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1 Introduction

"The economy is a key factor in the Ukrainian chess boom. Playing chess is a prestigious
occupation and you can earn money with it. Additionally, you travel around the world. So,
a professional chess player has respect, unlike in Europe or the USA. By our standards,
chess is a good career." (Grandmaster Alexander Moiseenko in a ChessCafe.com interview)

In many sports and games, players start training very early but only few succeed and

make it to stardom. While the positive relationship between earnings and ability is general,

these professions are rather unique in that the effect of ability on earnings is highly convex,

and those who make it often earn a substantial reward (see MacDonald, 1988). In expected

terms, however, one needs to multiply such reward by a very low probability of success. Why

then do many youngsters try to climb the stairways to professional heaven? According to

Rosen and Sanderson, 2001, this happens because entrants have the option to quit and walk

away at some early stage of their training. Entry into sports and games - they suggest -

should be considered as a sequential stopping problem: each new player starts with an a

priori probability of success, which he updates using the almost continuous feedbacks about

his performance. When the record becomes sufficiently unfavorable, he quits and moves to

something else.

Only those with a reasonably good record are prepared to submit to the entire 10 - year

rule of preparation which is deemed necessary on average to acquire expert performance in

the arts, science, sports and games (Ericcson, 1996). Since the main skills are general to the

game, and not specific to the eventual team, entrants need to bear a substantial share of the

training costs, especially since free agency has become widespread (Rosen and Sanderson,

2001; Szymanski, 2003). How important are these training costs relative to expected returns

and to innate talent? What is the probability of success for a potential entrant to a sport

or game? What is the informational content of the performance feedbacks received in the

initial steps of a career? Is there any cross - country variation in these critical factors which

might explain why a nation excels in a sport or game?

In this paper we address these questions by modeling individual careers in a sport or

game from initial entry to eventual exit or success as the outcome of a discrete - choice, finite

- horizon deterministic optimization problem, much in the spirit of Keane andWolpin, 19971.

We treat decision making as sequential. Young entrants in each period of their career face

three alterative choices: to dropout, to go for a professional career leading either to failure

1See also Belzil and Hansen, 2000.
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or to stardom (tryout), and to wait for additional feedbacks on performance. Measured

performance is a noisy indicator of the underlying talent. By waiting, players can collect

more information and delay the choice to dropout or tryout2.

We apply this model to the game of chess. One advantage of using chess data is that

players are ranked according to a precise measure of relative performance called ELO. Chess

also shares with many sports and games the tiny probability of becoming a star and earning

money: in October 2006 there were only 20 players with an ELO score higher than or equal

to 2700 in the international list of close to 50 thousand players with an official rating, and

only close to 1 percent of the list had attained the 2500 threshold. Another advantage is

that, compared to other individual sports3, chess is truly an international game, with more

than 60 countries represented in the international list of rated players published by the

International Chess Federation (FIDE). Interesting cross - country variation is present.

For instance, close to a third of the top 20 players come from the Russian Federation,

including chess superstar Garry Kasparov and World Champion Vladimir Kramnik. Russia

has more than 5 thousand listed players, and 2 percent of them have attained an ELO score

above 2500. In comparison, Germany has slightly less than 5 thousand enlisted players, but

only 0.5 percent of them with ELO ≥ 2500, and no player in the top brass. Furthermore,
India has only 2 thousand players in the list, with 0.4 percent attaining ELO ≥ 2500 and
1 player with ELO ≥ 2700.

Even though the chess player data keeps track of chess players from relatively early

stages of their career4, we do not have information on the full population of entrants, which

is typically larger than the sub-set of players rated by FIDE. To illustrate, there were 1267

US players rated in the list in January 2003, versus 38364 players included in the 2002

rating list provided by the US Chess Federation. Since FIDE only rates players who have

attained a given performance score in FIDE - sponsored tournaments, the international

2As usual in this class of models, there is no closed form solution to the individual decision rule, and we
need to turn to numerical solutions. These solutions are inputs to maximum likelihood estimation based
on the observed realizations of individual choice. We maximize the likelihood with respect to three key
parameters of the model, the cost of training, the probability of success and the variance of the noise in the
sequential screening process.

3We do not use more popular professional sports with richer and readily available data such as baseball,
soccer, hockey, etc., primarily because individual performance is more difficult to measure in these team
sports and games.

4This is another important advantage of the chess. In many professional sports, richer panel data of
players are available, but no other data even come close to those on chess in terms of the coverage of the
early stages of the career. For example, even in baseball, there is no established panel data for minor league
players, who already have passed the stage of "try-out", based upon our terminology introduced later on.
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list is a self-selected subset of the population of players, which most likely includes only

those players who are seriously considering a career in chess.

We build a longitudinal panel of young players - aged between 10 and 18 in their initial

year in the panel - and follow them for three to five years, depending on the cohort. By

focusing on young age at entry, we reduce the problems associated to left censoring, which

is more likely for older age groups. The selected age bracket includes the median age when

players start playing chess seriously, which according to Chairness, Krampe and Meyr, 1996,

is 15, and the time window captures a critical stage of a chess career, which can peak as

early as at age 255. We find that the behavior of the players in our sample is consistent with

the model, which suggests that individuals are more likely to select a professional career

when the expected returns are high and the training costs are low.

We use the cross - country variation in the data to group individual players according

to whether they belong to the ex-Soviet bloc, with its long chess tradition, or to the rich

countries of Europe and America, or finally to the low income countries of Asia, such

as India and China, and highlight the fact that players from the ex-Warsaw Pact in our

sample tend to dropout significantly less and to move to a professional career more than

the players from the other two groups. We ask whether this is due to a higher proportion

of talented players in the sample, or to other economic factors, such as the cost of training

or the expected returns from a successful career relative to alternative options. Maximum

likelihood estimates provide the following answer: players from Russia and its neighbors

included in our data set are not particularly more talented, at least compared to European

and American players, but face substantially lower training costs, mainly because of their

lower opportunity value of time. The underlying differences in the alternative value of time

can also explain the different patterns of selection occurring in our data: since players from

richer countries have more and better alternative opportunities to chess - and higher training

costs relative to earnings - the observed proportion of talented players in our censored data

set is likely to be higher in these countries than among low income countries and the

countries of the ex-Warsaw Pact.

The paper is organized as follows: Section 2 introduces some basics for later discussion,

and Section 3 presents the finite - horizon discrete - choice model. Section 4 introduces

the game of chess and Section 5 looks at the data at our disposal. Section 6 is devoted
5"Chess has become much younger. Unfortunately, the career span of a chess player has decreased

substantially. Botvinnik played championship matches after forty, but now a player of that age is over-the-
hill" (Anatoly Bykhovsky in an interview in www.chesscafè.com).
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to the empirical analysis, and features both estimates based on the ordered probit and

the competing risks model and the maximum likelihood estimate of the key parameters.

Conclusions follow.

2 The Theory: basics

Assume that a small proportion p ∈ (0, 1) of the population is endowed with the talent of
interest. Endowed talent is not directly observed and has no market value by itself, unless

the holder trains to master the art or the sport. After training, the market value of talent

is β > 1, higher than the normalized cost of training (equal to 1). On the other hand,

training is useless when applied to those without talent. When training is costly and the

candidate player has limited information on whether she is talented, a performance test can

reveal additional information before substantial investment takes place and the relevant

direct and opportunity costs are sunk. Typically, the outcome of the test is a noisy signal

of true talent. Let s be such outcome - a test score - and define

s = e+ u (1)

where e is a dichotomous variable equal to 1 if the individual is talented and to 0 otherwise6,

and u is noise, which follows the normal distribution with zero mean and known standard

deviation σ.

The presence of noise implies that the test statistic s is normally distributed with mean

1 and standard deviation σ for the sub-population endowed with talent, and normally

distributed with the same variance but zero mean for the rest of the population. It follows

that the posterior probability q that a candidate with score s is talented is

q(s) = prob(e = 1|s) =
pφ( s−1σ )

pφ( s−1σ ) + (1− p)φ(
s
σ )

(2)

wherein φ is the standard normal density function.

Conditional on the test and allowing free entry of players, a risk neutral applicant7

should invest in training only if

6This assumption is clearly extreme, but in principle the analysis can be extended to encompass a
continuous measure of ability.

7See MacDonald, 1988, for a similar assumption in his analysis of the economics of rising stars. Rosen
and Sanderson, 2001, argue that the option value to quit and walk away from the sport or the game explains
why candidate players are not necessarily risk lovers.
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q(s)β − 1 > 0 (3)

or

pφ( s−1σ )

pφ( s−1σ ) + (1− p)φ(
s
σ )
> 1

β
(4)

and should be indifferent when equality holds.

This efficiency condition is also the outcome of the following problem: find the threshold

test score θ - such that those who score above or at the threshold have access to training

and the rest remains untrained - which maximizes total output net of training costs8

y = max
θ
p

∙
1−Φ

µ
θ − 1
σ

¶¸
β −

½
p

∙
1−Φ(θ − 1

σ
)

¸
+ (1− p)

∙
1−Φ

µ
θ

σ

¶¸¾
(5)

The first order condition associated to this problem is9

(β − 1)pφ
µ
θ − 1
σ

¶
= (1− p)φ

µ
θ

σ

¶
(6)

which corresponds to Eq. (4) above. It says that the optimal threshold should be set to

balance - among those who attain the threshold value of the signal θ - the marginal benefit

of training the talented - given by (β − 1) pφ(θ−1σ ) - with the marginal cost of investing in
those without the talent - or (1 − p)φ( θσ ). Using our distributional assumptions, Eq. (4)
can be written as

exp[
1− 2θ
2σ2

] =
(β − 1)p
1− p (7)

and solved to yield

θ =
1

2
− σ2 logα (8)

= Θ(σ,β, p) (9)

where α ≡ (β−1)p
1−p . The following results hold

Θp < 0,

Θβ < 0,

sign Θσ = sign(1− α) > 0 if α < 1
8Groothuis, Hill and Perri, 2005, discuss similar issues using a different setup.
9Since training those below the threshold obviously reduces the total surplus, the first order condition is

sufficient for efficiency.
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2.1 Interpretation and Some Numerical Examples

The optimal threshold θ should minimize two types of error: to reject the talented because

of their low score (Type 1 error) - which costs (β − 1) for each individual − and to train
those with high scores but little talent (Type 2 error) - which costs 1 for each trainee. When

the return to talent β increases, so does the cost of an erroneous rejection of the talented.

Hence, the threshold θ declines. Similarly, when p increases the total cost of Type 1 errors

raises and optimal θ declines.

