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Abstract
In this brief survey are collected some recent results about optimal interpolation processes
of Lagrange type based on the zeros of generalized Laguerre polynomials, i.e. the sequence
of orthogonal polynomials {pm(wα)}m where wα(x) = e−xβ

xα. A new extended Lagrange
process having optimal Lebesgue constants is also introduced.
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1 Introduction

Lagrange interpolation is an useful tool in many applications of numerical analysis, since it
is flexible, easily computable and, differently from the most popular piecewise polynomials
approximation, its accuracy increases for smoother functions. It appears in numerical
integration and differentiation processes and also in the numerical treatment of functional
equations by collocation methods.

In the case of the finite interval Lagrange interpolation on the zeros of orthogonal
polynomials was extensively studied and the knowledge of ”good” interpolation processes
appears to be sufficiently complete (see [13],[16] and the references therein). In this short
survey we limit ourselves to some recent developments on Lagrange interpolation of func-
tions on the positive semi-axis.

To be more precise, given a generalized Laguerre weight wα(x) = e−xβ
xα, α > −1, β >

1
2 , let Lm(wα)(f) be the Lagrange polynomial interpolating a given function f at the zeros
of the m-th Laguerre polynomial pm(wα).
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We will assume f ∈ Cu which is the space of the functions f satisfying the limit
conditions limx→0+ f(x)uγ(x) = 0, limx→+∞ f(x)uγ(x) = 0, with uγ(x) = e−xβ/2xγ , γ ≥
0 and equipped with the uniform norm ∥fuγ∥∞. Roughly speaking, functions in Cu can
increase exponentially for x → +∞ and to have an algebraic growth for x → 0+.

We start from a result about the Lebesgue constant proved by P. Vértesi in [24]:
for any matrix X of knots defined in (0,+∞) one has ∥Lm(X )∥Cu ≥ C logm. However,
Lm(wα) as map of Cu into IPm is a ”bad” process since there exist choices of α, γ such
that ∥Lm(wα)uγ∥∞ ∼ mτ [15],[19].

To overcome this bad behavior some different processes essentially based on the zeros
of generalized Laguerre polynomials were proposed in [14],[15],[12],[8],[19],[20]. Under
suitable conditions, some new modified Lagrange sequences were recently introduced to
approximate functions f ∈ Cu like the best approximation of this space, except the factor
logm.

To complete in some sense the study of optimal Lagrange interpolation processes,
we collect recent results about the so-called extended interpolation. Setting Sm+n =
pn(σ)pm(ρ), being σ, ρ two generalized Laguerre weights, the Lagrange polynomial
Lm+n(ρ, σ, f) based on the zeros of Sn+m is known as ”extended Lagrange polynomial”.
As we shall see, the parameters n,m, ρ, σ have to be chosen in such a way that any
polynomial of the sequence {Sk}k have not only simple zeros but also ”far enough” (see
[21]). Indeed, the existence of too much ”close” consecutive interpolation nodes has a
negative consequence on the behavior of the corresponding interpolation process. Since
the research of ”good” interpolation matrices of knots is still an open problem, here we
propose a new interpolating process essentially based on the zeros of pm(wα)pm+1(wα),
proving conditions under which the sequence of the corresponding Lebesgue constants
behaves like logm in some weighted uniform spaces.

The plan of the paper is the following: Section 2 contains an excursion on recent
results about Lagrange interpolation processes and their convergence. Section 3 contains
some results about the extended Lagrange interpolation with a new interpolation process.
Finally Section 4 contains the proofs of the new results.

2 Lagrange Interpolation

In the sequel C will denote any positive constant which can be different in different for-
mulas. Moreover C ̸= C(a, b, ..) will be used to mean the constant C is independent of
a, b, ... The notation A ∼ B, where A and B are positive quantities depending on some
parameters, will be used if and only if (A/B)±1 ≤ C, with C positive constant independent
of the above parameters.
Throughout the paper θ will denote a fixed real number, with 0 < θ < 1, which can be
different in different formulas and IPm will be the space of all algebraic polynomials of
degree at most m.

