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Abstract Assembly line balancing problems (ALBP) consist of distributing the total workload for manufacturing any

unit of the products to be assembled among the work stations along a manufacturing line as used in the automotive

or the electronics industries. Usually, theory assumes that, within each station, tasks can be executed in an arbitrary

precedence-feasible sequence without changing station times. In practice, however, the task sequence may influence the

station time considerably as sequence-dependent setups (e.g., walking distances, tool changes) have to be considered.

Including this aspect leads to a joint balancing and scheduling problem, which we call SUALBSP (setup assembly line

balancing and scheduling problem). In this paper, we modify the problem by modeling setups more realistically, give a

new, more compact mathematical model formulation and develop effective heuristic solution procedures. Computational

experiments based on existing and new data sets indicate that the new procedures outperform formerly proposed heuris-

tics. They are able to solve problem instances of real-world size with small deviations from optimality in computation

times short enough to be accepted in real-world decision support systems.

Keywords Assembly line balancing; Mass-production; Combinatorial optimization; Setup time; Scheduling

1 Introduction

Setup times are regularly considered as being sequence-dependent in job shop settings and other low volume production

systems (cf. Allahverdi et al. 2008). The rationale behind this is that products are typically assumed to be so diverse,

that additional configuration effort arises between any two jobs. In contrast to that, sequence-dependent setup times are

hardly ever considered in the operational planning of paced assembly systems which are typical in the mass-production

of standardized commodities. Even if different product models are assembled (in a mixed-model assembly), setup times

between jobs are assumed to be negligible due to the use of flexible machinery and the high amount of standardized
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operations. But even though setup times do not depend on the sequence of jobs (models), there are in fact several

practical settings in which setup times are incurred based on the sequence of tasks assigned to the operators of the line:

– In automotive assembly lines (and other assembly lines manufacturing large workpieces), work can be performed

at different (mounting) positions inside and outside the car body (cf. Becker and Scholl 2009) such that walking

distances are relevant and depend on the positions where two consecutive tasks are executed. Due to the size of a car

body, those distances might be zero (same position) or amount up to about 10 meters (if a worker must walk to the

opposite side of the car body). As walking speed is typically assumed to be about one meter per second (cf., e.g.,

Barnes 1959, p. 376; Kanawaty 1992, pp. 297), we might have walking-related setup times of 0 up to 10 seconds per

setup. Concerning usual cycle times of about 60 to 90 seconds, this is a very critical aspect.

– Usually, walking distances are increased due to the necessity to fetch parts from material containers placed along

the moving conveyor system. Furthermore, times to withdraw the parts from the container are to be considered. At

a major German car manufacturer, (unproductive) walking and withdrawal times amount to about 10-15% of total

production time. As a consequence, it is quite necessary to consider those times in a sequence-dependent manner in

order to build station loads with small unproductive times.

– Regularly, tools are required to perform tasks. If consecutive tasks require different tools it will be necessary to

change them causing a setup time or the same tool can be used anymore such that no setup is required. These

sequence-dependent setups are typical in robotic assembly lines where robots can use a single tool at a time and have

to change them if required (cf. Andrés et al. 2008). However, this is even necessary in manual assembly since most

tasks require additional equipment like power screwdrivers, elevating mechanisms and fit-up aids.

– If two consecutive tasks require the workpiece in different positions (e.g., height, angle) it will be necessary to turn

or lift the workpiece between performing those tasks causing a sequence-dependent setup time.

– If time is required for curing or cooling processes (e.g., after gluing or melting), then tasks to be executed at a

corresponding mounting position must wait until this process is completed.

As a consequence, it is necessary to consider setup times even when balancing paced assembly line production systems.

As practice regularly demands for fast and easy-to-implement heuristics, we do not focus on computationally expensive

search procedures but try to develop a procedure which is able to solve even large problem instances quickly while

achieving a high solution quality. Since assembly line balancing is a medium-term planning task, the available time for

finding a good solution would seem to be less critical in principle. However, it has to be considered that real-world prob-

lem instances can be extremely large (up to several hundreds or even thousands of tasks) and that planners usually have

to examine a considerable number of alternative line balancing scenarios to incorporate uncertain model mix information

or different technical or logistical conditions. Furthermore, planners tend to expect that solution proposals are computed

almost instantaneously, so that computation times are of crucial importance with regard to the acceptability of a plan-

ning tool. In recent projects with major car manufacturers, the aforementioned reasons led to the decision to implement

priority rule based balancing algorithms as part of a decision support tool instead of more elaborate procedures.

The paper on hand contributes to closing this gap and is organized as follows: In Section 2, we introduce the classical

assembly line balancing problem and review the very restricted approaches to consider setup times in assembly line bal-
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ancing proposed by former research papers. Section 3 defines a new joint balancing and scheduling problem (SUALBSP),

which fully integrates setup times in assembly line balancing by differentiating between forward and backward setups

relevant in practice. A mathematical model for this problem is formulated in Section 4. Heuristics formerly proposed

for a restricted version of the problem are described and appropriately extended in Section 5. A new composite heuristic

with a number of possible components is developed in Section 6 and tested in extensive computational experiments in

Section 7. The final Section 8 summarizes the paper and analyzes future research needs.

2 Review of Relevant Research

An assembly line consists of (work) stations k = 1, . . . ,m arranged along some type of conveyor belt. The workpieces

are consecutively launched down the line and are moved from station to station. At each station, certain operations are

repeatedly performed regarding the constant cycle time available per work-cycle. The decision problem of optimally par-

titioning the assembly work among the stations with respect to some objective is known as the Assembly Line Balancing

Problem (ALBP); cf., e.g., Baybars (1986); Becker and Scholl (2006); Boysen et al. (2007).

The total amount of work is divided into a set of tasks V = {1, . . . ,n} which build the nodes of a precedence graph.

Performing a task i takes a task time (node weight) ti; the total production time per product unit is tsum = ∑i∈V ti. Tech-

nological and organizational conditions require to observe precedence relations (i, j) between different tasks i and j.

Non-redundant precedence relations are represented as arcs in the precedence graph. In order to simplify the presenta-

tion, we assume that graph G = (V,E, t) is acyclic and numbered topologically.

An ALBP generally consists of finding a feasible line balance, i.e., an assignment of each task to a station such that

the cycle time constraints, the precedence constraints and possible further restrictions are fulfilled. The set Sk of tasks

assigned to a station k constitutes its station load. Usually, it is assumed that the station time (required working time in

each cycle), which must not exceed the cycle time, simply results from summing up the execution times of all tasks in

the load, i.e., t(Sk) = ∑i∈Sk
ti. In case of t(Sk)< c, the station k has an idle time of c− t(Sk) time units in each cycle.

The most popular ALBP is called Simple Assembly Line Balancing Problem (SALBP). It considers a single product,

a serial line, fixed task times and processes as well as equally equipped and manned stations (e.g., Baybars 1986; Scholl

1999; Boysen et al. 2007). The main problem parameters are the number m of stations and the cycle time c which can

be given as a constant or considered as a variable defining several problem versions. The most relevant version referred

to as SALBP-1 ([ | |m] in the classification scheme of Boysen et al. 2007) is to minimize m given c. This problem

and the other versions are NP-hard. Recent surveys covering SALBP models and procedures are given by Erel and Sarin

(1998), Scholl (1999, ch. 2,4,5), Rekiek et al. (2002) as well as Scholl and Becker (2006).

Despite of setup times being very relevant in real-world assembly systems as stated in Section 1, assembly line bal-

ancing problems with sequence-dependent setup times have only been considered by a few research papers: Andrés et al.

(2008) extend the classical SALBP-1 by additionally considering sequence-dependent setup times. They formulate a bi-

nary linear program and propose priority-rule-based and GRASP procedures. A large number of additional priority-rule-
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based procedures are developed and examined by Martino and Pastor (2009). Futhermore, see Arcus (1966), Wilhelm

(1999) as well as Bautista and Pereira (2002).

Former research considers setup times only indirectly via assignment restrictions (e.g., Boysen et al. 2007; Scholl

et al. 2010) along the following reasoning: If setup times are known to be (too) large, planners might take this into

account by setting the related tasks incompatible, i.e., they must not be assigned to the same station (e.g., Becker and

Scholl 2009). While this policy effectively ensures that setups are avoided it also comes at severe disadvantages. Strict

incompatibilities reduce degrees of freedom unnecessarily and thereby lead to a systematic overestimation of required

capacities, which becomes the more significant, the more assignment restrictions have to be considered. As a conse-

quence, task incompatibilities should be reserved for unduly high setup times exclusively. Then, the (relevant) smaller

setup times remain in the problem such that this approach is not useful whenever setup times are not negligible. In this

work, we will therefore propose models and algorithms that directly take setup times into account. We will further evalu-

ate our results against approximate approaches that include setups in a relaxed manner, in order to investigate the benefits

of an exact planning in more detail.