Somewhat paradoxically, the result implies that under the optimal policy, a larger share

of the talented population do not pass the test precisely when the share of the talented

population is small. To illustrate, let p = .0025, so that only 1 person out of 400 is talented,

and assume σ = .5 and β = 100, so that the return from rare talent is a hundred times higher

than the training cost. In this case the optimal policy implies that 38% of the sub-population

of talented individuals are excluded from training, and that 4.5% of the population without

talent are trained. Since the share of the population without talent is predominant, only

3.4% of those who pass the test and are trained are endowed with talent, which suggests

that the sunk training costs are wasted 96.6 cases out of 100. Next allow p to increase

while keeping σ and β fixed. In this case the optimal threshold is lower than before and

more weight is placed on reducing the Type 1 error, at the cost of increasing the other

error: when p = .1, only 1.3% of the talented fail to pass the test, at the price of having

57.8% of the sub-population without talent admitted to training. In this case, the share of

talented trainees increases to roughly 16% of those who pass the test. Independently of the

value of the ex-ante probability p, establishing a performance threshold for admittance to

training increases the share of talented trainees relative to random allocation of training,

and thereby reduces waste.

Needless to say, the test can screen talents almost perfectly when the noise is small: when

σ is less than 1/5, both Type 1 and Type 2 errors are very small and the optimal threshold

is very close to 1/2 irrespective of the value of the other parameters. As σ increases, the test

becomes less precise, and the optimal policy depends on the relative size of β and p. When

these are high and α > 1, a higher variance reduces the optimal threshold. The opposite

pattern is observed when either β or p are relatively small so that α < 1.
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3 The Theory: a multi-period model of selection and training

Sport and game players often make their critical decision to invest seriously in a professional

career after collecting noisy information on their hidden talent. By delaying their decision,

they can update their a priori belief of succeeding as a professional with the input of addi-

tional signals, the precision of which might increase with age, perhaps because ability can

be told apart more clearly from maturity. Delay, however, comes at the price of shortening

an already relatively short productive life span as a professional in the event of success.

When the decision to go for professional excellence is also a decision to train intensively,

delaying this critical step may also reduce the probability of succeeding if receiving intense

training early in life is critical for the sport or the art at hand10.

3.1 Setup

Talent affects rewards but is unknown at the start of the relevant horizon. Assume that

individuals last T periods. At the beginning of each period they receive a signal about

their talent, the result or score of a performance test. In each period but the last they face

three alternative options: a) dropout from the race to stardom; b) decide to enter into a

professional career by making a substantive investment in training (from now on we shall

call this "tryout" for brevity); c) wait for additional information on talent. If tryout is

chosen, we assume that true talent is revealed at the end of the intense training period.

Hence the decision is final and irreversible by construction. If the individual is talented,

he moves into a relatively short career as a star player in the field. If he is not talented,

he earns the outside option11. Finally, if he chooses to drop out from the game, he will

no longer practice and hence he obtain no further signals. Again he will have no reason to

change the decision later on.

The technical training needed to become a star chess or piano player or a top professional

in the sports is general and produce portable skills, that can be used by and large when

the player moves from one employer to another. Following Becker, when training is mostly

general and labour markets are frictionless, training costs should be born by the training

recipient. While in real life training for a professional career is time consuming, it is conve-

nient to model it as an instantaneous event which requires that a positive cost C be sunk.

10Since the impact of this factor is qualitatively similar to a shortening of the time horizon, we do not
treat it explicitly hereafter.
11Our setting is similar to the problem of finding the best timing to exert a financial option.
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Let Y be the alternative income per unit of time available to those who either drop out or

fail after training, and R the expected earnings in the event of success as a professional star.

Waiting requires that the individual spends time practicing his skills (such as playing the

game in an amateur league) in the event that the time to move into a professional career

comes. We normalize the income from waiting net of the cost of practicing to zero. By

waiting one more period rather than dropping out, the individual loses income Y , because

he cannot fully devote to the outside option, but maintains his skills in the case he can try

his luck as a professional. In such a case, he incurs the training cost C with the expectation

of earning R per year in the case of success and Y per year in the case of failure.

In the event of success, the discounted present value of net earnings of a talented player

who attains professional excellence in period k is equal to

Sk =
TX
s=k

ρs−1R (10)

= MkR (11)

Mk ≡
1− ρT−k+1

1− ρ
(12)

where ρ is the discount factor. In the event of failure, he earns the default net income for

the remaining period of his active life so that its present value is

Dk =MkY (13)

It follows that the expected return from trying out is

Ak = q
k(sk, p)Sk + (1− qk(sk, p))Dk − C

where qk be the ex - post probability of being talented after observing k consecutive test

scores, sk is the test score at the kth trial and sk ≡ 1
k

Pk
i=1 si. In the next sub sections, we

derive qk(sk, p) as a solution to a sequential updating.

If the decision to dropout occurs before trying out and after observing the score sk, the

player earns Y per period and the training cost C is saved. Therefore, his present discounted

value is

Qk =MkY

Assume risk neutrality12. Since each available choice generates an expected income flow
12The impact of risk aversion can be easily incorporated into the model. However, the data requirement

for the empirical implementation of the extended model goes beyond the available information. Therefore,
such an extension must be left for future research.
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from the time of choice to the end of productive life in period T, in each period of time k the

optimal policy of a risk neutral rational individual is to select the option which maximizes

her expected net income13.

In the rest of this section we characterize the optimal policy14. Notice that optimality in

our context refers to individual choices, and to the maximization of expected income in an

inter-temporal setting. We also stress that, since both earnings per unit of time and training

costs are taken as given by each individual, our results are typically partial equilibrium.

3.2 Preliminaries

Assume that tests are independent events. When the noise of the tests is drawn from a

normal distribution with zero mean and a given size of standard deviation, the following

Lemma holds.

Lemma 1 Conditional on k score observations (s1, s2....sk) the probability of being

talented is

qk≡ q (s1, s2....sk)=
prk

prk + (1− p)
k=1,2,...T (14)

where rk = exp

∙
−k(

1
2
−sk)
σ2

¸
and sk ≡ 1

k

Pk
i=1 si.Therefore, the average score ( sk) is a

sufficient statistic for the Bayesian updating rule. Moreover, the posterior probability qk is

monotonically increasing in sk and converges to unity (zero) as sk →∞(−∞).
Proof The Lemma follows from the definition of conditional probability

qk≡ q (s1, s2....sk)=
pHS

k

pHS
k + (1− p)HU

k

where

HS
k =

kY
i=1

φ

∙
si − 1
σ

¸
13The dynamic programming problem faced by each player is stochastic because there is uncertainty about

the endowed talent and the received signal is noisy. The solution to this problem is a function both of the
underlying parameters and of the sequence of test scores. Once these are known, the optimal decision can
be perfectly predicted. Therefore, the transition to the econometric implementation of the model requires
that we add to it other sources of uncertainty. We do so by introducing hidden state variables, as discussed
in Section 6. In the current section, however, we treat all the variables and payoffs as deterministic, with
the exception of the performance signal.
14Standard references for the model at hand are Jovanovich (1979a,1979b) and Roberts and Weitzman

(1981). See also Brien, et al (2007) for an application of Jovanovich’s model to the marriage and divorce.
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is the joint density of the sequence of k scores for the sub-population of talented individuals

and

HU
k =

kY
i=1

φ
hsi
σ

i
is the corresponding density for non talented individuals, where

φ(x) =
1√
2π
exp

∙
−x

2

2

¸
The result is immediate once we substitute these expressions in the definition of qk.QED

The posterior probability qk can also be written as

qk =
qk−1φ

£
sk−1
σ

¤
qk−1φ

£
sk−1
σ

¤
+ (1− qk−1)φ

£
sk
σ

¤ (15)

Since the density of the score history (s1, s2, ...sk) for talented and non talented individ-

uals is HS
k and H

U
k respectively, the density for the population of candidates is

f (s1, s2, ...sk) = pH
S
k + (1− p)HU

k (16)

and the conditional distribution of score sk given the previous scores is

fk ≡ f (sk|s1, ...sk−1) = qk−1φ
∙
sk − 1
σ

¸
+ (1− qk−1)φ

hsk
σ

i
(17)

So far, we have assumed that the variance of the noise σ is constant. This can be relaxed

by letting

σ2k = σ21μ
k−1 where 0 < μ < 1 (18)

so that the test becomes more precise over time, as individual ability is more easily told

apart from other confounding traits, such as maturity15. In this case Lemma 1 needs to be

reformulated to obtain

qk≡ q (p, s1, s2....sk)=
pgk

pgk + (1− p)
k=1,2,...T (19)

where

gk = exp

"
−
k(12 − esk)
σ21μ

k−1

#
(20)

15See Ariga, Brunello and Giannini, 2007, for a discussion of this point applied to education.
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and

esk = kX
i=1

siμ
k−i (21)

When the variance of the noise is time varying, the sufficient statistic is the weighted

average of past and current test scores, with weights inversely proportional to the size of

the variance. In either case, the posterior probability of being talented, qk, is a monotonic

increasing function of the average score, sk or esk.
3.3 The Optimal Policy

Conditional on the observed kth test score, the optimal policy is characterized by the value

function

Vk(q
k(sk, p)) =Max

h
Ak(q

k(sk, p)), ρEVk+1(q
k(sk, p)), Qk

i
(22)

where

Ak(q
k(sk, p)) = qk(sk, p)Sk + (1− qk(sk, p))Nk −C (23)

= Qk +
h
qk(sk, p)Mk(R− Y )− C

i
, (24)

Qk = MkY, (25)

and EVk+1(qk(sk, p))16 are the values of trying the professional career, dropping out, or

waiting for an additional signal respectively. The value of dropping out, Qk, is independent

of sk. We show the following.

Lemma 2 For each k, the slopes of functions Akqk(sk, p)) and EVk+1(qk(sk, p)) are

positive and

∂Ak(q
k(sk, p))

∂sk
>

∂ρEVk+1(q
k(sk, p))

∂sk
> 0 (26)

Proof See the Appendix.

Moreover, it is immediate to show that

lim
sk→∞

Ak(q
k(sk, p)) > lim

sk→∞
ρEVk+1(q

k(sk, p))

16The analysis below does not depend on whether or not the sufficient statistic of the score history is the
arithmetic mean sk or esk.
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because as sk → ∞, qk(sk, p) → 1 so that there is no point in waiting for the next period.

By the same token, we know that

lim
sk→−∞

Ak(q
k(sk, p)) = Qk − C < Qk

because as sk → −∞, qk(sk, p)→ 0 so that the payoff from trying out converges to Qk−C.
Putting these results together, we conclude that: (a) the Ak schedule is steeper than the

ρEVk+1 schedule (Lemma 2); (b) Ak eventually overtakes ρEVk+1 as we increase sk; (c) the

Ak schedule lies below Qk at sufficiently negative values of sk. Therefore, we know that Ak

cuts both ρEVk+1 and Qk from below at some finite values of sk. Although these properties

do not guarantee that limsk→−∞ ρEVk+1(q
k(sk, p)) < Qk for arbitrary values of k, ρEVk+1

evidently lies below Qk when k is sufficiently close to the terminal period T. Assuming that

this condition holds17, there are two possible configurations of the three schedules.

