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ABSTRACT

Multi-omics studies are believed to provide a more
comprehensive picture of a complex biological system
than traditional studies with one omics data source.
However, from a statistical point of view data integration
implies non-trivial challenges. In this review, we highlight
recent statistical inference and learning techniques that
have been devised in this context. In the first part
of our article, we focus on techniques to identify
a relevant biological sub-system based on combined
omics data. In the second part of our article we ask,
in which way integrated omics data could be used for
better personalized patient treatment in a supervised
as well as unsupervised learning setting. Different
classes of algorithms are discussed for both application
tasks. Existing and future challenges for data integration
methods are pointed out.
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INTRODUCTION

During the last years there has been an increasing
interest to analyze multiple, heterogeneous omics data
in an integrated manner in order to gain a more
and more comprehensive picture on complex biological
systems [1]. For example, large scale initiatives
such as The Cancer Genome Atlas (TCGA) and the
International Cancer Genome Consortium (ICGC) [2]
now provide transcriptomics, methylomics, proteomics
and genomics data of hundreds of patients for several
cancer entities, allowing novel insights into cancer
biology [3]. Historically, expression QTL analysis (see
systematic list of abbreviations in Table 1) can be seen
as one of the first approaches combining two data
modalities, namely information on genetic variations with
gene expression [4, 5].

While most authors agree on the chances of omics
data integration, the associated challenges have been
discussed under a varying point of view over the last
decade: While in 2006 data availability was seen as one
of the big issues [6], later papers mentioned statistical
challenges, such as the risk of overfitting [7], and the
difficulties associated with different technical platforms,
for example differing normalization protocols and batch
effects [8].

Altogether the challenges for integrating
heterogeneous omics data may be summarized
as follows: omics data of different modality (e.g.
transcriptomics vs. proteomics) are measured with
different techniques. Hence, these data have differing
numerical types (e.g. discrete counts vs. continuous
signals) and scales, coupled with large differences in
the number of measured features (several hundreds
of thousands of SNPs vs. few hundreds of miRNAs).
Furthermore, each technical platform has another noise
level and sensitivity. Consequently, naive merging of
heterogeneous omics data increases the dimensionality
of the data and thus increases the chance to produce
false positive hypothesis testing results. In a machine
learning setting the chance increases to overfit the data.
In order to circumvent these problems the key question
is therefore, how to identify and combine relevant
features from each data modality in a way that respects
known biological dependencies.

The goal of this review is to give an overview about
recent statistical inference and learning techniques that
have been devised to address this issue. Previous
reviews focused on specific applications of data
integration in the cancer field [8] and genetics [9], on the
relevance of data integration for personalized medicine
[10], on technical aspects of network integration
[11] and dimensionality reduction [12], or provided a
high-level view on ongoing research projects [13]. A
mathematically oriented review can be found in [14]. As
opposed to our paper, the authors emphasize specific
mathematical details of selected methods, whereas we
try to characterize the overall methods landscape. More
specifically, we here highlight two aspects: In the first
part of our review we focus on learning and modelling
dependencies between different data modalities on the
level of individual features. That means the aim is
to identify a relevant biological sub-system based on
combined omics data. In the following section we ask,
in which way integrated omics data could be used for
personalized patient treatment in a supervised as well
as unsupervised learning setting.

BRIEF INTRODUCTION OF TECHNICAL
TERMINOLOGY

Since this review focuses on technical aspects of
omics data integration we would like to briefly introduce
some necessary terminology, which is frequently used
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Abbreviation Full form
CCA Canonical Correlation Analysis
CN(V) Copy Number (Variation)
LOH Loss of Heterozyosity
miRNA / mRNA micro / messenger Ribonucleic Acid
ODE Ordinary differential equation (system)
PLS Partial Least Squares
PCA Principal Component Analysis
PPI Protein Protein Interaction
SNP Single Nucleotide Polymorphism
(e)QTL (expression) Quantitative Trait Locus

Table 1: List of common abbreviations

throughout this paper. While this terminology is
commonly used in the machine learning and statistical
literature it might not be entirely clear to all researchers
with non-computational background. Furthermore,
explanations could help to avoid misunderstandings
due to partially ambiguous use of some terms in
different scientific communities. Table 2 shows an
overview about several frequently used terms together
with explanations.

