Developing Concepts and Methods for
Module and
Integration Tests for Models of Reactive
Systems

Dissertation
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
der Universitat Dortmund
am Fachbereich Informatik

von

Yusufu Kyeyune

Dortmund

2000

Tag der miindlichen Priifung: 03. Juli 2000

Dekan: Professor Dr. Bernd Reusch

Gutachter:
Professor Dr. Bernd Reusch

Professor Dr. Peter Marwedel

Acknowledgements

I would like to express my gratitude to Prof. Dr. Bernd Reusch for supervising my thesis as
well as to Prof. Dr. Peter Marwedel. I would like to thank Prof. Dr.-Ing. Claudio Moraga
for his valuable advice in various areas. I would also like to thank Dr. Hubert Wagner
for the valuable discussions about temporal logic. In particular, I would like to thank
Dr. Eike Riedemann and Dr. Karl-Heinz Temme, whose friendship has been a constant
source of intellectual and moral encouragement.

My special thanks go to Mr. Dieter Ellerkmann for his continuous parental advice and
financial support.

Last but not least, I would have been unable to complete my dissertation without the
help and support of my wife Amina Betty Kyeyune Nalongo and the understanding which
she and my seven children gave me.

I would like to dedicate this work to both my grandmothers the late Mwamiini and
princess Namaalwa, who gave me so much love and insipiration. They helped me to
become the person I am.

v

Preface

In his analysis of control-system problems, Neumann' states that human errors of users of
computers play a smaller role than system problems including hardware and software due
to design and implementation faults. The system-design process, he notes, is typically
the source of many system flaws. Particularly annoying are those flaws that remain
undetected because they are difficult and expensive to fix — if they are detected in later
phases of the development.

Studies have shown that errors introduced in the specification stage of the system
development are often more costly to correct (cf. [143], chapter 2). Boehm states that
errors introduced during the requirements phase can cost up to 200 times more to correct
than errors introduced later in the cycle (cf. [14]) and can have an impact on safety. Yet
Gibbs [42] shows that 88% of all projects were totally redesigned. Today safety control
systems are in operation. Increasingly more reactive systems (e. g. control systems for
processes) including software and hardware will be developed in the future. Especially
the software — if it is incomplete and faulty — would cause not only large-scale economic
damage but could also endager human life (cf. [94]). Therefore techniques to provide the
intended specifications and to find errors early are of great importance.

The aim of this thesis is to develop practical methods which can aid the system
designer /tester by the detection and/or elimination of flaws of reactive systems.

Software reliability poses a remarkable problem for the development of large computer
systems. Various methods have been developed to increase software reliability. Those
which are based on visual specification gained a broad application due to their success.
Pictures, diagrams, graphs and similar graphical representations are used to express con-
trol information, data structures, computer organisations and system behaviour in ways
which are understandable and (more or less) precise.

State-transition-diagrams, a form of finite state machines, are a recognised and a very
wide spread model for the description of system behaviour. Today, many of the present
CASE-tools support formal specification with finite state machines. In the area of software
verification, automata theory plays a big role due to its formal clarity (cf. [22, 37, 45]).
In this research area, a lot of effort is being devoted to finding efficient algorithms or
heuristics which, for instance, satisfy certain test criteria.

In this thesis, therefore, the language of statecharts which allows the specification of
finite automata and their extension serves as a framework for the development of practical

!Peter Neumann, moderator of the internet risks forum, presents a comprehensive coverage of many
different types of computer-related risks in [112].

vi

methods. In particular, statecharts [50, 56] extend the conventional finite state machines
(FSMs) with the notions of hierarchy, orthogonality, broadcasting and history. Hierarchy?
is achieved by decomposing a state of a statechart into another statechart. Orthogonal-
ity is supported by a synchronous operation of “statechart composition” permitting a
broadcast-style of communication among the constituent statecharts. History* is a mech-
anism for allowing to ‘remember’ a previous visit to a state.

The language of statecharts has been used in the specification of a number of real-world
systems. As such, it is implemented by various CASE-tools, e. g. STATEMATE?, a graphi-
cal working environment for engineers involved in specifying, analysing and designing large
and complex reactive systems (cf. [55]). STATEMATE has sold more than 2000 licenses
worldwide which are used with roughly equal parity in the fields of aerospace, electronics,
automobile and telecommunications. More recently, a number of CASE-tools supporting
the object-oriented development employ statecharts for specifying the behaviour of object
classes as state machines (cf. [52]).

Statecharts enable the description to be viewed at different levels of detail®, and make
even very large and complex specifications manageable and comprehensible. However, the
test problem/verification problem remains difficult: (1) because the interaction between
the components, (2) because testing a complete system, in many cases, leads to “space
explosion” problem. An alternative is to divide the system test into two phases: (i)
Perform detailed tests for individual components (module test). (ii) Then test the proper
integration of an increasing number of components, adding one by one until all components
are integrated. This, nevertheless, leads to integration test problems.

After discussions with various outstanding companies (in particular in the automobile
industry) and software houses including institutes for software quality and reliability, it
is fair to say that there is still a great problem to be solved in finding and applying
software methods to overcome/eliminate space explosion problems. In particular, there
are hardly any practical methods for integration tests. The methods developed here can
be applied to large and complex models. In fact, the space explosion problems are reduced
by generating test cases on different levels of the system (cf. [88]). This is established
following one of the most fundamental notions of the software engineering techniques,
namely abstraction (cf. [41]). Though the methods in [88] are developed on models of
statecharts, they should however, with a little modification be applicable to other graph-
based specifications. In other words, the aim here is to establish methods which are not
restricted to statecharts. In fact, their application should be easily extendable to different
specification languages.

In the following, we’ give a detailed structure of this thesis:

1. In Chapter 1 we present an introduction to reactive systems and discuss the problems

Zhierarchical models (modularity)

3corresponds to product automata (simultaneity)

4automata with memory

Strademark of i-logix, Inc. Burlington, MA.

Sbecause hierarchical statecharts allow decomposition of components/states into subcomp-
nents/substates

"In this thesis ‘we’ refers to I (the author).

10.

vii
in the specification and design of such large and complex systems.

In Chapter 2 we describe the basic mathematical notions that will be needed
throughout the rest of this thesis.

The main objective of this thesis as well as the general procedure of system devel-
opment and testing will be presented in Chapter 3.

. We devote Chapter 4 on one hand to present an overview of the STATEMATE

tool (cf. section 4.1), and on the other hand to give an informal introduction to
statecharts (cf. Section 4.2).

In Chapter 5 we develop a formal account of the syntax and semantics of statecharts.
The establishment of such a formal statechart specification guideline contributes to
the simplifications of the tests to be designed for the statechart model (design for
testability).

Generally, the statechart behaviour is described in terms of steps, therefore, in
Chapter 6 we deal with defining the behaviour precisely in terms of transitions
“which execute a step”, i. e., describing a step formally, with all its ramifications and
side effects. We describe two basic models of the execution of a step, the qualitative
time model (cf. Section 6.2) and the qualitative time model (cf. Section 6.3).

In Chapter 7 we address the test problems and establish practical methods which
can aid the system designer/tester to detect and/or eliminate reactive system flaws.
In particular, we provide a module test approach which can be applied to reduce the
space explosion problems that have been discussed in the Preface®.

The purpose of Chapter 8 is to establish concepts and methods which can aid the
testing of the interacting processes (modules) of the whole system.

Chapter 9 summarises the main results as well as research contributions obtained in
this thesis, and indicates open problems and further work that remains to be done.

Appendix A provides an overview of the subject of temporal logics. Our main
purposes in doing so are to enable the reader

(a) to become acquainted with the basic ideas of this formal language, and

(b) evaluate the advantages of applying temporal logics to program reasoning, in
particular to concurrent programs

Moreover, the contribution of this Appendix can be seen as a preparation for further
work dealing with analysis techniques for reactive programs, in particular, for the
development of methods for the analysis of time dependent behaviour as well as in-
ternal variables (cf. Section 8.1.3). Two major classes of techniques, proof-theoretic
reasoning and model-theoretic reasoning can be used for formal reasoning about
concurrent systems.

80of this thesis

viii

11. The main purpose of Appendix B is to establish the full theoretical background of
reactive models, and especially to classify statecharts in terms of nondeterminism
and pure parallelism and bounded cooperative concurrency, and above all, to remain
as close as possible to classical finite automata. Furthermore, this decision provides
us with background information for the comparisons of our concepts developed in
Subsection 7.7.3 with other related techniques discussed in Subsection 7.6.

Contents

1 Introduction

1.1

1.2 Motivation and aim of the approach

What are reactive systems?

1.2.1 The major problem of reactive systems
1.2.2 Proposed solutions
1.2.3 Observations,
1.24 Anmalysis
1.25 Testingo
1.2.6 Aim of the approach

2 Mathematical Terms

2.1
2.2

Sets, Relations,

Graphs

3 Tasks and Solutions for Statechart Models

3.1
3.2

The main task of testing hierarchical statechart models . . .
General procedure of system development and testing
3.2.1 Prerequisites. oL
3.2.2 The steps of reactive system development.

3.2.3 Validation of the model using tests

4 Introduction to STATEMATE and Statecharts

4.1

4.2

The CASE-Tool STATEMATE

4.1.1 How does STATEMATE deal with reactive systems?

4.1.2 The overall structure of STATEMATE
Informal introduction to statecharts
4.2.1 The basic features of statecharts
4.2.2 Other basics of statecharts

X

10
10
11
12

13
13
14

17
17
18
18
19
20

X CONTENTS
5 The Formal Syntax and Semantics of Statecharts 33
5.1 Overview of statechart specification guideline. 34
5.1.1 Nodes/States 34
5.1.2 Arcs/Transitions 36

5.2 The formal syntax of statecharts 37
5.2.1 State hierarchy oo 37
5.2.2 Labels of transitions L 40
5.2.3 Statechart definitions Lo 41
5.2.4 Relationship between a statechart and a labelled digraph 48
5.2.5 Syntax of statecharts with transformations 52
5.2.6 Summary of Section 5.2o 55

5.3 A glance at the variants of statecharts 57
5.3.1 Discussing syntactic and semantic problems of statecharts 58
5.3.2 Comparison of statecharts variants 61
5.3.3 Summary of Section 5.3 L 64

5.4 Semantics of statecharts 66
5.4.1 State configurations L 66
5.4.2 Transitions in parallel states (nodes) 67
5.4.3 Transforming AND-states into OR-states 70
5.4.4 Notion of scope of transitions 83
5.4.5 Conflict between transitions (nondeterminism) 88
5.4.6 Dealing with conflict between transitions (nondeterminism) 89
5.4.7 Summary of Section 5.4 90

6 Step Semantics of Statecharts 93
6.1 Overview of step semantics of statecharts 93
6.2 Step semantics based on qualitative time model 96
6.2.1 The basic step algorithm (system part) 97
6.2.2 The basic step algorithm (interface part) 101
6.2.3 The Go-Step and Go-Repeat algorithms (untimed part) 102
6.2.4 A fair transition system for Go-Step (F'TSgostep) - - - - v v v o o .. 104
6.2.5 A fair transition system for Go-Repeat (FT Sgorepeat) - - - « - - - - 105

6.3 Step semantics based on quantitative time model 107
6.3.1 Timeout events 107
6.3.2 The clocked transition systems of statecharts 108

6.4 Statecharts in object-oriented designso 111

CONTENTS xi

6.5 Experiences with statecharts/STATEMATE 112
6.5.1 Positive experiences with statecharts/STATEMATE 112
6.5.2 Negative experiences with statecharts/STATEMATE 113

7 Module Test Approach 115

7.1 Verification/validation of reactive models 116
7.1.1 Verification methods 116
7.1.2 Background on path testing L. 117
7.1.3 Tests performed using the Check Model tool 118

7.2 Motivation and aim of the module test approach 120

7.3 Definitions of the test criteria 121

7.4 Components of test selection strategies 121
7.4.1 Manual test selection versus automatic test selection 122
7.4.2 Components of automatic test selection 122
7.4.3 Common test selection strategies 122

7.5 The test principles for validating the statechart model 124

7.6 Related work 124
7.6.1 Preliminaries for methods based on FSMs 125
7.6.2 Existing solutions based on finite state machines (FSMs) 128
7.6.3 Criticisms of the proposed state-based techniques 134

7.7 Ways of approaching the module test concepts 138
7.7.1 Problems of testing hierarchical system models 138
7.7.2 Preliminaries for graph-theoretic based methods 138
7.7.3 Developing concepts to operate on levels of the hierarchical statecharts145
7.7.4 Levels of an OR~statechart 148

7.8 Methods for module conceptso 149
7.8.1 Test design requirement 149
7.8.2 Algorithms for the generation of test paths 150

7.9 Formal Algorithms 155
7.9.1 Test paths in a topologically sorted graph 155
7.9.2 Generation of test paths in a strongly connected component 157

8 Integration Test Approach 159

8.1 Incremental integration test Lo 159

8.1.1 Example of interacting components 160

8.1.2 Drawbacks of the incremental integration test approach 160

X1i

CONTENTS

8.1.3 Integration test concepts

8.2 Goal oriented analysis

Contributions, Conclusions and Open Problems

9.1 Summary of contributions
9.1.1 Contributions to a statechart standard specification guideline. . . .
9.1.2 Contributions with respect to related methods
9.1.3 Contributions to the module test approach
9.1.4 Contributions to the integration test approach

9.2 Concluding remarks and open problems

Temporal logic
A.1 Introduction to temporal logic 0L
A.2 Classification of temporal logic.,
A.2.1 Branching versus linear time L.
A.2.2 Points versus intervals o0
A.2.3 Discrete versus continuous
A.2.4 Past versus futureo
A.2.5 Global versus composition
A.2.6 Qualitative versus quantitative
A.3 Basic aspects of linear temporal logic
A.4 Propositional linear temporal logic
A.4.1 Syntax and notational convetions L.
A4.2 Semantics
A.4.3 Notions of “Validity”
A.4.4 Formal system of PLTL
A.5 First-order linear temporal logic L.
A5.1 Syntaxof Lrpo« o o
A.5.2 Semanticsof Lro
A5.3 Syntax of FOLTL
A.5.4 Semantics of FOLTL
A.6 Decidability of linear temporal logic
A.7 Model checking of linear temporal logic
A.8 Applications of temporal logic to program reasoning
A.8.1 Properties of concurrent programs L.

A.8.2 Analysis techniques oo

167
167
167
170
172
173
174

CONTENTS xiii

B Theoretical Background of Concurrent Models 193
B.1 The basic features for concurrency 194
B.1.1 Nondeterminism, Parallelism and Alternation 194
B.1.2 Application of the features to classes of automata 195
B.1.3 Acceptance criteria 195
B.1.4 Bounds for classical automata 0L 196

B.2 (E,A,C)-automata 197
B.2.1 Definitions 197
B.2.2 Idea of cooperative automata 198

B3 (E,A,C)w-automata 200
B.3.1 Definition of acceptance criteria 200
B.3.2 Extending the definition of the acceptance criteria 201

B.4 Exponential and multi-exponential relations 201
B.5 Results for the X*-case 202
B.5.1 Upper bounds for the ¥*-case 203

B.5.2 Lower bounds for the >*-case 205

Xiv

CONTENTS

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1

3.1

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

A transformational versus a reactive system.
Classification of real systems
A run composed of a sequence of steps and statuses
A statechart containing a (possibly) instantaneous state S2

How many occurrences of event el are necessary to change from state S1
to state S37 . .o L

A graph with multiple edges. L.

An overview of system development 000

Different views of a System Under Development (SUD) in STATEMATE

Overall structure of STATEMATE.
A statechart for a simple coffee vending machine SCVM
Enter-by-history L
Enter-by-deep-history. o

Representing static reactions L

Overview of statechart specification guideline.
Mlustrating the children function
A simple statechart S00.
Statechart SO
The decomposition of S2
The decomposition of S8
The decomposition of S6
Very simple OR-statechart S00
The simple OR-graph G of very simple OR-statechart S00

5.10 Some connectors realized by STATEMATE
5.11 Representing figure 5.10 in another way

5.12 Relationship between a statechart and a digraph

XV

Xvi

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24

5.25
5.26
5.27

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1
7.2
7.3
7.4
7.5
7.6
7.7

8.1

LIST OF FIGURES

Exiting and entering state S17 59
A statechart with preemptive or non-preemptive interrupt by transition ¢2 61
Statechart with interlevel transitions 64
Statechart with desired extension 65
An orthogonal Statechart for SO. 72
The automata product for SO 73
[Mustrating Remark 5.10 oL 73
Another orthogonal statechart SO used to illustrate Case (3)(a)ii 77
An example of nondeterminism 7
Statechart SO used to illustrate Case (3)(a)iii 78
[lustrating Case (3)(a)iiimore 78
The simple OR-graph product GO which represents S1 of Figure 5.13 on

page D9. . .. 85
The statechart for the telefax machine BEAUTY. 87
Mlustrating some conflicts L. 88
[Mustrating priority 90
Overview of step semantics of statecharts 94
A functional view of a reactive system and its environment 97
[Mlustrating an enabled transition 98
Nonconflicting transitions L. 100
An RSML state machine that will not terminate 103
A statechart and RSML example 104
Fair transition system F'T'Sgostep - - - -« « v v oo oo 105
Fair transition system F'T'Sgorepeat - - -« « « v v v v e oo 106
Clocked transition system CT'Sgostep - - - -« v v v v v v v oo 109
Clocked transition system CT'Sgorepeat - - - « « « v v v v o e e e 110
Components of test selection L. 123
A finite state machineo 127
G’ is a subgraph of graph G. 139
The reduced graph G7 of digraph G of OR-statechart S00 148
An example graph G to illustrate the method described in Algorithm 7.2 . 152
Graph GI.. e 153
The reduced graph G17 of digraph G1. 154
The statechart for the telefax machine BEAUTY 161

LIST OF FIGURES xvii

8.2

8.3
8.4

Al
A2

B.1
B.2

Representing the statechart BEAUTY (Figure 8.1) in a rather more ab-

stract formo 162
Reduced OR-graph of Figure 8.2. 163
Implementing automata products as lists 164
Linear time versus branching time. 179
Examples of temporal operators and intended meaning. 182
Bounds for classical automata L 197

Results for the YX*-case 203

xviii LIST OF FIGURES

List of Tables

7.1 Comparing the four methods

XIX

XX

LIST OF TABLES

Chapter 1

Introduction

1.1 What are reactive systems?

Generally, systems can be divided conceptually into transformational and reactive sys-
tems. Figure 1.1 shows a transformational and a reactive system. Transformational
systems are those invoked when the inputs are ready. The outputs are produced after
a computation period. Figure 1.1 illustrates, on the other hand, that reactive systems
are systems in which inputs are not ready at a specific point of time. A typical reactive
system is a traffic-light controller — the inputs arrive in endless and perhaps unexpected
sequences.

Many industrial systems can be identified as “reactive”. In a landmark paper [125]
Pnueli characterized reactive systems as being to a large extent event-driven, continuously
having to react to external and internal stimuli. Reactive systems thus subsume many
programs labelled as concurrent, parallel, or distributed, as well as control programs. Typ-
ical examples of reactive systems include control and communication systems, computer
operating systems, networks, telephones, automobiles, VLSI circuits, industrial robots, in-
teractive software and real-time, embedded systems. Real-time systems are usually used
for critical operations, e.g., patient monitoring systems, aircraft, process control, and have
very strict requirements. Real-time systems are also referred to as mission critical (see
41]).

Figure 1.2 shows the classification of real systems. Since reactive systems are viewed

as real systems, it is not possible to give a formal definition.

In [6] Berge modifies Pnueli’s definition:

Definition 1.1 A reactive system is one that is in continual interaction with its envi-
ronment and executes at a pace determined by that environment.

Because of the property of “continual interaction”, reactive systems have no distinguished
“end state” but rather an “idle state” or “rest state” for every “loop” or run. Due to the
property of “pace determined by that environment”, the correct operation of the reactive
system requires a high performance in order to satisfy the conditions of the environment.

2 CHAPTER 1. INTRODUCTION

Input from Output to
environment environment
—_— = e ——

Transformational System

Time

I nputs Ready Outputs Ready

Input from Output to
environment environment
T —

Reactive System

Time

Legend: * /F "’ decribes the inputs from the environment to system (w. r. t. time);

o ¢ '’ describes the outputs from system to environment (w. r. t. time).

Figure 1.1: A transformational versus a reactive system.

Real Systems

Real-time Systems

Reactive Systems

Figure 1.2: Classification of real systems

However, this issue is a very complex and wide ranging subject and therefore it cannot
be fully handled in the scope of this thesis.

1.2. MOTIVATION AND AIM OF THE APPROACH 3
1.2 Motivation and aim of the approach

Clearly, for the development of large and complex reactive systems, very strict require-
ments have to be met.

1.2.1 The major problem of reactive systems

Over the last two decades, both industry and academic communities have carried out a
lot of research dealing with finding good methods to aid in the development of reactive
systems.

One of the major problems in the specification and design of large and complex reac-
tive systems lies in the difficulty of describing the reactive behaviour® in ways which are
realistic to model all relevant aspects of the real behaviour, and clear enough to enable a
computerized analysis.

1.2.2 Proposed solutions

Several formal methods have been proposed to address the problem of specifying and
modelling behaviour of reactive systems. Notable among the solutions are Statecharts
[50, 56], Lustre [19], Signal [47], ESTEREL [2], Petri nets [139], communicating sequen-
tial processing [63], the calculus of communicating systems [105] and Temporal logic [126].
Most of these models provide automata based graphical languages. They are implemented
in tools (e. g., logic proof systems, decision procedures and simulators) for verifying dif-
ferent aspects, such as safety properties of specified requirements. Due to the fact that
reactive systems are usually large-scale and complex, the specification languages should
provide useful features such as hierarchy, broadcasting communication, and ability to in-
corporate variables. Furthermore, as the verification of safety properties is very critical
and complex, especially for real-time systems, the verification task should be performed
decisively.

Generally, these formal models can be divided into three major classes:
(1) models based on state machines,

(2) models based on logic, and

(3) models that extend process algebra.

1.2.2.1 Models based on state machines

Finite state machines (FSMs) and their corresponding state transition diagrams (or in
short ‘state diagrams’) are the most popular model for describing the dynamic behaviour

IThe behaviour of a reactive system can be considered the set of input and output events, conditions,
actions, perhaps with some additional information such as timing constraints.

4 CHAPTER 1. INTRODUCTION

of reactive systems since the temporal behaviour of such systems is most naturally repre-
sented in form of states and transitions between states (cf. [64, 66]). State diagrams are
simply directed graphs with nodes denoting states and arrows (labelled with triggering
events and guarding conditions) denoting transitions. From any state, an input language
token (event or condition) initiates a transition labelled with that token. A transition
may be associated with an output token which provides output to the user or a process-
ing action that is performed by the system during that transition (this is the formalism
of the Mealy machine).

However, it should be pointed out that conventional state diagrams are inappropriate
for the behavioural description of complex control due to the following problems:

(i) State diagrams do not explicitly support concurrency. Without explicit support for
concurrency, a complex system will precipitate an explosion in the number of states.

(ii) State diagrams are “flat” and unstructured. The lack of hierarchy can cause an
extreme increase in the number of arcs.

Statecharts

Statecharts were proposed by D. Harel [50] to overcome the limitations of state-transition
diagrams that are flat and unstructured while preserving their visual nature. In partic-
ular, statecharts [50, 56] extend the conventional FSMs with the notions of hierarchy,
orthogonality, broadcasting and history. Hierarchy? is achieved by decomposing a state of
a statechart into another statechart. Orthogonality® is supported by a synchronous oper-
ation of “statechart composition” permitting a broadcast-style of communication among
the constituent statecharts. History* is a mechanism to ‘remember’ a previous visit to a
substate of a state. These features make statecharts a very powerful language to spec-
ify the behaviour of complex reactive systems. Statecharts are well accepted in industrial
applications. They are implemented in commercial tools, e. g., STATEMATE and RHAP-
SODY?.

Following the STATEMATE specification, the behaviour is described as a set of pos-
sible runs, where a run consists of a series of detailed snapshots of a system’s situation
and steps which lead from one status to the next status; such a snapshot is known as a
status.

The first in the sequence is the initial status, and each following one is determined

from its predecessor by executing a step. Figure 1.3 shows a run of a System Under
Development (SUD).

Informally speaking, a step is a unit of dynamic behaviour, at the beginning and end
of which a SUD is in some ‘legal’ status.

Zhierarchical models (modularity)

3corresponds to product automata (simultaneity)

4automata with memory

®both STATEMATE and RHAPSODY are trademarks of i-logix, Inc.

1.2. MOTIVATION AND AIM OF THE APPROACH bt

sep N\ sep 7\ slep < >
Q _/ _/
status status status status
(initial)

Figure 1.3: A run composed of a sequence of steps and statuses

A status consists of the information about active states and activities, values of
data items and conditions, generated events and scheduled actions, and some information
regarding the system’s history (its past behaviour).

During a step (cf. Subsection 6.2.1, Definition 6.6), the environment activities can
generate external events, change truth values of conditions, update variables and other
data items. Such changes will affect the status (cf. Subsection 6.2.1, Definition 6.1) of the
system; they trigger state changes in the controllers (i.e., trigger transitions in statecharts)
activate and deactivate activities, modify conditions and variables or other data items,
etc.

According to [54], the execution of a step must always lead to a ‘legal configuration’
(cf. Subsection 5.4.1, Definition 5.25). Generally, it is easy to define the effect of a step
involving a single statechart transition, described syntactically by an arc, or several ‘non-
conflicting’ transitions in separate orthogonal components. However, in the design of
real life complex systems there are a variety of nontrivial situations with ‘conflicting’
transitions.

Execution of a statechart model proceeds in steps. The semantics of an execution step
is based on the synchrony hypothesis. The perfect synchrony hypothesis states that
the output occurs simultaneously with the input that caused it®. The concept of perfect
synchrony was defined by the developers of Esterel [2, 11]. In [71], this concept is described
as a property of responsiveness. For some applications this hypothesis can cause paradoxes
since in reality no reaction occurs simultaneously with its own cause. Therefore, this
notion must be applied with care. In Esterel, e. g., these paradoxes are circumvented by
syntactically forbidding situations in which they can arise (by a semantical (static) check”
upon paradoxes). Nevertheless, this hypothesis is justified, because it only represents
an abstract® notion of time. Indeed, there are many real-time systems whose response
times are much shorter than the time intervals between the occurences of two successive
input events. Above all, this hypothesis is important for high-level specification where
one is not — yet — interested in dealing with the implementation details on one hand,
but on the other hand would like to specify in an accurate, non-fuzzy way. During the
implementation phase, a more realistic modelling of the actual implementation can be

6This hypothesis assumes that the system is faster than the environment and, hence, the response to
an external stimulus (event) is always generated in the same step that the stimulus is introduced.

“of the compiler

8The perfect synchrony hypothesis is an abstraction that limits the interference that may occur in the
time period separating the stimulus from the response and, thus, provides a guaranteed response which
can be modelled as a discrete process.

6 CHAPTER 1. INTRODUCTION

done by introducing explicit delay elements if necessary.

The operational semantics of statecharts (as described in STATEMATE) is a maximal
parallelism semantics inspired by the perfect synchrony hypothesis. Based on the report
of Harel and Naamad in [54], section 9, there are two communication modes:

(1) The synchronous time model in which case the communication with the envi-
ronment is performed after each basic step.

Generally, in the synchronous time model, the system reacts whenever it senses a
unique event. In this way, it is possible that non-zero time passes between the time
point in which an external event occurs and the time the system responds to it. In
this particular case, assuming that the response requires several steps, each step is
executed only when the unique event is sensed. As a result, the time required to
respond depends on the number of steps needed to complete the system’s response
(but not when implemented in parallel), and as such, the hypothesis does not hold.

(2) The asynchronous time model where the communication is achieved by allowing
several basic steps to take place within a single point in time.

Under this time model the perfect synchrony hypothesis holds.

In spite of the feature of orthogonality, it may be useful to retain the distinction be-
tween cause and effect. For this purpose the principle of causality is introduced. Causal-
ity means that for every event generated at a particular instant of time, there must be
a (causal) chain of events leading backwards to the action that generated this event (see
also [131]).

Another important property, which leads to a large discussion in the course of execu-
tion of a statechart is the concept of instantanecous state. This principle expresses that an
instantaneous state can be entered and exited at the same instant of time. For exam-
ple, when an action generated upon entrance also causes the state to be exited. Figure 1.4
shows an example of a statechart containing a (possibly) instantaneous state S2. Readers
who are unfamiliar with statecharts descriptions are referred to Chapters 4 and 5. In
Figure 1.4 and Figure 1.5, we give names to transition arcs, e. g., t1 and ¢2 in Figure
1.4. Note that these are not part of the syntax but are added solely to allow us a better
exposition. If — due to event el — transition ¢1 is taken the internal event (action) e2 is
generated and state S2 will become active. This issue concerns the question of whether
transition t2 (by event e2) will be executed at the same time. In various published papers
providing a formal statecharts semantics (cf. [50, 54]) instantaneous states are prohibited.
In addition to addressing the problem of instantaneous states, the step semantic supports
the asynchronous time model. With the asynchronous time model, external events and
time progress can trigger an execution step only when no events generated internally can
trigger the execution step.

The hypothetical statecharts variant presented in the survey of von der Beek [158],
however, discusses two possibilities which appear reasonable if instantaneous states are
allowed (as an example, consider Figure 1.5.):

(1) An event is not treated as an entity to be ‘consumed’ after triggering.

1.2. MOTIVATION AND AIM OF THE APPROACH 7

Figure 1.4: A statechart containing a (possibly) instantaneous state S2

SO

Figure 1.5: How many occurrences of event el are necessary to change from state S1 to
state S37

In this case one occurrence of event el (in Figure 1.5) is sufficient. The drawback
of this possibility is that it allows infinite sequences.

(2) An event is treated as an entity to be ‘consumed’ after triggering.

In this case two occurrences of event el (in Figure 1.5) are necessary. This choice
simplifies the modelling of a counter which has to distiguish between occurrences of
the same event.

Nonetheless, von der Beek [158] proposes a third possibility of allowing a combination
of the two possibilities. The idea is to determine for each event in the trigger whether it
will be ‘consumed’ or not if it triggers the transition.

Lastly, it is important to discuss the durability of events. In many variants of
statecharts an event has an instantaneous occurrence. This issue concerns the question of
whether an event is durable for more than “an instant of time”. Such a kind of event is
often referred to as discrete event. In the semantics of [54], an event is sensed only in the
step following the one in which it was generated. Even in case of asynchronous models
when multiple steps of a so-called “super-step” execute at the same instant of time, an
event generated in step x is sensed only in step x + 1.

Timed and Hybrid Statecharts [78] also use the discrete event approach. In addition,

8 CHAPTER 1. INTRODUCTION

instantaneous states are allowed. Events persist as long as only untimed transitions are
executed. That is to say, as long as time does not progress. Events are only consumed if
a timed transition is executed.

Petri nets

The Petri net model [123, 140] is another type of state-based model, specifically proposed
to model systems that comprise interacting concurrent tasks. A Petri net consists of
a set of places, a set of transitions, and set of tokens. Single arrows connect places to
transitions and transitions to places. A place is called an input of a transition (respectively,
a transition called an input of a place) if there is an arrow leading from the place to the
transition (respectively, from the transition to the place). Petri nets are an operational
formalism. They support the notion of a state and its evolution. The states of a Petri
net are represented graphically as a marking of its places, an assignment of a nonnegative
number of tokens to each place. The behaviour of a Petri net is specified by the following
rules:

(i) A transition is enabled in a given marking if all its input places are marked, i. e.,
each of its input places has at least one token.

(ii) An enabled transition may fire. If a transition fires one token is removed from each
of its input places, and one token is deposited into each output place.

So far, we have described simple Petri nets, called place/transition nets. For a compre-
hensive study of Petri nets, see [123].

Petri nets are useful because they can effectively model a variety of characteristics.
Petri nets can describe both asynchronous and nondeterministic behaviour. Petri nets can
as well be used to check and validate certain useful system properties such as safeness and
liveness. Safeness, e. g., is the property of Petri nets that guarantees that the number of
tokens in the net will not grow indefinitely. Liveness, is on the other hand, the property
of Petri nets that guarantees a dead-lock free operation, by ensuring that there is always
at least one transition that can fire.

However, before Petri nets can be effectively used in the design of real-systems, some
problems ought to be addressed, e. g.:

(i) Since Petri nets are designed to describe concurrency rather than the passage of
time, they cannot express timeouts and durations.

(ii) Petri nets have limitations that are similar to those of an FSM; they can become
incomprehensible with any increase in the number of places and transitions.

(iii) Petri nets only model a system’s control features, not its data dependencies. This is
due to the fact that tokens are “anonymous”, and thus dependencies between data
and control cannot be modelled.

To address these problems, a number of approaches, some with tool support, have
been proposed. Some of the notable solutions are given in the following:

1.2. MOTIVATION AND AIM OF THE APPROACH 9

(1) Adding time to Petri nets: Among the most general extensions is the one which
associates a minimum and a maximum firing time with each transition (cf. [123]).
In this mechanism, when a transition is enabled, it cannot fire before the minimum
time and it must fire at least after the maximum time has expired, unless it was
previously disabled by the firing of a ‘conflicting’ transition.

(2) For modelling real systems, a number of abstraction and modularization techniques
have been suggested, e. g., mechanisms that exploit the object-oriented paradigm
(cf. [18]). See also special lecture slides “Structured Petri nets” from summer
semester 1998 in [30].

(3) Associating tokens with values. In this approach the firing of transitions may depend
on such values (see for example [40]).

It is fair to note that most significant properties of systems modelled with Petri nets
are either intractable or undecidable (cf. [123]). This means that the analysis of most
properties is carried out by applying simulation. This, however, can be time-consuming
and unreliable. In [10], an algorithm known as the Berthomieu-Diaz algorithm, is given
for analysing a timed Petri net for reachability. The idea behind the reachability problem
is to determine whether a given marking m’ can be reached from another marking m
through a ‘suitable’ firing sequence. This problem has important applications to the
analysis of Petri net properties since many other problems can be reduced to it.

1.2.2.2 Models based on logic

Most logics which are applied to reason about reactive systems, especially about con-
current programs, are either first-order predicate logics or temporal logics. Mathematical
logic has been used for several years to specify and to prove properties about computer
programs (cf. [62]). Using logic, one can describe and reason about the behaviour of a
system without building the system first. Such reasoning is based on correctness proofs
rather than experimental testing like simulation. In first-order predicate logic, as in other
logics, formulas are constructed by combining variables, functions, predicates, and log-
ical connectives according to the given rules. In order to meet the requirements of a
critical system component, a variable ¢ is usually included to represent time. The logi-
cal approach can be used to formalise basic system properties as azxioms and to derive
additional properties as theorems (consequences that follow from the basic assumptions).

Nevertheless, since first-order predicate theories are basic mathematical formalisms,
they are not well suited for describing real-world complexities. Therefore, in real systems,
logic is most useful for proving properties about critical system components rather than
the whole system. Another problem of practical application of first-order predicate the-
ories is that a number of general theories are undecidable, i. e., no algorithm exists that
can determine whether a given property can be proven as a theorem. Even though the
incorporated variable ¢ can be used to represent time, Gabbay [38] illustrates drawbacks
of adding an extra time variable to the language of predicate logic (cf. [38] pp. 20ff.).
Often the constructed propositions of predicate logic are not readable. The main reason
is that the described ‘sentence’ contains infinite time structures (for more details, see

10 CHAPTER 1. INTRODUCTION

“Introduction to temporal logic”, in appendix Section A.1). Therefore, for the case of
non-terminating or continuously operating concurrent programs such as operating sys-
tems and network protocols, we need temporal logical operators. The difference between
the models of first-order predicate logics and temporal logics is that temporal logics uses
special symbols to provide a simple and natural, but precise, way of describing the order
in which interactions occur, without the adaption of absolute time measures. Temporal
logic [126] is a formal specification language proposed by Pnueli for the description and
analysis of time-dependent and behavioural aspects of reactive systems (cf. Appendix A).

1.2.2.3 Models that extend process algebra

Process algebras include languages like Calculus of Communicating Systems CCS [105,
106] and Communicating sequential processing CSP [63]. They were proposed to specify
and analyse properties and constraints of concurrent systems without the notion of time.

In the last decade, several timed process algebras have been proposed. Typical ex-
amples are: ACSR, which adds time to CCS [12], and Timed CSP, a timed version of
CSP [145].

1.2.3 Observations

Despite the great achievements made in the research area of reactive systems, it is fair to
say that the problem of developing reactive systems has not yet been completely solved due
to the complexity of the systems. For example, as far as real-time systems are concerned,
tools such as STATEMATE and RHAPSODY support only simulation-based checking of
safety properties, i. e., verification is performed heuristically and no decisive conclusion
can be made. Thus, more efforts must be invested in developing practical methods, which
can aid the system designer/tester by the detection and/or elimination of reactive system
flaws.

1.2.4 Analysis

Many of the modern Computer-Aided Software Engineering (CASE) tools have the ability
to check model “consistency” and “completeness”. This could be seen as a form of syntax
checking in a conventional program. But a mere test of syntactic integrity of the model
has very little to do with a model’s conceptual and logical aspects. Checking that a
model is consistent and complete cannot prevent errors. Since reactive systems have a
continuous interaction with their environment and often rely on a specific environment
behaviour as a premise for their correct operation, it is necessary to carry out real testing
and analysis.

1.2. MOTIVATION AND AIM OF THE APPROACH 11

1.2.5 Testing

Fortunately, a number of CASE tools, e.g., STATEMATE or ProMod® and Stateflow,'°
offer users to codify the specification for the design of a system early in the development
process. Such tools often use graphical formalisms, simulations, and prototyping to enable
the user to express ideas concisely and unambiguously. STATEMATE offers, in addition, a
number of so called “static” tests, such as reachability test, detection of nondeterminism,
deadlock, and wusage of transitions. All of these tests are useful for checking general
properties of the system.

Nevertheless, testing is usually carried out using the common, rather inefficient test
methods. The specification of test cases based on the requirements specification is car-
ried out on a largely intuitive and unsystematic basis. In other words, the system
tester/designer has no information or even hints from the tool how to make a systematic
test. Tool support is available for routine activities such as test execution, monitoring
and test documentation (e. g. [46, 68]).

In fact, the CASE tools are not in a position to carry out sufficient tests for system
models. Tests are offered under particular scenarios. This is often not enough for detection
of all system flaws. The statecharts’ analysis capability (e. g. offered by STATEMATE)
is confined to using reachability analysis to check a small set of properties which is quite
limited. It would be better if the analysis tool were in a position to simulate all possible
combinations of events, conditions, and values of variables in order to make a global test
e. g. for nondeterminism. Unfortunately, even for small statecharts models this leads to
an unimaginable number of variations so that a practical application is not possible!!. As
an example, consider a behavioural model that contains about 40 concurrent components,
each with about 10 states. This has 10%° state configurations in worst case. Therefore,
a test strategy has to be established which allows to test a smaller number of executions
than needed for exhaustive testing and above all, that can be justified to analyse the
most crucial dynamic properties in the model. The term “crucial” here depends on the
abstraction degree of observation and on the required test cases. This involves determining
necessary test criteria like the ones defined in Section 7.3.

Finding efficient procedures for generating test paths of a specified system, modelled
as a statechart, is an important software test problem. Through this process, errors are
discovered and corrected, and we increase confidence in the result system. However, the
fact is that there are hardly general heuristics to aid the system designer in carrying out
efficient and systematic tests.

9an environment developed by a division of DaimlerChrysler in Germany for open, heterogeneous,

networked systems

0an interactive design tool which has been recently developed for modelling and simulating complex
reactive systems. With Stateflow, users can develop models of event-driven systems using finite state
machines theory, statechart formalisms, and flow diagram notation.

'The number rises exponentially with the number of the input and output state variables.

12 CHAPTER 1. INTRODUCTION

1.2.6 Aim of the approach

The first main aim of this thesis is to address the problems mentioned above and develop
a module test (cf. Chapter 7) which allows the system designer/tester to (automatically)
test the partially designed and implemented system.

Since an automata equivalence test (cf. criterion C'3, Definition 7.4 on page 121)
requires at least a cubic number of tests (in the number of states or events), the aim of
the module test approach is, therefore, to establish an acceptable small set of test paths
that reaches all used states and carries out all used transitions in a component.

By applying this test method, we thus illustrate that the module test concepts can
provide a more convincing approach to the problem testing on a systematic basis.

Yet another main problem when testing hierarchical, structured system models is the
analysis of interaction between different components (modules). The most widespread
methodologies isolate interacting concurrent processes one from another and concentrate
on the testing of the individual modules. In [147], Ryant argues, that the danger here is
that synchronization errors will hardly be detected. For example, system flaws that are
due to time dependent behaviours of processes cannot be detected. In order to ‘guarantee’
a correct analysis, the whole system must be considered including all its interactions.
However, the main drawback of most widespread methodologies such as structured analysis
and object oriented analysis is that the errors which remain undetected are mainly those
which are not analysed and tested during the interaction of the whole system. Since
appropriate test concepts are not offered, the designer might get a wrong impression, i.e.,
to believe that the system works correctly.

Therefore, the second main aim of this approach is the development of concepts and
methods which aid the testing of the interacting processes (modules) of the whole system.

Chapter 2

Mathematical Terms

In this chapter the basic mathematical notions that will be needed throughout the rest
of this work is given. Obviously, the reader is expected to be familiar with most of
the concepts mentioned here, and therefore a comprehensive treatment of them is not
provided. Instead, the intention is to indicate briefly those ideas which will be required
in some chapters, and to describe the notation that will be used in discussing them.
Nonetheless to enable a more complete treatment of the notions presented here, some
books are recommended (cf. [48, 49, 93]).

2.1 Sets, Relations

Let B and C be sets.
If f: B— C and B’ C B then

f|p denotes the restriction of f to B/, i.e.,
the function f': B’ — C where Vb € B’ : f'(b) = f(b).

N denotes the set of all natural numbers excluding 0.
INy denotes the set of all natural numbers including 0.

> b; denotes the sum of all b;, where i € I C INy.

el

[]b; denotes the product of all b;, where i € I C INy.
el

|X| denotes the cardinality of a finite set X.

Let p(X) denote the power set of a set X also written as 2%, i.e., the collection of all
subsets of X. It is well known that |p(X)| = 2/¥1.
A binary relation on X is defined to be a function R : X — o(X) from X to the power
set of X (also R C X x X).

13

14 CHAPTER 2. MATHEMATICAL TERMS

2.2 Graphs

Definition 2.1 A directed graph (a digraph for short) is a triple G = (V, E,inc),
where

(1) V is a finite set of so called vertices (Nodes),
(2) E is a finite set of so called edges and

(3) inc: E—V x V.

Notation 2.1 The vertex pair (v,w) of a digraph G associated with edge e is called an
ordered pair (not necessarily distinct vertices). Edge e is then said to be directed from
vertex v to verter w, and the direction is indicated by an arrowhead on the edge.

Definition 2.2 A digraph G = (V, E,inc) is said to have simple edges only if inc :
E — V xV is injective, i.e., Ve, e; € E : e; # e; = inc(e;) # inc(e;). Such a digraph is
called a simple digraph.

Note: For simple digraphs the set of edges E may be represented by inc(E) C 'V x V
since there is a one-to-one correspondence between edges and the corresponding pairs of
vertices.

Definition 2.3 Let X = {z1,... ,x,} be a finite set, then BAG(X) denotes the set of
all bags (multisets!) over X. Bags are generalizations of sets, similar to multiple sets,
i.e., an element of X may occur in a bag over X more than once. Ifb is a bag, i.e.,
b € BAG(X), then the function u represents these occurrences, i.e., u(x;,b) = k € INy iff
there are exactly k occurrences of x; in b.

The following operations and relations are defined for bags b and ¢ over X and z; € X
(cf. [119]).

Relations:

membership x; € b iff z; appears in b iff p(z;,b) > 0,

bag equality b=ciff vV, € X : u(x;,b) = p(x;, ¢), otherwise b # ¢
bag inclusion b<ciff vV, € X : u(x;,b) < p(zy,c),

strict bag inclusion b < ciff b<cAb#c.

Operations:

bag intersection bNc:V, € X : p(z;,bNc) = min(u(z;,b), u(x;, c)),
bag union bUc:V, € X : p(xi,bUc) = maz(u(x;,b), u(zi, c)),
bag sum b+c:V, € X :pu(zi, b+ ¢) = p(wi, b) + p(zi, ¢,
bag difference b—c:V, € X :p(z;,b—c) = p(z;,b) — p(z;,bNe),
empty bag 0:V, € X :pu(x;,0) =0,

where 0 € INy.

Lengauer [93] gives the basic definition of multisets, see pp.47-48.

2.2. GRAPHS 15

Definition 2.4 A digraph G = (V, E,inc) is said to have multiple edges when inc is
not an injective mapping, i.e., there exist edges e; # e; with inc(e;) = inc(e;). Such a
digraph is called a complex digraph.

Note: For a complex digraph the set of edges E may be represented by bags over V. -x V,
i.e., a set v C BAG(V x V). For the bag v and a pair (vi,ve) € V x V we have
w((vi,v2),7) = k, i.e., k occurrences of (v1,ve) in -y, iff there are exactly k edges ey, . .. , ey
which are mapped onto (v1,vs) by inc.

Y is subset of BAG(V x V)

el a label :E->L
label(el) = a
e:b label(e2) =b

v w
e label(e3) =c
' label(ed) = a
label(e5) =c

Figure 2.1: A graph with multiple edges.
Figure 2.1 illustrates a graph with multiple edges:
inc(el) = (v,w)
inc(e2) = (v, w)
inc(e3) = (v, w)

Note that in the Figure 2.1 above, v C BAG(V x V) leads to the following observation.
The multiple edges between v and w are represented by the bag 3- (v, w), where p((v, w), 3-
(v,w)) = 3.

A standard notation of a bag b over X will be b= > pu(z;,b) - ;.
r;€X

The bag for all edges of Figure 2.1 is as follows:

b=3v,w)+1-(w,z)+1-(z,v)= > p(z;b)-x;, where
r;€X

X ={(v,w), (w,2),(z,v)} CVxV.

16 CHAPTER 2. MATHEMATICAL TERMS

A labelled digraph is a digraph in which each edge and/or each vertex has an associated
label. A label can be a name, a cost, or a value of any given data type, including the
empty label.

Definition 2.5 A labelled digraph G = (V, E, inc, label) is a digraph with a labelling
function label : E — L, where L is a finite set (of so called labels), with the following
restriction:

For all e;,e; € E such that inc(e;) = inc(e;) and e; # e; = label(e;) # label(e;).

In Figure 2.1, label(el) = a # label(e2) = b # label(e3) = ¢ # label(el). Indeed
label(e;) = label(e;) is only possible iff inc(e;) # inc(e;) with e;,e; € E.
That’s why in Figure 2.1 label(e4) = a and label(eb) = ¢ are legal labellings even though
they are already used for edges el and e3, respectively.

Chapter 3

Tasks and Solutions for the Testing
of Hierarchical Statechart Models

Almost all the methods currently used for testing large and complex reactive systems
are experience based rather than theoretically founded methods. In particular, very few
methods allow us to make an objective statement about the problem of generating suf-
ficient test paths, e. g., for all used transitions and/or all used states in a statechart.
We recall that STATEMATE offers a number of static tests, such as reachability test,
detection of nondeterminism, deadlock, and usage of transitions. All of these tests are
useful for checking general properties of the system.

However, as already observed in the Preface on page vi, there is still a great problem
to be solved in finding and applying software methods to overcome/eliminate space explo-
sion problems. In addition, exhaustive testing, i.e., testing every execution to prove the
system’s correctness, often cannot be performed even for models of moderate complexity.

It is important to keep in mind that even if we limit the values of variables to finite
sets, the number of scenarios that have to be tested in an exhaustive execution rapidly
becomes unmanageable (see example given in Subsection 1.2.5).

The second main problem in testing hierarchical, structured system models is the anal-
ysis of interaction between different components (modules). By perfoming a module test,
it is namely not possible to detect the invisible interaction flaws between the modules.
The development of concepts and methods which aid the testing of the interacting pro-
cesses (modules) of the whole system (also called integration test) has therefore a high
priority although it is a very complicated task due to the noted dependencies between
modules.

3.1 The main task of testing hierarchical statechart
models

In this section the main task of this thesis is given. The task of this thesis can be divided
into three main parts:

17

18 CHAPTER 3. TASKS AND SOLUTIONS FOR STATECHART MODELS

(1) Establish some kind of statechart standard specification guideline which formally
defines and restricts syntar and semantics of variants of statecharts, and specifica-
tion transformations which transform complex statecharts into suitable form for a
profound testing (design for testability).

(2) To clarify the process of test execution and simulation of statecharts, the so called
step semantics of statecharts has to be investigated and formalised, where a step
1s a unit of dynamic behaviour, at the beginning and end of which a statechart is in
some ‘legal’ status.

(3) Development of test concepts and test methods for hierarchical, structured state-
charts

(a) Module tests, a module is a component on some ‘level” of the state hierarchy
of the statechart.

(b) Integration tests which are based on one of the well known heuristic approaches
of practical testing which has two test phases:

i. Perform detailed tests for individual components (cf. (3)(a) above).

ii. Test the proper integration of an increasing number of components, adding
one by one, until all components are integrated. This test will be called
the incremental integration test (see Chapter 8).

3.2 (General procedure of system development and
testing

3.2.1 Prerequisites

A prerequisite to executing complex system models is the availability of a formal semantic
for those models, particularly, for the medium that captures the behavioural view (cf. Sub-
subsection 4.1.1.3). Statecharts will be used to describe the behaviour of the ‘executable’
specification of reactive systems. Throughout this thesis, it will be assumed that the main
functions' are known. In other words, the functional view (cf. Subsubsection 4.1.1.2) is
considered to be trivial. In this case, liberal terminology, such as ‘battery weakens’ will
be used to denote certain events of obvious meaning with respect to the environment of
the system. Of course, to have a complete specification one would have to specify these
aspects elsewhere. These aspects of a system would then be incorporated in the overall
specification together with the statecharts ([cf. Chapter 4, Section 4.1.1]). In the next sec-
tion a brief description of the process which is often followed when developing a complex
system is given.

'In this context, the activities (actions) of the reactive system. In this thesis, we will often refer to a
reactive system as a software system, but it could as well be referred to as a hardware system depending
on the described characteristics of the system under development.

3.2. GENERAL PROCEDURE OF SYSTEM DEVELOPMENT AND TESTING 19

requirements statements

Analysis

conceptual overview

formal specification

]

functionality of
target system

hardware
components

properties of
target system

softwar e components)
design

implementation

Figure 3.1: An overview of system development

3.2.2 The steps of reactive system development
Figure 3.1 illustrates the steps which may be undertaken within a system development.

Legend:
“—” describes the flow of information within system development;

“A «— B” describes A depends on B and vice versa.

20 CHAPTER 3. TASKS AND SOLUTIONS FOR STATECHART MODELS

The first step in the system development is finding the requirements posed on the in-
tended system. These are normally formulated in a natural language. During this early
software life cycle, an intensified study of the requirements of the ultimate customer as
well as the relationship between the product and the environment of its use is undertaken.
Often misunderstandings between partners involved occur. To minimize such problems,
graphical formalisms are employed. These offer both the customer and developer a visual
and clear description and contribute to a better communication thus enabling a precise
formulation of the problem.

The transition from an analysis of requirements to the specification of a system to
meet them is the most crucial stage in the whole software development; the discovery
of only a single error or a single simplification would fully repay all the effort expended
(see Preface?). Inspections, walkthroughs and reviews are required to check important
transformations between requirement and specification phases.

Formal description techniques are used to describe the behaviour and the structure
of systems. Their basic idea is to produce correct and unambiguous descriptions, that
should ultimately produce efficient implementations. As depicted in Figure 3.1, the input
to the formal specification is a set of requirement statements and a conceptual overview of
the proposed system. The output is a formal representation that captures the significant
properties and functionality of the proposed system. Generally, a formal specification
should abstract from the implemention details in order to give an overview of the system,
to postpone the implementation decisions, and to allow all valid implementations. In that
way, it makes use of neither design nor implementation concepts; it defines rather a model
that represents the significant properties and functionality of the system which can be
controlled through wvalidation, verification and conformance testing. In the approach, the
concepts and methods developed are based on such models.

3.2.3 Validation of the model using tests

Validation of the model using tests requires test cases. A test case generator will be
responsible for the creation of test cases from the formal specifications (models). The
main purpose of the generator is to produce a set of suitable test cases for the given
model. Generally, the test cases are developed on the following test principles:

o Test principle A — the formal model is validated against its informal requirements;

o Test principle B — the formal model is verified against its implementation.

In this thesis, the test cases are suitable® for the test principle A, if for each error in the
statechart model violating the informally specified requirements a test case will be created
which is capable of detecting this error. In this particular case, it will be assumed that
the informally specified requirements are correct.

2of this thesis
3Note that in this sense suitable describes the “ideal” case (cf. [143], chapter 2).

