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Abstract

e thesis presented here is summarizing and interconnecting a series of ar-
ticles on the network organization of metabolic and gene regulatory processes.
ese publications are the product of my PhD work. ey cover the following
scientific topics:

(i) Does the spatial distribution of genes on a chromosome deviate from
randomness, and if so, does it contribute to the transcriptional regulation of
genes? Using methods from point-process statistics, we have been able to show
that genes regulated by transcription factors segregate from genes with no such
regulatory information available, which constitute the vast majority of genes on
the chromosome of Escherichia coli. is evolutionary “unmixing” of the two
classes of genes is evidence of the involvement of chromosome organization in
processes of gene regulation and draws a connection to the following topic (ii).

(ii) Is the transcriptional regulation of metabolic processes predominantly
accomplished by the classically conceived form of control that is exerted by the
digital actions of transcription factors, or does the homeostatic control of chro-
mosome and chromatin structure play a significant role, which is an analog type
of regulation? In Escherichia coli we find a strong coherence of gene expression
changes and metabolic network topology. is coherence is destroyed upon
perturbation of the analog part of the regulatory machinery. We argue that this
is evidence for an analog regulation of metabolic demand.

(iii) Is it generally possible to quantify the impact of perturbations to the
regulatory machinery and environment of an organism by the integration of
gene expression profiles and genome-scalemetabolic reconstructions? For gene
expression profiles obtained from adrenocortical adenomas, we compare the
coherence developed for the investigation in topic (ii) with an inconsistency
measure developed by other groups, which employs constraint-based analysis.
We find a strong negative correlation between both approaches, indicating that
a large part of the more sophisticated constraint-based measure can be inter-
preted topologically, i.e, from a network perspective. In a detailed view on the
inconsistency we are able to extract valuable, physiological information from
the otherwise difficult to access expression data.

(iv) Can we assign topological markers to different forms of perturbations
in the systems under investigation, e.g., the medium-dependent essentiality of
reactions or metabolically altered system states in cancer cells? Using methods
from graph theory and constraint-based modeling we study reaction essential-
ity as well as the inconsistency in topic (iii) from a network perspective.

An introduction to these topics is provided in the first part of this thesis. In
addition, concluding remarks and a future outlook will be given at the end of
the thesis.
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Chapter 1

Introduction

Metabolism and gene regulation

Metabolism constitutes the system of chemical reactions concurrently taking place
inside a living cell. e cell acts hereby as an open system [129], constantly exchang-
ing matter with its surroundings by taking up building blocks and energy yielding
substances as well as getting rid of waste material. e fact that it is an open sys-
tem permits, under certain circumstances, the occurrence of steady states, i.e, time-
independent dynamic equilibria (Fließgleichgewichte) under which the composition
of the system stays invariant despite the continuous exchange of its components, in
that sense, being fundamentally different to the classical notion of a thermodynam-
ic equilibrium. It is by favoring the right circumstances, that evolution has brought
about life.

As environments constantly fluctuate, robust control mechanisms are necessary
for metabolism to maintain homeostasis, i.e., to quickly regain a steady state upon
perturbation. Because most reactions are catalyzed by enzymes, one major form of
regulation is exhibited by controlling their concentrations and activities. Gene regu-
lation is thus one of the major components in the robust control of metabolism. Me-
tabolism and gene regulation are the key issues of this thesis, and we will approach
both topics from multiple methodological perspectives.
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CHAPTER 1. INTRODUCTION

Omics era
With gigabytes of new biological data emerging each day, filling database aer data-
base, it gets ever more clear that the conceptual and methodological backbone of the
life sciences is currently undergoing dramatic changes. e hypothesis-free collection
of data [45], e.g., the sequencing of whole genomes, and explorative data analysis
have already trespassed into the domain of hypothesis-driven research [37], which has
dominated the life sciences over the last centuries. Bold statements [9], that scientific
reasoning will become obsolete in the near future and will be replaced by machine
learning algorithms and correlation analyses, have been vividly debated in the com-
munity [26].

With all that data becoming publicly available, and biology becoming a data-rich
science, it is no longer necessary nor even appropriate to conduct theoretical research
for the sake of theory itself—a theoretical biologist’s dream come true. Nonetheless,
the search for natural laws and the development of rigorous theory, as opposed to
the precise reproduction of observed behaviors using highly detailed mathematical
model, should not be abandoned, as it has oen been theoretical prediction and un-
derstanding that preceded major innovations in the natural sciences; and isn’t it gen-
erally easier to ask questions about how things work rather than why things work
the way they do? However, even in systems biology, there is still plenty of room for
hypothesis-driven experimentation, and wewill show that careful experimental design
is necessary for the answering of particular questions (see Chapter 3).

Network biology
Networks consist of nodes, representing the entities of a system, and edges, describing
the relations among them. is high level abstraction allows the description of basi-
cally any system in the universe. End of the 1990s, networks had a huge impact on bi-
ology and science in general, breathing new life into interdisciplinary research. Watts
and Strogatz’s seminal work on small-world networks and their properties [133] is a
prominent representative of this hype, having been cited more than 4580 times1 by
now and ranking at #6 among themost cited papers in physics2. e thrilling possibil-
ities of treating complex systems as diverse as metabolism [3], the air transportation
system [48], or even the network of social interactions among super heroes [2], un-
der a common framework ofmethods have attractedmany researchers from different
fields.

Generally, abstraction is a good thing. It allows us to arrive at decisions and take
meaningful action, even in situations of overwhelming complexity. It lets us focus on

1According to ISI Web of Knowledge (omson Reuters)
2According to Essential Science Indicators (omson Reuters)
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the critical points in our analysis, and most importantly, it lets us compare systems,
which otherwise would not be comparable. Abstraction is the coordinated elimina-
tion of information from complicated situations. It can either facilitate the discussion
of systemic properties—or impede it.

Building a metabolic network, i.e., a abstraction of a metabolic system, from a list
of chemical reactions is straight forward: substrates are connected to reactions, and
reactions are connectedwith their respective products. Following this procedure, one
ends up with a bipartite network consisting of two disjoint sets of vertices, reactions
r and metabolites m.

Of course, this bipartite representation can be collapsed into two distinct uni-
partite networks, either by projection onto r, leading to a reaction-centric represen-
tation, or by projection onto m, leading to a metabolite-centric representation of
metabolism. In both cases information is lost [120], as the bipartite network can-
not be reconstructed from the unipartite representations. But, whereas the degree
distribution of the reaction-centric representation is unambiguous and unravels an
additional piece of information, i.e., the number of reactions a reaction is connected
to via its products, the metabolite-centric projection introduces a large number of
cliques—all substrates of a reaction become connected to all products of the same re-
action—biasing the connectivity of compounds participating in reactions with more
than one substrate or product towards unnaturally high degrees. Furthermore, it is
impossible to disentangle the number of reactions a metabolite participates from its
metabolite-centric node degree. us, themetabolite-centric network representation
of metabolism is a good example for an abstraction that can potentially lead to wrong
assumptions about the system being discussed. However, the metabolite-centric rep-
resentation has become the de facto standard for many studies and has been used in
the majority of scientific treatments on metabolic networks [64, 131].

Additional metabolic network representations have been proposed in the past,
including enzyme and gene-centric networks [61, 73, 117], and we will focus in our
analyses mainly on the latter ones.

Steady-state and constraint-based modeling of
metabolism

Evaluating the constraints that nature forces upon life provides an excellent frame-
work for modeling biological processes under uncertainty [95]. Let

0 = Sv (1.1)
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CHAPTER 1. INTRODUCTION

describe the steady state flux space of a metabolic system, where S denotes the sto-
ichiometric matrix3 of the system, v a vector of reaction fluxes, and 0 replaces the
vector of the time derivatives of metabolite concentrations dC

dt usually found at this
position. It is hereby noteworthy that eq. (1.1) is not a just a oversimplified approxi-
mation of metabolism, but under the right circumstances (see the introductory sec-
tion) a valuable description of the system. Imposing upper and lower limits on the
reaction fluxes, vmin ≤ v ≤ vmax, constrains the solution space to a finite size, which
has a convex shape due to the linear nature of the system. Defining vmin and vmax

allows one to incorporate (i) reaction directionality (setting vmin = 0 for irreversible
reaction), (ii) experimentally measured fluxes [134], and (iii) medium conditions in-
to the system.

A whole spectrum of steady-state and constraint-based modeling (CBM) meth-
ods have been developed over the last years in order to analyze the steady-state flux
space described in eq. (1.1):

(i) Elementary mode analysis [119] and extreme pathways [92], two very similar
concepts, enumerate all minimal reactions sets capable of steady state operation, i.e.,
all linearly independent v satisfying eq. (1.1). Extreme pathways basically constitute
the basis solutions of the system, representing the edges of the convex polytope in a
geometrical interpretation of eq. (1.1), and thus being a subset of elementary modes,
which additionally include solutions on its surface and interior [107].

(ii) Because themethods described in (i) are intractable for genome-scale systems,
Monte Carlo methods have been applied [122] in order to sample flux space.

(iii) Flux-coupling analysis [24] allows the determination of coupled reaction sets.
e coupling type between to fluxes vi and vj can be determined byminimization and
maximization of the following fractional optimization problem

Rmin(Rmax) =min(max) { vi
vj
∶ Sv = 0,vmin < v < vmax}, (1.2)

where Rmin = Rmax = c implies full coupling (a non-zero flux for vi implies a fixed
flux for vj), Rmin = c1 > 0 ∧Rmax = c2 <∞ with c1 ≠ c2 constitutes partial coupling
(a non-zero flux for vi implies a variable flux for vj), while Rmin = 0 ∧Rmax = c and
Rmin = c ∧ Rmax = ∞ imply directional coupling (a non-zero flux for vi implies a
fixed flux for vj but not necessarily the reverse). Fluxes vi and vj are uncoupled if
Rmin = 0 ∧Rmax =∞.

(iv) Flux balance analysis (FBA), the most prominent method from CBM, uses
linear programming to find a flux distribution that maximizes a specified objective
[128], e.g., biomass or ATP production. It finds a solution to this optimization prob-

3e matrix S with dimensions ∣m∣ × ∣n∣ represents the stoichiometries of a reactions system
containing metabolites m and reactions n, where Si,j < 0, if reaction j consumes metabolite i, and
Si,j > 0, if it produces metabolite i.

4



lem
max {cTv ∶ Sv = 0,vmin < v < vmax}, (1.3)

where c denotes the coefficient vector of the target function.
(v) Recently flux balance analysis has been extended to incorporate experimen-

tal data that cannot be directly incorporated as flux boundaries, e.g, RNA transcript
levels and proteomic data [18, 28, 112].

We will make use of the steady-state approximation of metabolism and apply
CBM extensively throughout the thesis, for tasks like random media sampling, re-
action deletion analysis, microarray data incorporation and assessment, as well as for
flux-coupling analysis.

esis outline
is thesis is based on a cumulation of published and submitted work, as well asman-
uscripts being prepared for publication. In the following, each piece of work is pre-
sented in form of a chapter, put into a broader perspective by a concluding chapter.
Short descriptions are given below, which explain the motivation and background of
each work.

Chapter 2: Ranges of control in the transcriptional regulation of
Escherichia coli

One of the most important open questions in genomics regards the spatial organiza-
tion of genes on the genome. Are genes randomly distributed or do they follow some
hidden organizational principle? And if so, is their spatial organization a major con-
tributor to their transcriptional regulation? Transcriptional regulation in prokaryotes
is mainly believed to be organized by a set of dedicated transcription factors, either
down or up-regulating the transcription of their target genes, the lac operon [63] be-
ing one out of many examples of this regulatory principle. On the other hand, it is
now generally accepted that chromatin plays a major role in eukaryotic gene regu-
lation [75] and evidence is accumulating for this being true in prokaryotes as well
[125].

RegulonDB [42], a database that collects information about transcriptional regu-
lation in Escherichia coli, provided in its 6.2 version regulatory information for 1474
out of 4585 genes. us, regulatory information is missing for the vast majority of
genes. So, why is this the case in one of the best studied model organisms? Of course,
one can argue that nothing is ever known completely, but a time-resolved view on
the evolution of the database shows that the number of regulated genes is stagnating
over the last years (see Figure 1.1), indicating that perhaps for a significant portion
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Figure 1.1: A summary of the amount of data provided by RegulonDB over the last 13
years.

of genes regulatory interactions and transcription factor binding sites will never be
found.

In order to get some insights into this proposition, we applied, in collaboration
with Dietrich and Helga Stoyan from Bergakademie Freiberg, point-process statistics
to the spatial distribution of genes on the E. coli chromosome. In particular we inves-
tigated the distribution of two classes of genes: genes that are controlled by dedicated
transcription factors and genes where no such information is available.

Chapter 3: Analog regulation of metabolic demand

Patterns of gene expression changes under variations of the underlying regulatory
machinery are an important source of information for understanding the mecha-
nisms of genetic control. We will show that the 3D structure of the circular chromo-
some of the model organism E. coli is one key component of this regulatory machin-
ery. For this type of regulation, mediated by topological transitions of the chromo-
somal DNA, the term analog control was introduced by Marr et al. [81], in contrast
to the regulatory action of transcription factors targeting specific DNA sites, denoted
as digital control [81]. So far, the rich patterns of gene expression changes induced
by alterations of the superhelical density of chromosomal DNA have been difficult to
interpret.

In a collaboration with Georgi Muskhelishvili (Jacobs University) and Marcel
Geertz (University of Geneva) we characterize effective networks formed by super-
coiling induced gene expression changes, i.e., subgraphs which are exclusively com-
posed of the dynamically active elements in the system. ese effective networks are
constructed by mapping the expression data onto static reconstructions of E. coli’s
metabolic and transcriptional regulatory networks.
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Chapter 4: Multiple topological labels and medium-dependent
essentiality in Escherichia colimetabolism
Based on previous well-known approaches to detect lethal reactions using topological
and dynamicalmarkers [8, 104, 136], resulting in reaction sets with surprisingly small
overlaps, we explore the topological characteristics of reactions that are (i) always es-
sential, (ii) essential only under specific media conditions, and (iii) never essential.
Essentiality categories (i–iii) are determined in silico using random media sampling
in conjunction with a single reaction knockout approach. For each sampledmedium,
the reaction targets for the knockout analysis can be determined by the identification
of the set of active reactions. Other reactions do not have to be checked, as their
removal will certainly not change the objective function optimum. e relative es-
sentiality is than defined by the number of lethal outcomes of the removal of a target
reaction divided by the number of environmental conditions this certain reactionwas
active. Furthermore, we investigate in a combinatorial fashion if combinations of the
essentiality markers lead to more accurate essentiality predictions.

Chapter 5: A network perspective on metabolic inconsistency &
Chapter 6: Metabolic variability in adrenal gland tumors
Adrenocortical adenomas are benign tumors; their medical significance lies not so
much in their cancerous nature but rather in their ability to cause drastic imbalances
in the endocrine system, e.g., primary aldosteronism [23], being characterized by an
overproduction of the mineralocorticoid hormone aldosterone. Primary aldostero-
nism leads to a decreased renin activity and subsequent arterial hypertension.

In collaboration with Arndt Benecke and Annick Lesne, from Institut des Hautes
Études Scientifiques, andMaria-Christina Zennaro, from Institut National de la Santé et
de la RechercheMédicale, we integrate gene expression data obtained from healthy and
tumorous adrenal glands with a genome-scale reconstruction of human metabolism
[35] in order to understand themetabolic alterations in adenoma physiology. We also
applied constraint-basedmodeling techniques to unravel physiological changes in the
adrenal gland tumors, probing their abilities to produce energy aswell as the hormone
aldosterone. Furthermore, we compared our findings with results from a topological
analysis (whichwe developed for the investigation described in Chapter 3), observing
a strong agreement between both measures.

Chapter 7: Conclusions and outlook
is chapter combines and contextualizes the findings of the presented work and
gives a comprehensive overview on the achieved knowledge gains. Furthermore, ex-
tensions to the presented work are proposed and a future outlook is given.
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Chapter 2

Ranges of control in the transcriptional
regulation of Escherichia coli

is chapter provides the content of the following publication [115]:

Nikolaus Sonnenschein, Marc-orsten Hütt, Helga Stoyan, and Diet-
rich Stoyan Ranges of control in the transcriptional regulation of Escherichia
coli. BMC Syst Biol (2009) vol. 3 (1) pp. 119

Abstract

Background: e positioning of genes in the genome is an important evolutionary
degree of freedom for organizing gene regulation. Statistical properties of these dis-
tributions have been studied particularly in relation to the transcriptional regulatory
network. e systematics of gene-gene distances then become important sources of
information on the control, which different biological mechanisms exert on gene ex-
pression.

Results: Here we study a set of categories, which has to our knowledge not been an-
alyzed before. We distinguish between genes that do not participate in the transcrip-
tional regulatory network (i.e. that are according to current knowledge not producing
transcription factors and do not possess binding sites for transcription factors in their
regulatory region), and genes that via transcription factors either are regulated by or
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CHAPTER 2. RANGES OF CONTROL IN THE TRANSCRIPTIONAL REGULATION OF
ESCHERICHIA COLI

regulate other genes. We find that the two types of genes (“isolated” and “regulato-
ry” genes) show a clear statistical repulsion and have different ranges of correlations.
In particular we find that isolated genes have a preference for shorter intergenic dis-
tances.

Conclusions: ese findings support previous evidence from gene expression pat-
terns for two distinct logical types of control, namely digital control (i.e. network-
based control mediated by dedicated transcription factors) and analog control (i.e.
control based on genome structure and mediated by neighborhood on the genome).

Background

e circular genome of E. coli is still an object of intense scientific research (see, e.g.,
[98]). It is a rich source of information on the organization of gene regulation, the
interplay of different types of control exerted on gene expression, a model system
for analyzing DNA topology, the model for which the most detailed electronically
accessible transcriptional regulatory network has been compiled.

Many processes, acting on a broad range of scales, contribute to the evolution of
bacterial chromosomes. Genes are organized in operons, i.e., groups of genes shar-
ing a regulatory domain. e genome is shaped by point mutations, large-scale re-
arrangements, strand breaks and inversions during replication. e gene invento-
ry is modified by gene duplications or deletions and lateral or horizontal transfer of
genes. It is striking that an ever closer look at statistical properties of data reveals
ever more systematic information, shaped by evolution, on an ever broader range of
length scales.

Starting from the work by DeMartelaere and VanGool (1981) [82] and Jurka and
Savageau (1985) [68] the gene density along the circular chromosome of E. coli has
been discussed as a potential source of information on the evolutionary shaping of
the system and in particular as a means of using DNA topology (i.e. the 3D structure
of the genome) for regulatory purposes (see also [13]).

e papers by Warren and ten Wolde (2004) [132] and Képès (2004) [72] focus
on distances between genes or operons. Both are studies of the specific patterns in
the distributions of distances between regulatory pairs (genes or operons regulat-
ing each other or pairs of genes or operons co-regulated by other genes). Warren
and ten Wolde (2004) [132] find a substantially reduced distance between operons in
such regulatory pairs, suggesting an evolutionary pressure to reduce such distances
for efficient regulation. For obtaining this, they use classical characteristics of point
process statistics, namely partial pair correlation functions and nearest neighbor dis-
tance probability density functions.