The problem SDALBP examined by Scholl et al. (2008) also considers sequence-dependent time components. Nev-

ertheless, the problems differ considerably with regard to their practical motivation and mathematical structure. Setup

times are caused by direct succession of two tasks at the same workstation, whereas time increments of SDALBP are

due to interactions among task effects (e.g. hindering of mounting a part by already installed components), irrespective

of the workstation to which a preceding task is assigned.

3 The Setup Assembly Line Balancing and Scheduling Problem (SUALBSP)

We extend the approach of Andrés et al. (2008) by additionally distinguishing between forward and backward setups.

The term forward setup refers to a situation where task j is executed directly after task i in the same cycle, i.e., at the

same workpiece, observing a (forward) setup time τi j ≥ 0. A backward setup occurs if task i is the last one executed at

the workpiece of a cycle p and the worker has to move to the next workpiece which is to be assembled in cycle p+1. This

transfer causes a (backward) setup time µi j ≥ 0 which must be finished by the end of cycle p in order to start execution

of task j just when cycle p+1 begins. Note that since stations are supposed to be independent and exclusively operated

by a single (team of) worker(s), forward and backward setups are only considered among tasks at the same station, not

between adjacent stations.

Figure 1 contains an example which shows that forward and backward setup times will generally be unequal in the

real-world. We consider a station with ordered load 〈i, j,h ], i.e., the tasks i, j, and h are performed in a cyclic manner on

consecutive workpieces (e.g., car bodies). Each cycle p starts at time 0 with execution of task i which consumes time ti.

Afterwards, the operator has to walk to a box (1) where he has to fetch a part needed for task j (2). From this box, he has

to move to the mounting position of task j (3). Summing up those time components results in setup time τi j to change

over from task i to j which, thus, starts at time ti + τi j and ends t j time units later. Afterwards, the operator moves to the
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mounting position of task h (perhaps he fetches a further part or a tool on the way) which takes time τ jh. After having

executed h for th time units, he has to travel to the succeeding workpiece in cycle p+1. This takes backward setup time

µhi and the current cycle p is finished. In order to be able to manage all productive and unproductive steps within each

cycle, the following condition (cycle time constraint) has to be fulfilled: ti + τi j + t j + τ jh + th +µhi ≤ c.

Figure 1: Cycles and their connection

workpiece workpiece

cycle pcycle p+1

ti

τij

(3)

(2)

(1)

τhi

τjh
tj

th
µhi

conveyor movement

i

j

Box

i

j

Box

h h

Fig. 1 Consecutive cycles and their connection at a single workstation

Assume that another ordered station load, say, 〈 j,h, i ] has to be considered. Then, a forward setup from h to i with time

τhi (dashed arc), which is obviously different from µhi (cf. Figure 1), takes place. By the way of contrast, the model

of Andrés et al. (2008) does not distinguish between the loads 〈i, j,h ] and 〈 j,h, i ], because they assume that the same

setup times are valid in both directions, i.e., µi j = τi j for all task pairs i, j ∈V . This includes µii = τii = 0 for all tasks i

which is fairly inappropriate for our example, where τii is not relevant and µii reflects the transfer to the next workpiece.

Obviously, this assumption of Andrés et al. (2008) considerably restricts applicability of their model in practice to cases

where setups are not related to worker or workpiece movement.

For our model, we assume that the (modified) triangle inequality is valid, i.e., the station time is assumed to mono-

tonically increase when an additional task is included. This condition is fulfilled if the following inequalities hold for all

task triplets i, j,h ∈V :

τih + th + τh j ≥ τi j and τih + th +µh j ≥ µi j ∀i, j,h ∈V (1)

The triangle inequality will be fulfilled in almost any case in practice:

– If a tool (or the workpiece position) has to be changed between tasks i and j with setup time τi j, it might be possible

that inserting task h allows for using the tool of task i, i.e., τih = 0. Then, however, the change must be performed

between h and j, i.e., τh j = τi j, and the triangle inequality is valid due to th ≥ 0.

– If setups are caused by walking distances, the triangle inequality obviously holds even if the intermediate task h

might be on the way from i to j, i.e., τi j = τih + τh j.

– Usually, material boxes are positioned after the line balance and task schedules are known. So, they can be located

such that walking distances are minimized.

– If cooling or curing takes place between tasks i and j, this waiting time can usually not be reduced by performing an

intermediate task h (at another mounting position).

Finally, it is a necessary pre-condition for feasibility that each task, taken as the single element of a station load, can be

executed within the cycle time, i.e., ti +µii ≤ c ∀i ∈V .
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The new problem SUALBSP now can be defined as follows: Build a minimal number of ordered station loads

such that each task is assigned to exactly one station, the precedence constraints are observed and the cycle time is not

exceeded in any station when considering cyclic task execution with sequence-dependent (forward and backward) setup

times. In the classification scheme of Boysen et al. (2007), SUALBSP is represented by the tuple [∆ tdir| |m].

4 Model for SUALBSP

We formulate the SUALBSP as a mixed-binary linear model which combines the logics of the traditional model for

SALBP (Scholl 1999) and the formulation of Miller et al. (1960) for the traveling salesman problem. Table 1 summarizes

already introduced notation and defines additional parameters and variables.
V set of tasks; V = {1, . . . ,n}
E (E∗) set of direct (all) precedence relations

ti execution time for task i ∈V with tsum = ∑i∈V ti
τi j (µi j) forward (backward) setup time from task i to j

Pi (P∗i ) set of direct (all) predecessors of task i ∈V

Fi (F∗i ) set of direct (all) successors/followers of task i ∈V

m upper bound on the number of stations, e.g., m = n or heuristic solution value

Ei (Li(m)) earliest (latest station for task i ∈V ; Ei := d
ti+∑ j∈P∗i

t j

c e; Li(m) := m+1−d
ti+∑ j∈F∗i

t j

c e
K set of possible stations; K = {1, . . . ,m}
FSi set of stations to which task i ∈V is feasibly assignable; FSi = {Ei,Ei+1, . . . ,Li(m)}
Bk set of tasks assignable to station k ∈ K; Bk = {i ∈V | k ∈ FSi}
Fτ

i (Pτ
i ) set of tasks which may directly follow (precede) task i in a station load in forward direction;

Fτ
i = { j ∈V − (F∗i −Fi)−P∗i −{i} | FSi∩FS j 6= /0}; Pτ

i = {h ∈V | i ∈ Fτ
h }

Fµ

i (Pµ

i ) set of tasks which may directly follow (precede) task i in a station load in backward direction;

Fµ

i = { j ∈V −F∗i | FSi∩FS j 6= /0}; Pµ

i = {h ∈V | i ∈ Fµ

h }
M (ε) sufficiently large (small) number, i.e., M = n · c and ε = 1/(c · (n+1))

xik binary variable with value 1, iff task i ∈V is assigned to station k ∈ FSi

yi j binary variable with value 1, iff task i ∈V is direct predecessor of j ∈ Fτ
i in a station load

wi j binary variable with value 1, iff task i ∈V is last and j ∈ Fµ

i is first task in a station load

zi continuous variable for encoding the number of the station task i ∈V is assigned to

fi continuous variable for start time of task i ∈V (relative to launch time at the first station)

Tk continuous variable for station time of station k ∈ K

Table 1 Notation

Example: The problem and some of the notations defined in Table 1 are clarified by means of an example with the cycle

time set to c = 20 and the precedence graph as well as forward and backward setup times given in Fig. 2. The node

weights denote the task times with tsum = 45. Node 9 is a dummy sink node – required for technical reasons in the model

as explained below – with its task time t9 set to the cycle time and all its setup times set to zero (they are thus omitted in

the matrices).

