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Abstract

Branching laws for tensor modules

over classical locally finite Lie algebras

by

Elitza I. Hristova

Doctor of Philosophy in Mathematics

Jacobs University Bremen

Professor Ivan B. Penkov, Chair

Given an embedding g′ ⊂ g of two Lie algebras and an irreducible g-module M , the

branching problem is to determine the structure of M as a module over g′. In this

thesis, we consider the case when g′ ⊂ g is an embedding of classical locally finite

Lie algebras ([DP1]) and M is a simple tensor g-module ([PSt], [PSe]). The goal of

the thesis is to solve the branching problem for these data. Since M is in general a

not completely reducible g′-module, we determine the socle filtration of M over g′.

Due to the description of embeddings of classical locally finite Lie algebras given in

[DP1], when g′ 6∼= gl(∞) our result holds for all possible embeddings g′ ⊂ g.
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Chapter 1

Introduction

The structure and representation theory of locally finite Lie algebras has been a

very active research area in the last 15 years and is nowadays an important part

of the theory of infinite-dimensional Lie algebras and their applications. Locally

finite Lie algebras of countable dimension are direct limits of finite-dimensional

Lie algebras and can be considered as natural generalizations of finite-dimensional

Lie algebras. Many notions from the finite-dimensional case have their “locally

finite” counterparts. In particular, the notions of a (semi)simple Lie algebra (resp.,

solvable, nilpotent) are replaced by the notions of a locally (semi)simple (resp.,

locally solvable, locally nilpotent) Lie algebra. Furthermore, the notions of Cartan,

Borel and parabolic subalgebras are introduced in a most natural way.

An important subclass of the general class of locally finite Lie algebras is the class

of simple finitary Lie algebras, introduced by A. Baranov. In a series of papers

Baranov classified, up to isomorphism, the simple finitary Lie algebras over R and

C ([B1], [B2], [B3]). Baranov’s result for simple finitary Lie algebras of countable

dimension over C is very easy to state. Up to isomorphism, there are only three

such Lie algebras: sl(∞), sp(∞), and so(∞) ([B1]). The analogous problem in group

theory had been solved previously by Hall ([Ha]), and some notions from there have

been adapted by Baranov to the case of Lie algebras.

The structure and representation theory of countable-dimensional finitary Lie alge-

bras is nowadays quite developed. In particular, their Cartan, Borel and parabolic

subalgebras have been classified ([DaPSn], [DP2], [Da], [DaP]). The current thesis

solves the branching problem for simple tensor modules over the classical finitary

Lie algebras gl(∞), sl(∞), sp(∞), and so(∞).

The branching problem is a classical problem in the theory of irreducible represen-
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2 CHAPTER 1. INTRODUCTION

tations of finite-dimensional Lie algebras. Given a pair g′ ⊂ g of finite-dimensional

Lie algebras and an irreducible g-module M , the branching problem is to determine

the structure of M as a module over g′. When g′ is semisimple, in view of Weyl’s

semisimplicity theorem the branching problem reduces to finding the multiplicity of

any simple g′-module M ′ as a direct summand of M . This is however not a simple

task, due to the abundance of possible isomorphism classes of embeddings g′ ⊂ g

([Dy]). Therefore, even for the classical series of Lie algebras an explicit solution of

the branching problem is known only for specific cases. Examples of such branch-

ing rules are the Gelfand-Tsetlin rule ([Z], [GW]) and certain branching rules for

diagonal embeddings ([HTW]).

When we consider the classical locally finite Lie algebras gl(∞), sl(∞), sp(∞), and

so(∞) the situation is quite different. On the one hand, one can give a description of

the Lie algebra embeddings which is simpler than the classical description of Dynkin

in the finite-dimensional case. On the other hand, the modules of interest, called

simple tensor modules, are in general not completely reducible over the subalgebra.

Therefore, the branching problem involves more than just determining the multi-

plicities of all simple constituents. One has to determine a semisimple filtration

of the given module over the subalgebra. It is a natural choice to work with the

socle filtration. In this way, the goal of the present work is to solve the following

branching problem. Given an embedding g′ ⊂ g of two classical finitary Lie algebras

and a simple tensor g-module M , find the socle filtration of M as a g′-module.

Four main articles lie in the background of this thesis, namely [DP1], [PSt], [PSe],

and [DaPSe]. In [DP1] a description of all possible embeddings g′ ⊂ g is given,

where g ∼= gl(∞), sl(∞), sp(∞), or so(∞) and g′ is a simple locally finite subalgebra.

Then, in [PSt] the structure of certain basic tensor g-modules is described. In

[DaPSe] the general definition of tensor module is given and the category Tg of

tensor modules for g ∼= sl(∞), sp(∞), or so(∞) is introduced. Furthermore, [PSe]

defines a larger category of g-modules for g ∼= sl(∞), sp(∞), or so(∞), denoted by

T̃ensg. Both categories T̃ensg and Tg have the same simple objects, and those are

precisely the modules for which we study the branching problem. A very recent

work by Frenkel, Penkov, and Serganova shows that the category Tg is interesting

not only for representation theoretic reasons, but moreover plays a major role in a

categorification of the boson-fermion correspondence.

An important consequence from [PSe] is that whenever g′ is a locally simple subalge-

bra of g and M is a simple tensor g-module, M considered as a g′-module is an object

in T̃ensg′ . Thus, the different embeddings g′ ⊂ g provide a tool for constructing a
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large variety of objects in T̃ensg′ , some of which are not necessarily tensor modules.

And the solution of the branching problem for g′ ⊂ g describes the structure of these

objects.

We now describe the body of the thesis in detail. In Chapter 2 we define the basic

notions related to locally finite Lie algebras of countable dimension and discuss the

results from the papers [PSt], [DP1], and [PSe] mentioned above. Following the

description of the possible embeddings given in [DP1], we introduce the notion of an

embedding g′ ⊂ g of general tensor type. In the end of the chapter we present some

branching rules for embeddings of finite-dimensional Lie algebras. These branching

rules will be used throughout the thesis.

In Chapters 3 and 4 we consider embeddings g′ ⊂ g where g′ ∼= g. We decompose the

embeddings of general tensor type into several intermediate embeddings of specific

types and solve the branching problem for each of these intermediate embeddings.

In particular, we show that the case sl(∞) ⊂ sl(∞) is equivalent to the case gl(∞) ⊂
gl(∞).

Chapter 5 focuses mainly on the proof of Theorem 5.2. This theorem shows that the

branching problem for embeddings g′ ⊂ g of general tensor type can be reduced to

branching problems for embeddings of simpler types. In the cases g′ ∼= g these are

exactly the types considered in Chapters 3 and 4. Thus, Theorem 5.2 justifies the

choice of intermediate embeddings made in Chapters 3 and 4, and as a consequence

solves fully the branching problem for embeddings g′ ⊂ g with g′ ∼= g.

In Chapter 6 we solve the branching problem for embeddings g′ ⊂ g such that g′ and

g are non-isomorphic. We start by reducing the number of possible pairs g′ ⊂ g via

identification of equivalent pairs. Then, using Theorem 5.2, we further reduce the

branching problem for embeddings of general tensor type to much simpler branching

problems which we then solve explicitly.

Finally, Chapter 7 contains some remarks and observations on the results obtained

in the thesis. In particular, we point out what are the invariants of an embedding

g′ ⊂ g which determine completely the solution of the branching problem. We also

derive some immediate corollaries of the main results of the thesis.
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Chapter 2

Preliminaries

All Lie algebras considered will be defined over the field of complex numbers C and

will be at most countable dimensional.

2.1 The classical locally finite Lie algebras

An infinite-dimensional Lie algebra g is called locally finite if every finite subset of g

is contained in a finite-dimensional subalgebra. When g is at most countable dimen-

sional, being locally finite is equivalent to admitting an exhaustion g =
⋃
i∈Z>0

gi

where

g1 ⊂ g2 ⊂ · · · ⊂ gi ⊂ . . . (2.1)

is a sequence of nested finite-dimensional Lie algebras. A locally finite Lie algebra is

called locally simple (respectively locally semisimple) if it admits an exhaustion (2.1)

so that all gi are simple (resp. semisimple). It is an easy fact that any locally simple

Lie algebra is simple. The first examples of infinite-dimensional locally simple Lie

algebras are the Lie algebras sl(∞), sp(∞), and so(∞). They are defined respectively

as sl(∞) =
⋃
i∈Z>0

sl(i), sp(∞) =
⋃
i∈Z>0

sp(2i), and so(∞) =
⋃
i∈Z>0

so(i) via the

natural inclusions sl(i) ⊂ sl(i + 1), sp(2i) ⊂ sp(2i + 2), and so(i) ⊂ so(i + 1). In

contrast to the finite-dimensional case, here we do not distinguish the types B and

D. The reason is that both the union of odd orthogonal Lie algebras and the union of

even orthogonal Lie algebras under the natural inclusions are isomorphic to so(∞).

A first example of a locally finite Lie algebra which is not locally simple is the Lie

algebra gl(∞). It is defined as the union gl(∞) =
⋃
i∈Z>0

gl(i) via the inclusions

gl(i) ⊂ gl(i + 1). A Lie algebra is called finitary if it isomorphic to a subalgebra of

5



6 CHAPTER 2. PRELIMINARIES

gl(∞). As we already mentioned in the introduction, sl(∞), sp(∞), and so(∞) are,

up to isomorphism, the only finitary locally simple Lie algebras ([B1]). Together

with gl(∞), these four Lie algebras are usually referred to as the classical locally

finite Lie algebras.

Now we give a quick overview of another approach to defining the Lie algebras gl(∞),

sl(∞), sp(∞), and so(∞), which will be extensively used in the thesis. Let V and

V∗ be countable-dimensional vector spaces over C together with a non-degenerate

bilinear pairing 〈·, ·〉 : V × V∗ → C. The vector space V ⊗ V∗ is endowed with the

structure of an associative algebra such that

(v1 ⊗ w1)(v2 ⊗ w2) = 〈v2, w1〉 v1 ⊗ w2

where v1, v2 ∈ V and w1, w2 ∈ V∗. We denote by gl(V, V∗) the Lie algebra arising

from the associative algebra V ⊗ V∗, and by sl(V, V∗) we denote its commutator

subalgebra [gl(V, V∗), gl(V, V∗)]. If 〈·, ·〉 : V × V → C is an antisymmetric non-

degenerate bilinear form, we define the Lie algebra gl(V, V ) as above by taking

V∗ = V . In this case S2(V ), the second symmetric power of V , is a Lie subalgebra

of gl(V, V ) and we denote it by sp(V ). Similarly, if 〈·, ·〉 : V ×V → C is a symmetric

non-degenerate bilinear form, we again define gl(V, V ) by taking V∗ = V and then∧2(V ) is a Lie subalgebra of gl(V, V ), which we denote by so(V ).

The vector spaces V and V∗ are naturally modules over the Lie algebras defined

above, such that (v1⊗w1) ·v2 = 〈v2, w1〉 v1 and (v2⊗w2) ·w1 = −〈v2, w1〉w2 for any

v1, v2 ∈ V and w1, w2 ∈ V∗. We call them respectively the natural and the conatural

representations. In the cases of sp(V ) and so(V ) we have V = V∗.

By a result of Mackey [M], there always exist dual bases {ξi}i∈I of V and {ξ∗i }i∈I
of V∗ indexed by a countable set I, so that

〈
ξi, ξ

∗
j

〉
= δij. Using these bases, we can

identify gl(V, V∗) with the Lie algebra gl(∞), which we defined earlier. Similarly,

sl(V, V∗) ∼= sl(∞), sp(V ) ∼= sp(∞), and so(V ) ∼= so(∞).

In the rest of this section let g ∼= gl(∞), sl(∞), sp(∞), or so(∞). We now turn our

attention to the representation theory of g. We set V ⊗(p,q) = V ⊗p ⊗ V ⊗q∗ , where

V and V∗ are as above (V ⊗(p,q) = V ⊗(p+q) when g ∼= sp(∞), so(∞)). The modules

V ⊗(p,q) were studied first in [PSt]. In particular, it was shown in [PSt] that V ⊗(p,q)

is a semisimple g-module only if pq = 0 for g ∼= gl(∞), sl(∞), and if p + q ≤ 1 for

g ∼= sp(∞), so(∞). As a result, to describe the structure of these modules one needs

the language of socle filtrations.

The socle filtration of any module M over a ring or an algebra is defined in the
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following way:

0 ⊂ socM ⊂ soc(2)M ⊂ · · · ⊂ soc(r)M ⊂ · · ·

where socM , called the socle of M , is the maximal semisimple submodule of M ,

or equivalently the sum of all simple submodules of M . The other terms in the

filtration are defined inductively as follows: soc(r+1)M = π−1r (soc(M/soc(r)M)),

where πr : M → M/soc(r)M is the natural projection. The semisimple modules

soc(r+1)M := soc(r+1)M/soc(r)M are called the layers of the socle filtration. We

say that M has finite Loewy length l if the socle filtration of M is finite and l =

min{r|soc(r)M = M}.

The following three properties of socle filtrations will be very useful in the sequel.

• If N ⊆M , then for all r

soc(r)N = (soc(r)M) ∩N. (2.2)

• If M1 and M2 are modules over the same ring or algebra and M = M1 ∩M2,

then

soc(r)M = (soc(r)M1) ∩ (soc(r)M2). (2.3)

• If M and N are any two modules over the same ring or algebra, then

soc(r)(M ⊕N) = soc(r)M ⊕ soc(r)N. (2.4)

In what follows, if M is a module over the Lie algebra g we will use the notation

soc
(r)
g M instead of soc(r)M .

When g ∼= gl(∞), we set V {p,q} = socgV
⊗(p,q). It is also the maximal semisimple

submodule of V ⊗(p,q) for g ∼= sl(∞) ([PSt]). For g ∼= sp(∞), so(∞) the maximal

semisimple submodule of V ⊗(p+q) is denoted respectively by V 〈p+q〉 and V [p+q].

By definition, a g-module M is called a tensor module if it is a subquotient of a finite

direct sum of copies of
⊕

p+q≤r V
⊗(p,q) for some integer r. If M is simple, being a

tensor module is equivalent to being a submodule of V ⊗(p,q) for some p, q ([PSt]).

Moreover, it is shown in [PSt] that there exists a choice of Borel subalgebra b in

g such that all simple tensor modules are b-highest weight modules. Their highest

weights are described using integer partitions. A non-negative integer partition λ

with k parts is an integer sequence λ1 ≥ λ2 ≥ · · · ≥ λk > 0. As in [HTW], we write

l(λ) to denote the length (or depth) of the partition λ (i.e. l(λ) = k) and |λ| for the
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size of the partition (i.e. |λ| =
∑

i λi).

For g ∼= gl(∞), sl(∞) the simple tensor modules coincide. Their highest weights

are given by pairs of non-negative integer partitions (λ, µ) and we denote them

by Vλ,µ. Moreover, if Vλ,µ ⊂ V ⊗(p,q), then |λ| = p and |µ| = q. The modules

Vλ,µ are constructed explicitly in [PSt] using a generalization of Weyl’s construction

for irreducible gl(n)-modules (see [FH]). For g ∼= sp(∞), so(∞) the simple tensor

modules are denoted respectively by V〈λ〉 and V[λ], where λ is a non-negative integer

partition. If V〈λ〉 ⊂ V ⊗(p+q) or respectively V[λ] ⊂ V ⊗(p+q), then |λ| = p + q. It is

shown in [PSt] that

V〈λ〉 = Vλ,0 ∩ V 〈p+q〉, V[λ] = Vλ,0 ∩ V [p+q].

The tensor modules are natural analogues of the finite-dimensional representations

of the classical Lie algebras sl(n), sp(2n), and so(n). The main motivation for this

analogy is the fact that Weyl’s construction provides a way to construct all irre-

ducible finite-dimensional modules of sl(n) and sp(2n) and almost all such modules

for so(n) (see [FH]). And as we mentioned above, the simple tensor modules are

defined using a generalization of this construction.

In [DaPSe], the category Tg for g ∼= sl(∞), sp(∞), so(∞) is introduced. Its objects

are precisely the tensor modules. Furthermore, the simple tensor modules are di-

rectly related to several larger categories of g-modules (see e.g. [PSe], [DaPSe]).

Here we define two of these categories, the latter one being directly connected to

the following work.

Let g ∼= sl(∞), sp(∞), so(∞). A g-module M is called integrable if dim span{m, g ·
m, g2 · m, . . . } < ∞ for any m ∈ M and g ∈ g. Since g is locally simple, this

definition is equivalent to the condition that, when restricted to any semisimple

finite-dimensional subalgebra f of g, M is isomorphic to a (not necessarily countable)

direct sum of finite-dimensional f-modules. Following [PSe], we denote by Intg the

category of integrable g-modules.

The other category we define is the category T̃ensg. Its objects M are integrable

modules of finite Loewy length such that the algebraic dual M∗ is also integrable and

of finite Loewy length. In other words, T̃ensg is the largest subcategory of Intg which

is closed under algebraic dualization and such that every object in it has finite Loewy

length. Then, it is proven in [PSe] that the simple objects of T̃ensg are precisely the

simple tensor modules. Another important result in [PSe] is that T̃ensg is functorial

with respect to any homomorphism ϕ : g′ → g where g′, g ∼= sl(∞), sp(∞), so(∞).
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This means that, given such a homomorphism ϕ : g′ → g, any M ∈ T̃ensg considered

as a g′-module is an object of T̃ensg′ . In particular, for our purposes it is important

that if we have an embedding g′ ⊂ g and M is a simple tensor g-module, then M

has finite Loewy length as a module over g′ and all simple constituents in the socle

filtration of M as a g′-module are simple tensor g′-modules.

Let again g ∼= gl(∞), sl(∞), sp(∞), so(∞). It is shown in [DP1] that any locally

semisimple subalgebra g′ of g is isomorphic to a direct sum of simple Lie algebras

each of which is either finite-dimensional or is itself isomorphic to sl(∞), sp(∞), or

so(∞). As we mentioned above, the latter was also proven earlier by Baranov in

[B1]. Furthermore, for any fixed g′, Dimitrov and Penkov describe the structure of

the g-modules V and V∗ as g′-modules. Here we consider only the case when g′ is a

simple subalgebra of g. Then the following result holds.

Theorem 2.1. [DP1] Let g ∼= gl(∞), sl(∞), sp(∞), or so(∞) and let g′ be a simple

infinite-dimensional subalgebra of g. Let V and V∗ be respectively the natural and

conatural represenations of g. Similarly, let V ′ and V ′∗ be the natural and conatural

representations of g′. Then

socg′V ∼= kV ′ ⊕ lV ′∗ ⊕Na, V/socg′V ∼= Nb,

socg′V∗ ∼= lV ′ ⊕ kV ′∗ ⊕Nc, V∗/socg′V∗ ∼= Nd,
(2.5)

where k, l ∈ Z≥0 such that at least one of them is in Z>0, and Na, Nb, Nc, and Nd

are finite- or countable-dimensional trivial g′-modules.

We denote a = dimNa, b = dimNb, c = dimNc, and d = dimNd.

Motivated by Theorem 2.1, in this thesis we consider pairs g′, g of two classical

locally finite Lie algebras such that the embedding g′ ⊂ g satisfies property (2.5).

We will refer to such embeddings as embeddings of general tensor type. In view of

Theorem 2.1, when g′ 6∼= gl(∞), (2.5) describes all possible embeddings g′ ⊂ g.

2.2 Finite-dimensional branching laws

In this section we present some branching rules for embeddings of finite-dimensional

Lie algebras. In view of Theorem 2.1 and the discussion above we are interested in

the following type of embeddings.

Definition 2.1. An embedding f1 ⊂ f2 of finite-dimensional classical Lie algebras is
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called diagonal if

V2↓f1
∼= V1 ⊕ · · · ⊕ V1︸ ︷︷ ︸

l

⊕V ∗1 ⊕ · · · ⊕ V ∗1︸ ︷︷ ︸
r

⊕N1 ⊕ · · · ⊕N1︸ ︷︷ ︸
z

where Vi is the natural fi-module (i=1,2), V ∗1 is dual to V1, and N1 is the trivial one-

dimensional f1-module. The triple (l,r,z) is called the signature of the embedding.

In particular, we consider two types of branching rules. The first one is for embed-

dings of signature (1, 0, r), which are often referred to as standard embeddings and

the second one is for embeddings of signature (k, 0, 0) often called proper diagonal

embeddings.

We start by presenting branching rules for the Lie algebra gl(n). The irreducible

finite-dimensional gl(n)-modules are in one-to-one correspondence with n-tuples λ =

(λ1, . . . , λn), where λi ∈ C and λi−λi+1 ∈ Z≥0 for i = 1, . . . , n− 1. Such an n-tuple

is called the highest weight of the corresponding representation. Let V n
λ denote the

irreducible highest weight gl(n)-module with highest weight λ. We say that a weight

σ = (σ1, . . . , σn−1), with σi ∈ C and σi−σi+1 ∈ Z≥0 for all i = 1, . . . , n−2, is aligned

with λ in the sense of Gelfand-Tsetlin if λi − σi ∈ Z≥0 and σi − λi+1 ∈ Z≥0 for all

i = 1, . . . , n− 1. If λ and σ are integral weights, the above implies that

λ1 ≥ σ1 ≥ λ2 ≥ σ2 ≥ · · · ≥ λn−1 ≥ σn−1 ≥ λn.

One often says in this case that σ interlaces λ.

Now the following multiplicity-free branching rule holds.

Proposition 2.2. [Z] Consider an embedding gl(n−1)→ gl(n) of signature (1, 0, 1).

Then

V n
λ ↓gl(n−1)

∼=
⊕
σ

V n−1
σ ,

where σ = (σ1, . . . , σn−1) runs over all weights aligned with λ in the sense of Gelfand-

Tsetlin.

A similar branching rule holds for the group GL(n,C). A detailed exposition about

the analogous embeddings at the group level and the corresponding branching rules

can be found in [GW].

The Gelfand-Tsetlin rule can be iterated to obtain a branching law for embeddings

of gl(n) into gl(n+ k). More precisely, we have the following proposition.
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Proposition 2.3. Let gl(n)→ gl(n+k) be an embedding of signature (1, 0, k). Then

V n+k
λ ↓gl(n)

∼=
⊕
σ

mk
λ,σV

n
σ ,

where the multiplicity mk
λ,σ is the number of possible sequences of weights σ1 =

(σ1
1, . . . , σ

1
n+k−1), . . . , σ

k−1 = (σk−11 , . . . , σk−1n+1) such that each σj+1 is aligned with σj

in the sense of Gelfand-Tsetlin, σ1 is aligned with λ, and σ is aligned with σk−1. In

other words, we have the following trapezoid of aligned weights, often referred to as

Gelfand-Tsetlin trapezoid:

λ1, λ2, . . . , λn+k−1, λn+k

σ1
1, σ

1
2, . . . , σ

1
n+k−1

σ2
1, . . . , σ

2
n+k−2

. . . . . .

σ1, . . . , σn.

In what follows we will refer to the numbers mk
λ,σ as Gelfand-Tsetlin multiplicities.

