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Abstract

With increasing levels of driving automation, the responsibility for the vehicle control
and passengers’ safety is shifted from the driver towards the automation system. This
results in increased reliability and safety requirements for the subsystems involved in the
automated vehicle motion. In case of a safety-critical failure, an automated transition to
a vehicle standstill must be executed without any driver interaction and supervision for
high and full driving automation. Therefore, in addition to the functionality of the safety-
critical subsystems, also their reliable power supply for the duration of the transition to
the standstill must be guaranteed by the vehicle powernet.

According to the functional safety norm ISO 26262, all safety-critical subsystems must be
designed with an appropriate automotive safety integrity level (ASIL). Since reliable power
supply is one of the prerequisites for their correct functionality, it becomes safety-critical
itself. The need for new fail-operational powernet topologies and appropriate control
strategies fulfilling the increased reliability and availability requirements arises. The work
presented in this dissertation proposes a new generic energy management system for the
safety-based range extension, supporting the optimization of the powernet and powertrain
control for arrival at the safest possible location for the passengers.

The key element of the proposed energy management system is the online energy distribu-
tion optimization with an integrated degradation concept. Using the predicted values for
the available energy resources and for the energy required to complete a driving mission,
the control strategy automatically adapts the energy flows within the vehicle powernet.
Furthermore, it estimates appropriate degradation step for the comfort loads, driving pro-
file and driving destination with the goal to reach the safest destination with a maximum
of comfort in a minimum of time under consideration of the available energy resources.
With this approach, also the fault reactions of the functional safety concept, required by
ISO 26262 for all safety-critical functions, are automated and optimized. In this way,
the energy management system finds autonomously the best suited fault reactions for
achieving the defined control goal.

The energy demand required for the completion of a driving mission depends on the ve-
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locity profile, road slope and stops on the way to the destination. Using the electronic
horizon, a driving trajectory from the current vehicle position to the destination is ap-
proximated online, which is then used for the route based estimation of the required
propulsion energy. In powertrain topologies with multiple traction motors, the overall
driving efficiency and hereby also the driving range can be increased significantly with an
appropriate strategy for the torque distribution between individual motors. Therefore, a
torque distribution profile is estimated online based on the theory of optimal control for
the entire driving mission, enabling an accurate and realistic prediction of the propulsion
energy required for the safety based range extension. In addition to the driving efficiency
increase also symmetrical discharge of independent traction batteries, required for ap-
proximately the same driving range in case of a breakdown of one battery, is incorporated
in the control strategy. Furthermore, also the balancing of the energy losses in powertrain
components is considered for the torque distribution, which is required to avoid their
overheating possibly leading to faster aging and wear.

The application of the generic framework for the energy management system is exemplified
on two different powernet and powertrain topologies with a single and multiple traction
motors. The benefits are verified using simulation results for both, fault-free and failure
case operation. With the proposed torque distribution strategy a decrease in the energy
losses of up to 12 % for the given use case was achieved. Also the optimization of the
fault reactions shows the ability of the energy management system to achieve the control
goals despite multiple faults. In addition to the concepts presented in this dissertation,
also runtime optimized algorithms are proposed, implemented and validated by means of
simulation. By enhancing the reliability of the power supply and fail-operability of the
powertrain, the work presented in this dissertation contributes to the establishment of
the evolving automated driving technology and provides a generic framework for model
predictive energy management for future implementation in automated vehicles.
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Zusammenfassung

Mit dem steigenden Grad der Fahrautomatisierung geht die Zuständigkeit für die Fahr-
zeugführung und Sicherheit der Passagiere immer mehr vom Fahrer auf das Automati-
sierungssystem über. Dies führt zu erhöhten Anforderungen an die Zuverlässigkeit und
Verfügbarkeit der Teilsysteme, die in die automatisierte Fahrzeugführung eingebunden
sind. Beim Auftritt eines sicherheitskritischen Fehlers muss ein hoch- und vollautomati-
siertes Fahrzeug ohne jeglichen Eingriff und Überwachung des Fahrers in den Stillstand
überführt werden. Daher muss zusätzlich zu der eigentlichen Funktionalität dieser Teil-
systeme auch deren zuverlässige Energieversorgung für die Dauer des Übergangs in den
Stillstand von dem Energiebordnetz eines Fahrzeugs sichergestellt werden.

Entsprechend der Norm ISO 26262 für die funktionale Sicherheit müssen alle sicher-
heitskritische Teilsysteme mit einem entsprechenden Grad der Ausfallsicherheit (ASIL)
entwickelt werden. Da zuverlässige Energieversorgung eine der Grundvoraussetzung für
deren Funktionalität ist, wird es selbst sicherheitskritisch. Zur Erfüllung dieser erhöh-
ten Zuverlässigkeits- und Verfügbarkeitsanforderungen werden daher neue fehlertolerante
Bordnetze und zugehörige Betriebsstrategien benötigt. Die vorliegende Dissertation stellt
ein neuartiges und generisches Energiemanagementkonzept für sicherheitsbasierte Reich-
weitensteigerung vor. Eine Optimierung der Steuerung vom Bordnetz und Antriebsstrang
zur Ankunft an einem für die Passagiere sichersten Ort liegt diesem Konzept zugrunde.

Den Kern des vorgeschlagenen Energiemanagementsystems bildet eine zur Laufzeit aus-
geführte Optimierung der Energieverteilung mit einem integrierten Degradationskonzept.
Anhand prädiktiv ermittelter Werte für die verfügbaren Energieressourcen sowie den bis
zum Ende der Fahrt benötigten Energieverbrauch passt die Betriebsstrategie die Ener-
gieflüsse an den Zustand des Bordnetzes an. Das Hauptziel der Steuerung ist dabei die
Ankunft an einem aus der Sicht der Passagiere möglichst sicheren Ort zu ermöglichen.
Zusätzlich wird unter Berücksichtigung der verfügbaren Ressourcen eine entsprechende
Degradationsstufe für die Komfortlasten, das Fahrprofil sowie das Fahrziel festgelegt, mit
dem Ziel an einem möglichst sicheren Ort mit Maximum an Komfort und Minimum an
Fahrzeit anzukommen. Mit diesem Ansatz können auch die Fehlerreaktionen von dem
funktionalen Sicherheitskonzept, das von der ISO 26262 für alle sicherheitskritischen Teil-
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systeme geforderte wird, automatisiert und optimiert werden. Auf diese Weise findet das
Energiemanagementsystem automatisch die geeignetsten Fehlerreaktionen zum Erreichen
des definierten Steuerungsziels.

Der zum Durchführen einer Fahrt benötigte Energieverbrauch hängt stark von dem Ge-
schwindigkeitsprofil, Straßensteigung sowie den Haltepunkten auf dem Weg zum Fahrt-
ziel ab. Mithilfe des elektronischen Horizonts kann eine Fahrtrajektorie ausgehend von
der aktuellen Fahrzeugposition bis zum Fahrtziel zur Laufzeit approximiert werden und
anschließend zur streckenbasierten Prädiktion der benötigten Antriebsenergie verwendet
werden. In Antriebsstrangtopologien mit mehreren Traktionsmotoren kann die Gesamt-
fahreffizienz und somit auch die Reichweite mit einer geeigneten Betriebsstrategie zur
Drehmomentverteilung zwischen den einzelnen Motoren signifikant erhöht werden. Aus
diesem Grund wird zur Laufzeit ein Profil der Drehmomentverteilung unter Anwendung
der Theorie der optimalen Steuerung berechnet. Dadurch wird eine präzise und realisti-
sche Prädiktion der Antriebsenergie ermöglicht, was wiederum für die sicherheitsbasierte
Reichweitensteigerung notwendig ist. Zusätzlich zur Steigerung der Fahreffizienz berück-
sichtigt die Strategie zur Drehmomentverteilung auch das symmetrische Entladen der un-
abhängigen Traktionsbatterien, was zur Sicherstellung einer nahezu gleichen Reichweite
trotz des Ausfalls einer Batterie notwendig ist. Des Weiteren werden die Energieverluste
in den Komponenten des Antriebsstranges ausbalanciert, sodass deren Überhitzen und
somit eine mögliche schnellere Alterung und Abnutzung vermieden wird.

Die Anwendung des generischen Energiemanagementsystems wird anhand zwei unter-
schiedlicher Bordnetz- und Antriebsstrangtopologien mit jeweils einem und mehreren
Traktionsmotoren veranschaulicht. Der Nutzen wird mithilfe der Simulationsergebnisse
im fehlerfreien und fehlerbehafteten Zustand aufgezeigt. Mit der vorgeschlagen Strategie
zur Drehmomentenverteilung konnte eine Verkleinerung der Energieverluste um ca. 12 %
im gegebenen Anwendungsfall erreicht werden. Auch die Optimierung der Fehlerreaktio-
nen zeigt die Fähigkeit des Energiemanagementsystems die Steuerziele trotz mehrerer
Fehler zu erreichen. Neben den in dieser Dissertation vorgestellten Konzepten werden
auch Implementierungsalgorithmen vorgeschlagen, die für Laufzeitausführung optimiert
wurden. Durch die Steigerung der Zuverlässigkeit der Energieversorgung sowie der Funk-
tionsfähigkeit des Antriebsstranges auch im Fehlerfall trägt diese Arbeit zur Etablierung
der ständig wachsenden Technologie für automatisiertes Fahren bei und schlägt ein ge-
nerisches modellprädiktives Energiemanagementsystem zur Implementierung in künftigen
automatisierten Fahrzeugen vor.
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Chapter 1.

Introduction

The mobility of the future is expected to undergo a major shift from the individual
mobility towards shared solutions. According to a study published by Roland Berger [1],
the amount of the worldwide driven kilometers with privately and commercially owned
vehicles will be reduced by approx. 28 % in 2030 compared to 2015. In the same period,
it is expected that the amount of kilometers driven by robocabs will increase to approx.
27 % [1]. For enabling this shift, the automotive industry is currently working on new
technologies following the three main trends for electrification, driving automation and
connectivity [2, 3]. The advantages of using these new technologies are very promising.
In urban areas for example, the road congestion might be reduced and the air quality as
well as the road safety increased [3]. Also in rural areas, a better public transport could
be established enhancing the social aspects of the people living outside the cities [4].

Depending on the area of usage determining the driving situations which must be covered
by the driving automation system, e.g. urban [5, 3] or rural [4], robocabs and automated
shuttles used for the shared mobility solutions and intended for the operation without a
driver require high or full driving automation. According to the levels of automation intro-
duced by the Society of Automotive Engineers (SAE), the automated driving system must
be able to execute a fallback driving task also without any driver interaction [6] starting
with highly automated driving. For this, the functionality of the safety-critical functions
required for the automated transition to a standstill must be ensured also in case of a
failure. In addition, it is also recommended by the U.S. Department Of Transportation
(DOT) and by the National Highway Traffic Safety Administration (NHTSA) to design
automated driving systems in a way allowing to bring a vehicle to a safe stop outside of
the active traffic [7].

For the fulfillment of these new requirements arising with the introduction of automated
driving, a disruptive change in the state of the art vehicle Electric/Electronic (E/E)
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architecture is required [8]. Besides the increased reliability and safety requirements for
the functions involved in the automated vehicle motion and transition to a safe state in
case of a failure, e.g. braking, steering, environment sensing and motion control, which
highly impact their design, also care must be taken for the establishment of their reliable
power supply. New fault-tolerant powernet topologies with redundant supply for these
safety-critical functions are required [8]. Several powernet topologies for different voltage
levels, e.g. 12 V, 48 V and High Voltage (HV), were developed and proposed in [8, 9].

Following the voluntary guidance of DOT and NHTSA for safely stopping the vehicle
outside of active traffic [7], also a fail-operational powertrain design is required for the use
cases, where a coasting to a safe stop by means of kinetic vehicle energy only is not possible.
A fail-operational powertrain will additionally increase the availability of the automated
driving systems, leading also to their higher acceptance. Compared to the state of the
art of manually driven vehicles, automated driving in combination with electrification
provides new challenges for the design of the vehicle powernet and powertrain topologies.
The redundancy required for their fail-operability brings on the other side new degrees
of freedom for the control strategies, enabling to enhance the safety and comfort for the
passengers, to increase the overall driving efficiency and to reduce the overstress of the
powernet and powertrain subsystems. Also by taking the human driver out of the control
loop and by using the telematic data made available through the vehicle connectivity,
further enhancements in powernet and powertrain control can be achieved.

1.1. Motivation and Research Contributions of Thesis
As shown previously, with the introduction of automated driving new requirements for
the reliable power supply of safety-critical functions arise. According to the functional
safety norm ISO 26262-3 [10], all safety-critical subsystems must be designed with the
appropriate Automotive Safety Integrity Level (ASIL), defining the maximum tolerated
failure rate as the output of the Hazard Analysis and Risk Assessment (HARA). Since
reliable power supply is one of the prerequisites for their functionality, it becomes safety-
critical itself. The main task of the energy management system is therefore to allocate
sufficient energy and power resources for the supply of the safety-critical subsystems for
the duration of the entire transition to a safe state. As required by ISO 26262-3 [10], a
functional safety concept must be developed for a safety-critical subsystem ensuring the
fulfillment of the safety requirements also in case of a failure. For a powernet topology,
approx. 30 failure classes can be identified at the system level, leading to approx. 900
possible failure combinations [11], which should be considered in the safety analysis [12].

As a consequence of this complexity for the design of a functional safety concept for fail-
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operational powernets, it is aimed by the work in this dissertation to automate the fault
reactions by applying the theory of optimal control. The main goal hereby is to enable
a completion of a driving mission at the safest possible location with minimized risks for
the passengers. For the automation of fault reactions, the concept of the safety-based
range extension is modeled in an optimization problem, which is then used for the control
of the energy flows within the vehicle. A generic framework for a model predictive and
adaptive energy management system for the safety-based range extension covering both,
normal and failure case operation is the main contribution of this dissertation.

For a given vehicle destination, the driving duration as well as the energy required for
completing the driving mission can be predicted. The powernet loads can be supplied
reliably only if the overall energy demand does not exceed the available resources. In a
fail-operational powernet topology also redundant paths for the supply of the loads must
exist. Therefore, by allocating the available energy resources for the supply of the loads,
also losses due to the energy distribution must be minimized. A mixed-integer energy
distribution optimization is proposed in this dissertation for predictive allocation of the
energy resources to the powernet loads and for automated selection of the energy flow
paths with a minimum of losses. In this way, the control of the powerlink components,
e.g. DC/DC converter, as well as the discharge of powernet batteries is automated and
adapted to the current state of the powernet components.

Accurate prediction of the energy demand required for the completion of a driving mission
as well as of the available energy resources is of high importance for the energy distribu-
tion optimization. The overall energy demand can be divided into two parts: (1) energy
required for vehicle propulsion and (2) energy required for the supply of safety-critical
loads and powernet auxiliaries. If the remaining driving time is known, the energy de-
mand of the safety-critical loads and powernet auxiliaries can be estimated assuming an
average power consumption. For accurate estimation of the propulsion energy, knowledge
about the velocity and slope profile is required. Also stops on the way to the destination
influence the overall energy demand. For gaining these necessary input, a concept and
runtime optimized algorithm for the prediction of the driving destination from the cur-
rent vehicle position to the destination is proposed in this work. Relying on the electronic
horizon providing the information about the road ahead [13, 14], the driving trajectory
to the destination is predicted online and approximated in a format suitable for runtime
optimized prediction of the propulsion energy.

Using a model predictive approach, a profile of the mechanical power required for following
a given driving trajectory can be estimated. In a powertrain topology with a single traction
motor, this mechanical power can be only provided by this motor. With an appropriate
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powertrain model, the corresponding electrical power is estimated considering also the
current state of the powertrain components. By integrating this electrical power profile,
the energy required for vehicle propulsion can be accurately estimated. In this way, also
external environmental factors impacting the propulsion energy demand, e.g. traffic jams,
can be considered. By using this input in the energy distribution optimization, also the
adaptation of powernet and powertrain control to the environmental factors is realized.

In powertrain topologies with multiple motors several sources for providing mechanical
power required for vehicle traction exist. Depending on motor characteristics, the overall
driving efficiency can be increased by an appropriate torque distribution strategy, shifting
the operating points of the individual motors to regions with higher efficiency [15, 16].
Since the torque distribution strategy strongly impacts the overall energy demand, a
torque distribution profile is predicted based on the theory of optimal control. In this way,
the overall powertrain losses can be minimized and fault reactions to possible powertrain
failures can be automated, maximizing so the driving range also in case of a failure. In
addition to the increase of the driving efficiency also further control goals enhancing the
availability of a fail-operational powertrain are incorporated in the torque distribution
optimization.

In case the energy required for completing a given driving mission exceeds the available
energy resources, a three level degradation concept is embedded into the energy distri-
bution optimization, considering the degradation of the load profile, driving profile and
driving destination. In this way, the proposed energy management system estimates from
the energetic point of view feasible settings for the driving mission enabling a safe tran-
sition to the standstill at the safest possible location for the passengers. In addition, the
degradation of the powernet auxiliaries and of the velocity profile is minimized.

1.2. Thesis Overview
This dissertation is organized as follows. In Chapter 2, basic concepts used in this work are
summarized. The different levels of driving automation, their impact on the design of the
vehicle E/E architecture as well as aspects of fault-tolerant system design are discussed.
A brief overview of the functional safety analysis process for road vehicles according to
the norm ISO 26262, which is used for the derivation of safety requirements is given.
The functionality of the vehicle powernet and powertrain are explained and the variables
for their control are described. The concepts behind the theory of optimal control and
telematic information provided by the electronic horizon are explained.

In Chapter 3, state of the art in energy management systems is described. Starting with
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the general classification and an overview of related work, each class is then further de-
tailed covering energy management systems designed for the control of a vehicle powernet,
vehicle powertrain as well as approaches for the energy management in the entire vehi-
cle. A brief review of the trip based energy management approaches is provided. The
research gap in energy management systems for automated driving covering both, normal
and failure case operation is concluded.

In Chapter 4, the concept of safety-based range extension meaning the optimization of
powernet and powertrain control in a way allowing to arrive at the safest possible location
for the passengers is introduced. This concept is proposed as the main control paradigm
for the energy management in automated vehicles. In the second part of this chapter,
requirements for the energy management system are derived and defined covering four
main submodules, namely (1) energy distribution optimization, (2) prediction of remain-
ing discharge energy of a battery, (3) battery’s remaining discharge energy prediction and
(4) propulsion energy prediction.

In Chapter 5, the first two submodules of the proposed energy manager, namely energy
distribution optimization and battery’s remaining discharge energy prediction are covered.
Starting with a generic model of a fail-operational powernet, a mixed-integer optimization
problem used for its control is derived. By solving this optimization problem, the fault
reactions enhancing the reliability of the power supply are automated and the overall
powernet efficiency is increased. Runtime optimized algorithms for solving the mixed-
integer optimization problem are proposed as well as concepts and algorithms for accurate
prediction of the battery’s remaining discharge energy. The functionality of the proposed
concepts and algorithms is exemplified on various examples and verified using simulation
results for both, fault-free and failure case operation by means of fault injection.

In Chapter 6, the remaining two submodules of the proposed energy manager, namely
driving trajectory and propulsion energy prediction are covered. First, a powertrain model
used for the prediction of the propulsion energy required for completing a given driving
mission is introduced. For the accurate runtime prediction of the propulsion energy, a
concept and the corresponding algorithm for the prediction of the remaining driving tra-
jectory based on the electronic horizon are presented. For the prediction of the propulsion
energy two generic approaches are introduced covering both, powertrain topologies with a
single traction motor as well as fail-operational topologies with multiple traction motors.
Due to its impact on the overall driving efficiency and therefore on the required propulsion
energy, additionally predictive estimation of the torque distribution between individual
motors is proposed for the latter approach. Simulation results for both, fault-free and
failure case operation are provided using two different powertrain topologies exemplify-
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ing the functionality and verifying the benefits of the proposed model predictive control
concepts and algorithms.

In Chapter 7, the four submodules of the proposed model predictive energy manager are
combined to a system architecture covering two different types of powernet and powertrain
topologies. For the first type, a fail-operational powernet providing reliable power supply
for safety-critical functions, e.g. braking and steering, as well as a powertrain with a single
motor are assumed. For the second type, in addition to the fail-operational powernet, also
a powertrain with multiple traction motors enabling degraded driving in case of a failure
is assumed. The generic energy management system architecture for each type as well as
the benefits of the safety-based range extension are exemplified using simulation results in
normal and failure case operation. The main results and contributions of this dissertation
are summarized and concluded in Chapter 8.
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Basic Concepts

In this chapter, basic concepts and terms used in this thesis are briefly summarized. An
overview of driving automation levels and their impact on vehicle E/E-architecture is
given in Section 2.1. The terms and aspects of fault-tolerant system design are provided
in Section 2.2. A brief overview of the functional safety norm ISO 26262 as well as of
risk-based method for the estimation of safety requirements is given in Section 2.3. The
functionality of the main components of a vehicle powernet and powertrain is summa-
rized in Section 2.4 and 2.5. The strategies for their control are classified considering
their causality and optimality in Section 2.6. A brief description of the electronic hori-
zon concept providing the necessary input for the implementation of predictive control
strategies concludes this chapter.

2.1. Driving Automation
Driving automation is a challenging and continuously evolving technology, promising to
bring numerous advantages [17]. Commuting problems like traffic jams or lack of parking
are expected to be mitigated [17], traffic congestion and air pollution to be reduced and
road safety increased, all this leading not only to social, but also to financial benefits
[17]. For driving automation, all tasks currently executed by the driver must be stepwise
transferred to the automation system. The environment must be sensed, decisions must be
taken and the actuators must be controlled [17, 18]. Depending on the task split between
a driver and automation system, different levels of driving automation can be defined,
whereby the responsibilities of a driver are decreased with the increasing automation
level. In this dissertation, the definition of the levels introduced by SAE is used [6].

In total five levels of driving automation are differentiated (level 1 to 5) while the case
of "no driving automation" is defined as level 0. Four aspects are considered for the
definition of automation levels [6]: (1) execution of the longitudinal and lateral vehicle
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motion, (2) object and event detection and corresponding reactions, (3) execution of a
fallback driving task and (4) constraints for the operation. Level 1 of driving automation
("Driver Assistance" [6]) foresees solely the execution of either longitudinal or lateral
vehicle motion by the system. Object and event detection and appropriate reactions are
in the responsibility of the driver as well as the execution of a fallback driving task in case
of any abnormalities. The operation of the automated driver assistance is also limited to
defined use cases and situations (e.g. area of usage, whether conditions, velocity limits
etc.). Due to permanent mandatory supervision by the driver, a fail-safe behavior is
required for the subsystems executing either longitudinal or lateral vehicle motion. In
case of a failure, a driver intervention is mandatory.

Level 2 of driving automation ("Partial Driving Automation" [6]) requires both, the
execution of the longitudinal and lateral vehicle motion by the system in constrained op-
erating conditions. Equivalent to level 1, the responsibility for object and event detection
with appropriate reactions, execution of a fallback driving task and permanent supervi-
sion lies with the driver. Therefore, also for level 2 a fail-safe behavior of the subsystems
incorporated into the longitudinal and lateral vehicle motion is required.

Starting with level 3 ("Conditional Driving Automation" [6]), the automated system
takes over the control for the entire execution of the driving task in constrained operat-
ing conditions, consisting of lateral and longitudinal motion as well as object and event
detection. The presence of the driver is required for taking over the control within a
defined period of time after a request by the automation system in case of a failure or
abnormalities in system behavior. For subsystems involved in the execution of the driving
task, a degraded functionality for the duration of the handover of the vehicle control to
the driver is required in case of a failure.

For level 4 ("High Driving Automation" [6]) and level 5 ("Full Driving Automation" [6])
the entire responsibility for the execution of a driving task as well as of a fallback driving
task lies with the automation system. The presence of a driver as well as any kind of
supervision or intervention is not required. The main difference between level 4 and level
5 lies in the definition of the operating conditions. While the operation of level 4 systems
is limited to a defined set of use cases, e.g. driving on a highway or in a restricted area,
no limitations exist for level 5. For the introduction of highly and fully automated driving
systems, several challenges considering object detection and recognition, decision-making
and execution of a safe stop in case of a failure must be mastered [18]. For the latter point,
fault-tolerant designs for subsystems involved in the automated transition of a vehicle to
a standstill are required. In the next section, general aspects of fault-tolerant system
design are briefly discussed.
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2.2. Aspects of Fault-Tolerant System Design

Fault tolerance is a field of designing a system, while accepting the existence of faults, in
a way that a required functionality is still provided despite these faults [19]. For this, in
general redundancy is required, foreseeing more resources than necessary for providing an
intended functionality [19]. Faults can be classified in three categories [19]: (1) permanent,
(2) transient and (3) intermittent. A permanent fault impacts the intended operation
until a system is repaired or maintained. A transient fault impacts the functionality of
a system for a given (normally short) duration of time and disappears afterwards. An
intermittent fault occurs and disappears steadily resulting in an alternating functionality
and non-functionality of a system.

Considering the functionality of a system after a fault, the systems can be classified
in three categories [20]: (1) fail-silent, (2) fail-safe and (3) fail-operational. A fail-silent
system switches off after a failure and does not influence the functionality of other systems
[20]. A fail-safe system transits quickly to a safe state, either passively or actively through
external measures, after a failure and has no impact on the functionality of other systems
in this state [21, 20]. If no safe state is directly available after a failure, a certain minimum
level of functionality must be provided by a fail-operational system for the period of
time required for the transition to a safe state [21, 20].

It can be further differentiated between fault, error and failure [21, 22]. A fault is defined
to be the cause for an error leading to an unintended state of a system, which is defined
as an error [21, 22]. An error then finally can lead to a failure resulting in an unin-
tended functionality or service provided by this system [21, 22]. While designing highly
reliable systems, care must be taken by partitioning the functionality [22]. For avoid-
ing single points of failure, meaning that a single fault can lead to a breakdown of a
safety-critical system, appropriate system partitioning in independent Fault-Containment
Regions (FCR) is required [22]. A fault-containment region defines a set of subsystems
which might be impacted at once by one single fault [22]. For ensuring that a fault within
one FCR does not impact the functionality of subsystems located in other FCRs, appro-
priate fault detection mechanisms are required at the boundaries of the FCR containing
the fault [22]. A set of FCRs capable of fault detection and avoiding error propagation
builds an error-containment region [22].

Depending on the application, different requirements considering the safety integrity
might be needed. For its quantification, a functional safety norm ISO 26262 was in-
troduced for the design of automotive applications, defining a process for the derivation
of safety requirements, definition of corresponding safety integrity level as well as neces-
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sary methods verifying the fulfillment of these requirements. A brief introduction to the
functional safety for road vehicles is given in the next section.

2.3. Functional Safety for Road Vehicles
The functional safety norm ISO 26262 describes all activities required for the design of
safety-related systems consisting of electrical, electronic and software components within
road vehicles [10]. The main goal of the norm is to provide a framework of processes
covering the entire safety life cycle of a system and enabling to design and to validate
safety-related systems in a way that unreasonable residual risk is avoided and an ac-
ceptable level of safety is achieved [10]. The norm consists of 10 parts systematically
structuring the required activities. Part 1 of the norm ("Vocabulary") defines the terms
and definitions used in the norm [10, 23]. Part 2 ("Management of functional safety")
describes general and project specific management activities during the concept and de-
velopment phase as well as after start of series production [10, 23]. The actual engineering
process is covered by four parts divided into "Concept Phase" (Part 3), "Product devel-
opment at the system level" (Part 4), "Product development at the hardware level" (Part
5) and "Product development at the software level" (Part 6) [10, 23]. Part 7 of the norm
("Production and operation") defines the requirements for production, service and decom-
missioning [10, 23]. "Supporting processes" which are applicable throughout the safety
life cycle are provided in Part 8 [10, 23]. The description of "ASIL-oriented and safety
oriented analyses" covering the system tailoring and co-existence aspects as well as failure
and safety analysis aspects are described in Part 9 [10, 23]. A "Guideline on ISO 26262"
helping to understand the norm requirements is provided in Part 10 [10, 23].

For the development of a safety-related system first the corresponding safety requirements
must be derived. For this, a systematic approach for HARA is provided in Part 3 of the
norm helping to derive the safety goals and the corresponding ASILs. Before starting
with the HARA, a precise definition of the system (or array of systems) implementing the
intended functionality at vehicle level is required [10]. This item definition [24] contains
besides the functional requirements also the definition of interfaces and interactions with
other items, relevant legal requirements, operating conditions as well as possible external
measures for risk mitigation [10, 23]. In the first step, possible system malfunctions and
resulting hazards as well as relevant driving situations must be analyzed [10, 23]. In the
next step, each hazard must be evaluated for relevant driving situations with three param-
eters [10, 23]: (1) exposure describing the relative probability of the hazardous situation
in five classes (from E0 for "Incredible" to E4 for "High probability" [10]), (2) severity of
potential harm in four classes (from S0 for "No injuries" to S3 for "Life-threatening injuries
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(survival uncertain), fatal injuries" [10]) and (3) controllability rating the capability of
the driver or other persons potentially at risk to handle the hazardous situation in four
classes (from C0 for "Controllable in general" to C3 for "Difficult to control or uncontrol-
lable" [10]). The required ASIL can be then estimated as a function of these parameters
and a safety goal meaning a top-level safety requirement [24] for mitigation of the po-
tential hazard must be defined [10, 23]. Depending on the definition of the ASIL, which
can vary from ASIL A (lowest) to ASIL D (highest), different development processes must
be followed and different residual failure rates measured in Failures In Time (FIT) must
be achieved (e.g. 10 FIT for ASIL D with 1FIT equal to 1 failure in 109 h).

The defined safety goals with the corresponding ASILs are then used for the derivation of
functional safety requirements for each subsystem which could lead to the violation of the
safety goal in case of a possible malfunction [10, 23]. The functional safety requirements
are then summarized in the functional safety concept containing also the measures for fault
detection, definition of a safe state as well as fault reactions required for the transition
to this safe state [10, 23]. As already discussed in Chapter 1, a reliable power supply
of the safety-critical functions is one of the prerequisites for their correct functionality.
Therefore, according to the norm ISO 26262, also a functional safety concept ensuring the
reliability of the power supply must be developed. In the next section, a brief overview
of powernet functionality is given.

2.4. Powernet System
The ongoing electrification of mechanical components, the increasing number of comfort
loads and of computationally intensive Advanced Driver Assistance System (ADAS)
applications in a vehicle are the cause for the increase of the overall power demand within
the vehicle powernet [25]. For ensuring the reliable power supply of these components,
new measures and powernet topologies are required. The basic task of a vehicle powernet
is to distribute the energy to electrical components [26]. The powernet components can be
classified in four main categories [27, 9]: (1) energy generation components which are
responsible for the conversion of for example mechanical to electrical energy, (2) energy
storage components responsible for the conversion of electrical to chemical energy and
vice versa, (3) electrical loads with either dynamic or rather constant power demand and
(4) corresponding connecting elements. In powernet topologies with multiple voltage
levels (e.g. 12 V and HV), in addition powerlink components (e.g. DC/DC converter)
converting the voltage levels and enabling the energy flow between subpowernets are
required.

As discussed in the previous section, with the introduction of ADAS and automated
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driving systems, new safety requirements for reliability of power supply arise, which must
be considered for the design of a powernet. In addition to the safety requirements, also
various regulative requirements must be fulfilled [9]. For example, in case the braking
force depends exclusively on the use of an energy reserve, at least two independent energy
reserves are required by the norm ECE R13-H [28, 9]. It is also expected that automated
steering will have to provide at least the same performance without the driver interaction
as in the case of conventional steering with a driver as a mechanical fallback, resulting in
the requirement for redundant design of the steering functionality and power supply [9].

Considering the requirements above, the state of the art powernet of a conventional vehicle
with an Internal Combustion Engine (ICE) consisting of a generator and a 12 V lead-
acid battery must be extended for fail-operability. Several topologies are known from the
current research and development activities covering multiple voltage level topologies, ring
and tree topologies. A summary of currently known approaches as well as design aspects
of fail-operational powernets for automated driving can be found in [9]. A behavioral
model of the relevant powernet components is provided in Section 5.1.1, 5.4 and 5.5.1.

2.5. Powertrain System
Powertrain systems can be categorized considering the technology of the drivetrain used
for the propulsion. A powertrain system of a conventional vehicle consists of an ICE, a
gear box, clutches and torque converters with fossil fuel as the main energy carrier [29].
The drivetrain of an Electric Vehicle (EV) contains an Electric Motor (EM) as a single
source for traction power and generally a gear box with a fixed 1-speed transmission.
In a Battery Electric Vehicle (BEV) the main energy carrier is electricity stored in a
traction battery in form of chemical energy. The electrical propulsion system can be
either centralized containing one EM only or also distributed containing multiple EMs
[30]. By distributing the requested torque in a powertrain with multiple EMs which could
be disengaged from the shaft by corresponding clutches, the driving efficiency can be
increased [15]. Also powertrain topologies with a 2-speed transmission are investigated
and turned out to be promising for the increase of the overall driving efficiency [31]. A
clear advantage of the BEVs is their zero local emissions, but due to the low energy
density of the batteries the driving range of the BEVs is rather limited and also long
battery recharging times must be accepted [29].

The electrical energy for the EM can be also provided by a fuel-cell, which is an elec-
trochemical device converting chemical energy in form of e.g. hydrogen into electrical
energy [29]. The powertrain topology of a Fuel-Cell Electric Vehicle (FCEV) contains
an electric drivetrain in combination with a fuel-cell.
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Another possibility for the electrification of the powertrain is the combination of an ICE
and an EM resulting in a Hybrid Electric Vehicle (HEV), which can be divided into
three main classes [29]: (1) parallel HEV, (2) series HEV and (3) series-parallel HEV.
In a parallel HEV the driving power can be provided to the shaft by both, ICE and
EM [29]. In a series HEV, the driving power is provided by the electric motor only,
while a battery and an ICE are used for the generation of electrical energy [29]. In a
series-parallel HEV both variants are combined [29]. A HEV is normally operated in a
charge-sustaining mode, since it is not foreseen to recharge the battery from a grid and
the fossil fuel remains the main energy carrier. In a Plug-In Hybrid Electric Vehicle
(PHEV), the battery can be recharged from the grid enabling also the charge-depleting
operation [29]. An overview and discussion of powertrain systems with multiple motors
for HEVs and EVs can be found in [30].

2.6. Classification of Control Strategies
The task of a control strategy for a system is to find the most reasonable operating points
according to the defined superimposed control goals and to control it [32]. For the control
of a vehicle powernet and powertrain it can be differentiated between energy management
and power management. Energy management defines the long term control strategy
[33, 34] and can be used for example for the overall energy efficiency increase by optimizing
the energy flows within the powertrain and powernet. Power management defines the
medium term control strategy [33, 34] and can be used for example for voltage stabilization
within a powernet by optimizing the power split between multiple power sources.

Control strategies can be classified considering their causality and control optimality [29].
A control strategy is causal if it is based on the knowledge about the current and pre-
vious system states only [29]. Non-causal control strategies require in addition also the
knowledge about the future system states for the control [29]. Considering the control
optimality a differentiation into heuristic and optimal control strategies is possible [29].
A heuristic control strategy finds the most reasonable operating points based on intu-
itive rules [29] which can be derived from system analysis and corresponding observations.
An optimal control strategy makes the control decisions based on the theory of optimal
control [29]. For this, a mathematical model of the system is required for the formula-
tion of the objective function describing the control goals as well as for the definition of
optimization constraints describing the system limitations.

The classification of the control strategies can be exemplified on the torque split between
an ICE and an EM in a HEV. For the operation of a HEV, four different operating
modes can be identified [29]: (1) ICE only driving mode, (2) EM only driving mode, (3)
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power assist mode using both ICE and EM as well as (4) battery recharge mode. For
the selection of the appropriate operating modes intuitive rules can be defined. The EM
only driving mode can be activated below a certain wheel speed and torque request [29].
The battery can be recharged while operating the engine within medium torque requests
[29]. In case the power request exceeds the maximum ICE power, the EM can be used for
power assist mode [29]. In the regions above the battery recharge mode and below power
assist mode, the ICE only driving mode can be activated [29]. A detailed description of
this rule-based control strategy for the power split between an ICE and EM in a HEV
can be found in [29].

Rule-based strategies are easy to implement for the online control of a HEV with for ex-
ample a finite state machine or a Look-Up-Table (LUT), but the optimality of the control
cannot be guaranteed [29]. For further improvement of the control, a static optimization
problem finding the best instantaneous power split between an ICE and EM based on the
instantaneous system state can be applied. In general, a static optimization problem can
be defined as [35]:

min
x

f(x) s.t.

c(x) = 0
h(x) ≤ 0

with x ∈ Rn, c ∈ Rm, h ∈ Rq (2.1)

The objective function f(x) models the control goals as a function of the actuating vari-
ables vector x. For the minimization of f(x), the equality constraints c(x) and inequality
constraints h(x) must be considered. The objective function can be defined for example as
the instantaneous power losses of the powertrain as a function of the power split between
an ICE and EM. By appropriate formulation of the constraints c and h an operation of the
powertrain within defined system limits can be achieved. An example of an online control
strategy for the power split between the ICE and EM of a HEV can be found in [36].
Depending on the complexity of the objective function and constraints, various analytical
and numerical methods can be used for solving the optimization problem. Some examples
of numerical solvers are the linear programming solver linprog, quadratic programming
solver quadprog and nonlinear programming solver fmincon in MATLAB [37].

Since only the knowledge about the current system state is used for finding the optimal
operating point of a system, also for static optimization the optimality of the control
cannot be guaranteed. For achieving the global optimality, the knowledge about the future
states of a system is required, which can then be used for the dynamic optimization finding
the optimal trajectory of the control variables for the entire driving cycle. In general, a
dynamic optimal control problem of a system can be defined as [35]:
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min
u(t)

J(x(t), u(t), te) = ϑ(x(te), te) +
∫ te

t0
φ(x(t), u(t), t)dt

s.t.



ẋ(t) = f(x(t), u(t), t)
x(t0) =x0

g(x(te), te) = 0
h(x(t), u(t), t) ≤ 0 ∀t ∈ [t0, te]

(2.2)

The main goal of the dynamic optimization is to find an optimal trajectory for the control
vector u(t) minimizing the cost function J(x(t), u(t), te) defined in the Bolza-form in (2.2)
and the corresponding trajectory for the system state vector x(t) [35]. The dynamic
behavior of a system is considered by the first equality constraint in (2.2) [35]. The second
and the third constraints in (2.2) define the initial system state x0 at the beginning of the
optimization (t = t0) and the required final system state at the end of the trajectory (t =
te) [35]. Possible system limits are considered by the inequality constraint h(x(t), u(t), t)
in (2.2).

In the example of dynamic optimization of the power split between an ICE and EM of
a HEV, the objective function can be defined as the integral of the fuel mass consumed
over a given driving mission, but could be also extended for the inclusion of the pollu-
tant emissions [29]. For the final state, a given battery State of Charge (SoC) might
be required for ensuring the charge balance over the driving cycle [29]. The dynamic
optimization resulting in the optimal control trajectory can be estimated only offline for
an assumed driving cycle, since it requires the exact and a priori knowledge of the future
driving states. For enabling the online dynamic optimization, future system states can
be predicted and then further processed in the optimization. Control strategies based on
this approach can be classified under Model Predictive Control (MPC) strategies [29, 38].
Due to possible inaccuracy in the prediction, MPC approaches are also suboptimal [29].

2.7. Electronic Horizon
As presented in the previous section, for the MPC a prediction of future system states is
required. If a driving cycle is known a priori, the optimal control law fulfilling the control
goals can be estimated [29]. For the prediction of the future system state, the concept of
electronic horizon can be applied [13, 14, 39]. The main goal of the electronic horizon is to
provide accurate knowledge about the route coming ahead based on the digital map data
to ADAS applications [13, 14, 39]. Depending on the usage of the map data, the ADAS
applications can be classified in three categories [40]: (1) non-map ADAS applications
do not require any data for their functionality, (2) map-enhanced ADAS applications
can be improved in their functionality by utilizing the map data and (3) map-enabled
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ADAS applications require the electronic horizon as basic input for their functionality.
Different protocols for the transmission of static and dynamic map data to the ADAS
applications were developed (e.g. ADASISv2 [14], ADASISv3 [41] or ETSI LDM [42]). In
the following, the basic functionality of the ADASIS protocol is explained.

The transmission of the map data via the in-vehicle communication network foresees an
ADAS Horizon Provider building the interface to the control unit containing the map
data as well as an ADAS Horizon Reconstructor building the interface of the ADAS
application receiving the data [14]. For the representation of the data, the main entity
used in the ADASISv2 protocol is a PATH consisting of STUBs defining the connection
points to other PATH entities as well as SEGMENTs characterizing a part of a PATH
entity [14]. The position of the relevant changes or events on the PATH entity is specified
by means of path indices and offsets [14]. The definition of a Most Probable Path (MPP)
is used for the description of the path to be most likely driven in the future [14]. Three
types of messages providing the data about current vehicle position (POSITION message),
attributes along the path (SEGMENT, STUB, PROFILE and ATTACHMENT messages)
and general meta data (META-DATA message) are used in the ADASISv2 protocol [14].
A SEGMENT message provides the most important characteristics of a segment, e.g.
current speed limit, number of lanes or route type [14]. A STUB message describes the
crossing of the MPP with other paths, containing the most important characteristics,
e.g. offset of the crossing, turn angle, route type or number of lanes [14]. A PROFILE
message contains the profile type (e.g. slope, curvature, speed limits), numeric value of
profile spots as well as the interpolation type between the spots (e.g. discrete values, linear
or higher order interpolation) [14]. An ATTACHMENT message provides specifications
of a 0-dimensional path entity, e.g. of a speed sign [14].

Depending on the information needed by an ADAS application, the ADAS Horizon
Provider can be configured for sending different types of messages. Examples of the
map-enhanced applications are curve speed warnings identifying dangerous driving situ-
ations and warning the driver in advance [43], lane keeping support helping to enhance
the lane detection in difficult situations [43], adaptive cruise control with improved effec-
tiveness and quality of the driver assistance due to the usage of map data [43] and hybrid
vehicle support enabling to increase the overall driving efficiency based on the knowledge
about the road ahead [43].
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Chapter 3.

State of the Art in Energy
Management Systems

In this chapter, a brief review of the state of the art in Energy Management System (EMS)
for a vehicle powernet and powertrain is given. A functional classification of different
control strategies for the energy management in a vehicle is carried out in Section 3.1.
Examples of the EMS for the control of energy distribution within a vehicle powernet are
given in Section 3.2 and for the complete vehicle energy management in Section 3.3. An
overview of supervisory algorithms for the control of the vehicle drivetrain is provided in
Section 3.4. A survey of trip-based approaches for the powertrain control is presented in
Section 3.5. A brief discussion of the research gap in energy management for automated
driving in Section 3.6 concludes this chapter.

3.1. Classification of Energy Management Systems
The progressing electrification of mechanical components in a vehicle results in the in-
crease of the overall electrical power demand and in high power peak load requests impact-
ing the voltage stability in a powernet [25]. For tackling these problems several approaches
for the power management in a vehicle powernet with the main goal to establish the volt-
age stability despite the increasing electrical power demand and load dynamics [25, 44]
were developed. Some examples and the main ideas of related control strategies are briefly
summarized in Section 3.2.

In a conventional powertrain with an ICE their is basically one single source for the gen-
eration of the mechanical power required for the vehicle propulsion. Therefore, no degrees
of freedom are available for the split of mechanical power between multiple mechanical
power sources as for example in a HEV between the ICE and EM. One way to improve the
fuel economy of an ICE-based vehicle is to optimize the power generation of an alternator
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by temporarily charging and recharging the 12 V lead-acid battery, which is generally
used for the establishment of the voltage stability in a vehicle powernet, shifting so the
operating point of the ICE in regions with higher efficiency [45]. A further improvement
of the fuel economy can be achieved by introducing electrical loads with a flexible and
controllable power demand [46, 47]. With appropriate powernet control also the lifetime
of the battery can be extended by reducing its wear in a trade-off with fuel economy
[46, 47]. The focus of the mentioned approaches lies basically on the energy generation
and distribution to the electrical loads in a vehicle with a conventional drivetrain. Some
examples and main ideas of powernet control strategies in an ICE-based vehicle are briefly
summarized in Section 3.2.

