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Abstract. In this paper we employed polynomial chaos (PC) expansions to understand earthquake rupture model responses to

random fault plane properties. A sensitivity analysis based on our PC surrogate model suggests that the hypocenter location

plays a dominant role in peak ground velocity (PGV) responses, while elliptical patch properties only show secondary impact.

In addition, the PC surrogate model is utilized for Bayesian inference of the most likely underlying fault plane configuration

in light of a set of PGV observations from a ground motion prediction equation (GMPE). A restricted sampling approach is5

also developed to incorporate additional physical constraints on the fault plane configuration, and to increase the sampling

efficiency.
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1 Introduction

One of the most important challenges seismologists and earthquake engineers face to design large civil structures (e.g. build-

ings, dams, bridges, power plants) and response plans, especially in highly populated cities prone to large damaging earth-

quakes, is the reliable estimation of ground-motion characteristics at a given location. Ground-motion prediction equations

(GMPEs), which are one of the most important elements for Probabilistic Seismic Hazard Analysis (PSHA), are designed15

for this purpose. These are obtained from regression analysis by fitting a dataset (empirical and simulated) and are mainly

expressed in terms of the site conditions, source-site distance (e.g. rupture distance or Joyner-Boore distance, denoted as RJB

distance hereafter1), magnitude and mechanism, although other terms such as directivity and hanging wall effect are also con-

sidered (Abrahamson et al., 2014). The equations can be derived for peak ground displacement (PGD), peak ground velocity

(PGV), peak ground acceleration (PGA), and spectral acceleration (SA) for a damping of 5% at different periods. Ideally, an20

optimal GMPE has to be robust, and include physical terms to avoid over fitting the data, which can result in the inclusion

1The Joyner-Boore distance is defined as the shortest distance from a site to the surface projection of the rupture plane.
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of too many parameters. When other effects are considered (such as amplitude and duration of rupture directivity (Somerville

et al., 1997)) or more data is available (Atkinson and Boore, 2011), GMPEs are modified to better explain attenuation patterns.

Many efforts have been made to characterize the seismic ground-motion considering both real and simulated data. For

example, using real data, five research groups under the Pacific Earthquake Engineering Research Center Next Generation At-

tenuation (PEER NGA) project derived GMPEs for shallow crustal earthquakes considering an extensive database of recorded5

ground-motions (Chiou et al., 2008). Later, Arroyo and Ordaz (2010a, b) obtained GMPEs using both synthetic data and two

subsets of accelerograms of the NGA database (Chiou et al., 2008). Arroyo and Ordaz (2010b) highlighted the necessity to

merge finite fault modeling (Atkinson and Silva, 2000) with observations to obtain GMPEs that better predict the amplitudes

in zones where data is insufficient. Verification and validation studies (Maufroy et al., 2015, 2016) were also conducted in a

large effort to understand ground motions and showed the importance of both accurate source parameters and the geological10

description of the medium to reproduce observed ground motions. Singh et al. (2017) improved the agreement between ob-

served ground motions and GMPEs by including site effects of the area. Numerical simulations have also helped to explain

ground-motion characteristics. For instance, Furumura and Singh (2002) described attenuation patterns for both deep in-slab

and shallow interplate earthquakes, while Cruz-Jiménez et al. (2009) explained ground-motion amplification due to a volcanic

layer. Mahani and Atkinson (2012) modeled the decay of spectral amplitudes in several locations in North America.15

In this study we investigate the level of complexity needed in kinematic rupture models of Mw 6.5 strike-slip events to

produce ground-motions similar to a reference GMPE. To this end, we utilize the PC approach (Ghanem and Spanos, 1991;

Xiu and Karniadakis, 2002; Le Maître and Knio, 2010) to build functional representations of PGVs responses of an original

source model. Thanks to the significant reduction in computational cost of the PC surrogate models (in comparison with

both the original source model and a Bayesian analysis based on MCMC sampling, which requires a prohibitive number of20

model runs (Minson et al., 2014)), it is suitable to utilize the PC surrogates in a Bayesian inference framework (Sudret and

Mai, 2013; Sraj et al., 2016; Giraldi et al., 2017). This enable us to quantitatively rank different kinematic source models

given by the PGVs they produce and identify the most likely one that fits a chosen reference GMPE (expectation). The ranking

considers uncertainties in both the GMPE and model parameters. This provides useful insight on the level of complexity needed

in kinematic source models for ground-motion simulations to satisfy both observational constraints and engineering/design25

requirements for seismic safety.

This paper is organized as follows. In Section 2 we provide detailed descriptions of the source model configurations, in-

cluding the calculation of synthetic seismograms. In section 3, we present the PC analysis of PGVs as a function of random

variations of the kinematic models, including the validation of PC surrogate models and discussions of various statistical quan-

tities. In section 4, we conduct a PC based Bayesian inference analysis to identify the most likely kinematic rupture model that30

best fits a chosen GMPE reference curve. Finally, we conclude our key findings and propose potential improvements for future

work in section 5.
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Figure 1. Example of fault plane configuration, the red star denotes hypocenter location, and the ellipse is the asperity with Gaussian slip

distribution inside. The slip distribution is tapered in the area between the dashed and solid rectangles.

2 Source Model

A magnitude Mw = 6.5 strike-slip earthquake (seismic moment 6.31× 1018 Nm) on a single-segment vertical fault plane is

considered. The fault plane is chosen to be a rectangle with fixed length L= 27 km and width W = 10 km (obtained from 100

realizations following the scaling relation in Wells and Coppersmith (1994)). The top of the fault plane is located 2 km below

the ground surface. Figure 1 shows an example configuration of the fault plane, in which the red star denotes the hypocenter

and the ellipse is the asperity with Gaussian slip distribution inside. The maximum slip Smax is chosen such that the mean slip5

remains constant (0.71 m) when varying the ellipse size. The slip between the elliptical patch boundary and dashed rectangle

(Figure 1) is set to be Smax/e (where e is the Euler’s number). The slip between the solid and dashed rectangles (the horizontal

and vertical gaps are 5% of the length and width of the fault plane, respectively) is tapered to avoid non-physical slip patterns.

