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4. Results 

2. State-of-the-art: dependence on additional HR intensity data 

3. Contribution: independence from further sensor data 

Texture matching loss 

Single image super-resolution (SISR) 
- currently, artificial intelligence learning-based algorithms reach the highest image quality in SISR results 
- Convolutional Neural Networks (CNNs) learn either a per-pixel loss or a perceptual loss between its output 

and a ground truth image 

Guided depth map super-resolution (GDMSR) 
- state-of-the-art methods for GDMSR are mostly optimization-based or learning-based algorithms 
- GDMSR requires an additional high-resolution intensity image for guidance 

2014, SRCNN [1] 
[30.49 dB] 

Shallow Deep 

2016, Perc. Loss [3] 
[27.09 dB] 

2017, ENet  [6] 
[31.74 dB] 

2017, SRGAN/SRResNet [4]  
[29.4 dB/ 32.05 dB] 

2017, DRRN  [2] 
[31.68 dB] 

2017, MDSR/EDSR  [5] 
[32.6 dB/ 32.62 dB] 

[dB]: ⌀ PSNR on Set5 [7] @ 4x-scaling 
Map on CNN based  
SISR methods (excerpt). 

1Pre-trained reference implementation of ENet-PAT [6] for magnification ratio of 4 

5. Conclusions & Outlook 

SISR results on Slanted edge target MTF50 [c/p] PSNR [dB] RMSE [a.u.] 

Ground truth 0.632 Infinite 0 

Bicubic interpolation 0.105 34.37528 4.87277 

ENet-PAT SR result1 0.497 41.46295  2.15473 

SISR 
- good performance on simple slanted edge target 

 SR result reaches nearly 78 % of ground truth’s MTF50-value 
 ENet-PAT’s PSNR value is around 1.2 times higher than bicubic interpolation ones 

- less image quality on Art and PMDtec PicoFlexx images 
 fine details are missing 
 ENet-PAT’s PSNR is only 1.05 times and 1.1 times higher than bicubic interpolation ones for Art 
and PMDtec PicoFlexx, respectivley 
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1. Motivation: super-resolution (SR) on inherently related sensor data 

Goal 
SR strategy for self-sufficient resolution enhancement on ToF camera‘s output images 
- amplitude image and  
- depth map  using data accquired with only a single 3D PMD sensor. 

Time-of-Flight (ToF) Photonic Mixing Device (PMD) camera 
- fast and robust three-dimensional image acquisition 
- PMD sensor measures the phase difference between an emitted and its reflected amplitude modulated  

IR signal in real time 

Problem 
- large pixel sizes limit lateral resolution 
- existing depth map SR fusion approaches 

require a further sensor’s additional high-
resolution (HR) intensity image 

Source: pmdtechnologies ag 

Amplitude and distance images from PMDtec‘s miniaturized 
PMD camera PicoFlexx. 

Step 2: Superresolve LR depth map using an intensity guided SR algorithm [11] with the SISR 
results from step 1 

 controls L0 gradient regularization term to preserve edges and remove edge blurring and texture 
copying artifacts 

GDMSR 
- image quality is nearly the same for ground truth guided and SISR guided SR depth map results 
- moderate overall performance 

 even the ground truth guided SR results on noise-free LR inputs look blurry 
 image quality is worse for real data and noisy synthetic images 

Edge-aware weight 

 combines the original L0 gradient minimization and the magnitude function WID,p 

Weighted L0 gradient minimization 

Step 1: Superresolve PMD sensor’s low-resolution (LR) intensity image using ENet-PAT [6] CNN 

Perceptual loss 

 Euclidean loss optimization on feature maps 

Adversarial training 

 discriminative network trains mapping from LR images to HR images 

 enforces locally similar textures between SR result and HR ground truth 

Depth image [PSNR in dB / RMSE a.u.] 
Synthetic: Middlebury 2005 dataset [12, 13] Real data: 

Art Books Moebius PMDtec PicoFlexx 

N
o

is
e-

fr
ee

 
LR

 d
ep

th
 

m
ap

s 

Ground truth guided  29.12408 / 8.91941   28.93634 / 9.11429   30.11049 / 7.96188  

Nearest neighbor guided  27.85658 / 10.32075   28.49669 / 9.58751   29.37705 / 8.66339  

Bicubic guided  28.99904 / 9.04874   28.75584 / 9.30568   29.76623 / 8.28378  

ENet-PAT guided  29.11472 / 8.92903   28.97976 / 9.06884   30.04139 / 8.02547  
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s Ground truth guided  28.92745 / 9.12363   28.90592 / 9.14627   30.00915 / 8.05532   18.17230 / 31.47205  

Nearest neighbor guided  27.88768 / 10.28387   28.56610 / 9.51120   29.39432 / 8.64617   17.85728 / 32.63442  

Bicubic guided  28.78891 / 9.27032   28.74017 / 9.32249   29.82468 / 8.22822   18.10915 / 31.70173  

ENet-PAT guided  28.78996 / 9.26920   28.95732 / 9.09230   29.91369 / 8.14434   18.16454 / 31.50019  

Intensity image  
[PSNR in dB / RMSE a.u.] 

Synthetic: Middlebury 2005 dataset [12, 13] Real data: 
Art Books Moebius PMDtec PicoFlexx 

Nearest neighbor interp. 23.78783 / 16.48726 24.05217 / 15.99306 26.39474 / 12.21247 25.50144 / 13.53532 

Bicubic interpolation 25.32300 / 13.81626 25.48541 / 13.56031 27.82000 / 10.36430 26.90039 / 11.52181 

ENet-PAT SR result1 26.63320 / 11.88174 26.57402 / 11.96297 28.10751 / 10.02685 29.52067 / 8.52131 

Map on GDMSR methods (excerpt). 

2005, MRF [8] 
[RMSE = 2.24] 

2011, Park et al. [9] 
[RMSE = 1.82] 

2013, Ferstl et al. [10] 
[RMSE = 1.29] 

2017, Jung et al. [11] 
[RMSE = 1.26] 

Optimization-
based: 

Learning-
based: 

RMSE on Middlebury 2005 Art disparity map [12, 13] @ 4x-scaling 

2016, FCN-PDN [14] 
Deep CNN + variational optimization 

2016, Song et al. [15] 
Deep CNN + depth statistics 
and color-depth correlation 

2016, MSG-Net [16] 
Multi-Scale Guided CNN 

Ground truth 

Bicubic 
Interpolation 

ENet-PAT 

Slanted edge Art PMDtec PicoFlexx 

4.1 SISR results on intensity images 

4.2 GDMSR results on depth maps 

Bicubic guided 

Art 
(noise-free) 

Art 
(noisy2) 

ENet-PAT guided Ground truth guided 

Real data: 
PMDtec PicoFlexx 

Ground truth depth 
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Frequency [cycles/pixel] 

Spatial frequency response on slanted edge target 

Ground truth

Bicubic Interpolation

SRNet-PAT

Spatial frequency response is measured with MTFMapper [17]. 

2Synthetic images are imposed by additive white Gaussian noise with variance σ² = 0.001 
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Outlook  
- increase image quality of SISR results by using own training data 
- enhance real depth map’s image quality by inpainting invalid pixel regions before applying the SR method 
- investigate further (learning-based) GDMSR algorithms 
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