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Chapter 1

Introduction

The outcome of many decisions made in the real world heavily depends on future events.
Unfortunately, it is often hard or expensive to obtain information about the future, or it
may even be impossible. Thus, to optimize the outcome of the above decisions, one cannot
use classical optimization techniques, which typically require extensive knowledge about
all parameters influencing the outcome. Instead, one desires optimization techniques that
can handle data arriving over time and that are able to make irrevocable decisions already
during this process, that is, online.

Approximately 30 years ago, Sleator and Tarjan [ST85] first investigated online algo-
rithms in depth, in the context of data structures. They performed what is now called
a competitive analysis, as coined by Karlin et al. [KMRS88]. Here, the performance of
an online algorithm is evaluated by the competitive ratio, that is, the worst-case ratio of
the cost of the solution the algorithm produces and the cost of an optimal offline solu-
tion. In contrast to the solution produced by the online algorithm, the offline solution is
constructed based on the entire input instance. Taking a different viewpoint, the input
sequence is constructed online by an adversary that strives to maximize the above ratio
based on the decisions that the algorithm makes.

The adversary that can adaptively react to each decision that the algorithm makes is
rather strong: For some problems, reasonable competitive ratios, such as ratios that are
constant or (poly-)logarithmic in the input size, are not achievable. This issue is partly
solved by considering randomized online algorithms and an oblivious adversary, a concept
introduced by Ben-David et al. [BBK+94]. Here, the algorithm’s decisions may involve
randomness, and the competitive ratio is measured via the expected cost of the algorithm
on the input instance given by the adversary. This adversary is weaker in the sense that
it may only design the input sequence based on the specification of the algorithm and not
on the outcome of the random events, that is, the adversary is oblivious to the outcome
of the random events.

Some problems, however, are even more difficult in the sense that there does not even
exist a randomized algorithm whose competitive ratio against an oblivious adversary
can be reasonably bounded. This is the case, for example, for some single-machine
scheduling problems. To address this problem, resource augmentation was proposed by
Kalyanasundaram and Pruhs [KP00]: In this setting, the online algorithm may use more
resources, such as higher machine speed, than the offline solution. One can then either
consider a trade-off between the competitive ratio and the amount of used resources, or
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one can try to achieve a competitive ratio of 1 and minimize the amount of resources
needed for that.

In this thesis, we consider two different online problems, online deadline scheduling
and convex-body chasing. In most of the cases, it turns out that reasonable bounds
according to one of the above measures can be obtained.

1.1 Considered Problems and Contribution

There are important real-world applications in which one faces tasks that are released over
time and that are time-critical, meaning that they have to be finished either immediately
or before a certain deadline: In a hospital, patients that come in may need to be treated
within a certain time frame. Another example is an on-board computer on an aeroplane
or in a car that has to perform safety-relevant tasks such as checking for obstacles. In
this thesis, we consider two abstract problems that are similar in the sense that they are
both given a sequence of such tasks as input, and these tasks have to be finished either
immediately or before a certain deadline.

Another property that unifies the two problems that we consider in this thesis is
their fundamentality: Both problems have a very simple formulation, but they have
not yet been understood well. In fact, understanding them seems to be at the core of
understanding the online features of a more general class of problems.

1.1.1 Online Deadline Scheduling

In classical online scheduling problems, one is typically given the same machines (re-
sources) as the offline solution, and one tries to be competitive w.r.t. a certain objective
function such as the latest completion time as considered by Graham [Gra69]. Being
competitive given the same resources as the offline solution is, however, impossible in
online deadline scheduling as considered in the seminal work by Phillips et al. [PSTW02].
The problem is stated as follows.

We are given an integer m, and jobs arrive over time at their release dates and require
to be processed for a respective processing time until their respective deadline. In this
chapter, we will only consider the model where jobs can be started at any time on any
machine, preempted at any time, and continued at any later time. In the migratory
setting, the job may be continued on any machine; in the non-migratory setting, it must
be continued on the machine it was started on. We assume that the input instance has a
feasible (offline) schedule on m machines in the sense that all the jobs are completed by
their deadlines.

As shown by Dertouzos and Mok [DM89], there is no online algorithm that computes
feasible schedules on m machines for all instances. Since we do want to meet the deadlines
of all jobs, there is no natural and suitable concept of competitive ratio here. Instead,
we use resource augmentation and wish to minimize the amount of resources that we use
to meet the deadlines of all jobs.

In Chapter 2, we consider augmenting the number of unit-speed machines, that is,
we consider online algorithms that use m′ > m machines. It was shown by Phillips et
al. [PSTW02] that we must have m′ > 5m/4 for m ≥ 2 so that the online algorithm can
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meet all deadlines (in this case, we call the algorithm an m′-machines algorithm). Never-
theless, a wide open question mentioned in [CLT05, Pru10] was whether any constant m′

suffices even when m = 2 for the migratory as well as the non-migratory setting. It was
already ruled out that simple algorithms which prioritize jobs by their deadlines or their
slack achieve this.

Contributions of Chapter 2. For the migratory setting, we present an O(m logm)-
machines online algorithm. For the non-migratory setting, however, we show that
no f(m)-machines algorithm exists for any function f . This may be surprising since
any migratory schedule on m machines meeting all deadlines can be transformed (of-
fline) into a non-migratory schedule meeting all deadlines on O(m) machines as shown
by Kalyanasundaram and Pruhs [KP01]; also, Chan, Lam, and To [CLT05] showed that,
in the non-migratory setting, an O(m)-machines online algorithm exists when the speed
on each machine is also augmented by a factor of 1 + ε, for an arbitrarily small ε > 0.

The crux of designing a migratory f(m)-machines algorithm turns out to be handling
jobs whose processing time is large compared to their lifespan (tight jobs). We handle
these jobs via a new balanced delaying scheme, which we analyze using a new necessary
condition for the existence of a feasible schedule for tight jobs. Using a similar proof
technique, we are able to show that the same algorithm is an O(m)-machine algorithm
for special cases w.r.t. the interval structure induced by the jobs’ time windows.

Our lower bound for non-migratory online algorithms relies on a novel construction
which recursively forces the algorithm to spread jobs over machines in such a bad way
that releasing an additional jobs forces the algorithm to open a new machine. Leveraging
some of the aforementioned results, we are able to give f(m)-machines algorithms for
suitable functions f at least for some special cases, that is, jobs that are not tight and
special cases w.r.t. the interval structures induced by the time windows.

We provide a summary of the state-of-the-art results on online deadline scheduling
with machine augmentation in Table 2.1.

In Chapter 3, we consider augmenting the speed on each machine instead of the
number of (unit-speed) machines in the migratory setting. Known results include that
the simple earliest-deadline-first (EDF) algorithm is a speed-(2−1/m) algorithm, that is,
a speed of (2− 1/m) on each machine suffices for it to always produce feasible schedules,
as shown by Phillips et al. [PSTW02]. While this result is tight for EDF, the same
upper bound holds for the natural greedy algorithm LLF, which at each time prefers
those unfinished jobs that have the smallest slack left. The best known lower and upper
bounds on the speed requirement were shown by Lam and To [LT99], and they are
(asymptotically for m→∞) 1.207 and 2− 2/(m+ 1).

Contributions of Chapter 3. In this chapter, we show that the algorithm YSS pro-
posed by Anand, Garg, and Megow [AGM11] is not a speed-e/(e− 1) ≈ 1.58 algorithm.
We propose the new algorithm YS-LLF, which fixes issues of YSS by using ideas from
LLF. Indeed, YS-LLF is a candidate to be a speed-e/(e− 1) algorithm. While we are not
able to provide a proof, we give some justification.

We also consider LLF separately, and we show a lower bound of 2− 1/m on the speed
requirement of this algorithm, which surprisingly matches the speed requirement for the
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significantly simpler algorithm EDF. In defense of LLF, we prove that it is a speed-1
algorithm for instances with a single release date while EDF already shows its worst-case
behavior on such an instance. In fact, our lower-bound construction for LLF requires an
unbounded number of release dates, and we conjecture that, for every fixed number of
release dates, it is a speed-(2− ε) algorithm for some ε > 0.

1.1.2 Convex-Body Chasing

The second problem that we consider is a special case of the fundamental and very general
problem of metrical task systems, which is a classical online problems due to Borodin,
Linial, and Saks [BLS92]. In this problem, an online server starts at a point of a metric
space and receives a sequence of functions that map from that metric space to R+. In
response to each function, the server may move to a new point in the metric space. The
cost in this step is the distance moved plus the function value at the point at which the
server ends up after the optional move. The goal is to be competitive w.r.t. the aggregate
cost.

Our focus is on the following special case of this problem, called convex-body chasing
and already considered by Friedman and Linial [FL93]: The considered metric space is Rd

equipped with the standard Euclidean metric. Further, each function that arrives has
value 0 within some convex body and ∞ (or some very large value) outside the convex
body. This makes the task of moving to the convex body critical, that is, the online
server has to move to it so as to stay competitive. The main result by Friedman and
Linial is an online algorithm for convex-function chasing with constant competitive ratio
when d = 2.

We also consider two more special cases of metrical task systems which are more
general than convex-body chasing: In lazy convex-body chasing, a non-negative slope is
presented along with each convex body, and the corresponding function is not∞ outside
the convex body any more but grows linearly at the respective slope as one moves away
from the convex body. Further, convex-function chasing is the special case of metrical
task systems where the metrical space is again Rd and each presented function is convex.

We provide an overview of these problems in Table 4.1.

Contributions of Chapter 4. Our main result is a new online algorithm with com-
petitive ratio 2O(d) for hyperplane chasing in d dimensions, that is, the special case of
convex-body chasing where all convex bodies are hyperplanes. This settles an open prob-
lem, which was posed by Friedman and Linial [FL93]. Our result rests on a new reduction
from lazy convex-body chasing to (non-lazy) convex-body chasing, both in the same di-
mension. This means that, if there is an online algorithm with constant competitive ratio
for convex-body chasing, such an algorithm also exists for lazy convex-body chasing. Our
proof relates the slope of a convex body in lazy convex-body chasing with the probability
with which it appears in a convex-body chasing instance.

To obtain the competitiveness result for hyperplane chasing, we apply the latter re-
duction alternatingly with another reduction from hyperplane chasing in d dimensions to
lazy hyperplane chasing in d−1 dimensions from Friedman and Linial [FL93]. For d = 2,
that is, line chasing in two dimensions, we simplify and slightly improve the algorithm due
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to Friedman and Linial [FL93] and then generalize it to line-segment chasing in arbitrary
dimensions.

Finally, for function chasing in one dimension, we provide a new lower bound on the
achievable competitive ratio, leaving a gap between 1.86 and 2.
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Chapter 2

Online Deadline Scheduling with
Machine Augmentation

Bibliographic information. Most of the results presented
in this section are published in [CMS16a] or [CMS16b].

This section deals with the fundamental problem of online deadline scheduling with
machine augmentation, as motivated and informally introduced in Section 1.1. We for-
mally define the problem in Section 2.1, and we name known as well as new results in
Sections 2.2 and 2.3, respectively. Our results are presented in Sections 2.4–2.7. We
conclude with open problems in Section 2.8.

2.1 Preliminaries
We first define the machine-augmentation problem, which was introduced by Phillips et
al. [PSTW02]. Afterwards we give notations and terms that will be used throughout the
chapter.

Problem Defintion. We consider the following online scheduling problem, called on-
line deadline scheduling. As input, we are given an integer m and a set of jobs J =
{1, . . . , n}, where each job j ∈ J has a release date rj ∈ N, a processing time pj ∈ N, and
a deadline dj ∈ N. In a schedule of J on m′ machines, each job j ∈ J may be started
on any machine of the m′ machines at any time at or after rj, and we consider different
settings regarding the continuation of the job:
• We consider the migratory setting in which j may be preempted at any time. It can

be continued at any later time on any machine, that is, it may be migrated onto
another machine.
• In the non-migratory setting, a job may also be preempted and continued at any

point in time, but it may only be continued on the machine it was started on. That
is, it may not be migrated.
• Once a job j is started in the non-preemptive setting, it must run for pj time units.

Here, it will be easy to see that it does not matter if migration is allowed or not.
In each of the settings and at all times, each machine may only work on at most one job,
and each job may only be processed by at most one machine. We say that a job j is
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finished at time t if it has run for pj time units (in aggregate) until t, and we say that its
deadline is met if the job is finished at dj. We assume that the input instance is feasible
(on m machines) in the sense that it has a schedule that meets all deadlines (a feasible
schedule) on m machines. Throughout this chapter, we will use m to denote the number
of machines given as input.

An online scheduler learns about each job only at the job’s release date. The task
in this case is also to produce a feasible schedule. As shown in the literature [DM89],
there is no online algorithm that is guaranteed to produce a feasible schedule using only m
machines (see Section 2.2 for a more detailed discussion). This result motivates increasing
(augmenting) the number of machines that the online algorithm uses and the following
notion: We call an online algorithm an m′-machines algorithm if it is guaranteed to
produce feasible schedules on m′ machines.

The problem defined above can be viewed as a semi-online problem in the sense that
the input consists not only of an instance J but also of m. We will also consider the
fully online problem where m is not known to the online scheduler. Here, we can assume
that m is the minimum number of machines needed to schedule J feasibly, which we will
also denote by m(J) if the instance is not clear from the context. In this context, it also
makes sense to speak about the competitive ratio (as introduced in Chapter 1), where the
cost of the schedule is the number of machines it uses: We call an algorithm c-competitive
if it is guaranteed to produce feasible schedules on cm machines. We will, however, show
in Section 2.5 that both settings are essentially equivalent, and, unless stated differently,
we assume in the following that m is known to the online scheduler.

Instead of increasing the number of machines w.r.t. the offline schedule, one can also
increase the speed on each machine from 1 to s ∈ R, meaning that each job j is already
finished when it has run for pj/s (instead of pj) time units. We call an online algorithm a
speed-s algorithm if it is guaranteed to produce feasible schedules on m speed-s machines.
We will only need this notion occasionally in this chapter. For a more rigorous definition
and an in-depth discussion, see Chapter 3.

Further Notation. For a job j, the remaining processing time at time t is denoted
by pj(t). The laxity of j at t is the maximum duration j can remain unprocessed from
time t until it has to be started in order to meet its deadline, and this value is denoted
by `j(t) := dj − rj − pj(t). In case it will not be clear which algorithm A the remaining
processing time or laxity refers to, we will add A as superscript. The initial laxity (some-
times simply laxity) of j is `j := `j(rj). For all job parameters (such as release dates,
processing times, etc.) xj, we set xmin := minj∈J xj and xmax := maxj∈J xj.

The processing interval of j is I(j) := [rj, dj), and j is said to cover each t ∈ I(j)
or be available at each t ∈ I(j). For a set of jobs S, we define I(S) =

⋃
j∈S I(j). For

a union of intervals I =
⋃k

i=1[ai, bi) where [a1, b1), . . . , [ak, bk) are pairwise disjoint, we
define the length of I to be |I| :=

∑k
i=1(bi − ai). The contribution of j to I is the

minimum processing that j has to receive in I (ignoring all other jobs) and denoted
by C(j, I) := max{|I ∩ I(j)| − `j, 0}. The contribution of a set of jobs S to I is the sum
of all individual contributions of jobs in S to I, that is, C(S, I) :=

∑
j∈S C(j, I).

Throughout this chapter we assume w.l.o.g. that jobs are indexed in increasing order
of release dates, and we break ties in decreasing order of deadlines. Hence, for any two
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jobs j, j′ with j < j′ one of these three cases holds: (i) rj < rj′ , (ii) rj = rj′ and dj > dj′ ,
or (iii) I(j) = I(j′).

Simple Algorithms. For arbitrary m′, we define two algorithms that produce sched-
ules on m′ machines. They are both busy in the sense that, they only run k < m′ at times
when there are only k unfinished jobs available. At any integer time when there are more
than m′ unfinished jobs available, the algorithm Earliest Deadline First (EDF) runs m′ of
them with minimum deadline (breaking ties arbitrarily). Likewise, at any integer time t
when there are more than m′ unfinished jobs available, the algorithm Least Laxity First
(LLF) picks m′ jobs with minimum laxity at time t (again breaking ties arbitrarily) and
runs each of them within the interval [t, t+1). In the context of speed augmentation, we
will give a formulation of LLF that avoids tie breaking (Section 3.4).

Special Instances. Given a parameter α ∈ [0, 1], a job j is called α-loose if its pro-
cessing time is at most an α-fraction of the length of its feasible time window [rj, dj),
that is, if pj/(dj − rj) ≤ α. Otherwise we call the job α-tight.

We also classify instances on the base of their interval structure. An instance J
is laminar if, whenever the feasible time windows of two jobs intersect, they must be
contained in one another. Formally, for all jobs j, j′ ∈ J , we have

Ij ∩ Ij′ 6= ∅ ⇒ Ij ⊆ Ij′ ∨ Ij′ ⊆ Ij.

Somewhat complimentarily, in agreeable instances, whenever the feasible time windows
of two jobs intersect, they can only be contained in one another if they coincide in one
of their endpoints (that is, the jobs’ release dates or deadlines). Equivalently, for all
jobs j, j′ ∈ J , we have

rj < rj′ ⇒ dj ≤ dj′ .

2.2 Related Work

We first consider the migratory online setting. As shown by Dertouzos and Mok [DM89],
both EDF and LLF are 1-machine algorithms when m = 1, but there is no m-machines
algorithm for any m ≥ 2. In other words, the setting where the online algorithm and the
offline adversary

(i) are provided the same resources
(ii) and both have to meet the deadlines of all jobs exactly

is hopeless. In the following, we discuss different approaches to overcoming this issue.
One approach would be to relax Requirement (ii). For instance, one could replace

the goal by maximizing the number of jobs which are completed by their deadlines as
done for a single machine by Kalyanasundaram and Pruhs [KP98], in which setting an
O(1)-competitive algorithm is obtained. In our approach, however, Requirement (ii)
is kept and Requirement (i) is relaxed, that is, we use resource augmentation, which
was first considered by Kalyanasundaram and Pruhs [KP00] in the context of various
single-machine scheduling problems. In their seminal paper, Phillips et al. [PSTW02]
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first applied resource augmentation to our setting and considered m′-machine algorithms
for m′ > m. For a comprehensive review of their work on speed augmentation, see
Section 3.2.

Extending the result of Dertouzos and Mok, Phillips et al. [PSTW02] also showed
that, for even m, there is no cm-machines algorithm for any c ≤ 5/4. They also showed
that, even for m = 2, neither EDF nor LLF is an m′-machines algorithm for any m′.
Considering the maximum ratio ∆ := pmax/pmin between two processing times, they have
shown that LLF is an O(log∆)-machines algorithm, while EDF is an Ω(∆)-machines
algorithm. Nevertheless, again even for m = 2, it remained a famous open problem
whether an m′-machine algorithm exists for some m′ [Pru10], but this problem will be
solved in this this chapter. In the presence of any additional speed, the problem was
already solved before: Lam and To [LT99] proved that EDF, for any ε > 0 and m,
produces feasible schedules on O(m) machines of speed 1 + ε.

The existence of an O(m)-machines algorithm with speed 1+ ε was also shown in the
non-migratory setting by Chan, Lam, and To [CLT05]. This is achieved by only assigning
a job to a machine if the machine has no work assigned to it left that must be finished
until the job’s deadline. Then EDF is run on each machine. In the same paper, the same
problem without additional speed is mentioned, but no results have been provided for
this problem in the literature. There has, however, been work on the related problem
of online interval coloring: Intervals arrive one by one, and upon arrival they have to
be colored such that no two intersecting intervals receive the same color. The goal is
to be competitive w.r.t. the number of used colors. When the intervals arrive in order
of their leftmost points, the problem is equivalent to our problem with zero-laxity jobs
with m unknown, where intervals correspond to jobs and colors to machines. Kierstead
and Trotter [KT81] provide a 3-competitive algorithm, which is best possible.

The non-preemptive variant of the problem is quite hopeless in the sense that there is
no o(n)-machines algorithm, even for m = 1, as noticed by Saha [Sah13]. Concerning ∆,
the machine requirement for an online algorithm was settled to be Θ(log∆) in the same
work. This is based on the standard technique of assigning jobs to buckets corresponding
to exponentially increasing processing times; low- and high-laxity jobs in each bucket are
then treated separately. The special case of jobs with unit processing times that can only
be started at discrete time points received some attention in a series of papers [KNST99,
KCRW12, DMPY14] and independently in the context of energy minimization [BKP07].
While the problem is trivially solvable by EDF when m is known, there is a best-possible e-
competitive algorithm for unknown m [DMPY14, BKP07].

We mention known results on the offline problem, in which all jobs are known in
advance, and the number of used machines is to be minimized. If preemption and migra-
tion are allowed, the problem can be solved optimally in polynomial time [Hor74]. The
solution of the natural linear-programming formulation can be rounded in a straightfor-
ward way by assigning fractionally assigned workload in a round-robin fashion over all
machines within each time unit.

The offline problem gets substantially harder when migration (or even preemption)
is not allowed: The computational problem of deciding feasibility of an instance can be
shown to be strongly NP-hard by a straightforward reduction from 3-Partition [GJ79].
In the non-migratory setting, there is a 12-approximation as shown implicitly by Kalyana-
sundaram and Pruhs [KP01]: They show that any feasible migratory schedule can be
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offline

online

migratory non-migratory

∃ schedule on
m machines

∃ schedule
on O(m)
machines

∃ schedule on
O(m logm)
machines

∃ schedule
on f(m)
machines

[KP01]

Thm. 2.8 Thm. 2.12

Thm. 2.12

Figure 2.1: The main contribution of this chapter. Suppose there exists a feasible migra-
tory schedule on a constant number of machines for some instance. Then, for the same
instance and a (sufficiently large) constant number of machines, a feasible non-migratory
schedule exists and a feasible migratory schedule can be constructed online. However,
the machine requirement of a non-migratory algorithm is unbounded.

transformed into a feasible non-migratory one in polynomial time at the cost of an addi-
tional factor of 12 in the number of machines. For a purely structural result, that is, when
the running time does not need to be bounded, this factor can be reduced to 6 [KP01].

For the non-preemptive setting, it is open whether a constant-factor approximation
exists. It was shown by Cieliebak et al. [CEH+04] that there is no (2− ε)-approximation
algorithm unless P = NP . The best known approximation factor of O(

√
log n/ log log n)

is due to Chuzhoy et al. [CGKN04]. For special cases, including that of equal release dates
and processing times, constant approximation factors were obtained [CEH+04, YZ09].

2.3 Contribution and Outline

The main contribution of this chapter is on migratory and non-migratory online algo-
rithms, for which we obtain quite different results: On the one hand, we show that there
is an O(m logm)-machines algorithm for migratory online deadline scheduling (Subsec-
tions 2.6.1 and 2.6.2); on the other hand, we show that there is no f(m)-machines algo-
rithm for non-migratory online deadline scheduling and any function f (Subsection 2.7.1).
These results settle long-standing open problems [Pru10, CLT05]. Our results can be in-
terpreted in the following way, using the fact that any feasible migratory schedule can be
turned into a feasible non-migratory one at the cost of increasing the number of machines
by a constant factor [KP01]: If the offline migratory schedule uses a constant number of
machines, then an offline non-migratory schedule and an online migratory schedule can
be constructed on a constant number of machines as well; the machine requirement for
an online non-migratory schedule is, however, unbounded. In other words, the ability to
migrate jobs is essential for an online algorithm. For an illustration of these results, see
Figure 2.1.

Towards a migratory f(m)-machines algorithm, one may consider the standard lower-
bound constructions for EDF and LLF [PSTW02] and note that, for both of the con-
structions, the following procedure produces a feasible schedule on O(m) machines: For
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constant α ∈ (0, 1), we treat α-loose and α-tight jobs on two separate sets of machines,
and we schedules each of them via EDF or LLF. Indeed, our O(m logm)-machines al-
gorithm treats α-loose and α-tight jobs separately on two different sets of machines
(Subsections 2.6.1 and 2.6.2, respectively). Whereas we show that EDF and LLF are in-
deed O(m)-machine algorithms for α-loose jobs (Subsection 2.6.1), the same two simple
algorithms turn not to be a f(m)-machines algorithms for α-tight jobs and any function f
(Subsection 2.6.2).

To illustrate how our O(m logm)-machines algorithm for α-tight jobs works, we inter-
pret the laxity of each job as a budget for delaying it: A job’s budget remains unchanged
whenever the job is processed, and the budget is decreased at unit speed while the job is
not being processed. Following this line of thought, EDF does not consider the jobs’ bud-
gets at all while LLF spends it too greedily. Towards a more mindful management of the
budget, we divide the budget into O(m logm) “sub-budgets”, where the i-th sub-budget
is only used if there are i − 1 jobs with an earlier release date already running. This is
driven by a new lower bound on m for α-tight jobs (Subsection 2.4.1 and below).

Leveraging the same lower bound, we can prove that the same algorithm is an O(m)-
machines algorithm for agreeable and laminar instances (Subsection 2.6.3). It is a natural
question whether an online partition of the instance into f(m) agreeable and laminar
instances is possible – clearly, if f(m) = O(1), the existence of such a partition procedure
would directly imply an O(m)-machines algorithm. We show that such a procedure does
not exist for any function f unless it dynamically reassigns jobs to other subinstances.

While a non-trivial lower bound for laminar instances was already implicitly given
in [PSTW02], we give the first non-trivial lower bound for agreeable instances in this
chapter (Subsection 2.6.3). More specifically, we show that there is no (6− 2

√
6− ε)m-

machines algorithm for agreeable instances and any ε > 0. Note that 6− 2
√
6 ≈ 1.10.

Our strong lower bound for non-migratory online algorithms (Subsection 2.7.1) shows
in particular that every non-migratory algorithm is an Ω(log n)-machines algorithm, even
when m = 3. This result is remarkable for at least two different reasons: Firstly, as
noted above (also see Figure 2.1), in the offline setting migration can be eliminated at
a constant-factor increase in the number of machines [KP01], but in the online setting,
using our strong lower bound, this increase is unbounded in m. Secondly, there is a
non-migratory O(1)-speed algorithm [CLT05], which may suggest similarity between the
migratory and the non-migratory problem. This similarity, however, is not in accordance
with the existence of a migratory O(m logm)-machines algorithm and a Ω(log n) lower
bound for non-migratory algorithms.