10
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Figure 2.1: Schematic view on the transcriptional regulatory network. (A) For the TRN,
the nodes are genes and the (directed) links describe the regulatory action of one gene
onto another mediated by a transcription factor. More specifically, for the link shown
in the Figure, gene a expresses protein A, which serves as a transcription factor (TF)
binding in the regulatory region of gene b and thus controlling gene b. e links of the
transcriptional regulatory network can be inserted into the circular genome of E. coli
(schematically shown in (B) and for the real genome in (C), based on the data from Reg-
ulonDB, version 6.2.

Képès (2004) [72] observe a periodicity in the distances between regulator and
target, where the period length is in the same order of magnitude as known loop
domains in the 3D organization of the E. coli chromosome.

More recently, Hermsen et al. (2008) [56] observed that genes with opposite ori-
entation have a bias towards larger distances, when oriented away from each other
(divergent gene pair; e.g. the second gene pair in Figure 2.1) compared to those ori-
ented towards each other (convergent gene pair; e.g. the first gene pair in Figure 2.1).
ey argue that this bias is due to the larger size of the upstream control region com-
pared to the downstream control region.

Darling et al. (2008) [31] discuss biases in genomic inversions with respect to the
replichores and other patterns of genome rearrangement in bacterial chromosomes.
Another important factor influencing gene-gene distance statistics on a very general
level is gene clustering. e origin of observed gene clustering is attributed to gene
duplication and divergence, an evolutionary advantage of clustering, as it might in-
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CHAPTER 2. RANGES OF CONTROL IN THE TRANSCRIPTIONAL REGULATION OF
ESCHERICHIA COLI

crease a gene’s chance for horizontal gene transfer or, lastly, selective advantage of
gene clusters due to functional coupling and the efficient organization of transcrip-
tion (see the discussion in [38]).

From the systems perspective, mainly the regulatory control mediated by direct
binding of transcription factors has been investigated. e compilation of these in-
teractions for E. coli into a database [41] allows the construction of a transcriptional
regulatory network (TRN) [109]. is view yields deep topological insights into the
hierarchical organization of TRNs (Ma et al., 2004 [78]; Yu and Gerstein, 2006 [138])
and their composition out of specific network motifs (Shen-Orr et al., 2002 [109]).
e TRN has been used for the interpretation of expression patterns (Gutierrez-Rios
et al., 2003 [51]; Herrgard et al., 2003 [57]), revealing both the potential and the limi-
tations of this perspective. In particular, recently it became obvious that other effects
with very different regulatory mechanism have to be taken into account, like alter-
ations of the DNA structure on a small [124, 125] and larger [135] scale. us, under-
standing the organizational logic of gene regulation necessitates a clear distinction of
the different control types in the first place, as a prerequisite for the assessment of
their impact in regulation.

Another link between these two research areas, gene distribution andTRN, comes
from the observation that gene neighborhood explains some features of observed
gene expression patterns (Marr et al. 2008 [81]; Blot et al. 2006 [20]). In particu-
lar, Marr et al. (2008) [81] analyze the interplay between two types of control in gene
expression profiles in E. coli, one network-mediated and the other mediated by DNA
topology.

ese two control types have been termed digital (referring to the fact that the
TRN provides static information on the connections between unique, discontinuous
components, e.g. a particular pair of regulator and regulated gene) and analog (refer-
ring to the fact that the expression of specific genes is under the control of continuous
information provided by distributions of supercoiling energy in the genome), respec-
tively [81].

e statistical properties of gene distributions and gene spacings have been stud-
ied to detect deviations from randomness and interpret these deviations in a suitable
evolutionary context. To a large extent, these investigations differ (apart from the
technical details of the statistical tools and the construction of suitable null mod-
els) predominantly in the categories of genes analyzed. In the present paper we show
results for two analysis steps, where the first analysis distinguishes between two class-
es. Analysis I discusses genes involved in regulation (i.e., either being regulated by a
transcription factor or producing a transcription factor regulating other genes; class
1) and genes not involved in regulation mediated by transcription factors (which in
the following we will call “isolated genes”; class 2). Analysis II consists of pairs of
genes regulated by a common transcription factor. Distances between the genes in
such a pair will be contrasted to the distances between arbitrary genes.

12



e biological hypothesis behind these categories is that different means of gene
regulation essentially have different length scales. e novel feature of our approach
lies in two points: (1) the distribution of regulated/regulating genes vs. (regulatorily)
isolated genes has not been studied before. Our finding here, a pronounced deviation
from randomness for the isolated genes, fits to the hypothesis stemming from previ-
ous investigations of control types in gene expression patterns (Marr et al. 2008 [81]);
(2) in order to detect deviations from randomness we employ different non-classical
types of correlation functions.

Our hypothesis, based on the findings fromMarr et al. (2008) [81], is that the exis-
tence of distinct logical types of control (namely digital and analog) has a systematic
impact on the statistical features of gene distributions. In particular, distances be-
tween isolated genes and all others should be smaller than average distances between
genes, as isolated genes tend to be co-regulated by spatial neighborhood via the 3D
structure of the genome.

Results are in the following presented both on the level of individual genes and
on the level of operons.

Results and Discussion

First we present the gene distance distributions for the two gene classes, (isolated
genes and genes involved in regulation; see above). en we discuss pair correla-
tion functions g(s), partial pair correlation functions gij(s), mark connection func-
tions pij(s), connectivity correlation functions c(s), and control correlation func-
tions k3(s) (see Materials and Methods).

Figure 2.2 explains the categories of genes (operons) we are studying. In the first
part (Analysis I; classes 1 and 2; cf. Figure 2.2A and C) we are looking at statistical
properties of shortest distances between two genes involved in regulation (s11), two
isolated genes (s22), and an isolated gene, together with a gene involved in regulation
(s12); cf. Figure 2.2B. In the second part (Analysis II) we study distances between two
genes regulated by a common transcription factor. In all cases we analyze the shortest
distance (in base pairs, bp) along the circular genome to the nearest neighbor of the
respective type. We do not consider the orientation of genes on the genome or the
sizes of the genes and operons. In fact, we represent every gene only by a single point,
namely by its center. We checked that our results do not change qualitatively whenwe
consider other definitions of the “distance” between two genes (e.g., from start points
to end points or the minimal distance between any two points of the two genes; cf.
Figure 2.2D). We ignore biases induced by the relative position of the gene under
consideration with respect to the origin of replication (ori) or the Ter macrodomain,
respectively.
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Figure 2.2: Definitions of categories and distances. (A) e classes of genes (involved
and not involved in regulation) entering Analysis I and the subset of genes involved in
regulation (pairs of genes under common regulation), which is studied in Analysis II. (B)
Examples of distances s11, s12 and s22 entering point process analysis. (C)Nodistinction
ismade between genes receiving a regulatory influence and genes encoding transcription
factors regulating other genes. (D) Various possibilities of defining the distance of two
genes along the genome. In this investigation we use variant 1.

us we are confronted with problems of point process statistics (see Materials
and Methods), where the genes or operons are the points. ey are marked by 1 or 2,
corresponding to the classes above, 1 : involved in regulation, 2 : isolated.

Figure 2.3 shows the distributions of shortest distances on the gene level (Fig-
ure 2.3a) and on the operon level (Figure 2.3b), together with the distribution of gene
content of operons (Figure 2.3c; i.e. the number of genes in an operon). Most of the
operons in E. coli consist of only a single gene, some operons, however, contain as
many as 15 genes. Figure 2.3 already reveals several interesting features of the data:
Distances between operons tend to be larger than distances between genes (which
results from the systematic omission of intra-operon distances, when passing from
genes to operons); the decrease in frequency with the distance does not seem to fol-
low an exponential distribution, suggesting a deviation from a Poisson process (and
therefore from a random distribution of points).

Aer the discussion of the nearest neighbor distances we report now on the cor-
relation functions. First we discuss the pair correlation functions g(s), see Figure 2.4.
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Figure 2.3: Pairwise distances and operon sizes. Histogram of pairwise distances for (a)
genes and (b) operons, and distribution of operon sizes (c).
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Figure 2.4: Pair correlation functions. e pair correlation function g(s) for genes (dot-
ted) and operons (dashed). e functions indicate a weak tendency of regularity of the
gene/operon positions.

ey indicate the well-known fact that the positions both of the genes and operons
are not completely randomly distributed, i. e. according to a Poisson process, where
g(s) = 1. In contrast, they are more regularly distributed, probably simply due to the
finite size of the objects, as is shown by the values of g(s) smaller than 1 for small s.

Typical gene sizes range from a few hundred bp to several thousand bp with the
mean size centered around 1 kpb.

ere is even a maximum for distances of 1 and 2 kbp, while for larger values the
curves approach fast the value 1, which corresponds to absence of location correla-
tion. e range of correlation is for the operons somewhat longer than for the genes,
it goes until 6 kbp.

A suitable tool for analyzing the relative contributions of the different categories to
these correlations is the partial pair correlation function gij(s) with ij = 11 (between
genes involved in regulation), ij = 22 (between isolated genes) and ij = 12 (one gene
involved in regulation, the other isolated), respectively. Figure 2.5 shows the curves
gij(s) for genes (Figure 2.5a) and for operons (Figure 2.5b). e results for g11 and
g22 are similar to those from Warren and ten Wolde (2004) [132] and, in fact, display
similar features as the pair correlation function g(s) in Figure 2.4: very small distances
are suppressed (due to the finite size of the elements); one observes a peak between
1 and 2 kbp and then a convergence to the value 1 as for the uncorrelated case. e
ranges of correlation are between 5 kbp and 7 kbp.
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Figure 2.5: Partial pair correlation functions. Partial pair correlation functions gij(s)
for (a) genes and (b) operons. In both cases the full curve denotes g11(s), the dotted
curve g22(s) and the dashed curve g12(s). e functions indicate a weak tendency of
regularity of isolated and regulated points, and a clear tendency of repulsion between
isolated and regulated points.
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e curves for g12(s), however, are new and, to a certain extent, unexpected: the
distances between isolated and regulatory genes do not show a peak at intermediate
distances. Obviously, the repulsion between isolated and regulatory genes is stronger
and longer than that of genes of the same type, namely 7 kbp. In contrast, for operons
it is shorter, only 3 kbp.

e term “repulsion” is used here in a simplifying sense, in order to say that there
is a tendency that the distances between isolated and regulatory genes are larger than
between genes of the same type. is may be a result of real repulsion as well as of
relative “attraction” of the members of one class towards itself.

We interpret this repulsion as an unmixing of genes predominantly regulated by
transcription factors (digital control; cf. [81]) and genes predominantly regulated by
the 3D structure of the genome (analog control). For the first type (class 1) distance
correlations should be less important than for the second type (class 2) where reg-
ulation is mediated (among other processes) by the neighborhood of genes on the
genome.

Figure 2.6 shows themark connection functions pij(s), again for genes (Figure 2.6a)
and for operons (Figure 2.6b). All these function are simply monotonous and nearly
linear. e curve for p22(s), for example, shows that the probability that two genes
(operons) of distance s are both isolated is monotonously decreasing. e numer-
ical differences between the values for genes and operons result from the different
values of p2, which are 0.676 and 0.735 for genes and operons, respectively. ese
functions show that the maxima of the gii(s) result mainly from higher numbers of
gene/operon pairs of the corresponding inter-gene/operon distances, while the prob-
abilities that members of such pairs are both monotonously decreasing in s. ey are
decreasing for i = 2 for genes and operons, while the function p11(s) is decreasing
for genes and increasing for operons. e decrease of p22(s) in both cases (genes
and operons) is in good agreement with our expectations that short distances should
contribute more strongly in the case of analog control. We believe that the decrease
of p11(s) for genes is a consequence of the very strong short-range contributions of
intra-operon distances (i.e. of genes within the same operon).

It should be noted that the partial pair correlation functions gij(s) compared to the
mark connection functions pij(s) are individually normalized. In contrast to pii(s)we
seemaxima of gii(s) around 2 kbp. Comparison between the types 1 and 2 shows that
regulatory genes are more regularly distributed than isolated genes (as the maximum
is higher for g11(s)). We would also like to point out that the estimates of the partial
pair correlation function and mark connection function depend continuously on the
proportions of class 1 and class 2 genes in this analysis (see also Methods). We thus
expect that small fluctuations in the data will leave the main results of our analysis
intact.

Both, in the partial pair correlation functions g12(s) and in the mark connection
function p12(s) one can see that the two classes (isolated genes and genes involved in
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Figure 2.6: Mark connection functions. Mark connection function pij(s) for (a) genes
and (b) operons. Analogously as in Figure 2.5, the full curves denote p11(s), the dotted
curves p22(s) and the dashed curves p12(s). e functions show that the maxima in
Figure 2.5 result only from different frequencies of inter-point distances, while the prob-
abilities of being isolated or regulated depend monotonously on the interpoint distance
s.
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Figure 2.7: Connectivity correlation function. Connectivity correlation function c(s)
for genes (dotted) and operons (dashed). e functions show that the probability that the
members of a pair of non-isolated points regulate each other decreases only for distances
s larger than a value s0 (approximately 3000 bp for the genes and 2500 for the operons).
e weak irregularities of the curve for the operons result from the fact that, while the
same estimator is used as for the genes, the number of passive operons is much smaller
than that of that of passive genes and so the statistical quality of the results decreases a
little.

regulation) repel each other. On the level of the operons this repulsion is less clearly
visible (and has a range up to approximately 2.5 kbp); in general, operons are more
irregularly spaced than the genes. In all these cases, this can be explained by the
elimination ofmany short (intra-operon) distances fromconsideration, when passing
from the gene level of description to the operon level.

e second group of correlation functions describes distances between points
(genes/operons) under common regulation. First we look at the probability for two
regulatory (mark 1) points at a distance s that there is a regulation relationship be-
tween them. is is expressed in terms of the connectivity correlation function c(s),
which is given in Figure 2.7. e curves show that there is a critical distance s0 be-
tween 2 and 3 kbp such that for s larger than s0 the probability that the two points
regulate another decreases continuously. e numerical values for the operons are
clearly larger than those for the genes, indicating a higher systematic (importance of
distance for the organization of regulation).

Finally, Figure 2.8 shows the curves for the control correlation functions k3(s).
Now only passive points are considered, a subset of the regulatory points. e prob-
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Figure 2.8: Control correlation function. Control correlation function k3(s) for genes
(dotted) and operons (dashed). e functions show that the probability that themembers
of a pair of passive points are regulated by the same point decreases monotonously with
increasing distance s. As in Figure 2.7, theweak irregularities of the curve for the operons
result from the fact that, while the same estimator is used as for the genes, the number of
passive operons is much smaller than that of that of passive genes and so the statistical
quality of the results decreases a little.

ability of interest is that the two points considered are regulated by the same (active)
other point. Since the basic point processes for c(s) and k3(s) are different, namely
1-points and passive points, no simple inequality between both functions must hold
true.

e function k3(s) thus indicates that the three objects involved (two regulated
genes, one regulator) are preferentially close together.

How do the two categories, regulatory genes (class 1) and isolated genes (class
2), compare with experimental information on gene regulation? We used a list of
supercoiling-sensitive genes from [94] and compared it with the two categories of
genes discussed in our manuscript (i: number of isolated genes, and r: number of
genes involved in regulation). Figure 2.9 shows the ratio of isolated and regulatory
genes for both experimental classes (s: number of supercoiling-sensitive genes; n:
number of non-sensitive genes; si then denotes the number of isolated supercoiling-
sensitive genes, etc.), normalized by the number of genes in the two categories; for
clarity, a value of one (representing equal proportions of genes in both categories) has
been subtracted. e first value in Figure 2.9 is thus ((si/sr) (r/i) – 1). If we assume
that supercoiling-sensitive genes are genes, for which analog control is systematically
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Figure 2.9: Comparison with supercoiling-sensitive genes. Excess of isolated vs. regula-
tory genes in the supercoiling-sensitive genes, togetherwith a comparisonwith randomly
drawn genes (null model I: randomly selected supercoiling-sensitive genes; null model
II: randomly selected isolated genes).

more important than digital control, we expect a larger percentage of isolated genes
to be in this group. Even though this test can only provide very indirect evidence,
the effect is clearly visible in Figure 2.9, as the first value deviates the strongest from
zero. For non-sensitive genes, as well as for all random samplings the values are close
to zero. It should be pointed out, however, that the statistical significance is not high
enough to form a solid basis for interpretation. e more sophisticated techniques,
which lead to the previous figures, are indeed necessary for this.

Our statement that short distances and analog control are qualitatively related can
also be checked on the level of this data set. While it should be noted that our key
result is a statistical signal emerging from the collective ensemble of genes (and here
we show additionally, how these findings can again be cross-validated against high-
throughput data), we again resort to the data from [94] and compare a histogram
of inter-gene distances obtained from supercoiling-sensitive genes with a histogram
obtained from a random selection of genes. e trend towards smaller distances is
clearly seen. is figure is included as supplementary information (Additional File
2.10).

e second data set is taken from [130], where the protein occupancy landscape
(i.e. the probability per base of a protein binding event) has been measured. e au-
thors distinguish between transcriptionally silenced extensive protein occupancy do-
mains (tsEPOD) and highly expressed extensive protein occupancy domains (heEP-
OD). Figure 2.11 shows the distance of isolated genes and regulatory genes from these
domains in a cumulative plot. While no substantial difference between the isolated
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Figure 2.10: Distances among supercoiling-sensitive genes and other genes. Histogram
of distances observed between supercoiling-sensitive genes (dark gray) and a random
sample of other genes (light gray). e inset shows the corresponding cumulative dis-
tance plot.

and regulatory genes is seen for the heEPODs (Figure 2.11b), the distances of isolated
genes to tsEPODs are clearly shorter than those of regulatory genes (Figure 2.11a),
pointing again towards a biological significance of this distinction between isolat-
ed and regulatory genes and also towards a stronger importance of analog control
(mediated by regional binding events of structural proteins to the DNA) for isolated
genes.

e inset in Figure 2.11b summarizes the two parts of Figure 2.11 by showing
the difference between the isolated gene curve and the regulatory gene curve from
Figure 2.11a (full curve in the inset; tsEPODs) and from Figure 2.11b (dotted curve
in the inset; heEPODs), respectively. A particular interesting feature seen in the inset
is that at short distances the full curve goes up and the dotted curve goes down, i.e.
there are (at short distances) farmore isolated genes in the vicinity of transcriptionally
silencedEPODs andmore regulatory genes in the vicinity of highly expressedEPODs.

Lastly, we looked at pairs (class 2, class 1) = (i, r) of genes, taking into account
the orientation of genes on the respective strand. Figure 2.12 distinguishes between
i – r and r – i and shows the cumulative distances for these two cases (r – i: full, i
– r: dotted). We find strong differences between these cases, again suggesting that
“isolated” and “regulatory” are meaningful categories for our analysis. Additionally,
these differences could indicate that the larger size of the regulatory regions in the r
category is a contributor to the repulsion we observe between the two categories.
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Figure 2.11: Comparison with extensive protein occupancy domains (EPODs). Cu-
mulative frequencies of distances between genes and extensive protein occupancy do-
mains (EPODs): (a) distances to transcriptionally silenced EPODs (full curves), (b) dis-
tances to highly expressed EPODs (dotted curves). In both cases this analysis has been
performed independently for the isolated genes (gray curves) and the regulatory genes
(black curves). Inset: Differences between the gray and black curves from both parts, i.e.
for tsEPODs (full curve in inset) and heEPODs (dotted curve in inset).
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Figure 2.12: Distances between regulatory and isolated genes taking orientation into
account.

