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Abstract

The combination of classifiers of arbitrary type, for example classification

trees, linear discriminant analysis, nearest neighbors or the logistic regres-

sion model, is most desirable for at least two reasons. Firstly, a combined

classifier can be expected to improve any of the single classifiers with re-

spect to misclassification error and, secondly, the need for an explicit selec-

tion of one of the competitors for a special classification problem, usually

causing a method selection bias for error rate estimation, disappears.

In this work we propose to use the out-of-bag observations of a boot-

strap sample, i.e. all observations of a learning sample which are not part

of the bootstrap sample itself, to learn classifiers of arbitrary type. The

predictions of those classifiers, for example predicted classes, estimated

conditional class probabilities or linear discriminant values, are computed

for the observations in the bootstrap sample and are used as predictors of-

fered to a classification tree in addition to the original predictors. The clas-

sification tree implicitly selects the most informative predictors, either the

original ones or transformations of them, in order to construct a classifier.

In this sense, the classification tree “bundles” the additional classifiers. In
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analogy to bagging, the procedure is sufficiently repeated and the class of

a new observation is predicted by majority voting. Consequently, we call

the procedure “bundling”.

The superior performance of the proposed combined classifier is shown

using standard benchmark classification problems from the UCI machine

learning database. Moreover, we prove the almost sure risk consistency of

bundling using results of data driven random partitions.

In the second part of this work, the methodology is used to classify eyes

as either normal or glaucomatous, based on predictors derived from laser

scanning images of the eye background. Glaucoma is one of the major

reasons for blindness worldwide and an early detection of a glaucoma-

tous change of the optic nerve head morphology is important. The perfor-

mance of different candidates for glaucoma classification is evaluated by

using a simulation model of the optic nerve head morphology. Bundling

performs superior to other classifiers both in our simulation experiments

as well as for the observations of a case-control study.

Finally, we illustrate how to combine classifiers via bundling within the

R system for statistical computing, using the case-control study on glau-

coma as example.



Zusammenfassung

Die Kombination mehrerer verschiedener Klassifikationsverfahren, wie

zum Beispiel Klassifikationsbäume, lineare Diskriminanzanalyse, nächste

Nachbarn oder logistische Regression, ist aus mindestens zwei Gründen

wünschenswert. Zum einen ist zu erwarten, daß die Kombination ver-

schiedener Verfahren zu einer Reduktion der Fehlerraten der einzelnen

Komponenten führt. Zum anderen ist die explizite Schätzung der Fehler-

rate eines jeden Verfahrens auf einem Datensatz, welche im allgemeinen

zu einer Verzerrung bei der Schätzung der Fehlerrate des selektierten Ver-

fahrens führt, nicht mehr notwendig.

In dieser Arbeit wird vorgeschlagen, die unterschiedlichen Klassifika-

toren auf den sogenannten “out-of-bag” Beobachtungen anzulernen, also

auf den Beobachtungen einer Lernstichprobe, welche nicht Teil einer Boot-

strapstichprobe sind. Die Vorhersagen dieser Klassifikatoren, dies kön-

nen die vorhergesagte Klasse, geschätzte bedingte Klassenwahrscheinlich-

keiten oder die Werte von linearen Diskriminanzfunktionen sein, werden

zusätzlich zu den Originalvariablen benutzt, um einen Klassifikations-

baum zu konstruieren. Das rekursive Partitionieren wählt implizit die für

3
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die Vorhersage der Klassenzugehörigkeit informativsten Variablen oder

eben deren Transformationen aus und “bündelt” die zusätzlichen Klassi-

fikatoren in diesem Sinne. Wie beim bagging wird nun diese Prozedur

ausreichend oft wiederholt und die Klasse einer neuen Beobachtung wird

per Mehrheitsabstimmung über die multiplen Bäume bestimmt. Wir be-

zeichnen daher unseren Vorschlag als “bundling”.

Die sehr guten Eigenschaften des kombinierten Klassifikators werden

in einem Vergleich mittels mehrerer realer und künstlicher Standardklassi-

fikationsprobleme nachgewiesen. Darüberhinaus zeigen wir unter Benutz-

ung von Resultaten zu Zufallspartitionen, daß die Fehlerrate von bundling

asymptotisch fast sicher gegen die Fehlerrate des Bayes-Klassifikators kon-

vergiert.

Im zweiten Teil der vorliegenden Arbeit werden die methodischen Er-

gebnisse benutzt, um gesunde Augen von Augen mit einer beginnenden

glaukomatösen Schädigung zu unterscheiden. Das Glaukom oder der

grüne Star ist einer der häufigsten Gründe für eine Erblindung und eine

möglichst frühe Diagnose daher wichtig. Die Fehlerraten verschiedener

Klassifikatoren für die Glaukomdiagnose werden mittels eines Simula-

tionsmodells des Sehnervenkopfes verglichen. Bundling erreicht sowohl

in unseren Simulationsuntersuchungen als auch für die Daten einer Fall-

Kontroll-Studie die kleinsten Fehlerraten aller untersuchten Verfahren.

Abschließend illustrieren wir die Kombination von Klassifikatoren in

der statistischen Programmierumgebung R anhand der Daten der Fall-

Kontroll-Studie.



Chapter 1

Introduction

Many medical decisions are based on examinations that involve medical

imaging techniques, for example magnet resonance tomography (MRT)

in radiology or laser scans of the eye background in ophthalmology. The

medical diagnosis, i.e. the decision whether a subject suffers a special dis-

ease of not, using the information provided by such a medical imaging

device requires the knowledge of an experienced physician and is time

consuming and costly. Therefore, the development of automated deci-

sion systems is the basis for the application of such imaging techniques

in situations, where a human examination of a large number of subjects is

impossible due to financial and time constraints, for example in screening

programs.

The challenge to biostatistics is to construct a rule which can be used

to discriminate between healthy subjects and patients suffering a disease,

where the only information to be used by this rule is a, possibly large, set

5
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of numerical measurements derived from a medical image.

In a statistical framework this problem is known as discriminant anal-

ysis or classification problem, whereas in machine learning the term “su-

pervised learning” is used. Typically the decision rule, called classifier,

is constructed (“learnt” or “trained”) by using a number of observations

with known class labels describing the true state of the observation. In the

simplest medical context the two classes may be either “healthy” or “ill”.

This set of observations is called learning sample. Once a classifier has

been learnt, this rule can be used to predict the diagnosis of a new subject

based on numerical measurements derived from an appropriate exami-

nation without human interaction. The performance of such a classifier

is measured by the expected proportion of faultily predictions, called the

misclassification error.

The construction of a good classifier based on a learning sample can

be seen as a three step procedure. At first, we use the observations in the

learning sample to construct different rules. In the second step we need

to choose the best among them. This is usually done by selecting the rule

with minimum estimated misclassification error. And at last, but not least,

an honest estimate of the misclassification error of the selected procedure

is required, for example to decide whether this classifier is good enough to

be applied in practical situations or not. A common problem, especially in

medical statistics, is that only a small learning sample with a large number

of possible predictors is available and all three steps have to be performed

by using this small learning sample.
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Two main problems arise. First, we need to choose an appropriate

classifier out of a number of possible candidates, for example linear or

tree based classifiers, neural networks, nearest neighbors or support vec-

tor machines. And second, we need to estimate the misclassification error

of the selected procedure. It is well known that the selection of a classifica-

tion rule with minimum estimated misclassification error leads to biased

estimates of its performance. Even with efficient estimates of misclassi-

fication error like the .632+ bootstrap estimator by Efron and Tibshirani

(1997), the minimum of several estimators of misclassification error is a

downward biased estimate of the true error rate. Nevertheless, different

rules have to be taken into account. In many applications simple rules

like naive Bayes, nearest neighbors or linear discriminant analysis per-

form comparably to more advanced classifiers (see for example Friedman,

1997). However, the individual classifiers perform well in certain situa-

tions and fail under other conditions.

One approach to solve both problems simultaneously, i.e. the method

selection and error rate estimation problem, is to apply a combination of

classifiers. Instead of selecting one single procedure, combining the com-

petitors may improve classification rules. There are several approaches to

the combination of different classifiers. A linear combination of the esti-

mated conditional class probabilities is suggested by LeBlanc and Tibshi-

rani (1996) and Mojirsheibani (1997), which is related to linear combina-

tions of regression models (Breiman, 1996c; LeBlanc and Tibshirani, 1996).

Merz (1999) uses correspondence analysis to combine the predictions of
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different classifiers. Majority voting of the predictions of the different clas-

sifiers is introduced by Mojirsheibani (1999, 2002).

We propose a new procedure for the combination of classifiers of dif-

ferent kind. The basic idea is to add the outcome of arbitrary classifiers

(linear discriminant variables, predicted conditional class probabilities or

predicted classes) to the set of original predictors for bagging of classifi-

cation trees (Breiman, 1996a, 1998). For the special case of linear combi-

nations of the predictors, Hothorn and Lausen (2002a, 2003b) suggest a

combination of linear discriminant analysis (LDA) and classification trees

(CTREE, Breiman et al., 1984), called “double-bagging”. LDA and CTREE

are somewhat extreme models. The LDA assumes a spherical distribution

of the predictors in each class. The classes are separable by hyperplanes

in the sample space. In contrast, classification trees are nonparametric, i.e.

do not assume a special distribution of the predictors. Basically, classifica-

tion trees are constructed by a recursive search for both the cutpoint and

predictor which separate the observations best with respect to an appro-

priately defined two sample statistic. Therefore, CTREE searches for rect-

angular partitions in the multivariate sample space, which may be seen

as higher order interactions or homogeneous subgroups defined by some

combination of binary splits of the predictors. Because of that it is natural

to combine both ideas. Breiman et al. (1984), page 16, noted that it is “... of

surprise that [LDA] does as well as it does ...” and consequently suggested

to investigate linear combinations of the predictors in each node.

Classification trees are unstable in the sense that a small perturbation of
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the learning sample, i.e. removing or adding some observations, may pro-

duce a completely different tree. The idea of aggregating the predictions

of different trees, which were constructed on reweighted observations in

the learning sample, lead to a stabilization and substantial reduction of

the misclassification error in many applications. The most common proce-

dures are boosting (Freund and Schapire, 1996; Schapire et al., 1998) and

bagging (Breiman, 1996a, 1998). Boosting is based on an deterministic and

iterative weighting scheme whereas bagging predicts the class of a new

observation by majority voting of the predictions from trees which were

constructed by using bootstrap samples of the original learning sample.

As in all statistical procedures which are based on the bootstrap, ap-

proximately 1/3 of the observations are not part of a single bootstrap

sample in bagging. Breiman (1996b) calls these observations “out-of-bag”.

Double-bagging for the combination of LDA and CTREE uses the out-of-

bag sample to estimate the coefficients of a linear discriminant function.

The corresponding linear discriminant variables computed for the boot-

strap sample are used as additional predictors for the classification trees

which allow a linear separation of the classes. This method performs com-

parably to LDA when the classes are linearly separated and comparable to

bagging if the classes can be identified by partitions.

The proposal is not restricted to the combination of LDA and CTREE

but can be extended to the combination of arbitrary classifiers. For each

bootstrap sample, a number of classifiers is constructed using the out-of-

bag observations only. The predictions of those classifiers, i.e. predicted
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classes, estimated conditional class probabilities or linear discriminant val-

ues, are computed for the observations in the bootstrap sample and used

as additional predictors for a classification tree. The trees implicitly select

the most informative predictors and “bundle” in this sense the additional

classifiers. The procedure is sufficiently repeated and a new observation is

classified by averaging the predictions of the multiple trees. The idea is in

the spirit of Breiman (2001b): instead of reducing the dimensionality we

enlarge the number of possible predictors available to the classification

trees and stabilize the procedure by bootstrap aggregation. It should be

noted that this approach is completely contrary to the classical statistical

practice, where the number of possible predictors is reduced by variable

selection procedures (for example Miller, 2002) before classifiers are con-

structed.