Consider the weight

wα(x) = e−xβ
xα, α > −1, β >

1

2
. (2.1)

Let {pm(wα)}m be the corresponding sequence of orthonormal polynomials having
positive leading coefficients, i.e.

pm(wα, x) = γm(wα)x
m + terms of lower degree, γm(wα) > 0
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and let {xm,k}mk=1 be the zeros of pm(wα) in increasing order.
As proved in [8],[7] the zeros of pm(wα) lie in the range (0, am(

√
wα)), being am :=

am(
√
wα) the Mhaskar-Rakhmanov-Saff number (shortly M-R-S number) w.r.t. wα. We

recall that am is defined as the smallest positive number satisfying

max
x∈R

|Pm(x)
√
wα(x)| = max

x∈[0, am(
√
wα)]

|Pm(x)
√

wα(x)|, ∀Pm ∈ Pm,

being

am = am(
√
wα) =

[
22β(Γ (β))2

Γ(2β)

] 1
β
(
1 +

2α+ 1

8m

) 1
β

m
1
β (2.2)

where Γ denotes the Gamma function. Therefore am(
√
wα) ∼ m

1
β .

We observe that in view of (2.2) generalized Laguerre weights having the same expo-

nential part e−bxβ
, eventually with a different constant b, have M-R-S numbers differing

for a constant. Therefore, in the next we use only am for any generalized Laguerre weight.
Setting

uγ(x) = e−xβ/2xγ , γ ≥ 0, β >
1

2
,

Cu is the functional space defined as follows

Cu =

{
f ∈ C((0,+∞)) : lim

x→0+
f(x)uγ(x) = 0 = lim

x→+∞
f(x)uγ(x)

}
,

and equipped with the norm

∥f∥Cu = max
x≥0

uγ(x)|f(x)| = ∥fuγ∥∞.

We remark that the assumption β > 1
2 is necessary to assure the density of the poly-

nomials in the space Cu [9].
For any continuous function f , let Lm(wα, f) be the Lagrange polynomial interpolating

f at {xm,k}mk=1, i.e.

Lm(wα, f ;x) =
m∑
k=1

ℓm,k(x)f(xm,k), ℓm,k(x) =
pm(wα, x)

p′m(wα, xm,k)(x− xm,k)
. (2.3)

The m−th Lebesgue constant is defined in the usual way,

∥Lm(wα)∥Cu = sup
∥f∥Cu=1

∥Lm(wα, f)∥Cu .

As it is well known, the behavior of the sequence {∥Lm(wα)∥Cu}m determines the order
of the interpolation error, since

∥[f − Lm(wα, f)]uγ∥∞ ≤ Em(f)uγ (1 + ∥Lm(wα)∥Cu), (2.4)

being Em(f)uγ = infPm∈IPm
∥(f − Pm)uγ∥ the error of best approximation of f ∈ Cu.

Similarly to the classical result of Faber and Bernstein in the case of the finite interval,
P. Vértesi [24], [25], in a more general context, proved that for any set of knots in the
interval [0, am],

∥Lm(wα)uγ∥∞ ≥ C logm, C ̸= C(m). (2.5)

Successively, the following ”negative” result was proved (see [15], [19]):
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Proposition 2.1. For any choice of α, γ ≥ 0 and β > 1
2 , there exits a positive τ s.t.

∥Lm(w)∥Cu
∼ mτ ,

with 0 < C ̸= C(m).

The ”bad” behavior stressed in the Proposition 2.1 can be overcome by slightly mod-
ifying the usual interpolation process, according to some different approaches that we go
to describe.

2.1 Interpolation with additional knots

Consider the Lagrange polynomial Lm+1(wα, f) interpolating f at the zeros of pm(wα, x)
and on the special knot am,

Lm+1(wα, f, xm,k) = f(xm,k), k = 1, 2, . . . ,m, (2.6)

Lm+1(wα, f, am) = f(am).

Setting xm,m+1 = am, an expression is the following

Lm+1(wα, f, x) =
∑m+1

k=1 l∗m,k(x)f(xm,k),

l∗m,k(x) =
am−x

am−xm,k
ℓm,k(x), k = 1, 2, . . . ,m, l∗m,m+1(x) =

pm(wα,x)
pm(wα,am) ,

being ℓm,k, k = 1, 2, . . . ,m defined in (2.3). Denoting by ∥Lm+1(wα)∥Cu the correspond-

ing Lebesgue constant, the following result holds [15],[12]:

Theorem 2.1. There exists a positive constant C ̸= C(m) such that

∥Lm+1(wα)∥Cu
∼ logm,

if and only if the parameters α > −1 and γ ≥ 0 satisfy the conditions:

max

(
0,

α

2
+

1

4

)
≤ γ ≤ α

2
+

5

4
(2.7)

This result is sharp, taking into account (2.5).

