A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability.

Details

Ressource 1Download: BIB_48630B959492.P001.pdf (2311.05 [Ko])
State: Public
Version: author
Serval ID
serval:BIB_48630B959492
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability.
Journal
Molecular Cell
Author(s)
Yan Z., Delannoy M., Ling C., Daee D., Osman F., Muniandy P.A., Shen X., Oostra A.B., Du H., Steltenpool J., Lin T., Schuster B., Décaillet C., Stasiak A., Stasiak A.Z., Stone S., Hoatlin M.E., Schindler D., Woodcock C.L., Joenje H., Sen R., de Winter J.P., Li L., Seidman M.M., Whitby M.C., Myung K., Constantinou A., Wang W.
ISSN
1097-4164[electronic], 1097-2765[linking]
Publication state
Published
Issued date
2010
Peer-reviewed
Oui
Volume
37
Number
6
Pages
865-878
Language
english
Abstract
FANCM remodels branched DNA structures and plays essential roles in the cellular response to DNA replication stress. Here, we show that FANCM forms a conserved DNA-remodeling complex with a histone-fold heterodimer, MHF. We find that MHF stimulates DNA binding and replication fork remodeling by FANCM. In the cell, FANCM and MHF are rapidly recruited to forks stalled by DNA interstrand crosslinks, and both are required for cellular resistance to such lesions. In vertebrates, FANCM-MHF associates with the Fanconi anemia (FA) core complex, promotes FANCD2 monoubiquitination in response to DNA damage, and suppresses sister-chromatid exchanges. Yeast orthologs of these proteins function together to resist MMS-induced DNA damage and promote gene conversion at blocked replication forks. Thus, FANCM-MHF is an essential DNA-remodeling complex that protects replication forks from yeast to human.
Keywords
Amino Acid Sequence, Animals, Cell Line, Chickens, DNA/genetics, DNA/metabolism, DNA Damage, DNA Helicases/chemistry, DNA Helicases/genetics, DNA Replication, DNA-Binding Proteins/genetics, DNA-Binding Proteins/metabolism, Evolution, Molecular, Genomic Instability, Histones/metabolism, Humans, Molecular Sequence Data, Protein Binding, Protein Folding, Protein Multimerization, Saccharomyces cerevisiae/genetics, Saccharomyces cerevisiae/metabolism, Schizosaccharomyces/genetics, Schizosaccharomyces/metabolism, Sequence Alignment, Sister Chromatid Exchange
Pubmed
Web of science
Open Access
Yes
Create date
14/09/2010 15:04
Last modification date
20/08/2019 14:55
Usage data