The entire fault plane is discretized in along-strike and down-dip directions with grid size of 0.02 km. We use a regularized

Yoffe function (Tinti et al., 2005) with a rise time Tr = 1.25 s following source-scaling relations (Somerville et al., 1999) and10

slip acceleration time tacc = 0.225 s, as suggested by Tinti et al. (2005). At each node of the discretized fault plane we assign

Tr, tacc, slip-rate in along-strike and down-dip directions, and rupture time. We consider a rupture speed of 0.75Vs km/s in all

source models.

PGVs at a virtual network of Nobs = 56 stations (Figure 2) are calculated from synthetic seismograms of the two horizontal

components of ground motion at each site for a large set of source rupture models. We use COMPSYN (Spudich and Xu, 2003),15

a code based on the discrete wavenumber/finite element method proposed by Olson et al. (1984) to calculate the synthetic

seismograms up to a maximum frequency of 1.5 Hz at each station of the virtual array. This approach considers a layered
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Figure 2. A virtual network of Nobs = 56 stations where PGV responses are reported by the source model. The solid black line at the center

denotes the length and location of the fault plane.

Table 1. Velocity model used in this study, modified from Boore et al. (1997).

Depth (km) Vp (km/s) Vs (km/s)

0 2.4 1.5

0.5 4.4 2

1.5 5.3 2.7

2.5 5.5 2.9

4 5.7 3.3

8 6.1 3.5

14 6.8 3.9

16.6 7.1 4.1

27 8 4.6

350 8.2 4.65
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Table 2. Parameters governing fault plane configurations, (*) denotes dependent parameters.

Index Parameter Physical Interpretation

1 AR Area ratio, AR= πab
L∗W ∈ [0.05,0.29]

2 xh (km) x-coordinate of the hypocenter xh ∈ [−13.5,13.5]

3 zh (km) z-coordinate of the hypocenter yh ∈ [−5,5]

4 a (*) (km) Semi-major axis a ∈ [
√

AR·L·W
π

,L/2]

5 θ (*) Inclination angle of the elliptical patch

6 xc (*) (km) x-coordinate of the center of elliptical patch

7 zc (*) (km) z-coordinate of the center of elliptical patch

1D velocity structure. We apply the velocity model shown in Table 1, which corresponds to a slightly modified version of the

generic model by Boore et al. (1997) for California. PGVs serve as our quantities of interest (QoIs, each denoted as Qj , for

j = 1,2, ...,Nobs). We aim at understanding stochastic source model PGV responses to random fault plane configurations of

the source process (slip distributions and hypocenter location). To this end, we consider variations in seven physical parameters

listed in Table 2, which parameterize the fault plane configurations, i.e. locations of both the hypocenter and elliptical asperity

patch, as well as its shape and orientation. We restrict the hypocenter and elliptical patch to be inside the fault plane, and limit

the area aspect ratio (AR) of the elliptical patch to the entire fault plane (L×W ) between 5% and 29%. These restrictions lead5

to nonlinear dependency between feasible ranges of different physical parameters (see Appendix A for more details).

3 Polynomial Chaos Framework

PC expansions (Ghanem and Spanos, 1991; Xiu and Karniadakis, 2002; Le Maître and Knio, 2010) are used in this study to

understand earthquake rupture model responses (in terms of PGVs) to random configurations of slip distribution and hypocen-

ter location. We associate each of the physical parameters with a random variable ξi (i ∈ {1,2, ...,nd}, where nd = 7 is the10

number of stochastic dimensions) and assume all ξi’s are independent and uniformly distributed over [−1,1]. That is, the joint

distribution of the random parameter vector ξ is

p(ξ) =





2−7 if ξ ∈Ξ≡ [−1,1]7,

0 otherwise.
(1)

Each random parameter vector ξ ∈Ξ can be linked uniquely to a realization of the physical parameter vector (See mapping

details in Appendix A). We thus focus on constructing functional representations of PGV responses at each station with respect15

to ξ, instead of the physical parameters in Table 2.
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Let Qj(ξ) be the PGV response to ξ at the j-th station (j ∈ {1,2, ...,Nobs}), and assume each Qj is a second-order random

variable, i.e. Qj(ξ) is in the Hilbert space L2(Ξ,p) and

E
[
Q2
j

]
=
∫

Ξ

Qj(ξ)2p(ξ)dξ <+∞, ∀j ∈ {1,2, ...,Nobs}. (2)

One can approximate Qj(ξ) using a truncated PC expansion as follows:

Qj(ξ)≈ Q̃j(ξ) =
Np∑

α=0

cαΨα(ξ), ∀j ∈ {1,2, ...,Nobs}. (3)

where Np is a truncation parameter and (Np+1) is the number of expansion terms retained in the PC surrogate models. In this

study, we truncated the PC expansion at total polynomial order of nine, which leads to 11440 polynomials. By adopting the5

classical convetion of Ψ0(ξ) = 1, the mean and variance of a PC surrogate Qj(ξ) can be expressed as:

E
[
Q̃
]

=
Np∑

α=0

cα 〈Ψα,1〉= c0, (4)

and

V
[
Q̃
]

= E
[
(Q̃−E

[
Q̃
]
)2
]

=
Np∑

α,β=1

cαcβ 〈Ψα,Ψβ〉=
Np∑

α=1

c2α‖Ψα‖2L2
, (5)

where 〈·〉 denotes the inner product in the Hilbert space L2(Ξ,p) with respect to the joint distribution p(ξ) (Le Maître and10

Knio, 2010).