Conclusions

Patterns (i.e. systematic deviations from randomness in the arrangement of genes) in
the genome of E. coli have been studied on many different scales.

Here we analyzed another facet of this topic by distinguishing between genes in-
volved and not involved in regulation based on transcription factors. Our key finding
is that these two classes, regulatory and isolated genes display a statistical repulsion.
Furthermore, the (operon-level) partial pair correlation function has a peak at short-
er distances for isolated genes than for regulatory genes. is preference of shorter
distances for isolated genes is also visible in themark connection function and is sup-
portive of our hypothesis that analog control is more important for this class of genes
than for the regulatory genes, for which digital control is a longer-ranging alternative.

Whether the statistical properties of inter-gene distances discussed here originate
from the need to organize gene regulation or from the dynamics of genome rearrange-
ment cannot be ultimately decided based on the data at hand.

Minimal models of genome arrangement dynamics and its impact on gene ex-
pression could be a useful tool for deciding whether the distance pattern between
genes is indirectly shaped (and therefore deviates from pure randomness) by these
dynamics, rather than being evolutionarily constraint to contribute more directly to
gene regulation.

e statistical differences between isolated and regulatory genes described here
suggest that, indeed, the genes currently classified as isolated from the perspective of
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the available TRN are systematically different from the genes involved in regulation.
We by no means want to suggest that (a) these genes are indeed unregulated nor (b)
that the current version of RegulonDB (version 6.2) is complete. However, when
considering the extreme cases of isolated genes being just gaps in the database and,
on the other hand, isolated genes being systematically regulated by other means, our
results support the latter view.

Even though we consider our findings in an evolutionary context (by making vis-
ible some deviations from randomness of the gene distances in the E. coli genome,
which can only be understood evolutionarily) we here do not directly discuss the
comparative genomics aspect of it. It would be particularly interesting to analyze the
degree of evolutionary conservation as a function of the distance between genes and
separately for the two categories of genes. A hypothesis for such an extension of our
analysis could be that pairs of genes contributing strongly to the patterns we observe,
have a higher degree of evolutionary conservation. is is, indeed, a whole work
package we plan to tackle in a future investigation.

Eventually one needs to arrive at a more holistic view of the system and explain
the interplay between gene arrangement, DNA binding site distributions, physical
properties of DNA binding sites, the architectural properties of the transcriptional
regulatory network and the spatial gene expression patterns, in order to understand
the binding site code behind global gene expression and to unravel the universal de-
sign principles of transcriptional regulation.

Methods

Point process statistics

In the statistical analyses of this paper, the genes are considered as points on a circle
C , the circular chromosome of E. coli. us, a random system of points is analysed,
which leads to the application ofmethods of point process statistics. (e term “process”
is related to early applications where the points were time instants. Also the term
“stationary” is related to these applications; “homogeneous” could be an equivalent.)
esemethods have beenmainly developed for the planar (d = 2) and spatial (d = 3)
case, but can be easily applied also in the one-dimensional (d = 1) case considered
here. So our main reference is Illian et al. (2008) [62].

Similarly to the investigations of [72, 132] we assume that the point pattern be-
longs to a “stationary” point process, i. e. that the point distribution is rotation invari-
ant. is implies that the local point density does show only irregular fluctuations, as
it is the case. us it makes sense to speak about the “intensity”, the mean number of
points per length unit. As in [62] it is denoted here by λ.
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e points considered are marked. ere are two marks, namely “1” and “2”,
where “1” stands for “regulatory” and “2” for “isolated”. e fraction of i-points is
denoted by pi, for i = 1,2. Note that pi can be interpreted as the probability that a
randomly chosen point has themark i. Furthermore, the probabilities p1 and p2 make
sense, where pi is the fraction of i-points (a point with mark i) in the point process.
It can be interpreted as the probability that a randomly chosen point is an i-point.

e statistical analysis uses a series of summary characteristics, which have been
successfully employed in spatial point process statistics. All these functions depend
on a variable s, which is a distance. In all cases this is the shortest distance along the
circular genome.

All these function can be called “correlation functions”, but not all include only
point pairs; therefore some of them are not second-order characteristics.

e best known function is the pair correlation function g(s), which is explained
here as in [62], p. 219, since the explanation there is closer to the “two-point inter-
pretation” used for explaining the other functions. (e explanation in Warren and
ten Wolde is different but equivalent.)

Consider two points x and y on C of distance s and two infinitesimal length ele-
ments of lengths dx and dy centred at x and y. Denote the probability that in the two
elements there is each a point by p(x, y). is probability is given by the so-called
product density ϱ(x, y) as p(x, y) = ϱ(x, y)dxdy.

In the stationary case (which is assumed), ϱ(x, y) depends only on the distance s
of x and y, and the simpler symbol ϱ(s) is used. e pair correlation function is then
g(s) = ϱ(s)/λ2.

e normalisation by division by λ2 makes that for large r, g(r) approximates
1. Values of g(r) larger than 1 for small r indicate clustering, while values smaller
than 1 indicate some tendency of regularity or repulsion between the points. See the
discussion of the information given by a pair correlation function in [62], pp.219.

e partial pair correlation functions gij(s) are defined using refined product den-
sities ϱij(s)where one of the points in the infinitesimal intervals is an i-point and the
other a j-point, see [62], p. 325. ese functions are normalized by pipjλ2 , which
leads to g11(s), g12(s) and g22(s). e gα(s) in [132] are similar to g11(s).

Again, the normalisation leads to values around 1 for large s, and also the gen-
eral interpretation is similar to that of g(r), see [62], pp.325. For i ≠ j the relations
between different sorts of points are characterized. For example, values smaller than
1 for gij(r) indicate some tendency of repulsion or inhibition between points of the
different types i and j.

e mark connection functions pij(s) are defined by

pij(s) =
ϱij(s)
ϱ(s)

, (2.1)
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of course only for such s where the denominator is positive, see [62], p. 331. It can
be interpreted as the conditional probability that two points at distance s have marks
i and j, given that these points are in the point process. ese probabilities have the
following behavior for large s:

lim
s→∞

pii(s) = p2i (2.2)

and
lim
s→∞

pij(s) = 2pipj (2.3)

for i ≠ j. It is useful to consider the mark connection functions additionally to the
partial pair correlation functions since they characterize the occurrence of the point
types with eliminated influence of fluctuations in point density; see [62], p. 332.

Comparison of the Figures 2.5 and 2.6 shows the power of this approach. e
curves in Figure 2.5 are heavily dominated by the frequencies of point distances,
which show for the genes a maximum at around s = 2000...3000, while Figure 2.6
shows the true nature of the marking: the probability that two points of distance s
have, for example, both mark 2 decreases monotonically with s.

e connectivity correlation function c(s) is also a characteristic of a conditional
nature. It is defined by

c(s) = ϱconn(s)
ϱ11(s)

(2.4)

where ϱconn(s) is a quantity which yields the probability that between the points x
and y in the infinitesimal intervals above, if both are regulatory (both have mark 1),
there is a direct regulatory relationship, i. e. one of them regulates the other or both
regulate the other. It is similar to the connectivity function in [62], p. 249, and can
be interpreted as the conditional probability that between two regulatory points at
distance s there is a direct regulatory relationship.

Finally, the control correlation function k3(s) is defined by

k3(s) =
ϱ3(s)
ϱpp(s)

. (2.5)

It is defined for the sub-point process of all points that are regulated by other points
(“passive” points, a subset of all 1-points); its product density is denoted by ϱpp(s).
Furthermore, ϱ3(s) is a quantity which yields the probability that for two passive
points x and y in the infinitesimal intervals above there exists a third point which
regulates both x and y. us, k3(s) can be interpreted as the conditional probability
that for two passive points at distance s there is a third point which controls both of
them.
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Transcriptional regulatory network and spatial distribution of genes
We obtained the data from RegulonDB (version 6.2) [41], which is a database specif-
ically dedicated to the transcriptional regulation of E. coli. A total number of 4548
genes are included in this database, of which 1474 bear information about their tran-
scriptional regulation and thus have been classified as class 2 genes.
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Chapter 3

Analog regulation of metabolic
demand

is chapter provides the content of the following manuscript submitted for publica-
tion [117]:

Nikolaus Sonnenschein,MarcelGeertz, GeorgiMuskhelishvili, andMarc-
orsten Hütt Analog regulation of metabolic demand, submitted

Abstract
Background: e3Dstructure of the chromosomeof themodel organismEscherichia
coli is one key component of its gene regulatory machinery. is type of regulation
mediated by topological transitions of the chromosomal DNA can be thought of as
an analog control, complementing the digital control, i.e. the network of regulation
mediated by dedicated transcription factors. Here we show that DNA supercoiling, in
cooperationwith the nucleoid associated proteins (NAPs), i.e. the analog level of con-
trol, coordinates gene expression with metabolism. We analyze the pattern of gene
expression changes induced by alterations of the superhelical density of chromoso-
mal DNA from a network perspective.

Results: We find a significantly higher correspondence between gene expression
and metabolism for the wild type expression changes compared to mutants in NAPs,
indicating that supercoiling induces meaningful metabolic adjustments. As soon as
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the underlying regulatory machinery is impeded (as for the NAP mutants), this co-
herence between expression changes and the metabolic network is substantially re-
duced. is effect is even more pronounced, when we compute a wild type meta-
bolic flux distribution using flux balance analysis and restrict our analysis to active
reactions. Furthermore, we are able to show that the regulatory control of DNA su-
percoiling is not mediated by the transcriptional regulatory network (TRN), as the
consistency of the expression changes with the TRN logic of activation and suppres-
sion is strongly reduced in the wild type in comparison to the mutants.

Conclusions: So far, the rich patterns of gene expression changes induced by al-
terations of the superhelical density of chromosomal DNA have been difficult to in-
terpret. Here we characterize the effective networks formed by supercoiling-induced
gene expression changes mapped onto reconstructions of E. coli’smetabolic and tran-
scriptional regulatory network. Our results show that DNA supercoiling coordinates
gene expressionwithmetabolism. Furthermore, this control is acting directly because
we can exclude the potential role of the TRN as a mediator.

Background
A single Escherichia coli chromosome comprises 4.6 Mb and must be compacted at
least ∼103 fold to fit inside the bacterial cell. Despite tremendous compaction the
nucleoid is a dynamic structure adapted to varying rates of replication and different
transcriptional requirements resulting from changes in environmental conditions.
is double requirement of compaction and differential gene expression implies that
bacterial chromatin must possess a high degree of spatial organisation. Recent inves-
tigations indicate that the maintenance and utilisation of negative supercoils in the
DNA is central to both issues [124].

In the protein-free DNA molecule, DNA superhelicity is partitioned into a twist
component, Tw, which is reflected in a twisting or untwisting of the double helix
for positively and negatively supercoiled DNA respectively, and a writhe component,
Wr, which is a measure of the three-dimensional path of the double helical axis. In a
closed topological domain these quantities are related to a change in linking number
(∆Lk) from the relaxed state such that ∆Lk = ∆Tw +Wr. Negative supercoiling
can facilitate both DNA folding and compaction as well as the untwisting of DNA
which is required for the initiation of transcription and replication. e introduc-
tion of negative supercoils into DNA requires energy that is then available for driving
processes such as transcription and replication initiation. is energy is described
by the equation E = kBT∆Lk2/2⟨∆Lk2⟩, where ⟨∆Lk2⟩ represents the variance of
the Gaussian distribution of DNA topoisomers. Importantly the available energy is
proportional to the square of the difference in linking number. Since the total link-
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ing number is a constant for a closed domain, twist and writhe can be partitioned in
different ways and hence the DNA can assume different structures [84].

Gene promoter regions are generally characterised by high deformability, being
susceptible to duplex destabilisation under conditions of superhelical stress [55, 87,
123]. e cellular promoters can be thus understood as devices channeling the free
energy of negative supercoiling to localised, biologically relevant sites in DNA. Sev-
eral studies using different promoters and promoter derivatives revealed that there is
a distinct, yet characteristic, coupling between the superhelical density of DNA and
the activity of a particular promoter [11, 99, 106]. A change of supercoiling could
thus globally and differentially affect the efficiency of channeling superhelical energy
at distinct promoters, allowing coordinated change of gene expression activities to
occur.

Besides classicalmodes of transcriptional regulation through dedicated transcrip-
tion factors (the transcriptional regulatory network), which we would like to refer to
as digital control [81], it is well known that DNA topology affects gene expression in
prokaryotes [20] as well as in eukaryotes [75], which we call analog control ([81]; see
Figure 3.1A).

In the bacterial cell the abundant nucleoid associated proteins (NAPs), including
FIS,H-NS,HU, Lrp, Dps and IHF, fulfill the role of packaging and dynamic constraint
of superhelicity. ese NAPs are assumed to be mediators of analog control exerted
by long-range nucleoprotein structures formed by binding of multiple low affinity
sites in the chromosome as opposed to digital control exerted by low concentrations
of dedicated transcription factors binding specific DNA sites with high affinity [81].

In particular, this combination of a global state (i.e. the superhelical density) and
local states (domains and chromatin) is responsible for the spatial transcript patterns
observed along the chromosome [20, 53, 65, 94].

DNA supercoiling is homeostatically controlled by topoisomerase I and DNA gy-
rase [114]. Furthermore, the superhelical density is responsive to a range of physio-
logical conditions, e.g. the growth phase ([14]; see also Figure 3.1B), phosphorylation
potential of the cell [127] and stress conditions [25]. It is precisely this physiological
dependence that prompted us to ask whether DNA supercoiling is a global regulator
relating the chromatin structure and transcription to metabolic demand [20, 85].

In order to answer this question on a system level we utilize alterations of super-
helical density to measure supercoiling induced gene expression changes together
with a combination of NAP mutations (FIS and H-NS, see Figure 3.1C and 3.2), thus
precluding the buffering effects of the homeostatic network [106].

We are here discussing the interpretational capacity of the cell: the environmen-
tal information is sensed by and filtered via chromatin structure. We show that the
regulation of the metabolic state is predominantly achieved by this analog type of
control.
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Figure 3.1: Illustration of the different components involved in E. coli transcriptional
regulation, transcription and metabolism.

Furthermore, we show that the regulatory control of DNA supercoiling is not
mediated by the transcriptional regulatory network (TRN), as the consistency of the
expression changes with the TRN logic of activation and suppression is strongly re-
duced in the wild type in comparison to the mutants. Our data are evidence for an
optimal conversion of supercoiling into metabolic adjustments by NAPs.

While it is true for eukaryotes that the multi-level organization of gene regula-
tion obfuscates the connection between mRNA and protein levels, let alone meta-
bolic fluxes, and it seems that most of the control on metabolism is contributed by
the post-transcriptional levels [30], the situation is known to be quite different in
prokaryotes where transcription and translation are tightly coupled [46, 139]. So it is
valid to analyze the role of transcriptional regulation in order to understand bacterial
homeostasis and the metabolic state of a cell.

To our knowledge, this work is first to show directly on a system-wide level the
coordinated regulation of cellular metabolism by DNA supercoiling and NAPs.
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Figure 3.2: Experimental setup. Transcript profiles of four E. coli strains (wild type, fis
mutant, hns mutant and fis/hns double mutant) are compared under low (↓ σ) and high
superhelical density (↑ σ). e shading of the schematically depicted data sets on the
right-hand side (black, dark gray, gray and white) will be used throughout the article.

Results and Discussion

Analysis strategy
An important feature of our approach is that we analyze subnetworks of the over-
all metabolic gene network defined by the data at hand. ese effective networks
contain only the active components (differentially expressed genes) under the given
conditions (alterations in the superhelical density) and are analyzed from a network-
topological perspective. e connectivity of these gene-centric effective networks is
thus a result of the underlying reaction-centric topology, together with the observed
gene expression pattern. Deviation of this connectivity from randomness is what we
will in the following call metabolic coherence (MC). A second, more refined defini-
tion of effective metabolic gene networks, which will also be used in the following,
requires both a significant expression change for one of the associated genes and a
non-zero metabolic flux predicted for the encoded reaction using flux balance analy-
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sis [128] under specified environmental conditions.
e coherence of metabolism and gene expression patterns is quantified as fol-

lows (details are given in Material and Methods and Text A): we map the patterns of
differentially expressed genes from the four genetic backgrounds (wild type; fis, hns,
fis/hns double mutants, respectively) directly onto a metabolic gene network in or-
der to extract effective networks. en we compute the ratio of connected nodes and
all nodes in the effective network, which we call metabolic coherence ratio (MCR).
is quantity is then converted into a z-score, by using a random distribution of ex-
pression changes as a null model (Figure 3.3 summarizes this procedure), which is
our metabolic coherence (MC) in the following. e MC allows us to compare the
amount of network coherence between gene expression profiles and metabolic path-
ways for the different data listed in Figure 3.2.

In order to validate our results on a broad scale we use network reconstructions
from multiple independent databases and also apply different methods to handle
gene-reaction mappings as well as currency metabolites (see alsoMaterials andMeth-
ods and Text A). In the following we will present our results for the different variants
of the metabolic coherence for the four gene expression profiles from Figure 3.2.

Metabolic coherence

In Figure 3.4, the four values of theMC (for the wild type and the three mutants) are
shown for three different metabolic network representations, namely for the EcoCyc
database [70], for the KEGGdatabase [69] and for the iAF1260metabolicmodel [39].

Figure 3.4A displays the pattern retrieved from the gene network based on the
EcoCyc pathways. ewild type expression data exhibit the strongest coherence with
the metabolic network (high MC). e wild type also shows the strongest MC for
the KEGG network compared to the three mutants, however less clearly than for the
EcoCyc case (see Figure 3.4B). Figure 3.4C gives the MC pattern for the iAF1260
gene network, from which we manually removed currency metabolites. In this in
silico model of E. coli metabolism, we again observe a strong MC for the wild type
and low values for the mutants, with the double mutant exhibiting the lowest amount
of coherence.

Flux balance analysis (FBA) as a quantitative approach for simulating steady-state
fluxes on metabolic networks [128] allows us to study, whether the observed system-
atics are enhanced, when only active links in the metabolic network are taken into
account. Using the iAF1260 model, we computed a steady-state flux distribution that
maximizes biomass production [39] under a rich medium condition and eliminated
all inactive links from the network. e resultingMC is shown in Figure 3.4D. Strik-
ingly, the restriction to active fluxes enhances the previous pattern (fromFigure 3.4C)
for the metabolic coherence.
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e data (genes with significantly changed expression) are mapped onto the network
resulting in an effective subnetwork. e metabolic control ratio is then the ratio of con-
nected nodes (blue) and all nodes, i.e. the sum of connected and isolated (red) nodes, in
the effective network. Unhighlighted nodes correspond to genes with no significant ex-
pression changes. (B) Calculation of the metabolic coherence. Randomly reselecting the
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networks and thus the computation of a set of random metabolic control ratios MCR′.
ese allow the computation of a z-score value termed metabolic coherence MC for
the MCR. (2) is an example of a real effective network, whereas (1) is one of its random
counterparts. MCR′ of (1) lies approximately around the mean <MCR′ >.
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Figure 3.4: MC for four independent E. colimetabolic network reconstructions. (A) e
network obtained from the EcoCyc database pathway information. (B) e network ob-
tained from the KEGG pathways. (C) e network subset of the iAF1260 network where
currency metabolites have been removed manually. (D) e iAF1260 network (curren-
cy metabolites have been removed manually) consisting only of reactions active under a
rich medium condition. Error bars represent the standard deviation of a jackknife test,
where the MC was recomputed 100 times by discarding 10 % of the transcript data for
each of the four genetic backgrounds.

ekey observation fromFigure 3.4 so far is that changes in gene expression levels
brought about by changes in supercoiling energy in the genome have a strong meta-
bolic interpretation: the agreement of these expression changes with the metabolic
network is significantly above randomness (asmeasured by themetabolic coherence).
When severely perturbing the internal mechanisms of chromatin organization (by
eliminating FIS and/or H-NS from the system), metabolic coherence goes down.