In an EV with one EM also no degrees of freedom exist for the split of mechanical power
required for the propulsion. By using multiple energy sources with different specifications
and properties, e.g. with High Specific Energy (HSE) or High Specific Power (HSP)
[48], a better overall performance of the power supply can be achieved. A battery can
be designed either for HSE or HSP, while a supercapacitor can provide HSP only [49].
Motivated by this, powernet topologies with hybrid approaches for the supply of the
electric drivetrain in an EV combining both, batteries with HSE and supercapacitors with
HSP, were investigated and corresponding EMS controlling the power split between both
energy sources implemented, e.g. in [33, 34, 49, 48, 50, 51, 52]. The goals aimed by this
approach are for example the minimization of the overall losses and therefore extension
of the driving range, better performance during high peak power driving situations (e.g.
accelerating or decelerating), extension of the battery lifetime [33, 34, 49, 48, 50, 51, 52] as
well as the reduction of components size avoiding overdimensioned powernet designs [48].
But also approaches using multiple energy sources with similar characteristics enabling a
better and more reliable performance are investigated, e.g. in [53, 54]. These approaches
can be summarized in the category powernet energy management, since they focus only
on the power distribution between the energy sources and do not consider the control of
the drivetrain. Some examples and main ideas of the related control approaches for the
power split between multiple energy sources in an EV drivetrain with a single EM are
briefly summarized in Section 3.2.

Energy management systems covering all energy flows within a vehicle considering also
different energy domains (e.g. mechanical, electrical, chemical or thermal) and aiming
at an optimized control of powernet auxiliaries as well as of drivetrain are defined as the
Complete Vehicle Energy Management (CVEM) [55, 56]. Several offline (e.g. [57, 58,
59, 60]) and online (e.g. [61, 62, 63]) approaches were proposed in the literature, which
are briefly presented in Section 3.3.
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A lot of research is carried out on the EMS for a HEV and a PHEV. Due to the availability
of more than one source for mechanical power generation, the ICE and EM, the fuel
consumption and pollutant emissions can be reduced with appropriate control strategies
for the power split between both mechanical power sources [64]. This additional degree of
freedom for the control of a HEV and a PHEV results also in increased complexity of the
required control algorithms [65]. The main difference between a HEV and a PHEV is that
no battery recharge from the grid is foreseen for a HEV, which is charged either by the
ICE and alternator or during regenerative braking phases [66]. Therefore, for the control
of a HEV the SoC of the battery is generally kept within a narrow operation range during
the entire driving cycle (charge sustaining mode) [67] with the fossil fuel remaining the
main energy carrier for the vehicle operation [29]. In contrast, due to the possibility to
charge the battery at the end of a driving cycle, it becomes more energy efficient for the
control of a PHEV to fully deplete the battery (charge depleting mode) during a trip [67].
In this way, the usage of the fossil fuel is combined with the electricity from the grid as
an additional energy carrier for the vehicle operation.

Various approaches for the control of the power split between the ICE and EM in a HEV
are known in the state of the art, e.g. [36, 38, 68, 69, 70, 71, 72]. The main goals hereby are
the increase of the fuel economy (e.g. in [36, 38, 68, 69, 72, 70]), reduction of the pollutant
emissions, increase of the driving performance and drivability (e.g. in [68, 69]) or reduction
of component stress (e.g. in [69]). The usage of a traction battery with higher capacity in
a PHEV and the possibility to recharge it from a grid provide new degrees of freedom for
the control. Therefore, control strategies designed for a charge sustaining operation of a
HEV must be adapted. New control strategies utilizing the ability of the charge depleting
mode for PHEVs were investigated and numerous examples can be found in the literature,
e.g. [66, 73, 74, 75, 67, 76, 70]. The main goals of the related control approaches are the
reduction of the fuel consumption (e.g. in [66, 73, 74, 67, 76, 70]), reduction of directly
and indirectly produced CO2 (e.g. in [75]) and of component stress (e.g. in [73]). Various
approaches and their main ideas are briefly summarized in Section 3.4.

The goal of the control strategies mentioned above was mainly to optimize the energy flows
within the vehicle powernet and drivetrain for a given driving cycle. In addition to the
energy flow optimization as a main task of an EMS, also the driving strategy determining
the velocity profile can be optimized with the goal to increase the driving comfort (e.g. in
[70]), driving safety (e.g. in [77]) and energy efficiency under consideration of the driving
time [77, 70, 78, 79]. Examples of these ADAS combining both, the predictive optimization
of the powertrain energy flows and optimization of the driving strategy (velocity profile),
can be found e.g. in [77] for a conventional ICE-based vehicle, for a HEV and a PHEV
in [70] and for an EV with a single EM in [78, 79].
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A promising technique in the design of an EV drivetrain is the usage of decentralized
propulsion systems consisting of multiple EMs [30] or of the so called Modular Cascade
Machine (MCM) systems [80] instead of a centralized propulsion system with one EM
only [30]. In EV drivetrains with multiple EMs the overall efficiency of the propulsion
system can be increased especially in regions of low torque requests and high torque
and low speed requests [80]. In addition, also better availability and reliability of such
drivetrains tolerating a breakdown of one EM and still providing a degraded propulsion
functionality can be achieved. With this new degree of freedom allowing to split the
requested mechanical power between the EMs, a need for new control strategies arises.
Several approaches for the optimal torque split between the EMs were investigated, e.g.
for an axle-individually driven EV in [81, 15, 82, 16], wheel-individually driven EV in
[83, 84, 85] and for an EV drivetrain with three EMs of mixed technology [86]. Examples
and main ideas of related approaches are presented in Section 3.4.

The control strategies for the energy management in powernet and powertrain mentioned
above are either heuristic or based on the theory of optimal control. Offline optimization
based on Dynamic Programming (DP) obtaining a global optimum for a given driving
cycle was generally used as a baseline for the performance evaluation of algorithms for the
online implementation in an Electronic Control Unit (ECU). Also predictive approaches
for the online implementation of EMS based on the MPC and prediction of the future
driving states over a given horizon were proposed. The state of the art also includes
online control strategies considering the entire driving cycle starting from the current
vehicle position to the destination based on the MPC. Examples and the main ideas of
these trip-based EMS can be found in Section 3.5.

3.2. Powernet Energy Management
In conventional drivetrain topologies with an ICE or in EVs with a single EM only one
source for generation of mechanical power required for vehicle propulsion exists with no
need to optimize the power split between multiple sources for mechanical power as for
example in a HEV. The focus of the control strategies for these drivetrain topologies lies
mainly in the optimization of the power supply for the loads. In this section several
examples of related control strategies for a conventional drivetrain with an ICE and for
EVs with multiple energy sources are provided.

Powernet Control Strategies for a Conventional Drivetrain with an ICE

Besides progressing replacement of mechanical and hydraulic components with electrical
ones, also more comfort and performance is expected in a vehicle, leading to the increased
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power demand in a vehicle powernet [45] as well as to short-term power peaks affecting
the voltage stability [25]. For mitigation of these issues, the authors of [25, 44] propose a
predictive balancing of power distribution based on a cybernetic approach by introducing a
layered hierarchical control structure consisting of objects and corresponding management
layers generating the control targets. Short-term degradation of the loads’ power demand,
smoothing of superimposed power peaks or increased power generation are some examples
of possible measures which can be initiated for voltage stabilization when a critical and
highly dynamic driving situation is predicted [44].

The authors of [45] propose a control strategy for the alternator in a conventional ICE-
based drivetrain reducing the fuel consumption and emissions while maintaining the same
drivability. The main idea is to minimize the losses in the engine, alternator and battery
by finding an optimal control sequence for alternator output power set points [45]. First,
an optimization problem is established for offline optimization with DP, which is then
further simplified for the use with Quadratic Programming (QP) [45]. For the use in
online applications, a combination of DP or QP with a limited prediction horizon is
proposed for the MPC. This approach is further extended by the authors of [46, 47] by
additionally incorporating electric loads with flexible and controllable power demand in
the optimization problem. The flexibility in the adaptation of the power demand of the
loads is used to achieve a balance with the power provided by the alternator, avoiding so
unnecessary charging or discharge losses in the battery [46, 47].

Control of Multiple Energy Sources

Various approaches for the power and energy management of EVs with multiple energy
sources are known, e.g. [33, 34, 87, 49, 48, 50, 51]. By applying causal control strategies
the power split between a battery and an ultracapacitor pack can be optimized [33, 34].
With prediction of future power demand trajectories further enhancement can be achieved
with non-causal approaches maximizing the battery SoC at the end of the prediction
horizon [33, 34]. For example, the authors of [33, 34] investigate a power and energy
management system controlling the power split between a battery and ultracapacitors by
dividing the control in three shells. The energy management shell defines the long-term
strategy (range of seconds), power management shell defines the medium-term policy
(range of milliseconds) and power electronic shell is used for immediate-term control of
power electronics (range of microseconds) [33, 34]. Rule-based power management is
applied for mitigating peak power demands from the battery, while the maximum allowed
battery power is provided by the superimposed energy management system based on
the fuzzy logic control ensuring appropriate SoC of the ultracapacitors for covering the
peak power demands [33, 34]. The authors of [87] also investigate a rule-based control
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strategy for the power split between a battery and a supercapacitor pack for an EV bus.
An approach combining both, the limitation of the battery current as well as the speed
dependent SoC control of the supercapacitors is applied [87].

Similarly to [33, 34], also the authors of [49, 48, 50] use a multi-level approach for the
optimization of the power split between a battery and a supercapacitor pack. For the
long-term strategy with decision intervals of 1 s, a rule-based approach derived from expert
knowledge is applied setting the upper and lower bounds for the discharge power of the
energy sources [49, 48, 50]. The short-term strategy with decision intervals of 10 ms is
based on an optimization problem minimizing the delta between power demand and power
provided by the sources by means of simulated annealing [49, 48, 50]. The output is then
used for the very short-term control of the power electronic converters [49, 48, 50]. The
proposed control strategy is compared with a power management strategy based on the
frequency disaggregation of the power demand by means of a high pass filter verifying
the advantages in efficiency and components sizing in [48]. An algorithm for the real-
time implementation based on the Particle Swarm Optimization (PSO) is proposed in
[50]. In [51], a power split control between a battery and a supercapacitor pack for a
three-wheel EV is implemented with a comprehensive fuzzy logic controller increasing the
global efficiency and performance while additionally enhancing the battery lifetime.

The authors of [53, 54] propose an EMS for the control of two independent traction batter-
ies with different nominal voltage values and corresponding DC/DC converters connecting
them to the HV-DC link, which is then used for the supply of three traction motors. The
main functions of the proposed EMS are the calculation of the maximum available power
for both, acceleration and regenerative braking, which is further processed by the vehicle
dynamics manager, power distribution and batteries charge control [53, 54]. The goal for
the power split between the batteries is to balance the SoC as well as the available power
for the following time period [53, 54]. Three factors for the power split are taken into
consideration enabling equal current distribution, SoC balancing and equalization of the
predicted maximum power for both batteries [53, 54]. Also for the case of a fault in one
battery the control strategy switches the power supply to the functional one assuming
that the required power can be provided by this battery only [53, 54].

3.3. Complete Vehicle Energy Management
A CVEM system considering all powerflows within a vehicle was envisioned in [55]. For
reducing the complexity in development of EMS for different vehicle configurations, the
authors aim to achieve a plug & play functionality for powernet auxiliaries while maximiz-
ing the energy efficiency of the vehicle powernet [55]. A price-based strategy is foreseen
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for the control of a smart powernet with programmable auxiliaries [55]. Also the au-
thors of [56] point out the necessity for the vehicle energy management to reduce the
overall energy demand and CO2 emissions. Freewheeling, energy recuperation and ad-
vanced stop/start systems in a conventional ICE-based vehicle are the key elements of
the proposed rule-based control strategy [56].

A control strategy based on game theory in combination with MPC is proposed for the
control of electrified auxiliaries with the main goal to improve the global vehicle energy
consumption and to increase the lifetime of a HV battery in HEV/PHEV [57]. Also the
authors of [61] use a game-theoretic approach for the implementation of a CVEM for
a hybrid heavy-duty truck with the main goal to reduce the global fuel consumption.
The control problem is modeled as a two-level single-leader (driver) and multi-follower
(auxiliaries) game [61]. For enabling the online control, the first level of the game (se-
quential game between the leader and each follower) is played offline, while the second
level (simultaneous game between the leader and all followers) is played online [61]. This
game-theoretic approach for the CVEM is further extended for adaptivity to various drive
cycles and driver behaviors by using different probability distribution functions for drive
patterns in [62]. For the online implementation of this adaptive game-theoretic CVEM a
two stage approach is applied, designing the control strategy for different drive patterns
offline and by using an online classification for its appropriate selection [62].

Another approach for the offline CVEM for a hybrid heavy-duty vehicle is proposed by
the authors of [58]. For solving the large-scale optimization problem of the CVEM, a
dual decomposition method dividing the entire optimization in several smaller optimiza-
tion problems is applied [58]. This approach is further extended for handling also CVEM
optimization over large horizons in [59]. An offline control strategy solving a convex
approximation of the CVEM problem for a heavy-duty truck based on the distributed
optimization is investigated by the authors of [60]. Methods for the real-time implemen-
tation of a distributed economic model predictive control for CVEM of a heavy-duty truck
are investigated in [63].

3.4. Powertrain Energy Management

In drivetrain topologies with multiple sources for the generation of mechanical power
required for vehicle propulsion, an EMS defining the appropriate power split between
these sources is required. In this section, examples and the main ideas of control strategies
for the optimal power split between the ICE and EM in a HEV and PHEV as well as
between multiple EMs of an EV are presented.
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Drivetrain Control Strategies for a HEV

The author of [36] proposes an offline optimization for the control of a parallel HEV with
the main goal to minimize the power losses of the drivetrain and therefore to increase
the fuel economy. A trajectory for the optimal power split between the ICE and EM is
estimated for a given driving cycle under consideration of the required SoC balance at the
end of the driving cycle [36]. For runtime implementation, the proposed control strategy
is then simplified for online minimization of the instantaneous power losses while ensuring
the operation of the battery within a small SoC range [36]. For this, an additional term
for the battery charge and discharge power scaled with a factor estimated as a function
of SoC is used in the definition of the objective function [36].

Also in [38] a control strategy for the control of the power split between the ICE and
EM of a parallel HEV under consideration of the charge and discharge balance of the
traction battery is investigated. By incorporating the map data for the prediction of
the velocity profile, a MPC with a sliding horizon based on the adapted version of DP
with reduced calculation time is proposed [38]. For the approximation of the velocity
profile, constant acceleration and deceleration values are assumed [38]. The reduction of
the computational time of DP is basically achieved through appropriate reduction of the
relevant system state space based on the limitation of the control variables and required
final system state [38].

In [68], the author proposes a rule-based adaptive and predictive control strategy for the
power split between the ICE and EM of a parallel HEV. The main goals of the EMS are to
increase the fuel economy and driving performance, to ensure the intended functionality by
avoiding acoustic and optic anomalies and to enhance the driving experience. By avoiding
computationally extensive optimizations, a control strategy based on a finite state machine
in combination with feedback control is provided for runtime implementation in a vehicle
ECU. For the prediction of future driving situations in the range of several kilometers,
information from various onboard sensors, e.g. camera or radar, in combination with the
map data from navigation system is used [68].

The author of [69] proposes an online control strategy for a parallel-series HEV based on
the static optimization with the main goal to reduce the fuel consumption, to increase
the driving performance and to reduce the component stress. Due to high computational
complexity of online optimization, a rule-based control strategy is derived by using the
results from online optimization [69]. Also in [72] online optimization is considered to be
not very suitable for runtime implementation in an ECU. Therefore, offline optimization
is used for the generation of a map-based control strategy for power split between an ICE
and EM of a parallel HEV for online implementation in an ECU [72].
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Drivetrain Control Strategies for a PHEV

The authors of [66] propose a rule-based EMS for the control of the power split between
the ICE and EM of a parallel PHEV comparing charge depletion and charge sustaining
strategies with the electric assist strategy. Also in [73], a rule-based EMS for a series
PHEV implemented by means of fuzzy logic is proposed with the main goal to ensure the
operation of the ICE in regions with the maximum fuel efficiency and to avoid a possible
battery overdischarge leading potentially to its damage. The basic concept of the EMS is
to operate the battery in the charge depleting mode until the lowest permissible battery
SoC is achieved with ICE assisting the EM [73]. The battery is then further operated in
the charge sustaining mode and is used for the coverage of peak power demands [73].

In [74], an EMS for the optimal power split between two EMs and one ICE of a series-
parallel PHEV based on the stochastic DP with the main goal to increase the overall fuel
economy is studied. For the trade off between the fuel and electricity consumption addi-
tionally the relative fuel to electricity prices are incorporated into the objective function
[74]. Due to the stochastic drive cycle model used for the optimization, no a priori knowl-
edge about the future drive cycle is required in this approach and an optimal solution
in the average sense is achieved [74]. In [75], an EMS for a PHEV is introduced with
the main goal to minimize the total CO2 emissions produced directly by the ICE and
indirectly considering the primary energy required for the electricity taken from the grid.
The general structure of the algorithm based on the Pontryagin’s minimum principle can
be adapted for the control of series, parallel and series-parallel PHEVs [75].

Due to the computational complexity of optimal control strategies based on DP, various
EMS approaches were studied enabling the runtime implementation in a vehicle ECU.
For example, the authors of [76] investigate the usage of neural networks for the control
of a series-parallel PHEV with the main objective to increase the fuel economy. Two
different versions of neural networks for the usage with and without given trip length and
duration are trained based on the simulation data obtained by means of DP for various
driving cycles [76]. As input for the neural network eleven variables containing the trip
information, powertrain state and power request are used for the first version and seven
variables neglecting the trip information are used for the second version of the neural
network, both estimating the battery output current [76].

The author of [70] investigates an ADAS combining both the EMS and the optimal driving
strategy for a parallel HEV and PHEV with the main goal to increase the fuel economy,
driving comfort and to optimize the driving time. For this, the entire driving cycle to the
destination is considered in the MPC based on the DP extended with iterative, heuristic
and approximated methods speeding up the calculation time for the runtime execution
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[70]. Three levels of prediction and optimization with various time periods for long range,
mid range and short range control are used in parallel [70]. Further examples and an
extensive literature review on EMS for a PHEV can be found in [88, 89].

Drivetrain Control Strategies for an EV with Multiple EMs

The authors of [81, 15] investigate a torque distribution strategy for a front and rear axle
driven EV with one EM per axle and a common traction battery with the main goal to
increase the overall driving efficiency by shifting the operating point of the identical EMs
into the regions with higher efficiency. It was pointed out that in regions with low torque
requests it becomes more energy efficient to decouple one EM via the corresponding clutch
and to operate both EMs in regions with high torque requests [81, 15]. This result is used
in the online control strategy which differentiates between two cases [81, 15]. For torque
requests higher than a defined threshold, both EMs are operated and the requested torque
is equally distributed between the EMs [81, 15]. If the torque request does not exceed
the defined threshold, power losses are calculated for both, the operation of one EM only
providing the entire torque and for the operation of both EMs with equally distributed
torque [81, 15]. The case with the minimum of power losses is then used in the control
achieving in this way an improvement of drivetrain efficiency by approx. 4 % over the
New European Driving Cycle (NEDC) [81, 15].

Also the authors of [82, 16] investigate a torque distribution strategy for an EV drivetrain
with two identical EMs and one common traction battery. An optimal torque distribution
factor is estimated by solving a non-convex optimization problem minimizing the overall
drivetrain losses [82, 16]. Due to high computational effort the optimal torque distribution
factors are estimated offline and stored in a LUT as a function of requested torque and
speed [82, 16]. Similar to the results presented in [81, 15], the operation of one EM in case
of a low torque request and equal torque distribution for a high torque request is estimated
to be optimal in most of the cases [82, 16]. The LUT for the optimal torque distribution
factor is then used online for the control of the drivetrain [82, 16]. By optimizing the torque
distribution considering the energy efficiency only, frequent switching of the clutches can
occur if the torque request oscillates at the threshold between the states for optimal
operation with either one or both EMs, resulting in increased wear of the components and
driving discomfort [82, 16]. For tackling this problem, the basic torque distribution control
strategy is extended to MPC under consideration of a penalty for frequent switching in
the objective function [16]. As output of the optimization, torque distribution and clutch
operation vectors are estimated with DP for the finite prediction horizon [16]. Simulation
and experimental results show an efficiency increase by up to 12 % compared to equal
torque distribution [16].
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The authors of [83] investigate a control strategy for an EV drivetrain with four in-wheel
motors and one common traction battery. For the estimation of the optimal torque dis-
tribution, minimization of the drivetrain power losses as a function of speed, longitudinal
force and yaw moment resulting in a non-convex multi-parametric optimization problem
is proposed [83]. Under the assumption of strictly monotonically increasing drivetrain
losses, an analytical solution for the optimization problem is derived and parametrized as
a function of the vehicle speed [83]. The authors conclude that the operation of a single
axle is optimal in low torque regions and equal torque distribution is optimal in high
torque regions [83]. For the estimation of the torque demand threshold separating the low
and high torque regions, the derived analytical formula is used [83]. Further examples of
the control strategies for an EV with four in-wheel motors can be found e.g. in [84, 85].

A comparison of the energy efficiency of an EV drivetrain based on an MCM propulsion
system, which is basically a system of EMs with adapted shafts and covers, with a single
EM drivetrain is investigated in [80]. For the control of the MCM an optimal torque
distribution is estimated based on the maximization of the overall efficiency solved with
a sequential search algorithm [80]. By using two different EMs in the MCM with total
rated power equal to the rated power of the single EM, the authors show that the high
efficiency area can be significantly increased compared to the efficiency map of the single
EM, especially considering the low torque area as well as high torque and low speed
area [80]. Simulation results show an improvement of approx. 11.8 % over the Urban
Dynanometer Driving Schedule (UDDS) [80].

The authors of [86] propose a real-time control strategy for torque distribution in an
EV drivetrain consisting of one indirectly driven brushless DC motor at the front axle
and two in-wheel permanent magnet motors based on the PSO algorithm. The results
of the optimal torque distribution estimated with the algorithm based on the PSO are
compared to the results obtained by means of DP over a NEDC proving the accuracy
of the PSO based EMS [86]. Furthermore, the authors compare the driving efficiency of
different multi-kind (various types of EMs) and single-kind (one type of EM) drivetrain
configurations and conclude that up to 10 % of efficiency increase can be obtained with
appropriate dimensioning of multi-kind drivetrain configurations [86].

3.5. Trip-Based Energy Management
In [90, 91], a trip-based power management for a PHEV estimating the optimal battery
charge and depletion curve over the entire driving cycle for the minimization of the fuel
consumption is proposed. Based on the real-time traffic information and historical traffic
data, a simplified driving cycle is approximated assuming constant acceleration and de-
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celeration values and by dividing the route into segments with a given speed limit and
bounded by two consecutive stops, for which an average waiting time is assumed [90, 91].
A similar approach of a simplified driving cycle assuming constant acceleration and decel-
eration values can be also found in [38]. For this simplified driving cycle an optimal charge
and depletion curve is then estimated by means of dynamic programming [90, 91]. For
reducing the calculation time, the dynamic programming is dived into two optimization
levels, resulting in a two-scale optimization in [92]. A macro scale global optimization is
first executed offline for the entire trip estimating the global optimal SoC reference curve,
which is then used for setting the end SoC value for micro scale optimization executed
online for short segments [92]. Further examples for the trip-based power management of
a PHEV can be found e.g. in [93, 67, 94, 95].

The authors of [96, 97] propose a trip-based energy management system for an EV helping
to ensure that the driver can safely reach the driving destination with the current battery
SoC. For this, a supervisory trip management utilizing the electronic horizon and based
on a real-time dynamic programming approach used for the estimation of recommended
maximal driving velocity profile and acceleration limits under consideration of all electric
loads is applied [96, 97]. The estimation of the velocity profile is executed online by
dividing the entire trip into segments with constant velocity limits and slope values,
while the calculation of optimal acceleration and recuperation limits is optimized offline
and stored in look-up tables for different changes in velocity [96, 97]. A similar approach
dividing the route in segments with constant values for factors influencing the power losses
was also proposed in [98]. For the recalculation of the recommended velocity profile due
to external unexpected changes a calculation time of approx. 1 min is reported [96, 97].

The author of [99] proposes a modular functional architecture for the EMS of an EV with
the goal to solve optimally the trade off between driving range, driving dynamics and
comfort. Under consideration of all relevant energy sources and sinks, the energy flows
are optimized for achieving extended range by temporarily shifting thermal and comfort
requirements [99]. The proposed architecture consists basically of three main modules
for the energy management, drivetrain management and driving range estimation under
consideration of route preview [99] and covers both, driving missions with and without
set destination. The goal of the energy management is to control and to prioritize the
energy flows for the trade off between driving range, driving dynamics and comfort [99].
The drivetrain management is responsible for the execution of the driver power requests
by considering also the optimal and online torque distribution in EV drivetrain topologies
with multiple EMs. For the extension of the driving range an iterative temporal and
situational degradation of the loads is foreseen, which are classified in groups with dif-
ferent priorities according to their criticality and functionality [99]. For the prediction of
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the average propulsion energy, the mechanical power demand at the wheels based on the
driving profile is predicted and integrated [99]. The remaining driving range is then esti-
mated considering the current battery SoC, nominal battery energy and average energy
consumption per kilometer for propulsion, climatization and loads in low voltage subpow-
ernet [99]. In case the set destination is given, a velocity profile is predicted based on the
velocity limitations, slope profile and cornering velocities [99]. In phases with constant
velocity, a velocity dependent fluctuation is superimposed [99]. For the extension of the
driving range, basically four measures are identified [99]: (1) degradation of the maximum
power and torque for the propulsion, (2) degradation of maximum power for climatization,
(3) reduction of battery losses by appropriate control of loads for temporarily increasing
and decreasing of power demand in recuperation and propulsion phases similar to [55],
and (4) optimal torque split between the multiple EMs for minimization of power losses.

3.6. Research Gap in Energy Management for
Automated Driving

As shown in the previous sections, numerous approaches for the control of the powernet
and powertrain were carried out for various drivetrain topologies of an ICE-based vehicle,
a HEV, a PHEV or an EV. Also multiple approaches for the enhancement of the voltage
supply and voltage stability in a powernet were proposed. However, the focus of the
EMS in the state of the art is to increase the driving efficiency of a vehicle in a fault-free
operation, while the control of the vehicle powernet and powertrain in case of a failure
is not addressed. With the introduction of highly and fully automated driving, tightly
bounded with the release of the driver from his responsibility for the control of the vehicle
and passenger safety, the main goal in the control of the vehicle powernet and powertrain
changes. Since the automated vehicle (level 4 and 5) must be able to execute a fall
back driving task without any driver interaction and supervision also in case of a failure,
the main control goal for the EMS for automated driving can be considered to establish
reliable power supply for the duration of the entire driving mission in both, fault-free and
failure case operation.

This gap is addressed by the work presented in this thesis. For the control of fail-
operational powernet topologies additional degrees of freedom arise for the energy dis-
tribution due to the redundancy of the energy flow paths required for the supply of
safety-critical loads (e.g. braking or steering). A generic approach for the control of a
fail-operational powernet takes advantage of these additional degrees of freedom for the
enhancement of the power supply and increase of overall energy efficiency under consid-
eration of possible failure states. Furthermore, by incorporating the failure models of the
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powernet components into the optimization problem used for the MPC with the main
goal to establish reliable power supply for the entire driving mission and to arrive at the
safest possible location for the passengers, also required fault reactions are automated.
For the fault reactions on system level, degradation of powernet loads, of driving profile
and of driving destination is foreseen and embedded in the mixed-integer optimization
problem used for the control of the vehicle powernet.

With a fail-operational design of the vehicle drivetrain, enabling a degraded propulsion
functionality also in case of one failure, vehicle breakdown at hazardous locations, e.g.
on the highway within the active traffic, can be avoided and therefore the acceptance
of automated driving systems increased. For the control of fail-operational powertrain
topologies, generally consisting of multiple motors and independent traction batteries,
also new control strategies for normal and failure case operation are required, which are
also not addressed in the state of the art. This work provides new concepts and algorithms
for the control of the drivetrain in automated EVs with multiple traction motors and
independent traction batteries. As already shown in Section 3.2, with appropriate torque
distribution between the EMs, the overall driving efficiency can be significantly increased,
resulting in the extension of the available driving range. Therefore, for accurate prediction
of the remaining driving range, a trip-based prediction of the torque distribution profile
considering also possible failure states of the powernet components is required, which is
also not addressed in this form in the state of the art for the drivetrain control in an EV
with fail-operational powertrain. The work presented in this dissertation closes this gap.
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Energy Management for Safety-Based
Range Extension

With increasing levels of driving automation also reliability and availability requirements
for subsystems responsible for vehicle motion increase. According to the classification of
driving automation levels defined by SAE [6], which are briefly summarized in Section 2.1,
an automated vehicle should be able to execute a fallback driving task in case of a failure
without any driver interaction starting with highly automated driving (SAE level 4).
While fully automated driving (SAE level 5) has no restrictions, the operation of a highly
automated vehicle is restricted to a set of defined use cases and driving situations in
accordance with the intended system design. Therefore, for a highly automated driving
system, the presence of a driver is not required if a vehicle is operated only within the
intended restricted area.

For a fully automated driving system the absence of a driver must be assumed, meaning
that in case of safety-critical faults leading to a possible vehicle breakdown, no person
with required qualification would be available for securing the vehicle and ensuring the
passengers’ safety. For manual driving, these tasks are currently in the responsibility of a
driver. Fail-operability of an automated vehicle can help to prevent an unsecured vehicle
breakdown endangering passengers and the environment and will additionally lead to a
higher acceptance of driving automation. This work proposes the concept of safety-based
range extension, meaning the adaption of vehicle control allowing to arrive at the safest
possible location for the passengers. It will be explained in detail in Section 4.1.

For driving automation, three main tasks must be executed: (1) sensing the environment,
(2) actuating the braking, steering and propulsion subsystems as well as (3) controlling
the vehicle motion. Depending on the definition of the use cases and the required stop
location to be reached in case of a failure, the subsystems executing these tasks must be
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Figure 4.1.: Prioritization of safe stop locations.

designed with corresponding ASILs in accordance with the functional safety norm ISO
26262-3 [10]. For the intended functionality of these subsystems, a reliable power supply
for the entire duration of a driving mission in normal and failure case operation must be
established. The power supply is considered to be reliable if subsystems can be operated
within the specified voltage range and sufficient energy for their operation can be provided.
An energy management system based on the theory of optimal control with automated
fault reactions increasing the overall powernet and powertrain efficiency is proposed in this
work. Basic requirements for the energy management system are discussed and specified
in Section 4.2.

4.1. Safety-Based Range Extension

An automated driving system can be considered to be in a safe state if it comes to a
standstill. Therefore, also in case of a failure, an automated transition to a standstill
must be guaranteed. Depending on the location at which a vehicle comes to a standstill,
different risks and hazards may arise for both, passengers of a vehicle and persons in
its surrounding. For example, if in case of a failure an immediate emergency braking is
executed, a vehicle comes to a stop in the same driving lane. In this situation, due to the
active traffic, risks and hazards for the passengers are higher than if a vehicle continues
the operation and comes to a standstill for example at the next emergency stop bay. A
possible rear end collision or traffic obstruction could be avoided in this case. Therefore,
possible locations for a vehicle stop, Safe Stop Locations (SSL), can be rated in terms
of risks and hazards arising for the passengers and persons in the surroundings, if an
automated driving system comes to a standstill at this location.
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Such a possible rating of safe stop locations is depicted in Fig. 4.1. The destination set by
the passengers (SSL A, "driving home") is considered to be the safest location. If it is not
possible to arrive at this destination, the next coming parking area (SSL B) is considered
to be the safest location, since a vehicle can be taken off the road and the passengers
could get off the vehicle with minimized risks. A standstill in the current driving lane
after an emergency braking (SSL G) is considered to be the worst case scenario with the
maximum of risks and hazards for the passengers and the persons in the surroundings. The
difference between a standstill in current lane (SSL F) or after an emergency braking (SSL
G) lies in the transition time. While for SSL G an immediate braking with full available
performance is executed, a more comfortable stop is intended for SSL F, resulting in a
longer distance to be covered before coming to a standstill and also in longer time available
for driver or system reactions in subsequent vehicles.

A definition of the safe stop location, that must be reached in case of a failure, is user
defined and must be selected after an appropriate analysis of risks and hazards for a given
use case and considering the required system availability. It has a huge impact on the
design of the vehicle powertrain and powernet topology and affects also the required fail-
operational behavior of the subsystems responsible for the automated transition to a safe
state, which is discussed later in this section. A fail-operational system remains functional
also in case of one fault [100] and it can be in general achieved with a redundant design.
If, for example, the "driving home" is required also in case of a failure, fail-operability
for the functions drive, steer and brake is required, which is indicated by a green box
in the corresponding columns in Fig. 4.1. Also for driving to the next parking area, to
emergency stop bay or for stopping in the emergency lane, the fail-operability of drive,
steer and brake functionality is required, since due to the distance to be covered, it cannot
be guaranteed that the safe stop location can be reached by means of coasting in case of
a failure in the propulsion system. The correct service of the safety-critical subsystems
after a fault must be provided for the duration required for the automated transition to
a safe state location, which depends on the road environment and can be estimated for a
given use case.

For stopping at the rightmost lane, fail-operational steering and braking subsystems are
required. Assuming no uphill driving and no traffic jam, stopping at the rightmost lane
could be executed without a fail-operational propulsion system by means of coasting using
the kinetic energy of a vehicle, which is indicated by an orange box in the corresponding
columns in Fig. 4.1. Also for stopping in the current lane, propulsion and steering systems
might not be required, assuming additionally a straight road and a short distance to be
covered. A functional propulsion system is not required in case of an immediate emergency
braking (indicated by a red box). Assuming a straight road, only a fail-operational braking
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system is required. Also the amount of energy required for the transition to a safe state
is dependent on the definition of the safe stop location. Assuming an increasing distance
that should be driven before coming to a standstill, starting with emergency braking and
ending with "driving home", the amount of energy required for the transition to a safe
state increases with the priority of the safe stop location.

In this work, a concept for safety-based range extension for the control of a vehicle pow-
ernet and powertrain is proposed. Independently from the definition of the safe stop
location, the energy management system adapts the control strategy to the current pow-
ernet and powertrain state and optimizes the energy flow in a way allowing to arrive at
a safe stop location with the highest priority. The energy demand required for complet-
ing a given driving mission can be divided into two parts: (1) the energy required for
the propulsion and (2) for the supply of powernet auxiliaries (safety-critical and driving
comfort functions). For a given destination, the energy demand of propulsion loads and
powernet auxiliaries as well as the available energy resources can be estimated predic-
tively. If the total energy demand exceeds the available resources, the driving mission to
this safe stop location with the current settings cannot be completed. For this case, a
three-level-degradation concept is proposed.

The total energy demand can be reduced in three different ways. A load profile describes
the power demand of safety-critical and comfort loads. By degrading the load profile,
the total required energy can be reduced, resulting in a decreased driving comfort for the
sake of extended driving range. A driving profile describes the settings of the driving
performance and is defined in terms of maximum velocity and acceleration values used on
the way to the destination. By degrading the driving profile, the velocity and acceleration
values are decreased. Due to the reduced aerodynamic friction and energy required for
vehicle acceleration, the total consumption of propulsion energy required for completing
the driving mission is reduced. In this way, the driving range can be extended by degrading
the driving profile for the price of longer travel time. Also by degrading the driving
destination according to the prioritization as depicted in Fig. 4.1, the total energy demand
can be decreased.

For the safety-based range extension in this work, the degradation of the load profile
is applied at the first level. The degradation of the driving profile is the second level
and the degradation of the driving destination is the third level. The process of the
proposed three-level-degradation concept is illustrated in Fig. 4.2. At the beginning, no
degradation is active. All comfort loads are turned on, the driving profile is set to normal
and the destination to "driving home". For these settings, the energy management system
estimates that the energy demand exceeds the available resources, so the driving mission
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Figure 4.2.: Three-level-degradation concept.

cannot be completed. Assuming that the powernet loads are divided into nlp groups, the
energy management system tries to find a valid solution first turning off the loads stepwise.
If it is not possible to find a valid solution by degradation at the first level, the degradation
of the driving profile is applied stepwise as depicted in Fig. 4.2. After each degradation
of the driving profile, again all comfort loads are activated and the degradation at the
first level is repeated with a slower driving profile. If it is not possible to achieve a valid
solution allowing to complete the driving mission by degradation at the first and second
level, the driving destination is degraded at the third level in nssl steps. Assuming ndp

degradation steps for the driving profile, the driving destination is first degraded after
nlp · ndp steps. In the example depicted in Fig. 4.2, a valid solution allowing to complete
the driving mission is found for no degradation of comfort loads, slow driving profile and
next parking area (SSL B) as the driving destination.

In the proposed three-level-degradation concept the arrival at the safest possible destina-
tion is prioritized over the driving duration and the driving duration is prioritized over
the driving comfort. The result of the degradation concept is a combination of parame-
ters allowing to arrive at the safest possible location with the best suited driving profile
and maximum of driving comfort based on the current system state. It should be noted
that the order for the prioritization of the degradation levels can be easily changed and
adapted to the specific requirements for a given use case. The three-level-degradation
concept proposed for the safety-based range extension is implemented as a part of the en-
ergy management system. In the next section, the requirements for the proposed energy
management system are discussed and specified.
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Figure 4.3.: Architecture of generic energy management system.

4.2. Requirements for Energy Management System

As already mentioned in the introduction to this chapter, subsystems required for auto-
mated vehicle transition to a safe state must be designed with appropriate automotive
safety integrity levels in accordance with ISO 26262-3 [10]. Reliable power supply is one
of the prerequisites for the operation of safety-critical functions and therefore becomes
safety-critical itself. In addition to the design of new fail-operational powernet topologies
[8, 9, 11], also new control strategies are required. According to the functional safety
norm ISO 26262-3, a functional safety concept must be implemented [10], defining fault
reactions for all possible failures violating the functional safety requirements. For the
purpose of safety analysis, deductive or inductive methods are strongly recommended for
the safety goals classified with ASIL C and D, considering also multiple-point faults [12].
Assuming 30 possible failures within the vehicle powernet [11] and considering double fail-
ures, a rule-based functional safety concept would contain 30 · 30 = 900 different failure
combinations with corresponding fault reactions, making this approach inflexible and time
consuming in the design. The fulfillment of the safety requirements using the designed
powernet topology in combination with the safety concept must be verified. However,
also small changes within the powernet topology or in dimensioning of powernet compo-
nents (e.g. capacity of a battery or output power of a DC/DC converter) would require
a revision of the safety concept. Also the integrity of a rule-based safety concept cannot
be guaranteed due to the system complexity leading to numerous system states to be
covered. Furthermore, the verification of the intended operation at different conditions
(e.g. temperature, aging of the components) is limited.

Besides the powernet and powertrain control in fault-free operation, the main require-
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ment for the energy management system proposed in this work is to automate the fault
reactions in case of failures for overcoming the limitations of rule-based safety concept
as described above. In addition, a generic and topology independent EMS should be
developed for avoiding time consuming redesigns of the control strategy in fault-free and
failure operation. An overview of the intended energy management architecture for the
control of a fail-operational powernet is depicted in Fig. 4.3.

For the sake of generality it is assumed that a fail-operational powernet topology can
have up to nspn subpowernets. Each subpowernet is observed and controlled by the corre-
sponding sub energy management system k (Sub EMS k) with k ∈ {1..nspn}. All relevant
subpowernet state variables and diagnostic data observed by the sub energy management
systems are transmitted to the top energy management system (Top EMS). While the Sub
EMS k can react to failures and abnormalities within the subpowernet k, the Top EMS
defines the control goals at the system level and is responsible for the superimposed vehicle
powernet control. The main goal is the distribution of the available powernet resources
to the safety-critical and comfort loads according to the concept of safety-based range
extension. For the implementation of the three level degradation concept as presented
in Section 4.1 an algorithm for the energy distribution based on the theory of optimal
control is proposed. The main requirements for the energy distribution optimization are
discussed and summarized in the following subsection.

4.2.1. Requirements for Energy Distribution Optimization

The main goal of the energy distribution optimization is to provide sufficient energy re-
sources to the subsystems required for vehicle motion to complete a given driving mission
at the safest possible location according to the prioritization defined in Fig. 4.1. In addi-
tion, the remaining energy resources should be distributed in a way allowing to complete
the driving mission with the most suitable driving profile and comfort according to the
prioritization as depicted in Fig. 4.2. For the energy distribution optimization, the com-
pletion of a given driving mission with the most suitable driving profile is prioritized over
the operation of comfort loads.

Due to the redundancy, several paths for the supply of loads might exist in fail-operational
powernets. By selecting the path with the best energy flow efficiency, the powernet losses
can be reduced. Therefore, the next requirement for the energy flow optimization is to
select the best paths for the energy transport and to minimize the powernet losses. In
fail-operational powernet topologies also several energy storage elements, e.g. batteries,
might exist. The discharge efficiency of a battery is dependent on the discharge power
[101]. In powernet topologies with multiple batteries, the overall discharge efficiency
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can be improved by applying an appropriate discharge strategy. Therefore, the next
requirement that can be formulated for the energy distribution optimization is to find an
optimal discharge strategy for multiple batteries and to minimize the battery losses due
to electrochemical energy conversion.

While operating a vehicle, different spontaneous failures in powernet components might
occur or their behavior can be changed slowly depending on the operating conditions
or due to the aging. In addition to the automated fault reactions based on the three-
level-degradation concept, also these component failures or behavioral changes should be
considered by the energy distribution optimization. By adapting the control strategy to
the current state of the powernet, additional stress can be reduced and the lifetime of pow-
ernet components increased. Also the selection of the optimal paths with the best energy
flow efficiency must be adapted to the current state of powernet components, minimizing
so the overall powernet losses. For enabling fast reactions to the powernet failures and
changes in the system, the energy distribution optimization should be executed at runtime
and the computational burden should be minimized for enabling the implementation of
the energy management system in embedded systems.

The energy distribution optimization is based on the predictive estimation of available
energy resources and demands for the comfort, safety-critical and propulsion loads. The
basic requirements for the prediction of available energy resources are discussed and sum-
marized in Subsection 4.2.2. For the prediction of energy demands, the knowledge about
the driving trajectory as well as the driving duration must be known. Therefore, an algo-
rithm for the prediction of the driving trajectory is required enabling accurate calculation
of the input data for the energy distribution optimization. The basic requirements for the
prediction of the driving trajectory are discussed and summarized in Subsection 4.2.3.

4.2.2. Requirements for Remaining Energy Prediction

In a battery electric vehicle, the available energy resources can be divided into two parts.
The energy required for propulsion and high voltage loads is stored in the high voltage
traction batteries. The energy required for the supply of low voltage loads, e.g. braking
or steering system, can be transmitted from the high voltage batteries via corresponding
powerlinks, e.g. DC/DC converter. In addition to the traction batteries, also voltage
stability batteries might be available in fail-operational powernets. The amount of en-
ergy that can be extracted from the batteries depends on the operating conditions and
discharge power. Therefore, the main requirement for the remaining energy prediction is
to estimate at runtime how much energy can be extracted from a battery for given oper-
ating conditions. In addition, for the determination of the optimal discharge strategy for
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multiple batteries, the remaining discharge energy should be approximated as a function
of the discharge power, which can be influenced by the energy management system.

4.2.3. Requirements for Driving Trajectory Prediction

The energy management system proposed in this work optimizes the energy flow within
the vehicle powernet for the entire driving mission, requiring accurate prediction of the
energy demand of comfort, safety-critical and propulsion loads. For a given average power
demand of the comfort and safety-critical loads with assumed low dynamics in power
consumption, the energy demand can be estimated accurately and straightforward for a
given driving duration.

The power demand of propulsion components is dynamic and depends on the velocity
and slope profile of a driving trajectory. Therefore, for an accurate estimation of the
energy demand required for completing a given driving mission, a driving trajectory from
the current vehicle position to the destination should be approximated at runtime. The
shape of a velocity profile depends on the speed limits on the way to the destination
and also on the setting for the driving profile defined by a user, which defines basically
set velocity and acceleration values for the entire route. The main requirement for the
driving trajectory prediction is therefore to approximate the slope and velocity profile to
the destination considering speed limits and driving profile settings.