Moreover, by using the suggested combination of classifiers we do not

need to estimate the error rates of the individual classifiers because the

classifiers are implicitly selected by classification trees. Therefore, an un-

biased estimate of the misclassification error of the combined procedure

can be computed for example with the use of cross-validation or the .632+

bootstrap.

Benchmark experiments and simulations show that the suggested com-

bination of classifiers performs comparably to the best of the single clas-

sifiers or bagging with respect to misclassification error. Furthermore, the

combined classifier improves the best of the single classifiers or bagging

in a number of examples. It turned out in our experiments that the pro-
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cedure performs comparably or even improves random forests (Breiman,

2001a), one of the best classifiers known today, for most of the benchmark

problems.

Although the combined classifiers are shown to be practically useful

by means of benchmark experiments, the asymptotic properties of the

method are of theoretical interest. Using results on random partitions (Lu-

gosi and Nobel, 1996) it can be shown that the misclassification error of the

combined classifier converges almost surely to the Bayes error. The result

holds independent of the choice of the additional classifiers and for a fixed

number of bootstrap samples.

Our motivation for the development of combined classifiers origined

from the problem of glaucoma classification for screening programs in the

project “Automated Glaucoma Screening” as part of the Sonderforschungs-

bereich 539 “Glaucoma including Pseudoexfoliationsyndrome” at the

Friedrich–Alexander–University Erlangen–Nuremberg. Glaucoma is an

ocular disease which causes progressive damage in the optic nerve fibres

and leads to visual field loss. The prevalence of this irreversible neuro-

degenerative disease is about 2.5% and glaucoma is the second leading

cause of blindness worldwide (Coleman, 1999).

The detection of early glaucomatous damage in the eye is of major im-

portance to permit an early treatment. Additionally, the development of

screening programs for glaucoma relies on methods for the detection of

glaucoma at an early stage. The visual field loss caused by loss of retinal

nerve fibres can only be measured at an advanced stage of the disease. In
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contrast to examinations of the visual field, laser scanning images of the

papilla are able to detect early stages of glaucoma (Mikelberg et al., 1995;

Mardin et al., 1999). We therefore focus on the development of a good

classifier for glaucoma based on parameters derived from laser scanning

images of the eye background. In routine examinations, 62 predictors are

derived from a laser scanning image. As it is frequent in medical research,

the number of available observations in our learning sample is rather lim-

ited: 98 normal eyes and 98 glaucomatous eyes of 196 subjects matched

by age and gender are included in a case-control study for the construc-

tion of a classifier (Mardin et al., 2002; Hothorn et al., 2003). As already

mentioned, this sample is too small for the training and method selection

as well as error rate estimation. Hothorn and Lausen (2002b, 2003a) sug-

gest to use a simulation model of the optic nerve head for investigating

the performance of different classifiers to avoid the method selection bias.

As already mentioned, the need for an explicit selection of classifiers by

means of estimates of their misclassification error disappears for a com-

bined classifier.

This work is organized as follows. Chapter 2 introduces the basic

model of discriminant analysis. The methodology of combining classifiers

is developed in Chapter 3. Before the strong risk consistency of the com-

bined classifier is derived in Chapter 5, we discuss computational prob-

lems of the procedure as well as possible solutions in Chapter 4. We com-

pare the performance of the proposed procedure with the performance of

the individual classifiers and random forests (Breiman, 2001a) by some
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benchmark problems from the UCI machine learning repository (Blake

and Merz, 1998) in Chapter 6. Three procedures for estimating the error

rate of a classifier are reviewed in Chapter 7.

The problem of glaucoma classification based on numerical predictors

derived from laser scanning images of the eye background as well as the

design of the case-control study is introduced in Chapter 8. The perfor-

mance of linear and tree based classifiers for glaucoma classification and a

combination of both are evaluated by means of a simulation study based

on a model of the surface of the papilla in Chapter 9. In addition, we com-

pare three error rate estimators under the same simulation setup. Finally,

we use the results of the simulation experiments and construct a classifier

for glaucoma diagnosis, using the data of the case-control study as learn-

ing sample and compute an honest estimate of its misclassification error

in Chapter 10.

Some details of a free software implementation of combined classifiers

in the R system for statistical computing as well as parallel statistical sim-

ulations using the Mosix load-balancing system are discussed in Chapter

11.
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Chapter 2

The Discriminant Analysis Model

In this Chapter we consider the basic model for discriminant analysis prob-

lems: a p-dimensional vector of predictors X ∈ Rp, X = (X1, . . . , Xp) is

observed and associated with a class label Y ∈ {1, . . . , J}. The joint dis-

tribution function of the predictors and class labels is denoted by F . We

observe a learning sample Ln of n independent and identically distributed

random samples from F :

Ln = {(yi, xi); i = 1, . . . , n}.

Furthermore, the marginal distribution function of the predictors X is de-

noted by FX.

We try to predict the class for a new observation xnew based on the

learning sample by a rule C, called classifier. A classifier is a function

C : Rp → {1, . . . , J}

15
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which maps the p-dimensional predictors into the class labels. The func-

tion C is a composition of two functions C = g ◦ c where

c : Rp → R(J−1) and

g : R(J−1) → {1, . . . , J}.

The value c(xnew) may be the vector of the conditional class probability

estimators and g the argmax function. For the linear discriminant analysis,

c(xnew) are the discriminant variables and g is a function defining the class.

The classifier is trained using the learning sample Ln, and we denote the

dependence of the classifier C on the learning sample by writing

C(xnew;Ln) = g(c(xnew;Ln)).

By convention, c j(xnew;Ln) is the jth element of the vector c(xnew;Ln) ∈

R(J−1).

The performance of a classifier is measured by the misclassification er-

ror, i.e. the expected loss

L(C) = PF (C(X) 6= Y).

The Bayes classifier is the classifier with minimum loss and is of the form

CBayes(x) = argmax
j=1,...,J

Pj(x)

where Pj(x) = P(Y = j|X = x) are the conditional class probabilities (cf.

Ripley, 1996). The misclassification error of the Bayes classifier is called

Bayes error

LBayes = L(CBayes).
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Since this misclassification error is hardly measurable in realistic setups,

we focus on the conditional error rate, where the condition is on the learn-

ing sample Ln:

L(C(·;Ln)) = PF (C(X;Ln) 6= Y|Ln).

Resampling based estimators of the misclassification error are given in

Chapter 7.

The asymptotic properties of a classifier C are of theoretical interest.

A classifier C is said to be strongly or almost surely risk consistent if the

conditional error rate tends to the Bayes error with probability one as the

sample size n of the learning sample Ln tends to infinity:

L(C(·;Ln)) → LBayes a.s. .
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Chapter 3

Combining Classifiers

The major contribution of this work, a combination of classifiers of arbi-

trary type, is given in this Chapter. The aim is to combine a main classifier

Cmain = gmain ◦ cmain and K additional classifiers Ck = gk ◦ ck; k = 1, . . . , K

of arbitrary type. We use superscripts to distinguish between the different

classifiers, for example linear discriminant analysis, nearest neighbors or

any other kind of classifier.

3.1 Bundling

The combined classifier is defined as the main classifier trained on the

original p predictors and additional K(J − 1) transformations of the origi-

nal predictors in the combined learning sample:

Ccomb(xnew;Ln) = Cmain(xnew;Lcomb,n),

19
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where the combined learning sample Lcomb,n is given by

Lcomb,n =
{(

yi, xi, c1(xi), . . . , cK(xi)
)

; i = 1, . . . , n
}

.

We will choose classification trees as main classifier. The motivation for

adding transformations to the set of original predictors is that classifica-

tion trees allow for rectangular splits of the form Xi ≤ ξ , but classification

trees based on the combined learning sample Lcomb,n allow for more gen-

eral splits of the form ck
j(X) ≤ ξ ,ξ ∈ R. For example, if the discriminant

variables of a linear discriminant analysis are used as additional predic-

tors, linear splits of the form α>X ≤ ξ for α ∈ Rp are possible. Note that in

this framework, ck(x); k = 1, . . . , K may or may not depend on the learning

sample Ln.

One variant of random forests (Forest-RC, Breiman, 2001a) uses ran-

dom linear combinations of the predictors. In contrast to random linear

combinations we will add possibly non-linear transformations ck(X) of

the predictors that depend on the data. However, an additional learning

sample for training ck is often not available and sample splitting is ineffi-

cient for small learning samples. Computing ck and cmain using the same

data is not appropriate. In this case, cmain is likely to select transforma-

tions derived from the individual classifier ck which overfits the data the

most. Therefore, we use the out-of-bag samples for the bootstrap aggre-

gated combined classifiers as independent learning samples as follows.

Let L∗
n denote a bootstrap sample of size n from the empirical distribu-
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tion function F̂ :

L∗
n = {(y∗i , x∗i ); i = 1, . . . , n} ∼ F̂ .

In standard bagging, the multiple trees trained on the bootstrap samples

L∗
n are aggregated by class majority voting, i.e. voting of the class pre-

dictions for a new observation. However, Breiman (1996a) mentions that

averaging the conditional class probability estimators and choosing the

class with highest average conditional class probability leads roughly to

the same results. We therefore define the bootstrap aggregated main clas-

sifier by the expectation of cmain with respect to F̂ :

Cbagmain(xnew;Ln) = gmain (EF̂ cmain(xnew;L∗
n)
)

= gmain
(∫

cmain(xnew;L∗
n)dF̂ (L∗

n)
)

and approximate it by a finite number of B bootstrap samples

Cbagmain
B (xnew;Ln) = gmain

(
B−1

B

∑
b=1

cmain
(

xnew;L∗(b)
n

))
. (3.1)

In each bootstrap sample, approximately one third of the original ob-

servations are left out. Breiman (1996b) calls the observations in Ln \ L∗
n,

i.e. the observations which are not element of the bootstrap sample, “out-

of-bag” and uses this additional independent sample for improved esti-

mators of the conditional class probabilities. Another application is the

use of the out-of-bag sample for estimating the prediction error, see Sec-

tion 7. Rao and Tibshirani (1997) discuss a weighted prediction, where the

weights are determined from the out-of-bag samples. In contrast to these



22 CHAPTER 3. COMBINING CLASSIFIERS

suggestions, we will use the out-of-bag observations Ln \ L∗
n for training

of additional classifiers.

For a bootstrap sample L∗
n, the combined learning sample is defined by

L∗
comb,n = {(y∗i , x∗i , c1(x∗i ;Ln \ L∗

n), . . . , cK(x∗i ;Ln \ L∗
n)); i = 1, . . . , n},

i.e. the out-of-bag sample is now used as independent learning sample

for ck, k = 1, . . . , K. The learning sample L∗
comb,n consists of the original

predictors as well as K(J − 1) transformations of them, induced by the

independently constructed c1, . . . , cK.

The bootstrap aggregated combined classifier is now given by

Cbagcomb(xnew;Ln) = gmain (EF̂ ccomb(xnew;L∗
n)
)

where

ccomb(xnew;L∗
n) = cmain(xnew;L∗

comb,n) (3.2)

and again we approximate Cbagcomb by a finite number of B bootstrap repli-

cations:

Cbagcomb
B (xnew;Ln) = gmain

(
B−1

B

∑
b=1

ccomb
(

xnew;L∗(b)
n

))
.