3.2. GENERAL PROCEDURE OF SYSTEM DEVELOPMENT AND TESTING 21

Note that in the case of reactive systems a test case is not simply a sequence of inputs
and expected outputs. Due to the fact that the intended system may behave undeter-
ministically on the interface level, the same sequence of inputs may simulate different
responses of the intended system, or the system may even fail during repeated executions.
This is often the case for so called time dependent behaviour. Therefore, it should be ad-
visable to additionally define a test case as a description of ezecution rules specifying the
full set of possible sequences of input and output events, together with real-time assertions
which should be met when experimenting the test cases on the model. It is important
to emphasize that the behaviour of the reactive models is continuous and hence without
end state but rather stopping in a so called “idle state” or “rest state” for every “loop”
or Tun.

22 CHAPTER 3. TASKS AND SOLUTIONS FOR STATECHART MODELS

Chapter 4

Introduction to the STATEMATE
Tool and Statecharts

The purpose of this chapter is on one hand to present an overview of the STATEMATE
tool (cf. section 4.1), and on the other hand to give an informal introduction to statecharts
(cf. Section 4.2).

4.1 The CASE-Tool STATEMATE

In this section a brief introduction to the STATEMATE tool is given. Details about
STATEMATE can be found in [54, 55, 72, 73, 74]. STATEMATE! is a computerized
working environment for system designers. STATEMATE was intended for the specifica-
tion, analysis, design, and documentation of large and complex reactive systems, such as
real-time embedded systems, control and communication systems, and interactive soft-
ware. Examples are digital watches, television sets, chips, airport activities, etc.

4.1.1 How does STATEMATE deal with the problems of reac-
tive systems?

STATEMATE offers a set of three distinct but interrelated viewpoints to model a real-
world process. The points of view are: structural, functional and behavioural. Taken as a
whole, these three perspectives cover the traditional questions “who, what, where, when,
how, and why” of a process description.

e Structural - Who does it and Where is it done; represented by “Module Charts”.
e Functional - What is done; represented by “Activity Charts”.

e Behavioural - When, How, and Why it is done; represented by “Statecharts”.

Ltrademark of i-logix, Inc. Burlington, MA.

23

24 CHAPTER 4. INTRODUCTION TO STATEMATE AND STATECHARTS

Figure 4.1 shows the correspondences of the STATEMATE views of a “System Un-
der Development” (SUD). There is a tight relationship between the functional and be-
havioural views. Here, activities and data-flow of a system require dynamic control in
order to terminate or to be activated (see Behavioural view, Subsubsection 4.1.1.3).
On the other hand, the behavioural aspects are all but worthless if activities have nothing
to control. Usually, each activity chart is related to at least one statechart, whose role is
to control the activity’s internal parts, i. e., its subactivities and their flow of information
(see Functional view, Subsubsection 4.1.1.2). The structural view describes subsystems,
modules or objects constituting the real system, and the communication between them
(see Structural view Subsubsection 4.1.1.1).

Conceptual Model

Activity Charts Statecharts

Functional View Behavioural View

Physical M odel

Module Charts

Structural View

Figure 4.1: Different views of a System Under Development (SUD) in STATEMATE
Legend: “A «— B” describes A depends on B and vice versa.

While the functional and behavioural views build the conceptual model of the system,
the structural view is considered to be its physical model since it is concerned with the
various aspects of the system’s implementation. As such, the conceptual model usually
involves terms and notions from the problem domain, whereas the physical model deals
more with the solution domain.

4.1. THE CASE-TOOL STATEMATE 25

Using these views the developer can specify and analyse the SUD in terms of its
functional capabilities and its behaviour over time, and determine the main subsystems
that implement these capabilities. The specification process uses particular languages and
techniques to describe the system. The resulting specification is called the model of the
system.

4.1.1.1 Structural view

The structural view provides a hierarchical decomposition of the SUD into its physical
components, called modules, and identifies the information that flows between them, i.e.,
the “chunks” of data and control signals that flow through physical links between the
modules. The structural view is represented by Module Charts. The word “physical”
should be interpreted in a general sense, with modules meaning anything from actual
pieces of hardware to subroutines or packages of software.

4.1.1.2 Functional view

The backbone of the system model is the hierarchy of activities, completed with the details
of data items and control signals that flow between them. This is essentially what is called
the functional decomposition of the SUD. The functional capabilities of the system are
captured here. However, in the functional view one does not specify dynamics; it is not
stated when the activities will be activated, whether or not they terminate on their own,
and whether they can be carried out in parallel. The same is true for data flow; in the
functional view one specifies only that data can flow, and not whether and when it will.
The functional view is represented by Activity Charts.

4.1.1.3 Behavioural view

It is the behavioural view that is responsible for specifying control. Control activities
serve as the “central nervous system” of the model. They are meant to sense and control
the dynamics of that portion of the functional description on their level. This is achieved
by allowing a control to be present on each level of the activity hierarchy, controlling
that particular level. These controllers are responsible for specifying when, how, and why
things happen as the SUD reacts over time. The controllers are represented by Statecharts.

Among other things, a controller can start and stop activities, can generate new events,
and can change the values of variables. It can also sense whether activities are active or
data have been transferred and it can respond to the values of variables as well as test
them. These connections between activities and control involve a rather elaborate set
of events, conditions and actions, whereas the relationship between modules and activi-
ties is far simpler, and consists essentially of specifying which modules implement which
activities.

26 CHAPTER 4. INTRODUCTION TO STATEMATE AND STATECHARTS

4.1.2 The overall structure of STATEMATE

For each of these three views, the structural, functional, and behavioural, STATEMATE
provides a graphical, diagrammatic language with a rule based graphics editor that checks
for syntactic validity as the appropriate specifications are developed.

Figure 4.2 illustrates the overall structure of STATEMATE. The database is central,
and obtains much of its input from the three graphics editors, Statecharts, Activity-Charts
and Module-Charts and also from a textual Forms editor for informal narrative descrip-
tions in which the non-graphical information is specified. The most interesting parts of
STATEMATE, however, are the analysis capabilities. These include testing and simu-
lation (execution) packages which will play a central role in this approach. In addition,
STATEMATE provides a number of static tests, such as reachability test, detection of
nondeterminism and deadlock, as well as usage of transitions (see page 95). Other in-
teresting parts of STATEMATE are the documentation package and the ‘ADA’ and ‘C’
code-generation and prototype capability.

Statecharts
Forms
Activity-Charts
Module-Charts
STATEMATE

Database

External
Behaviour Report Code
(through SCL or & plot
Generator
Operator generators
input)
_ ADA Code
Simulation Working Reports Analysis Reports ‘C’ Code

Reports Documents & Plots

Figure 4.2: Overall structure of STATEMATE.

4.2. INFORMAL INTRODUCTION TO STATECHARTS 27

4.2 Informal introduction to statecharts

In this section an informal introduction to statecharts is given. In this thesis, due to space
limitations, not all details of statecharts can be considered. Therefore the concentration
is devoted to the basic features of statecharts.

Statecharts [50, 56] have been proposed to overcome the limitations of state-transition
diagrams that are flat and unstructured while preserving their visual nature. Statecharts
extend the conventional finite state machines (FSMs) with the notions of hierarchy, or-
thogonality, broadcasting and history. The features allow very succinct representations
and naturally support stepwise development.

Before the features of statecharts are introduced, the general syntax of an expression
labelling a transition in a statechart is given. Transitions are marked by labels “e[c]/a”,
where

(1) e is the event that triggers the transition

(2) cis a condition that guards the transition from being taken unless it is true when
e occurs, and

(3) aisan action (or a sequence of actions) that is carried out if and only if the transition
is taken.

All these are optional. Events and conditions are closed under Boolean operations or, and
and not. The expression e|c] is interpreted as “do transition if e occurs and c is true”.
Actions can be concatenated by ‘;” which means that they are carried out simultaneously.

First of all, consider Figure 4.3 which depicts an example of a statechart for a simple
coffee vending machine (SCVM). SCVM is composed of three states: On, Off, and
Empty with Off as the initial® state. SCVM changes from Off to On when the event
power-on occurs. On is composed of four substates Cup, Coffee, Controller and Light.
When the Controller of SCVM is in Standby, coins may be inserted or returned. If a
button event occurs and the condition money > 0 is satisfied, SCVM turns the light on
and begins to supply a cup of coffee. This is accomplished by action cup-start which is
an internal event® of Controller and an input event of component (state) Cup as well as
Light. Immediately when the action cup-start is generated in Controller, the transitions
with label cup-start in components Cup and Light are triggered simultaneously. After a
cup of coffee has been dispensed, SCVM goes back to Standby and the light is turned
off. This is accomplished by the event coffee-done which is generated in Coffee and at
the same time is input event of Controller as well as Light. Thus, as soon as the action
coffee-done is generated in Coffee, the transitions with label coffee-done in components
Controller and Light are triggered simultaneously. SCVM changes to Empty when either
an event cup-empty from state Cup-idle or event coffee-empty from state Coffee-idle,
respectively, occurs. In other words, SCVM moves from On to Empty when SCVM runs
out of cups or coffee.

2which is represented by the small arrow with an indicating point at its start position.
3also called output event

28

CHAPTER 4. INTRODUCTION TO STATEMATE AND STATECHARTS

SCVM
full
power-on /
money = 0 power -off
cup-empt
On premey coffee-empty
4 T I N
Cup . Coffee
Cup-idle : Coffee-idle })
time-out (1) / : time-out (5) / Xcoffeestart
cup-done bup-start : coffee-done
| Coffee-busy)
Controller
. button [money > 0] /
coin/ money += 1 cup-start
A Cup-ready J
\
Sandby
' return/ money = 0 cup-done/
coffee-start

L(cup-start
Light-off) (Light-on)

coffee-done

A J/

~

Figure 4.3: A statechart for a simple coffee vending machine SCVM

4.2.1 The basic features of statecharts

4.2.1.1 Concept of hierarchy

The concept of hierarchy is achieved by decomposing a state of a statechart into another

statechart.

OR-states have substates that are related to each other by “exclusive-or”.

4.2. INFORMAL INTRODUCTION TO STATECHARTS 29

In Figure 4.3, Light consists of mutually exclusive states, Light-off and Light-on. Thus
when SCVM is in Light, it is either in Light-off or Light-on, but not in both.

The states at the bottom of the state hierarchy, i. e., those that have no substates,
are called BASIC states. The state at the top level, i. e., the one with no parent state, is
called the root.

4.2.1.2 Concept of orthogonality

Orthogonality is the dual of hierarchy. It is achieved by the AND-decomposition of an
FSM. In Figure 4.3, On is the AND-composition of the orthogonal components Cup,
Coffee, Controller and Light. Thus when SCVM is in On, this implies being in all of
these components.

4.2.1.3 Concept of broadcasting

Next the idea behind the concept of broadcasting is given. When orthogonal components
are not totally independent, communications between these components should be speci-
fied. This communication is achieved by associating an action with a transition. This is
assumed to broadcast so that every system component in the A ND-state recognizes it. In
Figure 4.3, the transition (in Controller) from Standby to Cup-ready is associated with
an action cup-start which triggers the transition from Cup-idle to Cup-busy (in Cup) as
well as the transition from Light-off to Light-on (in Light). The disadvantage of this
representation, however, is that the communication will not be represented graphically,
i. e., lightly visible. The advantage of this representation is that a lot of transition arcs
which would cross one another will be avoided. Therefore, a Test-tool is required to check
whether the communication is modelled correctly. Another alternative can be to establish
an extra representation for the “cross”-transitions. In the scope of this thesis, however,
due to time limitations, we will not be able to deal with this aspect.

4.2.1.4 Concept of history

Another feature of statecharts is the ability to ‘remember’ a previous visit to a state.
Statecharts use two kinds of history connectors (also called history-entries), H and H*.
The history mechanism realizes a sort of suspend/resume formalism. Figure 4.4 shows
a history entrance into S11. The H enclosed in a circle is the simplest kind of history
which means: The system enters the state most recently visited. The simple symbol H
means that history is applied only on the level in which it appears. In Figure 4.4, if S11
is entered via the ev2-arrow then H chooses only between S7 and S6, i.e.: the system
enters initial state S2 if it was in S1 or S2 when it most recently left S11; the system
enters initial state S3 if it was in S3, S4 or S5 on that last visit. The choice here is by
default arrows. On the other hand, when the entrance is via the evl-arrow then S7, the

CHAPTER 4. INTRODUCTION TO STATEMATE AND STATECHARTS

2

si1 $
o ® :
=)
O
o / _ Y,
o J
Figure 4.4: Enter-by-history
evl
ba
(s11 $ A
e ® :
S7 6
=)
O
- ~ - /
o J

Figure 4.5: Enter-by-deep-history.

4.2. INFORMAL INTRODUCTION TO STATECHARTS 31

default of S11 is taken. Note that when the system enters S11 for the first time via the
ev2-arrow, still S7 is taken. This is due to the fact that there is no history state yet.

When the history mechanism is applied to the lower levels, this is denoted by a star
which is attached to the H-entry, i. e., H* is used. In Figure 4.5 the system will enter the
most recently visited state among S1 to S5, overriding the mechanism of default(initial)-
states S2 and S3. This kind of history is referred to as deep history.

4.2.1.5 Static reactions

Statecharts are always complete: if there is no transition enabled from a given state, a
static reaction (SR) in that state is executed. In other words, each state can be associated
with static reactions which can be defined using the same format transition label e[c|/a
(see page 27). The main difference between the two is that a static reaction does not
leave or enter any state. Thus each SR in a state s € S can be regarded as a transition in
a virtual substate of s that is orthogonal to its ordinary substates and to the other SRs
of state s. For example, Figures 4.6(a) and 4.6(b) depict the same behaviour.

If no transition or static reaction is enabled, nothing happens. In this particular case,
it can be assumed that there is an implicit SR which does not do anything. In case of the
simple Coffee Vending Machine on page 28, ‘do nothing’ SRs are in all states.

(S0 h (S0 ? h
. |
|
tl !
t1l \
;
|
*

-y
kStaticreaction: evl/actl) _ 1 evliad)
(@) (b)

Figure 4.6: Representing static reactions

4.2.2 Other basics of statecharts

At the beginning of the Section 4.2, the general syntax of an expression labelling a tran-
sition in a statechart was given. There are several special events, conditions and actions
that relate to STATEMATE model’s other entities, such as activities, data items or other
states. In the following, only a few of them are mentioned. For further details see [51].
The following abbreviations are used, where x = y means, that y is the abbreviation of
x. Action a can be the special action

(1) start(p) = stl(p) that causes the activity p to start;

32 CHAPTER 4. INTRODUCTION TO STATEMATE AND STATECHARTS

(2) stop(p) that causes the activity p to stop.
Similarly, primitive event e can be the special event

(1) entered(s) = en(s) that occurs when the state s is entered;

(2) exit(s) = ex(s) that occurs when the state s is exited.

Moreover, an action a can be scheduled for d time-units later on by carrying out a
new action of the form scheduled(a,d) = sc!(a,d).

Similarly, the special event timeout(e, d) = tm(e, d) occurs d time-units after the most
recent occurence of the event e.

Chapter 5

The Formal Syntax and Semantics of
Statecharts

In Chapter 4, an informal description of statecharts was presented. The informal methods
are widely used because they are intuitive, but they suffer from incomplete and imprecisely
defined syntax and semantics. Therefore, the aim of this chapter is to develop the formal
syntax and semantics of statecharts. These formal definitions are prerequisites to the test
concepts and test methods which are to be developed in this thesis.

Although Harel, Pnueli, Schmidt and Sherman presented a formal syntax and seman-
tics of statecharts in their paper from 1987 (cf. [51]), a number of issues, e. g., transitions
in parallel states, hierarchy in states, etc. are not accurately defined. Other features such
as inter-level transitions and conflictness between transitions are hardly defined. Fortu-
nately, many of these problems are discussed by Harel and Naamad in their report of the
recent STATEMATE semantics of statecharts (cf. [54]). Nevertheless, this report is infor-
mal and thus does not provide precise definitions. Therefore, this Chapter 5 is intended
to establish the formal syntax and semantics of statecharts which can be adopted to solve
various problems, e. g., problems with respect to

(1) transitions in parallel states (nodes),
(2) compound transitions (arcs),
(3) inter-level transitions,

(4) conflict between transitions (nondeterminism), etc.

With regard to its importance, this chapter builds one of the most fundamental parts
of this thesis. The establishment of such formal descriptions contributes to the simpli-
fications of the tests to be designed for the statechart model. For example, the tester
can assume that the transitions in the statechart model are ‘legal’. Consequently, the
number of tests performed by the system designer/tester to examine his/her “System
Under Development” (SUD) specification is reduced. Futhermore, the tests may not be
as complicated as would be the case if one had to consider ‘illegal’ transitions as well.

33

34 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

5.1 Overview of statechart specification guideline

Figure 5.1 presents an overview of the approach which is developed in this chapter to
establish formal syntax and semantics of statecharts. As we will see in Section 5.3,
there are many variants of syntax or semantics of statecharts proposed in the literature,
e. g., Argos [101, 102], SpecCharts [111], Modecharts [75], RSML [95], as well as those in
(69, 70, 78, 158]. The goal of the formal syntax and semantics of statecharts described in
this chapter is to establish some kind of standard specification guideline over which the
test concepts and test methods to be developed in this thesis are based.

Following Figure 5.1, the syntax of statecharts is viewed in terms of STATEMATE’s
graphical representation of a statechart. In other words, the visual descriptions of a state-
chart are considered. Statecharts extend the conventional finite state machines (FSMs)
and their corresponding state transition diagrams (state diagrams for short) with the
notions of hierarchy, orthogonality, broadcasting and history (cf. Section 4.2). These state
diagrams may be described as labelled directed graphs (digraphs for short) (cf. Section 2.2)
with nodes denoting states and arrows (labelled with triggering events and guarding
conditions) denoting transitions. The STATEMATE-Version approach, therefore, can be
seen as the extension of state diagrams by AND / OR-decomposition of states together with
‘inter-level’ transitions and a broadcast communication between concurrent components.
Based on these observations, we develop formal definitions which can be used to describe
the syntax and behaviour of a given statechart. The resulting formal description is referred
to as Canonical Normal Form Version (cf. Figure 5.1).

Considering the visual descriptions above, the STATEMATE-approach is described
solely by its diagrammatic terms, and thus allows various interpretations of the behaviour
of a given statechart. The formal description should, therefore, in any case be language-
theoretic or at least algebraic in order to allow a precise description as well as interpre-
tation of the behaviour of a given statechart. Our approach begins by partitioning the
elements of the statechart into two classes: (a) nodes/states and (b) arcs/transitions as
depicted by Figure 5.1.

5.1.1 Nodes/States

Nodes: Rounded rectangles or boxes are used to represent the nodes (states) at any
level of a statechart. These can be clustered into new nodes (states). This means that
a natural notion of hierarchy or modularity is provided, and thus a stepwise top-down
development is supported. The nodes of a statechart are represented by V' (cf. Def. 2.1).
In Canonical Normal Form Version nodes are defined as states and represented by S
(cf. Subsection 5.2.1). The “hierarchy” of states, where a state may consist of substates,
e. g., SCVM of Figure 4.3 page 28, is formally defined by the hierarchy functions children
and children*® (cf. Definition 5.3). There is a one-to-one correspondence between nodes
and states.

5.1. OVERVIEW OF STATECHART SPECIFICATION GUIDELINE 35

Syntax of Statecharts (STATEMATE-Version)

graphical representation of statechart

is in form of
(structured) nodes (boxes) V' (cf. Def. 2.1)
+ edges (arrows or arcs) E (cf. Def. 2.1)

complicated cases: E. g.,
& ‘transitions’ which consist of linked

transition segments (i. e., labelled arrows
that connect states and connectors of var-
ious kinds)

& transitions in parallel states (nodes)

& inter-level transitions (arcs)

& conflicts between transitions

l simple case

a transition t1 = (S1,el, S2)
corresponds to an arrow with label el
from a simple state S1 to simple state 52

x: CNF stands for “Canonical Normal Form”

1:1
—

1:1

‘ Statecharts (CN F* Version) ‘

Definitions

(hierarchical) states S (cf. Subsec-
tion 5.2.1)
transitions T (cf. Def. 5.11)

Syntax with transformations based
on notion of full compound transi-

tions (full CT)

Canonical Normal Form CNF
(cf. Subsection 5.2.5)

(Transitions) Semantic

Complex statechart defined by
concept of legal configurations
(cf. Def. 5.25 and Def. 5.28)

® Def. 5.32 (Legal transitions)
& modified automata product

(cf. Definitions 5.36 and 5.37)
= simple OR-graph product GO

(cf. Def. 5.35)

Notion of scope of transitions
(cf. Subsection 5.4.4)

Def. Sets of entered/exited states
(cf. Definitions 5.39, 5.40, 5.41, 5.42
and 5.43)

Notion of priority of transitions
(cf. Subsections 5.4.5 and 5.4.6)

transition t (cf. Def. 5.11 (Simple
statechart))

Figure 5.1: Overview of statechart specification guideline

36 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

5.1.2 Arcs/Transitions

Arcs (arrows): An arrow is labelled with triggering events and guarding conditions.
The arcs of a statechart are represented by E (cf. Def. 2.1). In Canonical Normal Form
Version arcs are defined as transitions and represented by 7 (cf. Def. 5.11). Generally,
there is an n-to-m correspondence between arcs and transitions (cf. Figure 5.1). In case
of a simple statechart, however, there is a one-to-one correspondence between arcs and
transitions. In other words, a transition may be described syntactically by an arc, e. g.,
t1 = (S1,el, S2) corresponds to an arrow with label el from single state S1 to single
state S2.

Nevertheless, in the graphical language supported by STATEMATE a transition may
consist of a number of linked transition segments which are the labelled arrows that
connect states and connectors of various kinds. Therefore, a transformation of such
representations into a special statechart called Canonical Normal Form (CNF) is
necessary. This is based on the notion of ‘full compound transitions’.

There is yet a number of other complicated cases such as transitions in parallel states
(nodes), conflicts between transitions (nondeterminism) and inter-level transitions (arcs).
In particular, if we consider the case of a direct exit of an AN D-state, the source of
a transition is a set and contains more than one state. According to the definition of
a legal transition in [51], the only condition which must be satisfied is that every two
states in the source set of ¢ must be mutually orthogonal. Nevertheless, this condition
delivers only ‘weakly legal’ transitions (cf. Subsection 5.4.2). To be in a position to define
a legal transition ¢, the ‘maximality’ of the source set of ¢t must also be defined. The
concept of ‘weakly legal’ transition must thus be extended to ‘legal’ transitions which have
legal configurations (cf. Definition 5.32). To deal with the conflicts between transitions
(nondeterminism), we formalise a concept — the notion of ‘scope’ of transitions.

The formal syntax and semantics of statecharts described in this thesis is mainly based
on the informal report of [54]. In addition, the work of [124] will be consulted. It should
be underlined, however, that the statechart model formalised in this thesis differs from
that of Harel (cf. [50], [54]) in a way that the root state of a statechart must be of OR-type
and the substates of an AND-state are always of OR-type. Assuming that the statechart
model is represented as a digraph?, the tester can apply efficient algorithms to the digraph
to generate test paths that satisfy given criteria.

In Section 5.2 we present the formal syntax of statecharts. After that we glance at
the variants of statecharts in Section 5.3. Finally, in Section 5.4 we deal with the formal
aspects which will be required to describe and formalise the step semantics in Chapter 6.

!The transformation of a statechart which consists of OR-states only into the associated digraph (also
called associated OR-graph) has a remarkable characteristic with respect to the states (vertices) and
transitions (edges): it forms a one-to-one relationship.

5.2. THE FORMAL SYNTAX OF STATECHARTS 37

5.2 The formal syntax of statecharts

In the following, the formal syntax of statecharts and basic definitions that are necessary
to describe the main features described above are given. To begin with, some basic
definitions over which the syntax of hierarchical statecharts will be established are given.

5.2.1 State hierarchy

In order to avoid an immense number of states in one statechart diagram, it is allowed
to start with a manageable number of states on the “first level” and then to refine some
states into substates represented by different diagrams. This “hierarchy” of states where
a state may consist of substates, e. g., SCVM of Figure 4.3 page 28, is formally defined
by the hierarchy functions children and children*.

In the following S is a nonempty finite set of so called states. At the beginning of
this chapter we pointed out that a number of issues are not accurately defined in [51].
For example, the hierarchy function p : S — 25 defined in [51] delivers for p’(s) a set
of states for 0 < 7 < 1 and a set of subsets of states for ¢ > 1. This definition is thus
not quite applicable. To overcome such shortcomings, we introduce a hierarchy-relation
o0 before the definitions of the hierarchy functions children and children* can be given.

Definition 5.1 Let o C S x S, then o', i > 0, and o* will be defined as follows:

(1) " :={(s,5) | s € S}
(2) 0" =0
(3) 0" =000, forn>172

(4) o = U o

n>0
A hierarchy-relation ¢ over S will be given as follows:

Definition 5.2 A relation o is called a hierarchy-relation over S with rootr € S ;<

(1) oC S xS
(2) Vs€S:(s,r) o

-1 =1
(3) Vs € S\{r} : (r,s) € o* and (Ine€ IN): (3 $1,52,...,5, €S5) s1 =7 and s, = s,
and (si, Siv1) € 0 fori=1,... ,n—1.

Now a hierarchy-relation will be represented by a hierarchy function “children” which
again can be represented as a directed tree with root r. In the next definition, children’(s)
delivers for a state s its descendants on level i with respect to root r.

2For two arbitrary relations £ and ¢ over a given set (domain) S: £o(:={(s,t) € Sx S| (3ue 9):
(s,u) € & and (u,t) € C}.

38 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Definition 5.3 The hierarchy functions children, children®, children* : S — 2° are
defined as follows (with respect to a hierarchy-relation o over S) :

(1) children®(s) := {s}

(2) children'(s) :={t € S| (s,t) € o'}

(3) children(s) := children'(s)

(4) children*(s) :={t € S| (s,t) € 0*}, called the set of descendants of state s*

Remark 5.1 There exists a unique state r € S, called root state, such that Vs € S :
r & children(s).

Remark 5.2 The hierarchy function children describes for each state s € S its substates.
Note that due to the properties of Definition 5.2 the definition of children allows no loops
in the construction since g is a hierarchy-relation. children’(s) describes for a state s its
descendants on level i with respect to root r. children* : S — 2°, which for a state s € S
computes its descendants?, is a function satisfying the following:

(i) s € children*(s),

(ii) sy € children*(s1) = children(ss) C children*(s1),
(i1i) sy € children®(s1) = children*(sq) C children®(s).
Definition 5.4 The generalization of the definition children*(s) for a set of states X C S
is given as follows: children®(X) = |J children*(s).

seX

s3 A s5 s6
Figure 5.2: Illustrating the children function
Figure 5.2 is used to illustrate the hierarchy function children:

children®(s) = {s}

3Note that the state s is considered to be a descendant of itself for reasons of simplicity.
4which consists of children, children of children, and so on

5.2. THE FORMAL SYNTAX OF STATECHARTS 39

children!(s) = {s1,s2} = children(s)
children?(s) = children(s1) U children(s2) = {s3, s4, s5, s6}
children®(s) = {0}

The following definitions of parent, parent’ and parents* are the reverse terms of
children, children’ and children®.

Definition 5.5 The reverse hierarchy functions parent, parent' and parents* are
defined as follows (with respect to a hierarchy-relation o over S):

(1) parent®(s) :=s

(2) parenti(s) := { t if there exists some t with (t,s) € o

undefined otherwise
(3) parent(s) := parent'(s), called the direct ancestor® of state s (if defined).

(4) parents*(s) :={t € S| (t,s) € 0"}, called the set of ancestors of state s.

Remark 5.3 Restricted to its defined domain, parent : (S\{r}) — S uniquely defines
for each state s € S\{r} its direct ancestor. parent(s) = u < s € children(u). The
function parents* : S — 2% which for a state computes s € S its ancestors®, is a function
satisfying the following:

(1) s € parents*(s),
(2) Vs1 € (S\{r}) : (s1 € parents*(sz) = parent(s1) € parents*(ss2)).
(3) Vs1 € (S\{r}) : (s1 € parents*(sz) = parents*(s1) C parents*(sz)).

Definition 5.6 The generalization of the definition parents*(s) for a set of states

X C S is given as follows: parents*(X) = |J parents*(s).
seX

For the hierarchy function illustrated by Figure 5.2, the following is true:
parent®(s4) = s4,
parent(sd) = parent'(s4) = sl,
parent®(sd) = s,
parent'(s4) undefined for i > 3,
parents*(s4) = {s, sl, s4},
parent(sl) = s € parents*(s4), and

parents*(sl) = {s, s1} C parents*(s4), since sl € parents*(s4).

®Note that the state s is considered to be an ancestor of itself for reasons of simplicity.
Swhich consists of ancestor, ancestor of ancestor, and so on

40 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

5.2.2 Labels of transitions

In Subsection 4.1.1.3 (behavioural view) it was noted that the main task of a statechart
is to capture the reactive behaviour of a reactive system. This behaviour (of a reactive
system) is described as the set of input and output events, conditions and actions etc.
(cf. Subsection 1.2.1). The general syntax form of an expression labelling a transition in
a statechart is given as e[c]/a (see page 27). In the following, the general form of labels of
the transitions’, i. e., expressions for events, conditions and actions are formally defined.
Note that primitive events, primitive conditions and primitive actions are given as atomic
elements.

Definition 5.7

(1) The finite set of primitive events is denoted by SE,.
(2) Event expressions SE.,, are defined by the grammar:

SEewpr = €| SE, where ¢ is the empty expression

SE == e|(SE) | (SEVSE) | (SEANSE), where e can be replaced by each element
of SE,.

The set of all event expressions is denoted by L.

(8) The primitive events e which are taken in a special situation SIT are those for which
Valgrr(e) = true. Valsir is a mapping, called assignment which expresses whether
a primitive event is true (or false) in a special situation SIT:

Valgir : SE, — {true, false}.

Remark 5.4 The exact content of the term special situation SIT will be discussed and
defined later as ‘system status’ (cf. Definition 6.1, page 97).

Definition 5.8 (1) The finite set of primitive conditions is denoted by SV,.

(2) Let R = {=,>,<,#,<,>} be the set of relational operators®; condition expres-
sions SV, are defined by the grammar:

SVewpr = T | F | SV,
where the logical values true and false are denoted by T and F.

SV = c|(ARELA)|~(SV) | (SVVSV)|(SVASV), where ¢ can be replaced
by each element of SV, and REL by each element of R. Term ‘A’ can be replaced
by an arithmetic expression, a variable or a constant (data-item), but the expressions
replacing term ‘A’ on both sides of the comparison (A REL A) must be of the same
type, e. g., both numeric (integer, real, bit and bit-array), or both strings or structured
strings’ .

"The formal definition of a transition will be given in Definition 5.11.

8Tt is often necessary to compare data-items in one of several ways. For this comparison conditions
exprl REL expr2 where exprl and expr2 are data-items and REL € R will be allowed in this thesis.

9 A more precise definition of all expressions which may replace term ‘A’ does not seem necessary since
the following concepts do not depend on the special choice of expressions.

5.2. THE FORMAL SYNTAX OF STATECHARTS 41

The set of all condition expressions is denoted by L..

(8) The primitive conditions ¢ which are taken in a special situation SIT are those for
which Valsrr(c) = true. Valgir is a mapping, called assignment, which expresses
whether a primitive condition is true (or false) in a special situation SIT':

Valgir : SV, — {true, false}.

Definition 5.9 Let SVipna = {fs!(c)| ¢ € SV,} U {trl(c) | ¢ € SV,} be the set of all
assignments to condition variables; action expressions SA.,,. are then defined by the
grammar:

SAcopr n= €| 94,

SA = e|cal (SA;SA), where e can be replaced by a primitive event (each element
of SE,) and ca can be replaced by each element of SVeona.

The set of all action expressions is denoted by L,.

Note The action expression (SA1; SAs) represents a simultaneous, non-deterministic
execution of SA; and SAs.

Definition 5.10 Let L., L., L, be the sets of event, condition and action expressions,
respectively, as defined above (cf. Definition 5.7, Definition 5.8 and Definition 5.9). The
set of labels L is the cartesian product of the set of events, the set of conditions and the
set of actions. A label | € L wherel = (e,c,a) € Lo X Lo X L, is also written as e[c|/a.

Note (Informal semantics) If e[c]/a is the label of a transition t, then t is triggered by
event e and condition ¢ and action a is evecuted when t is taken.

5.2.3 Statechart definitions

In this subsection we describe various definitions of a statechart. We begin with the defi-
nition of a simple statechart in Subsection 5.2.3.1. This is followed by the definition of an
orthogonal statechart/orthogonal component in Subsection 5.2.3.2. In Subsection 5.2.3.3
we then describe a substatechart which is also called OR-statechart. Finally, in Subsec-
tion 5.2.3.4 we define a very simple OR-statechart in which all states with the exception
of the root are basic.

5.2.3.1 Definition of a simple statechart
In the following, the definition of a simple statechart is given.

Definition 5.11
A simple statechart is a 8-tuple Sct = (S, r, children, type, H, hist, de fault,T) where:

(1) S is a nonempty finite set of so called states.

42 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

(2) r € S is a unique state, called root state.

(3) children is the hierarchy function of Definition 5.3 (with respect to root r and
state set S).

(4) type : S — {OR,AND, BASIC} defines for each state its type, such that:

(a) type(r) = OR,

(b) Vs € S: children(s) # 0 < type(s) € {OR, AND},

(c) Vs1,82 € S (type(s1) = AND A sg € children(s;) A children(sy) # 0 =
type(se) = OR).
A state s € S is called an OR-state [or an AND-state or o basic state,
respectively] iff
type(s) = OR [or type(s) = AND or type(s) = BASIC, respectively].
Note: A statechart root r must have children due to requirements (4)(a) and
(b) above.

(5) H ={H, H*} is the set of so called history symbols (also called history connec-
tors).

Note: There are two kinds of history connectors, H and H*, where H represents
the simplest kind of history, and H* stands for the deep history'©.

(6) hist + S S 'H is a partial function which associates history symbols (history-
entries)'! to OR-states only, i. e., hist(s) is undefined if s is not an OR-state, but
even for an OR-state s; hist(s;) may be undefined.

(7) default : S S S, called the default function, defines for each OR-state s the
default state de fault(s) (a “child” of s which is entered when state s is entered).
default(s) is defined iff s is an OR-state, and — if defined — de fault(s) € children(s).
default(s) is called start state or initial state or even default state of state s.

Note: The syntactic default function is used to compute the state (or states) a
statechart will enter when transitions occur. When an OR-state s is not entered by
the history-symbol, the specified state de fault(s) is indeed entered. When an AN D-
state s is entered, the parallel states that compose s are entered (which again may lead
to the entrance of the default states of these parallel states). In the example of the
simple coffee vending machine SCVM on page 28, the default states are “marked”
by the small arrows with indicating points at their start positions (cf. Section 4.2,

page 27).
default(SCVM) = Off for the OR-state SCVM.

(8) T C S x L x (SUH) is the set of transition arcs, where L is a finite set of
labels (cf. Definition 5.10).
Ifta= (s,l,t) € T, i. e, ta is a transition arc, then

10Tn the following, however, only the semantics of H will be formalised, H* can be easily implemented
by allowing the simple history symbol H to be applied on each level of the statechart.
1 (see Subsubsection 4.2.1.4)

5.2. THE FORMAL SYNTAX OF STATECHARTS 43

(a) s is called the source state of ta,
(b) 1 is called the label of ta,

(c) t is called the target symbol of ta (not the target state, since t can also be a
history symbol).

(End of Definition 5.11)

Remark: Note that in comparison to Harel, Pnueli, Schmidt and Sherman’s definition
of statechart (cf. [51]), the statechart definition above requires that the root state of a
statechart must be of OR-type and also that the substates of an AND-state are always of
OR-type. This distinguishing feature will play a very important role in the establishment
of relations between a statechart and a digraph. Above all, it is easy to show that
this special characteristic does not impose any restrictions on the expressive power of a
statechart.

5.2.3.2 Definition of an orthogonal statechart/orthogonal component

Using Definition 5.11 of a simple statechart, in this Subsection 5.2.3.2 we introduce the
terms orthogonal statechart/orthogonal component which will be required for the devel-
opment of methods and concepts for transforming AND-states into OR-states (cf. Sub-
section 5.4.3). Informally, an orthogonal statechart is a substate s of a simple statechart
(cf. Definition 5.11) which satisfies the following requirements:

(i) the substate s is of type AND.

(i) the children of the substate s are either of type BASIC or of type OR.

The ‘direct’ descendants (i. e., children) of the substate s are called the orthogonal com-
ponents of s.

Figure 5.3 depicts a simple statechart S00. The substate S0 in Figure 5.3 represents
an orthogonal statechart. S1 and S2 are the orthogonal components of S0.

We formalise the terms orthogonal statechart and orthogonal components as follows:

Definition 5.12 Assume Sct = (S, r, children, type, H, hist, de fault, T) is a simple state-
chart and s € S.

(1) Then Sct(s) = (S',r, children’ type', H, hist', de fault’, T") is an orthogonal state-
chart iff

(a) s € children(r) A type(s) = AND
(b) ¥s' € children(s) : type(s') € {BASIC,OR}

The components of Sct(s) are the following:
i. 8" = {s,r} Uchildren(s)

44 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

S5 .
. s7

S01

Figure 5.3: A simple statechart S00.

ii. children’ type’, hist' and default’ are restrictions of Sct to S" instead of

S
iii. T' is the restriction of T to 8" x L x (S"UH).

(2) Each state s' € children(s) is called an orthogonal component of the orthogonal
statechart. The set of transition arcs of an orthogonal statechart will be denoted

by 7'0rth - 7.

arcs(s)

As an example, consider Figure 5.3 again. According to Definition 5.12, the substate

S0 represents an orthogonal statechart.
S00 is the root of the simple statechart S00

(a) type(S00) =OR
(b) SO € children(S00) A type(S0) = AND

(c) children(S0) = {S1, 52} and type(S1) = type(S2) = OR.

S1 and S2 are the orthogonal components of SO0.

5.2. THE FORMAL SYNTAX OF STATECHARTS 45

5.2.3.3 Definition of a sequential statechart (OR-statechart)

In this Subsection 5.2.3.3 we give the definition of a sequential statechart (also called OR-
statechart). The idea behind this definition is to construct a statechart model such that it
consists of OR-states only, i. e., AND-states are not allowed. Such an OR-statechart has
the advantage that it can easily be represented as a graph (called ‘OR-graph’, cf. Subsec-
tion 5.2.4). Above all, the transformation of a statechart which consists of OR-states only
into an ‘OR-graph’ has a remarkable characteristic with respect to the states'? (vertices)
and transitions (edges): it is a one-to-one relationship. Informally, an OR-graph is a la-
belled directed graph whose nodes are type of OR. The derived OR-graph will be required
in the phase of testing statechart models, e. g., when developing efficient algorithms which
can be used to generate test paths in a statechart model. Furthermore, such OR-graphs
can be used in the process of computing ‘legal configurations’ of a statechart (cf. Defini-
tion 5.27, page 67).

The definition of an OR-statechart is stated as follows:

Definition 5.13 A simple statechart Sct = (S, r, children,type, H, hist, de fault,T) is
called an OR-statechart iff Vs € S : children(s) # 0 < type(s) = OR, i. e.,
AND-states are not allowed.

Example of OR-statechart

Example 5.1 An example of an OR-statechart is depicted by Figure 5.4. Figure 5.4
shows an OR-statechart S0. The example illustrates that some states of an OR-statechart
are decomposed into further states. Due to lack of space these are indicated by the symbol
@ before the state name, e. g., the decomposition (refinement) of states @S2, @S3 and
@S6 is given later in Figure 5.5, Figure 5.6 and Figure 5.7, respectively.

Indeed, Definition 5.13 imposes certain restrictions on the statechart Definition 5.11.
In particular, it does not allow AND-states. However, this restriction to the statechart
language is not a restriction of the modelling power of statecharts because every AND-
state can be represented as an OR-state (as will be demonstrated in Section 5.4.3).

The following terms are necessary in the establishment of relationships between a
statechart and a digraph. In addition, they are required for the description of a wvery
simple OR-statechart which follows in Subsection 5.2.3.4. Recall that a state s € S is
basic iff type(s) = BASIC, i. e., children(s) = () (cf. Definition 5.11, (4)(c)).

Definition 5.14 A statechart state s € S which is not a basic state is called a super-
state (hierarchy state).

Notation 5.1 The set of basic states of a statechart Sct will be denoted by Spes(Sct) or
simply Spas if the statechart Sct is determined by other circumstances. Similarly, the set
of all super-states will be denoted by Sgup(Sct) or simply Ssyp.

R2without the state r

46 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

' ™

T1

)

Figure 5.4: Statechart S0

S2

-

S21
7'}

T23

Figure 5.5: The decomposition of S2

As an example, consider Figure 5.4 again. States S1,54 and S5 are basic states of
S0, whereas states @S2, @S3 and @S6 are super-states of SO.

5.2.3.4 Definition of a very simple OR-statechart

The goal of this Subsection 5.2.3.4 is to define a very simple OR-statechart in which all
states with the exception of the root are basic.

In the following, only OR-statecharts are considered (cf. Definition 5.13). AND-
statecharts will be handled later in Subsection 5.4.3. For a component (OR-state) of
a statechart, only the associated basic states and the super-states in this component will
be considered. This will be captured by the definition of an abstract OR-statechart as

5.2. THE FORMAL SYNTAX OF STATECHARTS 47

-

S3

N

S31

T31 s33

S32 T3

T35
T S34

Figure 5.6: The decomposition of S3

S6

T61 T62

Figure 5.7: The decomposition of S6

follows:

Definition 5.15 Let Sct = (S, r, children, type, H, hist, de fault,T) be an OR-statechart
(cf. Definition 5.13) and s € S.

(1) The abstract OR-statechart which will be denoted by abstr(Sct(s)) is defined as
follows: abstr(Sct(s)) = (S',r', children’, type', H, hist', de fault’, T")
(a) S" = {s} U children(s)
(b) r''=s
(c¢) children' type', hist' and default’ are restrictions of Sct to S instead of S
(d) T is the restriction of T to S" x L x (S"UH).
(e) Vs € S"\{s} : type'(s) :== BASIC.

(2) The set of all states S'\{s} = children(s) on the corresponding abstraction level is
decomposed into the following sets:

(a) Sp.s(s) ={z €5 | type(z) = BASIC} is called the set of all basic states on
the corresponding abstraction level, and

48 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

(b) Sl (s)={z€ S|z is a super-state} (i. e., type(z) # BASIC) is called the

sup
set of all super-states on the corresponding abstraction level.

Note: 7' = {({z},[,{2}) € T | x € S',z € S'} is the set of all transitions on the cor-
responding abstraction level excluding the internal transitions of Seup(s) (i-e., transitions
inside a super-state are not considered).

Remark 5.5 Although in the original statechart Sct the elements z of S{,, are non-
basic (type(z) # BASIC') and thus consist of substates, in Definition 5.15 of the abstract
OR-statechart we consider them as ‘black boxes’ on the corresponding abstraction level,
i. e., they are basic states in the abstract OR-statechart (type’(z) = BASIC). The
idea behind this is to demand a ‘clean’ type of modelling which does not allow any
‘interlevel-transitions’ (cf. Subsection 5.3.1, page 59). Indeed, constructing an abstract
OR-statechart is one way of constructing a simpler OR-statechart (called “very simple
OR-statechart”) from an OR-statechart.

In particular, very simple OR-statecharts will be helpful in the process of computing
‘basic configurations’ of a statechart as well as for the test case derivation. The definition
of a very simple OR-statechart is given as follows:

Definition 5.16 A simple statechart Sct = (S, r, children,type, H, hist, de fault,T) is
called a very simple OR-statechart iff

Vs € children(r) : type(s) = BASIC.

Theorem 5.1
The abstract OR-statechart abstr(Sct(s)) of an OR-statechart Sct is a very simple OR-
statechart.

Proof

We have to show that all the states (without the root) of abstr(Sct(s)) are considered
basic. This is given by Remark 5.5, i. e., Vz € S'\{s} : type'(s) := BASIC, since basic
states can have no children by Definition 5.11(4)(b). This corresponds to the requirement
Vs € children(r) : type(s) = BASIC in Definition 5.16. O

Example
Figure 5.8 shows a very simple OR-statechart S00.

After giving various definitions of a statechart, we now proceed to Subsection 5.2.4
to establish the relationship between a formal statechart and a labelled directed graph to
provide the necessary background which will be required in Subsections 5.4.3 and 5.4.4.

5.2.4 Relationship between a statechart and a labelled digraph

The purpose of this subsection is to establish the necessary background which will be
helpful for the development of methods and concepts to overcome the test problems,
e. g., developing algorithms which may be used to compute ‘legal configuration’ sets

5.2. THE FORMAL SYNTAX OF STATECHARTS 49

N

SO0

Figure 5.8: Very simple OR-statechart S00

(cf. Definition 5.32, Subsection 5.4.2). As already stated in the Preface'®, statecharts
serve as a framework for the development of practical methods. Since the application of
the developed concepts and methods should be easily extendable to different specification
languages, concepts based on graphs give a more promising solution. Therefore, in this
subsection the relationship between a formal statechart'* and a labelled directed graph'®
is investigated. For a better comprehension, Definition 2.5 of a labelled directed graph is
rewritten as follows:

Definition 5.17
A rooted labelled directed graph (a digraph for short) is a 5-tupel
G = (V,vo, E,inc, label), where

(a) V is a nonempty finite set of so called vertices (nodes),
(b) vo € V is called the root of G,
(c) E is a nonempty finite set of so called edges,

(d) inc: E— V xV maps each edge to its source and target node.
Ifinc: E — V x V is not injective, then G is said to have multiple edges e;, ¢;,
i. e, inc(e;) =inc(e;), e; # e;; an edge e is called simple edge, if inc(e;) # inc(e)
for all edges e; # e.

(e) label : E — L, where L is a finite set (of so called labels), is a mapping with
the following restriction: Ve;,e; € E: inc(e;) = inc(e;) and e; # e; = label(e;) #
label(e;).

Note: Definition 5.17 resembles Definition 2.5, but introduces a root vg, too.

13of this thesis
H¢f. Section 5.2 Definition 5.11
5Chapter 2 gives a brief view about concepts and notions of the graph.

50 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

As mentioned in Subsection 5.2.3 above, the basic idea behind the concepts to be
developed is to consider a statechart which consists of only OR-states and to describe it
as a digraph. We also remind the reader, that such a restriction to the statechart language
is not a restriction of the modelling power of statecharts because every A ND-state can be
represented as an OR-state (as will be shown in Subsection 5.4.3).

Definition 5.18 Let Sct = (S, r, children, type, H, hist, de fault,T) be an OR-statechart
(cf. Definition 5.13). Then G = (V, vy, E, inc, label) is the associated digraph,
also called associated OR-graph, where

(a) V := (S\{r}) UH (where S is the set of states and H is the set of history symbols
of Set),

(b) vy :=so = default(r) (where sy is the default state (start state) of Sct),
(¢) E =T (where T is the set of transitions of Sct),

(d) inc: E—V xV and label : E — L are defined as follows:
for a transition t = (z,l,y) € T = E: inc(t) = (z,y) and label(t) = I.

Definition 5.19 Let G = (V, vy, E, inc, label) be the associated digraph of the
OR-statechart Sct. G' = (V' v, E',ind,label’) is called the super-graph of G with
respect to S’, where

(a) V' := 5", E' :=T" where S" and T' are defined as in Definition 5.15,

(b) v = sy = default(s) where sj is the default state (start state) of component s of
the OR-statechart Sct

(c) ind : E' — V' x V', the restriction of inc to E'.

(d) label' : E' — L is the restriction of label to E'.

Remark: The restriction of inc to E' is not necessarily injective.

In Subsection 5.2.3.4 we noted that very simple OR-statecharts will be helpful in the
process of computing ‘basic configurations’ of a statechart as well as for the test case
derivation. Therefore, the following formal definition:

Definition 5.20

Let an OR-state s of an OR-statechart Sct = (S, r, children, type, H, hist, de fault, T) like
that of Definition 5.15 be chosen as a root of a very simple OR-statechart Sct(s), then
G = (V(s), vo(s), E(s), inc(s), label(s)) is its associated simple OR-graph where

(a) V(s) :=S5" = {s € children(s) | type(s') = BASIC} (where S’ is the set of states
of Sct(s)),

(b) vo(s) := so = default(r) (where sq is the default state (start state) of Sct(s)),

5.2. THE FORMAL SYNTAX OF STATECHARTS o1

(c) E(s) =T ={(z,l,2) e T" | x € 8,2 € S} (where T is the set of transitions of

Sci(s)),

(d) inc(s) : E(s) — (V(s) x V(s)) the restriction of inc to E(s).

(e) label : E(s) — L is the restriction of label to E(s).

Remark: The restriction of inc to E(s) is not necessarily injective.

Remark 5.6 Since all states are of type OR, all transitions of a very simple OR-
statechart are of “type” (x,l,y), i. e., there is only one state in the source set and target
set of the transition.

Theorem 5.2 Let G be an associated OR-graph of a very simple OR-statechart Sct.
Then the nodes of G represent all (possible) basic states of the corresponding statechart
Sct and the labelled edges of G represent all transitions of Sct.

Proof

(a)

Correspondence of nodes of G and states of Sct: By Definition 5.16 Vs € children(r) :
type(s) = BASIC, i. e., S\{r} = {s € S| s € children(r){s € S | type(s) =
BASIC}, since basic states can have no children by Definition 5.11(4)(b). This
corresponds to V' = S\{r} in Definition 5.18.

Correspondence of edges of G and transitions of Sct: The correspondence of edges
and transitions is given by Remark 5.6 and Definition 5.18 (¢) and (d). O

Nevertheless, since the elements of S¢,,, are non-basic in the original statechart Sct, a

mechanism is necessary which can be used to deliver the ‘basic configurations’ of the

original statechart Sct. In the following, however, we are not — yet — interested in

Analing with tha laur_laval anocificatin it rathar with +ha hich_lawval aneocificatin
UC@11115 VVlUll UllC 1UW-— lUVCI OJ_JCblllb@hlUll’ Ul,lh 1aullTl viull ullCT 111811—16\/61 DPUblllbablUli

only which is represented by a corresponding abstract OR-statechart Sct.

Figure 5.9: The simple OR-graph G of very simple OR-statechart S00

52 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Recall Figure 5.8 on page 49 which depicts a very simple OR-statechart S00. Figure 5.9
shows the graphical representation of the associated OR-graph G of the very simple OR-
statechart S00. Principally, the OR~graph G is the same as the OR-statechart S00, and
this is so because of Theorem 5.2.

5.2.5 Syntax of statecharts with transformations

For a simple statechart a single transition may be described syntactically by an arc
(cf. Definition 5.11). However, the graphical language as supported by STATEMATE
allows a ‘transition’ to consist of a number of linked transition segments which are the
labelled arrows that connect states and connectors of various kinds. Therefore, in the next
Subsection 5.2.5.1 an overview of STATEMATE’s representation of connectors is given.
The technical mechanism of connectors may create problems, e. g., when a transition seg-
ment a; ends at a connector'® then this is not defined in the sense of Definition 5.11. This
is due to the fact that the target state is neither a state nor a history symbol (cf. Def-
inition 5.11, part (8)(c)). Another problem which is rather semantical may arise when
the simulation tool STATEMATE tries to carry out a sequence of transition segments.
In particular, if only the initial part of transition segments is enabled this may lead to
an incomplete transition execution. Consequently, the transformation of such represen-
tations into a special statechart form called Canonical Normal Form C'NF' is necessary.
The transformation is based on the notion of ‘full compound transitions’, and will be
described in Subsection 5.2.5.2.

5.2.5.1 Connectors

A connector is a technical mechanism described by STATEMATE to economize the num-
ber of arrows, to reduce clutter, and to provide a clearer and more intuitive graphical
representation. Connectors are a new sort of nodes. Arcs in a statechart may lead from
states (or default states or history symbols) to connectors, or connectors to connectors,
or connectors to states. But each connector must be “reachable” from a state or must
reach a state by a sequence of arcs. Default states may be replaced by so called default
connectors. For example, when statecharts contain transitions with much functionality
in common, connectors (or junction connectors) are used to separate common parts. We
remind the reader that in the following figures, and in many others elsewhere in this
thesis, we give names to transition arcs, e. g., al, a2, a3, a4 and ab in Figure 5.10. Note
that these are not part of the syntax but are added solely to allow us a better exposition.
Figure 5.10 depicts two connectors as realized by STATEMATE. The first one connects
transition segment al (from state S1) with a2 (ending at state S2). The second one is
an example of a default connector and connects transition segment a5 (which is taken on
entering S2) with either transition segment a3 or a4. In this case, if the system is in state
S1, and event evl and event ev2 are generated simultaneously and condition C'3 is true,
then the set of transition segments (al, a2, a5, a3) will be carried out. On the other hand,
if the system is in state S1, and event evl and event ev2 are generated simultaneously

16in this particular case, if it is not a history symbol

5.2. THE FORMAL SYNTAX OF STATECHARTS 53

s N
al: evl/actl
O_az ev2/act2
e B
S2
a3: [C3]/act3 1
ab
ad: [C4]/act4
S22
_ Y,
_),

Figure 5.10: Some connectors realized by STATEMATE

and condition C4 is true, then the set of transition segments (al, a2, a5,a4) will be car-
ried out. When the transition segments (al, a2, a5, a3) are carried out, then the actions
actl; act2; act3 are also executed simultaneously. Similarly, the actions actl; act2; act4 are
executed simultaneously when the transition segments (al, a2, a5, a4) are carried out.