We derive the lower bound using a non-trivial recursive construction that relies on a
careful choice of the underlying interval structure of the jobs’ time windows. Unlike lower
bounds from the literature [PSTW02, LT99], our construction is not based on forcing the
algorithm to use up the wrong jobs’ laxities and a load argument; we rather force the
online algorithm to assign jobs to the wrong machines. Load arguments are only used
machine-wise.

As suggested by the non-trivial upper bound on the speed requirement of non-
migratory algorithms [CLT05], even α-loose jobs for fixed α ∈ (0, 1) cannot be handled
in a trivial way by a non-migratory algorithm. Indeed, EDF and LLF only have a natural
formulation if migration is allowed. Still, we are able to obtain an O(m)-machines algo-
rithm (Subsection 2.7.2), employing the non-migratory algorithm [CLT05] that, for any
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migratory non-migratory non-preemptive
LB UB LB UB LB UB

general Ω(m) O(m logm) no f(m) – no f(m) –
(trivial) (Theorem 2.8) (Theorem 2.12) (Saha [Sah13])

α-loose Θ(m) Θ(m) no f(m) –
(Theorem 2.5) (Theorem 2.14) (Saha [Sah13])

laminar Θ(m) Ω(m) O(m logm) no f(m) –
(Theorem 2.9) (trivial) (Theorem 2.17) (Saha [Sah13])

agreeable Θ(m) Θ(m) Θ(m)
(Theorem 2.9) (Theorem 2.18) (Theorem 2.18)

Table 2.1: State-of-the-art machine requirements for general and special cases. Only
asymptotical results in terms of m are included.

fixed ε > 0, produces feasible schedules on O(1) speed-(1+ε) machines. We use this algo-
rithm as a black box. To do so, we increase the processing times of our jobs by a certain
factor (guided by the guaranteed speed-factor) and apply the black-box algorithm. Then
we transform back the resulting schedule into a feasible schedule on unit-speed machines
for the original instance. The tricky part is to relate the minimum number of machines
required by the original instance to the number needed by the modified instance. Our
key result is an upper bound on this increase, which might be of independent interest.

It may be surprising that we are also able to obtain non-migratory f(m)-machine
algorithms for the fairly general special cases of laminar and agreeable instances (Subsec-
tions 2.7.3 and 2.7.4, respectively). To get an O(logm)-machines algorithm for laminar
instances, we again treat α-loose and α-tight jobs separately for fixed α ∈ (0, 1). For α-
tight jobs, we use similar ideas as for the migratory O(m logm)-machines algorithm for
general instances, and we also use our new lower bound (see below). When the instance
is agreeable, we can, instead of the above algorithm, even use EDF for α-loose jobs,
which is well-defined in this case. Moreover, α-tight jobs are run exactly in the middle
of their processing intervals; the analysis simply uses a load argument. Overall, we get a
non-migratory O(m)-machines algorithm for agreeable instances.

Note that these positive results for special cases also justify the complexity of our
lower-bound construction; a direct construction as the one in Saha’s lower bound for
the non-preemptive problem [Sah13], in which all jobs are α-loose and form a laminar
instance, is not possible in our case.

As mentioned above, our migratory algorithms and the non-migratory algorithm for
laminar instances are driven by a new lower bound on m (Subsection 2.4.2). This lower
bound relates for a given set of time intervals the number of (tight) jobs with intersecting
time windows in these intervals to the fraction of the total interval occupied by the laxity
of those jobs. Phrased differently, for given m, our new lower bound construction gives
an upper bound on the number of jobs with intersecting time intervals, which is how we
utilize it for proving our upper-bound result. This bound is in turn based on an exact
characterization of feasibility of an instance in the migratory setting via the load that
has to be scheduled within in a certain union of intervals (Subsection 2.4.1). The latter
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characterization can be viewed as the application of strong LP duality to the LP used by
Horn [Hor74].

A summary of our results and those from the literature is given in Table 2.1.

2.4 Feasible Instances
When we analyze our algorithms, we will always, at least implicitly, relate to the feasi-
bility of the input instance. It is, however, difficult to directly relate to the definition of
feasibility. The purpose of this sections is to describe properties that are easier to relate
to and that follow from, or are even equivalent to, the feasibility of the input instance.

In this section, we focus on the preemptive setting. We start by giving an exact
characterization of feasible instances in terms of contributions of jobs to intervals in
Subsection 2.4.1, and in Subsection 2.4.2 we present a more elaborate way of proving
infeasibility of instances consisting of tight jobs.

2.4.1 A Characterization of Feasibility

A property of feasible instances already used in [PSTW02] is the fact that there is no
interval I with endpoints in Q to which the contribution of the instance is more than m·|I|.
We would, however, like to have a property that is even equivalent to feasibility, which
is not true for this property, as the following example shows.

Example 2.1. Consider the following instance S. There are four jobs 1, . . . , 4 with unit
processing time and zero laxity, where jobs 1 and 2 are released at time 0, and jobs 3
and 4 at time 2. Additionally released at time 0, there is job 5 with p5 = 2 and d5 = 3.

It is easy to see that the instance is infeasible for m = 2 since jobs 1, . . . , 4 have
to run from their release dates through their deadlines, leaving no space for job 5. The
contribution of the instance to every interval I is, however, at most 2|I|, which can be
seen easily by considering three cases:
• If |I| < 1, we have C({1, . . . , 4}, I) ≤ 2|I| and C(5, I) = 0, that is, C(S, I) ≤ 2|I|.
• If |I| ∈ [1, 2], we have C({1, . . . , 4}, I) ≤ 2 and C(5, I) ≤ |I| − 1. Since C(S, I)/|I|

is largest when |I| = 1, we have C(S, I) ≤ 2|I|.
• If |I| > 2, we have C({1, . . . , 4}, I) ≤ 2|I| − 2 and C(5, I) ≤ 2, that is, C(S, I) ≤
2|I|.

Fortunately, it turns out that the above property is equivalent to feasibility if we
consider finite unions of intervals instead of just intervals. Indeed, it is easy to check that
the contribution of the instance from the above example to I = [0, 1) ∪ [2, 3) is 5 > 4 =
2|I|. More generally and formally, we prove the following theorem.

Theorem 2.1. Let S be some job set and let I be the set of all finite unions of intervals
with endpoints in Q. Then S is feasibile on m machines if and only if C(S, I) ≤ m · |I|
for all I ∈ I.

In the proof, we will make use of the following construction due to Horn [Hor74],
which reduces the problem of deciding feasibility of S on m machines to a maximum
single-commodity flow problem: We construct a flow network consisting of a directed
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graph GS,m = (V,A), a source-sink pair s, t ∈ V , and a capacity function c : A→ N. We
define V := {s, t} ∪ VS ∪ VT , where

VS := {vj | j ∈ S} and VT := {vϑ | ϑ ∈ N, rmin ≤ ϑ < dmax}

correspond to the job set S and the set of relevant integer time points, respectively. For
each job j ∈ S, we add unit-capacity edges (vj, vrj), . . . (vj, vdj−1). Furthermore, for each
job j we add and edge (s, vj) of capacity pj, and for each time ϑ we add an edge (vϑ, t)
of capacity m.

We have the following proposition, which is easy to see; for more details see [Hor74].

Proposition 2.1 (Horn [Hor74]). There exists an s-t flow of value
∑

j∈S pj in GS,m if
and only if S is feasible on m machines.

Using this property together with the max-flow-min-cut theorem [FF56] now essen-
tially shows (the non-trivial direction of) the theorem.

Proof of Theorem 2.1. We first show that, if S is feasible on m machines, C(S, I) ≤ m·|I|
for all I ∈ I: Since there is a feasible schedule of S on m machines, which schedules a
total volume of at most m · |I| within I, the total volume of S that has to be scheduled
within I (that is, its contribution to I) is at most m · |I|.

It remains to show that, if S is infeasible, we have C(S, I?)e > m · |I?| for some I? ∈ I.
Since S is infeasible, applying Proposition 2.1 and the max-flow-min-cut theorem yields
that the minimum s-t cut C ( V is of value less than

∑
j∈S pj in GS,m. By writing the

cut value more explicitly, we get∑
j:vj /∈C

pj +
∑

j:vj∈C

|N+(vj) \ C|+
∑
t:vt∈C

m <
∑
j∈S

pj, (2.1)

where N+(v) denotes the set of vertices reachable from vertex v in one step. Equivalently,
we have ∑

j:vj∈C

pj −
∑

j:vj∈C

|N+(vj) \ C| <
∑
t:vt∈C

m.

If we define I? :=
⋃

t:vt∈VT∩C [t, t+ 1), we thus get∑
j:vj∈C

|I(j) ∩ I?| − `j =
∑

j:vj∈C

pj − |I(j) \ I?| < m · |I?|.

Now by considering the left-hand side of Inequality (2.1) again and recalling that C is a
minimum cut, note that pj ≥ |N+(vj)\C| for all j with vj ∈ C, and thus |I(j)∩I?|−`j ≥ 0
for all these j. Similarly, |I(j) ∩ I?| − `j ≤ 0 for all j with vj /∈ C. Thus, the latter
inequality implies ∑

j∈S

max{|I? ∩ I(j)|, 0} = C(S, I?) < m · |I?|,

which shows our claim.

We note that this proof directly corresponds to an LP-based proof, which uses the
natural LP corresponding to the graph construction and strong LP duality instead of the
max-flow-min-cut theorem.
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2.4.2 A Necessary Condition for Feasibility of Tight-Jobs In-
stances

In this subsection, we present a necessary criterion for feasibility or, equivalently, a way
of proving infeasibility of an instance. This proof works by giving a lower bound on the
minimum number of machines needed to schedule the instance which is larger than m.
To obtain our new bound, we restrict now explicitly to α-tight jobs for some constant α ∈
(0, 1), that is, we assume pj > α(dj − rj) for any job j. This enables us to relate to the
laxity of jobs. The main new ingredient is to take into account the number of intervals
covering the time points in a given set of intervals and relate it to the laxity of those jobs.
More formally, we use the following definition.

Definition 2.1. Let G be a set of α-tight jobs and let T be a non-empty finite union of
time intervals. For some µ ∈ N and β ∈ (0, 1), a pair (G, T ) is called (µ, β)-critical if

(i) each t ∈ T is covered by at least µ distinct jobs in G,

(ii) |T ∩ I(j)| ≥ β`j for any j ∈ G.

In this section, we show the following theorem.

Theorem 2.2. If there exists a (µ, β)-critical pair, then m ≥ µ−4−4·dlog 8/βe
8+8/α·dlog 8/βe = Ω

(
µ

log 1/β

)
.

For given m, this theorem immediately implies the following upper bound on the
number of jobs covering the relevant intervals.

Corollary 2.1. If there exists a (µ, β)-critical pair, then µ = O(m log 1/β).

To show the theorem by contradiction, we consider a (µ, β)-critical pair (G, T ), and
show how to select jobs from G with a total load contribution to some superset of T that
contradicts Theorem 2.1.

Before we prove the Theorem, we need a few auxiliary lemmata. The following one
may be folkloric, but we still give a proof.

Lemma 2.1. Let S be a set of jobs. There exists a subset S ′ ⊆ S such that each time
in I(S) is covered by at least one and at most two different jobs in S ′.

Proof. Given a set of jobs S, we construct S ′ by a simple greedy procesure. Initially S ′ is
an empty set. Whenever there is a time point in I(S) that is not covered by a job in S ′,
we find the smallest such time point t. Let j ∈ S be a job covering t and having the
largest deadline. Clearly, such a job exists, and we add j to S ′. This procedure continues
until each time point in I(S) is covered by a job in S ′.

By construction, each time point in I(S) is covered by at least one job in S ′. It
remains to show that each t ∈ I(S) is covered by at most two jobs in S ′. For the sake of
contradiction, suppose there are three jobs j1, j2, j3 ∈ S ′ (added in this order) covering t,
being added because of the uncovered time points t1 < t2 < t3. As j2 is added after j1,
we have dj1 < t2 and therefore, using that t is covered by both j1 and j2, we have t < t2.
Using this and the fact that j3 covers t and t3 > t2, j3 also covers t2. Further it holds
that t3 > dj2 , so we have dj3 > dj2 , which is a contradiction to the fact that j2 (rather
than j3) is added by the greedy procedure to cover t2.
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Using this simple lemma, we show the first of two important properties of critical
pairs.

Lemma 2.2. Let (G, T ) be a (µ, β)-critical pair. There exist pairwise disjoint sub-
sets G?

1, . . . , G
?
bµ/4c of G such that

(i) T ⊆ I(G?
1) ⊆ · · · ⊆ I(G?

bµ/4c),

(ii)
∑

j∈G?
i
`j ≤ 4|T |/β for every 1 ≤ i ≤ bµ/4c.

Proof. We first select disjoint subsets G1, . . . , Gdµ/2e of G with a laminar interval struc-
ture, i.e., I(G1) ⊆ · · · ⊆ I(Gdµ/2e), such that each time point in T is covered by at least
one and at most two distinct jobs from each Gi: Starting from i = dµ/2e, the iterative
procedure selects a job set Gi from G+

i := G \ (Gi+1 ∪ · · · ∪Gdµ/2e) using Lemma 2.1. To
also satisfy (ii), we will later further select certain subsets from G1, . . . , Gbµ/2c.

Before that, we show that indeed T ⊆ I(G1) ⊆ · · · ⊆ I(Gdµ/2e). Firstly, we show
that I(Gi) ⊆ I(Gi+1) for every i. This follows from the fact that I(G+

1 ) ⊆ · · · ⊆
I(G+

dµ/2e) (by definition of G+
i ) and I(Gi) = I(G+

i ) for all i (by Lemma 2.1). Secondly,
we show T ⊆ I(G1), i.e., each time point in T is covered by at least one job in G1. Recall
that every time point in T is covered by at least µ distinct jobs in G and, according to
Lemma 2.1, covered by at most two distinct jobs in Gi for every i. Hence, any point
in T is covered by at least µ − 2(dµ/2e − 1) ≥ 1 jobs in G+

1 = G \ (G2 ∪ · · · ∪ Gdµ/2e),
and T ⊆ I(G+

1 ) = I(G1).
Next we apply a counting argument to show an averaging alternative of Condition

(ii). We set G′ = G1 ∪ · · · ∪ Gdµ/2e, and note that each time in T is covered by at most
2dµ/2e distinct jobs in G′ because, as shown above, it is covered by at most two distinct
jobs in each Gi. Also using T ⊆ I(G1) ⊆ · · · ⊆ I(Gdµ/2e), we get

|T | =

⏐⏐⏐⏐⏐⏐
⋃
j∈G′

(T ∩ I(j))

⏐⏐⏐⏐⏐⏐ ≥
∑

j∈G′ |T ∩ I(j)|
2dµ/2e

≥
∑

j∈G′ β`j

2dµ/2e
, (2.2)

where the last inequality follows from the definition of a (µ, β)-critical pair.
Now we argue that we can further choose G?

1, . . . , G
?
bµ/4c from the family of job

sets G1, . . . , Gdµ/2e such that Condition (ii) is true. Suppose there are no such sets, i.e.,
we have

∑
j∈Gi

`j > 4 · |T |/β for dµ/2e − bµ/4c + 1 ≥ dµ/2e/2 different i. Then the
total laxity of G′ is

∑
j∈G′

`j =

dµ/2e∑
i=1

∑
j∈Gi

`j >

(⌈
µ

2

⌉
−
⌊
µ

4

⌋
+ 1

)
· 4|T |

β
≥ 2dµ/2e · |T |

β
,

which is a contradiction to (2.2).

The following lemma states that, for arbitrary disjoint sets of α-tight jobs with a
laminar interval structure, the total size of the covered time intervals is geometrically
increasing.

Lemma 2.3. Let S1, . . . , Sd2m/αe be pairwise disjoint sets of α-tight jobs such that I(S1) ⊆
· · · ⊆ I(Sd2m/αe). Then we have |I(Sd2m/αe)| ≥ 2|I(S1)|.
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Proof. Suppose on the contrary that |I(Sd2m/αe)| < 2|I(S1)|. We will show a contradic-
tion based on the total contribution of all the jobs to I(Sd2m/αe). By assumption we
have |I(Si)| ≥ |I(S1)| > |I(Sd2m/αe)|/2 for all i ∈ {1, . . . , d2m/αe}. Each of these sets Si

consists of α-tight jobs only, i.e., pj > α(dj − rj) for any j, and thus, a workload of at
least α · |I(Si)| ≥ α · |I(Sd2m/αe)|/2 has to be processed within the interval I(Sd2m/αe).
There are d2m/αe different such sets Si, and consequently the total workload that has
to be processed within I(Sd2m/αe) is

C

⎛⎜⎝
⎛⎝d2m/αe⋃

i=1

Si

⎞⎠ , I(Sd2m/αe)

⎞⎟⎠ >

⌈
2m

α

⌉
·
α · |I(Sd2m/αe)|

2
≥ m · |I(Sd2m/αe)|,

which is a contradiction to Theorem 2.1.

We are now ready to prove the main theorem.

Proof of Theorem 2.2. Let (G, T ) be a (µ, β)-critical pair. Let G?
1, . . . , G

?
bµ/4c be subsets

of G that satisfy the two conditions of Lemma 2.2, i.e., (i) T ⊆ I(G?
1) ⊆ · · · ⊆ I(G?

bµ/4c),
and (ii)

∑
j∈G?

i
`j ≤ 4|T |/β, for all i ∈ {1, . . . , bµ/4c}. The proof idea is to bound the

contribution of certain subsets G?
q, . . . , G

?
bµ/4c to the interval I(G?

q) and show the bound
on m by achieving a contradiction to the load bound in Theorem 2.1.

In the following, we will fix k := dlog 8/βe and q := d2m/αe · k, and we distinguish
two cases. If G?

q does not exist, i.e., q > bµ/4c, we obtain

m ≥ α(µ− 4− 4k)

8k
>

µ− 4− 4 · dlog 8/βe
8 + 8/α · dlog 8/βe

as claimed. Otherwise, G?
q does exist, and it follows from T ⊆ I(G?

1) and repeatedly
applying Lemma 2.3 that

|I(Gq)| = |I(G?
d2m/αe·k)| ≥ 2k|T |.

Now consider any G?
i , for i ∈ {1, . . . , bµ/4c}. Using property (ii) of the subsets, we

conclude,

|I(G?
q)| ≥ 2k · |T | ≥ 2k · β

4
·
∑
j∈G?

i

`j ≥ 2 ·
∑
j∈G?

i

`j (2.3)

where we use k = dlog 8/βe in the last step.
For i ≥ q, the contribution of G?

i to I(G?
q) can be bounded from below as follows:

C(G?
i , I(G

?
q)) =

∑
j∈G?

i

max{0, |I(G?
q) ∩ I(j)| − `j}

≥
∑
j∈G?

i

(
|I(G?

q) ∩ I(j)| − `j

)
≥
⏐⏐⏐⏐I(G?

i ) ∩
⋃
j∈G?

i

I(j)

⏐⏐⏐⏐−∑
j∈G?

i

`j

= |I(G?
i ) ∩ I(G?

q)| −
∑
j∈G?

i

`j.

18



For i ≥ q, Equation (2.3) and I(G?
q) ⊆ I(G?

i ) imply C(G?
i , I(G

?
q)) ≥ |I(G?

q)|/2.
We now show that m > (bµ/4c−q)/2. Suppose this is not true. Then bµ/4c ≥ q+2m,

and thus, we have at least 2m + 1 disjoint sets G?
i such that C(G?

i , I(G
?
q)) ≥ |I(G?

q)|/2.
Hence,

C

⎛⎜⎝
⎛⎝ µ⋃

i=q

G?
i

⎞⎠ , I(G?
q)

⎞⎟⎠ ≥ (2m+ 1) ·
|I(G?

q)|
2

> m · |I(G?
q)|.

This is a contradiction to Theorem 2.1. We conclude by noting that indeed

m ≥ µ− 4− 4 · dlog 8/βe
8 + 8/α · dlog 8/βe

,

using m > (bµ/4c − q)/2 and our choice of q = d2m/αe · k = d2m/αe · dlog 8/βe.

We will utilize Theorem 2.2 to construct an O(m logm)-machines algorithm. To
show that it is an O(m)-machines algorithm for the special cases (laminar or agreeable
instances), we use a slightly weaker definition of a (µ, β)-critical pair. We replace the
job-individual Condition (ii) in Definition 2.1 by an averaging condition.

Definition 2.2. Let G be a set of α-tight jobs and let T be a non-empty finite union of
time intervals. For some µ ∈ N and β ∈ (0, 1), a pair (G, T ) is called weakly (µ, β)-critical
if

(i) each t ∈ T is covered by at least µ distinct jobs in G,

(ii) |T | ≥ β
µ
·
∑

j∈G `j.

It is easy to verify that the proofs above apply also to weakly (µ, β)-critical pairs.
(Indeed, the only difference is that we do not need the counting argument to obtain
Inequality (2.2) in the proof of Lemma 2.2.) Hence, we have the following theorem.

Theorem 2.3. If there exists a weakly (µ, β)-critical pair, then m = Ω
(

µ
log 1/β

)
.

2.5 Reduction to Semi-Online Scheduling
In this section, we consider both semi-online and fully online deadline scheduling, that
is, the variants of our problems where the number of machines the offline scheduler uses
is an input to the online algorithm and where it is not, respectively. The main result of
this section is that we can reduce fully online deadline scheduling to semi-online deadline
scheduling at the cost of increasing the number of used machines by a factor of 4, justifying
that we will be concerned with semi-online scheduling for the remainder of this chapter.

Theorem 2.4. Given a ρm-machines algorithm A for semi-online deadline scheduling,
there is a 4ρm-machines algorithm A′ for fully online deadline scheduling.

We emphasize that this theorem holds for the preemptive, non-migratory, and the
non-preemptive setting. That is, if A does not migrate jobs, then neither will A′; if A
does not preempt jobs, then neither will A′.
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To prove this theorem, we employ the well-known general idea of doubling an unknown
parameter (for a survey see [CKM06]). Towards describing the algorithm, denote by A(m′)
the semi-online algorithm A that is given m′ as number of machines. Further, denote
by m(t) the minimum number of machines needed to feasibly schedule all jobs released
up to time t. Then our algorithm for the fully online problem is as follows.

Algorithm A′: Let t0 := minj rj. For i = 1, 2, . . ., if ti−1 6=∞:
• Let ti := min{t |m(t) > 2m(ti−1)} ∪ {∞}.
• All jobs released within ∈ [ti−1, ti) are run by Algorithm A(2m(ti−1)) on a separate

set of machines.

Since the time points t0, t1, . . . as well as m(t0),m(t1), . . . can be computed online
and A is assumed to be an algorithm for the semi-online problem, this procedure can be
executed online. Notice that indeed A′ does not preempt or migrate jobs which would
not have been preempted or migrated, respectively, by Algorithm A.

We prove that this algorithm indeed only requires 4ρm machines to produce a feasible
schedule.

Proof of Theorem 2.4. For any i such that ti 6= ∞, first note that the set Si of all jobs
released within [t0, ti+1) has a feasible schedule on m(ti+1− 1) ≤ 2m(ti) machines. Thus,
as a subset of Si, also the set S ′

i of all jobs released within rj ∈ [ti, ti+1) has a feasible
schedule on 2m(ti) machines. Consequently, by definition of A, A(2m(ti)) produces a
feasible schedule S ′

i on 2ρm(ti) machines.
It remains to compare the number of machines opened by A′ with the minimum

number of machines m needed to schedule the whole input instance. Let k be maximal
such that tk is defined. Then the total number of machines opened by A′ is

k∑
i=0

2ρm(ti) ≤
k∑

i=0

2ρ

2k−i
·m(tk) = 2ρ

k∑
i=0

1

2i
·m(tk) < 4ρm,

where we use 2m(ti) ≤ m(ti+1) for all i ∈ {0, . . . , k − 1} in the first step and m ≥ m(tk)
in the last step. This concludes the proof.

In the remainder of the chapter we will thus be concerned with the semi-online prob-
lem.

2.6 Migratory Online Algorithms
The focus of this section is on the migratory setting. The main result is a gen-
eral O(m logm)-machines algorithm, which is obtained by treating loose and tight jobs
separately by the algorithms presented in Subsections 2.6.1 and 2.6.2, respectively. In
Subsection 2.6.3, we analyze agreeable and laminar instances, for which we obtain O(m)-
machines algorithms each.

2.6.1 Instances Consisting of Loose Jobs

In the following, let α ∈ (0, 1) be a constant and consider α-loose jobs. For these jobs, it
turns out that EDF only requiresO(m) machines. More specifically, we show the following
theorem.

20



Theorem 2.5. For α ∈ (0, 1) and instances consisting of α-loose jobs, EDF is an m/(1−
α)2-machines algorithm.

Towards the proof of this theorem, recall that EDF on m′ machines is a busy algorithm,
that is, whenever there are at most m′ unfinished jobs available, EDF schedules all of them.
Similar to the analysis of EDF in the context of speed augmentation given in [PSTW02],
we obtain the following helpful lemma for all busy algorithms. Here, we denote by WA(t)
and WOPT(t) the total workload (released or unreleased) that is remaining for algorithm A
and an arbitrary optimum OPT.

Lemma 2.4. Consider α ∈ (0, 1), instances consisting of α-loose jobs, and a busy online
algorithm A using m/(1−α)2 machines making decisions only at integer time points. For
all t ≤ dmax, we have

WA(t) ≤ WOpt(t) +
α

1− α
·m · (dmax − t) .

Proof. We prove by induction on integer time points. The base is clear since WA(0) =
WOpt(0). Now we assume the statement holds for all t′ < t and show it for t. We consider
three cases. Note that at least one case occurs, and possibly more than one occurs.

Case 1: A processes at least m/(1 − α) jobs at time t. According to the induction
hypothesis, it holds that

WA(t− 1) ≤ WOpt(t− 1) +
α

1− α
·m · (dmax − t+ 1). (2.4)

Since the optimum can at most finish a workload of m within the time inter-
val [t, t+ 1), we get WOpt(t) ≥ WOpt(t− 1)−m. For Algorithm A, it holds
that WA(t) ≤ WA(t − 1) −m/(1 − α). Inserting the two latter inequalities
into Inequality 2.4 proves the claim.