Each of the B classification trees works as a main classifier that selects

and combines the predictions of the additional classifiers c1, . . . , cK. Con-

sequently we will call the procedure “bundling”.

3.2 Double-Bagging

Bundling is a generalization of a combination of linear discriminant anal-

ysis and bagging (“double-bagging”, Hothorn and Lausen, 2002a, 2003b).
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Double-bagging uses the values of the linear discriminant functions tr-

ained on the out-of-bag sample as additional predictors for bagging clas-

sification trees only, i.e. is a special case of bundling with K = 1. In the

two class problem, one additional predictor is added to the set of original

predictors. This predictor is simply a linear combination of the original

predictors in the bootstrap sample, its coefficients are estimated using the

out-of-bag observations only. Since the combination of LDA and CTREE

is the simplest configuration and combines two very popular classifiers,

we will use double-bagging in a simulation study of glaucoma classifiers

in Chapter 8.
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Chapter 4

Computational Aspects of

Bundling

In our experiments using benchmark datasets and simulation studies in

Chapter 6, we compute LDA, nearest neighbors and the multinomial or

logistic regression model as additional classifiers. Since these classifiers

are trained using the out-of-bag observations only, this subset of the learn-

ing sample may be too small. For example, in the case-control study for

the classification of glaucoma based on laser scanning images of the eye

background in Chapter 8, the out-of-bag sample contains, on average, 72

observations. The estimation of a covariance matrix for the LDA with 62

predictors is usually infeasible. We suggest two strategies to deal with this

problem. One possibility is to reduce the number of possible predictors.

For the incorporation of linear combinations of the original predictors, we

use a stabilized LDA (sLDA, Läuter, 1992) based on low dimensional PC-q

25
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scores instead of the original predictors. The other possibility is to enlarge

the out-of-bag sample by using a different resampling scheme.

4.1 Stabilized Linear Discriminant Analysis

One rather general and successful method of dimension reduction in mul-

tivariate analysis is based on the theory of left-spherically distributed ran-

dom variables (Fang and Zhang, 1990). For example, in the framework of

multivariate analysis of variance, Läuter et al. (1998) show that the null

distribution of Hotellings T2 statistic remains the same for low dimen-

sional linear combinations of the multivariate response variables derived

from the total sum of products matrix. The power of the associated test is

increased compared to the power of Hotellings T2 test when the number

of responses is large. In fact, the basic idea was developed in the discrimi-

nant analysis framework (Läuter, 1992).

Let x̄ denote the p-dimensional mean vector over all n observations

and let

W =
n

∑
i=1

(xi − x̄)(xi − x̄)>

denote the total sum of products matrix as defined in Läuter et al. (1998).

The stabilized linear discriminant analysis uses the PC-q scores (Läuter,

1992; Läuter et al., 1998; Kropf, 2000), i.e. a q-dimensional linear combina-

tion x̃i = xiDq (with q < p), instead of the original p-dimensional predic-

tors xi. The matrix Dq is the p× q matrix of eigenvectors with eigenvalues

greater one in the eigenvalue problem WD = Diag(W)DΛ, where Λ is
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the diagonal matrix of the p eigenvalues and D is the p × p matrix of the

corresponding eigenvectors. Theorem 2 of Läuter et al. (1998) states that x̃i

are left-spherically distributed random variables. A stabilized linear dis-

criminant analysis can therefore be computed based on the q-dimensional

linear combination xiDq of the original predictors.

4.2 Subundling

Another possibility is to give more weight to the out-of-bag sample. In-

stead of sampling n out of n with replacement, Bühlmann and Yu (2002)

suggested subsampling (“subagging”), i.e. sampling 50% of the data with-

out replacement. Consequently, we call this procedure “subundling”. This

modification ensures that the out-of-bag sample always contains half of

the observations: the learning samples for the training of the additional

classifiers, i.e. the out-of-bag samples, are now large enough.
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Chapter 5

Strong Risk Consistency of

Bundling

The asymptotic properties of bundling are of theoretical interest. We will

show that the misclassification error of bundling tends to the misclassi-

fication error of the Bayes classifier as the number of observations in the

learning sample tends to infinity. This result holds for arbitrary additional

classifiers as well as for a fixed number of bootstrap samples under rather

weak conditions.

To establish the strong risk consistency of Cbagcomb
B we use results on

random partitions by Lugosi and Nobel (1996). Let πn(Ln) = {An,1, . . . , An,r}

denote a data-driven partition of Rp, i.e.

r⋃
i=1

An,i = Rp and An,i
⋂

An, j = ∅ for all i 6= j

depending on a learning sample Ln. The unique cell containing x is de-

noted by πn[x].

29
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In the following, we restrict ourselves to classification trees, i.e. tree

structured partition based main classifiers Cmain of the form

cmain(x) =


n
∑

i=1
I(xi ∈ πn[x], yi = j)

nµ(πn[x])


j=1,...,(J−1)

(5.1)

where µ is the probability measure of X, I(·) is the indicator function and

Cmain(x) = gmain(cmain(x)) = argmax
j=1,...,J

cmain
j (x)

where by convention cmain
J (x) = 1 −

J−1
∑
j=1

cmain
j (x). Let diam(A) denote the

diameter of a subset A of Rp

diam(A) = sup
s,t∈A

||s− t||2.

We now establish the strong risk consistency of the combined classifier

Ccomb and the bootstrap aggregated combined classifier Cbagcomb
B .

Theorem 1. Let {π1, π2, . . . } be a sequence of tree structured partitioning rules

for Rp induced by Ccomb. Suppose that for every sequence of learning samples Ln,

each cell of the partition πn(Ln) contains at least hn of x1, . . . , xn, where

hn

log(n)
→ ∞.

If in addition for all γ > 0 and δ ∈ (0, 1):

inf
S⊆Rp :µ(S)≥1−δ

µ{x ∈ Rp|diam(πn[x] ∩ S) > γ} → 0 a.s.

then Ccomb is strongly risk consistent.
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The last assumption is a shrinking cell condition depending on the

probability measure of the predictors X. The proof of Theorem 1 is a sim-

ple extension to the proof of Theorem 3 of Lugosi and Nobel (1996), where

the strong risk consistency of classification trees is shown. Basically, we

show that adding K(J − 1) additional predictors does not affect the strong

risk consistency of classification trees.

Proof. For a family of partitions A of Rp, the maximal cell count is given

by

m(A) = sup
π∈A

|π |

where |π | denotes the number of cells in π . The complexity of A is mea-

sured by the growth function

∆n(A) = max
Tn=(x1 ,...,xn)∈Rn×p{

number of different sets in
{
(A1 ∩ Tn, . . . , Ap ∩ Tn)|(A1, . . . , Ar) ∈ A

}}
.

Under the three conditions

a) n−1m(An) → 0

b) n−1 log(∆n(An)) → 0

c) for all γ > 0 and δ ∈ (0, 1):

inf
S⊆Rp :µ(S)≥1−δ

µ{x ∈ Rp|diam(πn[x] ∩ S) > γ} → 0 a.s.

the strong risk consistency of partition based classifiers follows from the

L1 consistency of the associated conditional class probability estimators

(Theorem 2 of Lugosi and Nobel, 1996).
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Now let An denote the set of all possible partitions of Rp induced by

πn or cmain, respectively. The following facts are simple extensions to the

proof of Theorem 3 of Lugosi and Nobel (1996). By assumption, each par-

tition induced by a classification tree contains at most n/hn cells, therefore

n−1m(An) ≤ h−1
n → 0. Each partition πn(Ln) is based on not more that

m(An) = n/hn hyperplane splits in X1, . . . , Xp, c1(X), . . . , cK(X). Each split

can dichotomize n ≥ 2 points in Rp+K(J−1) in at most np+K(J−1) different

ways (this upper bound is based on Cover, 1965). Therefore,

∆n(An) ≤ n(p+K(J−1))n/hn
and

1
n

log(∆n(An)) ≤
(p + K(J − 1)) log(n)

hn
→ 0.

Conditions a) and b) are satisfied and the strong risk consistency of Ccomb

follows from Theorem 2 of Lugosi and Nobel (1996).

Theorem 2. Under the assumptions of Theorem 1, Cbagcomb
B is strongly risk con-

sistent.

The strong risk consistency of the bootstrap aggregated combined clas-

sifier Cbagcomb
B for a fixed and finite number of bootstrap replications B is

proved by showing that bagging of any strongly risk consistent partition

based classifier is again risk consistent, therefore we proof the following

lemma.

Lemma 1. Bagging of any strong risk consistent partition based classifier is again

strongly risk consistent.

Proof. Let P̂j(x;Ln) denote a partition based estimator of the conditional

class probability Pj(x) = P(Y = j|X = x), i.e. an estimator of the form
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(5.1):

P̂j(x;Ln) =

n
∑

i=1
I(xi ∈ πn[x], yi = j)

nµ(πn[x])
.

It holds for every class j ∈ {1, . . . , J} that the conditional class probability

estimators are L1 consistent, i.e.

∫
|Pj(x)− P̂j(x;Ln)|dFX(x) → 0 a.s.

(Proof of Theorem 2 of Lugosi and Nobel, 1996). Bagging of tree struc-

tured partition based main classifiers (cf. 5.1) as defined in (3.1) averages

the estimates of the conditional class probabilities based on B bootstrap

replications of the learning sample:

P̂∗
j (x;Ln) = B−1

B

∑
b=1

P̂j

(
x;L∗(b)

n

)
.

Now fix j for the moment. We have

∫ ∣∣∣Pj(x)− P̂∗
j (x;Ln)

∣∣∣ dFX(x)

=
∫ ∣∣∣∣∣Pj(x)− B−1

B

∑
b=1

P̂j

(
x;L∗(b)

n

)∣∣∣∣∣ dFX(x)

≤
∫

B−1
B

∑
b=1

∣∣∣Pj(x)− P̂j

(
x;L∗(b)

n

)∣∣∣ dFX(x)

= B−1
B

∑
b=1

∫ ∣∣∣Pj(x)− P̂j

(
x;L∗(b)

n

)∣∣∣ dFX(x)︸ ︷︷ ︸
→0 a.s. for every j

→ 0 a.s. for every j.

In all B bootstrap samples, the estimated conditional class probabilities

are L1 consistent (Theorem 2 of Lugosi and Nobel, 1996) and therefore the

finite sum tends to zero as well. This result implies the L1 consistency
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of the averaged estimators of the conditional class probabilities and the

strong risk consistency of the associated classifier follows from Theorem 1

of Devroye and Györfi (1985), page 254.

Proof of Theorem 2. Recall that both Cmain (5.1) and Ccomb (3.2) are based on

classification trees. The strong risk consistency of both procedures follows

from Theorem 3 of Lugosi and Nobel (1996) and Theorem 1. The strong

risk consistency of Cbagcomb
B follows from Lemma 1 and the proof is com-

plete.

Note that the results hold true for subundling. If we sample 50% of

the observations without replacement and denote this sample by L∗
bn/2c

we have

∫ ∣∣∣Pj(x)− P̂j

(
x;L∗

bn/2c

)∣∣∣ dFX(x) → 0

as the sample size n of the learning sample Ln tends to infinity by the same

arguments as for the proof of Theorem 2.