In view of the Theorem 2.1, Lm+1(wα, f) approximates f ∈ Cu like the best approxi-
mation of this space, except the factor logm:

∥[f − Lm+1(wα, f)]uγ∥∞ ≤ CEm(f)uγ logm. (2.8)

In particular for smoother functions, say f ∈ W∞
γ,r, being
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W∞
γ,r =

{
f ∈ Cu : ∥f (r)φruγ∥∞ < ∞

}
, r ≥ 1, φ(x) =

√
x

a Sobolev-type space, equipped with the norm

∥f∥W∞
γ,r

= ∥fuγ∥∞ + ∥f (r)φruγ∥∞,

the following estimate holds [19]

Em(f)uγ ≤ C
(√

am
m

)r

∥f (r)φruγ∥∞, C ̸= C(m, f). (2.9)

Therefore by (2.8) it follows that for any f ∈ W∞
γ,r

∥[f − Lm+1(wα, f)]uγ∥∞ ≤ C
(√

am
m

)r

∥f (r)φruγ∥∞ logm (2.10)

with C ̸= C(m, f).

Assuming now that the parameters α, γ are both fixed, the assumption in (2.7) could
be never satisfied. In this case it can be useful to add some interpolation knots t1, . . . , ts
”close” to the endpoint 0. Indeed the Lagrange polynomial based on the previous knots
{xm,k}m+1

k=1

∪
{ti}si=1, under suitable assumptions, is an optimal interpolation process again.

To be more precise, let {ti}si=1 be s simple knots added in the range (0, xm,1), for in-
stance ti =

i
s+1xm,1, i = 1, 2, . . . , s and letBs(x) =

∏s
i=1(x−ti).Denote by Lm+1,s(wα, f)

the Lagrange polynomial interpolating f at the zeros of pm(wα, x)Bs(x)(am − x). By the
same arguments used in the proof of Theorem 3.5 in [15], it is no hard to prove the
following result:

Theorem 2.2. For any function f ∈ Cu, if there exists an integer s such that

1

4
≤ γ − α

2
+ s ≤ 5

4
, (2.11)

then we have
∥Lm+1,s(wα, f)uγ∥∞ ≤ C∥fuγ∥∞ logm, (2.12)

where 0 < C ̸= C(m, f).

Remark 2.1. In the case γ = α = 0, the assumption of Theorem 2.1 is not verified,
whereas adding one additional point, for instance t1 =

xm,1

2 , the sequence {∥Lm+1,1(wα)∥Cu}m
has a logarithmic behavior.

We conclude this section with a short remark on the method of additional points. In
the case of Lagrange interpolation on the real axis, J. Szabados [22] introduced the so
called ”method of additional points,” adding two extra knots near to ±ām, being ām the
M-R-S number related to a Freud weight. Upon this idea, in [15] it was introduced the
interpolation polynomial Lm+1(wα, f) based on the zeros of classical Laguerre polynomials
and on the additional point 4m which is, more or less, the M-R-S number w.r.t to a

5



Laguerre weight e−xxα, α > −1. The extension to the case of a generalized Laguerre
weight was studied in [12]. Similarly to what happens in the Freud weight case (see [9],[10],
[11]), the factors am−x

am−xm,j
influence substantially the behavior of the Lebesgue constants.

Indeed, recalling that the Laguerre polynomial in a neighborhood of am is estimated as
follows

|pm(wα, x)|
√

wα(x) ≤ C
(∣∣∣∣1− x

am

∣∣∣∣+m− 2
3

)− 1
4

, am(1− ε) ≤ x ≤ am(1 + δ), δ, ε > 0,

the factor (am − x) damp the growth of the polynomial in the range am ≤ x ≤ am(1 + δ),
δ > 0.

The introduction of the additional points ”close” to the endpoint 0 in the case of the
classical Laguerre weight is referable to [15].

2.2 Truncated sequences of Lagrange polynomials

Let θ be fixed, with θ ∈ (0, 1) and denote by χm,θ the characteristic function of the interval
[0, θam]. With Lm(wα, f) defined in (2.3), let {χm,θLm(wα, fχm,θ)}m be a ”truncated”
sequence of Lagrange polynomials interpolating only a finite section of the function f on
the interval [0, θam]. Indeed, since [20], [19]

∥f(1− χm,θ)uγ∥∞ ≤ EM (f)uγ + Ce−Am∥fuγ∥∞, (2.13)

with M =
[

θ
1+θm

]
∼ m, the neglected part of f behaves like the error of best approxi-

mation EM (f)uγ being M a fraction of m depending on θ. Defined

xm,j = min {xm,k : xm,k ≥ θam, k = 1, 2, ..,m} . (2.14)

consider the truncated function fj = f(1−Ψj), being

Ψ(x) =


0, if x ≤ 0

and Ψj(x) = Ψ
(

x−xm,j

xm,j+1−xm,j

)
1, if x ≥ 1

By definition, fj has the same smoothness of f , coincides with f in the interval (0, xm,j ],
it is identically null for x ∈ [xm,j+1,+∞), and these two ”pieces” are smoothly linked by
the function Ψj in the interval (xm,j , xm,j+1).