As shown in Figure 1A, if the intersection of the waiting (V ) and trying out (A) schedules

occurs above the quitting schedule (Q), then all three options are viable: training for a

professional career is the best choice for sufficiently high values of sk, quitting is the best

choice when sk is low, and waiting is the best choice for intermediate values. Denote by θDk

the threshold at which the value of quitting and the maximum of trying out and waiting are

the same, and let θWk be the threshold at which training for a professional career generates

the same expected value as waiting one more period. In the figure, θDk < θWk , and all the

three options are viable. In this case, the optimal policy in period k is

Qk = Vk(q
k(sk, p)) if sk ≤ θDk (27)

EVk+1(q
k(sk, p)) = Vk(q

k(sk, p)) if θDk < q
k(sk, p) < θWk (28)

Ak(sk) = Vk(q
k(sk, p)) if qk(sk, p) ≥ θWk (29)

In the second configuration - see Figure 1B - the intersection of the V and A schedules

lies below the Q schedule so that θDk ≥ θWk . In this case the waiting option is dominated

by either dropping out or by trying out (thus threshold θWk is irrelevant), and the optimal

policy is

Qk = Vk(q
k(sk, p)) if qk(sk, p) < θDk (30)

17Numerical examples below show that indeed all three options occur with strictly positive probability in
all time periods except for the last.
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Ak(sk) = Vk(q
k(sk, p)) if qk(sk, p) ≥ θDk (31)

When the latter configuration occurs, all the players who have chosen to wait until period

k either go for a professional career or dropout. Therefore, there will be no active players

waiting for additional signals at the end of period k. Let κ be the smallest value of k at

which all individuals who have chosen to wait until this period choose either Qk or Ak(sk),

thereby leaving no players in the waiting pool for the next period. At that point in time,

the decision process ends, as all the players will have either dropped out or moved into

professional careers, and these decisions are irreversible. This is certainly the case at k = T,

because there is no time left to wait for. Therefore, in general, κ ≤ T .
Since nothing of substance depends upon whether or not κ < T, we derive in the

Appendix the set of optimal policies under the assumption that κ = T. In short, the optimal

policy is completely characterized by the two thresholds θDk and θWk . For any period k < κ,

θDk < θWk and the optimal policy involves the choice of one among the three available

options. When k ≥ κ, θDk ≥ θWk and waiting is no longer a viable option. Therefore, the

players left in the pool of candidates choose either to quit or to try out. In short, the

optimal policy is a simple stopping rule, which depends only upon the history of signals. In

the next subsection, we provide numerical examples to illustrate the comparative statics of

the model.

3.4 Comparative statics based upon numerical solutions

As it is usually the case in these class of models, there is no closed form representation of

the two critical thresholds and we need to turn to numerical solutions18. These solutions

can also be used to illustrate the comparative statics of the model. Define c = C
Y and

r = R
Y . On the one hand, when we allow the underlying parameters to vary within a broad

range, we always find that both thresholds θWk and θDk are monotonically increasing in c

and decreasing in r and p, in line with common sense: players are expected to reduce the

critical thresholds when faced with a lower cost of trying out, higher returns, and a higher

ex-ante probability of being talented.

On the other hand, it is not immediately obvious how the two thresholds change when

the noise parameter σ increases. Notice that what matters for the optimal decision is not

18Brien, Lillard and Stern (2006) builds and estimate a model of marriage and divorce employing a dynamic
programming model in which Bayesian updating of the expected value of match. They also need to augment
the model with additional assumptions even to establish a basic property of reservation values.
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the level of the thresholds per se, but the ratio of each threshold to the standard deviation

of the noise. Therefore, we shall consider these ratios in the ensuing discussion. An increase

in the size of the noise raises uncertainty and reduces the informativeness of the signal,

which leads to higher costs associated to both types of errors, as discussed in the simple

static model of Section 2. As shown in Figures 2 and 3, we find that players are induced

to raise the ratio of each threshold to the standard deviation of the noise when thresholds

are relatively high- and Type 2 errors matter most - and to reduce them when thresholds

are relatively low, and it is the Type 1 error that matters relatively more. A confounding

factor in evaluating the overall impact of σ is how the option value of waiting varies with

the size of the noise. Figure 4, where we plot θWk − θDk as a function of p and σ, shows that

waiting becomes a more favorable option when the size of the noise increases19.

4 The Game of Chess

If you want to know whether a chess player is relatively strong or weak, just ask him his ELO

score. This measure - devised by Arped Elo, an Hungarian mathematician, with the purpose

of ranking chess players according to their cumulative performance in chess tournaments

- is published four times a year by the International Chess Federation (FIDE) for rated

players, who are seriously considering a career in chess. To be rated, a player must have

attained an ELO score of 1400 or more. Having a rating is usually a requisite to participate

in FIDE sponsored tournaments, where players can increase their score and achieve norms,

the building blocks to becoming an International Master or a Grandmaster20.

Briefly, ELO is based on the comparison of actual and expected performance. Expected

performance is the performance that a player with a given ELO score is expected to attain

in a tournament after considering the ELO of his opponents. When actual performance

differs from expected, the ELO score is revised accordingly, with a gradient that is higher

for weaker players and lower for Grandmasters21. While important, ELO is not the only

thing to strive for in chess. The other thing is chess titles, which are for life. A star

chess player needs to become a Grandmaster, which requires an ELO score of at least 2500

plus two norms - each norm being attained by defeating other Grandmasters in recognized

19The impact of a change in μ is qualitatively the same as the impact for σ. Further details are available
from the authors upon request.
20See the FIDE Handbook downloadable from www.fide.com. Notice that the US Chess Federation uses

a slightly different rating system. Chabris and Glickman, 2005, is a paper which uses USCF data.
21See www.fide.com for further details.
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tournaments.

Star chess players start early. Bobby Fischer, the former World Champion, spent 9

years of hard training before becoming a Grandmaster at age 1622. The Polgar sisters, who

eventually rose to the rank of Grandmaster or International Master, also started very early

and received intensive training by their father Lazslo, who tutored them at home in chess

and else23. However, an early start does not appear to be the key factor, at least when

compared to hard study and intense practice or training (see Charness, Krampe and Mayr,

1996, and Gobet and Campitelli, 2007).

In spite of the intensive effort, monetary returns are meager unless the player rises to the

true stardom of 2700 ELO score or above. These players get $10,000 plus appearance fees

just to play in a tournament, regardless of result. Any active player with such a rank could

get $100,000 plus a year just in appearance fees, in addition to a share of the estimated

few million dollars in prizes at stake in FIDE sponsored tournaments, including the World

Championship24. The ELO 2600 level players have a much tougher time as they do not get

significant appearance fees, so they have to win tournament prize money for their earnings.

This is highly competitive and subject to dramatic fluctuations, but $25,000 to $50,000 per

year appears to be a reasonable range. Players at the 2500 ELO level really can’t survive on

tournament prize money, so they need to teach. Rates for chess coaches vary by geographic

location, and could be $50 per hour in the US25.

While the chess tournament network is international, training typically takes place in

the home country, when the chess player is still a teenager or in his early twenties. Current

world champion Vladimir Kramnik trained in Russia, and the Indian superstar Viswanathan

Anand in India. Some top Russian players typically move to the US in the early stages

of their professional careers, but many remain in their own country26. Therefore, their

alternative income during training, a major factor affecting total training costs, is also

mostly national, and very low for players coming from developing countries such as India

and China.
22See Colvin, 2006
23See Carlin, 2005
24We estimate that the prizes at stake in the 2006 tournaments reported by FIDE summed up to 4 million

dollars.
25We thank without implicating Clint Ballard of the Seattle Sluggers for providing us with valuable

information on the earnings of chess players.
26 In our data we reassign most migrant ex-Soviet Union players to their country of origin. Exceptions are

teenager migrants, who are likely to have incurred part of their training in their new country. An example
is Gata Kamsky, who moved to the US from Russia at age 15.
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Table 1 presents some information on international chess, drawn mainly from the FIDE

rating lists. The first column shows the number of rated players as of October 2006 in a

selected number of countries. By far, players from ex-Soviet Union are the largest group in

the list, followed by Germany. In England, 1.288 rated players out of 100 makes it to the

ELO 2500 threshold. This share falls to 0.458 in India and rises to 2.207 in the ex-Soviet

Union. Assuming that chess stardom requires an ELO score of 2700, only a tiny fraction of

the total - 20 players - manages to climb at the top of the stairways to chess heaven, and this

elite is dominated by ex-Soviet Union players (16 out of 20). In the Russian Federation and

previous Soviet satellites, close to 1 individual in a million makes it to ELO 2500, compared

to a meager 0.009 in India.

As an admittedly gross indicator of annual relative earnings of star chess players we

use the ratio of average earnings - which we evaluate at 90 thousand dollars per year27 -

to average alternative income Y , which we proxy with national income per capita in US

dollars and at 2005 prices (source: The World Bank). As expected, this ratio is very high for

India (125), above 10 for the ex-Soviet countries (16.860) and between 2 and 4 for European

countries and the USA28.

5 The Data

Our model describes how individuals use the available information on earnings, costs and

alternative options to optimally decide in each period of time whether to go for a profes-

sional career, dropout or simply wait for additional information on their underlying talent.

Individual choice is affected by the a priori probability of being talented p as well as by

training costs and expected earnings relative to the alternative value of time. While these

costs and returns vary both within and between countries, our data are not rich enough to

capture all these sources of variation. On the one hand, we have information on individual

careers from the official FIDE rating lists; on the other hand, we only have country specific

information on costs, returns and alternative income.

The FIDE rating lists contain individual information on the country of affiliation, the ID

27Using the information kindly provided by Clint Ballard, we assume no discounting and that a top chess
player earns 100 thousand dollars a year for one third of his 30 - years long career, 150 thousand dollars
for another third and 20 thousand for the final third. Notice that since expected earnings are made in the
international market, all cross country variation comes from the variation in Y .
28The observed ranking of countries with respect to relative earnings would not change if we were to use

the earnings of college graduates rather than average income per head.

16



number, the current ELO score, the year of birth, the FIDE title and the number of games

rated in the rating period29. To reduce left censoring, we restrict our attention to players

aged 10 to 18 at their first entry into the panel, and consider three cohorts of different

individuals, who have entered the lists in 2001, 2002 and 2003. We follow these cohorts

year by year until 2006, and thereby construct a three to five - year window of observation

of individual behavior, depending on the cohort. While relatively short, this panel allows

us to follow players during key years of their careers.