Chapter 6

Benchmark Experiments

In this Chapter we illustrate the performance of the combination of classi-

fiers via bundling using three artificial, four small and three larger bench-

mark problems. The experiments were conducted with the ipred package

(Peters et al., 2002, see Chapter 11) in the R system for statistical computing

(version 1.5.1, Ihaka and Gentleman, 1996, http://www.R-project.org).

The breast cancer, ionosphere, diabetes, glass, satellite, shuttle and DNA

datasets from the UCI machine learning repository (Blake and Merz, 1998)

are assembled in the R package mlbench (Leisch and Dimitriadou, 2001).

The code for generating the twonorm, threenorm and ringnorm data is

part of the mlbench package as well. The artificial problems are defined as

in Breiman (1998):

Twonorm: A two class problem with p = 20 predictors, drawn from a

multivariate normal distribution with unit covariance matrix. The

mean vectors are (a, . . . , a) and (−a, . . . ,−a) with a = 2/
√

20.

35
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Threenorm: A two class problem with p = 20 predictors, drawn from

a multivariate normal distribution with unit covariance matrix. The

observations of class one are drawn with equal probability with means

(a, . . . , a) and (−a, . . . ,−a) whereas the observations in class two are

drawn with mean (a,−a, a, . . . ,−a) where a = 2/
√

20.

Ringnorm: A two class problem with p = 20 predictors, drawn from

a multivariate normal distribution with four times the unit covari-

ance matrix for class one and unit covariance matrix for class two.

The mean vectors are (0, . . . , 0) for class one and (a, . . . , a) with a =

2/
√

20 for class two.

We study bundling of three individual classifiers: stabilized linear dis-

criminant analysis (sLDA, see Section 4.1), k nearest neighbors (k-NN, with

k = 5 and k = 10) as well as logistic regression (LR). The multinomial

model is used for problems with more than two classes. The values of

the linear discriminant functions of the stabilized LDA as well as the pre-

dicted conditional class probabilities of nearest neighbors and the logistic

regression model are combined. For bagging and bundling, 50 unpruned

trees are used. We additionally report the error rates of random forests

with 50 trees (Forest-RI, Breiman, 2001a), R package randomForest (Liaw

and Wiener, 2002, version 3.3-2), where the number of randomly selected

predictors in each node is chosen as the ceiling of log2(p + 1).

The misclassification error for the artificial problems is estimated by

the average of 100 simulation runs, where the learning samples are of size

300 and the error rate is computed using one single test sample of size
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Data set n Test size p J

Breast Cancer 699 - 9 2

Ionosphere 351 - 34 2

Diabetes 768 - 8 2

Glass 214 - 9 6

Satellite 4435 2000 36 6

Shuttle 5803 5802 9 7

DNA 2000 1186 180 3

Twonorm 300 18000 20 2

Threenorm 300 18000 20 2

Ringnorm 300 18000 20 2

Table 6.1: Sample size of the learning samples, the number of predictors p

and number of classes J for the benchmark datasets under consideration.

18000. For the larger datasets, a test sample is selected randomly for the

larger problems. Table 6.1 reports the sample sizes of learning and test

samples for the real world applications. The misclassification error for the

smaller problems is estimated by averaging the misclassification error of

ten independent runs of 10-fold cross-validation (see Section 7.1 also).

The simulated or estimated misclassification errors for the artificial and

real world benchmark datasets are given in Table 6.2. A graphical repre-

sentation of the simulation results for the artificial problems using box-

plots is shown in Figure 6.1.

Bundling of sLDA, k-NN and the logistic regression model is at least as

good as any of the single classifiers except for the diabetes data, where the
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logistic regression model outperforms all other classifiers. The estimated

misclassification error of bagging is, except for the glass data, larger than

the misclassification error of the combined classifier. Subundling does not

lead to a major improvement, the misclassification error of bundling and

subundling are comparable in most problems. The boxplots of the simu-

lated misclassification error for the artificial problems in Figure 6.1 show

that bundling and subundling have a smaller variance than bagging for

the three examples. For the twonorm and threenorm problem, the errors of

the combined classifiers are respectively comparable to the error of sLDA

or 10-NN. Surprisingly, bundling improves bagging also for the ringnorm

problem, where all additional classifiers perform poor in general.

From this results we can conclude that the training and error rate es-

timation for each of the single classifiers is unnecessary because bundling

“inherits” the properties of the best of the single classifier or even im-

proves upon it. As discussed in the Introduction, any method selection

bias can be avoided. Moreover, the combined classifiers perform as well

ask random forests, one of the best classifiers known today, or even out-

perform random forests in a number of problems: twonorm, threenorm,

ringnorm and DNA.
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Figure 6.1: Misclassification error of 100 simulation runs for the artificial

problems.
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The benchmark experiments presented in this Chapter are limited with

respect to both the number of problems and classifiers under test. More-

over, the influence of the choice of the additional classifiers for bundling

was not studied. The number of 50 trees used for bagging, bundling

and random forests is rather small due to computational limitations of

bundling (see Section 11.1 for some details).

A more extensive comparison of 16 different classifiers (including sup-

port vector machines, neural networks and random forests) for 21 two

class classification problems can be found in Meyer et al. (2003). This

benchmark study includes bundling of sLDA as one of the competitors

and shows the overall good performance of bundling: in 7 out of 21 classi-

fication problems, bundling is superior or shares the lowest misclassifica-

tion error with a subset of the 16 classifiers under test (Meyer et al., 2003,

Tables 3-6).
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Chapter 7

Error Rate Estimators

For the estimation of the misclassification error of ensemble procedures

like bagging we have to choose an appropriate error rate estimator. In

this Chapter we review three commonly used error rate estimators: cross-

validation, the .632+ bootstrap (Efron and Tibshirani, 1997) and the out-

of-bag estimator for bagging (Breiman, 1996b). We will evaluate their per-

formance, especially for glaucoma classification, using the problem spe-

cific simulation model in Chapter 9. The notation in this Chapter is sim-

ilar to the one used by Efron and Tibshirani (1997). For a more detailed

overview on error rate estimation we refer to Schiavo and Hand (2000).

Let Q denote the misclassification loss function

Q(y, ŷ) =


1 if y 6= ŷ

0 if y = ŷ.

Recall that, as defined in Chapter 2, the conditional true error rate Err is

43
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the expected loss of a classifier C

Err = L(C(·;Ln))

and the following procedures can be used to estimate Err.

7.1 Cross-Validation

The apparent or resubstitution error rate is given by

Êrr
(a)

=
1
N

N

∑
i=1

Q (yi, C(xi;Ln))

and the leave-one-out bootstrap is defined as

Êrr
(1)

=
1
N

N

∑
i=1

EF̂(i)
Q (yi, C(xi;L∗

n(i))) ,

where F̂(i) is the empirical distribution function with the ith observation

removed and L∗
n(i) is a bootstrap sample from F̂(i). Especially, leave-one-

out cross-validation estimates the conditional true error rate by

Êrr
(cv1)

=
1
N

N

∑
i=1

Q (yi, C(xi;Ln(i)))

where Ln(i) is the learning sample with the ith observation removed. We

use 10-fold cross-validation Êrr
(cv10)

where the learning sample is split into

10 approximately equal sized parts, either deterministically or randomly.

The class labels for observations in one part are predicted by a classifier

trained on the remaining parts and the misclassification rate is averaged

over all 10 possible segmentations into learning and test sample.
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There are several extensions to improve this estimator. Kohavi (1995)

observed a reduction of the variance of the estimator when stratified sam-

pling is used, i.e. when the proportions of the classes are preserved. Iterat-

ing Êrr
(cv10)

various times and using the mean or median of the estimators

is a procedure usually used in benchmark studies (cf. Chapter 6).

7.2 The .632+ Bootstrap

The .632+ estimator (Efron and Tibshirani, 1997) takes the amount of over-

fitting of a classifier C into account, that is the difference between the ap-

parent error rate and the leave-one-out bootstrap estimator Êrr
(1)
− Êrr

(a)
.

The amount of over-fitting is scaled by the no-information error rate ν =

EF0 Q (Y, C(X;Ln)), where the expectation is with respect to the distribu-

tion F0 with the same marginal distributions of response and predictors as

F but under the null hypothesis that predictors and response are indepen-

dent. In the two-class problem, the no-information error rate is estimated

by

ν̂ = p̂(1− q̂) + (1− p̂)q̂

where

p̂ =
1
N

N

∑
i=1

Q(yi, 1) and q̂ =
1
N

N

∑
i=1

Q (C(xi;Ln), 1)

are the proportions of responses and predictions equaling 1. The over-

fitting rate is given by

R̂ =
Êrr

(1)
− Êrr

(a)

ν̂ − Êrr
(1)
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and the .632+ estimator is a weighted average of Êrr
(1)

and Êrr
(a)

:

Êrr
(.632+)

= (1− ŵ) Êrr
(a)

+ ŵ Êrr
(1)

with ŵ =
.632

1− .368R̂
.

7.3 The Out-of-Bag Estimator

An error rate estimator for Cbagmain
B (3.1) can be computed by using the out-

of-bag sample. Every observation in the out-of-bag sample is classified

by the classifier trained on the bootstrap sample and the predictions are

aggregated over all bootstrap samples, in more detail:

a) Draw B random samples L∗(1)

n , . . . ,L∗(B)

n of size N with replacement

from Ln.

b) Construct the classifier C using the bootstrap sample L∗(b)

n . Predict

the responses of all observations xi in the out-of-bag sampleLn \L∗(b)

n

by

ŷ(b)
i =


C
(

xi;L∗(b)

n

)
if xi ∈ Ln \ L∗(b)

n

0 otherwise.

c) Iterate step 2) for all b = 1, . . . , B bootstrap samples.

For every observation xi ∈ Ln the predictions ŷ(b)
i are aggregated by major-

ity voting over all ŷ(b)
i 6= 0 for b = 1, . . . , B. The aggregated prediction for

observation i is denoted by ŷi. The out-of-bag estimate is the proportion
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of incorrect aggregated predictions

Êrr
(oob)

=
1
N

N

∑
i=1

Q(y, ŷi).

Breiman (2001a) argues that Êrr
(oob)

is biased upwards because only B/3

predictions are available for majority voting for each observation. Bylan-

der (2002) proposes a correction for the two class problem.
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Chapter 8

Glaucoma Classification by Laser

Scanning Images

The problem of glaucoma classification for screening programs has lead to

the development of the methodology presented in the previous Chapters.

The aim of the application of this methodology is to develop and evaluate

a classifier which can be used to decide whether a subject suffers glaucoma

or not. The decision should be based on numerical measurements derived

from a laser scanning examination of the eye background. Some details of

the glaucoma disease are given in the first part of this Chapter. In the sec-

ond part we focus on some technical details of the measurement device,

a confocal laser scanner of the eye background. We also describe the pre-

dictors that are derived from such an image in order to classify subjects.

Finally, the design of a case-control study, i.e. the buildup of a learning

sample for the classifiers, is introduced.
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8.1 Glaucoma

Glaucoma is an ocular disease which causes progressive damage in the

optic nerve fibres and leads to visual field loss. This irreversible neuro-

degenerative disease is the second leading cause of blindness worldwide

and is most common in elderly people (Coleman, 1999; Weih et al., 2001).

The loss of retinal nerves can be observed by examination of the mor-

phology of the optic nerve head or the papilla. The optic nerve bundles

the retinal nerves and connects the eye and the visual centre of the brain.

It enters the eye at the papilla by passing through a hole in the sclera.

The diagnosis of glaucoma is based on examination of the visual field

(perimetry), intra ocular pressure (IOP) and optic nerve head morphology.