As already outlined in [13] “data integration” can
have multiple meanings in different scientific contexts.
Here we refer to data integration or data fusion as a
statistical or machine learning based approach to extract
information from multiple data sources / modalities (e.g.
gene plus protein expression data). These information
can be used to fit / train / learn statistical models. For
example, such a model could be a classifier used to
predict the disease state of a cancer patient. In general
we distinguish between supervised and unsupervised
model learning. In supervised learning we train a model
based on a possibly large number of omics features
coupled with the known outcome / phenotype for each
training sample. In the previous cancer example, training
samples would be patients with measured omics data
plus known disease state. Notably, supervised learning
is not restricted to classification, but also real valued
outcomes (e.g. disease severity scores, survival) can
be predicted via regression models.

As opposed to supervised learning, unsupervised
learning aims at inferring patterns from data without
having access to a phenotype. For example,
unsupervised clustering of gene expression data from
Glioblastoma Multiforme patients has been used to
identify several disease subtypes [15].

A general concern with all machine learning models
is overfitting, meaning a good fit to the training data,
but poor prediction performance on further test data at
model application phase. Overfitting can be attributed to
overly complex models compared to the limited amount
of available training data. Hence, model training should
a priori favor simpler models over more complex models.
For example, this can be achieved via a mathematical
technique called “regularization”. Furthermore, in the
omics field variable / feature selection is essential,
because data samples (e.g. representing patients) are
sparsely distributed in an extremely high dimensional
space, which is spanned by measured omics features.

Hence, with typical number of training samples a huge
set of different models could exist, which could equally
well fit the data. The true model is thus typically
non-identifiable without further background information.
Reducing the number of features thus also reduces the
set of possible models and thus lowers the chance to
overfit the training data.

Notably, feature selection is not necessarily identical
to differential expression analysis or similar techniques
to identify most significant omics features. Hypothesis
tests are typically conducted separately for each omics
feature, yielding a p-value. However, non-significant
features could be highly informative for a model in
combination with other features, e.g. to separate
two groups of patients with the help of a multi-variate
classifier. Hence, it is important to think about feature
selection from a multi-variate perspective.

Most machine learning models are trained by
optimizing a certain objective function. However, some
models also aim at describing the entire, multivariate
statistical distribution, from which the training data has
been drawn as samples. These models are known as
probabilistic models. Many of these probabilistic models
can be depicted as graphs, where nodes represent
random variables and edges conditional statistical
dependencies (graphical models). Examples thereof are
Bayesian Networks.

Typical machine learning models are purely data
driven, i.e. they extract statistical associations from
training data without background information about the
biological context. Therefore, extracted patterns may or
may not correspond to any known biological mechanism.
A conceptually different approach is thus to focus only
on established biological knowledge, e.g. a given
pathway or network structure, to which then biological
data is mapped to qualitatively or quantitatively to better
understand a biological system. Such an approach is
called knowledge driven.

LEARNING AND MODELLING MOLECULAR
FEATURE DEPENDENCIES BETWEEN
DIFFERENT DATA SOURCES

Sequential Analysis

After having introduced basic terminology in the
preceding Section we now focus on computational
approaches for learning and modelling feature
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Vocabulary used Explanation
data integration / data fusion Statistical approaches to extract information from multiple data sources
data source / data modality Individual omics data source (e.g. gene expression, DNA methylation)
supervised, unsupervised
learning

Supervised learning techniques employ omics data together with known
biological phenotypes or outcomes (e.g. disease, healthy). Unsupervised
learning methods aim at discovering patterns in data without information about
a phenotype. An example is clustering

classification, regression Both are supervised approaches. While classification deals with discrete
phenotypes, regression usually takes into account continuous phenotypes (e.g.
disease severity scores, survival)

clustering Unsupervised statistical learning techniques to discover groupings in the data
overfitting Tendency of statistical models to fit training data well, but perform poorly on

further test data at model application phase. Overfitting can be attributed to
overly complex models compared to the limited amount of available training
data

Regularization Mathematical technique to favor simpler over more complex models
model identifiability Ambiguity in the unique determination of the model based on available training

data
hypothesis testing A statistical framework to evaluate the unlikeliness of an observation due to

pure chance
feature / variable selection Selection of most informative subset of omics features
probabilistic model Model described via dependencies of random variables. Aim is to describe and

model a (multivariate) statistical distribution
data driven, knowledge
driven modelling

Data driven machine learning techniques capture statistical associations in
data, which may or may not correspond to anything biologically known.
Knowledge driven approaches focus on representing established biological
knowledge

Table 2: Explanation of Technical Terminology

dependencies between different data modalities.
An overview about the techniques discussed in this
Section can be found in Table 3.