As stressed in the introduction, FIDE does not list all chess players enrolled in national

chess federations, but only those who have attained a threshold rating30, which varies over

time and has recently been raised to 2000 ELO points. To illustrate the implications

of this, it is useful to compare the number of listed US players with the full list of non

scholastic USCF members. On the one hand, the USCF list of members in 2002 included

more than 38000 players, of which almost 20 percent did not have a score comparable to

ELO = 100031, and over 60 percent did not attain ELO = 1500. On the other hand, the

FIDE list in January 2003 included 1267 players with an average ELO score above 2200.

These must belong to the selected sub-group of serious elite players, for whom the choice

discussed in this paper - dropout or tryout a professional career - is significant32. From

the viewpoint of our study, it is important to stress that our data are not representative

of the underlying population of chess players, which also includes scholastic chess. By

selecting a sub-sample of young teenagers we can trace their performance and decisions

in the early stages of their career, thereby reducing the problem of left censoring, but we

cannot completely undo the impact of self-selection into the sample.

Compared to other games or sports, chess does not have an explicit league structure.

While there is no explicit ELO threshold for the attainment of a professional licence, we

29See the FIDE Handbook, Section 9.0, for details. Ranks are Candidate Master, FIDE Master, Interna-
tional Master and Grandmaster.
30FIDE rating is of course not a perfect measure and the rating at the early stage can be somewhat more

noisier than those with longer records. Discussions with those who are listed in FIDE ranking assured us,
however, that the rating of players in our sample are extremely unlikely to have such problems unique to
early stages. Importantly, the rating of a new player who appears in the FIDE list requires that he/she has
played at least 9 games. So, even if the player in his first FIDE tournament is assigned a high rating , say,
2200 (which is the ELO score threshold we use), the first record in the list is after 9 games. Thus even if
initial rating of 2200 is noisy, the impact of initial rating error is not in our sample. We were also informed
from contacts of players that initial rating of 2200 is unheard of.
31USCF uses a different rating system than FIDE, although the basic principles are the same. As a rule

of thumb, USCF ratings are about 100 points higher than FIDE ratings for the same individual.
32Amateur players are most likely to be ranked low and to be engaged in an alternative major professional

activity.
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believe that attainment of the 2300 threshold, which allows individuals to become FIDE

trainers, is a reasonable benchmark for those trying out a professional career which might

lead to stardom33. Hence our definition of try-out is to pass this threshold ELO score. We

also define as dropouts the players who in the current and next year have or are expecting to

have an ELO rank below 2200 and expect to play no rated game in the next year34. Figure

5 plots the distribution of ELO scores in the years 2001 and 2006 for the cohort who enters

our sample in 2001. Notice the very thin tail below ELO 2000, which can be explained with

the fact that FIDE has recently changed its admission criteria for new players, who need

now to score at least 2000 to be rated. Median ELO was 2153 in 2001 and 2217 in 2006,

slightly below mean ELO in either year35.

Define the initial pool of players as the group of survivors, and let the hazard from

this pool be irreversible exit either into a professional career (tryout) or into alternative

professional activities (dropout). Letting t be the time spent in the pool from the initial

to the final observation period, a useful tool to describe our data is nonparametric survival

analysis. Following Marubini and Valsecchi, 2004, we compute for each competing risk -

tryout or dropout - the cumulative incidence function, which is equivalent to 1 minus the

Kaplan Meier curve in standard duration analysis36. The cumulative hazards by cohort

and year are reported in Table 2, and show that substantial between - cohort heterogeneity

exists in our data, partly because the composition of players by country in each cohort

markedly differs.

The cumulative incidence functions for the full sample and for three sub-samples -

the players belonging to the ex-Warsaw Pact (EXS), where chess has a long standing

tradition, those belonging to the "rich" countries (RIC), which we define as the countries

with higher than median income per head, and the rest (RES)37 - are shown in Figures 6

33Due to the left censoring of our sample, we treat those who enter the sample with an initial ELO score
above 2300 as players trying out in the initial period.
34We use actual values in the next year as measures of expected values. As the terminal year we take

October 2006.
35Arpad Elo initially assumed that chess performance was normally distributed. Sub-sequent research has

shown that this is not the case. Based on this both FIDE and USCF have switched to formulas based on
the logistic distribution.
36This is done using the Stata 9.0 command stcompet.
37Rich countries outside the ex-Soviet Bloc have average income per head above median income in the

sample of 44 countries considered in this study. They include EU members plus Singapore, Australia, the
USA, Canada and Israel. "Poor" countries are: Brazil, Chile, Indonesia, China, India, Iran, Mongolia,
Peru, Turkey and Vietnam. "Ex-Warsaw Pact" countries are: Armenia, Azerbaijan, Bulgaria, Croatia,
Czech Republic, Hungary, Georgia, Kazakistan, Lithuania, Moldova, Poland, Romania, Slovenia, Slovakia,
Turkmenistan and Ukraina.
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and 7. Considering first the former figure, we notice that while the cumulative hazard into

a professional career is convex, with the hazard accelerating from the fourth year onwards,

the cumulative hazard into dropping out is concave, with the hazard declining as time goes

by. Turning to the cross - country comparisons in Figure 7, we find that EXS players

have a significantly lower probability of dropping out than RIC and RES players. They

also have a higher probability of moving into professional careers, although the difference

is statistically significant only with respect to RES players.

Why do the players from the ex-Warsaw Pact have lower dropout rates and higher tryout

rates? The two - period model in the previous section suggests the following candidates

for an answer: a) players belonging to EXS countries are more talented - there is a higher

proportion of talented players p in the relevant population; b) they have a higher expected

relative return from professional success r; c) they face lower relative training costs c; d)

they encounter a more precise screening mechanism, or a lower standard deviation of the

noise σ. In the empirical section of the paper we shall try to shed some light on this issue

by using our longitudinal data of international chess players. We hasten to stress, however,

that - due to the nature of the data at hand, which are not representative of the underlying

population of chess players - our evidence is to be taken as exploratory and tentative at

best. It applies to our selected sample, and better data are required to evaluate whether it

can be extended to the population at large.

6 Empirical Analysis

The empirical section is organized in two sub-sections. We start in the first sub-section with

an ordered probit and competing risks analysis of the relationship between career choice

and the available measures of expected costs and returns, using both the individual and the

cross country variation available in the data.

One limitation of this approach is that it cannot provide estimates of the key parameters

of the model, which include the proportion of talented individuals p, the relative training

cost c and the variance of the noise of the signals received by chess players. For this we

need to turn in the second sub-section to maximum likelihood estimates.

19



6.1 Ordered Probit and Competing Risks

The multi-period model in Section 3 of the paper implies that individuals in period k decide

to dropout from the race to chess stardom if

sik ≤ θDk = Θ
D(k, T, r

−
, c
+
, p
−
i,Ω) (32)

where T is the length of time horizon, Ω = Ω (σ1, ρ) and we allow the variance of the

noise to be time varying. Similarly, we have shown that individuals decide to go for a risky

professional career if

sik ≥ θWk = ΘW (k, T, r
−
, c
+
, p
−
i,Ω) (33)

Define an indicator variable d equal to 0 in the event of dropping out, to 1 when waiting

prevails and to 2 in the event of trying out. Further assume that the signal received by

the econometrician is noisy signal of the true performance measure thus contains error

εik ∼ N(0,σε). To put it differently, we posit that the ELO score used in the empirical

analysis is an unbiased but noisy indicator of the average test score sik.Then individual

behavior in period k is predicted to be

dik = 2 if sik + εik > Θ
W (k, T, r, c, pi,Ω)

dik = 1 if ΘD(k, T, r, c, pi,Ω) ≤ sik + εik ≤ ΘW (k, T, r, c, pi,Ω)

dik = 0 if sik + εik < Θ
D(k, T, r, c, pi,Ω) (34)

and the associated probabilities are

Prob(dik = 2) = 1−Φ
∙
ΘW (k, T, r, c, pi,Ω)− sik

σε

¸
Prob(dik = 1) = Φ

∙
ΘW (k, T, r, c, pi,Ω)− sik

σε

¸
−Φ

∙
ΘD(k, T, r, c, pi,Ω)− sik

σε

¸
Prob(dik = 0) = Φ

∙
ΘD(k, T, r, c, pi,Ω)− sik

σε

¸
(35)

Define ΘD(k,T,r,c,pi,Ω)−sik
σε

= ζ1 −X
0
β and ΘW (k,T,r,c,pi,Ω)−sik

σε
=ζ2 −X

0
β, where X is the

vector of measured explanatory variables, β is the vector of parameters and ζi are the cutoff

points. Later on we amend the lack of unobservable individual prior pi by adjusting the
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error structure. The system (35) corresponds to the canonical ordered probit model, and

the vector X includes the average test scores, the relative return from professional success

and the relative cost of training. Since we have no data on individual costs and benefits, we

proxy these variables with country - specific averages. Our measure of the ratio r = R
Y has

already been discussed above. The total cost of training C is assumed to be a linear function

of average income per head, which captures the opportunity value of time. We proxy the

direct cost of training with two variables, the availability of both internet connections and

domestic chess tournaments.

These days, chess can be played on line and with a PC, and most countries have internet

chess clubs where even grandmasters participate. Let WEB be the number of internet

users per 1000 inhabitants (source: www.worldbank.org). Ceteris paribus, individuals living

in countries where the internet is widespread are likely to face lower direct costs of training,

because they can access more easily the necessary material online. One prominent form of

training is the participation to tournaments. Clearly, the direct cost of this type of training

is likely to vary with the availability of FIDE tournaments played within the country: young

Indian players can more easily train by competing in Indian events than by traveling to the

US or Russia in order to participate to a tournament38. We use the FIDE databank to

collect information on the number of recognized tournaments played in each country during

the period 2001 to 2006 and define the ratio of this number to the population as TR. We

expect that the higher this ratio the lower the cost of training. In sum, we model the cost

of training per unit of output as

c =
C

Y
= c(WEB

−
, TR
−
)

Table 3 shows the values of r, WEB and TR in our sample of 44 countries39. While

European countries and the US stand out in terms of low values of r and high values

of WEB, the EXS group excels in the number of tournaments per million inhabitants,

especially in the smaller countries of Eastern Europe (Croatia, Slovenia and Hungary).

Individual variables in our data set include age, the attained chess title, the number of

rated games played and the ELO score. Since our data are left censored, we control for

initial conditions by using the values of these variables at the time the individual enters the

38An example is the article on young Indian talent Lalit Babu appeared in the April 5, 2007 issue of The
Indu.
39We only retain countries in our sample with at least 3 players in the data set.

21



sample. Finally, we proxy k with a linear time trend40.

The presence of the unobservable initial prior on talent (pi) in the functions defining

the threshold values suggests that error terms are likely to be correlated over time for each

individual. We control for this by estimating an ordered probit with clustered standard

errors, with the cluster defined by the individual, and experiment also with a random effects

ordered probit model for our preferred specification. Table 4 presents our results. We start

in column (1) with a parsimonious specification, which includes only initial age, the time

trend and two dummies, one for EXS players and another for players from the RES group.