Robustness of the result
Network analysis has established itself as an efficient way of exploring biological sys-
tems ([47, 81]; see also Text A). Nevertheless, network treatment of metabolic sys-
tems is accompanied by certain difficulties and we check the robustness of our results
against many of them. In order to solidify this initial result, we need to look in detail
at several issues, which can potentially affect our analysis (see also Text A):

(i) Gene to reaction mapping. While all our analyses have been performed with
gene-centric graphs, the reaction-centric graph serves as the starting point for assess-
ing metabolic information (in particular, the activity of metabolic fluxes). Decisions
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are therefore necessary, how to relate the reaction level with the gene level. e proce-
dure ofmapping genes (i.e. the layer of information, where expression changes occur)
onto reactions (i.e. the layer of information, where the metabolic network is evaluat-
ed) can have an impact on our result.

(ii) Treatment of currency metabolites. Currency metabolites are compounds in
metabolic reactions balancing charge, energy, phosphate etc. ey are distinguished
from main metabolites (which define the metabolic pathway structures) only by bio-
chemical knowledge or, qualitatively and indirectly, due to their very high degree in
the metabolic network (resulting from their involvement in a vast number of reac-
tions). e treatment of currency metabolites is an important issue in the discussion
of the topological properties of metabolic networks (see, e.g., [77]). An approximate
way of eliminating currency metabolites from metabolic network representations is
to remove a certain percentage of highest-degree metabolites. Alternatively, one can
use a database, wheremetabolites are already labeled asmainmetabolites and curren-
cy metabolites, respectively. is information is included in the most recent variants
of the KEGG database (e.g., release 51.0; see [69]). In the E. coli FBA model iAF1260
[39], this information is not available. In order to obtain a currency metabolite free
version of iAF1260 we used either a threshold to remove 4 % of the most highly
connected metabolites (threshold heuristic; comparable to the procedure described
in [73]) or a manually curated network (resembling the procedure described in [77];
see also Text A).

(iii) Differences betweenmetabolic databases. Using intersections of the different
metabolic reconstructions of E. coli allows us to focus on the commonalities between
them.

(iv) Definition of the growth medium for determining the active metabolic reac-
tions via FBA.

All these points are addressed in the following.

Large-scale evaluation

Figure 3.5 shows the MC signatures (sorted by size of the wild type MC) for a large
compendium of metabolic gene networks. ese networks can be subdivided into
five categories (MC values for all networks and data sets shown in Figure 3.5 can be
found in Table A.1):

(i) e most basic setup are metabolic gene networks extracted from the EcoCyc,
KEGG and iAF1260 database.

(ii) In order to evaluate the influence of the gene-reaction mapping on our re-
sults, we computed MC values for all databases using the following configuration:
(a) Taking all multiplicities into account, (b) excluding cases where a single or multi-
ple genes are associated with two consecutive reactions and (c) taking only reaction
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Figure 3.5: Results for the MC analysis for all available network reconstructions sorted
by the size of the wild type MC. Notation: network∗ – linked reactions with an over-
lap in the underlying gene set have been omitted; network∗∗ – only linked reactions
are included, where both are associated with single non-overlapping genes; iAF1260man

– currency metabolites have been removed manually; iAF1260deg – currency metabo-
lites have been removed by degree threshold; iAF1260 – the untreated network (KEGG
and EcoCyc are per construction free of currency metabolites); in the following (k) de-
notes slice number k in the chart. (1) EcoCyc, (2) EcoCyc∗, (3) Intersection of Eco-
Cyc and KEGG networks, (4) Intersection of EcoCyc and iAF1260man, (5) iAF1260∗man,
(6) iAF1260man obtained from FBA (rich medium), (7) iAF1260man, (8) EcoCyc∗∗,
(9) KEGG∗, (10) iAF1260∗, (11) iAF1260deg , (12) iAF1260∗∗man, (13) Flux-coupling net-
work (fully coupled), (14) KEGG, (15) Intersection of KEGG and iAF12690man, (16) In-
tersection of EcoCyc, KEGG and iAF12690man, (17) KEGG∗∗, (18) Flux-coupling net-
work (fully and directionally coupled), (19) iAF1260∗∗deg , (20) iAF1260∗∗, (21) Flux-
coupling network (directionally coupled), (22) iAF1260, (23) iAF1260∗.
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links (pairs of reactions sharing a metabolite) into account, which are associated with
two single distinct genes (see also Text A and Figure A.2).

(iii) We also computed signatures for different intersections of all available data-
bases. By doing so, we gradually remove uncertain connections between genes, nomen-
clature issues and differences in the level of chemical detail captured by the different
databases. is increases the confidence of the used gene network. e intersection
of the gene networks fromKEGG, EcoCyc and the iAF1260model constitutes hereby
the network with the highest confidence as it includes only connections being present
in all databases. It should be noted that the differences in the results under variation of
the database are also due to the balance between enhancing the systematic contribu-
tion (e.g., by eliminating currencymetabolites) and retaining a large enough network
to extract statistically meaningful quantities.

(iv) Different treatments of currency metabolites in case of the iAF1260 network
(see Text A and Figure A.3 and A.4): (a) manual curation, (b) threshold heuristic and
(c) no treatment.

(v) Recently, flux-coupling networks have been intensely studied in terms of their
organizing principles and their relation to gene expression data. A flux-coupling gene
network coming from [86], which has been obtained from the iJR904 E. coli model
[97], is analyzed here. It is subdivided into three subsets: (a) e total network, and
two subsets, i.e. (b) fully and (c) directionally coupled gene pairs.

e overall trend seen in Figure 3.5 is that metabolic coherence is highest in the
wild type. e mutants’ expression patterns, while displaying a positiveMC , are not
as well aligned to the metabolic network as the wild type. is effect is particularly
clear when only switched-on fluxes are taken into account. In this case the metabolic
coherence directly measures the coherence of the expression pattern with the pattern
of metabolic fluxes. Furthermore, we find a similar pattern for the fully-coupled flux-
coupling gene network, which indicates that besides the topological matching also
other metabolic relationships are perturbed in the mutants.

Qualitatively speaking, considering intersections and restricting the analysis to
fluxes, which are predicted active by FBA, enhances the dominant signal of high wild
type metabolic coherence compared to the mutants.

Growth medium complexity
In order to assess the robustness of the result obtained from the flux-activity net-
work shown in Figure 3.4D, it is instructive to analyze how the metabolic coherence
(and in particular the strong differences between wild type and mutants) depend on
the growth medium: for Figure 3.6 we start out with a rich medium and iterative-
ly remove components until we reach a minimal growth medium. us the starting
points of the four MC curves in Figure 3.6 coincide with the MC values shown in
Figure 3.4D. When going from a rich to a minimal medium, the number of active
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Figure 3.6: MC under varying media conditions. Starting from a rich medium, medium
components are removed one by one under the condition that biomass production is not
disrupted until a minimal medium composition is reached. Mean MC values over 20
simulations are shown for the wild type (blue), fis (red), hns (yellow), and fis/hns double
mutant (green) effective gene network. Error bars represent the standard deviation.

genes increases (see Figure A.1), as more and more reactions have to be switched
on to compensate for the decreasing nutrient availability. Additionally, from le to
right we are deviating ever more strongly from the experimental conditions behind
the gene expression data. e main result in Figure 3.6 is that the clear separation
of the wild type metabolic coherence from the mutants’ persists over a wide range in
medium complexity. Furthermore, when approaching a minimal growth medium,
discrimination of MCs is strongly reduced.

Link to digital control
Is the strong metabolic coherence found for wild type E. coli a direct consequence
of chromatin organization (analog control) or is it mediated indirectly through the
transcriptional regulatory network (TRN)? From [81] we know that digital control
(i.e. the consistency of the analyzed gene expression patterns with the TRN) is low in
the wild type (compared to the FIS and H-NS mutants) on the network-wide scale.
Here we measure this consistency for a part of the TRN that only consists of reg-
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Figure 3.7: Consistency of the signs of supercoiling-induced gene expression changes
with the transcriptional regulatory network

ulatory actions (links) between metabolic genes found in the EcoCyc network and
genes coding for transcription factors. As expected, the digital control measured as
the digital CTC ([81]; see also see Text A) is significantly lower in the wild type (see
Figure A.5).

Beyond the standard digital control strength from [81] we also integrate the signs
of the expression changes with the regulatory information on the corresponding links
in the TRN (see Materials and Methods, Text A and Figure A.6). is is an elegant
method for strengthening the direct link between supercoiling and themetabolic net-
work: not only is the pattern of supercoiling-induced gene expression changes mean-
ingfully distributed on the metabolic network, but also does the transcriptional reg-
ulatory network not provide an adequate interpretation of the data (see Figure 3.7).

Conclusions
Our main result, the high metabolic coherence of supercoiling-induced gene expres-
sion changes in wild type E. coli, as opposed to mutants lacking the NAPs FIS and H-
NS, provides strong evidence for a regulatory role of DNA supercoiling. It is robust
across several metabolic databases and over a wide range of environmental condi-
tions, when taking flux-activity predictions into account. Furthermore, it is not qual-
itatively affected by technical details of defining the metabolic network. We can only
bring these MC values down by mutations perturbing the machinery of chromoso-
mal organization. ese mutants are still viable, but their pattern of supercoiling-
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induced gene expression changes shows a markedly reduced metabolic coherence.
ey are, in fact, close to random expression changes, indicating that changes in the
superhelical density cannot be utilized efficiently by the mutants. Furthermore, the
low consistency of the wild type expression patterns with the TRN topology (digital
control) and its encoded regulatory logic (TRN consistency), suggest that the tran-
scriptional regulation of enzymatic genes is indeed directly enforced by DNA super-
coiling.

e results presented here, while providing a fairly clear picture of the interplay
between mechanisms of gene regulation and metabolism, provide several incentives
for our analysis as obvious steps for future work: at the core of our analysis is the
metabolic coherence. It would be helpful to compare this measure with related at-
tempts of quantitatively comparing gene expression data with metabolic information
[18]. Also, if suitable data are available, we would like to extend our analysis to other
organisms. A more careful discussion of the gene-reaction mapping from a network
perspective is certainly necessary in order to go from our observation of metabolic
coherence to a more detailed interpretation. It also may be helpful to manually con-
structmetabolite, reaction and genemappings between iAF1260, KEGG and EcoCyc,
in order to better understand the strong differences in MC between the databases.

On a broader level, we believe that the general approach of defining and compar-
ing control strengths and topological coherence measures associated with distinct
biological processes and, in this way, dissecting gene expression patterns, may be a
useful perspective for systems biology investigation, where a multitude of influences
shape a process at hand. In those cases where the control type under investigation is
network-based (like the metabolic coherence defined here), control strength evalu-
ates effective networks (defined as the currently active part of the static background
network). Such effective networks are a novel and highly instructive way of exploring
the relation between network architecture and dynamical processes (see, e.g. [76], for
an analysis of effective gene regulatory networks and [60], for a theoretical study of
effective networks).

Methods
A detailed description of materials and methods is given in Text A.

Gene-centric metabolic networks

We represented metabolism in form of a connectivity network of metabolic genes.
We define metabolic genes G as DNA units that encode enzymes or parts of enzyme
complexes. Let the gene product of gene G1 be involved in reaction R1 and that of
ofG2 inR2. In the gene-centric metabolic network we study here, the two genesG1
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and G2 are directionally connected if and only if the same metabolite exists among
the products of R1 and the substrates of R2. Networks representing the full metab-
olism of E. coli K12 MG1255 have been constructed from the following sources: the
EcoCyc [70] pathways were extracted from the pathways.dat file contained in the flat-
file distribution (EcoCyc version 13.6). Neither signaling nor superpathways have
been considered in our analysis. e KEGG pathways [69] were retrieved from a dis-
tribution of xml files (ftp://ftp.genome.jp:21/pub/kegg/xml/organisms/eco/;
extracted on 20 November, 2009) describing the different pathways included in the
KEGG database. e in silico reconstruction iAF1260 [39] was obtained in SBML
format [58] from the BIGG database [105]. In order to avoid irrelevant connections
coming about due to highly abundant compounds, e.g. ATP or other cofactors, some-
times termed currency metabolites [77], we utilized data sources (EcoCyc, KEGG)
where these metabolites already have been removed on a reaction to reaction basis.
In lack of this information (like in iAF1260) we employed a threshold on themetabo-
lites’ connectivity degrees to exclude those factors prior to network construction or
removed them manually (see also Text A and Figure A.4).

Metabolic coherence

For each effective subnetwork G the ratio of connected nodes to overall nodes was
calculated as the metabolic coherence ratio MCR. To make this measure robust
against sample size effects we transformed it into a z-score, the metabolic coherence
MC , by mapping random gene sets of the same size (i.e. the number of genes/nodes
in the effective subnetworkG) onto the overall static network, thus constructing ran-
dom effective networks G′ with associated MCR′ values. e MC was computed
using 5000 realizations of the null model. A jackknife test was sometimes used to ver-
ify the robustness of the MC . e MC was recalculated 100 times while randomly
removing 10% of the expression data.

TRN consistency

e E. coli transcriptional regulatory network was obtained from RegulonDB ([41];
version 6.4). e consistency of effective TRN subnetworkswas calculated as the ratio
of consistent links (i.e. the regulatory logic encoded on the links is consistent with the
expression signs on the nodes) to overall effective links. Similar to the MC, this ratio
was transformed into a z-score. Shuffling the expression signs of the effective nodes
was used as a suitable null model. 5000 realizations of the null model were used for
the z-score transformation.
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Constraint-based modeling
Constraint-based models [95] and especially flux balance analysis (FBA; [128]) and
its variants allow the prediction of steady-state flux distributions for genome-scale
metabolic models by solving a linear optimization problem under various subsidiary
conditions. is approach has been used thoroughly in the past to tackle a wealth
of questions regarding the metabolic capabilities of different organisms [71, 95]. For
the computation of flux distributions under varying media conditions, we started
from a rich medium, removing medium components one by one under the condi-
tion that biomass production is not disrupted until a minimal medium composition
was reached. We should mention that a large number of trajectories through the tra-
versed media space exists.

Experimental setup
etranscript profiles analyzed in this studywere obtained byDNAmicroarray analy-
ses using genetically engineered E. coli LZ41 and LZ54 strains containing norfloxacin-
resistant topoisomerase gene alleles to selectively inhibit either DNA gyrase or topoi-
somerase IV activity and respectively induce either relaxation or high negative super-
coiling [140]. Introduction of the fis and hnsmutations in the LZ41 and LZ54 strains
did not alter the global supercoiling response to drug addition was not substantially
[20]. By adding norfloxacin to the LZ41 and LZ54 strains and their mutant deriva-
tives we could vary the superhelical density σ in opposite directions and distinguish
gene transcripts associated either with relaxation (↓ σ) or high negative supercoiling
(↑ σ) in each genetic background. ArrayExpress accession numbers: E-MEXP-462
and E-MEXP-463.
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Chapter 4

Multiple topological labels and
medium-dependent essentiality in
Escherichia colimetabolism

is chapter provides the content of the following manuscript in preparation [118]:

Nikolaus Sonnenschein, Carsten Marr, and Marc-orsten Hütt Multi-
ple topological labels and medium-dependent essentiality in Escherichia coli
metabolism

Abstract

Background: Metabolism has frequently been analyzed from a network perspec-
tive. A major question is, how network properties correlate with biological features
like enzyme essentiality. We investigate the metabolic system of Escherichia coli on
the basis of reaction categories that were discovered by different topological and flux
balance modeling methods in the past, namely reactions associated with uniquely
produced and uniquely consumed metabolites, reactions changing the synthetic ac-
cessibility of the biomass andmetabolic core reactions. Individually considered these
reaction categories all reveal a high amount of reactions essential for the production
of biomass.
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Results: We performed a large-scale flux-balance analysis simulation on random
media to explore two lines of study based on topologically motivated reaction cate-
gories: (1) medium-dependent essentiality may clarify the distribution of essential
reactions into the different categories and provide insight into the biological signifi-
cance of the topological classifications; (2) using logical operations on the intersecting
sets of reactions may improve topology-based essentiality prediction. In particular,
we observe that medium-dependent essentiality is more highly correlated with syn-
thetic accessibility than with the other reaction categories.

Conclusions: Our method of using multiple topological labels for investigating the
relation between network properties and system properties and in this way identify-
ing sub-categories emanating from different topological features may be helpful in a
broad range of contexts in systems biology. In the case of metabolism, we observe
that some combinations of reaction categories show a substantially higher accuracy
in predicting essentiality, suggesting different types of essential reactions.

Background
e question, how network topology shapes dynamic processes, is currently under
intense investigation in a wide range of disciplines − from technical [48, 137] and
social [4, 49, 89] systems to biology [44, 96]. With the advent of ”network biology”
[17] in the late 1990s and early 2000s [16, 133], metabolism was among the very first
intracellular networks studied from a topological perspective [5, 47, 50, 64, 131].

Along this line of research, metabolic reactions have been classified in several dif-
ferent ways based on topological information [5, 52, 79, 131]. Here we will focus on
two recent examples providing such classifications: UP-UC reactions and SA reac-
tions.

UP-UC metabolites have been introduced in [104]. UP-UC metabolites were de-
scribed as metabolites that are consumed and produced by only a single reaction and,
thus, exhibit the lowest possible degree in a bipartite network representation of the
system. A UP-UC cluster may then be defined as a reaction subset that connects a set
of UP-UCmetabolites. Besides the high essentiality of this UP-UC reactions, which is
the key issue in this work, this metabolic reaction category comprises also some oth-
er quite interesting features like proportionally fixed flux values under steady-state
conditions or their correlation with regulatory modules [104].

e synthetic accessibility (SA) measure has been defined in [136] and is influ-
enced by a measure used in chemical drug design describing the number of steps
needed to synthesize a specific compound from a given set of common laboratory
reactants. Accordingly, the SA for a metabolic system is defined as theminimal num-
ber of reactions needed to reach a set of outputs (e.g. biomass) from a given set of
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inputs (e.g. medium composition) as obtained by a breadth-first-search traversal that
can only proceed if all needed substrates are available. SA is successful in predicting
essential genes as lethal mutations cause a change in the SA [136]. For this work we
choose to treat SA as a reaction category by assigning an SA label to every reaction
whose knock-out causes a change in biomass SA.