Probably the most straight forward approach to
integrate heterogeneous omics data is an independent
analysis of each omics data modality. As a second
step, correspondences between relevant features based
on biological background knowledge are investigated.
For example, as a first step significant CNVs and
gene expression changes can be determined. In
the second step significant CNVs can be mapped to
genes, which are then overlapped with differentially
expressed genes [16, 17]. This type of analysis can be
extended to more than two data modalities: Sun et al.
looked for overlaps between differentially expressed and
differentially methylated genes as well as for regions with
statistically significant copy number variations in breast
cancer cells [18]. Chari et al. also integrated loss
of heterozygosity profiles and investigated, in how far
the direction of observed expression changes matched
with CNV and DNA methylation status in different breast
cancer cell lines [19].

A principal limitation of sequential analysis is that
relevant features from each dataset are only determined
with respect to the phenotype. Hence, there
can be non-significant features, which nonetheless
correlate well with features from another data modality.
For example, a certain SNP could by itself not
demonstrate a clear separation between two clinical
groups, but nonetheless shows a clear statistical effect
on gene expression. Such a feature is missed in

sequential analysis. Moreover, significance cutoffs in
each omics data modality are defined independently.
Hence, features in the overlap can be biologically
non-concordant just because truly relevant features
are above the significant cutoff in one of the data
sources. Likewise, false positive features can yield
non-concordance.

Correlation, Covariance and Regression Based
Techniques

Another approach is to directly look for significant
correlations between features from different data
modalities. For example, CNVs and gene expression
can be correlated with each other [20, 21] as well as
expression of miRNAs and genes [22]. Correlation is
closely related to regression analysis, which allows for
potential inclusion of further covariates. For example,
linear regression is frequently employed to identify
eQTLs from combined SNP and gene expression data
[23, 24].

Classical linear regression techniques require fewer
predictor variables than samples. Penalized linear
regression techniques overcome this limitation: In
consequence lasso, group lasso and elastic net
penalized methods have been proposed, e.g. to
model the combinatorial effect of miRNA on gene
expression [25–28]. Also non-linear machine learning
techniques such as gradient boosting and Random
Forests have recently been used to model influences
of the transcriptome on protein expression [29] and to
perform eQTL mapping [30].
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The above mentioned methods essentially assume
a dependency of one particular feature in one data
modality A on one or several other features in a second
data modality B. For example, the expression level
of one particular gene, in eQTL studies, is modeled
as a function of one or several SNPs. This type of
analysis fails, if clear dependencies only exist between
feature combinations in data modality A and feature
combinations in data modality B. Detecting these types
of correlations is essentially the motivation behind
canonical correlation analysis (CCA) [31]. Briefly, the
idea in classical CCA is to construct in data modality
A a canonical variable, which is a linear combination
of existing features and as much as possible correlated
with the canonical variable in data modality B. Similar
to PCA, further canonical variables can be found under
the additional constraint of being uncorrelated with the
preceding ones. In order to use CCA for integration
of different omics data modalities, sparse variants have
been recently developed [32, 33]. Lasso and elastic
net penalized CCA variants have been successfully
applied in several studies to integrate CNVs and gene
expression data [32, 34, 35] as well as SNP information
with fMRI measurements [36].

Whereas CCA focuses on directions of maximal
correlation, partial least squares regression (PLS) aims
for modelling latent variables, which explain maximal
covariance. Sparse PLS variants have been used to
combine different omics data modalities [37] and to map
genetic markers to complex phenotypes [38]. Sparse
PLS has also been compared to sparse CCA methods,
indicating overall similar results with the elastic net
penalized CCA [39].

Other approaches for omics data integration, which do
not fall into one of the aforementioned categories include
independent component analysis [40], generalized
singular value decomposition [41], co-inertia analysis
[42], sparse factor analysis [43] and kernel PCA [44].

