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Abstract

Invasive neurosurgical interventions bear the risk of damaging in-

dispensable fiber pathways. Current fiber reconstruction techniques

based on diffusion tensor imaging (DTI) do not determine the spa-

tial extent of a fiber bundle in an accurate and reliable manner, due

to errors and imprecisions in both the imaging and the algorithmic

pipeline. In this thesis, we start by quantifying the errors of cur-

rent fiber tracking algorithms by means of novel software phantoms

which provide a realistic model of neural fiber bundles. This knowl-

edge is used to locally analyze the quality of a patient’s diffusion

tensor dataset and to construct individual confidence hulls around

the tracked fibers. In the following chapter, these ideas are developed

further and we suggest an accurate approach to the segmentation of

a patient’s diffusion tensor image which combines connectivity and

tensor clustering information. We then focus our attention on the

sensitivity of streamline tractography to user-defined regions of inter-

est. In order to reduce this sensitivity, we demonstrate the feasibility

of mapping a fiber bundle from a fiber atlas onto the DTI dataset

of a patient. In the last chapter of this thesis, we consider several

alternatives to visualize fiber-tracking related uncertainties by means

of color-coded streamlines and confidence hulls.
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Chapter 1

Introduction

Let us begin with a brief overview on diffusion magnetic resonance, diffusion

tensor imaging, and fiber tracking, followed by an outline of the topics discussed in

this thesis. Diffusion is a mass transfer process driven by a concentration gradient.

It results in molecular mixing without requiring bulk motion. The process is

illustrated in Fig. 1.1 where a drop of ink is introduced into two flasks filled with

water at different temperatures. The ink spreads over time with an approximately

spherically symmetric profile. It is noticeable how a higher temperature of the

medium corresponds to a faster diffusion process.

The diffusion process is described by Fick’s first law (Fick [1855a,b]), which

states that the diffusion flux vector J points from regions of high particle con-

centration to regions of low particle concentration:

J = −D∇C (1.1)

where C indicates the particle concentration and D is a proportionality constant

called the “diffusion coefficient”. D is determined by the size of the diffusing

molecules and by the viscosity and temperature (see Fig. 1.1) of the medium.

On the molecular level the diffusion process arises due to the Brownian motion

of particles which persists also after a state of equilibrium has been reached and

the net diffusion flux has vanished. Within biological tissue, molecular motion is

restricted by microstructural factors as for example cell membranes and cytoskele-

ton (Tanner and Stejskal [1968]). At the voxel length scale (a few millimeters)

1



1. INTRODUCTION

(a) (b)

(c) (d)

Figure 1.1: (a) A drop of ink is introduced into two flasks filled with water at temper-
atures of 20◦C (left) and 80◦C (right). Figs.(b),(c), and (d) show the evolution of the
diffusion process over time. (Video courtesy of Würzburg University).

diffusion may be isotropic or anisotropic, depending on whether it correlates

with the orientation of the considered tissue. For example, within the brain’s

gray matter diffusion is isotropic and may be characterized by a single (scalar)

apparent diffusion coefficient. On the contrary, within white matter diffusion is

anisotropic: water molecules diffuse more freely along the direction of neuronal

fibers (Henkelman et al. [1994]; Moseley et al. [1990a, 1991]). In white matter

water diffusion may therefore be characterized by a symmetric diffusion tensor

D. A schematic representation of the difference of the diffusion process in gray

and white matter is presented in Fig. 1.2.

2



1. INTRODUCTION

(a) (b)

Figure 1.2: (a) The extracellular Brownian motion of water molecules in gray matter
is hindered mainly by neural cell bodies. Diffusion at voxel scale is isotropic. (b) In
white matter the extracellular Brownian motion of water molecules is hindered mainly
by myelinated axon tracts. Diffusion is anisotropic.

1.1 Diffusion Magnetic Resonance

Nuclear magnetic resonance (NMR) imaging allows the non invasive, in-vivo

imaging of the diffusion characteristics of human tissue. A typical NMR scan

starts by placing the specimen into a constant magnetic field B. A 90 degree

radiofrequency (rf) pulse then tilts the magnetization vectors of the considered

nuclei (e.g. hydrogen) into the plane perpendicular to B. This causes the spins

of the considered nuclei to start precessing around the magnetic field with an

angular frequency ω given by

ω = γB (1.2)

where γ is the gyromagnetic ratio - a constant property of the considered nu-

clei. Hydrogen for example has a gyromagnetic ratio of approximately 2.68 · 108

rad/s/Tesla. With time the initially coherent spins dephase due to factors such as

dipolar interactions and magnetic field inhomogeneities caused by differences in

magnetic susceptibility between different biological tissues. This causes a decay

in the voltage (signal) induced in the receiver of the magnetic resonance scanner.

As proposed by Edwin Hahn (Hahn [1950]) the dephasing due to magnetic

field inhomogeneities can be reversed through the subsequent application of a 180

degree rf pulse, leading to the formation of an “echo signal”. The time between

the 90 degree rf pulse and the peak of the echo signal is called the time of echo

(TE) and corresponds to twice the time between the two rf pulses. The generated

3



1. INTRODUCTION

Figure 1.3: A schematic of the pulsed field gradient spin-echo MR technique introduced
by Stejskal and Tanner. (Source: Johansen-Berg and Behrens [2009]).

echo is detected by the receiver (MR coil) of the scanner and used to generate the

output image. A schematic representation of the two applied rf pulses is presented

at the top of Fig. 1.3. Let us note that the time that exists between successive

pulse sequences applied to the same slice will be denoted in the following by time

of repetition (TR).

In order to measure molecular diffusion, Carr and Purcell (Carr and Purcell

[1954]) proposed to activate a constant magnetic field gradient throughout the

entire Hahn spin-echo experiment. The idea is that because of the magnetic

field gradient, spins at different locations experience different magnetic fields and

therefore precess with different angular frequencies, according to Eq. 1.2. Due

to random molecular diffusion, spins acquire different phase shifts, so that phase

coherence after the application of the 180 degree rf pulse is decreased and so

is the echo magnitude. A stronger gradient leads to a larger phase change and

thus to a higher sensitivity on diffusion of the employed MR sequence. In clinical

applications the strength of the gradient is often indicated by means of the “b-

value”, which is proportional to the square of the gradient strength.

Modern diffusion sensitive MR sequences are generally based upon the pulsed

field spin-echo technique introduced by Stejskal and Tanner (Stejskal and Tanner

[1965]). The great innovation of this sequence is that Carr and Purcell’s constant

magnetic field gradient is replaced by two short duration gradient pulses, see

4



1. INTRODUCTION

Fig. 1.3. Hence, there is a clear distinction between the encoding time (pulse

duration, δ) and the diffusion time (time between the application of the two

gradient pulses, ∆). Let us recall that the angular frequency corresponds to the

rate of change of the phase:
dφ

dt
= ω . (1.3)

If we consider the pulse duration δ to be small and neglect the diffusion taking

place during pulse application, the net phase change φ1 induced by the first

gradient to a particle at position x1 can be written as

φ1(x1) = −ω(x1)δ

= −γ(Gx1)δ =: −qx1 (1.4)

where q = γδG combines the experimental parameters, with G being the mag-

nitude of the gradient pulse. In Eq. 1.4 we ignore the phase change due to the

magnetic field B0 which is constant for all spins in the ensemble. The minus

sign in the equation is necessary for protons whose precession is in the clockwise

direction on the plane perpendicular to the magnetic field. After the diffusion

time ∆ the particle will be located at position x2 with an inverted direction of

precession because of the 180 degree rf pulse. The net phase change φ2 induced

by the second gradient corresponds to

φ2(x2) = qx2 . (1.5)

Finally, the aggregate phase change of the particle is

φ1(x1) + φ2(x2) = −qx1 + qx2

= q(x2 − x1) . (1.6)

If particles remain stationary the aggregate phase change is 0. In the presence

of random molecular spreading φ1 and φ2 generally do not cancel out, leading to

phase dispersion or to a spreading of phases within the excited volume. There-

fore the overall signal, given by the sum of the magnetic moments of all spins,

is attenuated due to the incoherence in the orientations of individual magnetic

5



1. INTRODUCTION

moments.

Let us now consider the MR signal attenuation E(q), given by the diffusion-

weighted signal S(q) divided by the signal in the absence of any gradient S(0) =

S0:

E(q) =
S(q)

S0

. (1.7)

Relaxation-related signal attenuation in the diffusion-weighted signal is approxi-

mately independent of the applied gradient and is canceled out by the division.

Therefore E(q) measures the signal attenuation which can be attributed solely to

diffusion. Assuming a constant spin density throughout the volume to be imaged,

the MR signal attenuation may be written as

E(q) =

∫ ∫

P (x1, x2,∆) e−iq(x2−x1) dx2 dx1 (1.8)

where P is the diffusion propagator: a probability density function (PDF) which

corresponds to the likelihood that a particle initially located at x1 is located at

x2 after a diffusion time ∆. The exponential factor in Eq. 1.8 can be consid-

ered as a “Fourier kernel” which transforms the displacement-dependent function

P (x1, x2,∆) into a function of q: E(q). A sum over all possible displacements

x2 − x1 is carried out by means of the double integral. For example we may

assume the diffusion propagator to be a three dimensional normal PDF given by

P (x1, x2,∆) =
1

(2π)
3

2

√

2
(
∆− δ

3

)
|D|

e
− 1

2

1

2(∆− δ
3)

(x1−x2)TD−1(x1−x2)

(1.9)

with mean x2 and variance 2
(
∆− δ

3

)
D, where D is the diffusion tensor - a 3×3

matrix which will be discussed more in detail later in this chapter. This assump-

tion provides the foundation for diffusion tensor imaging (DTI). The resulting

MR signal attenuation is then given by

E(q) = e−
1

2
2(∆− δ

3)qTDq

= e−(∆− δ
3)qTDq . (1.10)

where q = γδG and G is now a three dimensional vector the magnitude and

6



1. INTRODUCTION

(a) (b)

Figure 1.4: (a) A diffusion-weighted, spin-echo image of a cat’s brain taken 45 minutes
after the right middle cerebral artery has been occluded. (b) The corresponding T2-
weighted, spin-echo image taken 65 minutes postocclusion. A significant hyperintensity
in the ischemic hemisphere can be observed in the diffusion-weighted image but not in
the T2-weighted image. (Source: Moseley et al. [1990b]).

direction of which correspond to the strength and the axis of the applied diffusion

gradient, respectively. The b-value discussed above is computed as

b = |q|2
(

∆−
δ

3

)

. (1.11)

In one dimension P (x1, x2,∆) and E(q) simplify accordingly. From a clinical

perspective, one of the first successful applications of diffusion-weighted imaging

(using one dimensional apparent diffusion coefficients) has been the early detec-

tion and control of ischemic strokes (Moseley et al. [1990b]). These brain lesions

are associated with reduced water diffusion and can be detected as bright ar-

eas of signal hyperintensity in the diffusion-weighted images, see Fig. 1.4 for an

example.

Common artifacts that need to be considered during the pre-processing stage

of diffusion-weighted images include susceptibility effects, eddy current induced

distortions, and subject motion (Jones and Cercignani [2010]). The different

magnetic susceptibility characteristics varying between tissues (white and gray

matter, air, bone) locally alter the magnetic field B0, which causes not only

7



1. INTRODUCTION

signal loss but also geometric distortions and discontinuities at tissue interfaces.

By means of an additional image acquisition with different TE, the B0 field can

be measured directly and a voxel-by-voxel relocation and intensity correction can

be achieved (a technique known as “unwarping”, see e.g. Jezzard and Balaban

[1995], Reber et al. [1998] for details). Eddy currents are electric currents induced

in a conductor exposed to a changing magnetic field such as, for example, a

diffusion-encoding gradient. They generate local magnetic field gradients that

will either add or subtract from the gradients that are used for spatial encoding.

Eddy current induced distortions can typically be recognized by a rim of high

anisotropy along the direction of the phase-encoding gradient. However, all voxels

are corrupted by eddy currents, and need to be corrected. This can be achieved

through a slice-by-slice registration of the diffusion-weighted image to the baseline

image. At the same time, registration corrects for subject motion, although care

has to be taken in contemporarily re-orienting the diffusion-encoding gradients.

1.2 Diffusion Tensor Imaging

We mentioned before that diffusion in gray matter occurs along axonal tracts and

is therefore anisotropic. Conversely, knowledge about local diffusion character-

istics within the brain provides insights into cell structure and neural pathways.

Assuming, as in Eq. 1.9, that the diffusion propagator within an image voxel can

be described as a Gaussian distribution, Basser and Le Bihan [1992] noted that

the diffusion tensor D can be estimated by means of a series of diffusion-weighted

signals. For simplicity, we shall assume in the following that the b-value is kept

constant between successive measurements.

The diffusion tensor D is a 3×3 symmetric positive-definite matrix:

D =






Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz




 (1.12)

where the entries Dxx, Dyy, and Dzz correspond to the apparent diffusion coeffi-

cients in x, y, and z directions (the three axes of the scanner measurement frame),

8



1. INTRODUCTION

respectively. The mixed entries Dxy, Dxz, and Dyz correspond to the covariance

between displacements along those orthogonal axes. We may rewrite D as a

six-dimensional vector

~D = [Dxx, Dxy, Dxz, Dyy, Dyz, Dzz]
T . (1.13)

Given the six unknown entries of ~D we need at least six diffusion-weighted im-

ages to reconstruct D, in addition to one baseline image S0. Usually more than

six measurements are acquired in order to increase robustness to image noise.

Combining equations 1.7 and 1.10 the diffusion-related signal attenuation for the

n-th gradient qn is given by

E(qn) =
S(qn)

S0

= e−(∆− δ
3)qTnDqn

= e−bq̂TnDq̂n (1.14)

where q̂n equals to qn/|qn|. The above expression is equivalent to

ln

(
S(q̂n)

S0

)

/(−b)

︸ ︷︷ ︸

:=an

= q̂TnDq̂n ⇔

an = q̂2n1
︸︷︷︸

:=cn1

Dxx + q̂2n2
︸︷︷︸

:=cn2

Dyy + q̂2n3
︸︷︷︸

:=cn3

Dzz

+ 2q̂n1
q̂n2

︸ ︷︷ ︸

:=cn4

Dxy + 2q̂n1
q̂n3

︸ ︷︷ ︸

:=cn5

Dxz + 2q̂n2
q̂n3

︸ ︷︷ ︸

:=cn6

Dyz ⇔

an = cn1
Dxx + cn2

Dyy + cn3
Dzz + cn4

Dxy + cn5
Dxz + cn6

Dyz

(1.15)

For n gradient directions we obtain a system of n linear equations:

a1 = c11Dxx + c12Dyy + c13Dzz + c14Dxy + c15Dxz + c16Dyz

... (1.16)

an = cn1
Dxx + cn2

Dyy + cn3
Dzz + cn4

Dxy + cn5
Dxz + cn6

Dyz

9



1. INTRODUCTION

which can be rewritten in vector-matrix notation as

A = C ~D . (1.17)

Since there are more equations than unknowns, the system is generally solved via

“ordinary least squares”, by computing the pseudoinverse of C:

~D = (CTC)−1CTA . (1.18)

It becomes clear that, in order for Eq. 1.18 to have a unique solution, at least

six gradient directions must be linearly independent. There are alternative ap-

proaches based on “weighted linear least squares” or “non-linear least squares”

(Koay et al. [2006]) which lead to a more precise estimate of D, at the cost of

computation time.

The diffusion tensor is often visualized by means of the corresponding ellipsoid,

i.e. the set of points x ∈ R
3 satisfying

xTD−1x = 1 . (1.19)

The eigenvectors of D correspond to the principal axes of the of the ellipsoid, the

length of which is scaled according to the square root of the eigenvalues of D. A

schematic representation is presented in Fig. 1.5.

The direction of the eigenvector corresponding to the largest eigenvalue is of-

ten referred to as the “main diffusion direction”, since the probability of particles

at the center of the ellipsoid to diffuse in this direction is the highest. Paje-

vic and Pierpaoli [1999] suggested to color-code the diffusion tensor ellipsoids by

mapping the components of the main diffusion direction vector to red, green, and

blue (RGB) values, a scheme that has since become commonly used. In Fig. 1.6

we present examples of diffusion tensor matrices together with the corresponding

color-coded ellipsoids.

Important parameters derived from the diffusion tensor include its trace and

anisotropy indices. The trace of a diffusion tensor D is given by the sum of its

10



1. INTRODUCTION

Figure 1.5: Schematic representation of the diffusion tensor ellipsoid. The principal
axes ε̂1, ε̂2 and ε̂3 correspond to the eigenvectors of D and are scaled according to the
square root of the eigenvalues λ1, λ2 and λ3. (Source: Johansen-Berg and Behrens
[2009]).

diagonal elements, which is also equal to the sum of its eigenvalues:

Tr(D) = Dxx +Dyy +Dzz = λ1 + λ2 + λ3 . (1.20)

The average eigenvalue 〈λ〉 := Tr(D)/3 can be considered as a mean diffusiv-

ity measure which is independent of the main diffusion direction. Notably for

b-values smaller than 1500 s/mm2 the mean diffusivity in white and gray matter

is similar (Pierpaoli et al. [1996]). Thanks to this property mean diffusivity maps

allow to promptly recognize diffusion abnormalities without the confounding ef-

fects due to anisotropic diffusion. The two most popular anisotropy indices in

literature are fractional anisotropy (FA) and relative anisotropy (RA), computed

as

FA =

√

3

2

√

(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2
√

λ2
1 + λ2

2 + λ2
3

(1.21)

RA =

√

1

3

√

(λ1 − 〈λ〉)2 + (λ2 − 〈λ〉)2 + (λ3 − 〈λ〉)2

〈λ〉
. (1.22)

These indices are independent with respect to the main diffusion direction of the
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Figure 1.6: Examples of diffusion tensor matrices together with the corresponding
color-coded ellipsoids. The eigenvectors of (a),(b),(d),(e) are aligned with the axes of
the measurement frame, therefore the off diagonal elements are 0. In (a) Dxx, Dyy,
and Dzz are equal and therefore diffusion is isotropic. The other tensors correspond to
anisotropic diffusion. Tensors (c) and (d) result from a rotation of (b) about the z-axis
by an angle of 45 and 90 degrees, respectively. Notice how in (c) Dxy is not 0, reflecting
the correlation of diffusion along the x-axis and the y-axis. Tensor (e) presents the
highest magnitude difference between eigenvalues. (f) illustrates the employed ellipsoid
color-coding which is based on the main diffusion direction.

tensor and do not require the sorting of eigenvalues according to their magnitude

in order to be computed. Both FA and RA characterize anisotropy by computing

the variance of the three eigenvalues, which is then normalized to account for local

differences in diffusivity magnitude. FA normalizes the variance by the Frobenius

norm of D while RA normalizes the variance by the mean diffusivity 〈λ〉. The

leading constant factors cause FA and RA to take values between 0 and 1. The
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(a) (b) (c)

Figure 1.7: (a) Example of a diffusion-weighted image with gradient direction
(0.32,−0.94, 0.095)T . The acquisition parameters are as follows: resolution = 1.80 ×
1.80× 1.98 mm3, b-value = 1000 s/mm2, TR/TE = 12000/84 ms, two repetitions with
one b=0 image and 30 gradient directions each. (b) The corresponding mean diffusivity
map. (c) The corresponding color-coded FA map. The color coding depends on the
main diffusion direction as illustrated in Fig. 1.6(f). The superior-inferior corticospinal
tracts (in blue) and the left-right corpus callosum (in red) are clearly discernible.

user should be aware that for b-values smaller than 1500 s/mm2, as the signal

to noise ratio is lowered, FA and RA are increasingly overestimated (Pierpaoli

and Basser [1996]). However, for b-values greater than 3000 s/mm2, anisotropy

indices are generally underestimated (Jones and Basser [2004]). Great care should

therefore be taken when comparing anisotropy indices in images with different

acquisition parameters. Fig. 1.7 shows examples of a diffusion-weighted image, a

mean diffusivity map, and a color-coded FA map.

1.3 Fiber Tracking

Once a diffusion tensor image has been computed based on the acquired diffusion-

weighted images, fiber tractography allows the non-invasive and in vivo recon-

struction of neural fiber bundles. The most intuitive and commonly used fiber-

tracking algorithm is streamline tractography. A streamline is a line l through a

vector field ε1, the tangent of which is always parallel to the vector field. Start-

ing with a diffusion tensor image the vector field is given by the main diffusion

directions. Assuming that l is parametrized by means of a variable s∈ [a, b]⊂R,
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the streamline property can be expressed mathematically as (Basser et al. [2000])

dl(s)

ds
= ε1(l(s)) . (1.23)

This is an ordinary differential equation which, given a starting point l(a) = x0

can be solved for example by means of the Euler method. With this method the

derivative is approximated by a forward difference, giving the iterative scheme

li+1 − li
h

= ε1(li) ⇔

li+1 = li + h · ε1(li) (1.24)

where h is the step size. A drawback of this method is that errors in the estimation

of the main diffusion direction lead to errors in the computed streamline which

accumulate and increase the further away the streamline is from the starting

point x0. Another important question is how to determine the vector at position

ε1(li), given that the vector field is defined only on the discrete image grid. The

FACT algorithm proposed by Mori et al. [1999] (see Fig. 1.8 for a schematic ex-

ample) considers the main diffusion direction valid for the entire voxel while later

approaches (e.g. Pajevic et al. [2002]) interpolate information from neighboring

voxels in order to increase the streamline’s accuracy. The tracking is typically

stopped when the FA value of a voxel is below a predefined threshold (because

the information about the main diffusion direction becomes unreliable, e.g. in

regions of crossing fibers) or when the angle between successive line segments is

above a predefined threshold (because the result would be unrealistic from an

anatomical point of view).

A typical procedure to reconstruct neural fiber bundles involves defining a

seed region of interest, which determines the voxels from where the streamlines

start, and subsequently eliminating streamlines that are not in accordance with a

priori anatomical knowledge. Alternatively the user may seed the fiber tracking

algorithm in every voxel in the brain and only select the streamlines that pass

through one or several regions of interest (Stieltjes et al. [2001], Catani et al.

[2002]). Several examples of reconstructed fiber bundles are displayed in Fig. 1.9.

Possible clinical fiber-tracking applications include the comparison of quan-

14



1. INTRODUCTION

Figure 1.8: Schematic of the FACT algorithm (Mori et al. [1999]). (Source: Mukherjee
et al. [2008]).

Figure 1.9: Several examples of reconstructed fiber bundles. (Source: Catani and
ffytche [2005]).

titative measures (e.g. FA) across subjects as well as pre- and intra-operative

neurosurgical planning (see Fig. 1.10 for an example). Neurosurgical interven-

tion is exceptionally challenging in the presence of tumors such as anaplastic as-

trocytomas or glioblastomas multiforme, which are highly infiltrating and often

surrounded by perifocal edema. Because of this, the borders of the tumor are dif-

ficult to distinguish even with the help of a surgical microscope and the anisotropy

of diffusion within tissue surrounding the tumor is significantly decreased. This

makes it particularly difficult to reconstruct fiber bundles bordering the tumor,

and thus to reach the goal of a maximum resection volume without incurring in

postoperative neurosurgical deficits (Keles et al. [2006]; Pope et al. [2005]; Sanai

and Berger [2008]). Additionally, the different steps of the fiber reconstruction
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Figure 1.10: Intraoperative view (53 years old women with WHO II Oligoastrocy-
toma). (A) microscope view after opening of the dura, the four contours show: 1 - the
segmented tumor, 2 - the corticospinal tract, 3 - motor fMRI activity, 4 - speech fMRI
activity. (B,C) T2-weighted axial view in which the structures are displayed as contours
in the plane (B) or as 3D renderings (C). (D,E) T1-weighted coronal and sagittal view.
(Image courtesy of Ch. Nimsky).

pipeline (image acquisition, choice of the diffusion model, choice of the fiber track-

ing algorithm, regions of interest, and parameters) are all prone to error and need

validation. For example, the current resolution of diffusion-weighted images in

the clinical setting is of approximately 2 × 2 × 2 × mm3, therefore images are

often corrupted by partial-volume artifacts and structures smaller than the size

of a voxel cannot be resolved.

