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Abstract
The Pareto chart is one of the most useful of the ”magnificent seven”, i.e. of the seven
major SPC problem-solving tools. Sometimes a decision-maker is interested whether two
Pareto charts corresponding to different processes differs significantly. In the present pa-
per a new statistical test for comparing Pareto charts is suggested.
Keywords: Entropy; Hypotheses testing; Pareto chart; Statistical process control.

1 Introduction

One of the fundamental ideas of the Statistical Process Control (SPC) is an empirical
observation of the Italian sociologist Vilfredo Pareto stating that ”in a system, a relatively
few failure reasons are responsible for the catastrophically many failures” (see [14]). The
Pareto chart is one of the most useful of the ”magnificent seven”, i.e. of the seven major
SPC problem-solving tools. Through this chart a user can quickly and visually identify the
most frequently occurring types of defects, failures delays etc. It should be stressed that
the Pareto chart does not automatically identify the most important defects but rather
only those that occur most frequently (see [9]).

The Pareto chart is just a bar chart for attribute data arranged by a category in
which the categories are ordered by the number of occurrences. Additionally, a polygon
corresponding to cumulative frequency distribution (ogive) is often also attached. A typical
Pareto chart is shown in Figure 1.

Visual inspection of the chart is a first step in the data analysis and the Pareto principle
typically provides much of the insight. Additional analysis can yield more knowledge. In
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Figure 1: The Pareto chart for nine defect categories

particular, the incorporation of statistical tests would help to distinguish the randomness
due to ”common” causes and due to ”assignable” causes.

In more advanced Pareto analysis is sometimes important to compare given Pareto
chart to a ”standard” one. Moreover, sometimes one would like to decide whether there is
a significant difference between two Pareto charts, e.g. to compare given Pareto chart with
another Pareto chart constructed over a different time, period or process. This problem
was considered by [7]. However, his test could be applied for Pareto charts with the same
defect categories only.

In the present paper we propose a statistical test for comparing two Pareto charts
based on the Shannon entropy. Our approach enables to omit the restrictions of the
Kenett procedure, mentioned above.

The paper is organized as follows: In (Sec. 2) we introduce the notation, while in Sec.
3 we express the main problem of this contribution. Next we recall basic information on
the Shannon entropy (Sec. 4). Then we propose a statistical test for comparing Pareto
charts with the same number of categories (Sec. 5.1), a test for comparing Pareto charts
with different number of categories (Sec. 5.2) and a test for comparing Pareto chart with
a ”standard” one (Sec. 5.3). The suggested tests are illustrated by examples.

2 Notation

Let S = {S1, . . . , Sm} denote a set of categories, e.g. corresponding to different defects,
and let P = {p1, . . . , pm}, where pi ≥ 0,

∑m
i=1 pi = 1, denote a probability distribution

defined on S, i.e. pi = Pr(Si).
Suppose o1, . . . , on is a set of observed defects, i.e. oj ∈ S for each j = 1, . . . , n.

Moreover, let
Xi = #{oj : oj ∈ Si, j = 1, . . . , n}. (2.1)

stand for the number of observations belonging to i-th category.
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It is easily seen that each Pareto chart could be identified with a set of frequencies
X1, . . . , Xm while a theoretical discrete distribution corresponding to that chart by an
ordered pair (S, P ). Therefore, for brief, we will write X1, . . . , Xm ∼ (S, P ).

3 Goodness-of-fit tests for comparing Pareto charts

Suppose we have two Pareto charts with identical categories S = {S1, . . . , Sm}, based on
n1 and n2 observations, respectively, i.e. we have X1, . . . , Xm ∼ (S, P ) and Y1, . . . , Ym ∼
(S,Q), where

∑m
i=1Xi = n1 and

∑m
i=1 Yi = n2. We are interested whether there is a

significant difference between these two Pareto charts. This problem comes down to the
following statistical hypothesis testing problem:

H : P = Q, (3.2)

K : P ̸= Q,

that two underlying distributions are equal against they are not equal. Thus, in fact, we
face the goodness-of-fit testing problem for two discrete distributions. To verify hypothesis
stated above one can apply well-known goodness-of-fit chi-squared test. Fuchs and Ken-
nett in [5] suggested another method, called the M -test, and showed that their test has
larger asymptotic power than the chi-squared test in the presence of outliers, for moderate
and large number of categories. Kenett in [7] also showed how to apply the M -test for
comparing Pareto charts.

The M -test enables to compare a given Pareto chart to a ”standard” one with the same
defect categories. Unfortunately, these assumptions make a strong limitation for possible
applications. Sometimes it would be desirable to compare two Pareto charts which differ
in categories. Moreover, it may happen that none of the charts under study could be
distinguished as a ”standard” one. Hence we propose another goodness-of-fit technique
free from these assumptions. We consider both situations where categories are different
but the numbers of categories in two charts are equal, and the more general situation
where the numbers of categories may also differ. Our method utilizes the notion of the
entropy described in the next section.