Additionally, since the driving trajectory is required for the estimation of the input data
for the energy flow distribution, it should be estimated at runtime with minimal compu-
tational burden. The driving trajectory is then further processed by the energy manage-
ment system for the prediction of the power demand profile of the propulsion components.
Therefore, the driving trajectory should be described and stored in an appropriate for-
mat enabling fast and accurate estimation of the power demand profile of the propulsion
components. The basic requirements for the propulsion energy prediction are discussed
and summarized in the following subsection.

4.2.4. Requirements for Propulsion Energy Prediction

The energy required for completing a given driving trajectory is dependent on the topology
and the state of the powertrain components. In a powertrain topology with a single
motor, the entire driving torque is provided by this motor. The main requirement for the
propulsion energy prediction is then to estimate the profile of electrical power required by
the motor and the corresponding current profile of the traction battery. By integrating
the electrical power profile, the energy required by the traction motor can be estimated,

39



Chapter 4. Energy Management for Safety-Based Range Extension

which is then used as the input for the energy distribution optimization. Therefore, the
prediction of propulsion energy at runtime with low computational effort is required for
implementing the algorithms in embedded systems.

In powertrain topologies with a single traction motor, the vehicle motion cannot be guar-
anteed in case of a single point of failure in the traction motor or power supply. There-
fore, redundancy in traction actuators, power supply and corresponding control units is
required for the fail-operability of powertrain enabling the vehicle motion also in case of a
single failure in one of these subsystems. Due to this redundancy, new degrees of freedom
arise for the control of powertrain topologies with multiple traction motors. The requested
driving torque can be then distributed between the motors. The simplest control strategy
is to equally distribute the requested torque between the motors. In this case, similar to
the propulsion energy prediction for powertrain topologies with a single traction motor,
the electrical power and corresponding current profiles can be estimated for each motor.

An electrical machine converts electrical power to mechanical power in motor mode, and
mechanical power to electrical power in generator mode (recuperation). The power losses
of an electrical machine depend on the requested torque and rotational speed. By dis-
tributing the requested driving torque between multiple electrical machines in an ap-
propriate way, the overall driving efficiency can be increased [15, 16]. Therefore, the
propulsion energy required for completing a given driving trajectory as well as the driv-
ing range depend on the applied torque distribution strategy. By assuming equal torque
distribution between the motors, a pessimistic value for the required propulsion energy is
estimated, resulting in an underestimation of the driving range prediction. Therefore, for
increasing the prediction accuracy, the torque distribution strategy applied for the control
of the powertrain with multiple traction motors should be considered.

For this reason, the algorithm for the prediction of propulsion energy for powertrain
topologies with multiple traction motors must first predict the torque distribution profile
according to the applied control strategy. In the second step, based on the estimated
torque distribution profile, the propulsion energy required for completing a given driving
trajectory must be estimated. In addition to the requirements discussed above, also a
strategy for the reaction to possible powertrain failures is required and must be considered
for the prediction. If, for example, one motor can only be operated with a decreased
efficiency, the load of this motor should be reduced by the control strategy for energy
efficient driving. Therefore, also the fault reaction strategy for powertrain topologies with
multiple motors must be considered by the propulsion energy prediction algorithm.
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Energy Distribution Optimization

With the introduction of automated driving new requirements arise for the powernet of a
vehicle. As explained in Section 4, a reliable power supply for safety-critical subsystems
required for the automated vehicle transition to a standstill must be established also
in case of a single failure in powernet components. The EMS proposed in this work
is designed for safety-based range extension as presented in Section 4.1. Based on the
current system state, the energy manager adapts the control of the vehicle powernet in
a way allowing to arrive at the safest possible location for the passengers. The main
requirements for the predictive energy distribution optimization, which is the core of the
proposed EMS, were defined in Section 4.2.1. In this chapter, concepts and algorithms
for the fulfillment of the defined requirements are presented.

Due to the discrete degradation steps of the three-level-degradation concept, the energy
distribution optimization is in general a mixed-integer problem. Starting with generic
mathematical modeling of a fail-operational powernet and a definition of failure modes
in the powernet components, a mixed-integer energy distribution optimization problem
for the selection of optimal energy flow paths and optimal multiple battery discharge is
formulated in Section 5.1. Solving a mixed-integer optimization problem is in general time
consuming. Since the energy distribution optimization is used for the control of a powernet
at runtime, an optimization model and optimization algorithm with low computational
burden are required. A two stage optimization algorithm dividing the mixed-integer
optimization into a continuous optimization problem and a superimposed variation of
integer parameters with feasibility checks is proposed in Section 5.2. For solving the
continuous energy distribution optimization problem several solvers exist. In Section 5.3,
two different approaches using nonlinear and linear optimization problems are presented.
The subpowernets of a fail-operational powernet are interconnected using powerlinks.
Depending on the powerlink, different operating modes for the energy transport exist.
In Section 5.4, three main powerlink components, namely DC/DC converter, toggle and
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single power switches as well as possible component failure modes are modeled for the use
in the energy flow optimization.

One of the main goals of the energy flow optimization is to establish reliable power supply
for the entire duration of the driving mission. For guaranteeing that sufficient energy
resources are available for the supply of powernet loads, accurate prediction of remaining
discharge energy of powernet batteries is required. In Section 5.5, two different approaches
for the estimation of the remaining discharge energy of a battery are proposed. In the first
approach, a model-based algorithm for the estimation of the remaining discharge energy
for a given discharge power is presented, which is then extended to the approximation
of remaining discharge energy as a function of the discharge power. Simulation results
verifying the accuracy of the proposed algorithms and the capability for their execution
at runtime are presented in Section 5.6.

Using two different fail-operational powernet topologies, the basic features of the energy
distribution optimization are exemplified in Section 5.7 with simulation results. Different
use cases for the application of the proposed energy distribution optimization for the
control of powernets at runtime are demonstrated.

5.1. Definition of Mixed-Integer Optimization Problem
for Energy Distribution

The algorithm proposed for the control of a fail-operational powernet in automated ve-
hicles is based on the theory of optimal control. For the definition of the optimization
problem for the energy distribution, a generic mathematical model of a powernet with up
to nspn subpowernets is presented in Section 5.1.1. Two approaches for energy distribu-
tion optimization are proposed. In the first approach, presented in Section 5.1.3, the fault
reactions based on degradation as well as the selection of optimal paths for energy trans-
mission are automated. The second approach, presented in Section 5.1.4, additionally
automates the optimal discharge of multiple batteries within the vehicle powernet.

5.1.1. Mathematical Model of Fail-Operational Powernet

A fail-operational powernet must be able to supply safety-critical loads also in case of a
failure. Therefore, a fail-operational powernet topology should contain a certain degree
of redundancy, e.g. for energy storage and energy distribution components, resulting so
in more than one powernet channel. For ensuring flexibility of the proposed EMS, it is
assumed that a fail-operational powernet consists of up to nspn subpowernets (spn). A
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Figure 5.1.: Circuit diagram of subpowernet k.

Figure 5.2.: Energy flows of subpowernet k.

circuit diagram of the subpowernet k ∈ {1..nspn} is depicted in Fig. 5.1 and the corre-
sponding energy flows in Fig. 5.2. It is further assumed that each subpowernet k can be
connected to up to nspn−1 subpowernets at its inputs and to up to nspn−1 at its outputs.
The amount of energy transferred from the output k of the subpowernet i to the input
i of the subpowernet k is denoted by E{i,k}out , the corresponding energy flow efficiency by
η
{i,k}
pl , so the available energy at the input i of the subpowernet k can be expressed as:

E
{i,k}
in = η

{i,k}
pl E

{i,k}
out (5.1)

Each subpowernet k can have energy storage components (B{k}), safety-critical (R{k}s ),
comfort (R{k}c ) and propulsion (R{k}prop) loads. The remaining discharge energy of the stor-
age components in subpowernet k is denoted by E{k}rde , while the energy provided to the
loads during a given driving mission is E{k}bat . The average power demand of the safety-
critical and comfort loads is assumed to be scalable in nlp discrete steps. The average
power demand at the degradation step ilp of the comfort and safety-critical loads in sub-
powernet k is denoted by P{k,ilp}rc and P{k,ilp}rs , the total energy demand for a given driving
mission by E{k}rc and E{k}rs . As shown in Section 4.1, the duration dT ssl of the driving
mission is dependent on the degradation step of the driving profile and the driving des-
tination. By denoting the current degradation step of the driving profile by idp and
of the driving destination by issl, the energy demand of safety-critical and comfort loads
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as a function of integer valued degradation variables in subpowernet k can be expressed as:

E{k}rc (ilp, idp, issl) = dT ssl(idp, issl) P{k,ilp}rc

E{k}rs (ilp, idp, issl) = dT ssl(idp, issl) P{k,ilp}rs
(5.2)

Using the notation introduced above and assuming the dependency of the energy required
by propulsion loads in subpowernet k on the degradation of the driving profile (idp) and
the destination (issl), the energy demand E{k}load of the subpowernet k can be expressed as:

E{k}load(ilp, idp, issl) = E{k}rs (ilp, idp, issl) + E{k}rc (ilp, idp, issl) + E{k}prop(idp, issl) (5.3)

The energy flow from subpowernet i to k can be either activated or deactivated by con-
trolling the operating mode of the powerlink component connecting both subpowernets.
Assuming npl powerlink components in total within the vehicle powernet, an integer val-
ued npl-by-1 state vector Mpl containing the current operating mode of all powerlink
components can be introduced. The state variable S{i,k}pl modeling the activation of the
energy flow from subpowernet i to k as a function of state vector Mpl can be defined as:

S
{i,k}
pl (Mpl) =

0, E
{i,k}
out = 0

1, E
{i,k}
out > 0

with i 6= k and i, k ∈ {1..nspn} (5.4)

The energy flow from subpowernet i to k is only possible if both subpowernets are oper-
ational. A subpowernet is considered to be operational if the voltage supply within the
specified operating range of the components can be established. This is, for example, not
possible in case of a short circuit to ground within the subpowernet. The operational
state of the subpowernet k can be modeled using the state variable S{k}spn :

S{k}spn =

0, subpowernet k is operational
1, subpowernet k is not operational

(5.5)

Using the definitions introduced above, the state S{i,k}out of the energy flow E
{i,k}
out from sub-

powernet i to k, which is set to 1 if the energy flow is activated and both subpowernets
are operational, and to 0 otherwise, can be modeled as:

S
{i,k}
out (Mpl) = S{i}spn S{k}spn S

{i,k}
pl (Mpl) with i 6= k and i, k ∈ {1..nspn} (5.6)

Considering all energy flows within the subpowernet k, the energy balance equation for
each subpowernet k ∈ {1..nspn} can be introduced as:
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E{k}spn (Eout,Mpl, ilp, idp, issl) =
nspn∑

i=1,i 6=k

(
S
{i,k}
out (Mpl) η

{i,k}
pl E

{i,k}
out − S

{k,i}
out (Mpl)E

{k,i}
out

)
+ S{k}spn

(
E{k}rde − E{k}load(ilp, idp, issl)

) (5.7)

The first line in (5.7) describes the delta between the amount of energy received at the
inputs (η{i,k}pl E

{i,k}
out with i ∈ {1..nspn} \ {k}) of the subpowernet k and the amount of

energy provided to other subpowernets via the outputs (E{k,i}out with i ∈ {1..nspn} \ {k}).
The second line in (5.7) describes the delta between the available energy resources (E{k}rde )
and the internal energy demand (E{k}load) in subpowernet k. The matrix Eout in (5.7) is
used for the notation of all energy flows within the vehicle powernet.

The energy balance value E{k}spn can be used as one indicator for reliable power supply of
the loads in subpowernet k. The positive energy balance E{k}spn means that the predicted
energy demand E{k}load of the subpowernet k can be covered by the energy resources within
the entire powernet. As shown in (5.7), the energy balance E{k}spn of subpowernet k can be
influenced in two ways. The first way is to adapt the distribution of the energy between
the subpowernets. This can be controlled by changing the integer valued state vectorMpl

describing the operating modes of the powerlink components and by varying the amount
of energy Eout exchanged between the subpowernets. The second way is to adapt the
energy demand of the loads in subpowernet k, which can be controlled by changing the
degradation step ilp for the load profile, idp for the driving profile and issl for the driving
destination. As presented in Section 4.2.1, one of the goals for the energy distribution
optimization is to automate the reactions to possible faults in powernet components. In
the next subsection, the failure modes of powernet components considered in this work
and the corresponding FCRs are defined.

5.1.2. Failure Modes of Powernet Components

A fail-operational powernet must provide reliable power supply for safety-critical subsys-
tems also in case of a single fault. It should be avoided by design that a failure resulting
from a single fault in a component can propagate and impact the functionality of the
other subsystems [22]. For this, a safety-critical system can be divided into independent
FCRs, which define the boundaries for fault detection and fault isolation [22]. The model
of a fail-operation powernet as presented in Section 5.1.1 contains three subsystems: (1)
powerlink components, (2) energy storage components and (3) powernet load components.
For the further analysis in this work it is assumed that each powernet component (subsys-
tem) builds a FCR. In the following, the failure modes considered in this work for these
three types of subsystems of a fail-operational powernet are defined.
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Powerlink Components

A powerlink connects two or more subpowernets and enables the energy transport between
the subpowernets in the defined operating modes. Five failure modes with impact on the
energy transport between the subpowernets are considered by the EMS in this work. The
first failure mode considers faults resulting in a decreased energy flow efficiency from the
powerlink input to the output. This fault can be either transient (e.g. due to a temporal
overheating) or permanent (e.g. due to a damaged semiconductor switch). The operation
of a powerlink in this failure mode leads to a faster discharge of energy storages and to a
higher heating of the powerlink.

The second failure mode considers faults resulting in a loss of operating mode control of
the powerlink. This fault can be either transient or permanent (e.g. due to a fault in the
embedded microcontroller). The operation of a powerlink in this failure mode can lead
to an unintended energy transport between the subpowernets.

The third failure mode considers faults resulting in no energy transport from the powerlink
input to the output. This fault can be either transient (e.g. due to a temporally activated
overcurrent protection) or permanent (e.g. due to a damaged semiconductor switch).
An alternative path for the supply of the loads connected to the output of this faulty
powerlink must be used in this failure mode.

The fourth failure mode considers faults resulting in a short circuit between the powerlink
inputs and the outputs. This fault can be either transient (e.g. due to a temporal wiring
problem) or permanent (e.g. due to a damaged semiconductor switch). This failure mode
can lead to an unintended energy transport between the subpowernets.

The fifth failure mode considers faults resulting in a short circuit to ground either at the
powerlink input or output. This fault can be either transient (e.g. due to a temporal
wiring problem) or permanent (e.g. due to a permanent short circuit to ground within
external component). For the short circuit to ground at the output it is assumed that the
overcurrent protection disables the energy transport. In case of a short circuit to ground
at the input, it is assumed that no reverse energy flow is possible. It is also assumed that
an internal short circuit to ground is detected and disconnected within the powerlink.

Energy Storage Components

An energy storage component provides the energy for the powernet loads. Three failure
modes with impact on the power supply of the powernet loads are considered by the EMS
in this work. The first failure mode considers faults resulting in a decreased capacity of
the energy storage. This failure can be either transient (e.g. due to a faulty diagnostic of
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a short circuit to ground within a battery branch leading to the shutdown of this branch)
or permanent (e.g. due to a persistent short circuit to ground within a battery branch
leading to the shutdown of this branch). In this failure mode, no energy can be depleted
from the energy storage component.

The second failure mode considers faults resulting in an increased internal resistance of the
energy storage. This failure can be either transient (e.g. due to a transient overheating) or
permanent (e.g. due to the aging effects). In this failure mode, a reduced amount of energy
due to higher internal losses can be depleted from the energy storage. Furthermore, for
avoiding the undervoltage condition within the subpowernet with faulty energy storage,
the maximum output power of the energy storage is reduced in this failure mode. The
third failure mode considers faults resulting in a internal short circuit to ground of the
energy storage. This failure can be either transient (e.g. with active disconnection) or
permanent (e.g. without active disconnection).

Powernet Load Components

For a powernet load an average power consumption required for correct functionality is
assumed. Three failure modes with impact on the energy distribution within the powernet
are considered by the EMS in this work. The first failure mode considers faults resulting
in an increased average power consumption of a powernet load. This failure can be either
transient (e.g. due to a wiring problem with a parallel branch) or permanent (e.g. due to
a faulty load control unit). The operation of a powernet load in this failure mode leads
to a faster discharge of energy storages.

The second failure mode considers faults resulting in a loss of load control. This failure
can be either transient (e.g. due to a temporally faulty control interface) or permanent
(e.g. due to a permanent fault in a load control unit). The operation of a powernet load
in this failure mode can result in no degradation of the powernet load leading also to a
faster discharge of energy storages. The third failure mode considers faults resulting in a
internal short circuit to ground of the powernet load. This failure can be either transient
(e.g. with active disconnection) or permanent (e.g. without active disconnection).

The task of the EMS is to predict accurately the energy demand and available resources
for each subpowernet and to find the optimal operating point for the powernet ensuring
the positive energy balance for each operational subpowernet k. The theory of optimal
control is used for the estimation of the best suited operating point fulfilling the control
requirements of the vehicle powernet. The optimization problem used for the optimal
energy flow distribution is presented in the next subsection.
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5.1.3. Energy Distribution with Optimal Path Selection

The main control goal of the concept for safety-based range extension is to utilize the
available powernet resources in a way allowing to arrive at the safest possible location for
the passengers. Additionally, the best suited driving profile out of user defined and pri-
oritized profiles should be selected. For increasing the driving comfort also the operation
of comfort loads at the lowest possible degradation step should be enabled.

By applying the theory of optimal control, each of these goals can be modeled as a part
of the cost function of a multi-objective optimization problem, taking its solution for
the energy flow control. By using the integer valued degradation variables issl for driving
destination, idp for driving profile and ilp for load profile and by denoting the corresponding
maximum degradation step by nssl, ndp and nlp, the following objectives for the energy
distribution optimization (edo) can be defined:

fedo.ssl(issl) = nssl − issl, issl ∈ {1..nssl} (5.8a)

fedo.dp(idp) = ndp − idp, idp ∈ {1..ndp} (5.8b)

fedo.lp(ilp) = nlp − ilp, ilp ∈ {1..nlp} (5.8c)

Equations (5.8a) to (5.8c) define the difference between the current and last degradation
step. By maximizing the objectives, the lowest possible degradation step will be taken. As
it will be shown later, the prioritization between degradation levels (destination, driving
and load profile) can be achieved by appropriate selection of the weighting factors.

The energy balance value E{k}spn as defined in (5.7) indicates the remaining energy resources
in subpowernet k after completing a given driving mission. Due to the possible redundan-
cies within a fail-operational powernet, several energy flow paths to each load may exist.
By transmitting the energy via the paths with the best efficiencies, the energy losses can
be minimized. As the result, the remaining energy resources after completing the driving
mission will be maximized. Therefore, a further objective can be incorporated into the
energy distribution optimization problem:

fedo.loss.pl(Eout,Mpl, ilp, idp, issl) =
nspn∑
k=1

E{k}spn (Eout,Mpl, ilp, idp, issl) (5.9)

By maximizing the sum of the energy balance values, the selection of the optimal energy
flow paths with minimum of losses can be automated. Taking into account the diagnostic
information about the current efficiencies of powerlinks, also the fault reactions to possible
failures resulting in decrease of energy flow efficiencies are automated. If, for example, two
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redundant energy flow paths exist, the path with higher efficiency would be automatically
selected for the energy transport, minimizing so the energy losses on the one hand. On
the other hand, it might lead to undesirable effects, e.g. to overheating of the power-
links on this path. Therefore, a penalty function for each output of the powerlinks can
be introduced for avoiding the selection of the paths considering the energy efficiency only:

fedo.pen.pl(Eout,Mpl) =
nspn∑

i=1,i 6=k
β
{i,k}
pl (t)S{i,k}out (Mpl)E

{i,k}
out (5.10)

The penalty factor β{i,k}pl can be changed during the runtime depending on user require-
ments for the control of powerlinks. If, for example, an overheating of a powerlink trans-
mitting the energy from subpowernet i to k should be avoided, denoting the powerlink
junction temperature by T {i,k}jun.pl and the desired nominal temperature by T {i,k}nom.pl, the time
dependent penalty factor could be defined as:

β
{i,k}
pl (t) =


γtemp

dTssl(idp,issl)

(
T
{i,k}
jun.pl(t)− T {i,k}nom.pl

)
, T

{i,k}
jun.pl(t) > T

{i,k}
nom.pl

0, T
{i,k}
jun.pl(t) ≤ T

{i,k}
nom.pl

(5.11)

If the junction temperature of the powerlink is greater than desired, the temperature delta
scaled with the factor γtemp can be used as a penalty factor. The higher the junction tem-
perature, the more costly becomes the energy transport via this powerlink output. Since
the penalty function defined in (5.11) is a function of the entire output energy to be
transmitted via the powerlinks while driving, which decreases with decreasing remaining
driving time dT ssl, a division by dT ssl is required to keep the weight of the penalty function
approximately constant. Depending on the control requirements, also other definitions of
the penalty factor can be used. The objective function for the automated selection of the
optimal paths for the energy transport can be then defined as:

fedo.path(Eout,Mpl, ilp, idp, issl) = fedo.loss.pl(Eout,Mpl, ilp, idp, issl)

− fedo.pen.pl(Eout,Mpl)
(5.12)

With the objectives introduced above, the cost function for the energy distribution opti-
mization can be defined as:

fedo(Eout,Mpl, ilp, idp, issl) =


βedo.path

βedo.ssl

βedo.dp

βedo.lp



T

·


fedo.path(Eout,Mpl, ilp, idp, issl)

fedo.ssl(issl)
fedo.dp(idp)
fedo.lp(ilp)

 (5.13)
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By maximizing the objective function fedo it should be ensured that the total energy
demand does not exceed the available powernet resources for the duration of the driving
mission. This is the case if the energy balance E{k}spn is positive or equal to zero for all
operational subpowernets, which can be achieved by adding the corresponding constraint
to the optimization problem.

According to the model of a fail-operational powernet presented in Section 5.1.1, the
energy flow between subpowernet i and k is modeled by two variables: E{i,k}out denoting
the energy flow from subpowernet i to k and E

{k,i}
out for the opposite direction. Due to

this definition, each energy flow E
{i,k}
out is therefore positive or equal zero. The energy

η
{i,k}
pl E

{i,k}
out at the input i of the subpowernet k is limited by the powerlink specifications

defining the maximum allowed output power P {i,k}pl.max. The maximum amount of energy
E
{i,k}
out.max which can be transferred from subpowernet i to k during the driving time dT ssl

with the efficiency η{i,k}pl can be therefore calculated as:

E
{i,k}
out.max(idp, issl) =

P
{i,k}
pl.max

η
{i,k}
pl

dT ssl(idp, issl) (5.14)

In the following definition of the optimization problem, the matrix Eout.max is used for
the notation of all output energy limits and the vector Espn for all energy balance values.
A matrix or vector with all elements equal to zero is denoted by 0. Using the definitions
above, the mixed-integer energy distribution optimization problem can be formulated as:

max
(·)

fedo(Eout,Mpl, ilp, idp, issl)

s.t.



0 ≤ Espn(Eout,Mpl, ilp, idp, issl)
0 ≤ Eout ≤ Eout.max(idp, issl)
1 ≤ ilp ≤ nlp

1 ≤ idp ≤ ndp

1 ≤ issl ≤ nssl

(5.15)

The objective fedo.path used for the automation of energy flow path selection is opposite to
the objectives fedo.ssl, fedo.dp and fedo.lp modeling the degradation concept. By increasing the
degradation step, the total energy demand is reduced and the remaining energy resources
after completing the driving mission are maximized. Therefore, for ensuring the degrada-
tion only in case the energy demand exceeds the available resources, a proper selection of
the weighting factors βedo.path, βedo.lp, βedo.dp and βedo.ssl is required. The weighting factors
for the degradation objectives should be selected greater than the weighted absolute max-
imum of the objective fedo.path, which corresponds to the sum of the remaining discharge
energies E{k}rde0 of the energy storage components B{k} at the beginning of a driving mission:
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βedo.lp, βedo.dp, βedo.ssl > βedo.path

nspn∑
k=1

S{k}spn E{k}rde0(t0) (5.16)

Similarly, the order of the degradation levels for the load profile, driving profile and des-
tination can be established by selecting the proper weighting factors for the degradation
objectives. Assuming the order of degradation levels as presented in Section 4.1, degrad-
ing load profile at the first level, driving profile at the second and destination at the third
level, the following conditions should be fulfilled by selecting the weighting factors:

βedo.dp ≥ nlp βedo.lp,

βedo.ssl ≥ ndp βedo.dp
(5.17)

By solving the mixed-integer optimization problem as defined in (5.15), the energy flow
within a powernet can be controlled. The optimal operating mode for powerlinks is auto-
matically selected and the amount of energy to be exchanged between the subpowernets
is estimated. Additionally, using the powernet runtime diagnostics, the fault reactions
are automated by applying the degradation concept for safety-based range extension.

According to the definition of the energy balance E{k}spn in (5.7), the available energy E{k}rde

in the subpowernet k can be extracted without energy losses. Considering the case of a
full battery electric vehicle with multiple batteries, this assumption is justified when the
battery internal resistance is low and almost the same for all batteries. In a case of a
battery with low discharge efficiency in subpowernet k, it might be more energy efficient
not to utilize the internal energy resources for the supply of the loads in subpowernet k, but
instead to transfer the required energy from other subpowernets despite the additional
losses in powerlink components. By incorporating the battery discharge efficiency into
the optimization problem, which is presented in the next subsection, also the optimal
discharge of multiple batteries can be achieved.

5.1.4. Energy Distribution with Optimal Multiple Battery Discharge

The available discharge energy is dependent on the battery discharge power [101] due to
the battery internal losses. Therefore, for the energy flow distribution optimization the
remaining discharge energy E{k}rde of the battery B{k} in subpowernet k can be modeled
as a function of the average battery output power P{k}bat . Using linear approximation, the
battery’s remaining discharge energy can be defined as:

E{k}rde (P{k}bat ) = E{k}rde0 − a{k}rde P{k}bat (5.18)
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The parameter E{k}rde0 models the electrochemical energy of the battery (E{k}rde0 > 0) and
a{k}rde the battery internal losses as a function of the average discharge power (a{k}rde >
0). Depending on the battery state, the parameters E{k}rde0 and a{k}rde may vary over time.
The energy losses a{k}rde P{k}bat correspond to the total losses of the battery discharge from
the current state of charge SoC {k}0 to the minimum allowed discharge threshold SoC {k}min.
The algorithm for their estimation is presented in Section 5.5.3. By denoting the maxi-
mum discharge power with P{k}bat.max and the corresponding minimum discharge time with
dT dcha.min, the maximum average discharge power losses P{k}bat.loss.max can be defined as:

P{k}bat.loss.max = a{k}rde P{k}bat.max
dT dcha.min

with dT dcha.min = E{k}rde0 − a{k}rde P{k}bat.max

P{k}bat.max
(5.19)

For the estimation of the battery losses dissipated during the driving time dT ssl, the av-
erage discharge power losses P{k}bat.loss can be approximated as a function of the average
discharge power P{k}bat . For the sake of simplicity, the nonlinear battery power losses P{k}bat.loss

are linearly approximated as a function of the battery discharge power using (5.19) as:

P{k}bat.loss = dp{k}batP{k}bat with dp{k}bat = P{k}bat.loss.max

P{k}bat.max
(5.20)

With (5.20), the losses E{k}bat.loss can be calculated as a function of the battery energy E{k}bat :

E{k}bat.loss = P{k}bat.lossdT ssl(idp, issl) = dp{k}batE{k}bat (5.21)

By considering the subpowernet k as an energy junction and by using the powernet model
as presented in Section 5.1.1, for each functional subpowernet k the following equation,
requiring that the sum of energy flows entering the junction is equal to the sum of energy
flows leaving the junction, is valid:

nspn∑
i=1,i 6=k

S
{i,k}
out (Mpl) η

{i,k}
pl E

{i,k}
out + S{k}spn E{k}bat

−
nspn∑

i=1,i 6=k
S
{k,i}
out (Mpl)E

{k,i}
out − S{k}spn E{k}load(ilp, ilp, issl) = 0

(5.22)

Using (5.22), the battery discharge energy in subpowernet k can be calculated as:

E{k}bat (Eout,Mpl, ilp, idp, issl) =
nspn∑

i=1,i 6=k
S{i}spn S

{k,i}
pl (Mpl)E

{k,i}
out + E{k}load(ilp, idp, issl)

−
nspn∑

i=1,i 6=k
S{i}spn S

{i,k}
pl (Mpl) η

{i,k}
pl E

{i,k}
out

(5.23)
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The corresponding average discharge power for a given driving time dT ssl is defined as:

P{k}bat (Eout,Mpl, ilp, idp, issl) =
E{k}bat (Eout,Mpl, ilp, idp, issl)

dT ssl(idp, issl)
(5.24)

By substituting the battery’s remaining discharge energy E{k}rde in (5.7) with the electro-
chemical energy E{k}rde0 and by subtracting the battery losses E{k}bat.loss as defined in (5.21),
the energy balance equation for the subpowernet k can be reformulated as:

E{k}spn.opt(Eout,Mpl, ilp, idp, issl) =
[
1 + dp{k}bat

] nspn∑
i=1,i 6=k

S
{i,k}
out (Mpl) η

{i,k}
pl E

{i,k}
out

−
[
1 + dp{k}bat

] nspn∑
i=1,i 6=k

S
{k,i}
out (Mpl)E

{k,i}
out

−
[
1 + dp{k}bat

]
S{k}spn E{k}load + S{k}spn E{k}rde0

(5.25)

The objective function fedo.loss.pl as defined in (5.9) is used for the minimization of the
energy distribution losses considering the efficiency of the powerlinks only. By maximiz-
ing the sum of the energy balance values as defined in (5.25), additionally the battery
discharge losses can be considered and the optimal discharge strategy can be estimated:

fedo.loss.opt(Eout,Mpl, ilp, idp, issl) =
nspn∑
k=1

E{k}spn.opt(Eout,Mpl, ilp, idp, issl) (5.26)

Similarly to the definition of the penalty function for the automated selection of the energy
flow paths, it might be also beneficial to introduce a penalty function for the discharge
control of multiple batteries using the time dependent penalty factors β{k}bat :

fedo.pen.bat(Eout,Mpl, ilp, idp, issl) =
nspn∑
k=1

β
{k}
bat (t) S{k}spn E{k}bat (Eout,Mpl, ilp, idp, issl) (5.27)

Considering the case of a powernet topology with redundant channels i and k, each
supplying redundant safety-critical subsystems (e.g. braking or steering), it might be
beneficial to balance the battery’s remaining discharge energy in these subpowernets. If
a failure occurs within one of the supply channels, nearly the same operating duration of
the safety-critical subsystems can be guaranteed with the remaining functional powernet
channel, since the available energy resources are nearly the same due to the balancing of
the remaining discharge energy. The time dependent penalty factor β{k}bat for the subpow-
ernet k and β{i}bat for subpowernet i used for the remaining discharge energy balancing is
defined as:
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β
{k}
bat (t) =


γrde

dTssl(idp,issl)

(
E{i}rde(t)− E{k}rde (t)

)
, E{k}rde (t) < E{i}rde(t)

0, E{k}rde (t) ≥ E{i}rde(t)
(5.28a)

β
{i}
bat(t) =


γrde

dTssl(idp,issl)

(
E{k}rde (t)− E{i}rde(t)

)
, E{i}rde(t) < E{k}rde (t)

0, E{i}rde(t) ≥ E{k}rde (t)
(5.28b)

If the remaining discharge energy of one subpowernet is less than in the other, the further
discharge of this battery becomes more costly and the cost increases with the increasing
discharge energy delta between the subpowernets scaled with the user defined factor γrde,
which defines the sensitivity of the cost to the delta remaining discharge energy. Since the
penalty function defined in (5.27) is a function of the entire battery energy to be depleted
while driving, which decreases with decreasing remaining driving time dT ssl, a division
by dT ssl is required to keep the weight of the penalty function approximately constant.

Using the definition of the objective function fedo.loss.opt in (5.26) and penalty functions
fedo.pen.pl in (5.10) and fedo.pen.bat in (5.27), the following objective for the control of the
energy flow within a powernet can be defined:

fedo.path.opt(Eout,Mpl, ilp, idp, issl) = fedo.loss.opt(Eout,Mpl, ilp, idp, issl)

− fedo.pen.bat(Eout,Mpl, ilp, idp, issl)

− fedo.pen.pl(Eout)

(5.29)

Using the definitions above, the objective function for the energy distribution optimiza-
tion considering additionally the optimal discharge of multiple batteries within a vehicle
powernet can be defined as:

fedo.opt(Eout,Mpl, ilp, idp, issl) =


βedo.path

βedo.ssl

βedo.dp

βedo.lp



T

·


fedo.path.opt(Eout,Mpl, ilp, idp, issl)

fedo.ssl(issl)
fedo.dp(idp)
fedo.lp(ilp)

 (5.30)

For the weighting factors βedo.path, βedo.ssl, βedo.dp and βedo.lp the same conditions as de-
fined in (5.16) and (5.17) are valid. For batteries discharge also the maximum allowed
discharge power P{k}bat.max according to the battery specifications should be considered. In
addition to the constraints of the optimization problem in (5.15), a further constraint
defining the upper bound for the battery discharge energy according to (5.24) can be
defined, limiting the average battery output power to the corresponding specification.
The vectors P bat and P bat.max denote the average and maximum possible battery output
power. With the definitions above, the energy distribution optimization problem consid-
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ering also the discharge strategy for multiple batteries of a powernet can be formulated as:

max
(·)

fedo.opt(Eout,Mpl, ilp, idp, issl)

s.t.



0 ≤ Espn.opt(Eout,Mpl, ilp, idp, issl)
0 ≤ Eout ≤ Eout.max(idp, issl)
0 ≤ P bat(Eout,Mpl, ilp, idp, issl) ≤ P bat.max

1 ≤ ilp ≤ nlp

1 ≤ idp ≤ ndp

1 ≤ issl ≤ nssl

(5.31)

By solving this optimization problem, the selection of the optimal energy flow paths is
automated and the optimal discharge strategy for multiple batteries is estimated. Addi-
tionally, the fault reactions to possible failures in the vehicle powernet are automated by
applying the three level degradation concept. Solving mixed-integer optimization prob-
lems is in general NP-hard and not always possible at runtime. A two-stage algorithm
developed for the optimization at runtime dividing the mixed-integer optimization prob-
lem into a continuous optimization and an appropriate variation of the integer valued
variables is presented in the next section of this chapter.

5.2. Algorithm for Online Mixed-Integer Energy
Distribution Optimization

For solving mixed-integer optimization problems as defined in (5.15) and (5.31) several
commercial solvers exist, e.g. IBM CPLEX [102], or MOSEK [103]. Also the free MAT-
LAB toolbox YALMIP can be used for solving small mixed-integer optimization problems
based on the internal branch-and-bound framework [104]. The authors of [105] use the
IBM CPLEX solver for obtaining energy efficient function partitioning in automotive
electric/electronic architectures based on a Mixed-Integer Linear Programming (MILP)
optimization problem. Also in [106], the CPLEX solver is used for the estimation of
the optimal charge-depleting control of the battery in plug-in hybrid electric vehicles for
minimization of the total trip fuel consumption based on a MILP problem. In [107], the
authors use the CPLEX solver for the minimization of the total annualized cost of residen-
tial distributed energy systems based on mixed-integer optimization. The MOSEK solver
is used for example in [108] for solving a mixed-integer convex programming problem
minimizing the overall operation cost of an electric vehicle with a rental range extender.
With the MATLAB toolbox YALMIP the authors of [109] implement an online EMS for
a grid connected hybrid energy source for minimization of total operating cost and of
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Figure 5.3.: Block diagram of the two-stage solving algorithm.

pollutant gas emissions based on a MILP problem.

Direct solving of mixed-integer control problems is in general computationally intensive
and not very well suited for the execution at runtime. Several approaches reducing the
computational burden are known. For example, the authors of [110] apply a tailored
optimal control solver for a predictive gear shift and cruise controller for heavy duty
trucks by dividing the control problem into a continuous optimization and a superimposed
discrete parameter variation. In the basic version, the continuous optimization solution is
obtained for all possible variations of the discrete parameters, which is then replaced by a
heuristic branch and bound search strategy based on the direct multiple shooting method
by Bock [110]. A decoupled formulation splitting a complex mixed-integer optimization
problem into integer and real decision variables using an iterative optimization strategy is
also applied for the reduction of the required computational resources [111, 112]. Examples
for the implementation of this approach can be found in [111] for optimal engine on/off
control of a serial hybrid electric bus or for cooperative energy management of automated
vehicles in [112].

For solving the mixed-integer optimization problem for energy distribution with auto-
mated fault reactions in a vehicle powernet as defined in (5.15) and (5.31) at runtime,
a two-stage algorithm is proposed. It consists basically of a continuous optimization for
energy distribution for a given set of integer variables and a superimposed algorithm for
the variation and reduction of all possible combinations for the integer valued optimiza-
tion variables. As it will be shown in Section 5.3, the continuous optimization problem
can be modeled as a NonLinear Programming (NLP) problem or by reformulating the
objective function and the constraints also as a Linear Programming (LP) problem. A
block diagram of the algorithm used for solving the mixed-integer energy flow optimiza-
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tion is depicted in Fig. 5.3. The output of the integer parameter variation block defines
the integer variables for the continuous optimization and is denoted by a star *. For a
given combination of the degradation variables for driving profile (i∗dp) and destination
(i∗ssl), a driving trajectory to the current destination can be approximated as explained in
Section 6.2, which is then used for the prediction of the remaining mission time (dT ∗ssl)
and the required propulsion energy (E∗{k}prop ) for each subpowernet k:

E∗{k}prop = E{k}prop(i∗dp, i∗ssl) (5.32a)

dT ∗ssl = dT ssl(i∗dp, i∗ssl) (5.32b)

The prediction of the required propulsion energy for a powertrain topology with one and
multiple motors is presented in detail in Section 6.3 and 6.4. For the driving time dT ∗ssl,
the energy demand of comfort (E∗{k}rc ) and safety-critical loads (E∗{k}rs ) in each subpowernet
k for a given degradation step of the load profile (i∗lp) is estimated as defined in (5.2):

E∗{k}rc = dT ∗ssl P{k,i
∗
lp}

rc (5.33a)

E∗{k}rs = dT ∗ssl P{k,i
∗
lp}

rs (5.33b)

The total energy demand of a subpowernet k as defined in (5.3) is then calculated as:

E∗{k}load = E∗{k}rc + E∗{k}rs + E∗{k}prop (5.34)

Assuming a given state vector (M∗
pl) storing the operating modes of the powerlink compo-

nents and considering the current state of the powernet components, the activation state
variable (S∗{i,k}pl ) of the energy flow from subpowernet i to k and the corresponding status
(S∗{i,k}out ) can be calculated using (5.4) and (5.6):

S
∗{i,k}
pl = S

{i,k}
pl (M∗

pl) (5.35a)

S
∗{i,k}
out = S{i}spn S{k}spn S

∗{i,k}
pl (5.35b)

Two different versions of the mixed-integer optimization problem for the energy distribu-
tion in the vehicle powernet were defined in Section 5.1.3 and 5.1.4. The energy distri-
bution optimization problem for the automated selection of the optimal paths for energy
transport as defined in (5.15) is denoted hereinafter by Version 1. The definition of
the continuous energy distribution optimization problem for a given set of mixed-integer
variables is presented in Section 5.2.1. Two approaches using nonlinear and linear pro-
gramming for solving it are proposed in Section 5.3.1 and 5.3.2. The energy distribution
optimization problem for the automated selection of optimal paths considering also op-
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timal discharge of multiple batteries as defined in (5.31) is denoted in the following by
Version 2. The definition of the continuous energy distribution optimization problem for
a given set of mixed-integer variables is presented in Section 5.2.2. Two approaches using
nonlinear and linear programming for solving it are proposed in Section 5.3.3 and 5.3.4.

The solution f ∗edo for the continuous energy optimization is provided to the superimposed
integer parameter variation algorithm. The combination of the integer variables with
maximum f ∗edo value is considered to be the solution of the mixed-integer optimization
problem, which is then used for the control of the vehicle powernet.

5.2.1. Continuous Energy Distribution Optimization (Version 1)

With the definitions above, the energy balance equation (5.7) used for the definition of the
optimization problem for optimal path selection for a given set of integer valued variables
can be simplified to:

E∗{k}spn (Eout) =
nspn∑

i=1,i 6=k

(
S
∗{i,k}
out η

{i,k}
pl E

{i,k}
out − S

∗{k,i}
out E

{k,i}
out

)
+ S{k}spn

(
E{k}rde − E∗{k}load

)
(5.36)

The objective for the minimization of energy losses in powerlink components as defined
in (5.9) is then simplified to:

f ∗edo.loss.pl(Eout) =
nspn∑
k=1

E∗{k}spn (Eout) (5.37)

The penalty function for the energy transmission via powerlink outputs as defined in
(5.10) is simplified to:

f ∗edo.pen.pl(Eout) =
nspn∑

i=1,i 6=k
β
{i,k}
pl (t)S∗{i,k}out E

{i,k}
out (5.38)

The real valued objective function f ∗edo for the continuous energy distribution optimization
is simplified to f ∗edo.path and defined as:

f ∗edo.path(Eout) = f ∗edo.loss.pl(Eout)− f ∗edo.pen.pl(Eout) (5.39)

The maximum allowed output energy E∗{i,k}out.max at output k of subpowernet i as defined in
(5.14) is calculated as:

E
∗{i,k}
out.max =

P
{i,k}
pl.max

η
{i,k}
pl

dT ∗ssl (5.40)
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The mixed-integer optimization problem as defined in (5.15) is then simplified for a given
set of integer valued variables to a real valued optimization problem:

max
Eout

f ∗edo.path(Eout)

s.t.

0 ≤ E∗spn(Eout)
0 ≤ Eout ≤ E∗out.max

(5.41)

An appropriate notation of this optimization problem for the use with nonlinear and linear
programming solvers is presented in Section 5.3.

5.2.2. Continuous Energy Distribution Optimization (Version 2)

For a given set of integer valued variables, the energy balance equation (5.25) used for
the definition of the optimization problem for optimal path selection and multiple battery
discharge can be simplified to:

E∗{k}spn.opt(Eout) =
[
1 + dp{k}bat

] nspn∑
i=1,i 6=k

(
S
∗{i,k}
out η

{i,k}
pl E

{i,k}
out − S

∗{k,i}
out E

{k,i}
out

)
−
[
1 + dp{k}bat

]
S{k}spn E{k}load + S{k}spn E{k}rde0

(5.42)

The battery discharge energy E{k}bat as defined in (5.23) is simplified to:

E∗{k}bat (Eout) =
nspn∑

i=1,i 6=k
S{i}spn

(
S
∗{k,i}
pl E

{k,i}
out − S

∗{i,k}
pl η

{i,k}
pl E

{i,k}
out

)
+ E∗{k}load (5.43)

The average battery discharge power P{k}bat as defined in (5.24) is calculated as:

P∗{k}bat (Eout) = E∗{k}bat (Eout)
dT ∗ssl

(5.44)

The objective for the minimization of the energy losses in powerlink and energy storage
components as defined in (5.26) is simplified to:

f ∗edo.loss.opt(Eout) =
nspn∑
k=1

E∗{k}spn.opt(Eout) (5.45)

The penalty function for the batteries discharge as defined in (5.27) is simplified to:

f ∗edo.pen.bat(Eout) =
nspn∑
k=1

β
{k}
bat (t) S{k}spn E∗{k}bat (Eout) (5.46)
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The real valued objective function f ∗edo.opt for the continuous energy distribution optimiza-
tion is simplified to f ∗edo.path.opt and using (5.38) and (5.40) is defined as:

f ∗edo.path.opt(Eout) = f ∗edo.loss.opt(Eout)− f ∗edo.pen.pl(Eout)− f ∗edo.pen.bat(Eout) (5.47)

The mixed-integer optimization problem as defined in (5.31) is then simplified for a given
set of integer valued variables to a real valued optimization problem:

max
Eout

f ∗edo.path.opt(Eout)

s.t.