Figure 4.1 shows a schematic representation of metabolism with three exchange
reactions (X1, X2 and X3) with the environment and a two-component biomass
reaction (BM ). Circles represent metabolites, while boxes stand for enzymes in this
bipartite graph view of a metabolic system. In this figure, E1 (highlighted in blue) is
an example of an SA reaction, as it represents one of the shortest paths toBM , while
E5 (highlighted in green) is consuming and producing only metabolites, which are
uniquely produced (UP) and uniquely consumed (UC), and thus is an example of
a UP-UC reaction. Figures 4.1a-c provide a qualitative impression of the wild type
flux distribution (Figure 4.1a) and the re-routing of fluxes uponE1 andE5 knockout
(Figures 4.1b,c), respectively.

In the example in Figure 4.1, both reactions (E1 and E5) have an alternative
path that goes along reaction E4. us, both reaction labels would in this case not
serve as a reliable predictor of the reaction’s essentiality. Eliminating reaction E4
(see Figure 4.1d) from the system would remove this alternative path, thus turning
E1 and E5 into correct essentiality predictors. is (suggestive) example illustrates,
why a systematic study of combinatorial subsets of these categories can be interesting
for understanding the topological basis of essential reactions.

A third category of reactions, which has recently been introduced, comes from
taking into account some information on the flux distributions as well: A sampling
of steady states predicted from flux-balance analysis over a wide range of randomly
chosen media conditions standard minimal growth medium) revealed a metabolic
core (MC), which is always switched on [7, 8].

Remarkably, these different classification schemes or categories are all fairly ac-
curate predictors of essential reactions (i.e. reactions, where a mutation in the gene
encoding the corresponding enzyme is experimentally known to be lethal). For the
MC this is intuitively clear: e set of reactions always switched onunder awide range
of media should contain a large number of essential reactions. Both, in the case of SA
and UP-UC reactions, one can argue that, topologically, they constitute “bottleneck
paths” without (at least local) detours providing alternatives (cf. also Figure 4.1).

Here we study the overlap of these different reaction categories and the question,
whether performance in predicting essentiality can be increased by combining the
different categories in a combinatorical fashion. We furthermore introduce a more
refined, simulation based measure of essentiality, i.e. the relative essentiality of a re-
action.

e methodological framework of our study is flux-balance analysis. Mathemat-
ical optimization methods formerly used mainly in engineering, economics, physics
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Figure 4.1: UP-UC and SA reactions. Simple scheme of a small fictitious metabolic re-
action systemwith examples of UP-UC and SA reactions are (large picture). (a)Wildtype
network. (b) Knockout of SA reactionE1. Fluxes are rerouted overE4 leading to an in-
crease in the systems SA. (c) Knockout of UP-UC reactionE5. (d) Knockout of reaction
E4. E1 (SA) and E5 (UP-UC) are now correct essentiality predictors.
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and chemistry are becoming increasingly popular in the field of systems biology and
the applications range from model building and parameter estimation to optimal ex-
perimental design and synthetic biology [15].

Particularly its capacity to predict gene essentiality with high accuracy for E. coli
and Saccharomyces cerevisiae has turned flux-balance analysis (FBA) into a widely ac-
cepted method for in silico studies of metabolic states [36, 95, 128].

e conceptual starting point of FBA is the stoichiometricmatrixS, which relates
the vector v of metabolic fluxes with changes dm/dt in the vector m of metabolite
concentrations dm/dt = Sv. Assuming a steady state, dm/dt = 0, one obtains a ho-
mogeneous system of linear equations. Furthermore assuming bounds for each of the
uptake rates of the compounds from themedium one obtains a well-defined subset of
flux space, the ”flux cone”, as a potential solution space. e optimal solution is now
identified by maximising a given objective function, e.g. the biomass production of
the organism.

A variety of implementations of FBA are by now available in the systems biology
community [19, 126], as well as for research in biochemical engineering and other
biotechnological contexts, helping to make FBA a very successful tool for studying
this otherwise (on the system-scale level) rather elusive level of cellular organization.

Recent refinements of FBA focus on the distribution of fluxes upon mutations
[108, 110], the incorporation of temporal information beyond the steady state [71, 80]
and of gene regulatory information [29, 103, 111]. e recent observation, however,
that the majority of fluxes determined by metabolism alone is consistent with those
obtained by evoking additional gene regulatory input [111] strengthened the case for
the use of FBA for large-scale system-wide studies of metabolism.

Although experimental data from systematic knockout studies is available for
E. coli [12, 43] these essentiality profiles result from a limited set of environmental
conditions. In particular, it has been pointed out recently that essentiality is oen
medium-dependent [54, 93]. While this has been analyzed in [54] for genetic in-
teractions (i.e. the effect of a knockout under the condition of another knockout)
we analyze here the above categories (SA, UP-UC and MC reactions) in the light of
single-knockout medium-dependent essentiality.

Results and Discussion

Overlap of the three reaction categories

For all three reaction categories discovered here a high overlap of the retrieved subsets
with the set of essential reactions was reported, suggesting that also the intersections
among these categories should be rather high. To study this assumption we analyze
the UP-UC, SA and MC pairwise intersections and compare them with the intersec-
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Table 4.1: Overlap of the three reaction categories. e overlap between the UP-UC, SA
and MC reaction categories versus the expected overlap based on two different reaction
pools, together with the corresponding z-scores.

Reaction Pool Intersection Real overlap Expected overlap z-score

All classified reactions
UP-UC ∩ SA 0.518 0.244 ± 0.029 9.4
UP-UC ∩MC 0.604 0.232 ± 0.040 9.3

SA ∩MC 0.719 0.244 ± 0.041 11.6

Only essential reactions
UP-UC ∩ SA 0.727 0.689 ± 0.030 1.3
UP-UC ∩MC 0.611 0.534 ± 0.038 2.0

SA ∩MC 0.726 0.689 ± 0.035 1.1

tions of randomly drawn sets based on two reaction pools: (i) all reactions, for which
a characterization into “essential” and “non-essential” is available (724), (ii) all essen-
tial reactions (206). e results are summarized in Table 4.1. For consistency in all
cases only the reactions appearing in in these two pools have been considered.

e comparison reveals two features of the overlaps: First, the overlaps are far
larger than expected at random based on pool (i), suggesting that the effective pool
of reactions is substantially smaller. Second, when restricting this pool to the essential
reactions only (ii), the overlaps still deviate systematically (but far less strongly) from
the expected towards higher values. is latter point suggests that a sub-classification
of the essential reactionsmight exist, where each sub-class matchesmore closely each
pair of reaction categories and therefore accounts for the remaining enhancement
of the overlap. In the following we explore the possibility that relative essentiality
provides such a sub-classification.

Relative essentiality: An illustrative example

In the following we use two definitions of essential reactions. e first are the experi-
mentally determined essentiality profiles, as reported in [12, 43]. ese data sets have
also been used in many previous studies on essentiality prediction [6, 8, 67, 88, 104,
136]. e second definition of essential reactions is based upon the FBA prediction
of essentiality, which, in the case of E. coli agrees well with the empirical data (92 %
accuracy under glucose aerobic growth conditions, see [39]). Due to the enormous
combinatorical range of potential media, the important class of medium-dependent
essentiality, similarly to the MC [7, 8] (which also requires a large-scale sampling of
media space) is only accessible via FBA prediction.

In need of a global quantity we determined the essentiality profiles computation-
ally for 6×105 randommedia conditions and yielded a continuousmeasure of relative
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essentiality for every reaction in the system. Essential reactions were determined by
an assumption of having a growth rate at most 5% of the wild type [93]. We define
the relative essentiality as the percentage of cases, in which the removal of a specific
reaction was lethal out of all simulated environments, where the reaction was active.

As an illustrative example of medium-dependent essentiality (i.e. relative essen-
tiality arising frommonitoring essentiality across a large set ofmedia) we want briefly
discuss the centralmetabolismmodel for E. coli (E. coli coremodel, see [90]) as amin-
imal system and study the predicted biomass production under knockout for sev-
en different carbon sources (glucose, acetate, fumarate, lactose, succinate, ethanol,
pyruvate). e FBA model consists of 63 reactions, including 14 exchange reactions,
which also regulate the uptake of the respective carbon source provided. FBA studies
for this system have been performed using the 15 component biomass function pro-
vided with the model [90]. Figure 4.2a shows the size of the biomass flux for different
mutants (bars) for each medium (color segments in each bar). As expected, the bio-
mass flux is typically largest for the glucose medium. In one case (i.e. the removal of
GLCpts, which is a glucose transport reaction), however, only other carbon sources
lead to a non-zero biomass flux prediction. e relative sizes of the color segments
(i.e. of the biomass flux under a particular carbon source) vary greatly from mutant
to mutant.

For example the removal of the reaction FBP, which is catalyzed by the enzyme
fructose-1,6-bisphosphatase anddephosphorylates fructose-1,6-bisphosphate to fruc-
tose-6-phosphate is essential for all carbon sources except glucose. As amatter of fact,
FBP is a step in gluconeogenesis, which is a pathway that generates glucose. In the
case of the glucosemedium there is no need to generate glucose fromother substances
as it is provided directly via the glucose uptake reaction.

We have to mention that in vivo the deletion of the gene p is not lethal in E. coli
as it can bypass the loss through other pathways. e deviant result comes about due
to the restrictedminimalmodel used in this illustrative example covering only central
metabolism. As we proceed to the genome-scale reconstruction iJR904 we find that
FBP is actually never essential, in agreement with experimental results [12, 43]

Relative essentiality analysis for the full system
In order to subdivide the metabolic reactions into essentiality classes, namely essen-
tial (persistent-lethal), non-essential and partially essential (or conditional-lethal),
we quantify a reaction’s relative essentiality by simulating 6 × 105 random media con-
ditions and performing all single reaction knockouts (leading to> 1.8×108 individual
FBA calculations) to identify for each medium the set of essential reactions.

e relative essentiality is then defined as the number of lethal outcomes upon
the removal of a target reaction divided by the number of environmental conditions
this reaction was active. An alternative definition of relative essentiality would be to
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Figure 4.2: Medium-dependent essentiality. (a) E. coli core model - medium depen-
dent essentiality for seven carbon sources under aerobic conditions. e height of the
bars indicates the size of the growth flux as determined by FBA. e reactions have been
sorted according to (b) Sorted global essentiality profile determined by the simulation
of 6 × 105 random media conditions. e three different essentiality classes are indicat-
ed by different background colors. Class I (under no circumstance lethal) reactions are
indicated in dark gray. Class II (conditional-lethal) and III (global essential) are colored
in gray and light gray respectively. (c) Simulation progress of the numbers of reactions
in each class. Two additional sets, the MC (i.e. the set of reactions that is always active),
and the set of reactions that have not become active yet, are also depicted in the diagram.

normalize the number of lethal outcomes to the total number of media sampled. In
this case, however, reactions only active in very few, specialized media would give a
very low essentiality value, making it difficult to assess rare reactions.

Figure 4.2b shows the sorted relative essentialities for the available 724 reactions
(comprising all reactions in the E. coli model, which have been active at least once
in all FBA simulations; blocked reactions [24] have thus been eliminated; see also
Methods). In Figure 4.2a the three essentiality classes are clearly visible: e re-
moval of most reactions has no or only small consequences for the production of
biomass (Class I). Some reactions are globally essential (Class III) and a third set is
only conditional-lethal (Class II). Figure 4.2c depicts the change of the category sizes
over simulation number. Additionally the MC size evolution and the decrease of the
blocked reaction set are included in this figure. e MC and Class III reactions con-
verge pretty fast to the sizes of 96 and 94, respectively. Two reactions from the core are
not globally essential due to the fact that other reactions can replace them and rescue
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growth although not as high as the optimum the wild type achieves [8]. e slope
of the unused reaction set curve becomes rather small aer a long simulation time.
Eventually, it should reach the size of the computationally determined set of reactions
that cannot bear a flux under no circumstances (blocked reactions; seeMethods). We
decided to exclude reactions in this set from our analysis.

From Figure 4.2c it is evident that even aer this large number of random me-
dia the size of the Class II and I sets have not yet converged (in contrast to Class III
reactions). From approx. 104 media onwards, the increase in Class II reactions cor-
responds to the decrease in blocked (or unused) and Class I reactions, i.e. reactions,
whose removal was lethal only under an extremely small number of environmental
conditions. As these cases probe rather extreme features of the FBA model, it might
be suitable to exclude them from consideration. Similarly, one could argue that slight
deviations from zero and one in the relative essentiality may be allowed for Class I
and Class III reactions. We decided, however, not to include such thresholds here.

Using this global essentiality measure we determined the amount of reactions
belonging to the three essentiality classes for every of the three reaction categories.
e results in Figure 4.3 show that the three categories incorporate different amounts
of reactions belonging to each of the three essentiality classes. e SA reaction set
seems to be composed of a mixture of Class II and III (conditional and persistent-
lethal reactions) whereas the UP-UC reactions exhibit a surprisingly high amount of
Class I reactions (never lethal). As expected from the definition, which requires the
reactions to be always active, the MC category is almost exclusively made up of Class
III reactions (94 of 96 reactions belong to Class III).
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Figure 4.3: Reaction categories and essentiality classes. e proportions of the three
different essentiality classes determined for UP-UC, SA and MC component. Class I is
indicated in black, Class II in dark gray and Class III in gray.

Reaction categories as predictors of essentiality
We analyzed the performance of the three reaction categories to predict the essen-
tiality profiles of experimental data [12, 43] and the relative essentiality we obtained
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computationally by sampling a large set of random media. For a first assessment of
the performance and comparison with previous results from [8, 104, 136], we set an
arbitrary threshold of 0.5 relative essentiality to map the conditional-lethal reactions
of our computational analysis to either Class I or Class III, resulting in the values
shown in Figure 4.4a. For the definition of the performance indices, see Methods.
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Figure 4.4: Prediction performancemeasurements. Prediction performance of the three
reaction categories on (a) our computational essentiality profile, (b) the Gerdes data set
and (c) the Keio collection.

e result for the performance analysis for the two experimental data sets [12, 43]
is shown in Figure 4.4b,c. In case of the experimental profile, it is remarkable that
the high accuracy values come about almost exclusively through the high non-lethal
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prediction rate, as seen in the high negative predictive value and specificity. Both, the
positive predictive value and the sensitivity, are rather low although the comparison
of the two experimental profile reveals higher sensitivities for the Keio collection [12].

Comparing the performance profiles of the experimentally observed essentiali-
ties (Figure 4.4b,c) with the computational predictions (Figure 4.4a) it is particularly
striking that the positive predictive value (ppv), as well as the sensitivity, are higher
in the computational case. We checked that this effect is not induced by the mere dif-
ference in numbers of essential reactions (166 for the Gerdes set, 112 for the Keio set,
vs. 206 for the computational set at a threshold of 0.5 in the relative essentiality, cf.
Figure 4.2b). If we exclude most conditional-lethal reactions from the computational
set (by increasing the threshold to 0.95, leading to 157 essential reactions) one still
finds a strongly elevated ppv compared to the experimental sets.

Although all reaction categories display a rather high accuracy (Figure 4.44), the
reasons may be individually slightly different: e MC category for example achieves
high accuracy dominantly by its high positive predictive value, while the other two
categories tend to achieve this by a high sensitivity (particularly in the computational
set).

In order to further rule out side effects from the different size distributions of the
essentiality data sets we checked our results with a suitable null model. According
to the sizes of the reaction categories (UP-UC, SA and MC) we assigned repeatedly
the essentiality label to random reaction samples out of all available reactions and
computed the accuracy. e accuracy values for the computational set and theGerdes
set are shown in Figure 4.5a, together with the corresponding null model results. For
the computational set, the real accuracy is significantly higher than the null model
value for all three reaction categories, while for the Gerdes set, the UP-UC category
fails to exceed the null model prediction (see Methods for details on the null model
accuracy). It is clear that this observation depends on the choice of the null model.
Other null models could still be exceeded by the real accuracy values (the null model
from [136], e.g., is normalized to always yield an accuracy of 0.5).

In Figure 4.5b we plot the different real and random components in a positive and
negative predictive value plane, similarly to [136], to make our previous results more
transparent. With the exception of the UP-UC component and the experimental es-
sentiality profile all the other data sets are good predictors of essentiality in compari-
son to the random model. As in Figure 4.5a, the plane from Figure 4.5b includes only
the computational set and the Gerdes set.

Multiple labels

Next, we analyze whether it is possible to increase the accuracy of the essentiality
prediction by combining the reaction categories.
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representing the standard deviation of the simulation.
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We determine for all 127 possible combinatorial intersections the values of all
performance indices. e ten highest scorerswith respect to the accuracymeasure are
summarized in Figure 4.6a. ehighest accuracywas observed in a set containing 205
reactions including almost all reactions of all three components with the exception of
the UP-UC-only reaction set (MC∪ SA), as the latter includes the highest amount of
false positives (Figure 4.6a). is is an improvement of 12%,4% and 6%, respectively,
in comparison with each single reaction category (UP-UC, SA and MC).

Accuracy
Class I
Class II
Class III

SizeUP-UC

SA MC

205 141 194 189 130 125 178 178 160 114
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Figure 4.6: Multiple labels - Top 10 performance scorers. (a) e 10 highest accuracy
scorers. e black bar represents each the accuracy, ppv, npv, sensitivity and specifici-
ty of the intersection configurations. e other colors represent the three essentiality
classes with Class I being colored in dark gray and Class II and III in gray and light gray,
respectively. (b)e top 10 category II scorers. e black bar represents always the accu-
racy. e other three bar types represent the three essentiality classes with Class I being
colored in dark gray and Class II and III in gray and light gray respectively.

e highest positive predictive value and specificity was achieved with (MC ∩
SA)∪ (MC∩UP-UC) consisting of 85 reactions and it is remarkable that all the oth-
er high scorers in these categories are only a variation of this pattern (additional file
1: Supplementary Figures B.1a,d). Furthermore SA-only and UP-UC-only reactions
are never a part of them. is is what we anticipated, as the positive predictive value
captures the true positive ratio, and in order to reach a high value, large numbers of
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false positives have to be avoided. As false positives have to be avoided also for a high
specificity the patterns of intersections resemble each other. e highest negative pre-
dictive value and sensitivity was achievedwith a set consisting of the union of all reac-
tion components, 302 in numbers (additional file 1: Supplementary Figures B.1b,c).
At least for the sensitivity this is a trivial result as the theoretical expectation value
increases with the number of positive predictions.

As a last step, we want to find out, whether this multiple reaction labeling (and
the subsequent analysis of all combinatorially possible sets) reveals clearly character-
ized subclasses of essential reactions. e analysis of the overlap between the three
reaction categories (Table 4.1, cf. the discussion at the beginning of this section), to-
gether with the observation that these categories are good predictors of essentiality
(Figure 4.4- 4.5; see also [8, 104, 136]), suggests that such subclasses may exist. It
is therefore particularly interesting to extend the multiple-label analysis to the three
essentiality classes introduced above.