Next, we consider embeddings of signature (k, 0, 0). In order to obtain branching

rules for these embeddings, we use the results from [HTW]. All branching rules

below involve only irreducible modules with integral highest weights, and that is

why we introduce the following notations. Let λ and µ be two non-negative integer

partitions with p and q parts, where p + q ≤ n. Let V n
λ,µ denote the irreducible

gl(n)-module with highest weight (λ, µ) = (λ1, . . . λp, 0, . . . 0,−µq, . . . ,−µ1). We

derive the desired branching rule in several steps. Consider first the block-diagonal

subalgebra gl(n) ⊕ gl(m) ⊂ gl(n + m). By Theorem 2.2.1 in [HTW] we have the

following decomposition:

V n+m
λ,µ ↓gl(n)⊕gl(m)

∼=
⊕

α+,β+,α−,β−

c
(λ,µ)

(α+,α−),(β+,β−)V
n
α+,α− ⊗ V m

β+,β− ,

where

c
(λ,µ)

(α+,α−),(β+,β−) =
∑

γ+,γ−,δ

cλγ+δc
µ
γ−δc

γ+

α+β+c
γ−

α−β− ,

and the numbers cαβ,γ are Littlewood-Richardson coefficients. Next, we consider the

direct sum of k > 2 copies of gl(n) as a subalgebra of gl(kn) by block-diagonal
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inclusion. Then one can iterate the above branching rule to obtain the following:

V kn
λ,µ↓gl(n)⊕···⊕gl(n)

∼=
⊕

β+
1 ,...,β

+
k

β−1 ,...,β
−
k

C
(λ,µ)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
V n
β+
1 ,β
−
1
⊗ · · · ⊗ V n

β+
k ,β
−
k
, (2.6)

where

C
(λ,µ)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

=∑
α+
1 ,...α

+
k−2

α−1 ,...α
−
k−2

c
(λ,µ)

(α+
1 ,α
−
1 )(β+

1 ,β
−
1 )
c
(α+

1 ,α
−
1 )

(α+
2 ,α
−
2 )(β+

2 ,β
−
2 )
. . . c

(α+
k−3,α

−
k−3)

(α+
k−2,α

−
k−2)(β

+
k−2,β

−
k−2)

c
(α+

k−2,α
−
k−2)

(β+
k−1,β

−
k−1)(β

+
k ,β
−
k )
.

The next step is to consider the gl(n)⊕ gl(n)-module V n
α+,α− ⊗ V n

β+,β− . By Theorem

2.1.1 in [HTW], as a module over the subalgebra gl(n) = {x⊕x|x ∈ gl(n)}, V n
α+,α−⊗

V n
β+,β− has the decomposition

V n
α+,α− ⊗ V n

β+,β−↓gl(n)
∼=
⊕
λ′,µ′

d
(λ′,µ′)
(α+,α−),(β+,β−)V

n
λ′,µ′ ,

where

d
(λ′,µ′)
(α+,α−),(β+,β−) =

∑
α1,α2,β1,β2

γ1,γ2

cα
+

α1γ1
cβ
−

γ1β2
cα
−

β1γ2
cβ

+

γ2α2
cλ
′

α2α1
cµ
′

β2β1
.

Iterating this branching rule, we obtain for k > 2

V n
β+
1 ,β
−
1
⊗ · · · ⊗ V n

β+
k ,β
−
k ↓gl(n)

∼=
⊕
λ′,µ′

D
(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
V n
λ′,µ′ , (2.7)

where

D
(λ,µ)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

=∑
α+
1 ,...α

+
k−2

α−1 ,...α
−
k−2

d
(α+

1 ,α
−
1 )

(β+
1 ,β
−
1 )(β+

2 ,β
−
2 )
d
(α+

2 ,α
−
2 )

(α+
1 ,α
−
1 )(β+

3 ,β
−
3 )
. . . d

(α+
k−2,α

−
k−2)

(α+
k−3,α

−
k−3)(β

+
k−1,β

−
k−1)

d
(λ,µ)

(α+
k−2,α

−
k−2)(β

+
k ,β
−
k )
.

Now we can combine (2.6) and (2.7) in the following proposition.
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Proposition 2.4. Let gl(n) ⊂ gl(kn) be an embedding of signature (k, 0, 0). Then

V kn
λ,µ↓gl(n)

∼=
⊕

β+
1 ,...,β

+
k

β−1 ,...,β
−
k

λ′,µ′

C
(λ,µ)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
D

(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
V n
λ′,µ′ for k > 2,

and

V 2n
λ,µ↓gl(n)

∼=
⊕

α+,β+,α−,β−

λ′,µ′

c
(λ,µ)

(α+,α−),(β+,β−)d
(λ′,µ′)
(α+,α−),(β+,β−)V

n
λ′,µ′ for k = 2.

In particular, from the properties of Littlewood-Richardson coefficients it follows that

if V n
λ′,µ′ enters the decomposition of V 2n

λ,µ then |λ| − |µ| = |λ′| − |µ′|.

Note that in the case µ = 0 the two formulas from Proposition 2.4 reduce to the

following two well-known branching rules:

V 2n
λ,0↓gl(n)

∼=
⊕

β1,β2,λ′

cλβ1,β2c
λ′

β1,β2
V n
λ′,0

and

V kn
λ,0 ↓gl(n)

∼=
⊕

β1,...,βk,λ
′

cλβ1,...,βkc
λ′

β1,...,βk
V n
λ′,0,

where the numbers cλβ1,...,βk are the generalized Littlewood-Richardson coefficients.

Notice that the coefficients C
(λ,µ)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

and D
(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

are defined

only for k > 2. For convenience we extend these definitions to the case k = 2 by

setting

C
(λ,µ)

(β+
1 ,β

+
2 )(β−1 ,β

−
2 )

= c
(λ,µ)

(β+
1 ,β

+
2 ),(β−1 ,β

−
2 )
,

D
(λ′,µ′)

(β+
1 ,β

+
2 )(β−1 ,β

−
2 )

= d
(λ′,µ′)

(β+
1 ,β

+
2 ),(β−1 ,β

−
2 )
.

It is interesting to mention that many of the branching rules described in [HTW] had

been known previously. However, in [HTW] the authors developed a new approach

based on the theory of dual reductive pairs. This approach allowed them to relate

branching rules for one symmetric pair to another and as a result to generalize many

of the known branching rules for some symmetric pairs to all classical symmetric

pairs.

Analogous branching rules hold for the Lie algebras sp(2n) and so(n). We will
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introduce them explicitly in the course of the thesis.



Chapter 3

Embeddings of gl(∞) into gl(∞)

and of sl(∞) into sl(∞)

In this chapter we describe a procedure for deriving branching rules for embeddings

gl(∞) ⊂ gl(∞) (respectively sl(∞) ⊂ sl(∞)) of general tensor type, i.e. embeddings

which satisfy (2.5). Our procedure consists of the following steps. First, we de-

compose the embedding under consideration into several intermediate embeddings.

Then in Sections 3.1, 3.2, and 3.3 we derive branching laws for each of the inter-

mediate embeddings. The branching law for an embedding of general tensor type is

then a corollary of Theorem 5.2 in Chapter 5.

Let g′ ∼= g and both be isomorphic to one of gl(∞) or sl(∞). Let ϕ : g′ → g be an

embedding of general tensor type. Let

socg′V = Ṽ1 ⊕ · · · ⊕ Ṽk ⊕ W̃1 ⊕ · · · ⊕ W̃l ⊕Na,

socg′V∗ = Ṽ ∗1 ⊕ · · · ⊕ Ṽ ∗k ⊕ W̃ ∗
1 ⊕ · · · ⊕ W̃ ∗

l ⊕Nc,
(3.1)

where Ṽi is isomorphic to V ′ for each i = 1, . . . , k and W̃j
∼= V ′∗ for each j = 1, . . . , l.

Similalry, Ṽ ∗i
∼= V ′∗ and W̃ ∗

j
∼= V ′ for all i = 1, . . . , k and j = 1, . . . , l. Let {v′i}i∈I ,

{v′∗i }i∈I be a pair of dual bases of V ′ and V ′∗ . We construct the following bases of V

and V∗ respectively:

{{vji }i∈I,j=1,...,k ∪ {wji }i∈I,j=1,...,l ∪ {zi}i∈Ia ∪ {xi}i∈Ib},

{{vj∗i }i∈I,j=1,...,k ∪ {wj∗i }i∈I,j=1,...,l ∪ {ti}i∈Ic ∪ {yi}i∈Id},

where vji denotes the image of v′i into Ṽj and similarly for the others. Furthermore,

A = {zi}i∈Ia and C = {ti}i∈Ic are bases respectively for Na and Nc as submodules

15
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respectively of V and V∗, where Ia and Ic are index sets with cardinalities a = dimNa

and c = dimNc. Similarly, B = {xi}i∈Ib and D = {yi}i∈Id are bases of Nb and Nd

considered as vector subspaces of V and V∗, where Ib and Id are index sets with

cardinalities b = dimNb and d = dimNd.

Then we have the following proposition.

Proposition 3.1. Let g′, g, and ϕ be as above. There exist decompositions of socg′V

and socg′V∗ as in (3.1) such that〈
vj1i1 , v

j2∗
i2

〉
= δi1i2δj1j2 ,

〈
vj1i1 , w

j2∗
i2

〉
= 0,〈

wj1i1 , w
j2∗
i2

〉
= δi1i2δj1j2 ,

〈
wj1i1 , v

j2∗
i2

〉
= 0.

Furthermore, for each i in the respective index set, zi pairs trivially with all elements

from Ṽ ∗1 ⊕ · · · ⊕ Ṽ ∗k ⊕ W̃ ∗
1 ⊕ · · · ⊕ W̃ ∗

l and xi pairs non-degenerately with infinitely

many elements from Ṽ ∗1 ⊕· · ·⊕ Ṽ ∗k ⊕W̃ ∗
1 ⊕· · ·⊕W̃ ∗

l . Similarly, ti pairs trivially with

all elements from Ṽ1 ⊕ · · · ⊕ Ṽk ⊕ W̃1 ⊕ · · · ⊕ W̃l and yi pairs non-degenerately with

infinitely many elements from Ṽ1⊕· · ·⊕Ṽk⊕W̃1⊕· · ·⊕W̃l. Finally, if g′ ∼= g ∼= gl(∞)

we have for all i, s

ϕ(v′i ⊗ v′∗s ) = v1i ⊗ v1∗s + · · ·+ vki ⊗ vk∗s − w1
s ⊗ w1∗

i − · · · − wls ⊗ wl∗i ,

and if g′ ∼= g ∼= sl(∞) we have for i 6= s

ϕ(v′i ⊗ v′∗s ) = v1i ⊗ v1∗s + · · ·+ vki ⊗ vk∗s − w1
s ⊗ w1∗

i − · · · − wls ⊗ wl∗i ,

ϕ(v′i ⊗ v′∗i − v′s ⊗ v′∗s ) =v1i ⊗ v1∗i − v1s ⊗ v1∗s + · · ·+ vki ⊗ vk∗i − vks ⊗ vk∗s +

w1
s ⊗ w1∗

s − w1
i ⊗ w1∗

i + · · ·+ wls ⊗ wl∗s − wli ⊗ wl∗i .

Proof. We fix decompositions of socg′V and socg′V∗ as in (3.1). Then for i, j,m, n in

the respective ranges we have〈
vji , tm

〉
=
〈
ϕ(v′i ⊗ v′∗n ) · vjn, tm

〉
= −

〈
vjn, ϕ(v′i ⊗ v′∗n ) · tm

〉
= 0.

Suppose now that vji pairs trivially with all elements from socg′V∗. Then there exists

ym such that
〈
vji , ym

〉
6= 0. But then〈

vji , ym
〉

=
〈
ϕ(v′i ⊗ v′∗i ) · vji , ym

〉
= −

〈
vji , ϕ(v′i ⊗ v′∗i ) · ym

〉
=
〈
vji , v

〉
for some v ∈ socg′V∗. Hence,

〈
vji , v

〉
6= 0, which contradicts our assumption. This

implies that Ṽ1⊕ · · · ⊕ Ṽk ⊕ W̃1⊕ · · · ⊕ W̃l and Ṽ ∗1 ⊕ · · · ⊕ Ṽ ∗k ⊕ W̃ ∗
1 ⊕ · · · ⊕ W̃ ∗

l pair
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non-degenerately.

Furthermore,〈
vji , v

∗n
m

〉
=
〈
ϕ(v′i ⊗ v′∗s ) · vjs, v∗nm

〉
= −

〈
vjs, ϕ(v′i ⊗ v′∗s ) · v∗nm

〉
= δim

〈
vjs, v

∗n
s

〉
for all i, j,m, n, s. Hence,

〈
vji , v

∗n
m

〉
= 0 for all j, n and for i 6= m. In addition,〈

vji , v
∗n
i

〉
=
〈
vjs, v

∗n
s

〉
for i = m and all s. In the same way we prove that

〈
wji , w

∗n
m

〉
= 0 for all j, n and

for i 6= m and
〈
wji , w

∗n
i

〉
= 〈vjs, v∗ns 〉 for i = m and all s.

Now, for all i, j,m, n〈
vji , w

∗n
m

〉
=
〈
ϕ(v′i ⊗ v′∗i ) · vji , w∗nm

〉
= −

〈
vji , ϕ(v′i ⊗ v′∗i ) · w∗nm

〉
= −δim

〈
vji , w

∗n
m

〉
.

Hence,
〈
vji , w

∗n
m

〉
= 0 and in the same way

〈
wji , v

∗n
m

〉
= 0.

Since the pairing between Ṽ1⊕· · ·⊕Ṽk⊕W̃1⊕· · ·⊕W̃l and Ṽ ∗1 ⊕· · ·⊕Ṽ ∗k ⊕W̃ ∗
1⊕· · ·⊕W̃ ∗

l

is non-degenerate, the above considerations imply that for each j there exists m

such that
〈
vji , v

∗m
i

〉
6= 0 for all i ∈ I. Similarly, for each j there exists m such that〈

wji , w
∗m
i

〉
6= 0 for all i ∈ I. We can then renumerate the spaces Ṽj, Ṽ

∗
m, W̃j, W̃

∗
m

in such a way that
〈
vji , v

∗j
i

〉
= 1 and

〈
wji , w

∗j
i

〉
= 1 for all j and all i. Then all the

above implies in the case of gl(∞) that

ϕ(v′i ⊗ v′∗s ) = v1i ⊗ v1∗s + · · ·+ vki ⊗ vk∗s − w1
s ⊗ w1∗

i − · · · − wls ⊗ wl∗i

for each i, s ∈ I. Similarly, when g ∼= sl(∞) we obtain that ϕ also has the desired

form.

Before we continue, we show that the case of embeddings sl(∞) ⊂ sl(∞) reduces to

the case of embeddings gl(∞) ⊂ gl(∞).

Proposition 3.2. Let ϕ : sl(V ′, V ′∗) → sl(V, V∗) be an embedding satisfying (2.5)

with certain values of a, b, c, d, k, l and let M be a semisimple tensor sl(V, V∗)-module.

Then ϕ can be extended to an embedding ϕ : gl(V ′, V ′∗) → gl(V, V∗) which satisfies

(2.5) with the same values of of a, b, c, d, k, l. Furthermore, the socle filtration of M

over ϕ(sl(V ′, V ′∗)) is the same as the socle filtration of M considered as a gl(V, V∗)-

module over ϕ(gl(V ′, V ′∗)).

Proof. We fix decompositions of the sl(V, V∗)-modules V and V∗ as in Proposition
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3.1. Then ϕ : sl(V ′, V ′∗)→ sl(V, V∗) has the form

ϕ(v′i ⊗ v′∗s ) = v1i ⊗ v1∗s + · · ·+ vki ⊗ vk∗s − w1
s ⊗ w1∗

i − · · · − wls ⊗ wl∗i ,

ϕ(v′i ⊗ v′∗i − v′s ⊗ v′∗s ) =v1i ⊗ v1∗i − v1s ⊗ v1∗s + · · ·+ vki ⊗ vk∗i − vks ⊗ vk∗s +

w1
s ⊗ w1∗

s − w1
i ⊗ w1∗

i + · · ·+ wls ⊗ wl∗s − wli ⊗ wl∗i

for all i 6= s. We can naturally extend ϕ to an embedding ϕ : gl(V ′, V ′∗)→ gl(V, V∗)

by setting

ϕ(v′1 ⊗ v′∗1 ) = v11 ⊗ v1∗1 + · · ·+ vk1 ⊗ vk∗1 − w1
1 ⊗ w1∗

1 − · · · − wl1 ⊗ wl∗1 .

Next, let M be as above. From [PSt] we know that the set of semisimple ten-

sor gl(V, V∗)-modules coincides with the set of semisimple tensor sl(V, V∗)-modules.

ThenM is both a semisimple tensor gl(V, V∗)-module and semisimple tensor sl(V, V∗)-

module. We will use the notation Mgl (resp., Msl) to mark that we consider M as

a gl(V, V∗) (resp., sl(V, V∗)) module. Then, on the one hand, we have the chain of

embeddings

ϕ(sl(V ′, V ′∗)) ⊂ sl(V, V∗) ⊂ gl(V, V∗).

This chain yields the following equality for every r:

soc
(r)
ϕ(sl(V ′,V ′∗))

Msl = soc
(r)
ϕ(sl(V ′,V ′∗))

Mgl. (3.2)

On the other hand, we have the chain of embeddings

ϕ(sl(V ′, V ′∗)) ⊂ ϕ(gl(V ′, V ′∗)) ⊂ gl(V, V∗),

which yields the equality

soc
(r)
ϕ(sl(V ′,V ′∗))

Mgl = soc
(r)
ϕ(gl(V ′,V ′∗))

Mgl. (3.3)

From (3.2) and (3.3) the statement follows.

In view of Proposition 3.2 it is enough to consider embeddings gl(∞) ⊂ gl(∞).

Therefore, in the rest of the chapter g′ and g will be both isomorphic to gl(∞).

Proposition 3.3. Let g′ ∼= g ∼= gl(∞) and let g′ ⊂ g be an embedding of general

tensor type, i.e. which satisfies (2.5). Then there exist intermediate subalgebras g1
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and g2 such that g′ ⊂ g2 ⊂ g1 ⊂ g and the following hold.

(1) The embedding g1 ⊂ g has the properties:

socg1V
∼= V1 ⊕Na1 , V/socg1V

∼= Nb,

socg1V∗
∼= V1∗ ⊕Nc1 , V∗/socg1V∗

∼= Nd,

where

Na1 = {v ∈ Na| 〈v,Nc〉 = 0} and Nc1 = {w ∈ Nc| 〈Na, w〉 = 0}.

(2) The embedding g2 ⊂ g1 has the properties:

V1 ∼= V2 ⊕Na2 , V1∗ ∼= V2∗ ⊕Nc2 ,

where Na2 and Nc2 are such that Na = Na1 ⊕Na2 and Nc = Nc1 ⊕Nc2.

(3) The embedding g′ ⊂ g2 has the properties:

V2 ∼= kV ′ ⊕ lV ′∗ , V2∗ ∼= lV ′ ⊕ kV ′∗ .

Proof. We take decompositions of socg′V and socg′V∗ as in Proposition 3.1. Set

V2 = Ṽ1 ⊕ · · · ⊕ Ṽk ⊕ W̃1 ⊕ · · · ⊕ W̃l,

V2∗ = Ṽ ∗1 ⊕ · · · ⊕ Ṽ ∗k ⊕ W̃ ∗
1 ⊕ · · · ⊕ W̃ ∗

l .

Then Proposition 3.1 yields that V2 and V2∗ pair non-degenerately and we put g2 =

V2 ⊗ V2∗.

Next, let A and C be as above. Let A1 = {z′i}i∈Ia1 consist of those elements in A

which pair trivially with all elements in C, and analogously let C1 = {t′i}i∈Ic1 consist

of the elements in C which pair trivially with all vectors in A. Let A2 = A \A1 and

C2 = C \ C1 and denote their elements respectively with z′′i and t′′i and their index

sets with Ia2 and Ic2 . Now set

V1 = V2 ⊕ span{z′′i }i∈Ia2 , V1∗ = V2∗ ⊕ span{t′′i }i∈Ic2 .

Then V1 and V1∗ pair non-degenerately and we put g1 = V1 ⊗ V1∗.

The Lie algebras g1 and g2 satisfy the required properties.

Motivated by Proposition 3.3 we give the following definition.
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Definition 3.1. (i) An embedding g′ ⊂ g is said to be of type I if

socg′V ∼= V ′ ⊕Na, V/socg′V ∼= Nb,

socg′V∗ ∼= V ′∗ ⊕Nc, V∗/socg′V∗ ∼= Nd,

where Na and Nc pair trivially.

(ii) An embedding g′ ⊂ g is said to be of type II if

V ∼= V ′ ⊕Na, V∗ ∼= V ′∗ ⊕Nc.

(iii) An embedding g′ ⊂ g is said to be of type III if

V ∼= kV ′ ⊕ lV ′∗ , V∗ ∼= lV ′ ⊕ kV ′∗ .

In the following sections we derive branching rules for embeddings of the different

types. In each case we start with determining the socle filtration over g′ of one of

the g-modules V ⊗p, V ⊗q∗ , V {p,q}, V ⊗(p,q). Then for the simple g-submodules of these

modules we use properties (2.2) and (2.3) of socle filtrations.

3.1 Branching laws for embeddings of type I

3.1.1 The modules V ⊗p and V ⊗q∗

Let us consider embeddings g′ ⊂ g satisfying the following conditions:

socg′V ∼= V ′ ⊕Na, V/socg′V ∼= Nb,

socg′V∗ ∼= V ′∗ ⊕Nc, V∗/socg′V∗ ∼= Nd.
(3.4)

So far we make no assumptions about the pairing between Na and Nc. Recall that we

denote dimNa = dim(V ′∗)
⊥ = a, dimNb = b, dimNc = dim(V ′)⊥ = c, dimNd = d.

Moreover, codimV V
′ = a+ b and codimV∗V

′
∗ = c+ d.

Our first goal is to compute the socle filtrations of the g-modules V ⊗p and V ⊗q∗ . We

have the following short exact sequence of g′-modules

0→ V ′ ⊕Na
i→ V

f→ Nb → 0. (3.5)
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For each index 1 ≤ i ≤ p we define

Li : V ⊗p → V ⊗i−1 ⊗Nb ⊗ V ⊗p−i ∼= V ⊗p−1 ⊗Nb,

Li = id⊗ id⊗ · · · ⊗ id⊗ f ⊗ id⊗ · · · ⊗ id,

where f appears at the i-th position in the tensor product.

Similarly, for each collection of indices 1 ≤ i1 < i2 < · · · < ik ≤ p we define the

homomorphism

Li1,...,ik : V ⊗p → V ⊗i1−1 ⊗Nb ⊗ V ⊗i2−i1−1 ⊗Nb ⊗ · · · ⊗ V ⊗p−ik ∼= V ⊗p−k ⊗N⊗kb ,

Li1,...,ik = id⊗ · · · ⊗ id⊗ f ⊗ id⊗ · · · ⊗ id⊗ f ⊗ id · · · ⊗ id,

where the map f appears at positions i1 through ik in the tensor product.

Proposition 3.4. For embeddings g′ ⊂ g which satisfy (3.4) we have

soc
(r+1)
g′ V ⊗p =

⋂
i1<···<ir+1

kerLi1,...,ir+1 .

Moreover,

soc
(r+1)
g′ V ⊗p ∼=

(
p

r

)
N⊗rb ⊗ (V ′ ⊕Na)

⊗p−r.

Proof. We denote S(r+1) =
⋂
i1<···<ir+1

kerLi1,...,ir+1 . Note that S(r+1) consists of

linear combinations of monomials from V ⊗p such that at most r terms in each

monomial are outside of socg′V . We need to check two properties:

(1) for any u ∈ S(r+2) \ S(r+1) there exists g ∈ U(g′) such that g · u ∈ S(r+1) \ S(r);

(2) the quotient S(r+1)/S(r) is semisimple.

