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ABSTRACT 
 

Testing the Correlated Random Coefficient Model 
 
The recent literature on instrumental variables (IV) features models in which agents sort into 
treatment status on the basis of gains from treatment as well as on baseline-pretreatment 
levels. Components of the gains known to the agents and acted on by them may not be 
known by the observing economist. Such models are called correlated random coefficient 
models. Sorting on unobserved components of gains complicates the interpretation of what 
IV estimates. This paper examines testable implications of the hypothesis that agents do not 
sort into treatment based on gains. In it, we develop new tests to gauge the empirical 
relevance of the correlated random coefficient model to examine whether the additional 
complications associated with it are required. We examine the power of the proposed tests. 
We derive a new representation of the variance of the instrumental variable estimator for the 
correlated random coefficient model. We apply the methods in this paper to the prototypical 
empirical problem of estimating the return to schooling and find evidence of sorting into 
schooling based on unobserved components of gains. 
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1 Introduction

The correlated random coefficient model is the new centerpiece of a large literature in mi-

croeconometrics. For person i, it expresses outcome Yi in terms of choice indicator Di as

Yi = αi + βiDi (1)

where Di = 1 if a choice is made; Di = 0 if not and both the intercept, αi, and the slope,

βi, vary among persons. In this expression both the αi and βi may depend on regressors Xi

which we keep implicit.

βi is the causal effect of Di on Yi holding αi fixed. If agents make their choices to take

treatment based on components of βi that depend on variables not available to the observing

economist, Di is correlated with βi even after conditioning on Xi. Most recent studies focus

on estimating means or quantiles of the distribution of βi.
1

The model that motivated the research of a previous generation (see, e.g., Griliches,

1977) assumes no response heterogeneity (βi = β). The correlated random coefficient model

assumes that βi varies in the population and in addition that

Cov (Di, βi) 6= 0. (C-1)

The model also accounts for selection on intercepts, i.e. selection on pretreatment unobserv-

ables:

Cov (Di, αi) 6= 0. (C-2)

When (C-1) holds, marginal returns to an activity in general differ from average returns.

When assumption (C-2) holds but Di is independent of βi, standard IV identifies the mean

of βi, which we denote by β̄. This configuration of assumptions includes the case when βi is

1Abbring and Heckman (2007) discuss methods for estimating the distribution of βi.
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random but independent of Di and the case when βi is the same for everyone.2,3

As first noted by Heckman and Robb (1985), instrumental variables (IV) applied to (1)

when (C-1) holds produces an instrument-dependent parameter that, in general, is not β̄.4

In general, different instruments identify different parameters. Under conditions specified in

Yitzhaki (1989),5 Imbens and Angrist (1994), Heckman and Vytlacil (1999), and Heckman,

Urzua, and Vytlacil (2006), IV estimates weighted averages of marginal effects. Heckman and

Vytlacil (1999, 2001, 2005, 2007a) generalize the marginal treatment effect (MTE) introduced

by Björklund and Moffitt (1987) and show that the MTE plays the role of a policy-invariant

functional that is invariant to the choice of instrument. The MTE can be used to unify the

literature on treatment effects.6

Heckman and Vytlacil (2001, 2005, 2007b) derive testable implications of the hypothesis

that βi is statistically independent of Di given Xi:

H0 : βi ⊥⊥ Di | Xi,

where A ⊥⊥ B | C means A is independent of B given C. In this paper, we develop formal

tests of this hypothesis and analyze their power. We apply our tests to a prototypical problem

of estimating the return to schooling.

The paper proceeds as follows. Section 2 establishes the equivalence of the correlated

random coefficient model with the Generalized Roy model. We state two testable impli-

cations of it. One test exploits the insight that, in general, in the case when H0 is false,

different instruments identify different parameters. We develop a test based on this principle

in Section 3 after first presenting some new results on the sampling distribution of the instru-

2See Heckman and Vytlacil (1998), Heckman and Vytlacil (2007a,b). The standard “ability bias” problem
(Griliches, 1977) assumes that βi = β, a constant for all i, and that Cov(Di, αi) 6= 0.

3Evidence from parametric models on the empirical relevance of (C-1) in a variety of areas of economics
is presented in Heckman (2001, Table 3).

4See the discussion of the ensuing literature in Heckman, Urzua, and Vytlacil (2006) or Heckman and
Vytlacil (2007a,b).

5Posted at website for Heckman, Urzua, and Vytlacil (2006), see http://jenni.uchicago.edu/
underiv/.

6See Heckman and Vytlacil (2005).
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mental variable estimator and considering the problem of constructing power functions for

tests of hypotheses in the correlated random coefficient model. Section 4 develops tests for a

second implication of the correlated random coefficient model. Section 5 analyzes the power

of the proposed tests. Section 6 applies these tests to a prototypical problem: estimating the

return to schooling using the model of Carneiro, Heckman, and Vytlacil (2006). Section 7

concludes.

2 Equivalence with the Generalized Roy Model and

Two Testable Implications of H0

An alternative way to represent equation (1) makes the link to economic choice theory

more explicit. Individual i experiences outcome Y1,i if Di = 1 and outcome Y0,i if Di = 0,

i = 1, . . . , I. The observed outcome is Yi = DiY1,i + (1−Di)Y0,i.
7 Let µj(Xi) = E(Yj,i | Xi),

j ∈ {0, 1}. One can write the model for potential outcomes conditional on Xi as Y1,i =

µ1(Xi) + U1,i and Y0,i = µ0(Xi) + U0,i where E(Uj,i | Xi) = 0, j ∈ {0, 1}. In this notation,

the observed outcome is

Yi = µ0(Xi) + [µ1(Xi)− µ0(Xi) + U1,i − U0,i]Di + U0,i.

This is the correlated random coefficient model of equation (1) where the baseline outcome

is αi = µ0(Xi) +U0,i and the gain is βi = µ1(Xi)− µ0(Xi) +U1,i−U0,i where, for notational

simplicity, we suppress the dependence of αi and βi on Xi. To simplify the expressions, we

drop the i subscripts throughout the rest of the paper unless their use clarifies the discussion.

We define α = α + Uα and β = β̄ + Uβ where E(Uα | X) = 0 and E(Uβ | X) = 0. Table 1

shows the equivalent parameters for the two models.

Whether the null hypothesis H0 is true or not depends on the underlying choice model.

7This is in the form of a Quandt (1958) switching regression model.
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Table 1: Equivalence of Notation Between the Correlated Random Coefficient Model and the
Generalized Roy Model. All parameters are defined conditional on Xi, which is left implicit.

Baseline outcome

Outcome in treated state

Gain to treatment

(Individual causal effect)

Outcome

Generalized Roy Correlated random
model coefficient model

Y 0,i  =μ 0 + U 0,i

Y 1,i =μ 1 + U 1,i
β i  + αi

Y 1,i  - Y 0,i  = μ 1 - μ 0 + U 0,i  - U 0,i
β i

αi

Y i =  Y 0,i + D i (Y 1,i  - Y 0,i ) Y i  = αi  + β i D i

=μ 0,i +  (μ 1,i  - μ 0,i + U 1,i  - U 0,i ) D i + U 0,i 

We postulate a threshold crossing model which assumes separability between observables

Z that affect choice and an unobservable V : D = 1(µD(Z) − V ≥ 0), where 1(·) is an

indicator function that takes the value 1 if its argument is true and is 0 otherwise, and

µD is a deterministic function of Z.8 Z can include components of X. Letting FV be the

distribution of V conditional on X, and assuming that Z ⊥⊥ V | X, the choice probability

or “propensity score” is

P (z) = Pr(D = 1|Z = z) = FV (µD(z)),

where to simplify the notation, we keep the conditioning on X implicit. The choice equation

can be written in several alternative and equivalent ways:

D = 1(µD(Z)− V ≥ 0) = 1(FV (µD(Z)) ≥ FV (V )) = 1(P (Z) ≥ UD)

8See, e.g., Thurstone (1927) and McFadden (1974, 1981). We do not strictly require separability, but we
do require that the choice equation has one representation in separable form. See Heckman and Vytlacil
(2007b).
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where UD = FV (V ) so UD ∼ Uniform[0, 1].

We invoke the assumptions of Heckman and Vytlacil (2005, 2007b).9 A fundamental

treatment parameter introduced by Björklund and Moffitt (1987) is the marginal treatment

effect (MTE). The MTE for a given value of X = x is

MTE(x, uD) = E(Y1 − Y0 | X = x, UD = uD) = E(β | X = x, UD = uD).

It is the mean effect of treatment when the observables X are fixed at a value x and the

unobservable in the choice equation UD is fixed at a value uD. Heckman and Vytlacil (1999,

2001, 2005, 2007b) use the MTE to develop the following implication of H0.

In the general case, the conditional expectation of Y given X and Z is

E(Y |X = x, Z = z) = E(Y |X = x, P (Z) = p)

= E(α|X = x) + E(βD|X = x, P (Z) = p)

= E(α|X = x) + E(β|X = x,D = 1)p

= E(α|X = x) +

∫ p

0

E(β|X = x, UD = uD)duD, (2)

9Their conditions are:

(A-1) (U0, U1, V ) ⊥⊥ Z | X. Alternatively, (α, β, V ) ⊥⊥ Z | X.

(A-2) The distribution of µD (Z) conditional on X is nondegenerate. Thus the distribution of P (Z) is
nondegenerate.

(A-3) The distribution of V is continuous (i.e., absolutely continuous with respect to Lebesgue measure).
Thus UD = FV (V ) is uniform.

(A-4) E |Y1| <∞, and E |Y0| <∞, so defining E(β) = β̄, |β̄| <∞.

(A-5) 1 > Pr (D = 1 | X) > 0.

Vytlacil (2002) shows that under mild regularity conditions, assumptions (A-1)-(A-5) are equivalent to the
IV conditions of Imbens and Angrist (1994) used to define the local average treatment effect (LATE).
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where the integrand in the final expression is the MTE(x, uD).10 Under H0,

E(β | X = x, UD = uD) = E(β | X = x),

so

E(Y | X = x, P (Z) = p) = E(α | X = x) + E(β | X = x)p.11 (3)

Thus the function E(Y |X = x, P (Z) = p) is linear in p, conditional on X = x, which is a

testable hypothesis.

A second implication of H0 is that any standard instrument identifies β = E(β).12 Thus

under H0 all valid instruments have the same estimand. Under conditions presented in this

paper, comparing the estimates produced by different instruments tests the weaker hypoth-

esis H ′0 : Cov(β,D | X) = 0, which is an implication of the stronger hypothesis H0. The

analysis in this paper thus provides an alternative interpretation of standard tests of overi-

dentification. A rejection of the null hypothesis that two instrumental variable estimands

are different is not necessarily a rejection of the validity of one instrument. It could be

interpreted as evidence in support of a correlated random coefficient model.

3 Tests Based on Comparing IV Estimates

Before presenting our test based on comparing the estimates from two IV estimators, we

first discuss some general properties of the IV estimator in the correlated random coefficient

model. We present a new representation of the sampling distribution of the IV estimator.

We consider the problem of constructing the power of tests of several hypotheses using the

sampling distribution of the IV estimator for the correlated random coefficient model before

10The first line follows from (A-1). The rest of the derivation comes from (1) and the law of iterated
expectations.

11To see this, notice that β ⊥⊥ D | X ⇐⇒ β ⊥⊥ 1(P (Z) ≥ UD) | X ⇐⇒ β ⊥⊥ UD | X.
12In the notation of equation (1), but dropping subscripts i, a standard instrument J has the two properties:

(i) Cov(J,D | X) 6= 0 and (ii) Cov((α, β), J | X) = 0. Note that J is shorthand for J(Z). Note further that
the condition Cov(β, J | X) = 0 only emerges as an interesting condition in a random coefficient model.
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developing our test for H0.

3.1 IV in the Correlated Random Coefficient Model

Consider an instrument J(Z). Denote J(Z) by J and define J̃ = J− J̄ where J̄ is the sample

mean of J(Z). E(J) is assumed to be finite. The IV estimator is

β̂IV,J =

∑
YiJ̃i∑
DiJ̃i

.

