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Summary

The World Wide Web offers an ocean of information and services for everyone, and
many of us rely on it on a daily basis. One of the reasons for the Web’s success is that
the threshold for creating content on the Web was always very low, because comfortable
and easy to use HTML editors are available. Today, so many Web pages exist that it
is hard to filter out the information that is actually relevant. This problem is known
as “information overload”. Conventional search engines are limited by the fact that the
Web is machine-readable, but not machine-understandable. Intelligent text processing
algorithms have been proposed that often work well for certain tasks, but do not scale
to the size of the Web. The Semantic Web promises a solution to this problem by
adding explicit semantics with the goal of making the Web machine-understandable by
using description logics and ontologies. However, the threshold for creating this extra
markup is very high, and no comfortable tools exist at present. The goal of this work
is to develop such tools. Machine Learning techniques have been used in literature for
various classification tasks. The central claim of this thesis is that such algorithms,
supervised and unsupervised, can be used for this purpose.

The goal as sketched here is split into several parts. First, the problem of assigning
an appropriate category to a Web Service as a whole is discussed. The problem can be
treated as supervised text classification. We show that a multi-view approach performs
better than using a single classifier. We also apply an unsupervised clustering algorithm
to the same problem and show that this approach is also feasible, although it is less ac-
curate. Classifying services as a whole can be useful for UDDI or for mediating between
different taxonomies. However, to assist the user in annotating Semantic Web Services,
all components within a service need to be classified. We present a supervised iterative
relational learning algorithm to address this problem and introduce the approach of
specialised classifiers for relational learning.

Next, we generalise the problem from annotating Web Services to ontology map-
ping. We present an unsupervised iterative relational algorithm for graph matching,
apply it to the ontology mapping problem and show that it outperforms several algo-
rithms from recent literature. As a diversion, we present a new ensemble algorithm for
general supervised learning tasks that we call Triskel. Although not specifically tar-
geted at Semantic Web applications, Triskel was developed as a direct consequence of
the specialised classifiers for relational learning.
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Chapter 1

Introduction

The World Wide Web offers an ocean of information and services for everyone. Although
it is merely fifteen years old, many of us could not imagine life without it any more.
One of the reasons for its success, beside its usefulness, is the fact that it is very easy
for everyone to create a web page. HTML, the page description language of the Web,
is very simple to learn. And, what is even more important, right from the beginning,
comfortable and easy to use HTML editors existed.

By today, the Web has grown so large that we often face a problem of “information
overload”: In the mass of web pages that exist, how can we sift out the information
that we were actually looking for? One of the drawbacks here is that HTML is a
description language for the visual layout of a page and has no semantics. The Web is
meant for human consumption. It is machine-readable, but not machine-understandable.
To overcome this problem, information extraction techniques that use intelligent text
processing to retrieve pieces of interest from a mass of often unstructured text have
been proposed. While modern information extraction algorithms work reasonably well
for certain tasks, this is a method that does not scale to the size of the Web.

The Semantic Web promises a solution to this problem. The idea of the Semantic
Web is to make the implicit semantics that is in the text we find in the Web explicit,
and thus meaningful for an algorithm. The vision is that we can use intelligent agents
(e.g. (Hendler & Lassila 2001)) to go on the Web for us and autonomously perform a
task that they were told to do. It is of course still a long way to go until we achieve this
goal. But yet, this idea is so appealing that Tim Berners-Lee, the author of the first
Web browser and often called the father of the World Wide Web, is actively promoting
the Semantic Web (e.g. (Berners-Lee, Hendler & Lassila 2001)).

One of the main obstacles, if not the obstacle, the Semantic Web faces is that as
opposed to the World Wide Web this annotation for the Semantic Web is not yet easy
to create for everyone. The threshold for the average user to create a Web page is
so low that millions of people create Web pages in their free time. The threshold for
creating the extra piece of information that we need in the Semantic Web is so high that
not even for-profit programmers bother to invest this extra effort, although this effort
could ease data integration problems. The goal of this thesis is to lower the threshold
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Figure 1.1: The objective of this thesis is to simplify the creation of content on the Semantic
Web by providing good tools.

for creating semantic metadata significantly (see figure 1.1). We believe that machine
learning techniques can be used to build tools that assist the user. In this thesis, we will
show several approaches where we successfully apply both supervised and unsupervised
ensemble learning to Semantic Web and data integration problems. Other approaches
from literature are referred to and discussed in the respective chapters.

1.1 Motivation

Ever since the first databases, programmers have faced the problem of exchanging data
between different systems. On many mainframe systems, this problem of data exchange
or data integration is usually solved by defining a fixed position and length for each
piece of data or field. This way of exchanging data is very efficient, but it has several
disadvantages. Without adequate documentation, it is impossible for a programmer
to guess either the meaning of each field, or even where a field starts or ends. If the
data structure changes, all programs that participate in the communication have to be
changed as well in order to work properly.

1.1.1 XML

With the advent of XML (Extensible Markup Language)1, the hope was to ease some of
these issues by creating a format that is to a certain extent self-describing. Tag names, if
chosen sensibly, tell the programmer about the meaning and purpose of each field. If new
fields are inserted into the data structure, older programs that are not aware of the new
data can choose to just ignore the new tags. With Document Type Definitions (DTDs)2

1http://www.w3.org/XML/
2The specification for DTD is part of the XML specification.
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Figure 1.2: An example for data integration with Web Services

or the more sophisticated XML Schema3 it is possible to formally verify the correctness
of a document. With XSLT (Extensible Stylesheet Language Transformations)4 it is
possible to transform data from one schema to another. However, the “marketing
promise” that XML makes everything compatible can of course not be fulfilled: This is
only true as long as a mapping between different schemata is known.

In this context – and before in the context of relational databases – various ap-
proaches to (semi-) automatically generate such mappings have been proposed, for
example Cupid (Madhavan, Bernstein & Rahm 2001), COMA (Do & Rahm 2002),
Clio (Popa, Velegrakis, Miller, Hernandez & Fagin 2002), LSD (Doan, Domingos &
Halevy 2003) and ILA (Perkowitz & Etzioni 1995).

1.1.2 Web Services

Based on XML, Web Services5 promise an answer to the data integration problem
not from a representational but rather from a transactional perspective. Consider a
travel agency scenario as in figure 1.2. The customer who comes to the travel agency
expects that he can book all parts of his trip, from the air ticket to the hotel and the
rented car, all at once without having to contact the individual airlines, hotels and
car rental agencies directly. The travel agent therefore needs to integrate the different
services offered. This is a situation where Web Services become useful. Web Services
are programs that are made available over the web via a standardised software interface.
As opposed to (human-readable) web pages, this allows for an easy integration of third-
party information (e.g. from the hotel or the airline) into a software system (e.g. at the
travel agency).

The features that distinguish Web Services from older techniques for remotely exe-
3http://www.w3.org/XML/Schema
4http://www.w3.org/TR/xslt
5http://www.w3.org/2002/ws/
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cuting code, such as the Common Object Request Broker Architecture (CORBA)6 or
the proprietary Distributed Component Object Model (DCOM) by Microsoft, is the
use of XML both as a message exchange format and a description format, and the
accessibility through firewalls because of the use of HTTP as the access method.

The interface of a web service is usually described in WSDL, the Web Service
Description Language7. UDDI (Universal Description, Discovery and Integration)8

promises an easy way of dynamically discovering web services.
However, UDDI suffers from some shortcomings. Although UDDI specifies a “Yel-

low Pages”-like service to discover web services according to a taxonomy, its search
capabilities are very limited. Different competing taxonomies like the UNSPSC (United
Nations Standard Products and Services Code) or NAICS (North American Industry
Classification System) exist, and it is worth noting that these taxonomies were made for
classifying industries, not web services. It is only possible to search for exact categories.
Even the search for more general or more specific classifications is not possible. This
means that, for example, if the query asks for a “finance” web service, a UDDI search
will not result in web services classified as the more specific “banking”. To make it
even worse, a web service provider who advertises in a UDDI registry does not have to
specify a code at all.

1.1.3 Ontologies

Tom Gruber defines an ontology as a formal “specification of a conceptualisation”
(Gruber 1993). A slightly simplified view is that an ontology describes concepts and
relations between these concepts. However, the purpose that ontologies usually fulfil, is
that they are a well defined vocabulary that can be used to make assertions about the
world. The role of ontologies in data exchange is very similar to the role of a schema,
and so are the challenges that are associated with the use of ontologies.

As with schemas, the usefulness of ontologies for the purpose of data exchange
and integration stands and falls with the ability of finding mappings between different
ontologies. Again, ontologies are to some extent associated with the hope to ease the
data integration problem. What XML (Schema) contributed towards the solution of
this problem was to provide a formal self-description of the data. While XML allows a
verification of the syntax, ontologies contribute formal assertions about the data itself.

1.1.4 Ontologies for Web Services

To facilitate automated discovery, invocation and composition of web services, a seman-
tic, not only a syntactic description is needed.

Ontologies for Web Services such as OWL-S promise a solution to this problem by
providing “a core set of markup language constructs for describing the properties and

6http://www.corba.org/
7http://www.w3.org/TR/wsdl
8http://www.uddi.org/
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capabilities of their Web services in unambiguous, computer-interpretable form” (The
DAML Services Coalition 2003). Although OWL-S provides a framework, it is by itself
not enough to attach meaning to the elements of a Web Service, such as its parameters
or even the category of the service as a whole. It is only useful if it is linked to a domain
ontology. Selecting appropriate concepts from this domain ontology is the key challenge
here.

A Web Service as modelled in OWL-S typically consists of several parts:

• Service Profile

• Service Model

• Grounding

• Concepts

The Service Profile is a description of what the Service does. It should be modelled
so that it is sufficient for discovering the service. The Service Model is a description of
how the Service works. It is usually more detailed than the profile and needed if the
Service is to be invoked and composed with other Services. The Grounding ties the Ser-
vice description as given in OWL-S to the WSDL. It defines how to invoke the Service
syntactically. The above files can make use of new classes as defined in an ontology.
To be useful, these concepts should be linked to a shared domain ontology. In addi-
tion to these aspects of OWL-S, usually an instance of class “Service” is declared that
presents the profile, is described by the model and supports the grounding. “presents”,
“isDescribedBy” and “suppoorts” are in OWL-S modelled as properties of “Service”.

1.2 Outline

The work that led to this thesis tried to tackle some of the problems arising from the
need of mapping between different schemata, ontologies and Web Services as mentioned
above by using machine learning techniques. Figure 1.3 show the topics covered by this
thesis and their relations.

We begin by giving short introductions on ontologies (section 2.1) and Web Ser-
vices, especially the Web Service Description Language WSDL (section 2.2), before we
continue with some definitions (section 2.3) that serve as a prerequisite for the main
chapters. After that, we give a very brief overview of machine learning (section 2.4).

1.2.1 Categorising Web Services

In the main part of the thesis, we consider the problem of assigning an appropriate
category to the Web Service as a whole first. This problem is discussed in chapter 3. We
start by specifying the problem (section 3.1) and presenting our corpus of Web Services
(section 3.2). We found out that a multi-view approach where we use separate bag of
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Figure 1.3: Outline of this thesis

words for separate components of the Web Service and combine the results performs
better than using a single classifier.

1.2.2 Clustering Web Services

We also tried unsupervised clustering (chapter 4) on the level of Web Services as a whole.
We introduce a variant of standard hierarchical agglomerative clustering that produces
concise labels for each cluster. Although the unsupervised method is, as expected, less
accurate than the supervised approach, we have to conclude that both the supervised
classification and unsupervised clustering of Web Services into categories are feasible.

1.2.3 Annotating Web Services

Classifying the category of a Web Service can already be useful when considering a sce-
nario where we have to find an appropriate class in a taxonomy for use within UDDI or
when we have to mediate between different competing taxonomies (see above). However,
the main reason for doing this relatively straightforward work that treats Web Service
classification as similar to text classification, was to test if the usually quite short texts
that can be extracted from names and comments in Web Services are enough to make
classification techniques work. The positive results obtained encouraged us to move on
to the more complex task of classifying the inner components of a Web Service as well.
This is of paramount importance, if we want to assist a human annotator in creating a
Semantic Web Service.

Chapter 5 covers our approach to the problem of annotating the complete Web
Service. In section 5.1 we present the ASSAM Annotator application, a prototypical
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software for adding semantics to Web Services. It assists a human annotator by sug-
gesting possible annotations that are based on predictions obtained from a classifier.
We use supervised iterative relational learning to make these predictions. Section 5.2
presents this technique in greater detail. In this section, we also introduce the notion
of specialised classifiers for relational learning.

1.2.4 Aligning Ontologies

As the unsupervised annotation of Web Services can be regarded as merely a special case
of the more generic problem of mapping a schema (the Web Service) to an ontology, we
generalised our approach to ontology mapping. Chapter 6 discusses this generalisation.
As in the preceding chapters, we begin in section 6.1 with a formulation of the problem of
ontology mapping, frequently also called ontology alignment. In section 6.2 we present
related work. Our algorithm for ontology mapping is, as the algorithm presented in
chapter 5, an iterative relational algorithm. It is presented in detail in section 6.3. In
section 6.4 we discuss the relation between ontology alignment and graph matching and
show that the accuracy of an ontology alignment algorithm can be increased by applying
an algorithm that searches for the maximum weighted matching.

1.2.5 The Triskel Algorithm

Before we come to the conclusion, in chapter 7 we present an ensemble learning algorithm
that we call Triskel. We show that Triskel outperforms well-known established ensemble
methods such as Boosting. Unlike the other approaches that have been discussed in this
thesis so far, Triskel is not an algorithm for matching problems but a general machine
learning algorithm. Chapter 7 is therefore a diversion. However, it was developed as
a consequence of the work the specialised classifiers introduced in section 5.2. Because
of that and because we think that Triskel is an interesting contribution to the field of
ensemble learning, we discuss it here in spite of its relevance being beyond the specific
problem domain with which this thesis is primarily concerned.

7



Chapter 2

Background

This chapter presents some background information on ontologies, Web Services and
machine learning. These introductions are by no means complete. Their purpose is
solely to enable a reader not familiar with one of these topics to follow the remainder
of the thesis. In this chapter, we also introduce the mathematical notation that will be
used throughout the thesis.

2.1 Introduction to Ontologies

2.1.1 The Semantic Web

The conventional World Wide Web, based on HTML, is meant for visual presentation
and human consumption. Consider a typical web shop. For a human, it is easy to see
which part of the web site is the title of a product, which is a description and which is
the price. However, it is not so easy for a machine to, for example, extract all product
names together with the price and transfer them into a table. The reason for that
is that usually the markup in the presented document is purely visual. A program
only sees text that is set in boldface, not what this piece of text actually means. For
this extraction problem, it is, nevertheless, relatively easy to construct wrappers that
extract certain information like the price (e.g. (Freitag & Kushmerick 2000, Muslea,
Minton & Knoblock 1999)) However, this requires considerable human interaction, as
the algorithm needs to be trained first. It is also error-prone, since the webmaster might
change the structure of the website. Then, further attempts to extract new data using
the same wrapper might fail, leading to no or, even worse, faulty data to be extracted.

In this scenario, the use of information extraction techniques is, however, just a
(computationally expensive!) way to circumnavigate the fact that an explicit markup
is not present. One of the goals of the semantic web is to provide such markup, thus
making the web machine understandable.

8



2.1.2 Ontologies

Semantic markup alone does, however, not solve the problem of machine-understand-
ability yet. Assume the task is to retrieve news articles about Ireland. Assuming there
exists some geographic semantic markup, the task seems straightforward. But what if
the markup in some of the articles states that it is about “Dublin”? For a human, it
is easy to see that the article is still relevant.1 This is possible because we can reason
about known facts. For an algorithm, however, it is necessary to explicitly state that
Dublin is in fact the capital of Ireland. Therefore it is clear that for the semantic web
to work there is a need for something more than just a pure taxonomy.

By using an ontology, it is possible to not only arrange a lexicon of terms or con-
cepts in hierarchy (as in a taxonomy), but also to issue formal statements about the
relationship between concepts. For example, an ontology could state that Dublin is a
city in Ireland, then we can infer that we should retrieve the news article, although it
does not explicitly mention Ireland as a topic.

Unfortunately, there is no “global ontology” that would enable us to universally
identify all entities in the real world. Rather, for many applications, domain ontologies,
that cover a certain, usually very specific, range of expertise have been devised. Besides
these various “bottom-up” ontologies, there are also attempts to create “upper” ontolo-
gies in a top-down way. Examples for such ontologies are OpenCyc2 or the Suggested
Upper Merged Ontology (SUMO)3.

2.1.3 RDF, RDFS and OWL

The Resource Description Framework (RDF) is the basis for most widely used ontology
languages currently used. It is based on statements about resources that are triples
consisting of a subject, a predicate and an object. A resource in RDF is identified
by a Uniform Resource Identifier (URI). While the subject and predicate of an RDF
statement are always resources, the object can be either a resource or a literal (text).
The predicate is a resource that identifies the relationship between the subject and the
object.

RDF Schema or RDFS is an extension to RDF that allows for formal assertions
about RDF statements. RDF Schema introduces the notion of classes, properties and
instances.

The Web Ontology Language OWL (not WOL!) is a further extension. Historically
it is based on DAML+OIL (which in turn is based on the DARPA agent markup lan-
guage DAML, developed with funding from the US Department of Defense, and the
Ontology Inference Layer OIL). OWL is much more expressive than RDFS and has a
direct link to Description Logics. The variant OWL-DL has the same expressiveness
as the SHOIN (D) description logics. The less expressive OWL Lite has the same ex-

1Unless it is about Dublin, Ohio.
2http://www.cyc.com/cyc/opencyc/overview
3http://www.ontologyportal.org/
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pressiveness as the SHIF(D) description logics. The variant OWL-Full is even more
expressive than OWL-DL, but reasoning about OWL-Full is undecidable.

This section briefly introduces some terms from ontologies as far as they are relevant
to this thesis, but is not an exhaustive description.

Classes

A class in an ontology represents something that we can make assertions about. A class
in an ontology usually corresponds to an entity in the real world, but can also represent
some abstract concept. A class is sometimes also referred to as a concept or a category.
Typically, a subsumption relation (“inheritance”) is defined on classes. For example,
consider a class “car” that is a subclass of “vehicle”.

Instances

Instances or individuals are representations of concrete objects. The relation between
classes and instances in ontologies is the same as between classes and objects in ob-
ject oriented programming languages. An instance belongs to a class. For example,
“TheMercedes” is an instance of class “car”, and “Janis” is an instance of a “person”.

Properties

Attributes or properties are descriptions of an instance. Properties can be declared on
the level of classes and have concrete values on the level of instances. For example, we
can define that the class “vehicle” has a property “owner”, and that the “owner” of
“TheMercedes” is “Janis”.

We have to distinguish between object and datatype properties. An object property
describes the relation between two instances or two classes. The property “owner” from
our example is an object property. Its domain is “vehicle”, and its range is “person”,
meaning that every vehicle can have an owner, and that an owner is always a person.
A datatype property is a property that has a simple datatype like “integer” or “string”
as its range. For example, we can declare a datatype property “lengthInCentimeters”
with the range “integer” and the domain “vehicle”.

Properties can also describe the relations between classes itself. For example, “sub-
classOf” and “superclassOf” (the subsumption relation on classes) are properties of a
class. There is also a subsumption relation defined on properties. A property can be a
subproperty of another property.

Figure 2.1 shows a graphical representation of a simple ontology. Classes are denoted
by rectangles, properties are denoted by ellipses and instances are denoted by diamond
shapes.
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2.1.4 Domain and Upper Ontologies

2.2 Introduction to Web Services

2.2.1 Web Service Protocol Stack

Web Services as loosely coupled software components play a key role in a service oriented
architecture. The service oriented architecture (SOA) is an architectural concept that
is based on self-contained services that are composed to implement complex business
processes. This implies that the business logic is distributed over independent services.
To make use of services, the SOA model allows a service consumer or requester to make
service requests to a service provider and get a service response. To discover a service,
the requester can query a broker or registry. This setup is illustrated in figure 2.2.

According to the requirements of the SOA, the protocol stack for Web Services covers
transport, messaging, service description and service discovery. The most commonly
used transport protocol is currently HTTP, but it is also possible to use SMTP or FTP.
The most common messaging protocols, based on XML, are XML-RPC and SOAP. The
Web Service Description language WSDL is commonly used for the syntactic description
of a service, and UDDI is used for discovery.

The motivation of the work presented in this thesis lies in the need for a greater
degree of automation in service discovery and composition. As shortly explained above,
UDDI has only very limited discovery capabilities, and WSDL only provides a syntactic
description of a Web Service. A human developer must carefully select suitable services
in order to compose services in order to implement a business process. Ontologies for
Web Services such as OWL-S strive to fill this “semantic gap”, but without tools for
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generating semantic annotation, the need for a considerable amount human intervention
is not eliminated, but merely shifted to creating this annotation. As opposed to any
semantic description, WSDL is, however, generated automatically from the implemen-
tation. Therefore, we use WSDL as the basis from which we try to generate semantic
information semi-automatically.

2.2.2 Web Service Description Language (WSDL)

As WSDL is the element of the protocol stack that is most relevant to the work in this
thesis, we present some key elements of the description language in this section. These
explanations are very brief, but should be sufficient to give the necessary background
knowledge that is required to understand the rest of this thesis. For further information
about the Web Service Description Language, the reader is referred to other litera-
ture, for example the official W3C Note on WSDL (Christensen, Curbera, Meredtih &
Weerawarana 2001).

Figure 2.3 shows a graphical representation of a simple Web Service that sends faxes.
The same Web Service can be found as a source code example in WSDL in appendix A.
The individual components of a Web Service as shown in the graph are explained in the
following paragraphs.
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Service

A service in WSDL is an aggregate of several ports. Theoretically, a service could
comprise several ports (and thus operations) with completely unrelated functionality.
In practice, however, a service is a consecutive programming interface.

Port Types

A port in WSDL denotes an address or communication endpoint, that is bound to a
port type. A port type is a collection of operations.

Operations

An operation corresponds almost directly to a method or function in a programming
language. Input and output of an operation is defined through messages.

Messages

Messages, consisting of parts, define the signature, i.e. the inputs and outputs, of an
operation. An operation can have at most three messages defined: An input message,
and output message and a fault message. The fault message is sent instead of the output
message, if an error occurs during execution. Fault messages allow a straightforward
way for exception handling. Each message consists of one or more parts.

Parts

A part in WSDL corresponds to a single parameter in an input, output or fault message.
A part can be either of a simple datatype such as integer or string, or of a complex type.

Complex Types

A complex type, specified in XML schema, is used to define composite type or structure
(compare the “struct” keyword in C/C++). Its elements can be either single data
elements or other complex types.

2.3 Definitions

While the applications of our research are Web Service annotation and ontology map-
ping, both of these tasks can be seen as specialisations of mapping vertices in a graph.
In this section, we start by introducing a notation for graph matching. We continue
with some definitions that serve as a foundation for explaining the algorithms that we
will present in the remainder of this thesis.

14



2.3.1 Mapping Function

Related Work

The annotation of Web Services with semantic concepts can be seen as a special form of
ontology mapping, where a Web Service is treated as a very simple form of an ontology.
Therefore, it is straightforward to use the same notation for both problems. Ehrig and
Staab in (Ehrig & Staab 2004) define a mapping function for ontologies.

Definition 1 (Ehrig and Staab, (Ehrig & Staab 2004)). We define an ontology mapping
function, map, based on the vocabulary, E , of all terms e ∈ E and based on the set of
possible ontologies, O, as a partial function

map : E × O ×O ⇀ E

with ∀e ∈ O1(∃f ∈ O2 : map(e,O1, O2) = f ∨map(e,O1, O2) = ⊥).

However, this notation has some problems. Clearly, the vocabulary E in the domain
is not the same as the vocabulary E in the codomain. Ehrig and Staab circumnavigate
this issue by introducing a set of ontologies O, where according to the definition every
element O ∈ O is itself a set of entities, so that each e is both an element of the
vocabulary E and an ontology O and imposing constraints on e and f .