Proof of (1): Take u ∈ S(r+2) \ S(r+1), u =
∑
ai1...ipui1 ⊗ · · · ⊗ uip where uij ∈ V .

More precisely, denote uij = vij for uij ∈ socV and uij = xij for uij /∈ socV .

Now suppose that u1 is a monomial of highest degree in the expression of u. In other

words, u1 has r + 1 entries not in socg′V . Consider an element g1 = w1 ⊗ w∗1 ∈ g′

such that

•
〈
xij , w

∗
1

〉
6= 0 for at least one xij from u1;

•
〈
vij , w

∗
1

〉
= 0 for all vij which appear in the expression of u;

• w1 6= vij for all vij that enter u.
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The existence of such an element g1 follows from the fact that all elements xij /∈
socg′V pair non-degenerately with infinitely many elements from V ′∗ . Then g1 · u ∈
S(r+1) \ S(r) or g1 · u ∈ S(r+2) \ S(r+1). In the latter case there is a monomial

u2 ∈ g1 · u with r + 1 entries not in socg′V . We proceed as above to find an

element g2 = w2 ⊗ w∗2 analogous to g1. Thus, after finitely many steps we obtain

(gs ◦ · · · ◦ g2 ◦ g1) · u ∈ S(r+1) \ S(r).

Proof of (2): The map⊕
i1<···<ir

Li1,...,ir : S(r+1)/S(r) →
⊕

i1<···<ir

(socg′V )⊗p−r ⊗ (Nb)
⊗r

is a well-defined isomorphism of g′-modules.

In order to compute the socle filtration of V ⊗q∗ we take the short exact sequence

0→ V ′∗ ⊕Nc
i→ V∗

g→ Nd → 0

and define

Mi1,...,ik : V ⊗q∗ → V ⊗i1−1∗ ⊗Nd ⊗ V ⊗i2−i1−1∗ ⊗Nd ⊗ · · · ⊗ V ⊗q−ik∗
∼= V ⊗q−k∗ ⊗N⊗kd ,

Mi1,...,ik = id⊗ · · · ⊗ id⊗ g ⊗ id⊗ · · · ⊗ id⊗ g ⊗ id⊗ · · · ⊗ id,

where the map g appears at positions i1 through ik in the tensor product.

Proposition 3.5. The socle filtration of V ⊗q∗ over g′ is

soc
(r)
g′ V

⊗q
∗ =

⋂
i1<···<ir

kerMi1,...,ir .

3.1.2 Submodules of V ⊗p and V ⊗q∗

Recall that property (2.2) of socle filtrations states that if N is a submodule of

M then soc(r)N = (soc(r)M) ∩ N . We will now use this to determime the socle

filtration of any simple tensor g-module Vλ,0 ⊂ V ⊗p. To compute the multiplicity

of each simple subquotient, we need to extend the definition of the Gelfand-Tsetlin

multiplicity mk
λ,σ to the case k =∞. More precisely, we define

m∞λ,σ = lim
k→∞

mk
λ,σ.
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In other words,

m∞λ,σ =


0 if mk

λ,σ = 0 for all k,

1 if σ = λ, i.e. mk
λ,σ = 1 for all k,

∞ if mk
λ,σ > 1 for at least one k.

Furthermore, for convenience we set m0
λ,σ = 0 for λ 6= σ and m0

λ,λ = 1. We will refer

to the values mk
λ,σ for k ∈ Z≥0 t{∞} as the extended Gelfand-Tsetlin multiplicities.

Before stating the general result we need two lemmas.

Lemma 3.6. Let g′ ⊂ g be an embedding which satisfies (3.4) with a = 0. Then for

any Vλ,0 ⊂ V ⊗p we have

socg′Vλ,0 = V ′λ,0,

soc
(r+1)
g′ Vλ,0 ∼=

⊕
|λ′|=|λ|−r

mb
λ,λ′V

′
λ′,0,

where mb
λ,λ′ are the extended Gelfand-Tsetlin multiplicities.

Proof. From Proposition 3.4 above and from Theorem 2.1 in [PSt] it follows that

soc
(r+1)
g′ V ⊗p ∼=

(
p

r

)
N⊗rb ⊗ (V ′)⊗p−r ∼=

⊕
|λ′|=p−r

cλ′V
′
λ′,0

for some multiplicities cλ′ . Moreover, soc
(r+1)
g′ Vλ,0 ⊂ soc

(r+1)
g′ V ⊗p, hence

soc
(r+1)
g′ Vλ,0 ∼=

⊕
|λ′|=p−r

c′λ′V
′
λ′,0 (3.6)

for some unknown c′λ′ . Thus, we only need to compute the multiplicity with which

each V ′λ′,0 enters the decomposition of Vλ,0. Note that on distinct layers of the socle

filtration non-isomorphic simple constituents V ′λ′,0 appear.

Let {vi}i∈Z>0 and {v∗i }i∈Z>0 be a pair of dual bases in V ′ and V ′∗ , and {ξi}i∈Z>0 ,

{ξ∗i }i∈Z>0 be respectively a pair of dual bases in V and V∗. For each n, put Vn =

span{ξ1, . . . , ξn} and V ∗n = span{ξ∗1 , . . . , ξ∗n}. The pairing between V and V∗ restricts

to a non-degenerate pairing between Vn and V ∗n . Therefore we can define the Lie

algebra gn = Vn ⊗ V ∗n . Furthermore, we set hn = hg ∩ gn and bn = bg ∩ gn. It is

clear that gn ∼= gl(n) and that hn (respectively, bn) is a Cartan (respectively, Borel)

subalgebra of gn. Moreover, if we set V n
λ,0 = Vλ,0 ∩ V ⊗pn , then for n ≥ p, V n

λ,0 is a

highest weight gn-module with highest weight (λ, 0) with respect to bn.
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Now we apply the same procedure to g′. We define V ′n = span{v1, . . . , vn} and

V ′∗n = span{v∗1, . . . , v∗n}. We set g′n = V ′n ⊗ V ′∗n , h′n = hg′ ∩ g′n, b′n = bg′ ∩ g′n, and

V ′nλ,0 = V ′λ,0 ∩ V ′⊗pn . In this way we obtain a commutative diagram of inclusions

g′1

��

// g′2

��

// . . . // g′k

��

// . . . // g′

��
gm1

// gm2
// . . . // gmk

// . . . // g

in which all horizontal arrows are standard inclusions. Then for large k each em-

bedding g′k → gmk
is diagonal, i.e. in our case

Vmk
∼= V ′k ⊕N ′k,

where N ′k is some finite-dimensional trivial g′k-module. Moreover, if we set nk =

dimN ′k = codimVmk
V ′k then b = codimV V

′ = limk→∞ nk. Thus, when b is finite we

obtain that for large k all vertical embeddings in the above diagram are of signature

(1, 0, b). In the case b = ∞, for large k all vertical embeddings are of signature

(1, 0, nk) with limk→∞ nk =∞.

Let us consider first the case when b is finite. Then for large k we can use the

Gelfand-Tsetlin rule for the embedding g′k → gmk
and the module V mk

λ,0 = Vλ,0∩V ⊗pmk

to obtain the decomposition

V mk
λ,0
∼=
⊕
λ′

mb
λ,λ′V

′k
λ′,0. (3.7)

Then (3.6) and (3.7) imply

(soc(r+1)Vλ,0) ∩ V ⊗pmk
/(soc(r)Vλ,0) ∩ V ⊗pmk

∼=
⊕
|λ′|=p−r

mb
λ,λ′V

′k
λ′,0,

and passing to the direct limit we obtain the statement.

Now let us consider the case b =∞. Then from the Gelfand-Tsetlin rule we obtain

(soc(r+1)Vλ,0) ∩ V ⊗pmk
/(soc(r)Vλ,0 ∩ V ⊗pmk

) ∼=
⊕
|λ′|=p−r

mnk

λ,λ′V
′k
λ′,0,

and passing to the direct limit we obtain the statement.

Lemma 3.7. Let g′ ⊂ g be an embedding which satisfies (3.4) with b = 0. Then
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any Vλ,0 ⊂ V ⊗p is a completely reducible g′-module and

Vλ,0 ∼=
⊕
λ′

ma
λ,λ′V

′
λ′,0,

where ma
λ,λ′ are again the extended Gelfand-Tsetlin multiplicities.

Proof. When b = 0 the map f from (3.5) is just the zero homomorphism, hence

Proposition 3.4 implies that Vλ,0 is completely reducible. Therefore, we only need

to compute the multiplicity of each V ′λ′,0 in the expression of Vλ,0, and this is done

in the same way as in Lemma 3.6.

Now we can state the branching rule for arbitrary values of a and b.

Theorem 3.8. Let g′ ⊂ g be an embedding which satisfies (3.4) with a and b being

arbitrary non-negative integers or infinity. Then for any Vλ,0 ⊂ V ⊗p we have

soc
(r+1)
g′ Vλ,0 ∼=

⊕
λ′′

⊕
|λ′|=|λ′′|−r

ma
λ,λ′′m

b
λ′′,λ′V

′
λ′,0.

Proof. Let {vi} and {v∗i } be a pair of dual bases in V ′ and V ′∗ . Then

V = span{x1, . . . , xn, . . . , z1, . . . , zl, . . . , vk1 , . . . , vkn , . . . },

V∗ = span{f1, . . . , fm, . . . , v∗k1 , . . . , v
∗
kn , . . . },

where < zi, v
∗
j >= 0 for all i, j, and < xi, v

∗
j >6= 0 for all i and infinitely many

j. We divide the fi’s into two groups: those which pair non-degenerately with

z1, . . . , zl, . . . we denote by f ′i , and the remaining ones we denote by f ′′i . Next we

define the subspaces

V ′′ = span{x1, . . . xn, . . . , vk1 , . . . , vkn , . . . },

V ′′∗ = span{f ′′1 . . . f ′′m, . . . , v∗k1 , . . . , v
∗
kn , . . . }.

Then V ′′ and V ′′∗ pair non-degenerately, and the four values which characterize the

embedding V ′′ ⊗ V ′′∗ ⊂ V ⊗ V∗ are b′′ = 0, a′′ = a, d′′ = k, c′′ = l for some integers k

and l. Therefore, this embedding satisfies the conditions of Lemma 3.7, hence every

simple g-module Vλ,0 is completely reducible over g′′ = V ′′ ⊗ V ′′∗ and

Vλ,0 ∼=
⊕
λ′′

ma
λ,λ′′V

′′
λ′′,0, (3.8)
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where by V ′′λ′′,0 we denote the simple tensor g′′-modules.

To see now how Vλ,0 decomposes over g′ it is enough to see how each V ′′λ′′,0 decomposes

over g′. The four values which characterize the embedding g′ ⊂ g′′ are b′ = b, a′ = 0,

d′ = k, c′ = l, for some k and l. Therefore, this embedding satisfies the conditions

of Lemma 3.6, and for every simple g′′-module V ′′λ′′,0 we have

soc
(r+1)
g′ V ′′λ′′,0

∼=
⊕

|λ′|=|λ′′|−r

mb
λ′′,λ′V

′
λ′,0. (3.9)

Then (3.8) and (3.9) imply the statement of the theorem.

An analogous statement holds for submodules of V ⊗q∗ . Here is the result.

Theorem 3.9. Let g′ ⊂ g be an embedding which satisfies (3.4) such that c and d

are arbitrary non-negative integers or infinity. Then for any V0,µ ⊂ V ⊗q∗ we have

soc
(r+1)
g′ V0,µ ∼=

⊕
µ′′

⊕
|µ′|=|µ′′|−r

mc
µ,µ′′m

d
µ′′,µ′V

′
0,µ′ .

3.1.3 The module V {p,q} and its submodules

Recall that in the previous two subsections we considered embeddings g′ ⊂ g which

satisfy (3.4) without any conditions on the pairing between Na and Nc. However, in

order to compute the socle filtration of V {p,q} over g′ we have to consider separately

embeddings of type I and II.

Theorem 3.10. Consider an embedding g′ ⊂ g of type I, i.e. such that

socg′V ∼= V ′ ⊕Na, V/socg′V ∼= Nb,

socg′V∗ ∼= V ′∗ ⊕Nc, V∗/socg′V∗ ∼= Nd,

where < z, t >= 0 for all z ∈ Na and t ∈ Nc. Then for the socle filtration of V {p,q}

we have

socg′V
{p,q} = ((socg′V

⊗p)⊗ (socg′V
⊗q
∗ )) ∩ V {p,q},

soc
(r+1)
g′ V {p,q} = (

∑
m+n=r

((soc
(m+1)
g′ V ⊗p)⊗ (soc

(n+1)
g′ V ⊗q∗ ))) ∩ V {p,q}.

Proof. Denote S(m,n) = (soc
(m)
g′ V

⊗p) ⊗ (soc
(n)
g′ V

⊗q
∗ ). As in Proposition 3.4, we will

prove the following two steps.
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(1) For any

u ∈ (
∑

m+n=r+1

S(m+1,n+1)) ∩ V {p,q} \ (
∑

m+n=r

S(m+1,n+1)) ∩ V {p,q}

there exists g ∈ U(g′) such that

g · u ∈ (
∑

m+n=r

S(m+1,n+1)) ∩ V {p,q} \ (
∑

m+n=r−1

S(m+1,n+1)) ∩ V {p,q}.

(2) The quotient (
∑

m+n=r S
(m+1,n+1)) ∩ V {p,q}/(

∑
m+n=r−1 S

(m+1,n+1)) ∩ V {p,q} is

semisimple.

Proof of (2): Note that

(
∑

m+n=r

S(m+1,n+1)) ∩ V {p,q} ∼=
∑

m+n=r

(S(m+1,n+1) ∩ V {p,q}).

Hence,

(
∑

m+n=r

S(m+1,n+1)) ∩ V {p,q}/(
∑

m+n=r−1

S(m+1,n+1)) ∩ V {p,q} ∼=∑
m+n=r

(S(m+1,n+1) ∩ V {p,q})/
∑

m+n=r−1

(S(m+1,n+1) ∩ V {p,q}) ∼=⊕
m+n=r

(S(m+1,n+1) ∩ V {p,q}/
∑

m+n=r−1

(S(m+1,n+1) ∩ V {p,q})).

Now for any fixed m and n and sequences of numbers i1 < · · · < im and j1 < · · · < jn

we consider the g′-module homomorphism

Li1,...,im ⊗Mj1,...,jn : S(m+1,n+1) → N⊗mb ⊗N⊗nd ⊗ (socV )⊗p−m ⊗ (socV∗)
⊗q−n

and its restriction to the submodule V {p,q}

Li1,...,im ⊗Mj1,...,jn :

S(m+1,n+1) ∩ V {p,q} → N⊗mb ⊗N⊗nd ⊗ ((socg′V )⊗p−m ⊗ (socg′V∗)
⊗q−n ∩ V {p,q}).

Notice that this is a well-defined homomorphism also on the quotient

Li1,...,im ⊗Mj1,...,jn : S(m+1,n+1) ∩ V {p,q}/
∑

m+n=r−1

(S(m+1,n+1) ∩ V {p,q})→

N⊗mb ⊗N⊗nd ⊗ ((socg′V )⊗p−m ⊗ (socg′V∗)
⊗q−n ∩ V {p,q}).
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Then for any fixed m and n the map⊕
i1<···<im
j1<···<jn

Li1,...,im ⊗Mj1,...,jn : S(m+1,n+1) ∩ V {p,q}/
∑

m+n=r−1

(S(m+1,n+1) ∩ V {p,q})→

⊕
i1<···<im
j1<···<jn

(N⊗mb ⊗N⊗nd ⊗ (((socg′V )⊗p−m ⊗ (socg′V∗)
⊗q−n) ∩ V {p,q}))

is a well-defined injective homomorphism of g′-modules. Since Na and Nc pair

trivially, we obtain

N⊗mb ⊗N⊗nd ⊗ (((socg′V )⊗p−m ⊗ (socg′V∗)
⊗q−n) ∩ V {p,q}) ∼=

p−m,q−n⊕
k=0,l=0

(
p−m
k

)(
q − n
l

)
N⊗mb ⊗N⊗nd ⊗N

⊗k
a ⊗N⊗lc ⊗ V ′{p−m−k,q−n−l},

which is a semisimple g′-module.

Proof of (1): Let u =
∑N

i=1 aiui ⊗ u∗i where each ui ⊗ u∗i is a monomial in some

(soc
(m+1)
g′ V ⊗p) ⊗ (soc

(n+1)
g′ V ⊗q∗ ) with m + n = r + 1 and u ∈ V {p,q}. Then each

ui is a monomial in V ⊗p and we denote it by ui = ui1 ⊗ · · · ⊗ uip . As before we

make the notation more precise by setting vik = uik if uik ∈ socg′V and xik = uik
if uik /∈ socg′V . We use similar notations for u∗i . Then we take g1 = w1 ⊗ w∗1 such

that w1 satisfies:
〈
w1, x

∗
1j

〉
6= 0 for at least one x∗1j that enters the monomial u∗1,〈

w1, v
∗
1j

〉
= 0 for all v∗1j, and w1 does not appear in any ui. Similarly, w∗1 satisfies:

〈x1j, w∗1〉 6= 0 for at least one x1j that enters the monomial u1, 〈v1j, w∗1〉 = 0 for all

v1j, and w∗1 does not appear in any u∗i . Then

g1 · (u1 ⊗ u∗1) ∈
∑

m+n=r

(S(m+1,n+1) ∩ V {p,q}) \
∑

m+n=r−1

(S(m+1,n+1) ∩ V {p,q}).

After defining inductively g1, . . . gi−1, if (gi−1 ◦ · · · ◦ g1) · ui⊗ u∗i is not in the desired

space, we define gi in the same way as we defined g1. Finally we set g = gN ◦ · · · ◦ g1
and then g · u has the desired properties.

Corollary 3.11. Let g′ ⊂ g be again an embedding of type I. Then for any simple

g-module Vλ,µ ⊂ V {p,q} we have

socg′Vλ,µ = (socg′Vλ,0 ⊗ socg′V0,µ) ∩ V {p,q},

soc
(r+1)
g′ Vλ,µ = (

∑
m+n=r

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ))) ∩ V {p,q}.
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Moreover,

soc
(r+1)
g′ Vλ,µ ∼=

⊕
m+n=r

⊕
λ′′,µ′′

⊕
|λ′|=|λ′′|−m
|µ′|=|µ′′|−n

ma
λ,λ′′m

b
λ′′,λ′m

c
µ,µ′′m

d
µ′′,µ′V

′
λ′,µ′ .

Proof. Note that

(
∑

m+n=r

((soc
(m+1)
g′ V ⊗p)⊗ (soc

(n+1)
g′ V ⊗q∗ ))) ∩ (Vλ,0 ⊗ V0,µ) =∑

m+n=r

(((soc
(m+1)
g′ V ⊗p)⊗ (soc

(n+1)
g′ V ⊗q∗ )) ∩ (Vλ,0 ⊗ V0,µ)) =∑

m+n=r

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)).

Therefore, we have

soc
(r+1)
g′ Vλ,µ = soc

(r+1)
g′ V {p,q} ∩ Vλ,µ =

(
∑

m+n=r

((soc
(m+1)
g′ V ⊗p)⊗ (soc

(n+1)
g′ V ⊗q∗ ))) ∩ V {p,q} ∩ Vλ,µ =

(
∑

m+n=r

((soc
(m+1)
g′ V ⊗p)⊗ (soc

(n+1)
g′ V ⊗q∗ ))) ∩ V {p,q} ∩ Vλ,0 ⊗ V0,µ =∑

m+n=r

(((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)) ∩ V {p,q}),

which proves the first part of the statement. To compute the layers of the socle

filtration we notice the following. If {Am} and {Bn} are families of modules over a

ring or an algebra such that Am ⊂ Am+1 for all m and Bn ⊂ Bn+1 for all n, then

(
∑

m+n=r

Am ⊗Bn)/(
∑

m+n=r−1

Am ⊗Bn) ∼=⊕
m+n=r

Am/Am−1 ⊗Bn/Bn−1.

In our case, if we set Am = soc
(m+1)
g′ Vλ,0 and Bn = soc

(n+1)
g′ V0,µ we obtain

(
∑

m+n=r

(soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ))/(

∑
m+n=r−1

(soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)) ∼=⊕

m+n=r

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)) ∼=⊕

m+n=r

⊕
λ′′,µ′′

⊕
|λ′|=|λ′′|−m
|µ′|=|µ′′|−n

ma
λ,λ′′m

b
λ′′,λ′m

c
µ,µ′′m

d
µ′′,µ′V

′
λ′,0 ⊗ V ′0,µ′ ,
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where the second isomorphism is a corollary of Theorems 3.8 and 3.9. Hence,

soc
(r+1)
g′ Vλ,µ ⊆ socg′(

⊕
m+n=r

⊕
λ′′,µ′′

⊕
|λ′|=|λ′′|−m
|µ′|=|µ′′|−n

ma
λ,λ′′m

b
λ′′,λ′m

c
µ,µ′′m

d
µ′′,µ′V

′
λ′,0 ⊗ V ′0,µ′) ∼=

⊕
m+n=r

⊕
λ′′,µ′′

⊕
|λ′|=|λ′′|−m
|µ′|=|µ′′|−n

ma
λ,λ′′m

b
λ′′,λ′m

c
µ,µ′′m

d
µ′′,µ′V

′
λ′,µ′ .

To prove the opposite inclusion we notice that every element from

V ⊗(p,q)/(
∑

m+n=r−1

(soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)))

can be sent to

V {p,q}/(
∑

m+n=r−1

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)))

by an element in U(g′). In other words,

socg′(V
⊗(p,q)/(

∑
m+n=r−1

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)))) ⊆

V {p,q}/(
∑

m+n=r−1

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ))).

Therefore,

socg′((
∑

m+n=r

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)))/(

∑
m+n=r−1

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ)))) ⊆

(
∑

m+n=r

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ))) ∩ V {p,q}/(

∑
m+n=r−1

((soc
(m+1)
g′ Vλ,0)⊗ (soc

(n+1)
g′ V0,µ))) ∼=

∼= soc
(r+1)
g′ Vλ,µ.

3.2 Branching laws for embeddings of type II

In this section g′ ⊂ g is an embedding of type II, i.e. such that

V ∼= V ′ ⊕Na, V∗ ∼= V ′∗ ⊕Nc.
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Then Na and Nc have the same dimension and there is a non-degenerate bilinear

pairing between them, which is the restriction of the bilinear pairing between V and

V∗.

By definition (see [PSt]), for any partitions λ and µ with |λ| = p and |µ| = q we

have Vλ,µ = V {p,q} ∩ (Vλ,0 ⊗ V0,µ). Hence, we can compute the socle filtrations of

Vλ,0⊗V0,µ and of V {p,q} and use property (2.3) of socle filtrations to obtain the socle

filtration for Vλ,µ.

Proposition 3.12. Let g′ ⊂ g be an embedding of type II. Then

(i) Every Vλ,0 ⊂ V ⊗p and every V0,µ ⊂ V ⊗q∗ is completely reducible over g′ and

Vλ,0 ∼=
⊕
λ′

ma
λ,λ′V

′
λ′,0,

V0,µ ∼=
⊕
µ′

mc
µ,µ′V

′
0,µ′ .

(ii)

soc
(r+1)
g′ Vλ,0 ⊗ V0,µ ∼=

⊕
λ′,µ′

⊕
|λ′′|=|λ′|−r
|µ′′|=|µ′|−r

⊕
γ

ma
λ,λ′m

c
µ,µ′c

λ′

λ′′,γc
µ′

µ′′,γV
′
λ′′,µ′′ .