Now consider a case in which the system is in state S1, and event evl and event ev2
are generated simultaneously but both conditions C'3 and C4 are false. The simulation
tool STATEMATE notifies the user that the basic states S21 and S22 could not be
reached after the ‘initial compound transition’ (al,a2) was enabled. But even then, it
will execute the initial compound transition (al,a2), and only after reaching state S2
it will discover that it cannot enter the basic states. At this juncture, it will not ‘roll
back’ to S1. Problems of this nature require an intricate concept — the notion of ‘full
compound transitions’” — which will be formalised in Subsection 5.2.5.2.

5.2.5.2 Notion of full compound transitions

While in the graphical language as supported by STATEMATE a transition “segment”
may consist of several components also called transitions (cf. Figure 5.10), the semantics
that will be described in this thesis uses the notion of ‘full compound transitions’ (cf. Fig-
ure 5.11). The behaviour of the statechart of Figure 5.11 is equivalent to that of Figure
5.10. The sequences of transition segments (al, a2, ab,a3) and (al,a2,ab,a4) in Figure
5.10 build ‘full compound transitions’ C'T'1 and C'T2, respectively as depicted in Figure
5.11.

The representation based on ‘full compound transitions’ is a transformation of a
statechart which consists of linked transition segments (the labelled arrows that connect

54 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

S

()

CT1: (evlandev2) [C3]/actl; act2; act3 S21

CT2: (evland ev2) [C4]/actl; act2; act4
S22

Figure 5.11: Representing figure 5.10 in another way

states and connectors of various kinds) into a statechart in CNF. The statechart of
Figure 5.11 represents the CNF of that of Figure 5.10.
A statechart in C'NF' has the following advantages:

(1) it leads to a concise description of the state where a full compound transition is
enabled;

(2) it allows the definition of scope of the transition (cf. Subsection 5.4.4) which is used
to deal with nondeterminism and to associate priorities to transitions.

These advantages create a fundamental basis (a ‘good’ framework) which allows the tester
to assume that the transitions are unambigiuous.

The idea behind the notion of full compound transitions in which the (default) con-
nectors ‘vanish’ from the original statechart can be summarized as follows:

Definition 5.21 A basic compound transition (CT) is the result of the transfor-
mation of a mazimal chain of transition segments, linked by connectors, that are replaced
by a single transition.

Furthermore, basic compound transitions can be divided into two types/parts:

Definition 5.22 An initial compound transition is a CT whose source (start of the
first transition segment) is a state, and a continuation compound transition is a CT
whose source is a default state or a history symbol. The targets of both types of CTs are
states or history symbol.

The main purpose of full compound transitions is to determine the states to be entered
when the transition is taken. According to the two definitions above, a full compound
transition is a sequence of one initial CT and possibly several continuation C'T's, and
may be summarized as follows:

5.2. THE FORMAL SYNTAX OF STATECHARTS 95

Definition 5.23 A full compound transitions (full CT for short) is sequence of one
initial C'T cty and possibly several continuation CT's cto, ... ct, which satisfies the fol-
lowing condition:

The start connector of ct; is a default connector or default state of a state s; which is
the final state of ct;_1,1=2... ,n.

Definition 5.24 Algorithm for the transformation of a statechart with connec-
tors into a C NF' statechart:

A full compound transition CT s replaced by a single transition t, where the events
(respectively the conditions) of the transitiont are the conjunction of the events (respectively
the conditions) of the constituent segments of C'T, and the action of the transition t is
the concatenation of the actions of CT'.

Remark 5.7 Definitions 5.23 and 5.24 describe the syntactical transformations of a stat-
echart which consists of linked transition segments into a statechart in C NF'. In Subsec-

tion 5.4.4, however, we present a rather semantical definition of full compound transitions
(cf. Definition 5.42).

Theorem 5.3 A statechart with connectors which is transformed by the algorithm of
Definition 5.24 is a simple statechart (cf. Definition 5.11).

Proof idea: The proof idea is given using the following example:
Example of initial and full compound transitions

In Figure 5.10, the sequence of transition segments (al,a2) is an initial CT, and the
sequences of transition segments (a5, a3) and (ab,a4) are continuation CTs. Of course,
to lead to a full basic configuration, (al,a2) must be accompanied by either (a5,a3) or
(a5, a4) which consequently form two full CTs, (al,a2,ab,a3) and (al,a2, a5, ad).

It is easy to show that the statechart of Figure 5.11 represents the CNF of that of
Figure 5.10.

Now by Definition 5.23, the start connector of ct; is a default connector or default
state of a state s; which is the final state of ¢t;_1,7 = 2... ,n. The sets of transition seg-
ments {al, a2, ab,a3} and {al,a2,ab,ad} in Figure 5.10 build full compound transitions
CT1 and CT2, respectively as depicted in Figure 5.11. C'T'1 and C'T'2 can be described
according to Definition 5.11 part (8). This is due to the fact that each transition arc of a
C N F statechart has at most one source state and one target symbol. We also notice that
the transformation algorithm of Definition 5.24 solely replaces a sequence of one initial
CT and possibly several continuation C'T's and does not affect any other aspects of the
statechart. Obviously, the statechart of Figure 5.11 is a simple statechart.

(End of Proof idea for Theorem 5.3).

The rest of this thesis concentrates on full CTs.

5.2.6 Summary of Section 5.2

In this subsection we present a summary of Section 5.2. Section 5.2 begins with giving
basic definitions over which the syntax of hierarchical statecharts is established. At the

56 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

beginning of Chapter 5 we pointed out that a number of issues are not accurately defined
in [51]. Some of these issues are dealt with in Subsection 5.2.1. For example, the hierarchy
function p : S — 2% defined in [51] delivers for p’(s) a set of states for 0 < i < 1 and a
set of subsets of states for ¢ > 1. This definition is thus not quite applicable. Therefore,
in Definition 5.3 we describe the hierarchy function children’(s) which delivers for each
state s € S its descendants on level i with respect to root r. The reverse hierarchy
function parent’(s) which computes for a state s € S its ancestor on level i is given by
Definition 5.5. In addition, we define the labels of transitions, i. e., expressions of events,
conditions and actions (cf. Subsection 5.2.2).

In Subsection 5.2.3 we define subclasses of statecharts. Definition 5.11 describes a
simple statechart which serves as the fundamental definition over which several concepts
are established in the course of this thesis. In comparison to Harel, Pnueli, Schmidt and
Sherman’s definition of statechart (cf. [51]), Definition 5.11 requires that the root state of
a statechart must be of OR-type and also that the substates of an AND-state are always
of OR-type. In particular, for a simple statechart, we define 7 C S x L x (SUH)
as the set of transition arcs, instead of 7 C 2% x L x 2" the set of transitions
(cf. Definition 5.28). Thus, in a simple statechart the arcs form a one-to-one relationship
(cf. Figure 5.1 on page 35). In other words, a transition may be described syntactically
by an arce. g., t1 = (51, el, S2) corresponds to an arrow with label el from a single state
S1 to single state S2.

Using Definition 5.11 of a simple statechart, we constuct the definition of orthogonal
statechart [orthogonal component (cf. Definition 5.12). This will be required for the devel-
opment of methods and concepts for transforming A ND-states into OR-states (cf. Subsec-
tion 5.4.3). As another important foundation of the test methods and concepts developed
in this thesis, we describe a sequential statechart (also called the OR-statechart) in Def-
inition 5.13. The basic idea behind this definition is to construct a statechart model in
such a way that it consists of OR-states only, i. e., AND-states are not allowed. The
OR-statechart given by Definition 5.13 can be represented as an associated OR-graph
(cf. Definition 5.18). The derived OR-graph will be required in the phase of testing stat-
echart models, e. g., when developing efficient algorithms which can be used to generate
test paths in a statechart model. Furthermore, such OR-graphs can be used in the process
of computing ‘legal configurations’ of a statechart (cf. Subsection 5.2.4).

In the above context, we require a very simple OR-statechart in which all states with
the exception of the root are basic. This is given by Definition 5.16. Very simple OR-
statecharts will be helpful in the process of computing ‘basic configurations’ of a statechart
as well as for the test case derivation.

The purpose of Subsection 5.2.4 is to investigate the relationship between a formal
statechart!” and a labelled directed graph'®. For a better comprehension, Definition 2.5 of a
labelled directed graph is rewritten (cf. Definition 5.17). The concept we have summarized
so far can be represented diagrammatically as in Figure 5.12.

Finally, in Subsection 5.2.5 we deal with “non-simple statecharts”, i. e., statecharts
that allow a ‘transition’ to consist of a number of linked transition segments which are

17¢f. Subsection 5.2.3 Definition 5.11
18Chapter 2

5.3. A GLANCE AT THE VARIANTS OF STATECHARTS o7

the labelled arrows that connect states and connectors of various kinds. We discuss some
problems which may be caused by STATEMATE’s representation of connectors. For
example, when a transition segment a; ends at a connector'® then this is not defined in
the sense of Definition 5.11. Another problem is rather semantical and may arise when
the simulation tool STATEMATE tries to carry out a sequence of transition segments.
In particular, if only the initial part of transition segments is enabled this may lead
to an incomplete transition execution. As a possible solution to the noted problems
above, we propose the transformation of such representations into a special statechart
form called Canonical Normal Form C'NF'. The transformation is based on the notion of
‘full compound transitions’ and is described in Subsection 5.2.5.2. For this purpose, we
develop an algorithm for the transformation of a statechart with connectors into a CNF
statechart (cf. Definition 5.24). As a conclusion, we summarise in Theorem 5.3 that “A
statechart with connectors which is transformed by the algorithm of Definition 5.24 is a
simple statechart (cf. Definition 5.11)".

simple statechart Sct — digraph G
(Def. 5.11) (Def. 5.17)
OR-statechart Sct(s) — OR-graph G
(Def. 5.13) (Def. 5.18)
abstract OR-statechart abstr(Sct) — super-graph G
(Def. 5.15) (Def. 5.19)
very simple OR-statechart Sct(s) «—— simple OR-graph G
(Def. 5.16) (Def. 5.20)

N\ /

Theorem 5.2 (applied on high-level specifications)

NB: Orthogonal statechart (Def. 5.12) is omitted here because the basic idea is to construct
OR-graphs which represent OR-statecharts. AND-statecharts will be transformed later into
OR-statecharts (as demonstrated in Section 5.4.3).

Figure 5.12: Relationship between a statechart and a digraph

5.3 A glance at the variants of statecharts

Immediately after the publication of the statecharts formalism extensive investigations
began in order to improve its syntax and semantics (e. g., the step semantics proposed
by Pnueli and Shalev in [131]). This has led to many variants of syntax or semantics
of statecharts proposed in the literature. Amongst others are Argos [101, 102], Spec-
Charts [111], Modecharts [75], RSML [95], as well as those in [69, 70, 78, 158]. The survey

9in this particular case, if it is not a history symbol

58 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

of von der Beek [158] e. g., discusses around 20 variants. In it a list of 19 issues which
possibly lead to various proposals for the semantics of statecharts is given. In this thesis,
however, all those items cannot be discussed. Therefore, in the next Subsection 5.3.1 only
those which are relevant to the development of the test concepts in this thesis will be
outlined. Furthermore, in Subsection 5.3.2 some statecharts variants are compared.

5.3.1 Discussing syntactic and semantic problems of statecharts

As mentioned above, in this subsection syntactic and semantic problems of statecharts are
described and the approaches intended to overcome them are evaluated. In the course of
this discussion only particular variants will be picked out for comparison with the original
statecharts (cf. [50, 51, 54]). These will include the following formalisms: Argos [101, 102],
RSML [95], Esterel [11] and [69, 70, 71, 78, 79, 131, 158].

In Subsection 1.2.2 (see particularly pp. 5ff.) we explained that real-time reactive sys-
tems pose specific problems in defining languages to specify and execute them. Among
them, we discussed the principle of the perfect synchrony hypothesis, and its impor-
tance for high-level specification where one is not — yet — interested in dealing with the
implementation details on one hand, but on the other hand would like to specify in an
accurate, non-fuzzy way. The application of the synchrony hypothesis is very common
in the operational semantics of statecharts as used in STATEMATE. We also discussed
two communication modes: the synchronous time model in which the communication
with the environment is performed after each basic step, and the asynchronous time
model where the communication is achieved by allowing several basic steps to take place
within a single point in time. Then the principle of causality was introduced. Causality
means that for every event generated at a particular instant of time, there must be a
(causal) chain of events leading backwards to the action that generated this event (see
also [131]). Another important property which was discussed is the instantaneous state.
This principle states that an instantaneous state can be entered and exited at the same
instant of time. Finally, we discussed durability of events. This problem concerns the
question of whether an event is durable for more than “an instant of time”.

Now, we extend the list of problems with the following:

(i) Modularity
A module is a relatively independent part of a system, in essence a reactive system
in its own right. Within modules the principle of causality holds, making it possible
to develop a smaller subsystem in an intuitive, operational manner. Between mod-
ules, however, it is the principle of ‘modularity’ that holds, enabling to keep a global
understanding of the system. According to [71], modularity means that all parts of
the system should be treated symmetrically. The interface between the environment
and the system should be the same as the interface between the parts of the system
itself. Also, every part of the system should have the same view of events occurring
in the total system at any moment. As a result, the communication mechanism be-
tween the subsystems is the immediate, asynchronous broadcast?’. This mechanism

20Tf the time for distributing events is relatively high, e. g., in widely distributed systems, then one

5.3. A GLANCE AT THE VARIANTS OF STATECHARTS 29

is covered by the statecharts semantics described in [54].

(ii) Inter-Level Transitions
The term inter-level transitions is used in the literature to refer to transitions that
cross the borderlines of hierarchy states. Recall the simple Coffee Vending Machine,
page 28. The transitions with the labels coffee-empty or cup-empty from state
Coffee-idle or Cup-idle, respectively, to state Empty are examples of inter-level
transitions. As supported by STATEMATE, this mechanism can be seen as a ‘goto’
method which allows an arbitrary movement of control across the state hierarchy.

0
T ~
' S3
B
|
|
|
|
|
|
I
|
e
! J

az: ev2

Figure 5.13: Exiting and entering state S17

In particular, when an inter-level transition is dealt with, one has to accurately
define the states that have been exited and those that are entered by taking the
transition. Mainly, one has to know which non-basic states are exited and entered
in the process of taking the transition. As will be seen later (cf. Subsection 5.4.4),
it is quite important to know, for instance, the set of actions that may be called
for when exiting and entering states. Consider Figure 5.13 which is an allowed
statechart specification in STATEMATE. Does the system exit and reenter state S1
and which substate of S2 is entered when transition arc a2 is executed? How can
the semantics deal with such and similar ambiguities?

Consequently, in this thesis an intricate concept — the notion of ‘scope of transi-
tions’ associating priorities to transitions — will be formalised in order to deal with
interlevel transitions which in general deny a structural operational semantics for
statecharts. In [84], chapter 6, an interesting restriction on the modelling power
of statecharts has been proposed to overcome this problem of not respecting the
hierarchy of states. The idea behind this restriction is to support “good modelling”
(see also [88]).

can introduce an explicit delay between the moment that an event is generated and the moment it will
actually be sensed by the other subsystems.

60

(iii)

(iv)

(vi)

CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Some languages, e. g., Argos [101, 102], SpecCharts [111], Modecharts [75] and
RSML [95], forbid the explicit use of interlevel transitions in order to gain elegant
structural operational semantics. Therefore, other mechanisms?! are necessary to
simulate the effect of interlevel transitions.

Transition Refinement

Usually, during the refinement of a state transition diagram a transition is replaced
by a set of interconnected transitions. Following the synchronous time model, no
sequence of transitions of an OR-state may be executed during one instant of time.
Therefore, the refinement of transitions creates problems because the execution of
a transition of “unrefined” statecharts may have transitions whose execution time
is positive (non-zero time). The reason for this is that in each non-instantaneous
state time must progress before the state can be left.

This refinement problem can be solved by allowing instantaneous states. In this
procedure, a transition can be replaced by a sequence of transitions connected by
instantaneous states. The complete sequence is then executed in zero time.

In the asynchronous time model this is not a problem since several transitions may
be executed at the same instant of time.

Multiple Entered or Exited Instantaneous States

Semantics which allow instantaneous states have the drawback that an infinite loop
caused by repeatedly entering and exiting of instantaneous state is possible at one
instant of time. In order to avoid this problem, the semantics can have a restriction
which requires that an instantaneous state must not be entered twice at one instant
of time.

Preemptive Versus Non-Preemptive Interrupt

If s € S is an OR-state with substates s; (1 < ¢ < n) then the set of transitions
{t1,...,t,} with t; starting from state s; (1 < i < n) and ending in a common
state s’ can be replaced by only one transition ¢’. The new transition ¢’ starts
from OR-state s and ends in state s’. The transition ¢’ represents an interrupt
mechanism which is either preemptive or non-preemptive. Figure 5.14 is used to
illustrate the two mechanisms. The problem now is to determine the behaviour
of a statechart using an interrupt mechanism. As an example Figure 5.14 with
“interrupt” transition ¢2 is used — in case state S11 is active and the events el and
e3 occur simultaneously. The interrupt is called preemptive if the execution of ¢2
prevents the execution of t1. It is called non-preemptive if the execution of ¢2 does
not prevent the execution of 1. In the above context a preemptive mechanism is thus
a high-level transition that prevents executing transitions on lower, encapsulated
levels. This is defined by the use of priorities of transitions which in turn are
determined by the ‘scope of the transition’. Other forms of interrupt can be found
in [158].

Representation of communicating events
The statechart concept of broadcasting (cf. Subsubsection 4.2.1.3 and (7) Modularity

21 Argos, e. g., uses an encoding to simulate the effect of interlevel transitions.

5.3. A GLANCE AT THE VARIANTS OF STATECHARTS 61

.
(%0

S1

tl:el/e2 t2:e3
s11 S12 2

- J

Figure 5.14: A statechart with preemptive or non-preemptive interrupt by transition ¢2

above) has the disadvantage that the communicating events are not represented
graphically, i. e., lightly visible. The main advantage of this representation, however,
is that a lot of transitions whose graphical representations (arcs) would cross one
another will be avoided. Therefore, a test-tool is required to check whether the
communication is modelled correctly. Another alternative can be to establish an
extra representation for the “cross”-transitions. The limited scope of this thesis
precludes an exhaustive treatment of this issue.

5.3.2 Comparison of statecharts variants

A detailed comparison of several statecharts variants was presented in the survey of von der
Beek [158]. Even then there are still many other variants which have been developed later.
A detailed study of all existing variants is beyond the scope of this thesis. Therefore, the
main purpose of this subsection is to provide a brief overview and comparison of selected
variants which fall into different classes of specifications. These are given in the following:

e Argos [101, 102]: The Argos language is derived from statecharts, but its description
is more restricted in many ways. The most typical restriction is that no interlevel
transitions are allowed. The advantage of this is that it uses the graphical notion
of refinement better. In contrast to the statecharts, a non-preemptive mechanism is
used. Another important difference between statecharts and Argos is that Argos,
similar to the Esterel language [2, 11], does not allow any nondeterminism. All
specifications that could lead to causal parodoxes are illegal. The compiler is used
to check for such behaviours. Nevertheless, the restriction of nondeterminism cannot
be completely accepted as an advantage since nondeterminism sometimes exists in
the systems to be modelled. For such systems, it is more intuitive and easier to use
a formalism which provides nondeterminism, e. g., statecharts.

e Modecharts [75]: This variant is based on a Real-Time Logic (RT L) formalism. The
main feature of Modechart is that its specification can be translated into RTL speci-
fications and safety properties can be verified using the RT'L proof system (cf. [25]).

62 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

The main drawback of the analysis methods, however, is that the main part of
the verification task is performed heuristically and in particular the correctness of
the verification depends on the ability of the analyst. As with statecharts, Mod-
echarts’ graphical notation and its support for hierarchy enable the designer/tester
of the system to produce specifications that are relatively easy to understand and
to develop. Due to its dual approach, i. e., using the operational language and the
descriptive language RTL, it is more expressive than a single language.

e Timed Transition Models (TTM) [120, 121, 122]: The approach of TTM is similar
to that of Modechart. It supports the dual language approach. In this variant, Real
Time Temporal Logic (RTTL) can be used to specify (safety) properties of timed
transition models. Asin Modechart, this method is supported by a set of tools which
includes a verifier based on model-theoretic reasoning. In order to check a system
model for a given property, the analyst expresses the model as TTM specification
and the property in RTTL and then executes the verifier. Ostroff gave an algorithm
for analysing (safety) properties that may be computerized. TTM , however, does
not support hierarchical decomposition of states which is very important in the
specification of complex real-time systems.

e Requirements State Machine Language (RSM L) [95]: The main differences between
RSML and statecharts are syntactical. Unlike statecharts, RSML e. g.,

— does not support history and event selector connectives;

— it features directed communication over channels instead of broadcast commu-
nication;

— it uses AND/OR tables for entering with condition expressions;

— it does not support event selector connectives (disjunctions of trigger events),
etc.

Although there appears to be no significant difference between RSML’s and state-
charts” dynamic semantics, they use different terms. The difference will be given in
Subsection 6.2.3 page 102, when Step semantic is explained.

e Timed and Hybrid Statecharts: In [78], structured operational semantics are pre-
sented for Timed and Hybrid Statecharts which are generalisations of statecharts.
The language introduces a textual representantion of statecharts to treat real-time
and continuous behaviours. The language uses statements for delays, preemption,
and timeouts.

In statecharts those mechanisms have to be modelled by using a discrete events
approach. The idea behind this approach is to describe a reactive system as a
sequence of discrete events that cause abrupt changes (taking no time) in the state
of the system, separated by intervals in which the system’s state remains unchanged.
This approach is particularly effective for describing the behaviour of programs and
other digital systems.

5.3. A GLANCE AT THE VARIANTS OF STATECHARTS 63

e Clocked Transition Systems (CTS) [79]: The CTS model is a modification of the
model in [78]. The new model provides a simpler style of temporal specification
and verification and requires no extention of the temporal language. The model
represents time by a set of clocks (timers) which increase uniformly whenever time
progresses but can be set to arbitrary values by the system (program) transitions.
The CTS can be viewed as a natural first-order extension of ‘timed automata’
(cf. [1]). Among the notable advantages of this new model are:

(1) It leads to a more natural style of the specification by explicitly referring to
clocks which in this particular case are another kind of system variables. In
other words, these variables are used instead of introducing special new con-
structs such as the ‘bounded temporal operators’ proposed in metric temporal
logic (MTL) (cf. [81]).

(2) Many of the methods and tools developed for verifying untimed reactive sys-
tems (for example in [130]) intended for verifying real-time systems can be
reused under the C'T'S model.

e FExtended Hierarchical Automata (EHA) [107]: Extended hierarchical automata
(EHA) were proposed in [107] as an intermediate format to facilitate the link-
ing of new tools to the STATEMATE environment. The FHA formalism employs
single-source/single-target transitions as in usual automata. In particular, interlevel
transitions are not permitted in order to achieve a simple priority concept which
facilitates computing the next step of an FHA when compared to statecharts. The
idea behind FHA is to devise a simple formalism with a more restricted syntax
than statecharts but nonetheless allowing to capture the richer formalism. As the
priority concept of statecharts is very simple in case of non-interlevel transitions,
investigations are made to reformulate interlevel transitions and hence handle them
just as ordinary transitions with respect to the priority concept.

We use Figure 5.15 and Figure 5.16 to illustrate the idea of FHA formalism. In the
following, the ‘dot notation’ is used to select states of the statechart. Figure 5.15
shows a model of a TV-set as described in [69]. The transitions from TV.SERVICE
to TV.IS_.OFF.DISCONNECTED, from TV.SERVICE to TV.IS.OFF.STANDBY
and from TV.IS_.OFF.STANDBY to TV.SERVICE are interlevel transitions (cf. Sub-
section 5.3.1, part (i7)). Now assume that one of them is taken, then not only the
source state is exited but also the parent of the respective source state. Similarly,
when the target state is entered, the corresponding parent state is also entered. The
idea of FHA formalism is to lift such transitions to the uppermost states that are
exited and entered when a transition is taken. This is represented by Figure 5.16.
Note, however, that the statechart specifications are more natural when compared
to those of FHA. To explain this, consider Figure 5.16 again. Its specification is
not quite that what is modelled in Figure 5.15. In Figure 5.15, when the TV-set
is in TV.SERVICE and the event Out occurs, then we would like that the TV-set
moves straight to the substate TV.I_OFF.DISCONNECTED. This information is
not reflected by Figure 5.16. In extended hierarchical automata, therefore, a facility
must be provided to explicitly specify such target states of transitions in order to

64 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

4 I
TV
SERVICE O\v

4 T I

| e I
IMAGE ' SOUND

| IS OFF

AW ' .

SHOW : ON On .
|
. | Off STANDBY j
| o
|
|
|
|
|
|
|
|
|
|
I
|
|
Tt Tt | Out Go_in
: sound
:
|
| Mute
|
|
|
I
|
VIDEOTXT |, | MUTE Out (

. DISCONNECTED
| L
|
|

o ' J - —

Figure 5.15: Statechart with interlevel transitions

preserve the infomation needed to determine the target states. EFHAs thus cannot be
used for specifying large and complex reactive systems, they can rather be applied
to simplify the implementation of tools for statecharts.

5.3.3 Summary of Section 5.3

In this subsection we present a summary of Section 5.3. The main purpose of Section 5.3
is to glance at the variants of statecharts. This section is divided into two subsections. In
the first Subsection 5.3.1 we describe syntactic and semantic problems of statecharts. At
the same time, we evaluate the approaches intended to overcome these problems. There
are several issues which possibly lead to various proposals for the semantics of statecharts.
Amongst others, we discuss inter-level transitions the ones that cross the borderlines of

5.3. A GLANCE AT THE VARIANTS OF STATECHARTS 65

e ™\
TV
SERVICE O\v
4 :) e ™\
IMAGE i SOUND
| IS OFF
' T @ .
SHOW : ON
I
S | T1 { STANDBY j
I
I
I
I
|
I
| T2
I
I
|
I
TXt I Out .
Txt | Go_in
| sound
I
I
; T3
, Mute
I
I
I
|
I
VIDEOTXT |, MUTE
| DISCONNECTED
|
I
I
_ !) N\ J

Figure 5.16: Statechart with desired extension

hierarchy states. In particular, we note that when an inter-level transition is dealt with,
one has to accurately define the non-basic states that have been exited and those that are
entered by taking the transition. These problems will be dealt with in Subsection 5.4.4

(see pp. 83ff.). Furthermore, it is essential to know the set of actions that may be called
for when exiting and entering states. We will deal with these problems in Chapter 6 (see
pp. 971t.).

The main goal of the second Subsection 5.3.2 is to provide a brief overview and com-
parison of the original statecharts (cf. [50, 51, 54]) with some selected variants which
fall into different classes of specifications. These include the following formalisms: Ar-
gos [101, 102], RSML [95], Esterel [11] and [69, 70, 71, 78, 79, 131, 158]. As a conclusion,
we can say that there are no standard guideline of the statechart specifications. Above
all, there are still a number of issues which have to be dealt with, e. g., inter-level tran-

66 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

sitions. Therefore, in the course of this thesis, we have to develop some kind of guideline
for the statechart specifications over which the test methods and test concepts will be
established.

5.4 Semantics of statecharts

In the previous Section 5.3 syntactical and semantical problems of statecharts have been
described and the approaches intended to overcome them have been evaluated. Further-
more, several statecharts variants have been compared. As a result of this discussion, we
can conclude that there are still series of problems which have to be dealt with.

That is, even though the syntax of statecharts has been defined, there remain be-
havioural concepts that are not obvious or even ambigiuous. The main purpose of this
Section 5.4, therefore, is to develop a formal account of the semantics of statecharts that
on one hand can be used to overcome some of the outlined problems in the section before,
but also on the other hand will serve as a basis for the test methods and concepts within
the rest of this thesis.

This Section 5.4 is organised as follows: In Subsection 5.4.1 we present the concepts
of ‘legal configuration’. In Subsection 5.4.2 we consider the case of a direct exit of an
AN D-state and give the formal concept of a ‘legal’ transition. In Subsection 5.4.3 we
present, techniques which can be used to transform AND-states into OR-states. In Sub-
section 5.4.4 we formalise the concept of ‘scope’ of transitions. In Subsection 5.4.5 we
formally describe one of the most delicate aspects in the design of real life complex sys-
tems, namely ‘conflicts’ between two transitions. In this context, we then introduce the
notion of priority which has been proposed in [54] as a solution to conflicting transitions.

5.4.1 State configurations

As seen in Subsection 1.2.2.1, page 4, a computation (run) of a statechart is a sequence
of statuses. One component of the statuses is the set of currently active states that forms
a ‘configurations’. Informally speaking, a configuration is a mazimal set of states that
the system (model) can be in simultaneously (cf. [54]).

In the following, a definition of possible (state) configurations of a statechart will be
given. The formal description of a configuration will be required in Subsection 5.4.4 when
defining the ‘scope’ concept of transitions which is used to handle nondeterminism and
to associate priorities to transitions. Above all, these definitions will as well be used to
determine legal statuses (cf. Subsection 6.2.1).

Definition 5.25 Given a statechart Sct with root state r, a (full) configuration is a
set of states C € 2° satisfying the following requirements:

(i) r € C, i. e., C contains .

(ii) s € C Atype(s) = OR = |children(s) NC| =1, i. e., if C contains a state s of
type OR, it contains exactly one of s’s descendants.

5.4. SEMANTICS OF STATECHARTS 67

(i1i) s € C Ntype(s) = AND = children(s) C C, i. e., if C contains a state s of type
AND, it contains all of s’s descendants.

In the STATEMATE specifications, it follows that configurations are “closed up-
wards”; i. e., when the system is in any state s, it must also be in the parent state
of s. This observation can be formulated as follows:

Remark 5.8 Vs e (C\{r}) : parents*(s) C C

In other words, Vs € C there exists a path from r to s (in the graph representing the
children- or parent-function, cf. Definition 5.3 and 5.5) and all states of the path are also
contained in C.

Denotation 5.1 C¢yy - S — 22 will be used to denote a function which maps a root state
7 to the set of configurations C (relative to r) satisfying the requirements of Definition 5.25.
Note: Cpuu(r) is abbreviated by Cpru.

Whilst the above Definition 5.25 refers to a full configuration, it is in any case necessary
to uniquely determine the basic configuration of a (full) configuration as the maximal set
of basic states which are part of this configuration.

Definition 5.26 A basic configuration relative to C, denoted Cpusic, is defined as follows:
Chasic = {s € C | children(s) = (0}.

Remark 5.9 parents*(Cpasic) = C.

Hence, a basic configuration is a maximal set of basic states that a system can be in
simultaneously.

Example for basic and full configuration

To illustrate the above definitions, recall Figure 4.3, page 28. In it, { Cup-idle, Coffee-
idle, Standby, Light-off } is a basic configuration, and its full configuration also contains
Cup, Coffee, Controller, Light, On and SCVM (the root state). {Cup-idle, Coffee-idle,
Light-off } for instance is not maximal and is therefore not a basic configuration. {Cup-
idle, Coffee-idle, Coffee-busy, Standby, Light-off } is accordingly not a ‘legal’ configuration
since the system cannot simultaneously be in two descendants of the OR-state Coffee.
Similarly, { Off } is a basic configuration, and its full configuration is the set { Off, SCVM }.

The formal concept of legal configurations may be formalised in the following way.
Definition 5.27 A set of states S is a legal configuration if there exists a (full) config-
uration C such that S = C or S = Cpasic-

5.4.2 Transitions in parallel states (nodes)

After the formalisation of the concept of legal configurations, we can now consider the
case of a direct exit of an AN D-state. Recall Definition 5.11, page 41 which describes for

68 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

a simple statechart a single transition arc a = (s,[,t) syntactically. Now, since in case of
a direct exit of an AN D-state the source of a transition is a set, part (8) of Definition 5.11
must be revised in order to compute transitions in parallel states (nodes). 7 will now be
used to define the set of transitions instead of the set of arcs.

Definition 5.28 We define a complex statechart as a simple statechart
Sct = (S, r, children, type, H, hist, de fault,T) such that:

T C 25 x L x 259M s the set of transitions.

That is, if t = (X,1,Y) is a transition, then

(i) X is called the source set,
(i) 1 is a label,

(1ii) Y s called the target set (not the set of target states, since Y can also contain
history symbols).

Note:
o The set X generally consists of only one state; only in case of a direct exit of
an AN D-state X contains more than one state.

e The set Y which is also called target(t) generally contains only one state and
— if necessary — one history symbol.

e In the case where the sets X and Y consist of only one state s; and s;, respec-
tively, a transition between s; and s; will be expressed as (s;, e/a, s;) instead of

({si} e/a,{s;}).
(End of Definition 5.28)

In case of a direct exit of an AN D-state, the source set X contains more than one
state. To be able to define a legal transition ¢, every two states in X (the source set of ?)
and every two states in Y (the target set of ¢) must be mutually orthogonal. Before the
definition of a legal transition of a statechart is given, the following terms are defined:

The lowest common ancestor will be defined with the help of the relation <.

Definition 5.29 (1) The partial order relations < and < on the set of states S are
defined as follows:

For each pair s1,s2 € S: s1 < sy iff s1 € children*(ss),
s1 < s9 iff s1 < s9 and s; # So.

(2) For a non-empty set of states S; C S, the lowest common ancestor of S,
denoted LC'A(Sy) is an element of S defined as follows:

(a) Vs € S1:s < LCA(Sy) and
(b) V'€ S:(Vse S :s<s)= (LCA(S) <).

5.4. SEMANTICS OF STATECHARTS 69

Remark: Since the children-Relation can be represented by a tree and children* is
related to children in a canonical way, LC'A(S;) is uniquely defined.

Definition 5.30 Two states s1, s9 € S are orthogonal, denoted sy L so, iff the following
18 true:

(a) type(LCA({s1,s2})) = AND

(b) _|(81 S Sy V 8o S 81).
The definition of a weakly legal transition of a statechart is given as follows:

Definition 5.31 A transitiont = (X,[,Y) is weakly legal iff

(a) Vs1,82 € X 181 # 89 = s1 L s9 and

(b) V31,32 cYnNSs:s 7&82 = 51 L s9
The set of weakly legal transitions will be denoted by Tw,,, ., -

Remark Definition 5.31 corresponds to the definition of ‘legal’ transitions described
in [51]. However, it is easy to show that the requirements stated in Definition 5.31 are
necessary, but they are not sufficient to define a ‘legal’” transition. Therefore, we refer to
it as the definition of a weakly legal transition.

To illustrate the Definitions 5.29, 5.30 and 5.31, consider Figure 4.3, page 28. If S1 =
{Cup-idle, Coffee-idle, Standby, Light-off}, then LC'A(S1) = On, type(LCA(S1)) =
AND.

The transition t1 = ({ Cup-idle, Coffee-idle, Standby, Light-off}, power-off, {Off}) is a
weakly legal transition of statechart SCVM.

Transition t2 = ({ Cup-idle, Coffee-idle, Light-off }, power-off, { Off }) is not a legal tran-
sition of statechart SCVM. The explanation for the transition ¢2 not being ‘legal’ requires
the ‘maximality’” of X to be defined. In order to deal with such problems, the concept of
weakly legal transitions must be extended to ‘legal’ transitions which have legal configu-
rations (cf. Definition 5.27 in Subsection 5.4.1).

Therefore, the formal concept of legal transition will be defined as follows:

Definition 5.32 A transitiont = (X,[,Y) is legal iff

(a) t is weakly legal, and

(b) X and Y are legal configurations.

The set of legal transitions will be denoted by Tiegqr-

70 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

In the example above t2 is not a legal transition of statechart SCVM because X =
{Cup-idle, Coffee-idle, Light-off} is not a legal configuration. That is, X = {Cup-idle,
Coffee-idle, Light-off } is not a basic configuration. The idea behind the formal concept of
legal transition is that when SCV M is e. g., in AND-state On, then exiting On implies
leaving all component states of the AND-state On. The transition t1 = ({Cup-idle,
Coffee-idle, Standby, Light-off }, power-off , Off) for instance is hence not only a weakly
legal transition of statechart SCVM but it is legal transition as well.

Nevertheless, Definition 5.32 does not give a procedure which can be used to compute
the legal configuration sets X and Y. Therefore, the next Subsections 5.4.3 and 5.4.4 will
deal with this problem.

5.4.3 Transforming AND-states into OR-states

In Subsection 5.2.4 we established the necessary background which can be helpful for the
development of methods and concepts to overcome the test problems, e. g., developing
algorithms which may be used to compute the aforementioned legal configuration sets X
and Y (cf. Definition 5.32). However, the main idea behind the methods developed in
Subsection 5.2.4 requires that a hierachical statechart consists merely of states of type OR,
i. e., AND-states are allowed. This requirement leads to the following observation: Since
reactive systems are normally described by hierachical statecharts that may also contain
orthogonal features, it is necessary to find some means of transforming states of type
AND, i.e., AND-states into OR-states. The main aim of this Subsection 5.4.3, therefore,
is to present techniques which can be used to transform AND-states into OR-states.

The transformation of an AND-state into an OR-state corresponds to building the
automata product of an orthogonal statechart (cf. Definition 5.12). This subsection,
therefore, is devoted to the construction of this automata product. In particular, it is
shown how the adjacency-matrix technique can be used for determining the correspond-
ing automata product of an orthogonal statechart. Note that the constructed automata
product is different from the conventional automata product. Hence the constructed
automata product will be referred to as modified automata product.

Our main goal is to achieve an OR~graph which represents the OR-states derived from
the AND-states. The OR-graph will be needed when computing all legal configurations
of the AND-state. These legal configurations are necessary for the illustration of the
concept of ‘scope’ of transitions (cf. Subsection 5.4.4). Above all, the OR-graph will also
be required in the process of test case derivation (cf. Chapter 7).

This Subsection 5.2.4 is organised as follows. In Subsubsection 5.4.3.1 we describe
the adjacency-matrix representation of statecharts. In Subsubsection 5.4.3.2 we then
construct the (statechart) modified automata product.

5.4.3.1 Matrix representation of statecharts

In the following, the adjacency-matriz representation which will be used to express the
associated digraph of a very simple OR-statechart (cf. Definition 5.20) is described.

5.4. SEMANTICS OF STATECHARTS 71

Definition 5.33

Assume that the vertices of a digraph G = (V, E,inc,label) are numbered 1,2, ... |V
in arbitrary manner®>. The adjacency-matrix representation of digraph G denoted
GMatrz then consists of a |V| x |V| matriz A = (a;;) with entries in {0,1} such that

— 1 ifJe € E :incle) = (4,5),
Y1 0 otherwise.

Notation 5.2 Adjacency-matrix representation of the associated digraph of a very simple
OR-statechart will be called very simple OR-statechart matrix and will be abbreviated
to VSSctM.

The adjacency-matrix representation of the associated digraph of a very simple OR-
statechart is defined as follows:

Definition 5.34

Assume that the vertices of the associated digraph G = (V,vo, E | inc, label) of a very simple
OR-statechart Sct are numbered 1,2, ... ,|V| in arbitrary manner®>. Let L be the set of
labels as described in Definition 5.10. Then the adjacency-matrix representation
VSSctM of digraph G consists of a |V| x |V| matriz A = (a;;) with entries in 2% such
that

a;j = {label(e) | e € E and inc(e) = (i,7)}.

Remark: Ifa;; =0, i. e., there does not exist an edge e € E with a;j, then a;; = 0 in the
corresponding adjacency-matrix representation of Definition 5.33.

5.4.3.2 Building modified automata products

In this Subsubsection 5.4.3.2, we use the adjacency-matrix technique described in Subsub-
section 5.4.3.1 above to determine the corresponding automata product of an orthogonal
statechart. Because the constructed automata product is different from the conventional
automata product, we will refer to it as modified automata product.

Motivation of modified automata

In Subsection 5.2.4, we examined the relationship between a formal statechart and a
labelled directed graph. Among other things, we defined an OR-graph (cf. Definition 5.18)
which was based on the definition of OR-statechart (cf. Definition 5.13). Then we gave
the definition of a very simple OR-statechart (i. 4., in which all states with the exception
of the root are basic) and its associated simple OR-graph (cf. Definition 5.20).

Now on one hand, we already know that reactive systems are normally described by
hierachical statecharts that may also contain orthogonal features, on the other hand, we
2y ={1,2,...,|V|]}

By ={1,2,...,|V]}
244 statechart

72 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

argued that OR-graphs represent OR-statecharts which basically consist merely of states
of type OR, i. e., OR-states. There are several reasons for insisting on transforming
states of type AND, i. e., AND-states into OR-states. For our main purpose, namely
the development of methods and concepts to overcome the test problems, the derived
OR-graphs will aid the development of simple and efficient algorithms which are used
to generate test paths in a statechart model (cf. Chapter 7). Therefore, our main goal
in this subsubsection is to establish techniques which will allow the transformation of
AND-states into OR-states. The orthogonal statechart will be represented by a ‘modified
automata product’.

Recall the simple statechart S00 in Figure 5.3 on page 44. Now the orthogonal state-
chart for SO in Figure 5.3 is represented by Figure 5.17. The corresponding ‘modified
automata product’ for S0 is depicted by Figure 5.18.

Figure 5.17: An orthogonal Statechart for S0.

As a motivation for this modified automata product which will be formally described
in Definition 5.35 we refer to the work of Bohling and Schiitt in [17]. In [17] (cf. definition
7.1(2) page 63) a direct product of automaton M; and automaton M, (without outputs)
is given as follows:

Let M; = (S;, X;, (79)x € X;) with X; input and 7! transition relation (i € {1,2}),
S =51 xSy, and

X = X; = X5 be given.

For allz € X :

((S1,5,),(S1,5%) € 7 (i. e., S1.99 = S1.5%)

= (51,9]) € 7} and (Ss, S) € 72 where

(S1,57) € 7} is a transition in automaton 1 with z (from S; to S}) and

(S, S%) € 72 is a transition in automaton 2 with z (from Sy to S5).

Remark 5.10 Note that for the ‘statechart product matrix’ it will be assumed that
(s,8) € T, is true if (s,t) € 7, for all t # s (cf. Figure 5.19).

The modified automata product for S0 in Figure 5.18 represents a ‘simple OR~graph
product’ Gy. In short Gy is the OR~graph product of the two associated simple OR-graphs

Ct
M
n
J
N
2
3
P!
n
®)
&S|
n
&
:
3|
P!
=
J
.
n
=J
(V)

G S4XS6

S5XS6

Figure 5.18: The automata product for S0

of the corresponding orthogonal components of S0. In the following, we give the formal
definition of the simple OR-graph product Gy.

Definition 5.35 For an orthogonal statechart SO consisting of two orthogonal compo-
nents, S1 and S2 (i. e., children(S0) = {S1,52} and type(S0) = AND), let G; =
(Vi, vo,, E1, incy, labely) and Go = (Va, vo,, Ea, inc, labely) be digraphs® represent-
ing S1 and S2, respectively. Then Gy = (Vo, vo, Eo, incy, labely) is the associated

Z’Note that G; and G are associated simple OR-graphs (cf. Definition 5.20).

X
@ incaserot M

e for somet
animplicit extension

of the Satechart

Figure 5.19: Illustrating Remark 5.10

74 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

simple OR-graph, also called simple OR-graph product, where
(0,) % = (Sl X Sg),

(b) Vo = </001/002>7

(c) Ey = (En x Ey) = Ty (where Ty is the set of transitions of orthogonal statechart
S0),

(d) incy : Ey — Vo x Vo and labely : Ey — Lo are defined as follows:
for a transition to = (x122) lo (y1y2) € To = Ep: inc(ty) = ((z122), (y192)) and
lab@l(to) = lo.

Remark 5.11 In Definition 5.35, the set of edges E1 U Es represent 7o the set

arcs(s0)

of transition arcs of orthogonal statechart SO (cf. Definition 5.12). The set of edges Ey,
which represents the set of transitions of orthogonal statechart SO will be denoted by Toren
instead of Tj.

In the next step, we establish an algorithm which will be used to determine the simple
OR-graph product described in Definition 5.35 above. This algorithm is called state-
chart_product_matrix and is defined in the following.

Definition 5.36 For an orthogonal statechart SO consisting of two orthogonal compo-
nents S1 and S2 (i. e., children(S0) = {S1,52} and type(S0) = AND), let Gy and
Gy be digraphs representing S1 and S2, respectively. Then assume A and B, the corre-
sponding statechart matrices (VSSctMs) representing G and Go, respectively, consist
of basic states only.

A mapping
auto_prod : M(n,n;2%) x M(m,m;2%) — M(n -m,n -m;2") (5.1)

is defined, where M (k,k; X) denotes the set of all k x k-matrices with entries in X for
ke IN.
Given A € M(n,n;2%) and B € M(m,m;2%), let

C = (¢ij) = auto_prod (A, B) (5.2)

be defined as follows:

Fori,j e {1,....,n}, 7,5/ € {1,...,m}, element cy;), of C is defined as fol-
lows®®, where ¢ is the mapping

o A{L...,n} x{1,...,m} = {1,....,n-m} with p(k,l) — (k—1) -m+1:
(]) Zf Q5 = @ and bi/j/ = @, then C@(i,i/),w(j,j/) = @

(2) Zf aij N bz‘/j/ 7£ @, then Cgo(i,z‘/),go(j,j/) = aij N bi/j/

26Note that ¢ is a bijective function.

5.4. SEMANTICS OF STATECHARTS 75
(3) otherwise (i.e., if a;; N byj =0 and a;; Uby; #0)

(G) Zf Qg5 7é @ and bi/j/ 7§ @

ioif (i # J and @ # §') then o065 = 0
. if (i = j and i = j') and 3k : aix N by # O then copin e =0 (i e,
NB.: Conflict*" between transitions!!!)
otherwise Cyiiny,p(jj) = @i U by
i, if (i # j and @' = j') then cuin 035 = Qij
w. if (i = j and i # j') then cupi,0(j, 1) = biryr (this case is dual to the former
one)

The parts . through w. handle loop problems.
(b) if by =0 (and a;; # 0):
iif i 1 then oG (. = 0
. if ' =7 and VK : a;j Ny = O then cuiim o0 = Gij
. otherwise (i.e., if i' = j" and K" : ai; Ny #0) o wiiy =0
(c) otherwise (i. e., if by # 0 and a;; = 0, this case is dual to case (b))

i. Zf’l 7éj th@n C@(i,i/),go(j,j/) = @
1. Zf’L = j and Yk : air M bi/j/ = @ then Co(4,i"),0(5,5") = bi/j/
ii. otherwise (i.e., if i = j and 3k : ay Nbijr # 0) copiin i =0

The adjacency-matriz C' = auto_prod(A, B) is called the automata product ma-
trix of A and B and is abbreviated to APM.

The automata product matrix APM C represents Gy, the simple OR~graph product of
the orthogonal statechart S0.

The following two statechart matrices A and B represent the orthogonal components
S1 and S2, respectively, in the orthogonal statechart SO of Figure 5.17 (without default
states). In the matrices singleton sets {x} are represented as x and () is denoted as 0.
Rows and columns are labelled by the original state names (instead of a numbering of
states i. e., vertices, as in Definition 5.33) and e. g., ass g5 denotes row S3 and column
S5 of the statechart matrix A, and e. g., bgs g7 denotes row S6 and column S7 of the
statechart matrix B.

A B:

S3 S5 54 S6 S7
S3/0 F @G S6/ 0 F
S5 0 0 H 57(G O)
S4\D I 0

2"Two transitions are in conflict if there is some common state that would be exited if any one of
them were to be taken (cf. Subsection 5.4.5).

76 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Notation 5.3 Note that the following four expressions may be used if cy(s3,56)0(55,57) =
{F'} and denote that if in state S3 and S6 and event F occurs then the next configuration
will consist of S5 and S7.

S3x 56 5 55 x 7
53,56 5 55,87
5356 5 S557
0(53,56) 5 (55, 57)
(if v is appropriately chosen as in the footnote 26 of Definition 5.36 above).

In the following, Definition 5.36 is illustrated.
Case (1) of Definition 5.36

5356 % 5356

ass,s3 =0

bse,s6 = 0 } = Cy(53,56) 0(53,56) =

which means that there is no transition from S3.56 to S356.
Case (1) of Definition 5.36

5556 % 5396

ass,s3 =0

bse,s6 = 0 } = Cy(s5,56).(53,56) =

which means that there is no transition from S556 to S356.
Case (2) of Definition 5.36

5356 L 597

ass,ss = F

bsg g7 = F } = C(53,56),0(55,57) = LF Y N{F} ={F},

hence $356 5> S557 (cf. Notation 5.3).
Case (3)(a)i. of Definition 5.36

5356 % 5457

as3,s4 =G

bse,s7 = F } = Cp(53,56),(54,57) = 0

5.4. SEMANTICS OF STATECHARTS 7

which means that there is no transition from S356 to S4S57.

Now consider Figure 5.20 which depicts another orthogonal statechart S0. We use it
to illustrate case (3)(a)ii.

Case (3)(a)ii. of Definition 5.36

s11521 % s11521

asi1,s11 = E
bsar,s1 =F » = ({E}U{F})N{F} #0 = cys11,521),0(511,521) = 0,
asii,s12 = F

which means that nondeterminism occurs when the OR-graph product is constructed.
This is clearly shown by Figure 5.21.

So1

[S12, S21]

Figure 5.21: An example of nondeterminism

Now consider Figure 5.22. We use it to illustrate Case (3)(a)iii.
Case (3)(a)iii. of Definition 5.36

511521 £ 125921

78 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

asii,s12 = F
’ = Cy(S11,521),0(512,521) = F°
bsa1,521 = H } P(S11,521),¢(512,521) = &

which means that there is a transition from S11521 to S12521. This is shown by
Figure 5.23.

=)

S02

OW

S21

Figure 5.22: Statechart SO used to illustrate Case (3)(a)iii

S11, s21 J

S12, S21 j

Figure 5.23: Ilustrating Case (3)(a)iii more

Now consider Figure 5.17 again.
Case (3)(b)ii. of Definition 5.36

5357 % 5597

as3,ss = I
bsr.s7 =0

5.4. SEMANTICS OF STATECHARTS 79

bsr.s6 = G

bsr,s7 =10 } = {F} N{GIU0) =0 = cpiss.sm (55,97 =

which means that there is a transition from S3S7 to S5S7.
Case (3)(b)iii. of Definition 5.36

5357 % 5497

as3,s4 = G
bs7,s7 =10
bsr,s6 = G = {G} N{G} # 0 = cy53,57) 058,57 = 0

which means that there is no transition from S3S7 to S4S57.

Here we have to check whether there is at least one transition leaving S7 with the label
(. In this particular case, there is a transition from S7 to S6 with label G. Therefore, it
is not possible to execute G only for the transition S3 to S4.

Case (3)(c)i. of Definition 5.36

5557 2% 9396

ass,s3 =0
bsr,s6 = G

S5 # S3 = cy(s5,97),0(53,56) = 0,

which means that there is no transition from S5S57 to S356. If there is no transition
from S5 to S3 and S5 # S3, the transition from S5S7 to S356 is obviously undefined.
Therefore, there is no need to bother computing the value of b;/ .

Case (3)(c)ii. of Definition 5.36

5556 55 9597

ass,s5 =0
bse,s7 = F

5555 creates no problems because for the statechart product matrix, it is assumed that
(s,8) € 7, is true if (s,t) € 7, for all ¢ # s. Hence there is a self loop.

ass,s3 =0
ass,s5 =0 o= ({H} UOUD)N{F} =0 = cys5,56),0(55.57 = 1}
ass.s4 = H

which means that there is a transition from 5556 to S557.

80 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Here we have to check whether there is no transition leaving S5 with label F'.
Case (3)(c)iii. of Definition 5.36

53572 9396

ass,s3 =0
bsr,s6 = G

as3sa =G = {G}N{G} # 0 = cy53,57),0(53,56) = 0,
which means that there is no transition from S357 to S356.

Here we have to check whether there is at least one transition leaving S3 with the
label G. In other words, when the external event G occurs, it must be received by both
automata. Therefore, it is not possible to execute G for only one of the states.

Case (3)(c)iii. of Definition 5.36

5356 % 5397

as3,s3 =0
bse,s7 = F
ass,s5 = I = {F} N {F} # 0 = cy(s3,56),0(53,57 = 0,

which means that there is no transition from S356 to S3S57.