The setup time matrices have been defined such that the triangle inequality is fulfilled using the method explained in

Section 7.1 so as to reflect that, in practice, setup times are often due to walking distances. The omitted values in matrix
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Figure 1. Example graph
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4
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20

9

τ 1 2 3 4 5 6 7 8
1 - 1 2 1 - - - -
2 1 - 3 2 1 - - -
3 - 3 - 1 2 3 1 -
4 1 - 1 - 1 2 0 -
5 - 1 - 1 - 1 1 2
6 - - - - 1 - 2 3
7 - - - - 1 2 - 1
8 - - - - 2 - - -

µ 1 2 3 4 5 6 7 8
1 4 5 - 3 - - - -
2 3 4 1 - 3 - - -
3 6 7 4 5 - - 5 -
4 5 6 3 4 5 - - -
5 4 5 2 3 4 5 3 2
6 3 4 1 2 3 4 2 -
7 5 6 3 4 5 6 4 -
8 6 7 4 5 6 7 5 4

Fig. 2 Data of the example problem (cycle time c = 20)

τ indicate that a forward setup can only represent a changeover from a task i to another task j that is not related to i by

precedence or is a direct successor. These tasks are collected in set Fτ
i . Backward setups from i are restricted to tasks

j ∈ Fµ

i which are not successors of i. As defined in Table 1, these sets could be further restricted by means of feasible

station sets FSi whenever two tasks cannot be assigned to the same station (in a solution with no more than m stations).

Note that these irrelevant setup times can be set to c+1 or another sufficiently large value. Though not relevant for the

model, this data manipulation is helpful in programming solution procedures as it renders an explicit examination of the

above mentioned sets superfluous.

Using the defined notation, we get the model (2) - (16). The objective function (2) minimizes the index of the station

to which the unique sink node n is assigned and, thus, the total number of stations required.1 As a secondary objective the

values of the variables Tk are minimized in order to get station times with minimum setups. Due to setting ε sufficiently

small, the secondary objective does not influence minimization of the number of stations.

The assignment of each task i to exactly one station k ∈ FSi is guaranteed by (3) and transformed into the correspond-

ing station index zi by (4). The constraint sets (5) and (6) ensure that each task i is followed and preceded by exactly one

other task j in the cyclic sequence of a station load. In combination with (7) these constraints demand that in each cycle

exactly one of the relations is a backward setup. Tasks contained in the same cycle are forced to be assigned to the same

station by constraints (8) and (9) which are to be fulfilled pairwise as equations (zi = z j), if yi j = 1 and wi j = 1, respec-

tively, and are redundant, otherwise. The precedence relations are fulfilled through (10), while the forward ordering of

tasks in a station load is guaranteed by (11). Each task i must be executed completely in the time interval [(zi−1) ·c,zi ·c]

assigned to its station zi (time elapsed since workpiece was launched down the line) by the restrictions (12) and (13). In

(13) it is sufficient to ensure that the final backward setup (indicated by wi j = 1) will be finished in-time. The station

time Tk is computed by (14) which is - just as (13) - only binding for the task i that is the last one in station k.

1 If no unique terminal node exists, a dummy sink node has to be introduced and defined as the successor of the original terminal nodes. In
order to compute setup times in the last station in a correct manner, its task time is set to c and all its setup times to zero. This ensures that only
the dummy node is assigned to the (dummy) last station zn. In order to remove this unnecessary station and to get a correct objective value in
this case, the value of zn has to be reduced by 1.



8

Minimize m(x,y,z) = zn + ε · ∑
k∈K

Tk subject to (2)

∑
k∈FSi

xik = 1 ∀i ∈V (3)

zi = ∑
k∈FSi

k · xik ∀i ∈V (4)

∑
j∈Fτ

i

yi j + ∑
j∈Fµ

i

wi j = 1 ∀i ∈V (5)

∑
i∈Pτ

j

yi j + ∑
i∈Pµ

j

wi j = 1 ∀ j ∈V (6)

∑
i∈V

∑
j∈Fµ

i

wi j = zn (7)

zi +M · (1− yi j)≥ z j and z j +M · (1− yi j)≥ zi ∀i ∈V, j ∈ Fτ
i (8)

zi +M · (1−wi j)≥ z j and z j +M · (1−wi j)≥ zi ∀i ∈V, j ∈ Fµ

i (9)

f j ≥ fi + ti ∀(i, j) ∈ E (10)

f j ≥ fi + ti + τi j +M · (yi j−1) ∀i ∈V, j ∈ Fτ
i (11)

fi ≥ c · (zi−1) ∀i ∈V (12)

fi + ti +µi j ≤ c · zi +M · (1−wi j) ∀i ∈V, j ∈ Fµ

i (13)

Tk + c · (zi−1)≥ fi + ti + ∑
j∈Fµ

i

µi j ·wi j−M · (1− xik) ∀i ∈V,k ∈ FSi (14)

xik ∈ {0,1} ∀i ∈V,k ∈ FSi; yi j ∈ {0,1} ∀i ∈V, j ∈ Fτ
i ; wi j ∈ {0,1} ∀i ∈V, j ∈ Fµ

i (15)

fi,zi,Tk ≥ 0 ∀i ∈V,k ∈ K (16)

The variables are defined by (15) and (16). Among those variables, only xik, yi j, wi j, and fi are required to define a

complete and correct model. The other ones are introduced only in order to enhance readability and comprehensibility.

The variables zi and their definitions (4) can be removed from the model by replacing them in all constraints via (4). The

variables Tk and the corresponding constraints (14) are only introduced to directly compute the station time which could

also be retrieved from the other variables after having solved the model. In the objective function, the sum of station

times could be replaced by the sum of starting times fi of all tasks i to ensure continuous operation within stations.

In the most compact version, the model contains up to 2 ·n2 +n ·m binary variables and n continuous variables. Due

to m ≤ n, the number of (binary) variables is bounded by O(n2). Furthermore, the model contains up to 7 · n2 + n ·m+

5 · n+ 1 constraints, i.e., the number of constraints is bounded by O(n2). The model of Andrés et al. (2008) contains

2 ·n2 ·m+n2+m, i.e., O(n3) binary variables and 2 ·n3 ·m+n2 ·(m+1)+2 ·(n+m)+n, i.e, O(n4) constraints. Provided

that n = 100 tasks are to be assigned to at most m = 20 stations, which would be a medium-sized problem instance in the

real world, the new model contains up to 22,000 binary variables and 100 continuous ones as well as 72,501 constraints.

The model of Andrés et al. (2008) would require up to 410,020 binary variables and 40,214,100 constraints. Though, in

both models, (further) reductions (via FSi and Bk) are possible, it is obvious that the new model’s size is smaller at least

by an order of magnitude.
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5 Former Heuristic Procedures for SUALBSP

We shortly review and describe the few procedures for SUALBSP proposed in literature and their reported performance

as the underlying ideas and experimental results inspired our development of a new composite heuristic.

5.1 Priority Rule Based Procedures (PRBP)

The application of PRBP to different ALBPs has a long tradition (cf., e.g., Talbot et al. 1986; Boctor 1995; Scholl and

Voß 1996). A large variety of priority rules and scheduling schemes have been tested for SALBP and other problem

versions. As a basic result, it could be established for SALBP and SUALBSP as well that the station-oriented scheduling

scheme is to be preferred to the task-oriented one (cf. Scholl and Voß 1996; Martino and Pastor 2009). Both scheduling

schemes order tasks by priority rules and successively assign available tasks, i.e., tasks whose predecessors have already

been assigned. While the station-oriented scheme builds station loads strictly one after the other, the task-oriented one

always opens a new station if the highest-priority task does not fit in a station already open.

For solving SUALBSP, the station-oriented scheduling scheme works as follows: Stations are considered in forward

direction, beginning with station 1. For each station k considered, a load Sk (with nk tasks ordered in the sequence πk) is

built by successively adding available tasks such that the station time t(Sk) = T (πk) computed by (17) does not exceed

the cycle time. Among several candidate tasks, the one with highest priority is chosen. If no task can be added in this

manner, the load is maximal and the next station is opened and filled in the same way, until a feasible assignment of all

tasks is achieved. The number of station loads formed determines the value of the heuristic solution (upper bound UB).

T (πk) =
nk−1

∑
p=1

(t
πk

p
+ τ

πk
p,π

k
p+1

)+ t
πk

nk
+µ

πk
nk
,πk

1
(17)

Andrés et al. (2008) and Martino and Pastor (2009) tested a large set of possible priority rules. It was found out that

criteria based on a single parameter (like task time) are less effective than composite rules combining several parameters.

The best composite rule proposed by Martino and Pastor (2009) is based on priority values computed as follows:

MPi(k, p) := 5.0 · ti +0.3 · ∑
j∈F∗i

(t j +3.9 · τ j)−45.3 · τ
πk

p−1,i
(18)

With τ
πk

p−1,i
we denote the setup time necessary to change over from the currently last task at the position p− 1 of the

already constructed partial sequence to the task i which is a candidate for the current position p. For the first position, we

initialize with τ0,i := 0. The value τ j represents the average setup time of a successor task j ∈ F∗i such that ∑ j∈F∗i
(t j +

3.9 ·τ j) represents an adaptation of the positional weight originally defined by (Helgeson and Birnie 1961). This average

value is updated in each step as it only should cover possible setup operations between still unassigned tasks.