Consequently, it is essential to assess the limits of diffusion tensor imaging and

fiber-tracking algorithms. Possible non-invasive options include synthetic soft-

ware and hardware phantoms with a known ground truth. Software phantoms are

generally coarse approximations of the neural fiber bundles and the magnetic reso-

nance sequence they intend to simulate. Their advantage is that they can be easily

manipulated to reproduce different fiber paths and scanner parameters. Several

software phantoms with a varying degree of realism have been proposed over the

years. In early work on the topic Tournier et al. [2002] model a torus shaped bun-

dle and incorporate partial-volume effects into the model (Fig. 1.11(a)). Lori et al.

[2002] and similarly Gössl et al. [2002] model helical fiber pathways (Figs. 1.11(b)

and 1.11(d)). In the latter work also crossing fibers are modeled. In Leemans
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et al. [2005] a fiber system with pathways having random curvatures is proposed

(Fig 1.11(e)) and fiber bundles have smoothly varying diffusion properties along

their cross section (Fig. 1.11(c)). These phantoms have been used to compare

different fiber tracking algorithms, to test their robustness to bending, crossing,

or kissing pathways, and to fine tune their parameters.

Compared to software phantoms, physical (hardware) phantoms are often lim-

ited by a relatively simple geometry of the fiber paths but include the true noise

and artifacts of the employed imaging sequence. The first synthetic hardware

phantoms in a diffusion MRI study were polytetrafluoroethylene (PTFE) cap-

illaries filled with water (Von dem Hagen and Henkelman [2002]). A similarly

constructed phantom has been employed by Lin et al. [2003] to investigate diffu-

sion at fiber crossings. Yanasak and Allison [2006] chose to build a phantom made

of glass capillaries, with a range of diameters much smaller than the ones of pre-

vious PTFE phantoms and similar to those found in neuronal tissue (23,48, and

82 µm). Recent work (see e.g. Perrin et al. [2005b], Fieremans et al. [2008]) has

introduced phantoms made of synthetic fibers such as nylon, rayon, or ultra-high

molecular weight polyethylene fibers wrapped into cylindrical tubes and perme-

ated with water. Unlike capillary-based phantoms these phantoms do not present

artificial central cavities in which the water flows, increasing the applicability of

the respective studies to the clinical setting.

1.4 Outline of the Thesis

This work is structured as follows. In Chapter 2 we analyze the error magnitude

of streamline fiber-tracking. To do this, we generate realistic software phantoms

of neural fiber bundles for which we systematically vary the imaging and track-

ing parameters. The value of a novel error measure for fiber reconstructions is

determined for each set of parameters. Based on our findings, we propose a fuzzy

segmentation algorithm for diffusion tensor images which allows a better estimate

of the spatial extent of tracked bundles and conveys to the user the noise-related

uncertainties in the estimated main diffusion directions.

In Chapter 3 we further develop our ideas to increase the accuracy of fiber

bundle reconstruction when compared to streamline tractography. We present a
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(a) (b) (c)

(d) (e)

Figure 1.11: (a) Torus shaped bundle (Tournier et al. [2002]). (b) Helical fiber
pathway (Lori et al. [2002]). (c) Fiber system with pathways having random cur-
vatures (Leemans et al. [2005]). (d) Helical fiber pathway (top) and crossing fibers
(bottom) (Gössl et al. [2002]). (e) Smoothly varying diffusion properties along the
cross section of the fiber bundles (Leemans et al. [2005]).

hybrid approach which combines the higher spatial accuracy of tensor clustering

methods with the ability of probabilistic tractography to reconstruct pathways

that do not follow the main tensor diffusion directions. We are careful about keep-

ing the user interaction simple, so that the algorithm may be readily integrated

into clinical routine.

Chapter 4 addresses the sensitivity of streamline fiber-tracking to seed- and

exclude-regions of interest delineated by the user. This is done by applying a non-

rigid transformation to a fiber bundle from a fiber atlas so that the transformed
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bundle “best fits” the diffusion tensor data of the patient. The transformation is

determined by means of a multi-scale simulated annealing method. The applica-

bility of this proof-of-concept algorithm is demonstrated on fiber bundles which

are cut or considerably displaced by lesions.

In Chapter 5 we focus on how uncertainty-related information can be visu-

alized by color-coding the reconstructed fiber bundles and by means of individual

“confidence hulls”. More in detail, we simulate the growth of a glioblastoma mul-

tiforme adjacent to the tracked corticospinal tract and employ a specific color-

coding to make the user aware of changes in the volume of the tumor over time.

Additional color-codings are suggested to convey information about the image

data quality and about the confidence in the accuracy of the traced streamlines.

The size of the computed confidence hulls depends on the local similarity between

tensors, on the image acquisition parameters, and on the level of image noise.

A summary of the main results together with a concluding discussion is pre-

sented in Chapter 6.

Acknowledgments
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Chapter 2

Segmentation of Fiber Tracts

Based on an Accuracy Analysis

on Diffusion Tensor Software

Phantoms

This chapter of the thesis is based on the publication Barbieri et al. [2011b] with

minor typographical corrections.

2.1 Abstract

Due to its unique sensitivity to tissue microstructure, one of the primary appli-

cations of diffusion-weighted magnetic resonance imaging is the reconstruction of

neural fiber pathways by means of fiber-tracking algorithms. In this work, we

make use of realistic diffusion-tensor software phantoms in order to carry out an

analysis of the precision of streamline tractography by systematically varying cer-

tain properties of the simulated image data (noise, tensor anisotropy, and image

resolution) as well as certain fiber-tracking parameters (number of seed points

and step length). Building upon the gained knowledge about the precision of

the analyzed fiber-tracking algorithm, we proceed by suggesting a fuzzy segmen-

tation algorithm for diffusion tensor images which better estimates the precise
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spatial extent of a tracked fiber bundle. The presented segmentation algorithm

utilizes information given by the estimated main diffusion direction in a voxel

and the respective uncertainty, and its validity is confirmed by both qualitative

and quantitative analyses.

2.2 Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging method which

allows measuring the anisotropic diffusion of water molecules in in-vivo biologi-

cal tissue, such as white matter (WM) in the brain (Basser et al. [1994b]; Neil

et al. [1998]; Pierpaoli and Basser [1996]). An important application of DTI is

fiber tractography, which assumes that the principal diffusion direction matches

the orientation of the corresponding underlying fiber system and thus allows the

reconstruction of the 3D architecture of WM fiber pathways (Basser [1998]; Mori

et al. [1999]; Parker et al. [2002]). In recent years, fiber tractography has become

well established in the research environment, with first clinical uses being re-

ported. Hardware or software phantoms, which constitute a model with a known

fiber network, are one of the primary tools for investigating the validity and preci-

sion of fiber-tracking algorithms (Fieremans et al. [2008]; Gössl et al. [2002]; Lori

et al. [2002]). Software phantoms have the advantage that they can be easily

modified to account for different scanner parameters, image noise, or artifacts.

In this contribution, we analyze the extent to which different properties of

the image data and tracking parameters influence the precision with which a

fiber bundle is reconstructed. We choose to focus on the analysis of streamline

tractography versus alternative probabilistic approaches (for an overview on dif-

ferent tractography algorithms, see Behrens and Jbabdi [2009]), because of its

widespread clinical use and quick computation times. We start by considering a

software phantom of relatively simple geometry shaped as a torus segment. This

phantom allows us to fully control the spatial extent and diffusion properties of

the fiber bundle and the diffusion properties of the adjacent tissue. As far as

the image data is concerned, we test how different levels of image noise influence

the reconstruction of the tract. We are particularly interested in the distance

between the tracked streamlines and the true border of the bundle. Furthermore,
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we test how high the anisotropy of tensors belonging to the bundle needs to be

in order to guarantee a reasonably precise reconstruction of the tract. Specifi-

cally, due to partial-volume effects with the fixed background tensors, different

anisotropy values affect the main diffusion directions estimated at the border of

the bundle. This analysis may, for example, be interesting when delimiting re-

gions of fiber crossings where streamline tractography is unreliable. Finally, we

would like to analyze the effect of image resolution on tracking results by varying

the diameter of the fiber bundle; varying the diameter of the fiber bundle while

keeping the voxel size constant corresponds to analyzing tracking results for a

fiber bundle of constant width and different image resolutions. Regarding the

fiber-tracking algorithm, we analyze the influence of a different number of seed

points and different step lengths on the precision of the tract reconstruction.

Next, we repeat an analogous analysis of the precision of streamline tractogra-

phy on anatomically realistic models of specific neural fiber bundles. The spatial

extent of the modeled bundles is determined by using a white matter atlas and

the anisotropy of the tensors is set to values reported in the literature. Specif-

ically, we generate models of the corticospinal tract and arcuate fasciculus. We

are able to simulate image noise and partial-volume effects caused by the possi-

ble simultaneous presence of different white matter pathways, grey matter, and

cerebrospinal fluid in one voxel.

In the last section of this article, we suggest an efficient algorithm to generate

a fuzzy segmentation of the tracked fiber bundle. The algorithm may be used to

better grasp the true spatial extent of a tracked bundle. For examples of both

crisp and fuzzy, parametric and nonparametric DTI segmentation algorithms,

see Awate et al. [2007]; Wiegell et al. [2003]; Ziyan et al. [2006]. Our approach

accounts for not only the direction of the major eigenvectors of the underlying

tensor field, but also the respective covariance matrices. Whereas several authors

have analyzed tract dispersion via perturbation methods (Anderson [2001]; Basser

[1997]; Chang et al. [2007]; Hext [1963]), we make use of nonlinear least-squares

methods for tensor reconstruction and the explicit formulation of the covariance

matrix of the main diffusion vector given in Koay et al. [2006, 2007, 2008]. The

estimated border is visualized as a semi-transparent hull around the tracked fiber

bundle. We test the algorithm both on the generated DTI phantoms and on a
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real magnetic resonance dataset.

2.3 Generating and Analyzing Fiber-Tracking

Error on a Torus-Shaped DTI Phantom

In this section, we introduce the methodology used to generate our diffusion tensor

software phantoms. We compute fiber-tracking results upon a model shaped as a

torus segment, where we systematically vary the underlying image data and fiber-

tracking parameters. In order to perform a quantitative analysis of the precision

of the bundle reconstruction, we suggest a novel error measure for tracking results.

Although it is intuitively clear that there is a greater streamline density at the

center of a tracked bundle than on its border, we analyze the spatial distribution

of the tracked fibers and quantify this disparity.

2.3.1 DTI Model Framework

In order to generate a synthetic diffusion tensor image, we start by computing

a set a of diffusion-weighted images (one image for each corresponding gradient

direction). The diffusion-weighted signal is obtained according to a multitensor

model with a cylindrical symmetry constraint. The model was inspired by the

hindered extra-axonal compartment of the CHARMED model proposed in Assaf

and Basser [2005]; Assaf et al. [2004], which gives rise to an effective diffusion

tensor and primarily explains the Gaussian signal attenuation observed at low b

values. Given that the average eigenvalues of the diffusion tensors reconstructed

in regions of white matter, grey matter, or cerebrospinal fluid have been measured

and reported (Bhagat and Beaulieu [2004]; Partridge et al. [2004]; Pierpaoli et al.

[1996]), this restriction allows us to realistically model the diffusion properties of

different tissues as well as partial-volume effects in the diffusion-weighted images.

Let us denote the pulse separation by ∆ and set

q =
γgδ

2π
.

Here γ is the proton gyromagnetic ratio, g is the vector whose magnitude is the
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strength of the applied diffusion gradient and whose direction is along the axis of

the applied diffusion gradient, and δ is the width of the diffusion pulse gradient.

In this case, the net signal attenuation is given by

E(q,∆) =
M∑

i=1

f i
h · E

i
h(q,∆) (2.1)

where the f i
h are the T2 weighted volume fractions of the hindered compartments

and Ei
h(q,∆) is the normalized MR echo signal from the i-th hindered compart-

ment in a voxel. We assume a cylindrically symmetric tensor model (λ1 6=λ2=λ3)

and denote the diffusion coefficients parallel and perpendicular to the axon’s fiber

by λ‖ and λ⊥, respectively. In a similar manner, q may be written as q = q‖+q⊥.

For details on the computation of q‖ and q⊥ see [Assaf et al., 2004, Appendix B].

Then Ei
h(q,∆) is given by

Ei
h(q,∆) = e−4π2(∆−(δ/3))|q‖|2λ‖ + e−4π2(∆−(δ/3))|q⊥|2λ⊥ .

It is known (Gudbjartsson and Patz [1995]) that noise in magnitude mag-

netic resonance data is Rician distributed. As suggested in Hahn et al. [2006],

such noise distribution may be simulated in the image by computing |E(q,∆) +

Ñ(0, σ2)|, where Ñ(0, σ2) is a Gaussian-distributed complex variable with mean

0 and variance σ2. For completeness, let us mention that the noise variance may

be computed, as illustrated in Parker and Gullberg [1990], by

σ2 = K
NxNy 〈V

2〉

Nav FOV
2
x FOV

2
y ∆t

where Nx,Ny are the number of samples in x and y direction, 〈V 2〉 is the thermal

noise power, Nav is the number of averages, FOVx, FOVy are the fields of view

in x and y directions, ∆t is the sampling interval, and K is a scanner-dependent

factor. We refer readers interested in the exact relation between the variance

of the Gaussian signal in the two quadrature channels and the variance of the

Rician-distributed magnitude MR signal to Koay and Basser [2006].

We model partial-volume effects by sampling the image at 0.1×0.1×0.1 mm3
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and then linearly resampling it at 1 mm3. Using standard fitting procedures, we

use the diffusion-weighted images to compute the tensor-valued image.

2.3.1.1 The Torus-Shaped Phantom

In our first experiments, the fiber bundle model is given by the segment of a

torus of radius R and cross section of radius r. If the center of a voxel lies inside

the torus, we set λ‖ and λ⊥ to values that are compatible with eigenvalues of

tensors encountered in white matter, based on reports from Bhagat and Beaulieu

[2004]; Pierpaoli et al. [1996]. The direction of a tensor’s main eigenvector is

set perpendicular to the line segment connecting the voxel to the center of the

torus. For the background, we use isotropic tensors. The seed region of interest

(ROI) used for fiber-tracking is set as a circle with radius r located on a plane

perpendicular to the fiber bundle. The location of the seed ROI and some example

diffusion-weighted images are shown in Fig. 2.1.

(a) (b) (c)

Figure 2.1: (a): b0 image of the torus-shaped fiber bundle. The seed ROI used for
fiber-tracking is superimposed in yellow. (b): Diffusion-weighted image of the torus-
shaped fiber bundle, gradient pointing in x direction. (c): Diffusion-weighted image of
the torus-shaped fiber bundle, gradient pointing in xy direction.

2.3.2 Measuring Fiber-Tracking Error

In this section, we start by briefly summarizing the fiber-tracking algorithm used

throughout this work. Thereafter, we introduce a measure for the fiber-tracking

error.
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2.3.2.1 The Fiber-Tracking Algorithm

For fiber-tracking, we use the advection-diffusion based algorithm presented in Schlüter

et al. [2005]. For a given tracking position rt and step length ∆s, the next position

rt+1 is given by

rt+1 = rt + dt∆s+
1

2
kt ∆s2 .

dt is computed by using the previous tracking direction dt−1

d′ =

[

αvvt + (1− α)
D

λmax

]

dt−1 , dt =
d′

‖d′‖

Here, D is the tensor at rt with largest eigenvalue λmax and corresponding eigen-

vector v; the weight α∈ [0, 1] interpolates between streamline (α=1) and deflec-

tion (α=0) based tracking. Further, kt is a curvature term given by

kt =
dt − dt−1

∆s

which helps improve fiber-tracking accuracy. Although we employ this specific

fiber-tracking algorithm (with α=0.7) in this work, the presented analysis and re-

lated conclusions can be generalized to other streamline tractography algorithms.

2.3.2.2 The Safety Radius

To evaluate our fiber-tracking results, we determine a safety radius rs. Given a

cross section of the tracked fiber bundle, the safety radius is defined as the minimal

radius that is needed so that if a circle with radius rs were placed around each fiber

tracked inside the bundle, the aggregate of these circles would form a topological

cover of the cross section of the modeled fiber bundle. In order to find rs, we first

compute the Voronoi diagram of the points inside the cross section of the fiber

bundle; rs is then given by the maximal distance between one such point and the

borders of the corresponding cell (see Fig. 2.2). From a clinical point of view, the

safety radius may be used to compare different tractography algorithms and also

to verify the validity of the diffusion model fitted to the diffusion-weighted data.

Moreover, the safety radius indicates to which extent a fiber-tracking algorithm

underestimates the true size of a fiber bundle.
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Figure 2.2: (a): Cross section of the modeled fiber bundle. The location of the tracked
fibers is shown as dots. (b): The Voronoi diagram of the tracked fibers inside the cross
section of the modeled fiber bundle. (c): The computed safety radius rs corresponds to
the dashed line. The set of circles with radius rs centered at the tracked fibers covers
the cross section of the modeled fiber bundle.

2.3.3 Experimental Results Obtained by Means of the

Torus-Shaped Phantom

We would now like to analyze how the safety radius changes with respect to both

the parameters used to create the torus-shaped phantom and the parameters used

for fiber-tracking. As defaults, we use the parameters listed in Table 2.1. After

we have tracked the fiber bundle, we compute the safety radius every 10 mm of

arc length, advancing counterclockwise from 180◦ until 200 mm of arc length. We

then take the maximum safety radius found.

We perform five separate experiments in which we independently vary one of

the phantom or fiber-tracking parameters as specified in Table 2.2. For each set

of parameters, we add noise to the image, perform the tracking, and compute the

safety radius 100 times. Figs. 2.3(a) to 2.3(e) show boxplots for the safety radius

vs. the variable changing in each experiment.
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Default value

radius of the torus 80 mm
diameter of the cross section 10 mm
T2 for the bundle 70 ms
T2 for the background 83 ms
λ‖ for the bundle 11.3 · 10−4 mm2/s
λ⊥ for the bundle 5.15 · 10−4 mm2/s
λ‖ for the background 9.9 · 10−4 mm2/s
λ⊥ for the background 9.9 · 10−4 mm2/s
voxel size 1×1×1 mm3

number of gradients 6
gradient strength 20 mT/m
pulse separation 40 ms
pulse width 35 ms
noise standard deviation 1.5
number of seed points 50
fiber-tracking step length 1 mm

Table 2.1: Default parameters for the torus-shaped phantom.

start value step end value

diameter of the cross section 5 1 15 mm
λ⊥ for the bundle 8.55 0.2 11.35 ·10−4 mm2/s
noise standard deviation 0 0.2 6
number of seed points 10 20 230
fiber-tracking step length 0.2, then 1 1 20 mm

Table 2.2: Parameter variation for the different experiments.
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(a) (b)

(c) (d)

(e)

Figure 2.3: Torus-shaped phantom. (a): safety radius vs. diameter of the cross section

of the torus. (b): safety radius vs. fractional anisotropy of the modeled bundle. In

particular, this affects the main diffusion directions estimated at the border of the

bundle. (c): safety radius vs. signal-to-noise ratio (SNR). The SNR is defined as the

T2 for the bundle divided by the standard deviation of the noise. (d): safety radius

vs. number of seed points. (e): safety radius vs. fiber-tracking step length. The other

parameters used for these analyses are listed in Table 2.1.
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In order to analyze the spatial distribution of the tracked fibers, we again

sample the modeled fiber bundle every 10 mm of arc length. We partition the

cross section into six semi-annuli of equal area as shown in Fig. 2.4(a). At each

cross section, we count how many fibers lie in each part. Fig. 2.4(b) shows the

averaged number of fibers in the different plane parts for all experiments in which

we vary the standard deviation of the thermal noise.

(a) (b)

Figure 2.4: (a): Partitioned cross section of the tracked fiber bundle. Fibers with
positive x-coordinate are on the interior of the circular fiber path. (b): Overall averaged
number of fibers in the different plane parts. Bars on the left correspond to fibers on
the exterior of the circular fiber path and bars on the right correspond to fibers on the
interior.

2.4 Generating and Analyzing Fiber-Tracking

Error on a Realistic DTI Phantom of Neural

Fiber Bundles

In this section, we generate realistic phantoms of the corticospinal tract and

the arcuate fasciculus. We attempt to simulate both the smooth transition be-

tween the actual white matter (WM) pathway and the surrounding tissue and the

partial-volume effects caused by the simultaneous presence of white matter, grey

matter, and cerebrospinal fluid in one voxel. Similarly to Section 2.3.3, we sys-

tematically vary the standard deviation of the noise and fiber-tracking parameters
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in order to make a quantitative analysis of the fiber-tracking error.

2.4.1 Generating the BrainWeb-Based Phantom

To create the diffusion-weighted images, we build upon the BrainWeb project

(Collins et al. [1998]) at McGill University. The BrainWeb dataset was created

from 27 low-noise scans (T1 weighted gradient echo acquisitions with TR/TE/FA=

18ms/10ms/30◦) of the same individual coregistered in stereotaxic space where

they were subsampled and the intensities were averaged (Holmes et al. [1998]).

By means of a modified minimum-distance classifier, ten volumetric datasets that

define the spatial distribution for different tissues were created. In these images,

the voxel intensity is proportional to the fraction of tissue within the voxel. In

our phantom, we make use of the white matter, grey matter, and cerebrospinal

fluid volumes; an example slice of each volume is shown in Figure 2.5. The vol-

umes are defined at a 1 mm isotropic voxel grid with dimensions 181×217×181

(X×Y×Z).

(a) (b) (c)

Figure 2.5: (a): An example slice of the white matter volume. (b): The grey matter
volume. (c): The cerebrospinal fluid volume.

We proceed using the same general framework as presented in Section 2.3.1.

To each fraction of tissue in a voxel, we assign a main diffusion direction and the

eigenvalues of the cylindrically symmetric diffusion tensor. The resulting signal

attenuation is then computed according to Equation 2.1. For the above tissues,

the average eigenvalues of the diffusion tensors have been measured and reported

in Bhagat and Beaulieu [2004]; Partridge et al. [2004]; Pierpaoli et al. [1996], from
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which we derive the eigenvalues for our model, reported in Table 2.3. Example

T2 (ms) λ‖ (10−4mm2/s) λ⊥ (10−4mm2/s)
White Matter 70 11.30±0.7 5.15±0.3
Grey Matter 83 9.90±0.4 7.05±0.3
Cerebrospinal Fluid 329 36.00±2.3 30.36±1.8

Table 2.3: T2 values and tensor eigenvalues used in the BrainWeb-based phantom for
the different tissues.

slices of a modeled b0 image, with and without added image noise, are shown in

Figs. 2.6(a) and 2.6(b). As far as the main diffusion direction is concerned, we

assign a random, uniformly distributed direction to each tissue portion present in

a voxel, unless there is one or more modeled fiber bundles going through it. In this

case, the main diffusion direction depends on the modeled fiber bundles. When

multiple fiber bundles are present in one voxel, we assume that the white matter

fraction is divided into portions of equal volume among the different bundles. We

describe our method for modeling fiber bundles in the following Section 2.4.2.