To determine the expansion coefficients (cα’s) in Eq. (3), we rely on a Latin Hypercube Sample (LHS) (McKay et al., 1979)

set (denoted as PLHS hereafter) of NLHS = 8000 earthquake rupture model realizations and solve the following Basis Pursuit

Denoising (BPDN) problem (Van Den Berg and Friedlander, 2007, 2008) at each station:

c∗ = arg min
c∈RNp+1

||c||l1 s.t. ||Qj − [Ψ]c|| ≤ γ||Qj ||l2 , ∀j ∈ {1,2, ...,Nobs}, (6)15

where Qj = (Qj(ξ1),Qj(ξ2), ...,Qj(ξNLHS
))T is the model PGV realization vector at the j-th station, and c ∈ RNp+1 is

the coefficient vector for the corresponding PC surrogate model. [Ψ] ∈ RNLHS×(Np+1) denotes the polynomial matrix with

each element [Ψ]i,α = Ψα(ξi). Note [Ψ] is station invariant. The scalar parameter γ indicates the model noise level and is

determined numerically via a cross-validation process.

Following Sobol (1993), Homma and Saltelli (1996), variance-based first-order and total order sensitivity indices associated20

with a subset of random variables (i⊂ {1,2, ...,nd}) can be calculated respectively as follows:

Si =

∑
α∈Si

c2α‖Ψα‖2L2∑Np

α=1 c
2
α‖Ψα‖2L2

. (7a)

Ti =

∑
α∈Ti

c2α‖Ψα‖2L2∑Np

α=1 c
2
α‖Ψα‖2L2

, (7b)
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Figure 3. Relative l2 errors of PC surrogate models.

where Si (first-order sensitivity) is the relative variance contribution of those polynomials exclusively related to random vari-25

ables in the subset i; while Ti (total order sensitivity) is the relative variance contribution of polynomials involving any of the

random variables in i (including cross polynomials between variables in i and its complement i∼, i∪i∼ = {1,2, ...,nd}). Note

that by definition the two polynomial index sets satisfy Si ⊂ Ti.

3.1 Validation of PC Models

We first validate our PC surrogate models for PGVs at all stations. To this end, we introduce a second independent source

model simulation ensemble (again an 8000 member LHS set PvalidLHS ⊂Ξ) for the purpose of validation. (Note that PvalidLHS is

independent of the training set PLHS). The following relative l2 error is then examined for PGVs at each station.5

εj =

√√√√
∑NLHS

k=1 (Q̃j(ξk)−Qj(ξk))2
∑NLHS

k=1 Qj(ξk)2
, ∀j ∈ {1,2, ...,Nobs}, (8)

where Q̃j(ξk) and Qj(ξk) denote PC and source model responses, respectively, to ξk at the j-th station. ξk ∈ PLHS or

ξk ∈ PvalidLHS depending on the sample set used to estimate the errors.

Figure 3 shows relative error estimates of PC surrogate models over the training set (PLHS , blue dots) and the validation

set (PvalidLHS , red dots). It is not surprising to see slightly larger error estimates on the validation set, as the PC reconstruction10
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process is unaware of this data set. However, because almost all error estimates fall below 10% range, and in light of the close

agreement (about 4% difference) between the blue and red dots, our PC surrogate models are deemed to suitably reproduce

source model PGV responses throughout the entire station network.

Apart from the above error estimates, the convergence of PC surrogate models with respect to truncation order is also

investigated from a statistical point of view. Figure 4 shows PGV distributions from PC re-sampling on a one-million-member15

LHS set (P1E6
LHS) at two selected stations, with different PC truncation orders. It is seen that when the truncation order is larger

than five, the difference in the PGV prediction distributions becomes relatively small, suggesting that our ninth-order PC library

is sufficient for the source model under consideration.

We finally compare distributions of PC and source model predictions, see Figure 5. It is observed that our PC surrogate

models are indeed capable of reproducing PGV distributions produced from source model realizations of the validation set

PvalidLHS . Besides, the excellent agreement between the two PC predicted distribution curves in Figure 5 suggests that our existing5

8000 model simulation ensemble is statistically representative, which provides additional confidence in our PC representations.

3.2 PC Statistics

The PC surrogate models obtained in the previous section provide immediate access to prediction statistics, as given by Equa-

tions (4) and (5). Figure 6 shows means and standard deviations of PC PGV predictions at different stations, along with a

reference PGV curve provided by the GMPE in Boore and Atkinson (2008). It is seen that our PC predictions generally scatter10

around the GMPE curve. The PGVs are generally largest near the fault plane, and decrease with increasing RJB distance. The

overall tendency of PC prediction uncertainty (quantified by the standard deviation bars) seems to decrease with increasing

RJB distance as well.

The conditional mapping from random PC parameter ξ to physical fault plane configuration leads to complex dependency

of PGV responses to random inputs. To identify the relative impact of each random parameter (each component of ξ) on model

responses, we rely on the global sensitivity analysis in (Homma and Saltelli, 1996; Sobol, 1993).

Figure 7 shows both the first and total order sensitivity indices associated with each random parameter at different stations.

These sensitivity indices reveal that the model PGV response is most sensitive to the location of the hypocenter (xh is dominant5

and zh plays a secondary role) throughout all stations, whereas the remaining random parameters (associated with elliptical

asperity patch) are relatively insignificant. While it might be reasonable to neglect the elliptical patch parameters’ impact on

PGV response variability at far stations (with RJB distance roughly more than 10 km away from the center), it is evident that

at near-the-center stations, those elliptical patch parameters can still lead to a considerable impact on PGV response.

To better illustrate the above sensitivity observation, we divided the parameters into the following two groups ξhypo =10

{ξxh
2 , ξzh

3 } and ξellip = {ξAR1 , ξa4 , ξ
θ
5 , ξ

xc
6 , ξzc

7 } (the superscripts denote the corresponding physical parameters), and calculate

the first order sensitivity indices associated with ξhypo and ξellip using Equation (7a), denoted as Shypo and Sellip, respectively.