Martino and Pastor (2009) fine-tuned the weights in (18) by adapting them to a training data set (10% of the instances

of the data set) with the nonlinear optimization method of Nelder and Mead (1965).

Among several modifications of the basic station-oriented scheme, a re-optimization of the partial sequence πk right

after each task assignment is particularly effective. This is done by local search with moves shifting tasks to other

positions of the sequence. In each iteration, the station time minimizing shift is taken until a local optimum is reached.
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With these two modifications of the station-oriented PRBP, Martino and Pastor (2009) achieved astonishingly good

results and could clearly outperform the more elaborate procedure of Andrés et al. (2008) described in the next section.

So, one aim of our experiments will be to examine whether the fine-tuning to a particular data set has led to a composite

rule which is useful for other data sets, too, or represents a "self-fulfilling prophecy" only.

5.2 Greedy Randomized Adaptive Search Procedure (Task-GRASP)

As a single-pass PRBP might lead to weak solutions, it is typically recommended to perform multiple passes (e.g., Boctor

1995). In order not to depend on having available a sufficiently large set of different rules and to compensate structural

deficits of existing rules, it is, moreover, useful to incorporate some level of randomness into the process.

A well-known meta-strategy with these properties is called greedy randomized adaptive search procedure (GRASP).

In each pass, a randomized greedy algorithm, e.g., a PRBP with randomized priority rule, is applied to construct a feasible

solution which is, then, improved by a local search procedure (e.g., Resende and Ribeiro 2003).

Andrés et al. (2008) apply GRASP to SUALBSP as follows (called Task-GRASP due to the random task selection): In

all (of 5 or 10) passes the same priority function is utilized to define task priorities. In each pass, a solution is constructed

following the station-oriented scheme. However, the task chosen to be assigned is not necessarily the one with highest

priority but one with sufficiently high priority. This is achieved by setting a priority threshold which defines a subset of

assignable tasks, the restricted candidate set, to be selected from randomly with equal probabilities. Having normalized

the interval of priorities computed for all candidate tasks to length 1 (with value 0 for the best and value 1 for the worst

task), the priority threshold is set to 0.3, i.e., only tasks whose priorities are among the best 30% of the entire priority

interval are candidates for random assignment. As priority function it is proposed:

AMPi(k, p) := ti + τ
πk

p−1,i
(19)

To each solution constructed in this manner, a local search heuristic is applied in order to find an improved solution.

Considering the assigned tasks as a sequence with n positions, each precedence-feasible exchange of tasks between two

positions is examined (by forming maximal station loads following this sequence). Among all those exchange moves,

the best one is selected. This process is repeated until no improved solution (with less stations) is found by such a move.

5.3 Avalanche

The procedure Avalanche developed by Boysen and Fliedner (2008) is a flexible heuristic procedure for a large variety

of ALBPs and can be modified to solve SUALBSP easily. It is an iterative two-phase algorithm based on task sequences.

In the first phase of each iteration, a number of precedence-feasible sequences is constructed by an ant colony approach

(for this meta-heuristic cf., e.g., Dorigo and Blum 2005) based on a PRBP with the task time as priority value.

In the second phase, every solution constructed in the first phase is optimally partitioned by a graph approach ex-

plained in detail and extended in Section 6.4. For the next iteration, the solutions obtained before are analyzed with

respect to solution quality. This information is connected with the performed assignments of tasks to sequence positions
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and utilized to update the so-called pheromon matrix by standard formulae of ant colony approaches (cf., e.g., Dorigo and

Stützle 2003) which results in intensified new trails and evaporation of older ones. When constructing the next sequence,

each ant utilizes the pheromon values which are combined with the original priority values to form a composite measure

for task selection. For details we refer to Boysen and Fliedner (2008).

6 A New Composite Heuristic Procedure for SUALBSP

We propose a new composite heuristic for SUALBSP which makes use of some former contributions and new ideas as

well. It is intended to be a good compromise between solution quality and computation times as required in a real-world

planning environment as discussed in Section 1. In the following, we describe the ingredients of our new approach.

6.1 Rule-GRASP

Analyzing the procedure of Andrés et al. (2008) shows that the selection approach is rather arbitrary as only a single

priority rule is taken and the threshold seems to be rather wide. Furthermore, the priority function (19) seems not to be

very promising as it interprets large setup times τ
πk

p−1,i
as being favorable. In fact, these setup times should be minimized

and, thus, subtracted as realized in the composite priority rule of Martino and Pastor (2009) defined in (18).

As the latter rule considers setup times and other time criteria in a reasonable manner, this fine-tuned rule seems

indeed to be a favorable candidate but should be accompanied with other rules that incorporate the same criteria without

weighting them in such a definite manner as well as other criteria to define a robust and effective heuristic. In order to

achieve these goals, we define a modified GRASP approach, called Rule-GRASP, because it is not the tasks that are

selected at random but the priority rules applied. Using the chosen rule, the highest-priority task is selected and assigned

instead of any one with acceptable priority.

As priority rules we utilize the following ones which have shown some potential in solving SALBP-1 (cf., e.g., Talbot

et al. 1986; Scholl and Voß 1996) or SUALBSP (cf. Martino and Pastor 2009). These rules cover different aspects of the

problem structure and appeared to be useful as a combination in preliminary experiments though they are not necessarily

among the best single rules in the tests of Martino and Pastor (2009):

MaxTMinSU Select a task with largest task time reduced by increase of setup times:

MTi(k, p) := ti− (τ
πk

p−1,i
+µi,πk

1
−µ

πk
p−1,π

k
1
) for each candidate task i

MaxTMinSUSlack Select a task with largest reduced time divided by the number of available stations (slack):

MT Si(k, p) := MTi(k, p)/(Li(m)−Ei +1) for each candidate task i

MaxF Select a task with maximal number of direct followers: MFi := |Fi| for each candidate task i

MinSlack Select a task with minimal slack or, equivalently, maximal value: MSi(k) := k−L j(m)

Random Select one of the available tasks by chance (with uniform probability).

MPRule Select a task with maximal value of MPi(k, p) computed by (18).
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For SALBP, it has been shown effective, to apply solution procedures to the reverse precedence graph also (e.g., Scholl

1999, ch. 7.2). This is also possible for SUALBSP provided that all problem data is reversed correctly, i.e., arcs of the

precedence graph as well as forward and backward setup times. Finally, the solution to the reverse problem must be

inverted to get a solution for the original problem. So, we might apply our Rule-GRASP in forward direction (to the

original problem) and in backward direction (to the reverse problem) without algorithmic changes.

6.2 Re-optimization

By assigning tasks to a station load one after the other, a sequence for task execution is defined. However, this sequence

need not be optimal as it has been built in a greedy manner. In opposite to SALBP, the station times depend on the actual

sequence and it might be possible to reduce setup times by rearranging the tasks.

For this reason, Martino and Pastor (2009) apply a local search procedure to re-optimize the sequence always after

having assigned a task (see Section 5.1). However, this re-optimization might come too late as demonstrated by the

example of Figure 2. Imagine that task 2 has already been assigned to the first station. When task 1 is inspected to be

assigned to the same station load it has to be checked if the station time is not greater than c = 20. However, by applying

(17) we get T (〈2,1]) = t2 + τ21 + t1 + µ12 = 7+ 1+ 8+ 5 = 21 which is too large. So, task 1 will not be assigned and

task 4 is taken instead. Without overstraining this small example, this might prevent from finding the optimal solution.

As a consequence, we propose a different approach which first computes priorities for all tasks that are available

to the current position p of station sequence πk. Starting with the highest-priority task i, it is examined if i fits into the

station. This is done in two steps:

1. If the station time, computed by (17) for the sequence with i simply assigned to the currently last position p, is not

greater than the cycle time, task i is assigned to this last position without further effort. Note that only the change in

setup times τ
πk

p−1,i
+µi,πk

1
−µ

πk
p−1,π

k
1

has to be computed to update the station time.

2. Only if this simple test fails, an enumerative procedure is started which systematically constructs all feasible se-

quences of the trial station load including task i. In order to find promising sequences first, the procedure starts

with assigning the tasks in a "nearest-neighbor" manner, i.e., the next task is always chosen such that the setup time

increase is minimal. Following this ordering, the precedence-feasible sequences are constructed in a lexicographic

manner recursively. Whenever the station time exceeds the cycle time, a backtracking step is performed. Once a

feasible sequence with its station time not exceeding the cycle time is found, the search can be stopped.