Case 2: A processes less than m/(1−α) jobs at time t, and we have pj(t) ≤ α(dj− t)
for all unfinished jobs. Again by the facts that A is busy and that there
is an empty machine at time t, there are less than m/(1 − α) unfinished
jobs. Then the total remaining processing time of unfinished jobs is bounded
by α·(dmax−t)·m/(1−α). Plugging in the total processing time of unreleased
jobs, which is bounded by WOpt(t), we again get the claim.

Case 3: There exists an unfinished job j with pj(t) > α(dj − t). Using that j is α-
loose, i.e., pj ≤ α(dj − rj), we get that j has not been processed for at
least (1−α)(t− rj) time units in the interval [rj, t). As Algorithm A is busy,
this means that all machines are occupied at these times, yielding

WA(t) ≤ WA(rj)− (1− α)(t− rj) ·
m

(1− α)2

≤ WOpt(rj) +
α

1− α
·m · (dmax − rj)− (1− α)(t− rj) ·

m

(1− α)2

≤ WOpt(rj) +
α

1− α
·m · (dmax − t)−m · (t− rj),
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where the second inequality follows by the induction hypothesis for t = rj, and
the third one follows by elementary transformations. Lastly, the feasibility of
the optimal schedule implies

WOpt(t) ≥ WOpt(rj)−m · (t− rj),

which in turn implies the claim by plugging it into the former inequality.

This completes the proof.

Proving the theorem is now simple.

Proof of Theorem 2.5. Suppose that EDF using m/(1 − α) machines fails on a feasible
instance J . Out of the jobs that EDF fails to schedule, let j? be the job with the earliest
deadline. Let J? := {j | dj ≤ dj?} and note that EDF’s processing of J? is unaffected of
the presence of J \ J?. Hence EDF on J? still fails to meet the deadline of j?, allowing us
to consider J? instead of J from now on. Now we apply Lemma 2.4, showing WA(dj?) ≤
WOpt(dj?) = 0, meaning that A has finished all workload at time dj? , and in particular
it has finished j?. Hence, A does not miss the deadline of j?; a contradiction.

We note that Theorem 2.5 also holds for LLF instead of EDF. The proof can be
extended the same way as the proof for the upper bound on the speed requirement of
EDF in [PSTW02].

2.6.2 Instances Consisting of Tight Jobs

Knowing that α-loose jobs can be handled on O(m) machines for any constant α, we
can simply treat these jobs on O(m) separate machines and focus on α-tight jobs, at
least if we do not wish to optimize constants and are only interested in the asymptotical
guarantee of our algorithm. In this section, we first rule out that EDF and LLF are good
algorithms to handle α-tight jobs by showing that they are no f(m)-machines algorithm
for these instances and any function f . Then we present a new algorithm, which will
be shown to be an O(m logm)-machines algorithm for α-tight jobs. This then yields
a O(m logm)-machines algorithm for the general case.

A Lower Bound for EDF and LLF

We first consider EDF. In the original lower-bound instance [PSTW02], a lot of very loose
jobs are used to delay a very tight job. To get a lower-bound instance solely consisting of
tight jobs, we replace the very loose jobs with tight jobs that form an geometric structure
such that they can be schedule on a single machine.

Theorem 2.6. For arbitrary α ∈ (0, 1) and α-tight jobs, EDF is an Ω(n)-machines
algoroithm even if m = 2.

Proof. We describe an instance with not necessarily natural but rational numbers as
released dates, deadlines, and processing times, which can later be scaled up to make
these parameters natural numbers again. Let α′ > α be rational. We construct n jobs,
all released at time 0 such that EDF fails to feasibly schedule them on n − 1 machines.
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Among the n jobs, there are n− 1 jobs jobs forming a geometric structure: The lengths
of their intervals are 1/(1 − α′), . . . , 1/(1 − α′)n−1, and their laxities are 1, 1/(1 −
α′), . . . , 1/(1−α′)n−2. In addition to these n− 1 jobs, there is one critical job of 0 laxity
and the largest deadline d (i.e., d > 1/(1− α′)n−1). Since the critical job has the largest
deadline, EDF decides to postpone it at time 0 and it thus fails to schedule the n jobs
on n−1 machines. Meanwhile, it is easy to verify these jobs can be feasibly scheduled on 2
machine since, except for the critical job, the other n− 1 jobs can be feasibly scheduled
on 1 machine.

Using a similar idea, we can also lift up the lower bound for LLF from [PSTW02] to
tight jobs.

Theorem 2.7. For arbitrary α ∈ (0, 1) and α-tight jobs, LLF is not an f(m)-machines
algorithm for any function f even if m = 2.

In this proof, we again give w.l.o.g. rational instead of natural numbers as job param-
eters. The key is the following lemma, which essentially blocks one machine for a certain
period.

Lemma 2.5. Let c ∈ N, ε ∈ (0, 1), and α ∈ (0, 1). Then there is an instance Jc,ε
consisting of α-tight jobs and a time t? with the following properties:

(i) There is a feasible schedule S? of Jc,ε on 2 machines such that pj′(t) = 0 for all j′ ∈
Jc,ε.

(ii) At time t? in LLF given c machines, there is exactly one unfinished job j ∈ Jc,ε
with dj > t?, and

`j(t
?)

dj − t?
≤ ε. (2.5)

(iii) Further, no job in Jc,ε ever gets zero laxity in LLF.

Proof. Assume w.l.o.g. that ε is rational, and let α′ > α be rational. The idea is the
following: In S?, j runs uninterruptedly from 0 through pj =: t

? on the first of the two
machines (pj and dj will be fixed later). In LLF, however, j is delayed by waves of jobs,
which are run on the other machine in S?. A wave released at time t of size β is defined
as follows: There are c jobs released at time t with interval lengths β · (1−α′)c−1, β · (1−
α′)c−2, . . . , β and laxities β · (1− α′)c, . . . , β · (1− α′). Note that, indeed, if `j(t) ≥ β for
all t ≤ t?, a wave decreases the laxity of j by δ(β) := β · (1− α′)c−1 − β · (1− α′)c > 0 in
LLF. It is also easy to verify that a wave can actually be scheduled on a single machine
via EDF.

We now set the parameters of j and the release times of the waves to get Properties (i)
and (ii). We set `j := 1 and wish to have `j(pj) ≤ ε so as to fulfill Inequality (2.5). To
do so, we release d(1− ε)/δ(ε)e waves of size ε. Here, we release the next wave whenever
the previous wave is finished in S? (on one machine via EDF) and in LLF. If we let pj
be the time when the last wave is finished in S? and LLF, Property (i) follows. Since
Inequality (2.5) is fulfilled and all waves are finished by LLF at time t?, also Property (ii)
is fulfilled. Note that, indeed, no job in Jc,ε ever gets zero laxity, so Property (iii) is
fulfilled as well.
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To prove the theorem, we will now apply the lemma recursively and thereby block an
arbitrary number of machines.

Proof of Theorem 2.7. Note that the claim actually follows from a stronger version of
Lemma 2.5: Let c ∈ N, ε ∈ (0, 1), α ∈ (0, 1), and k ∈ N with k ≤ n. Then there is an
instance Jk

c,ε consisting of α-tight jobs and a critical time t? with the following properties:

(i′) There is a feasible schedule S? of Jk
c,ε on 2 machines such that pj(t) = 0 for all j ∈

Jk
c,ε.

(ii′) At time t? in LLF given c machines, there are k different unfinished critical jobs j ∈
Jk
c,ε with identical deadlines dj > t? and

`j(t
?)

dj − t?
≤ ε. (2.6)

(iii′) Further, no job in Jk
c,ε ever gets zero laxity in the LLF schedule.

We prove the claim by induction on k for arbitrary c, ε, and α. The base case is given
by Lemma 2.5. To show that Jk

c,ε as above exists, we first release Jc,ε′ for some ε′ yet to
determine, resulting in a critical moment t? and a critical job j. Then, at t?, we release
a scaled-down version of Jk−1

c−1,ε such that the deadlines of its critical jobs are exactly dj.
We set ε′ such that j’s laxity in LLF is always smaller than that of each job in Jk−1

c−1,ε,
which is possible by Property (iii) of Jk−1

c−1,ε. This means that, in the LLF schedule, j gets
a separate machine from time t? on, and the claim follows by this fact and the induction
hypothesis for Jk−1

c−1,ε.

Hence, we cannot use the standard algorithms EDF and LLF to handle tight jobs, and
we need a new idea.

A New Algorithm

We open m′ machines and will choose m′ later appropriately as a function of m.
The idea for our algorithm is the following. We view the laxity of a job as the budget

for delaying it. Whenever a job is delayed for some time, then we pay this delay from
its budget. If the budget is empty, we must process the job. Greedily decreasing the
budget, as LLF does, fails. Instead, we aim at balancing the decrease of the budget by
taking the number of currently processing jobs into account. To that end, we partition
the total budget of each job into m′ + 1 equal-size smaller budgets, numbered from 1
to m′ + 1. That is, a job j has m′ + 1 budgets, each of size `j/(m

′ + 1). The i-th budget
of a job is reserved for time points when i − 1 other jobs (with larger index) are being
processed, which means that their corresponding 1-st, 2-nd, · · · , (i− 1)-st budgets have
become 0. Once i− 1 such jobs are already running and the currently considered job has
an empty i-th budget, then we process this job even if its other budgets are not empty.

We now describe our algorithm in detail. Figure 2.2 gives an illustration. At a time t,
we consider all jobs with a time window covering t and call them relevant jobs at t. We
must decide which jobs to process and which jobs to delay/preempt. We call the jobs
that are processed at time t active jobs at time t and denote them by a1(t), a2(t), . . . .
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decreasing
in index

j
rj dj

t

1-st budget positive,
charge it and preempt

1-st budget empty, process

2-nd budget positive,
charge it and preempt

2-nd budget empty, process

.

.

.

Figure 2.2: Illustration of our algorithm. At time t, we consider all relevant jobs in reverse
order of their indices. After having found i active jobs, we check the (i + 1)-th budget
of the current job. If this budget is not empty, we charge it and preempt/delay the job;
otherwise the job becomes active.

At any computation time t, which we will specify later, we consider all relevant jobs
at t in reverse order of their indices, i.e., in decreasing order of release dates. One after
the other, we inspect the 1-st budget of each of these jobs. As long as it is positive, we
do not process the corresponding job and charge its 1-st budget by the time duration
until the next computation time. Once we find a job whose 1-st budget is 0, this job
becomes the first active job a1(t), and each of its budgets remains unchanged until the
next computation time. We continue considering jobs in the reverse order of indices, i.e.,
we consider jobs with index smaller than a1(t). Now, we inspect the 2-nd budget of jobs
(instead of the 1-st budget; because we have one active job). As long as the 2-nd budgets
are non-empty we delay the jobs and charge their 2-nd budgets; once we find a job with
an empty 2-nd budget, this job becomes the second active job a2(t). Then we continue
with verifying the 3-rd budgets, etc.

The computation times for our algorithm are release dates, deadlines, and time points
at which the remaining budget of some job becomes 0. Since the number of budgets per
job is m′ + 1, our algorithm has a polynomial running time if the chosen number of
machines m′ is polynomial.

If we ever find an (m′ + 1)-th active job, we say that our algorithm fails. We will,
however, show that we can choose m′ such that the algorithm never fails.

We prove the following theorem.

Theorem 2.8. Our algorithm is an O(m logm)-machines algorithm.

By definition of our algorithm, a job’s total budget never becomes negative, i.e., it is
preempted no longer than its laxity. So we only have to show that our algorithm never
finds too many active jobs, i.e., it never finds an (m′ + 1)-th active job. To prove this,
we will assume the contrary and will construct a critical pair, from whose existence the
theorem then follows by Corollary 2.1.

Lemma 2.6. If our algorithm fails, then there exists a (µ, 1/µ)-critical pair where µ =
m′ + 1.

Proof. As our algorithm fails, there is some time t? at which an (m′ +1)-th active job j?

is found. We construct a (µ, 1/µ)-critical pair (F, T ) which, intuitively speaking, is a
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Algorithm 2.1: Our Algorithm
Input: Set S of α-tight jobs, number of machines m′.
Output: A feasible schedule for S on m′ machines or fail

1 for all computation times t do
2 (j1, . . . , jk)← list of relevant jobs with I(j) 3 t in order of indices
3 c← 1 //currently considered budget (depends on number of

active jobs)
4 for i = 1, ..., k do
5 if the c-th budget of ji is empty then
6 if c = m+ 1 then return fail end
7 ac(t)← ji
8 c← c+ 1

else
9 delay ji and charge the c-th budget of ji until the next computation time

end
end

end
10 return the resulting schedule

minimal subset of jobs still causing the failure. More specifically, we have F = F1∪· · ·∪Fµ

as well as T = T1 ∪ · · · ∪ Tµ and, from i = µ down to i = 1, we define Fi as well as Ti

as follows. We set Fµ := {j?} and Tµ := {t | the µ-th budget of j? is charged at t}.
Moreover, for all i = µ− 1, . . . , 1, we define

Fi := {j | j = ai(t) for some t ∈ Ti+1 ∪ · · · ∪ Tµ}
and Ti := {t | the i-th budget of some j ∈ Fi is charged at t}.

We show that (F, T ) is indeed a (µ, 1/µ)-critical pair. We first show that Condition (i)
in Definition 2.1 is satisfied, i.e., each t in T is covered by µ different jobs in F .

By definition of T , for any t ∈ T there is an i such that t ∈ Ti. Using the definition
of Ti, there is some job ji ∈ Fi such that its i-th budget is charged at t. Notice that the i-
th budget of ji is charged at time t because there are i− 1 active jobs a1(t), . . . , ai−1(t),
all with larger index than ji and time intervals covering t. Thus, there are at least i jobs j
with j ≥ ji that cover t.

We claim that there are at least µ− i different jobs j with j < ji that cover t. Assume
this is true, then with the claim above, each t in T is indeed covered by µ different jobs
in F .

We now prove the claim by (downward) induction on i. Clearly it holds for i = µ.
Assume the claim is true for all h = i + 1, . . . , µ. We now show it for i: According to
the definition of Fi, ji is the i-th active job at some t′ ∈ Tk for k > i, where t < t′

because the remaining i-th budget of ji at t is still positive, whereas it becomes 0 at t′.
By the definition of Tk, there also exists a job jk ∈ Fk whose k-th budget is charged at
time t′. We apply the induction hypothesis for k to obtain that there are µ− k different
jobs j with j < jk < ji covering t′. As j < ji implies rj ≤ rji and we have t < t′,
all these µ − k jobs also cover t. Similarly jk also satisfies jk < ji and covers t′, so it
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covers t, too. To finish the proof of the claim, we show that there are k − i− 1 different
jobs j with jk < j < ji that cover t. As the k-th budget of jk is charged at time t′,
there must exist active jobs ai+1(t

′), . . . , ak−1(t
′), each of which covers time t′, and we

have jk < ah(t
′) < ji for all h ∈ {i + 1, . . . , k − 1}. Again using rah(t′) ≤ rji ≤ t ≤ t′, all

of these k − i − 1 jobs cover time t. Hence in total there are µ − i different jobs j with
j < ji that cover t. We conclude that each t in T is indeed covered by µ different jobs
in F .

Finally, we show that also the second property of a (µ, 1/µ)-critical pair is fulfilled
by (F, T ). Indeed, |T ∩ I(j)| > `j/µ holds for each j ∈ F : By definition, there is an i
such that j ∈ Fi, and thus j is an i-th active job at some time t. As the i-th budget
(which initially amounted to `j/µ) is exhausted at time t, it follows by definition of Ti

that |Ti ∩ I(j)| ≥ `j/µ, and the lemma follows.

We are now ready to prove the main theorem of this section.

Proof of Theorem 2.8. We show that our algorithm never fails, i.e., it never finds an
(m′+1)-st active job, when using m′ = O(m logm) machines. This is sufficient for proving
the theorem, as the algorithm opens m′ machines and processes at any time the active
jobs. All other jobs have a positive corresponding budget and get preempted/delayed.
No job is preempted/delayed for more time than its total laxity (budget).

We assume that the algorithm fails, which implies the existence of a (µ, 1/µ)-critical
pair with µ = m′ + 1 by Lemma 2.6. Now, Corollary 2.1 implies µ ≤ cm log µ for some
constant c. Thus, there exists a constant c′ such that m′ ≤ c′m logm′, i.e., the algorithm
fails only if m′ ≤ c′m logm′. For m′ sufficiently large, this inequality is not true. Thus,
for m′ = O(m logm) the algorithm does not fail.

We remark that careful calculations show that for m = 2, our algorithm opens m′ =
236 machines for tight jobs (taking α = 4/5). Including loose jobs (Theorem 2.5), our
algorithm requires 261 machines in total. We emphasize that we did not optimize the
parameters that we choose in the proofs.

We also remark that we do not have an ω(m) lower bound for the machine require-
ment of our algorithm. Indeed, showing the existence of a (µ, 1)-critical pair instead of
a (µ, 1/µ)-critical one (as in Lemma 2.6) in case of failure would suffice to get an O(m)-
machines algorithm using the same line of argument in the proof of Theorem 2.8. For
laminar and agreeable instances, we are able to show such a stronger version of Lemma 2.6
(with the slight difference that we are considering weakly critical pairs).

2.6.3 Agreeable and Laminar Instances

In this subsection we give O(m)-machines algorithms for two important special cases,
namely, laminar and agreeable instances. Recall that, in laminar instances, any two
jobs j and j′ with I(j) ∩ I(j′) 6= ∅ satisfy I(j) ⊆ I(j′) or I(j′) ⊆ I(j). In agreeable
instances, rj < rj′ implies dj ≤ dj′ for any two jobs j and j′.

Theorem 2.9. For laminar and agreeable instances, there is an O(m)-machines algo-
rithm.
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Recall that, even for general instances, we can handle α-loose jobs for a constant α ∈
(0, 1) by EDF on O(m) machines (Subsection 2.6.1). So we can restrict to α-tight jobs
again. Interestingly, our new algorithm from Section 2.6.2 turns out to be an O(m)-
competitive algorithm for both laminar and agreeable instances consisting of α-tight
jobs. Note that, in Section 2.7, we give a simpler O(m)-machines algorithm for laminar
instances, which is even non-preemptive.

As in the general case, our proof strategy is to construct a (here: weakly) critical
pair whenever our algorithm using m′ = µ − 1 machines finds an µ-th active job j?. To
prove a constant competitive ratio, however, we use a slightly different construction in
which we drop active jobs with intersecting intervals, and obtain a weakly (µ, β)-critical
pair (H,T ) where β = 1. This directly implies1 the theorem by Corollary 2.1. In fact, the
construction is identical for both special cases. We construct job set H := H1 ∪ · · · ∪Hµ

and time points T := T1 ∪ · · · ∪ Tµ by (downward) inductively defining Hµ := {j?}, Tµ :=
{t | the µ-th budget of j? is charged at t},

Fi := {j | j = ai(t) for some t ∈ Ti+1 ∪ · · · ∪ Tµ},
Hi := {j ∈ Fi | there does not exist j′ ∈ Fi

such that I(j) ∩ I(j′) 6= ∅ and j′ < j},
and Ti := {t | the i-th budgetof some j ∈ Hi is charged at t},

for all i = µ−1, . . . , 1. Note that the only difference from the construction for the general
case is that for each set Fi we additionally maintain a set Hi ⊆ Fi in which we keep for
any two intersecting intervals in Fi only one. We call (H,T ) the failure pair.

To make more concise statements about the structure of the constructed pair, we
introduce the notation S1 ≺ S2 (or equivalently, S2 � S1) for two sets of jobs S1

and S2. Specifically, this means that for every job j2 ∈ S2 there exists a job j1 ∈ S1

such that I(j1) ∩ I(j2) 6= ∅ and j1 < j2. Note that ≺ is not an order as it does not
necessarily obey transitivity.

The following structural lemma is true for both special cases and will be proven later
in this subsection.

Lemma 2.7. Consider a laminar or agreeable instance, and let (H,T ) be a failure pair.
Then the following statements are true:

(i) For all Hi, Hi′ with i < i′, we have Hi � Hi′.

(ii) For all Hi, we have T ⊆ I(Hi).

With Lemma 2.7, we can prove Theorem 2.9 without using any further structural
information.

Proof of Theorem 2.9. We show that our algorithm never finds a µ-th active job if µ−1 =
m′ = cm for a sufficiently large constant c. To this end, assume the contrary and let (H,T )
be the corresponding failure pair, which we claim to be weakly (µ, 1)-critical. Given this
claim, the theorem directly follows from Theorem 2.3.

1We are dropping constants by writing m = Ω(µ/ log(1/β)) in Theorem 2.3. The logarithm is actually
taken over 8/β instead of 1/β (see Equation (2.3)), and thus, β = 1 does not cause a problem in
computation.
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The first property of a weakly (µ, 1)-critical pair, that is, that each t ∈ T is covered
by µ different jobs in H, is easy to see: By Lemma 2.7 (ii), there is a job in each Hi that
covers t. Also, all these jobs are distinct: If there exists a job j ∈ Hi ∩Hi′ where i < i′,
Lemma 2.7 (i) implies the existence of j′ ∈ Hi′ with j′ < j and I(j) ∩ I(j′) 6= ∅. This
would be a contradiction to the construction of (H,T ) as j would not be taken over
from Fi′ to Hi′ because j′ ∈ Hi′ , I(j) ∩ I(j′) 6= ∅, and j′ < j.

As an intermediate step, we claim that T1, . . . , Tµ are pairwise disjoint. To see this,
suppose there exists some t ∈ Ti ∩ Ti′ where i < i′. By definition of Ti, there exists a
job j ∈ Hi such that the i-th budget of j is charged at t. Similarly, there also exists some
job whose i′-th budget is charged at t, implying that at time t there exists an i-th active
job ai(t) as i < i′. We distinguish three cases, each of them yielding a contradiction:

Case 1: We have ai(t) < j. Note that ai(t) ∈ Fi by definition of Fi. As t ∈
I(j) ∩ I(ai(t)) 6= ∅, we get a contradiction as, by definition of Hi, it does
not include j.

Case 2: We have ai(t) = j. Then the i-th budget of j is already exhausted at t, which
is a contradiction to the fact that it is charged at t.

Case 3: We have ai(t) > j. Recall that the algorithm considers jobs one by one in
decreasing order of indices. After it found an i-th active job ai(t) at t, it will
never check the i-th budget of jobs of lower indices. Hence the i-th budget of
job j < ai(t) cannot be charged at t.

It remains to show the second property of a weakly (µ, 1)-critical pair, i.e., we have
|T | ≥

∑
j∈F `j/µ. For each Hi, every j ∈ Hi is an i-th active job at some time t and thus

its i-th budget is exhausted at t. Consequently, there are times at which this budget
is charged, implying |Ti ∩ I(j)| ≥ `j/µ. Using that Hi does not contain distinct jobs j
and j′ with I(j) ∩ I(j′) 6= ∅ (by definition), we obtain

|Ti| =
∑
j∈Hi

|Ti ∩ I(j)| ≥
∑
j∈Hi

`j
µ
.

As T1, . . . , Tµ are pairwise disjoint, by summing up these inequalities for all Hi, we get:

|T | =
µ∑

i=1

|Ti| ≥
µ∑

i=1

∑
j∈Hi

`j
µ

=
∑
j∈H

`j
µ
,

which concludes the proof.

We will prove Lemma 2.7 separately for the laminar instances as well as agreeable
instances. Before we separate the analysis into the two special cases, we state another
lemma that is also independent of any structural information and will be useful in both
special cases.

Lemma 2.8. Let (H,T ) be a failure pair. Then we have Fi � Fi+1 for all i ∈ {1, . . . , µ−
1}.
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Proof. Consider an arbitrary i ∈ {1, . . . , µ − 1}. By the definition of Fi, for any j ∈ Fi

we have j = ai(t) at some time t ∈ Ti′ where i′ > i. We distinguish two cases and show
that in each case there exists a job in Fi+1 with the desired properies:

Case 1: We have i′ = i + 1. By definition of Ti+1, there is some j′ ∈ Hi+1 ⊆ Fi+1

whose (i+1)-th budget is charged at time t, implying that t ∈ I(j)∩I(j′) 6= ∅.
Since the algorithm goes through jobs in decreasing order of indices, it holds
that j′ < j.

Case 2: We have i′ > i + 1. Using the definition of Ti′ , there is a job j′′ ∈ Hi′ ⊆ Fi′

whose i′-th budget is charged at t, implying the existence of an (i + 1)-st
active job j′ at time t. By definition of Fi+1, we have j′ ∈ Fi+1. Notice
that t ∈ I(j) ∩ I(j′) 6= ∅. As the algorithm goes through jobs in decreasing
order of indices it also follows that j′ < j.

This completes the proof.

Before we show Lemma 2.7 for the two special cases, we remark that careful cal-
culations show that, when restricting to only α-tight jobs, we have a (d8/αe + 4)m-
machines algorithm for laminar instances, and a (d16/αe + 8)m-machines algorithm for
agreeable instances. Note that the factor of two between the ratios is due to that fact
that for laminar instances the Hi’s we derive already satisfies a laminar structure, i.e.,
I(H1) ⊆ I(H2) ⊆ · · · ⊆ I(Hµ), while for agreeable instances we still need to apply
Lemma 2.1 to get such a structure. When additionally handling loose jobs by EDF (Theo-
rem 2.5), we derive a 24-competitive algorithm for laminar instances and a 44-competitive
algorithm for agreeable instances (by taking α = 1/2).

Laminar Instances

Before we prove Lemma 2.7 for the laminar case, we state a simple observation and show
three auxiliary lemmas for laminar instances. The following observation directly follows
from the way that we index jobs and the laminarity of the instance.

Observation 2.1. For laminar instances and two jobs j, j′, I(j) ∩ I(j′) 6= ∅ and j > j′

imply I(j) ⊆ I(j′).

Recall the definition of Hi. Observation 2.1 actually implies that the set Hi is con-
structed by selecting the “maximal” jobs from Fi, i.e., the jobs in Fi which are not included
by any other job. The following lemma is also straightforward from the observation.

Lemma 2.9. For laminar instances, S1 � S2 implies that I(S1) ⊆ I(S2).

Proof. Consider an arbitrary job j ∈ S1. Due to S1 � S2 there exists j′ ∈ S2 with j′ < j
and I(j) ∩ I(j′) 6= ∅. According to Observation 2.1 we have I(j) ⊆ I(j′), hence I(S1) ⊆
I(S2).