Column (2) adds to this specification individual variables such as the initial ELO score,

the initial number of games played and the chess title at the time of entry in the sample41.

Column (3) further adds the country specific variables r, WEB and TR. A comparison

of the Pseudo R Squared42 in the three columns shows that the additional contribution of

the country specific variables is small compared to that of initial ELO and initial chess

title. Column (4) presents the random effect ordered probit estimation of the specification

in the previous column. Finally, column (5) is equivalent to (3) with the exception that the

sample is restricted to individuals aged 10− 14 at the time of their first entry in our data
set.

We find that the probability of trying out (dropping out) is higher (lower) in countries

with a higher ratio of earnings to the alternative income and with a higher number of

internet users per 1000 inhabitants. The share of rated chess tournaments in the population

attracts the expected sign - positive but often imprecisely estimated. Furthermore, there

is evidence that more active - with a higher initial value of played games - and younger

players are more likely to tryout, and that trying out increases over time, while dropping

out declines. Conditional on these controls, our estimates show that trying out (dropping

out) is significantly less (more) likely in the RES group of countries. Players from India,

China and other less developed countries tend to enter the FIDE data set at a relatively

earlier age than players from Europe and North America, and with a higher initial ELO

score. This and the fact that their relative expected returns are very high suggests that

these players tryout more and drop out less than Europeans and North American. This is

40Recall that we have defined dik = 2 when individual ELO is above 2300, d
i
k = 0 when the score is below

2200 and dik = 1 when it is in between.
41This variable takes the values 0 in the case of no title, 1 for candidate masters, 2 for FIDE masters, 3

for international masters and 4 for grandmasters.
42The pseudo-R2 is defined as 1 − (LL/LL0), where LL is the maximized log likelihood and LL0 is the

maximized log likelihood of the constant only model.
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not the case, however. We believe that a candidate explanation is that talented players from

less developed countries are liquidity constrained and often unable to sink the training cost

required to become a professional chess player. Finally, both the random effects estimates

and those for the restricted sample in the last two columns of the table broadly confirm the

results based on the pooled ordered probit model.

Table 5 compares the actual and predicted distribution of outcomes in the full sample

and in the three sub-groups of countries. While our model does a fairly good job, it also

shows a tendency to under-predict dropouts and over-predict tryouts. We compute the

marginal effects of each explanatory variable on the probability of dropping out and trying

out and use these effects for the following thought experiment: how much would the actual

probability of trying out or dropping out in the group of rich countries vary if we were to

assign to the players in this group the average values of the explanatory variables in the

EXS group? It turns out that the key variables in terms of the quantitative contribution

are the initial ELO score, the ratio r and the share of internet users WEB. If we were to

assign to American players the initial ELO score of Russians, their probability of trying out

(dropping out) would increase (fall) by 26.6% (22.3%). On the other hand, the assignment of

the ratio r would raise (reduce) the probability of trying out (dropping out) by an additional

6.2% (5.2%). Finally, the assignment of the lower share WEB would reduce (raise) trying

out (dropping out) by 16.2% (13.4%).

Overall, the combination of these assignments can explain about 50% of the gap in the

tryout rate of players in the EXS and RIC groups of countries. This thought experiment

points out that the predicted differences in outcomes between the RIC and the EXS group

of countries are only partly explained by measured differences in expected returns and

training costs. An important additional factor which accounts for such differences is the

initial heterogeneity of players, and the fact that Russian players start at a young age in

our data with a significantly higher ELO score than American and European players.

In the implementation of the ordered probit model we have controlled for left censoring

by including individual variables measured at the time of entry into the sample. However,

our data are affected also by right censoring, because some individuals in the sample are

still waiting to acquire additional information at the end of our sample period. To explicitly

handle right censoring, we use survival analysis and a competing risks approach. According

to this approach, each sampled individual is at risk at each point in time of dropping out,

trying out or surviving into the next period. We use a Cox proportional hazard model
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with multiple hazards - as in Lunn and McNeil, 1995 - and correct the estimated variance

- covariance matrix by clustering (see Cleves, 1999). Reassuringly, our estimates of the

specification in column (3) of Table 4 - presented in Table 6 - confirm the main findings of

the ordered probit analysis: on the one hand, higher expected returns from a professional

career increase the tryout rate and decrease the dropout rate, which falls when the number of

country specific tournaments per inhabitant increases43. On the other hand, and conditional

on our controls, there is no remaining statistical difference between the players from the

ex-Warzaw Pact and European and North American players. If any such difference exists,

it is for the players from lower income countries such as India and China, who are less

likely to try a professional career and more likely to drop out than other players even after

controlling for the available individual and country specific effects.

6.2 Maximum Likelihood Estimates of p, σ, μ and other parameters.

Are the Russians and their former neighbors in our sample better at chess because they

have a higher share of talented chess players, or is it as Lazlo Polgar - the father of the three

Polgar sisters - puts it, that hard work counts and innate talent does not matter after all?

To answer this question, we need estimates of the probability p and the cost of training c.

For this purpose, we adapt the model developed in Section 3 so that the likelihood function

associated to our sample of observations can be defined. First, we allow the noise of the

signal to decline with age at the rate μ. Second, we introduce payoff shocks uAk and u
Q
k ,

which influence individual decisions but are not observed by the econometrician.

With these modifications, and conditional on the outcome of the kth performance test

at the beginning of period k, the relevant value function is

Vk(q
k, uAk , u

Q
k ) =Max

h eAk(qk, uAk ), ρEVk+1(qk), eQk(uQk )i (36)

where qk ≡ qk(esk, p,σ,μ) is the posterior probability of being talented and eAk(qk, uAk ),
EVk+1(q

k) and eQk(uQk ) correspond to trying out, waiting, and dropping out. Since the
information content of the test scores improves as players get older and mature, the posterior

probability qk is a function of the standard deviation of the noise at the youngest age in

the sample σ, the rate at which the noise declines over age μ, the prior probability p and

the adjusted average score esk.
43We find also that the variable WEB has a positive and statistically significant effect on the probability

of trying out. Finally, the variable TR has a positive but imprecisely estimated effect on trying out.
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Stochastic payoff shocks enter additively in the payoff functions

eAk(qk, uAk ) = Ak(qk, uAk ) + uAt (37)

eQk(uQt ) = Qk + uQt (38)

where ut ≡
³
uAt , u

Q
t

´
44 has zero mean and known covariance matrix Σu : in this setup,

the current realizations of stochastic payoffs are observed by chess players but not by the

econometrician. Future realizations, however, are unobserved to both. Therefore, players

need to form rational expectations of EVk+1(qk) by considering both the possible realizations

of their performance measures and the realizations of the error terms45.

We show in the appendix that the standard backward induction method can be applied

with the use of the two thresholds, which, by the use of (37) and (38), can be given by

τAQk ≡ C −Mkq
k+1(esk+1)(R− Y )

τAWk ≡ C + ρE [Vk+1|esk]−Mk(q
k+1(esk+1)(R− Y ) + Y )

where the former threshold refers to trying out versus quitting and the second threshold is

relevant for trying out versus waiting. The value function is then computed as

E [Vk+1|esk] =

Z Z
uk∈Dk

Qkφ(uk)duk +

Z Z
uk∈Wk

E [Vk|esk]φ(uk)duk
+

Z Z
uk∈Ak

Akφ(uk)duk

= νk+1

³
qk(esk, p,σ,μ), R, Y,C,σ2A,σ2Q,σAQ´ (39)

44 In order to avoid the possibility that a player waits even in the last period because of large negative
values of ut, we set uT ≡ 0. Since the final decision period is set at age 30, this simplification is totally
inconsequential in deriving likelihoods for sample players who are aged between 10 and 23.
45This is the most popular specification used in the relevant literature, which uses numerical solutions

from dynamic programming as inputs of the maximum likelihood estimation. See Keane and Wolpin (1997)
and Rust (1994).

25



where

Dk ≡ {Ik = 0}

= {uAk ≤ u
Q
k + τAQk & uQk ≥ τAWk − τAQk }

Wk ≡ {Ik = 1}

= {uAk ≤ τAWk & uQk ≤ τAWk − τAQk }

Ak ≡ {Ik = 2}

= {uAk ≥ u
Q
k + τAQk & uQk ≥ τAWk − τAQk }

and I is an indicator taking the value 0 for dropping out, 1 for waiting and 2 for trying

out46. To each of these events we can associate predicted probabilities λ as follows

λjk ≡ log [prob(Ik = j)] with j = 0, 1, 2

= λjk(q
k(esik,σ, p,μ), R, Y,C,σ2A,σ2Q,σAQ) (40)

Our set of observable includes the decision history of individual players and their score

records

£
{Iit}, {esit}¤

Since we can only recover from our estimates the ratios between Y and R and C and R,

we set R = 1. We also fix the discount factor at ρ = .97. Therefore the set of estimated

parameters is

Ω ≡ {Y,C, p,σ,μ,σ2A,σ2Q,σAQ}

and the log-likelihood can be written as follows

L(Ω) =
TX
k=1

NX
i=1

D(I
i
k = j)λ

j
t (q

k
i (s

i
k, p,σ,μ), C, Y,σ

2
A,σ

2
Q,σAQ) (41)

The maximum likelihood estimator is

Ω∗ = argmaxL(Ω)

46As the vector of errors can vary from minus to plus infinity, these probabilities are always strictly positive
for any finite values of thresholds.
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where N and T are the number of individuals in each cross section and the number of

available years, D is an indicator equal to 1 if the equality within parentheses is true and

to 0 otherwise47.

Because of the dynamic programming nature of the problem, each threshold varies with

the period k and depends on the length of the time horizon, which we assume to consist

of 30 periods or years (T = 30). To reduce computing time, we set the highest age when

a player can become professional at 30. With no waiting after that age, our computations

of the thresholds require that we carry backward induction at most for 20 years. Is this a

plausible assumption? To investigate this, we use an enlarged sample of players, with each

cohort including individuals aged 10 to 30 in their initial year in the sample, and plot the

percentage of players who at each age have passed the ELO 2300 threshold and tried —

according to our definition - a professional career. It turns out that the cumulative hazard

into a professional career tapers off at about age 30 - see Figure 8. The maximization

problem is solved using MATLAB. Since the program can search for local maxima or

minima only, we start by looking for a rough first order solution using grid search. By so

doing, we can make sure that the obtained local maximum is also a global maximum48.

Our estimates are shown in Table 7. The results are displayed in four columns, one

for the full sample and the rest for the EXS countries, the RIC countries and the RES

countries. In each column we report the estimated coefficients and the standard errors .