In various approaches such as (Melnik, Molina-Garcia & Rahm 2002) or (Jeh &
Widom 2002), the mapping problem is cast as a graph matching problem. For the
notation in this thesis, we follow that notion and treat the entities that we are try-
ing to match as nodes in a graph.4 We use the words “node”, “vertex” and “entity”
synonymously.

Graph Interpretation

We define the mapping problem as identifying pairs of vertices from two edge-labelled
directed graphs.

In the case of the ontology mapping problem, the vertices represent entities in the
ontology (i.e. classes and properties). The arcs denote relations between these entities,
and the labels signify the kind of relation, e.g. “subclass of”, “domain” or “range”.5

For the Web Service matching problem, vertices in the graph correspond to compo-
nents of a Web Service, e.g. operations, complex types or message parts. Arcs denote
relations such as “message part belongs to operation”.

Definition 2. Let G = (V,A) and G′ = (V ′, A′) be two directed graphs with V and V ′

as their set of vertices and A and A′ as their set of arcs. We define two partial functions
4The papers mentioned, (Melnik et al. 2002) and (Jeh & Widom 2002) make use of derived graphs

such as the pairwise connectivity graph and the similarity propagation graph in (Melnik et al. 2002) or
the node-pairs graph in (Jeh & Widom 2002). We do not use such derived graphs here.

5Note that the terms relation, domain and range in an ontological sense should not be confused with
the same terms in a mathematical sense.
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that are not necessarily surjective and injective as:

map : V ⇀ V ′

and
map′ : V ′ ⇀ V

From non-surjectivity and non-injectivity follows that we do not require that
map′(map(v)) = v.

Although potentially it would also be useful to map edges instead of just vertices,
we restrict ourselves to the case where edge labels are drawn from a fixed, common
vocabulary. As illustrated above, this is the case in the ontology mapping scenario. We
defer the generalised approach that also maps edges to future work.

2.3.2 Similarity Function

Definition 3. To measure the similarity between vertices from G and G′, we define
similarity functions as:

sim : V × V ′ → [0, 1]

and
sim′ : V ′ × V → [0, 1]

We allow different similarity functions to be used and denote them with an index.
We define that sim(v, v′) = 1 for perfect similarity and sim(v, v′) = 0 if v and v′

are completely dissimilar. In general, we do not require that sim(v, v′) = sim′(v′, v),
although this assertion might be true for certain simk. When we use sim in the remainder
of the thesis we will explicitly state if sim(v, v′) = sim′(v′, v) holds or not where this
issue is of importance.

We define a binary similarity function simbin that has a direct correspondence to
map. Since map(v) = v′ does not imply map′(v′) = v, simbin(v, v′) = sim′

bin(v
′, v) does

not hold.

Definition 4. We define simbin, a similarity measure according to definition 3, as follows:

simbin(v, v′) =

{
1 if map(v) = v′

0 otherwise

The definition for sim′
bin is analogous.

2.3.3 Taxonomies

In the problems that we will consider in the remainder of the thesis the task is not
always to map nodes in similarly structured graphs to one another. In the Web Services
task for example, the mapping and the similarity between two services are merely means
to annotate (the elements in) a service with labels drawn from an arbitrary taxonomy.
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In that case, the structural similarity between a service and the taxonomy itself is not
meaningful. In fact, the taxonomy might not even have a hierarchical structure, but
could be a (flat) list of labels.

While it is important to note the difference between these two problems, we can still
use a similar notation for mappings and similarities.

Definition 5. Let G = (V,A) be a directed graph with V as its set of vertices and A as
its set of arcs. Let T be a taxonomy and t ∈ T a class label drawn from T .

We then define a partial function:

maptax : V ⇀ T

Definition 6. To measure the similarity between a vertex from G to a class in T , we
define a similarity function as:

simtax : V × T → [0, 1]

We omit the subscript if it is obvious from the context that we are measuring the
similarity between a node in a graph and a label in a taxonomy rather than the similarity
between two nodes.

The mappings and similarities between vertices and classes may derive from a ma-
chine learning algorithm, see section 2.4 for a brief introduction. As a simple example,
consider a nearest neighbour-classification, see also section 2.4.2. The mapping from
a vertex v to a class t then derives from a known mapping from a vertex v′ to class t

and a mapping between v and v′ based on the similarity between these two vertices.
The class in the taxonomy that is assigned to v is obtained by first mapping v to
some v′ and then using the known mapping from v′ to a class in the taxonomy, i.e.
maptax(v) = maptax(map(v)) = maptax(v′) = t. The mapping maptax(v) = t is also
known as training data.

Definition 7. We define training data as a set E of ordered pairs (v, t) with v ∈ V and
t ∈ T .

2.3.4 Subsets of V

Depending on the application, it is not always desirable that all v ∈ V can be mapped
to all v′ ∈ V ′ or t ∈ T . If we consider ontology mapping, we may want to prohibit
that classes are mapped to individuals or properties or vice versa.6 In the Web Services
context, it makes no sense to map operations to parameters. To facilitate for such cases,
we define subsets of V resp. V ′ or T that denote types of nodes. In the ontology case,
we denote C ⊂ V resp. C ′ ⊂ V ′ as the set of classes and P ⊂ V resp. P ′ ⊂ V ′ as the
set of properties. In the Web Services case, we denote S ⊂ V as the set of services,
O ⊂ V as the set of operations and D ⊂ V as the set of parts, complex types and

6Although sometimes it might actually be the case that things are represented as classes in one
ontology appear as individuals in another, we do not consider such cases in this work.

17



elements (i.e. the individual parameters of a service). Since in the Web Service case we
are mapping the components of a service to a taxonomy rather than another service,
we define S′ ⊂ T , O′ ⊂ T and D′ ⊂ T as analogous subsets of the taxonomy.

2.3.5 Related Entities

Definition 8. We define a function from the set of vertices to the power set of vertices
so that for a given vertex the function finds all adjacent vertices:

rel : V → 2V

Let G = (V,A) be a digraph with the set of vertices V and arcs A as a set of ordered
pairs of vertices. Then we define:

rel(v) = {x|v, x ∈ V ∧ (v, x) ∈ A}

The definition of rel′ : V ′ → 2V ′
is analogous.

Definition 9. We define a function from the set of vertices and the set of labels L to the
power set of vertices so that for a given vertex the function finds all vertices adjacent
through an arc with a given label:

rel : V × L→ 2V

Let G = (V,A) be a digraph with the set of vertices V and labelled arcs A as a set of
ordered triples (v, w, l) ∈ V ×W × L. Then we define:

rel(v, l) = {x|v, x ∈ V ∧ (v, x, l) ∈ A}

The definition of rel′ : V ′ × L → 2V ′
is analogous. We allow rel(v, l) to be denoted as

rell(v).

2.3.6 Feature Vector Functions

Most of the approaches that we present in this thesis make use of a feature vector rep-
resentation of entities (i.e. vertices in our graph model, see above). This feature vector
representation can be used either to directly compute a similarity value between enti-
ties or as an input for a machine learning algorithm. We write ~f(v) respectively ~f ′(v′)
to denote a (general) feature vector representation of an entity. For the definition of
specific representation, see below. In the following, we write all feature vector functions
as functions V → Rn, the definition for V ′ is analogous. This vector representation of
an entity should not be confused with the matrix representation of a graph.

Definition 10. We define two feature vector functions ~f and ~f ′ that map an entity to a
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vector representation of that entity.

~f : V → Rn

~f ′ : V ′ → Rn

Following (Neville & Jensen 2000), we distinguish between static intrinsic, dynamic
intrinsic, static extrinsic and dynamic extrinsic features.

Static Intrinsic Features

Static intrinsic features are attributes that are inherent to an entity. Let us consider
the example of link-based web page classification. The task is to classify a web page
into one of several categories. We can use information from the web page that is to
be classified as well as from web pages connected with links. In this example, static
intrinsic features of a web page are the words in the text of the page.

More formally, the static intrinsic feature vector depends on a single entity itself
and on the mode of representation that we choose. Since the entities that we want
to map are characterised through text associated with them (e.g. labels, comments or
instance data), it is straightforward to resort to the well-known vector space model from
information retrieval (e.g. (van Rijsbergen 1979) or (Salton & McGill 1983)). In the
term vector model, also referred to as “bag of words” model, a document is represented
by the set of its words. This set is usually cast to a vector by defining an arbitrary
order on the set of words and assigning each word in the vocabulary to an element in
the vector.

We can choose between different options for defining the elements of the term vector.
The elements of the vector can be binary (a term is either present or absent), integer
numbers (word counts) or real numbers (weighted word counts, for example the well
known TFIDF, e.g. (Salton & McGill 1983) ). In our definition, we assume Rd as the
codomain, although depending on the representation that we choose the range might
be only [0, 1]d or even {0, 1}d. The dimensionality d of the vector is a constant and
depends on a lexicon of known terms.

Definition 11. We define a static intrinsic feature vector function as a function of an
entity:

~si : V → Rd

For ~si and all subsequently defined feature vector functions, we allow different im-
plementations to coexist. We denote different implementations with subscripts, e.g. we
write ~sik(v).

Dynamic Intrinsic Features

Dynamic intrinsic features are also inherent to an entity, but they are dynamic in the
sense that their value can change as we get more information about that entity. In the
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web page example (see above), this corresponds to the prediction of a web page’s class.
This prediction might change as we get more information, e.g. if we get to know the
class assigned to linked pages, this might change our prediction for the current page.

According to our more formal definition, dynamic intrinsic features of an entity v

are its mapping map(v) and the similarities sim(v, v′) for all v′ ∈ V ′. Note that the
dynamic intrinsic features are typically what we want to compute. In particular, this
means that the dynamic intrinsic features are initially unknown. If the mapping of an
entity is known a priori, we call that entity training data.

To align the dynamic intrinsic with the static intrinsic features, we define a vector
function for dynamic intrinsic features.

Definition 12. We define a dynamic intrinsic feature vector function as a function of an
entity:

~di : V → R|V ′|

Analogous to the matrix representation of a graph, we impose an arbitrary total order
on V ′ and denote the first element of V ′ as v′0 and the subsequent elements as v′n for all
n < |V ′|. Then we define ~di as follows:

~di(v) = [sim(v, v′0), sim(v, v′1), . . . , sim(v, v′|V ′|−1)]

Static Extrinsic Features

Extrinsic features derive from the relationship of an entity to other entities. Static ex-
trinsic features are static intrinsic features of related entities. In the web page example,
this is text that comes from a related web page. We have assume that neither the text
of a web page nor its links change while we classify it, so the text from linked web pages
also does not change and remains static.

Definition 13. We define a static extrinsic feature vector function as a function of an
entity.

~se : V → Rd

Assuming a commutative and associative operator ⊕ on Rd and a function rel as per
definition 8, we define ~se(v) as some combination ⊕ of the intrinsic features ~si(x) (see
definition 11) of all related entities x ∈ rel(v).

~se(v) =
⊕

x∈rel(v)

~si(x)

Dynamic Extrinsic Features

Dynamic extrinsic features are dynamic intrinsic features of related entities. In the
web page example, dynamic extrinsic features come from the class prediction that we
make for linked web pages. These predictions may change over time, as we make more
accurate predictions. Note that dynamic extrinsic features are dynamic intrinsic features
of linked pages.
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Like the dynamic intrinsic features, the dynamic extrinsic features are initially un-
known. The dynamic extrinsic features are based on the similarities of related entities.
This means that the dynamic extrinsic features are unknown until these similarities
have been computed.

Definition 14. We define a dynamic extrinsic feature vector function as a function of an
entity.

~de : V → R|V ′|

Assuming a commutative and associative operator ⊕ on Rd and a function rel as per
definition 8, we define ~de(v) as some combination ⊕ of the dynamic intrinsic features
~di(x) (see definition 12) of all related entities x ∈ rel(v).

~de(v) =
⊗

x∈rel(v)

~di(x)

2.3.7 Similarity Between Vectors

To compute the similarity between two entities based on their feature vector represen-
tation, we resort to some well known (e.g. (van Rijsbergen 1979) or (Salton 1989))
metrics from information retrieval.

Inner Product

The simplest similarity measure for two vectors is the inner product (or dot product).
For two binary term vectors, the inner product is the number of terms that the two
entities have in common, i.e. the intersection of the two term sets.

simdot(v, v′) def= ~f(v) · ~f ′(v′)

Failure to normalise the similarity measure can lead to counterintuitive results (see
(van Rijsbergen 1979)). For entities with long texts or, in the case of an extrinsic
feature vector, for entities with many relations, the intersection between two vectors
will usually be larger, thus overweighting the importance of these entities. There exist
several possibilities to normalise this similarity measure.

Cosine Coefficient

A straightforward normalisation that has a geometric interpretation is the cosine coef-
ficient. The value is equivalent to the cosine of the angle between the two vectors ~f(v)
and ~f ′(v′).

simcos(v, v′) def=
~f(v) · ~f ′(v′)√

(~f(v))2(~f ′(v′))2
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Dice Coefficient

The Dice coefficient normalises the dot product of the vectors using their average length.

simdice(v, v′) def= 2
~f(v) · ~f ′(v′)

(~f(v))2 + (~f ′(v′))2

Jaccard Coefficient

The Jaccard coefficient is similar to the Dice coefficient. The intersection of the two
vectors is normalised by their union.

simjaccard(v, v′) def=
~f(v) · ~f ′(v′)

(~f(v))2 + (~f ′(v′))2 − ~f(v) · ~f ′(v′)

Overlap Coefficient

The overlap coefficient normalises the dot product by the length of the shorter of the
two vectors.

simoverlap(v, v′) def= 2
~f(v) · ~f ′(v′)

min((~f(v))2, (~f ′(v′))2)

2.4 Introduction to Machine Learning

This section gives a very brief overview of some Machine Learning techniques with the
intention to make the rest of the thesis intelligible to people who are not experts in Ma-
chine Learning. It is by no means a complete overview. For more detailed information,
the reader is referred to other literature, for example Mitchell’s well known textbook on
Machine Learning (Mitchell 1997).

In this overview, we start with a definition of Machine Learning and briefly present
some basic techniques that will be used in the remainder of the thesis. Mitchell defines
that a computer program learns, if it improves in performing its task with experience.

Definition 15 (Mitchell, (Mitchell 1997)). A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P , if its
performance at tasks in T , measured by P , improves with experience E.

A common way of casting this definition is the classification problem, the task to
attach a label drawn from a set of class labels to an entity. An algorithm is trained to
map a feature vector to a class label. This vector is a series of observations about the
entity that is to be classified. In the common text classification task, this is usually a
term vector (see section 2.3.6). In this scenario, the task T is to classify documents into
categories and experience E consists of a set of already labelled documents referred to
as training data. In general Machine Learning tasks, documents are usually referred to
as instances. For the performance measure P , we can use the well-known precision and
recall metrics.
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2.4.1 Accuracy, Precision, Recall and F1

Accuracy, Precision, Recall and F1 are well-known metrics for evaluating classifiers.
While Accuracy is simply the percentage of correctly classified instances, Precision,
Recall and F1 measure the performance of a classifier on a per-class basis. Precision
measures the correctness of the results for a given class and Recall measures the com-
pleteness. The F1-Measure is the harmonic mean of Precision and Recall.

Definition 16. The Accuracy of a classifier is the fraction of instances correctly classified
by the classifier over all instances classified by the classifier.

Definition 17. The Precision Prec(C) for a class C is the fraction of instances correctly
labelled as C over the total number of instances that were labelled as C.

Definition 18. The Recall Rec(C) for a class C is the fraction of instances correctly
labelled as C over the total number of instances that actually belong to C.

Definition 19. The F1 measure F1(C) for a class C is the harmonic mean of the Precision
and Recall for C.

F1(C) =
2Prec(C)Rec(C)

Prec(C) + Rec(C)

Consider a simple binary classification problem with two classes A and B. When we
classify a number of instances, we can construct a confusion matrix (also referred to as
contingency table) as in figure 2.4, that lists counters for each predicted and for each
actual class label. In this example, a+ b is the number of instances that belong to class
A, and c + d is the number of instances classified as class B. Given definitions 16–19 we
can now easily calculate Accuracy as well as Precision and Recall for A and B. (The
value for F1(A) and F1(B) follows directly from definition 19.)

Accuracy =
a + d

a + b + c + d

Prec(A) =
a

a + c

Prec(B) =
d

b + d

Rec(A) =
a

a + b

Rec(B) =
d

c + d

To obtain a Precision or Recall metric that characterises the behaviour of a classifier
over all classes, there are two obvious ways to average the per-class measures that
are known as microaveraging and macroaveraging. Microaveraging considers all classes
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predicted class A B
actual class A a b

B c d

Figure 2.4: An example for a confusion matrix or contingency table

as one and then computes Precision and Recall where as macroaveraging computes
Precision and Recall separately for each class and then averages. Note that if each
instance is labelled with exactly one label microaveraged Precision and Recall equals
Accuracy. Macroaveraged Precision, Recall or F1 is of particular interest if the class
distribution is skewed because it treats all classes as equally important, as opposed to
Accuracy, which is dominated by large classes. For a discussion of these evaluation
metrics in greater detail, see (Lewis 1991).

2.4.2 Nearest Neighbour

If we have as similarity measure defined over entities that we want to classify, it is
straightforward to define a classifier that makes a prediction based on the known label
of instances in the training set that are similar to the instance in question. As a similarity
measure for instances we can resort to the measures introduced in section 2.3.7, but for
tasks other than text classification it can make sense to use Euclidian distance instead.
In its simplest form, a 1-Nearest Neighbour classifier simply outputs the label of the
single nearest instance to the instance in question. Distance-weighted classifiers that
incorporate the labels of the k-Nearest Neighbours can be more robust against noise in
the training data.

2.4.3 Naive Bayes

The well-known Naive Bayes classifier is based on the calculation of conditional proba-
bilities of the instance belonging to a certain class given the observation given in form
of the feature vector, i.e. let Fi denote random variables based on the feature vector,
then we are interested in computing P (C|F1, . . . , Fn) for each class C. Using Bayes’
theorem and making the “naive” assumption that all features are conditionally inde-
pendent given the class variable C this is equivalent to computing P (C)

∏n
i=1 P (Fi|C).

Note that the parameters of this term can be easily estimated from frequency counts
obtained from the training data. The Naive Bayes classifier works reasonably well for
most datasets, although the independence assumption is often violated in practice.

2.4.4 Support Vector Machine

The Support Vector Machine or SVM is a classification method for binary classifica-
tion tasks that is based on computing a separating hyperplane that maximises the
margin between examples of both classes. The original Support Vector Machine is a
linear classifier, however, with the “kernel trick” it is possible to extend the SVM to
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non-linear classification problems by using a a non-linear kernel function. The SVM
classifier is based on ideas by V. Vapnik (Vapnik 1979, Vapnik 1982). For a more de-
tailed description on SVM, the reader is referred to Bernhard Schölkopf’s PhD thesis
(Schölkopf 1997). A fast way to compute an SVM classifier is the Sequential Minimal
Optimization algorithm (SMO) by John Platt (Platt 1999). SVMs for text classification
have been extensively studied by Thorsten Joachims, e.g. (Joachims 1999).

2.4.5 Ensemble Methods

Ensemble techniques that combine the predictions of several base classifiers have been
demonstrated to be an effective way to reduce the error of a base learner across a wide
variety of tasks. The basic idea is to vote together the predictions of a set of classifiers
that have a different view on the data.

A view is a subset of all features that is independent from the rest of the features
and should be sufficient for a classifier to make a prediction. Because the features in
different views are independent from each other, the hope is that the prediction errors
of classifiers based on these views are independent as well. Ideally, the classifiers that
make the wrong prediction on any given instance are outvoted.

If there are no multiple views on the data, the same effect can be achieved by
using multiple different algorithms or by training the same algorithm (base classifier)
in different ways, i.e. by modifying its training set. There is a strong body of theory
explaining why ensemble techniques work, e.g. (Dietterich 2000).

Bagging

Bagging or Bootstrap Aggregating (Breiman 1996) is an ensemble method that trains
multiple classifiers on a different random subset of the original training set. Algorithm 1
illustrates Bagging for binary classification tasks with the class label t being either
+1 or −1. The training phase of the algorithm for multiple classes is analogous, on
classification phase majority voting is used. h denotes a single hypothesis learned by
the base algorithm.

Algorithm 1 Bagging
/* To train on E = {. . . , (vi, ti), . . .} (ti = ±1) */
for l = 1, 2, . . . ,K do

Let El be a set of N elements from E drawn at random with replacement
hl = Learn from El

end for
/* To classify instance x */

return sign
[∑K

l=1 hl(x)
]

/* Majority Voting */
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Boosting

Boosting creates multiple classifiers by emphasising instances that were misclassified
initially. Shapire’s original boosting algorithm (Shapire 1990) uses only three classifiers.
The later version AdaBoost (Freund & Shapire 1997) uses multiple rounds, instance
weights and weighted voting to combine the results of the multiple classifiers. Boosting
(and the difference between AdaBoost and our own Triskel algorithm) is explained later
in algorithm 10 in section 7.3.2.

Co-Training

Co-Training (Blum & Mitchell 1998) is an ensemble technique that uses unlabelled
data to improve classification accuracy, but requires multiple views to be present. The
original Co-Training algorithm is presented in algorithm 2.

Algorithm 2 Co-Training
/* To train from labelled instances with two views L = {. . . , (v1

i , v
2
i , ti), . . .} and

unlabelled instances U with two views. */
Let U ′ be u examples from U chosen at random
for l = 1, 2, . . . ,K do

Train h1 on the set {. . . , (v1
i , ti), . . .}

Train h2 on the set {. . . , (v2
i , ti), . . .}

Let h1 label p positive and n negative examples from U ′
Let h2 label p positive and n negative examples from U ′
Add these newly labelled examples to L and remove them from U ′
Choose 2p + 2n examples from U at random and add them to U ′

end for
Train h1 on the set {. . . , (v1

i , ti), . . .}
Train h2 on the set {. . . , (v2

i , ti), . . .}
/* To classify instance x */
return h1(x)× h2(x)

2.4.6 Unsupervised Clustering

The Machine Learning methods presented so far all have in common that they assume
the presence of at least some labelled training instances. However, given some similarity
measure, it is still possible to identify instances that should be grouped together.

Clustering algorithms can be divided into hierarchical and partitional algorithms.
Hierarchical algorithms can be further divided into top-down (divisive) and bottom-up
(agglomerative) methods.

Hierarchical Agglomerative Clustering

The very common hierarchical agglomerative clustering (or HAC-clustering) is quite
straightforward. It is presented in a very generic form in algorithm 3. Variants of
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Algorithm 3 Hierarchical Agglomerative Clustering
Place each instance in its own cluster
Compute pairwise similarities between all clusters
repeat

Merge the two most similar clusters
Compute similarities of all clusters to the newly created cluster

until termination criterion is met

HAC-clustering differ in the termination criterion and in the way the similarity between
clusters is computed.

The most common way to define the similarity between two clusters is use the
similarity of their centroids. The centroid of a cluster is an imaginary instance in the
centre of a cluster. If the instances are represented as vectors, the centroid is the
arithmetic mean of all instance vectors in the cluster. Thus, the similarity for two
clusters of vectors is:

sim(A,B) = sim(
∑

a∈A a

|A|
,

∑
b∈B b

|B|
)

In single link clustering, the similarity between two clusters A and B is defined as
the greatest pairwise similarity between instances from A and B:

sim(A,B) = max
a∈A,b∈B

sim(a, b)

Single link clustering has the disadvantage of producing chain-like clusters, since it
is sufficient for two clusters to be merged, if they are very similar at a single point.

In complete link clustering, the similarity between two clusters A and B is defined
as the smallest pairwise similarity between instances from A and B:

sim(A,B) = min
a∈A,b∈B

sim(a, b)

Complete link clustering produces clusters that are coherent.

k-Nearest Neighbour and k-Means Clustering

The simplest partitional clusterer is the k-Nearest Neighbour7 clusterer. It works by
selecting k instances as “seeds” for clusters and then subsequently assigning instances to
the cluster with the nearest seed. The refinement k-Means then calculates the centroid
of these clusters and uses these as seeds for the next iteration. This method is outlined
in algorithm 4. Basically, k-Nearest Neighbour is a k-Means clusterer with just one
iteration.