Bayesian Networks

Bayesian Networks (BNs) belong to the family of
graphical models and offer a completely probabilistic
view on data integration. BNs explicitly model
conditional statistical dependencies between random
variables [45]. Typically, each random variable
represents one molecular feature (e.g. a protein).
Integration of different omics data modalities (e.g.
gene and protein expression) can be performed by
discretizing each dataset while including additional
auxiliary indicator variables describing the biological
context [46]. Another option is to use e.g. gene
expression as primary data source and employ further
data (such as protein-protein interactions, DNA-protein
interactions, histone modifications or combinations of
several sources) to construct informative network priors,
which facilitate the identification of the true biological
network from data [47–49].

Arguably, one of the first applications of BNs for
biological data integration can be found in Huttenhower
and Troyanskaya [50], where the authors presented a BN
integrating gene expression and various functional and
relational/interaction data in order to predict functional

relationships between proteins. As usual in BN
modelling, the suggested method was based on a
data discretization in order to harmonize differing data
types and to allow for non-linear relationships between
variables. Later work showed the possibility to integrate
heterogeneous modalities on very large scale via a naive
Bayesian classifier system with parameter regularization
in order to predict protein functions [51].

Another line of research within the BN framework
focuses on extending the module network approach
in order to decipher regulatory programs [52]. The
essential idea behind the module network algorithm
is to group genes based on co-expression. Within
the BN framework random variables falling into one
module share the same parameters and parents, hence
yielding a significant reduction of model complexity
and improvement of prediction performance compared
to traditional BNs [53]. While the original module
network algorithm was based on a greedy strategy
to assign network nodes to modules, later variants
introduced Gibbs sampling [54] and ensemble learning
[55]. More recently, module network variants integrating
gene expression data with SNPs [56], CNVs [57], miRNA
and clinical [58] as well as potential further data [59] have
been proposed. The key idea in all of these modifications
is to employ data different from gene expression for
selecting candidate drivers/regulators of specific gene
modules.

Specific BN variants have also been employed for
predicting miRNA and transcription factor combinations
explaining gene expression changes based on joint gene
and miRNA expression data [60, 61]. The authors
of these papers treated regulator activities as hidden
binary variables in a special kind of BN, in which
the topology was defined by target gene prediction
methods. Markov Chain Monte Carlo (MCMC) was
then performed for Bayesian inference of these latent
variables. miRNA and gene expression measurements
were included as observed Gaussian variables. In [61]
the author extended the approach further by Bayesian
learning of the regulator-regulator dependency network.

Using Molecular Networks for Data Integration

Another line of research focuses on using biological
networks as backbone for heterogeneous data
integration. Information about canonical pathways,
protein-protein, protein-DNA as well as predicted
miRNA-gene interactions can nowadays be found
in large scale databases [62–67]. Based on these
resources molecular networks can be reconstructed
and employed for mapping statistics (e.g. z-scores)
of omics data. Accordingly, graph based algorithms
can be employed for identifying relevant sub-networks
[68]. Dittrich and co-workers interpreted this task as an
instance of the Price Collecting Steiner Tree (PCST)
problem and came up with a provably optimal solution
via integer linear programming [69]. At the same time
they demonstrated that in this way gene expression and
other data modalities (e.g. clinical information) could be
combined.

Another example is the work of Nibbe et al., who
integrated gene and protein expression data with the
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help of a protein-protein interaction (PPI) network [70].
The authors first looked for differentially expressed
proteins at the proteome level. In a second step they
scanned potential interaction partners for synergistic
dysregulation on mRNA level using a modification
of Google’s Page Rank algorithm in order to define
candidate sub-network. In a last step these candidate
sub-networks were then scored via a mutual information
based approach.

Rather then generating and scoring sub-networks
other researchers have focused on predefined pathways
and gene sets. Following this line of research
Tyekucheva and colleagues proposed a meta analysis
approach following separate gene set investigation for
each data modality [71]. As an alternative method
the same authors suggested a model based integration
of gene-to-phenotype association scores using all data
sources together, which is followed by gene set analysis
of these scores. Tyekucheva and co-workers in this way
were able to integrate gene expression and CNV data
from glioblastoma multiforme patients.

In line with the meta analysis idea Sun et al. [72]
and Kamborov et al. [73] developed tools, which
combine gene set statistics of different data modalities
via rank aggregation and consensus p-value method,
respectively.