The latter can be examined by stereo optic disc photographs or optic nerve

head tomography. Most published discriminant analysis models are based

on visual field examinations. Logistic regression models were used for the

classification of glaucoma based on visual field measurements by Hilton

et al. (1996). The prediction of glaucomatous changes based on repeated

visual field examinations by multivariate time series is discussed in Swift

and Liu (2002). A comparison of some classifiers based on standard auto-

mated perimetry can be found in Chan et al. (2002).

However, before a visual field defect can be measured, loss and dam-

age of the nerve fibre layer can be observed in the area of the optic nerve

head (Mikelberg et al., 1995; Mardin et al., 1999). In the following we fo-

cus on the classification of glaucoma by measurements derived from laser
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scanning images of the optic nerve head, using the Heidelberg Retina To-

mograph (HRT, Heidelberg Engineering, 1997).

8.2 Laser Scanning of the Eye Background

The HRT is a non-invasive confocal scanning laser system for imaging of

the eye background. The HRT provides a three-dimensional image com-

puted from an image series of 32 images that are made from the different

depth planes. The laser beam is focused on the examined retina point

and the reflected light is detected by a photo diode. The retinal tissue is

scanned and digitized in two dimensions sequentially.

Blood vessels and the surface of the papilla are visible in the HRT im-

ages. From the image series, the so-called topography image and the mean

image can be computed. The topography image is a 2.5-dimensional im-

age in which the pixels’ grey values represent the depth coordinate (Figure

8.1, parts A and C). The gray-value of pixels on the mean image corre-

sponds to the average intensity of three repeated laser scans (Figure 8.1,

parts B and D). The important characteristics of the normal and glauco-

matous eye can be observed in Figure 8.1, i.e. the excavation of the papilla

due to loss of retinal nerve fibres.

In order to be able to classify a subject as either normal or glaucoma-

tous, numerical predictors describing the morphology, i.e. the size, vol-

ume and depth of the excavation of the papilla, are derived from the laser

scanning images. The examiner determines the margin of the papilla man-
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A B C D

Figure 8.1: Topography (A) and mean image (B) of a normal and topogra-

phy (C) and mean image (D) of a glaucomatous eye.

ually, which is called contour line. One measure of the size of the papilla

is the area global, that is the area within the contour line. The thickness of

the retinal nerve fibre layer itself cannot be measured by the HRT. How-

ever, the depth coordinate where the nerve fibre layer adjoins to the sclera

is of special interest. The thickness of the nerve fibre layer is assumed as

constant 50µm at a segment between −10 and −4 degrees temporal of the

contour line. No blood vessels are located in this segment that could in-

fluence the height of the contour line. Therefore the reference plane, i.e.

the location of the sclera, is defined as the mean height of the contour line

in this small temporal segment minus 50µm (Burk et al., 2000). The area

below reference as well as the volume below and above reference are used

as additional features to describe the excavation of the papilla. The mean

height of the retinal nerve fibre layer is computed with respect to the ref-

erence plan.
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8.3 Case-Control Study – Design

The observations of this study (Mardin et al., 2002; Hothorn et al., 2003)

include 98 glaucoma and 98 normal subjects from the “Erlangen Glau-

coma Registry” of the Sonderforschungsbereich 539. The database was

reimplemented using the mysql database engine (http://www.mysql.org)

for two reasons: direct access to the raw images of the HRT examinations

was needed and an interface to the R system exist for the mysql database

engine (see Hothorn et al., 2001b, for details).

The data of the first examination of each subject were used in the study,

whereas the diagnosis was based on the last examination whenever lon-

gitudinal data were available in order to take visual field long-time fluc-

tuation into account. The study included 98 normal optic discs of 98 sub-

jects with a median age of 56 years and 98 eyes of 98 chronic open-angle

glaucoma patients with a median age of 56 years. Additional clinical char-

acteristics of the normal and glaucoma group are given in Table 8.1. Per

subject and patient, only one eye was selected. These eyes were the more

advanced glaucomatous in patients and the better eye with the better vi-

sual field performance in normals. Glaucoma patients and normal subjects

were assessed by clinical examination, visual field evaluation (perimetry)

and optic nerve head analysis.

A glaucomatous visual field defect was clinically defined when the

mean visual field defect (MD) was higher than 2.8 dB and corrected loss

variance (CLV) was greater than 4.0 dB2. The subjects of the normal

http://www.mysql.org
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Normal Glaucoma P-value

Total Number (n) 98 98 -

Age (years) 56 (50, 61) 56 (50, 61) -

Gender (F/M) 57/41 57/41 -

Area global (mm2) 2.46 (2.07, 3.07) 2.54 (2.21, 2.87) 0.577

Maximum IOP (mmHg) 20 (16, 25) 22 (20, 28) 0.001

IOP during 16 (15, 19) 16 (14, 19) 0.792

examination (mmHg)

Visual Field corrected 1.35 (0.5, 2.3) 31.4 (9.5, 59.4) < 0.001

loss variance (CLV, dB2)

Visual field 1.4 (0.4, 2.7) 6.4 (4.52, 0.65) < 0.001

mean defect (MD, dB)

Table 8.1: Clinical characteristics. For the continuous variables, the median

as well as the first and third quartile in parentheses are given. The P-

values of the Wilcoxon statistic are reported as a measure of separation

between the two groups.

group were either recruited from the administrative staff of the hospital,

being examined for a routine ocular check-up examination, or came to the

hospital for exclusion of glaucoma due to large optic discs or suspected

ocular hypertension.

Age is known to be a major risk factor for glaucoma (e.g. Coleman,

1999). To prevent bias by age, cases and controls were matched by age

(maximum difference: 1 year) and additionally by gender. The normal

group was defined as subjects with normal optic discs and visual fields.
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Subjects with elevated intra ocular pressure (IOP) higher than 21 mmHg

or a large papilla (macro papilla) were included in the normal group. The

glaucoma group includes patients with primary open-angle glaucoma and

patients with normal pressure glaucoma.
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Chapter 9

Simulation Experiments for

Glaucoma Classification

For discriminant analysis problems with small learning samples, Hothorn

and Lausen (2003a) suggest and apply a general strategy to avoid a method

selection bias by using problem specific simulation models for the compar-

ison and selection of classifiers. Since the learning sample for glaucoma

classification as defined in Section 8.3 is too small for the training and se-

lection of classifiers as well as error rate estimation, we use a simulation

model of the HRT measurements to investigate the performance of linear

and tree based classifiers for glaucoma based on the morphology of the

papilla. Moreover, the accuracy of three estimators of the misclassification

error given in Chapter 7 is investigated.
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9.1 Simulation Model

The model introduced by Swindale et al. (2000) is used to describe the

surface of the optic nerve head:

µβ(u, v) =

−
(

w
1 + e(r−r0)/s + a(u− u0) + b(v− v0) + c(u− u0)2 + d(v− v0)2 + w0

)
with r = ‖(u− u0, v− v0)‖2, the usual 2-norm, and parameter vector

β = (w, w0, r0, s, u0, v0, a, b, c, d).

For the interpretation of the different parameters we refer to the original

paper. The arguments u and v vary between 0 and 3mm, which is the

area scanned by the HRT. The parameter vector β̂norm is estimated from

the normal subjects in the study and β̂glau is estimated from the glaucoma

subjects. The estimation of the parameter vectors from the case-control

study introduced in Section 8.3 helps to achieve a more realistic model.

For our set of observations the estimated parameter vectors are given in

Table 9.1.

Progression in glaucoma is derived from the weighted average of the

β w w0 r0 s u0 v0 a b c d

β̂norm 0.75 0.80 0.54 0.12 1.42 1.44 0.05 0.03 0.05 -0.05

β̂glau 0.69 0.80 0.66 0.10 1.42 1.44 -0.01 0.01 -0.01 -0.07

Table 9.1: Simulation Model. The parameters are estimated from the nor-

mal and glaucoma population described the previous Chapter.
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normal and glaucoma surfaces

µδ(u, v) = δµβ̂glau
(u, v) + (1− δ)µβ̂norm

(u, v)

with δ ≥ 0 and (u, v) ∈ [0, 3]2. Figure 9.1 shows the surface of the optic

nerve head for a normal and a glaucomatous eye.

Given a surface µδ with progression δ we simulate the predictors de-

rived by the HRT as follows. The surface is computed on a grid M over

[0, 3]2:

M =
{

3i
k

, i = 0, . . . , k
}2

, k = 40.

To model the measurement error by the HRT we add independent and

identically distributed (iid) normal errors with variance σ2 to the surface

at each point of the grid M

xµ(u, v) iid∼ N (µδ(u, v),σ2), (u, v) ∈ M,

where N denotes the normal distribution. The papilla is modeled as the

set of all points on the grid M within a circle of radius ρ around the centre

(u0, v0):

Pa =
{
(u, v) ∈ M

∣∣ ‖(u− u0, v− v0)‖2 ≤ ρ
}

,

where ρ is estimated from the study population. The following subsets

of the papilla are defined by four sectors of 90 degrees each (temporal,
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Figure 9.1: Surface of the optic nerve head model for normal (left, δ = 0)

and glaucomatous (right, δ = 1) eyes with parameters estimated from the

study population. The excavation of the papilla of the glaucomatous eye

is wider and the border is flat compared to the normal papilla.

superior, inferior and nasal):

Patemp =
{
(u, v) ∈ Pa

∣∣ u > v ∧ (3− u) > v
}

Panasal =
{
(u, v) ∈ Pa

∣∣ u < v ∧ (3− u) < v
}

Painf =
{
(u, v) ∈ Pa

∣∣ u > v ∧ (3− u) < v
}

Pasup =
{
(u, v) ∈ Pa

∣∣ u < v ∧ (3− u) > v
}

.

The reference plane of the HRT is defined by xre f , the mean height on the
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contour line temporal minus 0.5mm (cf. Section 8):

xref =

(
|Pac ∩ Patemp|−1 ∑

(u,v)∈Pac∩Patemp

xµ(u, v)

)
− 0.5.

| · | denotes the cardinality of a set and Pac is the contour line around the

papilla including 2 cells of the grid

Pac =
{

(u, v) ∈ Pa
∣∣ ρ− 2

3
k
≤ ‖(u− u0, v− v0)‖2 ≤ ρ

}
.

The contour line is used to delimit the papilla from the rest of the image.

The following predictors are used by the HRT to describe the surface

of the optic nerve head: Volume above reference xVar, volume below ref-

erence xVbr, rim area xAr, area global xA, mean height in contour xMhc and

third moment xTm. Similar measures in the simulation model are defined

either globally or within one of the four sectors Patemp, Panasal, Pasup and

Painf as follows:

xA = |Pa| (3/k)2

is the size of the papilla, i.e. the area within the contour line Pac,

xAr(Q) = ∑
(u,v)∈Q

I (xµ(u, v) > xref) (3/k)2

describes the area above the contour line,

xVar(Q) = ∑
(u,v)∈Q

(xµ(u, v)− xref)I (xµ(u, v) > xref) (3/k)2

measures the volume of the cup above the reference plane xref,

xVbr(Q) = ∑
(u,v)∈Q

(xµ(u, v)− min
(u,v)∈Pa

(xµ(u, v))I (xµ(u, v) ≤ xref) (3/k)2
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is the volume of the cup below the reference plane xref,

xMhc(Q) = |Q ∩ Pac|−1 ∑
(u,v)∈Q∩Pac

(xµ(u, v)− xref)

gives the mean height of the surface at the contour line and

xTm(Q) = |Q|−1 ∑
(u,v)∈Q

(
xµ(u, v)− |Q|−1 ∑

(u,v)∈Q

xµ(u, v)

)3

is a measurement of the slope of the cup. The rim area xA is only measured

globally, the remaining measurements xAr(Q), xVar(Q), xVbr(Q), xMhc(Q)

and xTm(Q) are computed from the noisy surface for either the papilla Pa

or one of the four sectors

Q ∈ {Patemp, Panasal, Pasup, Painf}.