Using Observation 2.1, we can also show that the ≺-relation on sets of jobs is transitive
under laminarity.

Lemma 2.10. For laminar instances, the relation ≺ on sets of jobs is transitive.
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Proof. Let S1, S2, and S3 such that S1 � S2 and S2 � S3. We show that also S1 � S3

holds: For any job j1 ∈ S1, there exists a job j2 ∈ S2 with j1 > j2 and I(j1) ∩ I(j2) 6=
∅. Further, there is a job j3 ∈ S3 with j2 > j3 and I(j2) ∩ I(j3) 6= ∅. Obviously
we have j1 > j3. Further, I(j1) ∩ I(j3) 6= ∅ since according to Observation 2.1, we
have I(j1) ⊆ I(j2) ⊆ I(j3). Hence, S1 � S3.

The third auxiliary lemma allows us to induce the relation among His from the relation
among Fis, as is shown by Lemma 2.8.

Lemma 2.11. Consider a laminar instance and a failure pair (H,T ). Then Fi � Fi′

implies Hi � Hi′.

Proof. Consider some job j ∈ Hi. By definition of Hi, we also have j ∈ Fi. Due
to Fi � Fi′ there is a j′ ∈ Fi′ such that j > j′ and I(j) ∩ I(j′) 6= ∅. According to the
definition of Hi′ , there is a job j′′ ∈ Hi′ with j′ ≥ j′′ and I(j′)∩ I(j′′) 6= ∅ (indeed, job j′′

could be j′). Consequently, j > j′ ≥ j′′. By Observation 2.1, I(j) ⊆ I(j′) ⊆ I(j′′) holds,
implying that I(j) ∩ I(j′′) 6= ∅. Thus, Hi � Hi′ .

Now we are ready to prove Lemma 2.7.

Proof of Lemma 2.7 for laminar instances. We first show (i), i.e., for all Hi, Hi′ with i <
i′ we have Hi � Hi′ . By Lemma 2.10, it suffices to show Hi � Hi+1 for all i = 1, . . . , µ−1.
Using Lemma 2.11, we can even restrict to showing Fi � Fi+1 for all i = 1, . . . , µ − 1.
This is exactly the statement of Lemma 2.8.

It remains to show (ii), i.e., T ⊆ I(Hi) for all Hi. Towards this, we first claim
that, I(Hi) = I(Fi). It is easy to see that I(Hi) ⊆ I(Fi) as Hi ⊆ Fi. Meanwhile, I(Hi) ⊇
I(Fi): Consider an arbitrary job j ∈ Fi. By definition of Hi either j ∈ Hi, or there
exists some j′ ∈ Hi such that I(j) ∩ I(j′) 6= ∅ and j > j′, implying that I(j) ⊆ I(j′)
by Observation 2.1. Notice that by definition T ⊆ I(F1). Hence, we have T ⊆ I(F1) =
I(H1) ⊆ I(Hi), where the last relation follows from (i) and Lemma 2.9.

Agreeable Instances

We prove Lemma 2.7 for agreeable instances. Recall that

Hi := {j ∈ Fi | there does not exist j′ ∈ Fi such that I(j) ∩ I(j′) 6= ∅ and j′ < j}.

For agreeable instances, it is easy to see that the job in Fi with the smallest index (and
hence the smallest release date) is always contained in Hi. In the following we will show
that, indeed, this is the only job contained in Hi.

Proof of Lemma 2.7 for agreeable instances. We first prove (i), i.e., for all Hi and Hi′

with i < i′ we have Hi � Hi′ . To do so, we make the (stronger) claim that, for every i ∈
{1, . . . , µ}, the following is true: For k ≥ i it holds that Hk = {jk}, where jk is the job
of smallest index in Fk. Furthermore, Hk � Hk′ holds for any k, k′ with i ≤ k < k′. We
prove this claim by (downward) induction on i. For i = µ, this claim is clear from the
construction of (H,T ).

For i < µ, we first prove that Hi consists of the single job ji. To this end, suppose
there are two jobs j, j′ ∈ Hi where j < j′. By the construction of Hi, it holds that I(j)∩
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I(j′) = ∅ and hence dj ≤ rj′ . Since we have Fi � Fi+1 according to Lemma 2.8, there
exists a job j′′ ∈ Fi+1 with I(j) ∩ I(j′′) 6= ∅ and j′′ < j. According to the induction
hypothesis ji+1 ≤ j′′ < j, implying dji+1

≤ dj. Hence,

jµ < · · · < ji+1 < j and djµ ≤ · · · ≤ dji+1
≤ dj. (2.7)

It is easy to see that no time t ≥ dj is covered by any job in Hi+1, . . . , Hµ. Hence,
for t ≥ dj we have t 6∈ Ti+1 ∪ · · · ∪ Tµ. As dj ≤ rj′ , it follows that j′ /∈ Hi by definition
of Hi, which is a contradiction. Hence, Hi consists of only a single job. Recall that, by
definition of Hi, the job ji of smallest index in Fi is contained in Hi, and thus Hi = {ji}.

Next we prove that Hk � Hk′ holds for any k, k′ with i ≤ k < k′. As we have
shown (2.7) already, it remains to show that I(ji)∩ I(jh) 6= ∅ for any h > i. Suppose this
is not true for some h, i.e., djh ≤ rji . As jh is an h-th active job at some time t, there
is also an i-th active job at the same time and ai(t) ∈ Fi by definition of Fi. Note that,
as I(ai(t)) ∩ I(jh) 6= ∅, we have rai(t) < djh ≤ rji . Thus, ai(t) < ji holds, contradicting
the fact that ji is the job of smallest index in Fi.

We proceed to proving (ii): For all Hi, we have T ⊆ I(Hi). As (i) implies that r1 ≥
· · · ≥ rµ and d1 ≥ · · · ≥ dµ, it suffices to show that T ⊆ I(H1) ∩ I(Hµ) = I(j1) ∩ I(jµ).

We first show that for all t ∈ T , it holds that t ∈ I(j1). By definition of T , the i-th
budget of job ji is charged at t for some i ∈ {1, . . . , µ}. If i = 1, clearly t ∈ I(j1).
Otherwise, there is a 1-st active job j at time t, and by definition we have j ∈ F1.
If j = j1, again we are done. Otherwise, we have j1 < j, and thus rj1 ≤ rj. Now notice
that t ∈ I(j) ∩ I(jh), and thus rj ≤ t < djh holds. As rj1 ≤ rj and djh ≤ dj1 (by (i)), we
have t ∈ I(j1).

Next, we show that for all t ∈ T , it holds that t ∈ I(jµ). Again by definition
of T , at time t the i-th budget of ji is charged for some i ∈ {1, . . . , µ}. We prove
that for t ∈ Ti, t ∈ I(jµ) by (downward) induction on i. The case i = µ is obvious.
For i < µ we argue in the following way: As ji ∈ Fi, it is the i-th active job at some
time t′ ∈ Ti+1 ∪ · · · ∪ Tµ. Since its i-th budget is exhausted at time t′, while at time t it
is still positive, we have t < t′. According to the induction hypothesis, t′ ∈ I(jµ) holds,
and consequently t < t′ ≤ djµ . Further, it follows by (i) that rjµ ≤ rji ≤ t. Thus, we
have t ∈ I(jµ).

We complement the upper-bound result with the first non-trivial lower bound for
agreeable instances. We can even restrict to instances where all jobs have the same
processing time.

Theorem 2.10. There is no (6− 2
√
6− ε)m-machines for agreeable instances where all

jobs have identical processing times, where 6− 2
√
6 ≈ 1.10.

The lower-bound instances have a structure similar to existing ones for general in-
stances [PSTW02, LT99]. W.l.o.g. we again give an instance whose job parameters are
not necessarily natural but rational numbers. We say that an algorithm is behind by w ≥ 0
at some time t if the following three properties hold:

(i) An optimal schedule could have finished all jobs released so far at time t.
(ii) The work unfinished by the algorithm is at least w.
(iii) We have dj ≤ t+ 1 for all jobs released so far.

To prove the theorem, we will iteratively apply the following lemma.
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Lemma 2.12. Consider an online algorithm A that uses at most (6−2
√
6−ε)m machines

for some ε > 0. There is a δ > 0 with the following property.
Let t be a time at which A is behind by w. Then jobs can be released (in an agreeable

way) such that there is a time t′ > t at which A is behind by w + δ.

Proof. Define β := (6 − 2
√
6 − ε) − 1. We choose some α ∈ [0, 1] ∩ Q that is yet to be

optimized, and we assume that αm ∈ N. At time t, we release m jobs j with pj = 1
and dj = t+ 1+ α (type-1 jobs) and αm jobs j with pj = 1 and dj = t+ 2 (type-2 jobs).
We will now show that there is a δ > 0 such that A is behind by w+δ at time t′ = t+1+α.
Observe that it suffices to give a lower bound of w + δ on the work that is left of type-1
jobs at time t+ 1 + α.

First note that (1−α)m jobs j with pj = 1 and dj = t+2 could be released at time t+1
without violating feasibility of the instance. This leaves at most (α + β)m machines for
processing the type-1 jobs within [t + 1, t + 1 + α), i.e., a total capacity of (α2 + αβ)m.
Thus, the type-2 jobs can receive (α2 + αβ)m + βm − w of processing within [t, t + 1),
amounting to (α2 + αβ)m + βm − w + α2m within [t, t + 1 + α). Consequently, at
time t′ = t+ 1 + α, the work left of type-1 jobs is at least

αm− ((α2 + αβ)m+ βm− w + α2m) = w + δ.

First note that δ is independent of w. Now the requirement δ > 0 is equivalent to

β <
α− 2α2

1 + α
.

Maximizing the right-hand side of this inequality over the real numbers yields a maximum
of 5 − 2

√
6 for α = (

√
6 − 2)/2 ≈ 0.25. By continuity of the right-hand side and

definition of β, we can choose a rational α that makes the inequality true. This proves
the lemma.

We are ready to prove the theorem.

Proof of Theorem 2.10. Suppose there exists some (6− 2
√
6− ε)m-machines online algo-

rithm A. Clearly, for the empty instance and at time 0, A is behind by 0. Now applying
Lemma 2.12 sufficiently often forces A to be behind by w at some time t where w exceeds
the available capacity of 6− 2

√
6− ε in [t, t+ 1).

Partitioning into Agreeable and Laminar Instances

Having found O(m)-machines algorithms for both agreeable and laminar instances, it is a
natural question whether we can online partition instances into agreeable and laminar sub-
instances like we are doing for loose and tight jobs in our O(m logm)-machines algorithm
for general instances (Theorem 2.8). Indeed, if we could also partition the instance online
into O(1) subsets that are each either agreeable or laminar, this would directly yield
an O(m)-machines algorithm for general instances. Unfortunately, even obtaining f(m)
such subsets is not possible if we knew all the jobs in advance, for any function f . Here
we use a similar geometric interval structure as in the lower bounds in Subsection 2.6.2.
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Theorem 2.11. Let m = 1. For every k ∈ N and α ∈ (0, 1), there is a feasible instance J
with k2 α-tight jobs and the following property. Every partition of J into sub-instances,
each of which is either agreeable or laminar, has size at least k.

Proof. Again, we give an instance that w.l.o.g. has rational numbers as job parameters,
and define α′ > α be rational. We release k levels, each consisting of k jobs. When
we say we release a level within [t, t′], we mean the following: We release jobs at t, t +
ε . . . , t + (k − 1) · ε for some sufficiently small ε > 0. The respective interval lengths
are (1 − α′)k−1(t′ − t), (t′ − t)(1 − α′)k−2, . . . , (t′ − t), and the laxities are (1 − α′)k(t′ −
t), (t′− t)(1−α′)k−1, . . . , (1−α′)(t′− t). It is easy to see that a level can be scheduled on
a single machine such that the machine is idle during some interval I ⊆ I(jk) \ I(jk−1).
We call I the level’s idle interval.

The first level is released within [0, 1]. The i-th level is released within the (i− 1)-st
level’s idle interval. Note that the whole instance can indeed be scheduled on a single
machine. Also note that no two jobs within a level can be contained in the same laminar
sub-instance and that no two jobs out of different levels can be contained in the same
agreeable sub-instance.

Consider some partition of J into J1, . . . , Jk−1. We apply the pigeon-hole principle to
select a sub-instance that is neither laminar nor agreeable: By the pigeon-hole principle,
in every level i, there are two jobs assigned to the same sub-instance Jσ(i). Again by the
pigeon-hole principle, there is a sub-instance Ji? such that Jσ(i) = Jσ(i′) = Ji? for i 6= i′.
Now the fact that it contains two jobs from the same level implies that Ji? cannot be
laminar, while the fact that it contains two jobs from different levels implies that Ji?
cannot be agreeable.

We note that this result may be quite fragile against slightly modifying the definitions
of agreeable and laminar instances: Indeed, a level of our lower-bound construction would
not be agreeable any more if we slightly shifted the left borders of their intervals. Hence,
it is still plausible that alternative definitions for agreeable and laminar instances exist
such that there are O(m)-machines algorithms for them and a partitioning in the above
sense is possible.

2.7 Non-Migratory Online Algorithms

We consider non-migratory algorithms in this section. We start by giving our strong
lower bound for general instances in 2.7.1, and complement it with upper bounds for
loose jobs (Subsection 2.7.2), laminar instances (Subsection 2.7.3) and agreeable instances
(Subsection 2.7.4).

2.7.1 General Instances

We prove the following theorem.

Theorem 2.12. Let m ≥ 13. For every (deterministic) non-migratory online algorithm,
there is an instance on n jobs such that the algorithm requires Ω(log n) machines.
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We inductively define an adversarial strategy that forces any non-migratory online
algorithm to use an unbounded number of machines while the resulting instance has a
migratory schedule on three machines offline. The idea is quite different from standard
lower-bound instances [PSTW02, LT99], where the online algorithm is forced to open a
new machine because it has simply too much (aggregate) workload left. Here, we instead
force the online algorithm to distribute jobs over the machines in such a bad way that
assigning a new job to any of the machines would cause too much workload on this
machine, forcing the algorithm to open a new machine.

Before giving the technical arguments, we introduce some notations. The latest time
when a job j has to be assigned to a machine and the earliest time when it can be
finished are denoted by aj = rj + `j and fj = dj − `j, respectively. The following key
lemma directly implies a weaker version of our theorem, where we allow migration offline.

Lemma 2.13. For every non-migratory online algorithm A that schedules feasibly and k ∈
N, there is an instance Ik with O(2k) jobs and a critical time t0 such that:

(i) In the schedule computed by A, there are at time t0 unfinished critical
jobs j1, . . . , jk ∈ Ik assigned to k different machines.

(ii) There is a feasible migratory schedule of Ik on three machines with the following
properties. Two machines are idle within [t0, t0 + ε) for some ε > 0. The other one
is continuously idle from t0 on.

Proof. Clearly, I1 exists. We define the I2 depending on constants α ∈ (1/2, 1) and β ∈
(0, 1/2), which will later be chosen appropriately. For the sake of intuition, α and β can
be thought of constants very close to 1 and 0, respectively. At time 0, we release job j1
with pj1 = α and dj1 = 1. From aj1 on, we start additionally releasing short jobs: For
the i-th short job j, we set rj = aj1 + (i− 1) · β, pj = αβ, and dj = aj1 + iβ. We ensure
that our choice of α and β fulfills⌊fj1 − aj1

β

⌋
· αβ > `j1 , (2.8)

implying that the total processing time of short jobs that have to be scheduled
within [aj, fj) ( I(j1) will eventually add up to more than the laxity of of j1. This
ensures that A has to schedule some short job on a different machine than j1. We de-
fine j2 to be the first such job, let t0 := aj2 , and stop releasing jobs then.

Given Equation (2.8), we check (i) and (ii) for critical jobs j1, j2 and critical time t0: By
definition of j1 and j2, they are assigned to different machines by A. Using t0 = aj2 < fj1
(implied by Equation (2.8)) and t0 = aj2 < fj2 (implied by α > 1/2), both jobs are
not finished at time t0, that is, we get (i). On the other hand, an offline schedule could
simply run job j1 on one machine and all short jobs on another machine. Since for all
jobs j holds pj < dj − rj, they can be preempted within some interval [t0, t0 + ε). This
shows (ii).

We check that Equation (2.8) can indeed be made true: Using the definition of aj, fj,
and `j, we obtain that Equation (2.8) is equivalent to⌊2α− 1

β

⌋
· αβ > 1− α,
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which, for instance, is true for α = 3/4 and β = 1/4.
For k > 2, we define Ik inductively. Suppose the lemma is true for k− 1. We start by

applying the lemma once, creating k−1 critical jobs j1, . . . , jk−1 that are not finished by A
and assigned to k − 1 different machines at the critical time t0. Also, there is a feasible
schedule of Ik on three machines such that machine 1 and 2 are idle within some [t0, t0+ε)
with ε > 0 while machine 3 is continuously idle from t0 on. Recall that pj(t) is defined
to be the remaining processing time of a job j at time t. We define

ε′ := min
{
ε, pj1(t0), . . . , pjk−1

(t0)
}
> 0 (2.9)

to be the largest ε′ such that within [t0, t0 + ε′) no job ji for i ∈ {1, . . . , k − 1} can get
finished by A and machine 1 and 2 can still be idle in a feasible schedule. We apply the
lemma with k − 1 another time in a scaled-down way such that the latest deadline (i.e.,
that of the job released first) occurring in this sub-instance I ′k is t0 + ε′/2. We call the
corresponding critical jobs and time j′1, . . . , j

′
k−1 and t′0, respectively, and distinguish two

cases:

Case 1: The jobs j1, . . . , jk−1 and j′1, . . . , j
′
k−1 are scheduled by A on different sets

of machines. Byt using the induction hypothesis, there is a job j′i such
that j1, . . . , jk−1, j

′
i are scheduled on k different machines. By our choice

of ε′ and the induction hypothesis for I ′k, these jobs are not finished by the
critical time t′0, implying (i). We also show (ii): Again by our choice of ε′,
only I ′k has to be scheduled within [t0, t0 + ε′/2). By the induction hypoth-
esis regarding I ′k, there is a schedule of this sub-instance with the following
property: Two machines are idle within [t′0, t

′
0 + ε′′) for some ε′′ > 0 and the

other machine is continuously idle from t′0 on. Since we can again choose to
leave machine 3 continuously idle from t′0 on, we get (ii).

Case 2: The jobs j1, . . . , jk−1 and j′1, . . . , j
′
k−1 are scheduled by A on the same set of

machines. Then we additionally release exactly one job j? at time t′0 with
deadline t0 + ε′. We choose

pj? ∈
(
t0 + ε′ − t′0 − min

i=1,...,k−1
pj′i(t

′
0),

t0 + ε′ − t′0

)
,

ensuring that j? cannot be scheduled on the same machine as any j′i for i ∈
{1, . . . , k − 1} (lower bound on pj?) and that it has strictly positive initial
laxity (upper bound on pj?). We further make sure that

pj? > t0 +
ε′

2
− t′0,

meaning that j? cannot be finished at time t0+ ε′/2 (note that pj? still exists
since t0+ε′/2−t′0 < t0+ε′−t′0). We release no further jobs and claim that (i)
and (ii) hold with critical jobs j1, . . . , jk−1, j

? and critical time t′′0 := t0+ ε′/2.

We first show (i): Consider the schedule computed by A. By the induc-
tion hypotheses for Ik−1 and our choice of ε′, at time t′′0 the jobs j1, . . . , jk−1
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t0 t′0 t′′0 t′′0 +ε′′ t0+ε′ t0+ε

Ik−1

Ik−1
I ′k−1

I ′k−1

j?

j?

Figure 2.3: The optimal schedule constructed in Case 2 of the proof of Lemma 2.13.
Recall t′′0 = t0 + ε′/2.

are not finished and scheduled on k − 1 different machines. Using the as-
sumption that j′1, . . . , j′k−1 are scheduled on exactly the same set of machines
as j1, . . . , jk−1 and the fact that j? cannot be scheduled on the same machine
as any j′i for i ∈ {1, . . . , k − 1}, the jobs j1, . . . , jk−1, j

? are scheduled on k
different machines. By construction of j?, it is not finished by time t′′0 either.
To create a schedule obeying the condition in (ii), we schedule the whole
instance except for j? according to Part (ii) of the induction hypothesis (for
both Ik−1 and I ′k−1). Using that the latest deadline in I ′k−1 is t0+ε′/2, in this
schedule, machine 3 is continuously idle from t′0 on and machine 1 (and 2)
within [t0 + ε′/2, t0 + ε′). We schedule j? within [t′0, t0 + ε′/2) on machine 3
and afterwards on machine 1, starting it on machine 1 as late as possible.
Since j? has positive initial laxity, this again leaves an idle period [t′′0, t

′′
0 + ε′′)

for ε′′ > 0 on machines 1 and 2. Also, machine 3 is continuously idle from
time t′′0 on, meeting the requirements of (ii). We illustrate this schedule in
Figure 2.3.

We finally note that we have indeed O(2k) jobs in the resulting instance: I2 has a
constant number of jobs, and for Ik we release Ik−1 twice plus at most one additional job,
showing that Ik has O(2k) jobs.

To relate this result to a non-migratory offline solution, we apply the following theo-
rem.

Theorem 2.13 (Kalyanasundaram and Pruhs [KP01]). Any feasible migratory schedule
on m machines can be turned (offline) into a feasible non-migratory schedule on 6m− 5
machines.

Indeed, the theorem now follows easily.

Proof of Theorem 2.12. Consider some non-migratory online algorithm A. Using
Lemma 2.13, there is an instance consisting of n jobs and having a migratory sched-
ule on 3 machines such that A requires Ω(log n) jobs to schedule it. By Lemma 2.13,
this instance has a non-migratory schedule on 6 · 3 − 5 = 13 machines, implying the
theorem.

2.7.2 Instances Consisting of Loose Jobs

In this section, we consider instances consisting of loose jobs, i.e., jobs j with pj ≤
α · (dj − rj) for arbitrary constant α ∈ (0, 1). The main theorem of this section is the
following.
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Theorem 2.14. For any fixed α ∈ (0, 1), there is a non-migratory O(m)-machines algo-
rithm for instances consisting only of α-loose jobs.

The key to proving the result is a reduction to a speed-augmentation problem on m
machines.

Theorem 2.15. Suppose there is a non-migratory online algorithm A that producues
feasible schedules on f(m) speed-s machines for general instances. Then, for every
fixed α ∈ (0, 1/s), there is a non-migratory online f(O(m))-machines (unit-speed) al-
gorithm.

The proof idea is as follows. To schedule α-loose jobs (for α < 1/s) without additional
speed, we increase the processing time of each job from the input instance by a factor of s.
We denote the set of jobs with modified processing times by Js. Note that the resulting
instance is feasible in the sense that pj ≤ dj − rj for all jobs j. We apply the speed-s
algorithm to this instance. Whenever a job is scheduled in the resulting schedule, our
algorithm schedules the corresponding job from the original instance on the respective
machine.

To analyze our algorithm, we have to relate the minimum numbers of machines needed
for scheduling the original instance J and for scheduling the instance with increased
processing times Js, respectively. To do so, we introduce two auxiliary job types. For
some γ ∈ (0, 1) and every job j, we define two jobs j/γ , j

.
γ with

I(j/γ) := [rj, dj − γ`j), pj/γ := pj

and I(j.γ) := [rj + γ`j, dj), pj.γ := pj,

that is, we remove a γ-fraction of the laxity from either side of j’s feasible time window.
We further define J/

γ := {j/γ | j ∈ J} and J.
γ := {j.γ | j ∈ J}. The following lemma relates

the number of machines needed for scheduling J to that needed for scheduling J/
γ and J.

γ ,
and it may be of independent interest. To get a cleaner statement, we first consider the
migratory setting. Recall that, by m(S), we denote the minimum number of machines
needed to schedule an instance S.

Lemma 2.14. Consider the migratory setting. For every instance J and γ ∈ (0, 1), we
have

m(J/
γ ) ≤

1

1− γ
·m(J) + 1

and m(J.
γ ) ≤

1

1− γ
·m(J) + 1. (2.10)

Proof. We show the statement for J.
γ , and the proof for J/

γ is symmetric. According to
Theorem 2.1, there exists a finite union of intervals I such that m(J.

γ ) = dC(J.
γ , I)/|I|e.

Without loss of generality, we can assume I = [g1, h1) ∪ · · · ∪ [gk, hk) with hi < gi+1 for
all i = 1, . . . , k − 1. To derive the relationship between m(J.

γ ) and m(J), we expand I
to a superset (and also finite union of intervals) ex(I) such that | ex(I)| = |I|/(1 − γ).
We will show for each job j ∈ J with C(j.γ , I) > 0 that C(j, ex(I)) ≥ C(j.γ , I). This will
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imply

m(J.
γ )− 1 ≤

C(J.
γ , I)

|I|
=

∑
j∈J C(j.γ , I)

|I|

≤
∑

j∈J C(j, ex(I))

(1− γ) · | ex(I)|
=

1

1− γ
· C(J, ex(I))

| ex(I)|

≤ 1

1− γ
·m(J),

where we use the other direction of Theorem 2.1 in the last step. Hence, Inequality (2.10)
will follow.

The expanding works as follows. Given I as above, we expand each of the inter-
vals [gi, hi) to [g′i, hi) with g′i ≤ gi and obtain ex(I) := [g′1, h1) ∪ · · · ∪ [g′k, hk). We start
at the rightmost interval [g′k, hk) and try to set g′k := hk − (hk − gk)/(1 − γ). If this
would, however, produce an overlap between [g′k, hk) and [gk−1, hk−1), we set g′k := hk−1

as well as δk := hk−1− (hk− (hk−gk)/(1−γ)) and try to additionally expand [gk−1, hk−1)
by δk instead. After that, we continue this procedure until i = 1. More formally, we
let h0 = −∞ as well as δk+1 = 0, and for all i = k, . . . , 1 we set

g′i := max

{
hi−1, hi −

(
hi − gi
1− γ

+ δi−1

)}

and δi := max

⎧⎨⎩0, hi−1 −

(
hi −

(
hi − gi
1− γ

+ δi−1

))⎫⎬⎭ .