Define Cov(J,D) = ωJ and let I denote the sample size. Under a weak law of large numbers,

1
I

∑
DiJ̃i

p→ ωJ and J̄
p→ E(J). As shown in Heckman and Vytlacil (2005, 2007b), under

the conditions (A-1)–(A-5) stated in Section 2,

β̂IV,J
p→ βIV,J =

∫ 1

0

E(β|UD = uD)hJ(uD)duD (4)

where

hJ(uD) =
E[(J − E(J)) | P (Z) ≥ uD] Pr(P (Z) ≥ uD)

ωJ
, (5)

and we keep the conditioning on X implicit. Heckman and Vytlacil (2005) show that∫ 1

0
hJ(t)dt = 1. Thus we can write

βIV,J = β +

∫ 1

0

E(Uβ | UD = uD)hJ(uD)duD. (6)

For later use we break out the component of βIV,J that depends on the instrument J :

∫ 1

0

E(Uβ | UD = uD)hJ(uD)duD = ΥJ ,

so βIV,J = β̄ + ΥJ . By definition, conditional on X, β̄ does not depend on J .

9



Under independent sampling,

√
I
(
β̂IV,J − βIV,J

)
d→ N(0,ΩJ)

where

ΩJ = E
[
α2
] Var(J)

ω2
J

+

1∫
0

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)]
hΩJ (uD)duD (7)

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

and

hΩJ (uD) =
1

ω2
J

∞∫
−∞

(j − E(J))2

1∫
uD

fP,J(P (z), j)dP (z)dj (8)

=
E[(J − E(J))2 | P (Z) ≥ uD] Pr(P (Z) ≥ uD)

ω2
J

.13

The weight hΩJ (uD) does not necessarily integrate to 1:

∫ 1

0

hΩJ (t)dt =
Cov(J̃2, D)

[Cov(J̃ , D)]2
.

Appendix A presents the full derivation. The weight hΩj(uD) plays a role in determining

the variance of the IV estimator that is analogous to the role of hJ(uD) in generating the

probability limit of the IV estimator. 2E[αβ | UD = uD] + E[β2 | UD = uD] plays a role in

generating the variance of the IV estimator analogous to the role of the MTE in generating

the probability limit of the IV estimator. We use this representation to facilitate comparison

of the power of the tests under alternative data generating processes and to consider the

problem of the optimal choice of instruments.

13fP,J(P (z), j) is the density of P (Z) and J(Z) evaluated at P (Z) = P (z) and J(Z) = j.
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These formulae hold for general functions J(·) of instruments Z that satisfy assumptions

(A-1)-(A-5) given in Section 2. For example, suppose that J(Z) has discrete support on

points j1, . . . , jK with corresponding values of the propensity score p1, . . . , pL with L possibly

not equal to K. Let p0 = 0. In this case, for uD ∈ [pl, pl+1] both hJ and hΩJ are constant so

we can write

ΩJ = E
[
α2
] Var(J)

ω2
J

+
L−1∑
l=0

λΩl

∫ pl+1

pl

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)] 1

pl+1 − pl
duD

−

(
L−1∑
l=1

λl

∫ pl+1

pl

E(β | UD = uD)
1

pl+1 − pl
duD

)2

.

The weights λΩl and λl are defined in the following way. Let ji be the ith smallest value in

the support of J(Z), then

λΩl =

∑K
i=1[ji − E(J)]2

∑L
t>l fP,J(pt, ji)

Cov(J̃(Z), D)2
(pl+1 − pl)

λl =

∑K
i=1[ji − E(J)]

∑L
t>l fP,J(pt, ji)

Cov(J̃(Z), D)
(pl+1 − pl).

The special case of a binary instrument J(Z) has two points of support, j1 and j2, corre-

sponding to the points p1 and p2 in the propensity score distribution. Let Pr(J(Z) = j1) =

Pr(P (Z) = p1) = q and Pr(J(Z) = j2) = Pr(P (Z) = p2) = 1 − q. The λl are λ1 = 1 and

λl = 0, l > 1.14 The weights for the variance simplify to

λΩ0 =
[j1 − E(J)]2q + [j2 − E(J)]2(1− q)

Cov(J̃(Z), D)2
(p1) and λΩ1 =

[j2 − E(J)]2(1− q)
Cov(J̃(Z), D)2

(p2 − p1),

14

λ1 =
[j2 − E(J)](1− q)

Cov(J̃(Z), D)
(p2 − p1) =

(j2 − j1)(p2 − p1)q(1− q)
Cov(J̃(Z), D)

=
Cov(J̃(Z), P (Z))

Cov(J̃(Z), D)
= 1.
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and

λΩ0 + λΩ1 =
(j1 − E(J))2qp1 + (j2 − E(J))2(1− q)p2

Cov(J̃ , D)2
=

Cov(J̃2, D)

Cov(J̃ , D)2
.

Formula (4) extends the representation of IV as weighted averages of slopes of the un-

derlying function, due to Yitzhaki (1989). It allows the instrument J(Z) be different from

the propensity score P (Z) or a monotonic function of it. It reveals that, in general, different

instruments identify different parameters. Thus, in general, βIV,J 6= βIV,J ′ if J and J ′ apply

different weights (5) to a common MTE.

As noted by Heckman and Vytlacil (2005, 2007b), while the weight in (5) integrates to

1, it is not necessarily non-negative for all values of uD so the interpretation of the weighted

average produced by IV is obscure. Even though the MTE is positive everywhere, the IV

estimate may be negative.15

Some applied economists report tests based on IV sampling distributions as if they are

testing the null hypothesis that β̄ = 0. Under H0, i.e., the absence of a correlated random

coefficient model, the sampling distribution of the standard IV estimator, β̂IV,J , can be used

to consistently test the null hypothesis that β̄ = 0. However, when H0 is false, a test of

β̄ = 0 based on the sampling distribution of the IV estimator is, in general, inconsistent and

biased because by (6), IV does not, in general, converge to β̄.

Consider the following example based on the normal generalized Roy Model.


U1

U0

V

 ∼ N




0

0

0

 ,


σ2

1 σ10 σ1V

σ10 σ2
0 σ0V

σ1V σ0V σ2
V


 , (9)

and assume X = 1. Recalling that uD = FV (v), when V is a normal random variable, the

15See the examples in Heckman, Urzua, and Vytlacil (2006).
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marginal treatment effect is

MTE(UD = uD) = β̄ +

(
σ1V − σ0V

σV

)
Φ−1(uD) (10)

where Φ−1(·) is the inverse of a standard normal CDF (hence Φ−1(uD) = v). Alternatively,

in terms of v,

MTE(V = v) = β̄ +
σ1V − σ0V

σV
v.

Let τ = σ1V −σ0V

σV
. A value of τ 6= 0 produces a correlated random coefficient model. For such

values plim β̂IV,J 6= β̄. The choice equation is assumed to be D = 1(Z ≥ V ) where both

Z (a single instrument) and V are normally distributed and Z ⊥⊥ V . Additionally, assume

that σ2
1 = σ2

0 = σ2
U , σ10 = 0.5× σ1 × σ0 and σ2

V = 1.

Figure 1 plots the power of a Wald test of the hypothesis that β̄ = 0 based on β̂IV,J .

We compute the power function for different values of β̄. Recall from (6) that this is the

component of βIV,J that does not depend on J . In Panel A, β̂IV,J is a consistent estimator

for β̄. In the other two panels it is not. Thus in the top panel of the figures, when τ = 0,

and hence H0 is true, the test of the hypothesis β = 0 is unbiased and consistent and the

size of the test is controlled.16 As expected, smaller values of σ2
U produce higher power,

and larger values of σ2
Z produce higher power. The bottom two panels plot the power of

the test that β = 0 when τ = −1 and τ = 0.6, respectively. In these two latter cases,

plim β̂IV,J = βIV,J 6= β̄. Hence the tests are biased and inconsistent. The power and size of

the test for the existence of an “effect” (i.e., whether β = 0) can be badly distorted. Thus

even if β = 0, an “effect” can be detected, and if β 6= 0, no “effect” can be detected.

16Although Figure 1 shows the power function only for one sample size, the consistency of the test is
readily verified.
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Figure 1: Power function for a Wald test of β̄ = 0 based on the sampling distribution of
β̂IV,J .
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Note: Each plot shows the power for a hypothetical sample size of 500. The size of the test is 0.05. The model is the normal generalized Roy
model with the unobservables jointly normal with variance σ2

U and correlation 0.5. The choice equation is D = 1(Z ≥ V ) where V ∼ N(0, 1) and

Z ∼ N(1, σ2
Z). The power functions plot the power of the Wald test of βIV,J = 0 for alternative values of β̄. The vertical dashed lines denote the

null hypothesis β̄ = 0. Each panel fixes τ = Cov(β, V )/Var(V ) at a different level. When τ = 0, plim β̂IV,J = β̄0, which in these figures is zero,
and hence the test is consistent. For all nonzero values of τ , the test is inconsistent.
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3.2 Testing Hypotheses About Instrument-Dependent Parame-

ters

More recently, many applied economists, following Imbens and Angrist (1994), interpret IV

as a weighted average of “LATEs,” or in our framework, a weighted average of MTEs, as in

equation (3). It is understood that β̂IV,J is not, in general, consistent for the true β̄. Within

this framework, economists often report tests of the hypothesis that βIV,J = 0.

To calculate the power of such tests, we consider alternative values of βIV,J(= β̄ + ΥJ

from equation (6)) obtained by varying β̄ holding ΥJ fixed. Notice that unlike the analysis in

the preceding section, in this section we are not testing the hypothesis that β̄ = 0. Instead

we are testing the hypothesis that βIV,J = 0 (or some other specified value). We vary β̄

to calculate the power of the test for alternative values of βIV,J . This is a sensible way to

proceed because β̄ is instrument invariant. Investigating the power of the test in this fashion

allows us to construct power functions for instrument-invariant alternatives.

Figure 2 plots the power function for the Wald test of the hypothesis βIV,J = 0 as a

function of βIV,J holding ΥJ fixed at -0.5. Consequently, the β̄ compatible with the null

hypothesis, β̄0, is 0.5. For the model of unobservables used in the previous subsection,

keeping ΥJ fixed entails, among other things, holding τ = σ1V −σ0V

σV
fixed along with the

weighting function hJ(uD). For a given τ and a fixed IV weighting function hJ(uD), we vary

the parameters of covariance matrix (9). These parameters affect the sampling distribution

of β̂IV,J and hence the power of the test.

Neither the IV estimand nor the variance of the IV estimator depends on σ10. Therefore,

the power of the test of the null hypothesis βIV,J = 0 does not depend on σ10. The only

remaining parameters that can be changed without changing ΥJ are σ2
0, σ

2
1, σ1V and σ0V .

To keep τ fixed, we can only vary σ1V and σ0V subject to a constraint that σ1V − σ0V is

constant.17 For σV = 1, the four A panels of Figure 2 show the power of the test for different

values of β̄ when we vary σ1V and σ0V such that σ1V − σ0V = −1. The power of the test is

17Variations in σ2
V affect the denominator of the weights.
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highest when σ1V and σ0V are both close to 0 (ie. straddling 0), and lowest when both are

far from zero (either positive or negative). The panels in B vary βIV,J by varying β̄ holding

ΥJ fixed and hold fixed all of the elements of (9) except for σ2
1, while the panels in C vary

β̄ hold fixed all of the parameters of (9) except σ2
0. As expected, power decreases as both

variances increase, in general at different rates.

There are other ways to calculate the power of the test that βIV,J = 0 for alternative

values that are obtained by varying β̄ keeping ΥJ fixed. If the choice equation is

D = 1(Zγ ≥ V )

and Z ∼ N(Z,ΣZ) and V ∼ N(0, σ2
V ), all instruments constructed from linear or affine

transformations of Z have the same weight function (5) and hence have the same instrument-

dependent value, βIV,J . For proof of this claim, see Appendix B.18

This result implies that one can construct power functions for the hypothesis βIV,J = 0

for different values of βIV,J = β̄ + ΥJ for alternative choices of ΣZ , holding γ′ΣZγ, the

variance of the choice index, constant. The derivation in Appendix B shows that the IV

estimand depends only on the distribution of the index Zγ − V . From assumption (A-1),

Zγ and V are statistically independent. σ2
V has to be held constant to keep ΥJ fixed. We

keep this term fixed by varying components of Z while keeping γ′Zγ fixed. An instrument

with greater variance that obeys this constraint will produce greater power. Figure 3 plots

power functions of the test of the hypothesis that βIV,J = 0 using each component of a

two-dimensional instrument Z = (Z1, Z2). These plots show that for a given IV estimand

βIV,J , the power of the test is higher when using the instrument that accounts for more of

the variance of the index Zγ. Going from top to bottom, the variance of Z1 is increasing

while the variance of Z2 is decreasing. Accordingly, from top to bottom the power of the

test βIV,J = 0 using Z1 as an instrument is increasing while the power of the test using Z2

18This result is special to the case of J(Z) linear or affine in Z with Z normally distributed, so J(Z) is
normally distributed and the further assumption (A-1) that Z ⊥⊥ V , where V is normally distributed. We
have not analyzed more general conditions on Z and V under which the invariance holds.
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Figure 2: Power function for the test of the hypothesis that plim β̂IV,J = 0 when β̄0 = 0.5.
Alternatives are different values of βIV,J obtained by fixing ΥJ and varying β̄.
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Note: Each plot shows the power for a hypothetical sample size of 500. The size of the test is 0.05. The instrument is normally distributed,
Z ∼ N(1, 1); D = 1(Z ≥ V ). In panel A, the unobservables are generated with covariances given in the figure and σ2

V = 1, σ10 = 0, σ2
1 = 1, σ2

0 = 1.