Then, for this modified Lagrange process, the authors in [19] proved the following

Theorem 2.3. For any f ∈ Cu, under the assumption

max

(
0,

α

2
+

1

4

)
≤ γ ≤ α

2
+

5

4
(2.15)

the following estimate holds

∥χm,θLm(wα, fj)uγ∥∞ ≤ C∥fjuγ∥∞ logm,

with C ̸= C(m, f).

[a] denotes the largest integer smaller than or equal to a ∈ R+
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About the error estimate, by the previous theorem and (2.13) one has the following
estimate [19] (see also [17]):

∥[f − χm,θLm(wα, fj)]uγ∥∞ ≤ C logm
(
EM (f)uγ + e−Am∥fuγ∥∞

)
(2.16)

with C ̸= C(m, f).
By the previous result we can conclude that under the assumption (2.15) the se-

quence of polynomials {Lm(wα, f)}m whose bad behavior on the whole semi-axis was
evidenced by Proposition 2.1, can be successfully used to approximate f ∈ Cu in the re-
stricted range [0, θam], with almost the same rate of convergence offered by the sequence
{Lm+1(wα, f)}m, since de degree M is a fraction of m. Moreover, truncated sequences
afford the advantage of a reduced computational cost and a delayed possible overflow
phenomenon in the computation of f whenever it grows exponentially.

Truncated sequences are a ”remedium” in some sense on the growth of the polynomial
pm(wα, x) in a neighborhood of am, since in the restricted range (am

m2 , θam), with 0 < θ < 1,
the following estimate holds

|pm(wα, x)|
√

wα(x) ≤
C

4
√
amx

, C am
m2

≤ x ≤ θam.

2.3 Polynomial sequences of a finite section of f

Now we remark that {χm,θLm(wα, fχm,θ)}m is not a polynomial sequence and χm,θLm(wα)
does not project Cu onto IPm−1 as well as required in some applications like the numerical
treatment of functional equations (see [13]).

In order to overcome this problem, in [8] (see also [12][18]) the authors introduced a
polynomial sequence interpolating a finite section of the function. To be more precise, for
any fixed θ ∈ (0, 1), let j = j(m) be the index of the zero of pm(wα) defined in (2.14) and
fj,θ := fχm,θ. Then, the interpolating polynomial L̄∗∗

m+1(wα, f) is defined as

L̄∗∗
m+1(wα, f, x) := Lm+1(wα, fj,θ), (2.17)

being Lm+1(wα, g) the Lagrange polynomial defined in (2.6) interpolating a given function
g at {xm,k}mk=1

∪
{am}.

The operator L̄∗∗
m+1(wα) is a projector of Cu into the subspace P∗

m ⊂ IPm defined as

P∗
m = {q ∈ IPm : q(am) = 0 = q(xm,k), k > j} .

For this polynomial process the Lebesgue constant in Cu have order logm, under suitable
hypothesis on α, γ. Indeed in [12] it was proved that

Theorem 2.4. If the parameters satisfy the assumptions

max

(
0,

α

2
+

1

4

)
≤ γ ≤ α

2
+

5

4
(2.18)

then
∥L̄∗∗

m+1(wα, f)uγ∥∞ ≤ C∥fj,θuγ∥∞ logm,

and
∥[f − L̄∗∗

m+1(wα, f)]uγ∥∞ ≤ C logm
(
EM (f)uγ + e−Am∥fuγ∥∞

)
. (2.19)

where M =
[

θ
1+θm

]
and with C ̸= C(m, f).
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Figure 1: ṽm(θ) for θ ∈ (0, 1)

We remark that truncated Lagrange polynomial sequences were successfully applied
in quadrature by introducing truncated Gaussian rules and truncated product integration
formulae, which are more convenient and faster convergent (see [3],[14], [12], [17], [18]).

We conclude this section showing empirically how the number of the interpolation
knots involved in truncated processes depends on θ.

Defined
Nm(a, b) = Number of zeros of pm(wα) in (a, b)

for any θ ∈ (0, 1) let

vm(θ) =
Nm(0, θam)

m
and

ṽm(θ) =
1

N − 1

N∑
m=2

vm(θ), N = 2048

In the case α = 0, the values obtained for different choices of the parameter β are
plotted in Figure 1. As we can see, for increasing values of β > 1 the number of zeros in
(0, θam) decreases.

3 Extended Lagrange interpolation

First we recall the main idea of extended interpolation based on the zeros of orthogonal
polynomials.