(a) (b)

Figure 2.6: (a): Example slice of a modeled b0 image. (b): Complex Gaussian noise
with σ=80 added to the image.
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2.4.2 Modeling White Matter Pathways

To model a white matter pathway, we make use of the hand-segmented white

matter parcellation map provided by the ICBM DTI-81 Atlas. The parcellation

map is affinely registered to the BrainWeb volume masks and determines the

spatial extent of a fiber bundle. In order to define the diffusion properties of

the bundle, we start by computing its centerline. After determining a tuple of n

control points {Pi}i=1,...,n in R
3 along the centerline, these points are interpolated

by means of cubic splines. For simplicity, we choose Catmull-Rom splines, which

are defined by two points Pi, Pi+1 and two tangent vectors Ti, Ti+1. The tangent

vectors are computed by

Tj =
1

2
· (Tj+1 − Tj−1) .

Thereafter, the evolution of the parametric curve si(t) = (xi(t), yi(t), zi(t))
T with

t∈ [0, 1] and connecting Pi and Pi+1 is given, for example, in the x-dimension by

xi(t) =
(

t3 t2 t 1
)

·









2 −2 1 1

−3 3 −2 −1

0 0 1 0

1 0 0 0









·









Pix

P(i+1)x

Tix

T(i+1)x









and similarly in the other dimensions. Concatenating the different splines {si}

results in a differential 3D curve s connecting P1 to Pn. See Fig. 2.7(a) for an

example curve.

P
3

P
2

P
5

P
4

P
1

(a) (b)

Figure 2.7: (a): Example curve interpolating the control points {Pi} and forming
the backbone of the modeled fiber bundle. (b): Schematic representation of the main
diffusion directions of the tensors within a tubular fiber bundle.

Consider a voxel with coordinates V = (xv, yv, zv)
T and a white matter frac-
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tion belonging to the bundle to be modeled. We compute the minimal distance

between V and the bundle backbone s and the minimal distance between V and

the border of the bundle. Let us denote these two distances by ds and db, respec-

tively. The distance to the border is easily computed by means of a Euclidean

distance transform (see Rosenfeld and J. [1966]; Russ [1995]); details on the how

to compute the distance to the centerline are given in section 2.4.2.1. We assign

a normalized distance value dm to V , computed as

dm =
db

db + ds
(2.2)

A schematic example of a normalized distance map is given in Fig. 2.8(a). The

main diffusion direction e1 at V is then determined along the isosurface of the

normalized distance map as follows: Denote the point on the centerline closest to

V by s(t∗) with tangent s′(t∗), and the gradient of the normalized distance map

at V by g, then

e1 = s′(t∗)− (s′(t∗) · g) g . (2.3)

See Fig. 2.8(b) for an example of resulting directions.

(a) (b)

Figure 2.8: (a): Schematic representation of the normalized distance function when
going from a control point Pi with radius ri to a control point Pi+1 with radius ri+1.
(b): The corresponding main diffusion directions.
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2.4.2.1 Minimizing the Point to Spline Distance

This section illustrates how we compute the shortest (squared) distance Di(t)

between V and a spline curve si, given by

Di(t) = (xi(t)− xv)
2 + (yi(t)− yv)

2 + (zi(t)− zv)
2 . (2.4)

The minimization problem gives rise to quintic equations which generally have

no analytic solutions. We therefore have to resort to numerical methods. We

use the algorithm from Wang et al. [2002]. This algorithm combines quadratic

minimization and Newton’s method to quickly and accurately find a solution

t∗. Quadratic minimization is an iterative algorithm which uses three initial

estimates of t∗, which we denote by t1, t2, t3, to fit a parabola to the points

(t1, D(t1)), (t2, D(t2)), (t3, D(t3)), the minimum of which has t-coordinate

tmin =
1

2
·
p23D(t1) + p31D(t2) + p12D(t3)

q23D(t1) + q31D(t2) + q12D(t3)

where qij = ti − tj and pij = t2i − t2j . For the next iteration, we use the three

coordinates among t1, t2, t3, tmin which correspond to the smallest D(t) values.

Although quadratic minimization converges relatively slowly (superlinearly given

a sufficiently good set of initial estimates, Luenberger [1984]), it is good at refining

coarse estimates. These properties are complemented by Newton’s algorithm,

which makes use of the iteration formula

t∗,m+1 = t∗,m −
D′(t∗,m)

D′′(t∗,m)
, m=0, 1, 2, . . .

and, for a zero of multiplicity 1, converges quickly (quadratically, Deuflhard

[2004]) to the optimal value given a good initial guess. To compute the min-

imum distance between a voxel V and a spline si in our phantom, we iterate

quadratic minimization three times with initial estimates of t1=0, t2=0.5, t3=1,

the result of which is used as an initial guess for 10 iterations of Newton’s algo-

rithm. If this approach converges towards values outside the range t∈ [0, 1], we

appropriately set t∗ to either 0 or 1. At present, we compute the t value, giving

the minimum distance between V and s by choosing the t∗ value over all {si}
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which corresponds to the smallest Di(t
∗). This may be optimized by considering

that neighboring voxels will have a similar minimal distance to s.

2.4.2.2 Mapping the Distance Function to Alternative Kernels

In order to generate our BrainWeb-based phantoms, we model partial-voluming

effects by subsampling the image as described in Section 2.3.1. A further possible

extension has been suggested in Leemans et al. [2005]: Instead of modeling fiber

bundles to have constant diffusion properties over their cross sections, one could

map the distance dc between a voxel V and the backbone of a bundle according

to various monotonic decreasing functions (for positive x-values). This way, the

further away a voxel V is from the backbone, the less influence that fiber bundle

will have on the tensor at V . Suggested functions include a Gaussian with mean

0 and standard deviation σ

kg(d) := e−d2/2σ2

or the saturated function

ks(d) :=
erf
(

w+2d
2
√
2σ

)

+ erf
(

w−2d
2
√
2σ

)

2erf
(

w
2
√
2σ

)

where erf() is the error function and w ∈ R
+ controls the width of the bundle.

For details on these kernels, we refer the interested reader to the aforementioned

paper. According to experimental results presented in Leemans et al. [2005], using

a Gaussian or the saturated function to model fiber bundles yields improved

similarity between the phantom and real data. However, to the best of our

knowledge, it is not yet completely clear why this is the case. Also, from a

histological point of view, we do not know whether the density of fibers and

directional homogeneity inside specific neural tracts decrease when moving from

the center of the fiber bundle to its border. For the time being, we model fiber

bundles in our numerical experiments to have constant diffusion properties.
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2.4.3 Experimental Results Obtained by Means of the

BrainWeb-Based Phantom

By using the white matter parcellation map provided by the ICBM DTI-81 Atlas,

we construct phantoms of the corticospinal tract (between the posterior limb

of the internal capsule and the brainstem) and of the arcuate fasciculus. In

a manner similar to Section 2.3.3, we reconstruct the modeled tract via fiber-

tracking and analyze the accuracy of the results. To track the modeled bundles,

we use whole-brain fiber-tracking (Conturo et al. [1999]) and select the fibers that

go through regions of interest at the beginning and end of the bundles. The whole-

brain tracking approach is chosen for its superior reconstruction capabilities, see

for example Klein et al. [2010b]. The tracked bundles are shown in Fig. 2.9(b)

and 2.9(c).

(a) (b) (c)

Figure 2.9: (a): White matter parcellation map provided by the ICBM DTI-81 Atlas.
The map determines the spatial extent of the modeled fiber bundles. (b): Streamline
tracking of the modeled portion of the right corticospinal tract. (c): Streamline tracking
of the modeled right arcuate fasciculus. These bundles will later be used as an initial
mask by our fuzzy segmentation algorithm.

There are two fundamental differences between the torus-shaped phantom and

the BrainWeb-based phantoms: In the former, the width of the fiber bundle is

constant, and we know the exact geometry of its cross section. Because this is

not the case in the latter phantom, we need to adapt our measurement of the

error of tracked fibers via the safety radius. First, given the variable width of the

fiber bundle, we restrict ourselves to an error analysis on one slice, and do not

measure the error multiple times along the fiber bundle. For the corticospinal
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tract, we analyze a slice at the height of the internal capsule, whereas for the

arcuate fasciculus, we analyze a slice parallel to the xz plane which cuts the

bundle approximately in the middle. To compute the safety radius, we start

by determining the set of points (with a sampling interval of 0.1 mm) that lie

on the considered slice on the inside of the fiber bundle and lie in voxels with

a grey matter fraction greater than zero. Next, for a tracked fiber bundle, we

determine the points with the same characteristics that additionally lie on the

tracked fibers. An example cross section and its intersection with the tracked

fibers are illustrated in Fig. 2.10(a). The safety radius for this discrete case is

then given by the maximum Euclidean distance between a sampled point of the

cross section and a point of the tracked fibers, see Fig. 2.10(b).
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Figure 2.10: (a): Example cross section of a modeled tract. The locations of the
tracked fibers are shown as dots. (b): The computed safety radius rs corresponds to
the dashed line. The set of circles with radius rs centered at the tracked fibers covers
the cross section of the modeled fiber bundle.

We perform three separate experiments in which we independently vary the

standard deviation of the noise, the number of seed points, and the fiber tracking

step length for the two BrainWeb-based phantoms. As defaults, we use the pa-

rameters listed in Tables 2.3 and 2.4. Note that in these phantoms, we allow for

small variations in the eigenvalues of the tensors which correspond to the differ-

ent tissues. The other parameters are varied according to Table 2.5. As before,

for each set of parameters, we add noise to the image, perform the tracking, and

compute of the safety radius 100 times. Figs. 2.11(a) to 2.11(f) show boxplots

38



2. SEGMENTATION OF FIBER TRACTS BASED ON AN

ACCURACY ANALYSIS ON DIFFUSION TENSOR SOFTWARE

PHANTOMS

Default value

voxel size 1×1×1 mm3

number of gradients 30
gradient strength 20 mT/m
pulse separation 40 ms
pulse width 35 ms
noise standard deviation 3
reciprocal of seed point density 8 mm3/seed
fiber-tracking step length 1 mm

Table 2.4: Default parameters for the BrainWeb-based phantoms.

start value step end value

noise standard deviation 0.5 0.5 5.5
reciprocal of seed point density 0.5,1, then 2 2 18 mm3/seed
fiber-tracking step length 0.2, then 1 1 10 mm

Table 2.5: Parameter variation for the different experiments with the BrainWeb-based
phantoms.

for the safety radius vs. the variable changing in each experiment, both for the

modeled corticospinal tract and arcuate fasciculus. Fig. 2.12 gives an overview of

the safety radius computed on different slices along the corticospinal tract.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.11: BrainWeb-based phantoms. Left column: corticospinal tract results.

Right column: arcuate fasciculus results. (a),(b): safety radius vs. signal to noise

ratio. (c),(d): safety radius vs. reciprocal of seed point density. (e),(f): safety radius

vs. fiber-tracking step length. The other parameters used for these analyses are listed

in Table 2.4.
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Figure 2.12: Based on the modeled corticospinal tract, we compute the safety radius
on several slices with different z-coordinates.

2.5 Estimating the Extent of Fiber Bundles

In Sections 2.3 and 2.4 we generated a multitude of different DT software phan-

toms and analyzed the tracking error. In order to improve the accuracy with

which the extent of fiber bundles is determined, we now suggest an efficient algo-

rithm to generate a fuzzy segmentation of diffusion tensor data. We employ the

tracked fibers as an initial segmentation and successively analyze the directions of

the principal eigenvectors and the respective covariance matrices of tensors close

to the tracked fibers. The resulting data will be visualized by means of confidence

hulls around the tracked fibers. We test our algorithm both on the generated DTI

phantoms and on a real diffusion tensor magnetic resonance scan of a patient.

2.5.1 Review of Computing the Covariance Matrix of the

Main Diffusion Direction

Given a reference signal S0, diffusion-encoded unitary gradient vectors gi with

i = 1, . . . , n, measured diffusion-weighted signals with noise si, and a design

matrix

W =







1 −b1g
2
1x −b1g

2
1y −b1g

2
1z −b1g1xg1y −b1g1yg1z −b1g1xg1z

...
...

...
...

...
...

...

1 −b1g
2
nx −b1g

2
ny −b1g

2
nz −b1gnxgny −b1gnygnz −b1gnxgnz






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we start by estimating the diffusion tensor in each voxel, as suggested in Koay

et al. [2006], by minimizing the constrained nonlinear least-squares objective func-

tion

fCNLS(γ(ρ)) =
1

2

n∑

i=1

(

si − exp

[
7∑

j=1

Wijγi(ρ)

])2

. (2.5)

In Equation 2.5, γ(ρ) is the mapping between the entries of the upper diagonal

matrix

U(ρ) =






ρ2 ρ5 ρ7

0 ρ3 ρ6

0 0 ρ4






which gives the Cholesky decomposition of the diffusion tensor D = UTU, and

the parameter vector

γ = [ln(S0),Dxx,Dyy,Dzz,Dxy,Dyz,Dxz] .

γ(ρ) is explicitly given by

γ(ρ) = [ρ1, ρ
2
2, ρ

2
3 + ρ25, ρ

2
4 + ρ26 + ρ27, ρ2ρ5, ρ3ρ6 + ρ5ρ7, ρ2ρ7]

with ρ1 = ln(S0). Minimizing fCNLS with respect to γ(ρ) ensures the positive def-

initeness of the estimated tensor D. Specifically, the minimizing vector is found

via the modified full Newton’s algorithm proposed in [Koay et al., 2006, Appendix

D], where it has been shown to offer lower error trace estimates than weighted or

unweighted linear least-squares approaches. For a minimizer γ̂ of Equation 2.5,

σ2
DW := 2fCNLS(γ̂(ρ))/(n − 7) gives an unbiased estimate of the variance of the

diffusion-weighted signal. After defining S and Ŝ as the diagonal matrices whose

diagonal elements are the observed and estimated diffusion-weighted signals, re-

spectively, i.e.,

S =







s1
. . .

sn







, Ŝ =







ŝ1
. . .

ŝn






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and R = S− Ŝ, the covariance matrix of γ is given by

Σγ = σ2
DW[WT (Ŝ2 −RŜ)W]−1 .

Let q1,q2,q3 be the eigenvectors of D corresponding to the eigenvalues λ1 ≥

λ2 ≥ λ3. Using the notation introduced in Hext [1963], we write

a(qi,qj)
T ≡ [qixqjx, qiyqjy, qizqjz, qixqjy + qiyqjx, qiyqjz + qizqjy, qixqjz + qizqjx]

T

and additionally define Q = (q1,q2,q3), and

T1 =






0 0 0 0 0 0 0

0 1
(λ1−λ2)

a(q2,q1)
T

0 1
(λ1−λ3)

a(q3,q1)
T




 .

Finally, the covariance matrix of the major eigenvector is given by Koay et al.

[2008]:

Σq1
= (QT1)Σγ(QT1)

T .

2.5.2 A New Plausibility Measure for a Voxel to Be Part

of the Tracked Bundle

Our algorithm for fuzzy DTI segmentation analyzes the voxels in the neighbor-

hood of a tracked fiber. We denote the set of voxels through which a fiber goes

by {Vi}; this set is considered to be certainly part of the tracked fiber bundle.

The idea of our algorithm is that a neighboring voxel R is considered to be very

likely part of the bundle if the main eigenvector of the tensor at R has, with little

uncertainty, similar direction to the direction of a tensor at a voxel V ∈{Vi}. If

the angle between the directions of the main eigenvectors at R and V increases,

or if there is high uncertainty in the direction of R or V due to noise or isotropic

tensors, we consider R to be less likely part of the bundle. Let us denote the

main diffusion directions at R and V by q1R and q1V , with covariance matrices

Σq1R
and Σq1V

, respectively. Mathematically, we compute the distance between

R and V as the cosine of the angle between the vectors qT
1R and q1V , scaled by
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the average variance of the average covariance matrix

c(R, V ) =
qT
1R q1V

1 + 1
3
· trace

(
Σq1R

+Σq1V

2

)

which in the case of covariance matrices Σq1R
and Σq1V

close to 0 simply results

in the cosine of the angle between the two diffusion directions. Finally, the

plausibility of R being part of the tracked fibers at {Vi} is computed as

d(R, {Vi}) = max
i

(

1−
1

π/2
· acos (c(R, Vi))

)

which takes values in the interval [0, 1] with higher values corresponding to a

higher plausibility of being part of the tracked fiber bundle. The plausibility at

voxels {Vi} is set to 1.

2.5.3 Experimental Results

We test our border-estimating algorithm on the tracked torus-shaped bundle from

Section 2.3 and on the tracked corticospinal tract and arcuate fasciculus from

Section 2.4, all generated using 30 different gradient directions. Color-codings

of the plausibility of a voxel to belong the modeled corticospinal tract and ar-

cuate fasciculus are shown in Figure 2.13. We also test the algorithm on a real

magnetic resonance dataset of a tumor patient (diffusion-weighted images with

TR/TE/FA=10700 ms/84 ms/90◦, voxel size is 1.80×1.80×1.98 mm, source: IEEE

Visualization Contest 2010). A slice with the color-coded plausibility map is

shown in Figure 2.14(a). The voxels with a plausibility above 0.85 are rendered

as a semitransparent hull around the tracked fibers in Figure 2.14(b).

Next, using the developed DTI phantoms, we compare different algorithms to

extend the tracked fibers to the true border of the fiber bundle. Specifically, we

generate the torus and BrainWeb phantoms using 30 gradient directions and add

noise with standard deviations of 2,4, and 6. Given the set of voxels {Vi} through

which the tracked fibers pass, we compare the following approaches which classify

a neighboring voxel as part of the bundle if:
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(a) (b)

Figure 2.13: Color coding of the plausibility of voxels in the proximity of tracked fibers
(orange regions) of belonging to the tracked fiber bundle (black regions). The modeled
ground truth is shown as a mask in the lower right corner. Voxels within 5 mm of
the tracked fibers were analyzed. (a): modeled corticospinal tract, axial view. (b):
modeled arcuate fasciculus, coronal view.

(a) (b)

Figure 2.14: (a): Color coding of the plausibility of voxels in proximity of tracked
fibers (orange regions) to belong to the tracked corticospinal tract (black regions) of a
patient with intra-cerebral metastasis (hyperintense regions). Voxels within 6 mm from
the tracked fibers were analyzed. (b): Voxels with a high plausibility are rendered as a
semitransparent hull around the tracked fibers.

• the plausibility, as described in Section 2.5.2, is above a certain threshold

• the plausibility, as described in Section 2.5.2 but without scaling by the
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average variance (thus just comparing main diffusion directions), is above

a certain threshold

• it is part of the morphological dilation of the set of voxels {Vi}

• it results from the min-cut-based approach presented in Bauer et al. [2010a]

The generated segmentation results are compared by computing the correspond-

ing Dice similarity coefficient (DSC), introduced by Zou et al. [2004]. Results

for the torus-shaped phantom are presented in Table 2.6, and results for the

BrainWeb-based phantoms are presented in Tables 2.7 and 2.8.

Noise SD 2.0 4.0 6.0

original mask given by {Vi} 0.827 0.631 0.515
new plausibility approach 0.957 0.931 0.870
angle comparison 0.941 0.901 0.794
dilation 0.852 0.780 0.647
min-cut based 0.923 0.918 0.918

Table 2.6: Comparison of DSCs for the torus-shaped phantom.

Noise SD 2.0 4.0 6.0

original mask given by {Vi} 0.651 0.640 0.676
new plausibility approach 0.832 0.805 0.776

angle comparison 0.812 0.801 0.760
dilation 0.649 0.651 0.657
min-cut based 0.731 0.712 0.698

Table 2.7: Comparison of DSCs for the corticospinal tract phantom.

2.6 Discussion

In this work, we started by generating a diffusion tensor software phantom of

a fiber bundle shaped as a torus segment. We set up a general framework to

generate DTI phantoms and suggested using the so-called “safety radius” as a
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Noise SD 2.0 4.0 6.0

original mask given by {Vi} 0.766 0.787 0.782
new plausibility approach 0.852 0.844 0.820

angle comparison 0.836 0.813 0.798
dilation 0.670 0.690 0.680
min-cut based 0.687 0.673 0.667

Table 2.8: Comparison of DSCs for the arcuate fasciculus phantom.

measure of fiber-tracking accuracy. Compared to the related work of Tournier

et al. [2002] in which the deviation of single fibers from the ideal pathway is

analyzed, the safety radius is a global measure of the tracked fiber bundle which

gives us an indication of how close the tracked fiber bundle approaches the true

border of the modeled pathway. Furthermore, in the aforementioned article,

partial-volume effects are not explicitly included in the modeling, and the Rician

distribution of magnitude MR images is only approximated. We systematically

analyzed the influence of changes in the underlying image data and fiber-tracking

parameters on the fiber-tracking error. The plot of standard deviation of the

noise vs. safety radius (Fig. 2.3(c)) suggests that for the analyzed images in

which the standard deviation of the noise is below 2, using a safety margin of 3

to 5 mm is appropriate for bundles of up to 20 cm length. Moreover, we analyzed

the spatial distribution of tracked fibers with respect to the cross section of the

fiber bundle. Fig. 2.4(b) shows that, on average, there are approximately half

as many fibers located on the outer third of the bundle’s cross section than on

the inner third, given that they are the first to leave the bundle. To address this

issue, it may be interesting to consider seed ROIs with larger densities of seed

points on their exterior. The plot shows a high symmetry between the number

of fibers on the interior portion of the fiber bundle path and on its exterior.

From Fig. 2.3(a), we notice that within the considered range, the diameter of

the fiber bundle does not seem to overly impact fiber-tracking results. Moreover,

Fig. 2.3(d) shows that increasing the number of seed points above a certain density

does not significantly improve tracking results. This suggests that multiple fibers

which choose a few preferred paths play a major role in causing the size of the

fiber bundle to be underestimated. We would like to analyze the performance
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of fiber-tracking algorithms when a minimal distance between the tracked fibers

is enforced. Fig. 2.3(b) indicates that the deflection-based algorithm works well

if the fractional anisotropy of the “white matter” tensors is above 0.25, which

should be the case for fiber bundles that do not cross. From Fig. 2.3(e), we

notice that the analyzed fiber-tracking algorithm is initially fairly stable with

respect to the used step length, and under certain noise conditions, it may be

reasonable to use a step size slightly larger than the edge of image voxels. The

reason for the difference in tracking precision when going from 5 to 6 mm step

length is not clear, although it may be due to systematic error factors in the

model, which need to be analyzed further.

Next, we focused on anatomically realistic models of the corticospinal tract

and the arcuate fasciculus. To the best of our knowledge, this was the first

attempt to create software models of specific neural fiber bundles, with curvatures

and thicknesses that vary realistically along the path. In contrast to Leemans

et al. [2005], the backbones of our fiber bundles are constructed not by linearly

connecting consecutive points, but by applying cubic spline interpolation to far

fewer control points. With our phantom, we were able to simulate image noise

and to consider the partial-volume effects caused by the possible simultaneous

presence of different white matter pathways, grey matter, and cerebrospinal fluid

in one voxel. Other tissue volumes provided by the BrainWeb project that might

be included in our phantom in later work include fat, skin, glial matter, and

connective tissue. Scenarios in which crossing or kissing fibers are modeled have

not yet been analyzed, but represent a straightforward extension of our model

and shall be the topic of future work. Similarly to Section 2.3, we systematically

changed image noise and fiber-tracking parameters and analyzed the change in

safety radius. As a general consideration, tracking results produced by means of

whole-brain fiber-tracking proved to be highly stable with respect to changing

parameters (Fig. 2.11). Computing the safety radius on different slices along

the corticospinal tract shows that the safety radius does not change significantly

when moving up the corticospinal tract (Fig. 2.12), although some dependence on

size, shape, and location of the cross section appears to be present. Figs. 2.11(a)

and 2.11(b) indicate that for sufficiently high SNR, using a safety margin of 3 to

4 mm is appropriate for the corticospinal tract, whereas up to 6 mm may be used
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for the arcuate fasciculus. Figs. 2.11(d) and 2.11(d) show the considerable effect

that the number of seed points has on tracking results. However, when performing

whole-brain tracking, a higher number of seed points may significantly increase

the computational cost of the tracking, and a lower bound for the safety radius

will eventually be reached. It appears that placing seed points on a grid with a

spacing of 1 mm may be a good trade-off between precision and computational

cost. Figs. 2.11(f) and 2.11(f) show remarkable stability of the safety radius

when using different step lengths for the tracking algorithm. The reason for the

difference when going from 3 to 4 mm in Fig. 2.11(f) is not yet clear and may

also be due to possible nuisance variables in the model, such as for example

discretization artifacts in the white matter atlas.