In panels B and C the unobservables are generated with variances given in the figure and σ2
V = 1, σ10 = 0, σ1V = −0.5, σ0V = 0.5. In all panels,

under the null hypothesis β̄0 = 0.5, and alternative hypotheses are generated by changing β̄. The vertical dashed line shows the value of
plim β̂IV,J = 0 under the null hypothesis and the vertical dotted line shows the value of β̄ under the null hypothesis.
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as an instrument is decreasing. Each panel shows the fraction of γ′Zγ accounted for by the

variance of the instrument used to construct the power function (either Z1 or Z2).19 We now

use the tools developed for IV in a correlated random coefficient model to test H0.

3.3 Testing H0 Using Instrumental Variables

Armed with the preceding results, we now return to the main theme of this paper and study

how to use different IVs to test H0. Under H0, the probability limits of any two IV estimators

are identical, because for any choice of J ,

plim β̂IV,J = βIV,J =

∫ 1

0

E(β|UD = uD)hJ(uD)duD = β̄

∫ 1

0

hJ(uD)duD = β̄.

If H0 is false, in general any two IV estimators will differ. Excluding the case of equal IV

weights for the two instruments, our IV test forms two estimators β̂IV,1 and β̂IV,2, based on

J1(Z) and J2(Z) respectively, and tests the null hypothesis

HIV
0 : βIV,1 − βIV,2 = 0

against the alternative hypothesis

HIV
A : βIV,1 − βIV,2 6= 0.

This test is identical to a standard test for overidentification. However, within the context of

a correlated random coefficient model, we do not interpret rejections of the null hypothesis

as evidence of the violation of the assumptions required for the validity of an instrument.

Rather, it is interpreted as evidence of selection on heterogeneous gains to treatment.

Under the null hypothesis, the Wald test statistic is asymptotically distributed as a

19Note that in a given row, the fractions do not sum to 1 because there is a covariance (of 0.1) between
Z1 and Z2.
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Figure 3: Power functions for the test of the hypothesis that βIV,J = plim β̂IV,J = 0 for
β̄0 = 0.5. Alternatives are different values of βIV,J obtained by fixing ΥJ and varying β̄.
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β IV, J β IV, J

B.  σZ1
2 = 1, σZ2

2 = 1.8, σZ1,Z2 = 0.1

Using Z1 as instrument Using Z2 as instrument
(Fraction of γ'ΣΖγ accounted for by Z1 = 1/3) (Fraction of γ'ΣΖγ accounted for by Z2 = 3/5)

β IV, J β IV, J

C.  σZ1
2 = 2, σZ2

2 = 0.8, σZ1,Z2 = 0.1
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Note: Each plot shows the power for a hypothetical sample size of 500 varying β̄ keeping ΥJ fixed. The size of the test is 0.05. The instruments

are distributed normally, Z1 ∼ N(1, σ2
Z1), Z2 ∼ N(1, σ2

Z2) and Cov(Z1, Z2) = σZ1,Z2 = 0.1; D = 1(Z1 +Z2 ≥ V ) so γ = (1, 1). The distribution

of the index is held fixed and is distributed N(2, 3). The unobservables are jointly normally distributed with and σ2
V = 1, σ10 = 0.5, σ2

1 = 1, σ1
0 =

1, σ1V = −0.5, σ0V = 0.5. In all panels, under the null hypothesis β̄ = 0.5, and alternative hypotheses are generated by changing β̄. The vertical
dashed line shows the value of βIV,J under the null hypothesis and the vertical dotted line shows the value of β̄ = β̄0 under the null hypothesis

being considered, ie. that βIV,J = β̄ + ΥJ .
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χ2
1. Under the alternative, in the general case, the Wald statistic converges to a noncen-

tral chi-square distribution. Let h1(·) and h2(·) denote the weights (akin to hJ(·) above)

corresponding to J1(Z) and J2(Z), respectively. To simplify the notation, we suppress

the Z argument. Define J̃1 = J1 − J1 and J̃2 = J2 − J2 as the demeaned values of

the instruments. Let J̃1 = (J̃11, . . . , J̃1I)
′ and J̃2 = (J̃21, . . . , J̃2I)

′ be the matrices of de-

meaned instruments stacked across individuals. Let D = (D1, . . . , DI)
′ be the stacked val-

ues of the choice variable Di. Under random sampling, and the assumptions of Section 2,

J̃′1D

I

p→ ω1 and
J̃′2D

I

p→ ω2 for some finite constants ω1 and ω2. Under HIV
A : βIV,1 − βIV,2 =[∫ 1

0
MTE(uD)(h1(uD)− h2(uD))duD

]
/
√
I, the noncentrality parameter of the chi-square

distribution of the test statistic is

λIV,1,2 =
1

2

(∫ 1

0

MTE(uD)(h1(uD)− h2(uD))duD

)2

Ψ−1
1,2 (11)

where

Ψ1,2 = E
(
α2
) [Var (J1)

ω2
1

− 2 Cov(J1, J2)

ω1ω2

+
Var (J2)

ω2
2

]
(12)

+

1∫
0

[
2E(αβ | UD = uD) + E(β2 | UD = uD)

]
hΩ,J1,J2(uD)duD

−

 1∫
0

MTE(uD)(h1(uD)− h2(uD))duD

2

.

Defining J∗1 = J1 − E(J1) and J∗2 = J2 − E(J2), the weight hΩ,J1,J2(·) is given by

hΩ,J1,J2(uD) =

1∫
uD

∞∫
−∞

(
J∗1
ω1

− J∗2
ω2

)2

f(J1−J2),P (j1 − j2, P (z)) d(j1 − j2) dP (z)

= E

[(
J∗1
ω1

− J∗2
ω2

)2

| P (Z) ≥ uD

]
Pr(P (Z) ≥ uD).20
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The derivation follows a logic similar to that used to derive (7).21 Notice that not only

will the difference in the IV estimands depend on the alternative under consideration, but

the variance of the difference between the IV estimators will also depend on the alternative

under consideration.

We present this characterization of the variance in order to understand the properties of

tests of H0 based on IV estimators. This expression for the variance is not meant as a guide

for how to implement such tests. In practice the analyst would form the test statistic using

a standard estimator of the variance of the vector of IV estimates.

In general, the weights presented above do not have simple analytical expressions. They

do in the case of a model with normal error terms with normally distributed instruments

and a linear index structure for the choice equation. However, for this case, the proposed IV

test has no power, because, and as previously discussed and as established in Appendix B,

in this case βIV,J1 ≡ βIV,J2 irrespective of the truth or falsity of H0. For this case, the

noncentrality parameter of the asymptotic chi-square distribution of the test statistic will be

zero so the power of the test equals its size. To have a test with any power, we have to rule

out instruments with equal weights. Since the weights can be constructed from the data on

Z, it is possible to check this condition in any sample.22

We do not formally analyze conditions that guarantee that the two instruments J1 and

J2, constructed from Z, optimize the power function of the test. From the expression for

the noncentrality parameter, one can see the ingredients required to construct an asymp-

totically most powerful test. Let Z ∈ Rk be the vector of available instruments and let

J =
{
J | J : Rk → R

}
be the space of functions which map the vector of instruments to the

20f(J1−J2),P (j1 − j2, P (z)) is the joint density of J1 − J2, and P (Z) evaluated at J1 − J2 = j1 − j2 and
P (Z) = P (z).

21The logic is not, however, identical. Using (J1− J2) as an instrument and testing if βIV,J1−J2 = 0 is not
equivalent to the test presented in the main text of the paper. The denominators of the IVs differ in the two
approaches.

22It would be desirable to develop a formal test for equality of the two IV weights. The required ingredients
are in the literature. We leave the formal derivation for another occasion.
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real line. Then for a given MTE, the optimal choice of J1 and J2 solves the problem

max
J1∈J ,J2∈J

1

2

(∫ 1

0

MTE(uD)(h1(uD)− h2(uD))duD

)2

Ψ−1
1,2.

The optimal choice of instruments will generally depend on the shape of the MTE(uD).23

We present an example with two nonnormal instruments in Figure 4. Specifically, let

D = 1(γ1Z1 + γ2Z2 ≥ V ) where the vector Z = (Z1, Z2) is distributed as a multivariate

mixture of normals with the distribution given at the base of the figure. The unobservables

are assumed to be generated by a normal generalized Roy model. The test of equality of the

IV estimators constructed using these two instruments has power to detect deviations from

H0. Figure 4A plots the weights h1(·) and h2(·) which the IV estimator places on the MTE,

using Z1 or Z2 respectively. The weights must differ for the test based on the difference in

IV estimators to have power to detect deviations from H0. When the mixing proportion in

the mixture of normals is 0.45, the instruments are highly nonnormal and the IV weights

differ substantially. However, when the mixing proportion is 0.75, the instruments become

closer to normal, the weights become very similar, and the test of H0 loses power, as we

demonstrate more systematically in Section 5 below.

Another example of a test that has power to detect deviations from H0, even with normal

instruments, constructs IV estimators using nonlinear functions of Z. We consider a normal

generalized Roy model where there is one Z variable in the choice equation that is normally

distributed, D = 1(Z ≥ V ). We plot the weights of the IV estimators based on Z and Z2.

Figure 4B plots the weights for these two choices of instruments. The weights differ, and in

addition the amount by which they differ generally depends on the distribution of Z. We

plot the weights for two choices of the mean of Z presented in the figure. These choices

clearly affect the weights and hence will generally affect the power of a test of H0 based on

these IV estimators.

23More generally, one could use multiple instruments and base a test on multiple contrasts of the set of
instruments. We do not develop this test in this paper.
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Figure 4: IV weights for alternative choices of the instrument.

A. Z 1 vs. Z 2, mixtures of normals
p mix  = 0.45 p mix  = 0.75

B. Z  vs. Z 2

E(Z) = 1 E(Z) = -0.5

C.  P(Z) above and below the median
E(Z) = 0 E(Z) = 1

D.  P(Z) separated by quartiles
E(Z) = 0 E(Z) = 1

Note:  Panel A plots the weights of IV estimates constructed using either Z1 or Z2 as an instrument where (Z1, Z2) is distributed as a 
multivariate mixture of normals, with D = 1(γ1Z1 + γ2Z2 ≥ V).  To construct these results, we assume

and the coefficients in the choice equation are γ1=0.2, γ2=1.  In the left plot of Panel A we let p mix  = 0.45 and in the right plot p mix  = 0.75.  
Panel B plots the weights of IV estimates constructed using either Z or Z2 as an instrument where Z ~ N(µZ,1), µZ = 1 or µZ = -0.5, and D = 
1(Z ≥ V).  Panel C plots the weights of IV estimates constructed using either P(Z) below the median or P(Z) above the median as instruments. 
Panel D plots the weights of IV estimates constructed using P(Z) in different quartiles of its distribution as instruments.  In Panels C and D, Z 
~ N(µZ,1), µZ = 0 or µZ = 1, and D = 1(Z > V).  In all of the plots, we set σV

2 = 1.
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Another choice of instruments uses P (Z) on disjoint intervals of the support of P (Z) as

two instruments. Form two disjoint intervals [p
1
, p1] and [p

2
, p2], and construct IV estimators

over these intervals as sample analogs to

βIV,(p
1
,p1) =

Cov
(
Y, P (Z) | P (Z) ∈ [p

1
, p1]

)
Var

(
P (Z) | P (Z) ∈ [p

1
, p1]

)
and

βIV,(p
2
,p2) =

Cov
(
Y, P (Z) | P (Z) ∈ [p

2
, p2]

)
Var

(
P (Z) | P (Z) ∈ [p

2
, p2]

)
and test

HIV
0 : βIV,(p

1
,p1) = βIV,(p

2
,p2)

HIV
A : βIV,(p

1
,p1) 6= βIV,(p

2
,p2).