Let ρ and σ be two weight functions, both of them supported in −∞ ≤ a < b ≤ +∞
and let {pm(ρ)}m, {pm(σ)}m be the corresponding sequences of orthonormal polynomials.
Assume that the polynomial Qm+n = pm(ρ)pn(σ) has simple zeros ζi, i = 1, 2, . . . ,m+ n.
Then, for any continuous function f the Lagrange polynomial Lm+n(ρ, σ, f) interpolating
f at the zeros of Qm+n, i.e.

Lm+n(ρ, σ, f ; ζi) = f(ζi), i = 1, 2, . . . ,m+ n.
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is called extended interpolation polynomial. From

Lm+n(ρ, σ, f) = pm(ρ)Ln

(
σ,

f

pm(ρ)

)
+ pn(σ)Lm

(
ρ,

f

pn(σ)

)
,

it follows that Lm+n(ρ, σ, f) can ”extended” a previous interpolation polynomial Ln(σ, f),
reusing the previous n function evaluations. We point out that when m = n or m = n+1,
an ”high” degree Lagrange polynomial can be constructed by two half degree Lagrange
polynomials, which are separately computable. By this way difficulties in computing the
zeros of ”large” degree orthogonal polynomials are overcome in some sense. Another
relevant application of extended interpolation processes is the aid in the construction of
extended positive quadratures rules (see [6] and the references therein).

At first we introduce a new extended Lagrange process w.r.t the same weight wα an
based on the zeros of shifted degree polynomials. Set z̃2i−1 = xm+1,i, i = 1, 2, . . . ,m + 1,
z̃2i = xm,i, i = 1, 2, . . . ,m, being {xm,k}mk=1 and {xm+1,k}m+1

k=1 the zeros of pm+1(wα) and
pm(wα), respectively. Therefore, the extended Lagrange polynomial L2m+1(wα, wα, f)
interpolating f at the zeros of Q̃2m+1 := pm+1(wα)pm(wα) there exists and it can take the
following expression:

L2m+1(wα, wα, f ;x) =
2m+1∑
k=1

ℓ̃2m+1,k(x)f(z̃k), ℓ̃2m+1,k(x) =
Q̃2m+1(x)

Q̃′
m+1(z̃k)(x− z̃k)

. (3.20)

Now we recall the following result on extended interpolation which bind in some sense
the ”good” order of Lebesgue constants sequence to the ”good” distance between con-
secutive interpolation knots. Indeed, setting X = {ξm,i, i = 1, 2, . . . ,m, m ∈ N}, let
Lm(X , g) be the Lagrange polynomial interpolating g at the elements of the m-th row of

X . With σδ(x) = e−xβ
xδ, δ ≥ 0, β > 1

2 , and

Cδ =

{
f : fσδ ∈ C0(R+), lim

x→0+
|f(x)|σδ(x) = 0 = lim

x→∞
|f(x)|σδ(x),

}
,

equipped with the norm ∥f∥Cδ
= supx≥0 |f(x)|σδ(x), the m−th Lebesgue constant in Cδ

is defined as
∥Lm(X )∥Cδ

= sup
∥g∥Cδ

=1
∥Lm(X , g)σδ∥, m = 1, 2, . . . (3.21)

Then the following Proposition holds [21]:

Proposition 3.1. If for m sufficiently large (say m > m0), there exists k := k(m) s. t.

∆ξm,k ≤
(√

am
m

)η+1√
ξm,k, η > 0 (3.22)

then

∥Lm(X )∥Cδ
≥ C

(
m

√
am

)η

, (3.23)

where C ̸= C(m).

In [−1, 1] an analogous result was proved in [23].
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Remark 3.1. Setting z̃j the knot defined as

z̃j = z̃j(m) = min {z̃k : z̃k ≥ θam+1, k = 1, 2, .., 2m+ 1} , (3.24)

in our case it is no hard to prove that

∆z̃k = z̃k+1 − z̃k ∼
√
am+1

m

√
z̃k+1, k = 1, 2, . . . , j, (3.25)

uniformly in m ∈ N. In the special case β = 1, (3.25) was proved in [2].

Note that the distance between two consecutive zeros of Q̃2m+1 is comparable with those
of consecutive zeros of pm(wα) (see [8],[7], [21].)

However a ”good” distance is not enough to assure optimal order of the Lebesgue
constants. Indeed the following ”bad” result holds

Proposition 3.2. For any choice of α, δ ≥ 0 and β > 1
2 , there exists a positive τ s.t.

