Vertebrate conserved non coding DNA regions have a high persistence length and a short persistence time.

Details

Ressource 1Download: BIB_250CC58B0880.P001.pdf (1007.61 [Ko])
State: Public
Version: author
Serval ID
serval:BIB_250CC58B0880
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Vertebrate conserved non coding DNA regions have a high persistence length and a short persistence time.
Journal
BMC Genomics
Author(s)
Retelska D., Beaudoing E., Notredame C., Jongeneel C.V., Bucher P.
ISSN
1471-2164
Publication state
Published
Issued date
2007
Peer-reviewed
Oui
Volume
8
Number
1
Pages
398
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Abstract
BACKGROUND: The comparison of complete genomes has revealed surprisingly large numbers of conserved non-protein-coding (CNC) DNA regions. However, the biological function of CNC remains elusive. CNC differ in two aspects from conserved protein-coding regions. They are not conserved across phylum boundaries, and they do not contain readily detectable sub-domains. Here we characterize the persistence length and time of CNC and conserved protein-coding regions in the vertebrate and insect lineages. RESULTS: The persistence length is the length of a genome region over which a certain level of sequence identity is consistently maintained. The persistence time is the evolutionary period during which a conserved region evolves under the same selective constraints.Our main findings are: (i) Insect genomes contain 1.60 times less conserved information than vertebrates; (ii) Vertebrate CNC have a higher persistence length than conserved coding regions or insect CNC; (iii) CNC have shorter persistence times as compared to conserved coding regions in both lineages. CONCLUSION: Higher persistence length of vertebrate CNC indicates that the conserved information in vertebrates and insects is organized in functional elements of different lengths. These findings might be related to the higher morphological complexity of vertebrates and give clues about the structure of active CNC elements.Shorter persistence time might explain the previously puzzling observations of highly conserved CNC within each phylum, and of a lack of conservation between phyla. It suggests that CNC divergence might be a key factor in vertebrate evolution. Further evolutionary studies will help to relate individual CNC to specific developmental processes.
Keywords
Animals, Conserved Sequence, DNA, Intergenic, Drosophila, Evolution, Molecular, Genome, Genome, Insect, Humans, Time Factors, Vertebrates
Pubmed
Web of science
Open Access
Yes
Create date
24/01/2008 16:39
Last modification date
20/08/2019 14:03
Usage data