There is no a priori guidance on which intervals to use so we consider two ways to construct

intervals over which to form IV estimates: (1) use the intervals [0, pmed] and [pmed,1] where

pmed is the sample median of P (Z), and (2) use the intervals [0, pq1], [pq1, pq2], [pq2, pq3]

and [pq3, 1], where pqj is the jth sample quartile of the distribution of P (Z) and form all

pairwise contrasts between these estimates. Note that even though we split the propensity

score into four intervals, we are still conducting pairwise tests. However, because there is a

multiplicity of pairwise tests, we must control the size of the test. We do this by using the

stepdown procedure of Romano and Wolf (2005). Figures 4C and 4D plot the weights for the

instruments constructed in this manner. These weights are nonoverlapping by construction

and will also depend on the distribution of the instrument Z.

The power of the test of H0 based on IV estimators also depends on the variance (12),

which determines the denominator of the noncentrality parameter. The important terms
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which are affected by the choice of instruments are the variance of the difference in the

instruments
[

Var(J1)

ω2
1
− 2 Cov(J1,J2)

ω1ω2
+ Var(J2)

ω2
2

]
and the variance weight hΩ,J1,J2(·). The variance

of the difference in the instruments is identified from the distribution of Z given X. The

weights hΩ,J1,J2(·), can also be estimated from the data but are less transparent. For each of

the examples presented in Figure 4, we plot the variance weights hΩ,J1,J2(·). In the case of

the normal generalized Roy model, the weights are more intuitive and more easily calculated

when conditioning directly on V = v (rather than UD = uD), so we plot them as a function

of v. Figure 5 plots the variance weights. Ceteris paribus, the larger the variance weights,

the larger is the variance of the difference in the IV estimators and hence the lower the

power of a test based on this difference. In Panel A of Figure 5 we see that when the

mixing proportion is 0.45 the variance of the difference in the estimators is higher than when

the mixing proportion is 0.75 due to the fact that the IV weights covary highly when the

instruments are closer to normal so the variance of their difference is smaller. In Panel B, the

variance weights are roughly similar for E(Z) = 1 and E(Z) = −0.5. Finally, in Panel C the

variance weights are much larger when E(Z) = 1 than when E(Z) = 0. This demonstrates

that even when the IV weights are nonoverlapping, as is the case in both examples in Panel

C, the variance of the difference in the IV estimators will generally depend on the distribution

of Z.

We emphasize that the specific comparisons of IV estimators presented in this section are

illustrative examples. Our formal analysis is completely general and allows for any choice of

valid instruments which satisfy (A-1)–(A-5).

4 Testing H0 by Testing for Linearity

We next consider tests of H0 based on linearity in p. Keeping the conditioning on X implicit,

we can write (3) as

E(Y | P (Z) = p) = µ+ g(p) (13)
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Figure 5: IV variance weights (hΩ,J1,J2(·)) as a function of V = v for alternative choices of
instruments.

A. Z 1 vs. Z 2, mixtures of normals
p mix  = 0.45 p mix  = 0.75

B. Z  vs. Z 2

E(Z) = 1 E(Z) = -0.5

C.  P(Z) above and below the median
E(Z) = 0 E(Z) = 1

Note:  Panel A plots the variance weights of the difference in the IV estimates constructed using either Z1 or Z2 as an instrument where (Z1, Z2) 
is distributed as a multivariate mixture of normals, with D = 1(γ1Z1 + γ2Z2 ≥ V).  To construct these results, we assume

and the coefficients in the choice equation are γ1=0.2, γ2=1.  In the left plot of Panel A we let p mix  = 0.45 and in the right plot p mix  = 0.75.  
Panel B plots the variance weights of the difference in the IV estimates constructed using either Z or Z2 as an instrument where Z ~ N(µZ,1), 
µZ = 1 or µZ = -0.5, and D = 1(Z ≥ V).  Panel C plots the variance weights of the difference in the IV estimates constructed using either P(Z) 
below the median or P(Z) above the median as instruments.  In Panel C, Z ~ N(µZ,1), µZ = 0 or µZ = 1, and D = 1(Z ≥ V).  In all of the plots, 
we set σV

2 = 1.
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for some general nonlinear function g(·) where µ and g may depend on X. Our test for the

absence of selection on the gain to treatment is a test of whether the function g(·) belongs

to the linear parametric family F = {a + bp, (a, b) ∈ R2}. Let P be the support of P (Z),

with typical element p ∈ P . The null hypothesis of linearity can be written as

HL
0 : There exists some (a, b) ∈ R2 such that g(p) = a+ bp for almost all p ∈ P ,

while the alternative is

HL
A : There exists no (a, b) ∈ R2 such that g(p) = a+ bp for almost all p ∈ P .

There is a large and still unsettled literature in econometrics and statistics dealing with spec-

ification tests of this type.24 These tests proceed in one of two ways: (i) testing orthogonality

restrictions implied by the parametric model, or (ii) comparing a nonparametric estimate of

g(p) with a parametric estimate, â + b̂p. We implement and explore the properties of both

types of tests and briefly discuss a third test due to Li and Nie (2007).

Linearity Test 1: Wald Test Based on Series

The first test of linearity of E(Y |P (Z) = p) in p determines whether terms in addition to

p are required to fit the data. It is instructive to consider the case of the normal selection

model as a baseline. When the data are generated from the normal generalized Roy model,

we can characterize E(Y |P (Z) = p) by

E(Y |P (Z) = p) = ᾱ + β̄p+ τ

∫ p

0

Φ−1(uD)duD.

Figure 6 plots E(Y |P (Z) = p) for alternative values of τ . This figure provides, in addition to

the plots of E(Y |P (Z) = p), the R2 of a regression of E(Y |P (Z) = p) on a linear term in p as

24See, e.g., Horowitz and Spokoiny (2001) and the references therein. The properties of particular tests
depend on the specification of alternatives.
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well as the R2 after adding a quadratic term in p. The R2 will depend on the distribution of

the propensity score (the regressor). We present the R2 for two different distributions of the

propensity score. In column A of Figure 6 the distribution of the propensity score is uniform,

while in column B the propensity score is concentrated in one half of the unit interval. When

the propensity score is concentrated in one part of the unit interval, a linear function of p

is a very good approximation to E(Y |P (Z) = p). Note, however, that no matter what the

distribution of the P (Z), a quadratic function is able to closely approximate E(Y |P (Z) = p).

This suggests that for a normal alternative one can use a quadratic function in p to estimate

E(Y |P (Z) = p).

In the general non-normal case, we use polynomials to approximate classes of smooth

alternatives for the function g(·). We estimate E(Y |P (Z) = p) using polynomials of degree

2 or higher. Polynomials approximate well a broad class of functions. Exploring power in

this class gives us an indication of the power of our procedures against such alternatives.25

Our specification of a more general, but still parametric, alternative model is

g(P (Z)) =
L∑
l=0

φl(P (Z))l,

where L is assumed to be known.26 Our test for linearity is

H0 : φl = 0 for l = 2, . . . , L

HA : φl 6= 0 for some (or all) l = 2, . . . , L.

We fit models with many different choices for the degree of the polynomial. We interpret

a rejection of linearity in any of these models as a rejection of the null hypothesis of linearity.

However, we need to use caution in constructing the critical values for our test statistics.

If we conduct tests for linearity in each model separately, as we add more tests (i.e., more

25Ichimura and Todd (2007) discuss the properties of series estimators. Newey (1997) establishes conver-
gence rates and proves asymptotic normality of such estimators.

26Below, we discuss a procedure when L is unknown.
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Figure 6: E(Y |P ) (the solid line) and the distribution of propensity scores (the dashed line)
in the normal generalized Roy model.

A. B.

Note: The R2 linear is calculated as the R2 of a regression of the true E(Y|P) on a linear term in P(Z).  The R 2 quadratic is the R2 of a regression of the true E(Y|P) on a quadratic 
polynomial in P(Z).  In column A, the single instrument Z is distributed N(0, 1), the unobservable in the choice equation, V, is distributed N(0, 1) and the choice equation is given by 
D = 1(Z ≥ V), which results in uniformly distributed propensity scores.  In column B, the single instrument Z is distributed N(1, 0.1), V is distributed N(0, 1) and the choice equation 
is D = 1(Z ≥ V), which results in the shifted distributed of propensity scores shown.
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polynomials for series estimators of ever higher degree), we would, in general, increase the

probability of type I error. However, analogous to the results in the literature on multiple

hypothesis testing, we construct critical values that allow us to control the probability of

type I error.

Specifically, suppose that we estimate the function g(·) using M(= L−1) different models

corresponding to adding additional polynomial terms. We seek to use the information from

all of these estimators to test for the linearity of g(·). We have statistics for the tests of

linearity for each of those models separately. Call them T1, . . . , TM . For each model, we

know the asymptotic distribution under the null hypothesis. Because in our case these test

statistics will not in general have the same asymptotic distribution under the null, to make

them comparable, we convert them into p-values, denoted q1, . . . , qM , which are distributed

unit uniform under the null. Since we are looking for a deviation from linearity in any of

the models, the only p-value that will be relevant for this decision will be the smallest one,

namely

q∗ = min
m∈{1,...,M}

{qm}.

This will be the p-value corresponding to the most significant test statistic. To make the size

of the test 0.05, one cannot simply compare q∗ to 0.05. To obtain the distribution of this

statistic we use a bootstrap procedure developed in Romano and Wolf (2005) and Romano

and Shaikh (2006). Their procedure works in this application because the test used in this

paper can be viewed as the first step in their “stepdown” procedure.27,28 However, in the

results presented below we do not report stepdown p values for the remaining hypotheses

because we are only interested in testing the first round null hypothesis that no higher order

polynomial in p enters (14).

The Web Appendix, Section 7, presents a detailed description of the testing procedure

27Notice that we are not testing individual coefficients for the M different polynomials, but an entire class
of polynomials of order 2 or higher, up to order k ≤M + 1.

28Alternatively we could use a χ2 test (or F -test in small samples) of the hypothesis that the coefficients
associated with the polynomials of order two and higher are all zero.
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used in this paper and shows how we construct the critical value against which to compare

q∗. In our applications of series estimators, we use four polynomials in P (Z) of increasing

degree from degree 2 to degree 5 (M = 4). In simulations available on our website, we

confirm that this procedure is able to control the size of the test.29,30

In order to examine the power of this test in detecting deviations from H0, for simplicity

we will consider the test which fits a quadratic polynomial to E(Y |P (Z) = p) and tests

whether the coefficient on the quadratic term is zero. We test the significance of this coeffi-

cient using a Wald test. Again, we use the normal generalized Roy model as a simple base

case. As shown in Figure 6, a quadratic polynomial very closely approximates the function∫ P (Z)

0
Φ−1(t)dt and therefore we expect this test to have power to detect deviations from H0

29In the Web Appendix, we present simulations summarized in Figures A11 and A12, which are discussed
below. They show that for a variety of configurations of the parameters, under the null hypothesis our
procedure never rejects more than 5% of the time at the 0.05 level. See http://jenni.uchicago.edu/
testing_random/.

30To implement the test, the econometrician would also need to account for conditioning variables X,
which we have thus far kept implicit, and for the estimation of propensity scores, P (Z). Many of the X
variables that we use are categorical or binary. For X variables that are categorical we suggest stratifying the
data on X and perform tests within X cells. However, when the cells are too thin to allow the stratification
on X and still expect to have reasonable power in small samples, we instead suggest incorporating the
conditioning variables X as linear regressors and estimate an alternative specification:

Yi = Xiδ0 +Xi(δ1 − δ0)P (Zi) +
L∑
l=1

φlP (Zi)l + εi, (14)

where it is assumed that E(εi | Xi, Zi) = 0. The rationale for the interaction between X and P (Z) arises
from noting that

E(Y |P (Z) = p,X = x)
= E(α|P (Z) = p,X = x) + E(βD|P (Z) = p,X = x)

=
[
ᾱ(x) + β̄(x)p

]
+ E(Uα|P (Z) = p,X = x) + E(Uβ |D = 1, P (Z) = p,X = x)p

= xδ0 + x(δ1 − δ0)p+ κ(p)

where κ(p) = E(Uα | P (Z) = p) + E(Uβ | D = 1, P (Z) = p)p. The last equality comes from independence
assumption (A-1) presented in Section 2 and the assumption that α and β are linear functions of X.