Because of the requirement to calculate pairwise similarities, the complexity for
single-link clustering is O(n2), and the complexity for complete-link clustering is O(n2

7Although somewhat similar, the unsupervised k-Nearest Neighbour clusterer should not be confused
with the k-Nearest Neighbour algorithm for supervised learning!
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Algorithm 4 The k-Means and k-Nearest Neighbour Clustering Algorithms
Select a set of k instances S = {c1, . . . , ck}
Create a cluster Ci for each ci ∈ S
repeat

for each instance x do
Compute similarity between x and all instances ci ∈ S
Assign x to the cluster Ci with the most similar ci

end for
/* If k-Nearest Neighbour, stop here. */
for each cluster C do

Replace ci with the centroid of Ci

end for
until convergence

log n). Partitional clustering algorithms such as the k-Nearest Neighbour clusterer
are linear in the number of instances. The drawback is, however, that the number of
clusters k must be specified in advance. Cutting et al. in (Cutting, Pedersen, Karger &
Tukey 1992) propose the “Buckshot” and “Fractionation” algorithms to find an intial
set of k instances for a partitional clusterer in an effective way.
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In this chapter, we discuss the problem of classifying a web wervice into a category
and treating this as a text classification problem. We show that an approach that splits
the available evidence and uses an ensemble of several classifiers works better than a
simple classifier. While classifying a web service as a whole may be useful for example
to automatically place it in a taxonomy for use within a UDDI registry, it is only the
first step towards fully annotated web services. The experimental results obtained with
the setup that is described in this chapter was an encouragement to proceed towards
annotating the components of a web service as well.

3.1 Problem Formulation

Following our definitions from section 2.3, we assume a web service as a directed graph
G = (V,A). We assume a taxonomy T = {t1, t2, . . .} of Web Service categories.

We treat the determination of a web service’s category as a text classification prob-
lem, where the text comes from the web service’s WSDL description. Unlike standard
texts, WSDL descriptions are highly structured. Our experiments demonstrate that
selecting the right set of features from this structured text improves the performance
of a learning classifier. By combining different classifiers it is possible to improve the
performance even further, although for both the feature selection and the combination
no general rule exists. The splits of the texts were treated as given from the structure
of a web service description and is in the following section discussed in greater detail.
Note that the problem of finding an appropriate split is different from automatic feature
selection in general machine learning problems.

Formally, the task of classifying the category of a service can be defined as finding a
mapping maptax(v) with v root node of G, given some training data E as per definition 7.
In this task, v is always the root node, because we are only interested in classifying the
service as a whole at this time, and not any inner components of the web service. Note
that we only classify one node in each graph. We have neither mappings nor even a
taxonomy for other nodes but the root. All mappings maptax(x) with x being any
other node but the root node are undefined. This means that we cannot use dynamic
extrinsic features to determine maptax(v). We can only use static intrinsic features ~si(v)
and static extrinsic features ~se(v).

Note that we always assume that a web service belongs to one category only. This is
a reasonable simplification, if we assume that a new class is introduced where services
would otherwise be in two categories. For example, services that would belong to two
categories like “books” and “e-commerce” are instead assigned to a category “book-
selling”. If, however, classifications are desired where services should be placed into
more than one class, other learning algorithms respectively meta-classification schemes
are required. This is, however, not discussed in this thesis.

In the following sections, we describe our web service corpus, describe the methods
we used for classification, and evaluate our approach.

30



Category taxonomy T and number of web services for each category
Business (22) Communication (44) Converter (43) Country Info (62)
Developers (34) Finder (44) Games (9) Mathematics (10)
Money (54) News (30) Web (39) discarded (33)

Figure 3.1: Web service categories in T .

3.2 Web Services Corpus

We gathered a corpus of 424 web services from SALCentral.org, a web service index.
These web services were then manually classified into a taxonomy T . To avoid bias,
the person was a research student with no previous experience with web services. The
person had the same information as given on SALCentral.org, and was allowed to inspect
the WSDL description if necessary. The person was advised to adaptively create new
categories while classifying the web services and was allowed to arrange the categories
as a hierarchy.

The 424 web services were classified by our assistant into 25 top level categories. The
actual taxonomy that was created consisted of more classes organised in a hierarchy,
but in order to simplify the task for this first experiment we decided to use only the
classes from the taxonomy that were direct descendants of the root.

We then discarded categories with less than seven instances, leaving 391 web services
in eleven categories that were used in our experiments. The discarded web services
tended to be quite obscure, such as a search tool for a music teacher in an area specified
by ZIP code. Even for a human classifier, these services would be extremely hard to
classify. Note that the distribution after discarding these classes is still highly skewed,
ranging from nine web services in the “Games” category, to 62 services in the “Country
Information” category. The list of categories used eventually is shown in figure 3.1.

3.3 Ensemble Learning

As shown in Fig. 3.2, the information available to our categorisation algorithms comes
from two sources. First, the algorithms use the web service description in the WSDL
format, which is always available to determine a service’s category. Second, in some
cases, additional descriptive text is available, such as from a UDDI entry. In our ex-
periments, we use the descriptive text provided by SALCentral.org, since UDDI entries
were not available. We parse the port types, operations and messages from the WSDL
and extract names as well as comments from various “documentation” tags. We do
not extract standard XML Schema data types like string or integer, or informations
about the service provider. The extracted terms are stemmed with Porter’s algorithm
(Porter 1980), and a stop-word list is used to discard low-information terms. We assume
the vector space model for our text classification task.

We experimented with four bags of words, denoted by A–D. The composition of
these bags of words is marked in Fig. 3.2. We also used combinations of these bags of
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SALCentral / UDDI

A

WSDL

B

Message Descriptions

DC

Service Description

WSDL Service

Port Type More Port Types

Operation More Operations

OutputInputFault

Figure 3.2: Text structure for our web service corpus

words, where e.g. C+D denotes a bag of words that consists of the descriptions of the
input and output messages.

Formally, we define A as a short-hand notation for the intrinsic feature vector ~si(v)
as obtained by function ~si from definition 11. Analogously, we define B, C , D and also
C+D etc. as short-hand notations for different extrinsic feature vector functions ~sek as
per definition 13.

We used word frequency counts as elements of the term vectors. In preliminary
experiments, we also evaluated the use of TFIDF weights, but we could not achieve
an improvement. As learning algorithms, we used the Naive Bayes (see section 2.4.3),
SVM (see section 2.4.4) and HyperPipes algorithms as implemented in the well-known
Weka library (Witten & Frank 1999). To combine two or more classifiers, we multiplied
the confidence values obtained from the multi-class classifier implementation.

Formally, let L be the set of subsets of {A,B ,C ,D}, that describes the combination
of feature vectors that we use: L ⊂ 2{A,B ,C ,D}, L 6= ∅. Then:

simL =
∏
s∈L

sims with sims = simP
x∈s x

i.e. sims is an implementation of function simtax from definition 6 that uses feature
vector

∑
x∈s x.

We denote a combination of different algorithms or different feature sets by slashes,
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e.g. Naive Bayes(A/B+C+D) denoting two Naive Bayes classifiers, one trained on the
plain text description only and one trained one all terms extracted from the WSDL.

We split our tests into two groups. First, we tried to find the best split of bags of
words using the terms drawn from the WSDL only (bags of words B–D). These experi-
ments are of particular interest, because the WSDL is usually automatically generated
(except for the occasional comment tags), and the terms that can be extracted from that
are basically operation and parameter names. Note that we did not use any transmitted
data, but only the parameter descriptions and the XML schema. Second, we look how
the performance improves, if we include the plain text description (bag of words A).

3.4 Evaluation

We evaluated the different approaches using a leave-one-out methodology: Each web
service is classified using a classifier that is trained on all other services. We tested vari-
ous configurations of algorithms, in figs. 3.3 and 3.4 we show some illustrative examples
as well as the setups that performed best.

We used a one-vs-all classification scheme (as implemented in the Weka MultiClass-
Classifier) for all classifiers: A separate, binary classifier is trained for each class, and
the overall distribution is based on voting. Since SVMs can only handle binary clas-
sification problems, this meta-scheme was necessary. In this experiment, even for the
Naive Bayes classifier, which is inherently capable of handling multi-class problems, the
results were better, if a one-vs-all scheme was used rather than a single classifier. A
one-vs-one scheme was considered but not used due to the much higher computational
cost.

In a machine learning setting with a split feature set it is also possible to use Co-
Training (Blum & Mitchell 1998) to improve classification accuracy, if unlabelled data
is present. In preliminary experiments we added 370 unlabelled web services. However,
we could gain no advantage using Co-Training.

For a semi-automatic assignment of the category to a web service, it is not always
necessary that the algorithm predicts the category exactly, although this is of course
desirable. A human developer would also save a considerable amount of work if he
or she only had to choose between a small number of categories. For this reason, we
also report the accuracy when we allow near misses. Figures 3.3 and 3.4 show how the
classifiers improve when we increase this tolerance threshold. For our best classifier, the
correct class is in the top 3 predictions 82% of the time.

3.5 Conclusion

Our results show that using a classifier with one big bag of words that contains ev-
erything (i.e. A+B+C+D for WSDL and descriptions, or B+C+D for the WSDL-only
tests) generally performs worst. We included these classifiers in figures 3.3 and 3.4 as
baselines. Ensemble approaches where the bags of words are split generally perform
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Figure 3.3: Classification accuracy obtained when using the WSDL only

one classifier two classifiers
Naive Bayes 37.6 53.45 �
SVM 47.06 56.78 �

Table 3.1: Percentage of correct predictions made by Naive Bayes and SVM classifiers for a
setup with only one classifier vs. a setup where the bag of words was split for two classifiers. Both
WSDL and plain text descriptions were used. The improvement due to the split is statistically
significant at the 0.05-level tested with a Student t-test.

better. This is intuitive, because we can assume a certain degree of independence be-
tween, for example, the terms that occur in the plain text descriptions and the terms
that occur in the WSDL description. Table 3.1 shows how the performance improves if
we use two classifiers trained on a separate bag of words each instead of one classifier
trained on all words. Note that the table shows the results for exact predictions only.
The results are statistically significant at the 0.05 confidence level when tested with a
Student t-test.1 What is a bit more surprising is that for some settings we achieve very
good results if we use only a subset of the available features, i.e. only one of the bags
of words.

In our experiments, the SVM classifier generally performed better than Naive Bayes,
except for the setup where we used the plain text descriptions only. Table 3.2 shows
a direct comparison of different setups of the Naive Bayes and SVM classifiers on a
dataset where both data from WSDL and plain text descriptions were used. Again, the
accuracy that is given in the table is for exact predictions.

1“Student” is the pen name of William Sealy Gosset (June 13, 1876 – October 16, 1937) who,
interestingly, developed the t-test while working as a statistician for the Arthur Guinness & Son brewery
in Dublin. The goal behind his work was to enable his employer to monitor the quality of their beer.
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Figure 3.4: Classification accuracy when using both WSDL and descriptions

Splits Naive Bayes SVM
1 37.6 47.06 �
2 53.45 56.78
3 49.62 58.31 �
4 43.99 54.99 �
desc. 55.50 55.75

Table 3.2: Percentage of correct predictions made by Naive Bayes vs. SVM classifiers using
both WSDL and plain text descriptions with different number of splits for the ensemble. A �
denotes results that are significantly better at the 0.05 confidence level tested with a Student
t-test. “desc” denotes a setup with one classifier that is trained on the plain text descriptions
only.

An ensemble consisting of three SVM classifiers performs well for both the WSDL-
only setting and also when including the descriptions. The best results were achieved
by other combinations, but we could not find a generic rule for how to best split the
available bags of words, as this seems to be strongly dependent on the algorithm and
the actual data set. In future work, methods to automatically determine a split that
performs well could be developed. This idea as well as the overall results we gained on
our web service dataset might be useful for other text classification problems as well,
if there is a natural split in different text sources. In an email classification problem,
for example, it should be possible to use separate classifier for the subject lines and for
the mail body. However, because of the focus of this work on web services, we did not
conduct such experiments and leave them to future work.

Today, students in Dublin still monitor the quality of Guinness.
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Since the experiments with supervised Web Service classification yielded encouraging
results, the logical next step towards automation is to try a completely unsupervised
approach. We introduce a precision/recall-quality metric for clustering that is similar
to the use of precision and recall in supervised learning or one-to-one mapping tasks
(see also chapter 6) that correlates with some existing metrics and has a probabilistic
interpretation. We use a variation of a HAC clustering algorithm that we call “Common
Term” that generates the centroid by overlap rather than by averaging and compare it
against four other clustering algorithms found in literature.

4.1 Clustering Algorithms

We tested five clustering algorithms on our collection of Web Services. First, we tried
a simple k-nearest-neighbour algorithm. Hierarchical centroid based and complete link
algorithms (e.g. (van Rijsbergen 1979, Salton & McGill 1983)) serve as representatives
of traditional approaches. We also tried a variant of the centroid based clusterer that
we call Common-Term, and the Word-IC algorithm (Zamir, Etzioni, Madani & Karp
1997). The Word-IC algorithm, unlike the other clustering algorithms, does not rely
on a traditional cosine based similarity measure between the documents (i.e. in the
web services in our case), but hierarchically merges clusters based on the number of
intersecting words and a global quality function. The global quality function also serves
as a halting criterion. The Common Term algorithm halts, when the top level clusters
do not share any terms. For the centroid based and complete link algorithms, we used
a minimum similarity between documents as a halting criterion. As a baseline, we
partition the Web Services into eleven random clusters.

Our Common-Term algorithm differs from the standard centroid based clustering
in the way the centroid document vector is computed. Instead of using all terms from
all the sub-clusters, only the terms that occur in all sub-clusters form the centroid are
used. Like the Word-IC algorithm, our hope is that this leads to short and concise
cluster labels.

For our clustering experiments, we used the cosine coefficient for the similarity mea-
sure and a TFIDF weighting scheme for the feature vectors.

4.2 Quality Metrics for Clustering

Evaluating clustering algorithms is a task that is considerably harder than evaluating
classifications, because we cannot always assign a cluster to a certain reference class.
Several quality measures have been proposed; see (Strehl 2002) for a recent survey.

We have evaluated our clustering algorithms using Zamir’s quality function (Zamir
et al. 1997), and the normalised mutual information quality metric described in (Strehl
2002). We also introduce a novel measure inspired by the well-known precision and recall
metrics that correlates well with other quality measures and has a simple probabilistic
interpretation.
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In the literature on evaluating clustering algorithms, precision and recall have only
been used on a per-class basis. This assumes that a mapping between clusters and
reference classes exists. The fraction of documents in a cluster that belong to the
“dominant” class, i.e. the precision assuming the cluster corresponds to the dominant
class, is known as purity. Usage of the purity measure is problematic, if the cluster
contains an (approximately) equal number of objects from two or more classes. This
clustering might not even be unintuitive, if it is merely the case that the granularity of
the clustering is coarser than that of the reference classes.

We modify the definitions of precision and recall to consider pairs of objects, rather
than individual objects. Let n be the number of objects. Then there are n(n−1)

2 pairs
of objects. Each such pair must fall into one of four categories: the objects are put
in the same class by both the reference clusters and the clustering algorithm, they are
clustered together but in difference reference clusters, etc.

clustered together? yes no

in same reference class? yes a b

no c d

If a, b, c and d are the number of object pairs in each case, then a + b + c + d = n(n−1)
2 .

Precision and recall can now be computed the same way as in standard information
retrieval: precision = a/(a + c) and recall = a/(a + b). Other metrics such as F1 or
accuracy are defined in the usual way.

Note that there is a simple probabilistic interpretation of these metrics. Precision
is equivalent to the conditional probability that two documents are in the same refer-
ence class given they are in the same cluster. Recall is equivalent to the conditional
probability that two documents are in the same cluster given they are in the same ref-
erence class. Let R denote the event that a document pair is in the same reference
class and C denote that a document pair is in the same cluster. Then we have that
precision = P (R∧ C | C) = P (R | C), and recall = P (R∧ C | R) = P (C | R).

Note that precision is biased towards small clusters, but because we are considering
document pairs it is not trivially maximised by placing every document in its own
cluster. Recall is biased towards large clusters, as it reaches the maximum when all
documents are placed in one cluster. Finally, we observe that precision and recall are
symmetric, in the sense that precision(A,B) = recall(B,A) for any two clusterings A

and B.

4.3 Evaluation

Figures 4.1–4.3 show the precision, recall and F1 scores of the clusters generated by
the various algorithms we tried. Zamir’s quality measure Q(C) and the normalised
mutual information measure Q(NMI) are in our experiments highly correlated with our
precision metric, therefore we decided not to list the values for Q(C) and Q(NMI) in
our graphs.
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Precision is biased towards a large number of small clusters, because it is easier for
a clusterer to find a small number of similar services multiple times than to find a large
number of similar clusters. Therefore we believe that Q(C) and Q(NMI) are in our
experiments in fact dominated by precision, although it is claimed that Q(NMI) is not
biased, and although they do not reach their optimal value for singleton clusters.

Not surprisingly, none of the algorithms does particularly well, because the Web
Services clustering problem is quite challenging. In many cases even humans disagree
on the correct classification. For example, SALCentral.org manually organised its Web
Services into their own taxonomy, and their classification bears little resemblance to
ours. Furthermore, we have 11 categories in our reference classification, which is a
rather high number. However, in terms of precision, all our algorithms outperform the
random baseline.

All clustering algorithms tend to “over-refine”, meaning that they produce far more
clusters than classes exist in the reference data. For the centroid based and complete-
link algorithms, the number of clusters could be decreased if we set a lower minimum
similarity, but especially the centroid based algorithm then tends to produce very large
clusters with more than 100 Web Services.

Note that recall is strongly affected by such an over-refinement. In our experiments,
it turns out that F1 (see figure 4.3), is largely dominated by recall. However, precision
is more important than recall in the application scenarios that motivate our research.
Specifically, consider generic automatic data integration scenarios in which Web Ser-
vices that have been clustered together are then automatically invoked simultaneously.
For example, a comparison shopping agent would invoke operations from all Web Ser-
vices that were clustered into a “E-Commerce” category. Precision is more important
than recall for the same reason why precision is more important in today’s document
search engines: in a Web populated by millions of Web Services, the danger is not
that a relevant service will be missed, but that irrelevant services will be inadvertently
retrieved.

We conclude from these data that Web Service category clustering is feasible based
just on WSDL descriptions, through clearly hand-crafted text descriptions (e.g., SAL-
Central.org’s description or text drawn from UDDI entries) produce even better results.

We did not make use of the multi-view split of the dataset for our unsupervised
experiments. With the (only very recent) advent of multi-view clustering (Bickel &
Scheffer 2004) we believe it will be possible to improve our results in future work.
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Figure 4.1: Precision for the various clustering algorithms

RND KNN WIC CT CB CL
0

0.03

0.05

0.08

0.1

0.13

0.15

0.18

0.2

0.23

Description

WSDL

Random BaselineR
e
ca
ll

RND: Random baseline, KNN: k-Nearest-Neighbour, WIC: Word-IC, CT: Common Term, CB: Centroid Based, CL: Complete Link

Figure 4.2: Recall for the various clustering algorithms
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Figure 4.3: F1 for the various clustering algorithms
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Figure 5.1: ASSAM uses machine learning techniques to semi-automatically annotate web
services with semantic metadata.

While the experiments presented in the previous two chapters yielded encouraging
results when classifying web services as a whole, classifications for all components of a
web service are needed if semantic metadata such as annotations with OWL-S is to be
generated automatically. In this chapter, we first present an application for annotating
semantic web services that we call ASSAM. Second, an approach for classifying the
components of a web service using iterative relational classification is presented. We
show how existing iterative relational classification algorithms can be improved using
an ensemble. We also present a study for an interactive application that assists a user
in annotating semantic web services.

5.1 ASSAM: A Tool for Web Service Annotation

5.1.1 Use Cases

ASSAM1 is designed primarily for users who want to annotate many similar services.
Typically, these will be end users wanting to integrate several similar web services into
his or her business processes. But the annotation task might also be performed by a
centralised semantic web service registry.

Our tool could also be useful for programmers who are only interested in annotating
a single web service they have created.2 In order to make his or her service compatible
with existing services, a developer might want to annotate it with the same ontology
that has already been used for some other web services. The developer could import
the existing Web Services in ASSAM and use them as training data in order to obtain
recommendations on how to annotate his or her own service.

1ASSAM is available for download at http://www.andreas-hess.info/projects/annotator/
2Thanks to Terry Payne who pointed out this use case.
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5.1.2 Functionality

Fig. 5.1 shows the ASSAM application. Note that our application’s key novelty—the
suggested annotations created automatically by our machine learning algorithm—are
shown in the small pop-up window.

The left column in the main window contains a list of all web services currently and
the category ontology. Web services can be associated with a category by clicking on a
service in a list and then on a node in the category tree. When the user has selected a
service and wants to focus on annotating it this part of the window can be hidden.

The middle of the window contains a tree view of the WSDL. Port types, operations,
messages and complex XML schema types are parsed from the WSDL and shown in a
tree structure. The original WSDL file is also shown as well as plain text descriptions
from the occasional documentation tags within the WSDL or a plain text description
of the service as a whole, such as often offered by a UDDI registry or a web service
indexing web site.

When the user clicks on an element in the WSDL tree view, the corresponding
ontology is shown in the right column and the user can select an appropriate class by
clicking on an element in the ontology view. Currently different ontologies for datatypes
and operations are used. At present we allow annotation for operations, message parts
and XML schema types and their elements. Port types or messages cannot be annotated,
because there is no real semantic meaning associated with the port type or the message
itself that is not covered by the annotation of the operations or the message parts.

Once the annotation is done it can be exported in OWL-S. The created OWL-S
consists of (see also section 1.1.4):

• a service profile,

• a service model,

• a grounding,

• a concept file, if complex types where present in the WSDL, and

• a service file that imports the above

Note that this also includes XSLT transformations as needed in the OWL-S ground-
ing to map between the traditional XML Schema representation of the input and output
data and the OWL representation.

5.1.3 Limitations

Because we do not handle composition and workflow in our machine learning approach,
the generated process model consists only of one atomic process per operation. The
generated profile is a subclass from the assigned category of the service as a whole – the
category ontology services as profile hierarchy. The concept file contains a representation
of the annotated XML schema types in OWL-S. Note that it is up to the ontology
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designer to take care that the datatype ontology makes sense and that it is consistent.
No inference checks are done on the side of our tool. Finally, the grounding is generated
that also contains the XSLT mappings from XML schema to OWL and vice versa.

For the OWL export, we do not use the annotations for the operations at the mo-
ment, as there is no direct correspondence in OWL-S for the domain of an operation.
Atomic processes in OWL-S are characterised only through their inputs, outputs, pre-
conditions and effects; and for the profile our tool uses the service category.

5.1.4 Working around the Training Data Problem

A serious limitation is also the fact that any supervised learning algorithm does not work
without training data. In the interactive use cases we have in mind for ASSAM, the
classifier would learn while the user annotates more and more (parts of) web services,
but the user would not have assistance right from the start. To work around this
problem, we decided to implement a crude but effective method of “bootstrapping” the
classifiers. Before any real training data exists, we simply make predictions based on
the class labels. While this is not a generic solution suitable for any machine learning
problem, it works well in our case. Since we want to annotate services that will usually
have meaningful names with an ontology that will usually also have meaningful names,
we can assume that there is a certain overlap. Anecdotal evidence suggests that this
bootstrapping approach is useful in an interactive setting. However, the evaluation of
our iterative ensemble classification algorithm was done without using the labels.

5.1.5 Related Work in the Web Services Area

As far as we are aware, we were (Heß & Kushmerick 2003) the first to propose the use of
machine learning for the task of semi-automatically annotating semantic web services.

Paolucci et al. addressed the problem of creating semantic metadata (in the form
of OWL-S) from WSDL (Paolucci, Srinivasan, Sycara & Nishimura 2003). However,
because WSDL contains no semantic information and their tool does not use other
sources, their software provides just a syntactic transformation. The key challenge – to
map the XML data used by traditional web services to classes in an ontology – is not
addressed by their tool.

Patil et al. (Patil, Oundhakar, Sheth & Verma 2004) proposed using a combination
of lexical and structural similarity measures for the web service matching task. They
assume that the user’s intention is not to annotate similar services with one common
ontology, rather they address the problem of choosing the right domain ontology among
a set of ontologies.