The Likelihood ratio test verifies whether the null hypothesis of common coefficients across

the three groups can be rejected. Since the critical value of the test is 21.95549,the null is

easily rejected. The main findings are:

• The estimated share of talented players p in the full sample is 34 percent, a relatively
large number, suggesting that our sample of young players is already a very selected

sub-sample of the original population50;

• the share p is highest in the group of rich countries and precisely estimated, and lowest
and imprecisely estimated in the group of developing countries;

47Each individual disappears from our sample after trying out or dropping out.
48MATLAB takes between 90 minutes to 3 hours to converge. Details on the programs are available from

the authors upon request.
49The test statistic has a Chi Square distribution with 8 degrees of freedom.
50Notice, however, that in our setup talent is defined as the capacity to earn R in the game of the chess for

the length of the professional career with posterior probability q. Given the estimate of − 90,000US$ - our
definition of talent is perhaps not as stringent as the one that corresponds to the truly great chess players.
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• the standard deviation of the noise declines sensibly with age, starting from above 3

at age 10 and rapidly declining to less than one at age 23 - except for the players of

the former Soviet block. Therefore, the precision of the tests is poor when players

are young but increases significantly with age. Precision is highest for players of

rich countries and lowest for players from the former Soviet block. This pattern is

consistent with a rising hazard into trying out, because the waiting option is larger

when the uncertainty regarding future payoffs is higher;

• the cost of training relative to earnings R ranges from over 5 in the rich countries to

about 3 in the ex-Warsaw Pact countries and to close to 2 in the RES group. These

large differences across countries reflect both differences in direct training costs, as

documented in the previous sub-section, and different opportunity values of time.

They imply that a successful chess player in a rich country needs more than 5 years

of earnings to make up for the training costs incurred in the preparation for success

after deciding to tryout, compared to less than three years from an EXS player and

to approximately 2 years for a RES player;

• consistent with the finding above, the opportunity cost is largest for the players of
the RIC group, followed by players of the EXS group, and lowest for players of the

RES group, although the relevant coefficients are not precisely estimated;

• Table 8 shows the results when we select one country in each group, Spain for the rich
countries, Russia for the EXS group and India for the RES group. The results are

qualitatively the same as in Table 7;

• the estimated size of the shocks to the payoffs shows that payoff uncertainty for trying
out is generally much larger than payoff uncertainty for quitting. We also find that

correlation between the two shocks is never statistically significant and very small.

These results indicate the presence of a positive correlation across groups of countries

between the proportion of talented players in the sample and the cost of training relative

to expected returns. The high cost of training might explain why so few Europeans and

Americans make it to the chess stardom. These costs are very low in India and China, but

so is the proportion of individuals with the required talent. Russians emerge by combining

a moderate cost of training with a relatively good endowment of talented players.
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What is the relationship between the estimated share p and the population share? We

cannot tell, because the former is affected by the self-selection of players into the FIDE

sample. But suppose that the population probability p is the same in Russia and the USA,

a plausible starting assumption. On the one hand, the plentiful alternative opportunities

available in the USA should take those not so talented away from chess, and only the

very talented and motivated would remain. A similar selection pattern is likely to result if

American players face higher training costs, as they do in our sample. On the other hand,

alternative opportunities are not so plentiful in Russia, and training costs are much lower.

Therefore, even those players with a smaller chance of being talented may decide to stay in

the chess game. If selection operates this way, the sample probability p should be higher

in the USA than in Russia, as we do find, in spite of the two countries having the same

percentage of chess talents in the population at large.

If selection operates by attracting less talented people when outside opportunities are

meagre and training costs are low, one wonders however why the number of Russians in the

FIDE list is so overwhelmingly higher than the share of Chinese or Indians. Clearly, there

are other factors at stake that our empirical analysis cannot fully capture because of data

constraints, including the local culture, the relative ability of the local chess federation to

organize FIDE sponsored events, and the competition from other sports and games. If for

instance applications to join FIDE tend to concentrate at sponsored events, or these events

help in promoting the game, RES countries may turn out to have fewer listed players than

Russians or Europeans because they organize fewer events.

7 Conclusions

Entry in many sports and games can be described as a sequential stopping problem: each

new player starts with an a priori probability of success, which he updates using the almost

continuous feedbacks on his performance. When the record becomes sufficiently unfavorable,

he quits and moves to something else. In this paper we have modeled individual careers from

initial entry to eventual exit or success using a discrete - choice, finite - horizon optimization

problem. We have applied this model to the game of chess, which we have selected because

of two main reasons: a precise measure of relative performance called ELO, and the cross -

country dimension of this international game. Using a longitudinal panel of young players,

we have found that their behavior is consistent with key implications of the model, which
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suggest that individuals are more likely to select a professional career when the expected

returns are high and the training costs are low.

We have also used the cross - country variation in the data to group individual players

according to whether they belong to the ex-Warsaw Pact countries, with its long chess

tradition, or to the rich countries of Europe and America, or finally to the low income

countries of Asia, such as India and China, and have highlighted the fact that players from

the ex-Warsaw Pact tend to dropout significantly less and to move to a professional career

more than the players from the other two groups. Maximum likelihood estimates suggest

that the players from Russia and its neighbors included in our data set are not particularly

talented, at least compared to European and American players, but face substantially lower

training costs, mainly because of the lower opportunity value of time.

Since our sample is not a representative draw from the population, we cannot generalize

our results. The natural question is how our estimated parameters relate to the population

parameters. Clearly, an answer to this question must await for better data. At the same

time, however, we speculate that the cross - country differences in the alternative value of

time and/or training costs can explain the different patterns of selection occurring in our

data: because players from richer countries have more and better alternatives to chess, the

observed proportion of talented players in our censored data set is likely to be higher there

than among poorer countries and the countries of the ex-Warsaw Pact.

8 Appendix

8.1 Proof of Lemma 2

The proof starts from the last period. Since waiting for one more period at k = T is

irrelevant because the value of waiting is zero, the slope condition trivially holds. Consider

now period T − 1. We have that

VT =Max
£
qT (sT )(R− C) + (1− qT (sT ))(Y − C), Y

¤
The threshold for the last period is given simply by

qT (θDT ) =
C

R− Y
or,

rT = exp

"
−
T
¡
1
2 − θDT

¢
σ2

#
=

(1− p)C
(R− Y − C)p
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Thus we have

θDT =
1

2T
− σ2

T
log

∙
(R− Y − C)p
(1− p)C

¸
Hence trying out is optimal at T if and only if

sT ≥ θDT

or51

sT ≥ TθDT − (T − 1)sT−1

Otherwise, players dropout.

Then, at t = T − 1, the expected return is given by

VT−1(sT−1) =Max
£
qT−1(sT−1)(R− C) + (1− qT−1(sT−1))(Y − C), Y, ρE [VT |sT−1]

¤
The expected value from waiting until the next period, conditional upon sT−1, is

E [VT |sT−1] =

Z
sT≥TθDT −(T−1)sT−1

£
qT (sT−1, sT )(R−C) + (1− qT (sT−1))(Y − C)

¤
fTdsT

+

Z
sT≤TθDT −(T−1)sT−1

Y fTdsT

Now we have

fT ≡ f (sT |s1, ...sk−1) = qT−1φ
∙
sT − 1

σ

¸
+ (1− qT−1)φ

hsT
σ

i
qT (sT−1, sT ) =

qT−1φ
£
sT−1
σ

¤
fT

Thus we get

E [VT |sT−1] = qT−1(R− Y )
£
1−Φ1T

¤
+ (Y − C)

£
1−Φ0T

¤
,

wherein we have

Φ1T ≡ Φ

µ
TθDT − (T − 1)sT−1 − 1

σ

¶
,

Φ0T ≡ Φ

µ
TθDT − (T − 1)sT−1

σ

¶
,

1 > Φ0T > Φ
1
T > 0

51 In this appendix, we assume that the noise of the signal is distributed normally with zero mean and
age invariant variance. The case in which variance declines over age at a constant rate can be analyzed in a
similar manner and skipped.
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Given these expressions, we obtain

∂AT−1(sT−1)

∂sT−1
= (1 + ρ)(R− Y )∂q

T−1(sT−1)

∂sT−1
(A.1)

and also we have

∂ρEVT (sT−1)

∂sT−1
= ρ

¡
(R− C)

£
1−Φ1T

¤
− (Y − C)

£
1−Φ0T

¤¢ ∂qT−1(sT−1)
∂sT−1

< (1 + ρ)(R− Y )∂q
T−1(sT−1)

∂sT−1
(A.2)

Hence
∂ρEVT (sT−1)

∂sT−1
<

∂AT−1(sT−1)

∂sT−1
(A.3)

The effect of sT−1 on the value of waiting is smaller than on the value of trying for two

reasons. First, by waiting players can draw at least one more test score, which reduces the

information content of the current signal. Second, by waiting at least one more period, the

impact of a given signal on the returns to talent becomes smaller, because less time is left

until the end of eventual professional life.

Next we want to show that

∂Ak−1(sk−1)

∂sk−1
>

∂ρE [Vk|sk−1]
∂sk−1

> 0 (A.4)

Suppose that
∂Ak(sk)

∂sk
>

∂ρE [Vk+1|sk]
∂sk

> 0 (A.5)

Then we have that

∂ρE [Vk|sk−1]
∂sk−1

<
∂E [Vk|sk−1]

∂sk−1
=

∂

∂sk−1

½Z
max [Ak(sk), ρE [Vk+1|sk] , Qk] fkdsk

¾

<
∂

∂sk−1

½Z
Ak(sk)fkdsk

¾
=

∂

∂sk−1

½Z
Ak

h
qk(sk−1, sk)

i
fkdsk

¾
Notice

qk(sk−1, sk) =
qk−1(sk−1)φ

¡ sk−1
σ

¢
fk

Hence

∂

∂sk−1

½Z
Ak

h
qk(sk−1, sk)

i
fkdsk

¾
=

∂

∂sk−1

½Z
Mk(R− Y )qk−1(sk−1)φ

³sk−1
σ

´
dsk

¾
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=Mk(R− Y )
∂qk−1(sk−1)

∂sk−1
< Mk−1(R− Y )

∂qk−1(sk−1)

∂sk−1
=

∂Ak(sk−1)

∂sk−1

Consequently we get

∂ρE [Vk|sk−1]
∂sk−1

<
∂

∂sk−1

½Z
Ak

h
qk(sk−1, sk)

i
fkdsk

¾
<

∂Ak(sk−1)

∂sk−1
(A.6)

By induction, the above holds for any k = 1, 2, ..., T.QED

8.2 The Optimal Policy and the Likelihood Function

In this appendix we show how we obtain the likelihood function. The appendix also applies

to the model in Section 3 simply by setting payoff errors to zero.