Note the combined effect (interaction) of hypocenter location and elliptical patch parameters is simply given by Shypo×ellip =

1−Shypo−Sellip. The resulting group sensitivity indices are shown in Figure 8. It is now clear that the hypocenter location alone

is responsible for 80-90% of the variability in PGVs at distant stations. Meanwhile near the center, the hypocenter location15
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Figure 4. PC predicted PGV distributions at two selected stations. (Top) Station # 3 (Bottom) Station # 21. Distribution curves are generated

from PC realizations on a one-million-member LHS set P1E6
LHS .
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Figure 5. Comparison of PGV distributions predicted by the source model (blue solid curve) and PC surrogate model (red dashed curve)

respectively at selected stations over the validation sample set PvalidLHS . The black dash-dotted curves are PC prediction distributions obtained

from realizations on a one-million-member LHS set P1E6
LHS .
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are standard deviation bounds of GMPE predictions.

alone is associated with only 55-75% of the PGV variability, suggesting that the elliptical patch parameters play important

roles with about 25-45% contribution to the total PGV variability.

4 Bayesian Inference

In this section, we utilize a Bayesian approach (Bernardo and Smith, 2001; Berger, 2013; Gelman et al., 2014) to find the

most likely fault plane configuration, in the sense that the resulting earthquake rupture model produces PGVs best match the

reference GMPE curve by Boore and Atkinson (2008) for the same magnitude and focal mechanism. To this end, we first5

obtain the GMPE predicted PGVs at the stations shown in Figure 2, denoted as d, which serves as observational data in our

Bayesian inference, and compare d with our PC surrogate model predictions d̃(ξ) = (Q̃1(ξ),Q̃2(ξ), ...,Q̃Nobs
(ξ))T .
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Figure 7. First (top) and total (bottom) order sensitivity indices at each station.
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Figure 8. 1st order sensitivity indices with respect to grouped parameters.

4.1 Bayesian Formulation

To formulate the Bayesian problem, we start with Bayes’ formula

p(η|d) =
p(d|η)p(η)

p(d)
∝ p(d|η)p(η), (9)10

where η is the parameter vector to be inferred, p(η) is the prior probability distribution of η, and p(d|η) is the likelihood

of observing d given η. The denominator p(d) is the marginal distribution known as evidence. (Note this evidence can be

neglected, as the Markov Chain Monte Carlo (MCMC) sampling method (Haario et al., 2001; Roberts and Rosenthal, 2009)

utilized below solely relies on the proportionality). We adopt the assumption of independent Gaussian prediction error at each

station location, i.e. the discrepancy between GMPE and PC predictions at each station is an independent Gaussian variable:15

p(εj) = p(dj − d̃j) =
1√

2πσ2
exp
[
− (dj − d̃j)2

2σ2

]
, ∀j ∈ {1,2, ...,Nobs}. (10)

Recall that the PC prediction uncertainty seems to decrease with RJB distance according to Figure 6, which motivates us to

partition the Nobs stations into four concentric groups, namely according to their corresponding RJB distances as colored in

Figure 2, and associate each group of stations with a hyper-parameter σ2
l(j) (l(j) ∈ {1,2,3,4}, depending on the RJB distance

of the j-th station). As a result, the likelihood can be expressed as:20

p(d|η) =
Nobs∏

j=1

1√
2πσ2

l(j)

exp
(
− (dj − d̃j(ξ))2

2σ2
l(j)

)
, (11)
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and accordingly the inference parameter vector η reads

η = (ξ1, ξ2, ..., ξ7,σ2
1 ,σ

2
2 , ...,σ

2
4)T . (12)

Our numerical experiments suggest that the 4-σ2 model above outperforms the model with only one hyper-parameter for all

stations. It is noted that we limit the number of uncertainty hyper-parameters (σ2
i ’s) to four in this study, due to the limited25

number of observations (PGVs at limited number of stations). If more observations are available, it might be beneficial to

increase the number of hyper-parameters.

The prior distribution of η, without additional information on the model parameters, is usually given by assumptions of

uniform distribution for PC parameters ξ, and Jeffrey’s priors (Sivia and Skilling, 2006) for hyper-parameters σ2
l (as σ2

l is

always greater than zero); consequently,

p(η) =





(
1
2

)7∏4
l=1

1
σ2

l
∀ξ ∈Ξ and ∀σ2

l > 0,

0 otherwise,
(13)5

and Bayes’ rule reduces to

p(η|d)∝ p(d|η)p(η) =




∏Nobs

j=1
1√

2πσ2
l(j)

exp
(
− (dj−d̃j(ξ))

2

2σ2
l(j)

)[(
1
2

)7∏4
l=1

1
σ2

l

]
∀ξ ∈Ξ and ∀σ2

l > 0,

0 otherwise.
(14)

We rely on the adaptive metropolis MCMC approach (Haario et al., 2001; Roberts and Rosenthal, 2009) to sample the

above posterior distribution. It is worth noting that MCMC methods, despite the improved efficiency against the traditional

MC approaches, generally require a large number of samples (typically tens of thousands, and even larger depending on the10

dimensionality of the problem). This is one of the main reasons why we utilize PC techniques, as the use of the corresponding

surrogates in the MCMC simulation leads to significant reduction in computational cost. In this study, the MCMC sample size

for inference is set to 106.

4.2 Inference Results

As mentioned above, we exploit the PC surrogate models in Bayesian inference analysis and update the posterior distribution15

of random parameters (ξ ∈Ξ), as well as PGV prediction uncertainties (σ2
l ’s), in light of the GMPE predicted PGVs. Figure 9

shows the posterior probability distributions of hyper-parameters σ2
l (l ∈ {1,2,3,4}). It is evident that σ2

l decreases with RJB

distance (from l = 1 to l = 4), which supports our previous ansatz from Figure 6.