The need to compare two Pareto charts with identical categories seems to be quite
obvious – e.g. we may be interested in verifying whether undertaken corrective actions have
caused a desired improvement. However, one may ask what is the reason for comparing
Pareto charts with nonidentical categories because in such a case they are noncomparable.
Although it is – in some sense – true, we may be interested in the comparison of the shape
of two Pareto charts even abstracting from the underlying categories. For example, we
may ask whether the distribution of undesirable effects that appear in two distinct sections
are ”more or less” similar or one distribution is more flat (uniform) while the other is more
steep and so on.

4 Entropy

Shannon in [12] introduced the entropy of a random variable as a measure of information
and uncertainty. Now the entropy is a characteristic playing a fundamental role not only
in information theory and communication, but also in classification, pattern recognition,
statistical physics, stochastic dynamics, statistics, etc. Just in statistics Shannon’s entropy
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is used as a descriptive parameter (measure of dispersion), for testing normality (Vasicek
in [15], Arizono and Ohta in [1], Noughabi in [10]), exponentiality (Grzegorzewski and
Wieczorkowski in [6], Taufer in [13]) and uniformity (Dudewicz, et al. in [4]), etc. (see
also [3], [8], [11], [16], [17]). Goodness-of -fit test for uniformity based on the sample
entropy are extensively utilized in evaluating random number generators. One also knows
the maximum entropy principle applicable widely in problems of inference on the basis of
incomplete data.

Consider a discrete random variable (S, P ) assuming values from S = {S1, . . . , Sm}
with corresponding probabilities P = {p1, . . . , pm}, where pi = Pr(Si). The quantity
H(P ) defined as

H(P ) = −
m∑
i=1

pi log pi (4.3)

is called the Shannon entropy of given discrete random variable.
We adopt the convention that 0 log 0 = 0. The negative sign in (4.3) makes the entropy

nonnegative and allows the logarithm to be taken with arbitrary base greater than one.
When a base 2 logarithm is used, the unit of entropy is called a bit (binary digit). Due
to this assumption the entropy of a random variable that assumes two values S1 and S2

with equal probabilities of 1
2 is

H(P ) = −
(

1

2
log

1

2
+

1

2
log

1

2

)
= 1 [bit].

By the tradition, we also assume that log = log2.
It can be shown easily that for a random variable (S, P ) such that #S = m we have

0 ≤ H(P ) ≤ logm.

Let us notice that the entropy of a discrete random variable depends only on the num-
ber of values and their probabilities and does not depend on the values themselves. This
property makes the entropy a tool desired for comparing Pareto charts with nonidentical
defect categories.

However, since the entropy depends on the number of values, while comparing Pareto
charts with different number of categories we cannot apply the entropy defined by (4.3)
but its standardized version HS(P ), called a standardized entropy, and defined as follows

HS(P ) =
H(P )

logm
. (4.4)

It is obvious that for any discrete distribution (S, P ) we have

0 ≤ HS(P ) ≤ 1.

5 Comparing Pareto charts via entropy-based test

5.1 Comparing Pareto charts with the same number of categories

Suppose now we have two Pareto charts with not necessarily identical categories S =
{S1, . . . , Sm} and R = {R1, . . . , Rm}, based on n1 and n2 observations, respectively, i.e. we
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have X1, . . . , Xm ∼ (S, P ) and Y1, . . . , Ym ∼ (R,Q), where
∑m

i=1Xi = n1 and
∑m

i=1 Yi =
n2. We are interested if these two Pareto charts are significantly different. However now,
instead of (3.2) we would rather consider a following statistical hypothesis testing problem

H1 : H(P ) = H(Q), (5.5)

K11 : H(P ) ̸= H(Q). (5.6)

Contrary to (3.2) we can consider not only two-sided alternative hypothesis but also
one-sided hypotheses:

K12 : H(P ) < H(Q), (5.7)

or
K13 : H(P ) > H(Q). (5.8)

Let us define a following test statistic

T1 =
Ĥ(P ) − Ĥ(Q)√
V̂ (P ) + V̂ (Q)

, (5.9)

where the empirical entropies Ĥ(P ) and Ĥ(Q) given by

Ĥ(P ) = −
m∑
i=1

p̂i log p̂i, (5.10)

Ĥ(Q) = −
m∑
i=1

q̂i log q̂i, (5.11)

are natural estimators of the true entropies H(P ) and H(Q), respectively, p̂i and q̂i (i =
1, . . . ,m) are estimators of the probabilities pi = Pr(Si) and qi = Pr(Ri) of belongingness
to the categories corresponding to the Pareto charts under study, i.e.

p̂i =
Xi

n1
, (5.12)

q̂i =
Yi
n2

, (5.13)

and, finally, where

V̂ (P ) =
1

n1

[
m∑
i=1

p̂i log2 p̂i −
(
Ĥ(P )

)2
]
, (5.14)

V̂ (Q) =
1

n2

[
m∑
i=1

q̂i log2 q̂i −
(
Ĥ(Q)

)2
]
. (5.15)

The following lemma yields information about the distribution of the suggested test
statistic (5.9).