In contrast to the above described gene set analysis
methods PARADIGM is a fully Bayesian approach, which
takes into account the structure of a molecular pathway
as well as further biological background knowledge
[74]. PARADIGM allows for annotating molecular
network nodes with further functional information (e.g.
“apoptosis”) as well as information on molecule type
(e.g. “DNA”, “mRNA”, “protein”). In PARADIGM activities
of node are viewed as latent variables in a factor
graph model. Given observed data, inference about
the state of these latent variables is then performed via
belief propagation. As a result pathway activities are
estimated. The authors have demonstrated that their
method is able to integrate mRNA and CNV data as well
as additional miRNA and DNA methylation information
[75].

Wachter et al. recently published an R-package, which
specifically focuses on the integration of transcriptomics
and proteomics data via pathways, protein-protein
and protein-DNA interactions [76]. These information
are used to link differentially expressed proteins to
transcription factors as well as pathways. At the same
time differentially expressed transcripts are linked to
transcription factors and pathways. In a consensus
step all results are combined either via simple overlap
analysis, via a shortest-path based approximate Steiner
tree algorithm [77, 78] or via a dynamic Bayesian
Network structure learning algorithm [79].

UTILIZING INTEGRATED OMICS DATA FOR
PERSONALIZED MEDICINE

Clinical Outcome Prediction

One of the primary goals of personalized medicine is
to stratify patients into clinically relevant sub-populations
based on suitable biomarker signatures. An overview

about the associated statistical learning techniques
discussed in this section can be found in Table 4.

During the last decade computational research in
the personalized medicine area has mainly focused on
learning predictive models based on one data modality
(e.g. gene expression), possibly also in combination with
biological background knowledge (see [80] for a review).
The advent of multiple, heterogeneous omics data
modalities from the same patient (e.g. somatic mutations
plus gene expression data) now raises the question,
whether predictive models utilizing several combined
data sources could improve prediction performance.
Hence, the primary objective for omics data integration
in personalized medicine is not to identify biologically
relevant molecular networks, as discussed in the last
Section, but to enhance model learning and prediction
performance.

In the machine learning community traditionally three
general strategies for data integration are distinguished
[81, 82]: Early integration methods focus on extraction of
common features from several data modalities, resulting
into one integrated data matrix. In a second step
conventional machine learning methods can then be
applied. Late integration algorithms first learn separate
models for each data modality and then combine
predictions made by these models, for example with the
help of a meta-model trained on the outputs of data
source specific sub-models. The latter strategy is called
stacking [83]. Intermediate integration algorithms are
the youngest branch of data fusion approaches. The
idea is to join data sources while building the predictive
model. An example of this strategy is Support Vector
Machine (SVM) learning with linear combinations of
multiple kernel functions [84].

All three data integration strategies have been applied
in the area of personalized medicine: Pittman et al.
[85] integrated clinical and gene expression data into a
Bayesian decision tree classifier to predict breast cancer
prognosis. Following an early integration approach
the authors first summarized gene expression data into
meta-genes [86], which were then joined with clinical
variables. Selection of relevant variables was carried out
via forward selection.

Boulesteix et al. first used partial least squares (PLS)
regression to extract features from gene expression
data [87]. These features were then combined with
clinical variables to train a Random Forest classifier for
predicting breast and colorectal cancer outcome. In a
similar vein Cao et al. [88] proposed a mixture of experts
model to jointly model the effect of gene expression and
patient clinical data to predict patient outcomes, they
concluded that using gene expression data can provide
valuable insights to understanding survival mechanisms
by identifying prognostic biomarkers.

Gevaert et al. [89] employed a Bayesian Network
to combine clinical and gene expression based on
the 70 gene breast cancer signature by van’t Veer
et al. [90]. The authors compared an early
integration strategy based on simple pasting of data
matrices with an intermediate and a late strategy. In
the intermediate integration the authors first learned
separate BN structures for each data sources and then
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join these networks based on the node representing
the clinical outcome they had in common. In the late
strategy only predictions by the two separate BN models
were weighted and aggregated. The authors found the
intermediate strategy to be most promising.

Daemen and co-workers suggested the use of a
multiple kernel learning (MKL) framework to predict
disease outcome of rectal cancer based on gene
and protein expression data, and of prostate cancer
based on transcriptome and CNV data [91]. Within
the MKL framework separate kernel functions were
defined for each omics data modality. A linear
combination of these kernels was then employed to train
a least squares SVM (LS-SVM). The authors reported a
better prediction performance of this intermediate data
integration strategy compared to model stacking.