Similarly, we examine the sampling chains of PC random parameters ξi (i ∈ {1,2, ...,7}). While some parameters (e.g. ξ1, ξ2, ξ3

and ξ6) yield very informative posterior distributions (not shown here), others look relatively less informative. It is noted that

our goal is to estimate the posterior distributions of the physical parameters in Table 2, instead of the PC parameters. Thus, it

is desired to map the ξ chain into the corresponding physical configuration chain, before inferring the most likely fault plane5

configuration.
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Figure 9. Posterior probability distributions of prediction uncertainty parameters (each PDF curve is scaled to have unit peak height for better

comparison).

Figure 10 shows the posterior distributions of the physical parameters after mapping from the PC parameter chain of ξ (for

brevity, the chain plots of physical parameters are not shown here), as well as the corresponding inference of the fault plane

configuration (bottom right panel). It is observed that in light of the GMPE PGV predictions: 1) the hypocenter location (xh

and zh) is well identified; 2) The size of the elliptical patch seems to be more likely near the lower bound of the prior; 3) The10

inclination angle of the elliptical patch, as well as the location of the patch, is less conclusive. For example, despite the clear

peak in the inclination angle plot, the posterior distribution is relatively flat, suggesting limited information gain comparing

with the prior knowledge. Furthermore, the xc distribution only shows the fact that the ellipse tends to be in the left half of the

fault plane; the definite location of the elliptical patch (either xc or yc) is ambiguous. These findings are generally consistent

with the results of the sensitivity analysis. Since the model is primarily sensitive to the hypocenter location, perturbing the15

hypocenter location leads to more effective adjustment in PGV responses. On the other hand, elliptical patch parameters have

relatively small impact on PGV variance, which calls for more observational data to pin down those parameters.

One needs to be cautious about the Bayesian inference results discussed above. From the physical point of view, the spatial

distribution of those stations (see Figure 2) where PGVs are reported is almost ‘symmetric’ about the center of the fault plane

(x= 0 and y = 0), as a result, one would expect to see a ‘symmetric’ twin configuration that are roughly equally plausible20

from the Bayesian inference. However, this ‘symmetric’ counterpart is clearly missing in the above inference results. This

is probably because when MCMC chain converges to the high probability region of hypocenter location in the bottom right

quadrant of the fault plane, it becomes more and more difficult to escape from this high probability region and explore the

other side of parameter space. In other words, there could be bi-modal structures in the distributions of xh (as well as xc)

15
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Figure 10. Prior (dashed black, derived from uniform ξ distribution in Ξ) and posterior (solid blue) distributions of physical fault plane

configuration parameters. The bottom right panel shows the inferred fault plane configuration.
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Figure 11. Inferred fault plane configuration with MCMC chain starting from the ‘symmetric’ counterpart configuration.

which the previous MCMC process fails to identify (e.g. the configuration in which the hypocenter located on the bottom25

left quadrant of the fault plane, and the ellipse centered at somewhere in the right half of the fault plane). While in theory

it is possible to identify the missing multi-modal distributions of random parameters by further increasing the number of

MCMC samples, the computational cost can be excessive. Alternatively, we verify our expectation of seeing the ‘symmetric’

counterpart configuration by re-running the MCMC simulation starting with the ‘symmetric’ counterpart configuration (i.e.

with hypocenter being in the bottom left quadrant of the fault plane, and elliptical patch being in the right side of the fault plane).30

The resulting fault plane configuration inference is shown in Figure 11. As expected, the new MCMC process ended up with

a fault plane configuration that is roughly ‘symmetric’ to the previous inference result, especially for the hypocenter location.

The asymmetric behavior of the elliptical patch stems from the fact that: 1) the Nobs stations are not exactly symmetrically

distributed, thus one should not expect exact symmetry; 2) as discussed before, the PGV responses are less sensitive to the

elliptical patch properties, leading to ambiguity in inferring these properties.

4.3 Inference with Restricted Prior

The previous inference results are all based on almost complete ignorance of dependency between hypocenter location and the

slip area (asperity). However, previous studies (Mai et al., 2005; Irikura and Miyake, 2011) suggested some constraints on the5

relative hypocenter location (Mai et al., 2005) with respect to the asperity, and size of the asperity (Irikura and Miyake, 2011).

In this section, we consider the following restrictions in our inference analysis:

R-1. The elliptical patch is inside the dashed rectangle ([L′,W ′] = 0.9× [L,W ]) shown in Figure 1;

R-2. The area ratio of the elliptical patch (AR) is between 15% and 29% of the fault plane area, i.e. 0.15<AR< 0.29;
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R-3. The elliptical patch is not too elongated, i.e. the axis ratio a
b ≤ 3;10

R-4. The hypocenter is located outside but near the elliptical patch, i.e. xh = (a+3ζh1)cos(2πζh2) and zh = (b+b 3
aζh1)sin(2πζh2)

∀(ζh1 , ζh2) ∈ [0,1]2.

The above restrictions can be conveniently incorporated into the Bayesian framework, namely by modifying the previous

prior distribution (Equation (13)) as follows:

p∗(η) =





(
1
2

)7∏4
l=1

1
σ2

l
∀ξ ∈Ξ , ∀σ2

l > 0 and all restrictions are satisfied,

0 otherwise.
(15)15

However, due to the strong restrictions listed above, the support of the above prior probability distribution (Equation (15)) turns

out to be extremely limited in the parameter space Ξ, leading to computationally inefficient MCMC sampling (since most of

the samples drawn from a proposal distribution will end up not satisfying at least one of the restrictions and thus zero prior

probability). To mitigate the difficulty of inefficient sampling due to restricted prior distribution, we introduce a new layer of

parameterization, mapping from Ξ to restricted physical configurations. (Details on this new mapping mechanism are given in

appendix B.)