As opposed to their approach, Marta Sabou (Sabou 2004) addresses the problem of
creating suitable domain ontologies in the first place. She uses shallow natural language
processing techniques to assist the user in creating an ontology based on software APIs.

The web service search engine Woogle (Dong, Havey, Madhavan, Nemes & Zhang
2004) allows not only for keyword queries, but also for searching structurally similar
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operations.
The approach that we present in this chapter ignores a valuable source of information

for annotation by restricting itself to the schema only and ignoring the actual values of
parameters that are passed on to the service being invoked. Johnston and Kushmerick
developed an algorithm that makes use of this data (Johnston & Kushmerick 2004).

5.2 Iterative Relational Classification

For the classification of relational data, iterative classification algorithms that feed back
predicted labels of associated objects have been used. In this section we show two
extensions to existing approaches. First, we propose to use two separate classifiers for
the intrinsic and the relational (extrinsic) attributes and vote their predictions. Second,
we introduce a new way of exploiting the relational structure. When the extrinsic
attributes alone are not sufficient to make a prediction, we train specialised classifiers
on the intrinsic features and use the extrinsic features as a selector. We apply these
techniques to the task of semi-automated web service annotation, a task with a rich
relational structure.

5.2.1 Iterative Ensemble Classification

Figure 5.2.1 illustrates the relational structure that we use to represent a service. As
opposed to the previous task where we only classified services as a whole (compare also
figure 3.2), we are now interested in classifying all nodes from the shaded areas in the
graph. S, O and D denote these subsets as defined in section 2.3.4.

Our iterative algorithm differs in some points from Neville and Jensen’s algorithm.
In contrast to (Neville & Jensen 2000), we assume that the object graph has more than
one connected component. In Neville and Jensen’s experiments, the task was to classify
companies as either a bank or a chemical company. As in our model, the companies
correspond to vertices in a graph. The relations between the company vertices in their
dataset are such that every company is through some intermediate vertices connected to
every other company. In our example, we have one connected component for each web
service. The services themselves are not connected to each other, but the components
within the individual services are connected as illustrated in figure 5.2.1.

Another difference is that in their approach, one single classifier is trained on all
(intrinsic and extrinsic) features. We train two separate classifiers, one on the intrin-
sic features (“h~si”) and one on the extrinsic features (“h ~de

”), and vote together their
predictions.

Treating the intrinsic and extrinsic views separately promises two advantages: First,
we hope to achieve a better overall accuracy when using an ensemble of two classifiers
rather than a single classifier trained on all features. The experiments presented in
chapter 3 suggest that this might be helpful, when a discriminative classification algo-
rithm is used. The second advantage is obvious for an iterative relational setup: The
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Figure 5.2: A web service as a graph. The shaded boxed (S, O and D) denote the subsets of
vertices that we want to classify. Compare to figure 3.2, where the task was to classify services
as a whole.
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classifier cannot be mislead by missing features in the first iteration, when the extrinsic
features are yet unknown. The classifier trained on the extrinsic features is simply not
used for the first pass. In subsequent iterations we include extrinsic features that are
based on the class labels predicted in the previous round. The classification process is
repeated until a certain termination criterion (e.g. either convergence or a fixed number
of iterations) is met.

When using a Naive Bayes classifier, however, we cannot expect to get a different
result from a split approach than from a single classifier. In our setup, we combine
the predictions of the two classifiers by multiplication. A Naive Bayes classifier es-
timates the probability of an instance belonging to a class with a term of the form
P (C)

∏n
i=1 P (Fi|C) (see also section 2.4.3). Because the prior probability is the same

for both splits, a combination of two Naive Bayes classifiers would calculate the proba-
bility as P (C)2(

∏m
i=1 P (Fi|C))(

∏n
j=m+1 P (Fj |C)) (assuming that we split the features

at some index m). The only difference to the original equation is that we over-emphasise
the prior probability. We cannot expect the results to improve.

5.2.2 Specialised classifiers

In the general case (i.e. if we use another classifier than Naive Bayes) the split approach,
where the h~si and h ~de

classifiers are combined using multiplication, works best, when
both views would by themselves be sufficient to make a prediction. This intuition
is the same as behind Co-Training (see section 2.4.5 or Blum’s and Mitchell’s paper
on Co-Training (Blum & Mitchell 1998)). However, in more challenging prediction
tasks, the extrinsic view alone gives additional evidence, but is not sufficient to make a
prediction. In our web services dataset, this is the case on the datatype level. The fact
that a web service belongs to the “book selling” category is by itself not sufficient to
classify its input parameters, but the information is still useful. We therefore introduce
a second mode for incorporating the extrinsic features: We train a set of classifiers on
the intrinsic features of the components, but each of them is only trained on the subset
of the instances that belong to one specific class. In our setting, we train specialised
classifiers on the datatypes level on all instances that belong to the same category3.

To formally specify these specialised classifiers, we first define what we mean by
a specialisation. We take a very generic view: a specialisation on a set X ⊂ V (see
section 2.3.4) is a subset ΦX(c) ⊂ X of a subset of all vertices that consists of all
elements that satisfy some constraint c. In our setup, we use related entities to define
the specialisation constraints. Consider the set of parameters D. One specialisation ΦD

might be “all parameters of services that are in the ‘book selling’ category.” Let b ∈ S′

be the concept in the taxonomy that represents the “book selling” category and l ∈ L

be the arc label that represents the relation from a parameter to the service it belongs
3To avoid over-specialisation, these classifiers are in our experiments actually not trained on instances

from a single category, but rather on instances from a complete top-level branch of the hierarchically
organised category taxonomy. Note that this is the only place where we make use of the fact that the
class labels are organised as a hierarchical taxonomy. We do not do any further inference or reasoning.
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Algorithm 5 Iterative Ensemble Classification
for v ∈ V do

~diint(v)← predictions made by h~si(v)
end for
/* Initially, use predictions obtained from intrinsic view only */
~de(v)←

⊕
x∈rel(v)

~diint(x)
for a fixed number of iterations do

for v ∈ V do
~diext(v)← predictions made by h ~de

(v) or hc(v) based on ~de(v).
/* Vote predictions obtained from intrinsic and extrinsic view */
~di(v)← ~diint(v)⊗ ~diext(v)

end for
~de(v)←

⊕
x∈rel(v)

~di(x)
end for
return ∀v ∈ V : ~di(v)

to. Then we write:

ΦD(b) = {x|∃y ∈ rel(x, l) ∧maptax(y) = b}

We require that all specialisations be mutually exclusive and exhaustive. Let φx(c, y)
= 1 if y ∈ ΦX(c) and 0 otherwise. Mutually exclusiveness and exhaustivity means simply
that ∀y :

∑
c φX(c, y) = 1.

The specialisation ΦX(c) is used to define a set of training data for learning a
specialised classifier hX,c. Specifically, hX,c is trained on the intrinsic features ~si(x) for
every training instance x ∈ X in ΦX(c).

To avoid biasing the algorithm too strongly, we still combine the results of the hX,c

classifier with the h~si classifier in each iteration. For each level we use either the h ~de

or hc classifier, but not both. We chose the hc method for the datatypes and the h ~de

method for the category and the domain.
Algorithm 5 explains our iterative classification ensemble, and fig. 5.3 illustrates its

classification phase. In fig. 5.3 and algorithm 5, let n denote the number of object
components; ~siX the static intrinsic and ~deX the dynamic extrinsic features; h~si and h ~de

the intrinsic and extrinsic classifiers, and hc denotes a specialised classifier as discussed
above. ~diint denotes the predictions made by h~si and ~diext denotes the predictions made
by the extrinsic classifier h ~de

or hc.

5.2.3 Related Work

Several variations of link-based text classification have been proposed. The classical
task here is to classify web pages connected by hyperlinks. Lu and Getoor address
this task in (Lu & Getoor 2003). They cast the problem as predicting the classes of
objects or nodes in a graph considering links between objects or edges in the graph.
However, in their model only one flavour of objects exists: the classes for all objects
are drawn from only one ontology. Iterative classification algorithms were also used
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Figure 5.3: Iterative Ensemble Classification.

by Chakrabarti (Chakrabarti, Dom & Indyk 1998) before. We already mentioned the
approach by Neville and Jensen (Neville & Jensen 2000).

An approach that is very similar to the specialised classifiers described here is used
by Finn and Kushmerick (Finn & Kushmerick 2004) for information extraction. They
use a two-level learning approach. At the first level (L1), each token in a document is
predicted either as the start of a text fragment to extract, or not. L1 is trained on all
available data. A second classifier (L2) is then used to identify the end of a fragment,
given that its start was predicted by L1. L2 is trained on just the subset of the training
data, namely a window of tokens near field starting positions. In our terminology, the
L2 classifier is a specialised classifier hc, and the L1 predictions are used to decide when
to invoke L2, just as we use extrinsic features to select the appropriate hc.

5.3 Parameters

In an iterative feed-back setting such as ours, a sensible choice of all parameters is
both crucial and rewarding: An improvement in one of the classifiers can lead to an
improvement in other classifiers as well. In some respects the parameters we discuss here
are relevant not only to our specific setting, but are common to all iterative classification
algorithms. The important parameters are:

1. Structure: Which layers of the model are used for feedback and how?

2. Voting: How are the results of the different views combined?

3. Termination criterion: What number of iterations is optimal?
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4. Inference, Constraints: Use information from the class ontologies?

5. Features: Use binary or continuous features?

6. Classification algorithms: Which one to use?

5.3.1 Structure

One might expect that this structure is inherent to the problem, but this is only partly
true. In our web services dataset, we have identified three layers of semantic metadata,
as described in section 2.3.4 and shown in figure 5.2.1: the category of the service as a
whole, the domain of the service’s operations and the datatypes of its input and output
parameters. This leaves a variety of possible choices how the feed-back is actually
performed. One might say that the category of a service is determined by the domain
of its operations, and the domain of the operations is determined by the datatypes of
its input and output parameters. But it is also possible to see it the other way around:
The datatypes of an operation’s parameters are dependent on the operation’s domain,
which is dependent on the service’s category. Instead of choosing either a top-down or
bottom-up approach, our framework also allows for modelling both dependencies at the
same time.

Preliminary tests showed that it is not guaranteed that using as many extrinsic
features as possible automatically yields the best results. It is best to choose between
either the h ~de

or hc classifier based on the nature of the extrinsic view: If the extrinsic
view alone provides enough information to make a reliable prediction, it is best to
combine the extrinsic and intrinsic view in an ensemble way. If the extrinsic view alone
is not sufficient for a reliable classification, it is better to use the hc classifier. There
are, however, two points that are important when considering the hc classifier: Using a
set of specialised classifiers means that there are as many classifiers as there are distinct
class labels in the extrinsic view and each classifier is only trained on a subset of the
available training data. To have a set of many classifiers can not only be computationally
expensive, it also means that the number of training instances for each classifier is only
a fraction of the total number of training instances.

We used static extrinsic features on the domain and datatype level by incorporating
text from children nodes: Text associated with messages was added to the text used
by the operations classifier, and text associated with elements of complex types were
added to the text used by the datatype classifier classifying the complex type itself.
Preliminary experiments have shown that the accuracy of the classifier is increased if
we use static extrinsic features here. Note that this appears to contradict our earlier
results from chapter 3, where we claimed that simply adding text from child nodes does
not help. In the experiments in chapter 3, we were classifying on the category level
only, and the bag of words for the domain and datatype classifiers consisted of text for
all operations/datatypes in that service. In the experiments discussed in this chapter,
the classifier for the operations and datatypes classify one single operation or parameter
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Figure 5.4: Feedback structure actually used in experiments

only. Thus, the amount of text is much smaller. We conclude from these results that
there is in fact a trade-off: If the initial amount of text for one bag of words is small, it
is better to add more text. If we can assume that the distribution of words in different
bags is independent, it is better to keep them separate and use multiple classifiers.

Given these arguments for and against the different modes of incorporating the
extrinsic evidence and some empirical preliminary tests, we eventually decided to use
the setup shown in figure 5.3.1. In the figure, “se” denotes the use of static extrinsic
features by incorporating text, “de” denotes the use of dynamic extrinsic features and
“hc” denotes the use of specialised classifiers.

5.3.2 Combining Static and Dynamic Features

One of the fundamental differences between our approach and the original algorithm
by Neville and Jensen is the way the different views—i.e., the intrinsic and extrinsic
features—are combined. Neville and Jensen’s approach is to add the extrinsic features
as additional attributes in a stacking-like fashion and train a single classifier on all
features. Neville and Jensen tested their algorithm on a low-dimensional dataset. On
our dataset, however, this way of combining the evidence of the static and dynamic
features did not work. In section 5.4 we also report results for a setup that combines
static and dynamic features in this “non-ensemble” way. We conclude that this is due
to the fact that both the static and the dynamic features are high-dimensional, and that
the initial noise in the dynamic features strongly affects the overall performance of the
classifier.
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5.3.3 Number of Iterations

The iterative classification is not guaranteed to converge, and it is also not guaranteed
that more iterations always produce better results, as the predictions might get stuck in a
local maximum. We tried several fixed numbers of iterations in preliminary experiments,
and eventually decided to terminate the classification process after five iterations.

5.3.4 Inference and Constraints

In our web services dataset as well as in many other relational learning tasks, the class
labels are not arbitrary but rather they are organised as an ontology. This ontology could
be a simple hierarchical structure, but it could also convey more complex constraints.
In our datatypes ontology, it would be possible to model restrictions on the relations
between complex types and their elements. For example, a complex type that represents
a book in the datatypes ontology can only have elements that are assigned a class label
that represents a property of book in the ontology.

In the present setting we do not make use of constraints that can be inferred from
the ontology, with one exception. As mentioned in section 5.2, we use the hierarchy in
the services ontology to prevent over-specialisation of the hc classifiers. However, we
believe that the use of inference that can be derived from the ontologies where the class
labels are drawn from could increase classification accuracy. However, we leave this
aspect for future work.

5.3.5 Features

The well-known range of choices for representing words in a bag-of-words model as
features in a classifier includes binary features, term frequency and TFIDF. In our case,
we also have to choose a suitable representation for the extrinsic features. We can choose
between a single feature denoting the most common linked class or use a feature vector
with one element per possible class. When using the latter, the feature vector can be
binary or frequency based. It is also possible to use the complete ranked distribution or
the top n of classes as output by the classifiers instead of just the absolute predictions.

In our experiments, using a single feature for the extrinsic view does not make
much sense, as we are using a separate classifier for the dynamic view. In preliminary
experiments, using the complete ranked distributions did not work. We believe that
this is due to the fact that in conjunction with the base classification algorithm we used
and the one-vs-all setting, the absolute confidence values in the ranked distribution
are too close together, and that then combining the distributions for all linked objects
introduces too much noise.

We decided to use a binary feature vector with one attribute per possible linked
class for the dynamic features. For the static features, we decided to use binary features
as well. In section 5.2, we already described another method of incorporating dynamic
extrinsic features, the specialised classifiers, and the possibility to add terms from linked
document parts as a way to use static extrinsic features.
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5.3.6 Classification algorithms

Due to the large number of classifiers and evaluations in our iterative framework, it
is desirable to use a fast classification algorithm, especially if the intended application
requires user interaction and low response-times are necessary.

In our implementation we are using the Weka library of classifiers (Witten & Frank
1999) off the shelf. For our experiments we chose the HyperPipes algorithm in a one-
against-all configuration, as it offered a good tradeoff between speed and accuracy.
We did not use the SMO algorithm because it turned out to be computationally too
expensive. We decided to cancel preliminary experiments because they took too long.

5.4 Evaluation

We evaluated our algorithm using a leave-one-service-out methodology. We compared
it against a baseline classifier with the same setup for the static features, but without
using the dynamic extrinsic features.

To determine the upper bound of improvement that can be achieved using the extrin-
sic features, we tested our algorithm with the correct class labels given as the extrinsic
features. This tests the performance of predicting a class label for a document part
when not only the intrinsic features but also the dynamic features (the labels for all
other document parts) are known. Following (Neville & Jensen 2000), we refer to this
upper bound as the “ceiling”.

We also compared it against a non-ensemble setup, where the extrinsic features are
not added using a separate classifier but rather are just appended to the static features.
Classification is then done with a single classifier. This setup closely resembles the
original algorithm proposed by Neville and Jensen. Again, the same set of static features
was used.

In the evaluation we ignored all classes with one or two instances, such as occurred
quite frequently on the datatype level. The distributions are still quite skewed and
there is a large number of classes. There are 22 classes on the category level, 136 classes
on the domain level and 312 classes on the datatype level. Our corpus consists of 164
services with a total of 1138 annotated operations and 5452 annotated parameters.

Fig. 5.5 shows the accuracy for categories, domains and datatypes. The setups in
the figure are as follows:

Baseline In this setup, all classifiers are trained only on intrinsic features.

Ensemble In this setup, both intrinsic and extrinsic features are used. A separate
classifier is used for the extrinsic features and the results are then combined. Note
that the extrinsic features are based on the initial intrinsic classification. Thus,
the extrinsic features may contain noise, if the initial predictions are wrong

Ceiling This setup is similar to the ensemble setup, but the extrinsic features are always
noise-free because they are based on the correct class label. This setup serves as
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Figure 5.5: Accuracy and macroaveraged F1 on the three ontologies.

an upper baseline, because it shows the maximum improvement in accuracy that
we can achieve by using extrinsic features.

Non.-en. In this setup, we also use intrinsic and extrinsic features, but only a single
classifier is trained on a feature vector that is a combination of all intrinsic and
extrinsic features.4

Ne. Ceil. As above, only a single classifier is trained on a feature vector that is a
combination intrinsic and extrinsic features. The extrinsic features are noise-free.
This is an upper baseline for the non-ensemble configuration.

As mentioned earlier, in mixed-initiative scenario such as our semi-automated AS-
SAM tool, it is not necessary to be perfectly accurate. Rather, we strive only to ensure

4Note that this configuration performs quite badly here. We conclude that, since we are using a
discriminative classifier on a high-dimensional feature set, the algorithm fails to learn correct bounds if
the features are a combination of both intrinsic and extrinsic features. We would, however, expect this
configuration to perform very similar to the ensemble setup, if a Naive Bayes classifier would be used
instead of the HyperPipes algorithm. Because we combine the predictions of the intrinsic and extrinsic
classifiers my multiplication, the only difference would be that the prior distribution is more important
in the ensemble setup, because it appears twice in the equation for the posterior probability.
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that the correct ontology class is in the top few suggestions. We therefore show how the
accuracy increases when we allow a certain tolerance. For example, if the accuracy for
tolerance 9 is 0.9, then 90% of the time, the correct prediction is within the top 10 of
the ranked predictions. Note that on the datatypes level, macroaveraged F1 (as shown
in Fig. 5.5) for the iterative ensemble is worse than for the baseline while accuracy is
still above the baseline. This is due to the fact that at this level of tolerance the baseline
has a higher recall for many small classes. Macroaveraged precision is still higher for
the iterative ensemble.

Note that on the category level incorporating the additional evidence from the ex-
trinsic features does not help. In fact, for some tolerance values the ceiling accuracy is
even worse than the baseline.

Also, we could not achieve good results with the non-ensemble setup (denoted as
“NE”). This setup scored worse than the baseline. For the datatypes, even the ceiling
accuracy (denoted as “NE Ceiling”) was below the baseline.

We evaluated the statistical significance of the accuracy improvement of our algo-
rithm compared to the baseline on the datatype and domain level. The improvement is
on both levels statistically significant with p < 0.05 according to a Student t-test.

5.5 Conclusion

5.5.1 Summary

We have demonstrated two extensions to prior research on iterative classification algo-
rithms for relational tasks. First, we have shown that in a high-dimensional environment
such as text classification it is better to use separate classifiers for the intrinsic and ex-
trinsic features and vote their predictions rather than to use one classifier trained on
both types of features. Second, we have introduced a new mode for relational classifi-
cation where the extrinsic features serve as a selector for a specialised intrinsic classifier
trained on a subset of the training instances. We have applied these techniques to
the domain of semi-automatically annotating semantic web services, and shown that it
outperforms conventional approaches.

5.5.2 Future Work

As mentioned, we believe that incorporating domain knowledge in the classification
process can increase the overall performance. In future work we will investigate the use
of inference over the ontology and how it can help the machine learning algorithm. In
particular, currently we ignore the hierarchical structure of the class labels, but we will
explore whether this structure can be exploited to improve prediction accuracy. On the
application side, we will continue to improve our WSDL annotator tool. We believe
that tools such as ours are needed to bootstrap the semantic web and semantic web
services, and that machine learning is a very helpful technique that should be applied
here.
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The work of Sabou (Sabou 2004) that has been mentioned above is complementary
to the work presented in this chapter. A joint approach seems promising and will be
discussed in future work.

At present, the author of the thesis has moved on to work on the WS-Diamond
project5. The goal of this project is to produce a framework for self-healing complex
web service workflows. In this context, there will be a need of additional metadata in
order to make the workflow diagnosable. A sub-project of WS-Diamond will therefore
tackle the problem of semi-automatically creating such metadata. This subproject can
be seen as a continuation of the work presented in this chapter, where we focused on
annotation and ignored issues such as composition and workflows.

5http://wsdiamond.di.unito.it/
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While the iterative ensemble techniques presented in the previous chapter are super-
vised and thus require training data, it is also possible to adapt the iterative algorithm to
work in an unsupervised way. The task of ontology alignment is an interesting problem
field to use our algorithms on. It is both a more general task than Web Service an-
notation as well as a task that has been addressed by unsupervised algorithms before.
In this chapter, we present an unsupervised iterative ensemble approach to ontology
mapping. We compare the performance of our algorithm with the performance of other
alignment algorithms. Each of these algorithms has its own strengths and weaknesses,
and our algorithm can compete well against the current state-of-the-art.

6.1 Problem Formulation

The ontology alignment problem consists of finding a number of mappings v′ = map(v)
for as many v ∈ V, v′ ∈ V ′ as possible, see definition 2 in section 2.3.

We restrict ourselves to finding mappings for classes and properties only. We define
the set of classes as C ⊂ V resp. C ′ ⊂ V ′ and the set of properties as P ⊂ V

resp. P ′ ⊂ V ′ (see section 2.3.4), and we only map classes to classes and properties to
properties. Furthermore, we restrict the mapping function from definition 2 to finding
one-to-one-mappings, i.e. being injective, but not necessarily surjective.

We split the problem into two parts: First, we implement a similarity function sim
according to definition 3 (see section 2.3) and use this similarity function to compute all
pairwise similarities between all v ∈ V and v′ ∈ V ′. Section 6.3 describes our solution
to this problem.

Second, we treat these pairwise similarities as a bipartite graph B = (V + V ′, E)
with the entities from V and V ′ as nodes and a weighted edge where the similarity
between two entities sim(v, v′) > 0. The problem of obtaining the map-relation is then
equivalent to the problem of finding a matching in this bipartite graph. Recall that
according to definition 3 it is not required that sim(v, v′) = sim(v′, v). In that case, the
edges in the bipartite graph B are directed and the weights are not symmetric. However,
this is only a minor aspect of the problem. Section 6.4 describes the application of two
well-known graph-algorithms to this problem.

6.2 Related Work

While many approaches have been proposed for schema matching1 in the past (see sec-
tion 1.1 for a number of references), dedicated algorithms for ontology matching are
newer. Among these newer algorithms are NOM (Ehrig & Sure 2004) and QOM (Ehrig
& Staab 2004) (the latter of which is optimised for speed), the interactive PROMPT (Noy
& Musen 2003), Euzenat et al’s. integrative proximity measure (Euzenat & Valtchev

1Schema or ontology mapping as discussed here is – although often cast as a graph matching problem
– not to be confused with the (NP-hard) largest subgraph isomorphism problem, see e.g. (Veale 1998)
for a discussion. It is worth noting that lexical similarity plays an important role in ontology mapping
and that finding isomorphic subgraphs is neither sufficient nor required to address this problem.
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2003) and the more recent OLA (Euzenat, Loup, Touzani & Valtchev 2004), which com-
bine a variety of different similarity measures. The level of competition that came along
with these different approaches has led to ontology alignment contests. Such contests
have taken place at the Information Interpretation and Integration Conference (I3CON)
in 2003 and the Third International Workshop on Evaluation of Ontology Based Tools
in 2004 (Sure, Corcho, Euzenat & Hughes 2004). In section 6.6 we will compare our
own algorithm to those presented in (Sure et al. 2004).