Following again the idea of MKL, Thomas et al.
suggested a weighted LS-SVM classifier to combine
gene expression and clinical data [92]. Compared
to models built on each individual data modality as
well as compared to an early integration strategy using
generalized singular value decomposition, the authors
found a significant improvement of their approach for
predicting breast cancer outcome.

Wang et al. [93] developed an integration scheme
based on probabilistic graphical models and Bayesian
inference. Their iBAG algorithm (integrated Bayesian
Analysis) combines miRNA, DNA methylation and
mRNA data to predict patient survival of Glioblastoma
Multiforme (GBM) patients. Their approach explicitly
takes into account the biological relationship between
different data modalities. The authors identified separate
gene sets related to disease outcome and demonstrated
better prediction power to detect disease related genes
than non-integrative methods.

Gade et al. first constructed a correlation weighted
bipartite miRNA-target gene graph [94]. This graph
was then used to guide feature selection with
a component-wise likelihood boosting algorithm for
predicting prostate cancer outcome [95]. Going one step
further other authors also considered protein-protein
interaction information [96]. Their method first smoothes
marginal t-statistics of genes and miRNAs over the
structure of the integrated PPI and miRNA-target gene
network via random walk kernels. Most relevant
features are then determined via a permutation test.
Subsequently a conventional SVM classifier is trained.
The authors demonstrated the benefit of this approach
compared to stacking for predicting disease prognosis in
several cancers.

Arguably one of the most advanced but also
computationally costly approaches for intermediate data
integration in the field of personalized medicine has
recently been suggested by Zitnik and Zupan [97].
The authors combined gene expression and histological
data from animals and human with protein-protein
interactions and GO annotation to predict liver injury
induced by chemicals. This was done based on a
constrained matrix tri-factorization algorithm suggested
by the same authors [98].

Vliet et al. made a comparison of several
integration strategies (pasting of feature matrices, linear

combination of distance measures or kernel functions,
stacking) and classifiers to predict breast cancer
outcome [99]. The authors reported most success via
an intermediate strategy using a nearest mean classifier
our via a late strategy using a logical OR function.

Unsupervised Patient Subgroup Detection

Apart from supervised patient stratification using
defined clinical endpoints (e.g. survival times), a lot of
effort has been made to detect patient sub-populations in
a completely unsupervised manner based on molecular
data. An example of this approach is the detection
of four different molecular subtypes of Glioblastoma
Multiforme (GBM) patients based on gene expression
data by Verhaak et al. [3]. As more molecular data
modalities from the same patient become available now,
many authors explored the possibility of fusing these
data for discovering stronger patterns (see [100] for a
review)

Akin to the case of supervised learning for patient
stratification, unsupervised data fusion approaches can
be broadly classified into three groups, which involve
early, late and intermediate integration schemes. Early
integration methods work with a joint feature matrix
and modify traditional clustering algorithms, such as
k-means, to calculate a weight for each data source
[101]. Late integration combines patient similarity
matrices obtained from independent clusterings of
distinct data types. Intermediate integration methods
typically aim for extracting common features from
different data modalities combined with clustering of
patients.

An example of an intermediate integration strategy is
non-negative matrix factorization (NMF) [102]. The idea
behind NMF is to factorize a data matrix into a product
of two matrices, one indicating discriminative feature
combinations between clusters and one indicating
cluster assignments of patients. While originally NMF
was designed to work with one data modality only,
later work has extended the approach to simultaneous
clustering of several data types. For example, Zhang
et al. used an extended NMF framework to cluster 385
ovarian cancer patients based on joint gene expression,
DNA methylation and miRNA profiles [103].