When estimating κ(p) using polynomials in p one can simply regress Y on X, X ×P (Z) and polynomials
in P (Z). We do this in our example presented in Section 6. We estimate P (Z) using a probit model. Our
results are robust to alternative specifications of the choice equation.
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in this model.31 We estimate the following specification:

Yi = α + βP (Zi) + η[P (Zi)]
2 + εi.

Under the null hypothesis η = 0, the Wald test statistic formed using the least squares

estimator η̂ is asymptotically distributed as a χ2
1. Under the alternative, the Wald statistic

will converge to a noncentral chi-square distribution. Let gi = (1, P (Zi), [P (Zi)]
2) be the

row vector of regressors for individual i and G = (g1, . . . ,gI)
′ denote the matrix of regressors

stacked across individuals. Let c = [0 0 1]. Under our conditions, G′G
n

p→ Γ. In the normal

generalized Roy model, under alternative τ = τA√
I
, the noncentrality parameter of the chi-

square distribution of the test statistic is

λquad =
1

2
η̃2
[
σ2
εcΓ

−1c′
]−1

(15)

where

η̃ =
τA Cov

([∫ P (Z)

0
Φ−1(t)dt

]
⊥
, [P (Z)]2⊥

)
Var([P (Z)]2⊥)

and the subscript ⊥ denotes the residuals of a variable after projecting it onto a linear

function of P (Z).32 In Section 5 we examine the power of this test and its determinants,

taking into account that in applications P (Z) is estimated in a first stage.

31In the Web Appendix we derive the power of a direct test of τ = 0 using a correctly specified E(Y |P (Z) =
p) function.

32To justify the expression for η̃, note that we can write

Yi = α+ βP (Zi) + τA

∫ P (Zi)

0

Φ−1(t)dt+ εi

= α+ βP (Zi) + η[P (Zi)]2 +

[
τA

∫ P (Zi)

0

Φ−1(t)dt− η[P (Zi)]2 + εi

]

where the term in brackets is the error term. The true η is equal to 0 but plim η̂ = η̃ 6= 0 due to an omitted
variable bias. This bias is given by the formula in the text and is derived from first residualizing on P (Zi)
and then solving for the probability limit of η̂.
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Linearity Test 2: Bierens Conditional Moment Test

We also consider a test of the validity of representation (3) which relies on orthogonality

restrictions implied by the parametric model. We use the conditional moment (CM) test of

Bierens (1990).33 This test uses the fact that under the null hypothesis the following moment

condition must be satisfied

E[Y − a0 − b0P (Z) | P (Z)] = 0

for the true parameter vector (a0, b0) ∈ R2. This conditional moment restriction implies the

set of unconditional moment restrictions

E[(Y − a0 − b0P (Z)) exp(t′Λ(P (Z)))] = 0 (16)

for all t ∈ R, for some bounded one-to-one, mapping Λ from R into R. A test can be

constructed using the sample analog of the left-hand side of (16). Bierens (1990) shows how

one can use sample analogs to construct a test statistic which, under the null hypothesis,

converges in distribution to a χ2
1 and under the alternative diverges to infinity.

In analyzing the power of this test, we first consider the power of a test using the sample

analog of (16) for a single t in the context of the normal generalized Roy model and then

discuss how to generalize to the test we actually use. For a single t, let Q̂(t) denote the sample

analog of the moment condition (16). Bierens (1990) shows that
√
IQ̂(t) is asymptotically

normal and under the null has mean zero. Denote its asymptotic variance under the null by

σ2(t), with estimator σ̂2(t). Under H0, the test statistic, I(Q̂(t))2/σ̂2(t) is asymptotically

distributed as a central χ2
1. Let g(P (Z), θ0) = a0 + b0P (Z) denote the parametric function

we are testing. Note that the gradient of this function with respect to the parameter vector

∂g(P (Z),θ)
∂θ

= [1, P (Z)]′ does not depend on the point of evaluation of θ. Consider a local

33See also Bierens (1982) and Bierens and Ploberger (1997) for related tests. Newey (1985) discusses
conditional moment tests more generally.
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alternative τ = τA/
√
I in a normal generalized Roy model. Under this alternative, the test

statistic is distributed asymptotically as a noncentral chi-square with one degree of freedom

and noncentrality parameter

λCM(t) =
1

2
(QA(t))2[σ2

A(t)]−1.34 (17)

This expression gives the asymptotic power of a test for a single choice of t. The Bierens

test maximizes the test statistic over t. Under the alternative, the test statistic is not a

simple noncentral chi-square. We explore the power of this test using simulation.35

All of the Preceding Tests are Conditional Moment Tests36

This paper seeks to test if the outcome equation is generated by a model of the form

E(Y | P (Z)) = a+ bP (Z)

which is equivalent to

E [h(P (Z)) [Y − a− bP (Z)]] = 0

34

QA(t) = E

[(
ᾱ+ β̄P (Z) + τA

∫ P (Z)

0

Φ−1(uD)duD + ε− g(P (Z), θ̂)

)
exp(t′Λ(P (Z)))

]

σ2
A(t) = E

(ᾱ+ β̄P (Z) + τA

∫ P (Z)

0

Φ−1(uD)duD + ε− g(P (Z), θ̂)

)2

×
[
exp(t′Λ(P (Z)))− ξA(t)Ω−1

[
1

P (Z)

]]
ξA(t) = E

[
∂

∂θ′
g(P (Z), θA) exp(t′Λ(P (Z))

]
= E

[[
1

P (Z)

]′
exp(t′Λ(P (Z))

]

Ω = E

[
∂

∂θ′
g(P (Z), θA)

∂

∂θ
g(P (Z), θA)

]
= E

[
1 P (Z)

P (Z) [P (Z)]2

]
where θ̂ is the least squares estimate of θ in a regression of Y on a constant and P (Z).

35We modify his test statistic for our applications because we need to account for the fact that the
propensity scores P (Z) are estimated in a first stage. Therefore, when we form the test statistic, we use an
estimate of the variance of the sample analog of (16) using a bootstrap procedure in which we reestimate
P (Z) in each sample, rather than an estimate based on the approximate asymptotic variance of (16) derived
in Bierens (1990).

36We thank Edward Vytlacil for suggesting this unifying approach.
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for any function h. Conditional moment tests would typically use a vector of functions

h(P (z)) to construct tests.

All of the tests previously discussed are based on different choices of h(P ). For the Bierens

test, we use h(P (Z)) = exp(t′Λ(P (Z))). The test of linearity based on polynomials takes

h(P (Z)) =
[
1, P (Z), (P (Z))2, . . . , (P (Z))L

]
. The IV test can also be cast in this framework.

The plim of the IV estimator obtained using Jk(Z), k = 1, . . . , K, as an instrument are

the values of (ak, bk) that solve

E [Jk(Z) [Y − ak − bkD]] = 0

and

E [Y − ak − bkD] = 0, k = 1, . . . , K.

By the law of iterated expectations, this is equivalent to solving

E [Jk(Z) [E(Y | Z)− ak − bkP (Z)]] = 0

E [E(Y | Z)− ak − bkP (Z)] = 0,

which is equivalent to solving

E [Jk(Z) [Y − ak − bkP (Z)]] = 0

E [Y − ak − bkP (Z)] = 0.

For one instrument there is no test, but for two or more (K ≥ 2), one can test if a common

pair of (a, b) satisfies all of the moment conditions produced from using different instrumental

variables. This is the classical test of overidentification. Thus, all of the tests previously

discussed can be viewed as conditional moment tests.
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Linearity Test 3: A Semiparametric Test Based on Local Linear Regression37

A potential problem with the test based on series estimators (Linearity Test 1) is that it

assumes that the degree of the highest order polynomial in P (Z) is finite and known. A

semiparametric approach that did not rely on strong functional form assumptions about the

generator model would be more desirable.

Recently, Li and Nie (2007) have used local linear regression methods to develop a test

for linearity of an unknown parametric function in a semiparametric model. They develop a

test of linearity of the unknown nonparametric component (linearity in P (Z) in our setup)

that can be applied to the problem analyzed in this paper if it is adapted to the case of an

estimated P (Z). If P (Z) is parametric and its coefficients are
√
N estimable, their analysis

can be applied directly. The case where P (Z) is estimated nonparametrically is left for

another occasion.

Li and Nie (2007) conduct a Monte Carlo study of their approach. They show good

size and power properties for their test statistic. Their test can be interpreted as a local

conditional moment test.

Conditioning on X

Throughout, we have conditioned on X. An important practical problem not addressed in

this paper but common to all empirical models is picking the appropriate conditioning set,

and determining how to explicitly model the dependence of Y on X.

5 The Power of the Tests

We use the generalized Roy model as our base case because it allows for a simple param-

eterization of the correlation between β and D. We consider a more general polynomial

alternative in Section 5.4. Our results quantify the sample size needed to produce tests with

37We thank Xiaohong Chen for directing us to this paper and clarifying our thinking about semiparametric
approaches to testing for linearity.
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substantial power. We establish that the distribution of the propensity scores, P (Z), is an

important determinant of power.38

5.1 Normal Generalized Roy Model as the Data Generating Pro-

cess

We simulate data from the generalized Roy model for a range of parameter values given

in Table 2. As a base case, we consider a scalar normal instrument Z, ie. Z ∼ N(0, σ2
Z).

However, we also analyze models with multiple instruments and a variety of distributions

for the instruments.

Table 2: Initial Specification used to calculate the power of the tests.

Outcomes Decision Rule:
Y0 = µ0 + U0 D = 1(αD + γZ ≥ V )
Y1 = µ1 + U1

Observed Y = DY1 + (1−D)Y0

with parameters: with parameters:
µ0 = 0 αD = 0
µ1 = 0.2 γ = 1

Distribution of Unobservables:U1

U0

V

 ∼ N
 0

0
0
,

 σ2
U 0 ρ1V

0 σ2
U −ρ1V

ρ1V −ρ1V 1


where ρ1V = Cov(U1, V )/

√
Var(U1) Var(V ) and we assume ρ0V = −ρ1V . We vary

σ2
U between 0.1 and 2. We consider values of ρ1V from −0.7 to 0.7. Values outside

of this interval result in a covariance matrix that is not positive definite.

Distribution of Observables:
Normal case: Z ∼ N(µZ , σ2

Z)
We calculate the power function for values of σ2

Z between 0.1 and 2 and µZ ∈ {0, 1}.

Mixture of Normals case:(
Z1

Z2

)
∼ pmix ×N

(
−0.8

1 ,

(
1.4 0.5
0.5 1.4

))
+ (1− pmix)×N

(
−0.8

1 ,

(
0.6 −0.3
−0.3 0.6

))
We calculate the power function for values of pmix ∈ {0.45, 0.75, 0.95}.

38We do not investigate the power of the Li and Nie (2007) test because they already conduct a Monte
Carlo study of their test for linearity.
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The parameterization in Table 2 makes what seem to be two fairly restrictive assumptions

about the covariance structure of the unobservables in the model. It assumes that ρ10 = 0,

that is, that the covariance between the two potential outcomes is zero, and ρ0V = −ρ1V .

These assumptions are not as restrictive as they may appear to be for calculating the power

of our tests. In the normal generalized Roy model, the nonconstancy of the MTE in uD (or

v) depends only on the term τ = ρ1V σ1 − ρ0V σ0 and so for a given value of that index, the

value of ρ10 does not affect the power of the test. The derivation of the power of the tests

shows that it depends on τ , the distribution of P (Z) and the precision with which we can

form our estimators (which will depend on the variances of the unobservables). We allow all

of these quantities to vary in our simulations.

5.2 The Power of the IV Tests

We investigate the following model without regressors:

Y = µ0 + (µ1 − µ0)D + ξ

where ξ = (U1 − U0)D + U0, and ξ ⊥�⊥ D. As explained in Section 3.1, we construct a test

based on the difference in IV estimators. We could potentially use any two IV estimators to

conduct this test. We do not derive the optimal pair or set of instruments that maximize

the power against a given alternative. We consider the three examples from Section 3.1: (i)

Z1 and Z2, with at least one being non-normal; (ii) Z is scalar and we use Z and Z2, a

nonlinear function of the instrument; and (iii) P (Z) over distinct intervals of its support.