Ehrig and Staab in (Ehrig & Staab 2004) identified a structure common to most
ontology alignment algorithms. Basically, this common structure boils down to an
iterative computation of one or more (intrinsic) similarity measures between entities
and the application of structural (extrinsic) similarity measures. Our algorithm adheres
to that structure, too. However, there are two features which make it distinct from all
other algorithms that we are aware of.

The first point where our algorithm differs from others is the way in which extrinsic
similarity is computed. In a variety of approaches, extrinsic similarity is basically just
the propagated intrinsic similarity of the neighbouring entities. In our approach, we
compute extrinsic similarity by using a feature vector. Section 6.3.2 describes the details.

The second novel feature is the way in which the similarities are transformed into
mappings. We are not aware of other algorithms that treat the problem as maximal
weighted matching.

6.3 The Algorithm

The structure of our algorithm follows closely the structure of algorithm 5 for supervised
iterative ensemble classification presented in section 5.2. The main difference is of course
that for our unsupervised ontology mapping algorithm there is usually no training data
and we cannot just plug in any learning algorithm. However, this can be overcome by
substituting a distance metric for a learning algorithm.

Again, we distinguish between intrinsic, static extrinsic and dynamic extrinsic fea-
tures. Analogous to the supervised setting, the intrinsic features of a concept in the
ontology are features that are inherent to the concept. We use the following intrinsic
features:

1. The local name of the concept URI

2. The label of a concept, if one exists

3. Comments, if they exist

As in section 5.2 and as in (Neville & Jensen 2000), we define static extrinsic features
as features that are derived through a concept’s relation to other concepts, but do not
change as we make more accurate predictions about the mapping. In our approach, we
consider the following static extrinsic features:
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1. Text derived from individuals of a class

2. Text derived from values of properties in individuals

In our algorithm, we treat static extrinsic features as intrinsic features. For the
remainder of this section, if we talk about intrinsic features, we mean both intrinsic and
static extrinsic features. If we talk about extrinsic features, we mean dynamic extrinsic
features only.

The (dynamic) extrinsic features are based on the relation of the concept to other
concepts. Since the structure of an ontology is more general than the rather fixed
structure of a web service, we have to consider several types of relations. The possible
relations depend on the expressiveness of the ontology language used, however, the algo-
rithm itself is independent of the concrete syntax. For our implementation we assume
OWL (Dean, Schreiber, Bechhofer, van Harmelen, Hendler, Horrocks, McGuinness,
Patel-Schneider & Stein 2004) as the ontology language, and our terminology follows
the OWL terminology. We are considering the following relations between concepts:

1. Superclasses

2. Subclasses

3. Superproperties

4. Subproperties

5. Defined properties for a class

6. Domain of a property

7. Range of a property

8. Siblings of classes and properties

6.3.1 Computing Intrinsic Similarity

In our implementation, we use distance metrics from the well-known SecondString li-
brary2 for the intrinsic features. We conducted experiments with the Jaro-Winkler met-
ric (Winkler & Thibaudeau 1991, Jaro 1976, Jaro 1989) and a version of Levenshtein
edit distance (Levenshtein 1965) that is scaled to the range 0..1 for comparing labels
and local names. We used a soft-token metric (Cohen et al. 2003) with Jaro-Winkler
resp. scaled Levenshtein edit distance as the base string distance metric.

We also experimented with a similarity based on WordNet.3 We used a similarity
metric based on Euzenat’s implementation in the OWL alignment API (Euzenat 2004).
We decided, however, not to use it in the current setup. Preliminary experiments
suggested that on many datasets no or only a marginal improvement can be achieved.

2http://secondstring.sourceforge.net/, see also (Cohen, Ravikumar & Fienberg 2003)
3http://wordnet.princeton.edu/
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This small benefit is, however, contrasted by a much greater computational effort. It
may be possible to overcome these limitations by using a more sophisticated algorithm
for computing a semantic similarity based on WordNet. This is, however, deferred to
future work.

To determine the overall intrinsic similarity between two concepts, we compare both
the local names and labels against each other using Jaro-Winkler or Levenshtein and
comments and text from instances using the respective soft-token metric and use the
maximum value. To avoid overemphasising small similarities, we disregard similarities
that are smaller than a threshold of 0.4 and map similarities greater than 0.4 to the
full range [0, 1]. Let v be a concept in ontology V and v′ be a concept in ontology V ′.
If we look at the computation of the similarity between these two concepts, then each
similarity value (before applying the threshold) is denoted as simi(v, v′) with i ranging
from 1 to the number of different metrics n. The overall intrinsic similarity between
two concepts is denoted as simint(v, v′) and is determined as follows:

simint(v, v′) =
n

max
i=1

({
0, if simi(v, v′) < 0.4
(simi(v, v′)− 0.4)/(1− 0.4), otherwise

})
(6.1)

6.3.2 Computing Extrinsic Similarity

The main difference between our approach and existing schema matching algorithms is
the way extrinsic similarity is computed. In previous approaches extrinsic or structural
similarity is usually propagated through a graph structure that is determined by the
schema or ontology (see the section on related work). This is based on the assumption
that two nodes are similar if their neighbours are similar.

In our approach, we derive an extrinsic feature vector ~de(v) from the relations relv,
see definition 14. Each element in the vector corresponds to a concept in the ontology. If
an element is 1 it means that the corresponding concept is related to v. To use this vector
to determine the extrinsic similarity to another concept v′, we need to first compute
initial similarities (based on the intrinsic features) for all related objects of v. These
similarities sim(x, y′), x ∈ rel(v), y′ ∈ V ′, translate into dynamic intrinsic features of the
related objects as per definition 12 and are then combined into the dynamic extrinsic
feature vector ~de(v) as per definition 14. Note that the elements in ~de(v) are based on
the relations of v ∈ V , but its elements correspond to vertices in V ′, which is necessary
in order to compute the similarity of vector ~de(v) to known relations in V ′.

The discussion about the feature vector in our supervised iterative ensemble learning
approach for web service classification (see section 5.3.5) applies here as well. By using
only the best mapping map(v) for each object and using a binary feature vector, we
choose the same representation scheme here.

Note that the similarities that can be computed based on this vector are not sym-
metric. Since the feature vector is based on the best mapping for each concept, the fact
that v maps to v′ does not necessarily mean that the best mapping for v′ is v, if the
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Algorithm 6 Iterative Ensemble Mapping
for v ∈ V do

~diint(v)← [simint(v, v′0), simint(v, v′1), . . . , simint(v, v′|V ′|−1)]
end for
/* Initially, use predictions obtained from intrinsic view only */
~de(v)←

⊕
x∈rel(v)

~diint(x)
for a fixed number of iterations do

for v ∈ V do
~diext(v)← [simext(v, v′0), simext(v, v′1), . . . , simext(v, v′|V ′|−1)]
/* Vote predictions obtained from intrinsic and extrinsic view */
~di(v)← ~diint(v)⊗ ~diext(v)

end for
~de(v)←

⊕
x∈rel(v)

~di(x)
end for
return ∀v ∈ V : ~di(v)

overall similarity sim(v, v′) is greater than the similarity of v to all other x′ ∈ V ′ but
less than the similarity sim(v′, x) of v′ to some x ∈ V .

6.3.3 Iterative Algorithm

The iterative algorithm for computing the overall – intrinsic and extrinsic – similarities
is essentially the same as algorithm 5. The only difference is that in algorithm 5 we were
assuming a Machine Learning algorithm h, while for the problem of ontology mapping
we just assume an arbitrary similarity function. Algorithm 6 formally specifies our
mapping algorithm.

Note that we are not restricted to finding mappings from V to V ′. Since we do not
have training data here, which would be for one direction of mappings only, we can
compute the mappings from V ′ to V in just the same way. Recall that because of the
way we compute the extrinsic similarity these mappings are not necessarily equal. The
next section explains how we can use this asymmetry.

6.4 Postprocessing Steps

Once we have computed the overall similarities, we have to compute the actual one-
to-one mapping. This is the problem of finding a matching in a bipartite graph. A
bipartite graph is a graph where the nodes can be split in two groups such that every
edge connects two nodes from both groups. Every similarity that has been calculated in
the previous step corresponds to a weighted edge in such a bipartite graph.4 A matching
in a graph is a set of edges such that no node is incident to more than one edge. In our
setting this corresponds to a one-to-one mapping: For every instance in one ontology
we want to find one instance in the other ontology. A matching is called maximum-
weighted, if there is no other matching where the sum of all edge weights in the matching

4Note that this bipartite graph must not be confused with the graph interpretation of the two
ontologies!
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Figure 6.1: A Bipartite Graph. The matching {(a, b), (c, d)} is maximal, but {(a,d),(c,b)} is a
stable marriage.

is bigger. Looking for a maximum-weighted matching is a straightforward way to come
up with a good solution to our original problem to find a one-to-one mapping.

Consider the bipartite graph in figure 6.1. The matching {(a, b), (c, d)} is maximal
(the sum of the weights is 1.2), but it is unstable. To explain what this means it is best
to resort to an analogy: Imagine the nodes in our graph were men and women, let us
use the names Alice, Bob, Carol and Dave for the a, b, c and d nodes. Between each
of these men and women there is a well-defined level of attraction that is represented
by the weight of the edge that connects them. A couple is said to be married if there
is an edge in a matching that connects them. If Alice marries Bob and Carol marries
Dave, the overall happiness in this scenario is maximised. Their marriages, however,
are not stable for an obvious reason: Alice and Dave like each other more than their
current spouses, so they will break up with their partners and elope. But if Alice marries
Dave, and Carol marries Bob, the marriages are stable. Carol likes Dave more than her
husband Bob, but Dave is very happy with Alice and will not break up his marriage.
The same applies to Bob and Alice.

Gale and Shapley have shown in (Gale & Shapley 1962) that for graphs with an equal
number of “men” and “women” a stable marriage can always be found and presented an
O(n2) algorithm to compute such a stable marriage that is male-optimal (and female-
pessimal). In (Irving, Leather & Gusfield 1987) an O(n4) algorithm is presented that
computes an overall-optimal stable marriage. Note that the Gale/Shapley algorithm
does not assume that the weights of the edges are symmetric. For the reasons mentioned
in section 6.3.2, the weights are not symmetric in our case. Because the number of
vertices in V and V ′ is not necessarily equal, a perfect match (in the graph-theoretic
sense) is not always possible. It is therefore necessary to modify the termination criterion
of the original Gale/Shapley algorithm slightly: A “man” is only put back into the set of
unmarried men, if there still exists a “woman” that he likes better than zero, otherwise
he remains unmarried. Algorithm 7 illustrates the Gale/Shapley algorithm with the
modified termination criterion.

Melnik et al. in (Melnik et al. 2002) propose to compute either a stable marriage
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Algorithm 7 Gale/Shapley algorithm for stable marriages
U ← V
U ′ ← V ′

L(u, u′)← weight of the edge (u, u′) in B
L′(u′, u)← weight of the edge (u′, u) in B
M ← ∅
while U 6= ∅ do

u← random element from U
u′ ← x′ such that L(u, x′) is maximal
if u′ ∈ U ′ then

/* u′ still “unmarried” */
remove u′ from U ′

remove u from U
insert (u, u′, L′(u′, u)) into M /* u and u′ now “engaged” */

else
if L′(u′, u) > e|(x, u′, e) ∈M then

/* weight of edge (u′, u) greater than weight of edge from previous engagement
*/
remove (x, u′, e) from M /* Break old engagement of x and u′ */
if ∃u′|L(x, u′) > 0 then

/* Only re-insert x into U , if there still exists a possible match u′. */
insert x into U

end if
insert (u, u′, L′(u′, u)) into M /* u and u′ now “engaged” */

else
if ∃u′|L(u, u′) > 0 then

/* Only re-insert u into U , if there is still exists a possible u′ for u. */
insert u into U

end if
end if

end if
L(u, u′)← 0 /* u cannot “propose” to the same u′ twice */

end while
return M

64



or the maximum weighted matching to find a good mapping. We compared the two
approaches empirically on our data. We used an off-the-shelf implementation of James
Munkres’ algorithm (Munkres 1957) (also referred to as “Hungarian” algorithm) to com-
pute maximum-weighted matchings. The problem of computing maximum-weighted
matching in bipartite graphs is also known as the assignment problem. Munkres’ algo-
rithm computes an exact solution to the assignment problem in O(n3) time. However,
more efficient (e.g. (Galil 1986)) or parallel (e.g. (Bertsekas & Castanon 1990)) algo-
rithms. Furthermore, it computes only one maximum-weighted matching, (Fukuda &
Matsui 1992) shows an algorithm that can find all maximum-weighted matchings. As
opposed to the Gale/Shapley algorithm, Munkres’ algorithm is not suited for bipartite
graphs with directed edges and asymmetric weights. Therefore, we created new bipar-
tite graphs with undirected edges that have the sum of the weights of the directed edges
as weights.

6.5 Parameters

Our matching algorithm as presented in this chapter has various parameters. Some of
these parameters have been discussed in section 5.3, where we described our iterative
ensemble algorithm for supervised learning.

1. Structure: What relations in the ontology are suitable to serve as extrinsic fea-
tures?

2. Termination criterion: What number of iterations is optimal?

3. Inference, Constraints: Use additional information from the ontologies?

4. Post-processing: Stable marriage or maximum-weighted matching?

5. Apply post-processing step in between iterations?

6. Intrinsic similarity: Which string-distance metric?

7. Extrinsic features: Binary or continuous?

8. Thresholds: Suppress mappings with low confidence?

6.5.1 Structure

Depending on the expressiveness of the underlying ontology language, several relations
between classes or properties are defined. We enumerate the relations that we con-
sidered for our algorithm in section 6.3. Preliminary experiments suggested that the
incorporation of siblings as extrinsic features did not improve the results. We decided
to use two different setups for our final experiments: First, a setup where we used all
the relations listed in section 6.3 except for siblings. In our evaluation, we call this
configuration “dublin2”. Second, we considered a setup where only the subsumption
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relations on classes and properties were considered. In this setup, we ignore the domain
and range of a property as well as declared properties for classes as extrinsic features.
We denote this configuration as “dublin3”.

6.5.2 Number of Iterations

As in our experiments with iterative ensemble classification, we decided to use a fixed
number of iterations as termination criterion for reasons of simplicity, and because it is
not proven that the algorithm converges. Preliminary empirical experiments suggested
that the algorithm is not very sensitive to the exact number of iterations. We set the
number of iterations to five, the same number we used for the experiments described in
chapter 5.

6.5.3 Inference

When mapping rich ontologies, it is sometimes possible to exploit knowledge drawn from
the ontologies to impose constraints on the mappings or to infer mappings. Although
we believe that for some mapping tasks exploiting such knowledge could increase the
mapping accuracy, such an approach is out of scope of this thesis. We restrict ourselves
to using the information obtained through the iterative relational algorithm to compute
the final mappings. The set of ontologies we used for evaluating our algorithm does not
have a very rich structure, so in comparison with other algorithms that may use such
inference, our algorithm has no disadvantage.

6.5.4 Post-processing

As discussed above, we have to consider at least two ways of creating a mapping from
the acquired similarities, if we demand a one-to-one mapping. We can compute either
a stable marriage or a maximum weighted matching. In our empirical experiments,
we tried both approaches. In the graphs and tables presenting our results we denote
configurations that use the Gale/Shapley algorithm (as opposed to a maximum weighted
matching) with the letter “g”.

We also tried both possible answers to the question when the post-processing step
should be applied. We denote the configurations where we applied the post-processing
step also in between iterations with the letter “e”. In the other experiments, the post-
processing step (i.e. applying the Gale/Shapley or Hungarian algorithm) was only
performed after the iteration phase of the algorithm has been completed.

6.5.5 Intrinsic Similarity

We already discussed the way we compute the intrinsic similarity between two concepts
above in section 6.3.1. However, we could plug an arbitrary string distance metric in
our framework.
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A great variety of string distance metrics – established algorithms as well as ad-hoc
measures – is available off-the-shelf in libraries such as the already mentioned Second-
String. As mentioned above, we considered the Jaro-Winkler and Levenshtein metrics.
Preliminary experiments have shown that with our data, a scaled version of the Lev-
enshtein metric works generally better than Jaro-Winkler. Therefore, we decided to
use only the scaled Levenshtein metric in our final experiments. We set the threshold
for the soft-token metric to 0.9, i.e. two tokens that have a string similarity greater or
equal than 0.9 are considered the same. For other ontologies, however, a different string
distance might perform better. The suitability of different string distance metrics for
several tasks has been extensively discussed in literature, e.g. (Cohen et al. 2003).

6.5.6 Extrinsic Features

We described a general way for deriving an extrinsic feature vector from the mappings
of related concepts in section 6.3.2, see also section 2.3.6 in the introduction. The design
choice here is which similarity metric to use. If we use the binary similarity function
simbin as per definition 4, the extrinsic feature vector becomes binary. It is, however,
also possible to use a continuous feature vector, if we use another sim function resp. the
intermediate result for ~di(v) from algorithm 6. In our experiments we decided to use a
continuous feature vector with the hope that a numerical representation of the similarity
would represent the uncertainty about the mapping. Preliminary results suggested that
this hope was fulfilled as the results with the continuous feature vector were slightly
better than with the binary vector.

6.5.7 Thresholds

In order to avoid spurious mappings it makes sense to use a cut-off value. In the ontology
mapping scenario, it is not guaranteed that for some concept in one ontology a concept
in another ontology actually exists. In these cases, not making a prediction is the correct
answer. But also in other cases it is in several scenarios useful not to make a prediction
at all rather than making a bad prediction. For example, consider a semi-automated
setting where a human annotator has to review suggestions made by the algorithm.

Furthermore, within our iterative algorithm itself a cut-off value for the extrinsic
features can be used. The intuition is that, especially when binary extrinsic feature
vectors are used, the algorithm could easily be misled by spurious predictions. On the
other hand, if continuous extrinsic feature vectors are used, a cut-off value seems less
important, since predictions with a low confidence automatically get a lower weight.

For the precision/recall-graphs, we varied the threshold between 0 and 1 in steps
of 0.05. When comparing the different configurations of our algorithm, we used a zero
threshold. When comparing our algorithm to other algorithms from the EON 2004
contest, we also report the results for a threshold of 0.5. For comparison with the
algorithms from the OAEI 2005 contest we report the results for a threshold of 0 as
submitted to the OAEI organisers.
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In the “dublin3” setup, we used a threshold of 0.2 for the extrinsic features. In the
“dublin2” setup, we did not use a threshold for the extrinsic features. The fact that there
is only little difference in the results from the “dublin2” and “dublin3” configuration
confirms the intuition that the threshold between iterations is not as important as other
parameters, when continuous extrinsic feature vectors are used.

6.6 Evaluation

We evaluated our algorithm on the benchmark ontologies from the 2004 EON Ontol-
ogy Alignment Contest5 in order to make some qualitative statements about strengths,
weaknesses and most importantly the effect of different parameter settings on the per-
formance. We also participated in the 2005 Ontology Alignment Evaluation Initiative
(OAEI 2005, (Euzenat, Stuckenschmidt & Yatskevich 2005)), the follow-up event of the
2004 contest. Most of the benchmark ontologies consist of versions of a base ontology,
where different aspects have been changed. Some of these ontologies can be regarded
as “sanity checks” rather than real challenges. For example, if we match two ontologies
and one of them consists of classes and properties where as the other ontology is the
exact same, except for the fact that all properties are suppressed, any sensible algorithm
should still match the classes correctly based on the identical labels as well as the sub-
sumption relation. Our algorithm as well as all of the other algorithms in the contest
achieve near-perfect results on these tasks. Six ontologies, however, are more interest-
ing: In two cases (denoted as ontologies 205 and 206), all names and labels have been
replaced with synonyms or foreign words, and in four cases, independently developed
“real-world” ontologies that describe the same domain have been used (301-304). We
concentrate on these six ontologies for our evaluation.

We tested various configurations of our algorithm and compared the results from
these different setups against each other as well as against the published results from
the other participants of the contest. The experiments were conducted in order to
answer the four basic (groups of) questions:

1. Do we get any benefit from the extrinsic features as opposed to using the intrinsic
similarity only? Should we use all available extrinsic features or is the subsumption
relation enough?

2. Is it better to compute the maximum weighted matching or is a stable marriage
more important? Should we apply this step only after all similarities are computed,
or also between iterations?

3. What threshold is optimal?

4. How does our algorithm perform compared to other algorithms in literature?
What are the strengths and weaknesses?

5http://oaei.inrialpes.fr/2004/Contest/
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Figure 6.2: Comparison of a configuration that uses intrinsic features only (“dublin1”) and a
configuration that also uses extrinsic features (“dublin2e”).

It is important to note that in most of the experiments the difference in performance
between the different configurations was quite low. It is therefore hard to draw strong
conclusions from the outcome of these experiments, although there are clearly trends
visible. However, what the experiments clearly show is that the overall accuracy of
ontology mapping is based largely on the initial intrinsic (lexical) mapping. Unfortu-
nately, for other algorithms that also use both lexical and structural similarity, it is
rarely published what the contributions of the extrinsic and intrinsic similarities are.

6.6.1 Extrinsic vs. Intrinsic Features

The first question is of course the most crucial one: Is the way in which we use the
additional relational information, that differs from other methods known in literature,
useful? Does it work? To answer this question, we compared the “dublin1” setup with
the “dublin2e” setup. The “dublin1” setup uses only intrinsic features, “dublin2e” uses
extrinsic features (in five iterations) as well. Both setups compute a maximum-weighted
matching, the “dublin2e” configuration also does this in between operations to compute
the extrinsic features.

The results in figure 6.2 (note that the scale starts with 0.4 to emphasise the dif-
ference between the two configurations) show that on four ontologies the configuration
that uses extrinsic features performs better or equal than the configuration with only
the intrinsic features. However, in two of the “real-world” ontologies, using the extrinsic
features makes the overall performance worse. The reason for this is that the ontolo-
gies 303 and 304 are structurally different from the base ontology and our algorithm
is mislead by this structural difference. In that case, any attempt to make predictions
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Figure 6.3: Precision/Recall-Curve for ontology 205 with two different configurations of our
algorithm

based on the structure must fail. The other four ontologies, especially 205 and 206, are
structurally quite similar to the base ontology. Here using the extrinsic features helps.
We conclude from these results that using relational features can improve the perfor-
mance, but only if the ontologies that are to be matched are not structurally different.
Figure 6.3 shows how precision and recall change for the “dublin1” and “dublin2e”
configurations if we vary the threshold. The x-axis measures precision and the y-axis
measures recall, the optimal matching algorithm would produce a point in the top right
corner. Note that the “dublin2e” curve is mostly above the “dublin1” curve. We con-
clude that, if we are handling an ontology where using the extrinsic features helps, the
benefit from the extrinsic features is independent from the threshold.

6.6.2 Stable Marriage vs. Maximum-Weighted Matching

As far as we are aware, most other current algorithms do not explicitly compute stable
marriages or maximum-weighted matchings to determine a one-to-one mapping. The
Similarity Flooding algorithm (Melnik et al. 2002) is a notable exception. We compared
two configurations that both use extrinsic features in five iterations. The only difference
between the two setups is that “dublin2g0” uses the Gale/Shapley algorithm to compute
a stable marriage while “dublin20” computes a maximum-weighted matching. Both
configurations use no threshold.

Figure 6.4 clearly shows that it is better to compute a maximum-weighted match-
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Figure 6.4: Comparison of a setup with a stable marriage (“dublin2g0”) with a configuration
with a maximum-weighted matching (“dublin20”).

ing. This setup outperforms the stable-marriage configuration in all but one cases, where
there is a tie between both setups. Figure 6.5 shows the precision/recall-curve for ontol-
ogy 301 with four different configurations of our algorithm. Note that the curves for the
maximum-weighted matching setups (“dublin1” without and “dublin2” with extrinsic
features) are above the curves for the stable-marriage configurations (“dublin1g” and
“dublin2g”). We conclude that the maximum-weighted matching configuration outper-
forms the stable-marriage configuration regardless of the threshold.

