Gd3+-Functionalized Lithium Niobate Nanoparticles for Dual Multiphoton and Magnetic Resonance Bioimaging.

Details

Ressource 1Download: 2021-De Matos-Gd-LNO-HNPs-R2_Final.pdf (1455.31 [Ko])
State: Public
Version: Author's accepted manuscript
License: Not specified
Serval ID
serval:BIB_D77ABDF9591F
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Gd3+-Functionalized Lithium Niobate Nanoparticles for Dual Multiphoton and Magnetic Resonance Bioimaging.
Journal
ACS Applied Nano Materials
Author(s)
De Matos Raphaël, Gheata Adrian, Campargue Gabriel, Vuilleumier Jérémy, Nicolle Laura, Pierzchala Katarzyna, Jelescu Ileana, Lucarini Fiorella, Gautschi Ivan, Riporto Florian, Le Dantec Ronan, Mugnier Yannick, Chauvin Anne-Sophie, Mazzanti Marinella, Staedler Davide, Diviani Dario, Bonacina Luigi, Gerber-Lemaire Sandrine
ISSN
2574-0970
2574-0970
Publication state
Published
Issued date
25/02/2022
Volume
5
Number
2
Pages
2912-2922
Language
english
Abstract
Harmonic nanoparticles (HNPs) have emerged as appealing exogenous probes for optical bioimaging due to their distinctive features such as long-term photostability and spectral flexibility, allowing multiphoton excitation in the classical (NIR-I) and extended near-infrared spectral windows (NIR-II and -III). However, like all other optical labels, HNPs are not suitable for whole-body imaging applications. In this work, we developed a bimodal nonlinear optical/magnetic resonance imaging (MRI) contrast agent through the covalent conjugation of Gd(III) chelates to coated lithium niobate HNPs. We show that the resulting nanoconjugates exert strong contrast both in T1-weighted MRI of agarose gel-based phantoms and in cancer cells by harmonic generation upon excitation in the NIR region. Their capabilities for dual T1/T2 MRI were also emphasized by the quantitative mapping of the phantom in both modes. The functionalization protocol ensured high stability of the Gd-functionalized HNPs in a physiological environment and provided a high r1 relaxivity value per NP (5.20 x 105 mM-1 s-1) while preserving their efficient nonlinear optical response
Keywords
General Materials Science
Web of science
Funding(s)
Swiss National Science Foundation / 316030_183529
Create date
12/02/2022 14:18
Last modification date
11/07/2023 5:55
Usage data