In Section 2.5, we suggested an efficient and easy-to-implement algorithm to

generate a fuzzy segmentation of diffusion tensor images which is used to better

estimate the precise extent of the tracked fiber bundle. To our knowledge, this is

the first DTI segmentation algorithm to consider both the main diffusion direc-

tion of neighboring voxels and the respective covariance matrices. Experimental

results on our DTI phantoms seem to confirm that when the covariance matrix of

the main diffusion direction is taken into account, improved segmentation results

may be obtained. In almost all tests, our algorithm performed better than the

other considered approaches, although our comparison is not exhaustive, and fur-

ther tests with different algorithms and images are needed. Fig. 2.13 shows exam-

ples in which considerable regions of the modeled corticospinal tract and arcuate

fasciculus were not detected by the tracking algorithm but recovered by means of

our algorithm. The upper right portion of the bundle in Fig. 2.13(a) is not fully

recovered, likely due to a considerably higher amount of grey matter in those

voxels compared to white matter, which results in an imprecise estimation of the

main diffusion direction. Inclusion of additional knowledge about partial-volume

effects may increase segmentation results. Moreover, further improvements may

be obtained when incorporating information about the spatial relations among

voxels, for example, by adding a weighted distance term as in Raj et al. [2011];

Rousson et al. [2004], or by using spectral clustering as in Ziyan et al. [2006].

Different sensible combinations of the plausibility term with a spatial regulariza-

tion term need to be carefully examined. Compared to recent fiber clustering
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algorithms such as Visser et al. [2011]; Wang et al. [2011], our algorithm is com-

putationally less expensive: Whereas a single-threaded Matlab implementation

of our algorithm produces segmentation results in less than 15 minutes on stan-

dard PC (Intel(R) Core(TM) i7 Processor), the mentioned algorithms would take

hours in the same setting. Parallelization should offer much room for additional

speed improvements. Further advantages include a complete analysis of the vox-

els in the neighborhood of tracked fibers (this may not be the case with fiber

clustering algorithms where many fibers are eliminated if they do not satisfy the

threshold conditions of the tracking algorithm) and a fuzzy segmentation, which

offers some indication about the likelihood of a voxel being part of the bundle

of interest. Nevertheless, a careful quantitative comparison between the two ap-

proaches is needed. Within our algorithm, we choose to rank voxels with a high

variance in the components of the main diffusion direction vector as less likely to

be part of the tracked fiber bundle. However, for certain applications in which

it is critical not to underestimate the extent of the bundle, it may also be useful

to classify all voxels presenting high uncertainty in the main diffusion direction,

either because of noise or isotropic tensors, as potentially part of the fiber bun-

dle. Also, the very important analysis of the case of kissing or crossing fibers has

not been dealt with yet and will be part of a future systematic analysis. The

algorithm was also tested on a real diffusion tensor magnetic resonance dataset,

giving convincing results. Based on our experience with DTI phantoms, it seems

reasonable to analyze voxels within approximately 5-7 mm of the tracked fibers.

Open questions include finding an optimal threshold parameter over the resulting

fuzzy segmentation and extending the algorithm to utilize information given by

additional tensor-derived quantities, such as trace or fractional anisotropy (and

respective uncertainties).

2.7 Conclusions

With this paper, we have gained some insight into the relationship between under-

lying image data, fiber-tracking parameters, and the capabilities of fiber-tracking.

Our analysis was restricted to the precision of a streamline tractography algo-

rithm, but should be extended to other approaches, such as probabilistic ones.
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Even though the “safety radius”, which has been used as measure of accuracy,

is not directly applicable to real data where the ground truth is unknown, the

presented analysis should be useful in assessing the necessary image quality and

proper parameters for fiber-tracking. We have introduced new ideas for gener-

ating realistic DTI phantoms and would like to build upon them. In order to

improve the estimate of the true border of a tracked fiber bundle on both simu-

lated and real MR data, we suggested a fuzzy DTI segmentation algorithm which

analyzes the differences in main diffusivities between tensors and the respective

uncertainties. Segmentation results were visualized in 2D as color-coded plausi-

bility maps around tracked fibers and in 3D as semi-transparent confidence hulls.

We hope this information will be useful to clinicians to better assess the precision

and reliability of fiber-tracking results.
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Chapter 3

DTI Segmentation via the

Combined Analysis of

Connectivity Maps and Tensor

Distances

This chapter of the thesis is based on the publication Barbieri et al. [2012a].

3.1 Abstract

We describe a novel approach to extract the neural tracts of interest from a

diffusion tensor image (DTI). Compared to standard streamline tractography,

existing probabilistic methods are able to capture fiber paths that deviate from

the main tensor diffusion directions. At the same time, tensor clustering methods

are able to more precisely delimit the border of the bundle. To the best of our

knowledge, we propose the first algorithm which combines the advantages sup-

plied by probabilistic and tensor clustering approaches. The algorithm includes

a post-processing step to limit partial-volume related segmentation errors. We

extensively test the accuracy of our algorithm on different configurations of a DTI

software phantom for which we systematically vary the image noise, the number

of gradients, the geometry of the fiber paths and the angle between adjacent and
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crossing fiber bundles. The reproducibility of the algorithm is supported by the

segmentation of the corticospinal tract of nine patients. Additional segmenta-

tions of the corticospinal tract, the arcuate fasciculus, and the optic radiations

are in accordance with anatomical knowledge. The required user interaction is

comparable to that of streamline tractography, which allows for an uncomplicated

integration of the algorithm into the clinical routine.

3.2 Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging method which,

at each voxel, models the three-dimensional motion of protons in water molecules

by a normal distribution of 0-mean and the covariance matrix of which is pro-

portional to the diffusion tensor (Basser et al. [1994b], Pierpaoli and Basser

[1996]). Assuming that in white matter (WM) regions, where diffusion is highly

anisotropic, the principal diffusion direction matches the orientation of the cor-

responding underlying fiber system, the 3D architecture of WM fiber pathways

may be reconstructed in-vivo. This can be accomplished by fiber tracking (FT)

algorithms (see Basser [1998], Mori et al. [1999]), which may, however, under-

or overestimate the spatial extent of fiber bundles, as demonstrated by Huang

et al. [2004] and Kinoshita et al. [2005]. For an overview of current tractogra-

phy techniques, see Johansen-Berg and Behrens [2009]. While deterministic FT

algorithms generally output a set of streamlines which describe the course of the

tracked fiber bundle, probabilistic approaches generate a connectivity map (also

called a tractogram) which describes the probability of a connection existing be-

tween an image voxel and a given region of interest (ROI). Direct segmentation

of the tensor field, for example via tensor clustering, represents an alternative

possibility to extract fiber bundles which allows for the exploitation of the coher-

ence that exists (at least locally) between tensors belonging to a specific structure.

Several examples of probabilistic FT techniques, DTI segmentation algorithms as

well as the contributions of our approach are discussed in the following sections.

In order to illustrate the aim of this study, Fig. 3.1 shows schematic tract

extraction results based on different techniques. In Fig. 3.1(a) a tensor clustering

approach is employed which is not able to determine that isotropic tensors in

53



3. DTI SEGMENTATION VIA THE COMBINED ANALYSIS OF

CONNECTIVITY MAPS AND TENSOR DISTANCES

the region of crossing fibers are part of the bundle. In Fig. 3.1(b) we display a

connectivity map: it is very difficult to determine the exact border of the fiber

tract based solely on this tractogram. In Fig. 3.1(c) the segmentation result is

generated using the hereby proposed method, which combines the complementary

information obtained via tensor clustering and the connectivity map.

(a) (b) (c)

Figure 3.1: (a) Example segmentation of the fiber bundle running in the y direction
based solely on tensor clustering. The white square delimits the seed ROI. The seg-
mented region is displayed in green. (b) Example connectivity map associated with
the ROI delimited by the white square. (c) Example correct segmentation computed
using the proposed algorithm which combines the information given by the computed
distances between tensors and the information given by the connectivity map.

To investigate the validity and precision of reconstructed white matter path-

ways, hardware or software phantoms, which constitute a model with a known

fiber network, may be used (compare Gössl et al. [2002], Lori et al. [2002], Fiere-

mans et al. [2008], Fillard et al. [2011]). In this work, we employ software phan-

toms to validate our segmentation approach because they can be easily modified

to account for different scanner parameters, image noise, and angles between

crossing bundles, and can be used to model additional fiber bundles surrounding

the tract of interest.

3.2.1 Related Work

We now present a brief overview on publications dealing with the segmentation

of DTI data. In early work on the topic, Zhukov et al. [2003] use level-set evo-

lution to segment cerebral structures based on tensor anisotropy. Wiegell et al.
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[2003] use the Frobenius norm as a distance measure between tensors and k-means

clustering to segment thalamic nuclei. Similarly using the Euclidean distance be-

tween tensors, Wang and Vemuri [2004b] and Rousson et al. [2004] extend the

geodesic active contours model to DTI data. The works of Wang and Vemuri

[2004a] and Lenglet et al. [2004b] aim to minimize the relative entropy of the

region to be segmented. A shortcoming of the Euclidean metric is that aver-

aging leads to artificial tensor swelling, which is overcome by the introduction

of affine-invariant Riemannian metrics by Pennec et al. [2006], also employed

in this paper. Lenglet et al. [2005] employ the affine-invariant Riemannian dis-

tance in a Bayesian framework for DTI segmentation, although they represent

each class by a single Gaussian distribution on the tensor manifold. Awate et al.

[2007] employ Log-Euclidean metrics, non-parametric kernel density estimation,

and an information-theoretic formulation to achieve a fuzzy segmentation of the

tensor field. In their approach, each class is characterized by a fixed number of

tensor parameters which are iteratively updated and relies on an initialization

which captures the variety of tensors belonging to the fiber bundle. Moreover,

in case the algorithm is used to achieve a crisp segmentation, voxels presenting

partial-volume artifacts are simply considered part of the most likely region.

At the same time, research on determining quantitative tractography indices

of “connectivity” from a given ROI to other brain regions has advanced. Recent

approaches provide high robustness to noise, partial-volume artifacts, and are

able to deal with fiber crossings. A first type of algorithm based on Bayesian

models includes work by Behrens et al. [2003] and Friman et al. [2006], who

introduce stochastic tractography algorithms by modeling the local uncertainty in

fiber orientation. Parker et al. [2003] likewise infer directional uncertainty based

on the fractional anisotropy of diffusion tensors. An extension that takes into

account global information, such as priors on connections among brain regions,

has been presented by Jbabdi et al. [2007]. A drawback of these methods is the

long computation time due to the use of Markov chain Monte Carlo methods

or the extensive sampling of probability density functions. Front-propagation

methods make use of level sets (O’Donnell et al. [2002], Lenglet et al. [2004a]),

fast marching methods (Parker et al. [2002], Prados et al. [2006], Jbabdi et al.

[2008]), or iterative sweeping techniques (Jackowsky et al. [2005]) to evolve a

55



3. DTI SEGMENTATION VIA THE COMBINED ANALYSIS OF

CONNECTIVITY MAPS AND TENSOR DISTANCES

front at the seed ROI based on the information about diffusion strength and

direction given by the tensor field. A limitation of this class of algorithms is

that it is often difficult to integrate prior knowledge into the algorithm, such as

the explicit exclusion of a connection between two brain regions. Graph-based

techniques such as those by Iturria-Medina et al. [2008] and Sotiropoulos et al.

[2010] represent image voxels as graph nodes; neighboring voxels are connected

by edges weighted according to both structural and diffusivity features. The

properties of the network are studied in order to determine the probability of two

voxels being linked by a fiber pathway. In general, although connectivity maps

provide a good indication of the likelihood of a link between two brain regions,

determining a threshold value to precisely extract the connecting fiber bundle

remains an open problem.

3.2.2 Contributions

The main contributions of this paper may be summarized as follows:

• We propose a DTI segmentation algorithm which combines connectivity

information with local tensor clustering to extract a tract of interest.

• The problem of voxels being misclassified because of partial-volume artifacts

is explicitly addressed by the algorithm.

• The accuracy of the algorithm is tested on a DTI software phantom for

which we systematically vary the image noise, the number of gradients, the

fiber paths, and the angle between adjacent and crossing fiber bundles.

• The accuracy of the algorithm is analyzed in terms of differences in both vol-

ume and surface distances between segmentation result and ground truth.

• The reproducibility of the algorithm is supported by the segmentation of

the corticospinal tract of nine patients.

• We examine specific clinical issues such as the behavior of the algorithm in

the vicinity of tumors or lesions.
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• The segmentation algorithm does not require additional user interaction

compared to standard streamline tractography. The implementation de-

scribed in this paper requires under half an hour to compute the connec-

tivity map and segment the tract of interest. These considerations should

make the algorithm viable for clinical use.

3.3 Methods

In this section, we describe the proposed segmentation approach and the software

phantom used to validate it.

3.3.1 Algorithm

Let us begin by summarizing the individual steps of our algorithm, which will

later be explained in detail. First we compute a connectivity map of the tract of

interest. Although in this paper we employ a specific algorithm to generate the

tractogram, in principle it should be possible to employ any other probabilistic

FT technique. The tractogram is also used as an initial fuzzy segmentation

mask by our segmentation algorithm. The segmentation mask is then iteratively

updated according to two criteria: the connectivity information given by the

tractogram and local tensor clustering. Because the optimal threshold value on

the connectivity map used for the separation of the tract of interest from the

surrounding structures is unknown, we estimate the distribution of connectivity

values associated with the tract via nonparametric probability density function

(PDF) estimation. This technique was pioneered by Rosenblatt [1956] and Parzen

[1962] and employed in image segmentation by Mory et al. [2007]. At the same

time, we analyze the Log-Euclidean distance from a tensor to the local mean

of tensors belonging to the tract and to the local mean of tensors belonging to

surrounding structures. We update the segmentation map at each voxel to either

a higher value if these two clues indicate that the voxel belongs to the tract of

interest or to a lower value otherwise. As a regularization step, we make use of

subsequent morphological closing and opening of the segmentation mask. The

process is iterated until the algorithm converges. In a final post-processing step,
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tensors bordering the segmented tract are checked for partial-volume artifacts.

3.3.1.1 Notation and Computation of the Connectivity Map

Let us denote the diffusion tensor image by I. Furthermore, we define a fuzzy

membership function m over the domain Ω of I, which assumes values between

1 for voxels certainly belonging to the tract of interest and 0 for voxels certainly

belonging to surrounding structures.

The method used to compute the connectivity map C associated with the

tract to be segmented is based on the variational noise FT algorithm presented

by Klein et al. [2010a]. This probabilistic approach has been shown to produce

qualitatively similar results to the Bayesian FT presented by Friman et al. [2006],

albeit in a shorter time, making it appealing for clinical applications. Specifically,

the variational noise FT algorithm repeatedly adds complex Gaussian noise to

the magnitude diffusion-weighted images (see Hahn et al. [2006] for details) and

computes a deterministic FT. In this work, for each deterministic FT result we

compute a binary mask which is 1 at voxels pierced by tracked fibers and 0 else-

where. The tractogram C is given by the average of these binary masks. The

employed deterministic FT is based on the deflection-based approach by Wein-

stein et al. [1999], which is able to achieve good reconstruction results at fiber

crossings by considering the full tensor information. A detailed description of our

deterministic FT algorithm can be found in Barbieri et al. [2011b].

3.3.1.2 The Connectivity Factor

The first value used to update the membership function m at a voxel x is de-

rived from the connectivity measure C(x). The PDFs associated to distributions

of connectivity values for voxels belonging to the tract of interest and to the

surrounding structures are computed via continuous Parzen-Rosenblatt windows

as

pTRACT(C(x)) =

∫

Ω
m(y)K(‖C(x)− C(y)‖, σ) dy

∫

Ω
m(y) dy

pNOT TRACT(C(x)) =

∫

Ω
(1−m(y))K(‖C(x)− C(y)‖, σ) dy

∫

Ω
(1−m(y)) dy

(3.1)

58



3. DTI SEGMENTATION VIA THE COMBINED ANALYSIS OF

CONNECTIVITY MAPS AND TENSOR DISTANCES

where the kernel K(·, σ) is a Gaussian function. Popular approaches for the

selection of an appropriate bandwidth parameter σ include methods based on

cross-validation, such as Chow et al. [1983], and plug-in methods such as Raykar

and Duraiswami [2005, 2006]. The latter is employed in this work because of

the quick computation times of this method. The basic idea underlying plug-in

methods is that the bias of an estimate PDF f̂ is written in terms of the unknown

PDF f , after which a pilot estimate of f is “plugged-in” the equation to derive

an estimate of the mean integrated squared error. The “optimal” bandwidth σ

minimizes this measure of fit. As an example, hypothetical resulting PDFs are

displayed in Fig. 3.2.

0 0.2 0.4 0.6 0.8 1
 C(x)

 

 
 p

TRACT

 p
NOT TRACT

Figure 3.2: Hypothetical resulting PDFs pTRACT(C(x)) and pNOT TRACT(C(x)). We
would expect voxels with a connectivity value higher than 0.4 to be part of the tract
of interest.

A connectivity factor fCONNECTIVITY(x) is computed as the logarithm (to reduce

the dynamic range) of the ratio between the two probabilities:

fCONNECTIVITY(x) = log

(
pTRACT(C(x))

pNOT TRACT(C(x))

)

. (3.2)

A high value for the connectivity factor at voxel x corresponds to a high confidence

that the voxel is part of the tract of interest.

3.3.1.3 The Clustering Factor

A second ingredient used to update the membership function m is the result of a

local fuzzy c-means clustering algorithm, a technique first introduced by Bezdek

[1981]. Arsigny et al. [2006] showed that the matrix logarithm describes a map-
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ping from the six-dimensional Riemannian manifold S+(3,R) of 3×3 real sym-

metric positive-definite matrices to a Riemannian manifold with zero curvature

which is diffeomorphic and isometric to the associated Euclidean vector space.

Given a candidate voxel x with neighborhood N(x), the mean tensors that rep-

resent the centers of the two possible clusters (the fiber tract of interest and the

surrounding tensors) may be computed as

MTRACT(x) = exp

(∫

N(x)

m(y) log(I(y)) dy

)

MNOT TRACT(x) = exp

(∫

N(x)

(1−m(y)) log(I(y)) dy

)

. (3.3)

Distances from the tensor at voxel x to the centers are computed as

dTRACT(x) = ‖ log(MTRACT(x))− log(I(x))‖F

dNOT TRACT(x) = ‖ log(MNOT TRACT(x))− log(I(x))‖F (3.4)

where ‖ · ‖F is the Frobenius norm. A schematic representation of the process is

presented in Fig. 3.3.

A clustering factor fCLUSTERING(x) is computed as the logarithm (to reduce the

dynamic range) of the ratio between the two distances:

fCLUSTERING(x) = log

(
dNOT TRACT(x)

dTRACT(x)

)

. (3.5)

A high value for the clustering factor at voxel x corresponds to a high confidence

that the voxel is part of the tract of interest.

3.3.1.4 Updating the Membership Function and Regularization

For the sake of efficiency, we do not need to update the membership function

at each image voxel, but may restrict ourselves to voxels that are likely part of

the tract of interest or at the outer border, i.e., voxels for which the membership

function m dilated with a structuring element B (mathematically: m ⊕ B) is

greater than 0.5. For the resulting set of voxels, the membership function is
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(a)

(b)

Figure 3.3: (a) Suppose we want to classify the red tensor I(x) according to c-means
clustering. The blue tensors have previously been classified as not being part of the
tract and the green tensors have been classified as being part of the tract. The dashed
red line represents the considered neighborhood N(x) of the red tensor. (b) A schematic
representation of the computed cluster means and their distances to the tensor I(x).
With I(x) being closer to the mean of the tract tensors, we expect it to be part of the
tract.

updated according to

m(x)← m(x) + µ · fCONNECTIVITY(x) + ω · fCLUSTERING(x) (3.6)

where µ, ω ∈ R are weights for the connectivity and clustering factors respectively.

As a regularization step, we apply a subsequent (grayscale) morphological closing

and opening with a 3×3×3 cross-shaped structuring element to the membership

function m. The process is repeated until the total change in m is smaller than

a predefined threshold.

3.3.1.5 Partial-Volume Correction

With this post-processing step, we correct for partial-volume related errors in the

segmentation. We define the outer border of the segmented object as the set of

voxels for which the membership function is smaller than 0.5, but for which the

dilated membership function m(x)⊕ B is greater than 0.5. For a voxel x out of

this set, we consider the 27-neighborhood of the tensor I(x) and find the N pairs
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of tensors (Σi,Ωi)i=1,...,N for which Σi has been classified as part of the tract of

interest, Ωi as part of the surrounding structures, and for which Σi and Ωi have

opposite coordinates with respect to x. In the Log-Euclidean setting, a geodesic

connecting these tensors is given by (Arsigny et al. [2006])

Γi(t) = exp((1− t) log(Σi) + t log(Ωi)) for t ∈ [0, 1] (3.7)

and Γi(0.5) may be considered the geodesic average between Σi and Ωi, which

we assume to be similar to a partial-volume artifact between the two tensors.

We can now consider the set of tensors belonging to surrounding structures {Ωi}

and the set of partial-volume tensors {Γi(0.5)} and classify I(x) according to the

nearest neighbor criterion:

m(x)←

{

m(x)⊕ B if mini dg(I(x),Γi) < mini dg(I(x),Ωi)

m(x) otherwise

where dg is the Log-Euclidean distance between tensors. A schematic represen-

tation of the process is presented in Fig. 3.4.

3.3.1.6 Overview of the Algorithm

We now present an overview of how the different steps of the algorithm are com-

bined and how sets of voxels are selected as candidates for classification. For all

morphological operations, we use the structuring element B given by a voxel and

its 6-voxel neighborhood. We chose this structuring element because of its small

impact on the final shape of the object mask. The closing and opening operations

are represented by • and ◦, respectively.

{Algorithm Start}

Compute the connectivity map C according to Section 3.3.1.1.

Set m0 = C.

{Main Segmentation Step}

repeat
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(a)

(b)

Figure 3.4: (a) Assume the blue and red tensors have been classified as not being part
of the tract and the green tensors have been classified as being part of the tract. We
want to check that the red tensor I(x) has not been misclassified because of partial-
volume artifacts. Neighboring tensors (dashed red line) with opposite coordinates with
respect to x (those connected by the dashed black lines) are used to compute a set of
partial-volume tensors {Γi}. (b) The distances from I(x) to both the partial-volume
tensors {Γi} and the not-tract tensors {Ωi} are computed. Being I(x) closer to a
partial-volume tensor Γi, we expect it to be part of the tract.

Determine the set of voxels S belonging to the object mask or to the outer

border; these are the voxels for which mi(x)⊕B > 0.5.

for all x ∈ S do

determine the connectivity factor fCONNECTIVITY(x) according to Section 3.3.1.2.

determine the clustering factor fCLUSTERING(x) according to Section 3.3.1.3.

update mi(x) according to Section 3.3.1.4.

end for

Regularize mi via subsequent morphological closing and opening: mi+1 =

mi •B ◦B.

until ‖mi+1 −mi‖ < ε

{Partial-Volume Correction Step}

Determine the set of voxels S belonging to the outer border of the object mask,

these are the voxels for which mi(x) < 0.5 and mi(x)⊕B > 0.5.

for all x ∈ S do
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Check for partial-volume artifacts at the border of the tracked bundle and

update mi(x) according to Section 3.3.1.5.

end for

Regularize mi via subsequent morphological closing and opening: mi+1 = mi •

B ◦B.