For each combinatorial combination of the reaction categories we determine the
intersection configurations with the highest relative proportions of the three essen-
tiality classes. In Figure 4.6b the ten highest scorers are depicted, with respect to Class
II content. It is not surprising that the intersection configurationwith the highest pro-
portion of Class I reactions (additional file 2: Supplementary Figure B.2a) is exactly
the UP-UC-only set (i.e. UP-UC∩SA′∩MC′), because we already have shown in the
previous paragraph that exactly this set is excluded from the intersection configura-
tion with the highest possible accuracy. Similarly (and not surprisingly), for Class III
reactions (additional file 2: Supplementary Figure B.2b) the MC category dominates
the high scorers; this is in agreement with the findings of the previous paragraph and
also results in Figure 4.3, as the MC component contains the highest amount of Class
III reactions.

For Class II reactions, we find it quite interesting that the highest proportions in
this class are seen in an UP-UC–SA only intersection (i.e. UP-UC ∩ SA ∩MC′) (Fig-
ure 4.6b) and all the other high scorers resemble this pattern with the SA component
playing the major role for the outcome of such high Class II proportions.

A typical Class II reaction (approximately 20 percent of all Class II reactions are
of this type) is SA but not UP-UC and not MC (i.e. SA ∩UP-UC′ ∩MC ′). Among
the (SA ∪UP-UC) ∩MC′ reactions we find approximately 15 percent of all Class II.
In contrast, Class III reactions are spread evenly among SA and UP-UC.

A reaction is classified as SA, when the biomass is more difficult to reach aer
the knockout of that reaction, even if (longer) alternative paths to the biomass exist.
e availability of such alternative paths depends oen on the specific medium pro-
vided. is common assessment of alternative paths could explain the observed high
predictive power of the synthetic accessibility for Class II reactions.

In spite of its topological basis, the synthetic accessibility combines local and glob-
al graph features and in this way gets, seemingly, closest tomatchingmediummodifi-
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cations, which also have local and global features by addressing typically whole paths
through the system. Qualitatively speaking, a large percentage of Class III reactions
(always essential) may stand out topologically, i.e. they may be identifiable from local
graph properties alone. Due to the interplay of local and global properties, we expect
this to be less valid for Class II reactions. e UP-UC category can thus be expected
to work better for Class III reactions than for Class II.

Conclusions

By analyzing the range of predictions for essentiality from three established topolog-
ical (or topology-motivated) labels we attempted to better characterize the specific
topological constellation that makes a reaction essential.

e concept of medium-dependent essentiality (see also [88, 93]) is particularly
instructive in this context of multiple labels: is intermediate regime between es-
sential and unessential reactions, which is not very visible in any of the three labels
specifically, stands out significantly in particular label combinations.

We suspect that the reason for the significant over-representation of conditional-
lethal reactions in the SA component lies within the intrinsic features of the synthetic
accessibility concept itself, efficiently combining local and global features of themeta-
bolic reaction network.

It might be that the essentiality predictions carried out by the synthetic accessi-
bility approach [136] depend on the set of inputs and bootstrapping metabolites that
are chosen. It would be interesting to explore this point in more detail.

We have not included the results from [74] in our analysis, which aim at metabo-
lite essentiality. e high essentiality of UP-UC metabolites can be in principle re-
covered from their results and thus a comparison may be worthwhile, even though
[74] would yield a metabolite category, rather than a reaction category.

It would be particularly interesting to extend the range of reaction categories, in
order to characterize typical essential reactions even better from a topological per-
spective. Naturally, other purely topological properties (based on the degree of a
node or the betweenness centrality) may be included, but also, e.g. the metabolite
scopes described in [52] could be in principle an extension to our labeling approach.

Multiple labeling could also be a helpful tool in the combination of graph theoret-
ical and high-throughput data. e recent study [86] on flux coupling as a predictor
of correlations in gene expression compared to a different (but oen related) observ-
able, the distance of reactions, could be an interesting field of application of such a
multiple labeling approach, in order to specifically see, how the high-distance but
flux-coupled reaction pairs (and other subsets within the two categories) perform in
terms of correlation to gene expression.
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CHAPTER 4. MULTIPLE TOPOLOGICAL LABELS AND MEDIUM-DEPENDENT
ESSENTIALITY IN E. COLI METABOLISM

Methods

Model
e genome-scale metabolic reconstruction iJR904 [97] of E. coli was used in all our
experiments. Each reversible reaction was replaced by two irreversible reactions act-
ing in opposite directions. For topological analyses a bipartite graph representation
was generated from the stoichiometry. Such a graph consists of metabolite and re-
action nodes connected by directed links, where substrates point towards reactions
they are consumed by. ese reaction nodes then again point towards their products.
No direct connections exist within the reaction and metabolite subsets.

Flux Balance Analysis
Linear programming (LP), as the algorithmic backbone of flux balance analysis (FBA)
[128] and its variantsmake the computation of steady state fluxdistributions of genome
scale models possible and has been used in the past to tackle a wealth of questions re-
garding the metabolic capabilities of different organisms. [71, 95]

Generally, the LP problems defined in FBA can be stated as follows:

Maximize Z
subject to Sv = 0,

vmin <= v <= vmax .
(4.1)

with an objective function Z , the stoichiometric matrix S, the flux vector v and
the constraint vectors vmin and vmax. As we are considering reversible reactions as
two independent unidirectional reactions, we set vmin to zero. is LP problem can
be solved through linear optimization and, as the solution space is convex, a global
maximum can be computed, if it exist, although multiple optima cannot be exclud-
ed. All LP problems throughout our analyses have been solved using custom Python
bindings for the C API of the GNU Linear Programming Kit (GLPK).

Blocked reactions
We removed all globally blocked reactions from the model to give the topological
methods described in this article (UP-UC, SA) the opportunity to work on the same
information content as their dynamical counterpart (MC). A high (not as high as
the default flux boundaries vmax) maximal uptake and secretion rate was assigned to
all available transporters in the system and then blocked reactions were confirmed
by flux variability analysis [24]. ese globally blocked reactions cannot carry a flux
under any environmental conditions and consequently are not available to methods
that use FBA.
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Metabolic core reactions

e MC reactions were computed similarly to the procedure described in [8]. Ran-
dom media compositions were generated by picking randomly between 10 to 100
percent of all available transport reactions in the model and the assignment of ran-
dom uptake and secretion rates in the interval of 0 to 20 mmol/gDWh. For all of
these random configurations the biomass objective was maximized, and in the case
of a resulting growth flux below 0.5 mmol/gDWh the result was discarded.

Synthetic accessibility reactions

e synthetic accessibility of all reactions in the system was computed according to
[136]. e needed outputs were defined to be the substrates of the biomass function
and the ingredients of a glucose minimal medium were defined to be the inputs of
the system.

As a variation to [136] we decided to include no further additional compounds
that ensure that all outputs are reached in the wild type. Instead we used a set of
bootstrapping metabolites [100] that permit a proper functioning of the algorithm
but are not the starting points of the breadth first search.

UP-UC reactions

eUP-UCreactionswere determined in analogy to the algorithmpublished in [104].
We determined all metabolites with an in-degree and out-degree of one (UP-UC
metabolites) in the bipartite graph representation of the metabolism of iJR904. en
we computed the set of reactions (UP-UC reactions) that are associated with the set
of UP-UC metabolites for further analysis.

Experimental and computational essentiality profiles

We used the essentiality profiles published in [12, 43] for our performance analyses.
e computational essentiality profile was determined by extending the MC analysis
with single reaction deletions. For every flux distribution along the random media
sampling procedure we determined the set of active reactions and checked their es-
sentiality by knocking them out one by one. A knockout was achieved by constrain-
ing the flux of the specific reaction to zero and repeating the optimization under the
same random environmental conditions. To transform our continuous essentiality
measure into a binary form, whereas true represents lethal and false viable we set
a threshold of 0.5 relative essentiality to map the reactions in Class II (conditional-
lethal) to either Class I or II.
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We find 200 UP-UC reactions (for 168 of which have essentiality information),
178 SA reactions (177 with essentiality information), and 96 MC reactions (96 with
essentiality information). e numbers provided in Figure 4.6 refer to the full sizes
of reaction categories. Classes I, II and III consist of 370, 259 and 94 reactions, re-
spectively.

Assessment of predictive power
We have quantified the predictive capabilities of the different subsets by five ob-
servables from statistics relying on binary classification, namely the accuracy (TP +
TN)/(TP +TN +FP +FN), positive predictive value (TP )/(TP +FP ), negative
predictive value (TN)/(TN + FN), sensitivity (TP )/(TP + FN) and specificity
(TN)/(TN +FP ). In all these observables TP is the number of true positives, TN
is the number of true negatives, FP is the number of false positives, and FN is the
number of false negatives. If we denote the essential reactions in the real data sets by
+ (and inessential reactions by −), as well as the reactions belonging to the category
under consideration (and therefore serving as predictors of essentiality) by p (with
n denoting all reactions not in this category), we can e.g. represent TP as the joint
probability P (+, p) of + and p. In our null model we then have TP = P (+)P (p)R,
whereP (+) is the percentage of essential reactions, P (p) is the relative size of the re-
action category andR is the total number of reactions. Consequently, our null model
accuracy is given by P (+)P (p) + P (−)P (n) = (P (+) − P (−))SR/R + P (−) with
the number of reactions SR in the reaction category. us, our null model accuracy
depends on the size of the reaction category, unless if about half of the reactions are
essential.
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Chapter 5

A network perspective on metabolic
inconsistency

is chapter provides the content of the following manuscript in preparation [116]:

Nikolaus Sonnenschein, Arndt Benecke, Annick Lesne, andMarc-orsten
Hütt A network perspective on metabolic inconsistency

Abstract
Integrating gene expression profiles with metabolic pathways under different exper-
imental conditions is helpful for understanding how the conditions affect the coher-
ence of these two layers of cellular organization. e GIMME algorithm proposed
by Becker and Palsson [18] permits the incorporation of gene absence/presence pat-
terns as experimentally determined constraints in constraint-based reconstruction
analysis (COBRA). In this study we elaborate on the inconsistency measure resulting
from GIMME, which quantifies the discrepancy of the provided data to the applied
cellular objective. So far it has been mainly used for quality control assessment of the
simulated flux distributions specific for a gene expression data set. In this study we
compare the inconsistency to the metabolic coherence (MC), a measure which solely
relies on the metabolic system’s architecture, and determines the correspondence be-
tween gene expression data and themetabolic network. We find a surprisingly strong
negative correlation between both measures indicating that the dynamical quantity
obtained by GIMME identifies the same patterns as the purely topological quantity.
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CHAPTER 5. A NETWORK PERSPECTIVE ON METABOLIC INCONSISTENCY

is observation in particular allows us to investigate the individual contributions of
the inconsistency from a topological perspective. On this basis we are able to separate
the specific contributions, i.e., those components of the inconsistency vector that bear
valuable information about the dynamical system, from the unspecific contributions,
which allow one to unravel gaps in the metabolic reconstruction.

Introduction

Genomic information allows compiling an inventory of an organism’s enzymes and
thus the subsequent reconstruction [40] and simulation of its metabolic system [66]
using constraint-based modeling (CBM) techniques [95]. Compensating the lack of
detailed information on the systems parameters, e.g., enzyme kinetics, gene regula-
tion etc., CBM has proven to be a valuable tool for genome-scale system analysis.
For example, flux balance analysis (FBA) [128] has been used to predict with high
accuracy the lethality of gene deletions in unicellular organisms by taking only the
metabolic system’s stoichiometry, the assumption of optimal growth (implicit gene
regulation), and a specified growth medium into account (see e.g. [36], for a study
involving Escherichia coli or [34], for a study involving Saccharomyces cerevisiae).

Duarte et al. [35] published a genome-scale representation of human metabo-
lism based on genomic, bibliographic, and biochemical information. In contrast to
its predecessor models, being representations of unicellular organisms with specific
media conditions, the following caveats play a role when it comes to the modeling of
multicellular reconstructions in general and in particular for the human system: (i) it
is difficult to define environmental conditions for a multicellular system, (ii) usually
not much information is available about the cell-type specificity of human metabolic
pathways, and (iii) cellular objectives, a prerequisite for flux balance analysis, are hard
to define and validate.

e precision of CBM predictions increases with the availability and accuracy of
the used constraints, as they help to narrow down the potential solution space to the
biologically meaningful states. us, integrating experimental data can help over-
come the previously mentioned limitations. For example, the integration of tran-
scriptome data with metabolic reconstructions has shown to be useful for identifying
subnetworks and regulatory interactions [32]. Nevertheless, the lack of significant
correlations between gene expression and enzyme activities [30, 121], let alone RNA
transcript levels [121], renders the incorporation of such data into CBM approaches
difficult. is is especially true for higher multicellular eukaryotes, which are using a
wide spectrum of post-translational regulatory mechanisms [30, 101].

Different approaches have been proposed for the incorporation of experimental
data into CBM:
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Akesson et al. [1] exploit the fact that under steady state conditions the absence
of gene expression coincides with the corresponding protein unavailability, and thus
inactivity of the corresponding reactions. us, the flux through an enzymatically
catalyzed reaction is constrained to zero if the corresponding gene is not expressed
in an experimental data set.

e GIMME (Gene Inactivity Moderated by Metabolism and Expression) algo-
rithm proposed by Becker and Palsson [18] relaxes the rigid approach by Akesson
et al. [1] by reinserting unexpressed reactions back into the system if a proposed cel-
lular objective is not achieved. e sum over these reinserted fluxes is termed incon-
sistency (I) and is minimized during the GIMME optimization. e inconsistency I
gives, on the one hand, an estimate of the quality of the computed flux distribution,
and measures, on the other hand, the coherence of the objective and the experimen-
tal data. GIMME has been applied recently in an investigation of a joint model of
human alveolar macrophage and Mycobacterium falciparium physiology [21].

Shlomi et al. [112] proposed an mixed-integer optimization problem formula-
tion that allows the computation of tissue-specific, steady-state flux-distributions that
match experimental data at hand as close as possible. In particular, it is not necessary
to formulate a cellular objective function.

e E-flux method developed by Colijn et al. [28] uses experimental data direct-
ly as boundaries in the linear programming formulation. It has been successfully
utilized for a comprehensive study of Mycobacterium tuberculosis mycolic acid me-
tabolism predicting accurately the effects of a series of anti-TB drugs [28].

In this piece of research we will integrate human transcriptome data sets from
healthy and tumorous adrenal gland tissues with the metabolic reconstruction Hu-
man Recon 1 [35]. We will use the GIMME algorithm [18] for this purpose because
its inconsistency measure suits our approach of quantifying the discrepancy of the
measured transcript levels to a given cellular objective, e.g., ATP or aldosterone pro-
duction.

e optimization problem which is solved by GIMME can be formulated in the
following way:

Minimize I =
n

∑
j=1

pj ∣vj ∣

subject to S ⋅ v = 0
vmin < v < vmax

vobj ≥ vobjmax ⋅ l.

(5.1)

e inconsistency score I is, technically speaking, the sum of all fluxes going
through unexpressed reactions weighted by the respective experimental data pj . Fur-
thermore, n is the number of reactions/fluxes v,S represents the stoichiometry of the
system as a matrix, and vobjmax is the maximal flux through the proposed objective re-
action vobj (vobjmax is determined in a previous step by standard FBAwithout taking the
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experimental data into account). e condition vobj ≥ vobjmax ⋅ l forces the system to
operate at or above some level l chosen from the interval (0,1]. e norm ∣vj ∣ can be
omitted by using exclusively irreversible reactions. is can be achieved by replacing
reversible reactions with pairs of irreversible reactions.

e weighting vector pj is constructed in the following way:

pj = {
t − xj if xj < t
0 if xj ≥ t

, (5.2)

where t is a threshold applied to the gene expression data x that classifies reactions as
either expressed (xj ≥ t) or not expressed (xj < t) using the gene expression data x.
Fluxes through expressed reactions are thus not minimized in eq. (5.1). Conversely,
the usage (reinsertion) of fluxes through unexpressed reactions are weighted by the
distance of the expression level from the threshold t − xj in eq. (5.1).

Wewill compare the inconsistency I to themetabolic coherence (MC) introduced
in [117], which is a purely topological quantity thatmeasures the fragmentation of ef-
fective networks. e coherence of metabolic network topology and gene expression
patterns is quantified as follows (see also Methods): we map genes with x > t direct-
ly onto a metabolic gene network of human metabolism in order to extract effective
subnetworks. en we compute the ratio of connected nodes and overall nodes in
the effective subnetwork. is ratio is then converted into a z-score, by using a ran-
dom distribution of expression changes as a null model. is z-score is ourmetabolic
coherence (MC), which measures the amount of network coherence between gene
expression profiles and metabolic pathways.

Figure 5.1 shows a flow diagram that describes the structure and necessary steps
of our comparative analysis. Based on this quantitative comparison we will attempt a
topological characterization of the individual contributions to I and show that valu-
able information can be extracted from them.

Results

Inconsistency uncovers two types of metabolic behavior

Figure 5.2 shows the distribution of inconsistency values for the control and ade-
noma transcript profiles. Maximal aldosterone production was used as the cellular
objective function vobj and a minimal medium composition containing glucose and
glycerol, as well as a collection of amino acids and fatty acids, was implemented us-
ing the appropriate boundaries on the their respective exchange reactions (for further
details see Methods). e histogram in Figure 5.2 uncovers a bimodal distribution
of adenoma inconsistency values: it consists of a group of adenomas exhibiting low-

68



MC 
(Metabolic coherence) 

Context-specific 

flux patterns 

Comparison 

Gene-centric 

network 

Surrogate data 

Random networks 
GIMME 

(Gene Inactivity Moderated by  

Metabolism and Expression) 

FBA 
(Flux balance analysis) 

Inconsistency 
(Weighted sum of  

individual contributions) 

Objective value 

Level l 
% of the max. Obj. value 

Human Recon 1 
(Genome-scale metabolic reconstruction 

of human metabolism) 

Gene expression data x 

Effective network 

Threshold t 

Gene activities 

!"#$%&'(")*

Network-based CBM based Expression data based 

Figure 5.1: A schematic figure explainingmethodological approach behind our compar-
ison of metabolic coherence (MC) and inconsistency I .

er(higher) inconsistencies than the average ⟨I⟩ of the control group. We term them
high/low inconsistency group respectively (HIG and LIG).

Comparison of metabolic coherence and inconsistency

Figure 5.3a shows a scatterplot of the metabolic coherence and inconsistency val-
ues for all 69 expression profiles (58 adenomas + 11 controls), using the reference
medium and the threshold t = 2.0. It is obvious that both measures are strongly
anti-correlated (Pearson’s product correlation coefficient r = −0.64; Spearman’s rank
correlation coefficient ρ = −0.67)

Figure 5.3b shows the dependency of the correlation on the threshold t that is
applied to the data to distinguish between expressed and not expressed metabolic
genes. e strongest negative correlation appears for parameter ranges that fit our
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Figure 5.2: Distributions of inconsistency scores for the adenoma and control data with
aldosterone production as objective function.

statistical understanding of the raw signal distribution (see Figure C.1). Figure 5.3c
shows that there is no clear dependence on the level parameter l that is used to enforce
a certain flux through the stated objective vobj .