∥L2m+1(wα, wα)∥Cδ
= sup

∥fσδ∥∞=1
∥L2m+1(wα, wα, f)σδ∥∞ ≥ Cmτ , (3.26)

with 0 < C ̸= C(m).

Nevertheless the system of knots made up of the zeros of {Q̃n}n can be proposed in
order to obtain optimal Lebesgue constants too. This goal will be achieved by considering
the Lagrange polynomial based on the zeros of Q̃2m+1(x)(am+1 − x) and interpolating a
finite section of the function f, being am+1 the (m+ 1)− th M-R-S number w.r.t. wα.
Denoting by χm,θ the characteristic function of the segment (0, z̃j), let us introduce the
extended Lagrange polynomial defined as

L∗
2m+2(wα, wα, f ;x) :=

j∑
k=1

l̄2m+2,k(x)f(z̃k), (3.27)

where

l̄2m+2,k(x) = ℓ̃2m+1,k(x)
(am+1 − x)

(am+1 − z̃k)
, k = 1, 2, . . . , 2m+ 1,

l̄2m+2,2m+2(x) =
Q̃2m+1(x)

Q̃2m+1(am+1)
.

Obviously, L∗
2m+2(wα, wα, f) is a polynomial of degree 2m+1 such that L∗

2m+2(wα, wα, f ; am) =
0 = L∗

2m+2(wα, wα, f ; z̃k), for k > j.

We are able to prove that under suitable relations between the weights wα and σ, the
corresponding Lebesgue constants grow logarithmically:
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Theorem 3.1. For any function f ∈ Cδ, with δ > 0,

∥L∗
2m+2(wα, wα, f)σδ∥∞ ≤ C∥fσδ∥∞ logm (3.28)

with 0 < C ̸= C(m, f), if and only if

1

2
≤ δ − α ≤ 3

2
. (3.29)

Moreover

∥[f − L∗
2m+2(wα, wα, f)]σδ∥∞ ≤ C

{
EM̄ (f)σδ

logm+ e−Am∥fσδ∥∞
}
, (3.30)

where M̄ =

[
2m

(
θ

1+θ

)β
]
∼ m, 0 < C ̸= C(m, f), 0 < A ̸= A(m, f).

We conclude recalling an extended interpolation process introduced in [21] and involv-
ing two different weight functions, suitable related among them. Consider the following
weights wα(x) = e−xβ

xα, α > −1, β > 1
2 and wα+1(x) = xwα(x). Denote by {xk}m+1

k=1 the
zeros of pm+1(wα) in increasing order and by {yk}mk=1 the zeros of the corresponding m-th
orthonormal polynomial pm(wα+1).

Set z2i−1 = xi, i = 1, 2, . . . ,m + 1, z2i = yi, i = 1, 2, . . . ,m, z2m+2 = am+1. Since
in [21] it was proved that the zeros of pm(wα+1) interlace those of pm+1(wα) , (see also
[4]), let L2m+2(wα, wα+1, f) be the Lagrange polynomial interpolating f at the zeros of
Q2m+1 := pm+1(wα)pm(wα+1) and at the special knot am+1.

Denoted by zj the knot

zj = zj(m) = min {zk : zk ≥ θam+1, k = 1, 2, .., 2m+ 1} , (3.31)

and by χm,θ be the characteristic function of the segment (0, zj), let be

L∗
2m+2(wα, wα+1, f) := L2m+2(wα, wα+1, fχm,θ) (3.32)

the Lagrange polynomial interpolating fχm,θ at the zeros {zi}2m+2
i=1 . Also in this case

the polynomial sequence {L∗
2m+2(wα, wα+1, f)}m, can be used to approximate f ∈ Cδ

successfully, under suitable conditions [21]

Theorem 3.2. For any function f ∈ Cδ, with δ > 0,

∥L∗
2m+2(wα, wα+1, f)σδ∥∞ ≤ C∥fσδ∥∞ logm (3.33)

with 0 < C ̸= C(m, f), if and only if

1 ≤ δ − α ≤ 2. (3.34)

Moreover

∥[f − L∗
2m+2(wα, wα+1, f)]σδ∥∞ ≤ C

{
EM (f)σδ

logm+ e−Am∥fσδ∥∞
}

(3.35)

where M =

[
2m

(
θ

1+θ

)β
]
∼ m, 0 < C ̸= C(m, f), 0 < A ̸= A(m, f).
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If the parameters δ and α don’t satisfy (3.34), we can adopt the additional nodes
method [21], introducing the polynomial L∗

