

Algorithm, IEEE/ACM Transactions on Networking 19 (2011), no. 6,

1597–1609.

[CAA12] R Combes, Z Altman, and E Altman, Self-Organizing Relays: Dimen-

sioning, Self-Optimization, and Learning, IEEE Transactions on Network

and Service Management 9 (2012), no. 4, 487–500.

[CMA94] Jerome T Connor, R Douglas Martin, and Les E Atlas, Recurrent neural

networks and robust time series prediction, IEEE Transactions on Neural

Networks 5 (1994), no. 2, 240–254.

[CP11] Patrick L. Combettes and Jean-Christophe Pesquet, Proximal Splitting

Methods in Signal Processing, Fixed-Point Algorithms for Inverse Prob-

lems in Science and Engineering, Springer Optimization and Its Applica-

tions, Springer New York, 2011, pp. 185–212.

[Cre90] Noel Cressie, The origins of kriging, Mathematical geology 22 (1990),

no. 3, 239–252.



BIBLIOGRAPHY 131

[cu-11] CRAWDAD data set cu/cu wart (v. 2011-10-24), 2011, Available from:

http://crawdad.org/cu/cu\_wart/.

[CW05] P Combettes and V Wajs, Signal Recovery by Proximal Forward-Backward

Splitting, Multiscale Modeling & Simulation 4 (2005), no. 4, 1168–1200.

[CWB08] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd, Enhancing

sparsity by reweighted l1 minimization, Journal of Fourier Analysis and

Applications 14 (2008), no. 5-6, 877–905.

[DGG+10] Francis Dominique, Christian G Gerlach, Nandu Gopalakrishnan, Anil

Rao, James P Seymour, Robert Soni, Aleksandr Stolyar, Harish

Viswanathan, Carl Weaver, and Andreas Weber, Self-organizing interfer-

ence management for LTE, Bell Labs Technical Journal 15 (2010), no. 3,

19–42.

[DKG11] Emiliano Dall’Anese, Seung-Jun Kim, and Georgios B Giannakis, Channel

gain map tracking via distributed Kriging, IEEE Transactions on Vehicular

Technology 60 (2011), no. 3, 1205–1211.

[DMR+14] R Di Taranto, S Muppirisetty, R Raulefs, D Slock, T Svensson, and

H Wymeersch, Location-Aware Communications for 5G Networks: How

location information can improve scalability, latency, and robustness of

5G, IEEE Signal Processing Magazine 31 (2014), no. 6, 102–112.

[Dre08] Falko Dressler, A Study of Self-Organization Mechanisms in Ad Hoc and

Sensor Networks, Elsevier Computer Communications (2008), 3018–3029.

[EAM07] A Eryilmaz, O Asuman, and E Modiano, Polynomial Complexity Algo-

rithms for Full Utilization of Multi-Hop Wireless Networks, 26th IEEE

International Conference on Computer Communications (INFOCOM),

2007, pp. 499–507.

[EOSM10] A Eryilmaz, A Ozdaglar, D Shah, and E Modiano, Distributed Cross-

Layer Algorithms for the Optimal Control of Multihop Wireless Networks,

IEEE/ACM Transactions on Networking 18 (2010), no. 2, 638–651.

[Eri13] Ericsson, Release 12–Taking Another Step Towards The Networked Soci-

ety, White Paper, Tech. report, White Paper, 2013.

[ERX+13] Alexander Engels, Michael Reyer, Xiang Xu, Rudolf Mathar, Jietao

Zhang, and Hongcheng Zhuang, Autonomous self-optimization of coverage

and capacity in LTE cellular networks, IEEE Transactions on Vehicular

Technology 62 (2013), no. 5, 1989–2004.



132 BIBLIOGRAPHY

[FA14] G Fettweis and S Alamouti, 5G: Personal mobile internet beyond what cel-

lular did to telephony, IEEE Communications Magazine 52 (2014), no. 2,

140–145.

[FDM+12] G Fodor, E Dahlman, G Mildh, S Parkvall, N Reider, G Miklos, and Z Tu-

ranyi, Design aspects of network assisted device-to-device communications,

IEEE Communications Magazine 50 (2012), no. 3, 170–177.

[FKV06] G J Foschini, K Karakayali, and R A Valenzuela, Coordinating multiple

antenna cellular networks to achieve enormous spectral efficiency, IEE

Proceedings-Communications 153 (2006), no. 4, 548–555.

[GEAF14] D M Gutierrez-Estevez, I F Akyildiz, and E A Fadel, Spatial Cover-

age Cross-Tier Correlation Analysis for Heterogeneous Cellular Networks,

IEEE Transactions on Vehicular Technology 63 (2014), no. 8, 3917–3926.

[GHH+10] David Gesbert, Stephen Hanly, Howard Huang, Shlomo Shamai Shitz, Os-

valdo Simeone, and Wei Yu, Multi-cell MIMO cooperative networks: a new

look at interference, IEEE Journal on Selected Areas in Communications

28 (2010), no. 9, 1380–1408.

[GKGI07] D Gesbert, S G Kiani, A Gjendemsj, and G E Ien, Adaptation, Coordina-

tion, and Distributed Resource Allocation in Interference-Limited Wireless

Networks, Proceedings of the IEEE 95 (2007), no. 12, 2393–2409.

[GNT06] L Georgiadis, M Neely, and L Tassiulas, Resource Allocation And Cross-

Layer Control In Wireless Networks, Foundation and Trends in Network-

ing, Now Publishers Inc (United States), 2006.

[GR97] Irina F Gorodnitsky and Bhaskar D Rao, Sparse signal reconstruction

from limited data using FOCUSS: A re-weighted minimum norm algo-

rithm, IEEE Transactions on Signal Processing 45 (1997), no. 3, 600–616.

[GZAM10] Arunabha Ghosh, Jun Zhang, Jeffrey G Andrews, and Rias Muhamed,

Fundamentals of LTE, Pearson Education, 2010.

[HAH09] Kaibin Huang, J G Andrews, and R W Heath, Performance of Orthogonal

Beamforming for SDMA With Limited Feedback, IEEE Transactions on

Vehicular Technology 58 (2009), no. 1, 152–164.

[HN11] Longbo Huang and Michael J Neely, Utility optimal scheduling in process-

ing networks, Performance Evaluation 68 (2011), no. 11, 1002–1021.

[HPT00] Reiner Horst, Panos M Pardalos, and Nguyen V Thoai, Introduction to

Global Optimization, 2 ed., Kluwer Academic Publishers, 2000.



BIBLIOGRAPHY 133

[HSAB09] Jianwei Huang, Vijay G Subramanian, Rajeev Agrawal, and Randall A

Berry, Downlink Scheduling and Resource Allocation for OFDM Systems,

IEEE Transactions on Wireless Communications 8 (2009), no. 1, 288–296.
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