In Figure 5.3d the dependency of the correlation between inconsistency and the
MC on the chosen growth medium is shown. e distribution of correlation coef-
ficients is narrow (between −0.75 to −0.4 for r and −0.73 to −0.35 for ρ), regardless
of which correlation measure is considered. is indicates that both inconsistency
andMC and their correlation seem not be strongly dependent on the environmental
conditions provided. Furthermore, the correlation values obtained for the reference
medium (i.e. r = −0.64 and ρ = −0.68, see also above) seem to be originated on the
le tail of the distributions, suggesting a rather high correspondence with the in vivo
situation.

Individual contributions to the inconsistency

e correlation between metabolic coherence and inconsistency suggests a connec-
tion between bothmeasures, and thus the possibility of interpreting the inconsistency
values from the perspective of network topology. In order to investigate this point,
we will decompose the inconsistency value into a vector of individual contributions,
i.e., reactions that have been reinserted during the optimization procedure in order
to achieve the targeted flux-level of the objective function. We further define the
contribution strength of a reaction as the number of contributions it makes to the
inconsistencies of a data set divided by the size of the respective data set.
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Figure 5.3: (a) e ATP-production inconsistency values are plotted against theMC of
69 tumor and control data sets. A clear negative correlation is visible (Pearson’s product-
moment correlation coefficient r = −0.64, and Spearman’s rank correlation coefficient
ρ = −0.68 (t = 1.9; l = 0.95). (b) Dependency of the correlation on the threshold
parameter (l = 0.95). (c) Dependency of the correlation on the level parameter (t =
1.9). (d) Medium dependency of negative correlation strength. Both Spearman’s rank
correlation coefficient as well as Pearson’s correlation where computed for the MC and
the inconsistency for 100 random growth media (t = 2.; l = 0.95). Dashed lines in (b)
and (c) indicate the parameters that have been used in (a). Arrows in (d) indicate the
correlation values found in (a).

71



CHAPTER 5. A NETWORK PERSPECTIVE ON METABOLIC INCONSISTENCY

Figure 5.4 displays inconsistency contributions and flux patterns for control, HIG
and LIG on the carbohydrate metabolism pathways of E. coli. Striking differences be-
tween the control and the adenoma group become visible in this overview, e.g., the
pentose-phosphate pathway seems to be activated only in the HIG and LIG. Further-
more, the control pathway map lays out a rather consistent pattern of flux activities.
ough, a few exceptions arise: pyruvate dehydrogenase (PDHm), the major entry
point to the TCA cycle, and to some lesser extent hexokinase (HEX1) and the pyru-
vate transport from cytosol to mitochondrium (PYRt2m), exhibit high contribution
strengths. It is intriguing that the contribution strengths for these particular reac-
tions is diminishing small in the LIG case, which indicates an elevated energy me-
tabolism for those adenomas. e HIG, on the other hand, shows a large number of
reactions with elevated contributions strengths homogeneously distributed over the
whole map, which indicates a significantly reduced energy metabolism.

How do the contribution strengths vary between control, LIG and HIG on a
systems-wide level? Figure 5.5 shows the contributions for a subset of all contribut-
ing reactions (see Figure C.6 for the complete set of contributions). e contributing
reactions have been sorted according to their contribution strengths in the control
group and at equal strength by the overall contributions. Having already seen a few
examples for differentially contributing reactions in the carbohydrate pathways, it
becomes ever more clear that there are many more to discover.

On the other hand, a group of reactions with very high contribution strengths
seems to contribute non-specifically and independently from the gene expression da-
ta. In the following, we want to elaborate on this set of reactions, and will use certain
categories and topological markers to characterize them.

e following circumstances can lead to non-specific contributions to the incon-
sistency vector:

1. A reaction is expressed in vivo but the measured gene expression intensity falls
below the threshold t under most or all experimental conditions (just below
threshold). is is a consequence of the rigid application of a universal thresh-
old. Topologically, these contributions oen disrupt a chain of otherwise ex-
pressed reactions (chain disruptor).

2. A reaction is expressed in vivo but, e.g., wrong GPR associations, missing iso-
zymes, wrong gene annotations, erroneous data etc., make it invisible for the
analysis. Again, these artifacts are oen characterized by an interrupted chain
of expressed reactions (chain disruptor).

3. e reaction is not expressed but it has to be utilized by GIMME due to the
following reasons:
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Figure 5.4: Inconsistency contributions to carbohydrate metabolism. e maps depict
the usage patterns and inconsistency contributions for the control and the high and low
inconsistency groups (HIG and LIG). e thickness and color of a reaction edge corre-
spond to the usage frequency and the contribution strength, respectively. e pathway
maps have been obtained from the BIGG database [105]. Please refer to the electronic
version of this manuscript for a high resolution depiction of the effective pathways.
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Figure 5.5: Inconsistency contributions. (a) Overall contributions to the inconsistency
for all adenoma and control samples, (b) the control group, and the adenoma tumor
samples showing (c) lower (LIG) and (d) higher (HIG) inconsistencies in comparison to
the control group. Black arrows indicate differentially contributing reactions and the gray
box indicate the group of unspecific reaction contributions. Both of them are covered in
Table 5.1. Only a subset of all contributing reactions is shown due to space limitations.
e complete diagram is shown in Figure C.6. Please refer to the electronic version of
this manuscript for a high resolution depiction of this figure.
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a) e stated objective function does not reflect the situation present in the
cell. Defining the objective functions as the output of the system, these
reactions contributions should oen lie close to it (close to output layer).

b) e chosen media composition does not reflect the in vivo environment
in which the experimental data has been obtained. e preliminary FBA
step in GIMME is naive about the in vivo medium composition and us-
es everything provided and suitable for the maximization of the objective
function. As GIMME enforces a certain achievement of the objective flux
predicted by FBA, many of the transport reactions used by FBA will al-
so be used by GIMME. Topologically, these reaction contributions are
characterized by lying close to the provided medium components (close
to input layer).

c) Too many missing gene-protein-reaction associations (GPR), either due
to non-enzymatic reaction steps or knowledge gaps, before and aer the
contributing reaction can lead towrongly activated paths, asmissingGPR
information is not punished by GIMME (invisible path).

d) Alternative expressed routes to the objective function are available in vivo
but are not covered by the metabolic reconstruction. is leads to re-
action contributions that are characterized by producing essential pre-
cursors for the objective function, and thus constitute bottlenecks in the
system (bottleneck).

Table 5.1 lists topological and biological classifications for the 11 unspecific contri-
butions as well as 8 selected differentially contributing reactions (see Figure 5.5). e
topological characterization from the enumeration above have also been applied to
the specific contributions.

Conclusions
Using GIMME [18] we provided context for a series of gene expression profiles ob-
tained from adrenal gland adenomas and healthy tissues. Employing the inconsis-
tency measure as tool for measuring the discrepancy of the provided data and aldos-
terone production, a suitable objective for these tissues, we were able to detect two
groups of adenomas, characterized by distinct physiological behaviors, i.e., LIG and
HIG.

Comparing the inconsistencies with themetabolic coherence exhibited a connec-
tion of both measures, leading us to investigate the characteristics of the individual
contributions on the reaction level. Comparing the contribution strengths of indi-
vidual reactions among the different sample categories (control, LIG, HIG) revealed
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a group of unspecific contributors to the inconsistency, as well as a group of reactions
differentially contributing in a specific fashion.

Topological markers developed for the characterization of both, specific and un-
specific contributions, have proven be valuable for a thorough understanding of the
context-specific flux-activity results.

Material and Methods

Model of human metabolism
All flux balance simulations were conducted using human Recon 1, a genome-scale
compartmentalized representation of human metabolism [35], which is available in
SBML [58] format via the BIGG database [105].

Gene expression data
Logarithmized transcript levels from 58 adenomas and 11 control tissue samples were
mapped onto the GPR (gene-protein-reaction) associations included in the Human
Recon 1 model. erefor, it was necessary to replace logical AND and OR by min
and max functions, respectively, following the protocol described in [18].

Context-specific flux balance analysis
Context-specific flux balance analysis of human expression data was conducted us-
ing the GIMME algorithm as described in [18] and in the introduction to this work.
ATP-production was implemented as a cellular objective by introducing an artificial
reaction that consumes cytosolic ATP. e aldosterone objective was implemented
as the maximization of flux through aldosterone synthase (P45011B21m). e path-
way to aldosterone was initially blocked in the metabolic reconstruction. Further
analysis revealed 4-Methylpentanal as a dead-end metabolite inhibiting steady-state
flux to the aldosterone synthase reaction. e introduction of an artificial drain for
4-Methylpentanal restored the functionality of the whole pathway. Furthermore, the
same conservative approach was chosen regarding missing GPR: reactions without
GPR associations were assumed to be expressed, i.e., having expression values above
t. e aldosterone objective and the parameters t = 2 and l = 0.8 were used through-
out the study, if not stated otherwise.

Growth media
e growth medium was defined as in [113] (see Table C.1). It contains both glucose
and glycerol as carbon sources, the amino acids L-arginine, L-histidine, L-isoleucine,
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L-leucine, L-lysine, L-Methionine, L-phenylalanine, L-threonine and L-tryptophane,
as well as the fatty acids palmitic and linoleic acid. Aerobic conditions were assumed
by leaving oxygen consumption unconstrained. Randommedia conditions were con-
structed by picking approximately the same number of exchange reactions as in the
reference medium randomly and assigning random upper and lower boundaries in
the intervals [−20,0] and [0,20] to them. Oxygen, protons, sulfate, phosphate, water
were assumed to be always available. In case of the random media sampling, incon-
sistency values I have been normalized by the objective function’s flux in order to
make them comparable.

Metabolic coherence
e metabolic coherence (MC) was computed as described in Sonnenschein et al.
[117]. We mapped the set of transcribed genes (genes with expression values above
a certain threshold are considered as expressed) directly onto a metabolic gene net-
work representation of human metabolism in order to extract effective networks (i.e.,
the network spanned by the significant expression changes). Before constructing the
gene network out of the bipartite representation, overly abundant currency metabo-
lites, e.g., ATP, H2O, NADH etc., have been excluded by removal of 4% of the highest
connected compounds in the network [73]. enwe computed the ratio of connected
nodes to overall nodes in the effective network. Using a random distribution of ex-
pression changes as a null model, we converted this ratio into a z-score, themetabolic
coherence (MC).
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Chapter 6

Metabolic variability in adrenal gland
tumors

is chapter presents contributions to the following work in progress [22]:

Sheerazed Boulkroun, José-Felipe Golib Dzib, Nikolaus Sonnenschein,
Hélène Leger, Benoit Samson-Couterie, Arndt Benecke, Marc-orsten
Hütt, andMaria-ChristinaZennaroUsing flux balance analysis to link gene
expression with pathological profiles of a large cohort of human primary al-
dosteronism patients.

Abstract
As provided by our collaborators:
We present a transcriptome analysis coupled with methods from constraint-based
modeling of human metabolism on a cohort of 134 human Primary Aldosteronism
(PAL) patients. Very little is known about the primary causes that determine PAL,
consisting in an autonomous overproduction of the mineralocorticoid hormone al-
dosterone from the adrenal gland. is is the most frequent cause of secondary hy-
pertension (high blood pressure) in humans [23]. e aim of our work is to identify
the activation of particular pathways or transcriptional cascades, via qualitative (mu-
tations) or quantitative (expression) molecular changes that may be responsible for
the development of PAL. We obtained 183 transcriptome profiles using AB1700 mi-
croarray technology, which has shown to provide highly sensitive gene expression

79



CHAPTER 6. METABOLIC VARIABILITY IN ADRENAL GLAND TUMORS

measurements. ese profiles were correlated with clinical annotations to identify
biologically relevant molecular traits that may explain the differences among the pa-
tients’ pathological profiles.

Furthermore, this data was integrated with a genome-scale reconstruction of hu-
man metabolism [35] in order to predict tumor-specific metabolic pathways using
the GIMME method [18]. GIMME (Gene Inactivity Moderated by Metabolism and
Expression) exploits the gene expression data as a proxy for enzyme availability and
computes flux activities that maximize a stated metabolic objective, e.g., ATP or al-
dosterone production. Our results herald a close relationship between the inferred
metabolic activity and the molecular morphopathology of PAL and furthermore re-
veal an unexpected diversity of metabolic pathway usage.

Energy and steroid metabolism are strongly coupled
Plotting the inconsistencies obtained through the aldosterone and ATP objective in a
scatter plot reveals a strong positive correlation for all samples (see Figure 6.1). Does
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Figure 6.1: e inconsistency values obtained through the ATP and aldosterone objec-
tives show a strong correlation. Purple labels indicate control samples and red, green,
blue, orange labels represent membership in clusters, which have been obtained by tradi-
tional cluster analysis on the transcript profiles of genes involved in steroid biosynthesis.

this correlation allow for some biological interpretation? Is it indicating that tumors
with reduced aldosterone production capabilities simultaneously show a reduced en-
ergy metabolism? Or is it simply a consequence of the simulation procedure?
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In order to answer this question we investigate the relationship of ATP and aldos-
terone inconsistency in a different set of expression data. We chose the whole genome
transcriptome survey provided by Dezso et al. [33] as a suitable reference data set for
this purpose. It covers 32 human tissue typeswith three replicates per tissue summing
up to a total of 96 microarray experiments (GEO accession GSE7905).

Figure 6.2 shows the inconsistency profiles of the 96 tissue samples together with
the previously shown inconsistencies of the adenoma transcript profiles (see Fig-
ure 6.1). e analysis of the 96 human tissue samples reveals a general connection
between the two objectives. Nevertheless, the strongly diverging slopes of the two
inconsistency profiles reveal for the adrenal gland samples a significantly stronger
agreement with the aldosterone objective.
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Figure 6.2: e strong correlation between the ATP and aldosterone objective is also
found for the Cell96 data set but the slopes of a linear least-squares fit are different.

Context-specific flux profiles reveals a strong variability
between the adenoma samples
Context-specific analysis not only provides the inconsistencymeasure as an indicator
for the disagreement of the transcript data with the stated objective, but furthermore
produces flux-activities that are in closest agreement with the provided data [18].
us, instead of comparing the samples using their respective scalar inconsistency
values, these flux profiles allow us to increase the resolution of our comparisons even
further.
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CHAPTER 6. METABOLIC VARIABILITY IN ADRENAL GLAND TUMORS

Figure 6.3 shows the result of a cluster analysis of a distancematrix that represents
all pairwise comparisons of context-specific tumor and control flux-activities. e
distance between two flux-activity profiles was defined as:

D = ∣f1 ∩ f2∣
min(∣f1∣, ∣f2∣)

, (6.1)

where f1 and f2 are the comparedflux-activities. edistanceD ranges in the interval
0 ≤ D ≤ 1, where D = 1 if the smaller flux set is a complete subset of the other set
and D = 0 if ∣f1∣ ∩ ∣f2∣ = ∅.
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Figure 6.3: Clusters of context-specific flux distributions obtained by GIMME using the
aldosterone objective. e rows and columns of the distance matrix have been sorted
according to the dendrogram obtained by the cluster analysis (distance metric defined
in eq. 6.1; hierarchical clusters computed byWard’sminimum variance method). Purple
dendrogram leaf labels indicate the control group and red, green, blue, orange labels rep-
resent membership in clusters, which have been obtained by traditional cluster analysis
using the transcript profiles of genes that are involved in the steroid biosynthesis path-
way. e color of the sample labels on the horizontal axis of the grid plot code for the
inconsistencies, where red indicates a high and purple a low inconsistency, respectively.

e dendrogram as well as the colored and sorted distance matrix in Figure 6.3
show a series of interesting features:
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(i) e control group (purple) clusters strongly together, (ii) the three adrenal
gland samples from Dezso et al. [33] behave quite similar to the control group, (iii) a
group of adenomas, showing consistently lower inconsistencies in comparison to the
control group, cluster strongly together and are quite dissimilar to the control (lower
right of the colored grid), (iv) a group of adenomas, showing consistently higher in-
consistencies in comparison to the control, do not cluster together, and (v) clusters
which have been obtained by traditional cluster analysis using the transcript profiles
of genes that are involved in the steroid biosynthesis pathway, colored in orange, blue,
red, green and cyan, respectively, seem to cluster mostly together.

Features (i) and (ii) basically tell us that there exists some kind of normal mode
of operation, which is quite distinct to (iii), a group of tumor cell that seem to have a
higher capability of producing aldosterone. Furthermore, the lack of a clear pattern
in (iv) seems to be an effect of the increasing inconsistency: transcript samples, which
are associated with sufficiently high inconsistencies, or in other words, to many indi-
vidual contributions, are not constraining the system in a systematic fashion, leading
to arbitrary patterns of flux-activities. e samples in (iv) definitely do not match the
aldosterone production objective leaving us with the question which objective they
might match. e few exceptions to (v) could be interesting, as they provide evi-
dence for a differential behavior on a systems-wide level, e.g., the red cluster presents
a group of three samples that behave quite similar on the pathway-level of steroid
biosynthesis but are very disjunct on the overall metabolic level.

Methods
See Methods in Chapter 5.
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Chapter 7

Conclusions and outlook

Understanding dynamic processes on networks, particularly in an evolutionary con-
text, has over the last few years become an important endeavor in the field of network
and systems biology. Particularly gene regulatory networks and metabolic networks
have received a large amount of attention over the last years. Currently, systems bi-
ology descriptions focus mostly on these subsystems separately, although in cellular
function they are heavily interlinked. In this work we have analyzed both systems
separately, as well as in conjunction.

We have shown in Chapter 2 that two categories of genes—with (“regulatory”)
and without regulatory information available (“isolated”)—unmix on the chromo-
some of Escherichia coli. In the light of the findings byMarr et al. [81], who established
the concepts of digital1 and analog2 control of transcriptional regulation, we argue
that the second category of “isolated” genes is regulated by the latter. In order to sup-
port this claim we furthermore investigated the associations of the two categories of
genes with highly expressed and transcriptionally silenced domains in the chromo-
some, being characterized by a high protein abundance [130]. We used these protein
occupancy domains as proxies for the analog type of control, and indeed found in
comparison to the “regulatory” genes a stronger association of the “isolated” genes
with these domains. e success of the point-process statistical methods [62], which,
to our knowledge, have been applied for the first time to the spatial organization of
genes, suggests an extension to other categories of genes and chromosomes of other
organisms.

1 Digital in the sense of the almost Boolean mode of activatory and inhibitory actions performed
by transcription factors.

2Analog in the sense of the rather continues control of chromosomal architecture.
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CHAPTER 7. CONCLUSIONS AND OUTLOOK

In Chapter 3 we extended our studies on control types in a data-driven fashion.
Using a network model of E. coli metabolism, we classified gene expression changes
that have been obtained under variation of chromosomal supercoiling, in wild type
E. coli as wells as in a series of mutants lacking abundant structural proteins, by quan-
tifying the coherence of the data to the network topology. We found a strong coher-
ence in the wild type patterns, indicating that the gene expression changes induced
by chromosomal rearrangements are indeed meaningful in a metabolic context. Fur-
thermore, the significant reduction of coherence observed for the mutants showed
that the deleted structural proteins are responsible for translating the chromosomal
topology into meaningful gene expression patterns. Furthermore, we were able to
exclude the possibility that the transcriptional regulatory network (TRN) acts as the
mediator for the coherence found in the wild type case by evaluating the consistency
of the signs of the expression changes with the logic of the TRN.ese results provide
strong evidence that the expression changes induced by analog control are indeed a
major organizational factor of bacterial physiology.