2m+2,s(wα, wα+1, f) interpolating fχm,θ at the

zeros of Q2m+1(x)Bs(x)(am+1 − x), where ti = i
s+1x1, i = 1, 2, . . . , s and Bs(x) =∏s

i=1(x− ti). The following result holds

Theorem 3.3. For any function f ∈ Cδ, if there exists an integer s such that

1 ≤ δ − α+ s ≤ 2, (3.36)

then we have
∥L∗

2m+2,s(wα, wα+1, f)σδ∥∞ ≤ C∥fσδ∥∞ logm, (3.37)

where 0 < C ̸= C(m, f). Moreover,

∥[f − L∗
2m+2,s(wα, wα+1, f)]σδ∥∞ ≤ C

{
EM (f)σδ

logm+ e−Am∥fσδ∥∞
}
, (3.38)

where M =

[
2m

(
θ

1+θ

)β
]
∼ m, 0 < C ̸= C(m, f), 0 < A ̸= A(m, f).

We conclude giving some details useful for the practical computation of the interpo-
lation knots. We recall the three-term recurrence relation for the orthogonal polynomials
w.r.t. the weight wα.

p−1(wα, x) = 0, p0(wα, x) =
(∫∞

0 wα(x)dx
)− 1

2

bn+1pn+1(wα;x) = (x− en)pn(wα, x)− bnpn−1(wα, x)

bn = γn−1(wα)
γn(wα)

en =
∫∞
0 xp2n(wα, x)wα(x)dx.

(3.39)

Although the coefficients {bk}k, {ek}k are not always known, there exist efficient numerical

procedures to calculate them [1] (see also [5]). The computation of the zeros of General-

ized Laguerre polynomials with parameter β ̸= 1, requires an higher computational effort.
Indeed, when β ̸= 1 the coefficients in the three term recurrence relation for the polyno-
mials {pm(w)}m are not always known. However there exists the Mathematica Package
OrthogonalPolynomials [1] to compute these zeros by using ”high” variable precision.

4 The proofs

Now we collect some polynomial inequalities deduced in [18](see also [7]).
Let x ∈ [xm,1, xm,m] and d = d(x) ∈ {1, . . . ,m} be an index of a zero of pm(wα) closest to
x. Then, for some positive constant C ̸= C(m,x, d), we have

1

C

(
x− xm,d

xd − xd±1

)2

≤ p2m(wα, x)e
−xβ

(
x+

am
m2

)α+ 1
2

√
|am − x|+ amm− 2

3 ≤ C
(

x− xd
xm,d − xm,d±1

)2

.

(4.40)
and for a fixed real number 0 < δ < 1,
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|pm(wα, x)|
√

wα(x) ≤
C

4
√
x

4

√
|am − x|+ amm− 2

3

,
am
m2

≤ x ≤ am(1 + δ). (4.41)

In particular, for a fixed 0 < θ < 1

|pm(wα, x)|
√

wα(x) ≤ C 1
4
√
amx

,
am
m2

≤ x ≤ θam. (4.42)

Moreover, for k = 1, 2, . . . ,m

1

|p′m(wα, xm,k)|
√

wα(xm,k)
∼ ∆xm,k

4
√
amxm,k

4

√∣∣∣∣1− xm,k

am

∣∣∣∣+m− 2
3 , ∆xm,k = xm,k+1−xm,k.

(4.43)
For any polynomial Pm ∈ IPm, the Bernstein inequality [7] [19]

max
x≥0

|P ′
m(x)|

√
wα(x)

√
x ≤ C m

√
am

max
x≥0

|Pm(x)
√

wα(x)|, C ̸= C(m,Pm) (4.44)

and the Remez-type inequality [19]

max
x≥0

|Pm(x)uγ(x)| ≤ C max
x≥am

m2

|Pm(x)uγ(x)| (4.45)

hold. Finally we recall that for any polynomial Pm ∈ IPm, one has [19]

max
x≥am(1+δ)

|Pm(x)|uγ(x) ≤ Ce−Am max
x≤am

|Pm(x)|uγ(x) (4.46)

where C ̸= C(m), A ̸= A(m).

In the next will be useful the following

Lemma 4.1. Setting z̃2i−1 = xm+1,i, i = 1, 2, . . . ,m + 1, z̃2i = xm,i, i = 1, 2, . . . ,m, and
Q̃2m+1 := pm+1(wα)pm(wα), the following estimate holds true

1

|Q̃′
2m+1(z̃k)|σδ(z̃k)

≤ C
√
am − z̃k

z̃δ−α−1
k

∆z̃k, z̃k < z̃j , C ̸= C(m) (4.47)

Proof: Using (4.40)

1

|pm(wα, xm+1,k)|
√

wα(xm+1,k)
≤ C 4

√
xm+1,k(am − xm+1,k), xm+1,k ≤ z̃j , (4.48)

so, by (4.43), it follows

1

|Q′
2m+1(xm+1,k)|σδ(xm+1,k)

≤ C
√
am − xm+1,k

x
δ−α− 1

2
m+1,k

∆xm+1,k, xm+1,k ≤ z̃j .