6.6.3 Threshold

As already discussed, the improvements we gain from the extrinsic features and from
using maximum-weighted matching instead of stable marriage are independent from
the threshold. Figures 6.3 and 6.5 also show the tradeoff between precision and recall.
However, to find out what value for the threshold is best, we took a closer look at
ontologies 205 and 303. Figures 6.6 and 6.7 show the relation between the threshold
and the precision, recall and F1 measures on ontologies 205 resp. 303. Note that varying
the threshold has a quite different effect on the two ontologies. In ontology 205, recall
drops faster than precision increases. The maximum F1 is reached at a threshold of
0.05. In ontology 303, precision and recall at threshold 0 are lower than in ontology
205. When raising the threshold, recall drops only slightly while precision increases
rather quickly. Maximum F1 is reached at a threshold between 0.7 and 0.85. We have
to conclude that the best cut-off value for our mapping algorithm depends strongly on
the dataset. On the “real world” ontologies 301–304 the threshold is higher, while for
the artificial benchmark ontologies the best F1 is reached at a very low threshold.
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Figure 6.5: Precision/Recall-Curve for ontology 301 with four different configurations of our
algorithm
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Figure 6.6: Relation between threshold and precision, recall and F1 for ontology 205
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Figure 6.7: Relation between threshold and precision, recall and F1 for ontology 303

6.6.4 Comparison with other Algorithms

To evaluate our own method, we compared our results against the published results
from the EON 2004 ontology mapping contest and participated in the 2005 Ontology
Alignment Evaluation Initiative ((Euzenat et al. 2005)).

EON 2004 Ontology Mapping Contest

In 2004, the algorithms developed at Stanford (Noy & Musen 2003) and Fujitsu (Hoshiai,
Yamane, Nakamura & Tsuda 2004) performed best in the contest. Figure 6.8 shows
how our algorithm compares to these two algorithms. We used the “dublin2e” config-
uration with two different thresholds (0, denoted as “dublin2e0” and 0.5, denoted as
“dublin2e50”) for comparison.

Our configurations can compete well with the Stanford and Fujitsu algorithms. Stan-
ford performs best on the last three ontologies, but is outperformed by our algorithm
on the first three datasets. On the other hand, the Fujitsu algorithm outperforms our
method on ontologies 301 and 304, but is outperformed by our algorithm on 206 and
302. On ontology 205 there is a tie between our algorithm and Fujitsu’s. On the first
two ontologies, where the structure of both the base ontology and the test ontology are
the same, our algorithm has an advantage. If the structure becomes less important as
especially on the last ontology, our algorithm has a disadvantage. The diagram also
underlines our statement from the previous section: For ontologies that are structurally
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Figure 6.8: Comparison of two configurations of our algorithm and two other algorithms

similar, a low threshold is better, for the “real world” ontologies, our algorithm performs
better if we use a higher cut-off value.

Ontology Alignment Evaluation Initiative 2005

For the 2005 alignment contest, the organisers added several new benchmark ontolo-
gies based on the 2004 benchmark tests. Furthermore, two new real-world tasks were
introduced. The first new task consisted of computing an alignment between two tax-
onomies constructed from the Google, Yahoo and Looksmart web directories. Because
the full taxonomy would be very large, the task was split into about 2000 snippets. The
ontologies for this task consist only of classes and subsumption relations. There are no
properties or individuals. The second new task was to compute an alignment between
two ontologies from the medical domain. These ontologies are both very large.

The algorithm that performed best in the 2005 contest was the “Falcon” algorithm
by the Southeast University of Nanjin. Our own algorithm can, however, compete well
with the “FOAM” algorithm developed in Karlsruhe and the “OLA” algorithm. “Edna”
is a simple algorithm that is based on edit distance of the labels and was included by
the organisers of the contest as a baseline. Table 6.1, taken from (Euzenat et al. 2005),
shows the results of the different algorithms on the benchmark ontologies. Figure 6.9
shows the F1 score. To aggregate the results of the individual tests, the organisers of
the contest calculated the precision and recall over all mappings of all test.

Our algorithm in the “dublin20” setting as submitted to the organisers of the OAEI
2005 performs second best after Falcon. From the 2004 algorithms, the one from Stan-
ford has a higher average precision, but a lower average recall than ours.

Table 6.2 show the results of the algorithms that participated in the 2004 ontology
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Figure 6.9: Overall F1 of the OAEI 2005 alignments

algo edna falcon foam ctxMatch2-1 dublin20 cms omap ola
test Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
1xx 0.96 1.00 1.00 1.00 0.98 0.65 0.10 0.34 1.00 0.99 0.74 0.20 0.96 1.00 1.00 1.00
2xx 0.41 0.56 0.90 0.89 0.89 0.69 0.08 0.23 0.94 0.71 0.81 0.18 0.31 0.68 0.80 0.73
3xx 0.47 0.82 0.93 0.83 0.92 0.69 0.08 0.22 0.67 0.60 0.93 0.18 0.93 0.65 0.50 0.48
all 0.45 0.61 0.91 0.89 0.90 0.69 0.08 0.24 0.92 0.72 0.81 0.18 0.35 0.70 0.80 0.74

Table 6.1: Summary of results obtained by participants of the OAEI 2005
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algo karlsruhe2 umontreal fujitsu stanford
test Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
1xx NaN 0.00 0.57 0.93 0.99 1.00 0.99 1.00
2xx 0.60 0.46 0.54 0.87 0.93 0.84 0.98 0.72
3xx 0.90 0.59 0.36 0.57 0.60 0.72 0.93 0.74
all 0.65 0.40 0.52 0.83 0.88 0.85 0.98 0.77

Table 6.2: EON 2004 results with this year’s aggregation method

algo edna falcon foam ctxMatch2-1 dublin20 cms omap ola
test Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec. Prec. Rec.
1xx 0.96 1.00 1.00 1.00 0.98 0.65 0.10 0.34 1.00 0.99 0.74 0.20 0.96 1.00 1.00 1.00
2xx 0.66 0.72 0.98 0.97 0.87 0.73 0.09 0.25 0.98 0.92 0.91 0.20 0.89 0.79 0.89 0.86
3xx 0.47 0.82 0.93 0.83 0.92 0.69 0.08 0.22 0.67 0.60 0.93 0.18 0.93 0.65 0.50 0.48
all 0.66 0.78 0.97 0.96 0.74 0.59 0.09 0.26 0.94 0.88 0.65 0.18 0.90 0.81 0.85 0.83

Table 6.3: This year’s results on EON 2004 test benchmark

alignment contest. Table 6.3 shows the results of the 2005 algorithms on the subset of
the benchmark ontologies that was used in the 2004 contest.

For the directory task, the reference alignments were created automatically by the
organisers in a way that guarantees that the reference alignment is correct, but there is
no guarantee that the reference alignment is complete. Therefore, the organisers report
only the average recall for these tasks. Figure 6.10 from (Euzenat et al. 2005) show how
our algorithm compares to the other algorithms in the contest.

We could not obtain mappings for the medical ontologies. These ontologies were both
too large to fit into memory and also contained some constructs that caused problems
with the Jena6 RDF access and storage class library that we used in our implementa-
tion. Only two systems from the 2005 contest, Falcon and CMS from the University of
Southampton, could successfully compute alignments for these two ontologies.

6.7 Conclusion

In this chapter, we have shown a new method for ontology mapping that uses established
string distance metrics and an extrinsic feature representation as known from relational
learning algorithms. We treat the results of the similarity computation as a bipartite
graph and use well-known algorithms from graph theory to compute an optimal one-to-
one mapping. With an empirical evaluation, we have shown that our basic ideas work,
and that our algorithm can compete with other approaches.

Having compared the performance of our algorithm with the competitor’s perfor-
mance, we believe that there is a great potential for a combination of some of our ideas
with methods used by others. We ignore some valuable information that comes from
the ontologies, because we do not do any logical reasoning or inference. On the other
hand, some of the methods proposed here, for example the post-processing steps, could

6http://jena.sourceforge.net/
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Figure 6.10: Recall for web directories matching task

be useful in conjunction with other base algorithms as well.
Furthermore, our algorithm could be used in a supervised way, if we use the similarity

functions as nearest-neighbour classifiers or replace them with another machine learning
algorithm. This is of course basically the same approach that we applied to learning
Web Service annotations as described in chapter 5.
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Chapter 7

Diversion: The Triskel Algorithm
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Figure 7.1: A Celtic Triskel
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Figure 7.2: The “layer cake” task: a) decision surface learned by a single SVM with linear
kernel (circled instances are classified incorrectly); b) an ensemble of three linear SVMs that has
zero training error when combined with a simple majority vote.

7.1 Introduction

Ensemble techniques have been demonstrated to be an effective way to reduce the error
of a base learner across a wide variety of tasks. The basic idea is to vote together the
predictions of a set of classifiers that have been trained slightly differently for the same
task. There is a strong body of theory explaining why ensemble techniques work.

Nevertheless, it is straightforward to construct learning tasks that confound existing
ensemble techniques. For example, consider a synthetic“layer cake” binary learning task
shown in Fig. 7.2. SVM with a linear kernel learns a decision surface with a large error.
Boosting SVM does not help: at each iteration, the classifier is unable to stop making
mistakes on the middle two regions; these regions then get even more weight on the
next iteration, and eventually boosting gives up because it can not find a classifier with
error less than 0.5.

However, Fig. 7.2(b) shows that ensemble methods are in principle well suited to
this task: when combined with a simple unweighted vote, the set of three linear decision
surfaces yields an ensemble that has zero error.

Motivated by this sort of learning task, we propose a novel ensemble learning algo-
rithm called Triskel, which has two interesting features. First, Triskel learns an ensemble
of classifiers that are biased to have high precision for one particular class. For example,
in Fig. 7.2(b), one of the “outer” classifiers is biased to (i.e. has high precision, albeit
mediocre recall, for) the positive class, and the other classifier is biased for the negative
class. In contrast, most existing ensemble techniques feature ensemble members that
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are biased to focus on various regions of the instance space. For example, at each round,
boosting focuses on instances that were classified incorrectly in previous rounds; and
bagging simply involves hiding some of the training data from each ensemble member.

The second interesting feature is the manner in which Triskel assigns weights to
the ensemble members. Triskel uses weighted voting like most ensemble methods, but
the weights are assigned so that certain pairs of biased classifiers outweigh the rest of
the ensemble, if their predictions agree. For example, in Fig. 7.2(b), the two “outer”
classifiers dominate the vote if they agree, but if they disagree then the “inner” classifier
casts the deciding vote. Our algorithm is named Triskel after a Celtic spiral design with
three branches, see figure 7.1. In its simplest incarnation, Triskel uses an ensemble of
three classifiers: one classifier biased for the positive class, one classifier biased for the
negative class, and one unbiased classifier to make predictions when the others disagree.

We make the following contributions. First, we motivate and describe Triskel, our
novel approach to ensemble learning, and describe various ways to construct the biased
classifiers on which Triskel relies. Second, we discuss how Triskel represents a middle
ground between covering and ensemble techniques such as boosting. Finally, we eval-
uate Triskel on a variety of real-world tasks, and demonstrate that our method often
outperforms boosting, in terms of both accuracy and training time.

7.2 The Triskel Algorithm

7.2.1 Motivation

One of the problems with AdaBoost is that in each subsequent iteration the base learner
is presented with more and more difficult problems. The redistribution of instance
weights is based on the errors of the last learned hypothesis on the training data. Over
multiple iterations, this can result in weight distributions that are too complex for
the base learner to handle. For example, suppose we would like to boost a Support
Vector Machine (Vapnik 1979) with a linear kernel on a synthetic data set shown in
Figure 7.2a. The Figure shows the decision surface that an SVM would learn on this
data in the first iteration. We can see that the distribution of errors is such that a linear
decision surface will do a poor job on such a task. Specifically, the weight distribution
will switch in this case between inner and outer instances after each boosting iteration
without improvements to the resulting ensemble accuracy.

Nonetheless, the example in Figure 7.2a can be handled perfectly by an ensemble of
three linear separators shown in Figure 7.2b combined using a majority vote. One clas-
sifier separates a part of the positive instances from the rest of positives and negatives,
one classifier separates a part of the negative instances, and the remaining classifier
handles the instances where the first two classifiers disagree.

An analogy between this approach and set covering can be drawn. Essentially,
one classifiers covers the data instances that can be confidently classified as positive
(“easy” positives), one classifier covers the data that can be confidently classified as
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negatives (“easy” negatives), and the last classifier is used to handle the remaining
“hard” instances. Our Triskel algorithm is inspired by this idea of exploring a middle
ground between ensemble and set covering methods.

In order to identify instances that can be confidently classified as positive or negative,
we make use of biased classifiers. A classifier that is biased towards predicting positives
will usually have a high precision on negative instances and vice versa. We train a biased
classifier for each class. All instances where the biased classifiers agree are considered
“easy”, all other instances are “hard”. The third classifier, the arbiter, is then trained
only on those “hard” instances. The intuition is that the feature patterns among the
“hard” instances may be different from those among the “easy” training examples. By
separating away the “easy” instances and training the arbiter only on the “hard” ones,
we make the learning problem for the arbiter easier since it only has to deal with a
supposedly more regular subset of the data.

Like AdaBoost, we are trying to improve (boost) the classification accuracy of the
base classifier on the training set by increasing the representational power using the
ensemble. However, the expectation is that we can achieve better results by splitting
one hard classification problem into a series of easier ones instead of progressively con-
structing more difficult problems as in AdaBoost.

7.2.2 The Algorithm

Consider first the Triskel algorithm for a binary classification problem. Assume that a
classifier is a function mapping data instances onto a binary set of classes: h : X →
{−1,+1}. Similarly to AdaBoost, Triskel is an iterative algorithm. In each iteration, we
train a pair of biased classifiers: one classifier biased towards the positive class, and one
classifier biased towards the negative class. For a discussion of different ways of biasing
classifiers, see section 7.2.3. Next, we evaluate the biased classifiers on the training data
and obtain two sets of instances: “easy” examples, where the biased classifiers agree;
and “hard” ones, where the biased classifiers disagree. To obtain the training set for
the next iteration, the weights of the “easy” instances are reduced and the weights of
the “hard” instances are increased. The training set obtained after the last iteration is
used to train the arbiter classifier. Algorithm 8 shows the details.

To combine the decisions of the learned classifiers, we use a conventional weighted
voting scheme, with the weights set in such a way that some ensemble members’ votes
can dominate the others. Specifically, we use a sequence of exponentially decreasing
weights such that if two biased classifiers from a given iteration agree on the label of
a new instance, then their combined vote outweighs the votes of the classifiers from all
subsequent rounds. Such weight distribution is equivalent to the simple decision rule
shown in Algorithm 9.

Essentially, in each iteration we classify and separate the “easy” instances and then
use the ensemble members from subsequent iterations to handle the remaining “hard”
instances.
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Algorithm 8 Triskel
/* To train on {. . . , (xi, yi), . . .} (yi = ±1) */
Choose the method of weight adjustment:
Weasy = 0;Whard = 1, or /* “separation” */
Weasy = 1/2;Whard = 2 /* “soft covering” */
D0(i) = 1/N for each instance i
for t = 1, 2, . . . ,K do

h+
t = Learn with weights Dt−1, biased for class +1

h−
t = Learn with weights Dt−1, biased for class -1

αt = 2K−t

for each instance i do

∆t,i =
{

Weasy , if h+
t (xi) = h−

t (xi) = yi

Whard , otherwise
Dt(i) = Dt−1(i) ·∆t,i and normalise

end for
end for
hK+1 = Learn with weights DK , unbiased
αK+1 = 1
/* To classify instance x */

return y = sign
[∑K+1

t=1 αth
∗
t (x)

]
, where h∗

t (x) = h+
t (x) + h−

t (x) for t ≤ K, and
h∗

t (x) = hK+1(x) for t = K + 1.

Algorithm 9 Combining classifier decisions
/* To classify instance x */
for t = 1, 2, . . . ,K do

if h+
t (x) = h−

t (x) = y then
halt and return y

end if
end for
return hK+1(x)

There are two principle ways in which the instance weights can be adjusted during
training. One way is to set the weights of the “easy” instances to zero, leaving the
weights of the “hard” instances unchanged. In this case, the classifiers in each subse-
quent iteration are trained on a shrinking subset of the training data. This method is
more similar to the set covering idea, since after each iteration (the covered) part of
the training instances is completely removed from consideration. The problem with this
method is that it may quickly “run out of instances”. That is, the number of instances
left in consideration may quickly become too small to train a sensible classifier.

Therefore, the second way to adjust the instance weights is more similar to boosting,
when the weights of “easy” instances are reduced, while the weights of “hard” instances
are increased. In our experiments, we increase or reduce the weights by the factor of 2
(see Algorithm 8).
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7.2.3 Generating Biased Classifiers

Biasing techniques have been previously used for improving performance of neural net
classifiers on imbalanced datasets (Murphey, Guo & Feldkamp 2004) and for adaptive
voting in the ensembles of classifiers for incremental learning (Muhlbaier, Topalis &
Polikar 2004).

Some machine learning algorithms have an inherent way of setting a bias. Bayesian
classifiers, for example, output a probability distribution. The class with the high-
est posterior probability as calculated by the classifier is predicted. It is easy to bias a
Bayesian classifier by either modifying the prior probabilities or to impose biased thresh-
olds on the posterior probabilities. Support Vector Machines also use a confidence value
threshold.

There are, however, more generic ways to bias classifiers. Resampling techniques
have been used in literature to address the problem of imbalance in the training set.
But resampling can of course also be used to create an imbalance, which is what we
need for Triskel. Akbani et al. found in (Akbani, Kwek & Japkowicz 2004) that for
imbalanced datasets undersampling the majority class to eliminate the bias leads to
good performance, although some of the training examples are discarded.

In preliminary experiments, we tried over- and undersampling to create biased classi-
fiers. We found that creating the bias through undersampling does not hurt the overall
performance of Triskel, even if as little as 10% of the training instances of one class
are kept. For some datasets, the performance was even slightly better than the ap-
proach with oversampling. Additionally, because we drop 90% of the instances for one
class, training becomes faster. Therefore we decided to use undersampling with a 10%
undersampling rate for our final experiments.

7.3 Related Work

7.3.1 Relation to Covering

There is a loose relationship between Triskel and rule covering algorithms (for example
(Fürnkranz 1999)). A covering algorithm tries to identify rules with high precision that
cover a large number of (ideally uniformly positive or negative) training examples. These
training examples are then removed from the training set, as they are covered by the
rule, and rule learning continues until all examples are covered. In Triskel, identifying
easy instances using biased classifiers could be seen as covering positive and negative
instances, as these instances are then removed from the training set from which the
arbiter is learned.

7.3.2 Comparison with Boosting

Shapire’s original boosting algorithm (Shapire 1990) uses three classifiers: The first
one is trained on the original dataset, the training set for the second classifier consists
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Algorithm 10 Comparison of Triskel (left) to AdaBoost (right)
/* To train on {. . . , (xi, yi), . . .} */
D0(i) = 1/N for each instance i
for t = 1, 2, . . . ,K do

h+
t = Learn(weights Dt−1, biased +1)

h−
t = Learn(weights Dt−1, biased -1)

αt = 2K−t

for each instance i do
∆t,i =

=
{

Weasy if h+
t (xi) = h−

t (xi) = yi

Whard otherwise
Dt(i) = Dt−1(i) ·∆t,i and normalise

end for
end for
hK+1 = Learn(weights DK , unbiased)
αK+1 = 1
/* To classify instance x */

return y = sign
[∑K+1

t=1 αth
∗
t (x)

]

/* To train on {. . . , (xi, yi), . . .} */
D0(i) = 1/N for each instance i
for t = 1, 2, . . . ,K do

ht = Learn(weights Dt−1, unbiased)

αt = 1
2 log 1−εt

εt
,

where εt =
∑

i Dt−1(i)[[yi 6= ht(xi)]]
for each instance i do

∆t,i =

=
{

εt/(1− εt) if ht(xi) = yi

1 otherwise
Dt(i) = Dt−1(i) ·∆t,i and normalise

end for
end for

/* To classify instance x */

return y = sign
[∑K

t=1 αtht(x)
]

equally of instances that were classified correctly by the first classifier and instances that
were incorrectly classified. A third classifier is trained on instances where the first two
classifiers disagree. The predictions are combined by voting. In our algorithm we follow
up on this idea, however the way we create the first two classifiers is fundamentally
different. Also unlike the original boosting, we can use multiple iterations. This results
in an ensemble containing more than three classifiers similar to AdaBoost.

Both AdaBoost (Freund & Shapire 1997) and Triskel try to enhance the decision
surface of the ensemble by focusing on hard instances. The main difference between
the two algorithms is, however, how the hard instances are defined. In AdaBoost, the
hard instances are defined as the instances where the base classifier makes mistakes.
In Triskel, the hard instances are defined as the instances that cannot be classified
“confidently”, where we assume that we can classify an instance “confidently”, if the
biased classifiers agree on its label.

7.3.3 Delegating Classifiers

The method that is closest to Triskel is the very recent Delegating Classifiers algorithm
by Ferri et al. (Ferri, Flach & Hernandez-Orallo 2004). The idea is that a base classifier
abstains from making a prediction and delegates the decision to another classifier if
the confidence in the prediction is less than a threshold. They call such a classifier
“cautious”, since it does not make prediction where it is too uncertain.

The “hard” instances in Triskel correspond to instances where a cautious classifier
would abstain. The main difference between their work and ours is that in their algo-
rithm the decision whether the base classifier should abstain from making a prediction
or not is based only on the confidence value of the base classifier. In Triskel, we use
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a set of biased classifiers to make this decision. The advantage here is that we do not
have to rely on the quality of the confidence value of the base classifier.

Their approach is shown to be more efficient than well-known ensemble methods
like Boosting or Bagging, but is slightly less accurate. We will show in the next section
that Triskel is both more efficient and more accurate than AdaBoost.

7.4 Evaluation

We evaluated Triskel on several multi-class datasets from the well-known UCI reposi-
tory. Because of its very good accuracy, we chose AdaBoost as the benchmark ensemble
algorithm for our experiments. We used SMO (Platt 1999) as a base classifier, again be-
cause of its good performance. However, when comparing ensemble methods, accuracy
is not the only important factor. The reduced error of ensemble algorithms comes at
the price of a greater computational effort. Therefore, time and memory consumption
has to be compared as well. Both are usually related to the ensemble size.

Because SMO can only handle binary problems, we had to choose a mode of splitting
the multi-class problems into binary classification tasks. In all but one configurations
we decided to use a one-against-one scheme: A binary classifier is contructed for all
pairwise combinations of two classes. This means that for a dataset with k classes it is
necessary to train k(k−1)

2 classifiers. Note that on datasets with more than 3 classes, this
setup is computationally more expensive than a one-against-all scheme, but generally
leads to a much better performance.

In conjunction with Triskel it is possible to use a compromise between one-vs-all and
one-vs-one methods. We call this extension Triskel-M. For each class, a binary problem
is created in order to separate this class (‘positive instances’) from all others (‘negative
instances’). These classifiers are biased towards high precision on the positive class
and used similar as in binary Triskel: If exactly one of the biased classifiers predicts
positive, this prediction is returned. If more than one or none of the biased classifiers
predict positive, the prediction of the arbiter is returned. The arbiter is trained in one-
vs-one mode to achieve a better accuracy. In our experiments, we used Triskel-M with
Weasy = 0 and 1 round (denoted as Triskel-M1).

For AdaBoost, boosting the binary classifiers individually yielded a better perfor-
mance than using AdaBoost-M1 (Freund & Shapire 1997).

We used a standard SMO as baseline. We used three different AdaBoost-ensembles
with 3, 10 and 50 rounds. We compared these against standard Triskel with 1 round
and discarding easy instances for the arbiter (Weasy = 0) (Triskel-1) and against Triskel
with weighting (Weasy = 1/2;Whard = 2) with 2 and 4 rounds (denoted as Triskel-W2
and Triskel-W4). Note that for a (binary) Triskel the actual ensemble size is twice the
number of rounds plus one.

We used the Weka framework (Witten & Frank 1999) to conduct our experiments.
We evaluated all algorithms using 10-fold cross-validation with 10 randomized repe-
titions for statistical significance testing, using a corrected resampled t-test as imple-
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mented in the Weka experimenter. Detailed results can be found in Tables 7.1 and
7.2.