On the experimental side, with next-generation sequencing data becoming af-
fordable, it would be nice to reproduce and expand the analysis of supercoiling in-
duced expression changes. Furthermore, by using more quantitative data it would be
possible to apply constraint-based modeling techniques (see also Chapter 5 and 6) in
order to quantify the reduced coherence inmore detail and also compare it our previ-
ous results. is would help in shiing the analysis from a global statistical treatment
to a more fine grained perspective, and thus to potential new biological insights.

In Chapter 4 we elaborated on topological markers of reaction essentiality, in
particular, medium dependent and independent essentiality as well as inessentiality
of reactions. Our method of using multiple topological labels for investigating the
relation between network properties and system properties and in this way identify-
ing sub-categories emanating from different topological features may be helpful in a
broad range of contexts in systems biology. In the case of metabolism, we observe
that some combinations of reaction categories show a substantially higher accuracy
in predicting essentiality, suggesting different types of essential reactions.

In Chapter 6 and 5 we again integrated microarray expression data with a meta-
bolic network, this time based on a genome-scale reconstruction of human metabo-
lism [35]. RNA transcript levels of healthy and cancerous adrenal glands were either
classified using themetabolic coherence developed in Chapter 3, representing a purely
topological measure, or with a constraint-basedmodeling approach [18], quantifying
the inconsistency of the data and the cellular objective of aldosterone production.

Furthermore, the strong connection found in the comparison of the two approach-
es allowed us to interpret the metabolic inconsistency score obtained with GIMME
from a network perspective. is inconsistency score basically constitutes the sum
over all fluxes going through unexpressed reactions. We considered it as a vector of
individual contributions, which can be classified according to their distribution in
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the metabolic network. In particular, we observed an unspecific set of reactions con-
tributing due to the limitations of the method (gaps in the metabolic reconstruction,
unsuitable environmental conditions etc.) and a specific set of informative contribu-
tions. It turned out, that on the one hand, the specific contributions cast light on an
unforeseen diversity of alterations in the physiology of adrenal gland adenomas and,
on the other hand, the unspecific contributions could provide good entry points for
the iterative refinement of the metabolic reconstruction.
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Appendix A

Supplementary Information for
“Analog regulation of metabolic
demand”

Metabolic network representations

e strength of graph theory is that it can represent a complex system in a unified
formal language of nodes and links. Examples of graph-theoretical analyses of meta-
bolic systems are [47] and [64]. Essentially, the pattern of zero and non-zero entries
of the stoichiometric matrix defines a graph representation of the metabolic system.
e level of information conveyed by looking at metabolism from a graph-theoretical
perspective is still subject to constant scrutiny [83].

A suitable approach for analyzing the correspondence between expression chang-
es andmetabolism and thus quantifyingmetabolic coherence is the application of the
tools developed for the effective TRNs [81] to a gene-centric representation ofmetab-
olism, where the nodes are metabolic genes and a link is drawn between two genes,
if the associated reactions share a common metabolite [73]. is representation is
the gene-centric variant of one of the standard projections of a bi-partite graph rep-
resentation of metabolism, where both, metabolites and reactions serve as node sets
(see, e.g., 3, for a discussion of these and other representations). Additional forms
of representation include metabolite-, reaction-, enzyme- or gene-centric views. e
metabolite-centric view represents the interconversion possibilities of the different
substrates, whereas other views concentrate more on the processes (reactions), pro-
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APPENDIX A. SUPPLEMENTARY INFORMATION FOR “ANALOG REGULATION OF
METABOLIC DEMAND”

tein (enzymes) and genomic (genes) levels respectively. We chose the gene-centric
view for our analysis as it allowed us a direct comparison of expression patterns with
metabolic pathways.

Reaction to gene mappings

Imagine the following scenario: a reaction is catalyzed by a single enzyme (no isozymes
involved), encoded by a unique gene (no enzyme complexes involved). With this sim-
ple scheme in mind one might conclude that reaction-, enzyme- and gene-centric
representations are redundant. However, most of the time reactions and their asso-
ciated enzymes and genes are not interchangeable. Figure A.2 visualizes the amount
of multiplicities between the reaction- and gene-level. e columns of the colored
grid represent the absolute number of genes per reaction pair. e rows represent
the number of unique genes. So the number of consecutive reaction pairs sharing a
single gene can be found in column 2, row 1, as both reactions are associated with
a single gene and it happens that it is the same for both. In contrast, the previously
described simple scheme can be found in column 2, row 2. In order to assess the im-
pact of these ambiguities on our results we constructed other graphs in addition to
our gene-networks by applying the following rules: (1) the removal of reaction pairs
lying beside the diagonal of the grid (see Figure A.2) excludes situations where a sin-
gle or multiple genes are involved with both reactions; (2) taking into account only
reaction pairs fulfilling the condition of the second column and row, thus effectively
excluding enzyme complexes and the situations described in (1).

Currency metabolites

Another problem emerges through highly connected compounds, which have been
termed current or currencymetabolites in the past [59, 77]. ey have caused reports
of questionable average path lengths [10, 64] as they represent unrealistic shortcuts
obscuring the essential pathway structures that have been assembled by biochemists
over the last century.

For example Figure A.3 demonstrates the huge impact of iAF1260 metabolites on
our MC results by showing the z-score pattern for the untreated iAF1260 network.
All scores are basically below or a little above 1 and such no significant coherence
could be measured.

However, the KEGG and EcoCyc data sets provide currency metabolite free rep-
resentations through their human readable pathway maps (in contrast to their com-
plete reaction databases). For iAF1260 [39] we employed on the one hand a threshold
heuristic to remove a certain percentage (i.e., 4 % for the results shown in the main
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article) of the most highly connected metabolites as described in [73], and on the
other hand a manual curation of the network where currency metabolites were re-
moved on a reaction to reaction basis, i.e., the approach described in Ma and Zeng
[77]. Figure 3.3C (in the main text) shows the MC result for the manually curated
network for comparison with the untreated one (see Figure A.3). Figure A.4 shows
the dependency of the MC on the percentage threshold.

Constraint-based modeling
For a metabolic system consisting of N reactions and M compounds the linear pro-
gramming (LP) formulation of FBA can generally be stated as follows:

Maximize Z = c ⋅ v

subject to
N

∑
j=1

Sijvj, i = 1, . . . ,M

vmin
j < vj < vmax

j , j = 1, . . . ,N
v
(m,s)
j < v(t)j < v

(m,u)
j , j = 1, . . . ,N (t) ,

(A.1)

where v is a vector of reaction fluxes constrained by the stated boundary condi-
tions, S is a matrix storing the stoichiometric information of the system (i.e. Sij is
the stoichiometric coefficient of metabolite i in reaction j) and Z denotes the objec-
tive to be maximized represented by a linear combination of fluxes vj and objective
coefficients cj . Here, v(t) denotes a transport reaction, i.e. a reaction either secret-
ing metabolites from the system or taking them up. e quantity N (t) is the num-
ber of transport reactions. As an approximation to a rich medium condition we al-
lowed for every available transport reaction v(t) unlimited secretion v(m,s) = −∞ and
v(m,u) = 20 [in units ofmmol/g ⋅ dw ⋅h] as an arbitrary upper bound to influx. With
the exception of v(t), all reversible reactions were treated as two distinct irreversible
reactions. Maximization of biomass production [39] and simultaneousminimization
of all other fluxes was used as Z in order to avoid accumulation of flux in cycles. As
all constraints are linear and the solution space is convex, a global maximum can al-
ways be found using linear programming (assuming the problem is well defined and
not unbounded), though multiple global optima cannot be excluded [95].

Digital control and TRN consistency
e E. coli transcriptional regulatory network was obtained from RegulonDB [41]
(version 6.4). Only links between transcription factors (regulators) and metabolic
genes (as found in the EcoCyc network) were considered for the digital control and
TRN consistency analysis. Digital control was measured in form of the digital CTC,
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as described in [81], with the exception that the ratio of connected nodes to overall
nodes was used instead of the ratio of connected to isolated nodes. Methodologically,
this method is similar to the MC computation. Figure A.5 shows the digital CTC
profile for the for genetic backgrounds.

e consistency of effective TRN subnetworks (TRN consistency) was calculated
as the ratio of consistent links (i.e. the regulatory logic encoded on the links is consis-
tent with the expression signs on the nodes; see Figure A.6) to overall effective links.
Similar to theMC , this ratio was transformed into a z-score. Shuffling the expression
signs of the effective nodes was used as a suitable null model. 5000 realizations of the
null model were used for the z-score transformation.

Experimental setup
e fis and hns double mutants were generated by P1 transduction of mutant alleles
from donor strains into the E. coli LZ41 and LZ54 strains used in previous study for
investigation of the effects of single mutations [20]. e strains were grown in 2 × YT
medium at 30○C. Total RNA isolated from exponentially growing LZ41∆fis∆hns and
LZ54∆fis∆hns strains aer brief (15 min) treatment by norfloxacin was subjected
to DNA microarray-mediated transcription profiling using OciChip E. coli K12 V2
Arrays according to OciChipTM-Application Guide (http://www.ocimumbio.com)
as described in Blot et al. [20].

In brief, for each comparison two biological replicates with two technical repli-
cates were performed, resulting in a total of 8 hybridizations. Scanned array images
were analyzed using the TM4 soware package [102]. Spot intensities were quanti-
fied and the quality of each spot was verified by calculating a quality control (QC)
score depending on signal-to-noise ratio for every channel and calculating p-values
for each channel (as result of a t-test comparing the spot pixel set and surrounding
background pixel set) using the TIGR Spotfinder soware. Data was normalized by
locally weighted linear regression [27]. A one-class t-test [91] was applied to obtain
differentially expressed genes within each data set (significance level α < 0.05).
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Table A.1: Table of the MC values visualized in Figure 3.4

Network WT fis hns fis/hns

EcoCyc 3.37 0.31 -0.60 -0.65
EcoCyc∗4 3.17 0.37 -0.53 -0.52

Intersec_EcoCyc_KEGG 3.03 0.26 0.54 -0.66
Intersec_EcoCyc_iAF1260man 2.89 0.57 -0.40 -0.13

iAF1260∗man 2.75 1.47 0.85 -0.05
iAF1260_RichMedium 2.69 1.21 -1.11 -0.38

iAF1260man 2.62 1.61 0.85 -0.065
EcoCyc∗∗ 2.55 0.22 0.33 0.65
KEGG∗ 2.57 0.76 1.59 1.32

iAF1260deg∗ 2.50 1.51 0.03 0.55
iAF1260deg 2.40 1.52 0.16 0.66

iAF1260man∗∗ 2.36 2.09 0.37 0.12
fully_coupled 2.22 0.14 1.70 1.14

KEGG 2.20 0.61 1.31 1.40
Intersec_iAF1260man_KEGG 1.80 1.43 -0.11 -0.46

Intersec_EcoCyc_iAF1260man_KEGG 1.76 0.68 -0.26 -0.48
KEGG∗∗ 1.58 -0.17 -0.46 1.048

fully_and_directionally_coupled 1.50 1.69 1.91 0.55
iAF1260∗∗deg 1.37 1.62 0.14 -0.11
iAF1260∗∗ 1.20 1.17 0.42 1.17

directionally_coupled 1.06 0.39 0.03 1.51
iAF1260 0.19 1.17 0.23 1.40
iAF1260∗ 0.11 1.14 0.13 1.41
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Figure A.1: e number of active reactions and genes in the effective networks increas-
es when moving from rich to minimal media conditions. Only cytosolic reactions and
genes were counted (i.e. transport and periplasmic reaction were excluded).
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Figure A.4: (A)MC values plotted against the percentage of removed currencymetabo-
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links.
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APPENDIX B. SUPPLEMENTARY INFORMATION FOR “MULTIPLE TOPOLOGICAL LABELS
AND MEDIUM-DEPENDENT ESSENTIALITY IN ESCHERICHIA COLI METABOLISM”
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Figure B.1: Supplementary Figure 1. e other 10 highest performance scorers. e
black bar represents each the (a) ppv, (b) npv, (c) sensitivity and (d) specificity of the
intersection configurations. e other three colors represent the three essentiality class-
es with Class I being colored in dark gray and Class II and III in gray and light gray
respectively.
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Figure B.2: Supplementary Figure 2. e top 10 (a) category I and (b) category II scorers.
e black bar represents always the accuracy. e other three bar types represent the
three essentiality classes with Class I being colored in dark gray and Class II and III in
gray and light gray respectively.
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APPENDIX C. SUPPLEMENTARY INFORMATION FOR “A NETWORK PERSPECTIVE ON
METABOLIC INCONSISTENCY”
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Figure C.1: Overlay of the logarithmized raw data of the 69 expression profiles. e
bimodal distribution consisting of noise and signal becomes visible in this depiction.
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Pathway maps
Pathways maps, referenced in Table 5.1 (SIaa, SIcarb, SIlip, SIvit), are provided elec-
tronically due to size limitations. e maps depict the usage patterns and inconsis-
tency contributions for the overall contributions (page i), control (page ii), LIG (page
iii), and HIG (page iv). e thickness and color of a reaction edge corresponds to the
usage frequency and the contribution strength, respectively. e pathway maps have
been obtained from the BIGG database [105].

SIaa (Amino acid metabolism) http://goo.gl/exiq5

SIcarb (Carbohydrate metabolism) http://goo.gl/TaARR

SIlip (Lipids metabolism) http://goo.gl/hEc7b

SIvit (Vita metabolism) http://goo.gl/9qPHm

Contributors

2-Oxoadipate producing pathways

2-Oxoadipate (2oxoadp) is one of the precursors for acetyl-CoA (see Figure C.3),
which is heavily utilized in cholesterol biosynthesis. Only two paths lead to 2-oxo-
adipate (see Figure C.2 and C.3). e many missing GPR associations (Invisible path-
way) on the path leading from lysine to 2-oxoadipate (Figure C.2), surely promote
the usage of this specific pathway versus the alternative pathway leading from tryp-
tophan to 2-oxoadipate (Figure C.3), explaining the high contribution strength of
AATAi (see Figure 5.5 and Table 5.1). However, it is intriguing to see that allmost all
subsequent steps from 2-oxoadipate to acetyl-CoA are expressed in the control and
LIG.

PROD2: redox factor issue

Proline dehydrogenase (PROD2) is one of the major unspecific inconsistency contrib-
utors (see Table 5.1). Together with pyrroline-5-carboxylate reductase (P5CRx), it is
involved in a cycle that interconverts NADH into FADH2 (see Figure C.4a), a nec-
essary redox factor for cholesterol biosynthesis, which is the ultimate precursor for
the steroid pathway and subsequent aldosterone production. P5CRxm is clearly ex-
pressed, whereas PROD2 is not expressed (see Figure C.4b). It is intriguing that the
gene expression profiles are almost reversed in themitochondrium (see Figure C.4b),
where PROD2m is expressed (at least in the control) and P5CRxm is not expressed.
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Figure C.2: 2-Oxoadipate production pathway starting from lysine and involving the
unspecific contributor AATAi (see Table 5.1). Dashed lines indicate the threshold used
for the GIMME computations.
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Figure C.3: 2-Oxoadipate production pathway starting from tryptophan and involving
the unspecific contributor 2OXOADPTm (see Table 5.1) among othermore specific con-
tributions. Dashed lines indicate the threshold used for the GIMME computations.
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Figure C.4: (a) e NADH to FADH2 interconverting cycle composed of pyrroline-5-
carboxylate reductase (P5CRx, cytosolic) and pyrroline-5-carboxylate reductase (PROD2,
cytosolic). (b) Distributions of expression values for the cytosolic (PROD2 and P5CRx)
andmitochondrial (PROD2mandP5CRxm) versions of pyrroline-5-carboxylate reductase
and proline dehydrogenase. e control is depicted in purple, the LIG and HIG in green
and red, respectively, and the dashed lines indicate the threshold used for the GIMME
computations.
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Path from tyrosine to fumarate and acetoacetate
Tyrosine, which is not provided in the in silico medium (see Table C.1), and is build
from phenylalanine under a strong contribution of PHETHPTOX2 (phenylalanine 4-
monooxygenase), seems to be involved in another highly contributing pathway that
leads from tyrosine to fumarate and acetoacetate (see Figure C.5). e entry and out-
put point, TYRTA (tyrosine transaminase) and FUMAC (fumarylacetoacetase ), of this
chain of reactions seem to be expressed, whereas the intermediate steps, 34HPPOR
(4-hydroxyphenylpyruvate dioxygenase), HGNTOR(homogentisate 1,2-dioxygenase), and
MACACI (maleylacetoacetate isomerase), are all unspecific contributors enlisted in
Table 5.1.
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Figure C.5: Pathway leading from tyrosine to fumarate and acetoacetate. Dashed lines
indicate the threshold used for the GIMME computations.
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Figure C.6: Inconsistency contributions. (a) Overall contributions to the inconsistency
for all adenoma and control samples, (b) the control group, and the adenoma tumor
samples showing (c) lower and (d) higher inconsistencies in comparison to the control
group. e contributions have been normalized by the sample size, respectively. Only a
subset of all contributing reactions is shown due to space limitations.
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Figure C.7: Distributions of reactions expression values of the unspecific contributions
in Table 5.1. e control is depicted in purple, the LIG andHIG in green and red, respec-
tively, and the dashed line indicates the threshold used for the GIMME computations.

111



APPENDIX C. SUPPLEMENTARY INFORMATION FOR “A NETWORK PERSPECTIVE ON
METABOLIC INCONSISTENCY”

a

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

GLUTCOADHm

b

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

PGCD

c

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

PDHm

d

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

MMEm

e

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

MEVK1x

f

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

G6PDH1er

g

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

DHCR71r

h

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

HEX1

i

-5 0 5 10
0.0

0.2

0.4

0.6

0.8

1.0

Expression signal @logD

P
ro

ba
bi

lit
y

SQLEr

Figure C.8: Distributions of reactions expression values of the unspecific contributions
in Table 5.1. e control is depicted in purple, the LIG andHIG in green and red, respec-
tively, and the dashed line indicates the threshold used for the GIMME computations.
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Table C.1: Medium condition from [113]. Exchange reactions not mentioned in the
table default to a lower bound (uptake) of 0 and an upper bound (secretion) of 10000.
DM reactions not mentioned in the table default to a lower(upper) bound of 0(10000).

Reaction name Lower bound Upper bound

DM_13-cis-oretn(n) 0 0
DM_13-cis-retn(n) 0 0
DM_avite1(c) 0 0
DM_avite2(c) 0 0
DM_bvite(c) 0 0
DM_yvite(c) 0 0
EX_arg-L(e) -1 10000
EX_fe2(e) 0 0
EX_glc(e) -1 10000
EX_glyc(e) -1 10000
EX_h(e) -1 10000
EX_h2o(e) -1 10000
EX_hdca(e) -1 10000
EX_his-L(e) -1 10000
EX_ile-L(e) -1 10000
EX_leu-L(e) -1 10000
EX_lnlc(e) -1 10000
EX_lys-L(e) -1 10000
EX_met-L(e) -1 10000
EX_o2(e) -10000 10000
EX_phe-L(e) -1 10000
EX_pi(e) -1 10000
EX_so4(e) -1 10000
EX_thr-L(e) -1 10000
EX_trp-L(e) -1 10000
EX_val-L(e) -1 10000
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