5.4. SEMANTICS OF STATECHARTS

The application of Definition 5.36 leads to the following (6 x 6) entries:

C[S356, S356
C[S356, S357
C[S356, S556
C[S356, S557
C[S356, S456
C[S356, S4S7

C[S387, 356
C[S387, 8357
C[S387, S556
C[S387, S557
C[S387, S456
C[S387, S4S7

[

[

[

[

[

[

[

[

[

[

[

[

C[S556, S356

C[S556, S3S7

C[S556, S556

C[S556, S557

C[S556, S456

C[S5S56, S4S7

C[S5S7, S356

C[S5S7, S3S7

C[S5S7, S556

C[S5S7, S587

C[S5S7, S456

C[S5S7, S4S7
[
[
[
[
[
[
[
[
[
[
[
[

C[S456, S356
C[S4S56, S357
C[S456, S556
C[S456, S557
C[S456, S456
C[S456, S4S7

C[S487, S356
C[S487, S357
C[S487, S556
C[S487, S557
C[S487, S456

|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
|:=
J:=
]:=
]:=
]:=
J:=
]:=
]:=
]:=
J:=
]:=
J:=
]:=
J:=
J:=
J:=
J:=
J:=
J:=
J:=
J:=
C[S4S7, S4S7] :=

0
0
F
G
0
0
0
0
F
G
0
0
0
0
F
H
0
0
0
G
0
0
H
D
0
I
0
0
F
0
D
0
I
G
0

82 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Here is the resulting matrix:

MgZC
S356 S3ST 5556 S5S7 S456 S4ST

5356 (0 0 0 (:) (:) 0
5357 0 o (:)
(£)

0

0
(D

0
$586] 0 0 0
sss7| 0 0 (@)
sise| (D) o (1)
s157\ 0 (D) 0

In addition to Definition 5.36, an important control
RS is stated in the following definition.

)
&)

@)= = @E

echanism for reachable states

=

Definition 5.37 The reachable automata product matrix RAPM of an automata
product matrix APM 1is the restriction of the APM to reachable states. The set of
reachable states RS is constructed as follows:

Let Sgefauit, and Saefaurr, be the default states of VSSctMy and VSSctMs, respectively.
Then the sets RS;, 1 > 0, are defined recursively as follows:

RSy := {(Sdefauity s Sdefauits) }
RS ={(5,5") | 38"5" € RS : cpis,9m),0(5,5) 7 0} U RS where | € IN.
If i is the smallest number such that RS;11 = RS; then RS := RS;.
Referring to the example above, Definition 5.37 gives the following result.
RSy = {5356}
RS, = {5456, 5557} U RSy
RSy = {5556, 5457} U RS,
RS3; = {5357} U RS,
RSy = RS,
hence RS = {5356, 5456, 5557, 5556, 5457,5357} = {53,54, S5} x {56, S7}.

Theorem 5.4 Let Gy be a simple OR-graph product of the orthogonal statechart SO con-
structed by Definition 5.36 and Definition 5.37. Then the nodes of Gy deliver the set of
all (possible) basic configurations of the orthogonal statechart SO. In addition, the edges
of Gy deliver Ty.n, the set of legal transitions of orthogonal statechart SO.

Proof idea The proof idea is based on the fact that Gy is a simple OR~graph (cf. Defi-
nition 5.20).

5.4. SEMANTICS OF STATECHARTS 83

5.4.4 Notion of scope of transitions

In Subsection 5.3.1 problems caused by inter-level transitions were discussed. It was
noted that when an inter-level transition is dealt with, one has to accurately define the
hierarchical states that are exited by taking the transition and those that are entered.
Recalling the example of Figure 5.13, page 59, the question is still whether the system
exits and reenters state S1 and which substate of S2 is (re-)entered when transition arc
a2 is executed?

The main purpose of this Subsection 5.4.4, therefore, is to formalise a concept — the
notion of ‘scope’ of transitions — that can be used to deal with interlevel transitions
which in general deny a structural operational semantics for statecharts.

Harel and Naamad introduced the concept of the scope of transitions to overcome
ambiguities as mentioned above. For a full compound transition ¢ € 7j4q;, “the scope of a
transition ¢ is the lowest O R-state in the hierarchy of the states that is a proper common
ancestor of all the sources and targets of the transition arcs appearing in t” (cf. [54]).

This informal description of the scope concept will be formalised by a function scope
as follows:

Definition 5.38 Let Sct = (S, r, children, type, H, hist, de fault,T) be a statechart. The
function scope : T — S which maps a transition t = (X,1,Y) € T to a state, called its
scope, is a function satisfying the following requirements:

(i) Vs € (X UY) : s < scope(t) A type(scope(t)) = OR, and
(i) Vs' € S: (Vs € (XUY):s<s) A type(s) = OR) = scope(t) < 5.

Remark 5.12 Note that the following is true: if all considered states (in the partial
order relation <) are OR-states then the lowest common ancestor (LCA) for the union

of the source set and target set of the transition is the scope (see also Subsection 5.4.2,
Definition 5.29 (2)).

In [54], Harel and Naamad stated, “When the transition ¢ is taken, all proper descen-
dants of its scope in which the system resided at the beginning of the step are exited, and
all proper descendants of that scope in which the system reside as a result of executing ¢
are entered.” In other words, the scope is the lowest OR-state in which the sytem stays
without exiting and reentering when taking the transition.

As an example consider Figure 5.13 on page 59. In the following, the transition
in which the transition arc a2 is taken, will be called t2. Since scope(t2) > S5 and
scope(t2) > ST is demanded by Definition 5.38, the scope of 2 is SO (and not S1 which is
of type AND). Taking t2 implies exiting S5, S2, S1, S3 and either S6 or S7, depending
on which one of them the system was in at the beginning of the step, and implies entering
states S1, S2, S4% 83, S7. State S0 is not exited.

To apply Definition 5.38 to statecharts which are not of type OR, i. e., to statecharts
of type AND (orthogonal statecharts, cf. Definition 5.12), it is necessary to develop an

28Gince S4 is the default state of S2, executing ¢2 implies entering state S4.

84 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

algorithm which computes the source set X and target set Y for a transition corresponding
to “executing a transition arc”. This is particularly important when the sets X and Y
consist of more than one state. For example, in case of a direct exit of an AND-state, X
contains more than one state.

Let Zorin,, ..., be a set of transition arcs of an AND-state s (cf. Definition 5.12). Let
Tortn be a set of transition arcs of an AND-state (cf. Remark 5.11).

For example, given the transition arc a2 = (S5, ev2, S7) € 7,
on page 959.

Result: A transition t2 = ({S5, S6}, ev2, {S4,57}) € Ton
(When ¢2 is taken, then a2 is executed.)
Problem: How are the sets X = {55,56} and Y = {54, ST} obtained?

Since it is known that the transition arc a2 = (S5, ev2, S7) € Torthypessy €Xits an AND-
state, then the first step is to determine the exited AND-state. That is, scope(a2) = S0,
children(S0) = {S1} and type(S1) = AND.

The next step can be summarized by the following procedure:

of Figure 5.13

rtharcs (S1)

Procedure 1

Let S1 be an orthogonal statechart consisting of two orthogonal components, S11 and S12
(i. e., children(S1) = {S11, 512} and type(S1) = AND), and let a, = (s;,,evs, s;,) €
Torthg,es(s1y € @ transition arc. Furthermore, let t, = ({si;, 55}, €Vm, {Sir;8j2}) € Tortn
be a transition which when taken, executes the transition arc a,, with {ev,} N{ev,} # 0.
Note that ev,, can have more than one element (cf. Case (3)(a)ii., the otherwise branch
of Definition 5.30). Then we compute the legal configurations (i. e., the source set X =
{Siy, 85, } and target set Y = {s;,,s;,}) of t» as follows:

1. Construct the automata product matriz of S1 according to Definition 5.36 and
Definition 5.37.

II. Let C be the automata product matrixz constructed in step I above. Let GO be
the simple OR-graph product corresponding to the automata product matriz C'.
Let L. be an empty edge list. Then beginning with the first vertez of GO (i. e.,
start mode vg := (vq,, vo,)), use a depth first search?®® (dfs) to determine the
legal configurations as follows:

check if s;, is element of the configuration (vo,,vo,)

CASE 1: if true, then select if possible an outgoing edge with label ev,. Let the
target node vy of ev. be (v, vy,), check if s;, is element of the configuration
(vor, voy); if true, then insert this edge in the list L.

The next node to be considered is (vor, voy), (1. €., vo := (vVor, voy). For each such
vertexr we repeat the procedure above (CASE 1) until either not true or all edges
are visted.

CASE 2: if false, (i. e., s; is not element of the configuration (vo,,vo,) then
traverse the edges by depth first search (dfs) until either s;, is element of the

29¢f. Subsection 7.7.2

5.4. SEMANTICS OF STATECHARTS 85

configuration (vg,, vo,) or all edges are visted. If s;, is element of the configura-
tion (vo,, vo,) proceed as above (CASE 1).

CASE 3: otherwise all edges are visted, then we are done.

III. The list L. of step I contains all the possible configurations of the transition
[

Figure 5.24 shows the simple OR-graph product GO which represents S1 of Figure
5.13 on page 59. In our example above, a, = a2 = (S5,ev2,S7). t, = 12 € L, =
{({557 56}7 6/027 {547 S7})7 <{557 57}7 6/027 {547 S7}>}

Figure 5.24: The simple OR~graph product GO which represents S1 of Figure 5.13 on
page H9.

Remark 5.13 Note that the notion of scope does not depend on the way the arrow is
drawn, but solely on its sources and targets.

The sets of entered and ezited states are determined as follows:

Definition 5.39 The function exitiop : Tiegu — S determines for a taken transition
t = (X,1,Y) the highest exited state (on the statechart level) exityo,(t) € S where

(i) exitip(t) € children(scope(t)) and
(11) LCA(X) < exitiop(t).

Definition 5.40 The function exit : Tjegar X Crun — 25 determines for a taken transition
t = (X,1,Y) and a configuration C the set of exited states by
children*(exit,,(t)) N C.

86 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Definition 5.41 The function enterio, : Tiegu — S determines for a taken transition
t = (X,1,Y) the highest entered state (on the statechart level) entery,y(t) € S, where

(i) entery(t) € children(scope(t)) and
(ii)) LCA(Y) < enterp(t).

Consider Figure 5.13 on page 59. Let t2 = ({95, 56}, ev2, {54,57}) € Tiegas, then
scope(t2) = S0 (cf. page 83); exit;p(t2) = enteryy(t2) = S1, since LOA(X) = S1 =
LCA(Y) and S1 € children(S0).

Now, given C = {r, S0, 51,52, 55,53,56}, then exit(t2,C) = {S1,52,55,53, 56},
since children*(exit;,,(12)) = {51, 52, 53, 54, S5, 56, S7}.

In Definition 5.23 and 5.24 on page 55 we described the syntactical transformations of
a statechart which consists of linked transition segments into a statechart in CNF' (see
also Remark 5.7). Before we can give the definition of the function enter, it is necessary
to establish the semantical definition of a full compound transition (full CT). The main
idea behind the semantical definition of full compound transitions is that the (default)
connectors ‘vanish’ from the original statechart. In other words, for every entered OR-
state one default transition is added and the label of the full compound transition is the
combination of the transition segments.

To illustrate this more precisely, consider Figure 5.25 which depicts a statechart that
describes the behaviour of the telefax machine BEAUTY in terms of its human inter-
face. The combination of transition arcs from SERVICE to SOURCE with label DIS-
CONNECT_-CABLE, BT_RM / dc!(MSG);fs!|(POW_ON); fs!(BT_-ON) constitutes a full
compound transition which in the following is denoted by t1. Of course, in the process of
carrying out the set of transition arcs { DISCONNECT-CABLE, BT-RM }, the actions
de!(MSG);fs!(POW_ON);fs!(BT-ON) are carried out simultaneously. The meaning of ¢1
is that when events DISCONNECT_CABLE and BT_RM occur, then the telefax machine
BEAUTY leaves its AND-state SERVICE and enters the other AND-state SOURCE.
Then entering BATT-OFF and POWER_OFF is determined by transition arcs with la-
bels /fs!(BT_ON) and /fs!(POW_ON). After the execution of a full compound transition
a new configuration is reached.

For the semantical definition, we characterize a full C'T by a condition on the target
set that determines a substate of an OR-state which will be entered when an OR-state is
entered as follows:

Definition 5.42 A transitiont = (X,1,Y) is a full CT iff for all substates
s € enteryy(t) with type(s) = OR

(a) either an entered substate s is determined by Y, i. e.,
Y N children*(children(s)) # 0,

(b) or the state s itself is not entered, i. e.,
s’ € parents*(s),s” € parents*(Y) : s # §" A parents(s’) = parents(s”) A
type(parents(s’)) = OR.

Notation: The set of all legal full CTs will be denoted by CTiegqi-

5.4. SEMANTICS OF STATECHARTS 87

— Il TELEFAX
o—— : o~(fs! (PON ON))
y fs! (BT_ON) . x
BATT_OFF . PONER_COFF
BT_INtr! (BT_ON) KBT_RM | NSERT CABLEK
; tr T (FON O DI SCONNECT_CABL
BATT_ON
BATT POWER_ON
: POVER
BATTERY T (. MAI N_POVER

DI SCONNECT_CABLE
dc! (MG BT _RM dc! (M5GQ)

tr (PONQON) or
r(BT_ON)/BT_OK

tr(POWON) or tr(BT_ON)/BT_OK

BT _RM | SCONNECT_CABLE
[SERVICE]

RA 7
A Al

: Y W (TEST)
DEAD BT_EXP TEST | _LNSTAIL
— SsI (BT ;
BT VK (ﬁ i MODES

Figure 5.25: The statechart for the telefax machine BEAUTY .

Example for Definition 5.42
Consider again Figure 5.13 on page 59.
12 = ({55, 56}, ev2, {S4,57}) € CThegu
enteryy(t2) = S1
children(S1) ={S2, S3}
type(S2) = OR = type(S3)
According to Definition 5.42, transition t2 € CTjegq, since
for part (a): {S4, ST} N children(S2) = S4 # 0,
for part (a): {S4, ST} N children(S3) = S7 # .
Now the definition of the function enter is given as follows:

Definition 5.43 The function enter : CTiegar — 2° maps a taken transitiont = (X,1,Y)
to the set of entered states

enter(t) = parents*(Y') N children*(enteriy(t)).

88 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Recall Figure 5.13, where given C = {r, S0, 51, 52,55, 53, 56}, arc a2 = (S5, ev2, ST)
leads to the transition t2 = ({95, 56}, ev2, {54,57}) € CTiega and enter,,,(t2) = S1.
Therefore, enter(t2) = parents*({S4, S7}) N children*(S1) = {S1, 52, 54,53, S7}.

The above definitions can thus be used to determine the entered (target) set and exited
(source) set. In addition, the problem of transitions which cross the boundaries of nested
states as mentioned in Subsection 5.3.1 (page 59) can also be dealt with by applying the
definitions above (see next Subsection 5.4.5).

5.4.5 Conflict between transitions (nondeterminism)

As stated in Subsection 1.2.2.1 on page 5, in the design of real life complex systems there
is a variety of nontrivial situations. One of the most delicate issues are conflicts between
transitions. Informally, two transitions are in conflict if there is some common state that
would be exited if any one of them were to be taken.

In Figure 5.26, e. g., t1 and t2 are in conflict because — in case of evl occuring —
they each imply exiting state S11. In addition, ¢4 is in conflict with all of ¢1,¢2 and ¢3
because if and when t4 is taken, the system must have been in S1 and thus also in one
of its substates. In this particular case, it follows e. g., that {2 and ¢4 cannot be taken in
the same “step”. This notion can be defined in two ways, with respect to a configuration
or independent of a configuration, as follows:

(S0 o\/ h

t4: evl

t3: evlor ev2

Figure 5.26: Illustrating some conflicts

Definition 5.44 Let a statechart Sct = (S, r, children, type, H, hist, de fault, T) be given.
Two transitions t; = (X1,0,Y1), ta = (Xa,l2,Ys) € T with t; # t5 are in conflict

(1) with respect to a configuration C € Cyyy; iff

5.4. SEMANTICS OF STATECHARTS 89

(a) exit(t;,C) N Xa # 0V exit(ts, C) N Xy # 0, or
(b) exit(t1,C) Nexit(ts,C) # O holds.

(2) independent of a configuration iff

(a) exitiop(t1) < exitiop(te) V exitiy(ta) < exitiop(ts),
(b) type(LC A({scope(ty), scope(ta)})) = OR, and
(c) —(scope(ty) L scope(ts)).

5.4.6 Dealing with conflict between transitions (nondeterminism)

As a solution to conflicting transitions, the notion of priority has been proposed in [54].
Assume that t; and o are two conflicting transitions with respect to a configuration, and
that scope; and scopes are their scopes, respectively. According to Definition 5.44, case
(2), when two transitions are in conflict, there must be a common state in their source
states. This implies that their scopes cannot be orthogonal or exclusive. In other words,
either they are equal or one of the scopes is an ancestor of the other in the state hierarchy
(cf. Definition 5.44 case (2), part (a) and (b)).

In [54], priority is given to the transition whose scope is higher in the hierarchy.
Of course, if scope; = scopes, neither t; nor to has priority over the other in which
case nondeterminism occurs. In this particular case, one of the possible transitions is
chosen nondeterministically. A formal definition of priority will not be given in this
thesis. Instead an example is given. Nonetheless, in Subsubsection 6.2.1.1 we describe
an algorithm Generate 7T,,;, which will be used to determine the sets of maximal
nonconflicting transitions Zoen, C 7 (cf. Remark 5.11, page 74).

Example for the notion of priority

In Figure 5.27, e. g., the scope of t3 and t4 is S21, the scope of t5 is S2 and the scope of
t1 is S1. Thus t3 and t4 have the same priority, and ¢5 has a higher priority than 3 and
t4. Let C = {r, 500, 50,51, 511, 52,521, 5211, 52112} be a configuration in Figure 5.27.
Then, t1 = ({S11}, evl, {S12}) and t3 = ({S2112}, ev3, {S2122}) are not in conflict with
respect to C, because exit(t1,C) N {52112} = () as well as exit(t3,C) N {S11} = 0.

Recall static reactions (SRs) which were briefly introduced in Subsection 4.2.1.5. An
“enabled” SR defined in a state s € S is executed if the system was in s at the beginning
of the step but s was not exited by any full compound transition (CT) during the step.
Following the notion of scope, one might say that an SR defined in a state s is in conflict
with all the CTs that exit s or one of s’s ancestors. In addition, CTs have higher priority
than SRs since if a state s is exited as a result of some CT, its SRs will not be executed
in that step.

Throughout the rest of this thesis, unless stated otherwise, only legal full CTs (CTjegar)
will be considered. However, we will use 7je4q; instead of CTiegqi-

90 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

o)
S00 ’—‘
m
~ T ™
1 2 - N
o | S21
I
I
Ss11 |
I
I
I
I
: t5: evb
I
I
tl: evl |
: S22 _),
I
: t4: ev4 |t3: ev3
E 212
S12 |
| 2121
I
: S2122
I
I
| \ D
\— ! J
\— J

Figure 5.27: Illustrating priority

5.4.7 Summary of Section 5.4

In this subsection we present a summary of Section 5.4. The main goal of Section 5.4 is
to provide concepts which can be used to overcome some of the problems, e. g., inter-level
transitions discussed in Section 5.3. In addition, Section 5.4 deals with the formal aspects
which will be required to describe and formalise the step semantics based on a qualitative
time model and the one based on a quantitative time model in Chapter 6.

In Subsection 5.4.1 we present the concept of legal configuration. The formal descrip-
tion of a configuration is necessary for the definition of the scope of transitions which is
presented in Subsection 5.4.4. The scope concept of transitions is used to handle nondeter-
minism and to associate priorities to transitions. Above all, the configuration definitions
will be used to determine legal statuses defined in Subsection 6.2.1.

In Subsection 5.4.2 we consider the case of a direct exit of an AN D-state and give
the formal concept of a ‘legal’ transition. In case of a direct exit of an AN D-state
the definition of a simple statechart presented in Subsection 5.2.3.1 cannot be used to
compute transitions in parallel states. Therefore, we present a new definition of a complex
statechart (cf. Definition 5.28). Furthermore, we remark that the requirements stated in

5.4. SEMANTICS OF STATECHARTS 91

the definition of ‘legal’ transitions in [51] are necessary, but they are not sufficient to
define a legal transition. Consequently, we develop a formal concept of legal transitions
(cf. Definition 5.32).

In Subsection 5.4.3 we present techniques which can be used to transform AND-states
into OR-states. The transformation of an AND-state into an OR-state corresponds to
building the automata product of an orthogonal statechart (cf. Definition 5.12). This sub-
section, therefore, is devoted to the construction of this automata product. In particular,
it is shown how the adjacency-matrix technique can be used for determining the corre-
sponding automata product of an orthogonal statechart. Since the constructed automata
product is different from the conventional automata product we refer to it as modified
automata product.

The main goal is to achieve an OR-graph which represents the OR-states derived from
the AND-states. The OR-graph is used in the computation of all legal configurations of
the AND-state. These legal configurations are necessary for the illustration of the concept
of scope of transitions (cf. Subsection 5.4.4). Theorem 5.4 summarises that “the nodes
of a simple OR-graph product GO of an orthogonal statechart SO deliver the set of all
(possible) basic configurations of the orthogonal statechart S0”. In addition, the edges of
GO deliver 7,4, the set of legal transitions of orthogonal statechart S0.

In Subsection 5.4.4 we formalise a concept — the notion of scope of transitions —
that can be used to deal with interlevel transitions which in general deny a structural
operational semantics for statecharts.

The definitions presented in this subsection thus can be used to determine the entered
(target) set and exited (source) set. In addition, the problem of transitions which cross
the boundaries of nested states as mentioned in Subsection 5.3.1 can also be dealt with
by applying these definitions (cf. Subsection 5.4.5).

In Subsection 5.4.5 we formally describe one of the most delicate aspects in the design
of real life complex systems, namely conflicts between two transitions. In this context, we
describe the notion of priority which has been proposed in [54] as a solution to conflicting
transitions.

92 CHAPTER 5. THE FORMAL SYNTAX AND SEMANTICS OF STATECHARTS

Chapter 6

Step Semantics of Statecharts

Following the STATEMATE specification, the statechart behaviour is described in terms
of steps (cf. Figure 1.3, page 5). The semantics of statecharts described in this chapter,
therefore, deal in general with defining the behaviour precisely in terms of transitions
“which execute a step”, i. e., describing a step formally, with all its ramifications and
side effects. In [54], some of the general principles that have been adopted in defining the
semantics are stated informally as follows:

(a) Reactions to external and internal events, and changes that occur in a step, can be
sensed only after completion of the step.

(b) Events “live” for the duration of one step only (the one following the step in which
they occur) and are not “remembered” in subsequent steps.

(c) Calculations in one step are based on the situation at the beginning of the step.

(d) A maximal subset of ‘non-conflicting’ transitions and ‘static reactions’ is always
executed.

In this thesis, we describe two basic models of execution of a step. The first one is
a qualitative time abstraction, i. e., the environment can be seen as a discrete process,
namely as an infinite sequence of inputs Iy, 5, ... occuring at successive instants of time.
The system is faster than the environment, namely the reaction of the system to the inputs
I; is completed before the inputs I;;; are produced. The second model is a quantitative
time abstraction based on an internal clock.

6.1 Overview of step semantics of statecharts

Figure 6.1 presents an overview of the approach which is developed in this chapter to
establish a formal step semantics of statecharts. According to Figure 6.1, on one side,
STATEMATE offers a simulation tool to examine the behaviour of statechart model. On
the other side, we require a formal step semantics of statecharts.

93

94 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

Simulation tool (STATEMATE)|

STATEMATE offers a simulation tool
to examine the behaviour of model.

‘Execution of a step’ = “run” the model
in a step-by-step interactive fashion.

Static Tests: E. g.,

& Reachability Test

& Detection of nondeterminism
& Detection of deadlock

& Usage of transitions

Step Semantics

Initial Situation:
Use simple OR~graph product GO (cf. 5.4.3)
to develop test paths (TSs)
which allow a systematic analysis of,
e. g., detecting nondeterminism

Problem:
Ezecutability of the transitions Tomn of GO
Each transition t € 7,4, is legal
but not necessarily ‘executable’, i. e.,
the TSs of GO are not suitable for the detection
of the other system flaws e. g., deadlock.

Required:

formalisation of
step with all its ramifications and side effects

Step semantics of statecharts

Basic step algorithms

Go-Step and Go-Repeat algorithms
based on a qualitative time model

Go-Step and Go-Repeat algorithms
based on quantitative time model

Figure 6.1: Overview of step semantics of statecharts

The most basic way of STATEMATE to execute or to “run” the model is in a step-by-
step interactive fashion (cf. Chapter 1, pp. 4ff.). At each step, the user generates external

6.1. OVERVIEW OF STEP SEMANTICS OF STATECHARTS 95

events, changes conditions and carries out other actions (such as changing the values of
variables) at will, thus emulating the environment of the system. The tool (STATEMATE)
in turn responds by transforming the system into the new resulting status. Typically, there
will be one or more statecharts on the screen during this process, and often also an activity-
chart (cf. Subsubsection 4.1.1.2, page 25). The change in status will be reflected visually
by changes in colour of the currently active states and activities. In fact, by animating
charts, simulation allows one to see how and why the model transforms from one state
to another at a stage of the development. Being able to simulate the model (i.e., to run
through dynamic scenarios) gives the designer the ability to verify that the specifications
satisfy the functional requirements of the system — long before final implementation. If
he/she finds that the system’s response is not exactly as expected, he/she goes back to the
model, changes it (by modifying a statechart, for example), and runs the same scenario
again.

Description of static tests: Besides, STATEMATE offers a number of static tests,
such as the ones shown in Figure 6.1. In the following, we give a brief description of these
static tests (see also Subsection 4.1.2).

e Reachability of conditions — examines a set of conditions to determine whether they
may be reached by the STATEMATE specification.

e Nondeterminism — checks the STATEMATE specification for a scenario that leads
to an ambiguous system reaction (cf. Subsection 5.4.6).

e Detection of Deadlock — Deadlock refers to a reachable condition that remains true
forever after it has been reached (not necessarily for the first time) and there are
no processes (components) which require the condition to become false in order to
proceed.

e Usage of Transitions — looks for static reactions and transitions that can never be
taken and for states that the specification never enters.

— A transition is not taken if its source is never reached or if its trigger never
occurs when the system is in its source state(s).

— Static reactions are not used if the state in which the reaction takes place is
never entered or if its trigger never occurs when the system is in this state
(cf. Subsection 4.2.1.5, and see Subsubsection 6.2.1.2 “Example for noncon-
flicting transitions”, page 100).

Now let us briefly consider the formal concepts and techniques we have developed so
far with respect to the above described static tests.

Initial situation: Using the simple OR~graph product of an orthogonal statechart,
constructed by Definition 5.36 and Definition 5.37 we are able to develop test paths
which allow the system designer/tester to make a systematic analysis of, e. g., detecting
nondeterminism (cf. lustration of Case (3)(a)ii. of Definition 5.36, pp. 77ff.).

Problem: These test paths of a simple OR-graph product, however, are not suitable
for the detection of the other system flaws like deadlock because they do not consider the

96 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

“enabledness” of the transitions. In other words, each transition ¢ € 7,4, delivered by
the simple OR~graph product is legal but not necessarily ‘executable’.

Required: To be in a position of dealing with system flaws, such as deadlock, there-
fore, it is necessary to formalise the step with all its ramifications and side effects as stated
at the beginning of this Chapter 6. Hence, in next Section 6.2 and Section 6.3 we deal
with the formalisation of the step algorithms presented in the informal paper of [54].

In the previous Section 5.4 we dealt with the formal aspects which will be required for
the description and formalisation of the step semantics based on qualitative time model in
Section 6.2 and the step semantics based on quantitative time model in next Section 6.3.

Chapter 6 is organised as follows. In Section 6.2 we give a formal description of the
step semantics based on a qualitative time model abstraction. After that, we formalise
in Section 6.3 the step semantics based on a quantitative time model abstraction. We then
give a brief view of statecharts in object-oriented designs in Section 6.4 before we discuss,
in Section 6.5, the suitability of statecharts/STATEMATE for the development of large
and complex reactive systems. This discussion is based on the personal experience of the
author.

6.2 Step semantics of statecharts based on the model
of qualitative time abstraction

The purpose of this section is to formalise the parts of the basic step algorithms presented
in the informal paper of [54].

An operational semantic describes the algorithm by which the results of a step are
calculated, given a configuration and external stimuli. The results of a step are the
configuration at the end of the step, and the output, e. g., actions generated by the
statechart during the step. According to Definition 5.26 on page 67, the configuration of
a statechart is the set of basic states in which a statechart currently resides. The system
status of a statechart at a given instance, however, consists of its configuration, and the
values of external events and condition variables.

Recalling Definition 1.1 on page 1, a reactive system is one that is in continual inter-
action with its environment and executes at a pace determined by that environment. In
Figure 6.2 we present a functional view of a reactive system and its environment. In it,
the system part consists of a system processing unit System_Step, a system status Sys-
tem_Status, and a unit Merge. The environment part consists of an environment status
Environment_list, and a unit Operate.

The unit Operate is an extension of the basic step algorithm in [54]. The interactions
between the system and its environment take place over Enwvironment_list, where unit
Operate provides inputs to the system and unit Merge adds® inputs from the environment
to the system status. System_Status contains the last system status on which the system
processing unit System_Step depends. The result of the unit System_Step is a new system
status.

lsee Merge step on page 102

6.2. STEP SEMANTICS BASED ON QUALITATIVE TIME MODEL 97

Environment Part

Oper ate

@D

System Part

M er ge

System__Status

System__Step

Figure 6.2: A functional view of a reactive system and its environment

In Subsection 6.2.1 we particularly establish the formal definitions of the system part:
System_Status and System_Step. In Subsection 6.2.2 we then develop the formal definitions
of the interface part, namely the status of the interface list called Environment_list and
Merge step of unit Merge as shown in (cf. Figure 6.2). Last but not least, we give the
definition of Put step which models how the environment provides inputs to the system.
In Figure 6.2, Put is represented by unit Operate. Using these formal definitions we give
in Subsection 6.2.3 a formal description of the basic step algorithms (untimed part), the
Go-Step and Go-Repeat algorithms of [54].

6.2.1 The basic step algorithm (system part)

In Subsection 1.2.2.1, page 4, rather informal definitions of step and status were given.
In the following, we give formal definitions which are used to compute the contents of the
basic step part of the algorithm.

Let a statechart Sct = (S, r, children,type, H, hist,de fault,T) be given. In the fol-
lowing context, 7 is the set of full compound transitions? containing at least one initial
transition® Remark also that static reactions (SRs)? may be executed.

2¢f. Definition 5.42
3¢f. Definition 5.22
4cf. Subsubsection 4.2.1.5, page 31

98 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

Definition 6.1 A system status is a triple (C, SE,SV) € Cpu x 25 x 25V¢ consisting
of a configuration C € Cyy, a set of (“enabled”) events SE € 25F» and a set of (“true”)
conditions SV € 25V»,
Notation: System_Status.u denotes the set of statuses. A system status (C, SE,SV) €
System_Statusqy with C = {ryinit}, SE = (0 and SV = () is called initial status. The
set of initial statuses is denoted by System_Status;,,;, .
The system processing step has the function of executing “enabled” transitions. Ac-
cording to [54], “a transition is said to be enabled in a step if at the beginning of the
step the system is in all its source states and its triggers, (e. g., events) are true”. For
example, in Figure 6.3, assuming that at the beginning of the step the system was in
state S1 and events el and e2 as well as conditions ¢l and ¢2 were generated during the
previous step, t1 becomes enabled but ¢2 not. This is due to the fact that although e2
and c2 were true at the beginning of the step and that the source state of t2 is entered
during the step, the system was not in ¢2’s source at the beginning of the step.

()
0

tl: el[cl] () t2: e2[c2]
S1 S2 S3

Figure 6.3: Illustrating an enabled transition

In other words, a transition ¢ = (S1,e[c],S2) is said to be enabled in a status
(C,SE,SV) iff its source states S1 are part of the actual configuration C and both the
event e as well as the condition expression c¢ evaluates to true.

Before the formal definition of a transition being enabled is given, it is necessary to
establish the evaluation of the event and condition expressions. Assignments to condi-
tion variables can be regarded in STATEMATE as the set of internally generated tuples
(SV,val), where val is a new value for SV (cf. Definition 5.8 and Definition 5.7).

Let Val = SV, x {true, false}. Val is the assignment (cf. Definition 5.8 and Defini-
tion 5.7. Val* denotes lists over Val.

Informally speaking, a transition with label e[c|/a is said to be enabled in a system
status of the statechart iff the event expression e evaluates to true for the set of availabe
events in the current system status and the condition expression ¢ evaluates to true (in
the current system status) for the set of condition variables.

For the evaluation of event and condition expressions, the following relations are in-
troduced.

Definition 6.2 The relations EvalEv C L, x 258 and EvalCo C L. x 25V¢ are used

6.2. STEP SEMANTICS BASED ON QUALITATIVE TIME MODEL 99

to describe the evaluation of event and condition expressions in a system status
(C,SE,SV), respectively.

For the evaluation of action expressions, the functions EvalAc and EvalVlist are defined
as follows:

Definition 6.3 Function EvalAc : L, x 25V» — 22%7xVal") gyaluates for an action
expression and values of condition variables a set, where each element consists of
a set of generated events and a list of new values for condition variables.

The evaluation of an action expression ay;as (a non-deterministic execution of ay and as)
15 given by

EvalAc(a;;az) = {(SE1U SEy, SViist; « SViist;) | 1,5 € {1,2},1 # 7,
where (SEy, SVlisty) € FvalAc(ay), (SE2,SVlists) € EvalAc(as)}.

Definition 6.4 Function EvalVlist : Val* x 25V¢ — 25V computes for the previous set
of true conditions and a list of new values for condition variables a set of true conditions.

Now the formal definition of a transition being enabled is given.

Definition 6.5 Enable C T x System_Status,y denotes the set of tuples (t, (C, SE,SV))
such that transition t is enabled in the system status (C,SE,SV):
Fort=(X,e[c]/a,Y), (t,(C,SE,SV)) € Enable iff X C C and both EvalEv(e, SE) and
EvalCo(c, SV) evaluate to true (cf. Definition 6.2).

6.2.1.1 Computation of maximal nonconflicting sets

The operational semantics of statecharts as described in STATEMATE is a maximal
parallelism semantics inspired by the synchrony hypothesis [11]. Consequently, part of the
basic step algorithm consists of the execution of a set of transitions that can be executed
simultaneously. Obviously, such a set of transitions Ty, € 7 (cf. Remark 5.11, page 74)
similarly depends on the actual system status System_Status € System_Statusq;. In the
following, we describe an algorithm Generate_7,,, which will be used to determine the
set of transitions 7,,¢,.

Let Max C System_Statusa; x 27 and (System_Status, Torin) € Max. Then proceed
as follows

(1) /* Compute for actual state System_Status the maximal set of enabled transitions
*/

Enablegystem_status = {t € T | Enable(t, System_Status)}.

(2) /* Remove from Enablesystem_status those transitions which are in conflict with other
enabled transitions of higher priority*/

Enableg, e siars = Enablesysem siatus \
{tconfl € EnableSystem_Status | dt e EnableSystem_Status : tconfl < t/\confliCt(tconfla t)}

100 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

(3) /* Compute T, as a maximal subset of Enableg, o _siarus cONtainig no conflicting
transitions */
Tortn, must satisfy the following requirements:

(a) for all t1,ty € Tope, : t1 = ta V —conflict(ty, t2), and

(b) for all teonfl € Enablegystem_smtus “teongl € Torin V
(Ht € Torin - (tconfl # 1A COnfl’iCt(tconﬂ, t)))
In other words, each enabled transition not included in the T, is in conflict
with at least one transition in the T.4.

Remark 6.1 In part (3) of the above computation of the set transitions 7.+, being
maximal means that each enabled transition not included in the set is in conflict with at
least one transition in the T,,.:,.

6.2.1.2 Example for nonconflicting transitions

As an example, Figure 6.4 is used to demonstrate the nonconflicting sets. Note that the
various sr’s indicated in it denote the static reactions associated with the corresponding
states. Assume that the system is in the configuration depicted by the shaded basic states,
and that incidentally all the transitions and static reactions are enabled.

: I\
sl
: sr2 /o
sr3) ! ~
| sr21
t11 !
I
I
| t3
, t2
t12 !
I
b |
I
I t4
1 o
J |
| 1£5)
t13 \
I
I ;\' \\
D :
I
I
I
: sr22 Q
I
I
|
I J

Figure 6.4: Nonconflicting transitions

Recall the notion of priority which was discussed in Subsection 5.4.6. Indeed, t13
has higher priority than ¢11 and ¢12 in the left-hand component of Figure 6.4. In the

6.2. STEP SEMANTICS BASED ON QUALITATIVE TIME MODEL 101

right-hand component, t4 and t5 have the same priority but higher than that of ¢2 and
t3. Thus, in the left-hand component ¢13 will be taken which implies that srl will be
carried out in this step but not sr3. In the right-hand component ¢4 or ¢5 will be taken,
and sr2 will be carried out. As a result the maximal nonconflicting sets are as follows:

{t13,t4, srl, sr2}
{t13,t5, srl, sr2}

6.2.1.3 Execution of a step

At the beginning of this Chapter 6 we stated general principles adopted in defining the
semantics of statecharts. In the following, we define the principle (b) which deals with
the duration of events is modelled by the step System_Step.

Definition 6.6 The system step System_Step is defined as the relation

System _Step C (System_Status.; x 27 x System_Statusa;), such that

((Co, SEo, SVo), Tortn, (C', SE', SV')) € System_Step iff ((Co, SEo, SVo), Tortn) € Maz and
exactly one of the following conditions is satisfied:

(]) [f|7;rth| =0,
then the step is empty and (C', SE', SV') = (Cy, 0, SVp).
/* There is no transition enabled */

(2) Otherwise,
let {t1,... .tz 1} = Toren, and t; = (X5, eilci)/ai, Y;) forie {1,... tiz,,.1}. Then,
forallie {1,... t7,,,} there exist tuples (C;, SE;, SVlist;) € Cpuy X 25Ve x SV*
(cf. Definition 5.9), such that (SE;, SVlist;) € EvalAc(a;, SVy) (c¢f. Definition 6.53)
A Ci = (Ci—i\exit(t;, Co))Uenter(t;) andC' = (Cz,,,,1 SE' =U;i € {1,... ,tjz,.,. | }SEi,
SV' = EvalVlist(SVy, SVlisty ... SVlistz,,.1)) (cf. Definition 6.4).

In fact, the above definition formalises most sensitive part of the basic algorithm.

Denotation 6.1 We write ((Cy, SEo, SVp), (C', SE', SV")) instead of
((Co, SEo, SVo), Tortn, (C', SE', SV')) € System_Step.

6.2.2 The basic step algorithm (interface part)

The interaction between the system and its environment is described by a list which
contains the changes generated by the environment® since the last internal system step.
Definition 6.7 A status of the interface list is a pair (SE,SV) € 25% x SV* .
where SE is a set of events and SV 1is a list of actions over condition variables. The set
containg all statuses of the interface list is denoted by Environment listy;. A status of
the interface list satisfying the predicate © gny (S Eeny, SVeny) = SEenpy = 0 N SVepy = € is
the initial status.

5the external events and internally generated events

102 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

6.2.2.1 Merge step

Indeed, the basic step algorithm adds the external events to the list of internally generated
events and in addition executes all actions implied by the external changes (cf. [54] page
18.) This part is described by the Merge step in the following definition.

Definition 6.8

The Merge step is a relation Submit C (System_Statusa,; x Environment_ listqy X
System_Status.; x Environment_listy), such that ((C,SE,SV), (SEew, SV0istew),
(C',SE",SV"), (SE.,,, SVlist.,,)) € Submit iff the new system status (C', SE',SV') =
(C, (SEUS Eeny), EvalV1ist(SV, SVlisten,) and the new interface status (SE.,,, SV0ist.,,)

(@’ €>. env?

In other words, the Merge step adds the interface status to the actual system.

Last but not least the definition of Put step which models how the environment pro-
vides inputs to the system is given.

Definition 6.9 The relation Put C Environment_listq,;x Environment_listq;) describes
the changes of the environment status.

6.2.3 The Go-Step and Go-Repeat algorithms (untimed part)

Next, the communication of statecharts and environment is investigated. Based on the
report of Harel and Naamad in [54], section 9, there are two communication modes:

e the synchronous time model in which case the communication with the environ-
ment is performed after each basic step and

e the asynchronous time model where the communication is achieved by allowing
several basic steps to take place within a single point in time. Such a collection of
steps is referred to as a super-step.

Note that in both models, the execution of the step describes a sequence of discrete
events that cause abrupt changes (taking no time) in the state of the system, separated
by intervals in which the system’s state remain unchanged. This approach has proven
effective for describing behaviour of programs and other digital programs. This discrete
event approach benefits from the assumption that the environment, similar to the system
itself, can as well be modelled as a discrete process. The advantage of this assumption
is that it allows a completely symmetrical treatment of the system and its environment,
and encourages modular analysis of systems. What is considered an environment in one
phase of the analysis may be considered a component of the system in the next phase.

By the comparison of statecharts variants, in Subsection 5.3.2 we learnt that the main
differences between RSML and statecharts are syntactical. Nevertheless, there exists as
well a significant difference between RSML’s and statecharts’ dynamic semantics in the
use of the terms.

6.2. STEP SEMANTICS BASED ON QUALITATIVE TIME MODEL 103

The RSML semantic definition of a step is based on the notion of steps in [131]. A step
15 completed when mo more internal events are generated or there are no more transitions
triggered by events that were generated, i. e., the model has stablized in a state.

In statecharts semantics, a step is the basic atomic operation while a super-step com-
poses of several steps. In the RMSL approach, however, a statecharts step can be regarded
as a micro-step, whereas a statecharts super-step is their step (basic atomic operation).
The main advantage of the statecharts step approach is that one can easily show that each
step construction will always terminate since the set of enabled transitions Enable C T
(cf. Definition 6.5) is finite. On the contrary, the step construction in RSML state ma-
chines can pontentially be infinite as is shown in Figure 6.5. In Figure 6.5, the events el
and e2 will be generated forever in an alternating sequence.

Nevertheless, Leverson et al, argued that the RSML step (super-step of STATEMATE)
has the advantage that it can assist the analyst to discover specification inconsistences.
For example, consider Figure 6.6. The disadvantage of the “basic step” concept is that
it allows transition t3 to be executed, even though event e2 is generated after el. The
analyst might get a wrong impression, i.e., to believe that the specification works correctly;
not realizing that the specification is inconsistent with what is intended.

Conlusion: To achieve the best effect as far as specification analysis is concerned,
one should use the basic step semantics as well as super-step semantics.

Figure 6.5: An RSML state machine that will not terminate

In the next subsection the fair transition system semantics are used to describe the
untimed parts of algorithm Go-Step which is based on the synchronous time model. This
is followed by the most important Go command, the algorithm Go-Repeat that is based
on asynchronous time model.

104 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

Figure 6.6: A statechart and RSML example

6.2.4 A fair transition system for Go-Step (F1TSgostcp)

In the following, the untimed parts of the algorithm Go-Step are formalised in terms of
a fair transition system® denoted F T'Sgostep- The above definitions of system status and
environment status are used.

FTSyostep consists of the set of variables Vyys = {C, SE, SV} and Ve = {SEenv, SVenw }-
Let 0gys and oy, be mappings that give the actual system status by (0sys(C), osys(SE),
0sys(SV)) and the actual environment status by o gne((SEeny), 0gno(SVeny)), respectively.

The untimed part of algorithm Go-Step in [54] is stated as follows:

(1) execute all external changes reported since the completion of the previous step;
(This corresponds to the Submit step described by Definition 6.8).

(2) execute one step; (This corresponds to the System_Step described by Definition 6.6).

Furthermore, a relation Put is introduced to model that the environment has provided
input to the system (cf. Definition 6.9).

Definition 6.10 The fair transition system F'T'S,,s., consists of the following com-
ponents:

(1) The set of variables V', is partitioned into V = Viys U Vepy U Vios, where

(a) Vpos = {7} and
(b) opos{m} — {1,2,3}.

Let X be a set of mappings with domain V' consistent with osys, Opny and Opes.

6For a summary about Fair transition systems, see [129], pages 148-150.

6.2. STEP SEMANTICS BASED ON QUALITATIVE TIME MODEL 105

(2) The set of initial states © C X is computed by the predicate O(V'), such that
@<V> = @Sys(‘/sys) A\ @ETL’U(‘/@TL’U> NT = 1

(3) T is the set of transitions which consists of the relations

Ti2, Toz, T31 © 2 X 2. These relations are determined by the following assertions:
(a) cara(V,V') i = 1A Put(Veno, Vi) A Viye = Vays A" =2

b) axz3(V,V'):m=2A Merge(Vyys, Venw, V.5 o, VI YAT =3
Y

ENVy Y sysr ¥ env

(c) as;(V,V') :m =3A System_Step(Vsys, VI) AV! . = Venpy AT =1

sYs» ¥ sys env

Remark 6.2 The set of transitions is well-defined since for every state s € ¥ there exists
a transition T € T which is enabled.

Figure 6.7 demonstrates the algorithm extended to the transition system F'7T'Sgostep Of
Definition 6.10.

/ Put I Merge

1 2 3

L mew

Figure 6.7: Fair transition system F'T'Sgostep

6.2.5 A fair transition system for Go-Repeat (FT'S; cpeat)

The untimed parts of the algorithm Go-Repeat which are formalised in this subsection
are as follows:

(1) execute all external changes reported since the completion of the previous step;

(2) repeatedly execute one step until the system is in a stable state, i. e., there are no
generated events and no enabled compound transitions or static reactions.

Procedure

Let stable C System_Statusq; be the set consisting of all system statuses (C, SE,SV) €
System_Status,y; in which the system is in a stable state.

That is, SE=0 A -3t € T : Enable(t, (C,SE,SV)) holds.
Let ¢ € IN be a constant which restricts the allowed number of repetitions of System _Step.

The idea behind this constant is to ensure that a system reaction as modelled by the
Go-Repeat terminates. The simulation algorithm will be modelled by ¢ = cc.

106 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

Definition 6.11 The fair transition system F'7T'Sgocpeqr consists of the following com-
ponents:

(1) The set of variables V', is partitioned into V = Viys UVepy UVpos, where Viyos = {m, x}
such that
(a) opos - {m} — {1,2,3,4}.
(b) opos{z} — IN.

Let ¥ be a set of mappings with domain V' consistent with osys, Opny and Opes.

(2) The set of initial states © C % is computed by the predicate O(V'), such that
O(V) = Osys(Viys) A Opno(Veno) Am=1A2 = 0.

(3) T is the set of transitions which consists of the relations
T12, T23, T33, T31, T34, Taa © 2 X 2. The relations T2 and To3 are defined as in F'T'Sgostep
(cf. Definition 6.10). The rest are determined as follows:
(a) as3s(V,V') 1w =3 Nx < c A =stable(Viys) A System Step(Viys, Vi) A Vi, =
Vew ANt =x+1A7" =3

(b) as1(V,V') : m =3 ANa < cA stable(Viys) A (Vs’ys,Ve’m) = (Vayss Veno) N @' =
ONT =1
(c) asa(V.V'):m=3Nx>c ANV, Vl) = Viys, Vo) N =z A7’ =4

sys? ¥ env

(d) ags(V,V'):m=4ANV =V AT =4

Remark 6.3 The set of transitions is well-defined since for every state s € ¥ there exists
a transition T € T which is enabled.

Figure 6.8 demonstrates the algorithm extended to the fair transition system F'1'Sgostep
of Definition 6.11.

[not stableand (x <=¢)] / x :=x + 1; System_step

x:=0 / Put I Merge [x>]

— 1 2 3

R

[stableand (x<=c)]/x:=0

Figure 6.8: Fair transition system F'T'Sgorepeat

6.3. STEP SEMANTICS BASED ON QUANTITATIVE TIME MODEL 107

6.3 The step semantics of statecharts based on the
model of quantitative time abstraction

So far the algorithms defined above do not consider the aspect of time. In both models,
the execution of a step may be viewed as taking zero time as far as the environment is
concerned since during the execution of the step itself no external changes have any effect
to the system. Such discrete event approach fits systems that are highly synchronous.
However, there are certainly many types of systems in which such discrete processing
greatly distorts reality, and may lead to unrealiable conclusions. For example, a control
program for driving a real-time embedded system (or an industrial robot or a patient
monitoring system or an aircraft) must take into account that the environment with
which it interacts follows continuous rules of change. Therefore at least an extension to
semantics that deal with quantitative time abstraction is required, and will be described
here in this Section 6.3.

In particular, this section will be devoted to the formalisation of parts of the basic
step algorithm related to timeout events and the internal clock. In addition, the timed
parts of the algorithms (cf. [54]) will be formalised in terms of clocked transition sys-
tems. Clocked Transition Models (CTMs) provide an effective representation of realizable
systems. Statecharts (and Petri-Nets) can be mapped into CTMs (cf. [79, 78, 99]).

6.3.1 Timeout events

Definition 6.12 A special event timeout(e,d) denoted tm(e,d) occurs iff the last
occurence of event e is d € IN units ago.

Definition 6.13 The set of all timeout events defined in the given statechart is denoted
by TmSet. A timeout status is a set of tuples (tm(e,d),next) € TmSet x IN®
where tm(e, d) is a timeout event and next is the time of its next occurence. The relation
TmSet x IN*® is denoted by Tmday. A special timeout status Oy, C Tmdyy is called
initial timeout status with ©1,,(7m) = Vtm(e,d) € TmSet : (tm(e,d),00) € Tm A
|7 m| = |TmSet|.

In [54], page 18, the basic step algorithm changes the timeout status depending on the
set of available events and the current time, and generates the timeout events the time of
which is due:

For each pair (F,next) in the timeout status with E = tm(e, d), do the following:

if e is generated
then set next := current_time + d;
else if next < current_time
then generate E and set next := oo.

Comment: Logically equality (i. e., =) is used for time comparison (and not <), but
in practice, because of floating point inaccuraces, and particularly, because in real life
steps do take time, < is used here.

108 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

Nonetheless, in the algorithm Go-Step the condition next < current_time is replaced
by next € (current_time, current_time + 1). In order to be able to capture these differ-
ences a parameterized timeout evaluation step will be defined as a function over the set
of all time intervals 7.

Definition 6.14 The function TMgen: T — ((27™mdau x 2Enames o Ny (27mdau
2Bmamesyy “ith TMgen(I)((Tmd, E,T)) = (Tmd', E') defines the change of the time-
out status and the generation of timeout events with respect to an interval I € T iff
it satisfies the following:

(i) Y(tm(e,d),next) € Tmd :

(
(a) (e € E = (tm(e,d), T+ d) € Tmd A
(b) (e ¢ EANnext € I = (tm(e,d),00) € Tmd Ntm(e,d) € E' A
(c) (e ¢ ENnext & I = (tm(e,d),next) € Tmd),

(ii) Vel € E' : (el € EV (3(tm(e2,d),next) € Tmd : e2 ¢ E N next € I)).

6.3.2 The clocked transition systems of statecharts

The realization of the timed parts of algorithms Go-Step and Go-Repeat employs an
internal clock 7' with discrete domain (cf. Definition 6.14). For this purpose clocked
transition systems will be used to formalise the clocks over IV.

The notions of clocked transition systems are based on [79, 78]. A system to be
formalised/analysed is associated with

(i) V.=DUC : A finite set of variables, where

(a) D ={us,...,u,} is the set of discrete variables and

(b) C ={c1,...,cm} is the set of clocks.
Note: Clocks’ are of type IN whereas discrete variables can be of any type. A
special clock T' € C represents a master clock.

(ii) © : An initial condition characterized by an assertion with © = 7" = 0.
(iii) 7 : A finite set of transitions.

(iv) 6 : A time progress condition. Ty = T U{tick} is then the set of transitions obtained
by augmenting 7 with tick which is given by Ay = IA : (A > 0AVE € [0,A) :
0(D,C+t)ND =DANC"=C+ A), where

(a) C"=C + A abbreviates ¢} = c1 + A, ..., ¢y + A and

(b) 6(D,C +1t) abbreviates §(us, ... ,un,c1+t, ..., cyn+t). Note that this require-
ment ensures that each discrete variable’s change is precisely timed. In other
words, discrete variable and time do not change at the same time.

"In [79] clocks have always the type real. In this thesis, however, the clocks have the type IV in order
to simplify the development of the analysis methods. This however, has a drawback when modelling.

6.3. STEP SEMANTICS BASED ON QUANTITATIVE TIME MODEL 109

6.3.2.1 A clocked transition system for Go-Step (CTSgostep)

Now, the timed parts of the algorithm Go-Step are formalised in terms of a clocked
transition system denoted CT'Sostep-

The algorithm Go-Step is stated as follows:

(i) execute all external changes reported since the completion of the previous step;
(This is formalised as in the untimed case (cf. Definition 6.8)).