Proof. Part (i). Since V is semisimple over g′, then so is V ⊗p and similarly for V ⊗q∗ .

Therefore, every Vλ,0 ⊂ V ⊗p and every V0,µ ⊂ V ⊗q∗ is semisimple as well. To obtain

the exact multiplicities, we proceed as in the proof of Lemma 3.6.

Part (ii). From part (i) we have

Vλ,0 ⊗ V0,µ ∼=
⊕
λ′,µ′

ma
λ,λ′m

c
µ,µ′V

′
λ′,0 ⊗ V ′0,µ′ .

Hence, property (2.4) of socle filtrations implies

soc
(r)
g′ (Vλ,0 ⊗ V0,µ) ∼=

⊕
λ′,µ′

ma
λ,λ′m

c
µ,µ′soc

(r)
g′ (V ′λ′,0 ⊗ V ′0,µ′).

Then, using Theorem 2.3 in [PSt], we obtain the desired formula.

To derive the socle filtration of the module V {p,q} we first need to give several

definitions. Let {zi}i∈Ia and {ti}i∈Ia be a pair of dual bases for the trivial g′-modules
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Na and Nc. We define a new bilinear form:

〈·, ·〉t : V × V∗ → C

such that 〈zi, tj〉t = δij and for all other pairs of basis elements from V × V∗ the

bilinear form is trivial. Then, for any pair of indices I = (i, j) with i ∈ {1, 2, . . . , p}
and j ∈ {1, 2, . . . , q}, we define the contraction

ΦI : V ⊗(p,q) → V ⊗(p−1,q−1),

v1 ⊗ · · · ⊗ vp ⊗ v∗1 ⊗ · · · ⊗ v∗q 7→〈
vi, v

∗
j

〉
t
v1 ⊗ · · · ⊗ v̂i ⊗ · · · ⊗ vp ⊗ v∗1 ⊗ · · · ⊗ v̂∗j ⊗ · · · ⊗ v∗q .

Similarly, for any collection of pairwise disjoint index pairs I1, . . . , Ir respectively

from the sets {1, 2, . . . , p} and {1, 2, . . . , q}, we define the r-fold contraction

ΦI1,...,Ir : V ⊗(p,q) → V ⊗(p−r,q−r)

in the obvious way.

Now we set N
⊗(p,q)
a = N⊗pa ⊗ N⊗qc . Let Φa

I denote the restriction of ΦI to the

submodule N
⊗(p,q)
a and set N

{p,q}
a =

⋂
I ker Φa

I .

Proposition 3.13. Let g′ ⊂ g be an embedding of type II. Then

soc
(r)
g′ V

{p,q} =
⋂

I1,...,Ir

ker ΦI1,...,Ir .

Moreover,

socg′V
{p,q} ∼=

p⊕
k=0

q⊕
l=0

(
p

k

)(
q

l

)
N{k,l}a ⊗ V ′{p−k,q−l}

and, for a > p+ q − 2,

soc
(r+1)
g′ V {p,q} ∼=

⊕
{I1,...,Ir}

p−r⊕
k=0

q−r⊕
l=0

(
p− r
k

)(
q − r
l

)
N{k,l}a ⊗ V ′{p−r−k,q−r−l}.

Proof. Denote similarly as before S
(r)
p,q =

⋂
I1,...,Ir

ker ΦI1,...,Ir . Clearly,

S(1)
p,q
∼=

p⊕
k=0

q⊕
l=0

(
p

k

)(
q

l

)
N{k,l}a ⊗ V ′{p−k,q−l}.
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Then for each disjoint collection of index pairs I1, . . . , Ir, if we restrict ΦI1,...,Ir to

S
(r+1)
p,q we obtain a map

ΦI1,...,Ir : S(r+1)
p,q → S

(1)
p−r,q−r.

Moreover, ⊕
{I1,...,Ir}

ΦI1,...,Ir : S(r+1)
p,q /S(r)

p,q →
⊕

{I1,...,Ir}

S
(1)
p−r,q−r

is a well-defined and injective homomoprhism of g′-modules. This shows the semisim-

plicity of the consecutive quotients.

Now we will show that if a > p + q − 2, then for each r the above homomoprhism

is also surjective. Without loss of generality fix the following collection of index

pairs I1 = (1, q − r + 1), . . . , Ir = (r, q). Let v be an indecomposable element of

the copy of S
(1)
p−r,q−r which corresponds to the chosen collection. By indecomposable

here we mean that v cannot be decomposed as a sum v = v′ + v′′ such that all

monomials in v′ and v′′ belong to v and each of v′ and v′′ is also an element of

S
(1)
p−r,q−r. Then v contains at most p + q − 2r entries with distinct indices from the

pair of dual bases {zi}, {ti}. Let i1, . . . , ir be indices from Ia such that neither zik nor

tik for k = 1, . . . , r enters the expression of v. These exist thanks to the condition

a > p+ q− 2. In addition, let vk and v∗k be a pair of dual elements respectively from

V ′ and V ′∗ which do not enter the expression of v. Then the vector

u = zi1 ⊗ · · · ⊗ zir ⊗ v ⊗ ti1 ⊗ · · · ⊗ tir − u1

where

u1 =vk ⊗ zi2 ⊗ · · · ⊗ zir ⊗ v ⊗ v∗k ⊗ ti2 ⊗ · · · ⊗ tir+

zi1 ⊗ vk ⊗ zi3 ⊗ · · · ⊗ zir ⊗ v ⊗ ti1 ⊗ v∗k ⊗ ti3 ⊗ · · · ⊗ tir + · · ·+

zi1 ⊗ · · · ⊗ zir−1 ⊗ vk ⊗ v ⊗ ti1 ⊗ · · · ⊗ tir−1 ⊗ v∗k

belongs to S
(r+1)
p,q and ⊕

{I1,...,Ir}

ΦI1,...,Ir(u) = v.

Thus, for a > p + q − 2 we obtain an exact expression for the layers of the above

semisimple filtration. To show that this filtration is indeed the socle filtration of

V {p,q}, we take u ∈ S(r+2)
p,q \S(r+1)

p,q . Then without loss of generality, u = u1 + · · ·+us
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for some s such that

u1 = zi1 ⊗ · · · ⊗ zir+1 ⊗ u′1 ⊗ ti1 ⊗ · · · ⊗ tir+1−

vk ⊗ zi2 ⊗ · · · ⊗ zir+1 ⊗ u′1 ⊗ v∗k ⊗ ti2 ⊗ · · · ⊗ tir+1−

zi1 ⊗ vk ⊗ zi3 ⊗ · · · ⊗ zir+1 ⊗ u′1 ⊗ ti1 ⊗ v∗k ⊗ ti3 ⊗ · · · ⊗ tir+1 − · · ·−

zi1 ⊗ · · · ⊗ zir ⊗ vk ⊗ u′1 ⊗ ti1 ⊗ · · · ⊗ tir ⊗ v∗k + u′′1

where vk, v
∗
k is a pair of dual elements from V ′ ⊗ V ′∗ , u

′
1 ∈ V ′{p−r−1,q−r−1}, and

u′′1 ∈ S
(r+1)
p,q . The elements u2, . . . , us have a similar form. Notice that if vk appears

at most k times in any monomial in the expression of u′1, then it appears at most

k + 1 times in any monomial in u1. Hence, for j = 1, . . . , k + 1, if we take

gj = vij ⊗ v∗k

such that vij does not appear in the expression of u and pairs trivially with all

entries in u′1 for all j, then (g1 ◦ · · · ◦ gk+1)(u1) ∈ S(r+1)
p,q \ S(r)

p,q . We can do the same

procedure for u2, . . . , us and this will complete the proof of the statement.

In order to obtain an exact expression for the layers of the socle filtraiton of V {p,q}

also in the cases when a ≤ p + q − 2 we will use another approach. This approach

covers all cases in which a is finite. Therefore, in what follows, we fix a ∈ Z≥0. As

is done in [PSt], for any index pair I = (i, j) as above we define the inclusion

Ψa
I : N{p−1,q−1}a → N⊗(p,q)a

given by

x1 ⊗ · · · ⊗ xp−1 ⊗ x∗1 ⊗ · · · ⊗ x∗q−1 7→
a∑
k=1

. . . xi1 ⊗ zk ⊗ xi+1 ⊗ · · · ⊗ x∗j−1 ⊗ tk ⊗ x∗j+1 ⊗ . . . ,

where xi is an arbitrary element inNa and x∗j is an arbitrary element inNc. Similarly,

for any disjoint collection of index pairs I1, . . . , Ir, where r = 1, . . . ,min (p, q), we

define the inclusion

Ψa
I1,...,Ir

: N{p−r,q−r}a → N⊗(p,q)a

as the sum of the r-fold insertions of all possible ordered collections of r terms of

the form zi ⊗ ti, including collections with repeating terms. Then, following [PSt],
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we denote

(Na)
{p,q}
r =

∑
{I1,...,Ir}

imΨa
I1,...,Ir

.

It is stated in [PSt] that for all a we have the direct sum decomposition

N⊗(p,q)a = N{p,q}a ⊕ (Na)
{p,q}
1 ⊕ · · · ⊕ (Na)

{p,q}
l ,

where l = min (p, q).

Proposition 3.14. Let g′ ⊂ g be an embedding of type II such that a = dimNa ∈
Z≥0. Then

soc
(r+1)
g′ V {p,q} ∼=

p⊕
k=0

q⊕
l=0

(
p

k

)(
q

l

)
(Na)

{k,l}
r ⊗ V ′{p−k,q−l}.

Proof. Note that every element u ∈
⋂
I1,...,Ir+1

ker ΦI1,...,Ir+1 can be written as u =

u1 + u2, where

u1 ∈
p⊕

k=0

q⊕
l=0

(
p

k

)(
q

l

)
(Na)

{k,l}
r ⊗ V ′{p−k,q−l},

u2 ∈
⋂

I1,...,Ir

ker ΦI1,...,Ir .

This proves the statement.

Note that for k or l smaller than r we have (Na)
{k,l}
r = 0 and so the formula in

Proposition 3.14 can be rewritten as

soc
(r+1)
g′ V {p,q} ∼=

p−r⊕
k=0

q−r⊕
l=0

(
p

k + r

)(
q

l + r

)
(Na)

{k+r,l+r}
r ⊗ V ′{p−k−r,q−l−r}.

Comparing this formula with the expression from Proposition 3.13 we obtain(
p

k + r

)(
q

l + r

)
(Na)

{k+r,l+r}
r =

⊕
{I1,...,Ir}

(
p− r
k

)(
q − r
l

)
N{k,l}a , (3.10)

where i ∈ {i, . . . , p} and j ∈ {1, . . . , q}. Having in mind that the set of all such

collections of r disjoint index pairs I1, . . . , Ir has
(
p
r

)(
q
r

)
r! elements, we can further
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rewrite (3.10) as

(Na)
{k+r,l+r}
r =

⊕
{J1,...,Jr}

N{k,l}a ,

where the sum runs over all collections of disjoint index pairs J1, . . . , Jr with i ∈
{1, . . . , k + r} and j ∈ {1, . . . , l + r}. This formula holds exactly in the cases when

the images of Ψa
J1,...,Jr

are all disjoint and this is precisely when a > k + l. And

since k + l ≤ p+ q − 2 for all layers of the socle filtration, we have just proved that

Proposition 3.13 and Proposition 3.14 give the same formulas for finite dimension a

with a > p+ q − 2.

If we denote now K
(r+1)
k,l = dim(Na)

{k,l}
r , where (Na)

{k,l}
0 = N

{k,l}
a , we can rewrite the

formulas from Proposition 3.13 and Proposition 3.14 in the following way:

socg′V
{p,q} ∼=

p⊕
k=0

q⊕
l=0

(
p

k

)(
q

l

)
K

(1)
k,l V

′{p−k,q−l};

for a ∈ Z≥0 t {∞} and a > p+ q − 2,

soc
(r+1)
g′ V {p,q} ∼=

⊕
{I1,...,Ir}

p−r⊕
k=0

q−r⊕
l=0

(
p− r
k

)(
q − r
l

)
K

(1)
k,l V

′{p−k−r,q−l−r};

for all a ∈ Z≥0,

soc
(r+1)
g′ V {p,q} ∼=

p−r⊕
k=0

q−r⊕
l=0

(
p

k + r

)(
q

l + r

)
K

(r+1)
k,l V ′{p−k−r,q−l−r}.

Therefore, the last step in the discussion about the socle filtration of V {p,q} is to

determine the dimensions of the trivial g′-modules N
{p,q}
a for all a, including a =∞,

and the dimensions of the modules (Na)
{p,q}
r for finite values of a. Notice here that

N
{p,q}
a has the same dimension as the gl(a)-module V

{p,q}
a . In particular, if a = ∞,

then V
{p,q}
a is just the gl(∞)-module V {p,q}, which is obviously infinite dimensional.

Similarly, (Na)
{p,q}
r has the same dimension as the gl(a)-module (Va)

{p,q}
r (see [PSt]

for the notation). Thus, it is enough to determine the dimensions of the modules

V
{p,q}
a and (Va)

{p,q}
r for any finite a.

Schur-Weyl duality (see, e.g. [FH]) yields

V ⊗(p,q)a
∼=
⊕
|λ|=p
|µ|=q

V a
λ,0 ⊗ V a

0,µ ⊗ (Hλ ⊗Hµ).
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Here, Hλ (resp., Hµ) denotes the irreducible representation of the symmetric group

Sp (resp., Sq) corresponding to the partition λ (resp., µ). V a
λ,0 denotes as before

the irreducible gl(a)-module with highest weight (λ, 0).

Furthermore, for a ≥ p+ q

V a
λ,0 ⊗ V a

0,µ
∼=
⊕
λ′,µ′,γ

cλλ′,γc
µ
µ′,γV

a
λ′,µ′ . (3.11)

Formula (3.11) can be found e.g. in [K], [HTW] and the condition a ≥ p + q

is important there. When a < p + q, it is shown in [K], that modification rules

have to be applied to (3.11) in order to derive the correct branching rule. These

modification rules are described in detail in [K]. The main problem comes from the

fact that when a < p+q, terms V a
λ,µ with l(λ)+l(µ) > a can appear in the expression

(3.11) and they do not define actual representations. Representations of the form

V a
λ,µ with l(λ) + l(µ) > a are called inadmissible or nonstandard, and R. King shows

that they cannot always be disregarded from the branching formula. Instead, the

modification rules tell us how to find equivalent admissible representations, which

then replace the inadmissible ones in the branching formula. One remark here is that

when a = p+ q− 1 then all inadmissible representations vanish by the modification

rules, so for this case formula (3.11) applies as well. Hence, the condition for the

modified branching rule becomes a ≤ p + q − 2, which unsuprisingly appeared also

as a condition in our considerations of the socle filtration of V {p,q}.

Following the above discussion, we rewrite (3.11) as

V a
λ,0 ⊗ V a

0,µ
∼=
⊕
λ′,µ′

c̃λ,µλ′,µ′V
a
λ′,µ′ ,

where

c̃λ,µλ′,µ′ =
⊕
γ

cλλ′,γc
µ
µ′,γ (3.12)

for a > p + q − 2. For a ≤ p + q − 2, c̃λ,µλ′,µ′ can be obtained from (3.12) by the

modification rules in [K]. Then

V ⊗(p,q)a
∼=
⊕
|λ|=p
|µ|=q

⊕
λ′,µ′

c̃λ,µλ′,µ′V
a
λ′,µ′ ⊗ (Hλ ⊗Hµ).
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Recall that

V ⊗(p,q)a = (Va)
{p,q}
0 ⊕ (Va)

{p,q}
1 ⊕ · · · ⊕ (Va)

{p,q}
l

and ⋂
I1,...,Ir+1

ker Φa
I1,...,Ir+1

= (Va)
{p,q}
0 ⊕ (Va)

{p,q}
1 ⊕ · · · ⊕ (Va)

{p,q}
r

for r = 0, . . . , l.

Moreover, Schur-Weyl duality implies that a simple module V a
λ,µ with |λ| = p − r

and |µ| = q− r cannot be realized as a submodule of V
⊗(p−r−1,q−r−1)
a . Hence V a

λ,µ ⊂⋂
I1,...,Ir+1

ker Φa
I1,...,Ir+1

. On the other hand, for each copy of the module V a
λ,µ inside

V
⊗(p,q)
a there exists a contraction Φa

I1,...,Ir
such that V a

λ,µ is a submodule of its image,

hence V a
λ,µ /∈

⋂
I1,...,Ir

ker Φa
I1,...,Ir

. Thus, we proved that each (Va)
{p,q}
r contains only

simple modules V a
λ,µ with |λ| = p− r and |µ| = q − r. Therefore,

(Va)
{p,q}
r
∼=
⊕
|λ|=p
|µ|=q

⊕
|λ′|=p−r
|µ′|=q−r

c̃λ,µλ′,µ′V
a
λ′,µ′ ⊗ (Hλ ⊗Hµ).

Finally,

K(r+1)
p,q = dim(Va)

{p,q}
r =

∑
|λ|=p
|µ|=q

∑
|λ′|=p−r
|µ′|=q−r

c̃λ,µλ′,µ′ dimV a
λ′,µ′ dimHλ dimHµ.

In particular, for all a ∈ Z≥0 t {∞}

K(1)
p,q =

∑
|λ|=p
|µ|=q

dimV a
λ,µ dimHλ dimHµ.

We are now ready to formulate the branching law for any simple tensor module Vλ,µ.

Theorem 3.15. Let g′ ⊂ g be an embedding of type II, and let Vλ,µ ⊂ V {p,q}. Then

soc
(r+1)
g′ Vλ,µ ∼=

p−r⊕
k=0

q−r⊕
l=0

⊕
|λ′|=p−k
|µ′|=q−l

⊕
|λ′′|=|λ′|−r
|µ′′|=|µ′|−r

T λ,µλ′,µ′,λ′′,µ′′V
′
λ′′,µ′′ ,
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where, for a ∈ Z≥0

T λ,µλ′,µ′,λ′′,µ′′ = min(
∑
γ

ma
λ,λ′m

c
µ,µ′c

λ′

λ′′,γc
µ′

µ′′,γ,

(
p

k + r

)(
q

l + r

)
K

(r+1)
k+r,l+r dimHλ′′ dimHµ′′),

and for a ∈ Z≥0 t {∞} with a > p+ q − 2

T λ,µλ′,µ′,λ′′,µ′′ = min(
∑
γ

ma
λ,λ′m

c
µ,µ′c

λ′

λ′′,γc
µ′

µ′′,γ,

r!

(
p

r

)(
q

r

)(
p− r
k

)(
q − r
l

)
K

(1)
k,l dimHλ′′ dimHµ′′).

The above discussion, in particular the two approaches to computing the layers of

the socle filtration of V {p,q}, leads to the following combinatorial identity, connect-

ing the dimensions of certain simple representations of the symmetric group with

Littlewood-Richardson coefficients.

Proposition 3.16. For any two partitions λ′ and µ′ with |λ′| = p− r, |µ′| = q − r
for some integers p, q, r the following holds:(

p

r

)(
q

r

)
r! dimHλ′ dimHµ′ =

∑
|λ|=p
|µ|=q

∑
γ

cλλ′,γc
µ
µ′,γ dimHλ dimHµ.

3.3 Branching laws for embeddings of type III

In this section we consider embeddings g′ ⊂ g of type III, i.e. for which

V ∼= kV ′ ⊕ lV ′∗ , V∗ ∼= lV ′ ⊕ kV ′∗ .

Proposition 3.17. If we have an embedding g′ ⊂ g of type III, then

soc
(r+1)
g′ V ⊗(p,q) ∼=

p⊕
m=0

q⊕
n=0

(
p

m

)(
q

n

)
k(m+q−n)l(n+p−m)soc

(r+1)
g′ V ′⊗(m+n,p+q−m−n).

Proof. This follows directly from property (2.4) of socle filtrations.

Before considering the simple submodules of V ⊗(p,q), we need to derive the branch-

ing rule for diagonal embeddings gl(n) ⊂ gl(kn + ln) of signature (k, l, 0), i.e. for

embeddings given by
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V
(k+l)n
↓gl(n) = V n ⊕ · · · ⊕ V n︸ ︷︷ ︸

k

⊕V ∗n ⊕ · · · ⊕ V ∗n︸ ︷︷ ︸
l

where V n is the natural representation of gl(n) and V ∗n is its dual. We do this

in several steps, using the formulas in [HTW]. First we decompose the embedding

gl(n) ⊂ gl(kn+ ln) in the following standard way, suggested to us by R. King:

gl(n) ⊂ gl(n)⊕ gl(n) ∼= gl(n)⊕ gl(n) ⊂ gl(kn)⊕ gl(ln) ⊂ gl(kn+ ln), (3.13)

where the isomorphism gl(n)⊕ gl(n) ∼= gl(n)⊕ gl(n) is given by

(A,B) 7→ (A,−BT )

for any A,B ∈ gl(n). The other maps in (3.13) are the obvious ones. Recall from

Proposition 2.4 from Chapter 2 that for diagonal embeddings gl(n) ⊂ gl(kn) the

following branching rule holds:

V kn
λ,µ↓gl(n)

∼=
⊕

β+
1 ,...,β

+
k

β−1 ,...,β
−
k

λ′,µ′

C
(λ,µ)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
D

(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
V n
λ′,µ′ , (3.14)

where the coefficients C
(λ,µ)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

and D
(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

are as in Chapter 2.

Thus, the decomposition (3.13), formulas 2.1.1 and 2.2.1 from [HTW], and equation

(3.14) yield

V
(k+l)n
λ,µ ↓gl(n)

∼=
⊕

c
(λ,µ)

(γ+,γ−),(δ+,δ−)C
(γ+,γ−)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )
D

(σ+,σ−)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )

C
(δ+,δ−)

(β+
1 ,...,β

+
l )(β−1 ,...,β

−
l )
D

(τ+,τ−)

(β+
1 ,...,β

+
l )(β−1 ,...,β

−
l )
d
(λ′,µ′)
(σ+,σ−),(τ−,τ+)V

n
λ′,µ′ ,

(3.15)

where the sum is over all partitions γ+, γ−, δ+, δ−, α+
1 , . . . , α

+
k , α−1 , . . . , α

−
k , σ+, σ−,

β+
1 , . . . , β

+
l , β−1 , . . . , β

−
l , τ+, τ−, λ′, µ′.

Corollary 3.18. Consider an embedding g′ ⊂ g of type III. Then for each Vλ,µ ⊂
V ⊗(p,q) we have

soc
(r+1)
g′ Vλ,µ ∼=

p⊕
m=0

q⊕
n=0

⊕
|λ′|=m+n−r

|µ′|=p+q−m−n−r

Aλ,µλ′,µ′V
′
λ′,µ′ ,
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where

Aλ,µλ′,µ′ =
∑

c
(λ,µ)

(γ+,γ−),(δ+,δ−)C
(γ+,γ−)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )
D

(σ+,σ−)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )

C
(δ+,δ−)

(β+
1 ,...,β

+
l )(β−1 ,...,β

−
l )
D

(τ+,τ−)

(β+
1 ,...,β

+
l )(β−1 ,...,β

−
l )
d
(λ′,µ′)
(σ+,σ−),(τ−,τ+).