Another popular intermediate integration approach
is the iCluster method by Shen et al. [104, 105].
This technique combines ideas from sparse matrix
decomposition and latent factor models and has also
remarkable similarities to probabilistic PCA [106] and
k-means [107]. Furthermore, the iCluster method can be
seen as a special case of Bayesian canonical correlation
analysis with a sparsity prior for the coefficient matrix
[108], facilitating model identifiability and interpretability.
In [105] the authors used iCluster to integrate gene
expression, DNA methylation as well as CNV data of
Glioblastoma Multiforme (GBM) patients. The iCluster
method treats information from all patients with the
same confidence, which may lead to erroneous results,
if there are patients with dis-concordant information
from different omics data modalities. The latter
issue was taken up by Yuan et al. [109], who
developed a Patient Specific Data Fusion (PSDF) model,
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which gives different patients separate weights within a
non-parametric Bayesian framework. A unique aspect of
PSDF is that it allows for the separation of concordant
and dis-concordant signals from patients and unlike
iCluster does not force patients to cluster together. The
obtained disease subtypes via PSDF were reported to
be prognostically relevant by the authors. A limitation of
the PSDF method is in the required data discretization,
which may lead to considerable loss of information.
Similar to the PSDF method Kormaksson et al. [110]
proposed a mixture-model for integrative clustering of
gene expression and DNA methylation data. Unlike
PSDF, the method does not require data discretization.
However, a limitation is the assumption of statistical
independence of molecular features.

Another recent mixture model approach is the MDI
(Multiple Data Integration) approach by Kirk et al. [111]
and Savage et al. [112]. Following a Bayesian
non-parametric clustering approach MDI assumes a
Dirichlet Process Prior over cluster assignments.
Moreover, and in contrast to PSDF, MDI learns exact
dependencies between the different data sources as
a directed acyclic graph. This implicitly results in a
preference to put patients into the same cluster, if
they tend to group together in each of the different
data sources. However, at the same time each data
source still retains its own clustering, reflecting the
fact that different molecular data may express partially
non-concordant patient groupings. Savage et al. [112]
used the MDI model to integrate genomic, epigenomic
and transcriptomic information of GBM patients and
reported clinically relevant disease sub-types. MDI is
flexible in modelling continuous (e.g. gene expression)
as well as discrete (e.g. CNVs) data. A limitation is
the assumption of statistical independence of molecular
features.

Generative modelling approach, such as MDI and
PSDF, require to express explicitly the joint statistical
distribution over different data modalities. This
complication is avoided in late integration techniques.
Examples are Similarity Network Fusion (SNF) [113]
and Multiview Genomic Data Integration (MVDA) [114].
These techniques use independent clustering algorithms
for each data modality and aggregate results of patient
similarity matrices from each data source. Thus, late
integration potentially allows for incorporating thousands
of features for each data modality. Furthermore, late
integration techniques are typically more robust to small
sample sizes. A limitation is the difficulty to explicitly
model dependencies between data modalities. The
SNF method models patient similarities as networks
with nodes representing patients. Each data modality
generates its own network, and these networks
are then fused into a consensus network using a
message-passing algorithm. The authors in this way
integrated gene expression, DNA methylation as well
as miRNA profiles over five cancer datasets and
performed graph clustering on the consensus network
to identify disease subtypes. The MVDA approach
[114] concatenates patient-patient similarity matrices
obtained from different data sources and then uses
matrix factorization of the concatenated matrix to come

up with a consensus clustering.
Biclustering is yet another popular statistical technique

for simultaneous clustering of the rows and columns
of a data matrix and has recently also been employed
for data fusion. The original method along with
its modifications has since many years found several
applications in biological data analysis (see [115] for
a comprehensive review). Recently, Bunte et al.
[116] developed a novel bi-clustering algorithm to
cluster cancer cell lines treated with different drugs
while including CNV, DNA methylation, mRNA, protein
abundance and exome sequencing information. The
model is based on the previous work of the same
group of authors on the Group Factor Analysis Model
[117]. Another technique based on biclustering has been
proposed by Sun et al [118, 119]. Their method is based
on sparse singular value decomposition (SSVD) and was
applied to combine SNP information with clinical data for
disease subtyping and identification of subtype-specific
genotype variations.

CONCLUSION

Fusion of heterogeneous omics data modalities
is widely believed to improve our understanding of
biological systems and to enable better personalized
medicine. However, statistical data integration is
associated with non-trivial challenges resulting from
differing numerical and statistical properties of individual
omics data modalities. These challenges come in
addition to all the well known issues with individual omics
data, namely high dimensionality at low sample size and
high noise level. As multi-omics studies become more
and more common practice, there is a growing need for
appropriate statistical learning and inference techniques.
The goal of this review is to shed light on the current state
of methodology in the field. We are aware of the fact that
our review is limited at this point. Techniques not covered
here include e.g. ODE based models in systems biology
[120]. Moreover, we restricted ourselves to the question
of integrating multiple -omics data modalities. Hence, we
did not address genomic data fusion approaches, which
have been e.g. applied in the context of disease gene
prioritization [121].

