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We study the use of radial basis functions (RBF) for describing axially symmetric
surfaces in the design of imaging optical systems. Several basis functions as well
as the influence of the different parameters are considered.

1 Introduction

Freeform optical surfaces offer additional degrees
of freedom for designing imaging systems. This al-
lows for a reduction in the number of optical ele-
ments, leading to more compact and lightweight sys-
tems, while at the same time improving the image
quality. Radial basis functions have been used for
many years in function approximation and might be
a suitable form to represent freeform optical sur-
faces. Cakmakci et al. used RBFs to design mir-
rors for head-worn displays [1]. Brenner [2] and Ettl
et al. [3] used RBFs for surface approximation and
surface reconstruction. We investigate basic proper-
ties of axially symmetric surfaces composed of one-
dimensional RBFs as a first step towards freeform
RBF surfaces. The surfaces are implemented as a
user defined DLL for Zemax.

2 Definition

We define a RBF surface by
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woy =~ 71)_”). This ensures z(0) = 0 and
2'(0) = 0.
The user chooses the basis function ¢ (see Fig. 1),

the shape parameter s, the number of basis func-
tions n, the weights w; and the maximum radius R.

T T 1

2 4 6
,

Inverse multiquadric Gaussian

Inverse quadratic

‘Wendland type

Fig. 1 Plot of single basis functions with s = 1.
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3 Results

Systems used for evaluation are U.S. patents
5,636,065 (1st embodiment), 5,754,347 (2nd and
4th) and 6,028,713 (1st) with the aspheric surface
replaced by a RBF surface; and a single mirror sys-
tem with a field of 10.5 degrees. Variables set for op-
timization are the weights w; for RBF surfaces, radii
for spherical surfaces as well as radius and 3-5 poly-
nomial coefficients for aspherical surfaces. Zemax is
used for optimization.

3.1 Alternative representations

z(0) = 0 is ensured by z(r) = Z(r) — 2(0). Alterna-
tively, wy could be chosen appropriately. z/(0) = 0
is ensured by the choice of w_;. Alternatively, w;
could be chosen appropriately (and i = —1 omitted),
or z/(0) = 0 could be completely forgone. Each of
these alternatives leads in most cases to slightly in-
ferior designs after optimization and in a lot of cases
also to slower convergence during optimization.

3.2 Basis functions

The system performances after optimization of RBF
surfaces with n = 8 basis functions is comparable to
aspheres and shown in Fig. 2. No type of basis func-
tion performs significantly better than the others.
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Fig. 2 Performance of the different basis functions with
n = 8 after optimization.
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3.3 Number of functions n

Increasing n from 4 to 16 reduces the rms spot size
between 1,2% and 27,0% on the selected test cases
as shown in Fig. 3.
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Fig. 3 Normalized merit function values based on rms spot
size for different values of n for inverse quadratic (top) and
Gaussian (bottom).

3.4 Shape parameter s
To compare values of s for different systems, we first

observe that a form of scale invariance 2(r) = Z(T””")
can be achieved by choosing § = as, w; = ¢
and R = £; in particular Rs = Rs. For infinitely
extended systems :£ remains constant under this
scaling. Therefore we use s* = % to identify suit-

able choices of s.

Fig. 4 shows an example of how the rms spot size
after optimization depends on the value of s*. Opti-
mal values of s* for the five test systems and n €
{4,8,16, 32} are between 0.028 and 0.63 for the in-
verse quadratic and between 0.044 and 0.88 for the
Gaussian.
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Fig. 4 Merit functions values after optimization for different
values of s* with inverse quadratic on U.S. 6,028,713-1.

3.5 Composition and locality

Fig. 5 shows different solutions for the first system.
With different values of s, the way the surface is com-
posed changes radically, while the rms spot sizes
differ by no more than 11% for the pictured solutions.
In general the values of s of good solutions also lead
to single basis functions that are rather wide, so that
a single weight w; can influences a large region of
the surface.
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Fig. 5 Composition of RBF surfaces for different solutions
of the U.S. 5,636,065-1 system. Top: Inverse quadratic
with s* = 0.2668 (left) and s* = 0.6324 (right). Bottom:
Gaussian with s* = 0.44 (left) and s* = 0.6324 (right).

4 Concluding remarks

Axially symmetric RBF surfaces provide a perfor-
mance comparable to aspheres. Still, performance
might be improved by using RBFs not to describe
the complete surface but only the deviation from a
base sphere or conic and by devising a strategy to
deal with the shape parameter s during optimization.

As a single weight only influences a limited area
of the surface, generalized non-symmetric RBF sur-
faces might enable more accurate modeling of off-
axis surface areas.

Acknowledgments

The authors would like to thank the DFG and
the TMBWK for the financial support through the
projects “Verallgemeinerte optische Abbildungssys-
teme” (FKZ: HO 2667/1-1) and “Graduate Research
School on Optical Microsystems Technology” (FKZ:
16SV5473).

References

[1] O. Cakmakci, K. Thompson, P. Vallee, J. Cote, and
J. P. Rolland, “Design of a Freeform Single-Element
Head-Worn Display,” in Proceedings of SPIE, vol. 7618
(2010).

[2] K.-H. Brenner, “Shifted Base Functions: An Efficient
and Versatile New Tool in Optics,” in Journal of
Physics: Conference Series, vol. 139 (2008).

[3] S. Ettl, J. Kaminski, M. C. Knauer, and G. Hausler,
“Shape reconstruction from gradient data,” Applied
Optics 47(12), 2091-2097 (2008).

DGaO Proceedings 2012 - http://www.dgao-proceedings.de - ISSN: 1614-8436 - urn:nbn:de:0287-2012-P039-2


lnagel
Textfeld
DGaO Proceedings 2012  - http://www.dgao-proceedings.de  - ISSN: 1614-8436  - urn:nbn:de:0287-2012-P039-2

http://www.dgao-proceedings.de