If a feasible sequence is found in step (1) or (2), the examined task i is assigned. Otherwise, the next task in descending

priority ordering is tested in the same manner. This process is repeated until a task can be assigned or no available task

remains. In the first case, the next position p+ 1 of sequence πk is examined, in the latter case, a new station k + 1

with i at the first position of sequence πk+1 is opened. In our example, this procedure would find out in step (2) that the

sequence 〈1,2] is feasible with T (〈1,2]) = t1 + τ12 + t2 +µ21 = 8+1+7+3 = 19 and would assign task 1.
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Our experiments indicate that the re-optimization is useful for sequences with up to 7 to 10 tasks, because this

sequencing problem is a variant of the traveling salesman problem and, hence, NP-hard by itself. So, in order to define

a fast overall heuristic, we apply this re-optimization only if necessary (in opposite to Martino and Pastor (2009) who

propose a local search after each task assignment) and promising (for up to 7 tasks in our tests). As the number of

tasks per worker is seldom greater than 10 to 12 in practice, this is not a very hard limitation. Additionally, we restrict

the computation time as preliminary experiments indicate that the trade-off between computational effort and (positive)

effect of re-optimization is best if a very short time is spent (0.01 seconds per sequence to be re-optimized in our tests).

In many cases, this time is sufficient to find a feasible sequence, whereas in others it might consume minutes (or even

hours) to find one or to prove that none exists. This is due to the complexity of this sequencing subproblem of SUALBSP.

We decided against applying local search procedures such as developed by Martino and Pastor (2009) and Andrés

et al. (2008) because preliminary experiments strongly indicate that those procedures have only limited effect as they

typically get stuck soon in a local optimum and, on average, do not run faster than our enumerative procedure.

6.3 Fathoming

In a multi-pass procedure, time might be wasted by unnecessarily completing inferior partial solutions. In order to

avoid this waste, we compute the minimal productive time (only execution times excluding setup times and idle times)

that is necessary for the current station load in order to have still the potential to improve on the current best solution

(incumbent solution). Let UB be the corresponding upper bound (number of stations in the incumbent solution) and

BD := (UB−1) ·c− tsum the balance delay (total unproductive time) allowed in a solution with at most UB−1 stations,

then the lower bound on required productive time of the first station k = 1 is given by MPT1 := max{0,c−BD}. This

time bound is successively increased for the next stations whenever unproductive times (setup times or idle times) are

introduced, i.e., MPTk := MPTk−1 + c−∑i∈Sk−1
ti for k > 1.

The construction process is always immediately stopped whenever it becomes obvious that no load whose productive

time is greater or equal than MPTk can be achieved anymore. This fathoming enables to perform more passes in the same

time such that improved solutions might be found faster.

6.4 Improvement by Shortest-Path Computations

After having constructed a number of feasible solutions, these solutions might be combined to build improved solutions

by extending the graph approach of Avalanche (cf. Section 5.3 as well as Boysen and Fliedner 2008).

This approach is best explained by means of our example of Figure 2. Assume that two different solutions with

four stations each have been obtained by applying Rule-GRASP, A = 〈1|3,2|4,6|7,8,5] and B = 〈1,2|3,4,7|6,5|8], with

vertical bars indicating that a new station needs to be opened.

In order to re-optimize each sequence or to combine favorable parts of different (re-optimized) sequences, a so-

called grouping graph is constructed (e.g., Klein 1963; Easton et al. 1989; Boysen and Fliedner 2008; Boysen and Scholl
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2009). Figure 3 shows the graph for our example which contains a node for each position p of each sequence. This node

represents the set of tasks assigned up to position p, e.g., node A3 represents feasible task subset {1,2,3} and node 8

entire task set V . Additionally, a start node 0 which represents the empty set is introduced. These nodes are connected by

arcs whenever their difference set forms a feasible station load. Due to the fact that each arc corresponds to one station,

arc weights are all set to 1 and the minimal number of stations for each of the task sequences can be determined by

finding the shortest path from node 0 to 8. In the example, additional options to combine tasks to station loads are found

for each sequence by their grouping subgraphs (chains) which lead to additional solutions (e.g., A′ = 〈1|3,2|4,6,7|8,5])

but no overall improvement is achieved.

Fig. 3 Grouping graph

An improved solution with three stations can be determined by adding a chain-connecting arc as shown in Figure 3:

The nodes B2 = {1,2} and A5 = {1,2,3,4,6} differ by the set {3,4,6} which is a feasible station load (with sequence

〈3,4,6] and station time 20). With this arc on hand, a shortest path with three arcs is found, i.e., 〈1,2|3,4,6|7,8,5] which

is highlighted by bold arcs in the Figure.

From a computational point of view, there are several means for saving time. Of course, nodes that represent the

same task set can be merged, e.g., nodes A4 and B4 (which we have distinguished for presentation purposes only). As

a consequence, all adjacent arcs are connected to this merged node. Having a look at the resulting graph shows that it

is a subgraph of the state graph of a station-oriented dynamic programming (DP) approach (e.g., Jackson 1956; Easton

et al. 1989). As a consequence, shortest paths can be computed just when nodes are constructed in the manner of a DP

procedure. For example, right after generating merged node A4 = B4 it becomes obvious that its task set {1,2,3,4} can

be assigned to two stations as the shortest path represents the partial solution 〈1,2|3,4]. Furthermore, it is not necessary

to search for arcs if a node will not be part of the shortest path. In our example, node B1 represents the non-maximal

load with task 1 only. So, there is no need to identify the arc from B1 to B3.

The latter aspect is more relevant than it seems to be as the detection of arcs is not as trivial as in case of SALBP,

where it is sufficient to sum up task times, but requires to decide whether there exists a feasible sequence of the tasks

contained in the difference set. This NP-hard subproblem should not be solved unnecessarily. In our approach, we use

the same two-step procedure to examine loads as described in Section 6.2. An arc is only introduced if it was possible to

find a feasible sequence within the given limitations.
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6.5 Lower Bounds and Data Reduction

Since optimal solutions are not known for any problem instance tested and to evaluate solution capabilities of the heuristic

solution procedures examined more deeply, we use an extended version of the lower bound argument defined by Andrés

et al. (2008). This bound argument is an extension of the well-known capacity bound for SALBP-1 defined as follows:

LB1 :=
⌈

tsum

c

⌉
with tsum = ∑

j∈V
t j (20)

LB1 has been adapted to their restricted version of SUALBSP (setup times τi j used in both directions and τii = 0 ∀i ∈V )

by Andrés et al. (2008) and corrected in Pastor et al. (2010). They compute the bound value, which we call LB1 f
AMP, in

an iterative manner based on τ
q
sum(RV ), the sum of the q smallest setup times τi j with i ∈V and j ∈ RV −{i}.

In order to explain the logic of the bound within the usual categories, we present it as a destructive improvement

bound (cf. Klein and Scholl 1999, Scholl and Becker 2006) as follows: The bound is based on the fact that at least

q = n− (m− 1) = n+ 1−m tasks must share a station with other tasks if (at most) m stations are available.2 Thus,

for (at most) m stations τ
q
sum is a lower bound on the total setup time required. If the total time capacity TC(m) = m · c

provided by m stations is not sufficient to perform all work (tsum) and the setups at least required (τq
sum), then m stations

are not sufficient (this trial bound value is "destroyed"), and m := m+ 1 is considered as trial number of stations in

the next iteration. This process starts with m = LB1 and is repeated until the current m cannot be destroyed. The final

bound value is set to LB1 f
AMP := m. Unlike the procedure described in Pastor et al. (2010), our destructive improvement

procedure increases the bound value in each iteration as it leaves out superfluous computations. It can be summarized in

the following formula:

LB1 f
AMP := min{m≥ LB1 | tsum + τ

n+1−m
sum ≤ TC(m)} (21)

For SUALBSP, the lower bound argument LB1 f
AMP can be adapted and improved by distinguishing between forward

and backward setups as well as observing that not all tasks can be adjacent to each other in feasible sequences (cycles).

Given a trial number m of stations, it is known that a backward setup is necessary in each station and at least q = n−m

forward setups are required. Let τ
q
sum now denote the sum of the q smallest forward setup times τi j with i∈V and j ∈ Fτ

i .