{Algorithm End}

3.3.2 Software Phantom

In order to test the accuracy of our algorithm, we generate a set of synthetic

diffusion-weighted images of two fiber bundles. The first bundle has the shape

of a cylinder and the second bundle has a helical path around the first bundle.

This phantom allows us to simulate DTI data corresponding to many different

configurations of adjacent fiber bundles; two examples are shown in Figs. 3.5(a)

and 3.5(b).

The diffusion-weighted signal is obtained according to the composite hindered

and restricted model of diffusion (CHARMED) by Assaf et al. [2004], Assaf and

Basser [2005], and the eigenvalues of the diffusion tensors are set according to

measurements in white matter reported by Pierpaoli et al. [1996] and Bhagat

and Beaulieu [2004]. Partial-volume artifacts are modeled by computing the vol-

ume of intersection between a voxel and the cylinder which delimits the first fiber

bundle. The signal attenuation produced by the two bundles is then weighted

accordingly. It is known from Gudbjartsson and Patz [1995] that noise in mag-

nitude magnetic resonance data is Rician distributed. As suggested by Hahn

et al. [2006], such noise distribution may be simulated in the image by computing

|E(q,∆) + Ñ(0, σ2)|, where E(q,∆) is the diffusion-weighted (DW) signal and

Ñ(0, σ2) is a Gaussian-distributed complex variable with mean 0 and variance

σ2. Using standard fitting procedures, we use the diffusion-weighted images to

compute the tensor-valued image. Example slices of the generated tensor fields

are shown in Figs. 3.5(c) and 3.5(f) together with the user-defined ROIs used

for segmentation. In order to simulate crossing (or kissing) fiber tracts a third

bundle is added to the phantom.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3.5: (a),(b) Examples of tracked cylindrical and helical fiber bundles. The
pitches of the helical paths are set to 0.2 · 2π mm and 1.8 · 2π mm, respectively. (c),(f)
Details of the DTI software phantoms corresponding to the two helical paths. The
user-defined ROIs used to initialize the segmentation are shown in white. (d),(g) The
segmentations of the cylindrical fiber bundle obtained without taking into account
partial-volume artifacts are shown in white. (e),(h) The final segmentations obtained
by means of our algorithm. Tensors presenting considerable partial-volume artifacts
are segmented correctly.

3.4 Results

In the following sections, we evaluate our segmentation algorithm in terms of

accuracy, reproducibility, and efficiency.
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3.4.1 Accuracy Analysis

The default image parameters used to generate the phantom described in Sec-

tion 3.3.2 are reported in Table 3.1. We perform five experiments in which we

independently vary one of the phantom parameters, as specified in Table 3.2,

and segment the cylindrical fiber bundle with our algorithm. When varying the

number of gradients, we use the first n gradients out of the original 30. When

varying the angle between the axis of the cylinder and the z-axis, the axis of the

cylinder always lies on the plane for which x = y.

Default value

noise standard deviation 2.5
radius of the cylinder 10 mm
pitch of the helical path 2π mm
number of gradients 30
angle between z-axis
and cylinder-axis

0 deg

voxel size 1×1×1 mm3

b value 1000 s/mm2

noise-free b = 0 intensity 70

Table 3.1: Default parameters used to generate the DTI software phantom.

start value step end value

noise standard deviation 0 0.5 5.5
radius of the cylinder 5.5 0.5 10 mm
pitch of the helical path 0 0.2 1.8 ·2π mm
number of gradients 6 3 30
angle between z-axis
and cylinder-axis

0 10 90 deg

Table 3.2: Parameter variation for the different experiments. The signal to noise
ratio (SNR) corresponding to the different noise standard deviation values ranges from
approximately 13 to +∞.

For each set of parameters, we add noise to the magnitude images and repeat

the experiment 10 times. As the seed ROI used to compute the connectivity

map C, we use a circular region perpendicular to the axis of the cylinder and of
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two thirds its radius. In our experiments, the membership function m always

converges to an approximately binary segmentation mask. If the fiber bundle is

reconstructed by means of streamline tractography, and a binary mask is com-

puted based on the tracked fibers, we obtain a Dice similarity coefficient (DSC,

see Zou et al. [2004]) between segmentation result and ground truth of approxi-

mately 0.66. For a given segmentation result, part of the surface may lie inside

the ground truth (the extent of the tract has been underestimated) or outside the

ground truth (the extent has been overestimated). Surface points may thus be

divided into inner and outer points. We define the maximal inner distance as the

maximal distance between an inner point and the ground truth surface. Similarly,

the maximal outer distance is defined as the maximal distance between an outer

point and the ground truth surface. The average distance between sampled sur-

face points and the ground truth gives the average distance between segmentation

result and ground truth. Fig. 3.6 shows boxplots of the DSCs obtained by means

of the proposed algorithm and plots of the average distance, the maximal inner

distance, and the maximal outer distance. For almost all parameter settings,

the average distance between segmentation result and ground truth is below 1

mm (or one voxel). The jumps visible in the cylinder radius vs. DSC boxplots

are likely due to different partial-volume artifacts that depend on whether the

cylinder border coincides with the voxel border or not.

In Fig. 3.7, segmentation results of fiber bundles crossing (or kissing) with

different angles of incidence are presented. In order to generate the software

phantom we set the noise standard deviation to 2.5, the b value to 1000 s/mm2

and make use of 30 gradient directions. The standard deviation σVAR of the varia-

tional noise used to generate the connectivity map is equal to 2.5. In Figs. 3.7(a)

the angle of incidence is 45 degrees. When generating the connectivity map, al-

most all streamlines deviate to the left branch and therefore the segmentation

algorithm fails to resolve the central fiber branch. In Figs. 3.7(b), (c), the angle

is 70 degrees while in Fig. 3.7(d) it is 90 degrees. In these cases, the central

fiber bundle is reconstructed correctly and exclude ROIs may be used to extract

different tracts.

In Fig. 3.8, we analyze the effect of varying the ratio µ/ω from 0 (tensor

clustering only) to +∞ (threshold on connectivity map only) when extracting
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fiber bundles crossing at 45, 70, or 90 degrees. For the purpose of comparison,

we increase σVAR to 10 in order to generate a connectivity map with which the

fibers crossing at 45◦ can be resolved. The plot indicates that for all three angles

the best segmentation result is obtained when using a ratio µ/ω of approximately

0.3.

3.4.2 Reproducibility Analysis

The small standard deviation of the boxplots in Fig. 3.6 based upon segmentation

results on the DTI software phantom indicates a good reproducibility of the

algorithm independent of the specific noise function applied to the image.

To further support the reproducibility of our algorithm independent of the

considered patient, we compute the segmentation of the right corticospinal tract

of nine subjects affected by multiple sclerosis (MS). For all patients, we place

a seed ROI in the internal capsule and two exclude ROIs (to eliminate false

positives) in the corpus callosum and the middle cerebral peduncle. The deter-

ministic tracking used to compute the connectivity map is repeated 100 times.

Segmentation results are presented in Fig. 3.9. We perform a pairwise manual

affine registration of the patient datasets and compute the DSCs corresponding to

tracts extracted via streamline FT and via the proposed segmentation approach.

Overall, streamline FT yields a DSC of 0.432 ± 0.055 (median 0.423) while the

new algorithm yields a DSC of 0.497±0.047 (median 0.499). This result indicates

that the reproducibility of the new algorithm is comparable or even better than

the one of the employed streamline FT, possibly because the new algorithm is

able to discard false positives.

We also test the performance of the algorithm depending on the size of the

neighborhood N(x). As default we employ a cube with edge length 13 mm.

We vary the edge length, compute the segmentation results on the MS patient

datasets, and compare them with the results obtained when using the default

length. A boxplot of the resulting DSCs is presented in Fig. 3.10.
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Figure 3.6: Segmentation results on the DTI software phantom. Image parameters
are set according to Tables 3.1 and 3.2. The left column shows the computed DSCs
and the right column shows the average, maximal inner, and maximal outer distances
between segmented fiber bundle and ground truth. The average distance of the initial
seed ROI to the border of the bundle is also provided.
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(a) (b) (c) (d)

Figure 3.7: Segmentation (shown in white) of fiber bundles crossing/kissing with differ-
ent angles of incidence. The position of the initial seed ROI is shown in green. Different
segmentation results may be obtained by eliminating streamlines that go through ex-
clude ROIs (shown in orange) when generating the connectivity map.
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Figure 3.8: DSCs of segmentations of bundles crossing at different angles obtained
when varying the ratio µ/ω from 0 (tensor clustering only) to +∞ (threshold on con-
nectivity map only).

3.4.3 Efficiency Analysis

The segmentation algorithm is further tested on additional datasets and used to

reconstruct different fiber bundles. Figs. 3.11 and 3.12 show the segmentation

of the corticospinal tract of one patient with intracerebral metastases and of one

with glioma. These datasets are publicly available from the IEEE Visualization

Contest 2010 website. In both cases, a direct analysis of the tensor field presented

in Fig. 3.13 suggests that the proposed algorithm may improve the determina-
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Figure 3.9: Segmentation of the right corticospinal tract of nine subjects affected
by multiple sclerosis. The parameters of the DTI acquisition sequence are as follows:
resolution = 1.80 × 1.80 × 1.98 mm3, b value = 1000 s/mm2, NEX = 2, TR/TE =
10700/84 ms, number of DW images = 31 (one b=0).
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Figure 3.10: DSCs between segmentation results obtained when setting the edge length
of the cube N(x) to 13 mm and segmentation results obtained when varying this edge
length.

tion of the distance between tract and tumor when compared with streamline

tractography.
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In Fig. 3.14, we present the segmentation of the optic tract and the arcu-

ate fasciculus of a healthy volunteer. Because the reconstruction of these fiber

bundles via streamline- or deflection-based FT is often insufficiently accurate, we

employ the global FT algorithm presented by Klein et al. [2012]. The binary seg-

mentation mask associated with the tracked fibers is smoothed with a Gaussian

kernel to simulate a “connectivity map”. This map is then used as an input to

the segmentation algorithm.

The segmentation algorithm was implemented on an Intel(R) Core(TM) i7 PC

based on a single-threaded MeVisLab implementation. The most computation-

ally intensive step of the algorithm is the initial computation of the connectivity

map via variational noise. This takes approximately 30 minutes for each case.

The main segmentation step together with the partial-volume correction step

takes between one and two minutes. Therefore the proposed technique may offer

a good compromise between the speed of streamline tractography (computational

time of a few seconds) and the precision of global optimization algorithms (com-

putational time of hours, as for example in Fillard et al. [2009], Reisert et al.

[2010]). It should be possible to achieve a considerable increase in speed in both

the computation of the tractogram (because many deterministic trackings with

noisy data are independently repeated) and the main segmentation step (because

the algorithm operates voxelwise) via parallelization. The time required by the

user to determine the seed and exclude ROIs for the deterministic trackings varies

considerably depending on the specific fiber bundle and the experience of the user.

It should be noted, however, that no new skills need to be acquired by users who

are already familiar with standard streamline tractography. The segmentation

result may be presented together with the tracked fibers as an additional source

of information.

3.5 Discussion and Conclusion

We presented a novel DTI segmentation algorithm that combines the information

provided by connectivity maps with local fuzzy c-means tensor clustering in order

to permit the extraction of neural fiber bundles. In our opinion, local tensor

clustering provides a natural way of determining the border of a fiber bundle
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(a) (b)

(c)

Figure 3.11: (a) Tractogram of the right corticospinal tract of a patient with intra-
cerebral metastases. It is difficult to determine an appropriate threshold to segment
the tract. A slice of the T1 image is shown for anatomical reference. (b) Segmentation
of the right corticospinal tract based solely on tensor clustering. Some areas of the
tract are not captured. (c) Segmentation of the right corticospinal tract based on both
the tractogram and tensor clustering. The red fibers are the result of deflection-based
FT seeded within the internal capsule. The computed segmentation result is visualized
as a semi-transparent hull around the tracked fibers. One of the metastases is shown
in green. Whereas the FT fails to show that the tumor borders the corticospinal tract,
this is made visible by the segmentation result in accordance with the tensor field data
(see Fig. 3.13(a)). The parameters of the DTI acquisition sequence are as follows:
resolution = 1.80 × 1.80 × 1.98 mm3, b value = 1000 s/mm2, NEX = 2, TR/TE =
10700/80 ms, number of DW images = 62 (two b=0).
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Figure 3.12: Segmentation of the right corticospinal tract of a patient with glioma.
The red fibers are the result of deflection based FT seeded within the internal capsule.
The computed segmentation result is visualized as a semi-transparent hull around the
tracked fibers. The glioma is shown in green. The close distance between tumor and
tract represented by the segmentation result is in accordance with the tensor field data
(see Fig. 3.13(b)). The parameters of the DTI acquisition sequence are as follows:
resolution = 1.80 × 1.80 × 1.98 mm3, b value = 1000 s/mm2, NEX = 2, TR/TE =
10700/84 ms, number of DW images = 62 (two b=0).

whose general pathway is outlined by a connectivity map. To our knowledge,

determining an optimal threshold parameter with which to extract fiber bundles

from a connectivity map is a question that has not yet been fully answered.

For this reason, we chose to employ non-parametric kernel density estimation

to determine the connectivity values associated with the bundle. The optimal

bandwidth was computed using the plug-in method presented by Raykar and

Duraiswami [2005, 2006] and, in our experiments, quickly converged to values

of approximately σ = 0.1. We have also experimented with using local, non-

parametric PDF estimation on the manifold of symmetric matrices (similarly

to Awate et al. [2007]) to perform local tensor clustering. Results were of similar

quality but required the computation of an optimal bandwidth parameter at each

voxel, greatly increasing the computational cost of the algorithm. Moreover, the

computed optimal bandwidth parameters varied greatly among different voxels,

so that it is not easy to find one bandwidth value which may be recommended

for use over the whole image.
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(a) (b)

Figure 3.13: (a) Sagittal slice detail of the case presented in Fig. 3.11. The metastasis
segmentation is shown in green, and the corticospinal tract segmentation is shown in
grey. The blue tensors (main diffusion direction along the z-axis) around the tumor
indicate that the tract borders the tumor, which could not be detected via standard
streamline tractography. (b) Sagittal slice detail of the case presented in Fig. 3.12.
The red tensors (main diffusion direction along the x-axis) between the glioma and the
segmented corticospinal tract indicate the presence of additional fiber bundles between
tumor and tract, supporting the thesis that the glioma does not border the corticospinal
tract.

The use of non-parametric PDF estimation makes the algorithm robust with

respect to image noise, as demonstrated with our DTI phantom in Fig. 3.6. There

is an apparent trend that DSCs increase when the cylinder radius becomes larger,

which can be interpreted as using a higher and higher image resolution while keep-

ing the radius of the bundle fixed. The algorithm also achieves good segmentation

results with the two adjacent fiber bundles having an increasingly similar orien-

tation. However, due to noise, tensors are increasingly misclassified, in particular

those with partial-volume artifacts. The maximal distance between segmenta-

tion result and ground truth is below 2 mm when using more than 20 gradients

(out of 30) to reconstruct the diffusion tensors, although other MR sequences

optimized to reconstruct tensors with less than 30 gradients may lead to better

results. There is a slight performance drop when the axis of the cylinder is not

aligned with the z-axis. The most likely reason for this is the use of morphological

regularization within our algorithm. This also leads to segmentation inaccuracies
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(a) (b)

Figure 3.14: Segmentation of the optic tract (a) and the arcuate fasciculus (b) of a
healthy volunteer. The fibers are tracked by means of the global FT algorithm by Klein
et al. [2012]. The computed segmentation result is visualized as a semi-transparent
hull around the tracked fibers. The parameters of the DTI acquisition sequence are as
follows: resolution = 1.80×1.80×1.98 mm3, b value = 1000 s/mm2, NEX = 2, TR/TE
= 12000/84 ms, number of DW images = 62 (two b=0).

at acute angles where fiber bundles cross, see Fig. 3.7(b). In the future, results

may be improved with the use of a level-set based formulation and regularization.

However, it is not immediately clear how a level-set formulation could be used

without losing the fuzziness of the membership function m, an important aspect

to compute c-means tensor clustering with high precision.

In Figs. 3.7 and 3.8 we illustrate the performance of our approach in the

presence of fiber bundles crossing at different angles. In particular, Fig. 3.7(a)

illustrates that a more accurate connectivity map is needed to resolve fibers cross-

ing with a small angle of incidence (less or equal to 45◦). If this angle is 70◦ or

90◦ the correct fiber path could be extracted. Additionally, Fig. 3.8 shows how

the presented algorithm achieves superior segmentation results when compared

to a pure tensor clustering or a pure connectivity map thresholding approach. As

part of future work, we would like to analyze whether our method can be used to

further improve tract extraction results produced by global fiber tracking tech-

niques such as Fillard et al. [2009] or Reisert et al. [2010]. We may note, however,

that although global approaches possibly offer a more precise reconstruction, the

76



3. DTI SEGMENTATION VIA THE COMBINED ANALYSIS OF

CONNECTIVITY MAPS AND TENSOR DISTANCES

current runtime of these approaches is still several hours, and therefore integra-

tion into the clinical routine is difficult. In a similar way, our algorithm could be

used to correct for imprecision resulting from registering MR data to white mat-

ter parcellation atlases as described by Mori et al. [2008] or Zhang et al. [2009].

The registered volumes would need to be smoothed to simulate a “connectivity

map”.

Let us mention that the use of the presented software phantom is not restricted

to DTI, but may also be used to fit multi-tensor or high angular resolution dif-

fusion imaging (HARDI) data to the generated diffusion-weighted images. The

extension of our segmentation algorithm to HARDI data should be straightfor-

ward. For example, the connectivity map may be computed as described by De-

scoteaux et al. [2009] and the distance between orientation distribution functions

(ODFs) may be computed as illustrated by Descoteaux and Deriche [2009], i.e., by

computing the Euclidean distance between the corresponding vectors of spherical

harmonics coefficients.

In Fig. 3.9, we showed the reproducibility of segmentation results with several

patient datasets. Compared to a similar study, when segmenting HARDI datasets

presented by Descoteaux and Deriche [2009], our algorithm appears to more reli-

ably segment the dominant diffusion paths starting from a seed ROI within the

corticospinal tract. It is noticeable how lateral projections of the corticospinal

tract are not captured by the algorithm. The problem may be addressed by using

multiple seed ROIs, or by using different algorithms such as Jbabdi et al. [2007]

or Sotiropoulos et al. [2010] to generate the connectivity map. In some subjects,

parts of the anterior-posterior running superior longitudinal fasciculus are also

reconstructed; this could be avoided via the use of additional exclude ROIs. It is

important to stress that the quality of the segmentation result strongly depends

on the quality of the underlying connectivity map.

Robustness with respect to the size of the local neighborhood is supported by

the data presented in Fig. 3.10. Within a reasonable range, segmentation results

present only small variations. Compared to Awate et al. [2007], the presented

approach operates a truly local clustering and does not characterize each class

by a set of tensors. Therefore, it performs well in capturing the variability of the

data on the manifold of symmetric matrices. This is demonstrated by the many
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segmentation examples computed on patient data and the direct analysis of the

corresponding tensor field. Moreover, by using information from a connectivity

map, our algorithm is able to capture groups of tensors that may be significantly

different from the group of tensors used to initialize the segmentation. We also

examined the efficiency of the algorithm and conclude that, although the com-

putational cost is relatively high, the computation can be performed offline and

requires no additional effort by the user when compared to standard streamline

tractography. From a clinical perspective, we expect the algorithm to be partic-

ularly useful for glioma patients, because it could be used to precisely determine

the distance between a specific tract and tumor even if edema or white matter

infiltration occurs. A systematic evaluation of the algorithm on glioma patients

will be part of future work.

We hope that this article will prompt further research into how information

produced by connectivity maps and tensor clustering approaches can be inte-

grated in a meaningful way to extract neural fiber bundles with a known maximal

error.
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Chapter 4

Atlas-Based Fiber

Reconstruction from Diffusion

Tensor MRI Data

This chapter of the thesis is based on the publication Barbieri et al. [2012b].

4.1 Abstract

Purpose: Develop a neural fiber reconstruction method based on diffusion tensor

imaging which is not as sensitive to user-defined regions of interest as streamline

tractography.

Methods: A simulated annealing approach is employed to find a non-rigid trans-

formation to map a fiber bundle from a fiber atlas to another fiber bundle which

minimizes a specific energy functional. The energy functional describes how well

the transformed fiber bundle fits the patient’s diffusion tensor data.

Results: The feasibility of the method is demonstrated on a diffusion tensor soft-

ware phantom. We analyze the behavior of the algorithm with respect to image

noise and number of iterations. First results on the datasets of patients are pre-

sented.

Conclusions: The described method maps fiber bundles based on diffusion ten-

sor data and shows high robustness to image noise. Future developments of the
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method should help simplify inter-subject comparisons of fiber bundles.

4.2 Introduction

Diffusion tensor imaging (see Basser et al. [1994b], Pierpaoli and Basser [1996])

is a magnetic resonance technique which measures the strength and direction of

water molecule diffusion. Assuming that the main diffusion direction in an im-

age voxel matches the average direction of the underlying fiber network, fiber

tracking (FT) methods have been developed to reconstruct neural fiber bundles

non-invasively and in-vivo. An overview of current tractography techniques can

be found in Johansen-Berg and Behrens [2009]. Fiber tracking has increasingly

gained acceptance as a pre- and intra-operative clinical tool used to determine,

for example, positions of relevant neural tracts in relation to a tumor to be re-

sected. In particular, streamline FT methods (Basser [1998], Mori et al. [1999]),

which start from a given region of interest (ROI) and propagate streamlines along

the main diffusion directions of the diffusion tensors, enjoy widespread clinical

use. This is possibly due to their quick computation times and the deterministic

outputs they produce. A drawback of this type of algorithm is that the tracking

result can be very sensitive with respect to the location and size of the starting

ROIs chosen by the user (Hattingen et al. [2009]). Once the tracking has been

performed, additional ROIs are often needed to exclude false positive streamlines,

resulting in extensive post-processing operations.

In recent years, several atlas-based fiber reconstruction methods have been

proposed. They are generally less dependent on user defined ROIs than stream-

line FT. These atlas-based methods start by computing a group averaged dif-

fusion tensor image (DTI) which is then segmented to generate a parcellation

map. Lawes et al. [2008] determine anatomical labels of cortex regions, manually

at first and then in a refined manner via streamline tractography. Tract recon-

struction is achieved by mapping the anatomical labels onto a patient’s DTI and

determining all streamlines with specific start and end regions. In Mori et al.

[2008], a white matter parcellation map (WMPM) is constructed by manually

segmenting several tracts of interest based on the underlying color-coded orienta-

tion map. It is suggested that the WMPM can be registered to a patient’s dataset
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to either automatically determine the location of specific tracts or as a reference

for manual ROI-based segmentation. In Yushkevich et al. [2008]; Zhang et al.

[2009], streamline FT is employed on the averaged DTI, which is then registered

onto the patient’s DTI. For tract reconstruction, the registration transformation

is applied to a binary mask derived from the tracked fibers.

In this work, we propose to start from a precomputed atlas of fiber bundles

which are mapped onto the DTI data of the patient. In our opinion, focusing

on mapping specific fiber bundles instead of a whole DTI should lead to com-

putationally less expensive shape-consistent reconstructions. No post processing

operations are needed once a fiber bundle has been “registered”. Details about

the suggested algorithm can be found in Section 4.3. Results of both synthetic

and patient data are presented in Section 4.4. Current limitations and possible

future improvements of the method are discussed in Section 4.5.

4.3 Methods

We now describe the proposed reconstruction approach. An overview of the algo-

rithm and of how the individual steps are combined is presented in Algorithm 1.