An analogous estimate holds replacing xm+1,k with xm,k. Using then ∆xm+1,k ∼ ∆xm,k ∼
∆z̃k, z̃k < zj , the Lemma follows.2
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Lemma 4.2. For x ∈ (z̃1, z̃2m+1) and denoted with z̃d the zero of Q̃2m+1 closest to x, we
have

|Q̃2m+1(x)|
|Q̃′

2m+1(z̃d)(x− zd)|
σδ(x)

σδ(z̃d)
≤ C C ̸= C(m,x). (4.49)

Proof: Denoted by xm+1,d a zero of pm+1(wα) closest to x ∈ [xm+1,1, xm+1,m+1], in
[12] it was proved, ∣∣∣∣ pm+1(wα, x)

p′m+1(wα, xm+1,d)(x− xm+1,d)

∣∣∣∣
√

wα(x)√
wα(xm+1,d)

∼ 1.

Therefore, assuming z̃d is a zero of pm+1(wα), we have

|Q̃2m+1(x)|
|Q̃′

2m+1(z̃d)(x− z̃d)|
σδ(x)

σδ(z̃d)
≤ C |pm(wα, x)|

|pm(wα, z̃d)|
σδ(x)

σδ(z̃d)

√
wα(z̃d)√
wα(x)

and using (4.48) and (4.41),

|Q̃2m+1(x)|
|Q̃′

2m+1(z̃d)(x− z̃d)|
σδ(x)

σδ(z̃d)
≤ C

(
x

z̃d

)δ−α− 1
4

≤ C,

since x ∼ z̃d.2

Proof of Theorem 3.1

We prove the sufficient condition. By (4.45) we have

∥L∗
2m+2(wα, wα, f)σδ∥∞ ≤ C max

C am
m2 ≤x≤am

|L∗
2m+2(wα, wα, f ;x)σδ(x)| (4.50)

and by (3.27)

∥L∗
2m+2(wα, wα, f)σδ∥∞ ≤ C∥fσδ∥∞ ×

max
C am

m2 ≤x≤am

j∑
k=1

∣∣∣∣∣ Q̃2m+1(x)(am+1 − x)

Q̃′
2m+1(z̃k)(am+1 − z̃k)(x− z̃k)

∣∣∣∣∣ σδ(x)

σδ(z̃k)

=: C∥fσδ∥∞ max
C am

m2 ≤x≤am
Σ(x) (4.51)

By (4.42)

|Q̃2m+1(x)|σδ(x) ≤ Cx
δ−α− 1

2

√
am

,
am
m2

≤ x ≤ θam, (4.52)

and recalling (4.47) we have
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Σ(x) ≤ C
j∑

k=1,k ̸=d

∆z̃k
|x− z̃k|

√
am − x√
am − z̃k

xδ−α− 1
2

z̃
δ−α− 1

2
k

+

∣∣∣∣∣ Q̃2m+1(x)(am − x)

Q̃′
2m+1(z̃d)(x− z̃d)(am − z̃d)

∣∣∣∣∣ σδ(x)

σδ(z̃d)
.

By Lemma 5.1 [21, p.19], (see also [15]) under the assumption 0 ≤ δ − α − 1
2 ≤ 1, using

Lemma 4.2 and taking into account (am − x) ∼ (am − z̃d), we get

Σ(x) ≤ C logm. (4.53)

Combining last inequality with (4.51), (3.28) follows.
We omit the proof of the necessary part, since it follows with a slight change in the

proof of Theorem 3.1 in [21].2
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[20] G. Mastroianni, P. Vértesi, Fourier Sums and lagrange interpolation on (0,+∞) and
(−∞,+∞), N.K. Govil H.N.Mhaskar, R.N. Mohpatra, Z. Nashed and J. Szabados, eds
Frontiers in Interpolation and Approximation, Dedicated to the memory of A.Sharma,
Boca Raton, Florida, Taylor & Francis Books, (2006) 307–344.

[21] D. Occorsio, Extended Lagrange in weighted uniform norm, Applied Math. and Com-
put. 211 (2009) 10–22.
http://dx.doi.org/10.1016/j.amc.2009.01.023

16



[22] J. Szabados, Weighted Lagrange and Hermite-Fejér interpolation on the real line, J.
Inequal.and Applns. 1 (1997) 99-123.
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