Evaluating the potential of hyperpolarised [1-13C] L-lactate as a neuroprotectant metabolic biosensor for stroke.

Details

Ressource 1Download: s41598-020-62319-x.pdf (3401.03 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Serval ID
serval:BIB_F7075192F316
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Evaluating the potential of hyperpolarised [1-13C] L-lactate as a neuroprotectant metabolic biosensor for stroke.
Journal
Scientific reports
Author(s)
Hyacinthe J.N., Buscemi L.,  T.P., Lepore M., Hirt L., Mishkovsky M.
ISSN
2045-2322 (Electronic)
ISSN-L
2045-2322
Publication state
Published
Issued date
26/03/2020
Peer-reviewed
Oui
Volume
10
Number
1
Pages
5507
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Cerebral metabolism, which can be monitored by magnetic resonance spectroscopy (MRS), changes rapidly after brain ischaemic injury. Hyperpolarisation techniques boost <sup>13</sup> C MRS sensitivity by several orders of magnitude, thereby enabling in vivo monitoring of biochemical transformations of hyperpolarised (HP) <sup>13</sup> C-labelled precursors with a time resolution of seconds. The exogenous administration of the metabolite L-lactate was shown to decrease lesion size and ameliorate neurological outcome in preclinical studies in rodent stroke models, as well as influencing brain metabolism in clinical pilot studies of acute brain injury patients. The aim of this study was to demonstrate the feasibility of measuring HP [1- <sup>13</sup> C] L-lactate metabolism in real-time in the mouse brain after ischaemic stroke when administered after reperfusion at a therapeutic dose. We showed a rapid, time-after-reperfusion-dependent conversion of [1- <sup>13</sup> C] L-lactate to [1- <sup>13</sup> C] pyruvate and [ <sup>13</sup> C] bicarbonate that brings new insights into the neuroprotection mechanism of L-lactate. Moreover, this study paves the way for the use of HP [1- <sup>13</sup> C] L-lactate as a sensitive molecular-imaging biosensor in ischaemic stroke patients after endovascular clot removal.
Pubmed
Open Access
Yes
Create date
01/04/2020 17:48
Last modification date
21/11/2022 8:10
Usage data