0 ≤ E∗spn.opt(Eout)
0 ≤ P ∗bat(Eout) ≤ P bat.max

0 ≤ Eout ≤ E∗out.max

(5.48)

An appropriate notation of this optimization problem for the use with nonlinear and linear
programming solver is presented in Section 5.3.

5.2.3. Integer Parameter Variation with Feasibility Check

Optimal energy distribution within a fail-operational powernet depends on the integer
valued vector variable Mpl containing the operating mode for each powerlink, and also
on the integer valued variables ilp, idp and issl modeling the stepwise degradation of load
profile, driving profile and driving destination. As depicted in Fig. 5.3, the mixed-integer
optimization problem used for optimal energy distribution is solved by varying the integer
parameters and by solving the continuous optimization problem for each valid parameter
combination. By reducing the number of possible combinations for integer variables, the
computational effort can be significantly reduced.

Solving the mixed-integer energy distribution optimization problem as presented in Sec-
tion 5.1.3 and 5.1.4 does not only increase the overall energy efficiency, but also enables
automated fault reactions to possible failures within the powernet. Therefore, the opti-
mization problem should be solved online periodically, bounding so the worst case fault
reaction time to a maximum of two periods, which should be selected depending on the
system requirements. Assuming no unexpected events like faults, the optimal solution is
approximately the same during the entire driving mission due to the predictive nature of
the energy distribution optimization. Therefore, once a solution is found, it can be used
as the starting point for solving the optimization problem in the next cycle.

The flow chart of the algorithm solving the mixed-integer energy distribution optimization
problem is depicted in Fig. 5.4. The integer valued optimization variables issl, idp and ilp
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Figure 5.4.: Flow chart of algorithm solving the mixed-integer energy distribution.
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are summarized in one degradation step variable ids. Using a look-up table, for each ids

the corresponding combination of issl, idp and ilp can be assigned. The prioritization of
the degradation steps for load profile, driving profile and destination can be defined in
any order by appropriate buildup of the look-up table. The degradation step ids varies
between 1, meaning no degradation, and nlp × ndp × nssl as the maximum degradation,
assuming nlp, ndp and nssl steps in total for the degradation of load profile, driving profile
and driving destination.

As explained in Section 5.2.1 and 5.2.2, the continuous energy distribution optimization
problem is solved for a given degradation step i∗ds and powerlink operating mode vector
M∗

pl. At the start of each solving cycle, the optimal degradation step ids found in the
previous cycle is taken as the initial solution. If, for example, the highest degradation
step was estimated as the optimal solution, starting the solver algorithm at the lowest
degradation step would result in unnecessary computational burden. To be able to react
to transient failures, the degradation step i∗ds, if not already equal to the minimum, is first
decreased. By doing so, it can be checked if the failure causing the previous degradation
is still present or not. For this i∗ds, the energy demand vector E∗load according to (5.34) as
well as the remaining discharge energy vector Erde, or alternatively the parameter vectors
arde and Erde0 modeling the remaining discharge energy as a function of average discharge
power accordingly to (5.18), are estimated.

In the next step, using the powerlinks’ diagnostic data, the current energy flow efficiencies
are read and the set of possible operating modes PL{i}mod for each powerlink i is estimated.
It is assumed that up to npl powerlinks are connecting the nspn subpowernets of a fail-
operational powernet topology. By denoting the number of possible operating modes of
powerlink i by n{i}mod, the number nmod of possible operating mode combinations is then
defined as:

nmod =
npl∏
i=1

n{i}mod (5.49)

By combining the possible operating modes of each powerlink i, the set PLmod containing
nmod possible combinations of the npl-by-1 operating mode vector variable Mpl is esti-
mated. The behavioral modeling of powerlink components as well as the estimation of
the sets PL{i}mod and PLmod is presented in Section 5.4.

For each operating mode vector M∗
pl ∈ PLmod with corresponding counter variable imod,

the continuous energy distribution optimization problem must be solved. An exemplary
powernet line topology is depicted in Fig. 5.5. It consists of five subpowernets and four
DC/DC converters with three operating modes each, resulting in 3 × 3 × 3 × 3 = 81
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Figure 5.5.: Exemplary powernet line topology and solution feasibility check.

possible operating mode combinations. For a given degradation step i∗ds, the continuous
optimization problems should be solved for each of these combinations, resulting in un-
necessary computational burden. Therefore, before solving the continuous optimization
problem for a given powerlink operating mode vector M∗

pl, a solution feasibility check can
be applied using the application specific knowledge. Depending on the available resources
and the energy demand, each subpowernet k can be classified as a source or a sink. In
case the available resources are greater than the energy demand, the operational subpow-
ernet k can be classified as a source, since the surplus energy can be provided to other
subpowernets. The set SRC of all subpowernets classified as a source is then defined as:

SRC =
{

k
∣∣∣ (E{k}rde > E∗{k}load ) ∧ (S{k}spn = 1) ∧ (k ∈ {1..nspn})

}
(5.50)

In case the energy demand exceeds the available energy resources, the operational sub-
powernet k can be classified as a sink, since the lacking energy must be provided from
other subpowernets. The set SNK of all subpowernets classified as a sink is defined as:

SNK =
{

k
∣∣∣ (E{k}rde ≤ E∗{k}load ) ∧ (S{k}spn = 1) ∧ (k ∈ {1..nspn})

}
(5.51)

In case the remaining discharge energy is estimated as a function of the average discharge
power, for the classification of the subpowernet k as a sink or a source, E{k}rde is estimated
using the average power of the loads:

E{k}rde = E{k}rde0 − dp{k}bat
E∗{k}load
dT ∗ssl

(5.52)

For each DC/DC converter depicted in Fig. 5.5, three operating modes are assumed. In
the forward (frw) and reverse (rev) mode, the energy flow is enabled in the illustrated
direction, in the off (off) mode, the energy flow is disabled. As already mentioned, 81
combinations of powerlink operating modes are possible. Since only the fifth subpowernet
is classified as a source, it becomes obvious, that only in case when all DC/DC converters
are operating in the reverse mode, a solution for the energy distribution can be obtained.
Therefore, by checking if each subpowernet classified as a sink has a direct or indirect
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Figure 5.6.: Nassi-Shneiderman diagram for solution feasibility check.

connection to a source, the number of valid powerlink operating mode combinations with
feasible solution as well as the computational burden can be significantly reduced.

Based on this consideration, an algorithm verifying the connection of each subpowernet
classified as a sink to a source can be applied for each combination M∗

pl of powerlink
operating modes. Only if for vector M∗

pl a solution is feasible, as depicted in the flow
diagram in Fig. 5.4, the continuous optimization problem is solved. The Nassi-Shneider
diagram of the algorithm proposed for solution feasibility checking is shown in Fig. 5.6.
For each subpowernet i ∈ {1..nspn}, it is checked whether it is operational and marked
as a source. If this is true, all operational subpowernets k ∈ {1..nspn} \ {i}, which can
receive the energy from the subpowernet i are marked as a source too. This process is
repeated iteratively until either all operational subpowernets are marked as a source or
the maximum iteration step is reached. In the latter case, the solution of the energy
distribution optimization for the combination M∗

pl is considered to be not feasible.

Another example for the reduction of the operating mode combinations M∗
pl with the so-

lution feasibility check algorithm is presented in Fig. 5.7. Six subpowernets are connected
to a ring by six DC/DC converters, enabling the energy transport in both directions. Each
DC/DC converter can be again operated in three modes (forward, reverse and off mode),
resulting in 36 = 729 possible combinations. As depicted in the table on the right side
of Fig. 5.7, only for 13 combinations the solution of the energy distribution optimization
problem is feasible.

The continuous optimization problem is solved for each of the valid combinations M∗
pl

(refer to Fig. 5.4). The combination M∗
pl, for which the objective function is minimal, is

considered to be the optimal solution for the current degradation step i∗ds. If a solution for
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Figure 5.7.: Exemplary powernet ring topology and solution feasibility check.

the continuous optimization problem is found and the degradation step i∗ds was decreased
last, i∗ds is decreased again until no solution for the continuous optimization problem is
found or the degradation of loads is inactive (i∗ds = 1). The minimum i∗ds with an existing
solution for the continuous optimization problem is considered to be optimal.

If a solution for the continuous optimization problem is not found for the current degra-
dation step i∗ds and no solution was saved in the iterations before, i∗ds is increased until a
valid solution for the continuous optimization problem is found or the maximum degra-
dation step is reach (i∗ds = nds). In this case, an immediate stop of the vehicle (emergency
braking) is required.

If no failures or unpredicted changes in the system state happen, two iterations of the
outer loop of the mixed-integer energy distribution optimization solver according to the
flow chart depicted in Fig. 5.4 are required. If degradation is active, in the first outer
loop iteration, the algorithm tries to reduce the current degradation step. In the second
iteration, it is expected that the algorithm finds the previous solution. In case of a
transient failure, the degradation caused by this failure should be deactivated. Using the
algorithm as depicted in Fig. 5.4, this can only be guaranteed if the total energy demand
of a powernet is a monotonically decreasing function of degradation step ids, which is not
always the case as it will be shown in the following example.

An exemplary powernet energy demand as a function of the degradation step is illustrated
in Fig. 5.8. For the calculation of the energy demand for each degradation step it is
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Figure 5.8.: Exemplary powernet energy demand as a function of degradation step.

assumed that the driving destination can be degraded in four steps (nssl = 4). The total
distance to be covered is assumed to be 50 km, 15 km, 5 km and 1 km. For the driving
profile, three degradation steps (ndp = 3) are assumed. By degrading the driving profile,
the average driving velocity as well as the propulsion energy needed per 1 km is reduced.
The average driving velocity is assumed to be 50 km

h , 35 km
h and 20 km

h . The corresponding
propulsion energy per kilometer is assumed to be 0.07 kWh

km , 0.06 kWh
km and 0.05 kWh

km . For the
degradation of the load profile, five steps (nlp = 5) are assumed with the corresponding
power demand equal to 1000 W, 800 W, 600 W, 400 W and 50 W.

For these simplified assumptions, the total propulsion energy required at a given degrada-
tion step is calculated as the product of driving destination and average propulsion energy
per kilometer. The total energy consumed by powernet loads is calculated as a product of
the average load power and driving duration, which is obtained with the assumed average
velocity. The blue curve (comfort loads) in Fig. 5.8 illustrates the total energy demand
for each degradation step estimated using the assumptions above. It can be seen that the
energy demand as a function of the degradation step is not monotonically decreasing.

In this example, the total energy required at the first degradation step (no degradation)
is equal to 4.5 kWh. A transient failure resulting in a decrease of energy resources from
available 4.6 kWh to e.g. 2.0 kWh would cause as a fault reaction the degradation from
step 1 to 16. After the failure disappears, again 4.6 kWh would be available. Using the
algorithm according to the flow chart in Fig. 5.4, the degradation step would be decreased
by 1 until a solution is not found, meaning that the energy demand exceeds the available
resources. In this simplified example the degradation step 12 would be identified as
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a new solution due to the energy demand peak at step 11. Therefore, for handling the
energy demand functions which are not monotonically decreasing, the proposed algorithm
illustrated in Fig. 5.4 should be extended.

Degradation of the driving profile reduces the average propulsion energy per kilometer
on one side, but also increases the average driving time to the same destination on the
other side, which leads to increased energy required by powernet loads. Therefore, if
the reduction in the propulsion energy is less than the increase in load energy, the total
energy demand as a function of degradation steps becomes not monotonically decreasing.
In Fig. 5.8, a second curve (no comfort loads) assuming a constant power demand of
powernet loads equal to 50 W (last degradation step of load profile with ilp = 5) for all
degradation steps is illustrated. Assuming all comfort loads turned off and only safety-
critical loads with a low average power demand, also the corresponding total energy
demand as a function of degradation step can be assumed monotonically decreasing,
which is illustrated in Fig. 5.8 for the simplified assumptions made above. This property
is used for the extension of the mixed-integer energy distribution solver for handling the
degradation recovery in case of transient failures also for energy demand functions, which
are not monotonically decreasing. The extension is illustrated in blue in Fig. 5.9.

The main idea is to branch the jump for decreasing the last valid degradation step ids

in two parts. At first, the degradation step is iteratively decreased to the next smallest
step, at which all comfort loads are in maximum degradation (ilp = nlp). After no jumps
to the next smallest step with all loads degraded are possible or a solution was not found
for the previous jump, the decrease of degradation with a step equal to 1 is tried next.

In the example of the transient failure described above (decrease in energy resources from
4.6 kWh to 2.0 kWh), in the optimization after the failure is recovered, the degradation
variable i∗ds would be set from ids = 16 to 15. After a solution is found for i∗ds = 15, the
degradation step is set again to the next smallest step with all loads degraded, in this
case to i∗ds = 10. After jumping to i∗ds = 5, the decrease of degradation is continued with
steps equal to 1, until i∗ds = 1 is reached.

If no changes or failures occur, meaning that the degradation step ids should not change,
the algorithm according to the flow chart depicted in Fig. 5.9 would still try to decrease
the degradation step in two iterations, before it gets the current solution. Assuming a
valid solution for ids = 14 in the example above, the algorithm would first try to find
a solution for ids = 10, then for ids = 13 and only in the third iteration it will find
a valid solution for ids = 14. Compared to the algorithm depicted in Fig. 5.4, which
would require only two iterations (first for ids = 13 and then ids = 14), it adds additional
computational burden due to the third iteration. Therefore, the algorithm depicted in
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Figure 5.9.: Extended flow chart of algorithm solving mixed-integer energy distribution.
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Fig. 5.4 is better suited for use cases with monotonically decreasing energy demand as a
function of the degradation step due to the reduced average computational effort. Also
for non monotonically decreasing energy demand this version of the algorithm can be used
by adding additional recalculation cycles at which ids is reset to 1. The extended version
of the algorithm depicted in Fig. 5.9 shows better convergence by dynamic changes in the
system state and for transient failures, covering also use cases with non monotonically
decreasing energy demand as a function of the degradation step. Therefore, based on
the requirements and system properties, the appropriate version of the algorithm for the
optimal energy distribution should be selected.

Summing up the results, it can be stated that by applying application specific knowledge,
the number of valid combinations for integer valued optimization variables can be reduced
significantly, speeding up in this way the computational time required for solving the
mixed-integer energy distribution optimization. The speed up depends on the ratio of valid
combinations of discrete variables to the number of all possible combinations. Another
important point influencing the execution of the proposed control strategy at runtime is
the time required for solving the continuous optimization problem. In the next section,
two different approaches using nonlinear and linear programming solvers are presented.

5.3. Solving Continuous Energy Distribution
Optimization

The continuous optimization problem for the optimal energy distribution in the vehicle
powernet as defined in (5.41) and (5.48) is a constrained multivariable optimization prob-
lem. Depending on the properties of the objective function and equality and inequality
constraints of the optimization problem, different solvers can be used.

For solving an optimization problem with a nonlinear objective function and nonlinear
and/or linear equality and/or inequality constraints, for example, the fmincon solver avail-
able in MATLAB can be used. The optimization problem must be then formulated in the
following form [37]:

min
xnlp

fobj.nlp(xnlp)

s.t.



cineq.nlp(xnlp)≤ 0
ceq.nlp(xnlp) = 0

Aineq.nlp · xnlp≤ bineq.nlp

Aeq.nlp · xnlp = beq.nlp

lbnlp≤ xnlp ≤ ubnlp

(5.53)
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The optimization variable (xnlp), which can be a vector or a matrix, is bounded by lower
(lbnlp) and upper limits (ubnlp). The solution space of the optimization problem can be
constrained by defining the nonlinear and/or linear equality and/or inequality constraints.
The nonlinear equality and inequality constraints are defined using the functions cineq.nlp

and ceq.nlp, both returning a vector or a matrix. The linear equality and inequality con-
straints can be specified using the matrices Aineq.nlp and Aeq.nlp and the corresponding
vectors bineq.nlp and beq.nlp.

For solving an optimization problem with linear objective function and linear equality
and/or inequality constraints, for example, the linprog solver available in MATLAB can
be used. The optimization problem must be then formulated in the following form [37]:

min
xlp

f T
obj.lp · x lp

s.t.


Aineq.lp · x lp≤ bineq.lp

Aeq.lp · x lp = beq.lp

lblp≤ x lp ≤ ublp

(5.54)

The optimization variable (x lp) in the form of a vector is bounded by lower (lblp) and upper
limits (ublp). The objective of the optimization problem is defined by multiplying the
optimization variable with the objective vector f obj.lp of the same size. The solution space
of the optimization problem can be constrained by defining the linear equality and/or
inequality constraints. The linear equality and inequality constraints can be specified
using the matrices Aineq.lp and Aeq.lp and the corresponding vectors bineq.lp and beq.lp. For
the formulation of the energy distribution optimization defined in (5.41) and (5.48) in
the format as required by fmincon and linprog solver, an appropriate matrix and vector
notation of the system state and optimization variables is introduced in the following.

The nspn-by-nspn matrix Eout is used for the notation of all energy flows within a power-
net. The element Eout{i,k} in the i-th row and k-th column of the matrix Eout is defined as:

Eout{i,k} =

E
{i,k}
out , i 6= k

0, i = k
with i, k ∈ {1..nspn} (5.55)

The nspn-by-nspn matrix E∗out.max is used for the notation of the output energy transport
limit of all powerlink outputs within the vehicle powernet as defined in (5.40). The ele-
ment E∗out.max{i,k} in the i-th row and k-th column of the matrix E∗out.max is defined as:

E∗out.max{i,k} =

E
∗{i,k}
out.max, i 6= k

0, i = k
with i, k ∈ {1..nspn} (5.56)
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Depending on the current powerlink components’ state, the efficiency η{i,k}pl of the energy
flow from subpowernet i to k might vary over time. Also possible powerlink faults result-
ing in a decreased energy flow efficiency are modeled by the time-dependent nspn-by-nspn

matrix ηpl, which is used for the notation of all energy flow efficiencies within the power-
net. The element ηpl{i,k} in the i-th row and k-th column of the matrix ηpl is defined as:

ηpl{i,k}(t) =

η
{i,k}
pl (t), i 6= k

0, i = k
with i, k ∈ {1..nspn} (5.57)

The time-dependent nspn-by-nspn matrix βpl stores the penalty factors for all powerlink
outputs of the powernet. The element βpl{i,k} in the i-th row and k-th column of the ma-
trix βpl for the penalty factor of the energy flow E

{i,k}
out from subpowernet i to j is defined as:

βpl{i,k}(t) =

β
{i,k}
pl (t), i 6= k

0, i = k
with i, k ∈ {1..nspn} (5.58)

The time-dependent nspn-by-1 vector S spn is used for the notation of operational state as
defined in (5.5) for all subpowernets. The i-th element of the vector S spn is defined as:

S spn{i}(t) = S{i}spn(t) with i ∈ {1..nspn} (5.59)

The nspn-by-nspn matrix S∗pl is used for the notation of the activation state of all energy
flows within the vehicle powernet as defined in (5.35a). The element S∗pl{i,k} in the i-th
row and k-th column of the matrix S∗pl is defined as:

S∗pl{i,k} =

S
∗{i,k}
pl , i 6= k

0, i = k
with i, k ∈ {1..nspn} (5.60)

The nspn-by-nspn matrix S∗out with the element S∗out{i,k} in the i-th row and k-th column for
the status of the energy flow from subpowernet i to k as defined in (5.35b) is calculated as:

S∗out =
(
S spn · ST

spn

)
◦ S∗pl (5.61)

The time-dependent nspn-by-1 vectors Erde and E∗load are used for the notation of available
energy resources and required energy as defined in (5.34) for all subpowernets. The i-th
element of the vectors Erde and E∗load is defined as:

Erde{i}(t) = E{i}rde(t) (5.62a)

E∗load{i}(t) = E∗{i}load (t) (5.62b)
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The time-dependent nspn-by-1 vectors Erde0 and dpbat are used for the notation of param-
eters approximating the energy resources as a function of the battery output energy. The
i-th element of the vectors Erde0 and dpbat is defined as:

Erde0{i}(t) = E{i}rde0(t) (5.63a)

dpbat{i}(t) = dp{i}bat(t) (5.63b)

In the following subsections, the multiplication of an n-by-m matrix a with m-by-p matrix
b is denoted by a dot ’·’:

cn×p = an×m · bm×p with c{i,j} =
m∑

k=1
a{i,k}b{k,j} and i ∈ {1..n}, j ∈ {1..p} (5.64)

The elementwise multiplication of an n-by-m matrix a with b is denoted by a circle ’◦’:

cn×m = an×m ◦ bn×m with c{i,j} = a{i,j}b{i,j} and i ∈ {1..n}, j ∈ {1..m} (5.65)

The matrix operation diag puts the elements of an n-by-1 column vector b on the diagonal
of an n-by-n matrix c with all other elements equal to zero:

cn×n = diag(bn×1) with c{i,j} =

b{i}, i = j

0, i 6= j
and i, j ∈ {1..n} (5.66)

Using the notations above, the continuous energy distribution optimization problem as
defined in (5.41) is converted to a form required by the nonlinear programming solver
(fmincon) in Section 5.3.1 and by linear programming solver (linprog) in Section 5.3.2. In
a similar way, also the extended version of the energy distribution optimization problem
defined in (5.48) is converted to a form required by the nonlinear programming solver
(fmincon) in Section 5.3.3 and by linear programming solver (linprog) in Section 5.3.4.

5.3.1. Energy Distribution (Version 1) with Nonlinear Programming

A continuous energy distribution problem used for the control of fail-operational pow-
ernets with up to nspn channels was defined in (5.41). By solving it, an optimal energy
output matrix Eout with regard to the minimization of energy losses in powerlink compo-
nents and user defined criteria is found. The following relationship between the solution
xnlp of the fmincon solver and the optimal energy output matrix Eout is valid:

Eout{i,k} =

xnlp{i,k}, i 6= k
0, i = k

with i, k ∈ {1..nspn} (5.67)
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For the estimation of the nspn-by-1 vector E∗spn storing the energy balance value for each
subpowernet k ∈ {1..nspn} as defined in (5.36), the following matrix notation is used:

E∗spn(Eout) = S spn ◦
[(

S∗Tpl ◦ ηT
pl ◦ ET

out − S∗pl ◦ Eout

)
· S spn + Erde − E∗load

]
(5.68)

The objective f ∗edo.loss.pl for the minimization of the energy losses in powerlink components
as defined in (5.37) can be calculated using the following matrix notation:

f ∗edo.loss.pl(Eout) = ST
spn ·

[(
S∗Tpl ◦ ηT

pl ◦ ET
out − S∗pl ◦ Eout

)
· S spn + Erde − E∗load

]
(5.69)

The penalty function f ∗edo.pen.pl for adjusting the powerlink output energy as defined in
(5.38) can be rewritten as:

f ∗edo.pen.pl(Eout) = ST
spn ·

(
S∗pl ◦ βpl ◦ Eout

)
· S spn (5.70)

In the formulation of the optimization problem for the fmincon solver, the objective func-
tion fv1

obj.nlp is minimized, which is opposite to the maximization of the objective function
f ∗edo.path in the optimization problem defined in (5.39). Therefore, the objective function
fv1

obj.nlp must be opposite to f ∗edo.path. By combining (5.69) with (5.70), the objective func-
tion fv1

obj.nlp for the fmincon solver can be formulated as:

fv1
obj.nlp(xnlp) = ST

spn ·
(
S∗pl ◦

(
1 + βpl

)
◦ xnlp − S∗Tpl ◦ ηT

pl ◦ xnlp
T
)
· S spn

+ ST
spn · (E∗load − Erde)

(5.71)

The first constraint of the optimization problem in (5.41) can be defined for the fmincon
solver with the nonlinear inequality constraint function cv1

ineq.nlp as:

cv1
ineq.nlp(xnlp) = −E∗spn(xnlp) (5.72)

If an energy flow path is deactivated or not operational, the corresponding element of the
output state matrix is set to zero and otherwise to one. For forcing these energy flows to
zero, the nonlinear equality constraint function ceq.nlp in (5.53) can be defined by denoting
an nspn-by-nspn matrix with all elements equal to one by 1 as:

ceq.nlp(Eout) = (1− S∗out) ◦ Eout (5.73)

The second constraint of the optimization problem formulated in (5.41) corresponds to
the definition of the nspn-by-nspn lower and upper bound matrices lbnlp and ubnlp for the
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fmincon solver as:

lbnlp = 0

ubnlp = E∗out.max

(5.74)

A matrix or vector with all elements equal to zero is denoted by 0. The linear equality
and inequality constraints in (5.53) are not required and set to zero:

Aineq.nlp = Aeq.nlp = 0

bineq.nlp = beq.nlp = 0
(5.75)

The formulation of the continuous energy distribution optimization problem as defined in
(5.41) for the linear programming solver linprog with significant lower computation effort
is presented in the next subsection.

5.3.2. Energy Distribution (Version 1) with Linear Programming

The nspn-by-nspn variable matrix xnlp used for the notation of the energy distribution op-
timization problem for the fmincon solver is substituted by the n2

spn-by-1 variable column
vector x lp for the linprog solver. The following relationship between the linprog optimal
solution x lp and the optimal energy output Eout in matrix notation according to the for-
mat in (5.55) is valid:

Eout{i,k} =

x lp{i+nspn(k−1)}, i 6= k
0, i = k

with i, k ∈ {1..nspn} (5.76)

For the definition of the n2
spn-by-1 objective column vector f v1

obj.lp according to the nota-
tion of the optimization problem in linprog format, two nspn-by-n2

spn matrices Aespn.lp and
Apen.pl.lp are introduced. The first matrix Aespn.lp, consisting of nspn submatrices Aespn.lp{i}

with i ∈ {1..nspn} is defined as:

Aespn.lp =
(
Aespn.lp{1} Aespn.lp{2} . . . Aespn.lp{nspn}

)
(5.77)

Denoting the i-th column of a matrix a by a〈i〉, the i-th nspn-by-nspn submatrix Aespn.lp{i}

can be calculated using the nspn-by-nspn identity matrix I and efficiency matrix ηpl:

Aespn.lp{i} = I − I〈i〉 · (η〈i〉pl )T with i ∈ {1..nspn} (5.78)

The second matrix Apen.pl.lp consisting of nspn submatrices Apen.pl.lp{i} with i ∈ {1..nspn}
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is defined as:

Apen.pl.lp =
(
Apen.pl.lp{1} Apen.pl.lp{2} . . . Apen.pl.lp{nspn}

)
(5.79)

The i-th nspn-by-nspn submatrix Apen.pl.lp{i} of Apen.pl.lp can be calculated using the nspn-
by-nspn output energy penalty matrix βpl as:

Apen.pl.lp{i} = diag(β〈i〉pl ) with i ∈ {1..nspn} (5.80)

Using (5.77), the energy balance vector E∗spn.lp for linprog solver can be defined as:

E∗spn.lp(x lp) = −Aespn.lp · x lp (5.81)

By denoting the nspn-by-1 column vector with all ones by 1, the n2
spn-by-1 objective vector

f ∗edo.loss.pl and function f ∗edo.loss.pl.lp for the minimization of the energy losses in powerlink
components can be defined as:

f ∗edo.loss.pl = −
(
1T · Aespn.lp

)T
(5.82a)

f ∗edo.loss.pl.lp(x lp) = f ∗Tedo.loss.pl · x lp (5.82b)

The definition of the energy balance vector E∗spn.lp and of the objective for minimization
of energy losses in powerlink components f ∗edo.loss.pl.lp is not equal to the definition in (5.68)
and (5.69), since the calculation of E∗spn.lp does not consider the energy demand vector
E∗load, remaining discharge energy vector Erde, subpowernets state vector S spn and the
energy flow activation matrix S∗pl. The equality between (5.68) and (5.81) as well as
between (5.69) and (5.82b) can be achieved, when the following conditions are fulfilled:

x lp{i+nspn(k−1)} =


E∗load{i} − Erde{i}, i = k ∧ S spn{i} = 1
Eout{i,k}, i 6= k ∧ S∗out{i,k} = 1
0, otherwise

with i, k ∈ {1..nspn} (5.83)

The {i + nspn(k − 1)}-th element of the vector x lp with i = k corresponds to the diagonal
element Eout{i,i} of the energy output matrix Eout in (5.55), which is by definition equal
to zero. By forcing the {i + nspn(k − 1)}-th element of the vector x lp to a constant value,
which is done by the first condition in (5.83), an offset can be added to the i-th row of
the vector E∗spn.lp. In this way, the difference between the remaining discharge energy and
demand (Erde{i} − E∗load) (negative in (5.83) due to the minus sign in (5.81)) is added to

75



Chapter 5. Energy Distribution Optimization

the energy balance value of the operational subpowernet i with S spn{i} = 1.

If the energy flow Eout{i,k} from subpowernet i to k is deactivated or not possible due
to a failure in the corresponding subpowernets, the state variable S∗out{i,k} is set to zero.
Since the state variable matrix S∗out is not considered in (5.81), the energy flows which
are deactivated or not possible are forced to zero using the third condition in (5.83).

Using (5.79) and by denoting the nspn-by-1 column vector with all ones by 1, the n2
spn-by-

1 objective vector f ∗edo.pen.pl and the penalty function f ∗edo.pen.pl for the adjustment of the
output energy of powerlink components can be defined as:

f ∗edo.pen.pl =
(
1T · Apen.pl.lp

)T
(5.84a)

f ∗edo.pen.pl(x lp) = f ∗Tedo.pen.pl · x lp (5.84b)

In the definition of the penalty function, the output state matrix (S∗out) is not consid-
ered. With the conditions defined in (5.83), also the equality between (5.70) and (5.84b)
is established. By solving the energy distribution optimization problem as defined in
(5.41), the value of Eout maximizing the objective function is found. This is equal to the
minimization of the negative objective function with the linprog solver. By combining
the objective vector for the minimization of the energy losses in (5.82a) with the penalty
function for the energy transport via powerlink outputs in (5.84a), the objective vector
f v1

obj.lp for the fmincon solver can be written as:

f v1
obj.lp =

[
1T ·

(
Aespn.lp + Apen.pl.lp

)]T
(5.85)

The first constraint in the optimization problem defined in (5.41) requires a positive energy
vector. This can be achieved by applying the conditions defined in (5.83) and by defining
the linear inequality constraints matrix Aineq.lp and vector bineq.lp as:

Av1
ineq.lp = Aespn.lp (5.86a)

bv1
ineq.lp = 0 (5.86b)

The conditions in (5.83) can be fulfilled by using the linear equality constraints defined in
(5.54) with the matrix Aeq.lp and vector bv1

eq.lp. The n2
spn-by-n2

spn matrix Aeq.lp consisting
of n2

spn submatrices Aeq.lp{i,k} with i, k ∈ {1..nspn} is defined as:

Aeq.lp =


Aeq.lp{1,1} . . . Aeq.lp{1,nspn}

... . . . ...
Aeq.lp{nspn,1} . . . Aeq.lp{nspn,nspn}

 (5.87)
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The nspn-by-nspn submatrix Aeq.lp{i,k} can be calculated using the nspn-by-nspn identity
matrix I and energy output state matrix S∗out as:

Aeq.lp{i,k} =

0, i 6= k
I − diag(S∗〈i〉out ), i = k

with i, k ∈ {1..nspn} (5.88)

The n2
spn-by-1 vector bv1

eq.lp consisting of nspn subvectors bv1
eq.lp{i} with i ∈ {1..nspn} can be

defined as:

bv1
eq.lp =

(
bv1

eq.lp{1} . . . bv1
eq.lp{nspn}

)T
(5.89)

The nspn-by-1 subvector bv1
eq.lp{i} can be calculated using the nspn-by-nspn identity matrix

I, nspn-by-1 subpowernet state vector S spn, remaining discharge energy vector Erde and
energy demand vector E∗load as:

bv1
eq.lp{i} = S spn ◦ I〈i〉 ◦ (E∗load − Erde) with i ∈ {1..nspn} (5.90)

The second constraint of the optimization problem in (5.41) restricting the output energy
for powerlink components can be defined for the linprog solver by specifying the vectors
for lower (lblp) and upper (ublp) bounds. The n2

spn-by-1 vector bub.lp consisting of nspn

subvectors bub.lp{i} with i ∈ {1..nspn} can be defined as:

bub.lp =
(
bub.lp{1} . . . bub.lp{nspn}

)T
(5.91)

Using the output energy limit matrix E∗out.max defined in (5.56), the nspn-by-1 subvector
bub.lp{i} can be calculated as:

bub.lp{i} = E
∗〈i〉
out.max with i ∈ {1..nspn} (5.92)

The n2
spn-by-1 lower and upper bounds vectors can be then defined as:

lbv1
lp = 0

ubv1
lp = bub.lp + bv1

eq.lp

(5.93)

In the next two subsections, the transformation of an extended version of the energy
distribution optimization problem supporting additionally an optimal multiple battery
discharge strategy to the form required by fmincon and linprog solver is presented.
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5.3.3. Energy Distribution (Version 2) with Nonlinear Programming

An extended version of a continuous energy distribution problem used for the control of
fail-operational powernets with up to nspn channels with an optimal multiple battery dis-
charge strategy was defined in (5.48). By solving this optimization problem, an optimal
energy output matrix Eout with regard to the minimization of energy losses in powerlink
and energy storage components and additional user defined criteria is found. The rela-
tionship between the solution xnlp of the fmincon solver and the optimal energy output
matrix Eout is equal to the definition in (5.67). For the estimation of the nspn-by-1 vector
E∗spn.opt storing the energy balance values for each subpowernet k ∈ {1..nspn} as defined
in (5.42), the following matrix notation is used:

E∗spn.opt(Eout) = S spn ◦
[(

S∗Tpl ◦ ηT
pl ◦ ET

out − S∗pl ◦ Eout

)
· S spn ◦

(
1 + dpbat

)
+ Erde0 −

(
1 + dpbat

)
◦ E∗load

] (5.94)

The objective f ∗edo.loss.opt as defined in (5.45) and used for the minimization of the energy
losses in both, powerlink components connecting the subpowernets and powernet batteries
can be rewritten in matrix notation as:

f ∗edo.loss.opt(Eout) = ST
spn ·

[(
S∗Tpl ◦ ηT

pl ◦ ET
out − S∗pl ◦ Eout

)
· S spn ◦

(
1 + dpbat

)
+ Erde0 −

(
1 + dpbat

)
◦ E∗load

] (5.95)

The nspn-by-1 vector E∗bat containing the battery output energy for each subpowernet k
as defined in (5.43) and the nspn-by-1 vector P bat containing the corresponding average
discharge power as defined in (5.44) can be rewritten in matrix notation as:

E∗bat(Eout) =
(
S∗pl ◦ Eout − S∗Tpl ◦ ηT

pl ◦ ET
out

)
· S spn + E∗load (5.96a)

P ∗bat(Eout) = E∗bat(Eout)
dT ∗ssl

(5.96b)

The penalty function f ∗edo.pen.bat as defined in (5.46) and used for the adjustment of the
discharge power of the batteries with appropriate penalty vector βbat can be rewritten in
matrix notation as:

f ∗edo.pen.bat(Eout) = ST
spn ◦ βT

bat ·
[(

S∗pl ◦ Eout − S∗Tpl ◦ ηT
pl ◦ ET

out

)
· S spn + E∗load

]
(5.97)

By solving the energy distribution optimization problem as defined in (5.48), the value of
Eout maximizing the objective function is obtained. This is equal to the minimization of
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the negative objective function with the fmincon solver. By combining the objective for
the minimization of the energy losses in (5.95) with the penalty function for the energy
transport via powerlink outputs in (5.70) and for the batteries discharge in (5.97), the
objective function fv2

obj.nlp for the fmincon solver, which is negative to f ∗edo.path.opt defined
in (5.47), can be written in matrix notation as:

fv2
obj.nlp(xnlp) = ST

spn ·
[(

S∗pl ◦ xnlp − S∗Tpl ◦ ηT
pl ◦ xT

nlp

)
· S spn ◦

(
1 + dpbat + βbat

)
+
(
βpl ◦ S∗pl ◦ xnlp

)
· S spn − Erde0 +

(
1 + dpbat + βbat

)
◦ E∗load

] (5.98)

Three inequality constraints as well as lower and upper bounds for the optimization
variable Eout are defined in (5.48). The inequality constraints requiring positive energy
balance and limiting the average battery discharge power can be rewritten as:

−E∗spn.opt(xnlp) ≤ 0

P ∗bat(xnlp)− P bat.max ≤ 0

−P ∗bat(xnlp) ≤ 0

(5.99)

By introducing the 3nspn-by-nspn matrix Cnlc2 and 3nspn-by-1 vector Bnlc2, the nonlinear
constraint (nlc) function cv2

ineq.nlp can be defined as:

cv2
ineq.nlp(xnlp) = Cnlc2 ·

[(
S∗pl ◦ xnlp − S∗Tpl ◦ ηT

pl ◦ xT
nlp

)
· S spn + E∗load

]
−Bnlc2 (5.100)

The corresponding matrix Cnlc2 and vector Bnlc2 are defined as:

Cnlc2 =


Cnlc2{1}

Cnlc2{2}

Cnlc2{3}

 =


diag

(
S spn ◦

[
1 + dpbat

])
1

dT∗ssl
I

− 1
dT∗ssl

I

 (5.101a)

Bnlc2 =


Bnlc2{1}

Bnlc2{2}

Bnlc2{3}

 =


S spn ◦ Erde0

P bat.max

0

 (5.101b)

The nspn-by-nspn identity matrix is denoted by I, the nspn-by-nspn submatrix of Cnlc2 by
Cnlc2{i} and nspn-by-1 subvector of Bnlc2 by Bnlc2{i} with i ∈ {1..3}. The definition of
the equality constraint function ceq.nlp, lower and upper bounds lbnlp and ubnlp as well as
of linear equality and inequality constraints Aineq.nlp/bineq.nlp and Aeq.nlp/beq.nlp is equal
to the definition in (5.73), (5.74) and (5.75). The formulation of the continuous energy
distribution optimization problem as defined in (5.48) for the linear programming solver
linprog with significant lower computational effort is presented in the next subsection.
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5.3.4. Energy Distribution (Version 2) with Linear Programming

The relationship between the optimal energy output matrix Eout and the linprog solver
result x lp is the same as in (5.76). For the formulation of the n2

spn-by-1 objective column
vector f v2

obj.lp according to the notation of the optimization problem in linprog format, in
addition to the matrices Aespn.lp and Apen.pl.lp defined in (5.77) and (5.79), a third nspn-by-
n2

spn matrix Abat.lp, consisting of nspn submatrices Abat.lp{i} with i ∈ {1..nspn} is introduced:

Abat.lp =
(
Abat.lp{1} Abat.lp{2} . . . Abat.lp{nspn}

)
(5.102)

For the calculation of the submatrix Abat.lp{i}, the following nspn-by-1 vectors cbat and dbat

are required with the i-th element defined as:

cbat{i} =
Erde0{i}

1 + dpbat{i}
with i ∈ {1..nspn} (5.103a)

dbat{i} =
cbat{i}

E∗load{i} − cbat{i}
with i ∈ {1..nspn} (5.103b)

Using the remaining driving time dT ∗ssl and the vectors arde and Erde0 approximating the
remaining discharge energy as a function of average battery output power, the submatrix
Abat.lp{i} can be calculated as:

Abat.lp{i} = I〈i〉 ·
(
I〈i〉 ◦ dbat

)T
with i ∈ {1..nspn} (5.104)

With (5.77), the energy balance vector E∗spn.opt.lp for linprog solver can be defined as:

E∗spn.opt.lp(x lp) = −diag
(
1 + dpbat

)
· Aespn.lp · x lp (5.105)

The n2
spn-by-1 objective vector f ∗edo.loss.opt and function f ∗edo.loss.opt.lp for the minimization of

the energy losses in powerlink and energy storage components can be defined as:

f ∗edo.loss.opt = −
[(

1 + dpbat

)T
· Aespn.lp

]T
(5.106a)

f ∗edo.loss.opt.lp(x lp) = f ∗Tedo.loss.opt · x lp (5.106b)

The energy balance vector E∗spn.opt.lp and the objective for the minimization of energy
losses f ∗edo.loss.opt.lp are not equal to the definition in (5.94) and (5.95), since the calculation
of E∗spn.opt.lp does not consider the energy demand vector E∗load, the vectors dpbat and Erde0

used for the approximation of the remaining discharge energy as a function of average bat-
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tery output power, subpowernets state vector S spn and the energy flow activation matrix
S∗pl. The equality between (5.94) and (5.105) as well as between (5.95) and (5.106b) can
be achieved, when the following conditions are fulfilled:

x lp{i+nspn(k−1)} =


E∗load{i} − cbat{i}, i = k ∧ S spn{i} = 1
Eout{i,k}, i 6= k ∧ S∗out{i,k} = 1
0, otherwise

with i, k ∈ {1..nspn}

(5.107)

The n2
spn-by-1 objective vector f ∗edo.pen.pl and the penalty function fedo.pen.pl.lp for the ad-

justment of the powerlinks output energy is equal to (5.84a) and (5.84b). Using (5.77),
(5.102) and nspn-by-1 penalty vector βbat, the n2

spn-by-1 objective vector f ∗edo.pen.bat and
penalty function f ∗edo.pen.bat.lp for the adjustment of batteries discharge can be defined as:

f ∗edo.pen.bat =
(
βT

bat ·
(
Aespn.lp + Abat.lp

))T
(5.108a)

f ∗edo.pen.bat.lp(x lp) = f ∗Tedo.pen.bat · x lp (5.108b)

The equality between the penalty function f ∗edo.pen.bat in (5.46) and f ∗edo.pen.bat.lp in (5.108b)
is given if the conditions defined in (5.107) are fulfilled.

By combining the objective vector for the minimization of the energy losses in (5.106a)
with the penalty function for the energy transport via powerlink outputs in (5.84a) and for
batteries discharge in (5.108b), the objective vector f v2

obj.lp for the fmincon solver multiplied
by x lp, which is negative to f ∗edo.path.opt defined in (5.47), can be written as:

f v2
obj.lp =

[(
1 + dpbat + βbat

)T
· Aespn.lp + 1T · Apen.pl.lp + βT

bat · Abat.lp

]T
(5.109)

The first constraint of the optimization problem defined in (5.48) requires a positive energy
vector. This is achieved by applying the conditions defined in (5.107) and by defining the
linear inequality constraints submatrix Av2

ineq.lp{1} and subvector bv2
ineq.lp{1} as:

Av2
ineq.lp{1} = diag

(
1 + dpbat

)
· Aespn.lp (5.110a)

bv2
ineq.lp{1} = 0 (5.110b)

The second constraint in the optimization problem defined in (5.48) limits the average
battery output power to the range between zero (discharge case only) and maximum
specified discharge power P bat.max. This can be achieved by applying the conditions
defined in (5.107) and by defining the linear inequality constraints submatrices Av2

ineq.lp{2..3}
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and subvectors bv2
ineq.lp{2..3} as:

Av2
ineq.lp{2} =

Aespn.lp

dT ∗ssl
(5.111a)

Av2
ineq.lp{3} = −

Aespn.lp

dT ∗ssl
(5.111b)

bv2
ineq.lp{2} = P bat.max − S spn ◦

cbat

dT ∗ssl
(5.111c)

bv2
ineq.lp{3} = S spn ◦

cbat

dT ∗ssl
(5.111d)

The 3nspn-by-n2
spn linear inequality matrix Av2

ineq.lp and 3nspn-by-1 vector bv2
ineq.lp according

to the format of linprog solver are then defined as:

Av2
ineq.lp =

(
Av2

ineq.lp{1} Av2
ineq.lp{2} Av2

ineq.lp{3}

)T
(5.112a)

bv2
ineq.lp =

(
bv2

ineq.lp{1} bv2
ineq.lp{2} bv2

ineq.lp{3}

)T
(5.112b)

The conditions in (5.107) can be fulfilled by using the linear equality constraints defined in
(5.54) with the matrix Aeq.lp and vector bv2

eq.lp. The n2
spn-by-n2

spn matrix Aeq.lp was already
defined in (5.87). The n2

spn-by-1 vector bv2
eq.lp consisting of nspn subvectors bv2

eq.lp{i} with
i ∈ {1..nspn} can be defined as:

bv2
eq.lp =

(
bv2

eq.lp{1} . . . bv2
eq.lp{nspn}

)T
(5.113)

The nspn-by-1 subvector bv2
eq.lp{i} can be calculated using the nspn-by-nspn identity matrix

I, nspn-by-1 subpowernet state vector S spn, remaining discharge energy vector Erde and
energy demand vector E∗load as:

bv2
eq.lp{i} = S spn ◦ I〈i〉 ◦ (E∗load − cbat) with i ∈ {1..nspn} (5.114)

The third constraint of the optimization problem defined in (5.48) is achieved by formu-
lating the n2

spn-by-1 lower and upper bound vectors using (5.92) as:

lbv2
lp = 0

ubv2
lp = bub.lp + bv2

eq.lp

(5.115)

For the variation of the integer parameters as presented in Section 5.2.3, an appropriate
model of powerlink components in normal and failure case operation is required and is
presented in the following section.
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Figure 5.10.: Model of powernet efficiency matrix.

