gms | German Medical Science

73. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC)
Joint Meeting mit der Griechischen Gesellschaft für Neurochirurgie

Deutsche Gesellschaft für Neurochirurgie (DGNC) e. V.

29.05. - 01.06.2022, Köln

Intraoperative label-free tissue diagnostics using a stimulated raman histology imaging system with artificial intelligence – an initial experience

Intraoperative Gewebeanalyse mittels stimulierter Raman-Histologie unter Verwendung künstlicher Intelligenz – erste klinische Erfahrungen

Meeting Abstract

  • presenting/speaker Amin Nohman - Universitätsklinikum Heidelberg, Neurochirurgische Klinik, Heidelberg, Deutschland
  • Huy Philip Dao Trong - Universitätsklinikum Heidelberg, Neurochirurgische Klinik, Heidelberg, Deutschland
  • Christopher Beynon - Universitätsklinikum Heidelberg, Neurochirurgische Klinik, Heidelberg, Deutschland
  • Christine Jungk - Universitätsklinikum Heidelberg, Neurochirurgische Klinik, Heidelberg, Deutschland
  • David Reuss - Universitätsklinikum Heidelberg, Neuropathologie, Heidelberg, Deutschland
  • Andreas W. Unterberg - Universitätsklinikum Heidelberg, Neurochirurgische Klinik, Heidelberg, Deutschland
  • Moritz Scherer - Universitätsklinikum Heidelberg, Neurochirurgische Klinik, Heidelberg, Deutschland

Deutsche Gesellschaft für Neurochirurgie. 73. Jahrestagung der Deutschen Gesellschaft für Neurochirurgie (DGNC), Joint Meeting mit der Griechischen Gesellschaft für Neurochirurgie. Köln, 29.05.-01.06.2022. Düsseldorf: German Medical Science GMS Publishing House; 2022. DocV128

doi: 10.3205/22dgnc128, urn:nbn:de:0183-22dgnc1287

Published: May 25, 2022

© 2022 Nohman et al.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.


Outline

Text

Objective: Accurate intraoperative tissue diagnostics could impact on decision making regarding the extend of resection during brain tumor surgery. Stimulated Raman histology (SRH) is a label-free optical imaging method that uses different biochemical properties of tissue to generate a hematoxylin-eosin-like image and, in combination with an artificial intelligence-based image classifier, offers the opportunity to obtain rapid intraoperative tissue diagnosis. The goal of this study was to report on our initial experience with SRH to evaluate its accuracy in comparison to final tissue diagnosis.

Methods: We included 70 consecutive adult cases with brain tumors that underwent a surgical resection in a single academic institution. Tissue samples were taken intraoperatively and examined using the NIO laser imaging system (Invenio-Imaging®) classifying each tissue specimen to 1 out of 14 predefined tissue classes according to a probability score. We compared results of the SRH classifier with the highest probability score to the respective final histopathological result. Prediction accuracy was evaluated by logistic regression and Receiver Operator Curve (ROC) analysis.

Results: According to final tissue diagnosis, we included 19 meningiomas (27%), 17 gliomas (24%), 6 pituitary adenomas (9%), 9 metastasis (13%) and 19 other tumor entities such as neurinoma or ependymoma (27%; total n=70). Regarding accuracy of intraoperative SRH predictions, regression analysis showed an Area Under the Curve (AUC) suggesting agreement of predictions with final diagnosis in 76% (95% C.I. 0.64-0.89, p=0.0008). Looking at each tumor entity the results varied. The highest accuracy was obtained for meningiomas (AUC=0.95; 95% C.I. 0.85-1, p=0.015), followed by glioma (AUC=0.88; 95% C.I. 0.67-1, p=0.09) and pituitary adenoma (AUC=0.71; 95% C.I. 0.26-1, p=0.38). The accuracy for metastases (AUC=0.70; 95% C.I. 0.43-0.98, p=0,19).

Conclusion: Our initial experience with SRH shows that this novel imaging option is a promising approach to obtain rapid intraoperative tissue diagnosis. However, refinement of artificial intelligence-based automated image classification has to be driven forward to improve prediction accuracy and to improve reliability. This could enable to individually tailor the desired extent of resection to the proposed tumor entity to improve surgical and oncological outcomes.

Figure 1 [Fig. 1]