Furthermore, let µ
q
sum be defined as the sum of the q smallest backward setup times µi j with i ∈V and j ∈ Fµ

i , then the

modified bound is computed as follows:

LB1 f b
AMP := min{m≥ LB1 | tsum + τ

n−m
sum +µ

m
sum ≤ TC(m)} (22)

Example: In our problem instance of Figure 2 we have tsum = 45 and, thus, LB1 = d45/20e = 3. If only the matrix τ

is taken for both directions without eliminating irrelevant entries (as already done in Figure 2), the originally proposed

bound LB1 f
AMP will have no effect for m = 3 due to τn+1−m

sum = 0 as eight original τi j entries are zero. Though no bound

improvement can be achieved for this example (as the available total unproductive time is BD(m = 3) = 3 ·20−45 = 15),

the modified bound takes advantage of distinguishing between forward and backward setups and removing irrelevant

values, i.e., τ5
sum = 0+4 ·1 = 4 and µ3

sum = 1+1+2 = 4.

2 This lower bound on setup operations between different tasks is achieved if each of m−1 stations contains a single task and the remaining
station contains the residual q tasks
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The logic behind the AMP-bound can be applied more directly to identify sequence-independent parts of the setup

times by (23) and (24) in order to increase task times, if possible.

ωi := min {min {τi j | j ∈ Fτ
i }, min {µi j | j ∈ Fµ

i }} (23)

αi := min {min {τhi−ωi | h ∈ Pτ
i }, min {µhi−ωi | h ∈ Pµ

i }} (24)

After having executed task i, at least ωi time units must be spent before another task can be started. As a consequence,

the task time can be increased by this sequence-independent part of subsequent setup times while the setup times need

to be reduced accordingly by computing ti := ti +ωi, τi j := τi j−ωi ∀ j ∈ Fτ
i , and µi j := µi j−ωi ∀ j ∈ Fµ

i .

After this reduction step, there might remain sequence-independent parts αi of preceding setup times for some

tasks. For each such task i, the execution time can be increased further by setting ti := ti +αi, τhi := τhi−αi ∀h ∈ Pτ
i ,

and µhi := µhi−αi ∀h ∈ Pµ

i . Notice that these computations follow the same logic as the the bound argument for the

asymmetric traveling salesman problem proposed by Little et al. (1963).

In our example, we get ω = (1,1,1,0,1,1,1,2) such that the execution times of the tasks 1, 2, 3, 5, 6 and 7 can be

increased by 1 time unit while t8 can be increased by 2. After reducing the setup time matrices, each column of either

matrix contains at least one entry 0, so, all α-values are 0 and no further reductions possible.

The reduction step is performed before the lower bound value LB1 f b
AMP is calculated. This has two potential ad-

vantages: On the one hand, the AMP-bounds do not consider that each particular task has only one preceding and one

succeeding setup as utilized in the reduction step. If only a subset of the tasks are responsible for the smallest setup times

summed up by those bound arguments, the resulting lower bound values will be weak. On the other hand, increased task

times represent better information for priority rules to select the right task for being assigned.

Note that, in many cases, the sums utilized in the bound arguments will be 0 after reduction. However, e.g., if only

return times µii are 0 and all other forward and backward setup times are positive, the reduction step will have no effect

as αi = ωi = 0 ∀i, whereas LB1 f b
AMP will take advantage of τ

q
sum > 0 (while µm

sum = 0).

7 Computational Experiments

We describe a number of computational experiments and analyze their results to examine the performance of the proce-

dures described so far and compare them to previous developments in the field.

7.1 Data Sets

AMP-Data Set: Andrés et al. (2008) defined a data set for SUALBSP (with unidirectional setup times only). This data

set utilizes some precedence graphs contained in the well-known benchmark data set for SALBP-1 (cf. Scholl 1999, ch.

7.1). They systematically extracted eight (medium-sized) precedence graphs such that different order strengths of the

graphs and different numbers of tasks are included. Furthermore, they defined two settings with respect to the variability

of setup times. In the setting called "low", setup times are randomly chosen from the interval [0,0.25 · tmin] with tmin

denoting the minimal execution time of a task, while the times are randomly drawn from [0,0.75 · tmin] in the setting
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"high". For each precedence graph and each setting, 10 instances are generated by randomly defining cycle times from

the interval of cycle times occurring in the SALBP-data set. In order to transform these 160 instances to our version of

SUALBSP, we have to set µi j := τi j for all task pairs (i, j) ∈V ×V .

MP-Data Set: Martino and Pastor (2009) extended the AMP-data set by adding another eight precedence graphs from

the SALBP-1 benchmark data set and defining two additional settings for a higher setup time level. In the setting called

"low-med", setup times are randomly chosen from the interval [0,0.25 · tav] with tav denoting the average execution time

of a task. Similarly, a setting "high-med" draws randomly from [0,0.75 · tav]. All together, 16 precedence graphs are

combined with four settings. As again 10 instances are generated per combination, a total of 640 instances is contained

in the MP-data set. Though it contains the AMP-data set completely, we show results for both data sets in order to be

comparable with former experiments and to examine the effect of low and high setup times.

SBF-Data Sets: To our opinion, the MP-data set has several limitations: (1) Instances were selected from the SALBP-1

benchmark data set rather arbitrarily. (2) No distinction between forward and backward setup times is made. (3) The

triangle inequality is not observed in some cases which seems to be not realistic as insertion of a task in a sequence

might reduce station time. (4) Martino and Pastor (2009) have fine-tuned their heuristics just for this data set. (5) Optimal

solutions are known only for a part of the instances such that deviations from (rather weak) lower bounds need to be

considered to measure solution quality. In order to remove these drawbacks, we define two settings SBF1 (removes

drawbacks 1-4) and SBF2 (additionally removes drawback 5).

SBF1 consists of four data sets which are constructed as follows: As a basis, the entire SALBP-1 data set is taken

such that each new data set contains 269 instances (having 7 to 297 tasks) with all data from SALBP-1 like cycle times,

task times and precedence constraints. Different data sets are obtained by defining different maximal levels of the setup

time. As in most cases there are rather small minimal task times and, furthermore, in practice setup times might be much

larger than the time of such a minor task, we relate the setup times to the average task time tav as done by Martino

and Pastor (2009) in their extended set. We define α · tav as upper bound for the (forward) setup times to be generated.

Four different data sets are obtained by setting α to the values 0.25, 0.50, 0.75, and 1.00. That is, average setup times

are 12.5%, 25%, 37.5%, and 50% of the average task time. This should cover almost any realistic case and allow for

comparisons with the MP-data set.

Furthermore, setup times are constructed such that they hold the triangle inequality (1). In order to achieve realistic

setup times, we subdivide each station into (fictitious) mounting positions 1,2, . . . ,mpmax = bα · tavc in order to model

setup times as walking times between real positions. Each task i gets assigned a mounting position mpi randomly drawn

from the interval [0,bα · tavc]. The forward setup times are calculated as the absolute difference (distance) between

mounting positions, i.e., τi j := |mpi−mp j|. Backward setup times (return times) result from the fact that the worker has

to walk to the next workpiece. If we assume that workpieces are arranged on the conveyor without space between them,

return times have to be calculated by µi j :=mpmax+mp j−mpi. These calculations are visualized for mpmax = 5 in Figure
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4. Our example of Figure 2 has been generated in this manner by setting the position vector to mp = (3,4,1,2,3,4,2,1)

with mpmax = 4.

Fig. 4 Generation of setup times based on mounting positions

A second set SBF2 of four data sets is generated like SBF1 but it is taken care that at least one optimal SALBP-1 solution

(with random precedence-feasible sequence within stations) remains feasible and, thus, constitutes an optimal solution

to SUALBSP, also. This is achieved by setting all mounting positions of tasks assigned to the same station in this given

solution to the same value (no forward setups required) and by restricting the backward setup times in each station to the

idle time of the contained load. This is done such that the triangle inequality still hold.

All data sets are available for download at www.assembly-line-balancing.de -> Data sets.

7.2 Experimental Settings

All experiments were run on a personal computer with quad-core AMD Phenom II X4 920 processor (four cores with 2.8

GHz clock speed each), and 3.0 GByte of RAM. In order to speed-up computations, (up to) four parallel test runs were

started at the four cores (without using parallel computation capabilities). As operating system, Windows XP Professional

(32 bit) was used. The algorithms have been coded and compiled using Borland Delphi 7.0 as console applications.