4.3.1 Fiber Representation

In this article a “fiber bundle” F denotes a set of m fibers {fj}j=1,...,m. We

represent a fiber fj as a tuple of nj points:

fj = (P1j , P2j , P3j , . . . , Pnj
) (4.1)

where P1j is the starting point of fj and Pnj
its endpoint. Each fiber point is

connected linearly to the next. Thus, we may associate a vector −→vij to each fiber

point Pij (but the endpoint), defined as

~vij = Pi+1j − Pij for 1 ≤ j ≤ m, for 1 ≤ i < nj . (4.2)

Without loss of generality, we shall assume in the following that the distance

between fiber points is constant. Whenever a transformation alters the distance
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between points, fibers are linearly resampled to maintain the assumption’s valid-

ity.

4.3.2 Fiber Atlas

Our fiber atlas consists of various tracked fiber bundles. The tracking was per-

formed based on the DTI data (resolution = 1.80× 1.80× 1.98 mm3, b value =

1000 s/mm2, TR/TE = 12000/84 ms, two repetitions with one b=0 image and 30

gradient directions each) of a single healthy volunteer using the global approach

by Klein et al. [2012]. The tracked bundles include the arcuate fasciculus, the

visual pathways, and fibers of the corticospinal tract originating from the hip,

leg, hand, and face areas of the primary motor cortex (PMC).

4.3.3 Energy Functional

Consider a fiber bundle F from the fiber atlas and the diffusion tensor image

I : R3 → S+(3,R), where S+(3,R) is the six-dimensional Riemannian manifold

of 3×3 real symmetric positive-definite matrices. Our goal is to find a mapping

Γ from a fiber bundle F to another fiber bundle Γ(F ) which minimizes a specific

energy functional E(Γ(F ), I). In this work the mapping Γ preserves the number

of tracked fibers but not necessarily their length (which, after resampling, cor-

responds to the number of points that define the individual fibers). The energy

functional measures the match between the transformed fiber bundle and the

main diffusion directions at the corresponding locations. It is defined as follows:

E(Γ(F ), I) =
m∑

j=1

nj−1∑

i=1

(
− log

(
~vij

T I(Pij) ~vij
))

nj − 1
(4.3)

where T indicates the transpose operation, nj indicates the number of points

which define the j-th fiber and I(Pi) is determined via nearest-neighbor interpo-

lation. The energy functional is normalized with respect to the total number of

fiber points.

In regions where two fiber bundles cross, diffusion tensors are generally disc-
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shaped. As no main diffusion direction is defined within this region, a minimiza-

tion of the energy functional will not favor fibers running in a specific direction.

Instead, the path of the mapped fiber bundle will be determined by the smooth-

ness constraint imposed on the mapping Γ and by the main diffusion directions in

regions adjacent to the fiber crossing. The same holds for a region infiltrated by

a tumor and characterized by isotropic diffusion. However, the registration result

is also influenced by the mean diffusivity in this region. If the mean diffusivity is

high, a minimization of the energy functional will lead to fibers that go through

the infiltrated region. If the mean diffusivity is low, fibers will bend around the

tumor. Therefore, if the user is confident that fibers do not pass through a spe-

cific lesion (e.g., in the case of a metastasis), it may be useful to explicitly force

fibers to bend around the lesion by weighting the corresponding diffusion tensors

so that their mean diffusivity is decreased.

4.3.4 Simulated Annealing

To minimize the energy functional defined in Equation 4.3, we employ a strategy

based on simulated annealing. Simulated annealing (Kirkpatrick et al. [1983];

C̆erný [1985]) is a probabilistic metaheuristic: it iteratively adds a random per-

turbation to a given initial state. The decision to move to the new state depends

on whether this state corresponds to a lower energy level or not and on the value

of an artificial temperature variable T which decreases with each iteration. When

the temperature is high, the decision to move to the new state is almost random;

when the temperature decreases, “downhill” moves are increasingly favored. The

main advantage of simulating annealing compared to “greedy” algorithms is that

it is relatively robust with respect to solutions being trapped in local minima.

Depending on the fiber bundle to be reconstructed, we choose the correspond-

ing tract from the fiber atlas and manually register it onto the patient’s diffusion

tensor image. During the manual registration process, we allow for the bundle to

be translated, scaled, and rotated. The result is used as the initial state of the

simulated annealing approach.
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4.3.4.1 Candidate Generation

Next, we illustrate how the current state is perturbed during the simulated an-

nealing process. Similarly to the initial manual registration step, we apply a

combination of translation, scaling, and rotation to the current fiber bundle.

However, within the suggested approach, these operations do not necessarily act

globally on the whole fiber bundle, but may also have a “local” effect on it,

depending on a scale parameter σscale. The concatenation of “local” linear opera-

tions ultimately results in a non-rigid deformation of the original bundle from the

fiber atlas. To apply one of the mentioned linear operations to the current fiber

bundle, we start by randomly selecting (according to a uniform distribution) one

fiber point, which we shall denote by Pcenterj for a fixed j. This point corresponds

to the location along the j-th fiber of the bundle, where the effect of the local

transformation is the strongest. The transformation of the remaining points of

the j-th fiber is computed depending on the points’ distances to Pcenterj . To com-

pute a coherent transformation along the whole bundle, we determine the point

which lies closest to Pcenterj for each fiber. We thus obtain a center point for each

fiber of the bundle and may assign a weight wij to each fiber point. This weight

determines the strength of the transformation at the point and is computed as

follows:

wij =
G(Pij , Pcenterj , σscale)

G(Pcenterj , Pcenterj , σscale)
for 1 ≤ j ≤ m, for 1 ≤ i ≤ nj (4.4)

where G(·, µ, σ) denotes a Gaussian function with mean µ and standard deviation

σ. The following sections detail how the single transformations are applied to the

bundle.

Translation. The random translation magnitude ~t is sampled from the 3-

D Gaussian distribution N(·,~0, σtranslation). The parameter σtranslation reflects the

expected magnitude. The translated points are determined according to

P ′
ij
= Pij + wij · ~t (4.5)

Examples of global and local translations are displayed in Figs. 4.1(a) and 4.1(d).

Scaling. The random scaling magnitude ~s is sampled from the 3-D Gaussian

84



4. ATLAS-BASED FIBER RECONSTRUCTION FROM

DIFFUSION TENSOR MRI DATA

distribution N(·,~1, σscaling). The parameter σscaling reflects the expected magni-

tude. The scaled points are determined in two steps. First, the scaling is applied

to the vectors ~vij :

~v′ij = wij · ~s ∗ ~vij (4.6)

where ∗ indicates the component-wise vector product. Next, the new position of

the fiber points is determined via

P ′
ij
=







Pcenterj −
centerj−1∑

i′j=ij

~v′i′j
if ij ≤ centerj

Pcenterj +
centerj∑

i′j=ij

~v′i′j
else

(4.7)

Examples of global and local scalings are displayed in Figs. 4.1(b) and 4.1(e).

Rotation. The random rotation angle ~r is sampled from the 3-D Gaussian

distribution N(·,~0, σrotation). The parameter σrotation reflects the expected magni-

tude of the rotation angles. The components of ~r represent the angles of rotation

around the x-,y-, and z-axes, we weight them by wij and determine the corre-

sponding rotation matrices Rx,Ry, and Rz at each fiber point. The rotated points

are again determined in two steps. First, the rotation is applied to the vectors

vij :

~v′ij = Rx(wijr1)Ry(wijr2)Rz(wijr3)~vij (4.8)

Similar to the scaling transformation, the new positions of the fiber points are then

determined according to Equation 4.7. Examples of global and local rotations are

displayed in Figs. 4.1(c) and 4.1(f).

4.3.4.2 Cooling Schedule and Acceptance Probabilities

Denote the current iteration by iter and the maximum iteration number by

itermax. The perturbed fiber bundle Γ(F ) corresponds to a new energy Enew.

We keep track of the fiber bundle Fbest corresponding to the overall lowest energy

Ebest. The current temperature T is computed as

T(iter) = exp

(

−10
iter

itermax

)

. (4.9)
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(a) (b) (c)

(d) (e) (f)

Figure 4.1: Various transformations applied to an original fiber bundle displayed in
orange. The result of the transformation is displayed in light blue. The length of
the straight orange bundle in Fig. (d) is 80 mm, and the spacing between fibers is 1
mm. The top row shows global transformations, while the bottom row shows local
transformations with σscale = 40 mm. In detail: (a) Global translation using ~t =
(4.5, 4.5, 0) mm. (b) Global scaling using ~s = (1.4, 0.9, 0). (c) Global rotation using
~r = (0, 0,−30)◦. (d) Local translation using ~t = (15, 0, 0) mm. (e) Local scaling using
~s = (1.4, 0.9, 0). The transformation is centered where the fibers bend to the right. (f)
Local rotation using ~r = (0, 0,−30)◦.
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The corresponding cooling schedule is illustrated in Fig. 4.2. The probability p
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Figure 4.2: The employed cooling schedule computed according to Equation 4.9. In
this example, itermax = 1000.

of moving to the new state is computed as

p(T) = exp

(
Eold − Enew

T

)

. (4.10)

If a random number r sampled from a uniform distribution over the interval [0, 1]

is smaller than p, the algorithm moves to the new state. Therefore, while the

cooling process takes place, the likelihood of moving to a state which corresponds

to a higher energy decreases. We always move to the new state if Enew < Eold.

The simulated annealing process is repeated in a coarse-to-fine manner by using

scale parameters of decreasing value σscale big, . . . , σscale small.

4.3.5 Optional Transformation Restrictions

We mentioned that the initial state of the simulated annealing approach is given

by a manual registration of the fiber bundle from the atlas onto the diffusion

tensor image of the patient. Our confidence in the exactness of the manual

registration result is likely to vary depending on the considered fiber tract and

brain region. Where the manual registration result is believed to be correct, we

may limit the effect of the transformation Γ on the current state F : the new

state is given by F within user-defined ROIs, whereas we smoothly transition to

Γ(F ) when moving away from these ROIs. For example, when reconstructing the
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Algorithm 1 Algorithm for atlas- and DTI-based fiber reconstruction

Require: the relevant fiber bundle F from the fiber atlas
Require: maximum iteration number itermax

Require: scale parameters [σscale big, . . . , σscale small]
Require: transformation magnitude parameters σtranslation, σscaling, σrotation

{Algorithm Start}
{Initialization}
perform manual affine registration of F onto I
Fbest ← F
Eold ← E(F, I)
Ebest ← E(F, I)
{Reconstruction Step}
for σscale ∈ [σscale big, . . . , σscale small] do
for iter = 1→ itermax do

select a transformation Γ between translation, scaling, and rotation
compute Γ(F ) according to Section 4.3.4.1
resample Γ(F ) with equidistant fiber points
{Compute corresponding energy}
Enew ← E(Γ(F ), I)
{Decide whether to move to the new state}
select random r from uniform distribution over [0, 1]
compute temperature T according to Eq. 4.9
compute probability p(T) according to Eq. 4.10
if r < p then

F ← Γ(F )
Eold ← Enew

{Check whether it is the best}
if Enew < Ebest then

Fbest ← Γ(F )
Ebest ← Enew

end if

end if

end for

end for

return Fbest

{Algorithm End}
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corticospinal tract, we keep the manual registration result within the brainstem,

or when reconstructing the visual pathways, we are generally able to locate the

optic chiasm and therefore do not allow transformations in this region.

4.4 Results

We start by testing our algorithm on a DTI software phantom. The dataset is gen-

erated using control points and cubic spline interpolation as described by Barbieri

et al. [2011b] and takes into account partial-volume artifacts between tensors. As

suggested by Hahn et al. [2006], we simulate Rician distributed image noise by

computing |IDW + Ñ(0, σnoise)|, where IDW is the diffusion-weighted signal and

Ñ(0, σnoise) is a Gaussian-distributed complex variable with mean 0 and standard

deviation σnoise. Using standard fitting procedures, we compute the tensor-valued

image based on the diffusion-weighted images. Table 4.1 reports the default pa-

rameters used to generate the DTI software phantom and to reconstruct the fiber

bundle. Fig. 4.3 shows slices of the synthetic dataset in which the x-,y-, and

z-components of the main diffusion direction have been mapped to red, green,

and blue (RGB) color values, respectively. Figs. 4.3(a)-4.3(d) show various stages

of the fiber reconstruction process. In Fig. 4.3(e), a second fiber bundle has been

added to the synthetic dataset, resulting in a region of disc-shaped tensors where

the fibers cross. Due to noise, the main diffusion direction in this region is basi-

cally random. The reconstruction result is very similar to the previous one-bundle

example, indicating robustness of the algorithm with respect to fiber crossings.

Fig. 4.3(f) shows a simulation of a tumor which is characterized by a low mean

diffusivity and cuts into the synthetic fiber bundle.

In Fig. 4.4(a), we report the lowest energy values Ebest determined when

reconstructing the fiber bundle with different levels of image noise. The standard

deviation of the noise varies between 0 and 5.5 by increments of 0.5 (corresponding

SNR between +∞ and approximately 13), and for each standard deviation value,

the reconstruction is repeated 10 times. The initial energy is approximately 0.3

for all experiments. In Fig. 4.4(b), we similarly vary the number of iterations

used to reconstruct the fiber bundle. These range from 25 to 300 by increments

of 25.
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Next, we consider the diffusion tensor images of two patients. These datasets

are publicly available from IEEE Visualization Contest 2010. The parameters

of the DTI acquisition sequence for the first patient are as follows: resolution =

1.80× 1.80× 1.98 mm3, b value = 1000 s/mm2, NEX = 2, TR/TE = 10700/80

ms, two repetitions with one b=0 image and 30 gradient directions each. The

same parameters are used for the second patient but with TE=84 ms. The first

patient is affected by intra-cerebral metastases. Reconstructions of part of the

right corticospinal tract, of the visual pathways, and of the left arcuate fasciculus

are presented in Fig. 4.5. Fig. 4.6 supports the claim that the transformed corti-

cospinal tract better matches the underlying tensor data. The second patient is

affected by a glioma. In Fig. 4.7, the part of the corticospinal tract originating

from the hip and leg area of the PCM has been reconstructed and is compared

to a streamline tractography result seeded within the internal capsule.

Default value

noise standard deviation 2.5 (SNR=28)
radius of the bundle 13 mm
number of gradients 30
voxel size 1×1×1 mm3

b value 1000 s/mm2

noise-free b = 0 intensity 70
maximum iteration num-
ber

300

transformation scales [640, 320, 160, 80, 40] mm

Table 4.1: Default parameters used to generate the DTI software phantom and to
reconstruct the fiber bundle.

4.5 Discussion

We developed a method to map fiber bundles from a fiber atlas onto the DTI

dataset of a patient. To the best of our knowledge, it is the first method to solve

this specific problem. In the presented experiments, we start by performing a

manual affine registration of the fiber bundles from the fiber atlas onto the DTI

dataset of a patient. This step may be simplified in the future by employing
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(a) (b) (c)

(d) (e) (f)

Figure 4.3: Reconstruction of a synthetic fiber bundle. The size of the image is
100 × 100 × 40 mm3. (a) shows the fiber bundle initialization and a color-coding of
the main diffusion directions of the tensor field. (b), (c) and (d) show subsequent
reconstruction results after setting σscale = 640 mm, σscale = 320 mm, and σscale = 40
mm, respectively. (e) shows the reconstruction result after a crossing fiber bundle has
been added to the synthetic dataset. In (f), a tumor which cuts into the synthetic fiber
bundle has been simulated.

automatic brain registration methods such as the one by Han and Park [2004].

Next, in Equation 4.3, we formulate an energy functional to be minimized via

a simulated annealing procedure. The energy value corresponds to how well the

transformed fiber bundle fits the underlying tensor data. Tensor values along

the streamlines are so far determined by using nearest neighbor interpolation, al-

though a future improvement could include linear or log-Euclidean (Arsigny et al.

[2006]) interpolation of the tensor data. Our approach operates in a multi-scale

manner: it starts by applying global linear transformations to the fiber bundle,

followed by more and more local transformations. The possibility of choosing the
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Figure 4.4: Values of the lowest energy value Ebest versus the standard deviation of
the noise corrupting the DTI software phantom (a) and versus the maximum iteration
number (b). The initial energy is approximately 0.3 for all experiments. The default
parameters used to generate the phantom are reported in Table 4.1.

various transformation scales allows an elastic “registration” without running into

over-fitting problems. Currently we perform a fixed number of iterations for each

spatial scale. For future improvement, the computation time may be reduced

by advancing to the next spatial scale when the energy decrease between suc-

cessive iterations is smaller than a predefined threshold. Also, the possibility of

simulating multiple cooldowns (instead of only one) at each spatial scale may be

investigated. The final (backward) transformation of the fiber bundle from the

atlas to the patient is given by a concatenation of linear operations applied to

the fiber points and the line segments connecting them. Therefore, the inverse

(forward) transformation from the patient to the atlas can be readily obtained if

we track the center, scale, and type of applied transformations. Some inaccura-

cies in the forward transformation may arise due to the resampling, which keeps

the distance between fiber points constant.

Fig. 4.3 illustrates the ability of the algorithm to deal with regions of low

anisotropy (from either a fiber crossing or an infiltrating tumor) or with a tumor

region where diffusion is low. When dealing with a non-infiltrating tumor (such

as a metastasis), better results may be obtained by weighting the diffusion ten-

sors by their fractional anisotropy so that regions of low anisotropy are severely

penalized by the energy functional. In Fig. 4.4 we analyze the performance of

the suggested approach on synthetic data when varying the level of image noise
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(a) (b)

(c)

Figure 4.5: Reconstructions of the corticospinal tract (a) (hip and leg, hand, and face
areas of the PMC), of the visual pathways (b), and of the arcuate fasciculus (c) of a
patient with intra-cerebral metastases. The original fiber bundles from the fiber atlas
are displayed in orange, while the transformed bundles are displayed in light blue. One
of the metastases is shown in green.

and the number of iterations. Because the energy functional is computed glob-

ally on the whole fiber bundle, as expected the algorithm performs well also in

the presence of considerable image noise. Approximately 150 iterations appear
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(a) (b)

Figure 4.6: The corticospinal fibers presented in Fig. 4.5(a) are displayed on top of
the color-coded diffusion tensor image before (a) and after (b) transformation.

to be sufficient to reconstruct the fiber bundle on the given synthetic data. In

Figs. 4.5 and 4.6, we present first reconstructions of the corticospinal tract, visual

pathways, and arcuate fasciculus of a patient with intra-cerebral metastases. The

visual pathways have been reconstructed simultaneously. If the user is interested

in the simultaneous mapping of fiber bundles which vary considerably in size,

it should be reasonable to weight the contributions to the energy functional ac-

cording to the size of the bundles. Otherwise, large-scale transformations which

provide a good fit for the larger bundles but not for the smaller bundles could

be accepted. Compared to streamline tractography approaches such as Basser

[1998] and Mori et al. [1999], the suggested approach does not require the user to

define seed- or exclude-ROIs. However, we make use of ROIs to reduce the search

space of possible transformations and reduce the risk of the simulated annealing

approach terminating in a local minimum. Fig. 4.7 illustrates the reconstruc-

tion of a corticospinal tract considerably displaced by a glioma by means of our

method. Visually the result is comparable to a reconstruction obtained by means

of streamline FT seeded within the internal capsule.

The approach by Lawes et al. [2008] automatically determines the anatomical

regions of the cortex to be used as start and end ROIs. This also leads their
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(a) (b)

(c)

Figure 4.7: (a) Reconstruction of the dominant part of the right corticospinal tract of
a patient with glioma by means of streamline FT seeded within the internal capsule.
The glioma is shown in green. Reconstruction via the proposed method is illustrated
in (b) and (c). The original fiber bundles from the fiber atlas are displayed in orange,
while the transformed bundles are displayed in light blue.

algorithm to be sensitive to inter-subject variability, because boundaries between

regions may not necessarily be in the same position in different individuals. By

relying on streamline FT, additional ROIs may still be needed to resolve crossing
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fibers or to eliminate fibers which continue into other pathways terminating into

the same region. These operations are not needed with our algorithm. Mori

et al. [2008] present a manually segmented white matter parcellation map which

can be registered onto the DTI of a patient. Although very useful for anatomical

orientation, the atlas can only provide a coarse fiber reconstruction, because often,

only parts of fiber bundles could be delineated on the color-coded orientation

map. In Yushkevich et al. [2008]; Zhang et al. [2009], a DTI atlas is registered

onto the DTI of a patient together with the binary mask derived from tracked

streamlines. This appears to be a viable alternative for tract reconstruction

without the need of user defined ROIs, however, it is restricted to non-branching

sheet-like structures that can be effectively modeled by medial representations and

may not be adequate to reconstruct fiber bundles which are considerably displaced

due to lesions. Comparing the computational expense, we expect our algorithm to

be faster: while the reconstructions presented in this paper took approximately 30

minutes to compute using a single-threaded Matlab implementation, the elastic

registration of DTIs can be computationally quite expensive (compare Barbieri

et al. [2009]). Moreover, the effect of the transformation on the registered tensors

poses a modeling challenge: while it is generally accepted that a rotation of the

image leads to a rotation of the tensors (see Alexander et al. [2001]) it is not as

clear what the effect of scaling or shearing the image should be. On the contrary,

with our approach, we simply apply the transformation to the streamline defining

points and interpolate them accordingly.

The employed fiber atlas is based on the data of a single subject. It would

be interesting to create fiber atlases based on the tracked fiber bundles of multi-

ple subjects, possibly grouped according to specific diseases. These atlases could

consist either of averaged fiber bundles (the fiber bundle minimizing one of the

distances between fiber bundles suggested by Jiao et al. [2010] could be deter-

mined) or of a map indicating the probability of a tract being in a specific location.

With the latter option, a fiber tract could be reconstructed by considering its like-

lihood and the agreement of its trajectory with the diffusion data. The flexibility

of the suggested approach could be increased by allowing the generation and the

removal of streamlines. This would lead to a fiber tracking algorithm based on

global optimization, related to the work by Fillard et al. [2011] and Reisert et al.
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[2010], but without needing to generate fibers from a “soup of fragments”, be-

cause prior knowledge about the expected shape of fibers can be incorporated.

A preliminary step in this direction would probably consist in reformulating the

problem in a continuous framework which starts from the definition of a stream-

line (a line whose tangent is always parallel to the vector field) and where the

energy term considers both how well a streamline fits the underlying tensor data

and how distant the streamline is from the atlas bundle. In the short term, if

there is a considerable difference between the fiber bundles of the atlas and the

patient, a landmark-based, thin-plate spline registration (Rohr [2001]) could be

used to initialize the simulated annealing process. Future work will also focus

on applying the proposed method to High Angular Resolution Diffusion Imaging

(HARDI, see [Johansen-Berg and Behrens, 2009, Chapter 4] for an overview),

where in each voxel the probability that a diffusing water molecule moves in a

particular direction is given by a probability density function sampled on the

sphere. The energy functional will need to be modified to consider this probabil-

ity (in the direction of the different vectors defining the streamlines) instead of

the current vector norm defined by the diffusion tensor.

In conclusion, our hope is that this work may serve as a proof of concept for

fiber reconstruction methods which map fiber bundles based on diffusion tensor

data and which are not as sensitive to ROI placement as standard streamline

tractography and will simplify inter-subject comparisons.
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Chapter 5

Simulating Tumor Growth and

Visualizing Fiber Tracking

Uncertainty

This chapter of the thesis is partly based on the publication Barbieri et al. [2011a].