(ii) increment the clock by one time-unit;

(iii) execute all timeout events whose time falls within (7,7 + 1]; (This is formalised
using the definitions in Subsection 6.3.1 above).

(iv) execute one step; (This corresponds to the System_Step of Definition 6.6).

The complete formalisation of the algorithm Go-Step is given by the clocked transition
system CT'Sgostep Which is shown in Figure 6.9. Note that the clock T is able to progress
simultaneously with timer ¢.

f:=0 |1 Put | 2 Merge |3 [t=1/t=0]4
t<O0 t<0 t<1 t<0
[TMgen(T, T+1]
5
/ System_St
> P t<O0

Figure 6.9: Clocked transition system CT'Sgostep

Definition 6.15 The clocked transition system C7T'Ss., consists of the following
components:

(i) The set of variables V', is partitioned into V = Vyys U Ve U {Tm}, {T, t}, where

(a) Viys and Ve, are defined as in FT Syostep (cf. Definition 6.10),
(b) Tm expresses a list of timeout events and their time occurrence,
(c) T is the current time of the internal clock, and

(d) t is the timer.
The domain of T and t is IN.

(ii) The set of initial states is computed by the predicate ©(V'), such that
O(V) = Osys(Viys) A Opno(Venw) A O (Tm) AT =1t = 0.

110 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

(15i) T = T2, Tos, T34, Tas, T51: 1S the set of transitions, where time does not progress. The
relations T2 and 145 €. g., are defined by the following assertions:

(a) ara(V,V') s m = INPut(Vonw, Vi) AV2ye = Vays AT = 2ANTm = T/ N(T', t) =
(T'1)

(b) ass(V,V') :m = A ANTMgen((T, T + 1])((Tm, Vays, T), (T, Vays)) NV =
Veno A" =5 N (T7,1) = (T 1)

(c) 6 : A time progress condition which describes the global restrictions on the
progress of time. Here 0(t) : (m € {1,2,4,5} -t <0)A(r=3—=t<1). In
this case, progress of time is captured by a transition Ty, given by

Qpick © A € INsoVd € [0...A) : 0t +d) AN (T, 1) = (T + At + A) A
(‘/slys’ ‘/e/mn Tm,) = (‘/sysa ‘/enva Tm)

which equivalent to
T =3At =0A(T",t') = (T’—l—l,t’—i—l)/\(Vs’ys,Ve’m,Tm’) = (Viyss Venw, Tm).

6.3.2.2 Clocked transition system of Go-Repeat (CT'Syrepeat)

Finaly, the timed parts of the algorithm Go-Repeat are similary formalised in terms of a
clocked transition system denoted CT'Sgorepeat-

/t:=0;x:=0 1 / Put 2 /[Merge 3 6
/t:=0 / TMgen (0, T]
5 [stableand (x<=c)] /x:=0 4 [x>(]
t<0

[not stableand (x <=¢)] / x :=x +1; System_Step
Figure 6.10: Clocked transition system CT'Sgorepeat
The algorithm Go-Repeat is stated as follows:

(i) execute all external changes reported since the completion of the previous step;
(i) execute all timeout events whose time is due (up to and including the current time);

(iii) repeatedly execute one step till the system is in a stable state.

6.4. STATECHARTS IN OBJECT-ORIENTED DESIGNS 111

Note that there is no increment of the internal time clock in these steps. The steps
(1) and (éi7) are formalised as in the untimed case (cf. Definition 6.8) or System_Step in
Definition 6.6, respectively. Step (i¢) is formalised using the definitions in Subsection 6.3.1.

The resulting formalisation of the algorithm Go-Step is given by the clocked transition
system CT'Sgorepeqt Which is shown in Figure 6.10.

6.4 Statecharts in object-oriented designs

In Section 4.1, a brief introduction to the STATEMATE tool was given. The language set
which was built around statecharts is based on the function-oriented structured analysis
paradigm (SA) (cf. [159]). SAs, however, are widely criticised as suffering from a discon-
tinuity problem when it comes to certain aspects of system development, e. g., transition
to design and re-use, many software engineers/developers recommend the object-oriented
(O0) paradigm. In fact, this convention is one of the most notable development in recent
years.

Most object-oriented modelling methodologies use graphical notations for specifying
the model (cf. [151, 161]). Typically, entity relationship (ER) diagrams are used in specify-
ing classes of objects and their entity-relationships, and means for describing the interface
and capabilties of the objects themselves. In addition, extended state machines are often
adopted to specify class behaviour. Nevertheless, most of these methodologies do not
address dynamic semantics adequately, so that the real behaviour of models over time is
in many cases not well-defined.

Therefore, recently a lot of effort is being made to use statecharts in object-oriented
designs to overcome such crucial shortcoming (see [27] and [53, 29]). In [27], a notation
called “Objectcharts” for specifying the behaviour of object classes as state machines is
presented. Objectcharts are a combination of object-oriented analysis and design tech-
niques and statecharts to give a digrammatic specification technique for objects. Ob-
jectcharts offer a formal and declarative extension to the state-machines, and therefore
are more appropriate for analysis and design.

In addition, a Computer-Aided Software Engineering (CASE) tool RHAPSODY®
based on an object-oriented framework has been constructed (cf. [53]). It constitutes
the subset of Unified modelling Language (UML?) (cf. [135]) and enables model execution
and full code synthesis in object-oriented languages such as C++ (see [44, 96, 149]). The
main difference between the way statecharts are used in a function-oriented framework
e.g. STATEMATE and in the object-oriented framework proposed in [53] is in the role
of transitions. In the latter, events are treated in a ‘run-to-completion’ style, i. e., in
which the transitions can be compound and multiple. In other words, it is required that
all parts of a transition are fully executed before the statechart becomes stable and the
system can respond to new event. This leads to non-zero-time semantics approach when
compared to STATEMATE’s approach (cf. Section 5.4).

8trademark of i-logix, Inc.
9The UML is a third-generation state-of-art object modelling language that defines a set of notations,
and more importantly, defines the semantics of those language elements (see also [29]).

112 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

6.5 Experiences with statecharts/STATEMATE

The main purpose of this section is to discuss the suitability of statecharts/STATE-
MATE for the development of large and complex reactive systems, based on the personal
experience of the author. The first experiences with the statecharts/STATEMATE go as
far back as the phase of my diploma thesis (cf. [84]). During the research for the diploma
thesis, several examples were considered including the following:

e a digital watch,
e a television set,

e a video set,

airport activities,

traffic lights,

different electronic systems e.g.,

— automatic braking system of a car,

— automatic window functions of a car
and particularly,

the telefax machine BEAUTY .

6.5.1 Positive experiences with statecharts/STATEMATE

The existence of the supporting tool STATEMATE was a vital criterion for specification
and analysis of different statecharts models. In this thesis, the telefax statechart models
of [84] are modified. In the following, some of the greatest experiences of the author with
the statecharts are given:

(1) Statecharts allowed the designer to specify even complex models, such as dynamical
behaviour of the telefar machine BEAUTY which consists of three devices in one
cabinet:

(a) Fax device
(b) Telephone

(c¢) Answering machine.

Comment: The statechart model of the telefax machine BEAUTY has relatively
large number of states and transitions (cf. [84] chapter 5). Therefore, it can be
considered as a large and complex system. The author of this monograph does not
doubt that statecharts as implemented in STATEMATE/RHAPSODY can be used
to design behaviour of large and complex reactive systems.

6.5. EXPERIENCES WITH STATECHARTS/STATEMATE 113

(2) Dynamic execution of statecharts in a simulation environment offers the analyst
with means for early validation of specification. The simulation capability of the
tool allows one to test complex logical statements to ensure whether they produce
the desired effect.

Comment: The procedure used to simulate complex logical statements was often of
incremental type. In other words, by building them up one by one, testing them in
simulation as they developed.

(3) Statecharts modelling facilitates clear communication between designers (researchers)
and companies.

Comment: Discussions with various outstanding companies (in particular in the
automobile industry) and software houses, including institutes for software quality
and reliability, and application of software methods have emphasized the importance
of clear communication. Many of them recommend the STATEMATE tool as being
a requirement validation tool not only valuable in facilitating error discovery but
because of its ultimate help to ensure that the system being built will meet the end
users expectations (see also [113]).

6.5.2 Negative experiences with statecharts/STATEMATE

One of the main disadvantages of STATEMATE/RHAPSODY is, as in several CASE-
tools, the problem of not enabling ‘systematic’ test methods. In this context, systematic
refers to providing concepts or at least heuristics which assist the tester, e. g., by the
generation of test cases.

Statecharts enable viewing the description at different of levels detail'®, and make even
very large and complex specifications manageable and comprehensible. However, the test
problem /verification problem remains difficult:

(1) because of the interaction between the components, and

(2) because testing a complete system, in many cases, leads to “space explosion” prob-
lem.

An alternative is to divide the system test into two phases:

(i) Perform detailed tests for individual components (module test).

(ii) Then test the proper integration of an increasing number of components, adding one
by one until all components are integrated. This, nevertheless, leads to integration
test problems.

Comment: Discussions with several outstanding companies and software houses
show that there is still a great problem to be solved in finding and applying software
methods to overcome/eliminate space explosion problems. In particular, there are
hardly any practical methods for integration tests.

Ohecause hierarchical statecharts allow decomposition of components/states into subcomp-
nents/substates

114 CHAPTER 6. STEP SEMANTICS OF STATECHARTS

The main goal of the next Chapters 7 and 8, therefore, is to develop methods and
concepts which can aid the system designer/tester to detect and/or eliminate reactive
system flaws. Above all, the developed methods and concepts should reduce the space
explosion and integration problems outlined above.

Chapter 7

Module Test Approach

Often testing is undertaken when the whole system has been coded. The main disadvan-
tage of such a preceeding, however, is that the most expensive errors to correct are often
introduced early in the development. Therefore methods and concepts which allow the
system designer/tester to (automatically) test the partially designed and implemented
system are of theoretical as well as practical interest. In this chapter as well as in Chap-
ter 8 we address these problems and establish practical methods which can aid the system
designer /tester to detect and /or eliminate reactive system flaws. Specifically, in this chap-
ter we provide a module test approach which can be applied to reduce the space explosion
problems that has been discussed at the end of the previous chapter (cf. Section 6.5.2).
This is achieved by generating test cases on different system levels of hierarchical, struc-
tured system models. Hence the methods developed here can be applied to large and
complex models. These methods are basically established on the concepts developed in
Chapters 5 and 6.

This chapter is organised as follows. In Section 7.1 we present an overview of veri-
fication methods and walidation methods adopted for ensuring the correct operation of
reactive systems. After that, we give in Section 7.2 the motivation as well as the aim
of the module test approach. In Section 7.3 we give the family of test criteria required
by the test strategies. In order to give an idea of the various test selection techniques
we use Section 7.4 to present an overview of the components of test selection strategies.
In Section 7.5 we describe the test principles which can be used in the validation of the
statechart model. To place the methods and concepts which are developed in this the-
sis in an appropriate context, we review in Section 7.6 the related work. In particular,
testing based on finite state machines (FSMs) is described and several criticisms of FSMs
analysis/testing from literature are discussed. After the review of existing test selection
methods, we notice that the test effort of the most well-known strategies is very large
(e. g., an automata equivalence test (cf. criterion C'3, Definition 7.4 requires at least a cu-
bic number of tests (in the number of states or events)). Therefore, we devote Section 7.7
to the establishment of module concepts which operate on the hierarchical statecharts.
These can be applied to reduce the space explosion problem by generating test cases on
different system levels (cf. [88]). In Section 7.8 we present methods or heuristics to gen-
erate test paths that satisfy the given criterion (cf. Criterion 7.1). Finally, in Section 7.9

115

116 CHAPTER 7. MODULE TEST APPROACH

we formalise the algorithms which are described in Subsection 7.8.2.

7.1 Background on verification/validation of reactive
models

The purpose of this section is to present an overview of the werification methods and
validation methods in order to place testing which is the central part of this thesis in an
appropriate context. The difficulties of ensuring the correct operation of concurrent and
reactive systems have led to the development of several verification and validation meth-
ods. In the community of the software engineering, the terms verification and validation
have been used inconsistently. Therefore, before tackling the details of these methods, an
overview of the different use of the terms verification and validation is given.

How are the terms verification and validation applied in the engineering com-
munity?

The usually adopted academic convention of the term “verification” means “giving a
complete proof” while “validation” stands for “giving evidence”. In the practical sense,
the goal of verification is to ensure that the artifact! satisfies properties of interest whereas
the goal of validation is to ensure that the artifact satisfies the user’s intention. In
this sense, proving a property about a specification is a form of verification whereas
simulation is a form of validation. In general, however, verification does not only apply to
implementations which must be checked against the specifications in order to verify the
correctness of the implementation but also to specifications themselves: the specifications
e. g., must be consistent and satisfy critical application properties.

This section is divided into three subsections. In the first Subsection 7.1.1 we describe
the different forms of verification. We then introduce in Subsection 7.1.2 the problem
of testing and give some of the different concerns related to testing. In Section 7.1.3 we
specifically describe tests performed by the Check Model tool of STATEMATE.

7.1.1 Verification methods

In this subsection we describe the different forms of verification. Verification can be
performed with different levels of confidence and in different ways. Many of the verification
methods consist of formulating and proving theorems about a formal model of a system.
Once the system and its properties have been stated in a suitable mathematical notation,
the idea is to check that the system satisfies the properties, and this may be proved as
a mathematical theorem called formal verification. Through the verification process the
confidence in the correctness? of the system is increased.

Lthat is, an implementation or a specification
2Tn the literature, the special correctness properties of reactive or concurrent systems are often clas-
sified into two broad classes: safety properties and liveness properties (cf. [129]).

7.1. VERIFICATION/VALIDATION OF REACTIVE MODELS 117

Often, verification, mainly performed through testing is associated with informal de-
sign methods, and correctness proofs® with formal methods. In [61] Heitmeyer and Man-
drioli state that the situation in practice is far more complex. They argue that during
verification as well as during requirements specification and design, one may adopt sev-
eral strategies for checking correctness, each with its pros and cons. Depending on many
factors, including the characteristics of the application and the designers experience and
taste, the following stategies have been suggested:

e Informal reasoning can be applied even to a formal specification design.
For example, traditional walkthroughs and inspections can be applied to any informal
design notion as well as to code written in some high level language.

e Formal specifications may be used to derive sample executions of the system. The
tester can experiment with these system models (see also Subsection 3.2.2) to de-
termine whether the specifications capture the intended meaning. This is called
simulation [55] or specification testing [77].

e Formal methods can increase the reliability of more traditional techniques, such as
testing. For example, test cases can be derived from formal specifications either
automatically or semiautomatically (cf. [84]).

e The most popular formal verification technique is mathematical deduction: basic
system features are stated as axioms and related properties are then proven as
theorems [28].

7.1.2 Background on path testing

This subsection introduces the problem of testing and gives some of the different concerns
related to testing. It focuses on the central concern of this thesis, the test selection
problem. In particular, we use the validation and verification terms discussed above to
place testing in an appropriate context and hence provide background information for the
test methods and concepts developed in this thesis.

Testing is widely used in software validation and verification. This process consists of

(i) selecting a set of certain features of the specification?, and

(ii) finding appropriate data that exercise paths in the control flow graph of the imple-
mentation which verify or falsify the validity of the features.

During the implementation phase one may choose e. g., a test set in which every program
statement is executed at least once, or a broader test set that would exercise all exits from
the branch statements. Now when a program is represented as a digraph, these strategies

3sometimes called formal verification

4Depending on the test phase, specification can be seen as an informal specification, formal specifica-
tion (model) up to implementation (program).

118 CHAPTER 7. MODULE TEST APPROACH

correspond to the problems of finding sets of source to the sink paths, called s-t paths
that cover the vertices or edges of the digraph (cf. [116]).

The aim of testing is to detect errors in the program or specification. However, to
certify a program, one must test all execution sequences in the program. As mentioned
earlier (cf. Section 1.2.5), even for small programs (models) the number of execution
sequences can be extremely large. This makes exhaustive testing an impossible task.
Therefore a compromise is to test a subset of execution sequences which is manageable
but at the same time holding the ability to cover interesting or potentially troublesome
interactions among the code segments.

Assuming that the program (specification) or model is represented as a digraph, the
problem is to find minimum path covers for the vertices (or the edges) of the digraph.
Although this minimum requirement is important, it is far from effective. An idea for
more effective requirement can be formulated as follows:

An effective criterion requires paths (test paths) with a high probablity of revealing
faults, i. e., when the model is simulated with test data that cause the selected test paths
to be executed, there is a ‘high probability’ that faults, if they exist, are revealed by those
test runs.

Generally, the effectiveness of such criterion depends not only on the selected paths
but also on the test data for those test paths. Therefore for an intensive test, a more
thorough test criterion is required (cf. Definition 7.4 on page 121).

Since the beginning of the early 1970’s path coverage criteria have widely been used
to measure the thoroughness of test cases (cf. [67, 92, 114, 138, 160]). In [24], efforts have
been made to compare these criteria. One of the major criticisms of all these criteria is
that they are solely based on syntactic information and do not consider semantic issues
(cf. Section 5.4 and Chapter 6), e. g., infeasible paths.

Yet, another point which has to be taken into account is that while applying a path
selection criterion a module (program or subprogram) is represented as directed graph
(control flow graph) with two unique nodes, a start node usually termed as the source
and final node called sink of the program. In the case of reactive systems (models),
however, it is clear that this is not usually the case, in particular, there is no unique
final node. Therefore other test methods are required to deal with such systems (see
Section 7.2).

7.1.3 Tests performed using the Check Model tool

In this subsection we describe tests performed by the Check Model tool of STATEMATE.
The Check Model tool allows the system designer/tester to examine his/her “System
Under Development” (SUD) specification for consistency and completeness. Generally,
the Check Model performs two type of tests:

(1) Correctness — Checks for inconsistencies in the model

(2) Completeness — Checks for superfluous and incompleteness in the model.

7.1. VERIFICATION/VALIDATION OF REACTIVE MODELS 119

7.1.3.1 Correctness examples

In this subsubsection we give some examples of correctness checks. The Check Model tool
of STATEMATE detects violations in the statechart model, e. g.,

(a) Loops in compound transitions:
loops in element definition, e. g., compound event SE1 is defined as ‘SE2 or SE3’
SE?2 is defined as ‘SE1 or SE4’.

(b) Data-items with unknown types:
Data-items with unknown types that are used inconsistently e. g., Data-item D is
used both as a string and an integer, yet it is undefined in a form.

(c) Elements using uninitialized context variables:
e. g., a transition with the following label: SE0/SAl := $X; $X := Z. $X is used
before any value is assigned to it.

7.1.3.2 Completeness examples

In this subsubsection we give some examples of completeness checks. The completeness
checks detect missing or superfluous information in the statechart model, e. g.,

(a) A transition without a trigger is incomplete.

(b) An event defined in the data dictionary, but not used anywhere in the specification,
is considered superfluous.

7.1.3.3 Test problems

In Subsection 6.1 we gave a brief description of the static tests provided by the STATE-
MATE Test tool. Amongst them, we described reachability test, detection of nondeter-
minism and deadlock as well as usage of transitions. All these and the above tests should
carry out (or check) exhaustive sets of execution sequences. However, the number of
possible sequences is often not manageable. In order to get an idea about some of the
largest problems when testing a statechart, one may consider the following example of a
behavioural model:

e that contains 40 concurrent components, where

e cach component has about 10 states.

In this case there are so many state configurations that the number of possible scenarios
is not manageable. (in worst case there are 10%° states). This example illustrates that
even for small statecharts, the number of execution sequences can be extremely large.

In the next Section 7.2, therefore, we establish a module test approach which will be
applied to reduce the space explosion problem by generating test cases on different system
levels.

120 CHAPTER 7. MODULE TEST APPROACH
7.2 Motivation and aim of the module test approach

Almost all the methods currently used for testing large and complex reactive systems
are experience based rather than theoretically founded methods. In particular, very few
methods allow us to make an objective statement about the problem of generating suf-
ficient test paths, e. g., for all used transitions and/or all used states in a statechart.
We recall that STATEMATE offers a number of static tests, such as reachability test,
detection of nondeterminism, deadlock, and usage of transitions. All of these tests are
useful for checking general properties of the system.

Nevertheless, testing is usually carried out using the common, rather inefficient test
methods. The specification of test cases based on the requirements specification is car-
ried out on a largely intuitive and unsystematic basis. In other words, the system
tester/designer has no information or even hints from the tool how to make a systematic
test. Tool support is available for routine activities such as test execution, monitoring
and test documentation (e. g., [46, 68]).

In fact, the CASE tools are not in a position to carry out sufficient tests for system
models. Tests are offered under particular scenarios. This is often not enough for detection
of all system flaws. The statecharts’ analysis capability (e. g., offered by STATEMATE)
is confined to using reachability analysis to check a small set of properties which is quite
limited.

It would be better if the analysis tool were in a position to simulate all possible
combinations of events, conditions, and values of variables in order to make a global test
e. g. for nondeterminism. Unfortunately, this leads even for small statecharts models to
an unimaginable number of variations so that a practical application is not possible®.

Indeed, as already observed in Subsection 6.5.2 there is still a great problem to be
solved in finding and applying software methods to overcome/eliminate space explosion
problems. In addition, an exhaustive testing, i.e., testing every execution to prove the
system’s correctness, often cannot be performed even for models of moderate complexity.

It is important to keep in mind that even if we limit the values of variables to finite
sets, the number of scenarios that have to be tested in an exhaustive execution rapidly
becomes unmanageable (see example given in Subsubsection 7.1.3.3).

The module test approach given in this chapter describes methods and concepts which
allow the system designer/tester to (automatically) test the partially designed and imple-
mented system (cf. Sections 7.7 and 7.8).

The aim of the module test approach is mainly to establish an acceptable small set of
test paths that reaches all used states and carries out all used transitions in a component.
The idea behind this is to apply as few tests as possible, but of course, providing the
ability to test all crucial dynamic properties in the model. The term “crucial” here
depends on the abstraction degree of observation and on the required test cases. This
involves determining necessary test criteria which are defined in Section 7.3.

By applying this test method, we thus illustrate that the module test concepts can

5The number rises exponentially with the number of the input and output state variables.

7.3. DEFINITIONS OF THE TEST CRITERIA 121

provide a more convincing approach to the problem testing on a systematic basis.

7.3 Definitions of the test criteria

In this section we give the family of test criteria required by the test strategies.

Definition 7.1 The CO test criterion requires a subset of test sequences such that every
state in a statechart model is executed at least once.

Definition 7.2 The C1 test criterion requires a subset of test sequences such that every
transition in a statechart model is executed at least once.

Test criterion C'1 is necessary since every transition can be faulty. On the other hand,
the interaction of transitions in a sequence can produce new faults. Hence the following
criteria are necessary too.

Definition 7.3 The C2 test criterion considers that all possible transition sequences
of length two are executed at least once.

As stated in Section 7.1.2 on page 118 the effectiveness of a criterion depends not only
on the selected paths but also on the test data for those test paths. Therefore for an
intensive test, a more thorough test criterion is required. This is given by the following
definition.

Definition 7.4 The C3 test criterion requires automata equivalence test (cf. [22)).

Note however, criterion C'3 is only possible if certain assumptions are made, e. g., when
the statechart model to be tested is assumed to have a ‘limited” number of states.

7.4 Components of test selection strategies

Software reliability presents a remarkable problem for the development of large computer
systems. Various methods have been developed to increase the software reliability. In
the area of software testing, many different test selection techniques have been proposed.
Each test selection technique has its own advantages and disadvantages. Therefore, none
of these techniques should be applied in isolation. Rather, an effective testing method-
olgy should use a combination of the techniques. In order to give an idea of these test
selection techniques, we use this Section 7.4 to present an overview of the components of
test selection strategies. The test selection problem is concerned with finding techniques
that are inexpensive for testing, but in any case assure a certain grade of correctness. We
divide this subsection into three parts. In Subsection 7.4.1 we compare manual test selec-
tion techniques with automatic test selection techniques. Since the module test approach
developed in this thesis is based on an automatic test selection technique, we describe the
components of the automatic test selection used in this thesis in Subsection 7.4.2. Lastly,

122 CHAPTER 7. MODULE TEST APPROACH

in Subsection 7.4.3 we give an overview of some of the most well known test selection
strategies proposed in the literature.

7.4.1 Manual test selection versus automatic test selection

The usual approach in selecting tests is to define test purposes and construct tests to
satisfy each test purpose. Such test purposes are derived manually, perhaps from the
statements of the functionality of the sytem (e. g., from user’s manuals), or data definitions
in data dictionaries, etc.

One fundamental benefit of test purposes is that it allows customers as well as de-
velopers to understand what is being tested, and allows even the use of unstructured
information, such as informal descriptions, perhaps unstructured knowledge, e. g., com-
mon programming mistakes.

On the contrary, automatic test selection strategies define which kind of tests are
required, and in practice these are based on formal models of the program or design and
need no human effort. The idea behind the automatic test selection technique is that
when the model of the program/design has been created and the necessary test criteria
are chosen, then the necessary tests are given automatically.

The effectiveness of automatic strategies lies in the fact that the knowledge of test
purposes can be codified in the form of test criteria. Consequently, automatic strategies
are easier to apply, and above all, do not depend as much on the system user. Therefore,
they are easier to compare and evaluate, and thus provide a better basis for improvement.

7.4.2 Components of automatic test selection

In this subsubsection we describe the components of the automatic test selection used in
this thesis. Figure 7.1 shows two main components which are necessary for an automatic
test selection technique: the Statechart Model which comprises the knowledge about the
behaviour of the reactive system, and the Test Criteria which comprises the knowledge
about how reactive system flaws occur in relation to the statechart model. These are
useful for the prediction of how the statechart will behave (on e. g., inputs not in the test
set); without them, it can be very difficult to analyse the results of test cases in order to
assess the correctness of the whole model.

Using the statechart model and test criteria we are able to define a test selection
stategy. This stategy selects a test to detect each reactive system flaw that is possible
under the test criteria. Apart from selecting tests, the technique should as well provide
some means for assessing the correctness of the statechart after executing the tests.

7.4.3 Common test selection strategies

In this subsection we give an overview of some of the most well known test selection
strategies proposed in the literature. They can be considered ‘standard’ due to the fact
that they have been used for a long time, included in many software textbooks, e. g.,

7.4. COMPONENTS OF TEST SELECTION STRATEGIES 123

T

Behavioural Model
of Reactive System

N7

Test Selection

Test Criteria Assess Correctness

Figure 7.1: Components of test selection Legend: An arc between component A and B
describes that A embodies some knowledge which is necessary for B.

[5, 132], and above all form the basis for almost all testing techniques. The three most
important standard techniques are path testing, state-based testing and logic testing.

Path testing: The most important and widely-used techniques are based on path
testing. This kind of testing uses the flow-graph model which represents a digraph that
captures the flow of the processing of the program (model). We refer the reader to
Subsection 7.1.2 for more details. Coverage criteria for path testing aim to cover all
nodes, all edges and all paths® (compare criteria given by Definition 7.1, Definition 7.2
and Definition 7.3 in Section 7.3).

State-based testing: State-based testing uses finite state machines (FSMs) and
various extensions. Though FSMs are typically found in the specification of behaviour of
systems or objects, they can also be derived from the code with difficulty. FSM models
can also be tested using path coverage criteria, but there are usually more special-purpose
testing techniques which are specifically developed for them. The best known state-based
test selection methods are called Transition tour [110], W-method [22], Distinguishing
Sequence Method (DS) [43], and Unique-Input-Output (UIO) [148].

Predicate testing: Predicate testing requires certain types of tests for the properties
that are formulated as predicates in the specification or implementation of a program
(statechart). For example, a decision table relates the input predicates to the outputs.
The exhaustive testing criteria requires all the combinations of values for all predicates.

6Generally, when the graph contains loops the criterion for all-paths is not satisfiable because it
demands an infinite set of paths.

124 CHAPTER 7. MODULE TEST APPROACH

7.5 The test principles for validating the statechart
model

Validation of the model using tests requires test cases. A test case generator will be
responsible for the creation of test cases from the formal specifications (statechart models).
The main purpose of the generator is to produce a set of suitable test cases for the given
model. Generally, the test cases can be developed on the following test principles:

(1) Test principle A — the statechart model is validated against its specification;

(2) Test principle B — the statechart model is verified against its implementation.

Testing a statechart model against the specification:

The specification against which the statechart model is to be tested may be stated infor-
mally in the form of prose or formally as set of axioms (of the requirement statements of
the customer or developer (cf. Section 3.2)). In this thesis, the test cases will be consid-
ered suitable” for the test principle A, if for each error in the statechart model, violating,
e. g., the informally specified requirements, a test case will be created which is capable
of detecting this error. In this particular case, it will be assumed that the informally
specified requirements are correct. This case involves the application of the test criterion
C0, criterion C'1 and criterion C2 (cf. Definition 7.1, Definition 7.2 and Definition 7.3 in
Section 7.3).

Testing statechart model against the implementation:

When testing a statechart model Sct, it is assumed that the implementation behaves like
some, unknown, statechart model Sct’. In this particular case, the test should attempt
to determine whether Sct and Sct’ are equivalent. This case is actually the automata
equivalent test (cf. criterion C3, Definition 7.4)

7.6 Related work

In this section related work is reviewed to place the concepts which are developed in this
thesis in an appropriate context. In particular, testing based on finite state machines
(FSMs) is described and several criticisms of FSMs analysis/testing from literature are
discussed.

The problem of testing software has been approached in a variety of ways. Most test
selection techniques assume the existence of a specification .S as basis for the development
of an implementation (formal model) I. The problem is then to know whether or not /
is a correct implementation of S. The procedure involves prescribing a way to generate a
set of tests from the specification S which is used to test the implementation I.

"Note that in this sense, suitable describes the “ideal” case (cf. [143], chapter 2).

7.6. RELATED WORK 125

The basic idea of this proceeding is that one would like to construct a test set D
such that the output produced by I on D shows that I correctly implements S.

Actually, the aim of all these techniques is to find faults, but unfortunately, in most
cases, there is no guarantee that the system is fault-free after testing has been completed.

This rather justifies to a certain extent Dijkstra’s old claim that “all a test can tell us
is that a system has failed — it cannot tell us that a system is correct”.

In order to get out of this dilemma, we initially give the following definition.

Remark 7.1 The claim “the system is fault-free after testing has been completed” can
only be made if and only if the (finite) test set generated by the method is proven to
reveal all the faults of the implementation.

Assumption 7.1 Let S and I be the specification and implementation, respectively.

(i) If S and I are (partial) functions S, I: D — R, where

(a) D is the input domain, and
(b) R the result domain;

(ii) and X C D is the (finite) test set,
then the implication
Vo (zre X = S(x)=1(z))] = [Vx (r €D = S(x) =1(z))]
must be shown correct.

To approach this problem, both the specification and the implementation can be rep-
resented as some computational models or machines. A testing method would then try
to ascertain if these two machines compute the same function. However, if S and I are
assumed to be arbitrary Turing machines, it is well known that this problem is unsolvable,
i. e., no algorithm exists that can determine whether the two arbitrary machines compute
the same function.

One way to solve this problem is to consider more restrictive models, such as finite
state machines (FSMs). Therefore, in Subsection 7.6.2 testing based on FSMs is described
and several criticisms of FSMs analysis/testing from literature are discussed. In addition,
it will be indicated how these criticisms are addressed in this thesis. But before that, in
the next Subsection 7.6.1 we give some fundamental definitions used in the research area
of test selection methods based on FSMs.

7.6.1 Preliminaries for methods based on FSMs

In this subsection we introduce some notations and concepts related to FSMs that are
used to allow a formal comparison and discussion of various test selection methods, e.
g., Transition tour [110], W-method [22], Distinguishing Sequence Method (DS) [43], and
Unique-Input-Output (UIO) [148].

126 CHAPTER 7. MODULE TEST APPROACH

Definition 7.5
Given a nonempty finite set 3, called alphabet. x € ¥ is called a symbol (or letter).

(1) Then ¥* is defined as follows:
Y=gy {w=m20.. .7, | x; € X, wherei=1...nAn € INy}.

(a) w € ¥* is called a string (also called word).

(b) A string w = x1x9 ... 2, is called an empty string if n = 0. An empty string
15 denoted by €.

Let U and V be sets of strings over X.

(2) The concatenation of U and V', denoted U o V', is the set {w | uw € U Awv €
VA w=uv}.

(8) The union of U and V', denoted U UV is the set {w |ue U V veV}.

(4) The length of a string is given by |w|. Let 3° =4.5 {€}. For i >1 X is defined as
{w] weX* N |w|=i}.
Note: ¥ is a set of strings, each having length 1, the set X is the set of all strings
over Y having length i, and >* is the set of all strings over ¥. Hence, the following
concatenation notation:

(a) 3 is the set ¥ @ X171 and
(b) X* is the set |J X'.
i=0

Definition 7.6
A finite state machine (FSM) is a 6-tuple M = (Q, %, T, 0,7, qo) where:

(1) Q is a nonempty finite set of so called states;
(2) ¥ is an input alphabet (cf. Definition 7.5);
(3) T is a nonempty finite set of output alphabet;
(4) 0 : Q x ¥ — @ is a transition function;

(5) v : Qx%X —T is an output function, and

(6) qo € Q is called a starting state or initial state.

As an example we consider Figure 7.2 which depicts a ‘minimal’ finite state machine.
In it @ = {q0,q1, ¢, 3}, X ={0,1}, T' = {a, b}, where ¢ is the initial state.

Notation 7.1
Ifp,qe@, seX, tel, d(p,s)=q, and y(p,s) =t, then an arc from p to q is labelled

by s/t. A transition of this kind is denoted by p A q.

7.6. RELATED WORK 127

In order to compute an input sequence, Definition 7.6 is extended as follows:

Definition 7.7
For a FSM M = (Q,%,T,6,7, q),

(1) the function & can be extended to a function on strings dey : Q X X* — Q such that
ifq € Q, a €, yeXr, and w = ya, then define dert(q,€) = q and dezt(q,w) =
5(5ea}t(q7 y>7 a)'

(2) the function v can be extended to a function eyt : Q X ¥* — I'* such that if
g€ Q, acy yedX andw = ya, then define Yezt(q,€) = € and Yez(q, w) =
Pyemt(qa y)”)/(éea:t(qa y)7 G,) .

Nevertheless, in the following, the notations 6 and v will be used for d.,; and ey, re-
spectively. That is, if ¢ € @ and w € ¥*, then §(¢,w) will be the next state of M
after processing the string w beginning from state ¢. 7(g,w) will be the output when
M processes w beginning from state ¢. In example of Figure 7.2, 6(qp,00110) = ¢; and
v(q0,00110) = abbba

0/b
0 ql
(o] e |

N —

1/b |1/p /b 11/

2 0/a -

3
a2 ; 0/a < a

Figure 7.2: A finite state machine

Definition 7.8

For a FSM M = (Q,%,T,0,7,q0), Let w = wow; ... w,—1 be a string, and let ¢ € Q be a
state. Then the k successor of q (with respect to w) is the state p = 6(q, wowy ... Wk—1),
where k > 1.

Definition 7.9
Fora FSMM = (Q,%,T,0,7,q), Let p,q € Q andw € ¥* Then w is said to distinguish

between p and g iff (p, w) £ (g, w),

In other words, if two different computations of M on input w are considered, one starting
in state p and another starting in state ¢, and if these computations produce different
outputs, then w distinguishes p and ¢. In example of Figure 7.2, the string 110 will
distinguish ¢; from gs.

128 CHAPTER 7. MODULE TEST APPROACH

Definition 7.10

A characterisation set W for FSM M = (Q,%,T,0,7,q0) is a set W C ¥* such that
Vai,q; € Q, where i # j, there exists a string w € W such that v(q;, w) # v(q;,w), and
no other v € £* with |v| < |w| distinguishes ¢; and q;.

For example, in Figure 7.2, {110,010, 10} is a characterisation set.

Definition 7.11

Let My = (Q1,%,1,01,7,q0,) and My = (Q2,%,T, 02,7, qo,) be two FSMs; let q; €
Q1, pj € Q2, and let W C 3*. If 1(qi,w) = v2(pj,w), for all w € W, then ¢; and p,
are W-equivalent (denoted by q; ~w p;j). If ¢; and p; are W-equivalent for all W C ¥*,
then g; and p; are equivalent (denoted by q; ~ p;). If qo, and qo, are W-equivalent
then My and M, are W-equivalent. If qo, and qo, are equivalent then My and Ms are
equivalent.

Furthermore, let f : Q1 — Q2 be a one-to-one and onto function such that

(1) f(q01> = do, and

z/ . z/
(2) VapVaVy (¢ € Q1 A pj € Qe A z € LA y €A (g = pj iff f(g:) == f(py))).
Then f is said to be an isomorphism from My to M,y. If there is an isomorphism
from My to My, then My and M, are isomorphic.

Definition 7.12
An FSM M = (Q,3,T,4,7,qo) is minimal if the number of states in M is less than or

equal to the number of states for any machine M' = (Q', X, T, ,', q) which is equivalent
to M.

Remark 7.2 If a FSM M has a characterisation set W, then M is said to be minimal.

7.6.2 Existing solutions based on finite state machines (FSMs)

In this subsection some test selection methods based on FSMs are described and several
criticisms of FSMs analysis/testing from literature are discussed. Many test approaches
have been based on finite state machines (FSMs) (cf. [8, 15, 22, 23, 37, 45, 57, 58, 59, 97,
103, 137]). This has been especially motivated by the fact that FSMs are a recognised
and a very wide spread model for the description of system behaviour. In addition, many
of the present CASE-tools support formal specification with FSMs. The study of testing
finite state machines is to discover aspects of their behaviour and to ensure their correct
functioning. In this research area, a lot of effort is being devoted to finding efficient
algorithms or heuristics, which, for instance, satisfy certain test criteria (cf. [37, 45, 22]).

This Subsection 7.6.2 is organised as follows. We begin by giving some definitions of
faults in a FSM model in Subsubsection 7.6.2.1. Then in Subsubsection 7.6.2.2 we review
the most important test selection methods for FSMs.

7.6. RELATED WORK 129

7.6.2.1 Definitions of faults in a FSM model

This Subsection 7.6.2.1 is devoted to describing some of the faults which are detected by
the test selection methods discussed in Subsection 7.6.2.2.

Definition 7.13
A transition is said to have an output fault, if for the corresponding state and received

input, the implementation under test (IUT) provides an output different to the one speci-
fied by the output function 7. (cf. Definitions 7.6 and 7.7).

Definition 7.14
A transition is said to have a transfer fault, if for the corresponding state and received

input, the IUT enters a different state than the one specified by the transition function J.
(cf. Definitions 7.6 and 7.7).

Definition 7.15

An IUT is said to have an additional (respectively, missing) transition fault, if for
a pair of considered state and input, at least one more (respectively, one less) transition
(with respect to the specification) is defined.

Remark 7.3 An IUT is said to have multiple faults iff one of its transitions has one
or several faults described above (cf. Definitions 7.13, 7.14 and 7.15).

7.6.2.2 The most best known test selection methods for FSMs

In this subsubsection we review the most important test selection methods for FSMs.
The four best known state-based test selection methods are called T-method [110], W-
method [22], Distinguishing Sequence Method (DS) [43], and Unique-Input-Output (UIO)
[148]. All these methods are similar in such a way that they provide a technique for
generating a set of one or more strings {p1, p2, ... ,pr} which is often referred to as test
suite. The implementation under test (IUT) [is then tested by applying these test strings
(test sequences) to verify that it conforms® to the specification S.

Assumptions about the specification S and the implementation /: Usually, all
the four above mentioned test selection techniques assume the existence of a specification
S as basis for the development of an implementation under test (UIT) I. In the following,
let the specification S and the implementation I be two FSMs M; = (Q1,%, T, d1, 71, qo,)
and My = (Q2, %, T, 02,72, qo,), respectively. It is assumed that M; is minimal and
strongly connected?, i. e., each state p of the FSM M is reachable from any other state ¢
in the machine M;. In addition, it is assumed that |Q1| = n and |Qs] = m, where m > n.
These assumptions are especially considered a necessary (and sufficient) condition for the
existence of a characterisation set W of M.

The four important approaches are now reviewed in the following.

8This term originates from the area of testing communication protocols (cf. [148, 137]), but it can as
well be used in software engineering.
9¢f. Definition 7.30

130 CHAPTER 7. MODULE TEST APPROACH

T-method: The T-method [110] generates a test suite of a single test called a “tran-
sition tour” More specifically, given the FSM M, (i. e., which represents the IUT 1), a
transition tour is an input sequence which takes the machine M, from its initial state,
traverses every transition at least once, and returns to its initial state. The T-method
is thus concerned with checking the transitions between the IUT I. It has the power of
detecting all output faults (in the absence of transfer faults), but there is no guarantee of
detecting any transfer fault.

Note that the T-method is based on the test criterion which corresponds to our Defini-
tion 7.2 in Section 7.3.

DS-method: The DS-method [43] uses a distinguishing sequence (DS) for state
identification (cf. Definition 7.9). It uses a two-phase approach. The tests of the first phase
check that each state defined by the specification M; also exists in the implementation M.
The tests of the second phase check all remaining transitions defined by the specification
M, for correct output and transfer in the implementation Ms. According to Definition 7.9,
however, a distinguishing sequence w is capable of verifying state p, but not necessarily
any other state.

Nevertheless, under the assumption that the number of states of the implementation
M is not larger than that of the specification M; (i. e., m = n), the DS-method guarantees
detecting any transfer fault. In this particular case, Ms is as well minimal. Unfortunately
not every minimal FSM has a distinguishing sequence (cf. [57]).

UIO-method: The UIO-method [148] uses a set of unique input/output (UIO)
sequences for state identification. Specifically, a UIO for a state ¢; is an input sequence
that when executed from ¢; produces a different output than when executed from any
other state ¢;. Thus the UIO-method generates test sequences which check whether each
transition has the correct next-state and the correct output. To check for the correctness
of the next-state reached by the FSM M, after the execution of the transition under
consideration, the corresponding UIO sequence is applied. Generally, test sequences which
are generated by UlO-method are shorter than the ones produced by the DS-method.

However, a UIO for a state ¢; may not be able to identify any state other than ¢;. A
DS is clearly a UIO for each state. Whereas not every FSM has a UIO for each state,
some FSMs without a DS have a UIO for each state (cf. [57]).

W-method: The W-method [22] comprises the selection of two set of input sequences:
W-set known as the characterisation set (cf. Definition 7.10) and P-set called the
transition cover set.

An informal algorithm for constructing P is presented by Chow [22]. In the following,
we give the formal description of P.

Definition 7.16
A transition cover set P for FSM M = (Q,%,1,0,7,q0) is a set P C ¥* of input
sequences constructed as follows:

Letx, € X,ps € Q

P=Aw=zor122 ... 01

7.6. RELATED WORK 131

n e [LIQ A

IpoTop1Z1 - - - Tn—2Pn—1Tn-1Pn

(Po = qo A

Vi€ [1,n](d(pi-1, Ti1) = pi) A

ViVk(j, k€ [0,n—1] AN j#k = p; # i)
)

tud{e}

Note: We assume the existence of a reset with no output (r/—), leading to the initial go
for every state ¢ in My, i. e., q s qo-

It is easy to see that the resulting set P will generate n(n — 1)/2 strings since a string
will consist of at most n — 1 symbols.

Let W be a characterisation set (cf. Definition 7.10). The test sequences generated
by the W-method are formed by the concatenation of the transition cover set P and the
distinguishing set Z (i. e., P @ Z), where Z is defined as follows:

Z =gy WUS' eWUS?eWU...US™ "eW =[] oW (7.1)

=0

Remark 7.4 The application of the distinguishing set Z instead of the characterisation
set W is due to the bound number of states m in the implementation M, which may larger
than number of states n in the specification M; (i. e., m > n). In case m = n, one obtains
Z = W, and as a result the set of test sequences is the set P and W (i. e., PeW). In fact,
each test sequence starts with the initial state after the application of the ‘reset operation’
(See the set of partial paths in the testing tree described by Definition 7.16 above. In this
case, to identify a reached state (next-state) after a transition, all the sequences in the
set W are applied separately. The length of the test suite resulting from concatenation
of these test sequences is “propotional” to |W|. According to Chow [22], the set of test
sequences P o IV detects any output or transfer error in the FSM M, provided number of
states m in M5y is bounded to m = n.

The following theorem summarizes the fault detection power of the W-method due
to [22].

Theorem 7.1 Let My be a minimal FSM with n states, and let My be a (minimal) FSM
with m states (m > n). Asssume that both machines have the same input alphabet ¥ and
output I'. Let P be a transition cover set for My. Let W be a characterisation set for M.
Then My and Ms are equivalent iff My and My are P o W -equivalent.

Remark 7.5 In [22], M is assumed to be minimal. However, in Theorem 7.1 we do
not necessarily have to assume the requirement of minimality for M. In case M> is not
minimal, we can reduce My to M. Then a similar proof can be done for MJ which is
equivalent to M,.

132 CHAPTER 7. MODULE TEST APPROACH

The validity of Theorem 7.1 is justified by proving the four lemmas which are given
in the following.

Proof

According to Definition 7.16 a transition cover set P must satisfy the following re-
quirements:

(1) e€ P and

(2) VpVgVz3dw (pe Q@ N g€ Q N z € XA
(0(px)=qg NweP NwreP A (§q,w)=Dp))).

In other words, the set P is any set of strings such that for any transition from a state
p to another state ¢ on input symbol x, there exist input strings w and wx in P such that
w causes M; to enter state p from the initial state go. The string wx results thence in a
computation that initiates in qq, proceeds to p, and then traverses the transition to q.

We use these observations to give an initial basis which will be necessary in the process
of proving Lemma 7.1.

Initial Basis 7.1

Let M = (Q,%,T,6,7v,q0) be a FSM. Letp e Q@ N q€Q N w € X* N z € X", where w
s a prefiz of z, and suppose that w distinguishes p and q. Then z will distinguish p and
q.

Lemma 7.1

Let My = (Q1,%,1,01,7,q0,) and My = (Q2,%, T, 52,72, qo,) be FSMs, where n = |Q1],
m = |Qsa|, and m > n. Let W be a characterisation set for My. Let p,q € Qa, then
pr~w g Yw €W ya(p,w) = (g, w). The characterisation set W partitions Qo into
at least o equivalence classes, where 1 < o < m = |Q1|. Then for all0 < i <m—o
W U X partitions Qs into at least o + j equivalence classes, where 0 < j < m —o.

Proof of Lemma 7.1

(1) Induction Basis:
1= 0. Since W C X* partitions the states of M, into at least o equivalence classes,
it follows directly that W U X' = W U {e} partitions the states of M, into at least
o0 + 1 = o equivalence classes.

(2) Induction Hypothesis:
Assume that there exists a k, where 0 < k < m —o — 1, such that W UX* partitions
@ into at least o + k equivalence classes.

(3) Induction Step:
To show that W U XF*! partitions @Q into at least o + &k + 1.

By induction hypothesis W U XF partitions @ into at least o 4+ k equivalence classes.
It may be the case that W U XF partitions @ into at least o + k + 1 equivalence

7.6. RELATED WORK 133

classes, so that in this particular case, by Initial Basis 7.1, it follows that W U Xk+!
also partitions () into at least o + k + 1 equivalence classes. Now suppose that
W UX* does not partition () into at least o+ k+ 1 equivalence classes. This implies
by the induction hypothesis that W UX* partitions) into exactly o+ k equivalence
classes. Moreover, since 0 < k < m — o — 1, it follows that the sum of the number
of equivalence classes is 0 + k < m — 1 which is less than the number of states in
(). This implies that there must be a pair of states ¢; € @ and ¢; € Q) that is not
distinguished by any string in W U X*. But, since M, is minimal, it follows that
¢; and g; are distinguished by some string. Suppose that the shortest string is of
length » > k (cf. Definition 7.16). That is, ¢; and ¢; are distinguished by some
string of length r but not any string of length » — 1 or less. This means that the
pair ¢; and ¢; is distinguished by some string in 3" but by no string in "'. Now
let w € X7 be a string that distinguishes ¢; and g;, let ¢; € @ and ¢} € Q be the
(r — k — 1) successors of ¢; and g¢;, respectively, when executing w. Then ¢, and q;
must be distinguished by a string of length k -+ 1 but by no string length of k. This
implies that ¢; and ¢} are distinguished by YF*+1 but not by ¥*. Therefore, W UXF+!
partitions the states in () into at least o + k£ 4+ 1 equivalence classes. O

Lemma 7.2

Let My = (Q1,%,1,01,7,q0,) and My = (Q2,%,T, 52,72, qo,) be FSMs, where n = |Q1],
m = |Q2|, and m > n. Let P be a transition cover set for My, and let W be a characteri-
sation set for My. If My and My are P o W -equivalent, then for each q; € Q1 there exists
at least one p; € Q2 such that q; and p; are W-equivalent. It is as well true that for no
other q, € Q1, where r # 1, is it possible that ¢, and p; are also W -equivalent.

Proof of Lemma 7.2

Suppose that M; and M, are P e W-equivalent. By definition of P holds Vg;(Jw €
P A (61(qo,,w) = qi)) (see requirement (2) at the beginning of proof of Theorem 7.1).
Let 62(qo,, w) = p;. Since M; and M, cannot be distinguished by any string in P e W, it
follows that ¢; and p; cannot be distinguished by a string in W. Thus ¢; and p; are W-
equivalent. On the other hand, suppose there exists another ¢, such that r # ¢ and that
¢r and p; are also W-equivalent. This would imply that ¢; and ¢, would be W-equivalent
which is a contradiction to the fact that W is a characterisation set for M;. O

Lemma 7.3

Let My = (Q1,%,1,01,7,q0,) and My = (Q2,%,T, 92,72, qo,) be FSMs, where n = |Q1],
m = |Qz|, and m > n. Let P be a transition cover set for My. Let W be a characterisation
set for My. In addition, let Z =W UX™ ", If My and My are P @ W -equivalent, then Z
will partition the states Q2 into m = |Q2| equivalent classes.

Proof of Lemma 7.3

It follows from Lemma 7.2 that every state in ()1 is W-equivalent to a unique state in
Q2. Hence, W-equivalence partitions the states in (2 into at least n = |Q1| classes. The
derived number of classes follows from Lemma 7.1. O

Lemma 7.4
Let My = (Q1,%,T,01,7,q0,) and My = (Q2,%,T, 52,72, qo,) be FSMs, where n = |Q1],

134 CHAPTER 7. MODULE TEST APPROACH

m = |Q2|, and m > n. Let W be a characterisation set for M. Let q;,q; € Q1, © € X

and y € I', where g; SN q;- In addition, let Z = W U X™". If My and My are P e Z-
equivalent, then there exist states p,,ps € Q2 such that p,. and ps are Z-equivalent to g;

and q;, respectively, and g, 2, qs-

Proof of Lemma 7.4

Suppose that ¢;,q¢; € @1, v € ¥ and y € I', where ¢; 2, g;. Following definition of P,

there exists w € ¥* and z € I'* such that w € P and wx € P and qo, vl i SN g;- So

let p.,ps € Qa, 2/ € T, and ¢y’ € T" be such that q, vl Dr LR ps. Now, since M; and

M, are P e Z-equivalent, and in this case {w} e Z-equivalent and {wz} e Z-equivalent, it
follows that ¢; and ¢; are Z-equivalent to p, and ps, respectively, and y = y'. O

The proof to justify that M; and M, are equivalent is trivial, and therefore, is omitted
here.

7.6.2.3 Complexity of W-method

Following Remark 7.2 and Theorem 7.1, every minimal FSM has a characterisation set.
Unfortunately, this identification method requires a number of inputs to be executed from
each state, and hence requires more effort. Specifically, let M; and M; have n states and
m states, respectively, where m > n. Asssume that both machines have the same input
alphabet ¥ where |X| = k. Then the W-method will generate a test set consisting of

|[PIW](E™ ™ = 1)/(k = 1) (7.2)

strings.

Nonetheless, though the W-method [22] has the largest generated test set, it is gen-
erally accepted that the W-method has the best fault detection capability. Therefore,
this approach has received the widest attention in the research area of software testing.
Indeed, there have been several approaches to develop more efficient algorithms which
generate a smaller number of tests than the W-method (cf. [37, 8, 45]). The main idea
of all these approaches is to provide versions of the W-method that have the same fault
detection capability as the W-method but at the same time generate a smaller number
of tests than the W-method. In this thesis, due to space limitations, we cannot consider
the details of these approaches.

In Table 7.1 we summarize the results of the four best known state-based test selection
methods.