Consider first the power of a test based on the equality of IV estimators using Z1 and Z2

as instruments, where (Z1, Z2) is distributed as a mixture of bivariate normal distributions.

This test was discussed in Section 3.1, where we show the weights that each of the IV

estimators places on the MTE, as well as the variance weights of the difference between the

two estimators. Combining this information, we can, for alternative parameterizations of the
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normal generalized Roy model, calculate the power of a Wald test based on the difference

between these two IV estimators. Figure 7 plots the power functions for this test. Each of

the plots shows the power as a function of τ , which is a measure of deviation from the null

of a flat MTE in the generalized Roy model. The three plots each fix pmix at alternative

values, from 0.45 to 0.95. Moving from 0.45 to 0.75 the power of the test declines. When

pmix = 0.75, the IV weights are more similar than when pmix = 0.45 but the variance of

the difference in the instruments becomes smaller. As the mixing proportion approaches

1, and the instruments approach normality, the power of the test greatly diminishes. This

is predicted by our analysis that establishes the lack of power of normal instruments in a

normal generalized Roy model.

We next examine the power of a test based on a nonlinear function of the single instrument

Z – that is using Z vs. Z2. In this case D = 1(Z ≥ V ) and Z ∼ N(µZ , σ
2
Z). This test

was discussed in Section 3.1, where we plotted the weights of each of the IV estimators as

well as the variance weight for the difference between the two estimators. Figure 8 plots

the power of this test for different distributions of the instrument Z. We consider values of

µZ ∈ {−0.5, 1} and values of σ2
Z ∈ {0.5, 1, 2}. The variance of the unobservable in the choice

equation, σ2
V , is fixed at 1. The left column of Figure 8 plots the power for µZ = 1. For a

fixed µZ , the power of the test is increasing in σ2
Z . The figures in the right column plot the

power for µZ = −0.5. The power is uniformly higher when µZ = −0.5 than when µZ = 1,

which is in accordance with the plots of the weights provided in Section 3.1.

Finally, we consider a test of equality of IV estimates formed using observations with

P (Z) in different intervals of the support of P (Z). We separate the observations according

to whether they lie above or below the sample median of P (Z). As in the example considered

in Section 3.1, we let D = 1(Z ≥ V ) where Z ∼ N(µZ , σ
2
Z). Figure 9 plots the power of this

test for alternative values of µZ ∈ {0, 1} and σ2
Z ∈ {0.5, 1, 2}. As with the test based on IV

using Z and Z2, the power of this test is increasing in σ2
Z . The power of the test is uniformly

lower when µZ = 1 than when µZ = 0 because when µZ = 1, one of the IV estimators places
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Figure 7: Power of a Wald test of the equality of IV estimators formed using Z1 and Z2,
mixtures of normals instruments, as a function of τ .

p mix  = 0.45

0.
2

0.
4

0.
6

0.
8

1.
0

P
ow

er

p mix  = 0.75

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.
0

τ

1.
0

0.
0

0.
2

0.
4

0.
6

0.
8

P
ow

er

p mix  = 0.95

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
τ

0.
8

1.
0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

P
ow

er

Note: Standard errors are computed from the formulae developed in the text. Each line plots the
power for a different sample size, as indicated by the legend. The data generating process is the normal
generalized Roy model. The variance of the unobservables in the outcome equations is fixed at 1, as is
the variance of the unobservable in the choice equation The choice equation is D = 1(γ Z + γ Z ≥

τ

1,000 4,000 7,000 10,000

the variance of the unobservable in the choice equation.  The choice equation is D = 1(γ1Z1 + γ2Z2 ≥ 

and the coefficients in the choice equation are γ1=0.2, γ2=1. The power functions plotted are the power
of a Wald test of the equality of IV estimates formed using Z1 and Z2 as instruments.
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Figure 8: Power of a Wald test of the equality of IV estimators formed using Z and Z2, as
a function of τ .
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the IV estimate formed using Z2 as an instrument.  
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all of its weight on a relatively small segment of the MTE. In further examples presented

below, we show that, as expected, σ2
Z is an important determinant of the power of all of the

tests we consider.

In the next section, we analyze the power of an IV test which separates P (Z) across

distinct intervals of its support into quartiles of P (Z). This test considers any rejection of

pairwise equality in any of the comparisons as a rejection of the null. In order to control for

the size of the test, we use the stepdown procedure of Romano and Wolf (2005). We analyze

the performance of this test along with other test procedures.

5.3 Comparative Power

We now compare the power of IV-based tests to power for the first two tests of linearity

described in Section 4. The power is calculated for each test using a Monte Carlo procedure

described in the Web Appendix, Section 8. Figure 10 plots the power for all of the tests

analyzed in this paper.

We start the discussion with the IV test. We use the IV estimators which separate

the observations across distinct intervals of the propensity score. We discuss two IV tests

constructed on this principle. They vary dramatically in their power. One has relatively

high power and the other relatively low power.

The power of the test of the equality of the estimates using the propensity score above

and below the median as the instruments is given by the dotted line. The power of the

test separating the data by quartiles of the propensity score is given by the dot-dashed line.

Panel A of that figure fixes all of the parameters of the model and varies the sample size.

As expected, the test is consistent. The size of the departures from the null can be gauged

by noticing that with our parameterization, the restriction that the covariance matrix of the

unobservables is positive definite implies |τ | < 1.4. Therefore we can interpret a value of

τ = 0.7 as a large deviation from the null. The IV test based on separating the data into

smaller intervals and conducting more pairwise comparisons tends to have lower power than
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Figure 9: Power of a Wald test of the equality of IV estimators using P (Z) as an instrument
when the sample is separated by whether P (Z) lies above or below the median.
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the test based on the estimates above and below the median. Although one can test more

distinct intervals, the estimates in each interval are less precisely estimated. In addition, the

IV test based on the estimates above and below the median has markedly higher power than

the series test, especially for small sample sizes.

Panel B of Figure 10 plots the power of the test examining another dimension. These

plots hold the sample size fixed but change the “signal-to-noise ratio” which we define as

Signal

Noise
=

Var(Zγ)

Var(V )
=
γ2σ2

Z

σ2
V

.

This parameter measures the predictive power of the instrument in determining the treatment

choice. A relatively weak instrument corresponds to a small value of the signal-to-noise ratio.

We can see from these plots that this ratio substantially affects the power of the test. In

particular, when the signal-to-noise ratio is low, the test is unable to detect very large

deviations from the null, even at a sample size of 4,000.

The signal-to-noise ratio affects the power of the tests through the distribution of propen-

sity scores. A low signal-to-noise ratio results in very little dispersion in the propensity scores.

This implies that estimates of E(Y |P (Z) = p) will be based on a narrow range of values of

P (Z). This makes nonlinearity more difficult to detect. A linear function may be a good

approximation to the true function in a small neighborhood of g(p). Over a large stretch of

values of p, linearity is a good approximation to the normal MTE; see figure 6.

As a reference, we plot the power of a test of H0 based on whether or not τ = 0 using

maximum likelihood in a normal generalized Roy model. The power of this test is given by

the heavy line. This test outperforms the other tests, as expected, but especially so when

the signal-to-noise ratio is low. This is because with a low signal-to-noise ratio, the range

of values of P (Z) is small. This small range degrades the power of the less parametric tests

but does not significantly hurt the parametric test which completely specifies the form of

the MTE.
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Figure 10: Power of the tests for selection on the gain to treatment as a function of τ .

A. Fixed signal/noise ratio; varying sample sizea

B. Fixed sample size; varying signal/noise ratiob

Note:  The data are generated according to the normal generalized Roy model given in the text.  The choice equation is D = 1(Z ≥ V) where 
Z ~ N(0,σZ

2).  Standard errors are obtained from the bootstrap.
a Panel A shows the power functions when fixing the signal to noise ratio at 1 (this means Var(Z γ)=1, compared to the variance of the 
unobservable in the choice equation of 1) and changing the sample size.  
b Panel B shows the power functions for the fixed sample size of 4,000, but changing the signal to noise ratio from 0.1 to 2.  The signal to 
noise ratio is defined as Var(Zγ)/Var(V).
* IV test 1 separates the observations into those with propensity scores in the interval [0,P median] and those with propensity scores in the 
interval [Pmedian,1] and testing the equality of the IV estimates based on those subsamples.
** IV test 2 separates the observations into quartiles of the propensity score.  It tests for pairwise equality of the IV estimates calculated on 
each of those four subsamples and rejects the null if equality is rejected in any of the pairwise comparisons.  It controls the size of the test 
using the method of Romano and Wolf (2005), as described in the text.
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To investigate the relationship between the signal-to-noise ratio, the deviation from the

null hypothesis (in the form of τ), the departure from linearity and the power of the tests,

we define the following R2 measure:39

1−R2 =
E [(E(Y |P (Z) = p)− E∗(Y |P (Z) = p))2]

Var(E(Y |P (Z) = p))

where E∗(Y |P (Z) = p) is the linear projection of Y on P (Z). This quantity is one minus the

R2 from a regression of the true expectation E(Y |P (Z) = p) on a linear function in P (Z).

Under H0, 1− R2 = 0. Under the alternative, the magnitude of 1− R2 is a measure of the

degree to which the alternative differs from the null. We use 1− R2 as a summary statistic

of deviation from the null and plot the power of all of our tests as a function of it. It is a

useful summary statistic because it does not rely on the normality of the base model. We

use it for other specifications of the model which we discuss below.

Figure 11 follows the same general format as Figure 10, but graphs power as a function

of 1− R2, rather than τ .40 Each plot presents only the right half of the corresponding plot

in figure 10 (the τ > 0 halves) because 1−R2 is symmetric in τ . Panel A fixes the signal-to-

noise ratio and plots the power for different sample sizes. At small sample sizes, the series

test and the IV test using quartiles of the propensity score have the lowest power, but at

larger sample sizes, the IV test using quartiles has lower power than all of the other tests.41

Panel B fixes the sample size and shows the power functions for different signal-to-noise

ratios. In these plots, the greater the departure of the null from linearity, the greater the

power of the tests. In addition, changing the signal-to-noise ratio changes 1−R2. Therefore,

to the extent that the power is different for different signal-to-noise ratios in Figure 10, those

differences arise due to differences in the distribution of propensity scores. That is, at a

39Measuring deviations from the null in this fashion was suggested to us by Edward Vytlacil.
40Although we define 1−R2 as a population quantity, we use the sample analog, calculated from a sample

of 10,000. We simply want to choose a large number of observations in order to get a good estimate of the
distribution of the propensity score fP (Z) with which to calculate 1−R2.

41At sample size 10,000, the power functions for the conditional moment test, the series test and the test
of the equality of the IV estimates above and below the median lie on top of each other.
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given level of 1−R2, the signal-to-noise ratio has no effect on the power of the tests (up to

simulation error).42

5.3.1 Tests for Linearity

Test 1: Wald Test Based on Series Estimators

We next calculate the power of the test of the linearity of E(Y |P (Z) = p) in p which compares

the estimate based on a parametric (linear) estimator to a more general polynomial series

estimator.43 First, we calculate analytically the power of the test using only a quadratic

polynomial in p based on expression (15) in Section 4. This allows us to precisely determine

the power of the test across the dimensions we find to be important. Figure 12 plots the

power of this test at different sample sizes for fixed alternatives. Inspection of these power

functions shows that, as in the IV tests, the power is increasing in σ2
Z . As expected, it is

decreasing in σ2
0 = σ2

1 = σ2
U .

We have shown that in the case of a model with normal errors, a quadratic polynomial

in P (Z) is able to approximate E(Y |P (Z) = p) well, and therefore will have high power

in detecting deviations from H0. However, in the non-normal case, E(Y |P (Z) = p) is a

general function which may not be well-approximated by a quadratic polynomial. Therefore,

we construct a test which relies on fitting series estimators of E(Y |P (Z) = p) of varying

degrees.