5.1 Abstract

In this work, different approaches to determine fiber tracking uncertainties are

compared to one another by color-coding the traced streamlines and by computing

individual “confidence hulls”. The considered visualization techniques may be

used to make the user aware of local uncertainties in the fiber reconstruction

process, to reflect the quality of the underlying diffusion tensor data, or to explore

the sensitivity of the result with respect to different tracking parameters. We are

particularly interested in the accuracy of fiber tracking in the vicinity of tissue

infiltrated by a tumor. To analyze this scenario, we simulate the growth of

glioblastomas multiforme, taking into account both the varying volume of the

tumor and its mechanical interaction with the brain parenchyma. Since these

tumors grow preferentially along white matter fiber bundles, a tumor-invaded

diffusion tensor field is simulated at the different stages of tumor development.
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5.2 Introduction

Diffusion Tensor Imaging (DTI) models the anisotropic diffusion of water molecules

as a 0-mean normal distribution, whose covariance matrix is proportional to the

second order diffusion tensor (Basser et al. [1994b], Neil et al. [1998], Pierpaoli and

Basser [1996]). In white matter we assume that the eigenvector associated with

the largest eigenvalue of the tensor, i.e. the main diffusion direction, matches the

direction of the underlying fiber bundles. Fiber tracking (FT) algorithms make

use of this property to trace streamlines across the diffusion tensor field (Basser

[1998], Mori et al. [1999], Parker et al. [2002]). Since for patient data the true

extent of fiber bundles is unknown, software or hardware phantoms represent an

important tool to analyze and validate FT algorithms (Fieremans et al. [2008],

Gössl et al. [2002], Lori et al. [2002]).

FT algorithms generally stop the tracing of a streamline when the fractional

anisotropy of a crossed diffusion tensor is below a specified threshold parameter.

The choice of this threshold parameter may have a considerable impact on the

result of the fiber reconstruction algorithm (Brecheisen et al. [2009]). In this work

we visualize the uncertainty related to the choice of the FA threshold parameter

in the specific case when the fiber bundle of interest is near a tumor. To this end,

we make use of the DTI data of a healthy volunteer on which we simulate the

growth of a glioblastoma multiforme (GBM), the most common primary brain

tumor in adults (Price et al. [2003]). We model white matter infiltration as

well as the deformation of brain parenchyma and determine the effects on the

underlying tensor field. We then present two additional possibilities for color-

coding the streamlines, which convey information about uncertainties related to

the diffusion tensor data and to the fiber tracking algorithm. More in detail, the

considered techniques are based upon an analysis of the “uncertainty cones” of the

main diffusion directions and upon the confidence measure proposed in Chapter 4,

which combines connectivity and tensor clustering information. Additionally, we

determine individual “confidence hulls” around the reconstructed bundles, which

in a neurosurgical context may help to decide how aggressively a tumor shall be

resected.
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5.2.1 Related Work

Several approaches have been proposed to mathematically describe the growth of

tumors, which may be subdivided according to the spatial scale they operate on.

A first class of algorithms simulates tumor growth at the cellular level (cellular

automata), whereas a second class of algorithms predicts the evolution of tumor

density at a macroscopic scale, generally by making use of partial differential

equations (PDEs). Although cellular automata approaches have been proposed

for different tumors including GBMs (see Dionysiou et al. [2006], Kansal et al.

[2000a], Kansal et al. [2000b], Kansal et al. [2000c]) since we are interested in the

macroscopic effects that tumor growth has on diffusion tensor images and not

in the specific spatial ordering of tumor cells, we choose to focus on PDE based

methods.

Among PDE based methods Li et al. [2007] suggest a model that accounts

for cell-proliferation and apoptosis. Cristini et al. [2008] simulate the growth,

neo-vascularization and infiltration of malignant gliomas. Clatz et al. [2004] take

into account both white matter infiltration and the mechanical deformation of

the invaded structures. The patient’s T1 and T2 images are registered to the

BrainWeb atlas (BrainWeb) to take into account tissue properties and to a DTI

atlas to take into account the preferential growth direction of GBMs along white

matter fibers (Price et al. [2003]). The approach subdivides the gross tumor

volumes (GTVs, see Kantor et al. [2001]) into GTV1, the non-infiltrating com-

ponent associated with volume increase and tissue deformation, and GTV2, the

diffusion component associated with fast expansion and infiltration but smaller

mass-effect.

We are especially interested in the effect of tumor growth on FT accuracy.

In Tournier et al. [2002], Barbieri et al. [2011b] it has been shown using software

phantoms that FT algorithms may consistently underestimate the spatial extent

of fiber bundles with an error in the order of 5 mm. In Kinoshita et al. [2005]

electrical stimulation was used in tumor patients to demonstrated that FT al-

gorithms do not determine the correct size of fiber bundles. A theoretical limit

to the accuracy of fiber tracking for diffusion data with a given signal to noise

ratio has been determined via power series by Anderson [2001]. However, to the

100



5. SIMULATING TUMOR GROWTH AND VISUALIZING FIBER

TRACKING UNCERTAINTY

best of our knowledge, few authors have addressed the problem of visualizing the

uncertainty associated with fiber tracking. Jones [2003] suggested a method to

compute the 95% confidence intervals in which the main diffusion directions lie

and visualizes them as “uncertainty cones”. A corresponding pointwise coding of

the color and width of streamtubes has been presented in Jones et al. [2005].

In this paper we present an alternative visualization approach which color-

codes the tracked fibers based on the 95% confidence intervals, inspired by the

visualization work by Brecheisen et al. [2009] where streamlines are color-coded

based upon common stopping criteria such as tensor anisotropy and fiber curva-

ture.

5.2.2 Contributions

The main contributions of this paper may be summarized as follows:

• We adapt the model by Clatz et al. [2004], which couples two PDEs that

describe the increase in tumor volume and the deformation of brain tissue,

to simulate tumor growth in DTI data

• We use patient specific DTI data and white and grey matter segmentations

to improve the accuracy of the simulation

• We compare an FA-based color-coding of streamlines at different stages of

tumor development

• We suggest alternative ways to visualize fiber tracking uncertainty based

on the confidence intervals in which the main diffusion directions lie and

based on a combined connectivity map and tensor clustering approach

• We compute “confidence hulls” around the reconstructed fiber bundles

which may help to decide how aggressively a tumor shall be resected

5.3 Methods

Our method to simulate GBM growth is based on the work presented by Clatz

et al. [2004], which we adapt to obtain two coupled PDEs that describe the
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effects that tumor invasion in the brain parenchyma and mechanical deformation

of brain tissue (mass effect) have on a patient’s DTI data. Based on the T1 data

of a healthy subject, we begin by segmenting the white and grey matter regions

via a watershed-based algorithm (Hahn et al. [2006]). Manual rigid registration

is then used to align the T1 image and the segmented regions to the DTI data of

the subject (specifically to the b=0 image).

5.3.1 Tumor Growth Model

In order create the artificial tumor, we start by initializing the normalized tumor

cell density function c : Ω → [0, 1] where Ω is the image domain. This function

may be used to compute the true cell density in a voxel via multiplication with

the carrying capacity constant Cmax, estimated to be approximately 3.5 · 104

cells/mm3 (Cruywagen et al. [1995], Tracqui et al. [1995]). Given the center of

the tumor x0, we initialize c by computing

c(x) =
1

1 + ‖x− x0‖2
(5.1)

where ‖ · ‖ is the euclidean norm.

While the tumor grows, the evolution of the density function c may be de-

scribed via the sum of an anisotropic diffusion term which depends on the diffu-

sivity of the underlying tissue and a cell proliferation term:

∂c

∂t
= div(D∇c)

︸ ︷︷ ︸

anisotropic diffusion

+ ρc
︸︷︷︸

source term

. (5.2)

Here D is the diffusion tensor reconstructed at each voxel and ρ is a parameter

which depends on the aggressiveness of the tumor. In our experiments we set

ρ = 0.77/day, which leads to the simulation of a very quickly growing tumor.

Via a second PDE we model the mechanical deformation of brain tissue caused

by tumor growth:

div(σ)− γ∇c = 0 (5.3)

where σ is the stress tensor and γ is a scaling factor for the pressure applied on the

102



5. SIMULATING TUMOR GROWTH AND VISUALIZING FIBER

TRACKING UNCERTAINTY

tissue by the growing tumor. The deformation force acts in the direction opposite

to the gradient of the tumor density function. The stress tensor σ depends on the

local displacement u : Ω → R
3 and on the tissue dependent Lamé parameters λ

and µ. In the brain regions where we allow for tissue displacement, i.e. white and

grey matter, we use λ = 991.43 Pa and µ = 247.86 Pa, which may be normalized

to λ = 1.0 Pa and µ = 0.25 Pa. The coupling factor γ is set to 1.0. We do

not explicitly compute σ but solve instead the elastostatic equation, i.e. we find

u such that all forces acting on the brain tissue sum up to zero. Assuming the

tissue to be locally isotropic (the deformation magnitude does not depend on the

direction of the applied force) and homogeneous the equilibrium equations may

be explicitly derived (Slaughter [2002]):

0 = (λ+ µ)(u1xx + u2xy + u3xz) + µ(u1xx + u1yy + u1zz)− γcx

0 = (λ+ µ)(u1xy + u2yy + u3yz) + µ(u2xx + u2yy + u2zz)− γcy

0 = (λ+ µ)(u1xz + u2yz + u3zz) + µ(u3xx + u3yy + u3zz)− γcz (5.4)

which may also be expressed in vector notation as

0 = (λ+ µ)∇(∇ · u) + µ∇2u− γ∇c . (5.5)

After introducing an artificial time variable T , Eq. 5.5 may be solved as the steady

state in time of
∂u

∂T
= (λ+ µ)∇(∇ · u) + µ∇2u− γ∇c . (5.6)

5.3.2 PDE Coupling and Discretization

We thus need to solve the coupled PDEs 5.2 and 5.6 with c and u set to 0 at the

boundary of white and grey matter. We do this by approximating each partial

derivative via finite differences and by employing an explicit gradient descent

algorithm. For example, the time derivative in Eq. 5.2 will be approximated via

ci+1 − ci

∆t
= div(D∇c) + ρc (5.7)
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where i indicates the iteration number and ∆t is the time step (we use ∆t = 0.2

days). This leads to the iterative scheme

ci+1 = ci +∆t · (div(D∇c) + ρc) . (5.8)

Equation 5.6 is solved analogously. In order to couple the two PDEs after each

update to the tumor cell density function c we iteratively solve Eq. 5.6 to find

the resulting displacement field and apply it to the diffusion tensor image. While

doing this, we need to not only shift the single diffusion tensors according to

u but also to appropriately reorient the main diffusion directions. The local

transformation at position x is given by Jx+u, the Jacobi matrix of x+u(x). The

new tensor Di+1 at position x+ u(x) is then computed via

Di+1(x+ u(x)) = Jx+u Di(x) J−1
x+u . (5.9)

This way, both the rotation and shearing of tensors are taken into account. How-

ever, it is unclear whether a local shearing of the diffusion tensor image should

lead to a shearing of the single diffusion tensors. As tensor shearing leads to

fractional anisotropy values which appear unrealistically high in white matter, in

the following experiments we restrict the tensor transformation to rotation. We

approximate Jx+u by means of the orthonormal matrix Q obtained via its QR

decomposition (Francis [1961], Francis [1962], Kublanovskaya [1961]) and J−1
x+u

via the transpose of Q.

In Fig. 5.1 we present an illustrative example of the need for tensor reorien-

tation in 2D. Consider applying the displacement field

u(x) =

(

x1 cos θ − x2 sin θ − x1

x1 sin θ + x2 cos θ − x2

)

(5.10)

(which correspond to a global counterclockwise rotation by an angle θ) to the

tensor schematized in Fig. 5.1(a). Simply shifting the center of the tensor leads
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to the configuration depicted in Fig. 5.1(b). Finally, since

Jx+u =

(

cos θ − sin θ

sin θ cos θ

)

, (5.11)

we rotate D according to Eq. 5.9 and obtain the result displayed in Fig. 5.1(c).

(a) (b) (c)

Figure 5.1: (a) Schematic initial tensor configuration. (b) Application of the dis-
placement field to the tensor without reorientation of the main diffusion direction. (c)
Reorientation of the tensor by means of the Jacobi matrix.

Once we have applied the displacement field to the diffusion tensors and re-

oriented them, many tensors will likely not be centered on the image grid and

therefore we need to solve a scattered data interpolation problem (Amidror [2002],

Crum et al. [2007]). For each voxel, we consider the set of displaced tensors {Dj}

with a distance dj from the center xo of the voxel which is smaller than a pre-

defined radius R. Each of these tensors is then weighted according to an inverse

square (Shepard) weighting function:

w(dj;R) =

(
1

dj
−

1

R

)2

(5.12)

In our experiments R is initially chosen to be slightly smaller than the edge

of a voxel but is arbitrarily increased if no displaced tensors are found. The

interpolated tensor is computed via Log-Euclidean interpolation (Arsigny et al.
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[2006]):

D(xo) = exp

(∑

j w(dj;R) log(Dj)
∑

j w(dj;R)

)

(5.13)

where exp and log indicate the matrix exponential and logarithm, respectively.

Finally, if the tumor cell density c(xo) at the voxel xo is positive, we additionally

interpolate D(xo) with an isotropic tensor which models the diffusivity inside the

tumor. Based on measurements on patient data, we set the eigenvalues of the

isotropic tensor equal to 0.001 mm2/s. For the interpolation, the isotropic tensor

is weighted by c(xo) whereas D(xo) is weighted by 1− c(xo).

5.3.3 Summary of the Tumor Growth Algorithm

In this section, we briefly summarize how we solve the PDEs which simultane-

ously describe the tumor invasion in the brain parenchyma and its mechanical

deformation.

{Algorithm Start}

Initialize c according to Eq. 5.1

for i = 1 : fixed number of iterations do

Update c according to Eq. 5.2

repeat

Update u according to Eq. 5.6 via an explicit gradient descent algorithm

until ‖uk+1 − uk‖ < ε

Apply the displacement field to the tensor data and reorient according to

Eq. 5.9

Interpolate the tensor data on the image grid according to Eq. 5.13

Interpolate with an isotropic tensor in voxels where c is positive

end for

{Algorithm End}

To reduce numerical errors we may also keep track of the displacement fields

computed for each ci and apply their sum to the original tensor data instead of

iteratively applying them to the tensor field.

106



5. SIMULATING TUMOR GROWTH AND VISUALIZING FIBER

TRACKING UNCERTAINTY

5.3.4 Uncertainty Visualization by Color-Coding Stream-

lines

In order to visualize how tumor growth affects the parameter sensitivity of stream-

line tractography we start by simulating the growth of a tumor in proximity of

the corticospinal tract based on the DTI data of a healthy subject. At each

time-point we track the corticospinal tract using a seed region of interest (ROI)

within the internal capsule and the modified DTI data. Additional ROIs are

used to exclude clearly false-positive streamlines. Details about the employed

deterministic fiber tracking algorithm can be found in Barbieri et al. [2011b]. We

employ the visualization approach suggested by Brecheisen et al. [2009] who allow

the streamline tracing to proceed in an uninhibited manner (without thresholds)

and then map the anisotropy threshold profile onto the tracked streamlines. The

mapping enforces the monotonicity of the values stored along the streamlines, a

schematic representation of the process is presented in Fig. 5.2.

Figure 5.2: Example of anisotropy threshold profile mapped onto a streamline. Yel-
low dots represent the FA values of tensors pierced by the streamline while orange
triangles represent the anisotropy threshold stored for each fiber point. The thresh-
old value is always monotonically decreasing when moving away from the seed point.
(Source: Brecheisen et al. [2009]).

In an analogous manner we map the 95% confidence intervals (“uncertainty

cones”) in which the main diffusion directions lie (Jones [2003]) onto the tracked

streamlines. Let us briefly summarize the bootstrap method used to compute

these confidence intervals. The required data consists of multiple acquisitions

of diffusion weighted data with constant gradients and sequence parameters. At

each voxel a large number (e.g. 1000) of bootstrap estimates of the main diffusion
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direction εj1 are computed based on diffusion tensors fitted to diffusion weighted

data coming from randomly chosen acquisitions for each gradient direction. A

mean dyadic tensor 〈εj1ε
jT
1 〉 is computed as

〈εj1ε
jT
1 〉 =

〈





(εj1x)
2 εj1xε

j
1y εj1xε

j
1z

εj1xε
j
1y (εj1y)

2 εj1yε
j
1z

εj1xε
j
1z εj1yε

j
1z (εj1z)

2






〉

=
1

1000

1000∑

j=1

εj1ε
jT
1 (5.14)

where εj1i is the i
th component of the jth bootstrap estimate of the principal eigen-

vector. Next we compute the minimum angle subtended between each bootstrap

estimate εj1 and the principal eigenvector Ψ̄1 of the average dyad 〈εj1ε
jT
1 〉:

θj = arccos(εj1 · Ψ̄1) . (5.15)

Since the angles are always positive their distribution is “one-tailed” and the 95%

confidence interval can be computed by sorting the angles in ascending order and

taking the value at the 950th position.

As a third visualization option we directly map (without enforcing monotonic-

ity) the quantity

m(x) + µ̂ · fCONNECTIVITY(x) + ω̂ · fCLUSTERING(x) (5.16)

onto the tracked streamlines. This quantity has been employed to accurately

extract fiber bundles from DTI data in Barbieri et al. [2011b]. In brief m(x) is

a connectivity map, fCONNECTIVITY(x) and fCLUSTERING(x) correspond to confidence

measures about the tensor at voxel x belonging to the tract of interest, based on

the connectivity map and on a tensor clustering approach, respectively. We set

the weights µ̂ = 0.3 and ω̂ = 1 as these values led to the best results in previous

experiments.

5.3.5 Confidence Hulls

In order to determine a confidence hull around a reconstructed fiber bundle, we

assume that the traced streamlines underestimate the true spatial extent of the
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bundle. Further, we assume that the tensors within the fiber bundle (and the

ones outside of it) are locally similar to one another. Therefore, if we consider a

tensor A1 pierced by a streamline and move towards the border of the fiber bundle

it belongs to, generally we will first encounter one or more tensors {A2i}i=1,...,N

belonging to the same bundle, followed by a partial volume tensor AB at the

border of the bundle, and finally one or more tensors {Bi}i=1,...,M belonging to

the neighboring bundle. For simplicity, we shall consider four representative

tensors A1, A2, AB, and B. Given an appropriate distance d between tensors (as

for example the Frobenius norm or the Log-Euclidean distance, see Arsigny et al.

[2006]) we simulate 107 random tensor populations Â and B̂, with A1, A2 ∈ Â

and B ∈ B̂. We then determine a threshold value over the tensor distances to

A1 which should be used to establish the correct size of the fiber bundle. More

in detail, we set

• random eigenvectors and eigenvalues for tensor population Â and for tensor

population B̂. The eigenvectors are uniformly distributed over the unit

sphere while the eigenvalues are uniformly distributed over the interval

(0, 1). Successively, the eigenvalues of each population are normalized so

that the largest eigenvalue is 1. This step is used to limit the possible differ-

ences between tensors. However, in our opinion, this does not particularly

restrict the generality of our results, as the mean diffusivity of grey matter

tensors is mostly uniform and large differences in mean diffusivity caused

by tumor infiltration can be easily detected in a FA weighted map.

• a random fraction p of population Â contributing to the partial volume

tensor AB. p is uniformly distributed over the interval (0, 1) and population

B̂ contributes 1− p to the tensor.

• random noise corrupting the diffusion weighted signals used to fit the ten-

sors, as described in Section 2.3.1.

We compute the tensor distances from A1, A2, AB, and B to A1 and interpolate

them via cubic Hermite splines. The threshold parameter is given by the value of

the interpolated distance function at the fraction p of the spatial distance between

tensors A2 and AB. A schematic illustration of this process is given in Fig. 5.3.
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Figure 5.3: Example of tensor distances computed from tensors A1, A2, AB, and B to
A1 (blue dots). The interpolated distance function is displayed in green. Its value at
the fraction p of the spatial distance between tensors A2 and AB gives the threshold
parameter used to determine the spatial extent of the fiber bundle (in this case it is
equal to approximately 0.25).

Since a threshold parameter is computed for each pair of random tensor pop-

ulations, we may approximate the distribution of all threshold parameters. Next,

we determine the 33% and 66% quantiles of this distribution. The quantiles are

computed for noise standard deviations varying between 0 and 10 with incre-

ments of 0.5 and for 6, 12, 15, 24, and 30 image gradients (these are the number

of gradients currently used in the clinical setting).

Given the number of gradients used to acquire a diffusion weighted image

and the standard deviation of the noise corrupting the image, the computed

quantiles may be used to determine 33% and 66% confidence hulls around a

tracked fiber bundle. To do this, we consider the image voxels pierced by tracked

fibers and compute the minimum tensor distance of neighboring voxels to them.

We then compute the Euclidean distance transform (EDT) to the pierced voxels

and enforce that along its gradient (moving away from the fibers) the computed

tensor distances are monotonically increasing. Finally the confidence hulls may

be determined by using the computed quantiles as threshold parameters over the

map of tensor distances.
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5.4 Results

As discussed previously, we simulate an infiltrating tumor near the corticospinal

tract of a healthy subject at the level of the corona radiata. The parameters

of the DTI acquisition sequence are as follows: resolution = 1.80 × 1.80 × 1.98

mm3, b value = 1000 s/mm2, NEX = 2, TR/TE = 12000/84 ms, two repetitions

with one b=0 image and 30 gradient directions each. Fig. 5.4 displays the GBM

volume between 0 and 10 iterations of the tumor-growth simulation algorithm.
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Figure 5.4: The volume of the GBM vs. the number of iterations of the tumor-growth
simulation algorithm.

Figs. 5.5(a)-5.5(f) show details of the tensor fields in proximity of the simu-

lated tumor after 0,1,3,5,7, and 9 iterations.

Figs. 5.6(a)-5.6(f) show the corresponding tracking results color-coded accord-

ing to the FA threshold profiles. Fig. 5.7 shows a color-coding of the streamlines

according to the 95% confidence intervals of the main diffusion directions. As an

additional alternative in Fig. 5.8 we present a volume rendering of the confidence

measure computed according to Eq. 5.16 and a corresponding color-coding of the

traced streamlines.

Fig. 5.9 shows distributions of threshold values used to compute confidence

hulls around tracked fibers, using the Frobenius norm as tensor distance and

30 gradient directions and noise standard deviation values between 0 and 10

as parameters. Corresponding plots of the 33% and 66% quantiles versus the

noise standard deviation values are presented in Fig. 5.10(a) (using the Frobenius

norm) and in Fig. 5.10(b) (using the log-Euclidean distance). We note that the
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: (a)-(f) show details of the tensor field in proximity of the simulated tumor
after 0,1,3,5,7 and 9 iterations respectively.

relative distance between the 33% and the 66% quantiles increases much quicker in

Fig. 5.10(a) than in Fig. 5.10(b). For this reason, in the following experiments we

employ the Frobenius norm as the distance measure between tensors. Tables 5.1

and 5.2 (with the corresponding plots of Fig. 5.11) report the numerical values of

the 33% and 66% quantiles versus the noise standard deviation values when using

6,12,15,24, or 30 gradient directions. The resulting confidence hulls computed

based on the synthetic data of two crossing fiber bundles with varying image

noise are presented in Fig. 5.12. In Fig. 5.13 we show the 33% and 66% confidence

hulls around the corticospinal tract reconstructed based on the tumor simulation

data. As mentioned above, the original diffusion weighted images were acquired

using 30 gradient directions. After scaling the maximal signal intensity to 70, the

noise standard deviation was determined to be approximately 3 using the double

acquisition method described by Sijbers [1998]. Fig. 5.14 similarly shows the
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(a) (b) (c)

(d) (e) (f)

Figure 5.6: (a)-(f) FA threshold profiles mapped onto the reconstruction of the domi-
nant part of the corticospinal tract. For the tracking we use a seed ROI located within
the internal capsule. The bulk of the simulated GBM (c > 0.2) is shown in green. We
display results after 0,1,3,5,7 and 9 iterations. A decrease in anisotropy in proximity
of the tumor is noticeable as the tumor grows.

Figure 5.7: Angles corresponding to the 95% confidence intervals of the main diffusion
directions (“uncertainty cones”) mapped onto the reconstructed corticospinal tract.