At the beginning of period k, given the test score at the kth trial, the value function is

Vk(esk) =Max [Ak(esk), ρEVk+1(esk),Qk]
where Ak(esk), EVk+1(esk),and Qk correspond, respectively, to trying out, waiting, and drop-
ping out, and we have

Ak(esk) = qk(esk)Sk + (1− qk(esk))Nk
= Mk

h
(R− Y )qk(esk) + Y i− C + uAt

Qk = MkY + u
Q
t

ut ≡
³
uAt , u

Q
t

´
has zero mean and known covariance matrix Σu

Σu ≡ E(uAt , u
Q
t )

=

∙
σ2A σAQ
σAQ σ2Q

¸
The Bellman equation can be re-written as52

Vk(esk) =Max ∙ Mk

£
(R− Y )qk(esk) + Y ¤− C + uAt ,
ρEVk+1(esk),MkY + u

Q
t

¸
52Notice that adding an error term to the waiting option does not change the substance. Since we can only

identify the difference in the error terms, there is no need to include the error term in the waiting option.
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where qk(esk) is a shorthand for the posterior probability of being talented for a player with
the score history (s1, s2, ...sk) and the noise in the score is distributed normally with zero

mean and variance

σ2k = σ21μ
k−1 where 0 < μ < 1 (18)

as defined in Sub-section 3.2 of the main text. Thus we have

qk≡ qk
¡
p, esk,σ21,μ¢= pgk

pgk + (1− p)
k=1,2,...T

where

gk = exp

"
−
k(12 − esk)
σ21μ

k−1

#
and

esk = kX
i=1

siμ
k−i

8.2.1 Backward Induction

In period k = T the individual has no option to wait for the next period. Hence her value

function is

VT =Max
h
qT (R− C) + (1− qT )(Y − C) + uAT , Y + u

Q
T

i
Given the realization of the score esk, the optimal choice is given by

IT = 2 iff qT (R− C) + (1− qT )(Y − C) + uAT ≥ Y + u
Q
T

In this case - this shortcut applies only to the last period as there is no waiting option - we

know that uAt − u
Q
t is normally distributed with zero mean and variance

σ2W ≡ E(uAt − u
Q
t )
2 = σ2A + σ2Q − 2σAQ

The alternative choice is IT = 0, and the associated probabilities are:
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prob(IT = 2) = prob
h
qT (esT )(R− Y ) ≥ C + uQT − uAT i

= 1−Φ
∙
C − qT (esT )(R− Y )

σW

¸
prob(IT = 0) = 1− prob(IT = 2)

= Φ

∙
C − qT (esT )(R− Y )

σW

¸
where Φ is for the standard normal distribution. Using this into the value function we have

E [VT |sT ] = Y +

Z
C−qT (esT )(R−Y )

¡
qT (esT )(R− Y )− C + wT ¢φµwT

σW

¶
dwT

= Y +
¡
qT (esT )(R− Y )− C¢ ∙1−ΦµC − qT (esT )(R− Y )

σW

¶¸
+

Z
C−qT (esT )(R−Y )wTφ(wT )dwT

where

wT ≡ uAt − u
Q
t

and φ is the standard normal density function. The integration of the right hand side of

the above equation yields the following implicit function

E [VT |sT ] = νT
¡
qT (esT ), R, Y,C,σ2A,σ2Q,σAQ¢

which is the expected value of waiting given the value of esT .
To obtain the expected value of waiting conditional upon esT−1, we need to integrate the

maximand over esT . Thus
E [VT |esT−1] =

Z
νT
¡
qT (sT ), R, Y,C,σ

2
A,σ

2
Q,σAQ

¢
fTdsT

≡ eνT ¡qT−1(esT−1), R, Y,C,σ2A,σ2Q,σAQ¢ (A.7)

where

fT ≡ f (sT |s1, ...sk−1) = qT−1φ
∙
sT − 1
σT

¸
+ (1− qT−1)φ

∙
sT
σT

¸

qT (sT−1, sT ) =
qT−1φ

h
sT−1
σT

i
qT−1φ

h
sT−1
σT

i
+ (1− qT−1)φ

h
sT
σT

i = qT−1φ
h
sT−1
σT

i
fT
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Therefore the expected return at t = T − 1 is given by

VT−1(esT−1) = max[MT−1(q
T−1(esT−1)(R− Y ) + Y )− C + uAT−1,

MT−1Y + u
Q
T−1, ρeνT (qT−1(esT−1))]

In this case there are three options. The tryout option is the best choice if

IT−1 = 2 iff qT−1(esT−1)MT−1(R− Y ) ≥ C + uQT−1 − u
A
T−1

and

MT−1
¡
qT−1(esT−1)(R− Y ) + Y ¢−C + uAT−1 ≥ ρeνT (qT−1(esT−1), ·)

This condition can be rewritten as

uAT−1 ≥ u
Q
T−1 + C − q

T−1(esT−1)MT−1(R− Y )

and

uAT−1 ≥ C + ρeνT (qT−1(esT−1), ·)−MT−1
¡
qT−1(sT−1)(R− Y ) + Y

¢
The probability of trying out is obtained by integration over the joint cumulative distribution

function (cdf) of
³
uAt , u

Q
t

´
. Denoting by ϕ

³
uAt , u

Q
t

´
the joint cdf, we get

prob(IT−1 = 2) = prob
h
uAT−1 ≥ u

Q
T−1 + τAQT−1& u

A
T−1 ≥ τAWT−1

i
where

τAQT−1 ≡ C −MT−1q
T−1(esT−1)(R− Y )

τAWT−1 ≡ C + ρE [VT |esT−1]−MT−1q
T−1(esT−1)(R− Y )

which can be rewritten as

prob(IT−1 = 2) =

Z ∞

τAWT−1

Z uAT−1−τ
AQ
T−1

−∞
ϕ
³
uAT−1, u

Q
T−1

´
duQT−1du

A
T−1

Similarly, the probabilities associated to the other two events are
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prob(IT−1 = 1) = prob
h
uAT−1 ≤ τAWT−1& u

Q
T−1 ≤ τAWT−1 − τAQT−1

i
=

Z τAWT−1

−∞

Z τAWT−1−τ
AQ
T−1

−∞
ϕ
³
uAT−1, u

Q
T−1

´
duQT−1du

A
T−1

prob(IT−1 = 0) = prob
h
uAT−1 ≤ u

Q
T−1 + τAQT−1& u

Q
T−1 ≥ τAWT−1 − τAQT−1

i
=

Z τAWT−1

−∞

Z ∞

τAWT−1−τ
AQ
T−1

ϕ
³
uAT−1, u

Q
T−1

´
duQT−1du

A
T−1

+

Z ∞

τAWT−1

Z ∞

uAT−1−τ
AQ
T−1

ϕ
³
uAT−1, u

Q
T−1

´
duQT−1du

A
T−1

Thus the integration of VT−1(esT−1) over possible realizations of uT−1 ≡ ³uAT−1, uQT−1´ yields
[VT−1|esT−1] =

Z Z
uT−1∈DT−1

QT−1φ(uT−1)duT−1

+

Z Z
uT−1∈WT−1

ρE [VT |esT−1]φ(uT−1)duT−1
+

Z Z
uT−1∈AT−1

AT−1φ(uT−1)duT−1

where we have

DT−1 ≡ {uT−1 : IT−1 = 0}

WT−1 ≡ {uT−1 : IT−1 = 1}

AT−1 ≡ {uT−1 : IT−1 = 2}

The integration of the above yields

E [VT−1|esT−1] = νT−1
¡
qT−1(esT−1), R, Y,C,σ2A,σ2Q,σAQ¢

Therefore the expected value before the realization of the score is given by

E [VT−1|esT−2] =

Z
νT−1

¡
qT−1(sT−1), R, Y,C,σ

2
A,σ

2
Q,σAQ

¢
fT−1dsT−1

= eνT−1 ¡qT−2(esT−2), R, Y,C,σ2A,σ2Q,σAQ¢
8.2.2 Solution Procedure

In general, the following recursive procedure can be applied:
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1. Compute (A.7) for νT . Proceed backward.

2. At period k,given ρvk+1,compute:

Vk(esk) =Max ∙ Mk(q
k(esk)(R− Y ) + Y )− C) + uAT−1,

MkY + u
Q
T−1, ρvk+1

¸
3. Compute the probabilities

prob(Ik = 2) = prob
h
uAk ≥ u

Q
k + τAQk & uAk ≥ τAWk

i
prob(Ik = 1) = prob

h
uAk ≤ τAWk & uQk ≤ τAWk − τAQk

i
prob(Ik = 0) = prob

h
uAk ≤ u

Q
k + τAQk & uQk ≥ τAWk − τAQk

i
where we have

τAQk ≡ C −Mkq
k+1(esk+1)(R− Y )

τAWk ≡ C + ρE [Vk+1|esk]−Mk(q
k+1(esk+1)(R− Y ) + Y )

4. Compute

E [Vk+1|esk] =

Z Z
uk∈Dk

Qkφ(uk)duk +

Z Z
uk∈Wk

E [Vk|esk]φ(uk)duk
+

Z Z
uk∈Ak

Akφ(uk)duk

= νk+1

³
qk(esk), R, Y,C,σ2A,σ2Q,σAQ´

Dk ≡ {uk : Ik = 0}

= {uk : uAk ≤ u
Q
k + τAQk & uQk ≥ τAWk − τAQk }

Wk ≡ {uk : Ik = 1}

= {uk : uAk ≤ τAWk & uQk ≤ τAWk − τAQk }

Ak ≡ {uk : Ik = 2}

= {uk : uAk ≥ u
Q
k + τAQk & uAk ≥ τAWk }

38



5. Finally, obtain

E [Vk|esk−1] =

Z
νk

³
qk(sk), R, Y,C,σ

2
A,σ

2
Q,σAQ

´
fkdsk

= eνk ³qk−1(esk−1), R, Y,C,σ2A,σ2Q,σAQ´
6. Go back to 2 and repeat the procedure for k − 1.

8.2.3 Likelihood function

Once we have completed the procedure above, we have

λjk ≡ log (prob(Ik = j))

= λjk(q
k
i (s

i
k,σ,μ, p), R, Y,C,σ

2
A,σ

2
Q,σAQ)

j = 0, 1, and 2

Against these predicted probabilities, we have the set of data for individual players’ decision

history and score record.

h
{Iit}, {sit}

i
Since we can recover only the ratios among R,Y,C, we set R = 1.Thus the parameters we

estimate are:

Ω ≡ {Y,C, p,σ,μ,σ2A,σ2Q,σAQ}

Hence the log-likelihood is

L(Ω) =
TX
k=1

NX
i=1

D(I
i
k = j)λ

j
k(q

k
i (s

i
k,σ,μ, p), C, Y,σ

2
A,σ

2
Q,σAQ)

so that the maximum likelihood estimator is the solution to

Ω∗ = argmaxL(Ω)
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Table 1. Some stylized facts about chess  
 Number of 

players with 
1400≥ELO  

Share of 
players with 

2500≥ELO  
(x100) 

Share of 
players with 

2700≥ELO  
(x100) 

Individuals 
with 

2500≥ELO  
per million 

of population 

YR /  

England 699 1.288 0.143 0.150 2.393 
France 3049 0.361 0.033 0.181 2.585 
Spain 3867 0.181 0.000 0.161 3.548 
Germany 4718 0.551 0.000 0.315 2.602 
Ex Soviet Union 10106 2.207 0.158 0.972 16.860 
India 2183 0.458 0.046 0.009 125 
USA 937 1.494 0.107 0.047 2.057 
      
Notes:  

1. only players born from 1967 onwards; ELO data are from www.fide.com 
2. R/Y = Y  is income per head from the World Bank in 2005 US dollars; R 
       = expected annual income in the event of success, computed as  

30
10*$000,15010*$000,10010*$000,20( ++

=90000$ 



 
Table 2. Cumulative hazards by cohort and year. 
       
