Pre-existing astrocytes form functional perisynaptic processes on neurons generated in the adult hippocampus.

Details

Ressource 1Download: s00429-014-0768-y.pdf (3535.54 [Ko])
State: Public
Version: Final published version
Serval ID
serval:BIB_8B2A2B0863C3
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Pre-existing astrocytes form functional perisynaptic processes on neurons generated in the adult hippocampus.
Journal
Brain Structure and Function
Author(s)
Krzisch M., Temprana S.G., Mongiat L.A., Armida J., Schmutz V., Virtanen M.A., Kocher-Braissant J., Kraftsik R., Vutskits L., Conzelmann K.K., Bergami M., Gage F.H., Schinder A.F., Toni N.
ISSN
1863-2661 (Electronic)
ISSN-L
1863-2653
Publication state
Published
Issued date
2015
Peer-reviewed
Oui
Volume
220
Number
4
Pages
2027-2042
Language
english
Notes
Publication types: Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.
Keywords
Animals, Astrocytes/physiology, Astrocytes/ultrastructure, Bromodeoxyuridine/metabolism, Dendritic Spines/drug effects, Dendritic Spines/metabolism, Excitatory Postsynaptic Potentials/drug effects, Excitatory Postsynaptic Potentials/genetics, Gene Expression Regulation/genetics, Glial Fibrillary Acidic Protein/genetics, Glial Fibrillary Acidic Protein/metabolism, Green Fluorescent Proteins/genetics, Green Fluorescent Proteins/metabolism, Hippocampus/cytology, Isoenzymes/genetics, Isoenzymes/metabolism, Kainic Acid/analogs & derivatives, Kainic Acid/pharmacology, Mice, Mice, Inbred C57BL, Mice, Transgenic, Microscopy, Confocal, Microscopy, Immunoelectron, Neurogenesis/drug effects, Neurogenesis/genetics, Neurons/cytology, Neurons/drug effects, Patch-Clamp Techniques, Phosphopyruvate Hydratase/metabolism, Retinal Dehydrogenase/genetics, Retinal Dehydrogenase/metabolism, S100 Calcium Binding Protein beta Subunit/metabolism, Synapses/physiology, Synapses/ultrastructure, Synaptic Transmission/drug effects, Synaptic Transmission/genetics
Pubmed
Web of science
Open Access
Yes
Create date
03/02/2016 16:12
Last modification date
20/08/2019 15:49
Usage data