Proof. From Proposition 3.17 above and from Theorem 2.2 in [PSt] we obtain

soc
(r+1)
g′ Vλ,µ ∼=

p⊕
m=0

q⊕
n=0

⊕
|λ′|=m+n−r

|µ′|=p+q−m−n−r

aλ,µλ′,µ′V
′
λ′,µ′

for some multiplicities aλ,µλ′,µ′ . To compute those multiplicities explicitly we proceed

as before. Following Proposition 3.1, we take bases of V and V∗ such that

V = span{v11, . . . , v1n, . . . , . . . , vk1 , . . . , vkn, . . . , w1
1, . . . w

1
n, . . . , . . . , w

l
1, . . . , w

l
n, . . . }

V∗ = span{v1∗1 , . . . , v1∗n , . . . , . . . , vk∗1 , . . . , vk∗n , . . . , w1∗
1 , . . . w

1∗
n , . . . , . . . , w

l∗
1 , . . . , w

l∗
n , . . . }

and such that

g′ ∼= span{v1i ⊗ v1∗j + · · ·+ vki ⊗ vk∗j − w1
j ⊗ w1∗

i − · · · − wlj ⊗ wl∗i }.

Then we easily construct exhaustions of g′ and g to obtain a commutative diagram

of embeddings in which all vertical arrows have signature (k, l, 0). Thus from (3.15)

we obtain the values of the multiplicities.
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Chapter 4

Embeddings of sp(∞) into sp(∞)

and of so(∞) into so(∞)

The goal of this chapter is to obtain branching laws for all types of embeddings

g′ ⊂ g, where now g′ and g are both isomorphic to sp(∞) or so(∞). The approach

we use is analogous to the one in Chapter 3 and therefore the exposition is concise

and focused mainly on the end results. We start with decomposing the embeddings

of general tensor type into several intermediate embeddings.

Proposition 4.1. Let both g′ and g be isomorphic to sp(∞) or to so(∞). Let g′ ⊂ g

be an embedding of general tensor type, i.e. such that

socg′V ∼= kV ′ ⊕Na, V/socg′V ∼= Nb.

Then there are intermediate subalgebras g1 and g2 of the same type as g and g′, such

that g′ ⊂ g2 ⊂ g1 ⊂ g and the following conditions hold.

(1) The embedding g1 ⊂ g satisfies

socg1V
∼= V1 ⊕Na1 , V/socg1V

∼= Nb,

where Na1 = {v ∈ Na| 〈v,Na〉 = 0}.

(2) The embedding g2 ⊂ g1 has the property V1 ∼= V2 ⊕Na2, where Na2 is such that

Na = Na1 ⊕Na2.

(3) The embedding g′ ⊂ g2 has the property V2 ∼= kV ′.

Proof. We will prove the statement for the case when g′ and g are isomorphic to

sp(∞). Let Ω be the non-degenerate antisymmetric bilinear form on V . Let V2

43
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be a submodule of socg′V isomorphic to kV ′. Then, as in the proof of Proposition

3.1, we can show that the restriction of Ω to V2 is a non-degenerate antisymmetric

bilinear form on V2. Thus, if we set g2 = S2(V2) then g2 is a Lie algebra isomorphic

to sp(∞).

Let {vi}i∈Z\{0} be a symplectic basis of V2, i.e. such that Ω(vi, vj) = sign(i)δi+j,0.

Let also A = {zj}j∈Ia be a basis of Na, where Ia is an index set with cardinality

a = dimNa. Let A1 = {z′j}j∈Ia1 be those elements in A which pair trivially with all

elements in A. Let A2 = A \ A1 and denote its elements with z′′j and its index set

with Ia2 . Now set

V1 = span{vi}i∈Z\{0} ⊕ span{z′′j }j∈Ia2

Then the restriction of Ω to V1 is non-degenerate and we set g1 = S2(V1).

The Lie algebras g1 and g2 constructed in this way satisfy the required properties.

In the case of so(∞) we follow the same construction.

As in Chapter 3 we give the following definition.

Definition 4.1. Let again both g′ and g be isomorphic to sp(∞) or to so(∞).

(i) An embedding g′ ⊂ g is said to be of type I if

socg′V ∼= V ′ ⊕Na, V/socg′V ∼= Nb,

where any two vectors from Na pair trivially.

(ii) An embedding g′ ⊂ g is said to be of type II if V ∼= V ′ ⊕Na.

(iii) An embedding g′ ⊂ g is said to be of type III if V ∼= kV ′.

4.1 Embeddings of sp(∞) into sp(∞) of types I, II, and III

In this section, unless otherwise stated, g = sp(V ) and g′ = sp(V ′) where V is a

countable-dimensional complex vector space endowed with a non-degenerate anti-

symmetric bilinear form Ω and V ′ is a subspace of V on which Ω restricts non-

degenerately. First we consider embeddings g′ ⊂ g of type I, i.e. such that

socg′V ∼= V ′ ⊕Na, V/socg′V ∼= Nb,
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where Na and Nb are trivial g′-modules of finite or countable dimension and any

two vectors from Na pair trivially. As in Proposition 3.2 we can prove that the

embedding g′ ⊂ g extends to an embedding gl(V ′, V ′) ⊂ gl(V, V ) of type I with the

same values for a and b. Moreover, from Chapter 3 we know the socle filtrations

over gl(V ′, V ′) of V ⊗d and of any Vλ,0 ⊂ V ⊗d.

Theorem 4.2. (i) The socle filtration of V 〈d〉 over g′ is

soc
(r+1)
g′ V 〈d〉 = soc

(r+1)
gl(V ′,V ′)V

⊗d ∩ V 〈d〉.

(ii) For any simple g-module V〈λ〉 ⊂ V 〈d〉 we have

soc
(r+1)
g′ V〈λ〉 = soc

(r+1)
gl(V ′,V ′)Vλ,0 ∩ V

〈d〉.

Moreover, for the layers of the socle filtration we have

soc
(r+1)
g′ V〈λ〉 ∼=

⊕
λ′′

⊕
|λ′|=|λ′′|−r

ma
λ,λ′′m

b
λ′′,λ′V

′
〈λ′〉,

where as before ma
λ,λ′′ are the extended Gelfand-Tsetlin multiplicities.

Proof. Proof of (i): From the previous chapter we know that

soc
(r+1)
gl(V ′,V ′)V

⊗d =
⋂

i1<···<ir+1

kerLi1,...,ir+1 ,

where

Li1,...,ik : V ⊗d → V ⊗(d−k) ⊗N⊗kb

is defined as before for any set of indices 1 ≤ i1 < · · · < ik ≤ d. We take its

restriction to V 〈d〉, namely

Li1,...,ik : V 〈d〉 → V 〈d−k〉 ⊗N⊗kb .

Thus we obtain a well-defined map on the quotient⊕
i1<···<ir

Li1,...,ir :soc
(r+1)
gl(V ′,V ′)V

⊗d ∩ V 〈d〉/soc
(r)
gl(V ′,V ′)V

⊗d ∩ V 〈d〉 →⊕
i1<···<ir

((V ′ ⊕Na)
⊗(d−r) ∩ V 〈d−r〉)⊗N⊗kb ,

which is an injective homomorphism of g′-modules, whence the semisimplicity of the

quotient.
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To show that this is indeed the socle filtration we proceed in the very same way as

in the proof of part (1) of Proposition 3.4.

Proof of (ii): From [PSt] we know that V〈λ〉 = Vλ,0 ∩ V 〈d〉. Therefore,

soc
(r+1)
g′ V〈λ〉 = (soc

(r+1)
g′ V 〈d〉) ∩ V〈λ〉 = (soc

(r+1)
gl(V ′,V ′)V

⊗d) ∩ V 〈d〉 ∩ V〈λ〉 =

(soc
(r+1)
gl(V ′,V ′)V

⊗d) ∩ Vλ,0 ∩ V 〈d〉 = (soc
(r+1)
gl(V ′,V ′)Vλ,0) ∩ V

〈d〉

which proves the first part of the statement.

The above implies

soc
(r+1)
g′ V〈λ〉 ∼= (soc

(r+1)
gl(V ′,V ′)Vλ,0) ∩ V

〈d〉/(soc
(r)
gl(V ′,V ′)Vλ,0) ∩ V

〈d〉 ∼=

((soc
(r+1)
gl(V ′,V ′)Vλ,0) ∩ V

〈d〉 + soc
(r)
gl(V ′,V ′)Vλ,0)/(soc

(r)
gl(V ′,V ′)Vλ,0) ⊂ soc

(r+1)
gl(V ′,V ′)Vλ,0.

Thus we obtain

soc
(r+1)
g′ V〈λ〉 ⊆ socg′(soc

(r+1)
gl(V ′,V ′)Vλ,0). (4.1)

To prove the opposite inclusion we will first prove that

socg′(soc
(r+1)
gl(V ′,V ′)V

⊗d) ⊆

((soc
(r+1)
gl(V ′,V ′)V

⊗d) ∩ V 〈d〉 + soc
(r)
gl(V ′,V ′)V

⊗d)/soc
(r)
gl(V ′,V ′)V

⊗d.
(4.2)

Let u ∈ soc
(r+1)
gl(V ′,V ′)V

⊗d satisfy

u+ soc
(r)
gl(V ′,V ′)V

⊗d /∈ ((soc
(r+1)
gl(V ′,V ′)V

⊗d) ∩ V 〈d〉 + soc
(r)
gl(V ′,V ′)V

⊗d)/soc
(r)
gl(V ′,V ′)V

⊗d.

Then, u = u1 + · · · + us, where without loss of generality u1 = xi1 ⊗ · · · ⊗ xir ⊗ u′1
and u′1 ∈ V ′⊗(d−r) \ V ′〈d−r〉. Consequently, there exists g ∈ U(g′) such that g · u′1 ∈
V ′〈d−r〉 \ {0}. Hence, g · u1 ∈ (soc

(r+1)
gl(V ′,V ′)V

⊗d) ∩ V 〈d〉 and g · u1 /∈ soc
(r)
gl(V ′,V ′)V

⊗d.

This proves (4.2). From (4.2) it follows that

socg′(soc
(r+1)
gl(V ′,V ′)Vλ,0) ⊆

((soc
(r+1)
gl(V ′,V ′)Vλ,0) ∩ V

〈d〉 + soc
(r)
gl(V ′,V ′)Vλ,0)/(soc

(r)
gl(V ′,V ′)Vλ,0)

∼= soc
(r+1)
g′ V〈λ〉.

(4.3)

Then (4.1) and (4.3) imply

socg′(soc
(r+1)
gl(V ′,V ′)Vλ,0)

∼= soc
(r+1)
g′ V〈λ〉.
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Now we can apply Theorem 3.8 above and Theorem 3.3 from [PSt] to obtain

soc
(r+1)
g′ V〈λ〉 ∼= socg′(

⊕
λ′′

⊕
|λ′|=|λ′′|−r

ma
λ,λ′′m

b
λ′′,λ′V

′
λ′,0)
∼=
⊕
λ′′

⊕
|λ′|=|λ′′|−r

ma
λ,λ′′m

b
λ′′,λ′V

′
〈λ′〉,

which proves the second part of the statement.

The next step is to consider embeddings g′ ⊂ g of type II, i.e. such that V ∼= V ′⊕Na.

Note that in this case Na is an even-dimensional or countable-dimensional trivial

g′-module on which the bilinear form Ω restricts non-degenerately. As in the case of

embeddings of type I, V and V ′ are also respectively the natural modules of gl(V, V )

and gl(V ′, V ′) with the same socle filtrations. To compute the socle filtration of

any simple g-module V〈λ〉 we proceed as in Section 3.2. More precisely, we use

property (2.3) of socle filtrations and the fact that V〈λ〉 = V 〈d〉 ∩ Vλ,0. We also

need the following notations. If γ is the integer partition γ1 ≥ γ2 ≥ · · · ≥ γk,

then by γT we denote the transpose (or conjugate) partition of γ, i.e. such that

(γ)Ti = |{γj : γj ≥ i}|, and by 2γ we denote the even partition 2γ1 ≥ 2γ2 ≥ · · · ≥ 2γk.

We start with the following proposition.

Proposition 4.3. For any partition λ with |λ| = d the gl(V, V )-module Vλ,0 has the

following socle filtration over g′:

soc
(r+1)
g′ Vλ,0 ∼=

⊕
λ′

⊕
|λ′′|=|λ′|−2r

⊕
γ

ma
λ,λ′c

λ′

λ′′(2γ)TV
′
〈λ′′〉,

where as before ma
λ,λ′ are the extended Gelfand-Tsetlin multiplicities and cλ

′

λ′′(2γ)T are

the Littlewood-Richardson coefficients.

Proof. We consider the chain of embeddings g′ ⊂ gl(V ′, V ′) ⊂ gl(V, V ). From Sec-

tion 3.1 it follows that Vλ,0 is completely reducible over gl(V ′, V ′) and

Vλ,0 ∼=
⊕
λ′

ma
λ,λ′V

′
λ′,0. (4.4)

Furthermore, Theorem 3.3 from [PSt] implies that

soc
(r+1)
g′ V ′λ′,0

∼=
⊕

|λ′′|=|λ′|−2r

⊕
γ

cλ
′

λ′′(2γ)TV
′
〈λ′′〉. (4.5)

Combining (4.4) and (4.5) we obtain the result.

Next, let {zi}i∈Z\{0} be a symplectic basis for Na. As in section 3.2 we define a new
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bilinear form

〈·, ·〉t : V × V → C

such that 〈zi, zj〉 = sign(i)δi+j,0 and all other basis elements from V ×V pair trivially.

Then for any 1 ≤ r ≤ d and any collection of pairwise disjoint indices I1, . . . , Ir from

the set {1, . . . , d} we define the r-fold contraction

ΦI1,...,Ir : V ⊗d → V ⊗(d−2r)

with respect to the bilinear form 〈·, ·〉t. It is easy to check that ΦI1,...,Ir is a g′-module

homomorphism. Then if Φa
I1,...,Ir

denotes the restriction of ΦI1,...,Ir to the submodule

N⊗da , we set

N 〈d〉a =
⋂
I

ker Φa
I .

Furthermore, for a ∈ Z≥0 we define the inclusion

Ψa
I1,...,Ir

: N 〈d−2r〉a → N⊗da

as the sum of the r-fold insertions of all possible ordered collections of r terms of

the form zi ⊗ z−i, including collections with repeating terms. Then we set

(Na)
〈d〉
r =

∑
{I1,...,Ir}

imΨa
I1,...,Ir

.

Now we have the following theorem.

Theorem 4.4. Let g′ ⊂ g be an embedding of type II. Then

soc
(r)
g′ V

〈d〉 =
⋂

I1,...,Ir

ker ΦI1,...,Ir .

Moreover, if a ∈ Z≥0 t {∞} and a > 2d− 2, then

soc
(r+1)
g′ V 〈d〉 ∼=

⊕
{I1,...,Ir}

d−2r⊕
s=0

(
d− 2r

s

)
N 〈s〉a ⊗ V ′〈d−2r−s〉.
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If a is finite (and necessarily even), then

soc
(r+1)
g′ V 〈d〉 ∼=

d⊕
s=0

(
d

s

)
(Na)

〈s〉
r ⊗ V ′〈d−s〉 =

d−2r⊕
s=0

(
d

s+ 2r

)
(Na)

〈s+2r〉
r ⊗ V ′〈d−s−2r〉.

The proof is quite similar to the proofs of Propositions 3.13 and 3.14 and we skip it.

To finish the discussion about the socle filtration of V 〈d〉 over g′ we need to determine

the dimensions of the trivial modules (Na)
〈d〉
r for all a ∈ 2Z≥0 and the dimension

of N
〈d〉
a for a ∈ 2Z≥0 t {∞}. As in Section 3.2 we notice that this is the same as

determining the dimensions of the sp(a)-modules V
〈d〉
a and (Va)

〈d〉
r (see [PSt] for the

notations).

Now let a be an even integer. Schur-Weyl duality for the gl(a)-module V ⊗da yields

V ⊗da
∼=
⊕
|λ|=d

V a
λ,0 ⊗Hλ.

Moreover, the gl(a)-module V a
λ,0 considered as an sp(a)-module has the decomposi-

tion

V a
λ,0
∼=
⊕
λ′

c̃λλ′V
a
〈λ′〉,

where c̃λλ′ =
∑

γ c
λ
λ′(2γ)T for a ≥ 2d (see e.g. [K], [HTW]). For a < 2d, c̃λλ′ is obtained

from
∑

γ c
λ
λ′(2γ)T by the modification rules in [K]. Thus,

V ⊗da
∼=
⊕
|λ|=d

⊕
λ′

c̃λλ′V
a
〈λ′〉 ⊗Hλ.

Moreover, as in Secton 3.2 we can prove that

(Va)
〈d〉
r
∼=
⊕
|λ|=d

⊕
|λ′|=d−2r

c̃λλ′V
a
〈λ′〉 ⊗Hλ.

Hence, if we denote K
(r+1)
d = dim(Na)

〈d〉
r , where (Na)

〈d〉
0 = N

〈d〉
a , we obtain

K
(r+1)
d =

∑
|λ|=d

∑
|λ′|=d−2r

c̃λλ′ dimV a
〈λ′〉 dimHλ.
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In particular, when r = 0 the above formula holds also when a =∞, i.e.

K
(1)
d =

∑
|λ|=d

dimV a
〈λ〉 dimHλ,

where a ∈ 2Z≥0 t {∞}.

We are now ready to formulate the branching law for an arbitrary simple g-module

V〈λ〉.

Theorem 4.5. Let g′ ⊂ g be an embedding of type II and let V〈λ〉 ⊂ V 〈d〉. Then

soc
(r+1)
g′ V〈λ〉 ∼=

d−2r⊕
s=0

⊕
|λ′|=d−s

⊕
|λ′′|=|λ′|−2r

T λλ′,λ′′V
′
〈λ′′〉,

where for finite even integers a

T λλ′,λ′′ = min{
∑
γ

ma
λ,λ′c

λ′

λ′′(2γ)T ,

(
d

s+ 2r

)
K

(r+1)
s+2r dimHλ′′}.

And for a ∈ 2Z≥0 t {∞} with a > 2d− 2

T λλ′,λ′′ = min{
∑
γ

ma
λ,λ′c

λ′

λ′′(2γ)T , r!

(
d

r

)(
d

r

)(
d− 2r

s

)
K(1)
s dimHλ′′}.

In the rest of this section we will consider embeddings g′ ⊂ g of type III, i.e. such that

V ∼= kV ′. We will proceed as in Section 3.3. First, we will determine the branching

rule for diagonal embeddings sp(2n) ⊂ sp(2kn) of signature (k, 0, 0). Using formulas

2.1.3. and 2.2.3. from [HTW] we define the following coefficients:

aλµ,ν =
∑
δ,γ

cγµνc
λ
γ(2δ)T , bλµ,ν =

∑
α,β,γ

cλαβc
µ
αγc

ν
βγ,

where cλµν are again the Littlewood-Richardson coefficients. Next, as in Section 2.2,

for k > 2 we define the generalized versions of the coefficients aλµ,ν , b
λ
µ,ν :

Aλµ1,...,µk =
∑

α1,...,αk−2

aλα1,µ1
aα1
α2,µ2

. . . aαk−3
αk−2,µk−2

aαk−2
µk−1,µk

,

Bλ
µ1,...,µk

=
∑

α1,...,αk−2

bα1
µ1,µ2

bα2
α1,µ3

. . . bαk−2
αk−3,µk−1

bλαk−2,µk
.

Then, if V 2kn
〈λ〉 denotes the simple sp(2kn)-module with highest weight λ, iterating
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the appropriate branching rules from [HTW], we obtain that

V 2kn
〈λ〉 ↓sp(2n)

∼=
⊕

µ1,...,µk,λ′

Aλµ1,...,µkB
λ′

µ1,...,µk
V 2n
〈λ′〉. (4.6)

Now we are ready to prove the following theorem.

Theorem 4.6. Let g′ ⊂ g be an embedding of type III. Then

(i) soc
(r+1)
g′ V ⊗d ∼= kdsoc

(r+1)
g′ V ′⊗d;

(ii) for any V〈λ〉 ⊂ V ⊗d we have

soc
(r+1)
g′ V〈λ〉 ∼=

⊕
|λ′|=d−2r

Cλ
λ′V

′
〈λ′〉,

where

Cλ
λ′ =

∑
µ1,...,µk,λ′

Aλµ1,...,µkB
λ′

µ1,...,µk
.

Proof. Part (i) follows directly from property (2.4) of socle filtrations.

To prove part (ii) we notice that part (i) and Theorem 3.2 from [PSt] imply

soc
(r+1)
g′ V〈λ〉 ∼=

⊕
|λ′|=d−2r

cλλ′V
′
〈λ′〉

for some unknown multiplicities cλλ′ . To determine the exact values of these multi-

plicities we use (4.6).

4.2 Embeddings of so(∞) into so(∞) of types I, II, and III

In this section g ∼= so(V ) and g′ ∼= so(V ′) where V is a countable-dimensional

complex vector space together with a non-degenerate symmetric bilinear form Q

and V ′ is a subspace of V on which Q restricts non-degenerately. As in the previous

section each embedding g′ ⊂ g extends to an embedding gl(V ′, V ′) ⊂ gl(V, V ) of

the same type. All statements and proofs in this section are analogous to those in

Section 4.1 and therefore we state only the end results.
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First, let us consider embeddings g′ ⊂ g of type I, i.e. such that

socg′V ∼= V ′ ⊕Na, V/socg′V ∼= Nb,

where the restriction of Q to Na is trivial. Then we have the following analogue of

Theorem 4.2.

Theorem 4.7. (i) The socle filtration of V [d] over g′ is

soc
(r+1)
g′ V [d] = (soc

(r+1)
gl(V ′,V ′)V

⊗d) ∩ V [d].

(ii) For any simple g-module V[λ] ⊂ V [d] we have

soc
(r+1)
g′ V[λ] = (soc

(r+1)
gl(V ′,V ′)Vλ,0) ∩ V

[d].

For the layers of the socle filtration we obtain

soc
(r+1)
g′ V[λ] ∼=

⊕
λ′′

⊕
|λ′|=|λ′′|−r

ma
λ,λ′′m

b
λ′′,λ′V

′
[λ′],

where as before ma
λ,λ′′ are the extended Gelfand-Tsetlin multiplicities.

Next, we move to embeddings of type II, i.e, such that V ∼= V ′ ⊕ Na. Then the

restriction of Q to Na is non-degenerate. Let {zi}i∈Z\{0} be a basis for Na with the

property that Q(zi, zj) = δi+j,0. Following Section 4.1, we define a new bilinear form

〈·, ·〉t : V × V → C

such that 〈zi, zj〉t = δi+j,0 and all other basis elements from V × V pair trivially.

Then, for any 1 ≤ r ≤ d and any collection of pairwise disjoint indices I1, . . . , Ir

from the set {1, . . . , d}, we define the r-fold contraction

ΦI1,...,Ir : V ⊗d → V ⊗(d−2r)

with respect to the bilinear form 〈·, ·〉t. It is easy to check that ΦI1,...,Ir is a g′-module

homomorphism for any r and any I1, . . . , Ir. Then if Φa
I1,...,Ir

denotes the restriction

of ΦI1,...,Ir to the submodule N⊗da , we set

N [d]
a =

⋂
I

ker Φa
I .
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Furthermore, if a is a finite number we define the inclusion

Ψa
I1,...,Ir

: N [d−2r]
a → N⊗da

as the sum of the r-fold insertions of all possible ordered collections of r terms of

the form zi ⊗ z−i, including collections with repeating terms. Then we set

(Na)
[d]
r =

∑
{I1,...,Ir}

imΨa
I1,...,Ir

.

Now we have the following analogue of Theorem 4.4.

Theorem 4.8. Let g′ ⊂ g be an embedding of type II. Then

soc
(r)
g′ V

[d] =
⋂

I1,...,Ir

ker ΦI1,...,Ir .