We recoded the approaches of Andrés et al. (2008) and Martino and Pastor (2009) and implemented the new proce-

dures described above. Additionally, the general-purpose ALBP-solver Avalanche (cf. Boysen and Fliedner 2008), which

could be adapted easily to solve SUALBSP instances, was included in the tests. As a general benchmark, we finally im-

plemented our model of Section 4 in Fico XPress-MP (Mosel 3.0, XPress optimizer 20.00.05). The XPress-model is

initialized with an upper bound provided by applying a PRBP with priority rule MaxTMinSU. As it takes time to solve

complex problems with off-the-shelf solvers like XPress-MP, we started it with a time limit of 100 seconds per instance.

Task-GRASP (called TG) of Andrés et al. (2008), described in Section 5.2, is restricted to 10 passes as suggested

by the authors, while Avalanche (see Section 5.3) is restricted to 1000 iterations with a population size of 25 sequence

vectors (ants) as proposed in Scholl et al. (2010). As the MP-rule of Martino and Pastor (2009) is a single-pass rule, it

constructs a single solution (first step called MP) which is improved by local search after each assignment (both steps

called MPLS) as described in Section 5.1.

In order to examine which of the components developed in this work and described in Section 6 are useful (and

which not), we test a number of combinations each of which contains the Rule-GRASP solution framework (including

the MP-rule deriving a complete solution) and the following further options:
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F10 10 passes in forward direction

FB10 10 passes in forward and 10 passes in backward direction

FBC10 FB10 plus grouping graph approach of Section 6.4

FBR10 FB10 plus re-optimization as described in Section 6.2

FBCR10 FB10 plus grouping graph and re-optimization

FBCI10 FB10 plus grouping graph and fathoming as described in Section 6.3

FBRI10 FB10 plus re-optimization and fathoming

FBCRI10 FB10 plus grouping graph, re-optimization and fathoming

FBCRI100 FBCRI with 100 passes instead of 10

FBLS10 FB10 plus local search of Andrés et al. (2008) with first fit & extended move acceptance (Section 5.2)

In order to have identical and fair conditions and to enable procedures to examine potential optimality, the lower bounds

and reduction process of Section 6.5 are applied before starting the heuristics in any case. The following measures are

utilized to evaluate the algorithms:

rel.best average relative deviation from the best upper bound found in the test [in %]

rel.LB average relative deviation from best known lower bound [in %]

rel.opt average relative deviation from the minimal number of stations m∗ (only SBF2-data sets) [in %]

av.time average computation time in seconds

#opt the number of proven optima, i.e., procedure itself proves optimality due to UB = LB

#found the number of optima found, i.e., UB = m∗ (only SBF2-data sets)

#best the number of best solutions found (among the approaches within a test)

7.3 Experiments on the AMP- and MP-Data Sets

Table 2 summarizes the results obtained for the AMP-data set. There are considerable differences between the approaches

concerning solution quality and/or computation time. The best relative deviations are obtained by FBCRI100 which

combines all developed components. It finds the best solution for 157 of the 160 instances with moderate computation

times of about 1.5 seconds per instance on average. If computation time is taken into account, too, the best compromise

might be constituted by FBCR10 which is best in 151 out of 160 cases and takes only 0.24 seconds on average.

In order to rank the new components concerning their contribution to good performance, it has to be stated that

the Rule-GRASP mechanism, the additional backward planning and the re-optimization have most influence, while

the grouping graph approach is successful only in a few cases but at very low cost in computation time. Fathoming

significantly reduces computation time and allows for 100 (trial) passes (FBCRI100) in each direction without increasing

computation time to 200 times the one of MP. However, in case of FBCI it is counterproductive as it reduces potential to

apply the grouping graph approach. The enhanced local search of FBLS10 is not competitive to the other approaches.

As reported by Martino and Pastor (2009), MP performs very well considering the fact that only a single solution

is computed. However, the AMP-data set is part of the data set MP is fine-tuned for. Here, the local search for re-

optimization in MPLS is not very effective. The results of TG are worse than those of MP though ten solutions instead

of one are computed.
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Considering that Avalanche is a flexible multi-purpose procedure its solution quality is acceptable but required time

is large. Further, smaller tests show that computation times can be reduced without significant loss in solution quality

but we do without showing such results as the new procedures, nevertheless, outperform the other procedures. The

performance of XPress-MP is very disappointing as its acceptable solution quality is mainly due to the initial heuristic

solution computed. Even increasing computation times considerably has almost no effect. This shows the complexity of

the problem and puts the good performance of the (other) heuristics in perspective.

When considering the MP-data set, we get similar results with even increased gap between well-performing pro-

cedures on the one hand and TG, Avalanche and XPress-MP on the other hand. As MP has been fine-tuned to this

very data set, its results are near-to-optimal though it requires negligible computation times. However, considerable im-

provements can be obtained by the same new procedures as before with FBRI10 providing a good compromise between

solution quality and computation time. The further quality improvement by FBCRI100 comes along with about tenfold

computation time which, nevertheless, is moderate concerning the needs of practice.

7.4 Experiments on the SBF-Data Sets

In this section, we show and analyze the results obtained for the new SBF-data sets for different setup time levels and

variability α . The Tables 4 to 7 summarize the results obtained for the setting SBF1. The relative deviations from the

lower bounds and the low numbers of proven optimal solutions show that these new data sets are much more challenging

than the former ones. Though the rankings of the procedures are very similar to the above mentioned experiments the

relative differences in solution quality (rel.best) and computation times (cpu) become much larger. Again, FBRI10, and

also FBCRI10, outperform the other procedures with small computation times and FBCRI100 provides further significant

improvements which seem to justify increased computation times.

Considering the different values of α shows that increasing (average) setup times lead to considerably increased

differences of the procedures’ performance. In case of α = 0.25 one might state that most of the heuristics can be useful

solution approaches, whereas much larger differences are observed for larger values of α . Here, only the composite pro-

cedures which use the re-optimization component are competitive with FBCR10 being the best among all heuristics with

10 passes. Comparing FBCR10 to FBR10 and FBC10 shows that it is the combination of re-optimization and grouping

graph which provides this good solution quality. The versions with fathoming (I) achieve considerable reductions in

computation times with a moderate deterioration in solution quality. So, it seems preferable to apply FBCRI100 instead

of FBCR10 for larger α-values as it slightly improves solution quality at a modest increase in time.

The MP-rule still performs well considering the small computation times. This might result from those SALBP

precedence graphs the former data sets and the SBF-data sets have in common. However, other cycle times and, more

important, setup times have been chosen. The fine-tuning of the rule has obviously reached an astonishing robustness

such that the rule can be recommended whenever a solution should be computed without any recognizable delay and

setup times are relatively small.
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The importance of re-optimizing (partial) sequences observed above is underlined by comparing the two versions of

the MP-rule as the local search has a considerable potential of improvement which increases with α . Nevertheless, the

MP-rule is clearly outperformed by the new composite heuristics. The other approaches (TG, Avalanche and XPress) are

not competitive at all.

In order to examine the solution quality obtained by the procedures even more comprehensively, we repeat the

experiment based on the setting SBF2. Due to modifying the data sets appropriately, the optimal solution values are

known. This comes at the cost of small setup times between tasks assigned to the same station in the underlying SALBP-

1 solution. As one might expect, the results summarized in Tables 8 to 11 indeed show, that this way of generating data

sets simplifies finding a good or even optimal solution. This is particularly true for construction heuristics calculating

priority values based on (minimal) setup times. Nevertheless, the findings are very similar to those described for SBF1

but at a lower level of differences.

To examine the larger deviations in case of the SBF1-data sets, we compare the average relative deviations from the

lower bounds (rel.LB) to those from optimality (rel.opt) in case of the SBF2-data sets. This comparison shows that more

than half of this deviation is due to rather weak lower bounds. So, one can assume seriously that the relative deviations

from optimality in case of the SBF1-data sets will also be much smaller than indicated by rel.LB.

The fathoming component of the composite heuristics again appears to be important as it avoids unnecessary compu-

tations. This becomes obvious by comparing FBCR10 and FBCRI10, where almost identical solution quality is obtained

with the latter procedure taking roughly 10% of the time. Now, FBCRI10 seems to be the best compromise considering

quality and time as it requires about 1 second on average for small optimality gaps of about 3 to 5% even in case of large

and considerably varying setup times, where some of the procedures have deviations of 15% and more. When about 10

seconds are invested per instance, FBCRI100 almost in every case finds the best solution.

To summarize the findings of our performance experiments, it can be stated that the new composite heuristic seems

to be a well-suited compromise for finding good solutions for SUALBSP in short time as required in real-world planning

environments (cf. Section 1). All components of the new procedure (Rule-GRASP, different planning directions, fathom-

ing, grouping graph and re-optimization) seem to be useful as they contribute to improving solutions provided that they

are applied in a time-saving and problem adequate manner. This tradeoff between effectiveness and computation time

can be demonstrated for the grouping graph approach which is successful in improving solutions very seldom but does

require negligible time.