Therefore, 26 predictors are available for each observation in our simula-

tion setup.

9.2 Simulation Setup

In order to investigate the performance of possible candidates for glau-

coma classification, the features derived from laser scanning image data

are simulated by using the model of the optic nerve head morphology in-

troduced in the previous Section.

We are primarily interested in a comparison of linear and tree based

classifiers. Therefore, linear discriminant analysis (LDA), classification

trees (CTREE, Breiman et al., 1984) and bagging of classification trees (Brei-

man, 1996a, 1998) are used as classifiers. As a classifier that combines
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linear and tree based classifiers we choose bundling of LDA (“double-

bagging”, Section 3.2).

Classification trees are computed with the package rpart, version 3.1-

3 (Therneau and Atkinson, 1997). The tree growing is stopped if a node

contains less than 20 observations. This choice is in the order of
√

N. Ad-

ditionally, we stop the tree building if none of the possible splits decreases

the overall misclassification error by a factor of at least 0.01. That is, every

split must lead to at least two additional correctly classified observations.

The first setup simulates the measurement error of the HRT itself for

repeated examination of one normal and one glaucomatous eye. Three

levels of progression for the glaucomatous eye are used: δ = 0.1, 0.5 and

0.9. The measurement error is fixed at σ = 0.2.

The second setup is more suitable for comparing the performance of

classifiers in a human population with varying morphology of the optic

nerve head and simulates a population with three subgroups with respect

to the area global, i.e. the size of the papilla (small: 1.72 mm2, medium:

2.61 mm2 and large: 4.01 mm2). Furthermore, we assume that the contour

line determined by the examiner is too wide in small papillae and too nar-

row in large papillae, each by an amount of 10% of the radius ρ. Again, the

measurement error is fixed at σ = 0.2 and the level of progression varies

for δ = 0.1, 0.5 and 0.9.

Finally, we study the influence of the measurement error of the HRT on

the classification of glaucoma for a clinical population. In the third setup

we partition every subgroup with respect to the size of the area global into
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three equally sized subgroups with respect to the level of progression δ =

0.2, 0.5 and 0.8. The measurement error of the HRT varies for σ = 0.1, 0.2

and 0.3 in this situation.

It should be noted that both σ (standard deviation of the measurement

error) and δ (level of progression) determine the distance between given

class means. Consequently, the simulated error rates depend only on the

ratio σ/δ. The classifiers are trained using a learning sample of size 200

(100 normal and 100 glaucoma surfaces) and tested using a test sample of

the same size. We use 1000 Monte-Carlo replications.

9.3 Comparison of Classifiers

In the first setup, where the repeated examination of two eyes is simu-

lated, LDA performs best. Bagging suffers a much higher error rate but

improves the even larger error rate of CTREE. It may be assumed that

the two classes are separable by linear combinations of the predictors.

Bundling improves bagging significantly and its error rate is comparable

to LDA. This result illustrates the intention of a combination of LDA and

bagging: bundling “inherits” the properties of LDA when the classes are

separable by a hyperplane. Note that for progression δ = 0.9 LDA and

bundling classify all observations correctly while bagging has a misclassi-

fication error rate of 6.3%.

CTREE outperforms LDA in the second setup, which simulates sub-

jects with varying morphology of the optic nerve head in both groups.
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Classification trees are able to identify the subgroups with respect to the

size of the optic disc. Bagging reduces the simulated misclassification er-

ror of CTREE significantly. Bundling has the lowest misclassification error

among all studied classifiers in this situation.

For the third setup, bundling attains the lowest simulated error rates,

too. The subgroups with respect to both the size of the optic disc and

progression are identified by classification trees.

To summarize the outcome of the simulation studies, we observe the

same results as for the benchmark experiments in Chapter 6: the classifier

which combines LDA and bagging performs at least comparable to the

best of both methods or even leads to an improvement with respect to

misclassification error.

While the linear classifier performs best for the repeated examination

of a fixed morphology, the tree based classifiers are able to identify clinical

subgroups, which are likely to be a problem in clinical setups. In fact,

difficulties with linear classifiers in the presence of clinical subgroups with

respect to the size of the papilla have been described in Iester et al. (1997).

Bundling is able to adapt itself to the structure of the learning sample and

its misclassification error is comparable the best classifier: either LDA or

bagging.
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Setup 1

δ LDA CTREE Bagging Bundling

0.1 0.376 0.470 0.452 0.431

0.5 0.027 0.223 0.158 0.031

0.9 0.000 0.110 0.063 0.000

Setup 2

δ LDA CTREE Bagging Bundling

0.1 0.443 0.459 0.440 0.437

0.5 0.246 0.216 0.155 0.142

0.9 0.147 0.137 0.077 0.059

Setup 3

σ LDA CTREE Bagging Bundling

0.3 0.337 0.340 0.298 0.288

0.2 0.278 0.271 0.216 0.206

0.1 0.178 0.147 0.101 0.101

Table 9.2: Model of glaucoma classification: Simulated error rates in three

setups for linear discriminant analysis (LDA), classification trees (CTREE),

bagging of classification trees and bundling of LDA and CTREE.



9.3. COMPARISON OF CLASSIFIERS 67

Err Êrr
(oob)

Êrr
(cv10)

Êrr
(.632+)

Setup 1, δ = 0.5

Exp 0.168 0.178 0.173 0.164

RMS - 0.026 0.026 0.016

Bias - 0.010 0.005 -0.004

SD - 0.024 0.026 0.015

Setup 2, δ = 0.5

Exp 0.168 0.184 0.196 0.176

RMS - 0.029 0.041 0.018

Bias - 0.015 0.028 0.008

SD - 0.025 0.030 0.017

Setup 3, σ = 0.1

Exp 0.107 0.121 0.137 0.111

RMS - 0.024 0.039 0.015

Bias - 0.014 0.030 0.004

SD - 0.020 0.024 0.014

Table 9.3: Error rate estimators. Characteristics of 10-fold cross-validation,

.632+ and out-of-bag estimator. Expectation (Exp), standard deviation

(SD), bias and root-mean-squared error (RMS) are given.
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9.4 Comparison of Error Rate Estimators

The error rate estimators are investigated in three selected parameter con-

figurations: progression δ = 0.5 in setup 1 and 2 and measurement error

σ = 0.1 in setup 3. The error rate Err for each of the three situations is

simulated and reported in Table 9.3.

Additional 100 learning samples of size 200 are created and the error

rate is estimated for each of those 100 learning samples by Êrr
(cv10)

, Êrr
(.632+)

and Êrr
(oob)

. The mean, standard deviation, bias and root-mean-squared

error (RMS) are given in Table 9.3. With respect to RMS, bias and standard

deviation, the .632+ estimator performs best. The cross-validated error

and the out-of-bag estimator suffer a higher standard deviation. The bias

of the out-of-bag estimator is obvious.



Chapter 10

Case-Control Study – Results

The case-control study introduced in Section 8.3 is designed for the con-

struction of classifiers for glaucoma screening with a binary outcome. The

aim is to classify an eye as either “normal” or “glaucomatous” based on

predictors describing the morphology of the papilla only. Those predic-

tors are derived from a confocal laser scanning device (HRT, Section 8.2),

since early glaucomatous changes can be detected by this examination.

The learning sample consists of 62 predictors (cf. Appendix B) for 196

observations and is therefore too small for learning, selection and error

rate estimation of different classifiers. We therefore used a simulation

model of the papilla to investigate the performance of linear and tree based

classifiers for glaucoma diagnosis. From the investigations in Chapter 9

we can conclude that a combination of classifiers via bundling performs

always comparably to the best of the single classifiers, while the perfor-

mance of the single classifiers depends on the situation under test. More-
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over, the .632+ estimator performed best with respect to bias and variance

and therefore will be used for estimating the misclassification error.

Although we used bundling with LDA only for our simulation experi-

ments, we choose bundling of sLDA, nearest neighbors (k-NN, k = 5, k =

10) and the logistic regression model as a more general classifier for glau-

coma classification. In contrast to the simulation and benchmark experi-

ments, 100 trees are used for bagging, bundling and random forests.

The estimated misclassification error of bundling is 11%. This estimate

is honest in the following sense: it does not suffer any method or vari-

able selection bias, because no data driven method or variable selection

procedure has lead to the choice of this classifiers. Moreover, the .632+

bootstrap is an unbiased estimator of misclassification error. For the sake

of comparison, Table 10.1 reports the estimated misclassification errors of

the single classifiers and random forests. The classical LDA clearly suffers

a dimension problem. Moreover, some of the predictors are by definition

linear combinations of others, causing problems with multicollinearity.

Obviously, the stabilized LDA does not suffer those problems and leads to

a substantial improvement compared with the classical LDA. The misclas-

sification error of bagging is much lower than the error of any of the classi-

cal procedures. Random forests perform comparably to bundling. The re-

sults are consistent with the results of the simulation studies in Chapter 9.

Since patients suffering normal tension glaucoma and normals with ocu-

lar hypertension or macro papilla are included in the glaucoma or normal

group of the study, the good performance of tree based classifiers (bag-
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LDA sLDA 5-NN 10-NN LR Bagg Bund RF

0.229 0.161 0.207 0.201 0.173 0.137 0.11 0.114

Table 10.1: Glaucoma classification: .632+ estimator (50 bootstrap repli-

cations) for LDA, stabilized LDA (sLDA), k nearest neighbors (k-NN,

k = 5, k = 10) and the logistic regression model (LR). Bagging (Bagg),

bundling (Bund) and random forests (RF) were computed using 100 trees

each.

ging, bundling and random forests) is most likely due to their ability to

identify those clinical subgroups.
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Chapter 11

Software

In this Chapter we present some details of an implementation of bundling

in the R system for statistical computing. Moreover, we discuss our expe-

riences with parallel statistical simulations using a Linux cluster with the

Mosix kernel extension.

11.1 The R System

The R system is basically an open source implementation of the S language

developed at AT&T Bell Laboratories by Rick Becker, John Chambers and

Allan Wilks (Becker et al., 1988; Chambers and Hastie, 1992).

The core of R is an interpreted computer language which borrows some

concepts from Scheme (e.g. Abelson et al., 1996). The language allows

branching and looping as well as modular programming using functions.

It is possible for the user to interface to procedures written in C, C++ or

Fortran for efficiency.
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R has a powerful packaging system which provides efficient tools for

maintaining code, documentation, examples as well as for quality testing.

A huge set of packages is distributed on the Comprehensive R Archive

Network. Bundling as proposed in this work is implemented in the ipred

package (Peters et al., 2002), the software is released under General Public

License and can be downloaded from http://CRAN.R-project.org. De-

tails of the implementation are given in the next Section.

11.2 Bundling in R

Trees for nominal, continuous and censored responses are available in the

R system via the rpart package (Therneau and Atkinson, 1997). The rpart

function can easily be used for bagging classification trees: simply call

rpart for bootstrap samples of the learning sample and concatenate the

resulting rpart objects into a list. The prediction of a new observation

is easy, too. Predict the class of the new observation for each tree in the

list and aggregate the predictions by majority voting (for example using

table).