5.4. Modeling of Powerlink Components
The energy distribution within the vehicle powernet is dependent on the current state of
powerlink components and their operating mode. By solving the mixed-integer energy
distribution optimization problem as defined in (5.15) or (5.31), an optimal operating
mode for each powerlink reducing the energy losses and establishing reliable power supply
in all functional subpowernets is found.

For solving the mixed-integer optimization problem as described in Section 5.1, three
inputs from powerlinks are required, namely the efficiency matrix ηpl containing all cur-
rent energy flow efficiencies, the set PLmod containing all valid powerlink operating mode
combinations Mpl as well as the energy flow activation matrix S∗pl containing the activa-
tion status for all energy flows within the vehicle powernet for a given operating mode
combination M∗

pl.

A behavioral model consisting of three functions, namely GetEffMat{i}pl , GetModeVec{i}pl

and GetTopMat{i}pl is proposed for abstracting the information of powerlink i required
for the mixed-integer energy distribution optimization, which is presented in the next
subsection.

5.4.1. Generic Behavioral Description of Powerlinks

A generic model of a vehicle powernet as presented in Section 5.1.1 consists of up to nspn

subpowernets which can be interconnected by up to npl powerlinks. Each subpowernet
can receive energy from and also supply up to nspn − 1 subpowernets. Therefore, in total
nspn × (nspn − 1) energy flows are possible. As defined in (5.57), an nspn-by-nspn matrix
with diagonal elements equal to zero is used for storing the energy flow efficiencies.

For creation of the efficiency matrix ηpl, a stepwise algorithm as depicted in Fig. 5.10 is
proposed. For each powerlink i (i ∈ {1..npl}), an efficiency matrix η{i}pl is created using
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Figure 5.11.: Model of valid powerlink operating mode combinations.

Figure 5.12.: Model of energy flow activation matrix.

the function GetEffMat{i}pl . The vector PL
{i}
pin contains the connections of the powerlink i,

describing which pin is connected to which subpowernet. The vector PL{i}eff contains the
current energy flow efficiencies of all connections of the powerlink i. By calling the function
EffGetMat{i}pl , the efficiencies of powerlink i are written to the corresponding elements of
the matrix η{i}pl , which are basically defined by the vector PL{i}pin. After creating the
efficiency matrix for each powerlink i, the total efficiency matrix ηpl is created by adding
the npl matrices for each powerlink, with the assumption, that the energy flow E

{k,i}
out from

subpowernet k to i (with i, k ∈ {1..nspn} and i 6= k) is only possible via one powerlink.

For creation of the set PLmod containing all valid powerlink operating mode vectors Mpl,
also a stepwise algorithm as depicted in Fig. 5.11 is proposed. For each powerlink i (i ∈
{1..npl}), a vector PL{i}mod containing all currently possible operating modes for powerlink
i is created by calling the function GetModeVec{i}pl . The i-th element Dpl{i} of the npl-
by-1 vector Dpl stores the current diagnostic information for the powerlink i. In the
following, the operator d1a is used to describe a value of a delayed by one sample period
(d1a[n] = a[n − 1]). The i-th element d1Mpl{i} of the npl-by-1 vector d1Mpl stores the
current operating mode (set in the previous optimization cycle) for the powerlink i, which
is required if the current operating mode cannot be changed due to a powerlink failure.
The function GetModeVec{i}pl evaluates the input data and creates an n{i}mod-by-1 operating
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mode vector PL{i}mod for the powerlink i. After creating operating mode vectors for each
powerlink, all possible combinations of Mpl vectors are stored in the npl-by-nmod matrix
PLmod with nmod equal to the definition in (5.49).

The energy flow activation matrix S∗pl as defined in (5.60) is a function of operating mode
vectorM∗

pl. For a given operating mode vectorM∗
pl, the corresponding nspn-by-nspn energy

flow activation matrix S∗pl can be created stepwise as depicted in Fig. 5.12. By calling
the function GetTopMat{i}pl , S∗{i}pl matrix for the powerlink i is created for the requested
operating mode M∗

pl{i}. For this, the corresponding matrix elements, defined by the pin
connection vector PL{i}pin and modeling the active connections in the requested operating
mode, are set to 1 and all other elements to 0. After creating the energy flow activation
matrix for each powerlink i, the total energy flow activation matrix S∗pl can be created by
adding the npl energy flow activation matrices for each powerlink, with the assumption,
that the energy flow E

{k,i}
out from subpowernet k to i (with i, k ∈ {1..nspn} and i 6= k) is

only possible via one powerlink. The proposed behavioral model will be exemplified for
three types of powerlinks, namely bidirectional DC/DC converter, toggle power switch
and single power switch in the next subsection.

5.4.2. Examples for Behavioral Powerlink Model

A behavioral block diagram of a bidirectional DC/DC converter, toggle power switch and
single power switch is depicted in Fig. 5.13. In the following, the creation of the efficiency
matrix, operating mode vector and energy flow activation matrix for these powerlinks
using the behavioral model functions as presented in Section 5.4.1 will be exemplified.

Bidirectional DC/DC Converter

A bidirectional DC/DC converter connects two subpowernets i and j. It can be operated
in three modes. In the forward operating mode (frw), the energy is transported from
subpowernet i to j with the corresponding energy flow efficiency ηfrw. In the reverse op-
erating mode (rev), the energy is transported in the reverse direction with the efficiency
ηrev. In the off mode (off), no energy flow is active between subpowernets i and j. The
pin connection vector PL{dcdc}

pin contains two entries with the corresponding number of the
subpowernet connected to pin0 and pin1 of the DC/DC converter:

PL
{dcdc}
pin =

[
i j

]T
(5.116)

By denoting the current required operating mode withM{dcdc}
pl , the element S∗{dcdc}

pl{i,k} in the
i-th row and k-th column of the energy flow activation matrix S∗{dcdc}

pl with i, k ∈ {1..nspn}
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Figure 5.13.: Behavioral block diagram of DC/DC converter, toggle and single switch.

is defined as:

S∗{dcdc}
pl{i,k} =


1, if i = PL

{dcdc}
pin{1} ∧ k = PL

{dcdc}
pin{2} ∧M

{dcdc}
pl = frw

1, if k = PL
{dcdc}
pin{1} ∧ i = PL

{dcdc}
pin{2} ∧M

{dcdc}
pl = rev

0, otherwise
(5.117)

The corresponding element η{dcdc}
pl{i,k} in the i-th row and k-th column of the efficiency matrix

η{dcdc}
pl with i, k ∈ {1..nspn} is defined as:

η{dcdc}
pl{i,k} =


ηfrw, if i = PL

{dcdc}
pin{1} ∧ k = PL

{dcdc}
pin{2}

ηrev, if k = PL
{dcdc}
pin{1} ∧ i = PL

{dcdc}
pin{2}

0, otherwise
(5.118)

For the evaluation of possible operating modes of a DC/DC converter, three discrete
failure states are assumed, which are modeled by the diagnostic state variable D{dcdc}

pl .
The first state models a fault-free operation of the DC/DC converter (D{dcdc}

pl = no_fail).
The second state models faults resulting in the loss of the DC/DC converter operat-
ing mode control, meaning that the currently set operating mode cannot be changed
(D{dcdc}

pl = no_chng). The third failure state models faults resulting in no energy trans-
port between pin0 and pin1 in both, forward and reverse direction (D{dcdc}

pl = open). By
denoting the currently set DC/DC operating mode with d1M

{dcdc}
pl , the operating mode

vector PL{dcdc}
mod can be defined as a function of the diagnostic state variable D{dcdc}

pl :

PL
{dcdc}
mod =



[
frw rev off

]T
, if D

{dcdc}
pl = no_fail[

d1M
{dcdc}
pl

]T
, if D

{dcdc}
pl = no_chng[

off
]T
, if D

{dcdc}
pl = open

(5.119)
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Five failure modes were assumed for powerlink components in Section 5.1.2. Two of them,
namely loss of operating mode control and no energy transport are covered by (5.119). The
failure mode decreased energy flow efficiency is already considered by the time-dependent
energy flow efficiency matrix η{dcdc}

pl , which is permanently updated according to the
DC/DC diagnostic data. The failure mode short circuit to ground at DC/DC input or
output (external short circuit to ground) is covered by the time-dependent state variable
S{k}spn modeling the operational state of subpowernet k, which is set to 0 in case of a short
circuit to ground in subpowernet k. In case of an internal short circuit to ground in the
DC/DC converter, it is assumed that the input and output pins are disconnected auto-
matically and no further energy flow is possible (fail safe behavior). This corresponds to
the state no energy transport (D{dcdc}

pl = open) and is covered by (5.119). Due to possible
different voltage levels at DC/DC input and output (e.g. high voltage at input and low
voltage at output), the failure mode short circuit between the DC/DC input and output
must be avoided by design and is not further considered for behavioral model of a DC/DC
converter. Using the equations of this subsection, the behavioral model of a DC/DC con-
verter according to the generic description in Section 5.4.1 can be implemented.

Toggle Power Switch

A toggle power switch connects three subpowernets i, j and k. It can be operated in
four modes. In the first operating mode (on01), the subpowernets i and j are connected
and the energy transport between these subpowernets is activated with the corresponding
energy flow efficiency ηon1. In the second operating mode (on02), the subpowernets i
and k are connected and the energy transport between these subpowernets is activated
with the corresponding energy flow efficiency (ηon2). The third operating mode (on12),
connecting subpowernet i to j and to k, enabling so the energy exchange between all three
subpowernets, can be either set if a Pulse Width Modulation (PWM) operation of the
toggle switch is possible or if a short circuit failure between pin1 and pin2 is present. The
fourth operating mode (off) models a failure state of the toggle switch in case of an open
circuit at pin0, meaning that no energy exchange between the subpowernets is possible.
The pin connection vector PL{tgl}

pin contains three entries with the corresponding number
of the subpowernet connected to pin0, pin1 and pin2 of the toggle power switch:

PL
{tgl}
pin =

[
i j k

]T
(5.120)

By denoting the current required operating mode of the toggle switch with M
{tgl}
pl , the

element S∗{tgl}
pl{i,k} in the i-th row and k-th column of the energy flow activation matrix S∗{tgl}

pl

with i, k ∈ {1..nspn} can be defined as:
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S∗{tgl}
pl{i,k} =



1, if i = PL
{tgl}
pin{1} ∧ k = PL

{tgl}
pin{2} ∧M

{tgl}
pl = (on01 ∨ on12)

1, if k = PL
{tgl}
pin{1} ∧ i = PL

{tgl}
pin{2} ∧M

{tgl}
pl = (on01 ∨ on12)

1, if i = PL
{tgl}
pin{1} ∧ k = PL

{tgl}
pin{3} ∧M

{tgl}
pl = (on02 ∨ on12)

1, if k = PL
{tgl}
pin{1} ∧ i = PL

{tgl}
pin{3} ∧M

{tgl}
pl = (on02 ∨ on12)

0, otherwise

(5.121)

The corresponding element η{tgl}
pl{i,k} in the i-th row and k-th column of the efficiency matrix

η{tgl}
pl with i, k ∈ {1..nspn} is defined as:

η{tgl}
pl{i,k} =



ηon1, if i = PL
{tgl}
pin{1} ∧ k = PL

{tgl}
pin{2}

ηon1, if k = PL
{tgl}
pin{1} ∧ i = PL

{tgl}
pin{2}

ηon2, if i = PL
{tgl}
pin{1} ∧ k = PL

{tgl}
pin{3}

ηon2, if k = PL
{tgl}
pin{1} ∧ i = PL

{tgl}
pin{3}

0, otherwise

(5.122)

For the evaluation of possible operating modes of a toggle power switch, eight discrete
failure states are assumed, which are modeled by the diagnostic state variable D{tgl}

pl .
The first state models a fault-free operation (D{tgl}

pl = no_fail). The second state models
faults resulting in the loss of toggle switch operating mode control, meaning that the
currently set operating mode cannot be changed (D{tgl}

pl = no_chng). The third, fourth
and fifth failure states model faults resulting in a short circuit connection between pin0
and pin1 (D{tgl}

pl = sc01), between pin0 and pin2 (D{tgl}
pl = sc02) and between pin1 and

pin2 (D{tgl}
pl = sc12). The sixth, seventh and eighth failure states model faults resulting

in the open connection at pin0 (D{tgl}
pl = open0), at pin1 (D{tgl}

pl = open1) and at pin2
(D{tgl}

pl = open2). By denoting the currently set operating mode with d1M
{tgl}
pl , the operat-

ing mode vector PL{tgl}
mod can be defined as a function of the diagnostic state variable D{tgl}

pl :

PL
{tgl}
mod =



[
on01 on02 on12

]T
, if D

{tgl}
pl = no_fail[

d1M
{tgl}
pl

]T
, if D

{tgl}
pl = no_chng[

on01 (on12)
]T
, if D

{tgl}
pl = sc01[

on02 (on12)
]T
, if D

{tgl}
pl = sc02[

on12
]T
, if D

{tgl}
pl = sc12[

off
]T
, if D

{tgl}
pl = open0[

off on02
]T
, if D

{tgl}
pl = open1[

off on01
]T
, if D

{tgl}
pl = open2

(5.123)

Five failure modes were assumed for powerlink components in Section 5.1.2. Three of
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them, namely loss of operating mode control, no energy transport and short circuit between
the toggle input and outputs are covered by (5.123). The operating mode on12 is not
possible for the cases sc01 and sc02 if the short circuit connection between the pins is due
to a stuck contact (indicated by brackets in (5.123)). Assuming a short circuit connection
due to an external wiring problem, the operating mode on12 is theoretically possible for
these cases. The failure mode decreased energy flow efficiency is already considered by
the time-dependent energy flow efficiency matrix η{tgl}

pl , which is permanently updated
according to the toggle switch diagnostic data. The failure mode short circuit to ground
at toggle switch input or outputs (external short circuit to ground) is covered by the time-
dependent state variable S{k}spn modeling the operational state of subpowernet k, which is
set to 0 in case of a short circuit to ground in subpowernet k. Using the equations
presented in this subsection the behavioral model of the toggle power switch according to
the generic description in Section 5.4.1 can be implemented.

Single Power Switch

A single power switch connects two subpowernets i and j. It can be operated in two
modes. In the first operating mode (on), the subpowernets i and j are connected and the
energy transport between these subpowernets is activated with the corresponding energy
flow efficiency ηon. In the second operating mode (off), the subpowernets i and k are dis-
connected. The pin connection vector PL{sw}pin contains two entries with the corresponding
number of the subpowernet connected to pin0 and pin1 of the power switch:

PL
{sw}
pin =

[
i j

]T
(5.124)

By denoting the required operating mode of the switch with M{sw}
pl , the element S∗{sw}pl{i,k}

in the i-th row and k-th column of the energy flow activation matrix S∗{sw}pl with i, k ∈
{1..nspn} can be defined as:

S∗{sw}pl{i,k} =


1, if i = PL

{sw}
pin{1} ∧ k = PL

{sw}
pin{2} ∧M

{sw}
pl = on

1, if k = PL
{sw}
pin{1} ∧ i = PL

{sw}
pin{2} ∧M

{sw}
pl = on

0, otherwise
(5.125)

The corresponding element η{sw}pl{i,k} in the i-th row and k-th column of the efficiency matrix
η{sw}pl with i, k ∈ {1..nspn} is defined as:

η{sw}pl{i,k} =


ηon, if i = PL

{sw}
pin{1} ∧ k = PL

{sw}
pin{2}

ηon, if k = PL
{sw}
pin{1} ∧ i = PL

{sw}
pin{2}

0, otherwise
(5.126)
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For the evaluation of possible operating modes of a power switch, three discrete failure
states are assumed, which are modeled by the diagnostic state variable D{sw}pl . The first
state models a fault-free operation of the switch (D{sw}pl = no_fail). The second state
models failures of the switch resulting in the loss of operating mode control, meaning that
the currently set operating mode cannot be changed (D{sw}pl = no_chng). The third failure
state models failures resulting in the connection loss from pin0 to pin1 (D{sw}pl = open).
By denoting the currently set switch operating mode with d1M

{sw}
pl , the operating mode

vector PL{sw}mod can be defined as a function of diagnostic state variable D{sw}pl :

PL
{sw}
mod =



[
on off

]T
, if D

{sw}
pl = no_fail[

d1M
{sw}
pl

]T
, if D

{sw}
pl = no_chng[

off
]T
, if D

{sw}
pl = open

(5.127)

Five failure modes were assumed for powerlink components in Section 5.1.2. Two of
them, namely loss of operating mode control and no energy transport are covered by
(5.127). The failure mode short circuit between the power switch input and output cor-
responds to the case loss of operating mode control, since the energy transport cannot
be disconnected. The failure mode decreased energy flow efficiency is already considered
by the time-dependent energy flow efficiency matrix η{sw}pl , which is permanently updated
according to the power switch diagnostic data. The failure mode short circuit to ground
at power switch input or output (external short circuit to ground) is covered by the time-
dependent state variable S{k}spn modeling the operational state of subpowernet k, which
is set to 0 in case of a short circuit to ground in subpowernet k. Using the equations
presented in this subsection, the behavioral model of a single power switch according to
the generic description in Section 5.4.1 can be implemented.

5.5. Prediction of Battery Remaining Discharge Energy
One of the main goals for the control of fail-operational powernets is to guarantee reliable
power supply for safety-critical functions during the entire driving mission. Based on the
predictive estimation of the energy demand and available energy resources, an optimal
energy distribution strategy is found by solving the mixed-integer optimization problem as
presented in Section 5.1. Accurate prediction of the energy demand and available energy
resources is of high importance for the concept of safety-based range extension, meaning
the arrival of the vehicle at the safest possible location for the passengers.

Different methods estimating the remaining discharge energy of the battery exist. The
energy counting method is based on the estimation of the initial available energy and
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Figure 5.14.: Battery model used for the prediction of remaining discharge energy.

online counting of used energy by digital integration [113]. Due to inaccuracy by accu-
mulating the measurement errors, additional recalibration using a look-up table can be
added [113]. The remaining discharge energy is also dependent on the discharge power
[101], which adds additional inaccuracy to the energy counting method. The accuracy
can be increased by predicting the future battery states, parameters and discharge curve
[101, 113]. For the model predictive estimation of the remaining discharge energy, dif-
ferent battery models, e.g. electrochemical, neural network or equivalent circuit models
[113] can be used.

The estimation of the remaining discharge energy is required for the solution of the mixed-
integer energy distribution optimization used for the control of a fail-operational powernet.
Therefore, accurate and fast online estimation with low computational effort is required
considering also the possible battery failure states. The battery model used for the pre-
diction is presented in Section 5.5.1. The algorithm for the prediction of the remaining
discharge energy for a constant discharge power is explained in Section 5.5.2. The pro-
posed algorithm for the online approximation of the remaining discharge energy as a
function of discharge power is presented in Section 5.5.3.

5.5.1. Battery Model for Prediction of Remaining Discharge Energy

The prediction of the remaining discharge energy for the control of the powernet is based
on an equivalent circuit model consisting of an open circuit voltage source Vbat.oc and
battery internal resistance Rbat.in as depicted in Fig. 5.14. The battery internal resistance
models the sum of the ohmic resistance, charge-transfer and diffusion resistance [29].
For modeling possible battery failures resulting in an increase of the internal resistance,
the time-dependent scaling factor cbat.rin (cbat.rin > 1) is used, which can be estimated
by applying diagnostic methods (e.g. State of Health (SoH) monitoring). Using the
definitions above and by denoting the battery output current with Ibat, the battery output
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voltage Vbat can be calculated as:

Vbat(t) = Vbat.oc(t)− cbat.rin(t)Rbat.in(t) Ibat(t) (5.128)

As depicted on the right side of Fig. 5.14, the battery parameters Vbat.oc and Rbat.in are
obtained by using look-up functions. The battery open circuit voltage Vbat.oc is estimated
with a 2D-LUT as a function of current battery state of charge SoC 0 (SoC 0 = SoC(t0))
and battery temperature Tbat0 (Tbat0 = Tbat(t0)) as:

Vbat.oc(t0) = LUTbat.oc (SoC 0, Tbat0) (5.129)

The internal resistance Rbat.in is estimated with a 3D-look-up-table as a function of bat-
tery state of charge SoC 0, temperature Tbat0 and output current Ibat0 (Ibat0 = Ibat(t0)) as:

Rbat.in(t0) = LUTbat.rin (SoC 0, Tbat0, Ibat0) (5.130)

Battery discharge or charge power Pbat is defined as:

Pbat(t) = Vbat(t)Ibat(t) (5.131)

Using (5.128) and (5.131), the output voltage Vbat can be expressed as a function of bat-
tery output power Pbat [29]:

Vbat(t) = Vbat.oc(t)
2 +

√
Vbat.oc(t)2 − cbat.rin(t)Rbat.in(t)Pbat(t)

2 (5.132)

The corresponding battery output current Ibat can be then calculated as [29]:

Ibat(t) =
Vbat.oc(t)−

√
Vbat.oc(t)2 − cbat.rin(t)Rbat.in(t)Pbat(t)

2 cbat.rin(t)Rbat.in(t) (5.133)

Assuming a given state of charge at time instant t0, the battery state of charge can
be expressed as a function of the output current and battery initial capacity Qbat0 as
[29, 114, 115]:

SoC(t) = SoC(t0)− 1
cbat.q0(t)Qbat0

∫ t

t0
Ibat(τ) dτ for cbat.q0 ∈ (0..1] (5.134)

In (5.134), an additional time-dependent scaling factor cbat.q0 (cbat.q0 ∈ (0..1]) is added for
modeling possible battery faults resulting in the decrease of the initial battery capacity
Qbat0. The failure mode internal short circuit to ground is modeled already by the oper-
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ational state variable S{i}spn, which is set to 0 in case of a short circuit in subpowernet i.
Assuming an automated disconnection of the battery in case of a battery internal short
circuit to ground, the time-dependent scaling factor cbat.q0 can be set to 0 and the battery
state of charge to the minimum discharge threshold SoC min. In this case, as it will be
shown in (5.143) and (5.147), the battery remaining discharge energy equals to 0. Using
(5.134), the battery current can be also expressed as a function of the state of charge:

Ibat(t) = −cbat.q0(t)Qbat0
d
dtSoC(t) (5.135)

The battery remaining discharge energy can be defined as the integral of battery output
power starting from t0 and ending at the time instant t0 + dT dcha, at which the minimum
allowed state of charge threshold SoC min is reached:

Erde =
∫ t0+dTdcha

t0
Pbat(t) dt =

∫ t0+dTdcha

t0
Vbat(t) Ibat(t) dt (5.136)

Using the battery model as described above, the battery output voltage Vbat and current
Ibat can be expressed as a function of the battery state of charge SoC. The equation for
estimation of Erde can be then rewritten as:

Erde = −cbat.q0(t)Qbat0

∫ t0+dTdcha

t0
Vbat (SoC(t))

(
d
dtSoC(t)

)
dt (5.137)

By substituting SoC(t) = SoC and by denoting SoC(t0) and SoC(t0 +dT dcha) with SoC 0

and SoC min, the battery remaining discharge energy can be defined as:

Erde = cbat.q0(t)Qbat0

∫ SoC0

SoCmin
Vbat(SoC) dSoC (5.138)

An online algorithm for accurate model predictive estimation of Erde based on (5.138) is
presented in the next subsection.

5.5.2. Prediction with Constant Discharge Power

Using the battery model as presented in Section 5.5.1, the battery output voltage Vbat

can be estimated as a function of the state of charge. For a given battery output power
Pbat, Vbat can be calculated for the interval between minimum state of charge threshold
SoC min and the current state of charge value SoC 0. By assuming nsoc breakpoints, the
i-th element of the nsoc-by-1 state of charge column vector SoC can be defined as:

93



Chapter 5. Energy Distribution Optimization

Figure 5.15.: Prediction of remaining discharge energy at constant output power.

SoC {i} = SoC min + (i − 1) SoC 0 − SoC min

nsoc − 1 with i ∈ {1..nsoc} (5.139)

For each of the state of charge breakpoints, the battery model can be calculated obtaining
nsoc-by-1 column vectors for battery open circuit voltage V bat.oc, current Ibat0, internal
resistance Rbat.in and using (5.132) for battery output voltage V bat with i ∈ {1..nsoc}:

V bat.oc{i} = LUTbat.oc(SoC {i}, Tbat0) (5.140a)

Ibat0{i} ≈
Pbat

V bat.oc{i}
(5.140b)

Rbat.in{i} = LUTbat.rin(SoC {i}, Tbat0, Ibat0{i}) (5.140c)

V bat{i} = 1
2 V bat.oc{i} + 1

2
√

V 2
bat.oc{i} −Rbat.in{i}Pbat (5.140d)

Since the battery internal resistance Rbat.in is a function of the battery current and the
battery current is a function of the battery resistance according to (5.133), an iterative
calculation for the estimation of the battery current for a given discharge power Pbat

and state of charge would be required. Therefore, by neglecting the battery resistance,
the battery current for the look-up of battery resistance is approximated as defined in
(5.140c). As depicted in Fig. 5.15, the delta battery discharge energy dErde{i} in interval
i can be calculated as:

dErde{i} = SoC 0 − SoC min

nsoc − 1
V bat{i} + V bat{i+1}

2 with i ∈ {1..nsoc − 1} (5.141)

The energy which can be depleted while discharging the battery from the current state of
charge SoC 0 to the minimum discharge threshold SoC min for a given constant discharge
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Figure 5.16.: Prediction of remaining discharge energy as a function of output power.

power Pbat can be then calculated as:

Erde|Pbat=const. =
nsoc−1∑

i=1
dErde{i} = SoC 0 − SoC min

nsoc − 1

nsoc−1∑
i=1

V bat{i} + V bat{i+1}

2 (5.142)

By denoting the 1-by-nsoc row vector with each element equal to 1 by 1, the equation for
the calculation of the remaining discharge energy Erde can be rewritten in the following
matrix notation form:

Erde|Pbat=const. = SoC 0 − SoC min

nsoc − 1

(
1 · V bat −

V bat{1} + V bat{nsoc}

2

)
(5.143)

Based on the estimation of the battery remaining discharge energy for a constant discharge
power, the presented algorithm is extended for the approximation of the remaining dis-
charge energy as a linear function of the discharge power in the next subsection.

5.5.3. Approximation as a Function of Discharge Power

Using linear approximation of the remaining discharge energy Erde as a function of the
battery discharge power Pbat as proposed in (5.18), an optimal discharge strategy for
powernet topologies with multiple batteries can be obtained by solving the energy distri-
bution optimization defined in (5.31). For this, in the first step, the remaining discharge
energy can be estimated for a set of different discharge power values using the algorithm
presented in Section 5.5.2. In the second step, using the least square minimization, the
parameters Erde0 and arde can be estimated.

For the estimation of the remaining discharge energy for a given discharge power, nsoc

breakpoints stored in the state of charge vector SoC as defined in (5.139) are used. The
remaining discharge energy is estimated for npbat linearly distributed breakpoints between
the minimum (Pbat.min) and maximum (Pbat.max) allowed or expected discharge power. The
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j-th element of the 1-by-npbat discharge power row vector Pbat can be defined as:

Pbat{j} = Pbat.min + (j − 1) Pbat.max − Pbat.min

npbat − 1 with j ∈ {1..npbat} (5.144)

For each of the state of charge and discharge power breakpoints, the battery model can
be calculated obtaining nsoc-by-1 column vector V bat.oc for battery open circuit voltage
and nsoc-by-npbat matrices for battery current Ibat0, internal resistance Rbat.in and using
(5.132) for battery output voltage V bat with i ∈ {1..nsoc} and j ∈ {1..npbat}:

V bat.oc{i} = LUTbat.oc(SoC {i}, Tbat0) (5.145a)

Ibat0{i,j} ≈
Pbat{j}

V bat.oc{i}
(5.145b)

Rbat.in{i,j} = LUTbat.rin(SoC {i}, Tbat0, Ibat0{i,j}) (5.145c)

V bat{i,j} = 1
2 V bat.oc{i} + 1

2
√

V 2
bat.oc{i} −Rbat.in{i,j}Pbat{j} (5.145d)

The remaining discharge energy Erde{j} for the j-th breakpoint of Pbat{j} is calculated as:

Erde{j}

∣∣∣
Pbat=Pbat{j}

= SoC 0 − SoC min

nsoc − 1

nsoc−1∑
i=1

V bat{i,j} + V bat{i+1,j}

2 (5.146)

By denoting the 1-by-nsoc row vector with all elements equal to 1 by 1 and the i-th row of
the nsoc-by-npbat matrix V bat by V bat〈i〉, the 1-by-npbat remaining discharge energy vector
Erde can be calculated as:

Erde = SoC 0 − SoC min

nsoc − 1

(
1 · V bat −

V bat〈1〉 + V bat〈nsoc〉

2

)
(5.147)

Using the method of least squares, the objective function for the estimation of the pa-
rameters arde and Erde0 for linear approximation can be defined as:

fbat.lsm(Erde0, arde) =
npbat∑
j=1

(
Erde0 − ardePbat{j} − Erde{j}

)2
(5.148)

The optimal approximation parameters arde and Erde0 are obtained by unconstrained min-
imization of the least squares objective:

(Erde0, arde) = min
(Erde0,arde)

fbat.lsm(Erde0, arde) (5.149)

For online estimation, analytical solution for the least squares minimization can be used:
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(
Erde0 arde

)T
= A−1

lsm · blsm (5.150)

By denoting the npbat-by-1 column vector with all elements equal to 1 by 1, the corre-
sponding matrix Alsm is defined as:

Alsm =
 npbat −∑npbat

j=1 Pbat{j}

−∑npbat
j=1 Pbat{j}

∑npbat
j=1 (Pbat{j})2

 =
 npbat −P bat · 1
−P bat · 1 P bat · PT

bat

 (5.151)

By denoting the npbat-by-1 column vector with all elements equal to 1 by 1, the corre-
sponding vector blsm is defined as:

blsm =
 ∑npbat

j=1 Erde{j}

−∑npbat
j=1 Erde{j}Pbat{j}

 =
 Erde · 1
−P bat · ET

rde

 (5.152)

In the following section, simulation results verifying the accuracy of the proposed algo-
rithm for the prediction of the remaining discharge energy at runtime are presented.

5.6. Simulation Results for Battery Remaining Discharge
Energy Prediction

For the prediction of the remaining discharge energy of a battery two approaches were
proposed in Section 5.5.2 and 5.5.3. In the first approach, the battery remaining discharge
energy Erde is estimated for a constant discharge power Pbat. In the second approach,
the battery remaining discharge energy Erde is linearly approximated as a function of
the discharge power Pbat using the approximation parameters Erde0 and arde. In the
following, simulation results verifying the accuracy of the proposed algorithms as well
as their capability to be executed at runtime are provided for three different types of
batteries, namely for HV and 48 V lithium-ion and for 12 V lead-acid battery.

5.6.1. Examples for Prediction with Constant Discharge Power

For each battery type the remaining discharge energy Erde.qs for a set of different dis-
charge power values Pbat is estimated using the quasistatic approach with the calculation
time step dTqs = 0.1 s. The results are summarized in Tables 5.1, 5.4 and 5.7, which are
used as a reference for the estimation of the prediction algorithm accuracy for different
numbers nsoc of state of charge breakpoints as presented in Section 5.5.2. The accuracy
of the prediction algorithm is summarized in Tables 5.2, 5.5 and 5.8 and is calculated as
a relative deviation of predicted remaining discharge energy Erde.pred to the value Erde.qs
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estimated with the quasistatic approach:

∆Erde = Erde.qs − Erde.pred

Erde.qs
(5.153)

High Voltage Lithium-Ion Battery

In Table 5.1, the remaining discharge energy EHV
rde.qs of a HV lithium-ion battery is cal-

culated for five breakpoints of discharge power PHV
bat at temperature THV

bat0 = 25◦C. The
nominal battery capacity QHV

bat0 equals approx. 63 Ah with a nominal voltage of approx.
355 V. The remaining discharge energy is estimated for a battery discharge from the initial
state of charge SoC HV

0 = 90 % to the minimum user defined threshold SoC HV
min = 10 %.

Table 5.1.: Estimation of Erde with quasistatic approach for HV battery.
PHV

bat 10 kW 25 kW 40 kW 55 kW 70 kW
EHV

rde.qs 18.59 kWh 18.30 kWh 17.99 kWh 17.68 kWh 17.35 kWh

As expected, the battery remaining discharge battery EHV
rde.qs is decreasing with the in-

creasing discharge power PHV
bat . Using different numbers of breakpoints nsoc for the state

of charge vector SoC , the predicted remaining discharge energy EHV
rde.pred is estimated with

the algorithm presented in Section 5.5.2. The relative deviation ∆EHV
rde of EHV

rde.pred to
EHV

rde.qs as defined in (5.153) is given in Table 5.2.

Table 5.2.: Accuracy of prediction for Erde for HV battery.
∆EHV

rde PHV
bat = 10 kW PHV

bat = 25 kW PHV
bat = 40 kW PHV

bat = 55 kW PHV
bat = 70 kW

nsoc = 10 0.037 h 0.063 h 0.095 h 0.132 h 0.180 h

nsoc = 20 0.050 h 0.073 h 0.099 h 0.127 h 0.161 h

nsoc = 30 0.015 h 0.026 h 0.039 h 0.052 h 0.069 h

nsoc = 40 0.014 h 0.017 h 0.022 h 0.027 h 0.034 h

nsoc = 50 0.002 h 0.005 h 0.008 h 0.011 h 0.016 h

It can be seen that the prediction accuracy of the proposed algorithm is very high and
increases with the increasing number of breakpoints for the state of charge vector SoC
almost for all considered values for the battery discharge power PHV

bat . The corresponding
calculation time dT HV

eval required for the prediction is given in Table 5.3. For the estimation
of the battery open circuit voltage and internal resistance, a 2D look-up table as a function
of state of charge and temperature is used.

The calculation time dT HV
eval is estimated using the MATLAB functions tic and toc as the

average out of 1000 runs on an Intel i7 CPU. It can be seen that with increasing number
of breakpoints nsoc for state of charge vector SoC , also the calculation time dT HV

eval slightly

98



5.6. Simulation Results for Battery Remaining Discharge Energy Prediction

Table 5.3.: Calculation time required for prediction of Erde for HV battery.
dT HV

eval PHV
bat = 10 kW PHV

bat = 25 kW PHV
bat = 40 kW PHV

bat = 55 kW PHV
bat = 70 kW

nsoc = 10 39.82µs 39.11µs 38.97µs 38.76µs 38.80µs
nsoc = 20 40.03µs 39.83µs 39.71µs 39.59µs 39.56µs
nsoc = 30 40.89µs 40.87µs 40.64µs 40.86µs 40.90µs
nsoc = 40 43.20µs 42.93µs 42.80µs 42.94µs 42.76µs
nsoc = 50 44.22µs 44.11µs 44.33µs 44.29µs 44.13µs

increases. For all values for discharge power PHV
bat and number of breakpoints nsoc, a

calculation time less than 45µs is achieved, making the proposed algorithm very well
suited for the implementation and execution at runtime in embedded systems.

48V Lithium-Ion Battery

In Table 5.4, the remaining discharge energy E48V
rde.qs of a 48V lithium-ion battery is cal-

culated for five breakpoints of discharge power P48V
bat at temperature T 48V

bat0 = 25 ◦C. The
nominal battery capacity Q48V

bat0 equals approx. 300 Ah with a nominal voltage of approx.
48 V. The remaining discharge energy is estimated for a battery discharge from the initial
state of charge SoC 48V

0 = 90 % to the minimum user defined threshold SoC 48V
min = 15 %.

Table 5.4.: Estimation of Erde with quasistatic approach for 48V battery.
P48V

bat 4 kW 8 kW 12 kW 16 kW 20 kW
E48V

rde.qs 10.84 kWh 10.63 kWh 10.41 kWh 10.20 kWh 9.99 kWh

Again, the battery remaining discharge energy E48V
rde.qs is decreasing with the increasing

discharge power P48V
bat . Using different numbers of breakpoints nsoc for the state of charge

vector SoC , the predicted remaining discharge energy E48V
rde.pred is estimated and the relative

deviation ∆E48V
rde of E48V

rde.pred to E48V
rde.qs as defined in (5.153) is given in Table 5.5.

Table 5.5.: Accuracy of prediction for Erde for 48V battery.
∆E48V

rde P48V
bat = 4 kW P48V

bat = 8 kW P48V
bat = 12 kW P48V

bat = 16 kW P48V
bat = 20 kW

nsoc = 10 0.890 h 1.295 h 2.016 h 3.105 h 4.672 h

nsoc = 20 0.485 h 0.339 h 0.641 h 1.241 h 2.310 h

nsoc = 30 0.391 h 0.174 h 0.394 h 0.894 h 1.864 h

nsoc = 40 0.389 h 0.190 h 0.416 h 0.918 h 1.878 h

nsoc = 50 0.383 h 0.164 h 0.378 h 0.867 h 1.813 h

Also in this example, the prediction accuracy of the proposed algorithm is very high and
increases with the increasing number of breakpoints for state of charge vector SoC almost
for all considered values for the discharge power P48V

bat . The corresponding calculation
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time dT 48V
eval required for the prediction is given in Table 5.6, which is estimated using

the MATLAB functions tic and toc as the average out of 1000 runs on an Intel i7 CPU.
For the estimation of the open circuit voltage, a 2D look-up table as a function of state
of charge and temperature is used. For the estimation of the internal resistance, a 3D
look-up table as a function of state of charge, temperature and battery current is used.

Table 5.6.: Calculation time required for prediction of Erde for 48V battery.
dT 48V

eval P48V
bat = 4 kW P48V

bat = 8 kW P48V
bat = 12 kW P48V

bat = 16 kW P48V
bat = 20 kW

nsoc = 10 56.51µs 57.09µs 56.84µs 57.21µs 57.73µs
nsoc = 20 58.11µs 59.85µs 59.69µs 59.64µs 59.74µs
nsoc = 30 59.26µs 60.80µs 61.28µs 62.11µs 62.19µs
nsoc = 40 62.65µs 63.90µs 64.75µs 65.49µs 65.34µs
nsoc = 50 65.29µs 67.17µs 67.59µs 68.45µs 68.80µs

It can be seen that with increasing number of breakpoints nsoc for state of charge vector
SoC , also the calculation time dT 48V

eval slightly increases. For all values for discharge
power P48V

bat and number of breakpoints nsoc, a calculation time less than 70µs is achieved,
making the proposed algorithm very well suited for implementation in real-time embedded
systems. The higher computational time compared to the HV battery can be explained
by the additional dimension in the look-up table for the estimation of battery resistance.

12V Lead-Acid Battery

In Table 5.7, the remaining discharge energy E12V
rde.qs of a 12V lead-acid battery is calculated

for five breakpoints of discharge power P12V
bat at temperature T 12V

bat0 = 25 ◦C. The nominal
battery capacity Q12V

bat0 equals approx. 30 Ah with a nominal voltage of approx. 12 V. The
remaining discharge energy is estimated for a battery discharge from the initial state of
charge SoC 12V

0 = 90 % to the minimum user defined threshold SoC 12V
min = 30 %.

Table 5.7.: Estimation of Erde with quasistatic approach for 12V battery.
P12V

bat 0.2 kW 0.4 kW 0.6 kW 0.8 kW 1.0 kW
E12V

rde.qs 0.207 kWh 0.202 kWh 0.198 kWh 0.193 kWh 0.186 kWh

Also in this example, the battery remaining discharge energy E12V
rde.qs is decreasing with the

increasing discharge power P12V
bat . The relative deviation ∆E12V

rde of the predicted discharge
energy E12V

rde.pred to E12V
rde.qs as defined in (5.153) is given in Table 5.8.

Also in this example, a very high prediction accuracy is achieved. The corresponding
calculation time dT 12V

eval required for the prediction is given in Table 5.9, which is estimated
using the MATLAB functions tic and toc as the average out of 1000 runs on an Intel i7
CPU. For the estimation of battery open circuit voltage, a 2D look-up table as a function
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Table 5.8.: Accuracy of prediction for Erde for 12V battery.
∆E12V

rde Pbat = 0.2 kW Pbat = 0.4 kW Pbat = 0.6 kW Pbat = 0.8 kW Pbat = 1.0 kW
nsoc = 10 0.426 h 0.913 h 1.230 h −0.119 h −0.819 h

nsoc = 20 0.420 h 0.887 h 1.163 h −0.278 h −1.138 h

nsoc = 30 0.419 h 0.880 h 1.147 h −0.300 h −1.168 h

nsoc = 40 0.418 h 0.878 h 1.143 h −0.303 h −1.168 h

nsoc = 50 0.418 h 0.878 h 1.142 h −0.308 h −1.180 h

of state of charge and temperature is used. For the estimation of internal resistance, a 3D
look-up table as a function of state of charge, temperature and battery current is used.

Table 5.9.: Calculation time required for prediction of Erde for 12V battery.
dT 12V

eval Pbat = 0.2 kW Pbat = 0.4 kW Pbat = 0.6 kW Pbat = 0.8 kW Pbat = 1.0 kW
nsoc = 10 64.75µs 63.35µs 63.23µs 63.95µs 63.41µs
nsoc = 20 65.76µs 66.10µs 65.98µs 66.50µs 66.33µs
nsoc = 30 67.77µs 68.66µs 68.51µs 69.37µs 69.29µs
nsoc = 40 71.71µs 72.65µs 72.75µs 73.79µs 73.87µs
nsoc = 50 74.71µs 76.23µs 76.27µs 77.69µs 77.51µs

It can be seen that with increasing number of breakpoints nsoc for state of charge vector
SoC , also the calculation time dT 12V

eval slightly increases. For all values for discharge power
P12V

bat and number of breakpoints nsoc, a calculation time less than 80µs is achieved. The
higher computational time compared to the 48V battery can be explained by the structure
and number of breakpoints in the battery current vector for 3D look-up for the estimation
of internal resistance and required iterations by the look-up function.

5.6.2. Examples for Approximation as a Function of Discharge Power

For the linear approximation of the battery remaining discharge energy Erde as a function
of discharge power Pbat as presented in Section 5.5.3, different values for the number nsoc

of breakpoints for state of charge and number npbat of breakpoints for discharge power can
be used. For the estimation of approximation accuracy, the coefficient of determination
R2 describing the quality of model fit [116] is calculated. With the estimated parame-
ters Erde0 and arde, the j-th element Erde.apprx{j} of the approximated battery remaining
discharge energy vector Erde.apprx (model data) for the battery discharge power Pbat{j} is
defined as:

Erde.apprx{j} = Erde0 − arde Pbat{j} (5.154)
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The average battery remaining discharge energy Erde.avg is defined as the average value of
the vector Erde (reference data):

Erde.avg = 1
jmax

jmax∑
j=1

Erde{j} (5.155)

The coefficient of determination R2 is then defined as [116]:

R2 = 1−
∑jmax

j=1

(
Erde{j} − Erde.apprx{j}

)2

∑jmax
j=1

(
Erde{j} − Erde.avg

)2 (5.156)

The coefficients of determination calculated for each combination of nsoc and npbat for
each battery type are summarized in Tables 5.10, 5.14 and 5.12 and the corresponding
calculation times dT eval required for the approximation in Tables 5.11, 5.13 and 5.15.