7.5 On the importance of SUALBSP

We conduct a final experiment to find out whether the additional effort of defining and solving SUALBSP instances might

indeed be useful in practice of assembly line balancing. As an alternative, the problem could be modeled and solved by

considering setup times in a simpler way as is usually done in practice. Some major car producers, for instance, simply

approximate sequence dependent setup times and incorporate the results into the task times.
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In doing so, the planning team needs to strike a fragile balance between an underestimation of setups, which leads to

infeasible line balances, and an overestimation of setups, which leads to an allocation of excessive resources. In practice

this trade-off is usually considered by an iterative planning process which successively re-evaluates line balances with

regard to feasibility and resource utilization and re-optimizes subsequences of tasks where setups have been estimated

incorrectly.

This planning procedure is very time consuming and prone to be caught in local suboptima. We simulate this ap-

proach by defining several ways of transforming a SUALBSP instance into a SALBP-1 instance which can be solved

by the well-known exact solution procedure SALOME (Scholl and Klein (1997, 1999)). The results are examined with

respect to feasibility and capacity requirement of the production system, i.e., number of stations, which constitute sur-

rogate values for the required planning effort to improve such a solution. We consider the following approaches to cope

with setup times without using SUALBSP (decimal values of task time t ′i for i ∈V are rounded to the next integer):

1. NoS: The setup times can be ignored completely defining a SALBP-1 instance with the original task times, i.e., t ′i :=

ti. This procedure assumes that setup times are negligible or sequence-independent (and so can be integrated in task

times) or reflects that the planner ignores the phenomenon. While this is not so much of a practicable approximation,

we include this simple rule in order to better estimate the effects of setups on solution feasibility.

2. MiS: Task times are increased by minimal setup time defined as τmin
i := min {min {τi j | j ∈ Fτ

i }, min {µi j | j ∈

Fµ

i }, i.e., t ′i := ti + τmin
i . This rule can be seen as a form of optimistic planning, in the sense that it systematically

underestimates setup times (by setting them to their lower bounds) and, thus, bears a considerable risk of generating

infeasible line balances. Nonetheless it keeps resource utilization at a maximum. It is not necessary to determine the

entire matrices of forward and backward setup times but to estimate the required minimal ones only.

3. MeIS: The task time is increased by its average (mean) setup time defined as τ i :=
∑ j∈Fτ

i
τi j+∑ j∈Fµ

i
µi j

|Fτ
i |+|F

µ

i |
, i.e., t ′i :=

ti+τ i. This common planning approach is neutral, in that it seeks a balance between capacity overloads and capacity

utilization. It is typical in cases where uncertainty of a certain aspect has to be handled and measuring exact values

is thought to be too expensive and difficult. Furthermore, it reflects that small and large setup times have to be mixed

in a (good) feasible solution.

4. MeS: Each task time is increased by the mean of all setup times defined as τ :=
∑i∈V (∑ j∈Fτ

i
τi j+∑ j∈Fµ

i
µi j)

∑i∈V (|Fτ
i |+|F

µ

i |)
, i.e., t ′i :=

ti + τ . Unlike the previous rule, average setup times are distributed over all tasks, in order to prevent that individual

tasks receive unduly high task times. It is based on the assumption that any given combination of tasks at a station is

expected to have the same setup intensity as total population of tasks. This approach simplifies data gathering as it is

sufficient to estimate a single mean setup time value.

5. MeP: The task time is increased by the (time) distance to and from the mean mounting position defined as τ ′i := 2 ·

|mpi− 1+mpmax

2 | (cf. Section 7.1), i.e., t ′i := ti+τ ′i. This rule constitutes a more direct approach to estimate setup times

based on walking distances. The mean mounting position can be interpreted as the starting point of all operations

to which a worker needs to return on average after the execution of a task. So, the sequence-dependent setup times

are made sequence-independent. This approach, however, ignores walking distances to the next workpiece so setup

times are slightly underestimated.
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6. MxS: The task time is increased by the maximal setup time defined as τmax
i := max {max {τi j | j ∈ Fτ

i }, max {µi j |

j ∈ Fµ

i }, i.e., t ′i := ti + τmax
i . This is a very risk aversive approach that guarantees feasible solutions but might

overestimate real setup times and, thus, capacity requirements considerably.

We apply these approaches to the SBF1-data sets, i.e., six SALBP-1 instances have to be defined and solved by SALOME

for each of the 4 · 269 = 1,076 instances of the four data sets. The resulting line balances are evaluated with respect to

the real task times and setup times of the original SUALBSP instances. Besides the number of stations required, it is to

be examined whether the station loads hold the cycle time restrictions. The following measures are used to compare the

different approaches including deviations of the SALBP-based approaches from the best solution found by any heuristic

as described in Section 7.4 on the one hand and the lower bound on the other hand, because optimal solutions are not

known for the SBF1-data sets:

infeas average portion of infeasible station loads in %

overtime average extent of violating the cycle time relative to total capacity m · c in %

increase average relative increase of the cycle time to achieve feasible line balances in %

LBdev average relative deviation from lower bound on number of stations in %

bestdev average relative deviation from best known number of stations in %

A summary of the overall results is given in Table 12. Obviously, only MxS is able to guarantee feasible solutions.

However, this comes at the cost of an average overcapacity of at least 46%, i.e., the number of stations required to

achieve feasible station loads for sure is 46% larger than the best known number of stations computed by our SUALBSP

heuristics (up to 78% compared to the lower bounds). This is absolutely unacceptable. All other approaches are far from

generating feasible solutions as between 6% and 81% of the station loads exceed the cycle time. The least portion of

unfeasible loads and least overtime percentage are caused by MeIS. However, this requires an excess capacity of 15%

to 41%, i.e., the optimal number of stations must be exceeded by at least 15% to achieve almost feasible solutions. The

other methods are even worse with ignoring the setup times (NoS) being the worst choice as the solutions completely

differ from what is needed. Though MeS and MeP even require considerably more stations than needed, they are also far

from finding feasible solutions.

total NoS MiS MeIS MeS MeP MxS
infeas 80.85 77.91 6.03 26.30 31.59 0.00

overtime 18.35 16.48 0.37 1.78 2.08 0.00
increase 37.02 35.99 5.25 11.23 9.21 0.00
LBdev 3.09 5.48 41.08 27.61 26.69 77.90
bestdev -14.46 -12.49 15.94 4.91 4.38 45.87

Table 12 Results of the task time adaptation methods for SBF1-data sets (average on all 1,076 instances)

A more detailed analysis shows that even for small setup times (α = 0.25) none of the methods is competitive. These

bad results are due to having relaxed the most important aspect of the problem. Thus, there is no useful alternative to

using SUALBSP to model assembly lines where sequence-dependent setup times are relevant.
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8 Conclusions

In this paper, we have studied and modeled the assembly line balancing and scheduling problem with setup times. We

provide an extended yet more efficient mathematical model in comparison to prior research. We further propose a toolbox

comprised of several heuristic components, which can be combined as required to yield fast and/or high-quality solutions

for instances of real-world size. The results of an extensive computational study demonstrate that the new heuristics

dominate former approaches with regard to solution quality and computation times. Nevertheless, the computational

experiments show that there is a need for improved solution procedures, in particular, in case of large setup times. A

promising direction for future research could be the adaptation of sophisticated meta heuristics, such as tabu search or

genetic algorithms, in order to seek a better trade-off between solution quality and computational time. Furthermore,

research effort is required to analyze the mathematical structure of the problem more deeply as it contains an NP-hard

subproblem in every station, namely, a sequencing problem of the traveling salesman type. There is a need for improved

lower bounds and exact solution procedures, which are at least useful for improved testing of solution approaches.

Furthermore, it is required to consider additional aspects like the positioning of material boxes. This problem is

interrelated with the problem considered here as the positions of boxes determine the distances to walk when fetching

parts. The other way round, the sequence influences the optimal positions of boxes.

Another interrelated aspect is ergonomics. On the one hand, ergonomic restrictions introduce (additional) setups as

tools like lifting or fixing devices have to be mounted. On the other hand, they might reduce task times. Furthermore,

there is a potential advantage of setup operations (in particular, walking) as they enable workers to relax between two

demanding tasks. So, setups seem to be useful for modeling dynamic aspects of ergonomics which receives increasing

attention in (automotive) industry.

Acknowledgment: The authors are indebted to two anonymous referees and the editor for their remarks on former
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