7.6.3 Criticisms of the proposed state-based techniques

In this subsection we discuss the problems/weaknesses of the proposed state-based tech-
niques and indicate how these criticisms are addressed in this thesis. To allow a theoreti-
cal comparison of the FSM-based techniques, e. g., developed by Chow [22] and Fujiwara
et. al. [37] with our test concepts (cf. Subsection 7.7.3), we found it necessary to provide

7.6. RELATED WORK 135

Fault detection size of reset formal proof| require distinguishing
test set | capability entity
Method |output|transfer| additional
states
W-method + +* + largest + + characterrisation set
(polynomial size)
DS-method + +* — medium + — distinguishing string
(PSPACE-complete)
UIO-method| + - - medium + - unique input-output
string (PSPACE-
complete)
T-method + — — smallest + — none

Table 7.1: Comparing the four methods
+*: This requires that the number of states of the implementation must remain within a certain
bound.

the full theoretical background information of reactive models, especially to classify state-
charts in terms of nondeterminism, pure parallelism and bounded cooperative concurrency,
and above all, to remain as close as possible to classical finite automata (cf. Chapter B).

Recall the Assumption 7.1 at the beginning of this Section 7.6. We suggested that one
way of solving the problem formulated in Assumption 7.1 is to consider more restrictive
models, such as FSMs. The main problem of such a proceeding, however, is that FSMs
are too restrictive for many applications, e. g., real world concurrent computing.

A solution suggested by Chow is to separate the control structure of a program from
the data structure and to represent the former as a FSM. Then the state-based techniques,
e. g., developed by Chow [22] and Fujiwara et. al. [37] could be used to test the control
structure.

Nonetheless, the assumption that the control structure of the system can be modelled
separately from the data variables is not realistic in many cases. It would imply that the
next state depends solely on the current state and the input which is not usually the case.
The idea that the variables that affect the program control could be replaced by a number
of additional states is also impractical since in many cases this number can be very large.

In Appendix Subsection B.1.2 we discuss the classical automata with respect to their
suitability for modelling real world concurrent computing. The application of ezistential
and universal features'® which are perhaps the most well-known notions for modelling
concurrency in complexity theory have two drawbacks:

(1) No communication exists in the spawned processes, except when time comes to
decide whether the input should be accepted.

10These features are described in Subsection B.1.1 on page 194

136 CHAPTER 7. MODULE TEST APPROACH

(2) Existential and universal branching are unbounded; new processes can be spawned
without limit as the computation proceeds (i. e., as the length of the input word
grows).

As a solution to overcome the first drawback, in particular to capture real world
concurrency, we argue that one requires cooperative concurrency (cf. [32, 31]). The idea
of cooperative concurrency is that during a single computation, the mechanism can be in
more than one state (component) and that these are able to cooperate (communicate)
while achieving a common goal.

In thinking about the second drawback we have to remember that in the real world the
number of processes participating in concurrent computations is bounded, and therefore
cannot be assumed to grow as the size of input grows. Hence, the main question is
to determine how bounded cooperative concurrency progresses with respect to the two
classical kinds of branching in the realm of finite automata and their extensions. The
idea of bounded cooperative concurrency is formulated in Appendix Section B.2; and the
defined classes correspond to different kinds of statecharts.

In other words, statecharts were proposed to overcome the limitations of FSMs, such
as the ones seen above. Therefore, to come back to the problem formulated in the As-
sumption 7.1 on page 125 it is necessary to find tests which are based on the model of
statecharts.

We are not trying to say that the test selection methods based on FSMs; e. g., de-
veloped by Chow [22] and Fujiwara et. al. [37] are not useful and important in software
testing, but they are particularly suitable for testing models with a limited number of
states.

In [15] a rather informal testing method for statecharts is described. This method
is based on a method of testing X-machines [97]. According to Singh [15] the method
should test that the implementation of a statechart design produces the same output as
the design when exposed to the same inputs. The basic idea behind Singh’s method is to
apply inputs derived from the design to an implementation under test and making sure
that the output observed is the same as that required by the design. Before we can outline
Singh’s testing method we need the following definition of a state cover set.

Definition 7.17
A state cover set C for FSM M = (Q,%,T',0,7,qo) is a set C C X* such that Vg; € Q,
where i € [1, |Q|], there exists a string w € C such that qo — q;. For the initial state qo

we have qo — qo. The empty sequence (¢) belongs to C.

Specifically, to construct a set of test cases, Singh [15] requires three auxiliary sets:

(1) 3 (cf. Definition 7.5 on page 126)
(2) State cover set (denoted by C') (cf. Definition 7.17 above)

(3) Characterisation set (denoted by W) (cf. Definition 7.10 on page 128).

7.6. RELATED WORK 137

With these sets, a set of test sequences is constructed as usual:
T=Ce({efUTUX*U...UY" ") e W (7.3)

where n is number of states in a design; m is the maximum expected number of states in
the implementation under test.

Without doubt, this method can be fruitful for testing very ‘simple’ statecharts. In
this context, simple is used to refer to a statechart with a very small number of states
and transitions. For complex statecharts, Singh [15] proposes an approach of incremental
test case development. This should be achieved as follows in two phases:

(1) Phase 1:

(a) begin with a generation of a triple (Xparn, Cararn, Wararn) called the test
case basis for the main statechart

(b) then continue with a generation of a triple (Yo r—state,ys CoOR—state;ys WOR—state;,)
for each non-basic OR — state;q'!.

considering all their substates as basic ones.
(2) Phase 2:

(a) combine the triples from Phase 1 (i. e., (1)(a) and (1)(b)) to get a resulting
triple (X, C, W).

(b) Finally from the resulting triple (X, C, W) a set of test cases can be constructed
following the Equation 7.3 above.

Note that since the Equation 7.3 above corresponds to the W-method given by Equa-
tion 7.1 on page 131, whose test effort is known to be very large (cf. Equation 7.2 on
page 134), it is fair to say that the problem of testing large and complex concurrent
cannot be not quite solved by the above approach. In other words, such tests should be
applied to special parts of the system model (e. g., ‘critical’ parts) to allow a practical
use.

To make a step further, we established new methods based on path testing.

Our module test approach is a graph-theoretic based technique. Using this approach,
we will show that an acceptable small set of test paths that detects all used states and
executes all used transitions in a component can be established efficiently. The problem
of determining the test paths of large and complex reactive system models'? is solved by
deriving tests from the level of the statecharts. In this way, our module test approach can
be used to reduce the space explosion problem of large and complex concurrent system
models. By applying this test method, we thus illustrate that the module test concepts
can provide a more convincing approach to the problem testing on a systematic basis.

Hwhere the index id stands for state identifier
Zhierarchical, structured statecharts

138 CHAPTER 7. MODULE TEST APPROACH

7.7 Ways of approaching the module test concepts

The purpose of this section is to establish the module concepts which operate on the
hierarchical statecharts. In other words, the components of a statechart to be tested are
derived from the considered level of the statechart. This section is organised as follows:
In Subsection 7.7.1 we consider the problems of testing hierarchical, structured system
models. In Subsection 7.7.2 we introduce some formal notations and concepts related to
digraphs which are necessary for a formal development of graph-theoretic based methods.
This aim of Subsection 7.7.3 is to find a solution to overcome the problems, e. g., the
space explosion problem, discussed in Subsection 7.7.1.

7.7.1 Problems of testing hierarchical system models

In this subsection we consider the problems of testing hierarchical, structured system
models. When testing large models, the individual modelled components (modules) are
first tested in isolation (cf. [88]). In particular, when testing hierarchical, structured
system models, it is useful and vital to analyse components (modules) in isolation. The
module test (also known as unit test), hence allows the system designer or tester to develop
a subset of execution sequences whose size is relatively manageable as a test set.

In Subsubsection 7.1.3.3, an example has been given to illustrate the space explosion
problem in the field of testing (concurrent) reactive systems. Here, hierarchical, structured
statecharts surely present an additional difficult task to be dealt with. Let us consider
an OR-statechart (cf. Definition 5.13) with many levels which will be tested using the
criterion stated by Definition 7.2, i. e., finding a test suite which executes every transition
in the OR-statechart.

e The number of execution sequences which are possible “inside” (the descendants)
of such a clustered state can be unmanageable.

e The execution duration of single tests might be too long because the length of the
generated sequences might be very long.

Therefore, the concepts which will be developed in Subsection 7.7.3 should mainly attempt
to provide a solution which overcomes the space explosion problem, and above all, should
deal with the generation of test paths (test sequences) for a hierarchical (structured)
statecharts model.

7.7.2 Preliminaries for graph-theoretic based methods

In Subsection 7.1.2 we presented an informal background on path testing. In this sub-
section we introduce some formal notations and concepts related to digraphs which are
necessary for a formal development of graph-theoretic based methods.

Let G = (V,vg, E,inc,label) be a labelled digraph'®. In the following, we write G =
(V, E,inc, label) instead of G = (V, vy, E,inc, label).

13¢f. Definition 5.17, page 49

7.7. WAYS OF APPROACHING THE MODULE TEST CONCEPTS 139

7.7.2.1 Definition of subgraph

Definition 7.18 Let G = (V, E,inc,label) be a labelled digraph.
A digraph G' = (V' E\/ind, label’) is said to be a subgraph of G iff

(1) V! CV and

(2) E' CE is a subset of E such that
ind =gqep | g maps only into V' x V', i.e.,
ind B — V' x V.

Example of subgraph G’ of digraph G

As an example, figure 7.3 shows a subgraph G’ of digraph G.

G =({viv2yv3},{el,e2,e3,e4}, inc, label)
where

inc(el) = (v1,v2), label(el) =a

inc(e2) = (v1,v2), label(e2) = b

inc(e3) = (v1, v3), label(e3) = ¢

inc(ed) = (v3,v2), label(e4) = d

(Cas

G =({vivz},{ele2},inc, label’) where
inc'(el) = (vl,v2), inc' (e2) = (v1,v2)
label’ (e1) = label(el) = a, label’(e2) =label(e2) = b

Figure 7.3: G’ is a subgraph of graph G.

7.7.2.2 Path Definitions

Definition 7.19 Let G = (V, E,inc, label) be an arbitrary digraph. An edge (v,w) € E
1 said to leave verter v and enter vertex w and that verter w is adjacent to v. It is
said that v is a predecessor of w, and w a successor of v.

Definition 7.20

A successor function Adj* : V — (V) is defined such that Adj™t(v;) =aer {vi|(vi,vj) €
E}. This set is called the set of immediate successors of a node. It may be empty. The
inverse of the successor function is a predecessor function Adj~ : V. — o(V), which
giwes the immediate predecessors of a node: Adj~(vj) =g {vi|(vi,vj) € E}. It too
may be empty.

Definition 7.21 Let G = (V, E,inc,label) be an arbitrary digraph. The out-degree of

a vertex v, i.e., the number of edges leaving v, denoted by d*(v) is defined as d*(v) =gef
| Adj " (v)].

140 CHAPTER 7. MODULE TEST APPROACH

The in-degree of a vertex v, i.e., the number of edges entering v, denoted by d—(v) is
similarly defined as d=(v) =gef |Adj~(v)].

A wvertex whose out-degree (in-degree) equals zero is called a sink (source). If both
dt(v) =0 and d~(v) =0, then v is an isolated vertex

Definition 7.22 Let G = (V, E, inc, label) be an arbitrary digraph.
A sequence of vertices (vg,v1,va, ... ,v;), k >0, is a path (of length k) from vertex vy to
verter vy iff there is an edge which leaves v;_1 and enters v; for all i :1 <1 < k.

Definition 7.23 A path is simple if all vertices on the path, except possibly the first and
last, are distinct.

Definition 7.24 A cycle is a simple path (vy, v1,ve, ... ,v;) with k > 1 in which vy = vg.
If (v,v) is an edge, we say node v has a loop.

Notation 7.2 A simple path from vy to vy, where vy is a source node and vy is sink node
(terminal) is referred to as an s-t path.

Notation 7.3 The terms circuit or closed path are frequently used in different litera-
tures for a cycle.

Definition 7.25 A digraph is rooted if there exists at least one vertex r such that for
each verter v there is a path p from r to v. The vertex r is called root of the graph.

Definition 7.26 A digraph that contains no cycle is called acyclic or dag (directed
acyclic graph).

Note Throughout this work, unless stated otherwise it will be assumed that the labelled
digraph G = (V, Einc, label) is finite. The term graph shall be used interchangeably with
digraph.

7.7.2.3 Traversals of digraphs

Suppose G is a digraph we wish to explore. We begin at some vertex of G, the start
vertex. The start vertex is marked wvisited. All other vertices of the graph are marked
unuvisited. All edges of the graph are marked unexplored. The goal is to visit all vertices
of the graph, and in doing so, to explore all edges of the graph. Ezploring an edge means
walking along it.

Search Step:
(1) Select some unexplored edge (v, w) such that v has been visited.
(2) Mark the edge ezplored, and mark w visited.

Note that, if (v, w) is explored, then both v and w will be visited, but the reverse does
not have to hold, if there are other paths from v to w or from w to v.

Notation: The repeated execution of search steps until all edges are explored is called
a search of G.

7.7. WAYS OF APPROACHING THE MODULE TEST CONCEPTS 141

7.7.2.4 Representation

Adjacency structure: Several data structures may be used to represent a digraph G.
We assume that the graph G is given by an adjacency structure A, which is of the type
arraylvertex] of list of vertex.

For each vertex v, Afv] is a list of all direct successors of v in some order. If a vertex
is a direct successor of v via several “multiple” edges, then it occurs in Afv] with this
multiplicity.

Note that a single graph may have many adjacency structures; i.e. each ordering of the
edges around the vertices of G gives a unique adjacency structure', and each adjacency
structure corresponds to a unique ordering of edges at each vertex. We shall use the
adjacency structure for a graph to perform depth-first search. At this juncture, we are
not yet interested in the representation of the labels.

7.7.2.5 Depth-first search

There are many ways of searching a graph, depending upon the way in which edges to
search are selected. One of the most popular strategies is the depth-first search. It can
be used as a foundation in the construction of a large number of efficient, mostly-linear
time graph algorithms (see [Tar72]). The data structure D for the depth-first search is a
stack. Thus, the depth-first search procedure is a recursive procedure.

Suppose an adjacency structure A[v] of a digraph to be searched is given. In the
following, we consider a simple digraph (cf. definition 2.2 on page 14). All vertices of
G are initially marked unvisited. Depth-first search selects one vertex v of G as a start
vertex; v is marked wvisited. Then each unvisited vertex adjacent to v is searched in turn,
using depth-first search recursively. Once all vertices that can be reached from v have
been visited, an unvisited vertex is selected as a new start vertex. This process is repeated
until all vertices have been visited. Algorithm 1 is a template for depth-first search. The
rule used by depth-first search may be summarized as follows:

When selecting an edge to traverse, always choose an edge leading from the
vertex most recently visited which still has unexplored edges.

The main program consists of two FOR loops.

(* The first FOR loop is used for the initialization).

(* The second FOR loop is only necessary for graphs which do not have a single root.
Otherwise it suffices to invoke dfs(r), for the root r).

FOR v:=1TO n DO
mark[v] := unvisited;
FOR v:=1TO n DO
IF mark[v] = unvisited THEN
dfs(v)

HMgince only the set Adj™ (v) is fixed for a vertex (cf. Definition 7.20)

142 CHAPTER 7. MODULE TEST APPROACH

The set of visited vertices with possibly unexplored edges may be stored on a stack.
This however, is not explicit in the template because this is implied by the recursive
structure of the procedure dfs.

PROCEDURE dfs(v : vertex);

VAR
w : vertex;

BEGIN
(1) mark[v] := visited;
(2) FOR w € Alv] DO
(3) IF mark|w] = unvisited THEN
(4) dfs(v)

END

Algorithm 1 Depth-first search.

Let a digraph G be given. Now we consider what happens when a dfs is performed
on the digraph GG. The structure which results from the dfs of a digraph has four types
of edges. These edges may be classified as follows:

Definition 7.27

(1) The set of edges which lead to a non-visited vertex when traversed during the search
form a tree. These edges are called tree edges.

(2) The set of edges which run from descendants to ancestors in the tree. These
edges are called back edges.

(3) The set of edges which run from ancestors to descendants in the tree. These
edges are called forward edges.

(4) The set of edges which run from a subtree to another in the tree. These edges are
called cross edges.

In definition 7.27, the reader is assumed to be familiar with the terms tree, descendants,

ancestors as well as subtree [cf. Len9o]. Before a detailed depth-first search DFS is given,
we define some procedures used by this DF'S.

PROCEDURE initialize(v : vertex);

BEGIN
FOR v:=1TO n DO
afv] = 05

(x Initializes all vertices to ‘free’ state (a(v) = 0). *)
(x Le. each vertex is marked unvisited. x)
END initialize;

7.7. WAYS OF APPROACHING THE MODULE TEST CONCEPTS 143

PROCEDURE previsit(v : vertex);
STATIC VAR
S : stack;
BEGIN
S < v
(+ Put v on stack of vertices (i.e. Push(v,S). x*)
a(v) =13
(x Change v’s state to ‘waiting’ state (a(v) = 1). *)
END previsit;

PROCEDURE postvisit();
STATIC VAR
VAR
S : stack;
v @ vertex
BEGIN
v < S
(* Delete v from stack (i.e. Pop(S). %)
a(v) =2
(x Change v’s state to ‘finished’ state (a(v) = 2). *)
END postvisit;

PROCEDURE newvisit(v, w: vertex);
STATIC VAR
T : stack;
BEGIN
T < (v,w);
(x Add (v, w) to stack of tree edges (Push((v,w),T)). *)
END newvisit;

PROCEDURE revisit(v, w : vertex);
STATIC VAR
F, B, C : stack;
BEGIN
IF num[w] # 0 and num|w] > num[v] THEN
F < (v,w);
(x Add (v, w) to stack of forward edges (Push((v,w), F)). %)
ELSE IF num[w] # 0 and num|w] < num[v] and o(w) =1 THEN
B < (v,w);
(* Add (v,w) to stack of back edges (Push((v,w), B)). *
ELSE IF num[w] # 0 and num|w] < num[v] and o(w) =2 THEN
C < (v,w);
(x Add (v,w) to stack of cross edges (Push((v,w),C)). %)
END revisit;

~—

144 CHAPTER 7. MODULE TEST APPROACH

Now we are in a position of completing the depth-first search DF'S.

1 : integer;
num : array[vertex|;
S, T,F, B,C : stack;
v, W : vertex;
BEGIN
FOR v:=1TO n DO
num[v] := 03
i = 13T :=0; F:=0; B:=0; C:=0;
initialize(v);
) FOR v:=1TO n DO
) IF numfv] =0 THEN DFS(v);
) RECURSIVE PROCEDURE DFS(v: vertex);
) BEGIN
) i = i+ 1; numv] =i
) previsit(v);
) FOR w € Adjjv] DO
) BEGIN
) IF num|w] = 0 THEN
(* w is not yet numbered.)
(19) DFS(w);
(20) newvisit(v, w);
(21) ELSE
(22) revisit(v, w);
(23) END FOR;
(24)
(25)
(26)

— = = R = = O 00 N0 O R W N

P R N N e N e N T i N N e N e N e N e N T i R i
00~ O UL I W N R O —

postvisit(v);
END DFS;
END;
Algorithm 2 A detailed depth-first search.

7.7.2.6 Depth-first search on digraphs

Lemma 7.5 A digraph G = (V, E,inc, label) is acyclic if and only if a depth-first search
of G yields no back edges.

Proof (cf. [CoLeRi90] pp. 486-487).
Lemma 7.6 FEvery directed acyclic graph (a dag for short) G = (V, E, inc, label) consists

of at least one vertex v, where d~(v) = 0.

Proof (cf. [Bra94] pp. 79).

Definition 7.28 A permutation ord, ord : V — V', of the nodes of a digraph G =
(V, E,inc, label), with V- = {1,2,... ,n}, is called a topological sorting iff Yv,w € V :
(v,w) € E = ord(v) < ord(w).

7.7. WAYS OF APPROACHING THE MODULE TEST CONCEPTS 145

Lemma 7.6 implies the following theorem.

Theorem 7.2 A digragh G = (V, E,inc,label) has a topological sorting, if and only if it
is acyclic. Proof (cf. [Sim92] pp. 53).

Definition 7.29 Let G = (V, E,inc,label) be a digraph. Suppose that for each pair of
vertices vy, vk, there exists paths pl = (vo,...,vx) and p2 = (vg,... ,v9). Then G is said
to be strongly connected.

Definition 7.30 Let G = (V, E,inc,label) be a digraph. An equivalence relation ~
on the set of vertices is defined as follows:

Two vertices v and w are equivalent iff v = w or there is vo € V and a cycle
p = (vo, ... ,v0) which contains v and w. Let the distinct equivalence classes under this
relation be V;, 1 <i <mn. Let G; = (V;, E;, inc;, label;), where

(1) E; ={(v,w) € Elv,w € V;}.

(2) ’L'nCZ‘ =tne |Ez
The subgraphs G; are called the strongly connected components of G.

Remark 7.6

(1) Each G; is strongly connected.

(2) No G; is a proper subgraph of G; where j # 1.

7.7.3 Developing concepts to operate on levels of the hierarchi-
cal statecharts

This aim of this subsection is to find a solution to overcome the problems of testing
hierarchical, structured system models, e. g., the space explosion problem, discussed in
Subsection 7.7.1 above. As a possible solution to such problems, we develop module
concepts which operate on the hierarchical statecharts, i. e., the components of a state-
chart to be tested are derived from the considered level of the statechart. Consequently,
the graph generated from the statechart specification will be built by applying a top-down
abstraction to a collection of states on many levels by construction of “reduced graphs”.

Before the concepts “Building reduced graphs” are given, we consider again the prob-
lem of interlevel transitions which was discussed in Subsection 5.3.1 on page 59 and in
Subsection 5.4.4, page 83. We recall that interlevel transitions deny to respect hierarchy
states (cf. Definition 5.14 on page 45), i. e., they cross the borderlines of hierarchy states.
In particular, when an inter-level transition is dealt with, one has to accurately define the
states that have been exited and those that are entered by taking the transition. Mainly,
one has to know which non-basic states have been exited and entered in the process of
taking the transition.

146 CHAPTER 7. MODULE TEST APPROACH

7.7.3.1 Restriction with respect to hierarchy states

As a possible solution to respect hierarchy states, a restriction has been proposed in [84],
chapter 6. The idea behind this restriction is to support “good modelling” (see also [88]).
In other words, to achieve a construct which satisfies the following restriction.

Restriction 7.1 Let a statechart Sct = (S, r, children, type, H, hist, de fault,T) be given.
For an arbitrary state s; € S and a super-state!® s, € S, if s; and s, are OR-states, then
the following is always true for the super-state sp:

(i) For all transitions from s; to the super-state sy:
e there is no transition to the substates of the super-state sp:
(i) For all transitions from a super-state sy, to s;:

e there is no transition leaving a substate of the super-state sy to the arbitrary
state s;.

In other words, only transitions leaving/entering the contour of a super-state are allowed.

For further details, see [84], chapter 6 and [88].

Recall Definition 5.15 in Subsection 5.2.4, which reflects the representation of the
basic states and super-states on the corresponding abstraction level of any model of a
component (state) of a statechart. However, this definition is very general and does not
consider the Restriction 7.1 and, therefore, another definition will be required for the
concepts of generation of test paths (cf. Definition 7.34).

7.7.3.2 Basic definitions of a path cover

In the following, we assume that a statechart is represented as a digraph (cf. Definition
5.18 on page 50).

Definition 7.31 Let G = (V, v, E,inc,label) be an arbitrary digraph. A path cover
for the vertices of G is the set of paths, P = {p1,p2, ... ,pr}, such that for each v; €V,
there exists a path p; € P with v; € p;.

Definition 7.32 Let G = (V, vy, E, inc, label) be an arbitrary digraph.

A path cover for the edges of G is the set of paths, P = {p1,pa,... ,pr}, such that
for each e; = (vi,,v;,) € E, there exists a path p; = (vj0,vj1,...v,,(j)) € P with vjo = vy
and m € INy with v;, = vj;, and v;, = Vjmy1, 1. €., the edge e; is contained in path p;.

Considering the high costs of program testing [13], the path test selection strategies are
naturally interested in finding path covers with the minimum number of paths. Therefore,
the following definition:

Definition 7.33 The set P is a minimum path cover if there exists no path cover set
P’ such that |P'| < |P]|.

15¢f. Definition 5.14, page 45

7.7. WAYS OF APPROACHING THE MODULE TEST CONCEPTS 147

7.7.3.3 Building of reduced graphs

The main purpose of this subsection is to establish a part of the “framework” which will
be used for the generation of test paths (path cover) which operate on different levels. In
order to simplify the generation of test paths, we consider strongly connected components't
(SCC's) as units in the first step of the generation of test paths. SCC's are subgraphs of
GG, where each node of the subgraph is reachable from any other node in the subgraph.
Hence, a corresponding ‘reduced graph’ of G will be analysed.

Definition 7.34

Let s be a component (state) of an OR-statechart Sct. Let Gy, Gs,. .., Gy be the strongly
connected components (SCCs) of the associated OR-graph G = (V,vo, E, inc, label) of Sct
with respect to s. Then G¥ = (V;2,vj , EZ,inc}, label) is called the reduced graph of G
with respect to s, where

(1) V2 ={G1,Gs,...,Gi}, the set of the SCCs of the associated OR-graph G,

(2) EZ inc and label? are defined as follows:

for all G; # G; € V? and all nodes v € G;,w € Gj, such that (v,w) € E
this edge (v,w) is element of Ef and inci((v,w)) = (Gi,G;) and labels((v,w)) =
label((v,w)).

An SCC G;, that consists of at least two nodes (states) will be said to be a reduced node
in G, otherwise it is a simple node.

As an example, consider Figure 5.8 on page 49, and 5.9 on page 51. Figure 7.4
describes the reduced graph G of digraph G of OR-statechart S00 (cf. Figure 5.9 and
5.8). SCCO is the strongly connected component of the states 52,53 and 5S4 of G, SCC1
is the strongly connected component of the states S8 and S9.

Remark 7.7 The reduced graph G; is acyclic and has a start node vy which corresponds
to the start node vy n G.

Next, we give a criterion which will allow the test paths to be performed on every
abstraction level of a given OR-statechart.

Criterion 7.1 For every component (state) of an OR-statechart Sct and the correspond-
ing abstraction level (of states S" = children(s)), choose a set of test paths, such that all
transitions (edges) of the corresponding reduced-graph with respect to S" are executed at
least once.

Remark 7.8 Criterion 7.1 corresponds to Definition 7.32 of a path cover for the edges.

16¢f. Definition 7.30

148 CHAPTER 7. MODULE TEST APPROACH

Figure 7.4: The reduced graph G? of digraph G of OR-statechart S00

Note:
Note that this criterion is test criterion C'1 for the super-graph!'” with respect to s (cf. Def-
inition 7.2) The criteria C2 and C3 of Definition 7.3 and Definition 7.4, respectively, could
be applied to the reduced-graphs as well, but will not be considered in the following since
the test paths are not linear in the number of edges in the worst case.

Proof See Ntafos and Hakimi [116].

7.7.4 Levels of an OR-statechart

In the previous section we described the abstraction level of an OR-statechart with respect
to its corresponding reduced graph. In the following, we introduce the general use of
the term level which will be referred to during the test design Condition 8.1. As an
illustration, recall example of Figure 5.4 on page 46. The following levels ¢ are computed
for SO (by the hierarchy function children’, cf. Definition 5.3 in Subsection 5.2.1,
i=0,1,2):

level 0:
The set of states on level 0 is children®(S0) = {S0}

17In the following, super-graph is used as the general term for reduced graph.

7.8. METHODS FOR MODULE CONCEPTS 149

level 1:
The set of states on level 1 is children!(S0) = {S1, @S2, @S3, S4, S5, @S6}

level 2:
The set of states on level 2 is children?(S0) = {S21, S22, S23, S31, S32,533, S34, S61, S62}

Note: We say level i 4 1 is lower than .

7.8 Methods for module concepts

7.8.1 Test design requirement

In Chapter 5 a formal account of syntax and semantics of statecharts was given. Recall
that the formal descriptions established in that chapter can be adopted in solving various
problems; e. g., caused by transitions in parallel states (nodes), linked transition segments
(i. e., labelled arrows that connect states and connectors), inter-level transitions and
conflictness between transitions (nondeterminism).

(1) Transitions in parallel states: AND-states are transformed into OR-states (cf. Sub-
section 5.4.3).

(ii) Linked transition segments: A statechart which consists of linked transition seg-
ments is transformed into a special statechart form called C' N F' which is based on
the notion of full compound transitions (cf. Subsection 5.2.5).

(iii) Inter-level transitions: Problems caused by inter-level transitions are solved by the
formalisation of the notion of scope of transitions (cf. Subsection 5.4.4).

(iv) Conflictness between transitions (nondeterminism): The issue of conflicts between
transitions is dealt with by applying the the notion of priority (cf. Subsection 5.4.6).
In addition, algorithm Generate_7,,, is used to determine the sets of maximal
nonconflicting transitions (cf. Subsection 6.2.1.1).

The establishment of such formal statechart specification guideline contributes to the
simplifications of the tests to be designed for the statechart model. For example, the
tester can assume that the transitions in the statechart model are ‘legal’. Consequently,
the number of tests performed by the system designer/tester to examine his/her “System
Under Development” (SUD) specification are reduced. Moreover, the tests may not be as
complicated as would be the case if we had to consider ‘illegal’ transitions as well.

In addition, being able to simulate the statechart model which is based on the for-
mal step semantics (cf. Chapter 6) gives the system tester the ability to make certain
assumptions which in the following will be referred to as the test condition/requirement.

Test condition 7.1
The test condition will assume that

150 CHAPTER 7. MODULE TEST APPROACH

(1) all transitions are modelled/implemented in conformance with the statechart speci-
fication guideline, i. e., triggers and actions are ‘legal’.

(2) there is a slow environment and no livelocks (cf. Chapter 1 pp. 1ff. and Chapter 6).

(3) every transition is triggered by an input which does not depend on any external
events and conditions (cf. Section 8.2 Definition 8.1).

(4) every transition is triggered by an input which does not depend on a lower level
(cf. Subsection 7.7.4).

The idea behind the test condition is to simplify and thus also improve the effective-
ness of the testing process. Generally, the static tests and sophisticated methods offered
by STATEMATE for validating the model’s behaviour against a specific scenario by sim-
ulation require an extremely large number of tests. In our case, the number of tests will
become manageable due to the fact that only legal transitions will be considered. More
specifically, the concepts and methods proposed in this thesis assume the existence of
the algorithms developed in Chapter 6, e. g., Generate_T,..;,'® and System_Step'®, and
therefore ignore such aspects like nondeterminism, detection of deadlock, reachability of
conditions and usage of transitions.

7.8.2 Algorithms for the generation of test paths

In the following, we present methods or heuristics to generate test paths that satisfy the
given Criterion 7.1 on page 147. We solve the path generation problem by the algorithm
Generate_Paths_inG which has the following interface.

Algorithm 7.1 Generate Paths_inG

Input: digraph G = (V, v, E, inc, label) which corresponds to the statechart Sct =

(S, 7, children, type, H, hist, de fault, T).

Output: A set of test paths P = {p1,p2, ..., Pn}, that satisfy the given Criterion 7.1,
where each test path p;, 0 <1i < n, is a sequence of edges.

The path generation problem can hereby be divided into three major parts, namely

[. determining test paths in the reduced graph G? (cf. Definition 7.34 page 147)
which consist of the strongly connected components SCC's (cf. Definition 7.30
page 145) of the original graph G,

II. determining test paths in each strongly connected component SCC' and finally

III. use the test paths of part I and II to compose (we say ‘merge’) final test paths.

18¢f. Subsubsection 6.2.1.1, page 99
¢f. Definition 6.6, page 101

7.8. METHODS FOR MODULE CONCEPTS 151

7.8.2.1 I. Determining test paths in the reduced graph G;

The fact that G is acyclic reduces the problem of determining paths in G to determining
paths in a simpler structure. Therefore, one can heuristically determine the paths in G;
by using the following steps.

(1.) Find the topological sorting of an acyclic digraph G&.

(2.) Find the paths of the topologically sorted graph Gj, which satisfy the given
Criteria 7.1.

Idea of step (1.):
The idea behind step (1.) is to seek a linear ordering of the vertices [vy, va, ... ,v,] which
is consistent with the edges of G¥; i.e.,

(vi,0) € BS =i < j (Vi j), (7.4)

Idea of step (2.):
Let a linear ordering of the vertices v; = [v1,vs,...,v,] as in step (1.) above be given.
Let G? be a topologically sorted graph. Then the test paths of G}, . are determined
by using the following heuristic:

Beginning with the last vertex of the topologically sorted graph G, ., build for each
incoming edge a path. Each of these paths will be inserted in the empty list L,. The next
node to be considered is the one which lies before the lastly used node, with respect to
the topological sorting. For each such vertex with the exception of the start node s, the
number of elements in the list L, will be compared with the indegree of the vertex whereby

there are three cases:

1) If the indegree equals the number of elements then each incoming edge will be
appended to a test path in the list whereby each list element is used only once.

2) If the indegree is less than the number of elements then first it will be proceeded
as in case 1) above. For the rest of list elements, the DIJKSTRA algorithm will
be used to compute the shortest path to the start-node s, and this path will be
appended to the not yet used list element of this step.

3) If the indegree is greater than the number of elements then for each list element
proceed as in case 1) above. The remaining incoming edges will be inserted as
new test paths in the list.

The detailed procedure is described in Generate Paths_inReducedGraph, Algo-
rithm 7.2 (cf. Section 7.9, Subsection 7.9.1).

To illustrate part I above, the example given by Figure 7.5 is chosen. The graph G of
Figure 7.5 is acyclic. That is, the reduced graph G; is the same as its original graph G.
After the topological sorting of G, the Algorithm 7.2 examines all nodes of G}, and
builds the following paths:

152 CHAPTER 7. MODULE TEST APPROACH

pathl =D H J
path2 =AGI L
path =BEF MK
pathd =C G N

Figure 7.5: An example graph G to illustrate the method described in Algorithm 7.2

Remark: The paths above are final. Since the reduced graph G is the same as the
original graph G, it follows from Definition 7.34 that there are no reduced nodes in G;__ .
Therefore, no further steps are required.

7.8.2.2 II. Determining test paths in the SCC's

For every test path derived from part I, the following will be considered:

a) For each non-basic component SCCj in the given path p, do find the shortest
path ps in SCC; (in G !) to its immediate successor in the test path p. At the
beginning, all edges of SCC; are marked unvisited. If the edge (v,v) exists for
the current node v, insert (v,v) in ps. Mark all edges in ps which are in SCC}
as visited. Assign to the test path in the SCCj pathscc := p;.

b) Beginning with the last edge of the test path ps, a backtracking procedure will
be carried out. For each non-visited edge of the SCC};, modified depth first
search (dfs) will be used. The edges which are traversed by the dfs will be
marked visited. As soon as a node which is has no more unvisited edges is found
by the dfs, all edges marked by dfs build a path subpath. subpath will always be
appended to the end of pathscc. If the last node (of last edge) in pathscc is not
equal to the first node in subpath then the shortest path p,, between these two
nodes is to be built and p,, is to be appended to pathscc and then subpath. The
backtracking using dfs will be repeated until all remaining edges of the SCC; are
covered.

For a detailed description see algorithm Generate Path_inSCC (Section 7.9, Sub-
section 7.9.2).

Remark 7.9 The advantage of using the shortest path p,, when subpath is appended to
pathscc is that the result of the final pathscc is always the shortest possible test path in
SCC; (in G IN). Another optimization of the procedure is that when the computation of
the shortest path p,, is undertaken, unvisited edges will always if available be selected first.

7.8. METHODS FOR MODULE CONCEPTS 153

Consider graph G1 in Figure 7.6 and its reduced graph G1; in Figure 7.7. Both figures
will be used to demonstrate algorithm Generate Path_inSCC. After the topological
sorting of G117, the Algorithm 7.2 examines all nodes of G17__*° and builds the following
paths:

pathl = ACH
path2 = A D

Figure 7.6: Graph G1.

Now since pathl consists of a non-basic component SC'C_0, the shortest path through
SCC0 (in G1) to its immediate successor in the path (i. e., in G1?) must be determined.
The shortest path ps with respect to G1 (see Figure 7.6) is: F' Z G. Note that the loop
Z is inserted in shortest path ps;. The insertion of the loops at this point contributes
to the efficiency of the algorithm. Obviously, traversing such loops later would involve
unnecessary paths to find them.

The final path (in SCC0) of part 11 with respect to G1 (see Figure 7.6) is:
further—path further—path further—path
FZG WIJPMEXY ES K 'E U JF N EFG
— ~ T A S i W s N
Ps 1l.subpath Pm Pm Pm
2.subpath 3.subpath 4.subpath

20Note that the topologically sorted digraph G

S 3 . .
rrop 18 exactly the same as one in Figure 7.7

154 CHAPTER 7. MODULE TEST APPROACH

SCCo

H

=)

Figure 7.7: The reduced graph G1; of digraph G1.

7.8.2.3 III. Using the test paths of part I and II to merge final test paths.

If the topologically sorted graph Gy, consists of only simple nodes (basic nodes) (cf. De-
fition 7.34), then the paths derived from G,,,,, by Generate_Paths_inReducedGraph,
Algorithm 7.2 are final, i.e., output paths. Otherwise the paths derived from part I are
to be extended by ones generated by the heuristic of part 1.

Coming back to the examples of Figure 7.6 and figure 7.7 above, the final (output)
test paths after the insertion of the path in SCC_0 in pathl derived from part I are:

pathl = ACFZGWIJPMEXYFESKFEUJFNFEFGH

path2 = A D

7.9. FORMAL ALGORITHMS 155
7.9 Formal Algorithms

In this Section 7.9 two formal algorithms that are informally desribed in Subsection 7.8.2
are presented.

7.9.1 Generation of test paths in a topologically sorted graph
G

Algorithm 7.2 Generate Paths_inReducedGraph

TTop

Input: Topologically sorted graph G

TTOP

Output: A set of paths P = {p1,p2,... ,pn}, where p;, 0 < i < n, is a sequence of edges
that satisfy the given criteria 7.1 [cf. section 7.7.3].

m = 0; /* # of the current paths */
last({e1,eq,...,en}) := €, /* last element of list */
DIJKSTRA(G cost, dist, pred)

dist : V. — IN

|V| Elements — dist(0),..., dist(|V])

TTop)

FOR i:=n DOWNTO 2 DO
v = ord(i);
Q:=0;q:=0;
/* out(v)=kth edge which leaves vertex v, 1 < k < outdeg(v) */
/% ing(v)=kth edge which enters vertex v, 1 < k < indeg(v) */
/* Determination of the paths whose last element intersects with one of the out-
degree edges of vertex v. */
FOR j := 1 TO m DO
FOR k :=1 TO outdeg(v) DO
IF last(p;) = outx(v) THEN
q:=q+1; Q,:=pj; k= outdeg(v);
FI

oD

OD /*Q={Q1,...,Q4} */
I IF |Q| = indeg(v) THEN
FOR j := 1 TO |Q| DO
Qj «— Qjoin;(v);
P Qj
/*¥3le{l,....,m} */
OD
FI

156 CHAPTER 7. MODULE TEST APPROACH

II. IF |Q| > indeg(v) THEN

FOR j :=1 TO indeg(v) DO
Qj — Qjoin;(v);
p—Q; /A e{l,....,m} */

OD

FOR j = indeg(v) +1 TO |Q| DO
/% For the rest of paths from Q, indegree edges of vertex v should be used
more than once. Determine the shortest path to verter v from the start-
node. DIJKSTRA algorithm computes the predecessor node of v. The
index of pred(v) will then be used in the calculation of p;. */
z € {w|w = pred(v) AV € pred(v) : dist(w) < dist(w’)};
y = index(z);
Qj — Qj o iny(v);
po—Q; /A e{l,....,m} */

OD

FI

III. IF |Q| < indeg(v) THEN

FOR j := 1 TO |Q| DO
Qj — Qo in;(v);
/¥3Ale{1,...,m} */
p— Qj; /% build pairs of the first edges */

OD

FOR j =1 TO indeg(v) — |Q] DO
Pm+j inj(v);

OD

m :=m + indeg(v) — |Q|;

FI

OD

7.9. FORMAL ALGORITHMS 157

7.9.2 Generation of test paths in a strongly connected compo-
nent

Algorithm 7.3 Generate Path_inSCC

Input: Gj, the graph representing SCC}

Output: A path p', which traverses all edges of SCC; and satisfies the given criteria 7.1
[cf. section 7.7.3]. p' is a sequence of edges.

subpath, pathscc : LIST_OF_EDGES;

start_node : VERTFEX;

subpath = 0;

pathscc = pg;

(* ps is the shortest path, *)

(+ which has been computed by Step II(a) above.)
start_node = Vend;

MOD_DFS(start_node, subpath, pathscc);

PROCEDURE MOD_DFS(v: VERTEX,
subpath : LIST_OF_EDGES,
pathscc : LIST_OF_EDGES);
VAR
w,v1,ve : VERTEX;
e, found_edge : EDGE}
BEGIN
FORALL w € succ(v)
IF mark[v, w] = unvisited THEN
BEGIN
mark[v, w] := visited;
subpath := subpath.append(v, w);
MOD_DFS(w, subpath, pathscc);
END IF;
ELSE
(* end of subpath x)
(* insert subpath in pathscc *)
BEGIN
IF (subpath # () THEN
BEGIN
(* last node in pathscc *)
vy = target(pathscc.last());
(* first node in the subpath %)
vy = source(subpath.first());
IF (’Ul 7§ ’Ug) THEN
BEGIN
(* join vy with ve using DIJKSTRA)
(* append the found path to pathscc)
(x mark all appended edges as visited)

158

CHAPTER 7. MODULE TEST APPROACH

BUILD_SHORTEST_PATH (subpath, vy, v2);
END IF;
FOR found_edge € subpath DO
BEGIN
pathscc.append(found_edge);
END FOR;

END IF;
END ELSE;

subpath.clear();
END FOR;

END MOD_DFS;

PROCEDURE BUILD_SHORTEST_PATH
(ps: LIST_-OF_EDGES, start,endnode: VERTEX);

VAR
edge_new,e: EDGE;
(x variables for DIJKSTRA x)
cost[Gj, 1] : int;
dist[v, w] : int;
predv] : EDGE;

BEGIN

(* computation of shortest distance)
DIJKSTRA(Gj, start, cost, dist, pred);
WHILE (endnode # start) DO

BEGIN
edge_new := pred[endnodel;
endnode := source(pred[endnode]);

(* check for unvisited edges first *)
(* if no unvisited edge exists *)
(* then take first edge in the list *)
(* in case an unvisited edge is explored x)
(* then mark this edge as visited)
FOR e € adjacent_edges[endnode] DO
BEGIN

IF markle] = wunvisited THEN

BEGIN
edge_new := label(e);
markledge_new] := wvisited;
END IF;
ps := ps.push(edge_new)s;
END FOR;
END WHILE;

END BUILD_SHORTEST_PATH;

Chapter 8

Integration Test Approach

In the previous chapter we developed concepts and methods which can be used to generate
test paths for modules of hierarchical statechart models. The remaining task of this thesis
is to establish concepts and methods which can aid the testing of the interacting processes
(modules) of the whole system. Therefore, this Chapter 8, is devoted to development of
such methods which will also be called the integration test approach. The concepts for
integration test should mainly exploit the module tests, i.e., to determine which of the
established module test cases may be involved in the tests required for the particular
module interfaces.

When testing large and complex system models, the individual components (modules)
are usually tested in isolation during module testing. Then the interfaces of the modules
are tested during one or more integration steps (cf. [60]). Each integration step requires
that actual modules replace stubs one at a time, and that a ‘basis’ set of test paths are
exercised through each module as it is added to the system. This test strategy is called
incremental integration test and is described in Subsection 8.1.

8.1 Incremental integration test

In the following, it is assumed that every component has been tested in isolation and
proven to be a correct refinement of its associated specification. The objective of inte-
gration testing is to organise the overall testing effort by explicitly seperating the testing
of structure within a component (module) from the testing of the module interactions.
To achieve this seperation, the integration of components is divided into several phases,
an initial unit testing phase and several integration steps. During each step, one compo-
nent is selected for integration according to an integration strategy, such as bottom-up or
top-down integration (cf. [108]).

Integration testing is performed to specifically test the modules interface. The idea of
the integration test strategy will be based on one of the well known heuristic approaches
from practical testing:

[. Perform detailed tests for individual components (processes). This test corre-

159

160 CHAPTER 8. INTEGRATION TEST APPROACH

sponds to the module test' which has to be extended by test cases which do not
obey the condition (3) of Test condition 7.1 on page 149.

II. Then test the proper integration of an increasing number of components, adding
them one by one until all components are integrated. This test is called the
incremental integration test.

8.1.1 Example of interacting components

Consider Figure 8.1 which depicts a statechart that describes the behaviour of the telefax
machine BEAUTY in terms of its human interface. Figure 8.1 above shows a typical
example of interacting components. The components (states) SOURCE and SERVICE
are said to interact with each other. Following step I of the above described integration
test strategy, the components SOURCE and SERVICE will first be tested in isolation,
respectively. In other words, the transitions which violate the test conditions (3) and (4)
are considered. The extended module test (step I), on the other hand, requires that the
interface of the second module must be simulated using a stub. For the module test of
SOURCE e. g., a stub for SERVICE should be implemented in order to simulate the
behaviour of the interface. The aim of this phase is mainly to show whether the interface
of modules is correct.

8.1.2 Drawbacks of the incremental integration test approach

An incremental integration test should ‘drive’ each module through a full ‘basis’ set of
test paths in an integration context. Unfortunately, this is often practically impossible
due to intermodule control coupling, i. e., incremental execution at each integration step
may be costly since the number of scenarios might be very high.

Depending on the complexity of the statechart components, certain scenarios which
were not represented by the stubs (because it would have been very complicated, to
implement such scenarios in the stubs), must be tested elsewhere. These tests can be
very complicated to build. In particular, for time dependent variables, it is necessary to
know which transition (event|[condition|/action) is taken and when it is taken. In other
words, the incremental integration test described above is neither in a position to handle
time dependent variables efficiently, nor to support tests which involve such variables in a
reasonable way. On the other hand, exhaustively re-executing all ‘basis’ sets of test paths
involve portions that may have no relevance for the current integration step because they
may be already tested in the module test.

To address the drawbacks above, we will modify the incremental integration technique,
in such a way that only transitions affecting the module calling relationships need to
be considered for integration testing. This approach will be called the goal oriented
integration analysis, and will be described in the Subsection 8.2.

Lef. Chapter 7

8.1. INCREMENTAL INTEGRATION TEST 161

— 1 TELEFAX
o—— : o~(fs! (PON ON))
yfs! (BT_ON) . x
BATT_OFF . PONER_COFF
BT_INtr! (BT_ON) KBT_RM | NSERT CABLEK
. Er T (FOW On D SOONNECT_CABL
BATT_ON .
e _ ; POWER_ON
. POWER
BATTERY T (MAI N_POVER

DI SCONNECT_CABLE
dc! (MG BT _RM dc! (M5GQ)

tr (PONQON) or
r(BT_ON)/BT_OK

tr(POWON) or tr(BT_ON)/BT_OK

BT _RM | SCONNECT_CABLE

¥ wr ! (TEST)
TEST I NSTALL
MODES
MAI N

Figure 8.1: The statechart for the telefax machine BEAUTY

8.1.3 Integration test concepts

In this subsection the development of integration test concepts for hierarchical statecharts
models is undertaken. The module test Criterion 7.1 suggested for performing test paths
on every level of a given statechart will be extended by another Criterion 8.1 called
‘integration test criterion’, to exercise test paths between modules which rely on internal
events and conditions which were not considered so far due to test conditions (4) on
page 149.

Criterion 8.1 For the submission of test paths between modules, it must be observed that
for execution of the external transitions of the modules, eventually internal transitions
must have to take place (see also [85, 86, 87]).

The integration test Criterion 8.1 differs from the module test Criterion 7.1, in that, the
generation of test paths based on Criterion 8.1 must consider a subtle issue which requires
that execution of the external transitions between the modules take in account internal
transitions (variables) whenever there exists a dependency. Indeed, this issue appears to
be the most challenging problem in the development of integration test concepts.

Now, based on the incremental integration stategy, we establish the integration test
methods on the following concepts:
(1) Each orthogonal state (module) will be tested in isolation by application of module

162 CHAPTER 8. INTEGRATION TEST APPROACH

test methods developed in Section 7.8 and Section 5.4.3 (Transforming AND-states into
OR-states).

Example 1

Consider Figure 8.2 which depicts an abstract form? of the statechart BEAUTY (Figure 8.1).
The orthogonal states SA and SB in Figure 8.2 which correspond to the orthogonal states
SOURCE and SERVICFE in Figure 8.1 are to be tested in isolation, respectively. The
orthogonal components @SAI (= S1) and @SA2 (= S2) in Figure 8.2 will be repre-
sented by the automata product S7xS52 (in Figure 8.3). Similarly, components @SB1

— 53 1 ORO1 (— QAN and QDOROO (— TR\ avra ranrocon +taod in Bigiiva QI ~r Wigiivra Q2
= ana oL (= w4a) allh LoD (= O0) al'€ TEPIEseiitea iil r'igure o.4 Or rigure 6.9,

respectively.

A L

@Al | @A2 l
i

E3 E5 E7
[s8] |2 E4 E6

se21 |

El

v

@B1

Figure 8.2: Representing the statechart BEAUTY (Figure 8.1) in a rather more abstract
form

(2) The interacting modules (components) will then be considered reduced (reduced
graph) [cf. Definition 7.34]. As reducing methods, methods similar to the module concepts
can be used. Nevertheless, it must be observed that, for AND-states which interact and
build a strongly connected component, no clustering should be undertaken. This restric-
tion is necessary, otherwise the concept of integration test cannot be applied.

Example 2

Figure 8.3 depicts the reduced OR~graph of Figure 8.2. The modules (components) AP1
and AP2 build a strongly connected component, but are nevertheless to be handled as
seperate states.

(3) Submit all edges (test paths) between modules (reduced graph) by application of
algorithm Generate_Paths_inReducedGraph (cf. Section 7.9, Subsection 7.9.1) and
algorithm Generate_Path_inSCC (cf. Section 7.9, Subsection 7.9.2). Remark: The
interacting modules are assumed to be tested, and hence are now treated as black boxes.

2Figure 8.1 is simplified by Figure 8.2 for demonstration purposes.

8.1. INCREMENTAL INTEGRATION TEST 163

£
N AL)
(
%

S1XS2
J

E4 and E5
El
E6 and E7 6

E2 and E3 E2

E4
O AP2
S3X$4 E8 b S3XS5

Figure 8.3: Reduced OR-graph of Figure 8.2

Example 3
Test paths® between orthogonal states AP1 and AP2 (of Figure 8.3) which correspond to
SA and SB (cf. Figure 8.2):

El

TS1 : APl B AP2
752 : Apy FZand B3 apq
E2

TS3 : AP2 22 AP1
TS4 - App FAandE5 aApq

TS5 : Apy F6and BT apq
TS6 : AP2 ESEN AP1

TS7 : AP2 6, AP1

Note the difference between the representation of transition £2 in Figure 8.2 and that
of Figure 8.3. The latter is a further simplification of the reduced node AP2 (cf. Figure 8.3)
representing the orthogonal state SB (cf. Figure 8.2). The simplification is achieved by
letting the outcoming transition E2 from the hierarchy state @SB1 to begin from the
contour of SB. In this particular case, transition E2 can be rewritten as E2[in(SB1)].
But how can the states to be entered by the transition E2 or E4 or E6 be traced in
Figure 8.37 To solve this problem, the orthogonal components in an orthogonal state can
be implemented as a list of automata product. Figure 8.4 shows the implementation of
the automata products as lists. List L; represents the automata product S1 xS52 in AP1
(cf. Figure 8.3). The list elements Ay 1, A; 2 correspond to automata @SA1 and @SA2,
respectively. Now since the statechart semantics and STATEMATE specification allow
each orthogonal component to consist of a default state or an init mechanism, the main
idea behind holding lists is that when the transition, such as E2 is taken then the default
state of list element A; ; of L; is entered. Taking the transition (F2 and E3) expresses
the entering of all default states of L.

3transitions

164 CHAPTER 8. INTEGRATION TEST APPROACH

Observe that, for the integration test for Figure 8.3 we consider only the transitions
E1 to E7 between orthogonal states AP1 and AP2. However, the methods applied so
far only satisfy Criterion 7.1, and do not consider Criterion 8.1. Therefore, we extend the
concepts stated in part (3) as follows:

(a) For all edges (transitions, the so called critical transitions [cf. Definition 8.1))
which require* additional internal transitions which violate condition (4) of Test
condition 7.1 on page 149, methods for goal oriented integration analysis have
to be applied. (see Section 8.2).

(b) For time dependent variables, methods for analysis of time dependent behaviour
have to be applied (see Section 8.2).

8.2 (oal oriented analysis

In particular, when testing for conditional variables (signals) in participating modules or
time dependent behaviours of processes one requires more “economical and intelligent”
tests. In this subsection methods for analysing additional internal transitions will be
developed. These methods will be called goal oriented integration analysis. The idea of
the goal oriented integration analysis is that only regions of interest undergo a special
(critical) test.