High Voltage Lithium-Ion Battery

For the approximation of the battery remaining discharge energy as a function of discharge
power, the same high voltage battery as in Section 5.6.1 with a nominal capacity QHV

bat0

equal to approx. 63 Ah and nominal voltage approx. 355 V is used in this example. For
the estimation of the parameters EHV

rde0 and aHV
rde as proposed in Section 5.5.3, the maximum

battery discharge power PHV
bat.max is set to 70 kW and minimum discharge power PHV

bat.min to
0 W. The minimum (SoC HV

min) and initial (SoC HV
0 ) state of charge values are set to 10 %

and to 90 %, the battery temperature THV
bat0 to 25 ◦C.

For the estimation of the reference data EHV
rde{j} for each discharge power PHV

bat{j}, the
algorithm proposed in Section 5.5 with nsoc = 1000 breakpoints is applied. The reference
data is calculated for jmax = 100 equally distributed discharge power breakpoints between
PHV

bat.min and PHV
bat.max. The coefficient of determination R2 for the linear approximation of

remaining discharge energy using the assumptions above is given in Table 5.10.

Table 5.10.: R2 for linear approximation of Erde for HV battery.
R2 npbat = 10 npbat = 20 npbat = 30 npbat = 40 npbat = 50

nsoc = 10 99.944 % 99.948 % 99.949 % 99.949 % 99.950 %
nsoc = 20 99.944 % 99.948 % 99.949 % 99.949 % 99.950 %
nsoc = 30 99.948 % 99.950 % 99.951 % 99.951 % 99.951 %
nsoc = 40 99.948 % 99.951 % 99.951 % 99.951 % 99.951 %
nsoc = 50 99.949 % 99.951 % 99.951 % 99.951 % 99.952 %

It can be seen that for all combinations of the numbers of breakpoints in state of charge
vector (nsoc) and discharge power (npbat) the corresponding coefficients of determination
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(R2) are very close to 100 %. A slight increase in R2 can be observed for increasing nsoc

and npbat. The computational time required for the estimation of the linear approximation
parameters EHV

rde0 and aHV
rde is given in Table 5.11, which is estimated using the MATLAB

functions tic and toc as the average out of 1000 runs on an Intel i7 CPU. For the estimation
of open circuit voltage and internal resistance, a 2D look-up table as a function of state
of charge and temperature is used.

Table 5.11.: Calculation time for linear approximation of Erde for HV battery.
dT HV

eval npbat = 10 npbat = 20 npbat = 30 npbat = 40 npbat = 50
nsoc = 10 101.57µs 104.54µs 119.31µs 125.70µs 131.96µs
nsoc = 20 105.12µs 124.95µs 136.66µs 149.63µs 161.58µs
nsoc = 30 119.56µs 135.98µs 153.79µs 169.84µs 187.74µs
nsoc = 40 126.54µs 149.28µs 170.66µs 193.12µs 217.06µs
nsoc = 50 133.30µs 162.17µs 188.88µs 218.89µs 252.38µs

It can be seen that the calculation time increases with the increasing number of break-
points in state of charge (nsoc) and discharge power (npbat) vectors used for the approxi-
mation of parameters EHV

rde0 and aHV
rde . For all combinations a computational time less than

255µs can be achieved, making the proposed approximation algorithm very well suited
the implementation and execution at runtime in embedded systems.

48V Lithium-Ion Battery

For the approximation of the battery remaining discharge energy as a function of dis-
charge power, the same 48V battery as in Section 5.6.1 with a nominal capacity Q48V

bat0

equal to approx. 300 Ah and nominal voltage approx. 48 V is used. For the estimation
of the parameters E48V

rde0 and a48V
rde as proposed in Section 5.5.3, the maximum battery dis-

charge power P 48V
bat.max is set to 20 kW and minimum discharge power P 48V

bat.min to 0 W. The
minimum (SoC 48V

min) and initial (SoC 48V
0 ) state of charge values are set to 15 % and to

90 %, the battery temperature T 48V
bat0 to 25 ◦C.

The reference data E48V
rde{j} for each discharge power P48V

bat{j} is estimated for nsoc = 1000
breakpoints with the algorithm presented in Section 5.5. It is calculated for jmax =
100 equally distributed discharge power breakpoints between P 48V

bat.min and P 48V
bat.max. The

coefficient of determination R2 for the linear approximation of the remaining discharge
energy using the assumptions above is given in Table 5.12.

Again, for all combinations of the numbers of breakpoints in state of charge (nsoc) and
discharge power (npbat) vector, the corresponding coefficients of determination (R2) are
very close to 100 %. A slight increase in R2 can be observed for increasing nsoc and
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Table 5.12.: R2 for linear approximation of Erde for 48V battery.
R2 npbat = 10 npbat = 20 npbat = 30 npbat = 40 npbat = 50

nsoc = 10 99.704 % 99.702 % 99.702 % 99.702 % 99.702 %
nsoc = 20 99.985 % 99.985 % 99.985 % 99.985 % 99.985 %
nsoc = 30 99.995 % 99.995 % 99.996 % 99.996 % 99.996 %
nsoc = 40 99.995 % 99.995 % 99.995 % 99.995 % 99.995 %
nsoc = 50 99.995 % 99.996 % 99.996 % 99.996 % 99.996 %

npbat. The computational time required for the estimation of the linear approximation
parameters E48V

rde0 and a48V
rde is given in Table 5.13, which is estimated using the MATLAB

functions tic and toc as the average out of 1000 runs on an Intel i7 CPU. For the estimation
of open circuit voltage, a 2D look-up table as a function of state of charge and temperature
is used. For the estimation of internal resistance, a 3D look-up table as a function of state
of charge, temperature and battery current is used.

Table 5.13.: Calculation time for linear approximation of Erde for 48V battery.
dT 48V

eval npbat = 10 npbat = 20 npbat = 30 npbat = 40 npbat = 50
nsoc = 10 136.24µs 136.21µs 159.38µs 172.89µs 186.76µs
nsoc = 20 136.37µs 172.41µs 201.97µs 231.16µs 259.03µs
nsoc = 30 159.11µs 201.48µs 245.00µs 285.14µs 327.30µs
nsoc = 40 174.43µs 232.03µs 285.64µs 339.73µs 397.50µs
nsoc = 50 189.00µs 260.85µs 329.73µs 398.89µs 479.39µs

It can be seen that the calculation time increases with the increasing number of break-
points in state of charge (nsoc) and discharge power (npbat) vectors used for the approxi-
mation of parameters E48V

rde0 and a48V
rde . For all combinations a computational time less than

480µs is achieved. The higher computational time compared to the HV battery is caused
by the additional dimension in the look-up table for the estimation of battery resistance.

12V Lead-Acid Battery

In this example, the same 12V battery as in Section 5.6.1 with a nominal capacity Q12V
bat0

equal to approx. 30 Ah and nominal voltage approx. 12 V is used. For the estimation of
the parameters E12V

rde0 and a12V
rde , the maximum (P 12V

bat.max) and minimum (P 12V
bat.min) battery

discharge power is set to 1 kW and 0 W. The minimum (SoC 12V
min) and initial (SoC 12V

0 )
state of charge values are set to 30 % and to 90 %, the battery temperature T 48V

bat0 to 25 ◦C.

For the estimation of the reference data E12V
rde{j} for each discharge power P12V

bat{j}, the
algorithm proposed in Section 5.5 with nsoc = 1000 breakpoints is applied. The reference
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data is calculated for jmax = 100 equally distributed discharge power breakpoints between
P 12V

bat.min and P 12V
bat.max. The coefficient of determination R2 for linear approximation of

remaining discharge energy using the assumptions above is given in Table 5.14.

Table 5.14.: R2 for linear approximation of Erde for 12V battery.
R2 npbat = 10 npbat = 20 npbat = 30 npbat = 40 npbat = 50

nsoc = 10 99.408 % 99.521 % 99.538 % 99.543 % 99.545 %
nsoc = 20 99.421 % 99.528 % 99.542 % 99.547 % 99.548 %
nsoc = 30 99.423 % 99.528 % 99.543 % 99.547 % 99.548 %
nsoc = 40 99.423 % 99.528 % 99.543 % 99.547 % 99.548 %
nsoc = 50 99.423 % 99.529 % 99.543 % 99.547 % 99.548 %

Again, for all combinations of the numbers of breakpoints in state of charge vector (nsoc)
and discharge power (npbat) the corresponding coefficients of determination (R2) are very
close to 100 %. A slight increase in R2 can be observed for increasing nsoc and npbat. The
computational time required for the estimation of the linear approximation parameters
E12V

rde0 and a12V
rde is given in Table 5.15, which is estimated using the MATLAB functions tic

and toc as the average out of 1000 runs on an Intel i7 CPU. For the estimation of open
circuit voltage, a 2D look-up table as a function of state of charge and temperature is
used. For the estimation of battery internal resistance, a 3D look-up table as a function
of state of charge, temperature and battery current is used.

Table 5.15.: Calculation time for linear approximation of Erde for 12V battery.
dT 12V

eval npbat = 10 npbat = 20 npbat = 30 npbat = 40 npbat = 50
nsoc = 10 136.23µs 150.89µs 178.76µs 198.53µs 218.66µs
nsoc = 20 151.36µs 197.77µs 238.91µs 280.78µs 319.72µs
nsoc = 30 179.88µs 238.71µs 300.12µs 358.68µs 418.12µs
nsoc = 40 200.26µs 279.16µs 358.91µs 436.99µs 518.83µs
nsoc = 50 220.78µs 320.73µs 419.46µs 520.09µs 631.19µs

It can be seen that the calculation time increases with the increasing number of break-
points in state of charge (nsoc) and discharge power (npbat) vectors used for the approx-
imation of parameters E12V

rde0 and a12V
rde . For all combinations the computational time less

than 635µs is achieved. The higher computational time compared to the 48V battery
is again caused by the number of iterations required by the look-up function for estima-
tion of battery internal resistance due to the number and structure of breakpoints in the
battery current vector.
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Figure 5.17.: Fail-operational powernet topology with 48V (red) and 12V (blue).

5.7. Simulation Results for Energy Distribution
Two different approaches for the energy distribution optimization used for control of the
vehicle powernet were proposed in Section 5.1.3 and 5.1.4. By solving the mixed-integer
energy distribution optimization problem as defined in the first approach (Version 1),
optimal paths for energy distribution as well as the optimal energy amount that should
be exchanged between the subpowernets for increasing the overall powernet efficiency
are found. By solving the mixed-integer optimization problem as defined in the second
approach (Version 2), additionally the discharge efficiency of the batteries is considered
and the optimal multiple battery discharge strategy is found. In this section, simulation
results exemplifying the functionality of the proposed energy distribution optimization
approaches and verifying their capability to be executed at runtime in embedded systems
are provided. In Section 5.7.1, the continuous energy distribution for a fail-operational
powernet topology consisting of 5 subpowernets using the non-linear and linear program-
ming models according to Section 5.3 are exemplified. In Section 5.7.2, the mixed-integer
energy distribution optimization for finding the optimal operating mode vector for power-
links is exemplified for a fail-operational powernet topology consisting of 4 subpowernets.

5.7.1. Example for Continuous Energy Distribution

The fail-operational powernet topology used for the simulation in this section consists
of 5 subpowernets as depicted in Fig. 5.17. The level of power supply for subpowernets
1, 2 and 5 is assumed to be 48 V and 12 V for subpowernets 3 and 4. The 48 V loads
R{1}load and R{2}load are assumed to be symmetrical in energy consumption and functionality,
totaling for example 48 V propulsion and comfort loads each. If one load fails, the required
functionality can be still provided in degraded mode by the other load. The average power
consumption P{1}load and P{2}load of R{1}load and R{2}load for the analysis in this subsection is assumed
to be 4000 W. The load R{5}load of the 48 V subpowernet 5 models an asymmetrical high
power comfort load, e.g. air conditioning, which can be supplied by either traction battery
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B{1} or B{2} and does not require redundancy in functionality. Therefore, for enabling the
functionality in case of a failure in subpowernet 1 or 2 and for state of charge balancing
of the batteries B{1} and B{2}, the load R{5}load is supplied via a toggle switch, which can be
also operated in PWM. The efficiency η{1,5}pl of the energy flow from subpowernet 1 to 5
is assumed to be constant and equal to 90 %, and the efficiency η{2,5}pl from subpowernet
2 to 5 is equal to 80 %.

The 12 V loads R{3}load and R{4}load are also assumed to be symmetrical in energy consumption
and functionality, totaling for example safety-critical 12 V braking and steering loads. If
one load fails, the required functionality can be still provided in degraded mode by the
other load. The average power consumption P{3}load and P{4}load of R{3}load and R{4}load for the
analysis in this subsection is set to 1200 W. The loads R{3}load and R{4}load can be supplied
by the traction battery B{1} and B{2} via the DC/DC converters and also directly from
the batteries B{3} and B{4}, which can be used for voltage stability in the corresponding
subpowernets and which maintain the degraded functionality of safety-critical loads R{3}load

and R{4}load in case of a failure in subpowernets 1 and 2, which can be decoupled by the cor-
responding DC/DC converters. The efficiency η{1,3}pl of the energy flow from subpowernet
1 to 3 and η{2,4}pl from 2 to 4 is assumed to be constant and equal to 95 %.

The capacity of the 48 V lithium-ion traction batteries B{1} and B{2} is assumed to be
approx. 300 Ah and 30 Ah for the 12 V lead-acid batteries B{3} and B{4}. Due to the
limited energy of B{3} and B{4}, the energy for the 12 V subpowernets is not provided
to 48 V subpowernets, so the DC/DC converters can be only operated in forward mode,
transmitting the energy from 48 V to 12 V subpowernets. For all batteries, an initial state
of charge equal to 90 % is assumed.

According to the definition in (5.138), the battery remaining discharge energy Erde is de-
fined as the energy which is extracted while discharging the battery from the current state
of charge SoC 0 to the minimum discharge threshold SoC min. For the traction batteries
B{1} and B{2}, the discharge threshold SoC min is set to 10 %, for voltage stability batteries
B{3} and B{4} to 30 %.

In case of the discharge of a battery, the electrochemical energy is converted into elec-
trical energy at the battery output. The discharge efficiency can be defined as the ratio
of battery output power to electrochemical power [29]. Using (5.143), the remaining
electrochemical energy of a battery can be estimated for a discharge power equal to 0.
In the example powernet topology presented above, the sum of electrochemical energies
E{k}rde0(t = t0) with k ∈ {1..4} is equal to 23.8763 kWh. For the following simulation results
a driving mission with the duration dT ∗ssl equal to 0.5 h is assumed.
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Example for Fault-Free Operation

As already mentioned above, both DC/DC converters can be operated in forward mode
only, transmitting the energy from the 48 V subpowernet to 12 V loads. The case of
DC/DC converters operating in off mode is modeled by the corresponding output power
equal to 0 W. Also one operating mode for the toggle switch is assumed, since in PWM
mode, the energy can be transfered from both subpowernets 1 and 2. Therefore, only
one possible combination of powerlink operating modes M∗

pl for this example can be
assumed. Since the assumed remaining energy resources are greater than the total energy
demand, no degradation will be required. The mixed-integer energy flow optimization
can be therefore reduced to the continuous optimization problem with constant operating
modes (Mpl = M∗

pl) and constant degradation step (ids = 1). For fault-free operation,
it is assumed that all components have no failures. The results obtained by solving the
energy distribution optimization problem as defined in Section 5.2.1 (Version 1) are given
in the following Table 5.16.

Table 5.16.: Continuous energy distribution (Version 1) for fault-free operation.
powerlinks

output power
battery

output power
state of charge
at destination

battery resistance
scaling factor

P
{1,3}
out 833.4 W P{1}bat 7055.6 W SoC

{1}
end 66.70 % c

{1}
bat.rin 1

P
{2,4}
out 833.4 W P{2}bat 4833.4 W SoC

{2}
end 74.37 % c

{2}
bat.rin 1

P
{1,5}
out 2222.2 W P{3}bat 408.3 W SoC

{3}
end 30.00 % c

{3}
bat.rin 1

P
{2,5}
out 0.0 W P{4}bat 408.3 W SoC

{4}
end 30.00 % c

{4}
bat.rin 1

For the prediction of the remaining discharge energy for the 48 V batteries, a constant
discharge power P{1/2}bat = 10 kW is assumed. For the 12 V batteries, a constant discharge
with P{3/4}bat = 0.3 kW is assumed. Since in Version 1 of energy distribution no battery
discharge efficiency is considered, the energy from the battery for the supply of loads in
the same powernet is considered to be the "cheapest" by the solver. Therefore, both 12 V
batteries are fully discharged and the state of charge at the end of the driving mission
(SoC{3}end and SoC{4}end) equals to the minimum allowed threshold SoC min = 30 %.

The remaining discharge energy estimated for 12 V batteries using the assumptions above
equals to 0.204 14 kWh. As already explained above, the energy from other subpowernets
to a subpowernet containing a battery is only transmitted, if the energy demand of the
loads in this subpowernet exceeds the available resources. If a battery is fully discharged,
the average discharge power can be calculated as the ratio of the predicted remaining dis-
charge energy to the driving duration. In this example, a driving duration equal to 0.5 h is
assumed, which results in the average discharge power for 12 V batteries equal to 408.3 W.
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Assuming a shorter driving duration, e.g. 0.1 h, the batteries would be discharged with
a much higher power equal to 0.204 14 kWh

0.1 h = 2.04 kW, since the maximum battery output
power is not limited in this version of the energy distribution optimization. For avoiding
this effect, a preprocessing of the available energy resources can be done. For a given
maximum discharge power P{k}bat.max of the battery k, the remaining discharge energy E{k}rde

used as input for the energy distribution optimization considering the remaining driving
duration dT ssl can be limited to:

E{k}rde = min
(
E{k}rde ,P

{k}
bat.max dT ssl

)
(5.157)

The remaining discharge energy required for the supply of 12 V loads (1200 W−408.3 W =
791.7 W) is transmitted from the subpowernets via the DC/DC converters with the effi-
ciency 95 %, resulting in 833.4 W at the outputs of subpowernets 1 (P {1,3}out ) and 2 (P {2,4}out ).
Since the energy flow efficiency from subpowernet 1 to 5 is higher than from 2 to 5, the
entire energy for the supply of the load R{5}load is transfered from subpowernet 1, leading to
an asymmetrical discharge of the batteries B{1} and B{2}. The sum of the remaining elec-
trochemical energies E{k}rde0(t = tend) with k ∈ {1..4} at the end of driving mission equals
to 17.3267 kWh, so the sum of consumed electrochemical energies equals to 6.5497 kWh.

In the second version of the energy distribution optimization as defined in Section 5.2.2,
the maximum output energy of the batteries is considered with a constraint. For this
example, it is assumed that the output energy of traction batteries is limited to P{1/2}bat.max =
10 kW and to P{3/4}bat.max = 0.3 kW for the 12 V batteries. The results obtained by solving
the energy distribution optimization problem as defined in Section 5.2.2 (Version 2) are
given in the following Table 5.17.

Table 5.17.: Continuous energy distribution (Version 2) for fault-free operation.
powerlinks

output power
battery

output power
state of charge
at destination

battery resistance
scaling factor

P
{1,3}
out 947.4 W P{1}bat 7169.6 W SoC

{1}
end 66.30 % c

{1}
bat.rin 1

P
{2,4}
out 947.4 W P{2}bat 4947.4 W SoC

{2}
end 73.98 % c

{2}
bat.rin 1

P
{1,5}
out 2222.2 W P{3}bat 300.0 W SoC

{3}
end 46.36 % c

{3}
bat.rin 1

P
{2,5}
out 0.0 W P{4}bat 300.0 W SoC

{4}
end 46.36 % c

{4}
bat.rin 1

The results obtained with this version are similar to the results presented above, with
the main difference that the output power of the 12 V batteries is now limited to 300 W,
resulting in higher energy transfered from subpowernet 1 and 2 to subpowernets 3 and
4. The sum of the remaining electrochemical energies E{k}rde0(t = t0) with k ∈ {1..4} at
the end of the driving mission equals to 17.3215 kWh, resulting in the total consumed
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electrochemical energy equal to 6.5548 kWh. This value is slightly higher than the one
achieved with the first version of the energy distribution optimization, which is the result
of the limitation of the output power of 12 V batteries to 300 W. With the assumptions
made above, also considering the discharge efficiencies of the batteries, it is more energy
efficient to supply the 12 V loads R{3}load and R{4}load directly from the batteries B{1} and B{2}.

Using the MATLAB function linprog for solving the continuous energy distribution op-
timization problem (Version 1) in non-linear programming form as presented in Sec-
tion 5.3.1, an average computational time out of 1000 runs on a Intel i7 CPU with the
MATLAB functions tic and toc of approx. 50.1 ms is observed. The average computa-
tional time for solving the optimization problem (Version 1) in the form as presented in
Section 5.3.2 with MATLAB function fmincon is approx. 3.4 ms. The computational time
for the second approach of the energy distribution optimization (Version 2) using fmincon
and linprog solvers as presented in Section 5.3.3 and 5.3.4 are approx. 70.9 ms and 3.4 ms.
Therefore, the proposed optimization models using the MATLAB function linprog are
very well suited for the implementation and execution at runtime in embedded systems.
In the next example, two proposed approaches for the energy distribution optimization
are exemplified and compared for failure case operation.

Example for Failure Case Operation

For the imitation of a failure case operation, a battery fault increasing the internal resis-
tance of the 12 V lead-acid battery B{3} is injected by using the scaling factor c{3}bat.rin. An
additional change to the example presented above is the limitation of the battery discharge
power for both 12 V lead-acid batteries to 300 W using (5.157) for the first approach of
the energy distribution optimization. The results are summarized in Table 5.18.

Table 5.18.: Continuous energy distribution (Version 1) for failure case operation.
powerlinks

output power
battery

output power
state of charge
at destination

battery resistance
scaling factor

P
{1,3}
out 947.4 W P{1}bat 7169.6 W SoC

{1}
end 66.30 % c

{1}
bat.rin 1

P
{2,4}
out 947.4 W P{2}bat 4947.4 W SoC

{2}
end 73.98 % c

{2}
bat.rin 1

P
{1,5}
out 2222.2 W P{3}bat 300.0 W SoC

{3}
end 33.53 % c

{3}
bat.rin 5

P
{2,5}
out 0.0 W P{4}bat 300.0 W SoC

{4}
end 46.35 % c

{4}
bat.rin 1

It can be seen that despite the reduced discharge efficiency of the battery B{3} due to the
increased internal resistance, the energy from the battery for the supply of the internal
loads is still considered to be the "cheapest" by the solver. Both 12 V batteries are dis-
charged with the maximum allowed power. The state of charge SoC{3}end of battery B{3} at
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the end of the driving mission is lower than SoC{4}end of battery B{4} due to the decreased
discharge efficiency of B{3}. After the completion of the driving cycle, the sum of the
remaining electrochemical energies E{k}rde0(t = tend) with k ∈ {1..4} equals to 17.2752 kWh,
resulting in total consumed electrochemical energy equal to 6.6011 kWh. The average
discharge efficiency of the batteries can be calculated as a ratio of total output energy
of batteries to total electrochemical energy depleted from the batteries. With the total
output energy of the batteries (sum of E{k}bat with k ∈ {1..4}) equal to 6.3585 kWh, the
average discharge efficiency equal to 96.32 % is obtained. In addition to the battery losses,
also the losses in powerlink components must be considered. The average powernet effi-
ciency can be defined as the ratio of the total electrochemical energy depleted from the
batteries to the total energy demand of the loads (sum of E{k}load with k ∈ {1..4}). The
average powernet efficiency in the failure case equal to 93.92 % is obtained with the first
approach of the energy distribution optimization.

In the second approach for the energy distribution optimization, also the battery discharge
efficiency is considered. The results for this approach are summarized in Table 5.19.

Table 5.19.: Continuous energy distribution (Version 2) for failure case operation.
powerlinks

output power
battery

output power
state of charge
at destination

battery resistance
scaling factor

P
{1,3}
out 1263.2 W P{1}bat 7485.4 W SoC

{1}
end 65.20 % c

{1}
bat.rin 1

P
{2,4}
out 947.4 W P{2}bat 4947.4 W SoC

{2}
end 73.98 % c

{2}
bat.rin 1

P
{1,5}
out 2222.2 W P{3}bat 0.0 W SoC

{3}
end 90.00 % c

{3}
bat.rin 5

P
{2,5}
out 0.0 W P{4}bat 300.0 W SoC

{4}
end 46.35 % c

{4}
bat.rin 1

It can be seen that due to the increased internal resistance of B{3} the load R{3}load is supplied
by the traction battery B{1} via the DC/DC converter, which in this case becomes more
energy efficient. After the completion of the driving cycle, the sum of the remaining
electrochemical energies E{k}rde0(t = tend) with k ∈ {1..4} equals to 17.3084 kWh, leading to a
total consumed electrochemical energy equal to 6.5679 kWh. With the total output energy
of batteries (sum of E{k}bat with k ∈ {1..4}) equal to 6.3664 kWh, the average discharge
efficiency in this example is increased to 96.93 % compared with the first approach. Also
the overall average powernet efficiency is increased to 94.40 %.

Due to the higher energy flow efficiency of the toggle switch between the pins connect-
ing subpowernet 1 and 5 (90 %) compared to the connection to subpowernet 2, in all
examples above the load R{2}load was always supplied by the battery B{1}. As a result,
the batteries B{1} and B{2} were discharged asymmetrically, which might be unfavorable
for fail-operational applications requiring approximately the same driving range in case
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of a breakdown of one battery. In the following subsection, a solution for balancing of
the remaining discharge energy with the proposed energy distribution optimization is
exemplified.

Example for Battery Remaining Discharge Energy Balancing

With the first approach for the energy distribution optimization proposed in Section 5.1.3,
automated energy flow path selection with the best efficiency and automated fault reac-
tions can be implemented. An optimal discharge strategy of multiple traction batteries
considering discharge efficiency as well as state of charge or remaining discharge energy
balancing is not covered by this approach. If, for example, symmetrical discharge of
traction batteries B{1} and B{2} in the powernet topology depicted in Fig. 5.17 would be
required, no direct control parameter would be available, but could be still achieved using
the penalty function fedo.pen.pl for customizing the energy output of powerlinks. In this
example, the penalization of the energy flow from subpowernet 1 to 5 (E{1,5}out ) and from 2
to 5 (E{2,5}out ) as a function of remaining discharge energy of batteries B{1} and B{2} could
be used for this aim. Similar to the approach proposed in (5.28a) and (5.28b), the greater
the difference in remaining discharge energies between B{1} and B{2}, the more costly
becomes the energy flow E

{1,5}
out or E{2,5}out via the corresponding powerlink outputs. For the

remaining discharge balancing of the 12 V lead-acid batteries B{3} and B{4}, this approach
would not work, since no direct relationship between the powerlink output energies and
battery discharge can be established for this example.

Therefore, in the second approach for the energy distribution optimization proposed in
Section 5.1.4, additionally a penalty function fedo.pen.bat for customization of battery output
energies was introduced. A possible parametrization for the penalty factors is proposed in
(5.28a) and (5.28a) and will be used for the remaining discharge energy balancing of the
batteries B{1} and B{2} in this example. The parameters for powernet components as well
as the initial conditions are the same as assumed for the first example in this section. The
curve of the remaining discharge energy delta ∆Erde21 between B{1} and B{2} for different
scaling factors γrde is depicted in Fig. 5.18.

For all factors γrde it can be seen that ∆Erde21 is first increasing due to the higher energy
flow efficiency between subpowernet 1 and 5 and the load R{5}load is supplied by B{1} only.
Depending on the sensitivity of the balancing algorithm, which is increased with higher
γrde, the remaining discharge energy balancing is activated after the value of the penalty
function fedo.pen.bat becomes higher than the losses resulting in supply of R{5}load by B{2}.
After the activation, the supply of R{2}load is continued in PWM mode, accepting the higher
losses for the supply of R{5}load from B{2}, which results in a decrease of the value of the
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Figure 5.18.: Balancing of batteries remaining discharge energy.

objective fedo.loss.opt describing the sum of all remaining energy resources at the end of a
given driving cycle. Since the penalty function fedo.pen.bat used for remaining discharge
energy balancing is weighted to the objective fedo.loss.opt, it becomes more significant with
decreasing fedo.pen.bat. Therefore, as depicted in Fig. 5.18, the ∆Erde21 decreases with
time. The state of charge SoC{1/2}end of the traction batteries B{1} and B{2} at the end of
the driving mission for different factors γrde is summarized in Table 5.20

Table 5.20.: State of charge of batteries B{1} and B{2} at the end of driving mission.
γrde 0 1 5 10 20

SoC
{1}
end 66.305 % 69.890 % 69.906 % 69.907 % 69.908 %

SoC
{2}
end 73.978 % 69.930 % 69.914 % 69.912 % 69.911 %

It can be seen that without remaining discharge energy balancing (γrde = 0) the traction
batteries are discharged asymmetrically. With increasing γrde the delta in state of charge
between both batteries decreases. The examples presented in this subsection were con-
structed in a way that the optimization of the powerlink operating modes Mpl as well as
load degradation was not required, since the operation of the powernet with one combi-
nation of Mpl was possible and the available energy resources are higher than the total
energy demand of powernet loads, reducing so the mixed-integer problem to a continuous
energy distribution optimization. In the next subsection, both the optimization of the
powerlink operating modes Mpl as well as the load degradation are exemplified.

5.7.2. Example for Mixed-Integer Energy Distribution Optimization

For the examples in this subsection a fail-operational powernet topology consisting of 4
subpowernets as depicted in Fig. 5.19 is assumed. Due to its simplicity and extendabil-
ity to the state-of-the-art powernet topologies, it was proposed for the usage in highly
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Figure 5.19.: Fail-operational powernet topology with HV (red) and 12V (blue).

automated driving systems in [8, 9, 11] for fulfilling high reliability requirements. Sub-
powernet 1 is supplied by a HV battery B{1} and contains propulsion and comfort loads,
both combined to R{1}load in Fig. 5.19. Subpowernet 2 receives the energy for the supply
of the low voltage (12 V) load R{2}load via a DC/DC converter from the battery B{1}. In
addition, a voltage stability battery B{2} is used for covering the transient power peaks of
R{2}load for avoiding under- or overvoltage conditions in subpowernet 2 due to the power lim-
itations of the DC/DC converter. Also in case subpowernet 1 fails, the load R{2}load can be
supplied for a short period of time solely from the battery B{2}, enabling the functionality
of safety-critical loads for the duration of the vehicle transition to a safe state.

The load R{2}load totals the 12 V comfort loads and safety-critical subsystems, e.g. braking or
steering. Subpowernet 1 and 2 build a typical powernet of a non-automated vehicle. Due
to higher reliability requirements for automated vehicles, this basic powernet is extended
by an additional 12 V subpowernet 3, which is supplied from subpowernet 2 via a DC/DC
converter. Similarly to subpowernet 2, also a voltage stability battery B{3} is used. The
load R{3}load represents the safety-critical loads, which are redundant to the loads contained
in R{2}load. A fourth subpowernet can be used for the supply of safety-critical subsystems
R{4}load, which are considered to be highly reliable. For avoiding malfunction of R{4}load due to
power supply breakdown, these loads can be either supplied by subpowernet 3 or 4 using
a toggle switch as depicted in Fig. 5.19. With this powernet topology as proposed in
[8, 9, 11], the fail-operability of steering and braking subsystems required for the vehicle
transition to a safe state can be guaranteed. However, since the traction components
(R{2}load) and their supply (B{1}) are designed without redundancy, only a limited driving
range using the kinetic energy of the vehicle in case of a failure in these components is
available.

Due to the redundancy used in the fail-operational powernet as depicted in Fig. 5.19, new
degrees of freedom arise for its control. For the supply of the loads, several paths with
different energy flow efficiencies might exist. In the following subsection, an example is
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Figure 5.20.: Example of mixed-integer energy distribution optimization.

used for the explanation of the automated energy flow path selection using the energy
distribution optimization proposed in this work.

Automated Selection of Energy Flow Paths

In the powernet topology illustrated in Fig. 5.19, the four subpowernets are interconnected
using three powerlinks, namely two DC/DC converters and one toggle switch. Each
DC/DC converter can be operated in three modes as explained in Section 5.4 and for
the toggle switch two operating modes are assumed, switching the energy supply of R{4}load

between subpowernet 2 and 3. In total, 3 × 3 × 2 = 18 combinations of the powerlink
operating modes are possible in this topology.

It is assumed that the remaining discharge energy E{1}rde of battery B{1} equals to 5.8 kWh,
E{2}rde of B{2} to 1.7 kWh and E{3}rde of B{3} to 1.5 kWh. The energy demand E{1}load required
for the supply of R{1}load is assumed with 3.1 kWh, E{2}load with 2.6 kWh, E{3}load with 0.4 kWh
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and E{4}load with 0.6 kWh.

The forward (frw) mode efficiency η{1,2}pl of the DC/DC converter for the energy transfer
from subpowernet 1 and 2 and the reverse mode (rev) efficiency η{2,1}pl are set to 80 %. The
energy from subpowernet 2 to 3 can be transfered using the second DC/DC converter in
forward mode with corresponding efficiency η{2,3}pl set to 80 % and in the reverse direction
with efficiency η{3,2}pl equal to 90 %. For the energy transfer from subpowernet 2 to 4 an
efficiency η{2,4}pl equal to 90 % is assumed and η{3,4}pl equal to 60 % for the energy flow from
subpowernet 3 to 4.

As depicted in Fig. 5.20, only for 6 out of 18 combinations of powerlink operating modes a
valid solution for the energy distribution according to the optimization problem defined in
(5.15) exists. Since the overall energy resources exceed the energy demand, no degradation
of powernet loads is required. In this theoretical example it can be seen that the optimal
solution for the energy distribution is solution 5, since the total remaining discharge energy
Erde.end after completing a driving mission is maximum for this example. If the powernet
state remains stable, meaning that no failure in components happens, this solution is
not expected to be changed. In case of any change, this solution might not be optimal
any more and the adaptation of the energy distribution to the current powernet state is
required. In the following subsection, the adaptation of the energy distribution strategy
to the changes of powernet state is exemplified using fault injection in a simulation.

Automated Adaption of Energy Distribution to Changing Powernet State

For the simulation in this example, a high voltage lithium-ion battery B{1} with a nominal
capacity Q{1}bat0 of approx. 63 Ah and nominal voltage of approx. 355 V is assumed. The
initial battery state of charge SoC {1}0 is set to 30 %. For both low voltage batteries B{2}

and B{3} a lead-acid battery with a nominal capacity Q{2/3}bat0 equal to approx. 30 Ah and
nominal voltage of approx. 12 V is assumed. The initial state of charge SoC {2/3}0 of the
low voltage batteries is set to 90 % and the output power P{2/3}bat.max is limited to 300 W. The
temperature for all batteries is set to 25 ◦C. An average power demand P{1}load = 2.0 kW
for load R{1}load, P{2}load = 1.2 kW for R{2}load, P{3}load = 0.6 kW for R{3}load and P{4}load = 0.2 kW for
R{4}load is assumed. It is further assumed that the average power demand of all loads can
be decreased in 10 equal degradation steps ids starting from 100 % for ids = 1 to 10 %
for ids = 10. In total, three different faults in powernet components are injected in this
example. The simulation results are depicted in Fig. 5.21. The duration dT ssl of the
driving mission is assumed to be 1 h.

During the entire simulation, the efficiency η{1,2}pl of energy flow from subpowernet 1 to 2
is kept constant at 95 % as well as η{2,3}pl at 90 % for the energy flow from subpowernet 2
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Figure 5.21.: Simulation results for energy distribution with fault injection.

to 3. At the beginning of the simulation (t = 0 s), the efficiency η{2,4}pl of energy flow from
subpowernet 2 to 4 is assumed with 85 %, which is better compared to η{3,4}pl set to 80 %
throughout the simulation. Due to this, as it can be seen in Fig. 5.21, the load R{4}load is
supplied by subpowernet 2 with the average output power P {2,3}out . At t = 3 s, the energy
flow efficiency η{2,4}pl is decreased from 85 % to 70 %. A decreased energy flow efficiency
of the toggle switch could be for example detected by measuring the output current and
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the voltage drop between the input and output. As a fault reaction, the supply of R{4}load

is switched to subpowernet 3, since also due to additional losses in the DC/DC converter
connecting subpowernets 2 and 3, this path becomes more energy efficient.

At t = 4 s, a fault in a battery is injected and the battery capacity is reduced by 20 %,
using the scaling factor c{1}bat.q0. This fault could be for example caused by a short circuit
to ground in one of the parallel battery’s branches, which could be detected and discon-
nected by the battery management system. As a fault reaction, the EMS increases the
degradation step ids by 1, which results in reduction of power demand of the loads by
10 %. At t = 5 s, the next fault is injected and the power demand of R{2}load is increased
from 1.2 kW to 2.4 kW. As a fault reaction, the power demand of the loads must be further
reduced. For degradation step ids a solution is found in this example.

The transient increase of power demand of R{2}load is recovered after 1 s. It becomes again
possible to activate more loads and as a reaction, the degradation step ids is set again to
2. At t = 7 s, also the battery failure is recovered, and again the full battery capacity is
available. As a reaction, the EMS decreases the degradation step to ids = 1 (no active
degradation). At t = 8 s also the energy flow efficiency η{2,4}pl is set again to 85 %, so the
supply of R{4}load from subpowernet 2 becomes again more energy efficient. Therefore, as a
reaction, the supply of R{4}load is switched again to subpowernet 2.

As it was demonstrated with the simulation examples above, using the proposed energy
distribution optimization for the control of a vehicle powernet, the overall energy efficiency
can be increased and the fault reactions can be automated. With the proposed optimal,
adaptive and real-time approach for the energy management, the reliability of automated
vehicles can be significantly increased, allowing the passengers to arrive at the safest
possible position in normal and failure case operation. One of the prerequisites for the
functionality of the proposed algorithm is accurate prediction of the propulsion energy
required for completing a given driving mission. A concept and real-time algorithms
allowing accurate prediction of the propulsion energy for powertrain topologies with one
and multiple traction motors based on the electronic horizon is proposed in the next
chapter of this work.
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Powertrain Control and Propulsion
Energy Prediction

The optimal energy distribution for safety-based range extension proposed in this work
requires predictive estimation of available energy resources and energy demand of safety-
critical, comfort and propulsion loads. For the safety-based range extension, the available
resources are then compared with the energy demand and the entire energy flow within
the vehicle powernet and powertrain is optimized increasing the overall driving efficiency.
Depending on the delta between the energy resources and demands, a three level degra-
dation concept can be applied, degrading the load profile, driving profile and driving
destination. An overestimated energy demand would result in unnecessary degradation.
An underestimated energy demand could result in a vehicle breakdown, since the energy
resources might be insufficient for completing a driving mission. Therefore, accurate pre-
diction of energy demand is one of the prerequisites for the functionality of the proposed
EMS for safety-based range extension.

Propulsion energy required for completing a given driving mission is strongly dependent
on the route to be driven, traffic conditions, powertrain topology and its state. The power
demand of the propulsion components is highly dynamic and appropriate prediction is
required for its accurate estimation. Also failures in propulsion components might effect
the power demand, requiring appropriate failure reactions. Therefore, for enabling short
reaction times, the prediction of the propulsion energy should be executed online avoiding
a high computational burden. In Section 6.1, an appropriate powertrain model used for
the prediction of propulsion energy considering also component failures is presented.

In Section 6.2, a concept and algorithm for the prediction of the driving trajectory at
runtime from the current vehicle position to the driving destination is presented, which is
then used for model predictive estimation of the propulsion energy required for completing
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the driving mission. The propulsion energy estimation is first exemplified on a powertrain
topology with a single traction motor in Section 6.3 with simulation results verifying the
accuracy and suitability for online execution of the proposed algorithm.

In fail-operational powernet topologies, more than one traction motor is available. The
total propulsion energy required for completing a driving mission with fail-operational
powertrain is strongly dependent on the control strategy splitting the torque request be-
tween the individual motors. In Section 6.4, a new optimal and adaptive control strategy
for the control of a fail-operational powertrain with multiple motors is proposed, which
is then embedded in the propulsion energy prediction.

6.1. Powertrain Model
With an appropriate powertrain model, the propulsion energy required for completing
a given driving mission can be predicted. In this section, mathematical models of the
components used in powertrain topologies of an electric vehicle are presented, namely a
gearbox with constant transmission ratio, electrical machine, traction battery as well as
a vehicle model describing the longitudinal vehicle dynamics. Also possible failure modes
of powertrain components are defined.

6.1.1. Failure Modes of Powertrain Components

One of the main goals of the control strategy for the powertrain in this work is to increase
the driving range and the availability of the vehicle motion also in case of a failure.
For this, the control of the powertrain must be adapted to possible faults in powertrain
subsystems. The powertrain model presented in this section contains three subsystems:
(1) gearbox, (2) traction motor and (3) traction battery. For the further analysis it is
assumed that each powertrain component (subsystem) builds an FCR. In the following,
the failure modes considered in this work for these three subsystems of a powertrain are
defined.

Gearbox

A gearbox transmits mechanical power from a mechanical source to a mechanical sink and
transforms the rotational speed and output torque of a source with a defined transmission
ratio. Depending on the mechanical friction losses, the gearbox transmission efficiency
can be defined. In this work it is assumed that a gearbox remains functional during the
entire lifespan, which should be ensured by design. Only one failure mode with impact on
the propulsion energy consumption is considered, which covers faults (e.g. scuffing [117])
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resulting in a decreased transmission efficiency. This fault is considered to be permanent
and progressive. The operation of the gearbox in this failure mode leads to an increased
propulsion energy in motor mode and to a reduced recuperation in generator mode.

Electric Motor

An electric motor converts electrical power into mechanical power (motor mode) and vice
versa (generator mode). Depending on the mechanical and electrical losses [118], the
motor efficiency can be estimated for both, motor and generator mode. Different motor
faults influence the motor performance and are either of instant or progressive nature
[119]. In this work, two different failure classes with impact on the propulsion energy
consumption and maximum motor performance are considered, namely (1) decreased ef-
ficiency in motor and generator mode and (2) decreased maximum torque in motor and
generator mode. These failure modes are assumed to be either transient (e.g. due to motor
overheating) or permanent (e.g. due to motor aging or spontaneous component faults).
The operation of a motor with decreased efficiency increases the required electrical energy
in motor mode and decreases the recuperated energy in generator mode, leading also to
an increased operating temperature. The operation of a motor with decreased maximum
torque might influence the vehicle motion performance and require an adaption of the
torque distribution strategy in powertrain topologies with multiple traction motors.

Traction Battery

For a traction battery, the same three failure modes as already defined in Section 5.1.2
are assumed, namely (1) decreased battery capacity, (2) increased internal resistance and
(3) internal short circuit to ground.

In the following subsections, first a vehicle model describing the longitudinal vehicle dy-
namics and used for the model predictive powertrain control is introduced, followed by
gearbox, electric motor and traction battery model considering both, normal and failure
case operation.