Moreover, if a ∈ Z≥0 t {∞} with a > 2d− 2, then

soc
(r+1)
g′ V [d] ∼=

⊕
{I1,...,Ir}

d−2r⊕
s=0

(
d− 2r

s

)
N [s]
a ⊗ V ′[d−2r−s].

If a ∈ Z≥0, then

soc
(r+1)
g′ V [d] ∼=

d⊕
s=0

(
d

s

)
(Na)

[s]
r ⊗ V ′[d−s] =

d−2r⊕
s=0

(
d

s+ 2r

)
(Na)

[s+2r]
r ⊗ V ′[d−s−2r].

Let K
(r+1)
d = dim(Na)

[d]
r for r > 0 and for any finite integer a. In addition, let

K
(1)
d = dimN

[d]
a for arbitrary a including a = ∞. Then the following proposition

holds.

Proposition 4.9. For r > 0 we have

K
(r+1)
d =

∑
|λ|=d

∑
|λ′|=d−2r

c̃λλ′ dimV a
[λ′] dimHλ,

where for a ≥ 2d we have c̃λλ′ =
∑

γ c
λ
λ′2γ, and for a < 2d, c̃λλ′ is obtained from∑

γ c
λ
λ′2γ by the modification rules described in [K].
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Furhtermore,

K
(1)
d =

∑
|λ|=d

dimV a
[λ] dimHλ.

For an idea of proof see Section 4.1.

Using the above notations we are ready to state the analogue of Theorem 4.5.

Theorem 4.10. Let g′ ⊂ g be an embedding of type II and let V[λ] ⊂ V [d]. Then

soc
(r+1)
g′ V[λ] ∼=

d−2r⊕
s=0

⊕
|λ′|=d−s

⊕
|λ′′|=|λ′|−2r

T λλ′,λ′′V
′
[λ′′],

where for a ∈ Z≥0

T λλ′,λ′′ = min{
∑
γ

ma
λ,λ′c

λ′

λ′′2γ,

(
d

s+ 2r

)
K

(r+1)
s+2r dimHλ′′}.

And for a ∈ Z≥0 t {∞} and a > 2d− 2

T λλ′,λ′′ = min{
∑
γ

ma
λ,λ′c

λ′

λ′′2γ, r!

(
d

r

)(
d

r

)(
d− 2r

s

)
K(1)
s dimHλ′′}.

Finally, in the rest of this section we consider embeddings g′ ⊂ g of type III, i.e.

such that V ∼= kV ′. As in Section 4.1 we start with determining the branching rule

for diagonal embeddings so(n) ⊂ so(kn) of signature (k, 0, 0). Using formulas 2.1.2

and 2.2.2 from [HTW] we define the coefficients

aλµ,ν =
∑
δ,γ

cγµνc
λ
γ2δ, bλµ,ν =

∑
α,β,γ

cλαβc
µ
αγc

ν
βγ,

where cλµν are again the Littlewood-Richardson coefficients. Next, for k > 2 we

define the generalized versions of the coefficients aλµ,ν , b
λ
µ,ν :

Aλµ1,...,µk =
∑

α1,...,αk−2

aλα1,µ1
aα1
α2,µ2

. . . aαk−3
αk−2,µk−2

aαk−2
µk−1,µk

,

Bλ
µ1,...,µk

=
∑

α1,...,αk−2

bα1
µ1,µ2

bα2
α1,µ3

. . . bαk−2
αk−3,µk−1

bλαk−2,µk
.
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Then, if V kn
[λ] denotes the simple so(kn)-module with highest weight λ, we have

V kn
[λ] ↓so(n)

∼=
⊕

µ1,...,µk,λ′

Aλµ1,...,µkB
λ′

µ1,...,µk
V n
[λ′].

The following theorem is an analogue of Theorem 4.6.

Theorem 4.11. Let g′ ⊂ g be an embedding of type III. Then

(i) soc
(r+1)
g′ V ⊗d ∼= kdsoc

(r+1)
g′ V ′⊗d;

(ii) for any V[λ] ⊂ V ⊗d we have

soc
(r+1)
g′ V[λ] ∼=

⊕
|λ′|=d−2r

Cλ
λ′V

′
[λ′],

where

Cλ
λ′ =

∑
µ1,...,µk,λ′

Aλµ1,...,µkB
λ′

µ1,...,µk
.



56 CHAPTER 4. EMBEDDINGS OF sp(∞) INTO sp(∞) AND OF so(∞) INTO so(∞)



Chapter 5

Embeddings of general tensor

type. Main statements

In this chapter, using the results from Chapters 3 and 4, we prove a theorem for

embeddings g′ ⊂ g of general tensor type. Here g and g′ denote any two classical

locally finite Lie algebras, not necessarily of the same type.

Let g′ ⊂ g be an embedding of general tensor type, i.e. which satisfies the conditions

socg′V ∼= kV ′ ⊕ lV ′∗ ⊕Na, V/socg′V ∼= Nb,

socg′V∗ ∼= kV ′∗ ⊕ lV ′ ⊕Nc, V∗/socg′V∗ ∼= Nd.

If g ∼= sp(∞) or so(∞), then Na = Nc and Nb = Nd. If g′ ∼= sp(∞) or so(∞), then

the above reduces to

socg′V ∼= (k + l)V ′ ⊕Na, V/socg′V ∼= Nb,

socg′V∗ ∼= (k + l)V ′ ⊕Nc, V∗/socg′V∗ ∼= Nd.

Throughout this chapter we will use the following notations. Let

{vji }i∈I,j=i,...,k ∪ {w
j
i }i∈I,j=1,...,l

be a basis for the submodule kV ′⊕ lV ′∗ of V indexed by a countable index set I and

similarly

{vj∗i }i∈I,j=i,...,k ∪ {w
j∗
i }i∈I,j=1,...,l

a basis for kV ′∗ ⊕ lV ′ as a submodule of V∗. Let the two bases satisfy the conditions

of Proposition 3.1. Let also A = {zi}i∈Ia and C = {ti}i∈Ic be bases respectively

57
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for Na and Nc, where Ia and Ic are index sets with cardinalities a = dimNa and

c = dimNc. Similarly let B = {xi}i∈Ib and D = {yi}i∈Id be bases of Nb and Nd

considered as vector subspaces of V and V∗, where Ib and Id are index sets with

cardinalities b = dimNb and d = dimNd. We have proven the existence of such

bases for the pair g′, g ∼= gl(∞) in Proposition 3.1. For the other cases such bases

exist by similar arguments.

Before turning to the general theorem we will consider a special case. Let g′ ⊂ g be

an embedding such that

V ∼= kV ′ ⊕ lV ′∗ and V∗ ∼= lV ′ ⊕ kV ′∗ .

We define a bilinear form 〈·, ·〉d : (V ⊕ V∗)⊗ (V ⊕ V∗)→ C by setting〈
vs1i , v

∗s2
j

〉
d

= δij,
〈
w∗s3i , ws4j

〉
d

= δij,〈
vs1i , w

s3
j

〉
d

= δij,
〈
w∗s3i , v∗s1j

〉
d

= δij

for all s1, s2 = 1, . . . , k and all s3, s4 = 1, . . . , l. In addition, all other basis elements

pair trivially. Let J1, . . . , Js be a collection of disjoint index pairs (i, j), where

i, j = 1, . . . p+ q. Let

Φ′J1,...,Js : V ⊗(p,q) → V ⊗(p−s
′,q−s′′)

be the contraction with respect to the bilinear form 〈·, ·〉d, where s′ + s′′ = 2s. In

the case g ∼= sp(∞) or g ∼= so(∞) the above can be rewritten as

Φ′J1,...,Js : V ⊗d → V ⊗(d−2s).

It is not difficult to prove that Φ′J1,...,Js is a g′-module homomorphism.

Let us denote

V = Ṽ1 ⊕ · · · ⊕ Ṽk ⊕ Ṽk+1 ⊕ · · · ⊕ Ṽk+l,

V∗ = Ṽ ∗1 ⊕ · · · ⊕ Ṽ ∗k ⊕ Ṽ ∗k+1 ⊕ · · · ⊕ Ṽ ∗k+l

where Ṽ1, . . . , Ṽk are copies of V ′ inside V such that Ṽj = span{vji }i∈I for j = 1, . . . , k.

Similarly, Ṽk+1, . . . , Ṽk+l are copies of V ′∗ inside V such that Ṽk+j = span{wji }i∈I for

j = 1, . . . , l. In the same way, Ṽ ∗1 , . . . , Ṽ
∗
k are copies of V ′∗ inside V∗ with bases

{vj∗i }i∈I for j = 1, . . . , k and Ṽ ∗k+1, . . . , Ṽ
∗
k+l are copies of V ′ inside V∗ with bases
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{wj∗i }i∈I for j = 1, . . . , l. Then

V ⊗(p,q) =
⊕
i1,...,ip
j1,...,jq

Ṽi1 ⊗ · · · ⊗ Ṽip ⊗ Ṽ ∗j1 ⊗ · · · ⊗ Ṽ
∗
jq ,

where i1, . . . , ip, j1, . . . , jq = 1, . . . , k + l are not necessarily distinct indices. Notice

that each Ṽi1 ⊗ · · ·⊗ Ṽip ⊗ Ṽ ∗j1 ⊗ · · ·⊗ Ṽ
∗
jq is isomorphic to V ′⊗(p

′,q′) for some p′ and q′

with p′ + q′ = p + q. For any J1, . . . , Js as above, we want to define a map Φ̃J1,...,Js

on V ⊗(p,q) such that on each subspace V ′⊗(p
′,q′) it is the contraction with respect to

the standard bilinear form on V ′ × V ′∗ .

We proceed in the following way. Let πi1,...,ip
j1,...,jq

denote the projection of V ⊗(p,q) onto

the subspace Ṽi1 ⊗ · · · ⊗ Ṽip ⊗ Ṽ ∗j1 ⊗ · · · ⊗ Ṽ
∗
jq . Then we set

Φ̃J1,...,Js =
⊕
i1,...,ip
j1,...,jq

Φ′J1,...,Js ◦ πi1,...,ip
j1,...,jq

.

Thus,

Φ̃J1,...,Js : V ⊗(p,q) →
⊕
i1,...,ip
j1,...,jq

Φ′J1,...,Js(Ṽi1 ⊗ · · · ⊗ Ṽip ⊗ Ṽ
∗
j1
⊗ · · · ⊗ Ṽ ∗jq) ∼=

⊕
i1,...,ip
j1,...,jq

V ′⊗(p−s
′,q−s′′)

for some s′, s′′ such that s′ + s′′ = 2s. The last isomoprhism follows from the

observation that Φ′J1,...,Js acts on Ṽi1⊗· · ·⊗Ṽip⊗Ṽ ∗j1⊗· · ·⊗Ṽ
∗
jq as the usual contraction

with respect to the standard bilinear form on V ′ × V ′∗ .

Then the following proposition holds.

Proposition 5.1. Let g′ ⊂ g be an embedding such that

V ∼= kV ′ ⊕ lV ′∗ and V∗ ∼= lV ′ ⊕ kV ′∗ .

Then

soc
(r)
g′ V

⊗(p,q) =
⋂

J1,...,Jr

ker Φ̃J1,...,Jr .
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Proof. Property (2.4) of socle filtration implies

soc
(r)
g′ V

⊗(p,q) =
⊕
i1,...,ip
j1,...,jq

soc
(r)
g′ Ṽi1 ⊗ · · · ⊗ Ṽip ⊗ Ṽ

∗
j1
⊗ · · · ⊗ Ṽ ∗jq .

Moreover, from [PSt] it follows that

soc
(r)
g′ Ṽi1 ⊗ · · · ⊗ Ṽip ⊗ Ṽ

∗
j1
⊗ · · · ⊗ Ṽ ∗jq =

⋂
J1,...,Jr

ker Φ′J1,...,Jr |Ṽi1⊗···⊗Ṽip⊗Ṽ ∗j1⊗···⊗Ṽ ∗jq .

Then,

soc
(r)
g′ V

⊗(p,q) =
⊕
i1,...,ip
j1,...,jq

⋂
J1,...,Jr

ker Φ′J1,...,Jr |Ṽi1⊗···⊗Ṽip⊗Ṽ ∗j1⊗···⊗Ṽ ∗jq =

⋂
i1,...,ip
j1,...,jq

⋂
J1,...,Jr

ker(Φ′J1,...,Jr ◦ πi1,...,ip
j1,...,jq

) =
⋂

J1,...,Jr

ker Φ̃J1,...,Jr .

Now we are ready to state the main theorem for embeddings of general tensor type.

Theorem 5.2. Let g′ ⊂ g be an embedding of general tensor type. Let M = V {p,q}

for g ∼= gl(∞), M = V 〈d〉 for g ∼= sp(∞), and M = V [d] for g ∼= so(∞). Suppose

that there exist intermediate subalgebras g1 and g2, of the same type as g, such that

g′ ⊂ g2 ⊂ g1 ⊂ g and the following properties are satisfied.

(1) For the embedding g1 ⊂ g one has

socV ∼= V1 ⊕Na1 , V/socV ∼= Nb,

socV∗ ∼= V1∗ ⊕Nc1 , V∗/socV∗ ∼= Nd,

where

Na1 = {v ∈ Na| 〈v,Nc〉 = 0} and Nc1 = {w ∈ Nc| 〈Na, w〉 = 0}.

(2) For the embedding g2 ⊂ g1 one has

V1 ∼= V2 ⊕Na2 , V1∗ ∼= V2∗ ⊕Nc2 ,

where Na2 and Nc2 are such that Na = Na1 ⊕Na2 and Nc = Nc1 ⊕Nc2.
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(3) For the embedding g′ ⊂ g2 one has

V2 ∼= kV ′ ⊕ lV ′∗ , V2∗ ∼= lV ′ ⊕ kV ′∗ .

Then, for any N ⊆M ,

soc
(r+1)
g′ N ∼=

⊕
l+m+n=r

soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
N)).

Proof. We have the following short exact sequences:

0→ kV ′ ⊕ lV ′∗ ⊕Na1 ⊕Na2
i→ V

f→ Nb → 0,

0→ lV ′ ⊕ kV ′∗ ⊕Nc1 ⊕Nc2
i→ V∗

g→ Nd → 0

and homomorphisms Li1,...,in1
and Mj1,...,jn2

. For g, g1 ∼= sp(∞) or so(∞) the exact

sequences coincide and Mj1,...,jn2
= Lj1,...,jn2

.

Recall that if M1 is a g1-module, such that M1 = V
{p,q}
1 , V

〈d〉
1 or V

[d]
1 , then we defined

contractions ΦI1,...,Ik with respect to the pairing 〈·, ·〉t on V1 × V1∗. We can extend

this pairing to a pairing 〈·, ·〉t : V × V∗ → C by setting

〈zi, tj〉t = δij

and such that all other basis elements from V × V∗ pair trivially. Then we obtain

contraction maps

ΦI1,...,Ik : M →M ′,

where M ′ = V {p−k,q−k} for M = V {p,q}, and similarly for the other cases. We claim

that for any choice of k and of disjoint index pairs I1, . . . , Ik, the maps ΦI1,...,Ik are

homomorphisms of g2-modules and hence also of g′-modules. We now prove this

for k = 1, and by induction the statement will follow for any k > 1. Let g ∈ g2,

I = (i, j), and u = u1 ⊗ · · · ⊗ up ⊗ u∗1 ⊗ · · · ⊗ u∗q be an arbitrary pure tensor in M .

Then

ΦI(g · u) = g · ΦI(u) +
〈
g · ui, u∗j

〉
t
ũ+

〈
ui, g · u∗j

〉
t
ũ,

where ũ = u1 ⊗ · · · ⊗ ûi ⊗ · · · ⊗ up ⊗ u∗1 ⊗ · · · ⊗ û∗j ⊗ · · · ⊗ u∗q. Moreover, if g = a⊗ b
then 〈

g · ui, u∗j
〉
t
+
〈
ui, g · u∗j

〉
t

= 〈ui, b〉
〈
a, u∗j

〉
t
−
〈
a, u∗j

〉
〈ui, b〉t .
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But a ∈ V2 and b ∈ V2∗, hence
〈
a, u∗j

〉
t

= 0 for all u∗j , and similarly 〈ui, b〉t = 0 for

all ui.

Similarly, we define Φ′J1,...,Jk : M → M ′′ to be the contraction with respect to the

bilinear form 〈·, ·〉d defined by〈
vs1i , v

∗s2
j

〉
d

= δij and
〈
ws1i , w

∗s2
j

〉
d

= δij,

and such that all other basis elements from V ×V∗ pair trivially. This is an extension

of the bilinear form on V2 × V2∗ to a bilinear form on V × V∗. As in the settings for

Proposition 5.1 we set

πi1,...,ip
j1,...,jq

: M → Ṽi1 ⊗ · · · ⊗ Ṽip ⊗ Ṽ ∗j1 ⊗ · · · ⊗ Ṽ
∗
jq .

Note that the map πi1,...,ip
j1,...,jq

is not a g′-module homomorphism, it is just a linear map.

Then as before we define

Φ̃J1,...,Js =
⊕
i1,...,ip
j1,...,jq

Φ′J1,...,Jl ◦ πi1,...,ip
j1,...,jq

,

which again is just a linear map.

Now, for any r ≥ 0 we define

S(r)(M) =
⋂

l+m+n=r
n1+n2=n

i1,...,in1 ,j1,...,jn2
I1,...,Im
J1,...,Jl

ker Φ̃J1,...,Jl ◦ ΦI1,...,Im ◦ (Li1,...,in1
⊗Mj1,...,jn2

).

If n1 = 0 (resp. n2 = 0) we set L0 = id (resp. M0 = id) and similarly if m = 0

we set Φ0 = id and if l = 0 we set Φ̃0 = id. For shortness, we write S(r) instead of

S(r)(M) when M is clear from the context.

Note that we defined the maps Φ̃J1,...,Jl and ΦI1,...,Im for M being equal to V {p,q},

V 〈d〉, and V [d], but the definitions can be easily extended to modules of the form⊕
i V
{pi,qi},

⊕
i V
〈di〉, and

⊕
i V

[di].

Now the following three properties hold:

(1) S(r) is a g′-submodule of M for every r (see Lemma 5.3);

(2) for any u ∈ S(r+2) \ S(r+1) there exists g ∈ U(g′) such that g(u) ∈ S(r+1) \ S(r)

(see Lemma 5.4);
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(3) S(r+1)/S(r) is a semisimple g′-module and

S(r+1)/S(r) ∼=
⊕

l+m+n=r

soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
M))

(see Lemma 5.7).

Furthermore, if N is a submodule of M , then Lemma 5.7 yields

(S(r+1) ∩N)/(S(r) ∩N) ∼=
⊕

l+m+n=r

soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
N)).

Thus the statement of the theorem follows.

Theorem 5.2 provides a major tool for determining branching rules for embeddings

of general tensor type. When g′ ∼= g, Propositions 3.3 and 4.1 give decompositions

of the embedding g′ ⊂ g which satisfy the properties of Theorem 5.2. Therefore,

for g′ ∼= g we can apply Theorem 5.2 and thus reduce the branching problem for

embeddings of general tensor type to branching problems for embeddings of special

types, for which we already know the answer. In the next chapter we will use a

similar approach in the cases when g′ and g are not isomorphic.

Below we give proofs of the key lemmas used in the proof of Theorem 5.2.

Lemma 5.3. Let g′ ⊂ g2 ⊂ g1 ⊂ g, M , and S(r) be as in Theorem 5.2. Then S(r)

is a g′-submodule of M for every r.

Proof. Let u ∈ S(r). Suppose that there exists g ∈ g′ such that g ·u′ /∈ S(r). In other

words, there exist integers l,m, n, n1, n2 with l + m + n = r and n1 + n2 = n and

index sets i1, . . . , in1 , j1, . . . , jn2 , I1, . . . , Im, and J1, . . . , Jl such that

Φ̃J1,...,Jl ◦ ΦI1,...,Im ◦ (Li1,...,in1
⊗Mj1,...,jn2

)(g · u) 6= 0. (5.1)

We set u′ = ΦI1,...,Im ◦ (Li1,...,in1
⊗ Mj1,...,jn2

)(u). Since Li1,...,in1
⊗ Mj1,...,jn2

and

ΦI1,...,Im are g′-module homomorphisms, (5.1) implies that u′ 6= 0. Furthermore,

Φ̃J1,...,Jl(u
′) = 0, whereas Φ̃J1,...,Jl(g · u′) 6= 0. This can only happen if an element xij

or yij appears in a monomial in u′ in one of the positions specified by J1, . . . , Jl. Let

without loss of generality J1 = (1, 1) and let u′ have the form

u′ = xij ⊗ u′2 ⊗ · · · ⊗ u′s1 ⊗ u
′∗
1 ⊗ · · · ⊗ u′∗s2 + u′′. (5.2)
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Then, Φ̃J1,...,Jl(u
′′) = 0 and

g · u′ = (g · xij)⊗ u′2 ⊗ · · · ⊗ u′s1 ⊗ u
′∗
1 ⊗ · · · ⊗ u′∗s2 + xij ⊗ u′′′ + g · u′′.

Moreover, Φ̃J1,...,Jl(xij ⊗ u′′′) = 0. Assume at first that Φ̃J1,...,Jl(g · u′′) = 0 as well.

Then

Φ̃J1,...,Jl(g · u′) = Φ̃J1((g · xij)⊗ u′∗1 ) ◦ Φ̃J ′2,...,J
′
l
(u′2 ⊗ · · · ⊗ u′s1 ⊗ u

′∗
2 ⊗ · · · ⊗ u′∗s2) 6= 0.

Here, if J2 = (i, j) then J ′2 = (i− 1, j − 1) and similarly for J ′3, . . . , J
′
l .

Therefore, Φ̃J2,...,Jl(u
′) 6= 0. The last inequality and (5.2) imply that there exists an

index in1+1 such that

Φ̃J2,...,Jl ◦ ΦI1,...,Im ◦ (Li1,...,in1 ,in1+1 ⊗Mj1,...,jn2
)(u) 6= 0.

This is a contradiction with u ∈ S(r).

If Φ̃J1,...,Jl(g · u′′) 6= 0 we can replace u′ in the above discussion with u′′, which has

a strictly smaller number of monomials that u′. Thus in finitely many steps we will

reach a contradiction with the choice of u, and this proves the statement.

Lemma 5.4. Let g′ ⊂ g2 ⊂ g1 ⊂ g, M , and S(r) be as in Theorem 5.2. Then for

any u ∈ S(r+2) \ S(r+1) there exists g ∈ U(g′) such that g(u) ∈ S(r+1) \ S(r).

Proof. We order the triples of numbers (n,m, l) lexicographically. Let u ∈ S(r+2) \
S(r+1) and let (n,m, l) with l + m + n = r + 1 be the largest triple for which there

exist index sets i1, . . . , in1 , j1, . . . , jn2 , I1, . . . , Im, and J1, . . . , Jl such that

Φ̃J1,...,Jl ◦ ΦI1,...,Im ◦ (Li1,...,in1
⊗Mj1,...,jn2

)(u) 6= 0.

Suppose first that n > 0. Then at least one monomial in u has an entry xi or yj.

Without loss of generality we may assume that xi appears in u. Then we take g ∈ g′

of the form

g = v1i ⊗ v∗1j + · · ·+ vki ⊗ v∗kj − w1
j ⊗ w∗1i − · · · − wkj ⊗ w∗ki

for g′ ∼= gl(∞). If g′ ∼= sp(∞), we symmetrize the above expression for g, and

if g′ ∼= so(∞), we antisymmetrize the above expression for g. We choose v∗sj and

w∗si such that they do not appear in u, at least one of them pairs non-degenerately
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with xi, and they pair trivially with all basis elements from V2 which appear in u.