Lemma 5.1. Test statistic T1 given by (5.9) is asymptotically normal provided the null
hypothesis H1 holds.
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Proof:
Let X1, . . . , Xm denote a sample such that

∑m
i=1Xi = n. It was shown (Basharin in

[2]) that the mean and variance of the empirical entropy Ĥ(P ) given by (5.10) which
is the estimator of the true entropy H(P ) for given discrete distribution (S, P ), where
P = {p1, . . . , pm}, are as follows

E
(
Ĥ(P )

)
= H(P ) − m− 1

2n
log e + O

(
1

n2

)
, (5.16)

V ar
(
Ĥ(P )

)
=

1

n

[
m∑
i=1

pi log2 pi − (H(P ))2
]

+ O

(
1

n2

)
. (5.17)

Therefore, by the central limit theorem, we may conclude that

Ĥ(P ) −H(P )√∑m
i=1 pi log2 pi − (H(P ))2

√
n ∼

n→∞
N(0, 1),

i.e. the empirical entropy Ĥ(P ) is asymptotically normally distributed with the asymptotic
mean H(P ) and asymptotic variance V (P ), where

V (P ) =
1

n

[
m∑
i=1

pi log2 pi − (H(P ))2
]
. (5.18)

One may notice that the variance (5.18) might be estimated by

V̂ (P ) =
1

n

[
m∑
i=1

p̂i log2 p̂i −
(
Ĥ(P )

)2
]
, (5.19)

where p̂i = Xi
n .

Thus for two independent samples X1, . . . , Xm ∼ (S, P ) and Y1, . . . , Ym ∼ (R,Q), such
that

∑m
i=1Xi = n1 and

∑m
i=1 Yi = n2, we conclude that the difference of the empirical

entropies Ĥ(P ) − Ĥ(Q) is also asymptotically normal with the asymptotic mean H(P ) −
H(Q) and the asymptotic variance V (P ) + V (Q). Of course, one may estimate this
asymptotic variance by V̂ (P )+ V̂ (Q). Hence, assuming that the null hypothesis H1 holds,
we conclude that the test statistic (5.9) is also asymptotically standard normal, which
completes the proof. �

Since the test statistic distribution is standard normal, we reject H1 in favor of the al-
ternative hypothesis K1i (i = 1, 2, 3) if T1 ∈ Wi, where Wi is a critical region corresponding
to K1i, given as follows

W1 = (−∞, u1−α/2] ∪ [u1−α/2,+∞), (5.20)

W2 = (−∞, u1−α], (5.21)

W3 = [u1−α,+∞). (5.22)

where uγ is a quantile of order γ from the standard normal distribution N(0, 1).
One may ask whether these asymptotic results are not too restrictive for practitioners.

However, in real life we always have at least a few dozen observations, which turns out
completely satisfactory.
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Figure 2: The Pareto chart for the data obtained before the corrective action

Figure 3: The Pareto chart for the data obtained just after the corrective action

Example 1
Suppose that two Pareto charts (see Fig. 2 and Fig. 3) for the defective components before
and after some corrective actions are given. The figures are drawn as follows: the vertical
axes are the numbers of defective components while the horizontal axes show the codes of
the defective components (the data are shown in Table 1 and Table 2, respectively).

Component code A B C D E F G

Number of defective components 48 26 10 4 5 4 3
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Table 1: Data obtained before a corrective action

Component code A B C D E F W

Number of defective components 32 22 10 8 4 3 2

Table 2: Data obtained just after the corrective action

Suppose we want to check not only whether these two Pareto charts differ significantly
but even more, that the distribution Q of the number of defective components obtained
after the corrective action is more flat than the distribution F obtained before that cor-
rective action has been undertaken. Thus we verify a null hypothesis

H1 : H(P ) = H(Q)

against
K2 : H(P ) < H(Q).