6.1.2. Vehicle Model

For the prediction of the propulsion energy required for completing a given driving mis-
sion, a vehicle model based on a differential equation describing the longitudinal vehicle
dynamics is used [29]:

Ft(t) = mv av(t) + ρAf cd v
2
v(t)

2 +mv g cr cos (αrd(t)) +mv g sin (αrd(t)) (6.1)
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The vehicle traction force Ft(t) is composed of four subforces. The first summand de-
scribes the force required for the acceleration of a vehicle with a mass mv and given
acceleration av. The vehicle speed profile is denoted by vv. The second summand de-
scribes the aerodynamic friction. The vehicle frontal area is denoted by Af , aerodynamic
drag coefficient by cd and the ambient air density by ρ. The third summand describes the
rolling friction. The gravitational acceleration is denoted by g, rolling friction coefficient
by cr and road angle by αrd. The last summand describes the component of the gravi-
tational force parallel to the road. By denoting the wheel radius by rw, the relationship
between the traction force Ft and the wheel torque Tw as well as between the vehicle
speed vv and the angular wheel speed ωw can be defined as [29]:

Tw(t) = rw Ft(t) (6.2a)

ωw(t) = r−1
w vv(t) (6.2b)

Using the quasistatic approach [29], the average traction force F [i]
t within the time interval

i with t ∈ [t [i]
0 , t

[i]
0 + dT [i]) required for vehicle acceleration with a[i]

v can be calculated.
The average traction force can be defined as:

F
[i]
t = 1

dT [i]

∫ t[i]
0 +dT [i]

t=t[i]
0

Ft(t) dt (6.3)

Assuming the interval start velocity v [i]
0 , the velocity profile within the time interval i can

be approximated as:

v[i]
v (t) ≈ v [i]

0 + a[i]
v

(
t − t [i]

0

)
(6.4)

The relationship between the road angle α[i]
rd and road slope sl[i] within the time interval

i is defined as:

α
[i]
rd(t) = arctan(sl[i]) (6.5)

Using the definitions above, the average traction force F [i]
t within the time interval i can

be approximated as:

F
[i]
t ≈ mv a[i]

v + ρAf cd

2

(
v [i]

0 + a[i]
v dT [i]

2

)2

+
mv g

(
cr + sl[i]

)
√

(sl[i])2 + 1
(6.6)

The average wheel torque T [i]
w and angular wheel speed ω[i]

w within the time interval i can
be calculated as:
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6.1. Powertrain Model

T [i]
w = rw F

[i]
t (6.7a)

ω[i]
w = r−1

w

(
v [i]

0 + a[i]
v dT [i]

2

)
(6.7b)

Depending on the powertrain topology, the requested wheel torque can be provided by
either one axle or distributed between front and rear axle. By introducing a front/rear
(fr) torque distribution factor α[i]

fr with α[i]
fr ∈ [0..1], the wheel torque for front (T [i]

wf) and
rear (T [i]

wr) axle for the time interval i with t ∈
[
t [i]
0 , t

[i]
0 + dT [i]

)
can be defined as:

T
[i]
wf = α

[i]
fr T

[i]
w (6.8a)

T [i]
wr = (1− α[i]

fr )T [i]
w (6.8b)

6.1.3. Gearbox Model

For the propulsion energy prediction in this thesis it is assumed that the gearboxes
in investigated powertrain topologies have only one transmission gear with a constant
transmission ratio γgb and transmission efficiency ηgb. For modeling possible gearbox
failures resulting in a decrease of transmission efficiency, a time dependent factor c[i]

gb.eff

(c[i]
gb.eff ∈ (0..1]) is introduced:

η
[i]
gb = c

[i]
gb.eff ηgb with c

[i]
gb.eff ∈ (0..1] (6.9)

The torque and the angular speed at the gearbox input shaft are denoted by T [i]
gb.in and

ω
[i]
gb.in, at the output shaft by T [i]

gb.out and ω
[i]
gb.out. In propulsion mode (T [i]

gb.out ≥ 0), the
mechanical energy flows from gearbox input shaft to the output shaft, connected to the
vehicle axle via a differential. In recuperation mode (T [i]

gb.out < 0), the mechanical energy
flows from gearbox output shaft to the input shaft. The relationship between the torque
at the input and output shaft by neglecting the gearbox idle losses can be defined as [29]:

T
[i]
gb.in =



1
η

[i]
gb

T
[i]
gb.out

γgb
, T

[i]
gb.out ≥ 0

η
[i]
gb
T

[i]
gb.out

γgb
, T

[i]
gb.out < 0

(6.10)

The relationship between the angular speed at the gearbox input and output shaft can
be defined as [29]:

ω
[i]
gb.in = γgb ω

[i]
gb.out (6.11)
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In case two motors can be connected to the gearbox input shaft, e.g. from left and right
side, the total required torque T [i]

gb.in at the input shaft can be distributed between the
torque T [i]

gbl.in provided at the left and torque T [i]
gbr.in at the right input using the left/right

(lr) torque distribution factor α[i]
lr with α[i]

lr ∈ [0..1] as:

T
[i]
gbl.in = α

[i]
lr T

[i]
gb.in (6.12a)

T
[i]
gbr.in = (1− α[i]

lr )T [i]
gb.in (6.12b)

6.1.4. Electric Motor Model

Depending on the operating mode, an electrical machine can be used for the conversion of
electrical into mechanical power and vise versa. In motor mode, by requesting a positive
torque T [i]

em at the electrical machine output shaft, the electrical power from the battery is
converted to mechanical power, which then flows from the output shaft to the wheels via
the gearbox. The efficiency η[i]

em.mot of the electrical machine in motor mode can be then
defined as the ratio of mechanical power P [i]

em.mech to electrical power P [i]
em [29]:

η
[i]
em.mot = P

[i]
em.mech

P
[i]
em

= ω[i]
em T

[i]
em

V
[i]

em I
[i]
em

with T [i]
em ≥ 0 and I [i]

em > 0 (6.13)

The motor angular speed is denoted by ω[i]
em, the motor supply voltage and current by V [i]

em

and I [i]
em. In generator mode, the mechanical power flows from the wheels to the electrical

machine output shaft via the gearbox. By requesting a negative torque T [i]
em at the out-

put shaft, the mechanical power is converted to electrical and flows to the battery. The
efficiency η[i]

em.gen of the electrical machine in generator mode can be then defined as the
ratio of electrical power P [i]

em to mechanical power P [i]
em.mech [29]:

η[i]
em.gen = P [i]

em

P
[i]
em.mech

= V [i]
em I

[i]
em

ω
[i]
em T

[i]
em

with T [i]
em < 0 and I [i]

em < 0 (6.14)

The maximum positive torque T [i]
em.lim.mot in motor mode and maximum negative torque

T
[i]
em.lim.gen in generator mode which can be provided at the output shaft of the electrical

machine can be modeled as a function of the electrical machine angular speed ω[i]
em and

supply voltage V [i]
em using a 2D-look-up table function.

T
[i]
em.lim.mot = c

[i]
em.trq LUTem.lim.mot(ω[i]

em, V
[i]

em) with T [i]
em ≥ 0 (6.15a)

T
[i]
em.lim.gen = c

[i]
em.trq LUTem.lim.gen(ω[i]

em, V
[i]

em) with T [i]
em < 0 (6.15b)

An additional time-dependent coefficient c[i]
em.trq (c[i]

em.trq ∈ [0..1]) modeling possible electric

124



6.1. Powertrain Model

motor faults resulting in a decreased maximum torque is introduced. The torque at the
output shaft of the electrical machine based on the requested torque T [i]

em.req is defined as:

T [i]
em =

min(T [i]
em.req, T

[i]
em.lim.mot) with T [i]

em.req ≥ 0

max(T [i]
em.req, T

[i]
em.lim.gen) with T [i]

em.req < 0
(6.16)

The efficiency of the electrical machine in motor (η[i]
em.mot) and generator (η[i]

em.gen) mode
can be modeled as a function of output torque T [i]

em, electrical machine angular speed ω[i]
em

and supply voltage V [i]
em using a 3D-look-up table function:

η
[i]
em.mot = LUTem.eff.mot(T [i]

em.loss.mot, ω
[i]
em.loss.mot, V

[i]
em) with T [i]

em ≥ 0 (6.17a)

η[i]
em.gen = LUTem.eff.gen(T [i]

em.loss.gen, ω
[i]
em.loss.gen, V

[i]
em) with T [i]

em < 0 (6.17b)

For the efficiency look-up in motor mode it is assumed that neff.mot.trq breakpoints for
torque and neff.mot.rot breakpoints for angular speed are stored in increasing order in the
neff.mot.trq-by-1 torque vector T em.eff.mot and neff.mot.rot-by-1 speed vector ωem.eff.mot. For
the efficiency look-up in generator mode neff.gen.trq breakpoints for torque and neff.gen.rot

breakpoints for angular speed are stored in increasing order in the neff.gen.trq-by-1 torque
vector T em.eff.gen and neff.gen.rot-by-1 speed vector ωem.eff.gen. The losses of the electrical
machine basically consist of copper, iron and friction losses [15]. For modeling the power
losses in low torque and/or motor speed regions with no valid breakpoints in the look-up
table, the power losses in these regions are assumed to be constant. This approach also
approximates the power losses in case of no load (T [i]

em = 0). The torque T [i]
em.loss.mot /

T
[i]
em.loss.gen and motor speed ω[i]

em.loss.mot / ω
[i]
em.loss.gen for the calculation of the power losses

in motor / generator are then defined as:

T
[i]
em.loss.mot = max(T [i]

em,T em.eff.mot{1}) with T [i]
em ≥ 0 (6.18a)

ω
[i]
em.loss.mot = max(ω[i]

em, ωem.eff.mot{1}) with T [i]
em ≥ 0 (6.18b)

T
[i]
em.loss.gen = min(T [i]

em,T em.eff.gen{neff.gen.trq}) with T [i]
em < 0 (6.18c)

ω
[i]
em.loss.gen = max(ω[i]

em, ωem.eff.gen{1}) with T [i]
em < 0 (6.18d)

In motor mode, if the electrical machine torque T [i]
em ≥ 0 is smaller than the first torque

breakpoint T em.eff.mot{1} for efficiency look up, then the power losses are calculated in this
breakpoint. In the generator mode, if the electrical machine torque T [i]

em < 0 is greater
than the last torque breakpoint T em.eff.gen{neff.gen.trq} for efficiency look up, then the power
losses are calculated in this breakpoint. A similar procedure is also applied to the angular
speed of the electrical machine.
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For modeling possible failures resulting in the decrease of the efficiency of the electrical
machine, a time dependent factor c[i]

em.eff (c[i]
em.eff ∈ [0..1]) is introduced. The efficiency η[i]

em

of the electrical machine can be then defined as:

η[i]
em =

c
[i]
em.eff η

[i]
em.mot with T [i]

em ≥ 0

c
[i]
em.eff η

[i]
em.gen with T [i]

em < 0
(6.19)

Using the definitions above, the power losses of the electrical machine can be calculated as:

P
[j]
em.loss =


ω

[i]
em.loss.mot T

[i]
em.loss.mot

(
1
η

[i]
em
− 1

)
with T [i]

em ≥ 0

ω
[i]
em.loss.gen T

[i]
em.loss.gen

(
η[i]

em − 1
)

with T [i]
em < 0

(6.20)

The electrical power P [i]
em of the electrical machine can be then calculated as the sum of

mechanical power P [i]
em.mech and power losses P [j]

em.loss:

P [i]
em = P

[i]
em.mech + P

[j]
em.loss = ω[i]

em T
[i]
em + P

[j]
em.loss (6.21)

According to the definition in (6.20) the power losses are always positive. In motor mode,
the mechanical power is positive and smaller than the electrical power. In generator
mode, the mechanical power is negative and greater than the electrical power flowing to
the battery. Assuming that the electrical machine started its operation at interval j = 1,
the energy losses dissipated at the end of interval j = i can be defined as:

E [i]
em.loss =

i∑
j=1

dT [j] (6.22)

6.1.5. Traction Battery Model

The battery model used for the prediction of propulsion energy required for completing
a given driving mission is based on the equivalent circuit diagram consisting of a voltage
source modeling the battery open circuit voltage Vbat.oc and output resistance modeling
the battery internal resistance Rbat.in. It was already presented in Section 5.5.1 and the
equations for the quasistatic calculation are summarized in the following.

The battery output voltage V [i]
bat for a given output power P [i]

bat within the time interval i
with t ∈ [t [i]

0 , t
[i]
0 + dT [i]) is defined as:

V
[i]

bat = V
[i]

bat.oc
2 +

√
(V [i]

bat.oc)2 − c[i]
bat.rinR

[i]
bat.inP [i]

bat
2 (6.23)
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The battery open circuit voltage and internal resistance at time instant t [i]
0 are denoted

by V [i]
bat.oc and R[i]

bat.in and are evaluated at battery state of charge SoC [i] at the beginning
of the time interval i. The scaling factor c[i]

bat.rin models possible battery failures resulting
in an increase of internal resistance. The battery output current within the time interval
i with t ∈ [t [i]

0 , t
[i]
0 + dT [i]) is then defined as:

I
[i]
bat = V

[i]
bat.oc −

√
(V [i]

bat.oc)2 − c[i]
bat.rinR

[i]
bat.inP [i]

bat

2 c[i]
bat.rinR

[i]
bat.in

(6.24)

The battery state of charge SoC [i+1] at the end of the time interval i, which is used as
the initial condition for the calculation in the time interval i + 1 can be defined as:

SoC [i+1] = SoC [i] − I
[i]
bat dT [i]

c
[i]
bat.q0Qbat0

(6.25)

The scaling factor c[i]
bat.q0 models possible battery failures resulting in a decrease of battery

nominal capacity Qbat0. The internal battery losses P [i]
bat.loss can be modeled as the ohmic

losses at the battery resistance:

P [i]
bat.loss = c

[i]
bat.rin R

[i]
bat.in (I [i]

bat)2 (6.26)

Assuming that the battery started its operation at interval j = 1, the energy losses dissi-
pated at the end of interval j = i can be defined as:

E [i]
bat.loss =

i∑
j=1

P [j]
bat.loss dT [j] (6.27)

Using the powertrain model as presented in this section, the propulsion energy required
for completing a given driving trajectory can be estimated. In the next section, a concept
and algorithm for the prediction of the driving trajectory at runtime based on electronic
horizon is presented.

6.2. Driving Trajectory Prediction
For the prediction of propulsion energy required for completing a given driving mission,
the knowledge about the route to a destination and about the traffic conditions is required.
As shown in Section 2.7, based on digital map data, the electronic horizon describing the
route ahead can be provided to vehicle applications [14, 39, 13]. For the transmission
of map data to vehicle applications several protocols, e.g. ADASIS or ETSI LDM, exist
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Figure 6.1.: Overview of system architecture for connected energy management.

[14, 42]. In the ADASIS protocol the ADAS horizon provider builds the interface to the
control unit storing the map data. On the application side, the ADAS horizon recon-
structor builds the interface and is responsible for receiving, unpacking and storing the
map data. The transmission of the static map data in the second version of the protocol
(ADASISv2) will be extended to the transmission of dynamic map data [41] in the third
version (ADASISv3). This dynamic cloud-based map data can be frequently updated
over a mobile network [120].

Depending on the level of map data usage, the vehicle applications can be classified
into three categories: non-map, map-enhanced and map-enabled applications [40]. While
non-map applications do not require map data for their functionality, map-enhanced ap-
plications can be improved by using the map data [40]. Map-enabled applications require
map data as basic input for their functionality [40]. In the following subsection, a con-
cept for the prediction of the driving trajectory required by the EMS for the control of
powernet and powertrain based on electronic horizon is proposed.

6.2.1. Concept for Driving Trajectory Prediction

The EMS proposed in this thesis adapts the power demand of powernet loads, driving
profile and driving destination with the main goal of safety-based range extension. Accu-
rate prediction of the propulsion energy required for completing a given driving mission
as well as the driving duration for the prediction of energy required for the supply of pow-
ernet loads is of high importance for the functionality of the proposed EMS, which is a
map-enabled application. The overview of the proposed energy management architecture
is depicted in Fig. 6.1.

The ADAS horizon provider receives the information about the route to the vehicle des-
tination via the cloud connection as well as the current vehicle position via the DGPS
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positioning module. The data is then transmitted using the ADASISv3 protocol to the
energy management application, which is received by the corresponding ADAS horizon
reconstructor module.

The overall propulsion energy required for completing a given driving mission depends
on the velocity, acceleration and slope profile as defined in Section 6.1. The duration
of a driving mission is additionally dependent on the number of stops on the way to a
destination with the corresponding stop times. Therefore, for the prediction of propulsion
energy and of driving time, the electronic horizon profiles as depicted in Fig. 6.2 are used.
Each electronic horizon profile consists of two arrays storing the distance offsets and the
corresponding requested route data. The offset value describes the position of the route
relative to its beginning (offset = 0), at which the profile entry becomes valid. It is
assumed that the profile value between two offsets is constant.

The proposed EMS can degrade the driving profile for reducing the required propulsion
energy by changing the driving velocity and acceleration. Therefore, lower and upper
bounds for velocity and acceleration for each segment of the route to a destination should
be defined, which are stored in the ehlim profile. The upper bound v[i]

max for velocity
describes the road speed limit. Using the cloud-based map data, the upper limit can be
also defined as a function of daytime describing the expected average velocity on the route
segment due to the traffic condition.

The lower bound v[i]
min for the velocity can be defined as a minimum tolerated velocity on a

specific road type, e.g. urban or highway. Depending on the use case and required vehicle
dynamics, lower bound a

[i]
min and upper bound a[i]

max for acceleration can be defined. By
introducing two variables dpdv (driving profile degradation velocity (dpdv)) and dpda

(driving profile degradation acceleration (dpda)), the set velocity v[i]
ems and acceleration

a[i]
ems for each segment i of the route can be defined as:

v[i]
ems = v

[i]
min + dpdv (v[i]

max − v
[i]
min), with dpdv ∈ [0..1] (6.28a)

a[i]
ems = a

[i]
min + dpda (a[i]

max − a
[i]
min), with dpda ∈ [0..1] (6.28b)

The slope profile ehslope stores the information about the road slope. The stops profile
ehstops stores the position of the stops on the way to the destination with the corresponding
average stop time dTstop. At a stop position, the propulsion energy is assumed to be zero.
Since the powernet loads are generally not switched off at an intermediate stop, the
average waiting time at a stop position influences the overall vehicle energy consumption.

Additionally to the electronic horizon profiles depicted in Fig. 6.2, a profile containing the
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Figure 6.2.: Electronic horizon profiles used for connected energy management.

position of safe stop locations for the degradation of the driving destination as proposed
in Fig. 4.1 is required. For a given set of degradation variables for driving profile and
destination, a driving trajectory can be estimated. An algorithm for the online prediction
of the driving trajectory based on the electronic horizon is presented in the next subsection.

6.2.2. Algorithm for Online Driving Trajectory Prediction

The proposed algorithm for the prediction of the driving trajectory consists basically of
three main steps. In the first step the received electronic horizon profiles are preprocessed
and combined to a single profile allowing a simplified estimation of the required propulsion
energy. In the second step the boundary conditions for the velocity at segment start and
end are estimated for each segment i. In the last step, the velocity profile is estimated and
stored in a format consisting of entries with constant acceleration, slope and corresponding
duration.

According to the definition in (6.6) the average traction force within time interval i is a
function of initial vehicle velocity v [i]

0 , road slope sl[i] and required vehicle acceleration a[i]
v .

For constant velocity phases with a[i]
v equal to 0, the required traction force is constant

according to (6.6). The goal of the preprocessing step is therefore to merge the electronic
horizon profiles ehlim for velocity and acceleration bounds, ehslope for slope and ehstops for
stops to a combined profile ehcomb. As depicted in Fig. 6.3 each entry i of the combined
profile consists of constant values for the set velocity v[i]

ems and acceleration a[i]
ems calculated

as defined in (6.28a) and (6.28b), slope value sl[i] and the corresponding segment length
ds[i]. Only relevant values between the current vehicle position s0 and destination sssl (ssl,
save stop location) are extracted.

After merging the electronic horizon profiles ehlim and ehslope, it is assumed that the com-
bined electronic horizon profile ehcomb consists of nseg segments. Also stops are considered
to be segments with length, set velocity and acceleration equal to zero. The nstops entries
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Figure 6.3.: Preprocessing of electronic horizon profiles.

from the stops profile ehstops are inserted into the combined profile ehcomb. After inserting
the stops, the combined profile ehcomb hasmseg segments in total withmseg ≤ nseg+2nstops.

The set velocity varies from segment to segment and the velocity profile should be calcu-
lated considering the changes from one segment to the next. Due to a given set acceleration
a[i]

ems and segment length ds[i+1] it cannot be ensured that the set velocity v[i]
ems within the

segment i will be reached. Assuming a higher set velocity v[i]
ems in segment i compared to

v[i+1]
ems in segment i + 1, it might come to a case that after reaching v[i]

ems in segment i it
would not be possible to decelerate to v[i+1]

ems in segment i + 1 with the given deceleration
value a[i]

ems in segment i due to the limited segment length ds[i+1].

Therefore, considering the segment length ds[i] and given segment acceleration and de-
celeration |a[i]

ems|, the segment start v[i]
start and end velocity v[i]

end for each segment should
be estimated taking into account the required velocity changes between the segments. A
two-stage iterative approach based on forward and reverse calculation for estimation of
velocity boundary conditions for each segment is proposed as depicted in Fig. 6.4.

At first, starting with the current vehicle velocity v0, the maximum possible start ve-
locity v[i]

start.max for each segment i is estimated in an iterative forward calculation. The
value v[i]

start.max describes the maximum velocity that can be reached at the end of segment
i − 1 with the set acceleration a[i−1]

ems starting from the initial segment velocity v
[i−1]
start.frw
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Figure 6.4.: Estimation of velocity bounds for driving trajectory segments.

estimated in the last iteration. Using the length ds[i−1], set acceleration a[i−1]
ems and start

velocity v[i−1]
start.frw of the segment i − 1, the maximum start velocity v[i]

start.max for segment i
can be calculated as:

v
[i]
start.max =

√
(v[i−1]

start.frw)2 + 2 a[i−1]
ems ds[i−1] (6.29)

The start velocity for interval i estimated in the forward calculation can be then defined
as the minimum out of the maximum possible start velocity v[i]

start.max for segment i and
set velocities v[i−1]

ems for the preceding segment and v[i]
ems for the current segment:

v
[i]
start.frw =

min(v[i]
start.max, v

[i−1]
ems , v

[i]
ems), with i ∈ {2..mseg}

v0, with i = 1
(6.30)

In the same way, the maximum end velocity v[i]
end.max for each segment starting with veloc-

ity equal to zero at the end of a driving mission can be estimated in an iterative reverse
calculation. The value v[i]

end.max describes the maximum velocity at the end of segment i,
from which a deceleration to the end velocity v[i+1]

end.rev of the segment i +1 estimated in the
last iteration is possible with the set deceleration value a[i+1]

ems . Using the length ds[i+1],
set deceleration a[i+1]

ems and end velocity v[i+1]
end.rev of the segment i + 1, the maximum end
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Figure 6.5.: Estimation of velocity profile.

velocity v[i]
end.max for segment i can be calculated as:

v
[i]
end.max =

√
(v[i+1]

end.rev)2 + 2 a[i+1]
ems ds[i+1] (6.31)

The end velocity for interval i estimated in the reverse calculation can be then defined
as the minimum out of the maximum possible end velocity v[i]

end.max for segment i and set
velocities v[i]

ems for the current segment and v[i+1]
ems for the subsequent segment:

v
[i]
end.rev =

min(v[i]
end.max, v

[i]
ems, v

[i+1]
ems ), with i ∈ {1..mseg − 1}

0, with i = mseg
(6.32)

The start velocity v[i]
start for segment i can be then calculated as the minimum out of the

start velocity v[i]
start.frw estimated in forward calculation for segment i and the end velocity

v
[i−1]
end.rev estimated in reverse calculation for segment i − 1:

v
[i]
start =

min(v[i]
start.frw, v

[i−1]
end.rev), with i ∈ {2..mseg}

v0, with i = 1
(6.33)

The end velocity v[i]
end for segment i can be calculated as the minimum out of the start

velocity v[i+1]
start.frw estimated in forward calculation for segment i + 1 and the end velocity

v
[i]
end.rev estimated in reverse calculation for segment i:

v
[i]
end =

min(v[i+1]
start.frw, v

[i]
end.rev), with i ∈ {1..mseg − 1}

0, with i = mseg
(6.34)

After the velocity boundary conditions are determined, a velocity profile can be derived for
each segment i. For this, as depicted in Fig. 6.5, each segment is divided into three phases:

133



Chapter 6. Powertrain Control and Propulsion Energy Prediction

(1) acceleration phase with duration dT [i]
a1 , (2) constant velocity phase with duration dT [i]

c

and (3) deceleration phase with duration dT [i]
a2 .

The duration of acceleration (dT [i]
a1 ), constant velocity (dT [i]

c ) and deceleration (dT [i]
a2 )

phase is estimated in a way, that the integral of the segment velocity profile equals to the
segment length ds[i] by considering the boundary conditions for segment start (v[i]

start) and
end (v[i]

end) velocity. As illustrated for the segment mseg in Fig. 6.5, if the segment length
ds[i] is too short, it might come to a case that the set velocity v[i]

ems cannot be reached with
the set acceleration a[i]

ems. Therefore, without considering the set velocity, a peak velocity
v

[i]
peak is calculated first with the assumption, that the velocity profile of segment i consists
of acceleration (from v

[i]
start to v

[i]
peak) and deceleration (from v

[i]
peak to v[i]

end) phase only. For
a given length ds[i], start velocity v[i]

start, end velocity v[i]
end and acceleration/deceleration

|a[i]
ems|, the peak velocity v[i]

peak for the segment i can be calculated as:

v
[i]
peak =

√√√√
a

[i]
ems ds[i] + (v[i]

start)2 + (v[i]
end)2

2 (6.35)

The maximum velocity v[i]
max that will be reached within the segment i can be then calcu-

lated as:

v[i]
max = min(v[i]

ems, v
[i]
peak) (6.36)

The duration of acceleration phase dT [i]
a1 is then calculated as:

dT
[i]
a1 =


v[i]

max − v
[i]
start

a
[i]
ems

, for v[i]
max > v

[i]
start

0, for v[i]
max = v

[i]
start

(6.37)

The duration of deceleration phase dT [i]
a2 is then calculated as:

dT
[i]
a2 =


v[i]

max − v
[i]
end

a
[i]
ems

, for v[i]
max > v

[i]
end

0, for v[i]
max = v

[i]
end

(6.38)

The duration of constant velocity phase dT [i]
c is then calculated as:

dT [i]
c = 1

2

2 ds[i] − dT [i]
a1 v

[i]
start − dT

[i]
a2 v

[i]
end

v
[i]
max

− dT [i]
a1 − dT

[i]
a2

 (6.39)

The predicted driving trajectory from the vehicle current position s0 to the destination sssl
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Figure 6.6.: Format of predicted driving trajectory.

consists then out of entries with constant acceleration and slope value with corresponding
duration as depicted in Fig. 6.6. Since only the acceleration, constant velocity and decel-
eration phases with a duration greater zero are relevant, the total amount of entries in
the predicted driving trajectory equals ntraj with ntraj ≤ 3mseg. The time dT ssl required
for completing the driving mission can be calculated as:

dT ssl =
ntraj∑
i=1

dT [i]
seg (6.40)

Depending on the powertrain topology, the propulsion energy required for completing
the predicted driving trajectory can be estimated. In Section 6.3, an algorithm for the
estimation of the propulsion energy for a powertrain topology with a single traction motor
is presented. This algorithm is then extended to the prediction of the propulsion energy
for powertrain topologies with multiple traction motors under consideration of optimal
torque distribution in Section 6.4.

6.3. Prediction for Powertrain with Single Motor

After predicting a driving trajectory from the current vehicle position to the destina-
tion as presented in Section 6.2, the propulsion energy required for completing it can
be estimated. Several approaches for the prediction of driving range and corresponding
propulsion energy based on geographical information like speed limits, weather conditions
and driver behavior exist. In [121], a smartphone application is presented estimating the
possible driving range and proposing eco routes using the basic battery data like state of
charge or by measuring the battery current and voltage for calculation of energy consump-
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tion. The authors of [98] propose an algorithm for the range prediction based on route
information clustered in homogeneous segments with constant parameters influencing the
power losses by applying stochastic methods. The segments are divided into represen-
tative groups and based on the learned data for energy losses estimated while driving a
tour, a look-up table with normalized energy losses for each group is created, which is
then used for range prediction. In [97, 96], a trip management is proposed estimating the
optimal velocity and acceleration trajectory based on dynamic programming. While the
trip management proposes the optimal velocity limits online, optimal acceleration and
recuperation profiles are estimated offline and stored in a look-up table. The described
algorithms are designed for the range prediction in fault-free operation and do not con-
sider powertrain failure states. In the next subsection, an algorithm for the prediction
of propulsion energy at runtime required for completing a given driving mission in both,
normal and failure case operation, is proposed.

6.3.1. Online Propulsion Energy Prediction

The algorithm for estimation of propulsion energy required for completing a given driving
mission uses the online diagnostic data of powertrain components and is therefore well
suited for range prediction in normal and failure case operation. The propulsion energy
is calculated by evaluating the powertrain model as presented in Section 6.1 for each
segment of the driving trajectory in the format as depicted in Fig. 6.6. For the calculation,
a method based on quasistatic simulation [29] is proposed. Instead of dividing the entire
driving trajectory in equal calculation steps dT calc, a variable calculation step depending
on the segment acceleration is proposed. According to the definition in (6.6), the traction
force is a function of velocity. For the set acceleration a[i]

ems equal to zero, the traction
force within the trajectory segment i remains constant. Taking the segment duration
as calculation step for the segments with set acceleration equal zero results in a small
calculation error since the battery internal resistance and open circuit voltage depend on
state of charge, which is updated only at the end of the segment in this case. By accepting
this calculation error, the calculation burden can be reduced significantly, enabling so the
online execution of the proposed algorithm.

For acceleration and deceleration phases with required constant acceleration or decelera-
tion |a[i]

ems|, the vehicle velocity changes within the trajectory segment i. For increasing
the prediction precision, the calculation of propulsion energy in these segments can be
divided into j[i]

sub subintervals. The number of subintervals is set as a function of a min-
imum defined calculation time step dTmin. The powertrain state variables required for
calculation of propulsion energy are then updated after each subinterval calculation. The
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Figure 6.7.: Topology of electric powertrain with single motor.

Figure 6.8.: Model of electric powertrain with single motor.

variable calculation time step dT [i]
calc for the trajectory segment i with duration dT [i]

seg can
be then defined as:

dT
[i]
calc =


dT [i]

seg

j
[i]
sub

, for a[i]
ems 6= 0 and j

[i]
sub = ceil

(
dT [i]

seg

dTmin

)

dT [i]
seg, for a[i]

ems = 0
(6.41)

The parameter dTmin has impact on the overall calculation time as well as on the quality of
prediction. Therefore, it should be set depending on the available computational resources
and required prediction precision. The total number ncalc of calculation subintervals or
steps for propulsion energy predicted for a given driving trajectory with ntraj segments is
defined as:

ncalc =
ntraj∑
i=1

j
[i]
sub (6.42)

An exemplary powertrain topology with single traction motor is depicted in Fig. 6.7. It
consists of a traction battery, electrical traction motor (M) and a gearbox with constant
transmission ratio. The mechanical power provided by the motor at the gearbox input
shaft is transmitted to the wheels, which are connected via a differential to the gearbox
output shaft. The propulsion energy prediction is based on the powertrain model pre-
sented in Section 6.1. The data flow between the model elements is depicted in Fig. 6.11.
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The powertrain state variables measured by onboard sensors are taken as initial condi-
tions for the first calculation step i (i ∈ {1..ncalc}). Using the vehicle velocity v [i]

0 at
the start of calculation step i and set acceleration a[i]

ems, the required wheel torque T [i]
w

and wheel speed ω[i]
w are calculated with the vehicle model using (6.7a) and (6.7b). The

wheel torque and speed are then used for the calculation of required torque T [i]
gb and speed

ω
[i]
gb at the gearbox input shaft using (6.10) and (6.11). The electrical power P [i]

em of the
traction motor is estimated with the electrical machine model using (6.21). The battery
state of charge SoC [i+1] at the end of calculation step i and the battery current I [i]

bat can
be then estimated using (6.25) and (6.24). The predicted powertrain state at the end of
calculation step i is then used as the initial condition for the subsequent calculation step
i + 1 and the initial vehicle velocity v [i+1]

0 is set to:

v [i+1]
0 = v [i]

0 + a[i]
ems dT

[i]
calc (6.43)

In the next subsection, simulation results for the exemplary powertrain topology as de-
picted in Fig. 6.7 verifying the precision and suitability for online execution of the proposed
algorithm are provided.

6.3.2. Simulation Results for Powertrain with Single Motor

The prediction of propulsion energy required for completing a given driving cycle consists
of two main steps. In the first step, based on the electronic horizon, a driving trajec-
tory from the current vehicle position s0 to the vehicle destination sssl as a function of
degradation variables dpdv for velocity and dpda for acceleration is approximated. For
the example presented in this section, the vehicle is assumed to be at the beginning of the
driving route with s0 = 0 km and the vehicle destination is set to sssl = 50 km. The elec-
tronic horizon profile ehlim containing the velocity and acceleration bounds for the route
ahead consists of 85 entries, the slope profile ehslope of 501 and the stops profile ehstops of
35 entries. The electronic horizon used for the simulation in this section as well as the ve-
hicle and gearbox parameters are listed in Appendix A. The driving trajectory estimated
with the algorithm presented in Section 6.2 using these electronic horizon profiles consists
in total of 694 entries.

Two different values, 25 % and 75 % for the degradation variables dpdv and dpda are used.
The duration of the driving mission for dpdv = dpda = 25 % is approx. 124 min with an
average velocity of 24.2 km

h . For dpdv = dpda = 75 %, the driving mission is completed
after approx. 80 min with an average velocity equal to 37.5 km

h . The corresponding velocity
(vv), distance (sv) and slope (sl) profiles are depicted in Fig. 6.9.
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Figure 6.9.: Simulation results for powertrain with single motor.

In the second step of propulsion energy prediction, the powertrain model is calculated for
the given driving trajectory as presented in Section 6.3.1. For the example in this section,
a lithium-ion battery with a nominal voltage of approx. 355 V and capacity of 63 Ah is
assumed. The initial state of charge is set to 90 % and the battery temperature to 25 ◦C.
The battery discharge (SoC) and propulsion energy (Eprop) curve are depicted in Fig. 6.9.
For the evaluation of the proposed propulsion energy prediction algorithm, reference values
are calculated without applying the variable calculation time step dT

[i]
calc as defined in

(6.41). Instead, the battery state of charge SoCqs at the end of the driving mission and
total required propulsion energy Eprop.qs are estimated with a time step according to the
first case in (6.41), which is similar to a quasistatic simulation. The estimated values with
the corresponding evaluation time dT eval.qs are summarized in Table 6.1.

The evaluation time is measured as an average out of 1000 runs on an Intel i7 CPU using
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Table 6.1.: Simulation results using quasistatic approach.
dpdv dpda Eprop.qs SoCqs dT eval.qs

25 % 25 % 2.929 kWh 78.070 % 19.10 ms
75 % 75 % 4.033 kWh 73.149 % 13.96 ms

the MATLAB functions tic and toc. The evaluation time covers both, the approximation
of the driving trajectory and propulsion energy prediction. Due to the longer driving
duration, the calculation time for dpdv = dpda = 25 % is higher than for degradation
variables equal to 25 %. Since the average driving velocity is smaller, the total consumed
propulsion energy for dpdv = dpda = 25 % is lower than for 75 %. By using the variable
time step as proposed in (6.41), the computational time can be significantly reduced while
achieving approximately the same results for predicted battery state of charge at the end
of the driving mission and consumed propulsion energy.

Simulation results using different minimum calculation time steps dTmin for dpdv =
dpda = 25 % and 75 % are summarized in Tables 6.2 and 6.3. In the second column,
the relative deviation ∆Eprop.qs of predicted value Eprop to the consumed propulsion en-
ergy Eprop.qs estimated with the quasistatic approach is given. The relative deviation
∆SoCqs of final battery state of charge and ∆dT eval.qs of time required for evaluation are
summarized in the third and forth columns. The relative deviation ∆aqs of a value apred

compared to the value aqs estimated with the quasistatic approach is calculated as:

∆aqs = apred

aqs
− 1 (6.44)

With the proposed variable time step, the computational time can be reduced in this
example up to 77 % for dpdv = dpda = 25 % and up to 70 % for degradation variables
equal to 75 %, while the prediction precision remains approximately the same. Due to
very low computational burden, the proposed energy prediction algorithm is well suited
for embedded online execution.

Table 6.2.: Deviation of predicted values for dpdv = dpda = 25 %.
dTmin ∆Eprop.qs ∆SoCqs ∆dT eval.qs

1 s 0.0 % 0.0 % −66.80 %
5 s −0.054 % 0.009 % −75.58 %
10 s −0.115 % 0.020 % −77.07 %

The estimation of required propulsion energy for a powertrain topology with a single
motor is straightforward, since there is only one actor providing the required torque. In
powertrain topologies with multiple traction motors, the powertrain losses and therefore
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Table 6.3.: Deviation of predicted values for dpdv = dpda = 75%.
dTmin ∆Eprop.qs ∆SoCqs ∆dT eval.qs

1 s 0.0 % 0.0 % −56.82 %
5 s −0.146 % 0.045 % −67.90 %
10 s −0.431 % 0.136 % −70.14 %

also the predicted driving range depend on the torque distribution strategy between the
individual motors. In the next section, an algorithm for range extension and prediction
of propulsion energy in powertrain topologies with multiple traction motors based on the
theory of optimal control is proposed.

6.4. Prediction for Fail-Operational Powertrain with
Multiple Motors

With introduction of automated driving systems, the individual mobility is expected to
be changed. According to a technical report published by Roland Berger, approximately
one third of worldwide driven kilometers in 2030 will be accomplished by robocabs [1].
Since no driver is expected to be present in robocabs, these automated driving systems
must be able to cope with all driving situations without passenger interaction in defined
use cases for high driving automation and in all use cases for full driving automation [6].
The concept of safety-based range extension was introduced in Section 4.1, meaning the
optimization of powertrain and powernet control in a way allowing to arrive at the safest
possible location for the passengers also in case of a failure. In powertrain topologies with
a single traction motor, the propulsion functionality might not be provided in case of a
single failure, e.g. if the traction motor or the traction battery fails. This would result in
limited possibilities for safe stop locations that can be reached, since only coasting would
be available. In best case, assuming no uphill road, the rightmost lane could be reached
with functional braking and steering.

For the use of robocabs as a mobility service, a certain degree of fail-operability might
be expected by the customers. A fail-operational powertrain topology would not only in-
crease the acceptance of automated driving systems like robocabs, but would also provide
increased safety for the passengers, since also in case of a single failure, at least degraded
propulsion functionality would be still available. In this case a vehicle breakdown at an
unsecured location, e.g. in the middle of a crossroads or on a highway, could be avoided.

A fail-operational system provides a minimum level of service required for safety also
in case of failures [100], which is achieved by fault tolerance. For fail-operability of a

141



Chapter 6. Powertrain Control and Propulsion Energy Prediction

Figure 6.10.: Topology of fail-operational electric powertrain with multiple motors.

propulsion system in an electric vehicle, redundant traction motors and batteries are
required. The fail-operational powertrain topology used for further analysis in this work
is depicted in Fig. 6.10. It consists of two independent electric axles. Each axle has two
traction motors which are connected via clutches to a dual input shaft of a gearbox with
constant transmission ratio (one speed gearbox). The traction motors at each axle are
supplied by an independent traction battery, which makes the powertrain system tolerant
to battery failures. In case of a motor failure, each motor can be disengaged with a
corresponding clutch and the traction provided by the remaining functional motors.

In addition to fail-operability of a powertrain topology with multiple traction motors, also
the overall driving efficiency can be increased, since new degrees of freedom arise for the
powertrain control due to redundancy in components. The authors of [15] proposed a
control strategy for a front- and rear-wheel driven electric vehicle improving the driving
efficiency by appropriate torque distribution between the front and rear motor. In high
torque regions, the requested torque is distributed equally between the motors. In low
torque regions, it is checked online whether the powertrain losses, calculated with the
motor efficiency map, can be reduced by disengaging one of the motors. With a simi-
lar approach, a control strategy for an axle individually propelled powertrain topology
increasing the driving efficiency is proposed in [16, 82]. Using offline optimization for
minimization of powertrain losses, a look-up table containing optimal torque distribution
factor between front and rear axle as a function of motor speed and requested torque is
generated, which is then used for online optimal control increasing the energy efficiency
and comfort [16]. In addition, for avoiding frequent disengaging of one motor with a
clutch, what also results in power losses, a penalty function for disengaging is introduced.
Further control strategies for different types of powertrain topologies with the main goal
of driving efficiency increase were proposed. The authors of [86] consider for example a
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three motor powertrain topology with two in-wheel motors at the rear and one motor at
the front axle. Control strategies for powertrain topologies with four in-wheel motors can
be found e.g. in [85, 84, 83]).

The referenced control strategies for torque distribution between multiple traction motors
have in common that they are designed for the normal operation, while the operation in
failure case is not covered. Additionally, only a single traction battery as a source for
power supply of traction motors is considered, making the control not tolerant to failures
of traction battery. Three main contributions proposed in this work are presented in
the following sections. New requirements and control goals of fail-operational powertrain
for automated driving are discussed in Section 6.4.1. In Section 6.4.2, a concept for the
propulsion energy prediction based on the proposed control strategy for fail-operational
powertrain is introduced. An algorithm suitable for online execution of the control strat-
egy combined with the propulsion energy prediction is presented in Section 6.4.3. Simula-
tion results verifying the functionality and suitability for online execution of the proposed
algorithm for the powertrain control and propulsion energy prediction are provided in
Section 6.4.4 and 6.4.5.

6.4.1. Optimal Control Strategy for Fail-Operational Powertrain

The strategy proposed for the control of a fail-operational powertrain is based on the
concept of safety-based range extension. The main goal is to adapt the control strategy to
the current powertrain state and to enable the transition of the automated driving system
to the safest possible position. As already explained in the introduction to this section, the
powertrain losses can be minimized by appropriate torque distribution, extending so the
driving range. Therefore, the first goal for the control of the fail-operational powertrain
is to minimize the overall driving efficiency.

In the powertrain topology as depicted in Fig. 6.10, both traction batteries are indepen-
dent and not connected electrically to each other. It is assumed that one traction motor,
e.g. Mfl, has the best efficiency compared to the remaining motors. Therefore, the min-
imization of powertrain losses will result in increased operation of motor Mfl. Since the
traction batteries do not have an electrical connection, the front battery will be discharged
in this case more than the rear battery. In extreme cases, depending on the efficiency map
of the individual traction motors, the minimization of powertrain losses can result in the
case that the battery supplying the motors with better efficiency will be discharged, while
the other battery remains fully charged as long as the first battery is not fully empty.
In this hypothetical example, a breakdown of the fully charged battery would result in a
breakdown of the automated driving system, since no energy resources would be available
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for the propulsion. Therefore, to ensure approximately the same driving range in case
of a breakdown of one battery, the independent traction batteries should be discharged
approximately symmetrically during the entire driving mission, which is the second goal
of the proposed control strategy.

It is again assumed that the traction motor Mfl has the best efficiency compared to the
other motors. Considering only the minimization of power losses would again result in
increased operation of motor Mfl. This would also lead to increased heating of this mo-
tor, which could result in faster aging. Therefore, it is proposed to balance the energy
dissipated by each motor, ensuring so approximately equal heating and aging of the trac-
tion motors. The balancing of the motor losses can be applied between the left and
right traction motors as well as between the front and rear axle. With a similar argu-
mentation, considering the heating and aging of the traction batteries, balancing of the
energy dissipated by each traction battery is also proposed as the goal for the control of
fail-operational powertrain.

Summing up the argumentation presented above, five objectives for the control of fail-
operational powertrain are proposed:

• 1st objective: increase of powertrain efficiency

• 2nd objective: symmetrical discharge of independent traction batteries

• 3rd objective: balancing of energy losses dissipated by left and right traction motor

• 4th objective: balancing of energy losses dissipated by motors at front and rear axle

• 5th objective: balancing of energy losses dissipated by independent traction batteries

For achieving these objectives, a control strategy for the fail-operational powertrain based
on the theory of optimal control is proposed. Using the powertrain model as presented
in Section 6.1, for each goal an objective function can be defined. The overview of the
model used for the fail-operational powertrain topology depicted in Fig. 6.10 is given in
Fig. 6.11 with the data flow between the component models within time interval i with
t ∈ [t [i]

0 , t
[i]
0 + dT [i]).

Using the initial vehicle velocity v [i]
0 at the beginning of the interval i and the required

acceleration a[i]
ems, wheel speed ω[i]

w and required wheel torque T [i]
w are calculated using

(6.7b) and (6.7a) with the vehicle model presented in Section 6.1.2. The required wheel
torque T [i]

w can be distributed between the front and rear axle using the torque distribution
factor α[i]

fr . The required torque T [i]
wf at the output shaft of front and T [i]

wr of rear gearbox
is calculated with (6.8a) and (6.8b).
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Figure 6.11.: Model of fail-operational electric powertrain with multiple motors.