Obviously, indeed | ex(I)| = |I|/(1− γ).
We show C(j, ex(I)) ≥ C(j.γ , I) for all j ∈ J with C(j.γ , I) > 0. By the definition of

contribution, we have

C(j, ex(I)) = max{0, | ex(I) ∩ I(j)| − `j}
and C(j.γ , I) = max{0, |I ∩ I(j.γ)| − `j.γ}

= max{0, |I ∩ I(j.γ)| − (1− γ) · `j},

that is, we can restrict to showing | ex(I)∩ I(j)| ≥ |I ∩ I(j.γ)|+γ`j. Next, we define I ′ :=
I ∩ I(j.γ). Using the fact that I ′ ⊆ I implies ex(I ′) ⊆ ex(I), it even suffices to show

| ex(I ′) ∩ I(j)| ≥ |I ′|+ γ`j. (2.11)

To see this, we distinguish two cases:

Case 1: The leftmost point of ex(I ′) is left of rj. Since the leftmost point of I ′ was
not left of rj + γ`j, [rj, rj + γ`j) is a subset of ex(I ′). Consequently, we
have | ex(I ′) ∩ I(j)| − |I ′ ∩ I(j)| ≥ γ`j. Using |I ′ ∩ I(j)| = |I ′|, the claim
follows.

Case 2: The leftmost point of ex(I ′) is not left of rj. By the way our expanding
works, we have that ex(I ′) takes up a length of |I ′∩ I(j)|/(1−γ) within I(j).
Plugging |I ′| > `j.γ = (1− γ) · `j, which follows since C(j.γ , I) > 0, into that,
we also obtain | ex(I ′)∩I(j)|− |I ′∩I(j)| ≥ γ`j. Again using |I ′∩I(j)| = |I ′|,
the claim follows.
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This completes the proof.

We apply this lemma to get a similar statement about jobs with an in increased
processing time, Js, which might be of independent interest. Formally, for j ∈ J , let js

denote a copy of job j with a processing time increased by a factor s, and Js := {js | j ∈
J}. The following lemma holds for both the migratory and non-migratory setting.

Lemma 2.15. Consider the migratory or the non-migratory setting and let s ≥ 1.
For every instance J consisting only of α-loose jobs for some fixed α ∈ (0, 1/s), we
have m(Js) = O(m(J)).

Proof. First consider the migratory setting. We investigate the number of machines
required to schedule Js: To do so, we define

δ :=
1− αs

dse
· (dj − rj).

Note that `js ≥ (1− αs) · (dj − rj) > 0 and thus

0 < δ ≤ `js

dse
. (2.12)

Further, for every job j ∈ J , we define dse different jobs j1, . . . , jdse with

I(ji) := [rj + (i− 1) · (pj + δ), rj + i · (pj + δ)),

pji := pj

for all i < dse
and I(jdse) := [rj + (dse − 1) · (pj + δ), rj + s · pj + dseδ)),

pjdse := (s− dse+ 1) · pj.

Furthermore let Ji := {ji | j ∈ J} for all i. Now note that, for showing m(Js) = O(m(J)),
it suffices to show that m(Ji) = O(m(J)) for all i. This is because we have I(ji) ⊆ I(js)
for all i, I(ji)∩ I(ji′) 6= ∅ for all i, i′, and

∑
i pji = pjs , which can be easily checked. Thus

any feasible schedule of J1, . . . , Jdse on O(m(J)) machines each can be transformed into
a feasible schedule of Js on dse · O(m(J)) = O(m(J)) by scheduling each js whenever
any ji is scheduled in the respective schedule.

We show that indeed m(Ji) = O(m(J)) for all i. We first show this for i < dse: Note
that, using Inequality 2.12, we have `ji = δ = β`j > 0 for all j ∈ J and constant β > 0.
Thus, by applying Lemma 2.14 up to two times to shorten the time window from both
sides, m(Ji) = O(m(J)). For i = dse, first note that the above reasoning also works
for J ′

dse := {j′dse | j ∈ J} with

I(j′dse) := [rj + (s− 1) · pj + (dse − 1) · δ, rj + s · pj + dseδ)),
pj′dse := pj,

that is, m(J ′
dse) = O(m(J)). Now clearly any feasible schedule of J ′

dse can be transformed
into one of Jdse without increasing the number of machines by scheduling each jdse when-
ever j′dse is scheduled unless jdse is finished, implying m(Jdse) ≤ m(J ′

dse) = O(m(J)).
To get the result for the non-migratory setting, we apply Theorem 2.13, increasing

the constant hidden by the O notation.
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We now apply the preceding lemma in the proof of Theorem 2.15.

Proof of Theorem 2.15. To schedule J only having α-loose jobs with constant α < 1/s,
we first transform J into Js. Using Lemma 2.15, by applying A to Js, we obtain a non-
migratory schedule of Js on f(m(Js)) = f(O(m(J))) speed-s processors. We transform
this schedule into a non-migratory schedule of J on f(O(m(J))) speed-1 machines by
replacing each js by j for all j, which does not violate feasibility by the definition of js.

We are now ready to utilize an algorithm due to Chan, Lam, and To [CLT05] for
which they prove an upper bound on the required number of machines that scales with
the given speed – even for speeds arbitrarily close to 1.

Theorem 2.16 (Chan, Lam, and To [CLT05]). For every ε > 0, there is a non-migratory
online algorithm that produces feasible schedules on d(1+1/ε)2e speed-(1+ ε)2 machines.

Indeed, it suffices to plug Theorem 2.16 as a black box into Theorem 2.15 to obtain
Theorem 2.14.

2.7.3 Laminar Instances

In this section, we consider laminar instances. Recall that this means that, for any two
jobs j, j′ with I(j) ∩ I(j′) 6= ∅, it holds that I(j) ⊆ I(j′) or I(j′) ⊇ I(j). We prove the
following result.

Theorem 2.17. There exists a non-migratory O(m logm)-machines algorithm for lam-
inar instances.

It suffices to consider α-tight jobs for some fixed α ∈ (0, 1). The remaining α-loose
jobs are scheduled on a separate set of O(m) machines as described in the previous
subsection (Theorem 2.14).

Job Assignment. We open m′ machines and will later see that we can choose m′ =
O(m logm). At every release date, the arriving jobs are immediately assigned to their
machines in order of job indices (i.e., in decreasing order of deadlines). Each job is
assigned to exactly one machine, that is, we obtain a non-migratory schedule. Consider
some job j. If there is a machine that has no job j′ with I(j) ∩ I(j′) 6= ∅ assigned to it,
we assign j to any such machine. Otherwise we execute the following procedure.

Consider any machine and the jobs j′ assigned to it with I(j)∩I(j′) 6= ∅. Based on the
laminarity of the instance and the order in which we assign jobs, all these j′ dominate j
and are ordered linearly by ≺. Consequently, there exists a unique ≺-minimal job among
them, which is said to be currently responsible on the considered machine. Consider the
set of currently responsible jobs of all machines. Again, by laminarity of the instance,
these jobs form a chain c1(j) ≺ · · · ≺ cm′(j). We call ci(j) the i-th candidate of j.

We now want to select a candidate ci(j) and assign j to the same machine as ci(j).
Consider the laxity of a candidate, which we view (as in Subsection 2.6.2) budget for
delaying the jobs. Since I(j) ⊆ I(ci(j)), it is a necessary criterion that the budget of ci(j)
suffices to schedule both j and the jobs j′ with I(j′) ⊆ I(ci(j)) that have been assigned to
the same machine earlier. Intuitively, we would also like to minimize the candidate that
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we pick w.r.t. ≺ so as to save the budget of jobs with larger time windows. However, it
fails to greedily assign jobs to the machine of their ≺-minimal candidate that fulfills the
above necessary criterion. This can be shown using the instance given in Theorem 2.7.

Instead we use a more sophisticated balancing scheme similar to that used for the
algorithm in Section 2.6.2: We partition the budget of each candidate into m′ equally-sized
(sub-)budgets. For every i, we only consider the i-th budget of ci(j) when assigning j.
When picking ci(j) and assigning j to the same machine, we charge not just pj but |I(j)| ≥
pj to the i-th budget of ci(j). This policy ensures that, as long as no budget becomes
negative, there is a feasible schedule under the current assignment (Lemma 2.16).

We make this more formal: We call a job j′ that has been assigned to the machine of
its h-th candidate ch(j

′) the h-th user of ch(j′). We denote the set of all h-th users of a
(candidate) job j′ by Uh(j

′), for all h. Note that at any time the h-th budget of j′ has
been charged exactly |I(j′′)| for all its users j′′. To assign j, we select the smallest i such
that the i-th budget of ci(j) can still pay for |I(j)|, that is,

`ci(j)
m′ −

∑
j′∈Ui(ci(j))

|I(j′)| ≥ |I(j)|. (2.13)

If we find such an i, we assign j to ci(j) (and thereby add j to Ui(ci(j)) and charge |I(j)|
to the i-th budget of ci(j)). If we do not find such an i, the assignment of j fails. In the
analysis, we will show that the latter case will never happen if m′ is chosen large enough.

Scheduling. At any time and on each machine, we process an arbitrary unfinished job
assigned to it with minimum deadline. It will later turn out (Lemma 2.16) that there is
always a unique such job.

We first show that our algorithm obtains a feasible schedule if no job assignment has
failed. Then we give a proof of the fact that the job assignment never fails on instances
that admit a feasible schedule. As a byproduct, we get a simplification of our scheduling
rule.

Lemma 2.16. Suppose the job assignment does not fail for any job. We have the following
two properties.

(i) Our algorithm produces a feasible schedule.

(ii) At any time and on each machine, there are no two unfinished jobs with the same
deadline.

Proof. Consider some machine. We first show (ii) by induction on the jobs assigned
to this machine in order of their indices. The induction base is clear. So assume the
statement holds until some job j gets assigned to the considered machine.

The statement is obviously fulfilled if no other unfinished job on the considered ma-
chine has deadline dj. So suppose j? with dj? = dj exists. We note that then the
candidate j′ of j must (also) have deadline dj: Otherwise, using the laminarity of the
instance, we have dj? < dj′ and thus j′ � j? and j′ cannot be the ≺-minimal job whose
interval contains rj. Since j is assigned to the machine of its candidate j′, one sub-budget
and thus the total budget of j′ must be at least |I(j)| right before j is assigned. Consider
the state of j′ and its users at this time. Using Part (ii) of the induction hypothesis, j′
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was so far only preempted at some time t when there was a user j′′ of it with t ∈ I(j′′).
Thus, it was processed for at least

(
|I(j′)| − (dj′ − rj)

)
−

m′∑
i=1

|I(Ui(j
′))|

≥
(
|I(j′)| − (dj′ − rj)

)
−
(
`j′ − |I(j)|

)
=|I(j′)| − `j′ = pj′ ,

using dj = dj′ in the second step. Hence j′ is finished at time rj, a contradiction.
To see (i), consider some job j and note that, by applying (ii), whenever it is preempted

at some time t, there must be a user j′ of j with t ∈ I(j′). According to Inequality (2.13), j
is thus preempted for no longer than

m′∑
i=1

|I(Ui(j))| ≤
m′∑
i=1

∑
j′∈Ui(j)

|I(j′)| ≤ m′ · `j
m′ = `j.

Therefore, j can be processed for pj time units.

It remains to show that the job assignment never fails for some m′ = O(m logm).
Similar to our arguments in Subsections 2.6.2 and 2.6.3, we will assume that our algorithm
fails, and we will select a set of jobs and a set of time points, which will be shown to form
a critical pair, allowing us to apply Theorem 2.2. We initialize Gm′ := {j?}. Given Gi,
we construct Fi and Gi−1 in the following way. First, Fi is defined to be the set of all ≺-
maximal i-th candidates of jobs in Gi. Subsequently, Gi−1 is constructed by adding all
the i-th users of jobs in Fi to Gi. Formally,

Fi := M≺
(
{ci(j) | j ∈ Gi}

)
and Gi−1 := Gi ∪

⋃
j∈Fi

Ui(j),

where M≺ is the operator that picks out the ≺-maximal elements from a set
of jobs: M≺(S) := {j ∈ S | @j′ : j ≺ j′}. After m′ such iterations, that is,
when G0, F1, . . . , Fm′ have been computed, we set F0 := M≺(G0).

We define
F := F0 ∪ F1 ∪ · · · ∪ Fm′ and T :=

⋃
j∈F0

I(j),

where we call (F, T ) a failure pair. As before, we show that . But first we establish
some structural properties of (F, T ) that will be useful later. Towards this, we define the
following notation. For two job sets S1 and S2, we write S1 ≺ S2 if, for each j1 ∈ S1,
there is a j2 ∈ S2 with j1 ≺ j2.

Lemma 2.17. For any failure pair (F, T ), we have the following structural properties:

(i) We have F0 ≺ · · · ≺ Fm′.

(ii) The sets F0, . . . , Fm′ are pairwise disjoint.
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Proof. To see (i), we define Ci := {ci(j) | j ∈ Gi}, for every 1 ≤ i ≤ m′, and C0 := G0.
We first show Ci−1 ≺ Ci for every 1 ≤ i ≤ m′. For i = 1, this directly follows from the
construction. Consider 2 ≤ i ≤ m′. Let j be an arbitrary job in Ci−1, which is then
an (i − 1)-th candidate of some job in Gi−1, say, job j′. According to the construction,
we have j′ ∈ Gi, or j′ is the i-th user of some job in Fi ⊆ Ci. In both cases, Ci contains
the i-th candidate of job j′, which dominates job j. Hence, Ci−1 ≺ Ci. Since Fi−1 and Fi

are obtained from Ci−1 and Ci only by deleting dominated jobs, Fi−1 ≺ Fi follows.
Consider property (ii) and suppose there is some j ∈ Fi ∩ Fi′ for some i < i′. Then,

by (i), there is also a job j′ ∈ Fi′ with j ≺ j′, contradicting the fact that Fi′ only
contains ≺-maximal elements.

We are ready to show that (F, T ) is indeed a critical pair.

Lemma 2.18. Any failure pair (F, T ) is a (µ, β)-critical pair for µ = m′, β = 1/m′.

Proof of Lemma 2.18. We first consider Property (i) of a (µ, β)-critical pair. Given
Lemma 2.17, it is obvious that every t ∈ I(j) for j ∈ F0 is covered by at least m′

distinct jobs.
Concerning Property (ii) of a (µ, β)-critical pair, we have

T =
⋃
j∈F0

I(j) =
⋃

j∈M≺(G0)

I(j) =
⋃
j∈G0

I(j)

according to the definition of T . Furthermore, G0 contains all the the i-th users of jobs
in Fi, hence |T ∩ I(j)| ≥ `j/m

′ for any j ∈ Fi.

We now use Lemma 2.18 and Corollary 2.1 to get an upper bound on m′.

Proof of Theorem 2.17. We show that, for a sufficiently large constant c and m′ =
cm logm, our algorithm always produces feasible schedules. According to Lemma 2.16, it
suffices to show that the job assignment procedure never fails. Suppose it does fail. Then
we derive the witness set (F, T ), which is a (m′, 1/m′)-critical pair (G, T ) by Lemma 2.18.
Using Corollary 2.1 and the fact that every feasible schedule in the non-migratory set-
ting is also a feasible schedule in the migratory setting, we get m = Ω

(
µ/log 1/β

)
=

Ω(m′/ logm′), which is a contradiction if m′ = cm logm for sufficiently large c, that is,
for some m′ = O(m logm) the algorithm never fails and thus always produces feasible
schedules.

2.7.4 Agreeable Instances

In this section, we consider agreeable instances. Recall that then rj < rj′ implies dj ≤ dj′
for any two jobs j, j′. We derive an online algorithm that only uses O(m) machines. In
fact, our algorithm is even non-preemptive, even though we can compare to a preemptive
optimum.

Theorem 2.18. In the non-migratory setting, there is a non-preemptive O(m)-machines
algorithm for agreeable instances.
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The idea is to again treat α-loose and -tight jobs separately for fixed α ∈ (0, 1). To
obtain a non-migratory (but not necessarily non-preemptive) algorithm for α-loose jobs,
note that we could simply use Theorem 2.15. It is, however, easy to observe that EDF
(with suitable tie breaking) never migrates jobs and also never preempts them. Then the
following is a direct corollary from Theorem 2.5.

Corollary 2.2. Let α ∈ (0, 1). In the migratory setting, EDF is a non-preemptive (m/(1−
α)2)-machines algorithm for α-loose jobs.

Consider α-tight jobs. We use the following simple algorithm MediumFit: Any job j
runs exactly in the interval [rj + `j/2, dj − `j/2), independently of all other jobs. Note
that this algorithm is meaningful in the sense that running j in [rj + `j, dj) or [rj, dj− `j)
does not yield a schedule on O(m) machines.

The analysis MediumFit works via a load argument.

Lemma 2.19. Let α ∈ (0, 1). MediumFit is an online algorithm that produces a non-
preemptive solution on 16m/α machines for any agreeable instance that consists only
of α-tight jobs.

Proof. Consider an arbitrary time t and all jobs j′ that are run by MediumFit at this time,
among which we let j be a job with minimum laxity. We estimate their contributions to
the interval(s)

I = [rj − 2`j, rj + 2`j) ∪ [dj − 2`j, dj + 2`j),

which has a total length of at most 8`j. Distinguish two cases for each j′ that is run at t.

Case 1: We have |I(j′)| ≥ 2`j. As I(j′) contains rj or dj, we have |I ∩ I(j′)| ≥ 2`j.
Given that `j′ ≤ `j, j′ contributes at least 2`j − `j′ ≥ `j to I.

Case 2: We have |I(j′)| < 2`j. As a consequence I(j′) ⊆ I. Observe that |I(j′)| ≥
`j/2 holds because both j and j′ are run at time t by MediumFit. As j′ is
α-tight, its contribution to I is at least α`j/2.

Let n1 and n2 be the number of jobs corresponding to the above two cases, respectively.
Then the contribution of the n1 + n2 jobs to I is at least

(n1 + αn2/2) · `j ≥ (n1 + n2) · α`j/2.

Using Theorem 2.1, the total contribution is upper bounded by m|I| ≤ 8m`j, imply-
ing n1 + n2 ≤ 16m/α.

Corollary 2.2 and Lemma 2.19 imply a non-preemptive solution on m/(1−α)2+16m/α
machines, implying Theorem 2.18. We remark that the latter expression attains its
minimum at approximately 32.70 ·m for α ≈ 0.63.

45



2.8 Conclusion and Open Problems
Whereas we have made significant progress in this chapter, it remains one of the most
important open problems in online scheduling [Pru10] to close the gap for the online ma-
chine requirement in the migratory setting: We could prove an upper bound of O(logm)
on the factor by which the number of machines has to be augmented online, which is
the first factor that only depends on m. The best known lower bound on this factor is,
however, only a constant. Towards solving this problem, a promising direction would be
trying to come up with a tighter analysis of our O(m logm)-machines algorithm; indeed,
it has not been ruled out that it is in fact an O(m)-machines algorithm.

For the non-migratory setting, we have settled the asymptotical behavior of the on-
line machine requirement terms of m for the general case and the considered special
cases, except for the laminar one. Closing the gap for this special case, which is again
between O(m logm) and Ω(m), is also an interesting open problem for future research.

The focus of this chapter was not on exact guarantees but on asymptotical behavior.
Especially once the gap for the migratory setting has been reduced to a constant, it will
be worth studying exact bounds. Indeed currently, even though we have an O(m logm)-
machines algorithm, this algorithm requires 261 machines when m = 2. Quite remarkably,
however, there is no lower bound that shows that 3 machines are not sufficient. In fact,
for speed augmentation, which will be the topic of the following chapter, the existence of
a speed-2 algorithm is rather obvious, and we focus on reducing this constant.
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Chapter 3

Online Deadline Scheduling with Speed
Augmentation

Bibliographic information. The lower bound presented in
Subsection 3.5.2 has been announced in an erratum [AGM15],
and a simpler form of it was sketchted there. The other results
presented in this section are unpublished.

This section deals with the variant of the problem from Chapter 2 in which we augment
the resources that the online algorithm uses by additional speed instead of additional
machines, as motivated in Section 1.1. We formally introduce the problem in Section 3.1.
We name related and new results in Sections 3.2 and 3.3, respectively. Then we consider
known and new algorithms in Sections 3.4 and 3.5. This leaves some open problems for
Section 3.6.

3.1 Preliminaries

We start by defining the speed-augmentation problem that was introduced by Phillips et
al. [PSTW02]. However, we will use a slightly more precise formulation of schedules than
in both the literature and Chapter 2 as we wish to allow more elegant descriptions of the
algorithms in this chapter – in particular, we would like to avoid the need for round-robin
schedules so as to, for instance, run a job at unit speed on a speed-s machine. Afterwards,
we introduce notions and terms, which will be used throughout the chapter. To make
this chapter self contained, we will repeat a few definitions already used in Chapter 2.

Problem Definition. As in Chapter 2, we are given a number of machines m and
a set of jobs J = {1, . . . , n}. Again, each job has a release date rj ∈ N, a processing
time pj, and a deadline dj. Compared to Chapter 2, the following is a more general
definition of migratory schedules: For s ∈ R+, a speed-s schedule S of J is given by a
family of functions (Sj)j∈J , where, for all j ∈ J , Sj : [rj, dj) → [0, s] is a Lebesgue-
integrable function that defines, for all t ∈ [rj, dj), at which speed S runs j at t. Note
that, indeed, the schedules from Chapter 2 correspond to those S where Sj(t) ∈ {0, 1} for
all j and t ∈ [rj, dj). Allowing fractional values for Sj(t) can be interpreted as allowing
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jobs to share machines, which one would need to simulate by a round-robin schedule if
only 0 and 1 were allowed as values.

For each speed-s schedule S of J , we must have∑
j∈J :t∈[rj ,dj)

Sj(t) ≤ s ·m,

for all times t ∈ R, meaning that a (machine) capacity of only s · m (that is, only m
machines) may be used at each time. Further, for S to be feasible it must hold that∫ dj

rj

Sj(t) dt ≥ pj

for all jobs j ∈ J , that is, each job must receive a processing of pj (be finished) until
its deadline. We assume that the input instance is feasible, that is, that it has a feasible
unit-speed schedule. We note that this definition of feasibility is identical to the one from
Chapter 2.

To measure the quality of algorithms in this chapter, we will consider the speed that
it uses to produce feasible schedules: We call an online algorithm a speed-s algorithm if
it is guaranteed to produce feasible speed-s schedules. We also remark that any schedule
on cm unit-speed machines can be simulated by a speed-c schedule in a trivial way;
a reverse simulation is, however, obviously not possible. We also remark that all the
algorithms considered in this sections produce schedules S such that all functions Sj are
step functions. Future algorithms may, however, use our more general definition.

Further Notation. For some j and t ∈ [rj, dj), we say that j is available at t. At t,
the remaining processing time of a job j at unit speed (its processing volume) is (as
in Chapter 2) denoted by pj(t). For a speed σ ∈ R+ that is potentially different from
the speed that the algorithm uses, the remaining processing time of j on a speed-σ
machine is denoted by pσj (t) := pj(t)/σ. Accordingly, we define besides the standard
laxity `j(t) := dj − rj − pj(t) the σ-laxity of j at t by `σj (t) := dj − rj − pσj (t). This value
can be interpreted as the maximum duration that j can be delayed after t to guarantee
that it meets its deadline when run at speed σ.

Simple Algorithms. In absence of (additional) speed, Earliest Deadline First (EDF)
and Least Laxity First (LLF) have natural formulations, in which the set of scheduled jobs
is only changed at integer points in time (Section 2.1). In presence of speed, however, a
job may run at a fractional speed, causing it to be finished at a non-integer point in time.
To avoid idleness, one then wishes to pick a currently unscheduled job (if it exists) to be
scheduled on the otherwise idle machine. This is not a big issue for EDF, where processing
does not change the priority order of jobs: At each integer time and at all times when
a job’s processing is finished, EDF picks m unfinished jobs with minimum deadline and
schedules them at full speed on one machine each. For LLF, however, where processing
does affect the priority order of jobs, it would seem unnatural to let the finishing times
of certain jobs steer at which time points the schedule respects the priority order of jobs.
Later in this chapter (Subsection 3.4.1), we will give a natural formulation of LLF that
fulfills natural properties at all points in time.
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3.2 Related Work

In addition to the other approaches to overcoming the impossibility result due to Der-
touzos and Mok [DM89] as discussed in Section 2.2, speed augmentation was proposed by
Phillips et al. [PSTW02], who showed that there is no speed-s algorithm for any s < 6/5.
Lam and To [LT99] improved this lower bound later to (1 +

√
2)/2 ≈ 1.207.

Phillips et al. further showed that both EDF and LLF are speed-(2−1/m) algorithms.
We note that there are different variants of LLF (Subsection 3.4.1), but the upper-bound
proofs works for all (reasonable) variants. Both the proofs for EDF and LLF rely on
the same simple load argument. While a simple matching lower bound on the speed
requirement was given for EDF, the largest known lower bound for LLF is the golden ratio
ϕ ≈ 1.618, which is due to Anand, Garg, and Megow [AGM11] and only works for a
certain variant of LLF. The authors also showed a (matching) lower bound of 2− 1/m on
the speed requirement of the algorithm Earliest Deadline until Zero Laxity, which gives
highest priority to zero-laxity jobs and prioritizes the other jobs by their deadlines.

The first improvement upon the guarantee of EDF and LLF was achieved by Lam and
To’s algorithm Full-Reduced (FR) [LT99]. They showed the speed requirement of FR to be
exactly 2− 2/(m+1), which is smaller than 2− 1/m for each fixed m but asymptotically
identical. This algorithm tries to meet the finishing times of the jobs in an estimate of
the optimum that can be constructed online and is called Yardstick (YS, Subsection 3.5).
This estimate (on m unit-speed machines) is obtained by dropping the constraint that a
job may not be parallelized on multiple machines and, at all times, considering the jobs
in order of their deadlines. When a job has received less work than it could possibly have
by being run on a single machine from its released date on (that is, it is underworked),
it gets all available machines; otherwise it only gets a single machine. The algorithm FR
meets the finishing times in YS and, to do so, starts each job in full mode and schedules
the full-mode jobs via EDF. Whenever the processing a job has received is sufficiently far
ahead of that in YS, it goes to reduced mode and, from now on, only requires processing
when it is run in YS.