Similarly we choose vsi and wsj such that they do not appear in u and such that they

pair trivially with all basis elements from V2∗ which appear in u. Then

Φ̃J1,...,Jl ◦ ΦI1,...,Im ◦ (Li1,...,in1
⊗Mj1,...,jn2

)(g · u) = 0

and there exist indices i′′1, . . . , i
′′
n1−1 such that

Φ̃J1,...,Jl ◦ ΦI1,...,Im ◦ (Li′′1 ,...,i′′n1−1
⊗Mj1,...,jn2

)(g · u) 6= 0.

Now suppose that there exists another triple (n′,m′, l′) with l′ + m′ + n′ = r + 1

for which there are index sets i′1, . . . , i
′
n′1

, j′1, . . . , j
′
n′2

, I ′1, . . . , I
′
m′ , and J ′1, . . . , J

′
l′ such

that

Φ̃J ′1,...,J
′
l′
◦ ΦI′1,...,I

′
m′
◦ (Li′1,...,i′n′1

⊗Mj′1,...,j
′
n′2

)(g · u) 6= 0.

But then there exists an index i′n′+1 such that

Φ̃J ′1,...,J
′
l′
◦ ΦI′1,...,I

′
m′
◦ (Li′1,...,i′n′1

,i′
n′1+1
⊗Mj′1,...,j

′
n′2

)(u) 6= 0,

which contradicts with the choice of u. Hence, g · u ∈ S(r+1) \ S(r).

Now, suppose that n = 0. This means that u ∈ socg1M and u consists only of

elements from V1 and V1∗. Notice that, when restricted to socg1M , both maps

Φ̃J1,...,Jl and ΦI1,...,Im are g′-module homomorphisms. Therefore, in this case the

statement of the lemma reduces to the following claim. Let l + m = r + 1, and

I1, . . . , Im, and J1, . . . , Jl be such that

Φ̃J1,...,Jl ◦ ΦI1,...,Im(u) 6= 0.

Then there exists g ∈ U(g′) such that

Φ̃J1,...,Jl ◦ ΦI1,...,Im(g · u) = 0.

Moreover,

Φ̃J ′1,...,J
′
l′
◦ ΦI′1,...,I

′
m′

(g · u) 6= 0

for some I ′1, . . . , I
′
m′ , and J ′1, . . . , J

′
l′ with l′ +m′ = r.

We consider two cases.
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(1) Let Φ̃J1,...,Jl ◦ΦI1,...,Im(u) 6= 0 with l ≥ 1. Then we can apply Lemma 5.5 to the

element ΦI1,...,Im(u). This yields an element g ∈ U(g′) and disjoint index pairs

J ′1, . . . , J
′
l−1 such that

Φ̃J ′1,...,J
′
l−1
◦ ΦI1,...,Im(g · u) 6= 0.

(2) Let Φ̃0 ◦ ΦI1,...,Im(u) 6= 0. Then, we can apply Lemma 5.6 to u. Thus there

exists g ∈ U(g′) with Φ̃0 ◦ ΦI1,...,Im(g · u) = 0, and there exist I ′1, . . . , I
′
m−1 such

that

Φ̃0 ◦ ΦI′1,...,I
′
m−1

(g · u) 6= 0.

Lemma 5.5. Let u ∈ socg1M be such that Φ̃J1,...,Jl(u) 6= 0 for some l and some

J1, . . . , Jl. Then there exists g ∈ U(g′) such that Φ̃J1,...,Jl(g · u) = 0 and there exists

a collection J ′1, . . . , J
′
l−1 such that Φ̃J ′1,...,J

′
l−1

(g · u) 6= 0.

Proof. (1) If u consists only of elements from V2 and V2∗ then the claim follows

from Proposition 5.1.

(2) Let u contain elements from V1 and V1∗. Then u = u1 + · · · + ut and without

loss of generality

u1 = u′1 ⊗ u′′1 = u′1 ⊗ (zi1 ⊗ . . . zis ⊗ ti1 ⊗ . . . tis + u′′),

where u′1 contains only elements from V2 and V2∗, and u′′ contains less than s

pairs zi ⊗ ti. Then, either Φ̃J1,...,Jl(u1) = Φ̃J1,...,Jl(u
′
1) ⊗ u′′1, or Φ̃J1,...,Jl(u1) =

Φ̃J1,...,Jl(u
′
1 ⊗ u′′). In both cases we reduce this situation to case (1).

Lemma 5.6. Let u ∈ socg1M be such that ΦI1,...,Im(u) 6= 0 for some m > 0 and

some I1, . . . , Im. Then there exists g ∈ U(g′) such that ΦI1,...,Im(g · u) = 0 and

ΦI′1,...,I
′
m−1

(g · u) 6= 0 for some collection I ′1, . . . , I
′
m−1.

Proof. Let u be as in the statement of the lemma. Then u = u1 + · · · + ut and
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without loss of generality we can fix I1, . . . , Im such that u1 has the form

u1 =zi1 ⊗ zi2 ⊗ · · · ⊗ zim ⊗ u′1 ⊗ ti1 ⊗ ti2 ⊗ · · · ⊗ tim−

v11 ⊗ zi2 ⊗ · · · ⊗ zim ⊗ u′1 ⊗ v1∗1 ⊗ ti2 ⊗ · · · ⊗ tim − · · ·−

zi1 ⊗ zi2 ⊗ · · · ⊗ zim ⊗ v11 ⊗ u′1 ⊗ ti1 ⊗ ti2 ⊗ · · · ⊗ tim ⊗ v1∗1 + u′′1,

where tij ∈ Nc2 is the dual to zij ∈ Na2 , and v11, v1∗1 is a pair of dual basis elements

from V ′ ⊗ V ′∗ . Moreover, ΦI1,...,Im(u′′1) = 0. The elements u2, . . . , ut have similar

form. Notice that if the basis vectors vj1 and wj∗1 , j = 1, . . . , k, appear in total at

most s times in any monomial in u′1 then they appear at most s + 1 times in any

monomial in v11 ⊗ zi2 ⊗ · · · ⊗ zim+1 ⊗ u′1 ⊗ v1∗1 ⊗ ti2 ⊗ · · · ⊗ tim+1 . Let us take gi ∈ g′

of the form

gi = v1i ⊗ v1∗1 + . . . vki ⊗ vk∗1 − w1
1 ⊗ w1∗

i − · · · − wl1 ⊗ wl∗i

if g′ ∼= gl(∞), or respectively its symmetrization of antisymmetrization if g′ ∼= sp(∞)

or so(∞). Then, if vji1 , . . . , v
j
is+1

and wj∗i1 , . . . , w
j∗
is+1

, j = 1, . . . , k, are vectors that do

not appear at all in the expression of u, then (gi1 ◦ · · · ◦ gis+1)(u1) has the desired

properties. We proceed in the same way with u2, . . . , ut to obtain the desired result.

Lemma 5.7. Let g′ ⊂ g2 ⊂ g1 ⊂ g, M , and S(r) be as in Theorem 5.2. Then

S(r+1)/S(r) is a semisimple g′-module and

S(r+1)/S(r) ∼=
⊕

l+m+n=r

soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
M)).

Furthermore, if N is a submodule of M then

(S(r+1) ∩N)/(S(r) ∩N) ∼=
⊕

l+m+n=r

soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
N)).

Proof. Let S(n+1,m+1,l+1) denote the g′-submodule of M of elements v with the fol-

lowing properties:

(1) v ∈ soc
(n+1)
g1 M ;

(2) πn(v) ∈ soc
(m+1)
g2 (soc

(n+1)
g1 M), where πn : soc

(n+1)
g1 M → soc

(n+1)
g1 M ;

(3) πmn ◦ πn(v) ∈ soc
(l+1)
g′ (soc

(m+1)
g2 (soc

(n+1)
g1 M)), where

πmn : soc(m+1)
g2

(soc(n+1)
g1

M)→ soc(m+1)
g2

(soc(n+1)
g1

M).
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Notice that S(n′+1,m′+1,n′+1) ⊂ S(n+1,m+1,l+1) if and only if (n′,m′, l′) < (n,m, l) in

the lexicographic order. Thus, we obtain a filtration on M

0 ⊂ S(1,1,1) ⊂ S(1,1,2) ⊂ · · · ⊂ S(1,1,L31) ⊂ S(1,2,1) ⊂ · · · ⊂ S(1,L21,L32) ⊂

S(2,1,1) ⊂ · · · ⊂ S(L1,L2,L3),

where L1 is the Loewy length of M as a g1-module and the other L’s denote the

Loewy lengths of the respective modules. Next, we intersect this filtration with

S(r+1). Moreover, we take a coarser filtration in which only elements S(n+1,m+1,l+1)

with l +m+ n = r appear:

0 ⊂ S(1,1,r+1) ∩ S(r+1) ⊂ S(1,2,r) ∩ S(r+1) ⊂ · · · ⊂ S(1,r+1,1) ∩ S(r+1) ⊂

S(2,1,r) ∩ S(r+1) ⊂ · · · ⊂ S(2,r,1) ∩ S(r+1) ⊂ · · · ⊂ S(r+1,1,1) ∩ S(r+1).
(5.3)

Notice that the consecutive quotients in the filtration (5.3) have the following form:

• if m 6= 0, then (S(n+1,m+1,l+1) ∩ S(r+1))/(S(n+1,m,l+2) ∩ S(r+1));

• if m = 0 and n 6= 0, then (S(n+1,1,l+1) ∩ S(r+1))/(S(n,l+2,1) ∩ S(r+1));

• if m = 0 and n = 0, then S(1,1,l+1) ∩ S(r+1).

We build now the corresponding filtration on the quotient S(r+1)/S(r).

0 ⊂ (S(1,1,r+1) ∩ S(r+1) + S(r))/S(r) ⊂ · · · ⊂ (S(r+1,1,1) ∩ S(r+1) + S(r)/S(r). (5.4)

For any l, m, and n, we define the following maps:

Kn =
⊕

n1+n2=n

⊕
i1<···<in1
j1<···<jn2

Li1,...,in1
⊗Mj1,...,jn2

;

K ′m =
⊕

{I1,...,Im}

ΦI1,...,Im ;

K ′′l =
⊕

{J1,...,Jl}

Φ′J1,...,Jl .

Furthermore, we set K0 = K ′0 = K ′′0 = id. Recall that Kn and K ′m are g′-module

homomorphisms, whereas K ′′l for l > 0 is just a linear map.
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To prove that S(r+1)/S(r) is a semisimple g′-module we proceed by induction. Notice

first that

K ′′r ◦K ′0 ◦K0 : (S(1,1,r+1) ∩ S(r+1) + S(r))/S(r) → soc
(r+1)
g′ (socg2(socg1M))

is an isomorphism of g′-modules. This follows from Proposition 5.1 and from the

observation that K ′′r restricted to S(1,1,r+1) is a g′-module homomorphism. Thus we

proved that (S(1,1,r+1) ∩ S(r+1) + S(r))/S(r) is semisimple.

Now suppose that S(n′+1,m′+1,l′+1) ∩ S(r+1) + S(r))/S(r) is semisimple for some n′ +

m′ + l′ = r and that

(S(n′+1,m′+1,l′+1) ∩ S(r+1) + S(r))/S(r) ∼=⊕
l′′+m′′+n′′=r

(n′′,m′′,l′′)≤(n′,m′,l′)

soc
(l′′+1)
g′ (soc(m

′′+1)
g2

(soc(n
′′+1)

g1
M)). (5.5)

Let (n,m, l) be the immediate succesor of (n′,m′, l′) in the lexicographic order of

triples of integers with sum equal to r. We prove next that S(n+1,m+1,l+1) ∩ S(r+1) +

S(r))/S(r) is semisimple.

Take an element u ∈ S(n+1,m+1,l+1) ∩ S(r+1) + S(r))/S(r) of the form u = u1 + · · · +
us + S(r). Let without loss of generality

u1 = xi1 ⊗ · · · ⊗ xin1
⊗ u′1 ⊗ yj1 ⊗ · · · ⊗ yjn2

+ u′′1,

where n1 + n2 = n and u′′1 has less than n elements xj and yj. Furthermore,

u′1 = zs1 ⊗ · · · ⊗ zsm ⊗ u′′′1 ⊗ ts1 ⊗ · · · ⊗ tsm + u
(iv)
1 ,

where u
(iv)
1 has less that m terms of the form zi ⊗ ti. Let the elements u2, . . . , us

have a similar form. Then for any g ∈ g′ either g · u = 0 or g · u /∈ S(n′+1,m′+1,l′+1) ∩
S(r+1)+S(r))/S(r). Let U denote the submodule of S(n+1,m+1,l+1)∩S(r+1)+S(r))/S(r)

generated by all such elements u. Then

(S(n+1,m+1,l+1) ∩ S(r+1) + S(r))/S(r) = S(n′+1,m′+1,l′+1) ∩ S(r+1) + S(r))/S(r) ⊕ U.
(5.6)

Moreover, we claim that

K ′′l ◦K ′m ◦Kn : (S(n+1,m+1,l+1) ∩ S(r+1) + S(r))/S(r) → soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
M))

(5.7)
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is a well-defined surjective homomorphism of g′-modules with kernel (S(n′+1,m′+1,l′+1)∩
S(r+1) + S(r))/S(r).

It is clear that the above map is well-defined. Moreover, it is a g′-module ho-

momorphism since K ′′l is a g′-module homomorphism when restricted to K ′m ◦
Kn((S(n+1,m+1,l+1)). So we have to prove that the map is surjective and to com-

pute its kernel.

Theorems 3.10, 4.2, 4.4, 4.7, and 4.8 and Propositions 3.13 and 5.1 imply that

K ′′l ◦K ′m ◦Kn = πlmn ◦ πmn ◦ πn when restricted to S(n+1,m+1,l+1). Here, πn and πmn

are defined as before and

πlmn : soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
M))→ soc

(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
M)).

This shows that the image lies in soc
(l+1)
g′ (soc

(m+1)
g2 (soc

(n+1)
g1 M)). Furthermore, every

[v] from the right-hand side has a representative v ∈M such that

• v ∈ soc
(n+1)
g1 M − soc

(n)
g1 M ,

• πn(v) ∈ soc
(m+1)
g2 (soc

(n+1)
g1 M)− soc

(m)
g2 (soc

(n+1)
g1 M),

• πmn(v) ∈ soc
(l+1)
g′ (soc

(m+1)
g2 (soc

(n+1)
g1 M))− soc

(l)
g′ (soc

(m+1)
g2 (soc

(n+1)
g1 M)).

But then v ∈ S(n+1,m+1,l+1) ∩ S(r+1). This proves surjectivity.

The last step is to compute the kernel of K ′′l ◦K ′m ◦Kn. Suppose first that m 6= 0.

Then the immediate predecessor of S(n+1,m+1,l+1) ∩ S(r+1) in the filtration (5.3) is

S(n+1,m,l+2) ∩ S(r+1) and every element from it belongs to kerK ′′l ◦K ′m ◦Kn. Hence,

kerK ′′l ◦K ′m ◦Kn ⊇ (S(n+1,m,l+2)∩S(r+1) +S(r))/S(r). We need to prove the opposite

inclusion.

Let v ∈ kerK ′′l ◦K ′m ◦Kn. Suppose first that Kn(v) = 0. Then v ∈ S(n,m1+1,l1+1) ∩
S(r+1) ⊂ S(n+1,m,l+2)∩S(r+1). Now, let v be such thatKn(v) 6= 0 andK ′m(Kn(v)) = 0.

But then v ∈ S(n+1,m,l+2) ∩ S(r+1). Finally, if K ′m(Kn(v)) 6= 0, it follows that

K ′′l ◦K ′m ◦Kn(v) = 0 and hence v ∈ S(r). Therefore, we proved that

kerK ′′l ◦K ′m ◦Kn = (S(n+1,m,l+2) ∩ S(r+1) + S(r))/S(r).

Now, suppose thatm = 0 and n 6= 0. Then the immediate predecessor of S(n+1,1,l+1)∩
S(r+1) in the filtration (5.3) is S(n,l+1,1) ∩ S(r+1) and it clearly belongs to kerK ′′l ◦
K ′m ◦ Kn. Hence, (S(n,l+1,1) ∩ S(r+1) + S(r))/S(r) ⊆ kerK ′′l ◦ K ′0 ◦ Kn. Vice versa,

if v ∈ kerK ′′l ◦ K ′0 ◦ Kn is such that Kn(v) = 0 then v ∈ S(n,m1+1,l1+1) ∩ S(r+1) ⊂
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S(n,l+1,1) ∩ S(r+1). Hence,

kerK ′′l ◦K ′0 ◦Kn = (S(n,l+1,1) ∩ S(r+1) + S(r))/S(r).

Thus, we proved that (S(n+1,m+1,l+1) ∩ S(r+1) + S(r))/S(r) is semisimple. Moreover,

(5.5), (5.6), and (5.7) imply

(S(n+1,m+1,l+1) ∩ S(r+1) + S(r))/S(r) ∼=
⊕

n′+m′+l′=r
(n′,m′,l′)≤(n,m,l)

soc
(l′+1)
g′ (soc(m

′+1)
g2

(soc(n
′+1)

g1
M)).

This holds for every element in the filtration (5.4), so in particular S(r+1)/S(r) is

semisimple and

S(r+1)/S(r) ∼=
⊕

n+m+l=r

soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
M)).

Note that if N ⊂ M is any submodule of M , then we can interesect the above

filtrations with N and obtain

(S(r+1) ∩N)/(S(r) ∩N) ∼=
⊕

l+m+n=r

soc
(l+1)
g′ (soc(m+1)

g2
(soc(n+1)

g1
N)).



72 CHAPTER 5. EMBEDDINGS OF GENERAL TENSOR TYPE. MAIN STATEMENTS



Chapter 6

Embeddings of non-isomorphic Lie

algebras

The goal of this chapter is to apply Theorem 5.2 to embeddings g′ ⊂ g, where g′

and g are non-isomorphic. More precisely, in each specific case we decompose an

embedding of general tensor type into intermediate embeddings in accordance with

Theorem 5.2. In this way, we again reduce the branching problem for embeddings of

general tensor type to a branching problem for embeddings of simpler types, which

will be then easy to derive.

We say that two embeddings g1 ⊂ g2 and g3 ⊂ g4 of classical locally finite Lie

algebras are of the same type if they satisfy the conditions of Theorem 5.2 with the

same values k, l, a1, a2, c1, b, d.

We start with an observation that considerably reduces the number of different

embeddings we have to consider.

Proposition 6.1. When the following groups of embeddings are of the same type,

the branching laws are the same in each group:

(1) sl(∞) ⊂ gl(∞), gl(∞) ⊂ sl(∞), sl(∞) ⊂ sl(∞), and gl(∞) ⊂ gl(∞),

(2) sp(∞) ⊂ gl(∞) and sp(∞) ⊂ sl(∞),

(3) so(∞) ⊂ gl(∞) and so(∞) ⊂ sl(∞),

(4) gl(∞) ⊂ sp(∞) and sl(∞) ⊂ sp(∞),

(5) gl(∞) ⊂ so(∞) and sl(∞) ⊂ so(∞).

Proof. Part (1) follows from Proposition 3.2. Parts (2) and (3) are trivial. The

73
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idea of proof of part (4) is to show as in Proposition 3.2 that every embedding

sl(V ′, V ′∗) ⊂ sp(V ) can be extended to an embedding gl(V ′, V ′∗) ⊂ sp(V ) of the same

type. Thus, we obtain a chain of embeddings

sl(V ′, V ′∗) ⊂ gl(V ′, V ′∗) ⊂ sp(V )

which proves part (4). The proof of part (5) is analogous.

As a result of Proposition 6.1, we can exclude from our considerations below the

cases of embeddings which involve sl(∞).

6.1 The cases sp(∞) ⊂ gl(∞) and so(∞) ⊂ gl(∞)

Let g′ be isomorphic to one of sp(V ′) and so(V ′) and let g ∼= gl(V, V∗). Let g′ ⊂ g

be an embedding of general tensor type, i.e.

socg′V ∼= kV ′ ⊕Na, V/socg′V ∼= Nb,

socg′V∗ ∼= kV ′ ⊕Nc, V/socg′V ∼= Nd.

Proposition 6.2. Let g′ ⊂ g be as above. Then there exist intermediate subalgebras

g1 = gl(V1, V1∗) and g2 = gl(V2, V2∗) such that the conditions of Theorem 5.2 are

satisfied for the sequence g′ ⊂ g2 ⊂ g1 ⊂ g.

Proof. Notice that g′ ⊂ gl(V ′, V ′) ⊂ g. Therefore, we can apply Proposition 3.3 to

the embedding gl(V ′, V ′) ⊂ g and construct g1 and g2 with the desired properties.

In view of Proposition 6.2 and Theorem 5.2 it is enough to consider embeddings

g′ ⊂ g with the property

V ∼= V∗ ∼= kV ′. (6.1)

The following is an easy corollary of property (2.4) of the socle filtration of a direct

sum.

Proposition 6.3. Let g′ ⊂ g satisfy (6.1). Then for the socle filtration of the

g-module V ⊗(p,q) we obtain

soc
(r+1)
g′ V ⊗(p,q) ∼= k(p+q)soc

(r+1)
g′ V ′⊗(p+q).
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Corollary 6.4. Let g′ ⊂ g satisfy (6.1) and Vλ,µ ⊂ V ⊗(p,q). Then

(i) if g′ ∼= sp(V ′), we have

socg′Vλ,µ ∼=
⊕

|σ|=p+q−2r

Aλ,µσ V ′〈σ〉,

where for k = 1

Aλ,µσ =
∑
α,β,γ

cσαβc
λ
α(2γ)T c

µ
β(2δ)T

,

and for k ≥ 2

Aλ,µσ =
∑

α+
1 ,...,α

+
k

α−1 ,...,α
−
k

∑
λ′,µ′

α,β,γ

C
(λ,µ)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )
D

(λ′,µ′)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )
cσαβc

λ′

α(2γ)T c
µ′

β(2δ)T
;

here the coefficients C
(λ,µ)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )

and D
(λ′,µ′)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )

are defined as in

Section 2.2;

(ii) if g′ ∼= so(V ′), we have

socg′Vλ,µ ∼=
⊕

|σ|=p+q−2r

Bλ,µ
σ V ′[σ],

where for k = 1

Bλ,µ
σ =

∑
α,β,γ

cσαβc
λ
α(2γ)c

µ
β(2δ),

and for k ≥ 2

Bλ,µ
σ =

∑
α+
1 ,...,α

+
k

α−1 ,...,α
−
k

∑
λ′,µ′

α,β,γ

C
(λ,µ)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )
D

(λ′,µ′)

(α+
1 ,...,α

+
k )(α−1 ,...,α

−
k )
cσαβc

λ′

α(2γ)c
µ′

β(2δ).

Proof. Part (i): Proposition 6.3 above and Theorem 3.2 from [PSt] imply

socg′Vλ,µ ∼=
⊕

|σ|=p+q−2r

aλ,µσ V ′〈σ〉

for some multiplicities aλ,µσ . To determine the value of aλ,µσ we have to derive the

branching law for embeddings sp(2n) ⊂ gl(2kn) of signature (k, 0, 0). There is the
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following chain of embeddings

sp(2n) ⊂ gl(2n) ⊂ gl(2kn)

which, using Proposition 2.4.2 from [HTW] for the first embedding and Proposition

2.4 from Chapter 2 for the second embedding, yields the desired expression for

aλ,µσ .