The following terms are fundamental for the concept of goal oriented integration anal-
ysis. Now since the integration test is principally performed to test the modules interface,
in the next definition the critical transitions will be restricted to transitions between two
interacting components.

4the values of which depend on some internal variables

L, = Ap A1,2

E2 E2 and E3

1. = Ay Ay

))

Figure 8.4: Implementing automata products as lists

8.2. GOAL ORIENTED ANALYSIS 165

Definition 8.1 For two arbitrary components (states) S;,S; € S : type(S;) = AND A
type(S;) € {OR, AND}, ift € T wheret = (X,,Y) is a transition between S; and Sj,
i.e. X € S; andY C S;, then t is called a critical transition (or critical point) if
its label | consists of a condition expression SVezp, having at least one internal condition
variable (signal) SV € SViyp, that must be set in component S; or S; before the transition
t is enabled (cf. Definition 6.5). Such a condition variable is called a critical variable
and is denoted by SV pt.

Notation: A critical transition will be denoted by ter i. The set of all critical transi-
tions will denoted by Ter . Finally, the set of all critical variables will denoted by SV er pt.

In Figure 8.1 the transition from SOURCE to SERVICE with the label tr((BT-ON) or
tr((POW_ON)), e. g., is a critical transition because it requires that the variables BT_-ON
or POW_ON are true, whose values, however, are assigned in component SOURCE.
Consequently, the variables BT_-ON and POW_ON are critical variables. By applica-
tion of symbolic evaluation in the substates BATT and POWER, it can be computed

)) o . . I(BT-O
that — starting with the initial states — the transitions BATT _OFF BT-IN/ir{(BT-ON)

BATT_ON and POWER_QFF "SPFI-CABLELEPOW-ON) b6y ypR ON must take place
before the (external) critical transition with the label (tr(BT_ON) or tr(POW_ON)) is
enabled.

On the other hand, the transitions from SOURCE to SERVICE with the label DIS-
CON_CBL or with the label BT_-RM , respectively, e. g., are not critical transitions. Obvi-
ously, these are always enabled as soon as the events DISCON_CBL, BT_RM , respectively,
occur. In other words, they require no internal variables (signals) from SOURCE.

®Techniques from symbolic evaluation methods (cf. [143]) can be used in this case to compute the
required internal signals.

166 CHAPTER 8. INTEGRATION TEST APPROACH

Chapter 9

Summary of Contributions,
Concluding Remarks and Open
Problems

9.1 Summary of contributions

The motivation of this thesis was that though many formal methods have been pro-
posed to address the problem of specifying and modelling reactive systems, the test prob-
lem /verification problem remains difficult: (1) the interaction between the components,
and (2) testing a complete system, in many cases, leads to a “space explosion” problem.
The aim of this thesis has been, therefore,

(i) to develop a module test which allows the system designer/tester to (automati-
cally) test the partially designed and implemented system.

(ii) to develop concepts and methods which aid the testing of the interacting pro-
cesses (modules) of the whole system.

In this section we give the particular research contributions to this thesis. All achieve-
ments were discussed in the preceeding chapters, but it is helpful to give a short listing
of the most important ones. We used the language of statecharts as a framework for the
development of the required methods and concepts.

9.1.1 Contributions to a statechart standard specification guide-
line

One of the criticisms of statechart specifications, however, is that there are many variants
of syntax or semantics of statecharts proposed in the literature (cf. Section 5.3). In other
words, there is no kind of standard specification guideline on which the test concepts and
test methods, developed in this dissertation could be based. Another criticism is that
although the original paper [51] of Harel, Pnueli, Schmidt and Sherman presents a formal

167

168 CHAPTER 9. CONTRIBUTIONS, CONCLUSIONS AND OPEN PROBLEMS

syntax and semantics of statecharts, a number of issues, e. g., transitions in parallel states,
hierarchy in states, etc. are not accurately defined. Other features, such as inter-level
transitions and conflictness between transitions are not defined formally. Later, many
of these problems are discussed by Harel and Naamad in their report [54] of the recent
STATEMATE semantics of statecharts. Nevertheless, this report is informal, and thus
does not provide precise definitions. Therefore, in Chapter 5 we established some kind
of statecharts standard specification guideline which formally defines and restricts syntax
and semantics of variants of statecharts. The basic idea behind such specifications is that
we would like to construct a statechart in a way that it consists of only OR-states, i. e.,
AND-states are not allowed. This is called an OR-statechart and has the advantage that
it can easily be represented as an OR-graph (cf. Subsection 5.2.4). The derived OR-graph
will be required for the development of simple and efficient algorithms which are used
to generate test paths in a statechart model (cf. Chapter 7). Moreover, the restriction
above imposed to the statechart language is not a restriction of the modelling power of
statecharts because every AND-state can be represented as an OR-state (as demonstrated
in Section 5.4.3). Last but not least the proposed test of OR~statechart is more thorough
than would be corresponding isolated tests of the components of the AND-state (i. e.,
orthogonal statechart).

The concepts which we used in the development of the statecharts standard specifica-
tion guideline are summarised as follows:

(1) We defined subclasses of statecharts to simplify the test selection problem. In
particular, we defined a simple statechart (cf. Subsection 5.2.3.1) over which
all further statechart classes are defined. These definitions are used for the ex-
ploration of the relationship between a formal statechart and a rooted labelled
directed graph (cf. Definition 5.18). We require the graphical definitions for the
development of methods and concepts to overcome the test problems. A sum-
mary of the results of this exploration is depicted by Figure 5.12 (cf. page 57).

(2) A statechart which consists of linked transition segments is transformed® into
a special statechart form called Canonical Normal Form C'NF which is based
on the notion of full compound transitions (cf. Subsection 5.2.5). This trans-
formation is necessary to simplify the test selection problem and to preclude
‘incomplete’ transitions? (see the case of simulating initial compound transitions
described on page 53).

(3) Next we defined a complez statechart in order to compute transitions in parallel
states (AND-states). A complex situation arises when there is a direct exit of an
AN D-state because the source set contains more than one state. Thus to define
a legal transition, we need to define the ‘maximality’ of the exited (source) set.
We formalised the concept of legal configurations which was only informally
defined in [54] to describe precisely the exited set and entered (target) set of a
transition.

lwithout changing the semantics of the statechart
2The term incomplete is used in a context in which the execution of a transition is taken into account.

9.1. SUMMARY OF CONTRIBUTIONS 169

(4) We established techniques which can be used to transform AND-states into OR-
states. This kind of transformation corresponds to constructing the automata
product of an orthogonal statechart. This automata product is referred to
as the modified automata product because it is different from the conventional
automata product (cf. Definitions 5.36 and 5.37). Our main goal is to achieve an
OR-graph which represents the OR-states derived from the AND-states. The
results due to this transformation are summarised by Theorem 5.4.

(5) Statecharts allow inter-level transitions. The term inter-level transitions is used
in the literature to refer to transitions that cross the borderlines of hierarchy
states. As supported by STATEMATE, this mechanism can be seen as a ‘goto’
method which allows an arbitrary movement of control across the state hier-
archy. The main question was how to accurately define the states that have
been exited and those that are entered by taking the transition. Essentially,
one has to know which non-basic states are exited and entered in the process
of taking the transition. In this thesis we have formalised the notion of scope
of transitions (which was only informally defined in [54]) to deal with interlevel
transitions. In addition, we have suggested a restriction (cf. Restriction 7.1) as
a possible solution to respect hierarchy states.

(6) One of the most delicate issues are conflicts between transitions. Informally,
two transitions are in conflict if there is some common state that would be
exited if any one of them were to be taken. In particular, conflicting tran-
sitions cannot be taken in the same “step”. We defined this notion in two
ways, with respect to a configuration or independent of a configuration (cf. Def-
inition 5.44). We formalised the notion of priority (which was only informally
defined in [54]) to deal with conflicts between transitions. In addition, we devel-
oped algorithm Generate 7,4, to determine the sets of maximal nonconflicting
transitions (cf. Subsection 6.2.1.1).

The establishment of such formal statechart specification guideline has the following ad-
vantages:

(i) Through the syntax restrictions and specification transformations which trans-
form complex statecharts into simpler form, we are able to derive a suitable
form for a profound testing (“design for testability”).

(ii) As a consequence of (7), the tests to be designed for the statechart model
become simple since we can make assumptions like: all transitions are mo-
delled/implemented in conformance with the statechart specification guideline,
1. e., triggers and actions are ‘legal’.

The next major issue was to clarify the process of test execution and simulation of stat-
echarts, the so called step semantics of statecharts. So far, we have developed the concept
of the legal transitions. We have described the simple OR-graph product (constructed by
Definition 5.36 and Definition 5.37) which can be used in the generation of test paths,
which allow the system designer/tester to make a systematic analysis of, e. g., detecting

170 CHAPTER 9. CONTRIBUTIONS, CONCLUSIONS AND OPEN PROBLEMS

nondeterminism (cf. Illustration of Case (3)(a)ii. of Definition 5.36, pp. 77ff.). These test
paths of a simple OR-graph product, however, are not enough for the detection of the
other system flaws like deadlocks because they do not consider the “enabledness” of the
transitions. In other words, each transition delivered by the simple OR~graph product is
legal (cf. Theorem 5.4) but not necessarily ‘executable’. For this case, we had to formalise
the statechart behaviour in terms of transitions “which execute a step”, i. e., describing a
step formally, with all its ramifications and side effects. In particular, we devoted Chapter
6 to describing two basic models of execution of a step. The first one is a qualitative time
abstraction, i. e., the environment can be seen as a discrete process, namely as an infinite
sequence of inputs I, I5, ... occuring at successive instants of time. The system is faster
than the environment, namely the reaction of the system to the inputs I; is completed
before the inputs ;1 ; are produced. The second model is a quantitative time abstraction

based on an internal clock. Our formalisation work was based on the informal report
of [54].

The last major issue was to develop test concepts and test methods for hierarchical,
structured statecharts. Ways of approaching these methods and concepts can be divided
into three main parts (cf. Subsections 9.1.2, 9.1.3 and 9.1.4).

9.1.2 Contributions with respect to related methods

To place the methods and concepts which are developed in this thesis in an appropriate
context, we reviewed the related work in Section 7.6. In particular, testing based on finite
state machines (FSMs) is described and several criticisms of FSMs analysis/testing from
literature are discussed. We introduced some notations and concepts related to FSMs that
can be used to allow a formal comparison and discussion of the four best well-known state-
based test selection methods: T-method [110], W-method [22], Distinguishing Sequence
Method (DS) [43], and Unique-Input-Output (UIO) [148].

In particular, we formally described the informally defined W-method [22] (usually
known as the automata equivalence test). We gave the formal description of a P-set
called the transition cover set (cf. pp. 130ff.). In addition, we summarized the fault
detection power of the W-method due to [22] by Theorem 7.1. The formal proof is given
on pp. 132ff.

We summarised the results of the four test selection methods above in Table 7.1.
Though the W-method [22] has the largest generated test set, it is generally accepted
that the W-method has the best fault detection capability (cf. Table 7.1). Therefore, this
approach has received the widest attention in the research area of software testing.

Often, FSMs are criticised for being too restrictive for many applications, e. g., real
world concurrent computing. A solution suggested by Chow is to separate the control
structure of a program from the data structure and to represent the former as a FSM.
Then the state-based techniques, e. g., developed by Chow [22] and Fujiwara et. al. [37]
could be used to test the control structure.

Nonetheless, the assumption that the control structure of the system can be modelled
separately from the data variables is not realistic in many cases. It would imply that the

9.1. SUMMARY OF CONTRIBUTIONS 171

next state depends solely on the current state and the input which is not usually the case.
The idea that the variables that affect the program control could be replaced by a number
of additional states is also impractical since in many cases this number can be very large.

In Subsection 7.6.3 we discussed the problems/weaknesses of the proposed state-based
techniques, and indicated how these criticisms are addressed in this thesis. To allow a
theoretical comparison of the FSM-based techniques (e. g., developed by Chow [22] and
Fujiwara et. al. [37]) with our test concepts (cf. Subsection 7.7.3), we found it necessary
to provide the full theoretical background information of reactive models, especially to
classify statecharts in terms of nondeterminism, pure parallelism and bounded cooperative
concurrency, and above all, to remain as close as possible to classical finite automata
(cf. Appendix B).

In Appendix Subsection B.1.2 we discuss the classical automata with respect to their
suitability for modelling real world concurrent computing. The application of ezistential
and universal features®, which are perhaps the most well-known notions for modelling
concurrency in complexity theory, have two drawbacks:

(i) No communication exists in the spawned processes, except when time comes to
decide whether the input should be accepted.

(ii) Existential and universal branching are unbounded; new processes can be spawned
without limit as the computation proceeds (i. e., as the length of the input word
grows).

As a solution to overcome the first drawback, in particular to capture real world
concurrency, we argue that one requires cooperative concurrency (cf. [32, 31]). The idea
of cooperative concurrency is that during a single computation, the mechanism can be in
more than one state (component) and that these are able to cooperate (communicate)
while achieving a common goal.

In thinking about the second drawback we have to remember that in the real world the
number of processes participating in concurrent computations is bounded, and therefore
cannot be assumed to grow as the size of input grows. Hence, the main question is
to determine how bounded cooperative concurrency progresses with respect to the two
classical kinds of branching in the realm of finite automata and their extensions. The
idea of bounded cooperative concurrency is formulated in Appendix Section B.2, and the
defined classes correspond to different kinds of statecharts (cf. Figure B.2 on page 203).
These classes were first investigated in [31, 32].

In other words, statecharts were proposed to overcome the limitations of FSMs, such
as the ones seen above.

Nonetheless, there are hardly any testing method for complex statecharts. A rather
informal testing method for statecharts is described in [15]. This is the only method
known to the author of this monograph. According to Singh [15], the method should
test whether the implementation of a statechart design produces the same output as the
design when exposed to the same inputs. The basic idea behind Singh’s method is to

3These features are described in Subsection B.1.1 on page 194

172 CHAPTER 9. CONTRIBUTIONS, CONCLUSIONS AND OPEN PROBLEMS

apply inputs derived from the design to an implementation under test and to make sure
that the output observed is the same as that required by the design.

We outlined the testing method of Singh [15] on pp. 136ff. The main problem of
Singh’s [15] method is that the Equation 7.3 used to construct the set of test sequences
corresponds to the W-method given by Equation 7.1 on page 131, whose test effort is
known to be very large. In other words, such tests should be applied to special parts of
the system model (e. g., ‘critical’ parts) to allow a practical use.

To make a step further, we established new methods based on path testing. The next
two subsections present the central part of this dissertation. They include our research
contributions to the testing methods and concepts in this thesis (cf. [85, 86, 87, 88]). We
divided the development of concepts into module concepts and integration concepts.

9.1.3 Contributions to the module test approach

We developed module concepts which operate on hierarchical statecharts, i. e., the compo-
nents of a statechart to be tested are derived from the considered level of the statechart.
More specifically, we considered the problems of testing hierarchical, structured system
models in Subsection 7.7.1. We then introduced some formal notations and concepts re-
lated to digraphs which are necessary for a formal development of graph-theoretic based
methods (cf. Subsection 7.7.2). After that we established a part of the “framework” which
is used for the generation of test paths “path cover for edges” which operate on different
levels (cf. Definition 7.34 for construction of reduced graph). As a result of the estab-
lishment of the formal statechart specification guideline and the formal step semantics
(cf. Subsection 9.1.1 above), we could make certain assumptions (cf. Test condition 7.1
(1) and (2) on page 149). The idea behind the additional test conditions (3) and (4) of
Test condition 7.1 (cf. page 149) is to simplify and thus also improve the effectiveness of
the module testing process.

In Subsection 7.8.2 we presented methods for the generation of test paths that satisfy
the given Criterion 7.1 (cf. page 147). We solved the path generation problem by the
algorithm Generate_Paths_inG (cf. Algorithm 7.1 page 150).

The path generation problem was divided into three major parts, namely

I. determining test paths in the reduced graph G (cf. Definition 7.34 page 147)
which consist of the strongly connected components SCC's (cf. Definition 7.30
page 145) of the original graph G,

II. determining test paths in each strongly connected component SCC' and finally

III. use the test paths of part I and II to compose (we say ‘merge’) final test paths.

We gave a detailed description with examples for all the three parts. We presented
their formal algorithms in Section 7.9.

9.1. SUMMARY OF CONTRIBUTIONS 173

9.1.4 Contributions to the integration test approach

The final objective of this thesis was to establish concepts and methods which can aid
the testing of the interacting processes (modules) of the whole system. The concepts for
an integration test should mainly exploit the module tests, i.e., determine which of the
established module test cases may be involved in the tests required for the particular
module interfaces.

When testing large and complex system models, the individual components (modules)
are usually tested in isolation during module testing. Then the interfaces of the modules
are tested during one or more integration steps (cf. [60]). Each integration step requires
that actual modules replace stubs one at a time, and that a ‘basis’ set of test paths are
exercised through each module as it is added to the system.

The idea of our integration test strategy was based on one of the well known heuristic
approaches from practical testing:

(I.) Perform detailed tests for individual components (processes). This test corre-
sponds to the module test* which has to be extended by test cases which do not
obey the test condition restriction (3) on page 149.

(I1.) Then test the proper integration of an increasing number of components, adding
them one by one until all components are integrated. We call this test strategy
the incremental integration test.

The main drawbacks of the incremental integration test approach were discussed in
detail on page 160. The basic problem of an incremental integration test is that it should
‘drive’ each module through a full ‘basis’ set of test paths in an integration context.
Unfortunately, this is often practically impossible due to intermodule control coupling,
i. e., incremental execution at each integration step may be costly since the number of
scenarios might be very high.

To address these drawbacks, we modified the incremental integration technique, in
such a way that only transitions affecting the module calling relationships need to be
considered for integration testing. We call this test strategy the goal oriented integration
analysis.

For the development of integration test concepts for hierarchical statecharts models, we
extended the module test Criterion 7.1 (cf. page 147) which was suggested for performing
test paths on every level of a given statechart by another Criterion 8.1 (cf. page 161)
called integration test criterion, to exercise test paths between modules which rely on
internal events and conditions which were not considered so far due to test condition (4)
on page 149.

The integration test Criterion 8.1 mainly differs from the module test Criterion 7.1,
in that the generation of test paths based on Criterion 8.1 must consider a subtle issue:
the execution of an external transition between the modules demands the execution of
internal transitions (or the setting of variables) whenever there exists a dependency. We

4¢f. Subsection 9.1.3

174 CHAPTER 9. CONTRIBUTIONS, CONCLUSIONS AND OPEN PROBLEMS

gave a detailed description of the integration test concepts including examples for all
the steps (cf. Subsection 8.1.3). We described the goal oriented integration analysis in
Subsection 8.2.

9.2 Concluding remarks and open problems

Concluding remarks

The test concepts and test methods which have been developed in this thesis can be
applied to large and complex models. Though these methods have been developed on
models of statecharts, they should however, with a little modification be applicable to
other graph-based specifications. In other words, the aim here was to establish methods
which are not restricted to statecharts. In fact, their application should be easily extend-
able to different specification languages. Our module test approach is a graph-theoretic
based technique, and should therefore, be easily applied to other graph-based formal
specification languages (with a little modification).

It should also be noted that the methods and concepts developed for the models are
not limited to the specification phase, but can be extended to later stages of the system
development.

Open problems

There is an opportunity for future work in integration testing. The main area of anal-
ysis are critical transitions (or critical points) (cf. Definition 8.1 page 164) of a system
model. In particular, for time dependent variables, methods for analytical time dependent
behaviour have to be applied.

In Section 6.3 we formalised parts of the basic step algorithm related to timeout events
(which were only informally defined in [54]) and the internal clock. Another alternative
would be to express the properties of time dependent variables by means of temporal logic
(cf. Appendix A). In Appendix A we presented an overview of the subject of temporal
logics. It should be used particularly to enable the reader to become acquainted with
the basic ideas of this formal language and evaluate the advantages of applying temporal
logics to program reasoning, especially to concurrent programs.

Temporal logics are nonclassical (multi-modal) logics that enable us to formulate and
verify propositions about situations dynamically changing in time. In particular, temporal
logic has been used and proposed as a formal language to specify and verify reactive
programs (cf. [129, 130]). Nowadays, Temporal Logic is an active area of research interest.

In Appendix A Section A.6 we considered the decidability problem of the propositional
linear temporal logic (PLTL). Appendix A Section A.7 was devoted to linear-time logic
model checking problem (LMPCP). Such models can be extended with explicit time
clocks and thus be applied to proof-theoretic reasoning or model-theoretic reasoning for
time dependent variables. There are still other types of logics like temporal logic of actions

9.2. CONCLUDING REMARKS AND OPEN PROBLEMS 175

(cf. [90]) which can also be extended to achieve a better technique for formal reasoning
about concurrent systems.

176 CHAPTER 9. CONTRIBUTIONS, CONCLUSIONS AND OPEN PROBLEMS

Appendix A

Temporal logic

In Subsubsection 1.2.2.2 it was noted that most logics applied to reasoning about reactive
systems, especially about concurrent programs, are either first-order predicate logics or
temporal logics. The difference between the models of first-order logics and temporal
logics is that temporal logics use special symbols to provide a simple and natural, but
precise, way of describing the order in which interactions occur, without the adaption of
absolute time measures. This Appendix presents an overview of the subject of temporal
logics. It is used particularly to enable the reader to become acquainted with the basic
ideas of this formal language and evaluate the advantages of adopting temporal logics
to program reasoning, especially to concurrent programs. We shall study propositional
linear temporal logic (PLTL) and first-order linear temporal logic (FOLTL). The PLTL
dealt with in this Appendix is decidable. The FOLTL is undecidable. PLTL thus plays
a big role in automated theorem proving. In recent years, a variety of algorithms have
been developed to verify properties of systems modeled as state machines. In Appendix
Section A.7 we shall describe the linear-time logic model checking problem (LMPCP) for
PLTL. Finally, we shall see two broad classes of properties of concurrent programs, the
safety and liveness properties.

A.1 Introduction to temporal logic

Temporal logic (TL) [126] is a formal specification language proposed by Pnueli for the
description and analysis of time-dependent and behavioural aspects of reactive systems.
Historically, TL is a branch of modal logic. It is a logic of propositions whose truth and
falsity may depend on time. In classical mathematics propositions do not depend on time.
Hence TL is not of much interest there. The mathematical treatment of programs, how-
ever, contains a significant dynamic aspect. A model of the execution of a program may
be viewed as a sequence of states. In different states, program entities, e.g., variables, may
have different values. Consequently, propositions about these values may have different
truth values. The language of temporal logic provides various “modalities” to enable us
to describe and reason about how truth value assertions change over time.

Any execution of a program consists of a sequence of situations, or states, determined

177

178 APPENDIX A. TEMPORAL LOGIC

by the program’s statements. Thus any natural notion of time adequate for program
specification and verification has to reflect the nature of execution sequences of programs.

Although the choice of the time structure is not quite obvious, we shall assume that
time corresponds to execution sequences of programs. Due to the fact that these sequences
are determined step by step by program instructions, time is assumed to be discrete, with
points corresponding to natural numbers. Now the main idea is that different points may
yield different (truth) values of propositions (program entities, e.g., variables).

Consider a proposition P;. The problem is to describe the variety of the truth values
of P; at different times t. One way would be to introduce an explicit time parameter
t in the proposition and denote it by A(¢). Unfortunately, this method is limited to
transformational programs, whose semantics can be viewed as given by a transformation'
from an initial state to a final state. Gabbay [38] illustrates drawbacks of adding an
extra time variable to the language of predicate logic (cf. [38] pp. 20ff.). The constructed
proposition of predicate logic is not readable, although its original form is crystal clear
and understandable without any mental effort. The main reason is that the described
‘sentence’ contains an infinite number of time structures. For the case of nonterminating
or continuously operating concurrent programs? such as operating systems and network
protocols, we need temporal logical operators which enable us to formulate new propo-
sitions about the truth values of P; at time points which are related to some ‘reference
point’ in particular ways.

Temporal logics are nonclassical (multi-modal) logics that enable us to formulate and
verify propositions about situations dynamically changing in time. In particular, temporal
logic (TL) has been used and proposed as a formal language to specify and verify reactive
programs (cf. [129, 130]). Nowadays, Temporal Logic is an active area of research interest.

A.2 Classification of temporal logic

This section is to give the reader an idea of the wide range of possibilities in formulating
a system of Temporal Logic. Nevertheless, only those are mentioned which are the most
intensively investigated types of Temporal Logics.

A.2.1 Branching versus linear time

There are two distinct views in the definition of a system of a temporal logic:

e linear time: at each moment there is only one possible future moment;

e branching time: time has a tree-like nature in which, at each instant, time may
split into alternative courses representing different possible futures.

I This is a traditional approach which considers the relational model of programs, i.e. characterises the
behaviour of processes by relations between data and results.
2In contrast to transformational programs, these are referred to as reactive programs.

A.2. CLASSIFICATION OF TEMPORAL LOGIC 179

Figure A.1 depicts the two possible views. The main difference lies in the semantics of
the time structure. Whereas in a logic of linear time, temporal modalities are provided
for describing events along a single time line, in a logic of branching time, the modalities
reflect the branching nature of time by allowing quantification over possible futures. There
is much discussion about whether linear or branching time is to be preferred (cf. [34, 35,
91, 127]). As a matter of fact both approaches have been applied to program specification
and reasoning.

Now! Now! =

< - - — — — _

Figure A.1: Linear time versus branching time.

A.2.2 Points versus intervals
Most temporal formalisms are based on points semantics.

e Points formalisms: Temporal formulas are evaluated (‘interpreted’) as true or
false with respect to a certain reference point in time.

e Intervals formalisms: Temporal formulas are evaluated over intervals of time.

Intervals are claimed to simplify the formulation of correctness properties (cf. [150]).

A.2.3 Discrete versus continuous
In most temporal logics used for program reasoning, time is discrete.

e Discrete: The present moment corresponds to the program’s current state and
the next state moment corresponds to the program’s immediate successor state.
The underlying time structure is isormophic to natural numbers with their
ordering (INy, <).

e Continuous: The time structure is isormophic to reals (or rationals).
Mainly temporal (or time) logics are interpreted over a continuous time structure. Such

applications have been proposed for real-time programs where strict, quantitative prop-
erties are of great interest (cf. [9, 82, 133]).

180 APPENDIX A. TEMPORAL LOGIC

A.2.4 Past versus future

The temporal operators are partitioned into two groups:

e [Future operators: Futr(P,t) means P holds at a time ¢ in the future with
respect to the current time. In most temporal logics for reasoning about con-
currency, only future operators are used, since generally program executions
have a definite starting time.

e Past operators: Past(P,t) means P holds at a time ¢ in the past with respect
to the current time. In [98], it is claimed that the past tense operators make
the formulation of specifications more natural and convenient.

A.2.5 GGlobal versus composition

e Global reasoning: Predicate symbols and functions are globally interpreted with
regard to the application of concurrent programs.

o Composition reasoning: The syntax of temporal operators allows expression of
correctness properties concerning different programs in the same formula. A
complete program can be verified by specifying and verifying its constituent
subprograms and then combining them into the complete program. The proof
of correctness of the complete program thus is achieved by using the proofs of
the subprograms as lemmas (cf. [4, 128]).

A.2.6 Qualitative versus quantitative

e Qualitative:

e Quantitative:

So far, we have given the various classifications to enable the reader to get a feeling
about the wide range of possibilities in describing a system of Temporal Logic. Now we
summarise this section by listing the classes which we do not follow up in details. These
include:

e branching time temporal logic,

intervals formalisms,

continuous time logics,

e past operators and

compositionality of temporal logic.

A.3. BASIC ASPECTS OF LINEAR TEMPORAL LOGIC 181

A.3 Basic aspects of linear temporal logic

In linear temporal logic (LTL), the underlying structure is a totally ordered set (S, <).
We assume that time

(I.) is discrete,

(I.) has an instial moment with no predecessors,

(IIL.) is 4nfinite into the future.

We then use temporal operators to reason about truth values of propositions at time
points which are related to some ‘reference point’ in particular ways. Some of the desirable
operators with their intended meaning are shown in Figure A.2.

In modal logic, the underlying structure is described in terms of Kripke frames and
Kripke structures. A Kripke frame is a pair (S, R) where S is a set (of possible worlds)
and R is binary relation on S (i.e. R C S x S). In temporal logic, R is transitive,
irreflexive and in particular in LTL R is linear (or total). A Kripke structure M is a
triple M = (S, R, V) where (S, R) is a Kripke frame and V' a mapping which assigns
each primitive (atomic) proposition the set of states at which it is true.

Definition A.1 Given the set of atomic proposition P, denoted by P, Q, P, Ps, ...,
we define a temporal structure M = (S, R, V), where

S is a non-empty set of states,

R is a total binary relation C S x S ie. Vse€ St e S: (s,t) € R, and

V P — 2% assigns each atomic proposition the set of states at which it is true.
Thus V(P) is the set of states at which P is “true” under the valuation of V.

Definition A.2 Given a temporal structure M = (S, R, V) we define full path
as an infinite sequence sg, S1,Sa, ... of states such that ¥i : (s;,8;41) € R. We write
T = (So, S1, S2, . . .) to denote a full path.

A.4 Propositional linear temporal logic

A.4.1 Syntax and notational convetions

The formulas of temporal logics are built from the denumerable non-empty set P and the
symbols = (“not”), = (“implies”), O, O, atnext, (,).

Definition A.3 The set of formulas F, of propositional linear temporal logic (PLTL) is
obtained by the following rules:

182 APPENDIX A. TEMPORAL LOGIC

Temporal operators:
Op next time p
p holds at the next moment

Op always p
p holds at all future time points
O p sometimes p

p holds at some future time point
puntil ¢ p until q
p holds at all following moments at least
up to a point at which g holds
punless ¢ p unless q
If there is a following time point
at which ¢ holds then
p holds up to that point or else
p holds permanently
p before ¢ p before q
If ¢ holds at sometime in the
future then p holds before that
p atnext q p atnext g
p will hold at next time point
that ¢ holds
pwhile ¢ p while q
p holds as long as ¢ holds

Figure A.2: Examples of temporal operators and intended meaning.

(1) each atomic proposition P € P is a formula;
(2) if p and q are formulas then —p, O p and Q) p are formulas;

(3) if p and q are formulas then (p = q) and (p atnext q) are formulas;

<= and the other formulas of Figure A.2 can be introduced as abbreviations. For
example, & p abbreviates — O —p.

Note 1 In order to simplify the notation we establish a priority order of the operators:
The temporal operators (), O, — have the highest priority; followed by atnext, followed
by A, followed by V, and finally by — .

Example

We write

Om Vg = —p2 A Og atnext p3
instead of

(Op1t Vai) = (-p2 A (O ¢z atnext p3))).

A.4. PROPOSITIONAL LINEAR TEMPORAL LOGIC 183

A.4.2 Semantics

We define the semantics of a formula p € F, of PLTL with respect to a linear-time
structure M = (S, R, V). Assume a full path 7 is given in M

Definition A.4 M, 7 |= p means that “in structure M formula p is true in timeline 7”.

As a short hand for M, m = p we will write m |= p.

For an infinite sequence ™ = (S, 81, 82, ...), ™ = {8y, Sp11, .. .) 18 the n'™ suffiz of 7.
Now we define when a formula p is valid in the full path © of the temporal structure

M (in notation M, |= p) by induction on the structure of the formula p:

M, 7= P iff P € V(sp)
M,rlE p = q iff M,mlEpor
M, E=q
M77T|: -p iff Maﬂl#p
M7 |: O iff Maﬂl |:p
M, |= Op iff Yn>0: M, 7" Ep

M,m = patnextq iff Vn>0: M,7"Eqor3k>0: M,7*=q A p and
Vi<k: M,m"£q

The temporal operators <, until, unless, before, and while are also of great impor-
tance and therefore their semantics will be given explicitly:
M, |= Op iff Im>0: M, 7m"Ep
M,ml= puntilg iff In>0: M,7" | ¢ and
VE,0<k<n: M,7*=pA—q
M,7mE= punlessq iff [3n>0: M,7" | q and
Vk,0<k<n: M,7*=p]or
VE>0: M, 7" =p
M,m = pwhileq iff [Gn>0: M, 7" £ qand
VE,0<k<n: M,7*=pA M, 7% = q] or
VE>0: M,7" E=p
M,m = pbeforeq iff VYn>0: (M,7m"=q = 3k,0<k<n: M,7"p)

Definition A.5 We now define :

(a) A PLTL formula p € F, is satisfiable iff there exists a temporal structure
M = (S, R, V) and a full path 7 in M such that M, = p.
In this case M s called a model of p.

(b) p is called valid, written |= p iff for all temporal structures M = (S, R, V)
and all full paths ™ of M we have M, m |= p.

Note p is valid iff —p is not satisfiable.

Examples

(1) p = <4q
“If p is true now, then at some future moment g will be true.”

184 APPENDIX A. TEMPORAL LOGIC

~» This formula is satisfiable, but not valid.

20k = <9
“Whenever p is true, ¢ will be true at some subsequent time point.”
~» This formula is satisfiable, but not valid.

) pAO(= Op) = Op
“If p is true now, and whenever p is true, it will be true at the next moment,
then p is always true.”
~» This formula is valid, and is a temporal formulation of mathematical induc-
tion.

A.4.3 Notions of “Validity”

Similar to many other logics, there are a number of significant validities. In this section
we present some significant validities in PLTL. In the following, we write

p=4q
instead of

Fp = «

Duality laws

(P1) = Op = QO —p (self dual)
(P2) -Op=C-p
We extend the list of frequently used temporal formulas by

<O p: Sometime p will hold permanently.
0O p: For every following state there is a later state where p holds, i.e.
“p holds infinitely often from now on”.

The semantics of the formulas above is given as follows:
M,rE <oOp iff IkVan>k>0: M,7" Ep
M,rE OCp iff Vednn>k>0: M,7"Ep

Further validities:

A.4.4 Formal system of PLTL

A deductive (proof) system for temporal logic consists of sets of axiom schemes and
inference rules.

Let us consider the following axioms and rules of inference:

A.4. PROPOSITIONAL LINEAR TEMPORAL LOGIC 185

Schemes of axioms

(Ax1) All validities of propositional logic;

(Ax2) =QOp <= O

(Ax3) O = ¢ = (Op = 04

(Ax4) Op = pA OOp;

(Ax5) OO —-g = p atnext ¢;

(Ax6) p atnextq <= O (¢ = p) AN O (g = p atnext q).

Inference (derivation) rules

(R1) FpandFp = ¢ then - ¢;
(R2) p FOp;
(R3) Fp = ¢,FOpthentp = Ogq
The above axioms and rules of inference describe a possible deductive system of PLTL.
For reference, this system is called Sprrr.

Definition A.6 A PLTL formula p € F, is provable, written = p, iff there exists a
sequence of formulas from F, ending with p such that each formula is an instance of an
axiom or follows from previous formulas by application of an inference rule.

Definition A.7 A proof system is said to be sound iff every provable formula p € F,, is
valid. It is said to be complete iff every valid formula is provable.

The proof system Sprry is sound.

Theorem A.1 (Soundness Theorem for Sprrr)
Let p be a formula. If &= p then |= p.

The proof system Sprry is complete.

Theorem A.2 (Completeness Theorem for Sprrr)
For every formula p, if = p then = p.

The proofs of A.1 and A.2 can be found in [83].

An informal discussion of soundness and completeness

Soundness is the most fundamental property of any reasonable proof system. Soundness
means that all proved conclusions are semantically true. In terms of procedures, soundness
can be defined as correctness of the procedure implementing the proof system. That is,
all results of the procedure must be correct. On the other hand, completeness means
that all semantically true conclusions can be obtained as a result of the procedure. As
soundness is always required, a system is acceptable whenever it is sound and is as close
to completeness as possible.

186 APPENDIX A. TEMPORAL LOGIC

A.5 First-order linear temporal logic

First-order linear temporal logic (FOLTL) is developed from PLTL plus a first-order
language Lro.

Symbols of Lro

We distinguish between:

e constants (0-ary function symbols),
e propositions (0-ary predicate symbols),

a set of individual variables,

e n-ary function symbols (n > 1),

e n-ary predicate symbols (n > 1).

Notation:
v, ¥, ... for n-ary, n > 1 predicate symbols,
P @, ... for proposition symbols,
f, g, ... for m-ary, n > 1 function symbols,
¢, d, ... for constants symbols, and
Yy, z, ... for variable symbols,
~ binary predicate symbol (equality symbol),

V and 4, denotes universal and existential quantification, respectively.

A.5.1 Syntax of Lrp
Inductive definition of terms

(1) Each constant ¢ is a term.
(2) Each variable y is a term.

3) If f is an n-ary function symbol and ¢y, ..., t, are terms then f(¢1, ..., t,
is a term.

Inductive definition of atomic formulas

(1) Every O-ary predicate symbol is an atomic formula.

(2) If ¢ is an n-ary predicate symbol and tq, ..., t, are terms then ¥ (¢, ..., t,)
is an atomic formula.

(3) If t; and to are terms then ¢t; & {5 is also an atomic formula.

A.5. FIRST-ORDER LINEAR TEMPORAL LOGIC 187

Inductive definition of (compound) formulas

Informally, a variable x is called free in a formula p if there is no subexpression of the
form 3z or Vay for some formula 7 in F,.

(1) Every atomic formula is a formula.
(2) if p and ¢ are formulas then —p and (p = ¢) are formulas;

(3) if p is a formula and z is a free variable in p then 3z p is a formula and Vz p is
a formula.

A.5.2 Semantics of Lro

For the definition of the semantics of the Lro, we use the concept of an interpretation [
over some domain D. B := {0,1} where 0 stands for false and 1 stands for true. An
interpretation I over a domain D is a mapping with the following properties:

e for an n-ary predicate symbol 1, n > 1: I(¢) is a function D" — B

e for a proposition symbol P: I(P) € B

for an n-ary function symbol f, n > 1: I(f) is a function D" — D

for a constant symbol ¢: I(c) € D

for a variable y: I(y) € D

Using interpretation I we assign by inductictive definition a value I*(t) to terms and a
truth value 7*(p) to formulas p. We denote that I*(p) = true by 7 = p

I*(c) = I(c)
I*(x) := I(x)
I

1) =
)=
(flt s) = TN (E), - T7(tn)

(1)
(2)
(3)
(4) I=P (P eP)iff I(P) = true

(5) TEw(t, ..., ta) iff I@)(I*(t), ..., [*(ty) = true
6) Tt ~ tiff I*(t) = I*(ts)

(1) IEp = qiffnot I=por I g

(8) I = —piffnot I |=p

(9)

9) I |= 3z p < there is some d € D with I[x < d] = p where I[x < d]
Iz < d|(z) := d and in all other cases equals to I.

(10) I EVzx p & for each d € D with I[x < d| = p where I[x « d]
Ix — d|(z) :=d

188 APPENDIX A. TEMPORAL LOGIC

A.5.3 Syntax of FOLTL

We partition the set of variables into two infinite subsets:

(a) Global (rigid) variables (respectively propositions) which are independent of the
flow of time, i.e., must have the same value in all states of computation.

(b) Flezible (local) variables (respectively propositions) which are time dependent
symbols, i.e., may take different values in different states of the computation,
e.g., control variables.

Notation A.1 The set of all local individual variables is denoted by Vi, and the set of
all local propositions is denoted by P and

Definition A.8 The set of formulas Fro of first-order linear temporal logic (FOLTL) is
obtained by the following rules:

(1) Every atomic formula is a formula;
(2) if p and q are formulas then —p, O p and Q) p are formulas;
(3) if p and q are formulas then (p = q) and (p atnext q) are formulas;

(4) if p is a formula and x is a free global variable in p then Iz p is a formula.

A.5.4 Semantics of FOLTL

The semantics of FOLTL is given by a first-order linear-time structure

M = (S,R,Vy, Vg, I) over a domain D and a full path 7. Here Vy : S — DViee and
Vi : S — 2Fc assign each state s the valuation function for the local individual variables
and the local propositions, respectively. I defines the interpretation of the global variables
as in Subsection A.5.2 above. The interpretation (M, 7) is defined as follows. The value
of a term t, respectively of a formula p, in a full path 7 of M, noted by (M, 7)(¢),
respectively (M, 7)(p), is defined inductively in the following way.

For terms:

(1) (M,m)(c) = I(c) where ¢ is a constant;
Note: All constants are global.

(2) (M,m)(y) = I(y) where y is a global variable;
(3) (M, m)(y) = Vr(so)(y) where y is a local variable, and m = (sq, s1, 2, . . .);
(4) M, m)(f(tr, -, 1)) = LM, 7)), o, (M) (En));

(We use M, 7 |= p as a notation for (M, m)(p) = true)

A.6. DECIDABILITY OF LINEAR TEMPORAL LOGIC 189

For atomic formulas:
(1) M, 7 =P iff I(P) =1, where P is a global proposition;

(2) M,m |= Piff P € Vg(sg), where P is a local proposition and m = (sg, s1, S, . . .);
(3) M,mEw(ty, ..., t,) iff I(@)(M,7)(t1), ..., (M, 7)(t,)) = true;

(4) M,mEt, = toiff (M, 7)(t1) = (M,7)(ts).

For compound formulas:

Let M = (S, R, Vip, Vir, I).

M= p = q iff not M,ml=por
M, =q

M, |= —p iff not M, 7w =p

M, = Op ifft M,7!'Ep

M7= Op iff Yvn>0: M,7m" E=p

M,m = patnextq iff Vn>0: M,7m"Eqor3k>0: M, 7% =q A pand
Vi<k: M,n"~q
M, 7 |= Jz p iff there exists some d € D such that M|z < d], 7 = p, where
Mz — d) = (S, R, Vi, Ve, [z — d)).
M, 7 |=Vz p iff for each d € D such that M[z < d], 7 |= p, where
Mz — d) = (S, R, Vi, Ve, [z — d)).

Definition A.9

(a) A FOLTL formula p € Fro is satisfiable iff there exists a first-order linear-
time structure M = (S, R, Vr,Vr,I) and a full path 7 such that M, |= p.

(b) p is called valid iff for all first-order linear-time structures
M= (S, R, Vp, Vi, I) and all full paths © we have M, = p.

A.6 Decidability of linear temporal logic

This section deals with the question of the decidability of PLTL. The propositional linear
temporal logic considered here is decidable. In other words, there is an algorithm to decide
whether a given formula is satisfiable. A common method for developing such algorithms
is to establish the small model property for the logic.

Decidability problem of PLTL A.1 Given a formula p € F,, of PLTL, check whether
there is a linear-time structure of PLTL M = (S, R, V) and a full path © satisfying p
(i.e. such that M, |=p).

Theorem A.3 If a formula is satisfiable, then it is satisfiable by a finitely representable
model. Moreover, the size of the model can be calculated from the size of the formula.

190 APPENDIX A. TEMPORAL LOGIC

Here is a naive procedure which — because of Theorem A.3 — can be used to check
whether a given formula is satisfiable.

Procedure 2 Checking-satisfiablity

given a formula p € F,,

calculate the size k of the model M and
generate all possible models of size k,

test whether they do satisify p.

Note This check can be done by exhaustive search since M is finite. Moreover, such
tests can be programmed easily.

The following results on the complexity of deciding linear time are due to Sistla and
Clarke (cf. [152]).

Theorem A.4 The problem of testing satisfiability for PLTL is PSPACE-complete.

In contrast to the propositional linear temporal logic, the first-order temporal logic is
undecidable.

A.7 Model checking of linear temporal logic

Given a linear-time structure of PLTL M = (S, R, V), a full path 7 and a formula
p € F, of PLTL, does M define a model of p? This problem has important applications
to mechanical verification of finite-state concurrent systems. In recent years, a variety of
algorithms has been developed to verify properties of systems modelled as state machines
(cf. [3, 23, 76]).

To be in a position to describe the linear-time logic model checking problem (LTLMCP)
for PLTL, we use a model. In particular, what does it mean for a structure M to be a
model of a formula p?

Here is the definition of a model.

Definition A.10 Given a formula py € F, of linear-time logic, we say that a temporal
structure M is a model iff it contains a fullpath 7 such that M, |= po.

The problem is, given a temporal structure M and a formula p, can we determine a
space bound so that we can decide M, 7 |= py within this bound? The linear-time logic
model checking problem (LTLMCP) for PLTL is therefore as follows.

LTLMCP A.1 Giwen a temporal structure M and a formula p of PLTL, decide if M 1is
a model p.

The LTLMCP for PLTL is solved as follows:

A.8. APPLICATIONS OF TEMPORAL LOGIC TO PROGRAM REASONING 191

LTLMCP-Procedure A.1 Given a finite temporal structure M = (S, R, V) and
a formula p € F, of PLTL, determine for each state s € S whether there is a fullpath
satisfying p at s and if so, label s with E,.

In other words, proceed as follows:

solve LTLMCP as in LTLMCP A.1 above

scan the states to see if one is labelled with E,.

Lemma A.1 The model checking problem for PLTL is polynomial-time reducable to the
satisfiability problem for PLTL.

As a consequence of Theorem A.4 we get the model checking problem for PLTL is in
PSPACE. In fact we have

Theorem A.5 The model checking problem for PLTL is PSPACE-complete.

The proof can be found in Sistla and Clarke (cf. [152]).

A.8 The applications of temporal logic to program
reasoning

In Section A.1, we saw that temporal logic was proposed as a formal language to specify
and verify reactive programs. Reactive systems thus subsume many programs labelled
as concurrent, parallel, or distributed, as well as control programs. Nonetheless, in the
sequel, we will refer to a concurrent program, to mean a reactive, concurrent system.

The operators of temporal logic such as sometimes and always are quite appropriate
for describing the time-varying behaviour of such programs.

A.8.1 Properties of concurrent programs

There are two broad classes of properties of concurrent programs:

(1) Invariance (safety) properties: Intuitively, a safety property asserts that “noth-
ing bad happens”. More precisely, a safety formula has the form O p. This
property states that each finite prefix of a (possibly infinite) computation meets
some requirements.

(2) Eventuality (liveness) properties: Informally, a liveness property asserts that
“something good will happen”. More precisely, a liveness formula has the form
< p. Such a formula expresses that at least one position in the computation
satisfies p.

192 APPENDIX A. TEMPORAL LOGIC

Examples

Next we consider a few examples of program properties expressible by means of PLTL.

e invariance (safety) properties

(1) p = Dgq
“All states reached by a program after a state satisifying p will satisfy ¢.”
(2) O (=p V —q)
“The program cannot enter critical regions p and ¢ simultaneously (mutual
exclusion).”

e Eventuality properties

1) p = ©g¢
“There is a program state satisifying q reached by a program after a state
satisfying p.”
(2) OOp = ¢
“Repeating a request p will force a response ¢.”
3) Op = <gq
“Permanent holding of a request p will force a response ¢.”
4) O(p = ©q)
“If initially p then eventually ¢.”

A.8.2 Analysis techniques

There are two major classes of techniques developed for formal reasoning about concurrent
systems:

(1) Proof-theoretic reasoning: The basic idea is to manually compose a program
and a proof of its correctness using a formal deductive system (cf. A.4.4).

(2) Model-theoretic reasoning: The idea is to use decision procedures that manipu-
late the underlying temporal models corresponding to programs and specifica-
tions in order to automate the process of specifying the tasks of programs and
their verification (cf. A.7).

Appendix B

Theoretical Background of
Concurrent (Reactive) Models

As we have seen in Chapter 7 which builds one of the main parts of this thesis, most
test approaches have been based on finite state machines (FSMs). Therefore, to allow a
theoretical comparison of the FSM-based techniques (e. g., developed by Chow [22] and
Fujiwara et. al. [37]) with our test concepts (cf. Subsection 7.7.3), we find it necessary
to provide the full theoretical background information of reactive models, especially to
classify statecharts in terms of nondeterminism, pure parallelism, bounded cooperative
concurrency, and above all, to remain as close as possible to classical finite automata.

In other words, this Appendix throws some light on the three outstanding features
suggested for modelling concurrency, namely: nondeterminism and pure parallelism (the
two facets of alternation) and bounded cooperative concurrency, where a system configura-
tion consists of a bounded number of cooperating (or broadcasting) states of (orthogonal)
components (see Section B.2, Definitions B.1 and B.2). In addition, the descriptive suc-
cinctness of these features, which contributes a lot to the analysis of concurrent (reactive)
models, is described. In Chapter 1, a number of proposed models of computation such as
statecharts, Petri nets, communicating sequential processing (CSP), calculus of commu-
nicating systems (CCS), temporal logic (TL), etc., were briefly described.

In this Appendix, however, the main idea is to remain as close as possible to classical
finite automata. This decision has the advantage that a lot of research has been carried out
on the general framework of finite automata. Therefore it seems fair and reasonable first
to consider these features within this framework and thereafter compare their power in
respect to other models. In particular, it is interesting to glance at the results concerning
upper and lower bounds on the relative succinctness' of the fundamental features over ¥*
and X¥.

IThat is, the inherent size of an automaton required to accept a given language.

193

194 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS

B.1 The basic features for modelling concurrency

B.1.1 Nondeterminism, Parallelism and Alternation

Usually, a nondeterministic Turing machine (TM) can be considered as a machine with
a single process which must make choices during a computation and accepts the input
provided some sequence of choices leads to an accepting state. In [80] a model of parallel
computation based on a generalisation of nondeterminism in TMs was introduced. In
particular, a nondeterministic TM is considered as a machine with an unlimited number
of processes and a Boolean value B, associated with each configuration ¢. The machine
starts with a single process in the starting configuration cg; whenever a nondeterministic
choice must be made, the process spawns several independent parallel processes, each of
which follows one of the possible choices. When a process enters an accept configuration
ca, the value of B., becomes 1; when it enters a reject configuration, 0. In a bottom up
manner, these values are passed back up the computation tree?. In the process a Boolean
OR is computed at each choice configuration. The machine accepts only when the value
of root node B, = 1.

The concept of nondeterminism has played an important role in the theory of compu-
tation. Among others, it has been generalized in [20, 21] to define yet another important
feature called alternation. Essentially, the proceeding above can be generalized by allow-
ing Boolean AND’s and OR’s to be computed at choice configurations. The idea is that
each state ¢ of the finite control is associated with a Boolean connective g, € {A, V}. If
configurations ¢y, ... , ¢, follow from configuration ¢ in one step, and ¢ is the state of the
finite control associated with configuration ¢, then it follows that

B B, N...N\B., ifg,= A (A-branch)
| B4, V...VB,, ifg,=V (V-branch)

when the computation is finished and values of B.,, ..., B., have been determined. Sim-
ilarly, the machine is said to accept the input provided B,, = 1.

Denotation: The A-branch will be referred to as universal quantification, and the
V-branch as ewxistential quantification. Furthermore, the state ¢ of the finite control
associated with a Boolean connective g, € {A,V} is called a universal state if g, = A
(respectively existential state, if g, = V).

Whereas in a nondeterministic computation there are only existential quantifiers, the
concept of alternation allows existential and universal quantification to alternate. By
definition if ¢ is the state associated with configuration ¢, then c is said to be a universal
(respectively existential) configuration, if g is a universal (respectively existential) state.
The following idea is used to describe the acceptance of such machines:

Assume that a single process is started in the initial configuration cy. Subsequently, if
a process is in an existential configuration ¢ and ¢y, ..., ¢, are all the configurations
following from c in one step, then the process spawns m distinct offspring processes which
concurrently try to determine whether any of the ¢; lead to an acceptance. Of course,
some of the offsping computations may be infinite, but at least if one is accepting, this is

20bserve that the computation tree and B, are not explicitly represented.

B.1. THE BASIC FEATURES FOR CONCURRENCY 195

reported back to the parent process waiting at ¢, and in turn reports to its parent process
that ¢ leads to acceptance. On the other hand, if a process is in a universal configuration,
it must determine whether all its offsprings lead to acceptance.

It should be noted that alternating machines without universal states exactly corre-
spond to nondeterministic machines. Similarly, an alternating machine solely consisting
of universal states is referred to as a parallel (universal) machine.

B.1.2 Application of the features to classes of automata

Alternation, nondeterminism and parallelism can be applied to classes of automata other
than Turing machines. In [20, 21] alternating finite-state automata (AFAs) are defined
and their complexity classes are characterised. Likewise, parallel finite-state automata are
defined and their power is characterised in [80].

In the research community complexity classes have been characterized for classical
automata (cf. [64, 65, 66]). Note that in the standard framework of complexity theory,
the evaluation considers mainly the following aspects: time, space and perhaps number
of processes required to solve various problems. In the following, however, the principal
question is whether such a proceeding is suitable for real world concurrent computing.
Clearly, existential and universal branching which are perhaps the most well-known no-
tions for modelling concurrency in complexity theory have two drawbacks:

(1) There exists no communication in the spawned processes, except when time
comes to decide whether the input should be accepted.

(2) Existential and universal branching are unbounded; new processes can be spawned
without limit as the computation proceeds (i. e., as the length of the input word
grows).

In order to overcome the first drawback, in particular to capture real world concur-
rency, one requires cooperative concurrency (cf. [31, 32]). The idea of cooperative concur-
rency is that during a single computation, the mechanism can be in more than one state
(component) and that these states are able to cooperate (communicate) while achieving
a common goal.