Multi-omics data are believed to reflect more
information about a biological sub-system than a
single data modality. Hence, a considerable number
of approaches focus on learning and modelling
dependencies between molecular features of different
modalities. Most techniques within that family follow a
knowledge driven approach, which employs biological
networks as a backbone. These methods integrate
data and biological knowledge in a far better and
more consistent way than purely sequential analysis
approaches. However, despite the success of methods
such as PARADIGM the knowledge driven framework
is limited by the incompleteness of current biological
knowledge. Moreover, biological networks are in
principle cell type and biological condition dependent,
which is often ignored in practice. On the other
hand methods within a BN learning scheme have
been developed, such as extensions of the module
network algorithm, which allow for a greater flexibility
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at this point, but are confronted with the non-trivial
challenges (including non-identifiability) of network
structure learning. Correlation and covariance based
methods, such as sparse CCA, make considerably less
assumptions than knowledge driven methods, while
being at the same time significantly less computationally
demanding than BN based approaches. Moreover,
these methods do not face identifiability problems up to
the same degree than BN based approaches. However,
interpretation of feature combinations extracted by
sparse CCA is typically more difficult and may require
in addition biological networks in a secondary analysis
step, resulting in similar limitations than mentioned
above for knowledge driven approaches.

In the area of personalized medicine two goals
of multi-omics data integration are better supervised
prediction of clinical outcomes and better unsupervised
identification of so far unknown patient sub-populations.
For both types of machine learning tasks available
approaches can be categorized as early, intermediate
or late phase integration. The majority of methods
follow the intermediate phase integration scheme,
because it is believed that in this way most of the
dependencies between different data modalities can be
captured. Specifically in the unsupervised setting many
approaches follow a probabilistic modelling scheme,
whereas for supervised clinical outcome prediction the
picture of applied techniques is more diverse. Arguably
one of the most advanced methods in the field is
the matrix tri-factorization method by Zitnik and Zupan
[97], which makes use of known relationships (physical,
functional, semantic, ...) between molecular entities,
patients and diseases.

Of course, each of the methods in the two above
discussed application domains of multi-omics data
integration makes specific assumptions, which are often
difficult to verify or falsify in practice, partially due
to the high dimensionality of the data. Moreover,
apart from supervised machine techniques, for most
of the above mentioned models there is no clear and
objective performance metric for assessing their actual
success. Typically, authors thus rely on simulations
and biological interpretation of results on real data to
validate their methods. Altogether the choice of an
appropriate integration approach should thus depend
on different factors, such as the amount and quality
of biological background knowledge for the particular
research question and the amount and quality of
available data. Fewer data with lower quality will
generally require less complex models than high quality
datasets with larger sample size. Furthermore, the level
of expertise of the modeler is in practice a non-negligible
factor [122].

A general issue with all multi-omics approaches, which
is specifically true in the personalized medicine area, is
that for one and the same biological sample not always
all omics data types have been systematically measured.
For example, in TCGA for many patients and cancer
types gene expression data is not always matching
with somatic mutations and DNA methylation. Since
most current integration strategies focus only on those
samples, for which all data modalities are available, there

is a loss of information. Hence, new integration methods,
possibly utilizing ensemble learning techniques, should
focus on reducing this loss of information, while at the
same time appropriately handling biases resulting from
unequally balanced data types.

The above mentioned aspect may be viewed in the
light of the current Big Data discussion: While there
is on one hand an evident data explosion in modern
biology and medicine – think e.g. about data volume
for one whole genome patient sequencing – on the
other hand in many cases we still lack the data to
cover a single relevant biological phenomenon up to
sufficient level. This paradoxical situation in modern
biology and medicine can be partially attributed to
the enormous complexity of biological systems coupled
with still existing limitations of measurement techniques
and costs. Future developments in biotechnology may
help to overcome some of these limitations and allow
for obtaining a more and more comprehensive picture
of biology. It is likely that these developments in
turn will increase the relevance of heterogeneous data
integration methods.
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