The test statistic is distributed as the maximum over a set of noncentral chi-square

42In the Web Appendix, we plot additional figures which trace out the power of the specific IV tests more
thoroughly across the three dimensions which we find are important in this model – the deviation from the
null (as measured by τ), sample size, and the signal to noise ratio. Figures A2 through A4 are plots for
the tests based on the IV estimates above and below the median and Figures A5 through A7 for the tests
based on IV estimates for separate quartiles. We also present the power of a test of whether the IV estimate
using only observations with propensity scores below the 40th percentile and the IV estimate using only
observations with propensity scores above the 60th percentile are equal in Figures A8 through A10. Using
more intervals and fewer observations in general reduces power.

43Here we describe a procedure for a model that does not include conditioning variables X since in our
simulations we do not have such covariates. However, in the empirical examples discussed below, we use
such regressors. The test consists of regressing Y on X, X interacted with P (Z) and a polynomial in P (Z)
and testing for the joint significance of the coefficients on the nonlinear terms in P (Z). When there is no X,
the model simplifies appropriately.
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Figure 11: Power of the tests for selection on the gain to treatment as a function of 1−R2,
normal instrument.

A. Fixed signal/noise ratio; varying sample sizea

B. Fixed sample size; varying signal/noise ratiob

Note:  The data are generated according to the normal generalized Roy model given in the text.  The choice equation is D = 1(Z ≥ V) where Z 
~ N(0,σZ

2).  Standard errors are obtained from the bootstrap.
a Panel A shows the power functions when fixing the signal to noise ratio at 1 (this means Var(Zγ)=1, compared to the variance of the 
unobservable in the choice equation of 1) and changing the sample size.  For a given configuration of parameters, R2 is the R2 from a regression 
of the true E(Y|P) on a linear function of P.
b Panel B shows the power functions for the fixed sample size of 4,000, but changing the signal to noise ratio from 0.1 to 2.  The signal to noise 
ratio is defined as Var(Zγ)/Var(V). 
* IV test 1 separates the observations into those with propensity scores in the interval [0,Pmedian] and those with propensity scores in the interval 
[Pmedian,1] and testing the equality of the IV estimates based on those subsamples.
** IV test 2 separates the observations into quartiles of the propensity score.  It tests for pairwise equality of the IV estimates calculated on each 
of those four subsamples and rejects the null if equality is rejected in any of the pairwise comparisons.  It controls the size of the test 
using the method of Romano and Wolf (2005), as described in the text.
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Figure 12: Power of a Wald test for the null hypothesis that the coefficient on [P (Z)]2 is
zero in the generalized Roy model.
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Note:  Standard errors are obtained analytically.  The data are generated according to the normal generalized Roy model given in the text.  The choice 
equation is D = 1(Z ≥ V) where Z ~ N(0,σZ

2).  These figures plot the power of a test of the significance of [P(Z)]2 in a regression of Y on P(Z) and 
[P(Z)]2.  The size of the test is fixed at 0.05, and each line plots the power at a different sample size.
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distributions, each with noncentrality parameter analogous to (15). Below we use simulation

methods to explore the distribution of this test statistic under various alternatives. Note

that although we do not have an exact expression for the distribution of the test statistic for

this general test, we control the size of the test at α = 0.05 using the Romano-Wolf stepdown

procedure. Specifically, we simulate the distribution of the smallest (most significant) p-value

under the null, as discussed above. This method applies the first stage of Romano and Wolf

(2005) and is described in the Web Appendix, Section 7. The Monte Carlo algorithm we use

is described in the Web Appendix, Section 8.

We limit the degree of the polynomial to 5. We add polynomials in increasing order from

2 to 5, keeping all lower order terms when the order of the polynomial is increased. This

procedure produces a test of size at most 0.05 at τ = 0. Results from these simulations are

also given in Figures 10 and 11. The dashed lines in the figures plot the power of this test.

Figure 10 shows that under the null (τ = 0), we reject the null (up to simulation error) 5%

of the time. Panel A of the figure shows the power function across different sample sizes,

and panel B fixes the sample size and shows the power function across different values of

the signal to noise ratio. The results indicate that sample sizes above 1,000 are necessary in

order for the series test to have power and that with a relatively weak instrument, this test

will fail to have power against most alternatives.44,45,46

Test 2: Bierens Conditional Moment Test

Finally, we examine the power of the conditional moment test of Bierens (1990) in detecting

selection on the gain to treatment. This test uses the fact that under the null hypothesis of

linearity of g(p), moment condition (16) must hold for all t ∈ R and any bounded, one-to-one

44In our web appendix, we report analyses for the series test comparable to those reported in Figures A2
through A4. The results are qualitatively similar to what is obtained for the IV test. (See Figures A11-A13
in the Web Appendix.)

45Apparent inconsistencies of the test under the null in Figures 10 and 11 are due to sampling error.
46An alternative approach to testing the order of the polynomial is to fit a model with L polynomial terms

and to conduct a joint test that the coefficients of the polynomials above order 1 are statistically significantly
different from zero. We have not compared the power and size properties of these two approaches.
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mapping Λ(·). Following Bierens (1990), we use Λ(P (Z)) = tan−1((P (Z) − P̄ (Z))/sP (Z))

where P̄ (Z) and sP (Z) are the sample mean and standard deviation of P (Z), recognizing that

this is just one of many possible Λ. To implement the test, we must also choose a region

of values of t over which to calculate the sample analog of (16). We search over a grid of

values of t between -10 and 10 spaced at intervals of 0.1. The method for constructing the

test statistic presented in Bierens (1990) requires the choice of two arbitrary real numbers,

which determine a cutoff value used in a decision rule for how to form the test statistic.

These must be chosen independently of the data generating process. We choose parameter

values that Bierens uses in his Monte Carlo simulations.47 The procedure used to calculate

the power of the test for different values of τ is described in section 8 of the Web Appendix.

The power of the moment test is plotted as the solid line in Figures 10 and 11.48

5.4 Power under Alternative Data Generating Processes

Thus far, our Monte Carlo simulations have only considered the properties of tests under

the specific alternative generated by different parameterizations of a normal generalized Roy

Model. We choose this model because it allows for a simple parameterization of alternatives

and is a useful baseline in empirical work. As a check to the robustness of our analysis, we

have explored alternative data generating processes for the instruments as well as alternative

specifications for the MTE. The results of these simulations are placed in the Web Appendix

to this paper. They suggest that the power of the tests does not depend fundamentally on

the normality assumptions made in the previous section. In particular, when the effective

deviation from the null is measured by 1 − R2, as defined above, our results indicate that

the power of the tests is relatively invariant to the process generating choices, given 1−R2.

47See Bierens (1990), p. 1453. We choose, in Bierens’ notation, γ = 1 and ρ = 0.5. These are not to be
confused with other uses of γ and ρ in this paper. Alternative parameter values produce qualitatively the
same results as we report in this paper. Results are available on request from the authors.

48In the Web Appendix, we plot additional figures which trace out the power of the moment test more
thoroughly across the three dimensions which we find are important in this model – the deviation from the
null (as measured by τ), the sample size, and the signal to noise ratio. Figures A14 through A16 contain
these plots.
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The parametric model always has the highest power, followed by IV in P (Z) partitioned

below or above the median. Generally, the power functions of the series and CM tests are

somewhat below those for IV in P (Z) above and below the median, with no clear ranking

between them. Partitioning IV into quartiles generally produces the lowest power functions.

We next consider a prototypical application of the null the hypothesis of selection on the

gain to treatment.

6 An Analysis of a Prototypical Problem in Microe-

conometrics

This section draws on the empirical analysis of Carneiro, Heckman, and Vytlacil (2006) to

test for the presence of a correlated random coefficient model in estimating the returns to

college and to explore the power of the main tests considered in this paper in a prototypical

economic problem. The data come from the National Longitudinal Survey of Youth, 1979

(NLSY79), and it contains 1,747 observations for white men from the random sample. The

outcome of interest is the average of deflated (to 1983) hourly wages reported in 1989, 1990,

1991, and 1992.49 The choice variable is D = 1 if the individual has attended some college

or has completed any schooling beyond high school and D = 0 if the individual has a high

school diploma or has completed 12 years of schooling but has never attended college. Our

sample of 1,747 individuals contains 882 observations with D = 0 and 865 observations with

D = 1. See the Web Appendix, Section 9 for further description of the sample.

Following Carneiro, Heckman, and Vytlacil (2006), in the first stage we run a probit for

D using the following predictors of choice (Z): individual cognitive ability,50 mother’s educa-

tion, number of siblings, an indicator for urban residence at age 14, average unemployment

49Following Carneiro, Heckman, and Vytlacil (2006) we delete all wage observations below one or above
100 dollars.

50We proxy cognitive ability using the Armed Forces Qualification Test (AFQT). The AFQT has been
corrected for the effect of schooling at the time of the test using the method of Hansen, Heckman, and Mullen
(2001).
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in the state of residence, average log earnings in the Standard Metropolitan Statistical Area

(SMSA) of residence, local wages and unemployment rates at age 17, an indicator for the

presence of a college in the county of residence at age 14, and cohort dummies.51

For our estimates of the propensity score, P (Z), we use the fitted values from this probit

and in the second stage we regress the outcome variable on polynomials in the propensity

score in addition to the following control variables (X): years of experience, cognitive ability,

mother’s education, number of siblings, cohort dummies, average unemployment in the state

of residence and average log earnings in the SMSA of residence, local wages in 1991, and

local unemployment rate in 1991.

Panels A and B of Table 3 give the results from the tests of the equality of IV estimators

described above. We consider two formulations of the test: one based on IV estimates using

P (Z) as an instrument above and below the median, and one based on IV estimates that

separate the data by quartile of P (Z). Panel A shows that the test of H0 based on IV

estimators separated by the median of P (Z) has a p-value of 0.0527. Panel B separates

P (Z) into quartiles. The smallest p-value of the pairwise tests of equality is 0.2407. This

result is consistent with our investigation of the power of these two tests. Recall that the

test based on separating by the median of P (Z) is more powerful than the test based on

separating by quartiles of P (Z).

In addition, we have carried out tests of linearity described above. When we fit a

quadratic polynomial to E(Y |P (Z) = p), a Wald test for the signficance of the quadratic

term in P (Z) has a p-value of 0.046 – evidence against the null of linearity. However, when

we add higher degrees of the polynomial and use a stepdown method to control for the size of

the test, the critical value to control the size of the test at 0.05 is 0.024 against which we com-

51The complete list of instruments is: mother’s education, number of siblings, urban residence at age 14,
AFQT, mother’s education squared, number of siblings squared, AFQT squared, local average wage, local
average squared, local average unemployment rate, local average unemployment rate squared, year of birth
dummies, presence of a local college at age 14, presence of a local college at age 14 interacted with AFQT,
mother’s education and number of siblings, local wage at age 17, local wage at 17 interacted with AFQT,
mother’s education and number of siblings, local unemployment rate at age 17, and local unemployment rate
at age 17 interacted with AFQT, mother’s education and number of siblings.
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pare the p-value of 0.046. Allowing for the possibility of different degrees of the polynomial

beyond the second, we lose the ability to reject linearity. In addition, the more traditional

forward selection procedure for choosing the degree of the polynomial which starts with the

quadratic polynomial and adds higher degree terms as long as they are statistically signifi-

cant leads to choice of the quadratic polynomial as well. That is, if we test the significance

the additional [P (Z)]3 term, we obtain a p-value of 0.374. The conditional moment test

produces a p-value of 0.5525 and fails to reject the null hypothesis. This is consistent with

our evidence on its low power.

Under the assumptions of the normal selection model, we can test for selection on the

gains to treatment by testing the coefficient on the selection term in the second stage regres-

sion. The test strongly rejects H0 (see Table 3, Panel C). Our evidence for rejection of H0

is consistent with the analysis of Carneiro, Heckman, and Vytlacil (2006), who show that

for the same data a MTE based on a normal model is consistent with a nonparametrically

estimated MTE.

Figure 13 plots the MTE estimated using different degrees of polynomial approximation,

the MTE estimated assuming normality, and a nonparametric estimate of the MTE based

on local polynomial regression. As shown by Carneiro, Heckman, and Vytlacil (2006), the

normal model does a remarkably good job in describing the marginal treatment effect for

this sample. Figure 13 also shows the weights that the IV estimator places on the MTE as

well as the histogram of estimated propensity scores.

6.1 Monte Carlo Analysis for this Example

The Monte Carlo analyses presented in Section 5 were for general parameter values. To

examine the power issue in the context of the college vs. high school example, it is useful to

start with the benchmark model just presented and conduct a Monte Carlo study for this

prototypical model. It confirms in this setting the general Monte Carlo analysis discussed in

Section 5. All of the tests have relatively low power. This means that tests of the null of H0
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Table 3: College participation vs. stopping at high school: IV tests for selection on the gain
to treatment. (Standard errors are obtained from the bootstrap.)