As an algorithm that only considers the jobs via their YS solution, FR is deadline-
ordered, meaning that it only considers the order of deadlines instead of the actual dead-
line values. There is a lower bound of e/(e − 1) ≈ 1.58 on the speed guarantee of any
deadline-ordered algorithm [LT99]. In fact, Anand, Garg, and Megow [AGM11] defined
the algorithm YS-Stretch (YSS) that is also deadline-ordered and was claimed to be a
speed-e/(e− 1) algorithm. To also meet the finishing times given by YS, the idea was to
“round” the YS solution by distributing the parallelized processing volume of jobs over
larger time intervals so as to handle them without parallelization on speed-s machines.
The claim that YSS is a speed-e/(e − 1) algorithm is, however, wrong [AGM15], as will
be shown in Subsection 3.5.2.

Chan, Lam, and To [CLT05] considered non-migratory algorithms (see Chapter 2
for a definition) but compared their performance to a migratory offline solution. The
upper and lower bounds they obtained on the speed requirement of such a non-migratory
algorithm are 2− 2/(m+ 1) and 3 + 2

√
2 ≈ 5.828, respectively.
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3.3 Contribution and Outline

In this chapter (Subsection 3.5.2), we show that YSS is not a speed-e/(e−1) algorithm as
claimed in [AGM11]. While a simple four-job instance shows that YSS is not a speed-4/3
algorithm for m = 2 as claimed [AGM15], we can show a lower bound of 3/2 in this case
by a more complicated instance (matching the upper bounds for EDF and LLF). Similarly,
we can show a lower bound of 5/3 for m = 3, which then shows that YSS is indeed no
speed-e/(e − 1) ≈ 1.58 algorithm. The results for m = 2, 3 may suggest a lower bound
of 2 − 1/m, which we, however, fail to prove and only conjecture along with an upper
bound of 2− 1/m.

Considering the lower-bound construction for YSS, its main issue may be that it does
not use the entire capacity even if an underworked job does not receive full speed. In
fact, we propose another class of algorithms which try to meet the deadline imposed by
YS (Subsection 3.5.3). Given some algorithm A, the algorithm YS-A (like YSS) schedules
each job exactly as in YS whenever the job is not underworked. Then we use A in a
certain way to distribute the remaining volume of jobs over the machines. We show that
YS-EDF is not a speed-(2 − ε) algorithm for any ε > 0. While YS-LLF may require an
arbitrarily large speed for some variant of LLF, we conjecture that YS-LLF for another
variant of LLF is actually a speed-e/(e− 1) algorithm.

As it is also needed as subroutine for YS-LLF, we rigorously define LLF within the
speed-augmentation model in Subsection 3.4.1. In fact, our algorithm is (in a sense)
the unique algorithm that fulfills natural properties. We extend this formulation to
arbitrary σ-laxities, where we denote the resulting algorithm by LLFσ, and relate it to
variants used in the literature. We then show a lower bound of at least 2 − 1/m for all
these variants (Subsection 3.4.2), matching the upper bound (for reasonable variants)
given in the literature. Quite surprisingly, this also matches the upper bound for the
significantly simpler algorithm EDF. Indeed, we are able to show an upper bound in the
defense of LLF (Subsection 3.4.3): We prove that, for instances with a single release date,
LLF is a unit-speed algorithm, leading us the the conjecture that, for instances with any
fixed number of release dates, LLF is a speed-(2−ε) algorithm for some ε > 0. In contrast,
EDF shows its worst-case behavior already on instances with a single release date.

3.4 Least Laxity First

In this section, we first give our definition of LLF, which is based on natural properties,
and then we relate it to definitions used in the literature (Subsection 3.4.1). Afterwards,
we give a matching lower bound on the speed requirement of LLF that also matches the
speed requirement of EDF (Subsection 3.4.2), but finally we work towards positive results
concerning LLF (Subsection 3.4.3).

3.4.1 A Natural Definition

We parameterize our LLF algorithms with a laxity-speed σ ≥ 1 besides the actual speed s
that it uses for processing jobs. The algorithm LLFσ will prioritize jobs by their σ-laxity.
We propose the following natural properties which LLFσ should have:
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Algorithm 3.1: Least σ-Laxity First (LLFσ)
Input: instance J , a speed s, and laxity-speed σ
Output: the LLFσ schedule of J

1 for all times t do
2 (j1, . . . , jk)← jobs j ∈ J with t ∈ [rj, dj) and pj(t) > 0, asc. ordered by `σj (t)

if k ≤ m then
3 Sj(t)← s, for all j = j1, . . . , jk

else
4 M ←

{
j ∈ {j1, . . . jk} | `σj (t) = `σjm(t)

}
//possibly partial processing

5 F ← {j1, . . . , jm} \M //full processing
6 Sj(t)← s, for all j ∈ F

7 Sj(t)← s · |M |
m−|F | , for all j ∈M

end
end

8 return S

(i) At all times, LLFσ uses as much machine capacity as possible (to schedule unfinished
jobs).

(ii) At all times t and for all jobs j, j′ with `σj (t) < `σj′(t), LLFσ only schedules j′ at
time t if it schedules j at speed s at t.

We describe our algorithm LLFσ that has all of the above properties. Consider any
point in time. LLFσ considers the currently unfinished available jobs. Let j1, . . . , jk be
these jobs in increasing order of σ-laxity. If k ≤ m, each of these jobs is scheduled at
speed s. Otherwise, all jobs that have a smaller σ-laxity than jm, say, m′ < m jobs, are
run at speed s. All jobs that have the same laxity as jm equally share the m−m′ remaining
machines, meaning their laxity is kept equal. We give a formal listing as Algorithm 3.1.

It is easy to verify that LLFσ indeed has Properties (i) and (ii). We note that this
definition is unique, up to, for instance, scheduling slightly differently for a set of time
points of measure zero. We will show that every algorithm having Properties (i) and (ii)
processes each job in each interval exactly as much as LLFσ. Formally, we show the
following result.

Theorem 3.1. Consider some instance J , and let S be the schedule of J computed by
LLFσ. Furthermore, let A be another algorithm that has Properties (i) and (ii), and let S ′

be the schedule of J it computes. Then, for every interval [a, b] and job j, it must hold
that ∫ b

a

Sj(t) dt =

∫ b

a

S ′
j(t) dt. (3.1)

The non-trivial part of the proof is to show the statement for a job j that is run
neither at speed s nor 0 by LLFσ. The proof idea is to assume that for an interval [a, b]
Equation (3.1) does not hold, and then to find an interval [a, b′] ( [a, b] such that, at
time b′, a job with a larger laxity than j is run at a higher speed than j by A. We now
give the formal proof.
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Proof. Suppose the contrary of the theorem statement, and let a be the infimum of
all time points such that there is a job j and an a right endpoint b that do not satisfy
Equation (3.1). We can assume (?) w.l.o.g. that, during (a, b], no job reaches its deadline,
is released, or finished by LLFσ or A.

Clearly, if there are at most m unfinished jobs available, Property (i) implies that A
needs to run all of them at speed s. Hence, there are more than m unfinished jobs
available at a in A. By our choice of a and assumption (?), these are exactly the available
unfinished jobs in both A and LLFσ throughout [a, b]. Let j1, . . . , jk with k > m be these
jobs in ascending order of their σ-laxities at a in A (and thus in LLFσ by our choice
of a). Further, let jq, . . . , jq′ with q ≤ m ≤ q′ be all the jobs among them that have the
same σ-laxity as jm.

Due to Property (i), A needs to use the entire machine capacity at a. To be able to use
the capacity for jobs jm, . . . , jk, however, Property (ii) forces A to give speed s to all q−1 <
m jobs j1, . . . , jq−1. So, since Equation (3.1) odes not hold, A must schedule jq, . . . , jq′
differently than LLFσ. That is, there must exist an ε > 0 such that a+ ε ≤ b and

∆ji,ji′
(a+ ε) :=

∫ a+ε

a

S ′
ji
(t) dt−

∫ a+ε

a

S ′
ji′
(t) dt > 0

for some jobs ji, ji′ with i, i′ ∈ {q, . . . , q′}. By continuity of ∆ji,ji′
, there must also be

some ε′ < ε with
∆ji,ji′

(a+ ε′) ∈ (0,∆ji,ji′
(a+ ε)), (3.2)

and, using the definition of ∆ji,ji′
(a+ ε′) as well as linearity of the integral operator,

S ′
ji
(a+ ε′)− S ′

ji′
(a+ ε′) > 0. (3.3)

Now note that Relation (3.2) implies `ji(a + ε′) > `ji′ (a + ε′) in A; hence A, by hav-
ing Property (ii), A must schedule ji′ at speed s if it schedules ji at all, contradicting
Inequality (3.3).

The variants of LLF considered in the two related papers [PSTW02, AGM11] “at any
time” pick m minimum-laxity jobs (w.r.t. 1- and s-laxity, respectively) and schedule them
on one machine each. As Theorem 3.1 shows, however, such an algorithm does not exist
in our continuous-time model while it obviously does in a discrete-time model. Without
making this formal, we note that, indeed as the discretization step goes to zero, such
an algorithm in the limit assigns as much work to every job as LLFσ during every fixed
interval.

We also note that, even though 1-laxity was considered in [PSTW02], their proof that
shows an upper bound of 2− 1/m on the speed requirement of LLF also works for LLFσ

whenever σ ≥ 1. The lower-bound proof in [AGM11], however, is tailored to s-laxity, and
it only shows a lower bound of ϕ ≈ 1.618 on the speed requirement of LLFσ for σ ≥ s;
for σ < s, it is easy to see that the same construction yields a non-trivial but smaller
lower bound.

Another interesting observation is that, for any fixed instance in which no two dead-
lines are the same, the schedule computed by LLFσ for sufficiently large σ is identical to
that computed by EDF. So using the lower-bound result for EDF [PSTW02], it is not
surprising that, for sufficiently large σ, there is a lower bound of 2 − 1/m on the speed
requirement of LLFσ. We are, however, able to show this result even for σ = 1 in the
following subsection.
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3.4.2 A Tight Lower Bound

We give a lower bound on the speed required by LLFσ, matching the upper bound
of 2 − 1/m given in the seminal paper [PSTW02]. Note that the construction has a
structure similar to the construction which we used to show a lower bound on the ma-
chine requirement of LLF for tight jobs (Theorem 2.7). As we are aiming for a matching
lower bound here, however, the present proof requires more exact calculations.

Theorem 3.2. Let s < 2− 1
m

. Then LLFσ is not a speed-s algorithm for any σ ≥ 1.

We first give the following crucial lemma. W.l.o.g. we use arbitrary rational numbers
as job parameters.

Lemma 3.1. Let 2−1/m > s ≥ 1, σ ≥ 1, and ε ∈ (0, 1). Then there exists an instance Jε
and a time t? with the following properties:

(i) There exists a feasible schedule S? of Jε on unit-speed machines with pj′(t
?) = 0,

for all j′ ∈ Jε.

(ii) At time t? in LLFσ given speed s, there is exactly one unfinished job j ∈ Jε with rj =
0, dj > t?, and

`j(t
?)

dj − t?
= ε.

Further, j is run by LLFσ only if it is currently the only unfinished job.

Proof. In this proof, we show the result for LLF1, but it can be easily seen that the LLF1

and the LLFσ schedules of our instance Jε are identical for all σ > 1. In the following,
we simply use LLF as a symbol for LLF1. The idea is that j runs uninterruptedly on one
machine from its release date 0 through t? = pj in the feasible schedule S?. In LLF, on
the other hand, we ensure that j is indeed only run if it is the only available unfinished
job. To this end, the only jobs other than j that we release are jobs of the following
type. At any time t < t? when j is the only unfinished job in S?, we release m identical
jobs j′ with dj′ = min{t+ `j(t), t

?}, which we also call a wave of jobs. Since d′j = t+ `j(t)
implies `j′(t

′) < `j(t
′) for all t′ ∈ [rj′ , dj′), the LLF schedule has the desired property.

It remains to set the processing times of the jobs appropriately. For any j′ 6= j, we
set pj′ = (dj′ − rj′) · (m − 1)/m. Observe that this relation of rj′ , pj′ , and dj′ makes
sure that all the j′ from a certain wave can be finished in S? at time dj′ by letting them
equally share the m − 1 available machines. For any t′ ∈ [0, pj] at which a wave gets
finished in S?, we can now compute the laxity of job j in LLF at time t′:

`j(t
′) = dj − pj(t

′)− t′ = dj −

(
pj − s ·

(
t′ − m− 1

ms
· t′
))
− t′

= dj − pj −
(
2− 1

m
− s

)
· t′. (3.4)

As we have s < 2−1/m, the laxity of j is thus decreased by every wave. For the lemma to
hold, it suffices to make sure that `j(pj)/(dj−pj) = ε or, equivalently, using Equation 3.4,
that

dj − pj −
(
2− 1

m
− s

)
· pj = ε · (dj − pj).
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Solving for pj yields

pj =
1− ε

1− ε+
(
2− 1

m
− s
) · dj,

which is in the interval (0, dj) by s < 2− 1/m.

This lemma can be used directly to get a lower bound of 1 + 1/m by additionally
releasing m sufficiently long zero-laxity jobs at the time when all jobs of Jε could be
finished in a feasible solution. To increase this bound to 2 − 1/m, we have to apply
the lemma several times to obtain a nested instance with m − 2 copies of the in LLFσ

unfinished job.

Proof of Theorem 3.2. We claim that for every ε > (0, 1) and natural number k ≤ m
there is an instance Jk

ε and a time t? with the following properties:

(i′) There exists a feasible schedule S? of Jk
ε on unit-speed machines with pj′(t

?) = 0,
for all j′ ∈ Jk

ε .

(ii′) At time t? in LLFσ given speed s, there are exactly k unfinished jobs j ∈ Jk
ε with

identical deadline dj > t? such that

`j(t
?)

dj − t?
= ε.

Note that J1
ε = Jε. In the following we will refer to t? from this statement as the

critical moment of Jk
ε and to the corresponding jobs as critical jobs. We prove this claim

inductively using Lemma 3.1: Assume it holds for k ≥ 1. Consider Jε and let j be the
critical job. We define ε′ := pj/dj.

Now Jk+1
ε is built as follows. We release Jk

ε′ at time 0, and let d be the deadline of
its critical jobs. At the critical moment of Jk

ε′ , we release a scaled-down version of Jε
such that d is the deadline of its critical job j. First observe that (i’) follows directly
from Part (i’) of the induction hypothesis and Lemma 3.1 (i). To see (ii’), note that,
due to Part (ii’) of the induction hypothesis, there are k < m copies (w.r.t. σ-laxity and
deadline) of job j at that time in LLFσ. Since LLFσ on Jε runs j only when j is the only
job that is unfinished (Lemma 3.1 (ii)), all of these less than m jobs are treated by LLFσ

in the same way as j. Again using Lemma 3.1 (ii), this shows the claim with the critical
moment of Jk+1

ε being the critical moment of the scaled-down version of Jε.
Now let k > (s − 1) · m/(1 − ε). We add m additional zero-laxity jobs J having

the critical moment of Jk
ε as release date and sharing the deadline with all critical jobs.

By (i’), Jk
ε ∪ J is still feasible on unit-speed machines. On the other hand, LLFσ fails on

it as it has to finish a total work of

k · (1− ε) +m > (s− 1) ·m+m > s ·m

between the release date of the jobs in J and their deadlines, which exceeds the total
available capacity s ·m.

We illustrate the construction in Figure 3.1.

Without a proof, we note that setting σ < 1 requires LLFσ to use arbitrarily high
speed since this may make LLFσ work on jobs that have a very late deadline, even though
there may be jobs that have an early deadline and are very critical.
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LLF:

Opt:

Figure 3.1: An illustration of our lower-bound construction for LLF. In particular, m = 6,
and the shown schedules are the optimal schedule for J3

0.15 and the LLF schedule using
speed 1.6. Different shades of gray indicate different types of jobs and applications of
Lemma 3.1, and the dashed line indicates the deadline of the three critical jobs.

3.4.3 Towards a Parameterized Upper Bound

Despite showing the same lower bound on the speed requirement, the lower-bound con-
struction for LLF shown in the previous section is by far more complicated than the
lower-bound construction for EDF [PSTW02]. In fact, while the lower bound for EDF
only requires a single released date, we can show the following strong upper bound for
LLF.

Theorem 3.3. On instances with a single release date, LLF1 is a unit-speed algorithm.

Before we show this theorem, we note the following fact.

Proposition 3.1. Let j and j′ be two jobs that are available in LLF at the two points in
time t < t′. Then `j(t) ≤ `j′(t) implies `j(t

′) ≤ `j′(t
′).

The theorem can now be shown by a simple load argument.

Proof of Theorem 3.3. Suppose LLF1 fails on an instance J with one release date, which
we assume w.l.o.g. to be 0. Then there exists a time such that there is a negative-laxity
job. Let t? be the infimum of all these times, and let j1, . . . , jk be all the negative-laxity
jobs at time t? in LLF1. We claim k > m: If this was not true, each zero-laxity job would
be run at speed s at time t?, and no job’s laxity would become negative. So j1, . . . , jk
are the only jobs run by LLF1 at time t?. We now claim that each job j ∈ J must have
received at least as much work in any other feasible schedule as in LLF1 until time t?. To
do so, distinguish three cases:

Case 1: The job j was not run by LLF1 before t?. Then our claim clearly holds.
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Case 2: We have dj ≤ t?. Then our claim clearly holds as well.

Case 3: The job j was run by LLF1 before t? and dj > t?. Since k > m and there is
only one release date, there must be an i ∈ {1, . . . , k} such that `j(t) ≤ `ji(t)
at some t < t?. Since dj > t?, Proposition 3.1 can be applies and implies
that `j(t

?) ≤ `ji(t
?), that is, j = ji′ for some i′ ∈ {1, . . . , k}

Since there are more than m jobs available at time t? and 0 is the only release date, LLF
has used a machine capacity of m · t? until time t?. By the above reasoning, any feasible
schedule also has to use this much machine capacity until t?, plus, to net get negative-
laxity jobs, an additional non-negative capacity on job j1, . . . , jk, exceeding the machine
capacity it has until time t?; a contradiction.

It seems plausible that an approximate version of this load argument also works for a
larger number of release dates, leading us to the following conjecture.

Conjecture 3.1. For every k there is an ε > 0 such that LLF1 is a (2−ε)-speed algorithm
for instances with at most k distinct release dates.

3.5 Yardstick-Based Algorithms

In this section, we first (Subsection 3.5.1) define the Yardstick (YS) estimate as introduced
in [LT99]. Then we address two approaches to “rounding” YS to obtain an algorithm with
a speed requirement of smaller than 2 − 2/(m + 1) (that is, FR’s guarantee): While the
first approach (Subsection 3.5.2) is shown to fail, we conjecture that a certain variant of
the second approach (Subsection 3.5.3) yields a best-possible deadline-ordered algorithm.

3.5.1 Deadline-Ordered Algorithms and Yardstick

The YS estimate of the optimum becomes natural in the following setting: We would
like to have an estimate that is deadline-ordered, meaning that it only depends on the
relative order of deadlines instead of their actual values. To be able to meet all deadlines
on m unit-speed machines, we do not actually construct a schedule, where each job is
associated with a function that maps to [0, 1], but we allow functions that map to [0,m].
In other words, we relax the constraint that each job may only be run on one machine at
a time.

Indeed, the following estimate is guaranteed to meet all deadlines: At all times, we
run the unfinished job with the minimum deadline on all available machines. Feasibility
can be seen by a simple load argument. To get a more meaningful estimate, however, we
will only run a job in parallel on multiple machines if we possibly need to catch up on an
optimal schedule: Towards this, we call a job j underworked at t if it has received less
work than it possibly could have (ignoring all other jobs), that is, if pj(t) > pj − (t− rj).

Now, to obtain the YS estimate, we do the following at all times t: We consider
the unfinished jobs in order of their deadlines. If a job j is not underworked at t, j is
scheduled on a single machine; if j is underworked, j is scheduled on all the remaining
machines (not taken by smaller-deadline jobs). We stop going through the jobs whenever
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all machines are filled up, that is, after going through m non-underworked jobs or after
one underworked job was assigned. In [LT99], it is shown also via a simple load argument
that the YS estimate meets all deadlines.

For some time t, we will also consider the estimate YSt that is identical to YS for
times in [t,∞) but only exists from time t on. For a job j, we will use f t

j to denote
its finishing time in YSt (more formally, the supremum of all times when j is processed
in YSt). We will use xt

j to denote the maximum of f t
j and the supremum of all times

when j is underworked in YSt.
Examples of YS estimates will be given in the following subsections in the context of

algorithms that build up on YS.

3.5.2 First Approach to Rounding Yardstick: YSS

We first define the algorithm YSS from [AGM11] and then show the new lower bound on
its speed requirement.

Definition

Suppose we are given speed s. At every release date t, we will recompute the YSS
schedule starting at time t, which we call YSSt in the following. To do so, we compute
the YSt estimate of the instance consisting of all the jobs released up to t. Note that the
processing times of a job j left at t may be different in YS and YSS; by pj(t) we will refer
to the processing time left in YSS.

A preliminary schedule YSSt is computed the following way: For each job j and at
each time when j is not underworked and processed in YSt, that is, during [xt

j, f
t
j ], we

process the job at the same speed as it is scheduled in YSt (that is, at unit speed). The
remaining workload pj(t)− (f t

j − xt
j) is assigned at speed s to the interval [stj, xt

j], where
we define

stj := xt
j −

pj(t)− (f t
j − xt

j)

s
,

that is, the workload is “stretched”. It can be seen quite easily seen [AGM11] that this
procedure never assigns work to times earlier than t.

To obtain the final schedule YSSt, we need to turn the preliminary schedule into one
that has a staircase profile after time t, meaning that the machine capacity it uses never
increases over time. To achieve this, let j1, . . . , jk be the jobs with release date before or
at t, and let YSSt

i for i = 1, . . . , k be the current schedule YSSt of jobs j1, . . . , ji. We will
ensure that YSSt

i has a staircase profile after t for i = 1 up to k. Towards this, let a`i be
the point where there is the `-th step in YSSt

i after time t = ai0, that is, a time when the
machine capacity YSSt

i uses changes (if it exists).
So consider some i such that YSSt

0, . . . ,YSS
t
i−1 all have a staircase profile (after t)

but YSSt
i has not. If we have stji ∈ (aqi−1, a

q+1
i−1 ) for some q, we adjust the processing of ji by

distributing its processing in [stji , a
q+1
i−1 ) uniformly over [aqi−1, a

q+1
i−1 ). Additionally, whenever

there is a q such that more volume in YSSt
i is assigned to [aqi−1, a

q+1
i−1 ) than to [aq−1

i−1 , a
q
i−1),

we move a suitable amount of ji’s processing from [aq+1
i−1 , a

q+2
i−1 ) to [aqi−1, a

q+1
i−1 ) to equalize

the volumes. Note that this procedure terminates, that it produces a unique solution,
and that it never increases the speed that ji is run at to more than s.
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We note that, to prove that YSS is an speed-s algorithm for some s, we have to prove
that it never assigns a workload of more than s ·m to any point in time – YSS intrinsically
meets all deadlines. Quite differently, algorithms like EDF and LLF intrinsically never
assign more work than s ·m to any point in time, but they may not meet all deadlines.

Lower Bounds

We now refute the claim made in [AGM11] that the speed requirement of YS is

1

1− (1− 1
m
)m

,

which is e/(e− 1) ≈ 1.58 in the limit for m→∞.

Theorem 3.4. For m = 2, 3 and every ε > 0, YSS is not a speed-(2− 1
m
− ε) algorithm.

We first describe the lower-bound instance and then give a separate proof for m = 2
and m = 3. We will later choose k appropriately and define the instance Jm,k the
following way. It consists of stretched jobs j1, . . . , jm−1 as well as unstretched jobs, where
the latter ones are further divided into k iterations. It holds that dj1 < · · · < djm−1 and,
furthermore, every unstretched job has a deadline strictly smaller than dj1 . As there will
only be m unfinished unstretched jobs available at any time in the YS estimate of Jm,k,
the order of deadlines of unstretched jobs does not play a role.

All the strechted jobs are released at time 0 and we set

pji = k ·
(

m

m− 1

)i

.

The unstretched jobs from the i-th iteration are released at time i − 1 (that is, the
stretched jobs and the jobs from first iteration are released at the same time). Here, the
first iteration consists of m jobs, m− 1 of which have processing time 1 and one of which
has processing time 2. In each of the following iterations except for the k-th one, the
released jobs are identical to those released in the first iteration, except for one of the
smaller jobs which is missing. In contrast, the k-th and final iteration lacks the longer
job. We name the jobs from the i-th iteration ji,1, ji,2, . . . in increasing order of processing
times. All the jobs are listed in Table 3.1.

First note that the instance is designed in such a way that, after the release of each
iteration except for the last one, the m jobs with the smallest deadlines consist of m −
1 jobs with remaining processing time 1 and another one with remaining processing
time 2. None of these jobs is underworked. After the release of the last iteration, m jobs
with remaining processing time 1 each have the smallest deadlines and they are all not
underworked. Consequently, the stretched jobs are never worked on in YS until time k.
In YSk, by the choice of their processing times, they stop being underworked exactly at
their finishing times. We illustrate the yardstick schedule in Figure 3.2.

Also note that we do not have to argue that our instance is feasible – since YSS is a
deadline-ordered algorithm, we only have to specify the order of deadlines and not the
exact values. Clearly, for each order of deadlines on any instance, there are (very large)
values of these deadlines such that the instance is feasible.

We now analyze the behavior of YSS on Jm,k and first consider the case m = 2.
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Iteration j rj pj

1 j1,1 0 1
...

...
...

j1,m−1 0 1
j1,m 0 2

i ∈ {2, . . . , k − 1} ji,1 i− 1 1
...

...
...

ji,m−2 i− 1 1
ji,m−1 i− 1 2

k jk,1 k − 1 1
...

...
...

jk,m−1 k − 1 1

stretched j1 0 k · m
m−1

...
...

...
jm−1 0 k · ( m

m−1
)m−1

Table 3.1: An overview of the instance Jm,k. The jobs are listed in increasing order of
deadlines.

j1,2

j1,1

j2,2

j2,1

j3,2

j3,1

j4,2

j4,1

j5,2

j5,1

j6,2

j6,1

j1,3

j1,4

j2,3

j3,3

j4,3

j5,3

j6,3

j1 j2 j3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 3.2: A visualization of the YS estimate for instance J4,6. Different shades of gray
indicate different iterations.