The experiments show that AdaBoost with 50 rounds does not improve the accu-
racy over AdaBoost with 10 rounds when using SMO as a base classifier. Triskel-W4
outperforms AdaBoost with 3 significant wins out of the 15 datasets used. This quality
improvement comes at the price of higher training cost when compared to AdaBoost-10.
However, it is still faster than AdaBoost-50. Triskel-W2 (i.e. with an ensemble size of 5
classifiers) achieves a performance that is comparable to AdaBoost-10 (2 wins, 2 losses),
but is significantly faster.

As expected, the M1 setup for Triskel is both the least accurate but also the fastest
ensemble method. Although the biased classifiers are only trained in a one-against-all
mode, the ensemble can still sigificantly outperform the base SMO in one-against-one
mode on the anneal.ORIG, hypothyroid and segment datasets. Because of its one-
against-all nature, this setup of Triskel can even be faster than one-against-one SMO,
especially on large datasets (here on the audiology, hypothyroid and soybean datasets),
while not hurting accuracy.

Figures 7.4–7.4 illustrate the relation between training time and accuracy for the
algorithms on four typical datasets. The data points on the Triskel line correspond
to (from fastest to slowest) Triskel-M1, -1, -W2 and -W4, while the data points for
AdaBoost show the setup for 3, 10 and 50 rounds. Note that in most cases the line
for Triskel is above the AdaBoost line, indicating that Triskel offers a better trade-off
between accuracy and speed. Triskel achieves greater accuracy in the same time, and
the same accuracy can be reached faster. Furthermore, note that the highest accuracy
for Triskel is usually above the highest accuracy for AdaBoost, indicating that, given
enough time, Triskel can typically outperform any setting of AdaBoost.

Khoussainov has analysed the Triskel algorithm qualitatively in (Khoussainov, Heß
& Kushmerick 2005). ROC analysis has recently become a popular technique for study-
ing classification algorithms. Assume a binary classification problem. The ROC space
has the false positive rate FPr on its X-axis and the true positive rate TPr on its Y-axis.
A classifier (hypothesis) for a given dataset can be mapped onto a point in the ROC
space. By changing the bias strength for each of the classifiers we can obtain a family
of biased classifiers which would form bias curves in the ROC space.

A ROC analysis shows that Triskel performs best when there are concavities in these
bias curves. Flach et al. have in (Flach & Wu 2005) shown that when the ROC curve
has concavities there is room for improvement. They proposed that the decision of the
classifier should in certain cases be reversed, which corresponds to a mirroring in ROC
space.
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Table 7.1: Accuracy comparisons between SMO, AdaBoost and different settings of Triskel
on multi-class problems from the UCI repository. � denotes a significant increase in accuracy
of Triskel over the other algorithm at the 0.05-level according to a corrected resampled t-test, ∗
denotes a significant decrease in accuracy. Note that compared to AdaBoost-10 and AdaBoost-50
Triskel achieves equal or better performance with a considerably smaller ensemble.
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Table 7.2: Training time comparisons between SMO, AdaBoost and different settings of Triskel
on multi-class problems from the UCI repository. � and ∗ denote statistically significant differ-
ences as in Table 7.1. When comparing AdaBoost-10 and -50 to Triskel-W2 and -W4, Triskel
usually trains faster due to the smaller ensemble. Note that Triskel-M1 is sometimes faster than
SMO.
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Figure 7.3: Accuracy and training time on the “anneal” dataset
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Figure 7.4: Accuracy and training time on the “anneal.ORIG” dataset

89



 70

 71

 72

 73

 74

 75

 76

 77

 0  25  50  75  100

A
cc

ur
ac

y 
(a

ut
os

)

Training time (seconds)

SMO
Triskel

AdaBoost

Figure 7.5: Accuracy and training time on the “autos” dataset
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Figure 7.6: Accuracy and training time on the “balance-scale” dataset
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Figure 7.7: Accuracy and training time on the “glass” dataset
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Figure 7.8: Accuracy and training time on the “hypothyroid” dataset
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Figure 7.9: Accuracy and training time on the “segment” dataset
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Figure 7.10: Accuracy and training time on the “vehicle” dataset
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7.5 Future Work

7.5.1 Generating Biased Classifiers

Note that for the experiments presented in this thesis, we have used undersampling as
the only method of generating the biased classifiers. While this method proved effective
and has in preliminary experiments shown to achieve higher accuracy and to run faster
than oversampling instances, we would like to explore other methods of generating bias
in future work.

As the ROC analysis in (Khoussainov et al. 2005) shows, the effectiveness of the
arbiter is limited by the quality of the biased classifiers. The biased classifiers are thus
crucial for the performance of Triskel. In future work, we would like to explore the space
of possible methods for generating bias, such as setting the bias of the classifier directly
by means of thresholding, or to use oversampling with artificially created instances as
used in the SMOTE algorithm (Chawla, Bowyer, Hall & Kegelmeyer 2002).

In preliminary experiments, we have worked on a covering-inspired way of gener-
ating the biased classifiers. To train a classifier that is biased towards high precision
on positive instances, we train multiple versions of a base classifier while iteratively
removing instances from the training set that the base classifier predicts as negative
(i.e. instances that are covered). On classification time, an instance is predicted as
positive only if all ensemble members classify it as positive. Achieving high precision
on negative examples is symmetric, and the generalisation towards multi-class datasets
is straightforward. Fig. 11 shows the covering-based biased classifier in pseudo-code.

Algorithm 11 Cover Negatives Algorithm
D0(i) = 1/N for each instance i
for t = 1, 2, . . . ,K do

ht = learn(instances weights Dt−1)
for each instance i do

Dt(i) =
{

1 if ht(xi) = 1
0 otherwise

end for
end for
/* To classify instance x */
for t = 1, 2, . . . ,K do

if ht(x) = −1 then
return −1

end if
end for
return 1

This covering-like approach to biasing classifiers is more expressive than simple re-
sampling approaches, because it is an ensemble itself. A Triskel classifier with covering-
based biased classifiers is able to learn the correct hypothesis for a “slanted checker-
board” dataset (see Fig. 7.11), which is another example of a dataset that confounds
many other algorithms. In preliminary experiments on real-world datasets, covering-like
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Figure 7.11: “Slanted checkerboard” data set

biasing improved classification accuracy slightly. On the other hand, this expressiveness
is bought with the need for more ensemble members.

7.5.2 Active Learning

Active learning is a meta-learning technique that makes use of unlabelled data in a
supervised way. The assumption is that the algorithm can ask an oracle (or a human
operator) for the classification of an arbitrary unlabelled instance from the dataset.
The goal in active learning is that by applying an effective selection strategy a learn-
ing algorithm can be trained much faster on fewer instances. This is an issue where
labelled instances are expensive to obtain. Active learning algorithms try to determine
instances from the unlabelled set that would improve the accuracy of the resulting clas-
sifier significantly if their label was known and then ask the oracle for the label of these
instances.

In future work, we would like to examine if biased classifiers are suitable for active
learning. The intuition is that knowing the label for a “hard” instance (as by the Triskel
definition) should improve the accuracy of the resulting classifier more than the label
of an “easy” instance, because hard instances are closer to the decision boundary. An
open problem that arises here is that in datasets with concavities in the ROC curve –
where Triskel in its normal form is known to perform well – the hard instances adhere
to a different distribution than the easy instances, and a classifier trained on the hard
instances would not generalise well on the complete dataset. Future research in that
direction should address the problem how to effectively combine the features of Triskel
with active learning.

7.5.3 Semi-Supervised Learning

An algorithm that makes use of unlabelled instances in a semi-supervised way is Co-
Training (see section 2.4.5 in the introduction). However, Co-Training requires multiple
views to be present. Given an initial set of labelled instances, classifiers trained on one
view gradually label instances that are fed back as training data for classifiers for the
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other view.
If multiple views are not available, a variation of Co-Training that uses biased clas-

sifiers is imaginable. As in standard Co-Training, we start with an initially labelled set
of instances and train biased classifiers as in Triskel. If the biased classifiers agree on a
yet unlabelled instances, it is added to the training data. In future work, we would like
to explore if biased classifiers can be used in such a semi-supervised setting.

7.6 Summary

We have presented a novel ensemble learning algorithm called Triskel that makes use
of biased classifiers to separate “easy” and “hard” instances. In its iterative nature, it
is similar in style to Boosting methods, while the way Triskel separates easy and hard
instances is loosely related to covering algorithms.

Empirical results suggest that, compared to AdaBoost, Triskel offers a better trade-
off between accuracy and speed. Furthermore, the experiments show the maximum
accuracy that can be achieved with Triskel is higher than the accuracy of AdaBoost.
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Chapter 8

Conclusion

In this chapter, we recapitulate the research problems that have been addressed by
the work in this thesis and the contribution towards their solution. In this thesis,
we presented several learning approaches suited to assist developers and users of the
Semantic Web, as well as an ensemble learning algorithm for general use. Before we
conclude, we shortly summarise each chapter and present an outlook for future research.

8.1 Multi-View Learning for Web Services

8.1.1 Summary

In chapter 3 we presented a multi-view algorithm for classifying web services. For the
web service classification task, there exist several independent sets of features to give
evidence about the class of the service. For some services, plain text descriptions are
available. The words used in these descriptions usually depend solely on the class of the
service. Given the class, they are conditionally independent from e.g. the labels of the
operations. The names of the individual parameters, for example, can also be assumed
to be independent. Multi-view learning is based on the idea that the classification error
for each of these views is independent from the classification error of the other views.
By combining the individual predictions made by an algorithm for each view, it is
possible to improve the classification accuracy. If one classifier misclassifies an instance,
the intuition is that it will be outvoted by the – hopefully correct – predictions of the
other classifiers. Through empirical experiments we have shown that the classification
accuracy on the web services task can indeed be improved.

8.1.2 Future Directions

The experiments where web services were classified into categories were successful and
encouraged us to continue our work and enhance it in order to classify not only the
category of a service but also the inner parts. These experiments are summarised in
section 8.3.
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The insights that were gained on how to split the corpus in order to achieve a good
classification performance could also be useful for other text classification problems.

8.2 Clustering Web Services

8.2.1 Summary

In chapter 5, we discussed experiments where we applied unsupervised clustering meth-
ods to web services. We evaluated several different clustering methods and compared
them using several measures, among them a method based on the well-known precision
and recall measures from information retrieval. We applied the precision and recall
measures to pairs of instances rather than instances themselves. This allows us to use
this evaluation method for clustering without the need to assign a true class from a
“gold standard” to every cluster. This has the advantage that we do not penalise an
algorithm overly if it computes clusters that have a different granularity than the gold
standard. The experiments showed that clustering of web services into categories is
possible. However, it should be obvious that we cannot expect a performance that is as
good as with supervised learning.

We also introduced a variant of HAC clustering for the vector-space model that
we call “Common Term”, where the cluster centroid is computed not as the average
of all instances but rather as the intersection. This method has the advantage that
the centroids can be used as short and concise labels. It was inspired by the Word-IC
algorithm (Zamir et al. 1997), but adheres to the framework of centroid-based HAC
clustering.

8.2.2 Future Directions

The results we achieved in the clustering experiments are based on a single view. Very
recently, multi-view clustering algorithms have been proposed (Bickel & Scheffer 2004).
Using such multi-view algorithms could be an option to improve the performance on
the web services task. We followed with another unsupervised method: In chapter 6 of
this thesis, we discuss an algorithm that exploits the relational structure.

As with the supervised multi-view method that we discussed in chapter 3, the Com-
mon Term clustering could be also useful for general information retrieval. While this
is out of the scope of this thesis, it would be interesting to explore the results of the
Common Term clustering algorithm on general unstructured text.

8.3 Relational Learning for Annotating Web Services

8.3.1 Summary

In chapter 5, we presented our software ASSAM, that assists an annotator in creating
semantic markup for Web Services. ASSAM uses web service descriptions in the stan-
dard WSDL format as input and can export the semantic annotations in a Semantic
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Web language such as OWL-S. The key feature of ASSAM is that it suggests possi-
ble annotations to the user. ASSAM uses relational machine learning to make these
recommendations.

For this application, we developed an iterative relational learning algorithm. We
propose two modifications to the existing iterative relational framework: First, we pro-
pose to use separate classifiers for the intrinsic and extrinsic (relational) views and vote
their predictions. Second, we propose to use specialised classifiers. These are classifiers
that are trained on the intrinsic view, but only on a subset of all instances. This subset
is determined by the extrinsic view.

8.3.2 Future Directions

Classifying components of web services can be seen as a specialisation of a more general
data integration task. We address another instance of this problem in chapter 6.

The work presented in chapter 5 ignores the issues of composing workflows. The
goal of the WS-Diamond project1 is to add diagnosibility capabilities to web services in
order to build self-healing workflows. This project will also require additional metadata
that we will try to generate semi-automatically.

The work of Sabou (Sabou 2004) addresses the semi-automated creation of domain
ontologies. We believe that semi-automated creation and annotation should be brought
together in future work.

8.4 Unsupervised Ontology Mapping

8.4.1 Summary

Ontology mapping is an important challenge in the Semantic Web. In many domains,
it is not likely that everyone will agree on a single domain ontology. To ensure inter-
operability in such scenarios, mapping algorithms that (semi-) automatically align two
ontologies become very important.

In chapter 6, we have shown an algorithm for ontology alignment that uses string
distance metrics and represents extrinsic features with a feature vector. In this algo-
rithm, we treat the results of the similarity computation as a bipartite graph and use
well-known algorithms from graph theory to compute an optimal one-to-one mapping.
We have shown in an empirical evaluation that the proposed algorithms work and that
the performance is comparable with other state-of-the-art algorithms.

8.4.2 Future Directions

We observed that the performance of other recent algorithms and ours are about the
same when looking at the overall results. Each of the algorithms has individual strengths

1http://wsdiamond.di.unito.it/
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and weaknesses with respect to the nature of the different test ontologies used. There-
fore, we believe that better algorithms could be created that combine techniques from
different algorithms. For example, treating the mapping task as bipartite graphs has
been used in very few algorithms. Also, many matching algorithms – including ours –
do not perform reasoning on the description logic level of the ontologies. Using such ad-
ditional information that could be acquired through an inference engine could improve
the performance.

8.5 Ensembles of Biased Classifiers: The Triskel Algorithm

8.5.1 Summary

In chapter 7, we have presented a new ensemble learning algorithm called Triskel. In
this algorithm, biased classifiers are used to separate the training data into “easy” and
“hard” instances. Triskel is similar to Boosting and Delegating Classifiers (see (Ferri
et al. 2004)), however, the way easy and hard instances are separated is fundamen-
tally different. Triskel uses biased classifiers to determine whether an instance can be
confidently classified. The final vote is cast by an “arbiter”, if a set of biased classi-
fiers disagrees on the classification of an instance. Similar to Boosting, Triskel can be
used iteratively in multiple rounds. In an empirical evaluation, we show that Triskel
outperforms well-known existing ensemble methods in accuracy as well as in training
speed.

8.5.2 Future Directions

There are a number of features of Triskel that we would like to explore in greater detail
in future work. First, the generation of the biased classifiers is crucial for the perfor-
mance of the ensemble. Better methods than random undersampling might improve
the performance. Second, we would like to explore if biased classifiers are suitable for
problems such as active and semi-supervised learning.

8.6 Conclusion

In this thesis, we have presented a variety of novel learning algorithms. The two leit-
motifs in this work are the Semantic Web and ensembles methods. Semantic Web
techniques promise to tame the information overload and aid in data integration. There
are several places where machine learning can help the Semantic Web. We have covered
two important aspects in this thesis: First, we have applied learning algorithms to assist
an annotator in creating semantic metadata. Second, we have tackled the problem of
ontology mapping. In fact, these two aspect are closely related. Annotating Semantic
web services can be seen as a special form of ontology mapping, since it means mapping
the web service to an ontology.
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The second thread through this thesis discusses ensemble methods. We have pre-
sented applications of ensemble learning to both relational and non-relational tasks in
the Semantic Web context and have shown that they usually perform better than simple
approaches. As a diversion from the Semantic Web theme, we have also presented a new
general-purpose ensemble learning algorithm and shown that it outperforms previously
existing ensemble methods.
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Appendix A

Source Code Examples

For illustration purposes, this appendix presents two typical Web Services from our
dataset. We print the Web Service descriptions in WSDL format as well as semantic
annotations in OWL-S that were generated by ASSAM. Note that the generated OWL-S
consists of several files (see sections 1.1.4 and 5.1.2).

The first example, a service for sending faxes, has no complex types, but is very
well commented. The developers made use of documentation-tags in various places.
Because there are no complex types, there is no separate concept file for this example.

The second example, a service for calculating a distance between two given coordi-
nates, uses some XML Schema and contains no documentation-tags at all.

A.1 Fax Example

A.1.1 WSDL

<definitions name="FaxService"

targetNamespace="http://www.OneOutBox.com/wsdl/FaxService.wsdl"

xmlns:tns="http://www.OneOutBox.com/wsdl/FaxService.wsdl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<documentation>

This consolidated interface allows registered members of OneOutBox

to easily switch between Free and Paid services with the change of a

parameter. This design allows easy verification of interfaces using

the Free service without major changes when commercial coverage and

reliability are required. Learn more at www.OneOutBox.com

</documentation>

<message name="FaxRequest">

<part name="Account" type="xsd:string">

<documentation>

Account identification, as established through

registration at OneOutBox.com, that uniquely identifies you

and the services available to you.

</documentation>

</part>
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<part name="AccessCode" type="xsd:string">

<documentation>

Account authentication code for security.

</documentation>

</part>

<part name="Service" type="xsd:string">

<documentation>

Type of Fax service to be used. Must be one of

the following strings (without the quotes):

"free" for text, advertising-based fax.

"pro" for text, paid commercial service without advertising.

"text" alias for ’pro’

"html" for HTML formatted string, using paid commercial service.

</documentation>

</part>

<part name="ToNum" type="xsd:string">

<documentation>

The international dialing code of the recipient

FAX machine. e.g. USA dial 1+areacode+number.

Non-numerics within the string are ignored.

</documentation>

</part>

<part name="Name" type="xsd:string">

<documentation>

Delivery information at the destination, such as

name and mailstop. May include spaces (or _) and RETURN (or /)

</documentation>

</part>

<part name="Text" type="xsd:string">

<documentation>

The contents of the FAX to be delivered. Will

be formatted roughly 80 characters wide on the page. No limit.

</documentation>

</part>

</message>

<message name="FaxResponse">

<part name="return" type="xsd:string">

<documentation>

The return code is a tracking number that

can be used to check status and itemize usage.

</documentation>

</part>

</message>

<portType name="FaxPortType">

<operation name="SendFax">

<input message="tns:FaxRequest" />

<output message="tns:FaxResponse" />

</operation>

</portType>

<binding name="FaxBinding" type="tns:FaxPortType">

<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http" />

<operation name="SendFax">

<soap:operation soapAction="urn:Box#SendFax" />

<input>
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<soap:body use="encoded" namespace="urn:Box"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</input>

<output>

<soap:body use="encoded" namespace="urn:Box"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />

</output>

</operation>

</binding>

<service name="FaxService">

<documentation>

Provides a Web Services interface to worldwide

FAX transmission services, powered by 1outbox (www.1outbox.com).

</documentation>

<port name="FaxPort" binding="tns:FaxBinding">

<soap:address

location="http://www.OneOutBox.com:80/cgi-bin/soap/fax.cgi" />

</port>

</service>

</definitions>

A.1.2 OWL-S Service

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service "http://moguntia.ucd.ie/1outBox_SendFax_Service.owl">

<!ENTITY the_process "http://moguntia.ucd.ie/1outBox_SendFax_Process.owl">

<!ENTITY the_profile "http://moguntia.ucd.ie/1outBox_SendFax_Profile.owl">

<!ENTITY the_wsdl "http://moguntia.ucd.ie/1outBox_SendFax.wsdl">

<!ENTITY the_grounding "http://moguntia.ucd.ie/1outBox_SendFax_Grounding.owl">

<!ENTITY the_concepts "http://moguntia.ucd.ie/1outBox_SendFax_Concepts.owl">

<!ENTITY DEFAULT "http://moguntia.ucd.ie/1outBox_SendFax_Service.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"
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xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<service:Service rdf:ID="Service_1outBox_SendFax">

<service:presents rdf:resource="&the_profile;"/>

<service:describedBy rdf:resource="&the_process;"/>

<service:supports rdf:resource="&the_grounding;"/>

</service:Service>

</rdf:RDF>

A.1.3 Profile

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service "http://moguntia.ucd.ie/1outBox_SendFax_Service.owl">

<!ENTITY the_process "http://moguntia.ucd.ie/1outBox_SendFax_Process.owl">

<!ENTITY the_profile "http://moguntia.ucd.ie/1outBox_SendFax_Profile.owl">

<!ENTITY the_wsdl "http://moguntia.ucd.ie/1outBox_SendFax.wsdl">

<!ENTITY the_grounding "http://moguntia.ucd.ie/1outBox_SendFax_Grounding.owl">

<!ENTITY the_concepts "http://moguntia.ucd.ie/1outBox_SendFax_Concepts.owl">

<!ENTITY DEFAULT "http://moguntia.ucd.ie/1outBox_SendFax_Profile.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"
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xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<profileHierarchy:Fax rdf:ID="Profile_1outBox_SendFax">

<service:presentedBy rdf:resource="&the_service;"/>

<profile:has_process rdf:resource="&the_process;"/>

<profile:serviceName>1outBox_SendFax</profile:serviceName>

<profile:textDescription>

[B@d7a7b3

</profile:textDescription>

<profile:hasInput rdf:resource="&the_concepts;#Account_38600"/>

<profile:hasInput rdf:resource="&the_concepts;#AccessCode_38601"/>

<profile:hasInput rdf:resource="&the_concepts;#Service_38602"/>

<profile:hasInput rdf:resource="&the_concepts;#ToNum_38603"/>

<profile:hasInput rdf:resource="&the_concepts;#Name_38604"/>

<profile:hasInput rdf:resource="&the_concepts;#Text_38605"/>

<profile:hasOutput rdf:resource="&the_concepts;#return_38607"/>

</profileHierarchy:Fax>

</rdf:RDF>

A.1.4 Service Model

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">
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<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service "http://moguntia.ucd.ie/1outBox_SendFax_Service.owl">

<!ENTITY the_process "http://moguntia.ucd.ie/1outBox_SendFax_Process.owl">

<!ENTITY the_profile "http://moguntia.ucd.ie/1outBox_SendFax_Profile.owl">

<!ENTITY the_wsdl "http://moguntia.ucd.ie/1outBox_SendFax.wsdl">

<!ENTITY the_grounding "http://moguntia.ucd.ie/1outBox_SendFax_Grounding.owl">

<!ENTITY the_concepts "http://moguntia.ucd.ie/1outBox_SendFax_Concepts.owl">

<!ENTITY DEFAULT "http://moguntia.ucd.ie/1outBox_SendFax_Process.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<process:ProcessModel rdf:ID="1outBox_SendFax">

<process:hasProcess rdf:resource="#SendFax_38598"/>

</process:ProcessModel>

<process:AtomicProcess rdf:ID="SendFax_38598">

<process:hasInput>

<process:Input rdf:ID="Account_38600">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

106



<process:Input rdf:ID="AccessCode_38601">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Service_38602">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="ToNum_38603">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Name_38604">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Text_38605">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasOutput>

<process:ConditionalOutput rdf:ID="return_38607">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:ConditionalOutput>

</process:hasOutput>

</process:AtomicProcess>

</rdf:RDF>

A.1.5 Grounding

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service "http://moguntia.ucd.ie/1outBox_SendFax_Service.owl">

<!ENTITY the_process "http://moguntia.ucd.ie/1outBox_SendFax_Process.owl">

<!ENTITY the_profile "http://moguntia.ucd.ie/1outBox_SendFax_Profile.owl">

<!ENTITY the_wsdl "http://moguntia.ucd.ie/1outBox_SendFax.wsdl">

<!ENTITY the_grounding "http://moguntia.ucd.ie/1outBox_SendFax_Grounding.owl">

<!ENTITY the_concepts "http://moguntia.ucd.ie/1outBox_SendFax_Concepts.owl">

<!ENTITY DEFAULT "http://moguntia.ucd.ie/1outBox_SendFax_Grounding.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"
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xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<!-- Grounding Instance for the Service -->