Two main difficulties arise. For bundling, we need to compute arbi-

trary, user-specified additional classifiers for each out-of-bag sample and

compute their predictions both for the bootstrap sample as well as for any

new observation to classify. Therefore, we need to save the additional

classifiers for each bootstrap sample. Another major problem is speed.

Calling rpart 50 times, say, leads to repeated unnecessary computations:

http://CRAN.R-project.org
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formula evaluation, determination of the measurement scale for each pre-

dictor and so on. Unfortunately, there is a trade-off between a flexible

implementation and speed. We therefore decided to speed up bagging by

a modification of the rpart routine and to generalize bundling at the price

of efficiency.

The implementation of the rpart routine currently does not separate

the evaluation of formula objects and the construction of appropriate de-

sign matrices from the tree construction itself which leads to unneces-

sary computations if multiple trees are constructed for reweighted ob-

servations in the learning sample. Therefore, the ipred package imple-

ments a modified version called irpart which grows multiple trees with-

out reevaluating formula objects in order to save computing time.

Both bagging and bundling are implemented in the generic ipredbagg

which dispatches on the class of the response: methods for factors (classi-

fication) and numeric responses (regression) as well as responses of class

Surv (censored data) currently exist. A formula based interface to ipred-

bagg is offered by bagging, a generic itself which dispatches on the data

argument.

bagging(formula, data, subset, na.action, ...)

Currently only a method for data frames is implemented.

As mentioned in the previous Section, the interface to bundling was

designed to allow users to specify additional classifiers in a flexible and

easy way. Basically, for each classifier a list with two elements is required:

model and predict, where model specifies a function for training of the



76 CHAPTER 11. SOFTWARE

classifier and predict is a function for computing predictions. We require

at least two arguments for model: formula and data. For predict, exactly

two arguments are allowed: object and newdata. If more than one addi-

tional classifier is to be used, a list of lists with model and predict elements

can be defined for bundling via the comb argument.

For the experiments in this work, we used the values of the linear dis-

criminant variables of a stabilized linear discriminant analysis, the pre-

dicted classes of nearest neighbors (k = 5 and k = 10) and the estimated

conditional class probability derived from the logistic regression model as

additional predictors. The associated list can be defined along the follow-

ing lines.

R> mybundle <- list(

# stabilized LDA

list(model=slda, predict=function(object, newdata)

predict.slda(object, newdata)$x),

# 5-NN

list(model=function(...) ipredknn(..., k=5),

predict=predict.ipredknn),

# 10-NN

list(model=function(...) ipredknn(..., k=10),

predict=predict.ipredknn),

# LR or multinomial model, resp.

list(model=function(...) multinom(...,trace=FALSE),

predict=function(obj, newdata)

predict.multinom(obj, newdata, type="prob"))

)

The function ipredknn is a formula based interface to knn in package class

from the VR bundle (Venables and Ripley, 1999).

For each bootstrap sample, the additional classifiers are trained and
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one single function bfct for prediction is created in the environment of

the current bootstrap sample. Every time bfct(newdata) is called, the

predictions of the additional classifiers are computed in the correspond-

ing environment (“lexical scoping”, Gentleman and Ihaka, 2000) and an

explicit knowledge of those objects in not needed.

The resulting user-interface is very compact. Bundling of sLDA, near-

est neighbors and the logistic regression model using 100 bootstrap sam-

ple for the data from the case-control study (Chapter 8) can be computed

along the following lines of code.

R> library(ipred)

R> data(GlaucomaM)

R> mod <- bagging(Class ~ ., data=GlaucomaM, comb=mybundle,

nbagg=100)

The function bagging returns an object of class classbagg (for classifica-

tion problems) which stores all the information necessary to predict the

class of a new observation via a method to the generic predict.

R> predict(mod, newdata=newobs)

[1] normal normal normal glaucoma ...

The complete manual page for bagging is given in Appendix A. The func-

tion errorest can be used to estimate the misclassification error, for exam-

ple by the .632+ bootstrap, the results for the case-control study are given

in Table 10.1.

R> paraest <- control.errorest(nboot=50)

R> errorest(Class ~ ., data=GlaucomaM, model=bagging,

nbagg=100, comb=mybundle, est.para=paraest,

estimator="632plus")
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Call:

errorest.data.frame(formula = Class ~ ., data = GlaucomaM,

model = bagging, estimator = "632plus", est.para = paraest,

nbagg = 100, comb = mybundle)

.632+ Bootstrap estimator of misclassification error

with 50 bootstrap replications

Misclassification error: 0.1098

11.3 Parallel Statistical Simulations

The training and evaluation of resampling based classifiers like bagging

and bundling in simulation studies and benchmark experiments is time

consuming, even with up-to-date hardware. Moreover, there is a trade off

between a flexible and efficient implementation as discussed in the previ-

ous Section. However, the multiple trees in bagging or bundling are, by

definition, independent of each other. The same is true for statistical sim-

ulations or the estimation of misclassification error by the average of ten

runs of 10-fold cross-validation. Therefore, the computations can easily

run on multiple processors or nodes in a cluster in a parallel way.

The rpvm package (Li and Rossini, 2001) provides an interface to PVM

(Parallel Virtual Machine, http://www.csm.ornl.gov/pvm/pvm_home.html),

which allows R users to spawn separate R processes from within R. This

approach requires direct modifications to the R code. One alternative is

to use a cluster of PC-nodes running Linux with the Mosix kernel ex-

http://www.csm.ornl.gov/pvm/pvm_home.html
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Figure 11.1: Mosix-Cluster: A 100MBit-Switch substitutes the system bus

and connects the cluster to the local area network (LAN).

tension as we did for our simulations. The Mosix system (Barak and

La’adan, 1998, http://www.mosix.org) monitors processes and distributes

them across all registered nodes in a cluster to achive an optimal perfor-

mance. Running simulations in a parallel way is simple: start different R

processes and the Mosix system will distribute them among the available

nodes. Because the network serves as a “system bus”, a separate switch

is used to connect all nodes in a cluster. We build up a cluster using one

server and 14 diskless nodes, see Figure 11.1. The system directories of the

nodes are mounted from the server by nfs-root. Beside the saving of the

harddisk costs, only the server needs to be maintained and new nodes can

be added to the cluster without much effort.

However, two problems arise. To enable R processes to migrate, R’s

http://www.mosix.org
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stack handling needs to be modified in order not to save the signal context.

In the R sources, the SETJMP macro in the header file src/include/Defn.h

should by modified to

# define SETJMP(x) sigsetjmp(x,0)

instead of sigsetjmp(x,1). Since the nodes are running diskless, there

is no local swap space available and processes can terminate when it is

impossible to allocate memory.



Chapter 12

Summary and Outlook

The medical application which has lead to the development of the com-

bined classifiers presented in this work, namely the early detection of glau-

coma based on laser examinations of the eye background, is rather typical

for many discriminant analysis problems in biostatistics or other fields. A

large set of possible predictors, maybe highly correlated, shall be used to

predict the class of a new observation. However, the learning samples for

the construction of classification rules are often rather small compared to

the number of possible predictors. In our case, the learning sample con-

sists only of 196 observations but 62 predictors.

In this setup, two main questions arise in classical statistics: “Which

(small) subset of the predictors is informative?” and “Which model fits the

data best?”. Consequently, variable selection and model selection strate-

gies are applied. A common problem is that the estimate of the misclas-

sification error after both variable and method selection leads to overly
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optimistic estimates of the true misclassification error.

Moreover, the “best” classifier for a discriminant analysis problem may

not even exist. For example, clinical subgroups with different characteris-

tics of a disease are likely to occur. This is a problem especially for glau-

coma, a disease with many known and unknown variants. Our simula-

tions, using a model of the optic nerve head for different clinical popu-

lations, support this assumption. From the investigations in Chapter 8

we can conclude that neither a linear nor tree based classifier always per-

forms best. Even bagging of classification trees is outperformed by LDA in

simple setups, whereas the misclassification error of LDA is much higher

when clinical subgroups with respect to the size of the optic nerve head are

involved. Therefore, the choice of one single classifier strongly depends on

the situation under test.

Bundling of different classifiers by bagging trees as suggested in this

work is a proposal to deal with these problems. Because arbitrary clas-

sifiers are combined (“bundled”) and implicitly selected by classification

trees in addition to the original predictors, the need for an explicit method

selection disappears. Benchmark and simulation experiments show that

bundling outperforms any of the single classifiers for the majority of ex-

amples. Especially for the data from the case-control study on glaucoma,

bundling performs at least comparably to either linear or tree based clas-

sifiers regardless of the setup investigated. In this sense, the performance

of the combined classifier is “robust” with respect to different situations.

Our results were reproduced by an independent and extensive benchmark
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study (Meyer et al., 2003) whose results support our conclusions.

The estimated misclassification error for bundling of stabilized LDA,

nearest neighbors and the logistic regression model for glaucoma classifi-

cation using 100 trees is 11%. This estimate does not suffer any method

or variable selection bias and is a substantial reduction of the error rate

for glaucoma classification based on numerical measurements of the eye

morphology only.

Because bundling uses aggregated predictions over multiple trees which

were trained on bootstrap replications of the original learning sample, it is

stable in the sense that a large number of predictors can be used without

variable selection as for example in bagging and random forests (Breiman,

1996a, 1998, 2001a).

Bundling contradicts the classical principles of dimension reduction:

we do not restrict the number of predictors but add data based transfor-

mations of the predictors to the set of original predictors. Bundling is a

successful representative of procedures which incorporate the “... infor-

mation in various combinations of the predictor variables ...” in order to

construct better classifiers (Breiman, 2001b).

Modifications to the bundling procedure may lead to further improve-

ments with respect to misclassification error but were not investigated un-

til now. One may think of using only a small subset of the predictors for

training of the additional classifiers. This is an approach to overcome nu-

merical instabilities due to a large number of variables and a small number

of observations in the out-of-bag sample in addition to the use of a stabi-
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lized LDA and subundling as discussed in Section 4. In combination with

random forests, a randomly selected subset of the predictors could be of-

fered to the classification trees only. Currently, we compute the additional

classifiers one time for each bootstrap sample. Computing the additional

classifiers for each node of a tree may improve the performance especially

when subgroups are inherent in the data. This could be done as follows.

For each node, compute the additional classifiers based on the out-of-bag

observations identified by the current node and use their predictions for

the observations in the current node as additional predictor for building

the daughter nodes. However, the computational effort is much larger

compared with bundling.

The strong risk consistency of partition based classifiers (Lugosi and

Nobel, 1996) is used as a tool for the proof of the strong risk consistency

of bundling. Unfortunately, the proof is rather technical and does not lead

to any insight why or how the combination of classifiers work. An inter-

esting result is the strong risk consistency of bagging of any strongly risk

consistent partition based classifier. The proof is based on the fact that

the averages of the conditional class probability estimators derived from

classifiers trained on bootstrap samples are L1 consistent estimators of the

conditional class probability.

Since the aim of our investigations was the development of decision

systems for glaucoma screening, the performance of any classifier was

measured by its misclassification error only. The exploration and inter-

pretation of a classifier as a model for the unknown functional relation-
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ship between predictors and classes were therefore not in the focus of our

work.

However, classification trees are popular in medical statistics because

a graphical representation of the tree seems to be interpretable. The use

of trees as “models” has been criticized for various reasons (for example

Marshall, 2001). The most serious one, from our point of view, is that clas-

sification and regression trees as suggested by Breiman et al. (1984) are not

statistical models in the sense that they do not control the error of selecting

any non-informative predictor. Trees tend to select predictors with many

possible cutpoints and the “right sized” tree is usually determined by re-

sampling procedures like pruning. Recently, Nobel (2003) showed the risk

consistency of a complexity based pruning scheme (see Scheffer, 1999, for

a more general theoretical framework for the analysis of the bias induced

by optimization within a special classifier). One alternative to pruning are

P-value adjusted classification and regression trees (Lausen et al., 1994).