Figure 12 shows the MCMC process of drawing random samples from proposal distributions and calculate the resulting5

posterior probability. Without additional restrictions (orange path), the parameter vector ζ = ξ, and the whole process reduces

to the standard MCMC process we used in the previous section. By introducing the new parameterization process (see algo-

rithm 2), we are transforming the original problem, which is based on PC parameter vector ξ, into a new inference problem

based on ζ (we denote ζ as auxiliary random parameter vector hereafter, to distinguish it from the PC parameter vector ξ).

This transformation is based on the mapping from ζ to ξ (i.e. ξ = ξ(ζ)) via their commonly associated physical configuration.10

For clarity, we formulate the new ζ based Bayesian problem as follows:

p(η∗|d)∝





[(
1
2

)7∏4
l=1

1
σ2

l

]∏Nobs

j=1
1√

2πσ2
l(j)

exp
(
− (dj−d̃j(ξ(ζ)))

2

2σ2
l(j)

)
∀ζ ∈Ξ, ∀σ2

l > 0,

0 otherwise.
(16)

where η∗ = (ζ1, ζ2, ..., ζ7,σ2
1 ,σ

2
2 , ...,σ

2
4)T .

Following the same analysis as discussed before, we show the inference results under restrictions in Figure 13. Note that

the prior distributions of those physical parameters are different from those in Figure 10, as the new ones are derived from15

uniformly distributed auxiliary random vector ζ ∈Ξ, instead of PC parameters ξ ∈Ξ. Nevertheless, we see very consistent

results of hypocenter location, as well as the location of the elliptical patch, comparing with those in Figure 10. The area aspect

ratio AR, though larger than the previous inferred value, still favors the lower end of the prescribed parameter range. The

elliptical patch ends up with a larger area and longer semi-major axis (compared to the results in Figure 10 and 11). These

differences are directly stemming from restrictions R-2 and R-3.20

Though it is not obvious to see from Figure 13, the restricted Bayesian MCMC process is indeed aware of the existence of the

‘symmetric’ counterpart configuration. Figure 14 shows the restricted Bayesian MCMC sample chains of both the hypocenter
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Figure 12. Flow chart demonstrating the random sampling process and the calculation of posterior probability in MCMC. The orange path

corresponds to unrestricted sampling process, whereas the blue path incorporates additional restrictions on fault plane configurations. Note

Y denotes the fault plane configuration vector in the physical domain, e.g. Y = (AR,xh,zh,a,θ,xc,zc)
T .
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Figure 13. Prior (dashed black, derived from uniform ζ distribution in Ξ) and posterior (solid blue) distributions of physical fault plane

configuration parameters in restricted inference. The bottom right panel shows the inferred fault plane configuration.
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1

Figure 14. Restricted Bayesian MCMC sample chains of the hypocenter (top) and elliptical patch center (middle); the bottom panel shows

the correspondence between xh and xc chains
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Figure 15. Comparison of PC predicted PGV responses with aforementioned three inferred fault plane configurations with the reference

GMPE curve. Dashed lines are standard deviation bounds of GMPE predictions.

(top panel) and elliptical patch center (middle panel). It is seen that despite the fact the hypocenter samples are mostly clustered

around xh = 5 km, there is a sample cloud on the opposite side (xh =−5 km), corresponding to the ‘symmetric’ counterpart

configuration discussed before. The sample cloud of elliptical center also shows bi-modal distributions, with primary cloud on25

the left (xc < 0) and secondary ‘symmetric’ counterpart on the right (around xc = 5 km). The correspondence between xh and

xc is shown in the bottom panel of Figure 14, from which it is seen that when xh is positive, xc is more likely to be negative

and vice versa, suggesting that hypocenter and ellipse center are in the opposite side of the fault plane, as previous inference

results suggested. Note that in this restricted Bayesian MCMC sampling, the total number of samples remains 106. The ability

to observe the ‘symmetric’ counterpart clouds is probably due to the fact that by introducing the auxiliary parameter ζ, we30

dramatically shrunk the sampling space (it is only a small subspace of the original unrestricted parameter space). As mentioned

before, introducing the auxiliary parameter ζ leads to significant efficiency improvement in MCMC sampling process.

4.4 Comparing PGVs

We summarize the Bayesian analysis by comparing PC predicted PGV responses to the three inferred fault plane configurations

discussed above with the reference GMPE curve (see Figure 15 and Table 3). We observe that all three configurations lead to
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Table 3. Comparison of PC predicted PGVs of different inferred configurations with the reference GMPE curve. Unrestricted-1 and 2

correspond to inferences in Figure 10 and Figure 11, respectively.

Inference ε=

√∑Nobs
j=1 (Q̃j−QGMP E

j )2

Nobs
r =

√
1

Nobs

∑Nobs
j=1

( Q̃j−QGMP E
j

QGMP E
j

)2
Unrestricted-1 (blue) 1.1135 0.3395

Unrestricted-2 (red) 1.7413 0.3993

Restrict (green) 1.4564 0.3702

relatively close match between PGV responses and the reference GMPE curve. By comparing either the root-mean-square

(rms) error or the relative rms error, we conclude that the red dots (corresponding to the unrestricted inference in Figure 11)5

clearly show larger discrepancy from the GMPE curve, suggesting smaller likelihood compared to the other two, consistent

with our Bayesian analysis. When comparing the blue and green dots (unrestricted inference in Figure 10 versus restricted

inference in Figure 13), the former seems to be slightly better, which is expected because of the additional flexibility in fitting

the GMPE curve. Nevertheless, it might be better to report the restricted inference results (configuration in Figure 13), as it

satisfies all the restrictions learned from previous studies while retaining plausible agreement with the reference GMPE curve.10

5 Conclusions

An earthquake rupture model was adopted to explore the stochastic dependence of ground motions (in terms of PGVs) on

random fault plane configurations. Thanks to the ability to generate two independent source model simulation ensembles with

8000 members each, we were able to build successful PC surrogate models to assess PGV responses over the virtual network

of Nobs = 56 stations from one ensemble, and then to validate the quality of PC models on the other. Our statistical analysis15

showed that the two 8000-member LHS ensembles of source model simulations are adequate to represent the underlying PGV

distributions at all stations, as they closely match with PC predicted distributions over a much larger sample set.