Let us adopt a significant level 0.05.
We have m = 7. After some easy computations we get: Ĥ(P ) = 2.1632, Ĥ(Q) = 2.2648

which lead to T1 = −4.725. Since T1 ∈ W1 = (−∞, 1.u0.95] = (−∞, 1.64] thus we reject
the null hypothesis which means that there is a significant difference between these two
Pareto charts. Moreover, the entropy of the distribution corresponding to the Pareto
chart obtained after the corrective action has greater entropy than that obtained before
the corrective action. �

5.2 Comparing Pareto charts with different number of categories

At the beginning of this section we have assumed that the numbers of categories in two
charts are equal. We can omit this assumption and consider a following two Pareto charts
X1, . . . , Xm ∼ (S, P ) and Y1, . . . , Yt ∼ (R,Q), where #S = m, #R = t and

∑m
i=1Xi = n1,∑m

i=1 Yi = n2. However, now we have to apply the standardized entropy given by (4.4).
We verify the null hypothesis

H2 : HS(P ) = HS(Q), (5.23)

against one of the following alternatives

K21 : HS(P ) ̸= HS(Q), (5.24)

K22 : HS(P ) < HS(Q), (5.25)

K23 : HS(P ) > HS(Q). (5.26)

Now let us consider a following test statistic

T2 =
Ĥ(P ) log t− Ĥ(Q) logm√
V̂ (P ) log2 t + V̂ (Q) log2m

, (5.27)

where the empirical entropies Ĥ(P ), Ĥ(Q) and sample variances V̂ (P ), V̂ (Q) are given
by (5.10), (5.11) and (5.14), (5.15), respectively.

The following result may be proved in much the same way as Lemma 1.
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Lemma 5.2. Test statistic T2 given by (5.27) is asymptotically normal provided the null
hypothesis H2 holds.

Proof:
It is easily seen that formula (5.27) for test statistic T2 is equivalent to

T2 =

Ĥ(P )
logm − Ĥ(Q)

log t√
V̂ (P )

log2 m
+ V̂ (Q)

log2 t

. (5.28)

Thus, realizing that Ĥ(P )
logm is an estimator of the standardized entropy HS(P ), one may per-

form the same reasoning as in the proof of Lemma 1. This leads to the desired conclusion
that T2 is also asymptotically normal, provided (5.23) holds. �

Therefore, critical regions for testing hypotheses of the equality of standardized en-
tropies are given - as before - by (5.20)-(5.22).

Example 2
Now let us consider two Pareto charts prepared by the quality-improvement team which
try to identify problems that appear in a manufacturing process. Through the cause and
effect analysis they have distinguished two major categories of potential defects caused by
the machines and materials. They have also identified various subcauses in each of these
major categories. The first Pareto (Fig. 4) chart shows the number of defects due to
machine causes, while the second Pareto chart (Fig. 5) shows the number of defects due
to material causes (data are shown in Table 3 and Table 4, respectively). Our goal is to
ascertain whether there is a significant difference between the distributions corresponding
to these two sources of defects.

Subcause code A B C D E F

Number of defective components 45 26 10 8 5 3

Table 3: Defects due to machine causes

Subcause code V W X Y Z

Number of defective components 48 30 12 7 4

Table 4: Defects due to material causes

It is seen that now we have to compare two Pareto charts which differ both in categories
and in the number of categories as well. Thus we have to consider a test for standardized
entropies. We verify a null hypothesis

H2 : HS(P ) = HS(Q)

against the alternative hypothesis

K21 : HS(P ) ̸= HS(Q).

Now we have m = 6 and t = 5. Substituting the data to (5.27) we get T2 = −0.3425. If
we consider, as before, 5% significance level then we get W1 = (−∞,−1.96] ∪ [1.96,+∞).
Since T2 /∈ W1 thus we conclude that there is no significant difference between our two
Pareto charts. �
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Figure 4: The Pareto chart for defects due to machine causes

Figure 5: The Pareto chart for defects due to material causes
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5.3 Comparing Pareto chart with the standard one

Our entropy-based test could also be used for comparing given Pareto chart with the
”standard” one. Namely, one may ask whether the distribution corresponding to the
Pareto chart under study X1, . . . , Xm ∼ (S, P ), where #S = m and

∑m
i=1Xi = n, differs

significantly from the given distribution characterized by the entropy h0, where 0 ≤ h0 ≤
logm. This point reduces to testing the null hypothesis

H3 : H(P ) = h0, (5.29)

against one of the alternatives

K31 : H(P ) ̸= h0, (5.30)

K32 : H(P ) < h0, (5.31)

K33 : H(P ) > h0. (5.32)

A desired test statistic is given by

T3 =
Ĥ(P ) − h0√

V̂ (P )
, (5.33)

that is asymptotically normal provided (5.29) holds. And consequently, critical regions
are given by (5.20)-(5.22).

6 Conclusions

SPC is a strategy for the stepwise optimization of the production process through the
sequential identification and elimination of potential problems (defects, failures, etc.). The
Pareto chart is a powerful tool for the quality improvement. We believe, that statistical
tests proposed in the present paper would also be useful in a more advanced analysis
that enables to compare Pareto charts constructed in different time moments or even for
different production processes.

Moreover, the entropy-based test suggested in this paper could be applied not only in
statistical quality control. Actually they are just another goodness-of-fit tests for discrete
random variables.
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