33% and 66% confidence hulls around the corticospinal tract of a GBM patient

(see Chapter 3 for details on the image acquisition sequence). In this case, the
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(a) (b)

Figure 5.8: The confidence measure computed according to Eq. 5.16 visualized as a
volume rendering (a) and mapped onto the reconstructed corticospinal tract (b).

noise standard deviation was determined to be approximately 2.5. Because in

Chapter 2 the accuracy of streamline tractography was determined to be in the

order of 5 mm, in our experiments we only consider tensors with a distance of at

most 10 mm from the tracked fibers.

5.5 Discussion and Conclusions

We simulated the growth of a GBM in the corona radiata starting from image

data of a healthy volunteer. Compared to the approach presented by Clatz et al.

[2004] we employ the subject’s specific DTI data and segmentations of white

and grey matter instead of registering to a common atlas, which should lead

to a more accurate simulation. Moreover, we couple the PDEs that describe

tumor growth and mass effect by iteratively updating the tumor invaded tensor

field. Important parameters which shall be systematically varied in future work

include the aggressiveness of the tumor, the specific fiber tract affected by the

tumor and the position of the tumor with respect to the tract. In recent work

by Hogea et al. [2007] the observation that proliferating tumor cells displace one

another is integrated into the PDE that controls the evolution of the tumor cell

density function c by means of an additional advection term. Although this

contribution promises to increase the accuracy of simulated tumor growth, it also

introduces additional parameters into the model which are possibly not easy to

estimate from clinical images. Indeed an interesting aspect of tumor models which
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Figure 5.9: Distribution of threshold values for 30 gradient directions and noise stan-
dard deviation values of 0, 2, 4, 6, 8, and 10 (left to right, top to bottom).
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Figure 5.10: Plots of the 33% and 66% quantiles versus the noise standard deviation
values when using 30 gradient directions. In (a) the Frobenius norm is used as tensor
distance, while in (b) the log-Euclidean distance is used (notice that in this case the
largest eigenvalue of the tensor populations was set to 0.001).
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Figure 5.11: Plots of the 33% (a) and 66% (b) quantiles versus the noise standard de-
viation values when using 6,12,15,24, or 30 gradient directions. The maximum allowed
quantile value was set to 1.25.

has not been considered in our work is how to adapt the model parameters to

individual patients. The difficulty in this step arises mainly due to the sparsity

of the available clinical images and because while the acquired images provide

information about the contours of the tumor, tumor models generally require

to estimate a tumor cell density function over the image domain. Interesting

publications which attempt to address these issues include Swanson et al. [2008]

and Konukoglu et al. [2010].
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Noise SD 6 grad. 12 grad. 15 grad. 24 grad. 30 grad.

0.0 0.06 0.06 0.06 0.06 0.06
0.5 0.31 0.12 0.11 0.08 0.08
1.0 0.56 0.18 0.16 0.11 0.10
1.5 0.82 0.24 0.20 0.14 0.13
2.0 1.07 0.30 0.25 0.17 0.15
2.5 1.25 0.36 0.30 0.19 0.18
3.0 1.25 0.41 0.34 0.22 0.20
3.5 1.25 0.47 0.39 0.25 0.22
4.0 1.25 0.53 0.43 0.27 0.25
4.5 1.25 0.59 0.48 0.30 0.27
5.0 1.25 0.65 0.52 0.33 0.29
5.5 1.25 0.70 0.57 0.35 0.31
6.0 1.25 0.76 0.61 0.38 0.34
6.5 1.25 0.82 0.66 0.40 0.36
7.0 1.25 0.88 0.70 0.42 0.38
7.5 1.25 0.93 0.74 0.45 0.40
8.0 1.25 0.98 0.79 0.47 0.42
8.5 1.25 1.04 0.83 0.49 0.44
9.0 1.25 1.09 0.87 0.52 0.46
9.5 1.25 1.14 0.91 0.54 0.48
10.0 1.25 1.19 0.95 0.56 0.50

Table 5.1: Numerical values of the 33% quantiles versus the noise standard deviation
values when using 6,12,15,24, or 30 gradient directions. The maximum allowed quantile
value was set to 1.25.

We reconstruct the dominant part of the corticospinal tract via streamline

tractography. Its path is adjacent to the simulated GBM and by mapping the

FA threshold profiles onto the streamlines (as suggested by Brecheisen et al.

[2009]) a decrease in tensor anisotropy near the tumor could be detected and

visualized. This should be especially interesting for fibers going through regions

of low tumor concentration which may not be considered as part of the tumor

by a segmentation algorithm. For example in Fig. 5.6 the segmented tumor is

given by voxels where the tumor cell concentration is above 20%, however the

color-coded fibers indicate a decrease in anisotropy in a larger region. Therefore

we think that the FA based color-mapping could be useful not only to explore

the effect of different threshold parameters on the fiber tracking result but also
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Noise SD 6 grad. 12 grad. 15 grad. 24 grad. 30 grad.

0.0 0.12 0.12 0.12 0.12 0.12
0.5 0.48 0.18 0.16 0.14 0.14
1.0 0.90 0.25 0.22 0.17 0.16
1.5 1.25 0.33 0.28 0.19 0.18
2.0 1.25 0.42 0.34 0.22 0.21
2.5 1.25 0.50 0.40 0.25 0.23
3.0 1.25 0.59 0.47 0.29 0.26
3.5 1.25 0.67 0.53 0.32 0.29
4.0 1.25 0.76 0.60 0.35 0.32
4.5 1.25 0.85 0.67 0.38 0.34
5.0 1.25 0.94 0.73 0.41 0.37
5.5 1.25 1.03 0.80 0.44 0.40
6.0 1.25 1.11 0.86 0.48 0.43
6.5 1.25 1.19 0.92 0.51 0.45
7.0 1.25 1.25 0.99 0.54 0.48
7.5 1.25 1.25 1.05 0.57 0.51
8.0 1.25 1.25 1.11 0.60 0.54
8.5 1.25 1.25 1.17 0.63 0.56
9.0 1.25 1.25 1.24 0.66 0.59
9.5 1.25 1.25 1.25 0.69 0.61
10.0 1.25 1.25 1.25 0.72 0.64

Table 5.2: Numerical values of the 66% quantiles versus the noise standard deviation
values when using 6,12,15,24, or 30 gradient directions. The maximum allowed quantile
value was set to 1.25.

to evaluate, when diffusion data acquired at different timepoints is available, the

risk that fiber bundles of interest go through tumor-infiltrated regions.

We also propose alternative color-codings for the traced streamlines. In

Fig. 5.7 the employed feature map is given by the 95% confidence intervals

in which the main diffusion directions lie, computed according to the method

suggested by Jones [2003]. Compared to tensor anisotropy the computed an-

gles should represent a more informative indicator about the reliability of traced

streamlines, since they account for image noise and scanner artifacts. Compared

to the pointwise color-coding presented by Jones et al. [2005], enforcing the mono-

tonicity of the values stored along the streamlines allows a prompt assessment

of the uncertainty of the fiber reconstruction when moving away from the seed
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(a) (b) (c) (d)

Figure 5.12: On the simulated tensor field of two crossing fiber bundles we track
the bundle running vertically. The voxels voxels pierced by the streamlines are color-
coded in red, additional voxels within the 33% safety hull are color-coded in orange
and additional voxels within the 66% safety hull are color-coded in yellow. The noise
standard deviation value is 2.5 in (a), 5.0 in (b), 7.5 in (c), and 10.0 in (d). In this
specific example, the tracked bundle lies completely within the 33% safety hull, however
this is not always the case.

(a) (b)

Figure 5.13: Based on the diffusion tensor images with a simulated tumor we determine
the 33% (a) and 66% (b) confidence hulls around the reconstructed corticospinal tract.
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(a) (b)

Figure 5.14: We determine the 33% (a) and 66% (b) confidence hulls around the
reconstructed corticospinal tract of a GBM patient. The glioma is shown in green.

ROI. In the presented example it appears as if most fibers in the corona radiata

pass through voxels where the main diffusion direction is highly uncertain. A

comparison with data acquired using different imaging parameters will be part

of future work. In Fig. 5.8 the feature map used for the color-coding is given by

a confidence measure which takes into account both connectivity measures and

distances between tensors (Eq. 5.16). In our opinion this visualization approach

presents valuable information about the degree of uncertainty of the traced fibers.

We suggest a method to compute patient-individual confidence hulls around a

reconstructed fiber bundle. For a 33% or 66% confidence hull there is a probabil-

ity of 0.33 or 0.66, respectively, that the hull does not underestimate the spatial

extent of the fiber bundle of interest. Within the presented framework the size of

a confidence hull is inversely proportional to the number of gradients and directly

proportional to the noise standard deviation, as shown in Fig. 5.11. Future work

could include the analysis of additional parameters such as b-value or image res-

olution. Additionally, our experiments made use of only one particular gradient

scheme and it may be interesting to compare the gradient schemes used by the

different MR-scanner vendors. Whereas the Frobenius norm between tensors is

not expensive to compute, the employed iterative scheme used to enforce that the
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computed tensor distances are monotonically increasing when moving away from

the tracked fibers takes a few minutes. This cost of this step of the algorithm

can likely be significantly sped up by casting rays outwards from the centerline

of the fiber bundle, as described by Bauer et al. [2010b]. The experiments pre-

sented in Fig. 5.12 illustrate how the computed confidence hulls (and therefore

the uncertainty about the spatial extent of the fiber bundle) get larger in regions

where fibers cross. Similarly in Fig. 5.13 the computed confidence hulls get larger

where corticospinal tract crosses the corpus callosum as well as in the proximity

of the simulated GBM. In Fig. 5.14(b) we notice how the inferior portion of the

66% confidence hull borders the segmented GBM, while the tracked streamlines

do not. This could indicate that in this area a more conservative resection is ap-

propriate in order to avoid damage to the corticospinal tract, although a careful

clinical validation is needed in order to validate such claim.

In the end, we hope that alternative color-codings of streamlines and confi-

dence hulls may find their way into the clinical routine and offer clinicians addi-

tional clues about the uncertainty of tractography results in regions which may

potentially contain fiber bundles that need to be preserved.
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Chapter 6

Conclusions

We now summarize the novel ideas and main findings of this research work. For

a more in-depth discussion and a comparison to related work by other authors we

refer the reader to the discussion sections of the individual chapters. A section

about possible future research concludes this work.

6.1 Summary

In Chapter 2 we made use of diffusion tensor phantoms to analyze the error

magnitude of streamline tractography. The first step was to define an error mea-

sure to quantify the accuracy of a fiber reconstruction result in the presence of a

known ground truth. We proposed the “safety radius”, an error measure which

describes the distance between the border of the reconstructed bundle and the

border of the modeled pathway. In our work the safety radius was employed

to analyze a multitude of two-dimensional cross sections of the considered fiber

bundle, however its definition may be extended to 3D by considering the three-

dimensional Voronoi partition of the fiber bundle and thus allowing for a more

informative measure of tracking accuracy. Based upon a phantom with a simple

torus-shaped geometry, we determined that for bundles of up to 20 cm length and

clinically relevant signal to noise ratios, a safety margin of 3 to 5 mm is appro-

priate. We found streamline tractography to be unreliable in regions where the

fractional anisotropy of diffusion tensors is below 0.25, which is for example the

case in regions where fibers cross. Interestingly, using a step size of approximately
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the size of an edge voxel may lead to better reconstruction results compared to

using much smaller step sizes. This is likely due to the fact that with a very small

step size a noisy voxel along the fiber path, which presents a high error in the

estimated main diffusion direction, is going to be pierced by most fibers; when

a larger step size is chosen, this is not the case. We also noticed that stream-

lines tend to choose a few preferred paths near the center of the fiber bundle,

it may therefore be interesting to enforce a minimal distance between computed

streamlines.

Next, we proposed an atlas-based framework to generate diffusion tensor phan-

toms of neural fiber bundles. We used this framework to generate models of the

corticospinal tract and of the arcuate fasciculus, with curvatures and thicknesses

varying realistically along the paths of the fiber bundles, and simulated noise and

partial-volume artifacts. Future work should investigate whether the framework

can also be used to model branching or fanning fiber bundles such as the corona

radiata or the corpus callosum, possibly by allowing the definition of multiple

“centerlines” for each fiber bundle. We extended our accuracy analysis to these

realistic phantoms and determined a safety margin of 4 mm to be appropriate

for the corticospinal tract, while 6 mm should be used for the arcuate fasciculus

due to its high curvature. We noticed a high sensitivity of our whole-brain recon-

struction approach to the density of seed points and determined that placing seed

points 1 mm apart offers a good trade-off between accuracy and computational

cost. Future work could include repeating these experiments using more recent

and accurate white matter atlases, such as the one proposed by Oishi et al. [2011].

We developed a fuzzy DTI segmentation algorithm which conveys the uncertainty

about the accurate location of a fiber bundle’s border to the user. The algorithm

analyzes voxels in the neighborhood of tracked streamlines and takes into account

both the main tensor diffusion directions and the associated covariance matrices,

thus reflecting the signal to noise ratio of the image. An initial comparison with

related segmentation algorithms indicates that taking into account the covari-

ance matrices of the main diffusion directions may increase the accuracy of fiber

bundle extraction.

In Chapter 3 we further developed our ideas to increase the accuracy with

which fiber bundles are extracted. We observed that probabilistic fiber-tracking

123



6. CONCLUSIONS

approaches are able to outline the general pathway of the bundle of interest. How-

ever, the computed connectivity values generally depend on the length and curva-

ture of the fiber bundle, making the choice of a threshold parameter which results

in a correct segmentation of the connectivity map difficult. Therefore, we pro-

posed a combined probabilistic tractography and local tensor clustering approach,

based on the notion that tensor clustering algorithms are able to exploit the local

coherence between tensors of the same fiber bundle, which results in a relatively

accurate border delineation. A post-processing step of the algorithm addresses

voxel misclassification due to partial-volume artifacts. Our hybrid approach pro-

duces accurate results on both software phantom data (including crossing and

adjacent fiber bundles) and on clinically relevant patient data. When developing

this algorithm, we chose to make use of the log-Euclidean distance between ten-

sors because it considers the full tensor information, it is invariant with respect

to scaling and rotation, and it is isometric to the geodesic distance on the Rie-

mannian manifold of symmetric positive definite matrices. However, it should be

interesting to analyze the sensitivity of the results with respect to the use of dif-

ferent tensor distances, such as the easy to compute Frobenius norm, or the more

intuitive combinations of differences in main diffusion directions and in mean dif-

fusivities (compare Rodrigues et al. [2008], Peeters et al. [2009]). Similarly to

the fuzzy region competition algorithm by Mory et al. [2007], our algorithm con-

verges to a binary solution, however a formal proof of this property is still missing.

The user interaction associated with the algorithm is comparable to the one of

streamline tractography and the required computation time is less than half an

hour, which should allow integration into clinical routine. Nevertheless, since the

algorithm depends on two weighting parameters µ and ω, additional experiments

besides the ones presented in Fig. 3.8 are needed to determine whether specific

values for these parameters can be recommended for use in any scenario or if

the user should compare bundle extraction results for a given set of parameters.

In this case we should investigate how the segmentation result can be computed

efficiently upon a change in parameters.

As mentioned earlier, the experiments in Chapter 2 confirmed that stream-

line fiber-tracking is very sensitive to the choice of user-defined seed ROIs. In

Chapter 4 we presented the novel idea of mapping a fiber bundle from a fiber
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atlas onto the DTI dataset of a patient. This way, we are able to obtain a noise-

robust, shape-consistent fiber bundle reconstruction which is not as sensitive to

user-defined ROIs as streamline tractography. To implement this idea, we devel-

oped an algorithm based on a simulated annealing procedure which transforms

the fiber bundle from the fiber-atlas so that it minimizes a specific energy func-

tional. The energy functional reflects how well the fiber bundle fits the diffusion

tensor data of the patient. The transformations applied to the fiber bundle con-

sists in a concatenation of global and “local” linear transformations (translation,

rotation, and scaling), which ultimately result in a non-rigid mapping. Possible

ad-hoc definitions of local linear transformations of fiber bundles were presented

in this chapter. We evaluated this proof-of-concept method on synthetic as well

as on patient datasets, which included crossing fibers and fiber bundles consider-

ably displaced or “cut” by lesions, and obtained promising results. However, the

algorithm will need to be tested on numerous additional clinical datasets in order

to determine the cases in which it is able to produce satisfying bundle recon-

structions results. The quality of these results should be compared to the ones

produced by recent atlas-based clustering methods, see for example O’Donnell

and Westin [2007].

InChapter 5 we considered several alternatives to visualize fiber-tracking un-

certainties by directly color-coding the computed streamlines. As a first example,

we used the FA-based color-coding suggested by Brecheisen et al. [2009] to reflect

the growth over time of a simulated glioblastoma multiforme. The expanding in-

filtrated volume leads to a decrease in tensor anisotropy, consequently to a higher

error in the estimated main tensor diffusion directions and in the streamlines.

In order to simulate the tumor, we developed a novel PDE-based method which

models the effect of tumor growth and of the resulting tissue displacement on dif-

fusion tensor data. Next, we color-coded the streamlines according to the angles

corresponding to the 95% uncertainty cones of the main tensor diffusion direc-

tions. Because they account for image noise and scanner artifacts, the computed

angles provide an interesting stopping criterion for streamline tractography which

could be used instead of tensor fractional anisotropy. We also presented a color-

coding based on the hybrid confidence measure introduced in Chapter 4, which

combines connectivity and tensor clustering information and provides valuable
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information about the uncertainty of traced fibers. As an additional alternative

visualization, we determined hulls around the reconstructed fiber bundles which

indicate several degrees of confidence about the hull not underestimating the true

spatial extent of the bundle. The size of a “confidence hull” depends on the lo-

cal similarity between tensors, on the number of gradients used to acquire the

diffusion weighted images, and on the level of image noise. Thanks to the rela-

tive simplicity of the algorithm it should be possible to compute these confidence

hulls based on any clinical DTI dataset, although in the future additional imag-

ing parameters (such as b-value or resolution) may be taken into account when

determining the size of the hulls.

6.2 Perspective

This thesis has focused on the processing of diffusion tensor images. The ten-

sor model is currently the most widespread in the clinical setting, however it

can describe only a single dominant fiber orientation in each voxel and is there-

fore known to inadequately describe the diffusion process in regions where fibers

cross, kiss, fan, or merge (Alexander et al. [2002]). Tuch et al. [2002] suggested

to overcome this problem by fitting multiple diffusion tensors to High Angular

Resolution Diffusion Imaging (HARDI). However, this implies the ability to reli-

ably estimate the number of fiber populations in each voxel and leads to unstable

results when more than two populations are present (Tuch et al. [2002]). Addi-

tionally, HARDI acquisition protocols generally require the use of a high b-value

to better discern among different fiber orientations, with the consequence of a

reduced SNR and an increased challenge when modeling the data. Nonetheless,

in recent years, a number of promising non-parametric models for HARDI have

been suggested. They generally represent multiple fiber directions in a single

voxel by means of a probability density function on the sphere, among them

let us mention the Orientation Distribution Function (Tuch [2004], Michailovich

and Yogesh [2010]), the Fiber Orientation Density (Tournier et al. [2004]), the

Persistent Angular Structure (Alexander [2005]), and the Diffusion Orientation

Transform (Ozarslan et al. [2006]). Such reconstructions may be used for fiber-
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tracking (Perrin et al. [2005a], Campbell et al. [2005], Deriche and Descoteaux

[2007]), or to directly segment HARDI data (Hagmann et al. [2006], Jonasson

et al. [2007], Descoteaux and Deriche [2009]) and possibly obtain a more accu-

rate spatial delineation of the fiber bundle borders. We would like to adapt the

algorithms of this thesis so that they can process HARDI data. The framework

proposed in Chapter 2 and later extended in Chapter 3 to generate diffusion ten-

sor phantoms can be promptly used to generate high angular resolution diffusion

images. It could be used to analyze the effect that the number of gradients, the

resolution, the b-value, or the number of image acquisitions have on fiber-tracking

accuracy. Particularly in regions containing multiple fiber populations the error

of deterministic and probabilistic tractography on DTI data could be system-

atically compared to the one of fiber-tracking on HARDI data. This accuracy

analysis should not be limited to software phantoms but could also include hard-

ware phantoms of crossing fibers (see for example Bach et al. [2011]). Within

Chapters 3 and 4 we presented algorithms for the segmentation of DTI and the

registration of fiber bundles, in the respective concluding sections we discussed

initial ideas about how these methods could be adapted to work with HARDI

data. More effort will be needed to adapt the visualization techniques presented

in Chapter 5, an initial step could be to color-code the reconstructed fibers based

on the generalized fractional anisotropy (Tuch [2004]) of HARDI glyphs.

In its current form, the DTI segmentation algorithm from Chapter 3 employs

streamline tractography to determine the likelihood of fiber bundles connecting a

given region of interest to other image regions. However, particularly in regions

of tumor infiltration or edema there is a decrease in tensor anisotropy, leading to

unreliable streamline computations and connectivity maps. Therefore, it would

be interesting to substitute streamline tracking with a global fiber-tracking tech-

nique. When reconstructing fiber bundles, global approaches achieve high ro-

bustness by taking into account the likelihood of the whole fiber path and by

incorporating a priori anatomical knowledge. Current algorithms may be di-

vided into graph-based and optimization-based. Graph-based approaches (Fout

et al. [2005], Merhof et al. [2006]) create paths between voxels weighted according

to the probability of water diffusing between them. The most likely paths that

connect two user-defined regions of interest are then determined. Optimization-

127



6. CONCLUSIONS

based approaches (Kreher et al. [2008], Reisert et al. [2009], Reisert et al. [2010],

Fillard et al. [2009]) generate, shift, rotate, and connect fiber segments in each

voxel to generate fibers which minimize a specific energy functional. The energy

functional describes the anatomical likelihood of the fibers and how well they fit

the underlying diffusion data. If augmented with the ability of generating fibers,

also the algorithm presented in Chapter 4, which maps fibers from an atlas onto

the dataset of a patient, can be considered a global optimization-based approach.

Global fiber-tracking could also be used to increase the robustness of the algo-

rithm used to analyze the uncertainty around tracked fibers (see Section 2.5.2),

especially in tumor infiltrated regions.

Although the presented algorithms have been successfully employed to process

a few datasets of patients, we recognize the limits of our work with respect to the

validation and evaluation of its clinical value. In order to address these short-

comings, in future projects we would like to acquire a large number of diffusion

weighted images both of healthy volunteers as well as of patients. The MR-

sequence parameters shall be systematically varied, however an artificial degra-

dation of the image quality (for example the reduction of the number of gradients

used to fit the diffusion model, or the reduction of image resolution) can be used

to reduce the required scan time. The accuracy of fiber reconstructions based on

the algorithms presented in this thesis could be validated via cortical or subcor-

tical stimulation, similarly to previous studies on the accuracy of fiber-tracking

carried out by Bello et al. [2008], Bozzao et al. [2010], and Maesawa et al. [2010].

To truly make our fiber reconstructions and uncertainty visualizations (see Chap-

ter 5) available to the operating surgeon they will need to be integrated with the

navigation system and the microscope in the operating room. The visualization of

relevant contours and safety hulls should be adaptive, i.e. information should be

displayed based upon the distance to risk structures such as blood vessels, fiber

bundles, and functional areas. Finally, by comparing pre- and post-operative

fiber bundle reconstructions and risk analyses with the operation outcome, it will

be possible to quantify the benefit of the proposed methods to the patient.
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Klein, J., Grötsch, A., Betz, D., Barbieri, S., Friman, O., Stieltjes, B., Hilde-

brandt, H., Hahn, H., 2010a. Qualitative and quantitative analysis of prob-

abilistic and deterministic fiber tracking, in: Proc. SPIE Med. Imaging, pp.

76232A–1–76232A–8.
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