A global sensitivity analysis of PC surrogate models was conducted. The analysis revealed that the source model PGV

response is primarily sensitive to the hypocenter location, and much less sensitive to properties of the asperity patch, especially

at stations far away from the fault plane (in terms of the RJB distance). While this holds true for all stations, it is noted that20

asperity patch properties still carry considerable impact (20-30% associated variability) on PGV responses at stations close to

the fault plane, and even more influence (additional 10% variability) if one takes into consideration the interaction between

asperity patch and hypocenter location.

Our analysis of PGV variabilities indicated that one needs to be cautious when interpreting PGVs at near fault plane stations,

as they are more prone to higher model noise. This is supported by the Bayesian inference analysis, in which four independent25

model noise parameters (σ2
l for l = 1,2,3,4) were introduced and assigned to four concentric groups of observational stations,

depending on their RJB distances away from the fault plane. The Bayesian inference results clearly showed the decreasing

trend of noise parameters (σ2
l ’s) when moving away from the fault plane (see Figure 9). Further refinement of the noise
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parameter profile along the RJB distance, though desired, is prohibited by the limited number of available observational

stations.30

We conducted both unrestricted and restricted Bayesian inference analyses to identify the chosen GMPE reference curve.

The key findings are as follows: 1) due to the considerable ‘symmetry’ presented by thoseNobs stations, the most profound fault

plane configuration, which reproduce the reference GMPE predictions, can potentially have a ‘symmetric’ twin configuration,

especially for the hypocenter location; 2) it is more likely to have the hypocenter located in the lower right quadrant of the fault

plane, and the elliptical patch centered in the lower left quadrant; 3) the restricted inference results remain consistent with the

unrestricted ones, with slightly more deviation from the chosen GMPE reference curve but closer agreement with the previous

study (Mai et al., 2005).

The analyses and findings in this study provide useful insights on how near-source ground shaking (and its variability)5

depend on random fault rupture configurations. Interestingly, even very simple source models (with elliptical slip patches)

are able to generate shaking distributions that well reproduce empirical predictions. To better reproduce the chosen GMPE

reference curve, it might be beneficial to consider two or more asperity patches, instead of one in this study, in order to reduce

the hypocenter location influence and in return increase the impact of asperity properties. Another potential improvement can

be made by refining the station network. As mentioned earlier, the Bayesian inference is primarily limited by the number of10

available stations at which PGVs are reported. By increasing the number of PGV reporting stations, one may improve the

Bayesian inference results (e.g. removing the ambiguity in inferring the elliptical patch location).

Code and data availability. The COMPSYN code (Spudich and Xu, 2003) employed in this study, along with the simulation data are avail-

able upon request.

Appendix A: Mapping from PC Random Parameters to Physical Parameters15

Let a and b be the lengths of semi-major and minor axes, respectively, of the elliptical patch considered in the fault plane

configuration discussed in Section 2, and AR be the area aspect ratio defined by AR= πab
LW (here L= 27km and W = 10km

are the length and width of the fault plane). The elliptical patch centered at the origin (xc = 0 and zc = 0, note the z-axis is

pointing downwards as shown in Figure 1), when not rotated (meaning θ = 0, the semi-major axis align with x-axis), can be

expressed as:20

x
z


=


acosβ
bsinβ


 where −π ≤ β ≤ π (A1)

If the elliptical patch is rotated by θ ∈ [−30◦,+30◦] (a positive angle denotes clockwise rotation), then the ellipse is given

by:

x

r

zr


=


cosθ −sinθ
sinθ cosθ




x
z


=


cosθ −sinθ
sinθ cosθ




acosβ
bsinβ


=


acosθcosβ− bsinθsinβ
asinθcosβ+ bcosθsinβ


 (A2)
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To ensure the resulting elliptical patch is completely confined within the fault plane, we first find the maximum extent of the

ellipse in both x- and y-directions. We first calculate the following two β∗’s,5

∂xr

∂β
=−acosθsinβ− bsinθcosβ = 0 ⇒ β∗x = tan−1

(
− b

a
tanθ

)

∂zr

∂β
=−asinθsinβ+ bcosθcosβ = 0 ⇒ β∗z = tan−1

( b
a

1
tanθ

)

(A3)

Next, by substitute the above β∗x and β∗z into Equation (A2), we have

xrmax = |acosθcosβ∗x− bsinθsinβ∗x|

zrmax = |asinθcosβ∗z + bcosθsinβ∗z | (A4)

These are the maximum extents of the ellipse in x- and y- directions, respectively.

When the ellipse is not centered at the origin (xc 6= 0 and/or zc 6= 0), the following conditions need to be satisfied.10

|xc|+xrmax ≤
L

2

|zc|+ zrmax ≤
W

2 (A5)

which leads to:

|xc| ∈ [0,
L

2
−xrmax]

|zc| ∈ [0,
W

2
− zrmax]

(A6)

Note the above constraint on xc is always valid, since xrmax ≤ a≤ L
2 ; while the zc constraint requires more treatment as zrmax

can be greater than W
2 under some rotation angle θ and semi-major axis a. To ensure that zrmax ≤ W

2 , we first check if the15

prescribed upper bound rotation (30◦) is feasible. If not, we solve the following equation for θ∗, which corresponding to the

maximum feasible rotation angle given a and AR.