This approach solves the variable selection problem and provides a sta-

tistical stopping criterion by using adjustments based on the P-value of

maximally selected rank statistics (Lausen and Schumacher, 1992). A test

for the null hypothesis of independence between the response and any of

the predictors under a simple cutpoint model is performed and the tree

growing is stopped if the P-value of the test exceeds a predefined level.

Because the node size shrinks, the use of an exact bound of the null distri-

bution of maximally selected rank statistics (Hothorn and Lausen, 2003c)

may be useful. In addition to the use of maximally selected rank statistics,
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an adjustment for the number of possible predictors tested in each node

of a tree is desirable. A test procedure based on efficient numerical evalu-

ations of the multivariate normal probability (Genz, 1992; Hothorn et al.,

2001a) is given in Lausen et al. (2002).

One approach to the comparison and evaluation of different classifiers

in a standardized partition space is suggested by Weihs and Sondhauß

(2003). Since this approach is applicable to arbitrary classifiers, it promises

a possibility to look at the way how bundling for glaucoma classification

works.

Although this work is devoted to discriminant analysis problems only,

the basic idea of bundling can be extended to regression problems as well.

For example, the coefficients of a linear model can be estimated using

the out-of-bag sample and the predictions on the bootstrap sample can

be used as an additional predictor for regression trees. For censored re-

sponses, the linear predictor of a Cox model can be incorporated by the

same procedure into bagging of survival trees (Hothorn et al., 2002). In

contrast to bagging of classification trees, where the trees are grown until

the nodes are pure, it is not obvious when to stop the tree growing for bag-

ging of regression or survival trees. Breiman (1996a) used the out-of-bag

observations to prune the regression trees for bagging. The use of P-value

adjusted regression trees may be a way to control the size of the multiple

trees. However, this requires further investigations.
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Manual Page

bagging Bagging Classification, Regression and Survival Trees

Description

Bagging for classification, regression and survival trees.

Usage

ipredbagg.factor(y, X=NULL, nbagg=25, control=
rpart.control(minsplit=2, cp=0, xval=0),
comb=NULL, coob=FALSE, ns=length(y),
keepX = TRUE, ...)

ipredbagg.numeric(y, X=NULL, nbagg=25, control=
rpart.control(xval=0),
comb=NULL, coob=FALSE, ns=length(y),
keepX = TRUE, ...)

ipredbagg.Surv(y, X=NULL, nbagg=25,
control=rpart.control(xval=0),
comb=NULL, coob=FALSE, ns=dim(y)[1],
keepX = TRUE, ...)

bagging(formula, data, subset, na.action=na.rpart, ...)
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Arguments

y the response variable: either a factor vector of class labels
(bagging classification trees), a vector of numerical values
(bagging regression trees) or an object of class Surv (bagging
survival trees).

X a data frame of predictor variables.

nbagg an integer giving the number of bootstrap replications.

coob a logical indicating whether an out-of-bag estimate of the er-
ror rate (misclassification error, root mean squared error or
Brier score) should be computed. See predict.classbagg for
details.

control options that control details of the rpart algorithm, see
rpart.control. It is wise to set xval = 0 in order to save
computing time. Note that the default values depend on the
class of y.

comb a list of additional models for model combination, see below
for some examples. Note that argument method for double-
bagging is no longer there, comb is much more flexible.

ns number of sample to draw from the learning sample. By de-
fault, the usual bootstrap n out of n with replacement is per-
formed. If ns is smaller than length(y), subagging (Bühlmann
and Yu, 2002), i.e. sampling ns out of length(y) without re-
placement, is performed.

keepX a logical indicating whether the data frame of predictors should
be returned. Note that the computation of the out-of-bag es-
timator requires keepX=TRUE.

formula a formula of the form lhs ~ rhs where lhs is the response
variable and rhs a set of predictors.

data optional data frame containing the variables in the model for-
mula.

subset optional vector specifying a subset of observations to be used.

na.action function which indicates what should happen when the data
contain NAs. Defaults to na.rpart.

... additional parameters passed to ipredbagg or rpart, respec-
tively.

Details

Bagging for classification and regression trees were suggested by Breiman
(1996a, 1998) in order to stabilize trees.
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The trees in this function are computed using the implementation in the rpart
package. The generic function ipredbagg implements methods for different
responses. If y is a factor, classification trees are constructed. For numerical
vectors y, regression trees are aggregated and if y is a survival object, bagging
survival trees (Hothorn et al, 2002) is performed. The function bagging offers
a formula based interface to ipredbagg.

nbagg bootstrap samples are drawn and a tree is constructed for each of them.
There is no general rule when to stop the tree growing. The size of the trees
can be controlled by control argument or prune.classbagg. By default, clas-
sification trees are as large as possible whereas regression trees and survival
trees are build with the standard options of rpart.control. If nbagg=1, one
single tree is computed for the whole learning sample without bootstrapping.

If coob is TRUE, the out-of-bag sample (Breiman, 1996b) is used to estimate
the prediction error corresponding to class(y). Alternatively, the out-of-bag
sample can be used for model combination, an out-of-bag error rate estima-
tor is not available in this case. Double-bagging (Hothorn and Lausen, 2003)
computes a LDA on the out-of-bag sample and uses the discriminant vari-
ables as additional predictors for the classification trees. comb is an optional
list of lists with two elements model and predict. model is a function with
arguments formula and data. predict is a function with arguments object,
newdata only. If the estimation of the covariance matrix in lda fails due to
a limited out-of-bag sample size, one can use slda instead. See the example
section for an example of double-bagging. The methodology is not limited to
a combination with LDA: bundling (Hothorn and Lausen, 2002) can be used
with arbitrary classifiers.

Value

The class of the object returned depends on class(y): classbagg, regbagg
and survbagg. Each is a list with elements

y the vector of responses.

X the data frame of predictors.

mtrees multiple trees: a list of length nbagg containing the trees (and
possibly additional objects) for each bootstrap sample.

OOB logical whether the out-of-bag estimate should be computed.

err if OOB=TRUE, the out-of-bag estimate of misclassification or
root mean squared error or the Brier score for censored data.

comb logical whether a combination of models was requested.

For each class methods for the generics prune, print, summary and predict
are available for inspection of the results and prediction, for example:
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print.classbagg, summary.classbagg, predict.classbagg and
prune.classbagg for classification problems.

Author(s)

Torsten.Hothorn <Torsten.Hothorn@rzmail.uni-erlangen.de>

References

Leo Breiman (1996a), Bagging Predictors. Machine Learning 24(2), 123–140.

Leo Breiman (1996b), Out-Of-Bag Estimation. Technical Report ftp://ftp.
stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z.

Leo Breiman (1998), Arcing Classifiers. The Annals of Statistics 26(3), 801–824.

Peter Bühlmann and Bin Yu (2002), Analyzing Bagging. The Annals of Statistics
30(4), 927–961.

Torsten Hothorn, Berthold Lausen, Axel Benner and Martin Radespiel-Troeger
(2002), Bagging Survival Trees. Preprint, Friedrich-Alexander University Erlangen-
Nuremberg, http://www.mathpreprints.com/.

Torsten Hothorn and Berthold Lausen (2002), Bundling Classifiers by Bag-
ging Trees. Preprint, Friedrich-Alexander University Erlangen-Nuremberg, http:
//www.mathpreprints.com/.

Torsten Hothorn and Berthold Lausen (2003), Double-Bagging: Combining
classifiers by bootstrap aggregation. Pattern Recognition 36(6), 1303–1309.

Examples

# Classification: Breast Cancer data
data(BreastCancer)
# Test set error bagging (nbagg = 50): 3.7% (Breiman, 1998,
# Table 5)
mod <- bagging(Class ~ Cl.thickness + Cell.size

+ Cell.shape + Marg.adhesion
+ Epith.c.size + Bare.nuclei
+ Bl.cromatin + Normal.nucleoli
+ Mitoses, data=BreastCancer, coob=TRUE)

print(mod)
# Test set error bagging (nbagg=50): 7.9% (Breiman, 1996a,
# Table 2)
data(Ionosphere)
Ionosphere$V2 <- NULL # constant within groups
bagging(Class ~ ., data=Ionosphere, coob=TRUE)

# Double-Bagging: combine LDA and classification trees
# predict returns the linear discriminant values, i.e.

ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z
ftp://ftp.stat.berkeley.edu/pub/users/breiman/OOBestimation.ps.Z
http://www.mathpreprints.com/
http://www.mathpreprints.com/
http://www.mathpreprints.com/
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# linear combinations of the original predictors
comb.lda <- list(list(

model=lda, predict=function(obj, newdata)
predict.lda(obj, newdata)$x))

# Note: out-of-bag estimator is not available in this
# situation, use errorest
mod <- bagging(Class ~ ., data=Ionosphere, comb=comb.lda)
predict(mod, Ionosphere[1:10,])

# Regression:
data(BostonHousing)
# Test set error (nbagg=25, trees pruned): 3.41 (Breiman,
# 1996a, Table 8)
mod <- bagging(medv ~ ., data=BostonHousing, coob=TRUE)
print(mod)

learn <- as.data.frame(mlbench.friedman1(200))
# Test set error (nbagg=25, trees pruned): 2.47 (Breiman,
# 1996a, Table 8)
mod <- bagging(y ~ ., data=learn, coob=TRUE)
print(mod)

# Survival data
# Brier score for censored data estimated by
# 10 times 10-fold cross-validation: 0.2 (Hothorn et al,
# 2002)

data(DLBCL)
mod <- bagging(Surv(time,cens) ~ MGEc.1 + MGEc.2 + MGEc.3 +

MGEc.4 + MGEc.5 + MGEc.6 +
MGEc.7 + MGEc.8 + MGEc.9 +
MGEc.10 + IPI, data=DLBCL,
coob=TRUE)

print(mod)
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Appendix B

Variable Description

The following table gives a short description of the 62 variables which

are derived from a HRT image and were used as the basis for classifier

construction in this work. The definition of a subset of them used for the

simulation model is described in Chapter 9. For the details we refer to

Heidelberg Engineering (1997).
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N

o.
V

ariable
D

escription
N

o.
V

ariable
D

escription
1

ag
area

global
32

vbsi
volum

e
below

surface
inferior

2
at

area
tem

poral
33

vasg
volum

e
above

surface
global

3
as

area
superior

34
vast

volum
e

above
surface

tem
poral

4
an

area
nasal

35
vass

volum
e

above
surface

superior
5

ai
area

inferior
36

vasn
volum

e
above

surface
nasal

6
eag

effective
area

global
37

vasi
volum

e
above

surface
inferior

7
eat

effective
area

tem
poral

38
vbrg

volum
e

below
reference

global
8

eas
effective

area
superior

39
vbrt

volum
e

below
reference

tem
poral

9
ean

effective
area

nasal
40

vbrs
volum

e
below

reference
superior

10
eai

effective
area

inferior
41

vbrn
volum

e
below

reference
nasal

11
abrg

area
below

reference
global

42
vbri

volum
e

below
reference

inferior
12

abrt
area

below
reference

tem
poral

43
varg

volum
e

above
reference

global
13

abrs
area

below
reference

superior
44

vart
volum

e
above

reference
tem

poral
14

abrn
area

below
reference

nasal
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