Cohort 1 2001 2002 2003 2004 2005 2006
Dropout  .098 .151 .193 .201 .217 .230 
Tryout  .031 .054 .085 .095 .168 .243 
       
Cohort 2 2002 2003 2004 2005 2006  
Dropout  .163 .288 .319 .346 .379  
Tryout  .008 .019 .027 .088 .217  
       
Cohort 3 2003 2004 2005 2006   
Dropout  .375 .423 .460 .487   
Tryout  .005 .008 .047 .132   
       



 
Table 3. The ratio R/Y and the variables WEB and TR by country 

Country R/Y WEB TR Country R/Y WEB TR 
Armenia 20.13 0.50 2.52 Iran 32.49 0.83 0.23 
Australia 2.79 6.46 1.32 Israel 4.83 4.71 4.67 
Austria 2.43 4.77 4.88 Italy 3.00 5.01 2.97 

Azerbaijan 72.58 0.49 1.11 Kazakistan 30.72 0.27 0.65 
Belarus 32.61 1.63 1.31 Lituania 12.77 2.82 3.06 
Brazil 26.01 1.20 0.26 Moldova 102.27 0.96 3.45 

Bulgaria 26.09 2.84 2.61 Mongolia 130.43 0.80 1.09 
Canada 2.76 6.26 0.99 Netherlands 2.46 6.14 3.01 

Chile 15.33 2.67 3.05 Peru 34.48 1.17 0.36 
China 51.72 0.73 0.01 Poland 12.66 2.36 3.63 

Croatia 11.17 2.93 14.07 Portugal 5.39 2.81 3.10 
Czech 8.40 4.70 7.92 Romania 23.50 2.08 2.10 

Denmark 1.90 6.96 17.11 Russa 20.18 1.11 2.63 
Ecuador 34.22 0.48 2.41 Singapore 3.27 5.71 3.94 
England 2.39 6.28 0.34 Slovenia 5.19 4.76 11.55 

Spain 3.55 3.36 6.47 Slovakia 11.32 4.23 3.94 
France 2.59 4.14 3.84 Turkmenistan 96.67 0.08 0.70 
Georgia 66.67 0.39 4.24 Turkey 19.11 1.43 0.49 
Germany 2.60 5.00 2.85 Ucraine 59.21 0.79 1.92 
Greece 4.58 1.77 6.57 USA 2.06 6.30 0.36 
Hungary 8.97 2.67 15.35 India 125.00 0.32 0.05 

Indonesia 70.31 0.66 0.01 Vietnam 145.16 0.71 0.03 
    
 



 
Table 4. Ordered Probit and Random Effects Ordered Probit 
 (1) (2) (3) (4) (5) 
Age -.060*** 

(.007) 
-.144*** 

(.009) 
-.145***

(.009) 
-.199*** 

(.013) 
-.104*** 

(.034) 
Time .272*** 

(.008) 
.261*** 
(.009) 

.260***
(.010) 

.241*** 
(.012) 

.368*** 
(.021) 

EXS dummy .170*** 
(.030) 

-0.061* 
(.035) 

.026 
(.061) 

.046 
(.085) 

-.081 
(.143) 

RES dummy -.123*** 
(.045) 

-.363*** 
(.055) 

-.357***
(.092) 

-.437*** 
(.121) 

-.868*** 
(.200) 

Initial  number of rated games  .024*** 
(.002) 

.024***
(.002) 

.037*** 
(.002) 

.021*** 
(.004) 

Initial ELO  .007*** 
(.0002) 

.007***
(.0002) 

.011*** 
(.0004) 

.005*** 
(.0004) 

Initial chess title  .195*** 
(.046) 

.192***
(.046) 

.281*** 
(.054) 

.353*** 
(.102) 

R/Y   .003***
(.0008) 

.003*** 
(.001) 

.007*** 
(.001) 

Internet users per 1000 inhabitants 
WEB 

  .052***
(.017) 

.073*** 
(.024) 

.073* 
(.040) 

Number of tournaments per million 
inhabitants TR 

  .005 
(.005) 

.002 
(.007) 

.018* 
(.010) 

Lagged number of games      
Lagged ELO      
Lagged rank      
Number of observations 9244 9244 9244 9244 2269 
Pseudo R Squared 0.079 0.237 .238  .203 
      
Notes: One, two and three stars for coefficients statistically significant at the 10, 5 and 1% level of confidence. 



Table 5. Actual and predicted probabilities. Predicted probabilities are from the specification in 
column (3) of Table 4. 
 Full sample RIC 

countries
EXS 

countries 
RES 

countries 
Actual probability of dropping out 0.246 0.291 0.215 0.299 
Predicted probability of dropping out 0.234 0.257 0.210 0.298 
     
Actual probability of waiting 0.673 0.640 0.694 0.644 
Predicted probability of waiting 0.663 0.668 0.668 0.632 
     
Actual probability of trying out 0.080 0.068 0.091 0.055 
Predicted probability of trying out 0.102 0.075 0.122 0.070 
     



 
Table 6. Proportional Cox Model with Competing Risks 
 dropout tryout 
Initial Age .193*** 

(.015) 
-.209***

(.027) 
EXS dummy .079 

(.091) 
0.005 
(.185) 

RES dummy .391*** 
(.133) 

-.889***
(.279) 

Initial  number of rated games -.029*** 
(.035) 

.040***
(.004) 

Initial ELO -.009*** 
(.0003) 

.009***
(.0006) 

Initial chess title -.497*** 
(.147) 

.149* 
(.076) 

R/Y -.002 
(.001) 

.009***
(.002) 

Internet users per 1000 inhabitants WEB .026 
(.027) 

.156***
(.049) 

Number of tournaments per million 
inhabitants TR 

-.060*** 
(.008) 

-.030* 
(.016) 

   
Number of observations 27786 27786 
   
 



 
Table 7. Maximum likelihood estimates of p, c, ρ and σ.  
 Full sample Ex- Warsaw 

Pact EXS 
Rich countries 

RIC 
Low income  

countries 
RES 

     
Probability of being talented p 0.344*** 

(.113) 
. 226** 
(.139) 

.545*** 
(.057) 

.122* 
(.080) 

Cost of training C/R 5.750*** 
(.679) 

2.867*** 
(.908) 

5.294*** 
(1.490) 

2.007 
(2.666) 

Opportunity cost Y/R 0.067***  
(0.009) 

0.081  
(.12) 

0.269*  
 (0.189) 

0.040  
(0.045) 

Standard Dev σ age 10 9.291*** 
(1.093) 

5.100 
(4.981) 

1.459 
(1.717) 

5.017*** 
(1.631) 

σ age 15 3.440 3.241 0.927 2.122 
σ age 20 1.274 2.059 0.589 0.898 
σ age 23 0.471 1.308 0.374 0.380 
μ  .870*** 

(.070) 
.852*** 
(.110) 

.913*** 
(.126) 

.842*** 
(.136) 

Aσ  0.015*** 
(.000) 

0.255 
(.383) 

0.538 
(.474) 

0.044 
(.050) 

Qσ  0.020*** 
(.000) 

0.015* 
(.011) 

0.010* 
(.006) 

0.010 
(.018) 

AQσ  0.000 
(0.001) 

0.000 
(.002) 

0.000 
(0.001) 

0.000 
(0.001) 

Pseudo R Squared .109 .236 
Likelihood ratio test (Chi 
Squared with 8 df) 

       1607.2 

Number of observations 8883 3820 3987 1076 
     
Notes: one, two and three stars for statistical significance at 10, 5 and 1 percent level of confidence. Asymptotic 
standard errors in parentheses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Table 8. Maximum likelihood estimates of p, c, ρ and σ. With errors in the measurement of 
performance. 
 Russia Spain India 
    
Probability of being talented p .306*** 

(.027) 
.601** 
(.333) 

.100 
(.083) 

Cost of training C/R 2.993** 
(1.412) 

5.244 
(4.370) 

1.934 
(1.994) 

Opportunity cost Y 0.188  
(.355) 

0.282* 
(.183) 

0.028 
(.029) 

Stand Dev σ age 10 3.002** 
(1.485) 

1.734 
(2.387) 

5.230*** 
(0.560) 

σ age 15 1.510 1.048 2.105 

σ age 20 0.760 0.633 0.847 

σ age 23 0.382 0.383 0.341 
μ  .872*** 

(.109) 
.904*** 
(.119) 

.888*** 
(.038) 

Aσ  0.276 
(.257) 

0.379* 
(.291) 

0.584* 
(.398) 

Qσ  0.011 
(.011) 

0.010 
(.011) 

0.010 
(.000) 

AQσ  0.000 
(.000) 

0.000 
(.000) 

0.000 
(.000) 

Pseudo R Squared .179 .212 .189 
Number of observations 2577 3987 1076 
    
Notes: one, two and three stars for statistical significance at 10, 5 and 1 percent level of confidence. Asymptotic 
standard errors in parentheses.  
 
 
 
 
 
 



 
 
 
 

 
Figure 1A:  the three options  
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Figure 1B:  the three options  
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 Figure 2. Relationship between p, σ  and D

kθ .μ=0.87  c=80 k=10 
 
 
 



Figure 3. Relationship between p, σ  and W
kθ .  μ=0.87  c=80 k=10 

  
 



 

Figure 4. Relationship between p, σ  and ( w
kθ - D

kθ ) at μ=0.87  c=80 k=10.  
 



 
Figure 5. Distribution of ELO scores for the years 2001 and 2006 for the first cohort, aged 10 to 18 
in 2001 
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Figure 6. Nonparametric competing risks: cumulative hazard into professional life (tryout) and 
dropout cumulative hazard (dropout). Full sample 
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Figure 7. Nonparametric competing risks: cumulative hazard into professional life (tryout) and 
dropout cumulative hazard (dropout). Ex-soviet countries (in red), rich countries (in blue) and the 
rest  (in black) 
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Figure 8. Percentage of players aged 10 to 30 in their initial year in the sample who have passed 
ELO =2300 at least once. By age. 
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