A.  IV estimates above and below the mediana

Whole sample Below Above
Estimate: 0.1266 0.9112 -0.2445
Standard error: (0.1500) (0.5148) (0.3553)
p-value of test: 0.0527

B.  IV estimates by quartiles of the propensity scoreb

1st quartile 2nd quartile 3rd quartile 4th quartile
Estimate: 1.8842 0.5583 0.3076 -0.9497
Standard error: (4.2662) (3.4309) (0.5950) (5.2114)
Smallest p-value from pairwise tests: 0.2407

C.  Test of heterogeneity in normal selection modelc

Probability value of test: 0.011

a These IV estimates do not include interactions between the treatment and X.  The test of equality is a Wald test using a covariance 
matrix which is constructed using 1,000 bootstrap samples.  
b These IV estimates do not include interactions between the treatment and X.  The size of the test is controlled using a bootstrap 
method as described in the text.
c The p-value in this panel is calculated using a Wald test for whether the coefficient on the selection term is zero.  The standard error 
is calculated using 100 bootstrap samples.  
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Figure 13: College participation vs. stopping at high school: estimates of marginal treat-
ment effect for different models, IV weights and support of the estimated propensity score.
(Standard errors are obtained from the bootstrap.)

a In the MTE graphs, the dashed line indicates the IV estimate.  In the histogram, the dark bars correspond to the D=1 group and the light bars 
to the D=0 group.  The sample size is 1,747.  The confidence intervals are found using 100 bootstrap samples.  The covariates in the outcome 
equations are: years of experience, corrected AFQT, mother’s education, number of siblings, cohort dummies, average unemployment in the 
state of residence and average log earnings in the SMSA of residence, local wages in 1991, and local unemployment rate in 1991.  The 
instruments are:  corrected AFQT, mother's education, number of siblings, an indicator for urban residence at age 14, average unemployment in 
the state of residence, average log earnings in the SMSA of residence, local wages and unemployment rates at age 17, an indicator for the 
presence of a college in the county of residence at age 14, and cohort dummies.  The dependent variable in the probit is 1 if the individual 
reports having attended college or completed any schooling past 12 years, and 0 if the individual has a high school diploma or has completed 12 
years of school but not attended college (GEDs are excluded). 
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tend to be conservative in the sense that they are likely not to reject when the null is false.

In these simulations, we take the regressors (X) and instruments (Z) from the NLSY79

data, using the 1,747 observations of the independent variables in the Carneiro et al. model.

Assuming the normal generalized Roy model, we generate outcomes Y and choices D based

on alternative parameterizations of the unobservables of the model. That is, we take X and

Z from the data and we generate Y and D according to

Y1 = α1 +Xβ0 + U1

Y0 = α0 +Xβ1 + U0

D = 1(αD + Zγ ≥ V )

Y = DY1 + (1−D)Y0

where α1, α0, β0, β1, αD and γ are calculated from the NLSY79 data.

These simulations use the same regressors and instruments as in the Carneiro et al. study.

In order to generate the data under various alternative hypotheses, we specify alternative

parameter values for the distributions of the unobservables U1, U0 and V . We assume that

the unobservables are jointly normally distributed as in Table 2, but we vary the variances

and covariances of these variables. Therefore, the only way in which these simulated datasets

differ from the actual dataset is the values of Y and D and in the assumption of normal

errors. Carrying out simulations in this fashion lets us examine how the power of the tests

depends, in this specific example, on the departure from the null hypothesis (in the sense of

τ) and on the sample size. We use the values of σ1 and σ0 calculated from the NLSY79 data.

To gauge the explanatory power of our instruments in the NLSY79 data, we use the pseudo-

R2 of the first stage probit. The pseudo-R2 in this application is 0.2986. For comparison to

the power calculations, we note that this corresponds to a signal to noise ratio (as described

in section 3.1) of about 1.2.

Figure 14 shows the power of three of our tests for different values of τ and different
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Figure 14: Power of the tests from Monte Carlo simulations on NLSY79 data. (Standard
errors are obtained from the bootstrap.)

Power function, across τ Power function, across 1 - R2

Power function, across signal/noise ratio

Power function, across sample size

Parameterization
N= 1747 σ10 = 0
σ1= 0.4857 σV= 1
σ0= 0.3927 pseudo R2 = 0.2986

Signal/noise ratio = 1.2
τ = -0.2623

Note: In these simulations we use the real data from the NLSY79 on the effect of a college education on wages for regressors (X) and 
instruments (Z).  We parameterize the unobservables to match the estimated values from the data and we generate outcomes Y and choices D 
for different combinations of parameters.  We have 1,747 observations and we fix the std. dev. of U1 at 0.4857, the std. dev. of U0 at 0.3927.  In 
each of the top three panels, the dot-dashed vertical line indicates the estimates of the parameters calculated in the NLSY79 data.  The series test 
estimates polynomials of degrees 2 through 5 and in each model tests for the joint significance of the nonlinear terms.  The size of the test is 
controlled using the bootstrap procedure described in the text.
* The IV test used in these simulations tests for the equality of the IV estimates constructed using the propensity score as the instrument 
separately for observations below the median of P(Z) and above the median of P(Z).
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sample sizes. Note that with our actual sample size of 1,747 and our estimated τ = −0.2623

we are in a range where all of the tests have very low power, although for a fixed τ , the

IV test generally has more power than the series test, which in turn has more power than

the conditional moment (CM) test. In addition, the IV test shows greater increase in power

with the signal/noise ratio than do the other tests. These results are in accordance with the

Monte Carlo simulations conducted in Section 5.52

For comparison with the power calculations made in the previous sections, we also present

these results in terms of the R2 of a regression of the fitted E(Y |P (Z) = p) on a linear term

in P (Z). This allows us to compare the value of the R2 we calculate in the data with values

of the R2 for other parameterizations as shown in Figure 14. We find that for samples

consistent with those found in practice the estimated 1− R2 = 0.1375. It is represented by

the vertical dot-dashed lines in Figure 14.

Overall, the simulations based on the data from this example indicate that for this sample

it would take a large deviation from the null in order for us to reject H0. Our evidence on

power gives us greater confidence in rejecting the null hypothesis for the Carneiro, Heckman,

and Vytlacil (2006) data. We reject H0 in their sample, even though the power of the tests

is low.

7 Summary and Conclusion

This paper develops and applies tests for the presence of a correlated random coefficient

model. All of the tests we consider can be interpreted as conditional moment tests. We have

developed the sampling distribution of the IV estimator using the marginal treatment effect

and its extensions to higher moments of the distribution of the heterogeneity on which agents

select. We investigate the power of general tests based on the correlated random coefficient

model, where the parameter of interest is determined by an instrument.

We develop and evaluate instrumental variable tests for the null hypothesis of the absence

52An exception is that the CM test falls appreciably in power in this example.
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of a correlated random coefficient model. We examine the power of these tests and the power

of additional tests of the null hypothesis based on linearity in p for E(Y | P (Z) = p,X = x).

In sample sizes common in empirical economics, the power of the proposed tests is low.

The degradation of power of less parametric tests from the parametric tests is substantial.

Such tests are conservative in the sense that they often do not reject the null of no correlated

random coefficient model (H0) when, in fact, a correlated random coefficient model describes

the data. Among the tests we consider, an IV test based on partitioning the propensity score

above and below the median has the best performance in terms of power in samples commonly

encountered in practice. An analysis of the optimal choice of instruments to maximize the

power functions for the tests is left for future work.

We test if the additional complexity of a correlated random coefficient model is required to

describe data on the returns to college. We find support for the correlated random coefficient

model using our testing procedure. This evidence is strengthened by our study of the power

of these tests. We reject H0 in a situation where the power of the tests we use is low.

This paper analyzes the case of a binary treatment. Heckman, Urzua, and Vytlacil (2006)

and Heckman and Vytlacil (2007b) analyze the cases of a multiple treatment model generated

by an ordered choice model with stochastic thresholds and a multiple treatment model

generated by an unordered choice model. In all of these cases, IV produces an instrument-

dependent parameter so the IV test for selection on unobserved gains based on comparing

the estimands of two different IVs developed in this paper carries over in general to these

settings. A test of linearity of the conditional expectation of Y given P in (a vector of) P

is developed for the outcome model for multiple treatments generated by the ordered choice

model in Heckman, Urzua, and Vytlacil (2006). It also applies to the unordered multiple

choice model that identifies the treatment effect of a gain option compared to the next best

option which Heckman, Urzua and Vytlacil show is a direct extension of the binary model.
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A The Variance of Linear IV in the Correlated Ran-

dom Coefficient Model

The IV estimator, using instrument J(Z), is

β̂IV,J =

∑
YiJ̃i∑
DiJ̃i

and hence
√
Iβ̂IV,J =

1√
I

∑
(Ji − J̄)(αi + βiDi)

1
I

∑
DiJ̃i

.

Invoking standard central limit theorems,

√
I
(
β̂IV,J − βIV,J

)
d→ N(0,ΩJ).

Defining J∗ = J − E(J), where ΩJ is given by

ΩJ = E

{[
Y J∗
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Y J∗
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)]2
}
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]
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[
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]
−
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=
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ω2
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E
[
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]
−

 1∫
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[
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]
−
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.
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Using the law of iterated expectations as well as the assumption that α is independent of Z,

this expression can be written as

ΩJ = E
[
α2
] Var(J)

ω2
J

+
1

ω2
J

2E
[
αβ(J∗)2 | D = 1

]
Pr(D = 1) +

1

ω2
J

E
[
β2(J∗)2 | D = 1

]
Pr(D = 1)

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

where

hJ(uD) =
E[J∗ | P (Z) ≥ uD] Pr(P (Z) ≥ uD)

ωJ
.

Under the conditions of Fubini’s Theorem, we can exchange the order of integration and

write

ΩJ = E
[
α2
] Var(J)

ω2
J

+

1∫
0

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)] E((J∗)2 | P (Z) ≥ uD) Pr(P (Z) ≥ uD)

ω2
J

duD

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

= E
[
α2
] Var(J)

ω2
J

+

1∫
0

[
2E (αβ | UD = uD) + E

(
β2 | UD = uD

)]
hΩJ (uD)duD

−

 1∫
0

E(β | UD = uD)hJ(uD)duD

2

where

hΩJ (uD) =
1

ω2
J

∞∫
−∞

(j − E(J))2

1∫
uD

fP,J(P (z), j)dP (z)dj

=
E[(J − E(J))2 | P (Z) ≥ uD)] Pr(P (Z) ≥ uD)

ω2
J
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which is the expression in the text.

B Proof of Invariance of the IV Estimand to the Choice

of a Linear Instrument under Normality with a Lin-

ear Index Choice Equation

Suppose that the choice equation has a linear index structure, so that

D = 1(Zγ ≥ V )

where Z ∼ N(Z̄,ΣZ), an L-dimensional multivariate normal random variable, γ an L × 1

vector and V ∼ N(0, σ2
V ). Consider the instrument J(Z), which is a linear function of Z,

say Z ′η. In this case, the IV estimand (written as a weighted average over the support of

V ) is

βIV,J =

∫ ∞
−∞

MTE(v)hJ(v)φ

(
v

σV

)
dv

where φ(·) is a standard normal pdf and the IV weight is

hJ(v) =
E[J(Z)− E(J(Z))|Zγ > v] Pr(Zγ > v)

Cov(J(Z), D)
.

Under the assumption of multivariate normality for the instruments,

hJ(v) =

Cov(J(Z),Zγ)√
Var(Zγ)

φ

(
v−Z̄γ√
Var(Zγ)

)
Cov(J(Z),Zγ−V )√

Var(Zγ−V )
φ

(
−Z̄γ√

Var(Zγ−V )

) .
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Under assumption (A-1) in Section 2, Cov(J(Z), Zγ) = Cov(J(Z), Zγ − V ), and we obtain

hJ(v) =

1√
Var(Zγ)

φ

(
v−Z̄γ√
Var(Zγ)

)
1√

Var(Zγ−V )
φ

(
−Z̄γ√

Var(Zγ−V )

) .

That is, the IV weights, and hence the IV estimand, are the same for all J(Z) = Z ′η for any

η.
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