<grounding:WsdlGrounding rdf:ID="WSDLGrounding_1outBox_SendFax">

<service:supportedBy rdf:resource="&the_service;"/>

<grounding:hasAtomicProcessGrounding rdf:resource="&the_process;#SendFax_38598"/>

</grounding:WsdlGrounding>

<!-- Atomic Process: SendFax_38598 ID: 38598 -->

<grounding:WsdlAtomicProcessGrounding rdf:ID="WSDLGrounding_SendFax_38598">

<grounding:owlsProcess rdf:resource="&the_process;#SendFax_38598" />

<grounding:wsdlOperation>

<grounding:WsdlOperationRef>

<grounding:portType>

<xsd:anyURI rdf:value="&the_wsdl;#FaxPortType"/>

</grounding:portType>

<grounding:operation>

<xsd:anyURI rdf:value="the_wsdl;#SendFax"/>

</grounding:operation>

</grounding:WsdlOperationRef>

</grounding:wsdlOperation>

<grounding:wsdlInputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#FaxRequest"/>
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</grounding:wsdlInputMessage>

<grounding:wsdlInputs rdf:parseType="Collection">

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Account_38600"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Account_38600"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#AccessCode_38601"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#AccessCode_38601"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Service_38602"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Service_38602"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#ToNum_38603"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#ToNum_38603"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Name_38604"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Name_38604"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Text_38605"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Text_38605"/>

</grounding:wsdlInputMessageMap>

</grounding:wsdlInputs>

<grounding:wsdlOutputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#FaxResponse_38606"/>

</grounding:wsdlOutputMessage>

<grounding:wsdlOutputs rdf:parseType="Collection">

<grounding:wsdlOutputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#return_38607"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#return_38607"/>

</grounding:wsdlOutputMessageMap>

</grounding:wsdlOutputs>

</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>
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A.2 Distance Calculator Example

A.2.1 WSDL

<definitions xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:s="http://www.w3.org/2001/XMLSchema"

xmlns:s0="http://innergears.com/WebServices/CalcDistance2Coords"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

targetNamespace="http://innergears.com/WebServices/CalcDistance2Coords"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<s:schema elementFormDefault="qualified"

targetNamespace="http://innergears.com/WebServices/CalcDistance2Coords">

<s:element name="CalcDistTwoCoords">

<s:complexType>

<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="Latitude1"

type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="Longitude1"

type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="Latitude2"

type="s:string" />

<s:element minOccurs="0" maxOccurs="1" name="Longitude2"

type="s:string" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="CalcDistTwoCoordsResponse">

<s:complexType>

<s:sequence>

<s:element minOccurs="1" maxOccurs="1"

name="CalcDistTwoCoordsResult" type="s:double" />

</s:sequence>

</s:complexType>

</s:element>

<s:element name="double" type="s:double" />

</s:schema>

</types>

<message name="CalcDistTwoCoordsSoapIn">

<part name="parameters" element="s0:CalcDistTwoCoords" />

</message>

<message name="CalcDistTwoCoordsSoapOut">

<part name="parameters" element="s0:CalcDistTwoCoordsResponse" />

</message>

<message name="CalcDistTwoCoordsHttpGetIn">

<part name="Latitude1" type="s:string" />

<part name="Longitude1" type="s:string" />

<part name="Latitude2" type="s:string" />

<part name="Longitude2" type="s:string" />
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</message>

<message name="CalcDistTwoCoordsHttpGetOut">

<part name="Body" element="s0:double" />

</message>

<message name="CalcDistTwoCoordsHttpPostIn">

<part name="Latitude1" type="s:string" />

<part name="Longitude1" type="s:string" />

<part name="Latitude2" type="s:string" />

<part name="Longitude2" type="s:string" />

</message>

<message name="CalcDistTwoCoordsHttpPostOut">

<part name="Body" element="s0:double" />

</message>

<portType name="CalcDistance2CoordsSoap">

<operation name="CalcDistTwoCoords">

<input message="s0:CalcDistTwoCoordsSoapIn" />

<output message="s0:CalcDistTwoCoordsSoapOut" />

</operation>

</portType>

<portType name="CalcDistance2CoordsHttpGet">

<operation name="CalcDistTwoCoords">

<input message="s0:CalcDistTwoCoordsHttpGetIn" />

<output message="s0:CalcDistTwoCoordsHttpGetOut" />

</operation>

</portType>

<portType name="CalcDistance2CoordsHttpPost">

<operation name="CalcDistTwoCoords">

<input message="s0:CalcDistTwoCoordsHttpPostIn" />

<output message="s0:CalcDistTwoCoordsHttpPostOut" />

</operation>

</portType>

<binding name="CalcDistance2CoordsSoap" type="s0:CalcDistance2CoordsSoap">

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"

style="document" />

<operation name="CalcDistTwoCoords">

<soap:operation

soapAction="http://innergears.com/WebServices/

CalcDistance2Coords/CalcDistTwoCoords"

style="document" />

<input>

<soap:body use="literal" />

</input>

<output>

<soap:body use="literal" />

</output>

</operation>

</binding>

<binding name="CalcDistance2CoordsHttpGet"

type="s0:CalcDistance2CoordsHttpGet">

<http:binding verb="GET" />

<operation name="CalcDistTwoCoords">
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<http:operation location="/CalcDistTwoCoords" />

<input>

<http:urlEncoded />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<binding name="CalcDistance2CoordsHttpPost"

type="s0:CalcDistance2CoordsHttpPost">

<http:binding verb="POST" />

<operation name="CalcDistTwoCoords">

<http:operation location="/CalcDistTwoCoords" />

<input>

<mime:content type="application/x-www-form-urlencoded" />

</input>

<output>

<mime:mimeXml part="Body" />

</output>

</operation>

</binding>

<service name="CalcDistance2Coords">

<port name="CalcDistance2CoordsSoap"

binding="s0:CalcDistance2CoordsSoap">

<soap:address

location="http://www.innergears.com/WebServices/

CalcDistance2Coords/CalcDistance2Coords.asmx"/>

</port>

<port name="CalcDistance2CoordsHttpGet"

binding="s0:CalcDistance2CoordsHttpGet">

<http:address

location="http://www.innergears.com/WebServices/

CalcDistance2Coords/CalcDistance2Coords.asmx"/>

</port>

<port name="CalcDistance2CoordsHttpPost"

binding="s0:CalcDistance2CoordsHttpPost">

<http:address

location="http://www.innergears.com/WebServices/

CalcDistance2Coords/CalcDistance2Coords.asmx"/>

</port>

</service>

</definitions>

A.2.2 OWL-S Service

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">
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<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Service.owl">

<!ENTITY the_process

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Process.owl">

<!ENTITY the_profile

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Profile.owl">

<!ENTITY the_wsdl

"http://moguntia.ucd.ie/Distance_between_two_coordinates.wsdl">

<!ENTITY the_grounding

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Grounding.owl">

<!ENTITY the_concepts

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Concepts.owl">

<!ENTITY DEFAULT

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Service.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<service:Service rdf:ID="Service_Distance_between_two_coordinates">

<service:presents rdf:resource="&the_profile;"/>

<service:describedBy rdf:resource="&the_process;"/>

<service:supports rdf:resource="&the_grounding;"/>

</service:Service>

</rdf:RDF>
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A.2.3 Profile

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Service.owl">

<!ENTITY the_process

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Process.owl">

<!ENTITY the_profile

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Profile.owl">

<!ENTITY the_wsdl

"http://moguntia.ucd.ie/Distance_between_two_coordinates.wsdl">

<!ENTITY the_grounding

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Grounding.owl">

<!ENTITY the_concepts

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Concepts.owl">

<!ENTITY DEFAULT

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Profile.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>
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<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<profileHierarchy:Distance_Calculator

rdf:ID="Profile_Distance_between_two_coordinates">

<service:presentedBy rdf:resource="&the_service;"/>

<profile:has_process rdf:resource="&the_process;"/>

<profile:serviceName>Distance_between_two_coordinates</profile:serviceName>

<profile:textDescription>

[B@496fc2

</profile:textDescription>

<profile:hasInput rdf:resource="&the_concepts;#parameters_44358"/>

<profile:hasOutput rdf:resource="&the_concepts;#parameters_44360"/>

<profile:hasInput rdf:resource="&the_concepts;#Latitude1_44364"/>

<profile:hasInput rdf:resource="&the_concepts;#Longitude1_44365"/>

<profile:hasInput rdf:resource="&the_concepts;#Latitude2_44366"/>

<profile:hasInput rdf:resource="&the_concepts;#Longitude2_44367"/>

<profile:hasOutput rdf:resource="&the_concepts;#Body_44369"/>

<profile:hasInput rdf:resource="&the_concepts;#Latitude1_44373"/>

<profile:hasInput rdf:resource="&the_concepts;#Longitude1_44374"/>

<profile:hasInput rdf:resource="&the_concepts;#Latitude2_44375"/>

<profile:hasInput rdf:resource="&the_concepts;#Longitude2_44376"/>

<profile:hasOutput rdf:resource="&the_concepts;#Body_44378"/>

</profileHierarchy:Distance_Calculator>

</rdf:RDF>

A.2.4 Service Model

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service "http://moguntia.ucd.ie/Distance_between_two_coordinates_Service.owl">

<!ENTITY the_process "http://moguntia.ucd.ie/Distance_between_two_coordinates_Process.owl">

<!ENTITY the_profile "http://moguntia.ucd.ie/Distance_between_two_coordinates_Profile.owl">

<!ENTITY the_wsdl "http://moguntia.ucd.ie/Distance_between_two_coordinates.wsdl">

<!ENTITY the_grounding "http://moguntia.ucd.ie/Distance_between_two_coordinates_Grounding.owl">

<!ENTITY the_concepts "http://moguntia.ucd.ie/Distance_between_two_coordinates_Concepts.owl">

<!ENTITY DEFAULT "http://moguntia.ucd.ie/Distance_between_two_coordinates_Process.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"
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xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<process:ProcessModel rdf:ID="Distance_between_two_coordinates">

<process:hasProcess rdf:resource="#CalcDistTwoCoords_44356"/>

<process:hasProcess rdf:resource="#CalcDistTwoCoords_44362"/>

<process:hasProcess rdf:resource="#CalcDistTwoCoords_44371"/>

</process:ProcessModel>

<process:AtomicProcess rdf:ID="CalcDistTwoCoords_44356">

<process:hasInput>

<process:Input rdf:ID="parameters_44358">

<process:parameterType rdf:resource="#CalcDistTwoCoords"/>

</process:Input>

</process:hasInput>

<process:hasOutput>

<process:ConditionalOutput rdf:ID="parameters_44360">

<process:parameterType rdf:resource="#CalcDistTwoCoordsResponse"/>

</process:ConditionalOutput>

</process:hasOutput>

</process:AtomicProcess>

<process:AtomicProcess rdf:ID="CalcDistTwoCoords_44362">

<process:hasInput>

<process:Input rdf:ID="Latitude1_44364">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>
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</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Longitude1_44365">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Latitude2_44366">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Longitude2_44367">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasOutput>

<process:ConditionalOutput rdf:ID="Body_44369">

<process:parameterType rdf:resource="#double"/>

</process:ConditionalOutput>

</process:hasOutput>

</process:AtomicProcess>

<process:AtomicProcess rdf:ID="CalcDistTwoCoords_44371">

<process:hasInput>

<process:Input rdf:ID="Latitude1_44373">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Longitude1_44374">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Latitude2_44375">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="Longitude2_44376">

<process:parameterType rdf:resource="&xsd;#string"/>

</process:Input>

</process:hasInput>

<process:hasOutput>

<process:ConditionalOutput rdf:ID="Body_44378">

<process:parameterType rdf:resource="#double"/>

</process:ConditionalOutput>

</process:hasOutput>

</process:AtomicProcess>

</rdf:RDF>

A.2.5 Grounding

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">
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<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Service.owl">

<!ENTITY the_process

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Process.owl">

<!ENTITY the_profile

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Profile.owl">

<!ENTITY the_wsdl

"http://moguntia.ucd.ie/Distance_between_two_coordinates.wsdl">

<!ENTITY the_grounding

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Grounding.owl">

<!ENTITY the_concepts

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Concepts.owl">

<!ENTITY DEFAULT

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Grounding.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>
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</owl:Ontology>

<!-- Grounding Instance for the Service -->

<grounding:WsdlGrounding rdf:ID="WSDLGrounding_Distance_between_two_coordinates">

<service:supportedBy rdf:resource="&the_service;"/>

<grounding:hasAtomicProcessGrounding

rdf:resource="&the_process;#CalcDistTwoCoords_44356"/>

<grounding:hasAtomicProcessGrounding

rdf:resource="&the_process;#CalcDistTwoCoords_44362"/>

<grounding:hasAtomicProcessGrounding

rdf:resource="&the_process;#CalcDistTwoCoords_44371"/>

</grounding:WsdlGrounding>

<!-- Atomic Process: CalcDistTwoCoords_44356 ID: 44356 -->

<grounding:WsdlAtomicProcessGrounding

rdf:ID="WSDLGrounding_CalcDistTwoCoords_44356">

<grounding:owlsProcess rdf:resource="&the_process;#CalcDistTwoCoords_44356" />

<grounding:wsdlOperation>

<grounding:WsdlOperationRef>

<grounding:portType>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistance2CoordsSoap"/>

</grounding:portType>

<grounding:operation>

<xsd:anyURI rdf:value="the_wsdl;#CalcDistTwoCoords"/>

</grounding:operation>

</grounding:WsdlOperationRef>

</grounding:wsdlOperation>

<grounding:wsdlInputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistTwoCoordsSoapIn"/>

</grounding:wsdlInputMessage>

<grounding:wsdlInputs rdf:parseType="Collection">

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#parameters_44358"/>

</grounding:wsdlMessagePart>

<grounding:xsltTransformation rdf:parseType="Literal">

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template xsl:match="/">

<ws:CalcDistTwoCoords

xmlns:ws="http://innergears.com/WebServices/CalcDistance2Coords"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:the_concepts="&the_concepts;"

xmlns:the_process="&the_process;"

xsi:type="ws:CalcDistTwoCoords">
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<ws:Latitude1 xsi:type="xsd:string">

<xsl:value-of

xsl:select="rdf:RDF/the_concepts:CalcDistTwoCoords/the_concepts:Latitude1"/>

</ws:Latitude1>

<ws:Longitude1 xsi:type="xsd:string">

<xsl:value-of

xsl:select="rdf:RDF/the_concepts:CalcDistTwoCoords/the_concepts:Longitude1"/>

</ws:Longitude1>

<ws:Latitude2 xsi:type="xsd:string">

<xsl:value-of

xsl:select="rdf:RDF/the_concepts:CalcDistTwoCoords/the_concepts:Latitude2"/>

</ws:Latitude2>

<ws:Longitude2 xsi:type="xsd:string">

<xsl:value-of

xsl:select="rdf:RDF/the_concepts:CalcDistTwoCoords/the_concepts:Longitude2"/>

</ws:Longitude2>

</ws:CalcDistTwoCoords>

</xsl:template>

</xsl:stylesheet>

</grounding:xsltTransformation>

</grounding:wsdlInputMessageMap>

</grounding:wsdlInputs>

<grounding:wsdlOutputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistTwoCoordsSoapOut_44359"/>

</grounding:wsdlOutputMessage>

<grounding:wsdlOutputs rdf:parseType="Collection">

<grounding:wsdlOutputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#parameters_44360"/>

</grounding:wsdlMessagePart>

<grounding:xsltTransformation rdf:parseType="Literal">

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

xmlns:the_concepts="&the_concepts;"

xmlns:the_process="&the_process;">

<the_concepts:CalcDistTwoCoordsResponse>

<the_concepts:CalcDistTwoCoordsResult>

<xsl:value-of

select="parameters_44360/CalcDistTwoCoordsResult"/>

</the_concepts:CalcDistTwoCoordsResult>

</the_concepts:CalcDistTwoCoordsResponse>

</rdf:RDF>

</xsl:template>

</xsl:stylesheet>

</grounding:xsltTransformation>

</grounding:wsdlOutputMessageMap>

</grounding:wsdlOutputs>
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</grounding:WsdlAtomicProcessGrounding>

<!-- Atomic Process: CalcDistTwoCoords_44362 ID: 44362 -->

<grounding:WsdlAtomicProcessGrounding

rdf:ID="WSDLGrounding_CalcDistTwoCoords_44362">

<grounding:owlsProcess rdf:resource="&the_process;#CalcDistTwoCoords_44362" />

<grounding:wsdlOperation>

<grounding:WsdlOperationRef>

<grounding:portType>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistance2CoordsHttpPost"/>

</grounding:portType>

<grounding:operation>

<xsd:anyURI rdf:value="the_wsdl;#CalcDistTwoCoords"/>

</grounding:operation>

</grounding:WsdlOperationRef>

</grounding:wsdlOperation>

<grounding:wsdlInputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistTwoCoordsHttpPostIn"/>

</grounding:wsdlInputMessage>

<grounding:wsdlInputs rdf:parseType="Collection">

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Latitude1_44364"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Latitude1_44364"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Longitude1_44365"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Longitude1_44365"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Latitude2_44366"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Latitude2_44366"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Longitude2_44367"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Longitude2_44367"/>

</grounding:wsdlInputMessageMap>

</grounding:wsdlInputs>

<grounding:wsdlOutputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistTwoCoordsHttpPostOut_44368"/>

</grounding:wsdlOutputMessage>

<grounding:wsdlOutputs rdf:parseType="Collection">

<grounding:wsdlOutputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Body_44369"/>

</grounding:wsdlMessagePart>
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<grounding:xsltTransformation rdf:parseType="Literal">

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

xmlns:the_concepts="&the_concepts;"

xmlns:the_process="&the_process;">

<the_concepts:double>

</the_concepts:double>

</rdf:RDF>

</xsl:template>

</xsl:stylesheet>

</grounding:xsltTransformation>

</grounding:wsdlOutputMessageMap>

</grounding:wsdlOutputs>

</grounding:WsdlAtomicProcessGrounding>

<!-- Atomic Process: CalcDistTwoCoords_44371 ID: 44371 -->

<grounding:WsdlAtomicProcessGrounding rdf:ID="WSDLGrounding_CalcDistTwoCoords_44371">

<grounding:owlsProcess rdf:resource="&the_process;#CalcDistTwoCoords_44371" />

<grounding:wsdlOperation>

<grounding:WsdlOperationRef>

<grounding:portType>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistance2CoordsHttpGet"/>

</grounding:portType>

<grounding:operation>

<xsd:anyURI rdf:value="the_wsdl;#CalcDistTwoCoords"/>

</grounding:operation>

</grounding:WsdlOperationRef>

</grounding:wsdlOperation>

<grounding:wsdlInputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistTwoCoordsHttpGetIn"/>

</grounding:wsdlInputMessage>

<grounding:wsdlInputs rdf:parseType="Collection">

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Latitude1_44373"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Latitude1_44373"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Longitude1_44374"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Longitude1_44374"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Latitude2_44375"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Latitude2_44375"/>

</grounding:wsdlInputMessageMap>

<grounding:wsdlInputMessageMap>
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<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Longitude2_44376"/>

</grounding:wsdlMessagePart>

<grounding:owlsParameter rdf:resource="the_process;#Longitude2_44376"/>

</grounding:wsdlInputMessageMap>

</grounding:wsdlInputs>

<grounding:wsdlOutputMessage>

<xsd:anyURI rdf:value="&the_wsdl;#CalcDistTwoCoordsHttpGetOut_44377"/>

</grounding:wsdlOutputMessage>

<grounding:wsdlOutputs rdf:parseType="Collection">

<grounding:wsdlOutputMessageMap>

<grounding:wsdlMessagePart>

<xsd:anyURI rdf:value="&the_wsdl;#Body_44378"/>

</grounding:wsdlMessagePart>

<grounding:xsltTransformation rdf:parseType="Literal">

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes"/>

<xsl:template match="/">

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns"

xmlns:the_concepts="&the_concepts;"

xmlns:the_process="&the_process;">

<the_concepts:double>

</the_concepts:double>

</rdf:RDF>

</xsl:template>

</xsl:stylesheet>

</grounding:xsltTransformation>

</grounding:wsdlOutputMessageMap>

</grounding:wsdlOutputs>

</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

A.2.6 Concepts

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<!DOCTYPE uridef[

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema">

<!ENTITY owl "http://www.w3.org/2002/07/owl">

<!ENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">

<!ENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">

<!ENTITY profile "http://www.daml.org/services/owl-s/1.0/Profile.owl">

<!ENTITY grounding "http://www.daml.org/services/daml-s/0.7/Grounding.daml">

<!ENTITY profileHierarchy "http://moguntia.ucd.ie/owl/ProfileHierarchy.owl">

<!ENTITY operations "http://moguntia.ucd.ie/owl/Operations.owl">

<!ENTITY datatypes "http://moguntia.ucd.ie/owl/Datatypes.owl">

<!ENTITY xsl "http://www.w3.org/1999/XSL/Transform">

<!ENTITY the_service

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Service.owl">

<!ENTITY the_process

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Process.owl">

<!ENTITY the_profile

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Profile.owl">
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<!ENTITY the_wsdl

"http://moguntia.ucd.ie/Distance_between_two_coordinates.wsdl">

<!ENTITY the_grounding

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Grounding.owl">

<!ENTITY the_concepts

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Concepts.owl">

<!ENTITY DEFAULT

"http://moguntia.ucd.ie/Distance_between_two_coordinates_Concepts.owl">

]>

<rdf:RDF

xmlns:rdf = "&rdf;#"

xmlns:rdfs = "&rdfs;#"

xmlns:xsd = "&xsd;#"

xmlns:owl = "&owl;#"

xmlns:service = "&service;#"

xmlns:process = "&process;#"

xmlns:profile = "&profile;#"

xmlns:grounding = "&grounding;#"

xmlns:profileHierarchy = "&profileHierarchy;#"

xmlns:operations = "&operations;#"

xmlns:datatypes = "&datatypes;#"

xmlns:xsl = "&xsl;#"

xml:base = "&DEFAULT;#"

xmlns = "&DEFAULT;#"

>

<owl:Ontology rdf:about="">

<owl:versionInfo>

Generated using the ASSAM OWL export module

</owl:versionInfo>

<owl:imports rdf:resource="&service;"/>

<owl:imports rdf:resource="&process;"/>

<owl:imports rdf:resource="&profile;"/>

<owl:imports rdf:resource="&grounding;"/>

<owl:imports rdf:resource="&the_process;"/>

<owl:imports rdf:resource="&the_service;"/>

<owl:imports rdf:resource="&the_grounding;"/>

<owl:imports rdf:resource="&the_profile;"/>

<owl:imports rdf:resource="&profileHierarchy;"/>

<owl:imports rdf:resource="&operations;"/>

<owl:imports rdf:resource="&datatypes;"/>

</owl:Ontology>

<owl:Class rdf:ID="CalcDistTwoCoordsResponse_44347">

<rdfs:subClassOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Distance_Miles"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="CalcDistTwoCoordsResult_44350">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#double"/>

<rdfs:domain rdf:resource="#CalcDistTwoCoordsResponse_44347"/>

<rdfs:subPropertyOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Distance_Miles"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="CalcDistTwoCoords_44348">
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<rdfs:subClassOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Coordinates"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="Latitude1_44351">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#CalcDistTwoCoords_44348"/>

<rdfs:subPropertyOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Latitude"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Longitude1_44352">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#CalcDistTwoCoords_44348"/>

<rdfs:subPropertyOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Longitude"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Latitude2_44353">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#CalcDistTwoCoords_44348"/>

<rdfs:subPropertyOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Latitude"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="Longitude2_44354">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#CalcDistTwoCoords_44348"/>

<rdfs:subPropertyOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Longitude"/>

</owl:DatatypeProperty>

<owl:Class rdf:ID="double_44349">

<rdfs:subClassOf

rdf:resource="http://moguntia.ucd.ie/owl/Datatypes.owl#Distance_Miles"/>

</owl:Class>

</rdf:RDF>
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