Proof of Theorem 3.4 for m = 2. Suppose YSS is using speed s < 3/2 on J2,k where k will
be set later. There is only one stretched job, which we simply call j. By αi for 1 ≤ i ≤ k−1
we will denote the speed at which YSSi−1 (that is, the schedule that is computed after
the release of the i-th iteration) runs j within [i, i+ 1). We claim that there is an i such
that αi = s. We will later see that we can set k = i+ 1 then.

First observe that we have

s0j = x0
j −

pj(i− 1)− (f 0
j − x0

j)

s
= 3− 3

s
< 1, (3.5)

where we use s < 3/2. Thus, the volume s · (s0j − 1) gets evenly distributed over the
interval [0, 1). If the volume scheduled in [0, 1) already exceeds that in [1, 2) (or is equal
to it), we have αi = s. So assume some volume of j gets shifted from [1, 2) to [0, 1) to
make the aggregate volume scheduled in these intervals equal. Clearly, still αi > 1.

So assume that for 2 ≤ i ≤ k − 2, we have αi−1 < s. It will turn out inductively
that αi−1 > 1. Now consider YSSi−1, and note that f i−1

j = f i−2
j and xi−1

j = xi−2
j + 2.
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j1,1

j1,2

j2,1

j3,1

j4,1

j5,1

j6,1

j

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.3: An illustration of the schedule of J2,6 computed by YSS for s = 1.49. The
dashed line indicates the total capacity of 2 · 1.49 = 2.98, which is exceeded (by 0.02)
throughout [5, 6).

This means that the volume that YSSi−1 has to schedule of j within [i − 1, xi−1
j ) =

[i− 1, 2i+1) is the volume that YSSi−2 schedules of j within [i− 2, xi−2
j ) = [i− 2, 2i− 1)

plus 2. Since YSSi−1 can schedule as much volume of j in [i + 1, 2i − 1) as YSSi−2 and
a volume of 2s of j in [2i − 1, 2i + 1), we get that YSSi−1 has to schedule a volume
of αi−1 + s+ 2− 2s within [i− 1, i+ 1). By αi−1 > 1 and s < 3/2, this volume is larger
than s, implying si−1

j < 1. So the volume s·(si−1
j −1) gets evenly distributed over [i−1, i).

If the volume scheduled in [i−1, i) now exceeds (or is equal to) that scheduled in [i, i+1),
we have αi = s. Otherwise the volume

αi−1 + s+ 2− 2s

gets distributed over [i−1, i+1) so as to equalize the aggregate volume scheduled in [i−1, i)
and [i, i+ 1), meaning

αi = 1 +
αi−1 + s+ 2− 2s− 1

2
=

αi−1 + 3− s

2
,

approaching 3− s > s, so we must have αi = s for some i. We then set k = i+ 1.
Now consider YSSk−1, and note that fk−1

j = xk−1
j = xk−2

j + 1 = 2k, meaning that the
volume of j that YSSk−1 has to schedule within [k − 1, 2k) is the volume that YSSk−2

schedules of j within [k − 1, 2k − 1) plus 1. Notice that both YSSk−1 and YSSk−2 run j
at speed s in [k, 2k − 1), and YSSk−1 also runs j at speed s in [2k − 1, 2k), meaning
that YSSk−1 schedules j at speed αk−1 + 1− s = 1 in [k − 1, k). Including the volume of
jobs jk−1,1 and jk,1, the total volume that YSSk−1 now schedules within [k−1, k) is 3 > 2s.

We give an illustration in Figure 3.3.

The proof for m = 3 is slightly more complicated as there are two stretched jobs j1
and j2.

Proof of Theorem 3.4 for m = 3. Consider YSS using speed s < 5/3 on J3,k, where k will
be set later. First note that, in YSSi for 1 < i < k, j1 is scheduled at speed (3 − s)/2
throughout the interval [i, i + 1) and at speed s throughout the interval [i + 1, i + 2).
So the analysis will be focussed on how j2 is scheduled. Similar to the case m = 2,
for k/2 < i ≤ k − 2 define αi to be the speed at which YSSi−1 runs j2 in [i, i + 1). We
claim that there is an i such that αi = s. Then we will set k = i+ 1.

Note that the argument for m = 3 is still more difficult than the one for m = 2:
Whether or not xi

j2
< f i

j1
holds influences how the release of another iteration changes
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the processing of j2. Note that, however, we have f i
j1
= 3k/2, xi

j1
= 3i/2 + 2, and xi

j2
=

2xi
j1
= 3i+ 4 for all i with xi

j2
≤ f i

j1
, meaning that we have xi

j2
≥ f i

j1
for i ≥ k/2.

Also, YSSi may not schedule j2 within [i, i + 1) at all. We argue that this can only
happen for a constant number of iterations. Suppose that YSSi+1 for 1 ≤ i ≤ k − 2 does
not schedule j2 in [i + 1, i + 2). Then, since xi+1

j2
≥ xi

j2
+ 3/2, YSSi+1 has to schedule a

volume of j2 of at least 3/2·(2−s) > 0 more within [i+2, i+3) than YSSi within [i+1, i+2).
Since j2 can only run at a speed of s, YSSi? has to schedule j2 in [i?, i?+1) for some i? large
enough. It is also easy to see that every YSSi for i? < i ≤ k − 1 schedules j2 in [i, i+ 1).
So suppose k is chosen large enough such that YSSi schedules within j2 within [i, i + 1)
for all k/2 ≤ i ≤ k − 2.

Now assume αi−1 < s for k/2 < i ≤ k − 1. First note that we assume that the
aggregate volumes scheduled by YSSi−2 in [i − 2, i − 1) and [i − 1, i) are identical since
otherwise αi−1 = s. Hence, 3 + (3− s)/2 < 1 + s+ αi−1, which implies

αi−1 >
7

2
− 3s

2
. (3.6)

Further, note that f i−1
j2

= f i−2
j2

and xi−1
j2

= xi−2
j2

+3/2. Using xi−1
j2
≥ f i−1

j1
, this means that

the volume that YSSi−1 has to schedule of j2 within [i−1, xi−1
j2

) is the volume that YSSi−2

schedules of j2 within [i − 2, xi−2
j2

) plus 3/2. Since YSSi−1 can schedule as much volume
of j2 in [i+1, xi−2

j2
) as YSSi−2 and a volume of 3s/2 of j in [xi−2

j2
, xi−1

j2
), we get that YSSi−1

has to schedule a volume of αi−1 + s+ 3/2− 3s/2 within [i− 1, i+ 1).
By Inequality (3.6) and s < 5/3, this volume is larger than s. So the excess of volume

w.r.t. s gets evenly distributed over [i − 1, i). If the volume scheduled in [i − 1, i) now
exceeds (or is equal to) that scheduled in [i, i+1), we have αi = s. Otherwise the volume

αi−1 + s+
3

2
− 3s

2

gets distributed over [i−1, i+1) so as to equalize the aggregate volume scheduled in [i−1, i)
and [i, i+ 1), meaning

αi =
7

2
− 3s

2
+

αi−1 + s+ 3
2
− 3s

2
− 7

2
+ 3s

2

2
=

αi−1 + 5− 2s

2
,

approaching 5− 2s > s, so we must have αi = s for some i. We then set k = i+ 1.
Now consider YSSk−1, and note that fk−1

j = xk−1
j = xk−2

j + 1 for both j ∈ {j1, j2},
meaning that the volume of j that YSSk−1 has to schedule within [k − 1, xk−1

j ) is the
volume that YSSk−2 schedules of j within [k−1, xk−1

j −1) plus 1. Notice that both YSSk−1

and YSSk−2 run j at speed s in [k, xk−1
j −1), and YSSk−1 also runs j at speed s in [xk−1

j −
1, xk−1

j ), meaning that YSSk−1 schedules j at speed αk−1 +1− s = 1 in [k− 1, k). Hence,
each of the jobs j1, j2, jk−1,2, jk,1, and jk,2 contributes a volume of 1 to the interval [k−1, k)
in YSSk−1, implying that the total volume scheduled in this interval is 5 > 3s.

While we are not able to show upper bounds for any m ≥ 2 or lower bounds for m ≥ 4,
experiments have lead us to the following conjecture.
Conjecture 3.2. YSS requires a speed of exactly 2− 1

m
for every m.

Further note that this conjecture implies that YSS improves upon neither EDF nor LLF
on any number of machines [PSTW02], meaning that, for the considered problem, the
best known algorithm to date is FR [LT99].
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3.5.3 Second Approach to Rounding YS: YS-A

As can be seen from Figure 3.3, YSS leaves machine capacity unused even at times when
an underworked job does not receive speed s. Hence, it is a natural question if forcing
YSS to use this unused capacity in a natural way does yield a speed-e/(e− 1) algorithm.
To do so, we take the following approach. At each release date t, our algorithm YS-A also
computes the YS estimate YSt. Like YSS, the schedule YS-At, which YS-A uses from t
on if no more jobs are released, schedules a job j exactly as in YSt whenever it is not
underworked. The remaining processing volume of j in YS-A at t is transferred to a new
job j′ whose deadline is xt

j. We then apply a (preferably busy) algorithm A to schedule
the set of new jobs on the machine capacity that is not used by the non-underworked
parts of jobs. In the following we discuss using EDF, LLF1, and LLFs, whose definitions
we need to slightly extend so as to handle machine capacity that varies over time (at
finitely many points).

YS-EDF

The definition of EDF for varying machine capacity is straightforward: At time 0, at all
times when a job gets released or finished, and whenever the machine capacity changes,
we recompute: If c is the current machine capacity and there are at most dc/se unfinished
jobs available, each of them is scheduled at speed s. Otherwise, let j1, . . . jdc/se be the dc/se
unfinished jobs with minimum deadline. Then j1, . . . jbc/sc are run at speed s each. If the
remaining capacity c/s− bc/sc is strictly positive, jdc/se is run at this speed.

Unfortunately, in the combination with YS, EDF (at least asymptotically) does not
require less speed than when used separately.

Theorem 3.5. YS-EDF is not a speed-(2− ε) algorithm for any ε.

Proof. We describe an instance for arbitrary m and will later set m so that YS-EDF using
speed 2 − ε fails on this instance. All jobs are released at time 0. The m jobs with
earliest deadline have processing time 1. The jobs with the next larger deadlines have a
total processing time m · (1 − ε), and it is easy to see that we can choose their number
and processing times such that they are all finished until time 2− ε in YS, and YS-EDF
uses the entire machine capacity in [0, 1) for all jobs described so far. Finally, the job j?

with the largest deadline has a sufficiently large processing time such that it becomes
non-underworked at x0

j .
Note that, for m → ∞, we have x0

j → 2 − ε. Since YS-EDF uses the entire machine
capacity in [0, 1) for jobs other than j?, j? is only started at time 1 in YS-EDF. As YS-EDF
uses speed 2− ε, j? is can in the limit only be finished at

1 +
2− ε

2− ε
= 2 > 2− ε = x0

j ,

that is, YS-EDF fails for sufficiently large m.

YS-LLF1

We define LLFσ for machine capacity that varies over time. Similar to Algorithm 3.1,
let j1, . . . , jk be the available unfinished jobs at time t in order of their σ-laxities. Further,
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let c be the available machine capacity at t. If c/s ≥ k, each job j1, . . . , jk is run at speed s.
Otherwise, each job with a strictly smaller σ-laxity than jdc/se is run at speed s, and all
the jobs with the same laxity as jdc/se equally share the remaining machine capacity.

For σ = 1, however, it turns out that YS-LLFσ is even worse than just LLFσ.

Theorem 3.6. YS-LLF1 is not a speed-s algorithm for any s.

Proof. Suppose YS-LLF1 is a speed-s algorithm for some s. Our counter example is defined
as follows and works for arbitrary m. All jobs are released at time 0. The m jobs with
the smallest deadline each have processing time 1. We release another k jobs j1, . . . , jk
with dj1 < · · · < djk and processing time pji = (m/(m−1))i. Note that each of these k jobs
has initial laxity 0 in LLF1, causing all of them to be run at the same speed until x0

j1
. If we

choose k large enough (depending on s and m), j1 does not receive enough processing.

YS-LLFs

The lower-bound instance for YS-LLF1 with k = m − 1 jobs is exactly the lower-bound
instance that shows that no deadline-ordered algorithm (such as YS-A for any A) is a
speed-s algorithm for any s < e/(e − 1) [LT99]. Now consider LLFs instead of LLF1,
that is, the variant of LLF that uses its actual speed as laxity speed. Interestingly, it can
be checked that YS-LLFs needs to have exactly speed e/(e − 1) to schedule the lower-
bound instance for YS-LLF1 feasibly, no matter what k is. In fact, we have the following
conjecture.

Conjecture 3.3. YS-LLFs is a speed-e/(e− 1) algorithm.

3.6 Open Problems
Even though online deadline scheduling with speed augmentation was first considered
almost 20 years ago and serious efforts have been made within the community, there have
only been small improvement upon upper and lower bounds. It is thus a very intriguing
question whether there exists an algorithm with asymptotical speed requirement smaller
than 2. While we conjecture that YSS does not improve upon this asymptotical require-
ment (Conjecture 3.2), it seems promising to consider YS-LLFs since this algorithm may
fix the main issue of YSS by leaving no capacity unused for underworked jobs (Conjec-
ture 3.3). It also seems very plausible that considering the actual values of deadlines
instead of only their order (like YSS and YS-LLFs do) yields a (further) decrease in the
speed requirement.
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Chapter 4

Chasing Convex Bodies and Functions

Bibliographic information. Most of the results presented
in this section are published in [ABN+16]. The lower bound
for one-dimensional function chasing is taken from [BGK+15].

This section deals with the chasing problems that were informally introduced in Sec-
tion 1.1. We first give a formal definition and necessary notations in Section 4.1. After
naming related (Section 4.2) and new results (Section 4.3), we present our results for
(lazy) convex-body chasing in Section 4.4, and we extend this problem to convex-function
chasing in Section 4.5.

4.1 Preliminaries
We introduce three different chasing problems in increasing order of generality. We de-
scribe each of them for an arbitrary parameter d ∈ N, which refers to the dimension of
the Euclidean space they are set in. By p0 ∈ Rd we denote the origin, and we use ρ to
denote the standard Euclidean metric in Rd.

Convex-Body Chasing. A server starting at p0 receives an online sequence of convex
bodies B0, . . . , Bn ⊆ Rd. As a response to each body Bi, the server has to move into that
body, that is, it has to specify a point pi ∈ Bi and move to it. The cost incurred is the
total distance moved, that is,

n∑
i=1

ρ(pi−1, pi).

Lazy Convex-Body Chasing. The server starts again at p0, and part of its input
is again a sequence of convex bodies B0, . . . , Bn ⊆ Rd. The difference to convex-body
chasing is that, along with each convex body Bi, a slope εi ∈ R+ is presented, and, as
a response, the online algorithm may choose any point pi ∈ Rd to move to. Moving
to a point pi outside Bi, however, incurs an additional cost (laziness cost) of εiρ(pi, Bi)
where ρ(pi, Bi) := infp∈Bi

ρ(pi, p). This yields a total cost of
n∑

i=1

ρ(pi−1, pi) + εiρ(pi, Bi).
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Convex-Body Chasing Lazy Convex-Body
Chasing

Convex-Function
Chasing

Input sequence of convex
bodies B1, . . . , Bn ⊆ Rd

sequence of convex
bodies B1, . . . , Bn ⊆ Rd

along with slopes
ε1, . . . , εn ∈ R+

sequence of convex
functions

f1, . . . , fn : Rd → R+

Output sequence of points
p1 ∈ B1, . . . , pn ∈ Bn

sequence of points
p1, . . . , pn ∈ Rd

sequence of points
p1, . . . , pn ∈ Rd

Cost
∑n

i=1 ρ(pi−1, pi)

∑n
i=1 ρ(pi−1, pi) +
εiρ(pi, Bi)

∑n
i=1 ρ(pi−1, pi)+ fi(pi)

Table 4.1: A comparison of the three different chasing problems considered in this chapter.

Convex-Function Chasing. Like in the previous two problems, the server starts at p0.
Instead of convex bodies and possibly slopes, the input is now a sequence of (differen-
tiable) convex functions f1, . . . , fn : Rd → R. Similar to lazy convex-body chasing, the
server may move to any pi ∈ Rd as a response to a convex function fi. In addition to the
distance moved, the server incurs a cost (the function cost) of fi(pi), leading to the total
cost

n∑
i=1

ρ(pi−1, pi) + fi(pi).

Remarks. We give a summary of the three problems in Table 4.1. Note that convex-
body chasing is indeed a special case of lazy convex-body chasing where εi is chosen
sufficiently large for all i. Lazy convex-body chasing is in turn a special case of convex-
function chasing: To see this, observe that, for a convex body B ⊆ Rd and slope ε, the
function f(p) = ερ(p,B) for p ∈ Rd is a convex function.

Special Cases. We will occasionally consider subclasses of the class of convex bodies.
For such a subclass B, we call (lazy) B chasing that special case of (lazy) convex-body
chasing where all convex bodies have to be elements of B. Considered subclasses are
hyperplanes, affine subspaces (that is, intersections of hyperplanes), and line segments.

Competitive Analysis. The goal for all considered problems is to be competitive
(as introduced in Chapter 1). Let P be one the above problems, and denote its set of
possible input sequences by I. For c ∈ R+ and a deterministic algorithm A, we say that
A is c-competitive for P if

|A(I)| ≤ c · |Opt|,

for all instances I ∈ I, where Opt denotes the minimum-cost solution for instance I and
| · | denotes the cost of a solution. Accordingly, a randomized algorithm A (against an
oblivious adversary) is called c-competitive for P if

E[|A(I)|] ≤ c · |Opt|.
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Reductions. For some of the problems, we will not describe an explicit competitive
algorithm but a reduction to another problem for which a competitive algorithm exists:
Let P1 and P2 be chasing problems, let I1 and I2 be the sets of respective possible
input sequences, and let O1 and O2 be the sets of respective possible output sequences.
We call a pair of functions f : I1 → I2, g : O2 → O1 that can be computed online
an α-approximate reduction from P1 to P2 if the following holds: For every c-competitive
algorithm A for P2 that outputs A(I2) for I2 ∈ I2, the algorithm that outputs g(A(f(I1)))
for input I1 ∈ I1 is αc-competitive. When we describe these reductions, we will, for the
sake of readability, implicitly give the functions f and g.

4.2 Related Work

Convex-body chasing was first considered by Friedman and Linial [FL93] as a funda-
mental online problem. They gave an 28.53-competitive algorithm for line chasing in an
arbitrary number of dimensions. While they observe that simple greedy algorithms are
not competitive for this problem, their algorithm is rather complicated: It is based on
a reduction to a continuous version of the problem, and their algorithm for the latter
problem works in phases that each consist of a mass of 2π of angle. During each phase,
their algorithm moves greedily and, at the end of each phase, it moves towards a certain
position at which a server that only moved little in the last phase could be. The analysis
then uses the distance to the position of the optimum as a potential function.

Building up on their result for line chasing, they gave an O(1)-competitive algorithm
for convex-body chasing in two dimensions. It is easy to see that this problem can be
reduced to halfplane chasing in two dimensions. Their algorithm for the latter problem
again considers the continuous version of the problem and works in phases. To make a
similar potential-function argument as before work, one would like to again, at the end
of each phase, estimate the position of an optimal offline server and move towards it. To
get a good estimate, however, Friedman and Linial need to distinguish various different
cases regarding the geometry of the intersection of the halfspaces of the previous phase.

Friedman and Linial have also considered higher dimensions and have given a re-
duction from hyperplane chasing in d dimensions to lazy hyperplane chasing in d − 1
dimensions, but they were not able to solve the latter problem even for d = 3. In-
stead, they gave a simple lower bound of

√
d on the competitive ratio of any algorithm

for hyperplane chasing in d dimensions. It however remained an open question whether
competitive algorithms exist for hyperplane chasing in higher dimensions, which will be
answered (positively) in this chapter.

Convex-function chasing has so far only been considered for d = 1. It was introduced
by Lin et al. [LWAT13] as online convex optimization in the context of right-sizing of data
centers. In the same paper, a 3-competitive algorithm was given which solves a convex
program at each time step. A new randomized algorithm was presented in [ABL+13], and
it was claimed to be 2-competitive. The analysis was, however, flawed [Wie15], but it has
been fixed [ABL+15]. Independently, another randomized algorithm was given [BGK+15].
The authors also observed that any randomized algorithm can be derandomized without
any loss in the competitive ratio. They also gave a simple 3-competitive memoryless
algorithm, and showed that this ratio cannot be improved by any memoryless algorithm.
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The same problem was also considered in the context of regret minimization [Han57],
and it was shown that a sublinear-regret algorithm exists but that this is incompatible
with O(1)-competitiveness [ABL+13].

While convex-function chasing in higher dimensions cannot be found in the literature
as such, the more general problem of metrical task systems can be found [BLS92]. Here,
an arbitrary metrical space is considered, and the assumption of convexity is dropped.
The optimal competitive ratio for deterministic algorithms is settled to be 2k−1 [BLS92],
where k is the cardinality of the base set of the considered metric. On the other hand,
for randomized algorithms, there remains a gap between Ω(log n/ log log n) [BLMN03,
BBM06] and O(log2 n log log n) [FM03].

4.3 Contribution and Outline

The main result of this chapter is a 2O(d)-competitive algorithm for affine-subspace chasing
in d dimensions, which is an O(1)-competitive algorithm when d is fixed. To obtain this
result, we first use a simple insight [FL93] that reduces this problem to hyperplane chasing
in d dimensions. To get a competitive algorithm for d-dimensional hyperplane chasing,
we first apply an O(1)-approximate reduction to (d − 1)-dimensional lazy hyperplane
chasing (Subsection 4.4.1), which is a discretized version of a reduction already given
in [FL93]. This problem we can then reduce to (d−1)-dimensional (non-lazy) hyperplane
chasing by a new reduction that we describe below. Consequently, by composing both
reductions, we get anO(1)-approximate reduction from d-dimensional hyperplane chasing
to (d− 1)-dimensional hyperplane chasing.

One problem that we can reduce to for which an explicit O(1)-algorithm is known is
two-dimensional line chasing [FL93]. We simplify the algorithm, give a simpler analysis,
and slightly improve the competitive ratio from 28.5 to 28.1 (Subsection 4.4.3). We
also note that our algorithm can be generalized to an algorithm for line-segment chasing
in arbitrary dimensions with the same competitive ratio. Alternatively to using one of
these O(1)-competitive algorithms for line chasing in two dimensions, we can also apply
our dimension reduction another time and reduce to the trivial problem of point chasing
in one dimension, for which clearly a 1-competitive algorithm exists. In Figure 4.1, we
illustrate how we obtain the 2O(d)-competitive algorithm for hyperplane chasing in d
dimensions.

To obtain out new reduction, we first formulate a randomized reduction for lazy
convex-body chasing to (non-lazy) convex-body chasing, which is then derandomized
(Subsection 4.4.2). Intuitively, a convex body’s relevance in lazy convex-body chasing
correlates with its slope, and slopes can be assumed w.l.o.g. to be at most 1. Our al-
gorithm for lazy convex-body chasing simply hands over a convex body with slope ε to
the algorithm for convex-body chasing with probability ε, and discards it with probabil-
ity 1 − ε. Our algorithm then moves according to the line-chasing algorithm, and the
deterministic version of it moves to the expected position of the randomized one, taken
over all random events so far. An analysis that elegantly relates slopes to probabilities
proves that this reduction is indeed O(1)-approximate.

We also give a new lower bound of 1.86 on the competitive ratio of any function-
chasing algorithm in one dimension (Subsection 4.5).
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dimension hyperplane chasing lazy hyperplane chasing

d 2O(d)-competitive 2O(d)-competitive

...
...

...

3 O(1)-competitive O(1)-competitive

2 O(1)-competitive
[FL93], Thm. 4.4

O(1)-competitive

1 1-competitive
(trivial)

O(1)-competitive

Thm. 4.3

Thm. 4.3

Thm. 4.3

Thm. 4.3

Thm. 4.2

Thm. 4.2

Thm. 4.2

Thm. 4.2

Figure 4.1: The interplay of our reductions that yields a 2O(d)-competitive algorithm for
(lazy) hyperplane chasing in d dimensions.

We remark that, up to constants factors, our competitiveness results also hold for
other metrics whose values are guaranteed to be within constant factors of that of the
Euclidean metric, such as other Lp norms.

4.4 Convex-Body Chasing

The goal of this section is proving the following theorem.

Theorem 4.1. For any d ∈ N, there is a 2O(d)-competitive algorithm for affine-subspace
chasing in d dimensions.

As shown by Friedman and Linial [FL93], each affine subspace can be replaced by a
sufficient number of hyperplanes intersecting in this affine subspace. It then suffices to
show that there is a 2O(d)-competitive algorithm for hyperplane chasing in d dimensions.
To do so, the proof strategy (illustrated in Figure 4.1) is the following. We first show
the discrete version of the reduction from hyperplane chasing in d dimensions to lazy
hyperplane chasing in d − 1 dimensions [FL93] (Subsection 4.4.1). We then present a
new reduction from lazy hyperplane chasing to (non-lazy) hyperplane chasing in d − 1
dimensions (Subsection 4.4.2). Even though this already suffices to prove the theorem
using the O(1)-competitive algorithm for line chasing [FL93] in two dimensions or the
trivial 1-competitive algorithm for point chasing in one dimensions, we give a simplified
algorithm for line chasing in Subsection 4.4.3.

4.4.1 A Dimension Reduction for Hyperplanes

In this subsection, we prove the following theorem.

Theorem 4.2. There exists an O(1)-approximate deterministic reduction from hyper-
plane chasing in Rd to lazy hyperplane chasing in Rd−1.

69



We reduce via an auxiliary problem, hyperplane chasing without consecutive paral-
lel hyperplanes. We split the proof into two lemmata, the first of which contains the
reduction to this problem.

Lemma 4.1. In Rd, there exists an O(1)-approximate deterministic reduction from hy-
perplane chasing (HC) to hyperplane chasing without consecutive parallel hyperplanes
(HC*).