Now, consider the second drawback. In the real world the number of processes parti-
cipating in concurrent computations is bounded, and therefore cannot be assumed to
grow as the size of input grows. Therefore, the next step is to determine how bounded
cooperative concurrency progresses with respect to the two classical kinds of branching,
in the realm of finite automata and their extensions. The idea of bounded cooperative
concurrency will be formulated in Section B.2.

B.1.3 Acceptance criteria

The next major question concerns the criteria for comparing the features above. In the
first instance, it should be stated that all variants of finite automata with the above

196 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS

features, in general, accept the regular sets over ¥* and® the w-regular sets over X“.
Hence, pure expressive power is not relevant.

Another issue is that time and space, in the classical complexity-theoretic manner,
are also irrelevant. The point is that emphasis in the discussion below is mainly put on
synchronised automata.

From these observations therefore follows that the correct criterion seems to be suc-
cinctness, i. e., the inherent size of an automaton required to accept a given language. As
we saw in Section 7.2, Definition 7.4, this measure is crucial when automata equivalence
(see also [22]) is considered.

B.1.4 Bounds for classical automata

In this subsection, known bounds for classical automata regarding succinctness are given.
Nondeterministic finite automata (NFAs) are exponentially more succinct than determin-

istic finite automata (DFAs) in the following upper and lower bound relations based on
(64, 104, 136]:

e Any NFA can be simulated by a DFA with at most an exponential growth in
size.

e There is a family of regular sets L,,, for n > 0, such that L, is accepted by an
NFA of size O(n) but the smallest DFA accepting it is at least of size O(2").

Similarly, it is true that:

e 22" states are necessary, in general, to simulate an n-state parallel finite au-
tomaton (universal-automaton) deterministically (cf. [80]).

o 22" states are sufficient, in general, to simulate an n-state alternating finite
automaton (AFA) deterministically (cf. [20, 21]).

Note that these results also hold in both the lower and upper bound relations described,
so that if nondeterminism is denoted by E (a short form for ezists)*, parallelism by A (for
all)® and (E, A) (for alternation)®, these known results can be summarized as shown in
Figure B.1. Thereby, solid lines are assumed to represent one-exponential upper and lower

bounds, and transitivity is assumed as well, so that the line ‘two-exponential’” would lead
from (E, A) to 0.

Remark B.1 In the framework of finite automata, E and A are exponentially more pow-
erful features with respect to DFA, independently of each other, and, moreover, their power
15 additive, i. e., the combined are double-exponentially more succinct than none.

3for the acceptance criteria which are used below

4Let configurations ci, ..., ¢, follow from configuration c in one step. In a nondeterministic machine,
the configuration c leads to acceptance if and only if there exists a successor ¢; which leads to acceptance.

5In a universal machine, a configuration c can again reach several configurations ci, ... ,c, in one step,
but now c leads to acceptance if and only if all successors cy, ... ,c, lead to acceptance.

6Remember that the concept of alternation allows ezistential and universal quantification to alternate.

Tomitted for clarity

B.2. (E,A,C)-AUTOMATA 197

(E,A) (alternating automaton)

E A
(NFA) (univer sal-automaton)

0

(DFA)

Figure B.1: Bounds for classical automata

B.2 (FE, A, C)-automata

In this section, automata augmented with existential (£), universal (A) and bounded con-
currency® (C) features are defined. The resulting automata are called (E, A, C')-automata,
or (B, A, C')-machines. Note that if A and C features are absent, the E-automata are sim-
ply NFAs.

Remark B.2 The finite cooperating automata which are constructed here correspond to
statecharts (cf. Chapter 4 and 5) consisting of a single collection of orthogonal components,
each of which is merely a finite automaton.

B.2.1 Definitions

Definition B.1 (E, A, C)-automaton
Let Y be a finite alphabet. An (E, A, C)-automaton is a tuple M = (My, Ms, ... M,, , V)
for some v > 1, where for all i, 1 < i < wv:

M; is a triple (Qi, qY,6;) such that

8where a system configuration consists of a bounded number of cooperating (or broadcasting) states
of (orthogonal) components

198 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS

Q; is a finite set of states ?,
@) € Q; is the initial state, and
0; 18 the transition table, a finite subset of QQ; X X x I' x Q;. Here,

[' denotes the collection of propositional formulas over a set of propositional vari-

ables P where P contains for each state ¢ € Q;, 1 < 5 < v, a propositional variable
10

Vg .

® is the E-condition, and ® € T’

U s the termination condition, and W € T'.

B.2.2 Idea of cooperative automata

M consists of v automata, the so called (orthogonal) components. Each component has
its own set of states, initial state and transition table. These automata work together in
a synchronous way, where transitions taken depend on the (common) input symbol being
read, their internal states, and the condition formular from I'. The conditions are inter-
preted to take on truth values according to the states of (possibly all) the v components.
¢ distinguishes between existential and universal configurations (i. e., between F and A
states). Finally ¥ indicates halting configurations.

Definition B.2 Configuration of M
A configuration of M is an element of Q1 X Q2 X ... X @, X X* x IN, where

Q1 X Qo X ... x Q, describes the current state as a v-tuple of the states of each of the
M;
>* 18 the input word and

IN indicates the actual position of M in processing the input word.

Remark: For any configuration (q1,qa, ... qu,x,m), m < |x| must hold.

Notation B.1 A configuration c is said to satisfy a condition v € T, if v evaluates to
true when each symbol therein is assigned true iff it appears in c.

Definition B.3 Behaviour of M

Let 125 ... 2% be a finite word over ¥, let ¢ = (q1,q2, ... qv,x,J) be a configuration and
let t = (q,a,7,p) be a transition in M;’s transition table &; for some i, 1 <1 <w.

(1) t is said to be applicable to c, if v; = a, ¢ = q, and ¢ satisfies 7.

(2) A configuration ¢ = (p1,pa,...pv,x,m) is said to be a successor of ¢, if for each i
there is a transition t; = (qi, x;, Vi, pi) € 0; that is applicable to ¢, and m = j + 1.

9The sets @Q; for 1 < i < v are required to be pairwise disjoint.
10Usually, ¢ is written instead of v,. From the context, it will be clear if a propositional variable or a
state is meant.

B.2. (E,A,C)-AUTOMATA 199

Definition B.4 Existential configuration
A configuration is existential if it satisfies the E-condition ®, otherwise it is universal.
It is accepting, iff it satisfies the termination condition V.

Definition B.5 Computation of M

A computation of M on an input x € ¥X* is a tree where each node is labelled with a
configuration. The root is labelled with the initial configuration (¢9,q5,...,¢% x,1) and
a node has one successor node for each successor configuration where the nodes are labelled
by the corresponding configurations. Nodes are assigned 1/0 (accept/reject) marks, in a

bottom up manner, in a way similar to that defined for alternating finite automata (AFAs)
(see Section B.1.1):

o the marks of the successors of an existential node are ORed"!,

e the marks of the successors of a universal node are AND ed*?.

Finally, the input word x is accepted iff the root is marked 1.

Definition B.6 Size of M
The size of M = {My, Ms,...M,, &, U} is

M| = || + W]+) 1M,

=1

where the size of a formula in T is simply its length in symbols, and the size of each
component automaton is defined by

|M;| = |Qi| + Z (3 + length(7)).

(g,a,7,p)€8;

Remark: The constant 3’ is motivated by the fact that there are three components other

than v, namely q, a and p in the transition table d;. Note that it is also important in case
length(y) = 0 (true/ false).

B.2.2.1 Special cases

Note that if v = 1, the machine M is simply an alternating finite automaton (AFA),
that is, an (F, A)-automaton; if ® is true, then all states are existential, so that M is
an NFA (an E-automaton); if ® is false, then all states are universal, so that M is an
V-automaton (an A-automaton); if each configuration has at most one successor, then M
is deterministic, i. e., it is defined as a C-automaton.

Hdisjuncted
2conjuncted

200 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS
B.3 (E, A, C)-w-automata

The (E, A, C)-automata described in the last section generate terminating computations
which are modelled over a finite alphabet 3. As opposed to this, (E, A, C')-w-automata
generate ongoing computations which are modelled over infinite words of . An w-
automaton is essentially the same as a nondeterministic finite state automaton, but with
the acceptance condition modified suitably so as to handle infinite input words. In par-
ticular, the acceptance terminology of w-words over ¥ for the (F, A, C')-automata must
be defined. The resulting automata are called (E, A, C)-w-automata, or (E, A, C)-w-
machines.

Generally, different types of w-automata can be defined by adding an acceptance
criterion to the definition of transition tables (cf. Definition B.1). In the following, two
acceptance criteria from Rabin [26, 134] and Streett [155] are applied to obtain (E, A, C)-
w-automata. Other variants of acceptance criteria are e. g. Biichi acceptance and Muller
acceptance conditions (see [156]).

Remark B.3 Note that the termination condition is now an “accepting pair” (cf. [156))
instead of a single formula W € T, i. e., it is extended to

QC(I'xI).
The modification of the condition is essential so as to handle infinite input words.

Definition B.7 A run over a word x € ¥“ is an infinite sequence r of successive
configurations in the sense of Definition B.3 (2).

Notation B.2 inf(r) denotes the set of configurations appearing in r infinitely often.

B.3.1 Definition of acceptance criteria

For simplicity, it will be assumed at the beginning, that the machine M is deterministic
(total), so that there exists exactly one run per input word x; it will be called 7.

Definition B.8 Rabin acceptance

The machine M R-accepts a word w € 3¢ with respect to Q@ C (I' x '), if there is a
pair (W1, Wy) € €, such that there is a configuration in inf(r,) that satisfies VU1, but no
configuration in inf(r,) satisfies Vs.

Definition B.9 Streett acceptance

The machine M S-accepts a word w € 3¢ with respect to Q C (I' x I'), if for each pair
(U1, Uy) € Q, if there is a configuration in inf(r,) that satisfies Uy, then there is also a
configuration in inf(r,) that satisfies Ws.

In the next subsection, it will be assumed that the machines work on inputs from »*.

Definition B.10 A run of a machine M over a word w € ¥“ is an accepting run iff
M R-accepts or S-accepts w.

B.4. EXPONENTIAL AND MULTI-EXPONENTIAL RELATIONS 201

B.3.2 Extending the definition of the acceptance criteria

Intuitively, the classical Rabin and Streett criteria for DFAs [26, 134, 155] are a special
case of the Definitions B.8 and B.9. Take v = 1 and choose the pairs of conditions (Uy, U5)
as conjunctions that specify the pairs of sets of states required for the classical criteria.

Extending the definition of the acceptance criteria is easy:

e For (E, C)-w-automaton: M accepts if there is at least one run on x which
accepts.

e For (A, C)-w-automaton: all runs on z must accept.
e For (E, A, C)-w-automaton, the definition of a trace is first needed.

Definition B.11 A trace of an (F, A, C)-w-automaton on a word 3% is a sub-
tree of M’s computation tree on x that includes all offsprings of each universal
node and one offspring of each existential node.

Definition B.12 M accepts if there is a trace of M on x for which every path
satisfies its corresponding acceptance criterion.

Notation B.3 For an (E, A, C)~w-automaton A, let LE(A) C X% be the set of words
accepted by A on R-acceptance and let L3(A) C 3¢ be the set of words accepted by A

on S-acceptance. Then two (E, A, C)-w-automata A, B are said to be R-equivalent iff
LE(A) = LE(B), respectively, S-equivalent iff L>(A) = L3 (B).

B.4 Exponential and multi-exponential relations

Next, definitions required in establishing exponential and multi-exponential relations (gaps)
between the various machines are given.

Notation
Let & be any subset of {E, A,C'}. Then £&-automata and &-w-automata denote the
classes of machines employing the features in &.

Definition B.13 Let & and & be any subsets of {E,A,C}. & L, &2 (respectively,

& =, &, & RAA &, or & o8 &2) is used, if there is a polynomial p (and a constant

k > 1, respectively) such that for any & -automaton My of size n there is an equivalent
kkp("))

Definition B.14 Let & and & be any subsets of {E, A, C}. & - &2 (respectively,

& povey &2, or & 599 &2) is used, if there is a family of regular languages L, for n >0,

&-automaton My of size no more than p(n) (respectively, kP, K or k

a polynomial p and a constant k > 1, such that L,, is accepted by a & —automaton My of
size p(f(n)) for some monotonically-increasing function f, but the smallest &— automaton

n F(n)
My accepting it is at least of size kI™ (respectively, KR o kR).

202 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS

Remark B.4 When a small R or S is added to the arrows in the Definitions B.13 and
B.14, then the corresponding relations are meant to be applied to &-w-automata rather
than &-automata, and to consider R-equivalence or S-equivalence, respectively, instead of
normal equivalence.

B.5 Results for the > *-case

In Section B.1.4, known bounds for classical automata regarding succinctness were given.
In this section, the results for the ¥*-case are presented. Figure B.2 depicts the results
for the ¥*-case. These were first investigated in [31, 32].

The first set of results establishes the solid lines of Figure B.2 and all transitivity
consequences thereof. For instance, these include exponential upper and lower bounds for
simulating nondeterministic concurrent machines (e. g. nondeterministic statecharts) on
NFAs; double exponential bounds for simulating them on DFAs, and a triple-exponential
bound for simulating alternating concurrent machines on DFAs. Above all, the solid lines
of Figure B.2 show that bounded concurrency (C) represents a third, separate, exponen-
tially powerful feature. The feature C'is independent of conventional nondeterminism (E)
and parallelism (A), since the savings remain intact in the terms of any combination of A
and E. Furthermore, C is additive with respect to the two, by virtue of the double- and
triple-exponential bounds along the appropriate lines in the figure. Actually, this result is
of much interest, as it shows that among other things the unbounded nature of pure AND
of alternation prevents it from being subsumed by the bounded AND of the C feature,
and the cooperative nature of AND in the C feature! prevents it from being subsumed
by noncooperative AND of alternation.

The next set of results considers a rather more delicate problem, namely, the com-
parison of C with A and E using the same measures, i. e., exponential discrepancies in
succinctness. For instance, the results above do not reveal anything about the possibility
of an exponential gap between E and C. The four thick dashed lines and the thin doubly
dashed line in Figure B.2 demonstrate these relations. Each of the thick singly dashed
lines denotes exponential upper and lower bounds for the simulation in the downward
direction and polynomial bounds for the upper direction. In particular, the nondeter-
ministic statecharts (cf. [50]) are shown to be exponentially more succinct than AFAs,
and the same holds when nondeterminism is absent from both. The thin doubly dashed
line represents upper and lower bounds in both directions, meaning that alternation and
bounded concurrency can be simulated by each other with at most an exponential growth
in size, and that, in general, neither exponential gap can be eliminated. Indeed, these
results appear to be the most interesting, as they show that bounded concurrency is ac-
tually more powerful than each of pure parallelism or nondeterminism taken alone, and
is comparable in power to the combination.

Step by step the results presented in Figure B.2 will be established in Subsection B.5.1
and B.5.2.

13as embodied by the joint transitions in Petri nets or statecharts, for example

B.5. RESULTS FOR THE ¥*-CASE 203

(E. A, C} (alternating

statechart)
{A. C}
{E, C} (universal-
(nondeterministic C 4 | statechart)
statechart) (deterministic 4
statechart) /
N /
N R /
1N . N RN /
N N /
’ \\\ N /
~ \\\\ N\
AR N/
I S \\\\ A
N\ N ~
/
/
/
/ A
/ (universal-
/ automaton)
/
/
E
(NFA) @

(DFA)

Figure B.2: Results for the >*-case

B.5.1 Upper bounds for the >*-case
The first set of results establishes the upper bounds for the vertical solid lines of Figure B.2.

Remark B.5 [n the following a mapping [| is used, which assigns (£, C)—¢& = EU{C},
so that for instance [{E, A},C]={E, A, C}.

Note In the rest of this Appendiz, Proof will be used to imply the idea of the proof but
not an exact proof.

Proposition B.1 Let & be any subset of a {E, A}. Then [, C] R €.

204 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS

Proof
The idea lies in simulating the behaviour of (£, C')-automaton by a {-automaton whose set
of states is the Cartesian product of the states in component machines My, My, ... , M,.

By definition, if M is deterministic, nondeterministic, or alternating, the resulting machine
will as well be of the corresponding type. O

Next, polynomial upper bounds for the upward direction of the four thick dashed
diagonal lines of Figure B.2 are established. For example replacing nondeterminism by
bounded concurrency will only polynomially increase the size.

Proposition B.2 Let & be O or {A}. Then [£, F] £, €, C]. The same holds with A and
E exchanged.

Proof Simulating £ by C' involves mimicking the classical subset construction for elim-
inating nondeterminism using a collection of orthogonal components, one for each of the
n states in the original NFA. For any state p therein, the corresponding component has
two states, indicating, whether the NFA is in p or not in p, respectively. Subsets of the
original state are represented by yes / no combinations. When a is received as an input,
and p’s component is in its no-state, it moves into its yes-state if any of its a-predecessors
in the original NFA is in its yes-state right now. Dually, if p is in its yes-state, it moves
to its no-state when a arrives, if all of its a-predecessors in the original NFA are in their
no-state. Apparently, the machine accepts if and only if at least one of the components
that represent a final state of the NFA is in its yes-state.

The simulation of an A-machine by a C'-machine is identical, except for the acceptance
condition, which is satisfied only if all the components representing the final states are in
their yes-states.

Simulating an (E, A)-machine by an (£, C')-machine is a little more subtle. The basic
idea is as above, i. e. to mimic the subset construction using components with yes/no-state.
However, one has AND-branchings in the original machine that have to be maintained in
the simulation. In this case, one has to incorporate all such branchings one step ahead of
time, at the moment a universal state is entered. For a more rigorous description see [32].

The simulation of an (F, A)-machine by an (A, C')-machine is dual. O

Tracing one vertical solid line followed by an upward thick dashed diagonal leads
to exponential upper bounds for the four horizontal solid lines in the upper portion of
Figure B.2, in anology with what was known'* for the lower portion of it:

Collary B.1 Let & be O or {E}. Then [§, A, C] N [€,C]. The same holds with A and
E exchanged.

The upper exponential bounds going downward along the four thick dashed diagonals
and along the thin doubly dashed diagonal are as well obtained by moving down a vertical
solid line and noticing that the resulting machines are special cases of the target ones:

14cf. Subsection B.1.4

B.5. RESULTS FOR THE ¥*-CASE 205

Collary B.2
1) Let & be O or {A}. Then [£,C] =, €, E]. The same holds with A and E exchanged.
2) {C} - {E, A}.

The exponential upper bound along the upward direction of the thin doubly dashed
diagonal follows by tracing one solid and one thick dashed line in the figure:

Collary B.3 {E, A} -5 {C}.

B.5.2 Lower bounds for the > *-case

Now to establish the exponential lower bounds represented in all the solid lines of Fig-
ure B.2, as well as the double-exponential ones'®, it suffices to establish the triple-
exponential lower bound for the simulation of (E, A, C)-machines by deterministic finite
automata (i. e., J-automata). Then all the former bounds'® follow immediately, since any
violation would contradict either the triple-exponential lower bound or the previously
established upper bounds.

Proposition B.3 {E, A, C} — 0.

Proof The idea is to exhibit a family of regular sets K,, for n > 0 such that each K, is
accepted by an (E, A, C)-automaton of size O(log® n) but the smallest DFA accepting it
is at least of size 2%". For a detailed proof see [20, 32, 104]. O

The next results deal with the exponential lower bounds on both directions of the
thin doubly dashed diagonal. The bound for the upward direction follows directly from
the double-exponential lower bound {E, A} - () and the one-exponential upper bound

{cr—40:

Collary B.4 {E, A} 7 {C}.

To deal with the downward direction of the thin doubly dashed diagonal, which is more
subtle, one has to exhibit a polynomial-size C-automaton. This, however, requires ex-

ponentially many states as in an alternating finite automaton. For this part, a technical
lemma relating AFAs to DFAs is required (see also [21]):

Lemma B.1 Let M be an AFA of size n, accepting the language L. There is a DFA
with no more than 2" states that accepts the language L, that is, the set consisting of the
words of L in reverse.

Proof sce [21]. O

Proposition B.4 {C} 7 {E, A}.

5implicit in the appropriate compound transitive paths
16i, e., the exponential lower bounds as well as the double-exponential ones

206 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS

Proof Construct the reversed version of the sets used in the proof of Proposition B.3.
By Lemma B.1, the smallest AFA accepting the nonreversed version must have at least
2™ states. To complete the proof, one describes the operation of the C-automaton (e. g., a
deterministic statechart) that accepts the nonreversed version. It “stores” the first word
it reads, w, in binary form'”, and then checks each subsequent word, symbol by symbol,
for equality with w. It is easy to construct this machine to be of linear size. O

A close study of the four thick dashed diagonals shows that the exponential lower
bounds in the downward direction follow immediately from Proposition B.4, since E-
machines and A-machines are special cases of (F, A)-machines, C-machines are special
cases of (E,C')-machines and (A, C')-machines. In particular, while nondeterminism can
be replaced by bounded concurrency without essential blowup in size (cf. Proposition B.2),
the converse is not true; the C' feature is strictly stronger than E or A.

Equally important is the study of “sideway” diagonals that involve moving from {A, C'}
to {E£'} and from {E£,C} to {A}.

Proposition B.5 {A,C} = {E} and {E.C} > {A}.

Proof Exhibit a family of regular sets S,, for n > 0 such that each .S,, is accepted by an
(A, C)-automaton of size O(log n), but the smallest E-automaton (NFA) accepting it has
at least 2" states. Define

Sn = {wSw|w € {0,1}"}.

It easy to show that any NFA that accepts S, must have at least 2" states: Given such an
NFA, associate with each w € {0,1}" a state, by choosing some accepting computation
of the word w$w and singling out the state reached after reading the first w. Call it
¢(w). Knowing that there are 2" different w’s, if the automaton had less than 2" states
there would be w # u with g(w) = g(u). Thus the word w$w would be acceptable. On
the other hand, an (A, C')-automaton of size O(log n) can be constructed to accept Sy,
similar to the (E, A, C')-automaton in the proof of Proposition B.3.

The case with ' and A computed simultaneously is proved similarly, using the com-
plement of S,,. O

The next proposition considers lower bounds in the reverse directions of all the solid
and thick dashed lines of Figure B.2. These are the arrows with polynomial (mostly
linear) upper bounds.

Proposition B.6 There is a family of reqular sets F, for n > 0 such that each F, 1is
accepted by a DFA of size O(n), but the smallest (E, A, C)-automaton accepting it is at

least of size n.

Proof Use simple one-word languages. Let

F, ={aas...a,}.

by n orthogonal yes / no components

B.5. RESULTS FOR THE ¥*-CASE 207

Even the most powerful (F, A, C')-automaton requires each of the a; to appear on at least
one edge, otherwise it can easily be shown to misbehave. A trivial DFA with n states
accepts F,. O

Finally, due to time factor, the results for the ¥¥-case cannot be presented here. More-
over, these results are not quite necessary for the comparisons of our concepts developed
in Subsection 7.7.3 with other related techniques discussed in Subsection 7.6.

208 APPENDIX B. THEORETICAL BACKGROUND OF CONCURRENT MODELS

Bibliography

1]

2]

[10]

[11]

Alur, R.; Dill, D. L.: A theory of timed automata. In: Theoretical Computer Science,
126: 1994, 126-235.

Berry, G.; Cosserat, I.: The Synchronous Programming Language ESTEREL and its
Mathematical Semantics. In: Proc. of the CMU Seminar on Concurrency, Lecture
Notes in Computer Science, Vol. 197, Springer-Verlag, New York, 1987, 389-449.

Burch, J. R.; Clarke, E. M.; McMillan, K. L.; Dill, D. L.: Sequential Circuit Veri-
fication using Symbolic Model Checking. In: 27th ACM/IEEE Design Automation
Conference, 1990, 41-51.

Barringer, H.; Kuiper, R.; Pnueli, A.: Now you may compose Temporal Logic
specifications. In: Proc. 16th Ann. Symp. on Theory of Computing, 1984, 51-63.

Beizer, B.: Software Testing Techniques. (2"? Edition), Van Nonstrand Reinhold,
1990.

Berge, J.-M.; Levia, O.; Rouillard, J.: High-level System Modelling. Kluwer Aca-
demic Publishers, 1995.

Bernhardt, M.: Ein Ansatz zur Synchronisationsanalyse nebenlédufiger Programm-
systeme. Diplomarbeit, Informatik LS1, Universitdt Dortmund, 1995.

Bernhardt, P.: A reduced test suite for protocol conformance testing. In: ACM
Trans. Soft. Eng. Method., Vol. 3, NO: 3, 1994, 201-220.

Bernstein, A.; Harter, P. K.: Proving real-time properties of programs with temporal
logic. In: Proceedings of ACM SIGOPS 8th Annual ACM Symposium on Operating
Systems Principles, December 1981, 1-11.

Berthomieu, B.; Diaz, M.: Modelling and verification of time dependent systems
using time Petri nets. In: IEEE Trans. on Software Eng., 17(3), March 1991, 259—
273.

Berry, G.; Gonthier, I.: The Esterel Synchronous Programming Language: Design,
Semantics, Implementation. In: Science of Computer Programming, 19(2): 1992,

87-152.

209

210

[12]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

BIBLIOGRAPHY

Bremond-Gregoire, P.; Choi, J. Y.; Lee, I.: The soundness and completeness of
ACSR. Automated Test Set Generation for Statecharts. In: Technical Report MS-
CIS-93-59, University of Pennsylvannia, June 1993.

Boehm, B. W.: The high cost of software. In: Practical Strategies for Developing
Large Software Systems, E. Horwitz, Ed. Reading, MA: Adison-Wesley, 1975.

Boehm, B. W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

Bogdanov, K.; Holcombe, M.; Singh H.: Automated Test Set Generation for State-
charts. In: International Workshop on Current Trends in Applied Formal Methods,
Bundesamt fiir Sicherheit in der Informationstechnik (BSI) Boppard, 7. - 9. October
1998.

Booch, G.: Object-Oriented Analysis and Design, with Applications. Ben-
jamin/Cummings 1991.

Bohling, K. H.; Schiitt, D.: Endliche Automaten II. Skripten zur Informatik, BI,
Mannheim, 1969.

Bruno, G.: Model-Based Software Engineering. Chapman-Hall, London, 1995.

Caspi, P.; Piland, D.; Halbwachs, N.; Plaice, J.: Lustre: A declarative language
for programming synchronous systems. In: Proc. 14th ACM Symp. on Principles of
Programming Languages, 1987, 178-188.

Chandra, A. K.; Stockmeyer, L. J: Alternation. In: Proceedings of the 17th IEEE
Symposium on Foundations of Computer Science, IEEE Press, New York, 1976,
98-108.

Chandra, A. K.; Kozen, D.; Stockmeyer, L. J: Alternation. Journal of the ACM,
Vol. 28, No: 1, January 1981, 114-133.

Chow, T. S.: Testing Software Design Modelled by Finite-State Machines. IEEE
Transactions on Software Engineering Vol. SE-4, No. 3, May, 1978, 178-187.

Clarke, E. M.; Emerson, E. A.; Sistla, A. P.: Automatic verification of finite state
concurrent systems using temporal logic specifications. Journal of the ACM Trans-
actions of Programming Languages and systems Vol. 8, No. 2, April 1986, 244-263.

Clarke, L. A.; Podgurski, A.; et al : A Formal Evaluation of Data Flow Path
Selection Criteria. IEEE Transactions on Software Engineering 11, Vol. 15, Nov.
1989, 1318-1332.

Clements, P.; Heitmeyer, C.; Labaw, B.; Rose, A.: MT: A toolset for specifying and
analysing real-time systems. In: Proceedings, Real-Time Systems Symp., Raleigh,
NC, 1993.

BIBLIOGRAPHY 211

[20]

[27]

28]

[29]

[32]

[33]

[34]

[36]

[37]

[38]

Choueka, Y: Theories of automata on w-tapes: A simplified approach. In: Journal
of Computer Syst. Sci. 8, 1974, 117-141.

Coleman, D.; Hayes, F.; Bear, S.: Introducing Objectcharts, or How to Use State-
charts in Object Oriented Design. IEEE Transactions on Software Engineering 18,
1992, 9-18.

Craigen, D.; Gerhart, S.; Ralston, T.: Formal Methods Reality Check: Industrial
Usage. In: Proc. of Formal Methods Europe ‘93, Lecture Notes in Computer Science,
Vol. 670, Springer-Verlag, 1993, 250-267.

Douglass, BP.: UML statecharts. Embedded Systems Programming, San Francisco,
Calif. Vol. 12, No: 1, Addition-Wesley-Longman, Reading, MA, USA Jan. 1999,
22-42.

Dittrich, G.: Spezialvorlesung “Strukturierte Petrinetze” SS 1998. http://lrb.cs.uni-
dortmund.de/Lehre/Petri2_S598/ .

Drusinsky, D.; Harel, D.: On the Power of Cooperative Concurrency. In: Proceedings
of Concurrency, Lecture Notes in Computer Science, Vol. 335, Springer-Verlag, New
York, 1988, 74-103.

Drusinsky, D.; Harel, D.: On the Power of Bounded Concurrency I: Finite Au-
tomata. Journal of the ACM, Vol. 41, No: 3, May 1994, 517-539.

Emerson, E. A.: Temporal and Modal Logic. in: Handbook of Computer Science —
Formal Models and Semantics, Elsevier Science Publishers, Amsterdam, New York,
Oxford, Tokyo, Volume B, 1990, chapter 10.

Emerson, E. A.; Halpern, Joseph Y.: “Sometimes” and “Not Never” revisited: On
Branching versus Linear Time Temporal Logic. Conference Record of the 10th An-
nual ACM Symposium on Principles of Programming Lanuages (POPL), A. Demers,
ACM Press, Austin, TX US, January 1983, 127-140.

Emerson, E. A.; Halpern, Joseph Y.: “Sometimes” and “Not Never” revisited: On
Branching versus Linear Time Temporal Logic. Journal of the ACM, Vol. 33, No:
1, january 1986, 151-178.

Feldman, Y. A.; Schneider, H.: Simulating Reactive Systems by Deduction. ACM
Trans. Soft. Eng. Method., Vol. 2, April 1993, 128-175.

Fujiwara, S.; Bochmann, G.; Khendek, F.; Amalou, M.; Ghedamsi, A.: Test Se-
lection Based on Finite State Models. IEEE Transactions on Software Engineering
Vol. 17, No. 6, June, 1991, 591-603.

Gabbay, Dov M.; Hodkinson, I.; Reynolds, M.: Temporal Logic: Mathematical
Foundations and computational Aspects. Clarendon Press, Oxford, Vol. 1, 1994.

212

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

BIBLIOGRAPHY

Gabow, H. N.; Maheshwari, S. N.; Osterweil, L. J.: On Two Problems in the Gen-
eration of Program Test Paths. In: IEEE Transactions On Software Engineering,
Vol. SE-2, No. 3, September 1976, 227-231.

Genrich, H.: Predicate/transition nets. In: W. Reising and G. Rozenberg, editors,
Advances in Petri Nets, Springer-Verlag, Berlin, 1987, 254-255.

Ghezzi, C.; Jazayeri, M.; Mandrioli, D.: Fundamentals of Software Engineering.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

Gibbs, W. W.: Software’s Chronic Crisis. Scientific American, September 1994,
72-81.

Gonenc, G.: A method for the design of fault-detection experiments. In: IEEFE
Transactions Comput., Vol. C-19, June 1970, 551-558.

Gorlen, K. E.; Orlow, S. M.; Plexico, P. S.: Data Abstraction and Object-Oriented
Programming in C++. John Wiley & Sons, 1990.

Gregor, G. L.; Bochmann, G.; Petrenko, A.: Test Selection Based on Communicat-
ing Nondeterministic Finite-State Machines Using a Generalised Wp-Method. I[FEE
Transactions on Software Engineering Vol. 20, No. 2, February, 1994, 149-162.

Grimm, K.: Methoden und Verfahren zum systematischen Testen von Software.
Automatisierungstechnische Prazis, 30(6), 1990, 271-280.

Guernic, P. le; Benveniste, A.: Real-time, Synchronous, Data-Flow Programming;:
The Language Signal and its Mathematical Semantics. Technical Report 620, IN-
RIA, Rennes, 1986.

Halmos, P. R.: Naive Set Theory. New York, Springer-Verlag, 1960.
Harary, F.: Graph Theory. Addison-Wesley, Reading, Mass., 1969.

Harel, D.: Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram 8, 1987, 231-274.

Harel, D.; Pnueli, A.; Schmidt, J. P.; Sherman, R.: On the formal semantics of
statecharts. in: Proc. 2nd IEEFE Press. 1987, 54-64.

Harel, D.; Gery, E.: Executable Object Modelling with Statecharts. Proc. 18th Int.
Conf. Softw. Eng., Berlin, Mérz 1996, 246-256.

Harel, D.; Gery, E.: Executable Object Modelling with Statecharts. In: IEEE Com-
puter, July 1997, 31-42.

Harel, D.; Naamad, A.: The STATEMATE Semantics of Statecharts. ACM Trans.
Soft. Eng. Method. 5:4, Okt. 1996.

BIBLIOGRAPHY 213

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

Harel, D.; Lachover, H.; Pnueli, A. et al..: STATEMATE: A Working Environment
for the Development of Complex Reactive Systems. IEEE Transactions on Software
Engineering 16, 1990, 403-414.

Harel, D.; Pnueli, A.: On the Development of Reactive Systems. In: Logics and
Models of Concurrent Systems, K. R. Apt (Ed.), Springer-Verlag, 1985, 477-498.

Hierons, R: Extending test sequence overlap by invertibility to test sequences. In:
COMPJ: The Computer Journal 39(4), 1996, 325-330.

Hierons, R: Testing from a finite state machine: extending invertibility to sequences.
In: COMPJ: The Computer Journal 40(4), 1997.

Hierons, R: Testing from semi-independent communicating finite state machine with
slow environment. In: IEEE Proceedings on Software Engineering 144(5-6), 1997.

Harrold, M.J.; Soffa, M. L.: Interprocedural data flow testing. In 3"¢ Testing, Anal-
ysis and Verification Symp., December 1989, 158-167.

Heitmeyer, C.; Mandrioli, D.: Formal Methods for Real-Time Computing, Volume
5 of Trends in Software. Wiley, 1996.

Hoare, C.A.R.: An axiomatic basis for computer programming. Communication of
the ACM 12(10), October 1969, 576-580.

Hoare, C.A.R.: Communicating Sequential Processes. Communication of the ACM
21, 1978, 666-677.

Hopcroft, J. E.; Ullman, J. D.: Formal Languages and their Relation to Automata.
Addison-Wesley, Mass., 19609.

Hopcroft, J. E.; Ullman, J. D.: The Design and Analysis of Computer Algorithms.
Addison-Wesley, Mass., 1974.

Hopcroft, J. E.; Ullman, J. D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

Howden, W.E.: Methodology for the the generation of program test data. [EFEE
Transactions on Computers 1, Vol C-24, No. 5. May 1975, 554-5509.

Howden, W.E.: Functional Program Testing and Analysis. McGraw-Hill, NY, 1987.

Huizing, C.; de Roever, W. P.: Introduction to design choices in the semantics of
statecharts. In: Inf. Proc. Lett. 37, 1991, 205-213.

Huizing, C.; Gerth, R.; de Roever, W. P.: Modelling statecharts in a fully abstract
way. In: Proc. 13th CAAP, Lecture Notes in Computer Science, Vol. 229, Springer-
Verlag, 1988, 271-294.

214

[71]

[81]

[82]

BIBLIOGRAPHY

Huizing, C.; Gerth, R.: On the Semantics of Reactive Systems. In: Proceedings of
REX workshop ‘Real-Time Theory in Practice’, Lecture Notes in Computer Science,
Vol. 600, Springer-Verlag, Berlin, 1992, 291-314.

The languages of STATEMATE, i-Logix Inc., Burlington, MA, Tech. Rep., 1987.
The semantics of statecharts, i-Logix Inc., Burlington, MA, Tech. Rep., 1989.

The STATEMATE approach to complex systems, i-Logix Inc., Burlington, MA,
Tech. Rep., 1989.

Jahanian, F.; Mok, A.: Modechart: a specification language for real-time systems.
In: IEEE Transactions on Software Engineering, 20(12), December 1994, 933-947.

Jard, C.; Jeron T.: On-line Model Checking for Finite Linear Temporal Logic Spec-
ifications. Automatic Verification Methods for Finite State Systems: Proceedings of
the International Workshop, Lecture Notes in Computer Science 407, Sifakis Joseph,
Springer-Verlag, New York, Grenoble, France, 1990.

Kemmerer, R. A.: Testing formal specifications to detect design errors. IEEE Trans-
actions on Software Engineering SE-11, No. 1, January, 1985, 32-43.

Kesten, Y.; Pnueli, A.: Timed and Hybrid Statecharts and their Textual Represen-
tation. In: Formal Techniques in Real-Time and Fault-Tolerant Systems, Lecture
Notes in Computer Science, Vol. 571, Springer-Verlag, 1992, 591-619.

Kesten, Y.; Pnueli, A.: Verifying Clocked Transition Systems. In: Hybrid Systems
I1I; Lecture Notes in Computer Science, Vol. 1066, Springer-Verlag, 1996, 13-40.

Kozen, D.: On Parallelism in Turing Machines. In: Proceedings of the 17th IEEE
Symposium on Foundations of Computer Science, IEEE Press, New York, 1976,
89-97.

Koymans, R.: Specifying real-time properties with metric temporal logic. In: Real-
time Systems, 2(4): 1990, 255-299.

Koymans, R.; Vytopil, J.; de Roever, W. P.: Real-Time programming and asyn-
chronous message passing. Proceedings of the Second Annual Symposium on Prin-
ciples of Distributed Computing (An extended version appeared in Information and
Computation, Volume 79, Number 3, December 1988), Montreal, August 1983, 187—
197.

Kroger, F.: Temporal Logic of Programs. Springer-Verlag, New York, Berlin, Hei-
delberg, London, Paris, Tokyo.

Kyeyune, Y.: Generating Test Sequences for Statecharts in STATEMATE. Diplom-
arbeit, Informatik LS1, Universitit Dortmund, 1995.

BIBLIOGRAPHY 215

[85]

[87]

8]

[89]

[90]

[91]

[96]

[97]

Kyeyune, Y.: Analysis of Statechart Models. 16. Workshop “Interdisziplindre Me-
thoden in der Informatik” 16. - 19. 9. 1996, Haus Nordhelle, Meinerzhagen-Valbert.
Forschungsbericht Nr. 639, Fachbereich Informatik, Universitdt Dortmund, Januar
1997.

Kyeyune, Y.: Konzepte fiir Interagierende Module. 17. Workshop “Interdiszi-
plindre Methoden in der Informatik” 8. — 11. 9. 1997, Jugendburg Gemen, Borken.
Forschungsbericht Nr. 682, Fachbereich Informatik, Universitat Dortmund, Dezem-
ber 1998.

Kyeyune, Y.: Test Methods for Complex Systems. 18. Workshop “Interdisziplindre
Methoden in der Informatik” 21.— 24. 9. 1998, Haus Nordhelle, Meinerzhagen-
Valbert. Forschungsbericht Nr. 718, Fachbereich Informatik, Universitat Dortmund,
Maérz 2000.

Kyeyune, Y.; Riedemann, E: Analyse und Test von Modellen reaktiver Systeme. 7.
Kolloquium Software-Entwicklung - Methoden, Werkzeuge und Erfahrungen — 23.
— 25. September, Ostfildern. Technische Akademie Esslingen, 1997.

Levi, S. T.; Agrawala, A.: Real Time System Design. McGraw Hall International
Editions, 1990.

Lamport, L.: The Temporal Logic of Actions. ACM Transactions on Programming
Languages and Systems, Vol 16., No. 3, Mai 1994, 872-923.

Lamport, L.: “Sometimes” is sometimes “not never”: A Tutorial on the temporal
logic of programs. In: Proceedings of the Seventh Annual Symposium on Princi-
ples of Programming Languages (POPL), ACM SIGACT-SIGPLAN, ACM, Jan-
uary 1980, 174-185.

Laski, J. W.; Korel, B.: A data oriented program testing strategy. IEEE Transac-
tions on Software Engineering Vol. SE-9, No. 3, May, 1983, 347-354.

Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
& Sons, Chichester, 1990.

Leverson, N. G; Turner, C. S.: An investigation of the Therac-25 accidents. Com-
puter, 25(7), 1993 18-41.

Leverson, N. G.; Heimdahl, M. P. E.; Hildreth, H.; Reese, J. D.: Requirements
Specification for Process-Control Systems. In: IEEE Transactions on Software FEn-
gineering, 20(9), September 1994, 684-707.

Lippman, S. B.: C++ Primer. Second Edition, Addison-Wesley, 1991.

Lpate, F.; Holcombe, M.: An integration testing method that is proved to find all
faults. Automated Test Set Generation for Statecharts. In: International Journal
on Computer Mathematics. 63, 1997, 159-178.

216

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

111

BIBLIOGRAPHY

Lichtenstein, O.; Pnueli, A.; Zuck, L: The glory in the past. In: Conference on Logics
of Programs, Lecture Notes in Computer Science (LNCS) Vol. 193, Springer-Verlag,
Berlin, 1985, 196-218.

Maggiolo-Schettini, A.; Peron, A.: Retiming Techniques for Statecharts. In: Formal
Techniques in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer
Science, Vol. 571, Springer-Verlag, 1996, 55-71.

Maraninchi, F.: Argonaute: Graphical Description, Semantics and Verification of
Reactive Systems by Using a Process Algebra. In: Proc. Automatic Verification
Methods for Finite State Sytems, J. Sifakis (Ed.), Comput. Sci., Vol. 407, Springer-
Verlag, Berlin, 1989, 38-53.

Maraninchi, F.: The Argos Language: Graphical Representation of Automata and
Description of Reactive Systems. In: IEEE Workshop on Visual Languages, October
1991.

Maraninchi, F.: Operational and Compositional Semantics of Synchronous Automa-
ton Compositions. In: CONCUR’92, Lecture Notes in Computer Science, Vol. 630,
Springer-Verlag, 1992, 550-564.

Merlin, T. S.: Testing Software Design Modelled by Finite-State Machines. IEEE
Transactions on Software Engineering Vol. SE-4, No. 3, May, 1978, 178-187.

Meyer, A. R.; Fischer M. J.: Economy of description by automata, grammars, and
formal systems. In: Proceedings of the 12th IEEE Symposium on Switching and
Automata Theory, 1971, 188-191.

Milner, R.: A Calculus of Communicating Systems. Lecture Notes in Computer
Science, Vol. 92, Springer-Verlag, Berlin, 1980.

Milner, R.: Communication and Concurrency. Prentice-Hall, New York, 1989.

Mikk, E.; Lakhnech, Y.; Siegel, M.: Hierarchical Automata as Model for Stat-
echarts (Extended Abstract). In: Advances in Computing Science — ASIAN’97,
Third Asian Computing Science Conference, Proceedings Springer-Verlag, Berlin,
Germany, December 9-11 1997, 181-196.

Myers, G. J.: Software reliabilty: principles and practices. Wiley-Interscience, New
York, 1976.

Myers, G. J.: Methodisches Testen von Programmen. R. Oldenbourg Verlag,
Miinchen, 1989.

Naito, S.; Tsunoyama, M.: Fault detection for sequential machines by transition-
tours. In: Proceedings, FTCS (Fault Tolerant Comput. Syst.), 1981, 238-243.

Narayan, S.; Vahid, F.; Gajski, D. D.: System Specification and Synthesis with
the SpecCharts Language. In: Proceedings, IEEE International Conference on
Computer-Aided Design (ICCAD) ‘91, November, 11-14 1991, 266-269.

BIBLIOGRAPHY 217

[112]

[113]

[114]

[115]

[116]

[117)

[118]

[119]

[120]

[121]

[122)

[123]

[124]

[125]

Neumann, P. G.: Computer Related Risks. Addison-Wesley, 1995.

Nobe, CR.; Warner, WE.: Lessons Learned from a Trial Application of Require-
ments Modelling Using Statecharts. In: International Conference on Requirements
Engineering, 2, Colorado Springs, Colo.: Proceedings Los Alamitos, Calif., 1996.

Ntafos, S. C.: On required element testing. IEEE Transactions on Software Engi-
neering 6, Vol. SE-10, November, 1984, 795-803.

Ntafos, S. C.: A comparison of some structural testing strategies. IEEE Transac-
tions on Software Engineering 6, Vol. SE-14, June, 1988, 868-874.

Ntafos, S. C.; Hakimi, S. L.: On Path Cover Problems in Digraph and Appli-
cations to Program Testing. IEEFE Transactions on Software Engineering 5, Vol.
SE-5, September 1979, 520-529.

Ntafos, S. C.; Hakimi, S. L.: On Structured Digraphs and Program Testing. [EFFFE
Transactions on Computers 1, Vol C-30, January 1981, 67-77.

Ntafos, S. C.; Gonzalez, T.: On the Computational Complexity of Path Cover
Problems. Journal of Computer and Science System 29, 1984, 225-242. January,
1981, 67-77.

Peterson, J. L: Modelling of parallel systems, Digital System Lab., Stanford Univ.,
Technical Report No. SU-SEL-74-006, 1973, 241pp.

Ostroft, J. S.: Temporal Logic For Real-Time Systems. Research Studies Press Ltd.,
Tauton Somerset, England, 1989.

Ostroff, J. S.: Formal methods for the specification and design of real-time safety-
critical systems. In: Journal of Systems and Software, 33(66), April 1992, 890-904.

Ostroft, J. S.: Visual tools for verifying real-time systems. In: T. Rus and C. Rattray,
editors, Theories and Experiences for Real-Time System Development, AMAST Se-
ries in Computing, Vol. 2, Singapore, World Scientific Publishing Co., 1994.

Peterson, J. L.: Petri Net Theory and Modelling of Systems. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1981.

Petersohn, C.; Urbina, L.: A Timed Semantics for the STATEMATE Implementa-
tion of Statecharts. In: FMFE ’97: Industrial Applications and Strengthened Founda-
tions of Formal methods, Lecture Notes in Computer Science, Vol. 1313, Springer-
Verlag, 1997, 553-572.

Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th IEEE
Symposium on Foundations of Computer Science, Springer-Verlag, Berlin, 1977,
45-57.

218

[126]

[127)

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

BIBLIOGRAPHY

Pnueli, A.: Applications of Temporal Logic to the Specification and Verification of
Reactive Systems: A Survey of Current Trends. In: Current Trends in Concurrency,
de Bakker et al. (Eds.), Lect. Notes in Comput. Sci., Vol. 224, Springer-Verlag,
Berlin, 1986, 510-584.

Pnueli, A.: Linear and branching structures in the semantics and logics of reactive
systems. In: 12th Internat. Coll. on Automata Languages and Programming, A.
Demers, Springer-Verlag, Berlin, 1985, 15-32.

Pnueli, A.: In a transition from global to modular reasoning about concurrent
programs. In: Logics and Models of concurrent Systems, Krzysztof R. Apt, Springer-
Verlag, Berlin, 1986.

Pnueli, A.; Manna, Z.: The Temporal logic of Reactive and Concurrent Systems.
Specification. — ISBN 0-387-97664—7, Springer-Verlag, New York, 1992.

Pnueli, A.; Manna, Z.: Temporal Verification of Reactive Systems — Safety. ISBN
0-387-94459-1, Springer-Verlag, New York, Berlin, Heidelberg, London, 1995.

Pnueli, A.; Shalev, M.: What is in a Step: On the Semantics of Statecharts. In:
Proceedings of the Symposium Computer Software, Lect. Notes in Comput. Sci.,
Vol. 526, Springer-Verlag, Berlin, 1991, 244-264.

Poston, R. M.: Automating Specification-Based Software Testing. IEEE Computer
Society Press, Los Alamitos, CA, 1996.

Ostroft, J.S.; Wonham, W.M.: A temporal logic approach to real-time control. In:
Proceedings of the 2/th IEEE Conference on Decision and Control, Florida, 1985,
656-657.

Rabin, M. O.: Decidability of second-order theories and automata on infinite trees.
Trans. AMS 141, 1969, 1-35.

Rational Corp.,: Documents on UML (the Unified Modelling Language), Version
1.0 (http://www.rational.com/ot/uml/1.0/), 1996.

Rabin, M. O.; Scott D.: Finite automata and their decision problems. IBM Journal
Res. 3, 1959, 115-125.

Ramalingam, T.; Das, A.; Thulasiraman, K.: On testing and diagnosis of commu-
nication protocols based on the finite state machine model. Computer Communica-
tions. 18(5) 1995, 329-337.

Rapps, S.; Weyuker, E. J.: Selecting software test data using data flow information.
IEEFE Transactions on Software Engineering Vol. SE-11, No. 4, April 1985, 367-375.

Reisig, W.: Petri Nets: An Introduction. Springer-Verlag, Berlin, 1985.

Reisig, W.: A Primer in Petri Net Design. Springer-Verlag, Berlin, 1992.

BIBLIOGRAPHY 219

[141]

[142)

[143]

[144)

[145]

[146]

[147)

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]
[156]

Reusch, R.: A Note on State Reduction and Homomorphism for Incompletly Speci-
fied Sequential Machines. Forschungsbericht, Nr. 120, Fachbereich Informatik, Uni-
versitdt Dortmund, 1981.

Reusch, R.: A Useful Lemma For Checking Experiments And A Method.
Forschungsbericht, Nr. 136, Fachbereich Informatik, Universitat Dortmund, 1982.

Riedemann, E.: Testmethoden fiir sequentielle und nebenléufige Software-Systeme,
Teubner, Stuttgart, 1997.

Richier, J. L.; Rodriguez, C.; Sifakis, J.; Voiron, J.: XESAR: A Tool for Protocol
Validation. User’s Guide, LGI-Imag, 1987.

Reed, G.; Roscoe, A.: Metric spaces as models for real-time concurrency. Proceed-
ings Mathematical Foundations and Computer Science, Lecture Notes in Computer
Science, Vol. 298, Springer-Verlag, New York, 1987.

Rumbaugh, J.; Blaha, M.; Premerlani, W.; Eddy, F.; Lorensen, W.: Object Ori-
ented Modelling and Design. Prentice Hall, 1991.

Ryant, I.: The Correctly Analysed System Which Behaves Incorrectly. ACM SIG-
SOFT, Software Engineering Notes, Vol. 20, No. 2, April 1995, 58-61.

Sabnani, K. K.; Dahbura, A. T.: A protocol testing procedure. In: Comput. Net-
works and ISDN Syst., volume 15, No. 4, 1988, 285-297.

Sengupta, S.; Korobkin, C. P.: C++, Object-Oriented Data Structures. Springer-
Verlag, New York, 1994.

Schwartz, R.; Melliar-Smith, P.; Vogt, F.: An interval logic for higher-level tem-
poral reasoning. In: Proceedings of the 2nd Annual Symposium on Principles of
Distributed Computing, 1983, 173-186.

Shlaer, S.; Mellor, S. J.: Object-Oriented Systems Analysis: Modelling the World
in Data. Prentice-Hall, Englewood Cliffs, NJ, 1988.

Sistla, A. P.; Clarke, E. M.: The complexity of propositional temporal logic. In:
Journal of the ACM, volume 32, No. 3, January 1986, 733-749.

Smolarczyk, R.: Generierung von Testféllen fiir VHDL-Programme mittels symbol-
ischer Methoden. Diplomarbeit, Informatik 1, Universitdt Dortmund, Fachbereich
Informatik, 1992.

Spillner, A.: Dynamischer Integrationstest modularer Softwaresysteme. Disserta-
tion, Universitit Bremen, Fachbereich Mathematik und Informatik, Dezember 1990.

Streett, R. S.: Propositional dynamic logic with converse. Inf. Cont. 1982, 121-141.

Thomas, W: Automata on infinite objects. In: Jan van Leeuwen, editor, Handbook
of Theoretical Computer Science volume B, Elsevier, Amsterdam Publishers, 1990,
133-191.

220 BIBLIOGRAPHY

[157] Uselton, A.; Smolka, S.: A Compositional Semantics for Statecharts Using Labelled
Transition Systems. State University of New York at Stony Brook, 1994.

[158] von der Beek, M.: A Comparison of Statecharts Variants. In: Formal Techniques
in Real-Time and Fault-Tolerant Systems, Lecture Notes in Computer Science, Vol.
863, Springer-Verlag, 1994, 128-148.

[159] Yourdon, E.: Modern Structured Analysis. Prentice Hall International, 1989.

[160] Woodward, M. R.; Heddley, D.; Hennel, M. A.: Experience with path analysis and
testing of programs. IEEE Transactions on Software Engineering Vol. SE-6, No. 3,
May 1980, 278-286.

[161] Wrifs-Brock, R.; Wilkerson, B.; Wiener, L.: Deisigning Object-Oriented Software.
Prentice-Hall, Englewood Cliffs, NJ, 1990.

		2000-07-11T11:00:13+0100
	Dortmund
	Universitaetsbibliothek Dortmund - Eldorado
	<Keine>