zrmax = |asinθ∗cosβ∗z (θ∗,a,AR) + bcosθ∗sinβ∗z (θ∗,a,AR)|= W

2
(A7)

and define the upper bound of the rotation angle as

θ̂ =min(θ∗(PE,a),30◦) (A8)20

The resulting rotation angle parameter θ is then assumed to be uniformly distributed over [−θ̂, θ̂].
The mapping from ξ to physical parameters is outlined in the Algorithm 1. With the prior assumption of uniform distribution

of ξ in Ξ, the corresponding prior distributions of each physical parameter are show in Figure 10 (dashed black curves).
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Algorithm 1 Unrestricted mapping - PC random parameter ξ to physical parameters: Y =M1(ξ)

1: Input ∀ξ = (ξ1, ξ2, ..., ξ7)
T ∈Ξ

2: AR= 0.05+ 1
2
(ξ1 +1)(0.29− 0.05) {Map ξ1 to area ratio}

3: xh =−L
2

+ 1
2
(ξ2 +1)L {Map (ξ2, ξ3) to hypocenter location (xh,zh)}

4: zh =−W
2

+ 1
2
(ξ3 +1)W

5: amin =
√

AR·L·W
π

{Calculate the lower bound of a from AR above}

6: a= amin + 1
2
(ξ4 +1)(L

2
− amin) {Map ξ4 to a, and calculate b}

7: b= AR·L·W
πa

8: if zrmax(a,b,30◦)> W
2

then

9: Solve Equation (A7) for θ∗

10: let θ̂ = θ∗ {Calculate maximum feasible rotation angle θ̂}

11: else

12: let θ̂ = 30◦ {Prescribe maximum feasible rotation angle otherwise}

13: end if

14: θ =−θ̂+ θ̂(ξ5 +1) {Map ξ5 to rotation θ}

15: Plug (a,b,θ) into Equation (A4) to calculate xrmax and zrmax

16: xc ∈ [xminc ,xmaxc ] = [−L
2

+xrmax,
L
2
−xrmax]

17: zc ∈ [zminc ,zmaxc ] = [−W
2

+ zrmax,
W
2
− zrmax]

18: xc = xminc + 1
2
(ξ6 +1)(xmaxc −xminc ) {Map (ξ6, ξ7) to ellipse center (xc,zc)}

19: zc = zminc + 1
2
(ξ7 +1)(zmaxc − zminc )

20: return Y = (AR,xh,zh,a,θ,xc,yc)
T {Return parameter vector in the physical domain}

Appendix B: Restricted Mapping

We introduce the auxiliary parameter vector ζ ∈Ξ, and design the following mapping process to generate fault plane configu-

ration samples that satisfy our prior configuration restrictions. For clarity, we list again the four restrictions below:

R-1. The elliptical patch is inside the dashed rectangle ([L′,W ′] = 0.9× [L,W ]) shown in Fig. 1;5

R-2. The area of the elliptical patch (AR) is between 15% and 29% of the fault plane area, i.e. 0.15<AR< 0.29;

R-3. The elliptical patch is not too elongated, i.e. ab < 3;

R-4. The hypocenter is located outside but near the elliptical patch, i.e. xh = (a+3ζh1)cos(2πζh2) and zh = (b+b 3
aζh1)sin(2πζh2)

∀(ζh1 , ζh2) ∈ [0,1]2;

The mapping process is similar to the one in Algorithm 1, with necessary modifications to satisfy the above conditions. We

outline the constrained mapping in Algorithm 2. Note there is one additional condition needs to be verified, i.e. whether or not

the hypocenter is inside the fault plane, as it is not guaranteed by the mapping process (this is also indicated in Figure 12).
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Algorithm 2 Restricted mapping - auxiliary parameter vector ζ to physical parameters: Y =M2(ζ)

1: Input ∀ζ = (ζ1, ζ2, ..., ζ7)
T ∈Ξ

2: [L′,W ′] = 0.9× [L,W ] {Set the restricted rectangle dimension}

3: [AR∗l ,AR
∗
u] = [ 0.15

0.81
,0.29] {Calculate area ratio range w.r.t [L′,W ′], the upper bound (0.29) corresponds to the

maximum circle in [L′,W ′]

}

4: AR∗ =ARl +
1
2
(ζ1 +1)(AR∗u−AR∗l ) {Map ζ1 to temporary area ratio AR∗}

5: amin =
√

AR∗·L′·W ′
π

{Calculate the lower bound of a from AR∗}

6: a= amin + 1
2
(ζ4 +1)(L

′
2
− amin) {Map ζ4 to a, and calculate b}

7: b= AR∗·L′·W ′
πa

8: AR= πab
L·W {Calculate area ratio w.r.t the original rectangle [L,W ]}

9: xh = (a+3 ζ2+1
2

)cos(2π ζ3+1
2

)

10: zh = (b+ b 3
a
ζ2+1

2
)sin(2π ζ2+1

2
) {Map (ζ2, ζ3) to hypocenter location (xh,zh), note the resulting (xh,zh) can

be outside the fault plane, in which case the posterior probability is set to zero.

}

11: if zrmax(a,b,30◦)> W ′
2

then

12: Solve Equation (A7) for θ∗ (using AR∗) {Calculate maximum feasible rotation angle θ̂}

13: let θ̂ = θ∗

14: else

15: let θ̂ = 30◦ {Prescribe maximum feasible rotation angle otherwise}

16: end if

17: θ =−θ̂+ θ̂(ζ5 +1) {Map ζ5 to rotation θ}

18: Plug (a,b,θ) into Equation (A4) to calculate xrmax and zrmax

19: xc ∈ [xminc ,xmaxc ] = [−L′
2

+xrmax,
L′
2
−xrmax]

20: zc ∈ [zminc ,zmaxc ] = [−W ′
2

+ zrmax,
W ′
2
− zrmax]

21: xc = xminc + 1
2
(ζ6 +1)(xmaxc −xminc ) {Map (ξ6, ξ7) to ellipse center (xc,zc)}

22: zc = zminc + 1
2
(ζ7 +1)(zmaxc − zminc )

23: return Y = (AR,xh,zh,a,θ,xc,yc)
T {Return parameter vector in the physical domain}
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