Proof. Assume we are given a cHC∗-competitive algorithm AHC∗ for the HC* problem. We
describe how to transform it into an cHC-competitive algorithm AHC for the HC problem
where cHC = O(1) · cHC∗ . Every time a new hyperplane Bi arrives that is not parallel
to Bi−1, we hand it over to AHC∗ and move accordingly (subject to translations described
below). Otherwise we simply project the old position onto Bi. We do not hand over any
plane to AHC∗ , but we modify all forthcoming planes and movements: Let v be the unit
normal vector of the two planes pointing from Bi towards Bi−1, and let d be the distance
of the two planes. Every time a plane Bi′ with i′ > i is handed over to AHC∗ , we translate
it by d · v, subject to further translations due to further parallel planes. When moving
according to AHC∗ ’s output, we translate back this point along all the normal vectors that
the current plane was translated by.

Now consider OptHC in the HC problem. We note that, at a total loss of a factor
of
√
2 in the costs, every time a plane Bi arrives that is parallel to the previous one Bi−1,

we can replace its position pi by the projection p′i of pi−1 onto Bi. To see this, consider
a maximal connected sequence of parallel hyperplanes Bi, . . . , Bj and compute

ρ(pi, p
′
i+1) +

j−1∑
k=i+1

ρ(p′k, p
′
k+1) + ρ(p′j, pj+1) ≤ ρ(pi, p

′
j) + ρ(p′j, pj) + ρ(pj, pj+1)

≤
√
2 · ρ(pi, pj) + ρ(pj, pj+1)

≤
√
2 ·

j−1∑
k=i

ρ(pk, pk+1) + ρ(pj, pj+1),

where we use the triangle inequality in the first and third step. In the second step, we
use the fact that the triangle formed by pi, p′j, and pj has a right angle at p′i. By applying
the inequality for all maximal connected sequences of parallel hyperplanes, we get indeed
a loss of a factor at most

√
2.

Now consider an input sequence IHC = Bi, . . . , Bn for the HC problem and the cor-
responding sequence IHC∗ for the HC∗ problem. We denote the corresponding optima
by OptHC and OptHC∗ , respectively, and the output sequence of AHC is pA1 , . . . , p

A
n . Us-
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ing our reduction, we get

|AHC(IHC)| =
∑

i:Bi,Bi+1
not parallel

ρ(pAi , p
A
i+1) +

∑
i:Bi,Bi+1
parallel

ρ(Bi, Bi+1)

= |AHC∗(IHC∗)|+
∑

i:Bi,Bi+1
parallel

ρ(Bi, Bi+1)

≤ cHC∗ · |OptHC∗|+
∑

i:Bi,Bi+1
parallel

ρ(Bi, Bi+1)

≤
√
2 · cHC∗ · |OptHC|,

where the last step follows by noticing that OptHC∗ defines a solution to the HC problem
and applying the above considerations.

We now give the second part of the reduction.

Lemma 4.2. There exists an O(1)-approximate deterministic reduction from hyperplane
chasing without consecutive parallel hyperplanes (HC*) in Rd to lazy hyperplane chasing
(LHC) in Rd−1.

Proof. Consider an arbitrary instance IHC = BHC
1 , . . . , BHC

n of the HC* problem in Rd

(for simplicity just called hyperplane chasing or HC in the following). We will show how
to transform IHC into the instance ILHC = BLHC

1 , . . . , BLHC
n of the LHC problem in Rd−1,

and how to translate back a solution pLHC
1 , . . . , pLHC

n for ILHC to a solution pHC
1 , . . . , pHC

n

for IHC. We will then show that, for any single step from pLHC
i to pLHC

i+1 taken in the LHC
problem and the corresponding step from pHC

i to pHC
i+1 in the HC problem, the costs of

both only differ by a constant factor. Formally, we show that there exist constants c1
and c2 such that

c1 ≤
ρ(pHC

i , pHC
i+1)

ρ(pLHC
i , pLHC

i+1 ) + εiρ(pLHC
i+1 , BLHC

i+1 )
≤ c2 (4.1)

for any i and positions pLHC
i and pLHC

i+1 . This will directly imply that our reduction is O(1)-
approximate, i.e., any cLHC-competitive algorithm- for LHC in Rd−1 can be transformed
into a cHC-competitive algorithm for HC in Rd with cHC = O(1) · cLHC.

The reduction works as follows. At all times, we keep an isometric (i.e., distance-
preserving) mapping fi whose domain is the Rd−1 space that ALHC moves in. While
the target set of f0 is an arbitrary hyperplane BHC

0 ⊂ Rd that contains pHC
0 and is not

parallel to BHC
1 , the target set of fi for i > 0 is the hyperplane BHC

i . Consequently,
each fi can be viewed as a coordinate system within BHC

i , and it is bijective. Initially,
we only require f0(p

LHC
0 ) = pHC

0 . In the same way, this function establishes the relation
between pLHC

i and pHC
i for i > 1:

pHC
i := fi(p

LHC
i ).

In particular, when a new hyperplane BHC
i arrives, it intersects BHC

i−1 in a (d − 2)-
dimensional subspace Si, and we obtain fi by rotating the coordinate system in BHC

i−1

given by fi−1 around Si onto BHC
i . More formally,

fi(x) := Ri · fi−1(x), for all x ∈ Rd−1,
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where Ri is the d-dimensional rotation matrix around Si through the angle of intersec-
tion αi of BHC

i−1 and BHC
i . Obviously, fi inherits isometry from fi−1. Now the hyperplane

that we present in the LHC problem is Si within the current coordinate system, that is,

BLHC
i := f−1

i (Si) = f−1
i (BHC

i−1 ∩BHC
i ),

where f−1
i exists because fi is bijective. We also set

εi := αi,

where αi is given in radians, which will be shown to make the costs of both algorithms
comparable.

In the remainder of this proof, we show Inequality (4.1) for all i. We first observe that
instead of moving from pHC

i to pHC
i+1 via the direct path, we can also move the following

way. We first move to R−1
i+1 · pHC

i+1 (i.e., pHC
i+1 rotated back onto BHC

i ) via the direct path
and then to pHC

i+1 via the arc that R−1
i · pHC

i+1 follows when rotated onto BHC
i+1. To obtain

the lower bound in Inequality (4.1), we also observe that this movement exactly incurs
the costs in the LHC problem:

ρ(pHC
i , pHC

i+1) ≤ ρ(pHC
i , R−1

i+1 · pHC
i+1) + αi+1 · ρ(R−1

i+1 · pHC
i+1, Si+1)

= ρ(pLHC
i , pLHC

i+1 ) + εi+1 · ρ(pLHC
i+1 , BLHC

i+1 ),

where we use the triangle inequality in the first step and the fact that fi+1 and the
rotation induced by Ri+1 are isometries in the second step.

For the upper bound, we consider the triangle formed by the points used above,
i.e., pHC

i , R−1
i+1 · pHC

i+1, and pHC
i+1. We note that the length of the side between pHC

i and pHC
i+1

is exactly the cost incurred in the HC problem. Next, we show that the sum of lengths
of the two other sides is by a constant factor comparable to the costs incurred in the
LHC problem. Towards this, consider the unique (2-dimensional) plane in which the
(above) arc that R−1

i+1 · pHC
i+1 follows when rotated onto BHC

i+1 lies, and let r be the plane’s
intersection point with Si+1. As R−1

i+1 is a rotation matrix, the distance from q to both pHC
i+1

and R−1
i+1 ·pHC

i+1 is identical, meaning that the triangle formed by these three points is equal-
sided. Since αi+1 is the angle at r in this triangle, we can compute:

ρ(R−1
i+1 · pHC

i+1, p
HC
i+1) = 2 cos

(
αi+1

2

)
· ρ(pHC

i+1, q)

= 2 cos

(
αi+1

2

)
· ρ(pHC

i+1, B
HC
i+1)

≥ 2
√
2

π
· αi+1 · ρ(pLHC

i+1 , BLHC
i+1 ). (4.2)

Here the last bound follows by optimizing over all αi+1 ∈ (0, π/2] (recall that αi+1 is the
smaller angle of intersection) and again using that fi+1 is an isometry. Using the latter
fact once more and Inequality (4.2), we get

ρ(pHC
i , R−1

i+1 · pHC
i+1) + ρ(R−1

i+1 · pHC
i+1, p

HC
i+1)

≥2
√
2

π
·
(
ρ(pLHC

i , pLHC
i+1 ) + εi+1 · ρ(pLHC

i+1 , BLHC
i+1 )

)
, (4.3)
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as claimed.
Thus, it remains to show that the length of the side between pHC

i and pHC
i+1 is by a

constant factor comparable to the sum of lengths of the two other sides of the considered
triangle (formed by the latter two and R−1

i+1 · pHC
i+1). To this end, note that the angle of

intersection β between BHC
i+1 and the line connecting R−1

i+1 · pHC
i+1 and pHC

i+1 is (π−αi+1)/2 ∈
[π/4, π/2] by the considerations above. Thus, the angle at R−1

i+1 · pHC
i+1 in the triangle is

some γ ∈ [β, π − β] ⊆ [π/4, 3π/4]. Applying the law of sines, we have for the diameter d
of the triangle’s circumcircle that

ρ(pHC
i , pHC

i+1) = sin(γ) · d

≥ sin γ

2
·
(
ρ(R−1

i+1 · pHC
i+1, p

HC
i ) + ρ(R−1

i+1 · pHC
i+1, p

HC
i+1)
)

≥ 1

2
√
2
·
(
ρ(R−1

i+1 · pHC
i+1, p

HC
i ) + ρ(R−1

i+1 · pHC
i+1, p

HC
i+1)
)
, (4.4)

using d as an upper bound for any side of the triangle in the first step, and γ ∈ [π/4, 3π/4]
in the second step. Now we combine Inequalities (4.3) and (4.4) to

ρ(pHC
i , pHC

i+1) ≥
1

π
·
(
ρ(pLHC

i , pLHC
i+1 ) + εi+1 · ρ(pLHC

i+1 , BLHC
i+1 )

)
,

which gives the claim.

This completes the proof of Theorem 4.2.

4.4.2 Eliminating Laziness

In this subsection, we show the following theorem.

Theorem 4.3. Let B be a class of convex bodies in d dimensions. Then there is an O(1)-
approximate deterministic reduction from lazy B chasing to (non-lazy) B chasing.

Note that, in particular, by setting B to be the class of all convex bodies, this theorem
yields a reduction from lazy convex-body chasing to (non-lazy) convex-body chasing.

Proof. We build a randomized O(cC)-competitive algorithm ALC for lazy-convex body
chasing from a deterministic cC-competitive algorithm AC for (non-lazy) convex-body
chasing and then explain how to derandomize it. We first modify the input instance by
replacing each lazy convex body (Bi, εi) whose slope εi is greater than 1 by dεie lazy convex
bodies, each having Bi as the convex body. The first bεic of these lazy convex bodies
will have slope 1, and the potentially remaining convex body will have slope εi − bεic.
This modification does not affect the optimal cost and will not decrease the online cost.
From now on, we will assume that any input instance for lazy convex-body chasing is of
this modified form. It is easy to see how one can go back from a solution to the modified
input to one to the original input without increasing the cost, since our algorithm w.l.o.g.
never moves away from the convex body that just arrived.

Now ALC is defined as follows. Upon the arrival of a new lazy convex body (Bi, εi), the
algorithm with (independent) probability 1 − εi does not move, and with probability εi
passes Bi to AC and moves to the location to which AC moves. Notice that in the modified
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input instance every slope is a real number in [0, 1], and thus probabilities εi and 1− εi
are all well defined.

Consider a particular input instance ILC of lazy convex-body chasing, as defined be-
fore. Let IC denote the random variable representing the sequence of convex bodies
passed to AC. Let OptLC be the optimal solution for lazy convex-body chasing on ILC.
Let OptC be a random variable equal to the optimal solution for convex-body chasing
on IC.

The O(cC)-competitiveness of ALC will now follow from the following sequence of
inequalities:

E[|ALC(ILC)|] = O(E[|AC(IC)|]) (4.5)
= O(cC · E[|OptC|]) (4.6)
= O(cC · |OptLC|). (4.7)

We show the inequalities one by one, starting with Inequality (4.5). We explain the
following sequence of inequalities below:

E[|ALC(ILC)|] =
∑
i

P[Bi ∈ IC] E[Cost of AC on Bi | Bi ∈ IC]

+
∑
i

P[Bi /∈ IC] E[Cost of ALC on Bi | Bi /∈ IC] (4.8)

=
∑
i

εi E[Cost of AC on Bi | Bi ∈ IC]

+
∑
i

(1− εi) E[εi ρ(pi−1, Bi)] (4.9)

≤
∑
i

εi E[Cost of AC on Bi | Bi ∈ IC]

+
∑
i

εi E[ρ(pi−1, Bi)] (4.10)

≤ 2
∑
i

εi E[Cost of AC on Bi | Bi ∈ IC] (4.11)

= 2
∑
i

P[Bi ∈ IC] E[Cost of AC on Bi | Bi ∈ IC] (4.12)

= 2 E[|AC(IC)|] (4.13)

Equation (4.8) follows from the definition of expectation, conditional expectation,
and linearity of expectation. Notice that all expectations involving Bi only depend on
the history up until Bi arrives. Equation (4.9) follows from the fact that Bi is added
to IC with probability εi, and, if Bi is not added, then ALC pays εi times the distance
to Bi. Inequality (4.10) follows from the linearity of expectation and since 1 − εi ≤ 1.
Inequality (4.11) holds since AC has to move to each Bi ∈ IC and thus in expectation
has to pay at least E[ρ(pi−1, Bi)] (note that, only by independence of the random events,
the expected position of AC in case Bi ∈ IC is identical to the expected position of ALC).
Equation (4.12) holds since Bi ∈ IC with probability εi. Equation (4.13) follows by
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linearity of expectation and the definition of conditional expectation. Hence, we get
Inequality (4.5).

Next, note that Inequality (4.6) follows by the assumption that AC is cC-competitive.
It remains to show Inequality (4.7), for which it suffices to construct a solution S for IC

with expected cost O(|OptLC|). To do so, for each i denote by pi the position that OptLC

moves to as a response to Bi. We define two types of costs for S, basic and detour costs
(which will be compared to movement and laziness cost, respectively): For each Bi ∈ IC, S
first moves to the last point pi′ with i′ < i and Bi′ ∈ IC (if it exists) incurring detour
cost. Then it moves to pi incurring basic cost, and then the shortest way possible to Bi

incurring detour cost again. Now, by the triangle inequality, the basic cost of S is at
most the movement cost of OptLC. The probability that S incurs a detour cost for
convex body Bi in step i is εi, and, when it incurs a detour cost, this detour cost is at
most 2/εi times the laziness cost incurred by OptLC. Thus the expected cost for S on IT

is O(|OptLC|). This proves that ALC is O(cC)-competitive.
As in [BGK+15], we derandomize ALC to get a deterministic algorithm AD by always

moving to the expected position of ALC. We will show that AD
LC has the same competitive

ratio as ALC. More specifically, let pi be a random variable denoting the position of ALC

as a response to convex body Bi. Then AD
LC sets its position to pD

i := E[pi].
We analyze the competitive ratio of this algorithm: We have that for each step i, ALC’s

expected cost is E[ρ(pi−1, pi)] + εiE[ρ(pi, Bi)]. On the other hand, AD
LC’s cost is

ρ(E[xi],E[pD
i−1]) + εiρ(E[pD

i ], Bi) = ρ(E[xi],E[pi−1]) + εiρ(E[pi], Bi).

By a generalization of Jensen’s inequality (e.g., [MO79, Proposition B.1]), and by the
convexity of our distance function ρ, we have, for each i

E[ρ(pi, pi−1)] ≥ ρ(E[pi],E[pi−1])

and

E[ρ(pi, Bi)] ≥ ρ(E[pi], Bi).

Summing over all i completes the analysis.

4.4.3 A Simple Line-Chasing Algorithm

We show the following theorem.

Theorem 4.4. There is an O(1)-competitive for line-segment chasing in any dimension.

For full lines, this theorem was already shown by Friedman and Linial [FL93]. If we
restrict our algorithm to full lines, it is significantly simpler than their algorithm.

Our algorithm is stated as follows. Let Pi be a plane containing the line Ei that is
parallel to the line Ei−1 (note this is uniquely defined when Ei and Ei−1 are not parallel).
The algorithm first moves to the closest point hi ∈ Pi. The algorithm then moves to the
closest point gi in Ei.

• If Ei−1 and Ei are parallel, then the algorithm stays at gi.
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Figure 4.2: An overview of the used points and distances in Pi.

• If Ei−1 and Ei are not parallel, let mi be the intersection of Ei and the projection of
Ei−1 onto Pi. Let β ∈ (0, 1) be some constant that we shall set later. The algorithm
makes an adjustment by moving toward mi along Ei until it has traveled a distance
of β · ρ(hi, gi), or until it reaches mi, whatever happens first.

• Finally, the algorithm moves to the closest point pi in Bi.

We show that this algorithm satisfies the statement of the theorem.

Proof. Initially assume that all the line segments are lines. Let h?
i be the projection of the

adversary’s position, just before Bi arrives, onto Pi. We will assume that the adversary
first moves to h?

i , and then to the nearest point g?i on Bi, and then to some arbitrary final
point p?i on Bi. This assumption increases the adversary’s movement cost by at most a
factor of

√
3 (a similar observation is made in [FL93]). We will charge the algorithm’s

cost for moving to Pi to the adversary’s cost of moving to Pi. Thus by losing at most a
factor of

√
3 in the competitive ratio, we can assume that the adversary and the algorithm

are at positions h?
i and hi right before Bi arrives.

Let Algi and Opti denote the movement cost of the algorithm and the adversary,
respectively, in response to Bi. Let the potential function Φi be δ · ρ(pi, p?i ) for some to
be determined constant δ > 1. To show that the algorithm is c-competitive it will be
sufficient to show that, for each i,

Algi + Φi − Φi−1 ≤ c ·Opti. (4.14)

We will only initially consider the adversary’s movement cost until it reaches g?i . Equation
(4.14) will continue to hold for any adversary’s movement after g?i if

c ≥ δ. (4.15)

We consider three cases. The notation that we will use is illustrated in Figure 1.
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In the first case assume ρ(h?
i , g

?
i ) ≥ γx, where x = ρ(hi, gi), and γ > 0 is a constant

that we define later. Intuitively, this is the easiest case as the adversary’s cost will pay
for both the algorithm’s movement cost and the increase in the potential due to this
movement. For Equation (4.14) to hold, it is sufficient that

(1 + β)x+ δ((1 + β)x+ γx) ≤ cγx,

or equivalently

c ≥ (1 + β) + δ((1 + β) + γ)

γ
. (4.16)

In the remaining two cases assume that ρ(h?
i , g

?
i ) = αx ≤ γx, and let y = ρ(mi, gi).

In the second case assume that x ≤ y. Intuitively in this case the decrease in the
potential due to the algorithm’s adjustment on Bi decreases the potential enough to pay
for the algorithm’s movement costs. Since β < 1 and x ≤ y, the algorithm will not have
to stop at mi when moving a distance of βx on Bi toward mi. If

γ ≤ 1− β, (4.17)

the algorithm will also not cross g?i while adjusting on Bi, as this would contradict the
assumption that ρ(h?

i , g
?
i ) ≤ γx. Equation (4.14) will be hardest to satisfy when Φi−Φi−1

is maximal. This will occur when g?i is maximally far from gi, which in turn occurs when
the points g?i , mi, and gi lie on Bi in that order. In that case, Equation (4.14) evaluates
to

(1 + β)x+ δ((1 + α)y − βx− (1 + α)
√

x2 + y2) ≤ cαx.

Setting L = 1+β−δβ−cα
δ(1+α)

, this is equivalent to

Lx+ y ≤
√

x2 + y2. (4.18)

When x ≤ y, Equation (4.18) holds if L ≤ 0. This in turn holds when

δ ≥ 1 + β

β
. (4.19)

Finally we consider the third case that x ≥ y. Intuitively in this case the decrease in
the potential due to the algorithm’s movement toward Bi decreases the potential enough
to pay for the algorithms movement costs. First consider the algorithm’s move from pi−1

to gi. Again, the value of Φi − Φi−1 is maximized when g?i is on the other side of mi as
is gi. In that case, the value of Φi − Φi−1 due to this move is at most

δ((1 + α)y − (1 + α)
√
x2 + y2).

Note that the maximum possible increase in the potential due to the algorithm moving
from gi to pi is δβx. Thus for Equation (4.14) to hold, it is sufficient that

(1 + β)x+ δβx+ δ((1 + α)y − (1 + α)
√

x2 + y2) ≤ cαx.

Setting L = 1+β+δβ−cα
δ(1+α)

, this is equivalent to

Lx+ y ≤
√

x2 + y2. (4.20)
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When x ≥ y, Equation (4.20) holds if L ≤
√
2− 1 . This in turn holds when

δ ≥ 1 + β√
2− 1− β

. (4.21)

We now need to find a feasible setting of β, γ, δ, and compute the resulting competitive
ratio. Setting β =

√
2−1
2

and γ = 3−
√
2

2
, and δ =

√
2+1√
2−1

one can see that equations (4.17),
(4.19), and (4.21) hold. The minimum c satisfying (4.16) is c ≈ 16.22 and also satisfies
(4.15). Then given that we overestimate the adversary’s cost by a most a factor of

√
3,

this gives us a competitive ratio for lines of approximately 28.1, slightly improving upon
the competitive ratio obtained in [FL93].

If Bi is a line segment, then we need to account for the additional movement along
Ei to reach Bi. However, as we set δ > 1, the decrease in the potential can pay for this
movement cost.

4.5 Convex-Function Chasing

In this section, we investigate convex-function chasing and show a new lower bound on
the achievable ratio for one-dimensional convex-function chasing.

Theorem 4.5. There is no randomized c-competitive algorithm for convex-function chas-
ing in one dimension when c < 1.86.

As shown in [BGK+15], algorithms for function chasing in one dimension can be
derandomized without increasing the competitive ratio, allowing us to restrict to deter-
ministic algorithm in the proof of Theorem 4.5. The proof idea is similar to that in the
proof of Lemma 4.3.

Lemma 4.3 (Bansal et al. [BGK+15]). If there exists a randomized c-competitive algo-
rithm for convex-function chasing in one dimension, there also exists a deterministic such
algorithm.

We now give the proof of the theorem.

Proof of Theorem 4.5. Due to Lemma 4.3, we can restrict to deterministic algorithms
without loss of generality. Let A be an arbitrary c-competitive deterministic algorithm.

We now define our adversarial strategy. The initial position is 0. Then some number
of functions of the form ε|1−x| arrive. We will be interested in the limit as ε approaches 0.
Then some number, possibly none, of functions of the form ε|x| arrive.

For the deterministic algorithm A, let b(s) denote the position of A after s/ε functions
of the type ε|1− x| have arrived. Intuitively, if b(s) is too small for large enough s, then
it has a high function cost on the first s/ε functions whereas the optimal solution would
have moved immediately to the point 1 only incurring the moving cost. Alternately,
if the position b(s) is sufficiently far to the right (i.e., close to 1), then the adversary
can introduce a very long sequence of requests of type ε|x|, forcing the algorithm to
eventually move back to 0 incurring the movement cost of b(s) again. In this case, the
optimal solution would have stayed at 0.
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Formally, the total function cost of A at time s/ε is at least b(s) +
∫ s

0
(1 − b(y)) dy.

Now, if the adversary introduces an infinite sequence of functions of the form ε|x|, then
the best that the online algorithm can do is to move immediately to the origin incurring
an additional movement cost of b(s). Meanwhile, the optimal solution would have stayed
at 0 throughout incurring a total cost of s. Hence, if the online algorithm is c-competitive,
we must have, for all s,

2b(s) +

∫ s

0

(1− b(y)) dy ≤ cs. (4.22)

Alternately, if the functions ε|1 − x| keep appearing forever, the online algorithm
eventually moves to 1 and its total cost is therefore at least 1 +

∫∞
0
(1− b(y)) dy and the

optimal solution would have moved to 1 at time 0 and only incurred the movement cost
of 1. Hence, we also have

1 +

∫ ∞

0

(1− b(y)) dy ≤ c. (4.23)

This establishes the dichotomy using which we complete our lower bound proof. In-
deed, define G(s) =

∫ s

0
(1− b(y)) dy. Then, G′(s) = 1− b(s) and we can write (4.22) as,

for all s we have

G′(s) ≥ 1

2

(
2− cs+G(s)

)
(4.24)

and (4.23) is simply
G(∞) ≤ c− 1 .

Now, notice that in order to minimize G(∞), we may assume that (4.24) is satisfied with
equality for all s (this can only reduce G(s), which in turn reduces G′(s) further), which
in turn gives us a unique solution to G.

Now, writing (4.24) as equality and differentiating w.r.t s, we get the first-order
differential equation b(s) = 2b′(s) − c + 1. It is a simple calculation to verify that its
unique solution satisfying b(0) = 0 is b(s) = (c − 1) · (es/2 − 1). But now, we can plug
this into G(∞) to get that

∫ 2 ln c
c−1

0

(1− b(s)) ds+ 1 =

∫ 2 ln c
c−1

0

(
1− (c− 1)

(
es/2 − 1

))
ds+ 1 ≤ c.

Evaluation of the integral and simplification yields

2 ln
c

c− 1
− (c− 1)

(
2c

c− 1
− 2 ln

c

c− 1
− 2

)
+ 1 = 2c ln

c

c− 1
− 1 ≤ c,

which is false for c < 1.86.

We strongly conjecture that this lower bound is not tight. A promising idea to prove
a stronger lower bound would be considering instances that do not alternate only once
between functions of the two types but an arbitrary number of times.
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4.6 Open Problems
Whereas we have presented a new O(1)-competitive algorithm for hyperplane chasing
in an arbitrary fixed dimensions d, the asymptotical behavior of this competitive ratio
is not settled. It is an interesting open problem for future research to close the gap
between 2O(d) and

√
d.

For convex-function chasing, so far O(1)-competitive algorithms are only known for
one dimension. It is an interesting open question whether such an algorithm also exists
for higher dimensions. Also, for one-dimensional function chasing, there still remains a
gap between 1.86 and 2 for the optimal competitive ratio to be in.
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