6.2 The cases gl(∞) ⊂ sp(∞) and gl(∞) ⊂ so(∞)

Let in this section g′ ∼= gl(V ′, V ′∗), and g ∼= sp(V ) or g ∼= so(V ). Furthermore, let

g′ ⊂ g satisfy the conditions

socg′V = kV ′ ⊕ lV ′∗ ⊕Na, V/socg′V ∼= Nb.

The first observation we make is that k = l, as

socg′V∗ = lV ′ ⊕ kV ′∗ ⊕Nc, V∗/socg′V∗ ∼= Nd

by Theorem 2.1. However, in this case V ∼= V∗, hence the socle filtrations of V and

V∗ must be equal, and in particular k = l.

Proposition 6.5. Let g ∼= sp(V ) and g′ ⊂ g satifsy the conditions

socg′V = kV ′ ⊕ kV ′∗ ⊕Na, V/socg′V ∼= Nb.

Then there exist subalgebras g1 ∼= sp(V1) and g2 ∼= sp(V2) such that the chain g′ ⊂
g2 ⊂ g1 ⊂ g satisfies the conditions of Theorem 5.2.

Proof. We now construct a subalgebra g2 ∼= sp(V2) such that V2 ∼= kV ′⊕ kV ′∗ . Then

the existence of g1 will follow from Proposition 4.1.

Consider the submodule V2 of V such that V2 ∼= kV ′ ⊕ kV ′∗ . As in Proposition 3.1

we can show that there exists a decomposition

V2 = Ṽ1 ⊕ · · · ⊕ Ṽk ⊕ W̃1 ⊕ · · · ⊕ W̃k

with basis {vji }i∈I,j=1,...,k ∪ {wji }i∈I,j=1,...,k such that Ω(vji , w
l
k) = δikδjl and such that

every element g ∈ g′ lies in S2V2. Thus, on the one hand, the restriction of the

bilinear form Ω to V2 is non-degenerate and we can define the Lie subalgebra g2 =
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sp(V2) = S2V2. Then trivially g2 ⊂ g = S2V . On the other hand, g′ ⊂ S2V2 = g2.

In this way we obtain a subalgebra g2 as desired.

An analogous statement holds for g ∼= so(V ).

Proposition 6.6. Let g ∼= so(V ) and g′ ⊂ g satifsy the conditions

socg′V = kV ′ ⊕ kV ′∗ ⊕Na, V/socg′V ∼= Nb.

Then there exist subalgebras g1 ∼= so(V1) and g2 ∼= so(V2) such that the chain g′ ⊂
g2 ⊂ g1 ⊂ g satisfies the conditions of Theorem 5.2.

In view of Propositions 6.5 and 6.6 and Theorem 5.2 it is enough to consider em-

beddings g′ ⊂ g which satisfy the property

V ∼= kV ′ ⊕ kV ′∗ . (6.2)

Proposition 6.7. Let g′ ⊂ g satisfy (6.2). Then

soc
(r+1)
g′ V ⊗d =

d⊕
m=0

(
d

m

)
kdsoc

(r+1)
g′ V ′⊗(m,d−m).

Corollary 6.8. Let g′ ⊂ g satisfy (6.2).

(i) If g ∼= sp(V ) then, for any simple g-module V〈λ〉 ⊂ V ⊗d,

soc
(r+1)
g′ V〈λ〉 =

d⊕
m=0

⊕
|λ′|=m−r
|µ′|=d−m−r

Aλλ′,µ′V
′
λ′,µ′ ,

where for k = 1

Aλλ′,µ′ =
∑
γ,δ

cγλ′,µ′c
λ
γ,2δ,

and for k ≥ 2

Aλλ′,µ′ =
∑

γ,δ,λ1,µ1

∑
β+
1 ,...,β

+
k

β−1 ,...,β
−
k

cγλ1,µ1c
λ
γ,2δC

(λ1,µ1)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
D

(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
.

The coefficients C
(λ1,µ1)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

and D
(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

are defined as before.
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(ii) If g ∼= so(V ) then, for any simple g-module V[λ] ⊂ V ⊗d,

soc
(r+1)
g′ V[λ] =

d⊕
m=0

⊕
|λ′|=m−r
|µ′|=d−m−r

Bλ
λ′,µ′V

′
λ′,µ′ ,

where for k = 1

Bλ
λ′,µ′ =

∑
γ,δ

cγλ′,µ′c
λ
γ,(2δ)T ,

and for k ≥ 2

Bλ
λ′,µ′ =

∑
γ,δ,λ1,µ1

∑
β+
1 ,...,β

+
k

β−1 ,...,β
−
k

cγλ1,µ1c
λ
γ,(2δ)TC

(λ1,µ1)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
D

(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
.

Proof. Part (i). Proposition 6.7 above and Theorem 2.2 in [PSt] imply

soc
(r+1)
g′ V〈λ〉 =

d⊕
m=0

⊕
|λ′|=m−r
|µ′|=d−m−r

aλλ′,µ′V
′
λ′,µ′

for some unknown multiplicities aλλ′,µ′ . To determine those multiplicities we need to

derive the branching rule for an embedding gl(n) ⊂ sp(2kn) of signature (k, k, 0).

We decompose such an embedding as gl(n) ⊂ gl(kn) ⊂ sp(2kn). Then we use

Proposition 2.4 from Chapter 2 for the first embedding, and Proposition 2.3.2 from

[HTW] for the second embedding, to obtain the desired value for aλλ′,µ′ .

6.3 The cases sp(∞) ⊂ so(∞) and so(∞) ⊂ sp(∞)

First we consider the case g′ ∼= so(V ′) and g ∼= sp(V ), where the embedding g′ ⊂ g

is of general tensor type, i.e.

socg′V ∼= kV ′ ⊕Na, V/socg′V ∼= Nb.

As in the previous sections we have the following proposition.

Proposition 6.9. Let g′ ⊂ g be as above. Then necessarily k ∈ 2Z≥0. Moreover,

there exist subalgebras g1 ∼= sp(V1) and g2 ∼= sp(V2), such that the chain g′ ⊂ g2 ⊂
g1 ⊂ g satisfies the conditions of Theorem 5.2.
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Proof. To show that k is even we will employ the same ideas as in the proof of

Proposition 3.1. Let ϕ denote the embedding g′ → g. Let {v′i}i∈Z\{0} be a basis of

V ′ with the property that Q(v′i, v
′
j) = δi+j,0, where Q denotes the non-degenerate

symmetric bilinear form on g′. Consider the submodule V2 ∼= kV ′ of V . Let

V2 = Ṽ1 ⊕ · · · ⊕ Ṽk

be a decomposition of V2 such that Ṽi ∼= V ′ for all i = 1, . . . , k and let vji ∈ Ṽi be

the image of v′i under the isomorphism Ṽi ∼= V ′. Then, for all i, j,m, n and for any

positive s such that s 6= m and s 6= −i, we have

Ω(vji , v
n
m) = Ω(ϕ(v′i ⊗ v′−s − v′−s ⊗ v′i) · vjs, vnm) = −Ω(vjs, ϕ(v′i ⊗ v′−s − v′−s ⊗ v′i) · vnm) =

sign(i)δi+m,0Ω(vjs, v
n
−s).

Hence, for m 6= −i we have Ω(vji , v
n
m) = 0, and for m = −i we have Ω(vji , v

n
−i) =

sign(i)Ω(vjs, v
n
−s) for all positive integers s 6= −i and for all j, n. Since the restric-

tion of Ω to V2 is non-degenerate, for each j there exists n such that Ω(vji , v
n
m) =

sign(i)δi+m,0. We can adjust the Ṽi’s such that n is unique and different for each j.

However, now we will show that n cannot be equal to j. Suppose that for some j

we have n = j. Then {vji }i∈Z\{0} is on the one hand a basis for Ṽj which satisfies

Ω(vji , v
j
m) = sign(i)δi+m,0 and on the other hand a basis which satisfies Q(vji , v

j
m) =

δi+m,0. But this is not possible. Hence each Ṽj is an isotropic subspace for Ω and

pairs non-degenerately with a unique Ṽn. This implies that k is even. We can further

renumerate the subspaces Ṽj so that Ṽj pairs non-degenerately with Ṽj+ k
2
. Then the

embedding ϕ has the form

ϕ(v′i ⊗ v′j − v′j ⊗ v′i) =

k
2∑

s=1

vsi ⊗ v
s+ k

2
j − vsj ⊗ v

s+ k
2

i + v
s+ k

2
j ⊗ vsi − v

s+ k
2

i ⊗ vsj . (6.3)

Now we can define the Lie subalgebra g2 = sp(V2) as S2V2. Clearly, g2 ⊂ g = S2V

and moreover (6.3) implies that g′ ⊂ S2V2 = g2. The existence of g1 then follows

from Proposition 4.1.

In what follows we replace k by 2k. Thus, in view of Proposition 6.9 and Theorem

5.2, it is enough to consider embeddings g′ ⊂ g with the property

V ∼= 2kV ′ (6.4)

Theorem 6.10. Let g′ ⊂ g satisfy (6.4). Then the following hold.
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(i) The socle filtration of the g-module V ⊗d is

soc
(r+1)
g′ V ⊗d = (2k)dsoc

(r+1)
g′ V ′⊗d.

(ii) For any simple V〈λ〉 ⊂ V ⊗d we have

soc
(r+1)
g′ V〈λ〉 ∼=

⊕
|λ′|=d−2r

Aλλ′V
′
[λ′]

where for k = 1

Aλλ′ =
∑

γ,δ,λ1,µ1
α,β,σ,τ

cγλ1,µ1c
λ
γ,2δc

λ′

α,βc
λ1
α,2σc

µ1
β,2τ ,

and for k ≥ 2

Aλλ′ =
∑

β+
1 ,...,β

+
k

β−1 ,...,β
−
k

∑
γ,δ,

λ1,µ1,λ2,µ2
α,β,σ,τ

cγλ1,µ1c
λ
γ,2δC

(λ1,µ1)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
D

(λ2,µ2)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
cλ
′

α,βc
λ2
α,2σc

µ2
β,2τ .

The coefficients C
(λ1,µ1)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

and D
(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

are defined as before.

Proof. Part (ii): From part (i) and Theorem 4.2 in [PSt] it follows that

soc
(r+1)
g′ V〈λ〉 ∼=

⊕
|λ′|=d−2r

aλλ′V
′
[λ′]

for some multiplicities aλλ′ . To obtain the values of aλλ′ we construct the following

commutative diagram. Let {v′i}i∈Z\{0} and {vji } i∈Z\{0}
j=1,...,2k

be respectively the bases of

V ′ and of V from Proposition 6.9. Let

V ′2n = span{v′i}i=±1,...,±n
V4kn = span{vji } j=1,...,2k

i=±1,...,±n
.

We set g′2n =
∧
V ′2n
∼= so(2n), g′′2n = V ′2n ⊗ V ′2n

∼= gl(2n), and g4kn = S2V4kn ∼=
sp(4kn). Then we have an embedding

ϕ :
∧

V ′2n → S2V4kn

given by (6.3) with k replaced by 2k. Notice that ϕ extends to an embedding
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ϕ : V ′2n ⊗ V ′2n → S2V4kn given by

ϕ(v′i ⊗ v′j) =
k∑
s=1

vsi ⊗ vs+kj + vs+kj ⊗ vsi .

Therefore we obtain the following commutative diagram of embeddings

. . . // g′2n

��

// g′4n

��

// . . . // g′2mn

��

// . . .

. . . // g′′2n

��

// g′′4n

��

// . . . // g′′2mn

��

// . . .

. . . // g4kn // g8kn // . . . // g4kmn // . . .

We have to compute the branching laws for the vertical embeddings in the above

diagram. Each vertical embedding is of the form so(2n) ⊂ gl(2n) ⊂ sp(4kn). Then,

using Formula 2.4.1 from [HTW] for the first embedding and Section 6.2 above for

the second embedding, we obtain the desired multiplicities.

Remark. In Theorem 6.10 we actually prove that whenever we have an embedding

so(V ′) ⊂ sp(V ) satisfying (6.4) there is an intermediate subalgebra isomorphic to

gl(V ′). In other words, we have the following chain of embeddings

so(V ′) ⊂ gl(V ′) ⊂ sp(V ).

Moreover, in the notations of Proposition 6.9, each Ṽi is an isotropic subspace of V

stabilized by so(V ′) and by gl(V ′). Thus

so(V ′) ⊂ gl(V ′) ⊂ m ⊂ sp(V ),

where m = Stabso(V ′)Ṽi and by Theorem 5.1 in [DP1] m is a maximal subalgebra of

sp(V ).

The case of g′ ∼= so(∞) and g ∼= sp(∞) is treated in the same way and here we just

state the end results.

Let g′ ⊂ g be an embedding of general tensor type, i.e.

socg′V ∼= kV ′ ⊕Na, V/socg′V ∼= Nb.
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Then we have the following analogue of Proposition 6.9.

Proposition 6.11. Let g′ ⊂ g be as above. Then necessarily k ∈ 2Z≥0. Moreover,

there exist subalgebras g1 ∼= so(V1) and g2 ∼= so(V2), such that the chain g′ ⊂ g2 ⊂
g1 ⊂ g satisfies the conditions of Theorem 5.2.

Thus, in what follows we replace k with 2k.

Theorem 6.12. Let g′ ⊂ g satisfy V ∼= 2kV ′. Then the following hold.

(i) The socle filtration of the g-module V ⊗d is

soc
(r+1)
g′ V ⊗d = (2k)dsoc

(r+1)
g′ V ′⊗d.

(ii) For any simple V[λ] ⊂ V ⊗d we have

soc
(r+1)
g′ V[λ] ∼=

⊕
|λ′|=d−2r

Aλλ′V
′
〈λ′〉

where for k = 1

Aλλ′ =
∑

γ,δ,λ1,µ1
α,β,σ,τ

cγλ1,µ1c
λ
γ,(2δ)T c

λ′

α,βc
λ1
α,2σc

µ1
β,(2τ)T

,

and for k ≥ 2

Aλλ′ =
∑

β+
1 ,...,β

+
k

β−1 ,...,β
−
k

∑
γ,δ,

λ1,µ1,λ2,µ2
α,β,σ,τ

cγλ1,µ1c
λ
γ,(2δ)TC

(λ1,µ1)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
D

(λ2,µ2)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )
cλ
′

α,βc
λ2
α,2σc

µ2
β,(2τ)T

.

The coefficients C
(λ1,µ1)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

and D
(λ′,µ′)

(β+
1 ,...,β

+
k )(β−1 ,...,β

−
k )

are defined as before.



Chapter 7

Corollaries and further results

In this chapter we show what invariants determine the solution of the branching

problem completely. We also address two further questions of interest and show

how the results in this thesis give preliminary partial answers to these questions.

Corollary 7.1. Let g′, g be classical locally finite Lie algebras and let g′ ⊂ g be an

embedding satisfying (2.5). Then Theorem 5.2 implies that the branching law for

a fixed simple tensor g-module M depends only on the values k, l, a1, b, c1, d, and

a2 = c2.

Let g′ ⊂ g be as above and let M ′ and M be simple tensor modules for g′ and g

respectively. Denote by [M,M ′] the total multiplicity of M ′ in the socle filtration

of M as a g′-module. Since M has finite Loewy length over g′ (see [PSe] or the

chapters above), [M,M ′] is the multiplicity of M ′ as a g′-module subquotient of M .

Our first goal is to determine the value of [M,M ′].

Let us consider the case g′ ∼= g ∼= gl(∞). We fix M = Vλ,µ and M ′ = V ′λ′,µ′ . First

we observe that if g′ ⊂ g is an embedding of type III, then isomorphic g′-modules

appear in a single layer of the socle filtration of M as a g′-module. Therefore

[Vλ,µ, V
′
λ′,µ′ ] = Aλ,µλ′,µ′ , (7.1)

where Aλ,µλ′,µ′ is as in Corollary 3.18. In particular, [Vλ,µ, V
′
λ′,µ′ ] is finite.

If now g′ ⊂ g is an embedding of type I, we can sum up the multiplicities of all

occurencies of the module V ′λ′,µ′ on the distinct layers of the socle filtration of Vλ,µ
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as determined in Corollary 3.11. In this case we obtain

[Vλ,µ, V
′
λ′,µ′ ] =

p+q∑
r=0

∑
|λ′′|+|µ′′|=|λ′|+|µ′|+r

ma
λ,λ′′m

b
λ′′,λ′m

c
µ,µ′′m

d
µ′′,µ′ = ma+b

λ,λ′m
c+d
µ,µ′ . (7.2)

When g′ ⊂ g is an embedding of type II, it is much easier to compute the multiplicity

[Vλ,µ, V
′
λ′,µ′ ] directly, rather than use the socle filtration of Vλ,µ over g′. Therefore,

in this case we proceed as follows.

Let {vi}i∈I , {v∗i }i∈I be a pair of dual bases respectively for V ′ and V ′∗ as submodules

of V and V∗ and let {zi}i∈Ia , {ti}i∈Ic be a pair of dual bases respectively for Na

and Nc. Let as before V ′k = span{v1, . . . , vk} and V ′∗k = span{v∗1, . . . , v∗k}. Similarly

let Vmk
= span{v1, . . . , vk, z1, . . . , zmk−k} and V ∗mk

= span{v∗1, . . . , v∗k, t1, . . . , tmk−k}.
Then as before we can construct a commutative diagram of embeddings

g′1

��

// g′2

��

// . . . // g′k

��

// . . . // g′

��
gm1

// gm2
// . . . // gmk

// . . . // g

such that all vertical arrows are of signature (1, 0, nk) with nk = mk − k. If a

is finite we can construct the diagram so that nk = a for all k. If a = ∞ then

limk→∞ nk = a. We set V mk
λ,µ = V mk

λ,µ ∩ (V ⊗pmk
⊗ (V ∗)⊗qmk

) and similarly for V ′kλ′,µ′ . Then

the Gelfand-Tsetlin rule implies

[V mk
λ,µ , V

′k
λ′,µ′ ] = mnk

λ,λ′m
nk

µ,µ′

and thus

[Vλ,µ, V
′
λ′,µ′ ] = ma

λ,λ′m
c
µ,µ′ . (7.3)

(7.1), (7.2), and (7.3) imply the following statement.

Corollary 7.2. Let g′ ∼= g ∼= gl(∞) and let g′ ⊂ g be an embedding of general tensor

type. Then for any simple tensor g-module Vλ,µ and any simple tensor g′-module

V ′λ′,µ′ we have

[Vλ,µ, V
′
λ′,µ′ ] =

∑
λ2,µ2

ma+b
λ,λ2

mc+d
µ,µ2

Aλ2,µ2λ′,µ′ .



85

Proof. We have the following equalities:

[Vλ,µ, V
′
λ′,µ′ ] =

∑
λ1,µ1
λ2,µ2

ma1+b
λ,λ1

mc1+d
µ,µ1

ma2
λ1,λ2

mc2
µ1,µ2

Aλ2,µ2λ′,µ′ =

∑
λ2,µ2

ma1+a2+b
λ,λ2

mc1+c2+d
µ,µ2

Aλ2,µ2λ′,µ′ =
∑
λ2,µ2

ma+b
λ,λ2

mc+d
µ,µ2

Aλ2,µ2λ′,µ′ .

Thus, the total multiplicity of V ′λ′,µ′ in the decomposition of Vλ,µ depends only on

the values a+ b, c+ d, k and l. Notice that when µ = 0 Corollary 7.2 yields

[Vλ,0, V
′
λ′,µ′ ] =

∑
λ2

ma+b
λ,λ2

Aλ2,µλ′,µ′ .

The above statement leads to the following observation. If M = Vλ,µ with λ, µ 6= 0,

then there are simple constituents with infinite multiplicity in the decomposition of

M as a g′-module if and only if any of a, b, c, or d is infinite. In the special case

when M = Vλ,0 (resp., M = V0,µ), the total multiplicity [M,M ′] does not depend

on c + d (resp., a + b), and Vλ,0 (resp., V0,µ) has simple constituents with infinite

multiplicity as a g′-module if and only if a or b (resp., c or d) is infinite.

More generally, the following statement holds.

Corollary 7.3. Let g′ and g be any two classical locally finite Lie algebras and let

g′ ⊂ g be an embedding of general tensor type. Fix a simple tensor g-module M .

Then,

(1) if M = Vλ,µ with λ, µ 6= 0, there are simple constituents with infinite multiplicity

in the decomposition of M as a g′-module if and only if any of the values a, b, c,

or d is infinite;

(2) if M = Vλ,0 (resp., M = V0,µ), M has simple constituents with infinite multi-

plicity as a g′-module if and only if any of a, b (resp., c, d) is infinite;

(3) in any other case a = c, b = d, hence M has simple constituents with infinite

multiplicity as a g′-module if and only if a or b is infinite.

Notice that to prove Corollary 7.3 it is enough to determine the multiplicity [V〈λ〉, V
′
〈λ′〉]

for embeddings sp(∞) ⊂ sp(∞) of types I and II and the multiplicity [V[λ], V
′
[λ′]] for

embeddings so(∞) ⊂ so(∞) of types I and II. By Theorem 5.2 all other cases reduce

to these and to Corollary 7.2.
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We now go back to the discussion of the category T̃ensg. Let g′ ⊂ g be a pair of

simple classical locally finite Lie algebras and let M be a simple tensor g-module.

Then, as we mentioned in Chapter 2, M as a module over g′ is an object of T̃ensg′

([PSe]). A natural question to ask is when M is a tensor g′-module. The description

of tensor modules from [PSt] implies that each simple constituent comes with a finite

multiplicity. Thus, Corollary 7.3 gives a necessary condition for M to be a tensor

g′-module.

Let again g′ ⊂ g be an embedding of general tensor type of any two classical locally

finite Lie algebras and let M be a simple tensor g-module. Now we address the

question when M is indecomposable as a g′-module. Indecomposable modules play

a major role in [PSe] and [DaPSe]. One sufficient condition for indecomposability

is that the socle of M be a simple g′-module. Using the results from the previous

chapters we can check under what conditions on the embedding g′ ⊂ g this holds.

Let us again consider the case g′ ∼= g ∼= gl(∞) and M = Vλ,µ. If g′ ⊂ g is an

embedding of type I, then Corollary 3.11 implies that socg′M is simple if and only

if a = c = 0.

If g′ ⊂ g is an embedding of type II, then Theorem 3.15 implies that socg′M is never

simple.

If g′ ⊂ g is an embedding of type III, then Corollary 3.18 implies that socg′M is

simple if and only if either k = 1 and l = 0 or k = 0 and l = 1.

Using Theorem 5.2, we can combine the above observations in the following propo-

sition.

Proposition 7.4. Let g′ ∼= g ∼= gl(∞) and let g′ ⊂ g be an embedding of general

tensor type. Then, for any simple g-module Vλ,µ with λ, µ 6= 0, socg′Vλ,µ is a simple

g′-module if and only if a = c = 0 and either k = 1 and l = 0 or k = 1 and l = 0.

In addition, socg′Vλ,0 is a simple g′-module if and only if a = 0 and either k = 1

and l = 0 or k = 1 and l = 0.

In particular, Proposition 7.4 shows that socg′Vλ,µ for λ, µ 6= 0 is simple if and only

if socg′V and socg′V∗ are simple. When µ = 0, socg′Vλ,0 is simple if and only if socg′V

is simple. Similar results can be obtained in the other cases too. Thus the following

corollary holds.

Corollary 7.5. If g′ and g are any two classical locally finite Lie algebras and g′ ⊂ g

is an embedding of general tensor type such that socg′V and socg′V∗ are simple g′-

modules, then any simple tensor g-module M is indecomposable over g′.
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