The gearbox torque T [i]
gb{x} required at the output shaft of axle x (with x = f for front

and x = r for rear axle) can be distributed between the left and right side traction motor
with the torque distribution factor α[i]

{x}lr as defined in (6.12a) and (6.12b). Using the
corresponding clutches, the traction motors can be disengaged for switching off the idling
losses if the requested motor torque T [i]

em{xy} equals zero with x denoting the axle (x = f
for front and x = r for rear axle) and y the motor side (y = l for left and y = r for right
side). The motor speed ω[i]

em{xy} is then defined as:

ω
[i]
em{xy} =


ω

[i]
gb{x} with T

[i]
em{xy} 6= 0

0 with T
[i]
em{xy} = 0

(6.45)

Using the model of an electrical machine as presented in Section 6.1.4, the electrical power
P

[i]
em{xy} as well as power losses P [i]

em{xy}.loss for each motor can be calculated with (6.21)
and (6.20). By denoting the power provided by the battery for the supply of auxiliary
loads with P

[i]
bat{x}.load, the required battery power P [i]

bat{x} at the axle x (x = f for front
and x = r for rear axle) is then defined as:

P
[i]
bat{x} = P

[i]
em{x}l + P

[i]
em{x}r + P

[i]
bat{x}.load (6.46)

Using the battery model as presented in Section 6.1.5, the battery state of charge SoC [i+1]
{x}

at the end of the time interval i as well as the battery power losses P [i]
bat{x}.loss can be cal-

culated with (6.25) and (6.26). The first objective of the proposed control strategy is to
increase the overall driving efficiency. The powertrain topology as depicted in Fig. 6.10

145



Chapter 6. Powertrain Control and Propulsion Energy Prediction

is an over-actuated system and the requested wheel torque T [i]
w can be provided in differ-

ent ways by varying the torque distribution variables α[i]
fr for front/rear, α[i]

flr and α[i]
rlr for

left/right torque distribution at front and rear axle. Since the power losses of an electri-
cal machine are a function of motor speed and torque, they can be also expressed as a
function of the torque distribution variables. The overall powertrain losses can be mini-
mized by maximizing the sum of the batteries’ state of charge at the end of the interval
i. Therefore, the first objective f [i]

obj1 for the control of the fail-operational powertrain can
be defined as:

f
[i]
obj1(α[i]

fr , α
[i]
flr, α

[i]
rlr) = SoC

[i+1]
f (α[i]

fr , α
[i]
flr) + SoC [i+1]

r (α[i]
fr , α

[i]
rlr) (6.47)

By assuming that the batteries have the same capacity that does not change due to possi-
ble failures, the symmetrical discharge as required by the second objective can be achieved
by minimizing the delta between front and rear battery state of charge at the end of the
interval i. The second objective f [i]

obj2a for the powertrain control can be defined as:

f
[i]
obj2a(α[i]

fr , α
[i]
flr, α

[i]
rlr) =

∣∣∣SoC [i+1]
f (α[i]

fr , α
[i]
flr)− SoC [i+1]

r (α[i]
fr , α

[i]
rlr)
∣∣∣ (6.48)

If the traction batteries at the front and rear axle have different capacities or the capacity
can change due to failures, but nearly the same driving range (approx. half of the driving
range available if both batteries are functional) is required in normal and failure case
operation, the symmetrical battery discharge can be achieved by minimizing the delta
between front and rear battery remaining discharge energy E[i]

rde{x}. The battery remain-
ing discharge energy can be calculated as presented in Section 5.5.2 either for a battery
output power equal to zero, which would correspond to balancing of remaining chemical
energy, or for battery output power equal to the average traction power. The second
objective f [i]

obj2b for the powertrain control can be then alternatively defined as:

f
[i]
obj2b(α[i]

fr , α
[i]
flr, α

[i]
rlr) =

∣∣∣E[i]
rdef(α

[i]
fr , α

[i]
flr)− E

[i]
rder(α

[i]
fr , α

[i]
rlr)
∣∣∣ (6.49)

The cumulative energy losses E [i]
em{xy}.loss dissipated by each traction motor at the end

of the interval i starting at the beginning of operation can be calculated using (6.22).
The balancing of the energy losses between the left and right motor as required by the
third objective can be achieved by minimizing the delta in dissipated energy. The third
objective f [i]

obj3 for the control of fail-operational powertrain can be then defined as:

f
[i]
obj3(α[i]

fr , α
[i]
flr, α

[i]
rlr) =

∣∣∣cemfl E [i]
emfl.loss(α

[i]
fr , α

[i]
flr)− cemfr E [i]

emfr.loss(α
[i]
fr , α

[i]
flr)
∣∣∣

+
∣∣∣cemrl E [i]

emrl.loss(α
[i]
fr , α

[i]
rlr)− cemrr E [i]

emrr.loss(α
[i]
fr , α

[i]
rlr)
∣∣∣ (6.50)
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The time independent factor cem{xy} is used for modeling the different sizes of the traction
motors, since the thermal resistance of a motor is also dependent on the geometric dimen-
sions and cooling concept. In a similar way the balancing of the energy losses between
front and rear axle as required by the fourth objective can be achieved by minimizing the
delta in energy losses dissipated at each axle. The fourth objective can be defined as:

f
[i]
obj4(α[i]

fr , α
[i]
flr, α

[i]
rlr) =

∣∣∣cemfl E [i]
emfl.loss(α

[i]
fr , α

[i]
flr) + cemfr E [i]

emfr.loss(α
[i]
fr , α

[i]
flr)

− cemrl E [i]
emrl.loss(α

[i]
fr , α

[i]
rlr) + cemrr E [i]

emrr.loss(α
[i]
fr , α

[i]
rlr)
∣∣∣ (6.51)

The cumulative energy losses E [i]
bat{x}.loss dissipated by each traction battery at the end

of the interval i starting at the beginning of operation can be calculated using (6.27).
The balancing of the energy losses between the front and rear battery as required by the
fifth objective can be achieved by minimizing the delta in dissipated energy. The fifth
objective f [i]

obj5 for the control of fail-operational powertrain can be then defined as:

f
[i]
obj5(α[i]

fr , α
[i]
flr, α

[i]
rlr) =

∣∣∣cbatf E [i]
batf.loss(α

[i]
fr , α

[i]
flr)− cbatr E [i]

batr.loss(α
[i]
fr , α

[i]
rlr)
∣∣∣ (6.52)

As by the traction motors, the time independent factor cbat{x} is used for modeling the
different sizes of the traction batteries, since the thermal resistance of a battery is also
dependent on the geometric dimensions and cooling concept. For the sake of simplified
notation, the three torque distribution variables α[i]

fr , α
[i]
flr and α[i]

rlr are summarized in the
vector torque distribution variable α[i]. Using the definitions above, the multi objective
function f [i]

obj for the control of fail-operational powertrain can be defined as:

f
[i]
obj(α[i]) =



β1

−β2

−β3

−β4

−β5



T

·



f
[i]
obj1(α[i])
f

[i]
obj2(α[i])
f

[i]
obj3(α[i])
f

[i]
obj4(α[i])
f

[i]
obj5(α[i])


(6.53)

The positive scaling factors β1..5 are used for weighting the control goals. By maximiz-
ing the objective function f [i]

obj, the optimal torque distribution factors α[i]
opt for achieving

the five control goals defined above can be estimated and used for the powertrain con-
trol. While maximizing the objective function, powertrain system constraints must be
considered.

Three constraints considering each traction battery can be defined. The components
supplied by the traction battery at each axle are generally designed for operation within a
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specified voltage range. If the supply voltage exceeds these limits, a correct functionality of
these components cannot be guaranteed. Therefore, by optimizing the torque distribution,
it should be considered that the output voltage V [i]

bat{x} of the traction battery at each axle
lies within the minimum Vbat{x}.min and maximum Vbat{x}.max allowed voltage for avoiding
under- and overvoltage in the subpowernet containing the traction battery.

While discharging the battery in motor mode or charging the battery in generator mode,
the minimum SoC{x}.min and maximum SoC{x}.max thresholds for the specified state of
charge must be considered for each battery, ensuring that the current state of charge
SoC

[i]
{x} remains within these specified limits. Similarly, the battery output current I [i]

bat{x}

should not exceed the maximum allowed discharge Ibat{x}.dcha.max and charge Ibat{x}.chrg.max

current, which is negative due to the definition of the battery model in Section 6.1.5.

Also for each traction motor three constraints are considered. The output torque T [i]
em{xy}

of each electrical machine as presented in Section 6.1.4 that can be provided in motor
mode is limited to a motor speed dependent threshold T [i]

em{xy}.lim.mot and to T [i]
em{xy}.lim.gen

in generator mode, which is negative due to the electric motor model definition. Therefore,
while optimizing the torque distribution between the motors, it should be ensured that
the output motor torque T [i]

em{xy} lies within these thresholds. In a similar way, also the
electrical power P [i]

em{xy} of each motor can be limited to motor speed dependent thresholds
for maximum power P [i]

em{xy}.lim.mot in motor and to P [i]
em{xy}.lim.gen in generator mode, which

is again negative due to the electric motor model definition. For avoiding unnecessary
heating, the operation of the motor can be limited to the efficiency map regions with
motor efficiency η[i]

em{xy} greater than a specified efficiency limit ηem{xy}.lim.

Using the definitions above and by denoting the lower and upper bounds for torque dis-
tribution vector α[i] by α

[i]
min and α[i]

max, the optimization problem for estimation of the
optimal torque distribution variable α[i] can be defined as:

max
α[i]

f
[i]
obj(α[i])

s.t.



Vbat{x}.min ≤ V
[i]

bat{x}(α[i]) ≤ Vbat{x}.max

SoC{x}.min ≤SoC [i+1]
{x} (α[i])≤ SoC{x}.max

Ibat{x}.chrg.max ≤ I
[i]
bat{x}(α[i]) ≤ Ibat{x}.dcha.max

T
[i]
em{xy}.lim.gen ≤ T

[i]
em{xy}(α[i]) ≤ T

[i]
em{xy}.lim.mot

P
[i]
em{xy}.lim.gen ≤ P

[i]
em{xy}(α[i]) ≤ P

[i]
em{xy}.lim.mot

ηem{xy}.lim ≤ η
[i]
em{xy}(α[i])

α
[i]
min ≤ α[i] ≤ α[i]

max

(6.54)
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By solving the optimization problem as defined in (6.54), the optimal torque distribution
variable α[i] for the time interval i satisfying the defined goals for the control of the fail-
operational powertrain can be estimated. The proposed optimal control strategy can be
also applied to powertrain topologies without clutches by setting the lower bounds αmin

for torque distribution vector α greater zero and upper bounds αmax smaller one. In
this case it becomes impossible for the controller to request a disengagement of individual
traction motors, since due to the definition in (6.8a), (6.8b), (6.12a) and (6.12b) the torque
request for each motor can be zero only in case of zero wheel torque request. Based on the
proposed control strategy for a powertrain with multiple traction motors, an algorithm
for accurate estimation of propulsion energy required for completing a given driving cycle
is presented in the next subsection.

6.4.2. Propulsion Energy Prediction for Fail-Operational Powertrain

For the concept of safety-based range extension as well as for the predictive energy dis-
tribution within the vehicle powernet accurate prediction of driving range is required.
Assuming equal torque distribution between the traction motors, the propulsion energy
required for completing a given driving cycle can be calculated with a similar approach as
presented in 6.3.1. Since the driving efficiency of an electric vehicle with multiple traction
motors can be increased by applying an appropriate torque distribution strategy [15, 16],
using this approach for powertrain topologies with multiple traction motors would result
in higher required propulsion energy compared to optimal torque distribution, leading
so to inaccuracy of driving range prediction. Therefore, for accurate range prediction, a
torque distribution profile should be estimated for the entire driving mission.

As proposed in Section 6.2 for the prediction of the driving trajectory to the vehicle
destination, the entire trajectory is divided into ntraj segments. For each segment i (i ∈
{1..nseg}), the acceleration a[i]

ems and slope value sl[i] are constant and each segment i can
be classified either as acceleration/deceleration phase for a[i]

ems 6= 0 or constant velocity
phase with a[i]

ems = 0. For the prediction of the propulsion energy it is proposed to estimate
the optimal torque distribution by solving the optimization problem according to (6.54)
for each segment i as depicted in Fig. 6.12. Similar to the acceleration and slope profile,
also the torque distribution factors α[i]

fr , α
[i]
flr and α

[i]
rlr modeling the torque distribution

between front and rear axle as well as left and right side motor for each axle are kept
constant within one segment i.

From the optimization point of view this simplification may result in suboptimal solu-
tions on the one hand. On the other hand, frequent engaging and disengaging of motors
would result in additional switching losses. Therefore, by keeping the torque distribution
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Figure 6.12.: Format of predicted driving and torque distribution trajectory.

parameters constant within one trajectory segment, the total operation of clutches as well
as corresponding switching losses can be reduced. The time dependent wheel torque and
speed profile within acceleration or deceleration phases would result in a time dependent
optimal torque distribution profile. Since the duration of acceleration and deceleration
phases is normally short, the deviation between energy consumption with optimal time
dependent and approximated constant torque distribution can be neglected compared to
total required propulsion energy for the entire driving mission.

For the phases with constant velocity and road slope, the required wheel torque and speed
can be considered to be constant according to (6.6). Therefore, also for these phases,
approximated constant toque distribution factors would lead to a solution which is close
to the optimum. With these arguments, the estimation of the optimal torque distribution
profile requiring the solution of a dynamic optimization problem, which can be obtained
e.g. by computationally intensive dynamic programming algorithms, can be reduced to
the estimation of a discrete-time torque distribution profile as depicted in Fig. 6.12.

The objective function of the optimization problem proposed for the control of the fail-
operational powertrain as defined in (6.54) is a nonlinear function, which should be maxi-
mized under nonlinear constrains for ntraj segments. Using state of the art solvers for non-
linear optimization would result in high computational effort, violating so the requirement
for online execution of control with short failure reaction times. Therefore, an algorithm
with low computational effort for solving the optimization problem at runtime defined in
(6.54) estimating the discrete-time torque distribution profiles is required. An approach
based on discretization of optimization variables for torque distribution between the mo-
tors, which combines the optimization problem solving and propulsion energy prediction
is presented in the following subsection.
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Figure 6.13.: Overview of propulsion energy prediction and powertrain control.

6.4.3. Algorithm for Online Torque Distribution Optimization

In powertrain topologies with multiple motors, the overall driving efficiency is dependent
on the torque distribution between the traction motors. An adaptive control strategy
for fail-operational powertrain topologies based on the torque distribution optimization
was proposed in Section 6.4.1 and the corresponding optimization problem was defined
in (6.54). As input for the dynamic torque distribution optimization an approximated
driving trajectory from the current vehicle position s0 to the destination sssl as depicted
in Fig. 6.13 is required, which is estimated using the current vehicle velocity and elec-
tronic horizon describing the route ahead. For a given acceleration profile aems(t) and
slope profile sl(t), an optimal torque distribution profile α(t) is estimated by solving the
optimization problem as defined in (6.54).

As already mentioned, for reducing the computational effort, estimation of time-discrete
profiles as depicted in Fig. 6.12 is proposed. The first entry of the time-discrete torque
distribution profile can be then used as a reference and set value for the control of a
powertrain with multiple traction motors. As it will be shown in the following, while
estimating the torque distribution profile, also the corresponding propulsion energy Eprop

required for completing a given driving trajectory can be calculated, which is then used
as input for the energy distribution optimization and safety-based range extension based
on the three level degradation concept.

For the maximization of the nonlinear objective function fobj(α), in the first step an
approximation of battery state of charge SoC{x} (with x = f for front and x = r for
rear axle) (or alternatively remaining discharge energy Erde{x}) as well as of battery losses
Ebat{x}.loss and motor losses Eem{xy}.loss (with y = l for left and y = r for right side) as a
function of torque distribution variables is required. Since the battery and motor model
parameters, as presented in Section 6.1, are data based (look-up tables) and may be
updated over time using diagnostic methods, the approximation of the objective function
should be done for each optimization cycle, resulting so in additional computational effort.
Also for the optimization constraints the same argumentation is valid. Therefore, for
solving the optimization problem with the state of the art solvers, e.g. with fmincon in
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MATLAB, two computationally intensive steps for the approximation of the objective
function and constraints as well as for solving it afterwards would be required.

Instead, for reducing the computational time, it is proposed to iteratively calculate the
objective function at the end of the driving mission using the model of powertrain as
presented in Section 6.1 for different discrete combinations of the factors αfr, αflr and αrlr,
describing the torque distribution between front and rear axle as well as between left and
right side motors for each axle. A flow chart of the proposed algorithm combining torque
distribution optimization and propulsion energy prediction is depicted in Fig. 6.14.

In the first step, the currently predicted driving trajectory consisting of ntraj entries in the
format as depicted in Fig. 6.12 is read. The powertrain model presented in Section 6.1
also incorporates the current diagnostic state of traction motors, batteries and gear boxes,
which can be estimated using diagnostic methods and is required for the model predictive
estimation of propulsion energy. The current powertrain state defined by the battery state
of charge and accumulated energy losses for motors and batteries is used as the initial
condition for the further prediction.

The outer loop of the depicted flow chart is used for the iteration of driving trajectory
segments i (i ∈ {1..ntraj}). As already proposed in (6.41), for increasing the prediction
accuracy, each segment i with duration dT [i]

seg can be divided into j[i]
sub subintervals with

duration dT [i]
calc depending on the segment’s acceleration a[i]

ems and minimum defined cal-
culation time step dTmin. For the segment i the average vehicle speed vector v [i]

avg is
calculated with the j-th element v [i]

avg{j} containing the average vehicle velocity in subin-
terval j of segment i and defined as:

v [i]
avg{j} = v

[i]
start + j a[i]

ems

dT
[i]
calc

, with j ∈ {1..j[i]
sub} (6.55)

The velocity at the start of segment i is denoted by v[i]
start and by v[i]

end at the end, whereby
the following relationship is valid:

v
[i]
end = v

[i]
start + a[i]

ems dT
[i]
seg, for i ∈ {1..ntraj}

v
[i]
start = v0, for i = 1

v
[i]
start = v

[i−1]
end , for i ∈ {2..ntraj}

(6.56)

Using the average velocity vector v [i]
avg and the velocity bounds v[i]

start and v[i]
end, the corre-

sponding average required wheel torque vector T [i]
w , wheel speed vector ω[i]

w and required
wheel torque and speed at the segment bounds can be calculated using (6.7a) and (6.7b).
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Figure 6.14.: Flow chart of algorithm for dynamic torque distribution optimization.

The j-th element T [i]
w{j} of the torque vector T [i]

w contains the average torque for the j-th
subinterval of the segment i. The corresponding wheel speed is stored in the j-th element
ω

[i]
w{j} of the wheel speed vector ω[i]

w . In a similar way, the average torque vectors, speed
vectors and bounds for the front and rear gearbox are calculated in the next step.

As explained above, the objective function is evaluated for a given set Atrq containing nα
discrete valued torque distribution vectors α{k} with α{k} ∈ Atrq and k ∈ {1..nα}. Us-
ing the powertrain model as presented in Section 6.1, for each torque distribution vector
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α{k} the objective function at the end of segment i can be evaluated iteratively in j
[i]
sub

calculation steps, indicated with the inner loop of the flow chart depicted in Fig. 6.14.
While evaluating the objective function, in parallel the optimization constraints as de-
fined in (6.54) are checked. For this purpose, a Boolean constraint function lim

[i]
{x} for

both, front (x = f) and rear (x = r) axle is defined and evaluated iteratively in j[i]
sub steps

for each segment i of the predicted driving trajectory. The Boolean constraint function
lim

[i]
{x} for axle x is false, if none of the constraints defined in (6.54) is violated, and true

otherwise. For each axle x the constraints for the left and right side traction motors as
well as for the traction battery must be evaluated. For each traction motor at position
x and y (y = l for left and y = r for right side motor), a Boolean constraint function
lim

[i]
em{xy} can be defined, which is true if at least one of the motor related constraints is

violated. In a similar way, also a Boolean constraint function lim[i]
bat{x} can be introduced,

leading to the following definition of lim[i]
{x} as a function of torque distribution vector α[i]:

lim
[i]
{x}(α

[i]) = lim
[i]
bat{x}(α

[i]) ∨ lim
[i]
em{x}l(α

[i]) ∨ lim
[i]
em{x}r(α

[i]) (6.57)

For each electrical machine, three constraints with regard to output torque (lim[i]
em{xy}.T),

output power (lim[i]
em{xy}.P) and motor efficiency (lim[i]

em{xy}.η) must be considered, result-
ing in the following definition of lim[i]

em{xy} as a function of torque distribution vector α[i]:

lim
[i]
em{xy}(α

[i]) = lim
[i]
em{xy}.T(α[i]) ∨ lim

[i]
em{xy}.P(α[i]) ∨ lim

[i]
em{xy}.η(α

[i]) (6.58)

The output torque limit flag lim
[i]
em{xy}.T is true, if the requested motor torque T [i]

em{xy}

exceeds the specified torque range between maximum torque (T [i]
em{xy}.lim.gen < 0) in gen-

erator and (T [i]
em{xy}.lim.mot > 0) in motor mode:

lim
[i]
em{xy}.T(α[i]) =

[
T

[i]
em{xy}(α

[i]) < T
[i]
em{xy}.lim.gen

]
∨
[
T

[i]
em{xy}(α

[i]) > T
[i]
em{xy}.lim.mot

]
(6.59)

The output power limit flag lim[i]
em{xy}.P is true, if the requested motor power P [i]

em{xy} ex-
ceeds the specified power range between maximum power (P [i]

em{xy}.lim.gen < 0) in generator
and (P [i]

em{xy}.lim.mot > 0) in motor mode:

lim
[i]
em{xy}.P(α[i]) =

[
P

[i]
em{xy}(α

[i]) < P
[i]
em{xy}.lim.gen

]
∨
[
P

[i]
em{xy}(α

[i]) > P
[i]
em{xy}.lim.mot

]
(6.60)

The motor efficiency limit flag lim[i]
em{xy}.η is true, if the motor efficiency η

[i]
em{xy} at the

given operating point is less than the user defined motor efficiency limit (ηem{xy}.lim):

lim
[i]
em{xy}.η(α

[i]) =
[
η

[i]
em{xy}(α

[i]) < ηem{xy}.lim
]

(6.61)
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For each traction battery, three constraints with regard to output voltage (lim[i]
bat{x}.V),

battery current (lim[i]
bat{x}.I) and state of charge (lim[i]

bat{x}.SoC) must be considered, result-
ing in the following definition of lim[i]

bat{x} as a function of torque distribution vector α[i]:

lim
[i]
bat{x}(α

[i]) = lim
[i]
bat{x}.V(α[i]) ∨ lim

[i]
bat{x}.I(α

[i]) ∨ lim
[i]
bat{x}.SoC(α[i]) (6.62)

In a similar way, also the constraints for the battery can be evaluated. The output voltage
limit flag lim[i]

bat{x}.V is true, if the predicted battery output voltage V [i]
bat{x} exceeds the

specified voltage range between minimum (Vbat{x}.min) and maximum (Vbat{x}.max) voltage:

lim
[i]
bat{x}.V(α[i]) =

[
V

[i]
bat{x}(α

[i]) < Vbat{x}.min
]
∨
[
V

[i]
bat{x}(α

[i]) > Vbat{x}.max
]

(6.63)

The output current limit flag lim[i]
bat{x}.I is true, if the predicted battery current I [i]

bat{x}

exceeds the specified current range between maximum charge (Ibat{x}.chrq.max < 0) and
discharge (Ibat{x}.dcha.max > 0) current:

lim
[i]
bat{x}.I(α

[i]) =
[
I

[i]
bat{x}(α

[i]) < Ibat{x}.chrg.max
]
∨
[
I

[i]
bat{x}(α

[i]) > Ibat{x}.dcha.max
]

(6.64)

The state of charge limit flag lim[i]
bat{x}.SoC is true, if the state of charge SoC [i+1]

{x} at the
end of segment i exceeds the range between minimum specified discharge (SoC{x}.min) and
maximum charge (SoC{x}.max) threshold:

lim
[i]
bat{x}.SoC(α[i]) =

[
SoC

[i+1]
{x} (α[i]) < SoC{x}.min

]
∨
[
SoC

[i+1]
{x} (α[i]) > SoC{x}.max

]
(6.65)

After evaluating the objective and corresponding constraint function for the defined dis-
crete valued torque distribution vectors α{k} with k ∈ {1..nα}, the maximum valid ob-
jective function and the corresponding α{k} breakpoint are found, which is considered to
be the solution of the optimization problem. An objective function breakpoint fobj(α{k})
is defined to be valid, if none of the constraint functions lim[i]

{x} is true. As depicted in
Fig. 6.14, in addition to the evaluation of constraint function lim

[i]
{x} in the inner loop,

depending on the requested powertrain mode, an additional evaluation is done at the
segment bounds. During a deceleration phase the motor is operated in generator mode
and the motor speed is maximum at the interval start. While accelerating, the motor
mode is required and the maximum motor speed is reached at the interval end. Assuming
monotonically decreasing maximum motor torque characteristics as a function of motor
speed, the motor would rather be in limitation at the beginning of a deceleration phase or
at the end of a motor phase, since the requested power is at a maximum in this operating
points. Therefore, in case of deceleration, the constraint function is additionally evaluated
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at the interval start and at the interval end in case of acceleration.

The computational effort of the proposed algorithm is dependent on the number nα of
breakpoints for the torque distribution optimization variable α. Therefore, appropriate
selection of the breakpoints for α is required. In the following, two approaches using
constant and variable bounds for αmin and αmax for the generation of breakpoints for the
torque distribution variable α are proposed.

Constant Bounds for Torque Distribution Factors

For the generation of torque distribution breakpoints, constant bounds αfr.min = 0 equal
to 0 and αfr.max = 1 for αfr describing the torque distribution between front and rear axle
are assumed. In powertrain topologies with clutches disengaging the motors, the lower
bound can be set to 0 and the upper bound to 1, meaning that one axle can be disengaged
or provide the entire requested torque. Assuming nfr equally distributed breakpoints for
αfr between the lower and upper bound, the nfr-by-1 vector eqfr can be defined as:

eqfr = 1
nfr − 1 ·

(
0 1 . . . nfr − 2 nfr − 1

)T
(6.66)

In a similar way, assuming nlr breakpoints for the variable α{x}lr between lower and upper
bound with α{x}lr ∈ [0..1] describing the torque distribution between left and right side
motors for axle x , the 1-by-nlr vector eq lr can be defined as:

eq lr = 1
nlr − 1 ·

(
0 1 . . . nlr − 2 nlr − 1

)
(6.67)

By denoting a 1-by-nlr vector with all ones by 1, the nfr-by-nlr matrix αem{xy} containing
the torque distribution grid points for motor at position x and y can be defined as:

αemfl = eqfr · eq lr

αemfr = eqfr ·
(
1− eq lr

)
αemrl =

(
1− eqfr

)
· eq lr

αemrr =
(
1− eqfr

)
·
(
1− eq lr

)
(6.68)

For each of the torque distribution grid points the powertrain model as presented in Sec-
tion 6.1 can be calculated for each axle. The nfr ·n2

lr breakpoints for the objective function
can be then estimated by permutation of state variables for each axle. Depending on
the wheel torque request, a high number of objective function breakpoints might become
invalid. If, for example, a powertrain topology with symmetrical motors is designed for
a given total maximum propulsion power, which is the sum of maximum output powers
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of each traction motor, a driving phase with a power request close to specified maximum
would lead to valid objective function breakpoints with torque distribution factors close
to 0.5 only. Therefore, for increasing the number of valid breakpoints and thereby the
accuracy of the solving algorithm, an additional step for the prediction of lower and up-
per bounds for the torque distribution variables αfr, αflr and αrlr as proposed in the next
subsection can be used for generation of grid points for torque distribution variables.

Variable Bounds for Torque Distribution Factors

Depending on the driving phase, the lower and upper bounds for the torque distribution
variables αfr, αflr and αrlr can be estimated for each segment i of the predicted driving
trajectory. In an acceleration phase, the motor speed and power are at a maximum at the
end of a segment. At this operating point, the maximum torque T [i]

em{xy}.lim.mot that can be
provided by each motor can be predicted and then used for the estimation of lower and
upper bounds for the torque distribution variables. Similarly, in a deceleration phase, the
motor speed and regenerative power are at a maximum at the start of a segment. The
maximum regenerative torque T [i]

em{xy}.lim.gen can be predicted for this operating point and
then further processed for bounds estimation. By denoting the maximum torque that can
be provided by each motor at position x and y without distinction between motor and
generator mode by Tem{xy}.max, the lower (α[i]

fr.min) and upper (α[i]
fr.max) bound for the torque

distribution between front and rear axle can be estimated as:

α
[i]
fr.min = max

1− T
[i]
emrl.max + T [i]

emrr.max

T
[i]
gbr.max

, 0
 (6.69a)

α
[i]
fr.max = min

T [i]
emfl.max + T

[i]
emfr.max

T
[i]
gbf.max

, 1
 (6.69b)

The torque that would be required at the input shaft of gearbox x to provide the re-
quested wheel torque by this axle only is denoted by T [i]

gb{x}.max. The lower bound α[i]
fr.min

defines the minimum torque to be provided by the front axle in addition to the rear axle
to fulfill the wheel torque request. If the rear axle can provide more torque than required,
α

[i]
fr.min is limited to 0. The upper bound α[i]

fr.max defines the maximum torque that can be
provided by the front axle and it is limited to 1 if it exceeds the requested wheel torque.
The nfr-by-1 vector α[i]

fr containing linearly spaced breakpoints for the torque distribution
between front and rear axle can be then defined as:

α
[i]
fr = α

[i]
fr.min · 1 +

(
α

[i]
fr.max − α

[i]
fr.min

)
· eqfr (6.70)
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For each element j (α[i]
fr{j}) of the vector α

[i]
fr , the corresponding lower (α[i]

flr.min{j}) and upper
(α[i]

flr.max{j}) bounds for the front axle can be estimated as:

α
[i]
flr.min{j} = max

1− T
[i]
emfr.max

α
[i]
fr{j} T

[i]
gbf.max

, 0
 (6.71a)

α
[i]
flr.max{j} = min

 T
[i]
emfl.max

α
[i]
fr{j} T

[i]
gbf.max

, 1
 (6.71b)

The lower bound α[i]
flr.min{j} defines the minimum torque to be provided by the front left

motor in addition to the front right motor to fulfill the front wheel torque request. If the
front right motor can provide more torque than required, α[i]

flr.min{j} is limited to 0. The
upper bound α[i]

flr.max{j} defines the maximum torque that can be provided by the front left
motor and it is limited to 1 if it exceeds the requested front wheel torque. In a similar
way, also the lower (α[i]

rlr.min{j}) and upper (α[i]
rlr.max{j}) bounds for the rear axle can be

estimated for each element j of (α[i]
fr{j}) of the vector α[i]

fr as:

α
[i]
rlr.min{j} = max

1− T [i]
emrr.max

(1− α[i]
fr{j})T

[i]
gbr.max

, 0
 (6.72a)

α
[i]
rlr.max{j} = min

 T
[i]
emrl.max

(1− α[i]
fr{j})T

[i]
gbr.max

, 1
 (6.72b)

By denoting a 1-by-nlr vector with all ones by 1, the nfr-by-nlr matrix α[i]
{x}lr containing

the grid points for the torque distribution between left and right side motor for axle x
can be then defined as:

α
[i]
{x}lr = α

[i]
{x}lr.min · 1 +

(
α

[i]
{x}lr.max − α

[i]
{x}lr.min

)
· eq lr (6.73)

Using the definitions above and by denoting 1-by-nlr vector and nfr-by-nlr matrix with all
ones by 1, the nfr-by-nlr matrix αem{xy} containing the torque distribution grid points for
motor at position x and y can be defined as:

α
[i]
emfl =

(
α

[i]
fr · 1

)
◦ α[i]

flr (6.74a)

α
[i]
emfr =

(
α

[i]
fr · 1

)
◦
(
1− α[i]

flr

)
(6.74b)

α
[i]
emrl =

(
1− α[i]

fr · 1
)
◦ α[i]

rlr (6.74c)

α[i]
emrr =

(
1− α[i]

fr · 1
)
◦
(
1− α[i]

rlr

)
(6.74d)

158



6.4. Prediction for Fail-Operational Powertrain with Multiple Motors

Figure 6.15.: Driving trajectory for torque distribution optimization.

In the following subsections, simulation results exemplifying the functionality of the pro-
posed control strategy and propulsion energy prediction for a fail-operational powertrain
and verifying the accuracy and suitability for runtime execution of the proposed algorithm
are presented for both, normal and failure case operation.

6.4.4. Simulation Results for Fault-Free Operation

For the control of fail-operational powertrain with multiple motors as depicted in Fig. 6.10
and for accurate prediction of propulsion energy required for completing a given driving
mission, an adaptive algorithm with automated fault reactions based on the theory of op-
timal control is proposed. A MATLAB/Simulink model was implemented for verification
of the proposed algorithm and simulation results for an exemplary use case are presented
in this section. At simulation start, the vehicle is assumed to be at the beginning of a
driving route with s0 = 0 km and the vehicle destination is set to sssl = 4.8 km. The elec-
tronic horizon profile ehlim containing the velocity and acceleration bounds for the route
ahead consists of 3 entries, the slope profile ehslope of 73 and the stops profile ehstops of 12
entries. The electronic horizon used for the simulation in this section as well as the vehicle
and gearbox parameters are listed in Appendix B. The driving trajectory estimated with
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the algorithm presented in Section 6.2 for these electronic horizon profiles consists in total
of 127 entries. The driving trajectory is based on a real logged route and is depicted in
Fig. 6.15 for degradation variables dpda for acceleration and dpdv for velocity equal to 1.

As defined in (6.53), the control of fail-operational powertrain can be customized with
5 parameters β1 to β5, defining the weight for the individual control goals summarized
in Section 6.4.1. For the simulation, a grid generation with constant bounds and 11
(nfr = nlr = 11) breakpoints for the torque distribution variables was used. For the
traction batteries, 48 V lithium-ion batteries with a nominal capacity approx. equal to
300 Ah are assumed with the operating temperature set to 25 ◦C. The simulation results
are provided in each example for equal torque distribution (αfr = α{x}lr = 0.5), which
are then used as reference for the comparison with optimized torque distribution. The
simulation results for signal a with equal torque distribution are denoted by aeq and by
aopt for optimized torque distribution.

Example 1: Increase of Energy Efficiency Only

In this example, the initial condition for the state of charge of front and rear battery is
set to 80 % and only two control goals, the increase of energy efficiency (β1 = 1) and state
of charge balancing (β2 = 0.1), are defined. The balancing of motor and battery losses is
disabled (β3/4 = β5 = 0). The simulation results are depicted in Fig. 6.16.

With equal torque distribution, the state of charge for front (SoCeq
f ) and rear (SoCeq

r )
battery at the end of the driving cycle are equal to 75.778 %, which corresponds to the
average battery discharge dSoCeq

avg of 4.222 %. As the result of a symmetrical powertrain
topology with equal motor characteristic and applied equal torque distribution, the delta
in motor losses between left and right side for front (dEeq

emflr.loss) and rear (dEeq
emrlr.loss)

axle is zero. Also the delta in motor losses between front and rear axle (dEeq
emfr.loss) and

between front and rear battery (dEeq
batfr.loss) is equal to zero.

Comparing the battery state of charge, it can be seen that by applying optimized torque
distribution, the driving efficiency is increased. The state of charge at the end of the driv-
ing cycle for front (SoCopt

f ) battery equals to 76.279 % and to 76.284 % for rear (SoCopt
r )

battery. This corresponds to the average battery discharge dSoCopt
avg equal to 3.719 %.

By defining the increase of energy efficiency (dηSoC) as relative deviation of average dis-
charge with optimized torque distribution compared to equal torque distribution, approx.
11.93 % of efficiency increase is achieved in this example, which is calculated as:

dηSoC =
dSoCeq

avg − dSoCopt
avg

dSoCeq
avg

(6.75)
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Figure 6.16.: Normal operation with β1 = 1, β2 = 0.1, β3/4 = 0 and β5 = 0.

Due to the optimized torque distribution the motors are not loaded equally anymore,
resulting in increased delta in motor losses between the left and right side for the front
(dEopt

emflr.loss) and rear (dEopt
emrlr.loss) axle. It can be seen in Fig. 6.16 that the left side motors

are loaded more than the right side motors in this example. Also the delta in motor losses
(dEopt

emfr.loss) and battery losses (dEopt
batfr.loss) between the front and rear axle is increased.

Due to symmetrical powertrain topology and activated state of charge balancing (β2 =
0.1), requiring similarly symmetrical power demand for each axle, the absolute delta in
motor and battery energy losses between front and rear axle is much smaller compared
to the delta in motor losses between the left and right side.

Due to motor redundancy and high gearbox transmission ratio used in this example, the
motors are operated in low torque regions for equal torque distribution in driving phases
with constant velocity. By disengaging one motor at each axle, the operating point for
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active traction motors can be shifted to higher torque regions with better efficiency, which
is consistent with the results provided in [15] and [16]. This behavior explains also the
increase of energy efficiency and of delta in motor losses.

For the verification of the prediction accuracy and suitability for runtime execution of the
proposed algorithm, the results for the prediction with different combinations of break-
points nfr and nlr used for torque distribution between the front and rear axle as well
as left and right side motors are provided in the Tables 6.4 to 6.7. The corresponding
computational time is estimated using the MATLAB functions tic and toc as an average
out of 100 runs on an Intel i7 CPU. For the prediction, both methods with constant and
variable bounds for the generation of grid points for the optimization variables are used.
The results provided in the following Tables 6.4 to 6.7 are the (static) output of the pre-
diction algorithm executed at the beginning of the driving mission in one optimization
cycle, while the simulation results depicted in Fig. 6.16 are the output of a dynamic sim-
ulation of a fail-operational powertrain controlled by the proposed algorithm as presented
in Section 6.4.2.

Table 6.4.: Predicted average battery discharge dSoCavg in [%] for Example 1.
constant bounds for α(t) variable bounds for α(t)

dSoCavg nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 4.233 3.804 3.804 3.804 4.233 3.804 3.804 3.804
nfr = 3 3.896 3.706 3.706 3.705 3.943 3.719 3.719 3.719
nfr = 5 3.968 3.719 3.719 3.719 3.941 3.721 3.721 3.721
nfr = 11 3.977 3.719 3.719 3.719 3.972 3.724 3.724 3.724

Table 6.5.: Predicted increase of energy efficiency dηSoC in [%] for Example 1.
constant bounds for α(t) variable bounds for α(t)

dηSoC nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 0.0 10.134 10.134 10.135 0.0 10.134 10.134 10.135
nfr = 3 7.977 12.465 12.466 12.487 6.860 12.152 12.153 12.153
nfr = 5 6.258 12.144 12.144 12.144 6.903 12.091 12.091 12.092
nfr = 11 6.053 12.152 12.152 12.153 6.161 12.030 12.030 12.030

Table 6.6.: Predicted battery state of charge delta dSoC fr in [h] for Example 1.
constant bounds for α(t) variable bounds for α(t)

dSoC fr nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nfr = 3 0.615 0.053 0.053 0.046 0.033 0.053 0.053 0.053
nfr = 5 0.768 0.037 0.037 0.037 0.790 0.040 0.040 0.040
nfr = 11 0.765 0.051 0.051 0.051 0.766 0.046 0.050 0.050
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The combination nfr = nlr = 1 corresponds to the equal torque distribution between the
traction motors and it is used as reference for the calculation of energy efficiency increase.
It can be seen in the Tables above that by applying the optimized torque distribution,
the energy efficiency can be increased by up to 12 % in this example. For equal torque
distribution between the axles (nfr = 1), the delta dSoC fr in battery state of charge is
equal to zero due to symmetry in topology and torque request. For all other combinations,
a delta less than 1 h can be achieved.

Table 6.7.: Average calculation time dT eval in [ms] for Example 1.
constant bounds for α(t) variable bounds for α(t)

dT eval nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 10.04 38.64 35.78 36.57 20.98 50.41 45.83 46.18
nfr = 3 36.18 38.48 37.19 42.24 46.14 51.68 48.00 53.10
nfr = 5 35.12 36.94 40.34 47.08 43.54 47.91 51.27 58.13
nfr = 11 39.73 40.76 45.81 62.49 47.90 51.81 57.01 74.08

Considering the calculation time it can be seen that with increasing number of breakpoints
for torque distribution variables, also the calculation time increases. The calculation time
for the grid generation using variable bounds is slightly higher due to the additional
prediction of the lower and upper bounds for each segment i of the driving trajectory.
For all combinations of nfr and nlr a computational time less than 80 ms can be achieved,
making the proposed algorithm very well suited for implementation and runtime execution
in embedded systems. The example presented in this subsection is extended by additional
motor losses balancing in the next subsection.

Example 2: Increase of Energy Efficiency and Balancing of Motor Losses

In this example, the same assumptions made in Example 1 are valid. In addition to the
activated control goal for symmetrical battery discharge (β2 = 0.1), also the balancing of
the motor losses between left and right side (β3 = 0.25) and front and rear axle (β4 = 0.25)
is activated. The simulation results are depicted in Fig. 6.17.

The results for equal torque distribution are the same as in Example 1. By applying the
optimized torque distribution, the state of charge at the end of driving cycle for front
(SoCopt

f ) battery equals to 76.278 % and to 76.284 % for rear (SoCopt
r ) battery. This

corresponds to the average battery discharge dSoCopt
avg equal to 3.719 %. An increase of

energy efficiency (dηSoC) equal to approx. 11.92 % is achieved in this example, which is
very close to the result in Example 1. Comparing the delta in losses between left and
right side motor for front (dEopt

emflr.loss) and rear (dEopt
emrlr.loss) axle, it can be seen that the
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Figure 6.17.: Normal operation with β1 = 1, β2 = 0.1, β3/4 = 0.25 and β5 = 0.

absolute value is reduced by approx. factor 10. Also the delta in motor losses between
front and rear axle (dEopt

emfr.loss) is slightly reduced.

In the following Tables 6.8 to 6.14, again the static simulation results as output of one
prediction cycle at the beginning of driving route for different combinations of nfr and nlr

are summarized. Again, the increase of energy efficiency by up to 12 % and symmetry in
traction battery discharge less than 1 h and calculation time less than 80 ms is achieved.

In addition to results in Example 1, the ratio for losses of front left to right motor
(Remflr.loss) and of rear left to right motor (Remrlr.loss) are given, which is close to 1 for
all combinations of nfr and nlr, meaning approximately the same cumulative energy dissi-
pated by each motor. This is also the case for the losses ratio of front to rear axle motors
(Remfr.loss). For nlr = 1, meaning equal torque distribution between left and right side
motor, Rem{x}lr.loss are exactly 1. Similarly, for nfr = 1, the ratio Remfr.loss is exactly 1.
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Table 6.8.: Predicted average battery discharge dSoCavg in [%] for Example 2.
constant bounds for α(t) variable bounds for α(t)

dSoCavg nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 4.233 3.804 3.804 3.804 4.233 3.804 3.804 3.804
nfr = 3 3.932 3.718 3.718 3.718 3.943 3.719 3.719 3.719
nfr = 5 3.944 3.719 3.719 3.719 3.945 3.719 3.719 3.719
nfr = 11 3.977 3.721 3.721 3.721 3.977 3.719 3.719 3.722

Table 6.9.: Predicted increase of energy efficiency dηSoC in [%] for Example 2.
constant bounds for α(t) variable bounds for α(t)

dηSoC nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 0.0 10.134 10.134 10.134 0.000 10.134 10.131 10.133
nfr = 3 7.107 12.181 12.183 12.182 6.859 12.151 12.149 12.149
nfr = 5 6.822 12.144 12.144 12.147 6.812 12.151 12.150 12.149
nfr = 11 6.057 12.093 12.094 12.093 6.044 12.144 12.143 12.083

Table 6.10.: Predicted battery state of charge delta dSoC fr in [h] for Example 2.
constant bounds for α(t) variable bounds for α(t)

dSoC fr nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
nfr = 3 0.646 0.056 0.047 0.047 0.061 0.066 0.064 0.066
nfr = 5 0.018 0.042 0.042 0.026 0.024 0.036 0.044 0.043
nfr = 11 0.764 0.046 0.053 0.050 0.757 0.039 0.051 0.050

Table 6.11.: Average calculation time dT eval in [ms] for Example 2.
constant bounds for α(t) variable bounds for α(t)

dT eval nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 6.15 33.86 34.61 36.61 16.21 43.50 44.28 46.19
nfr = 3 33.32 35.37 37.24 42.36 41.92 46.40 48.23 53.40
nfr = 5 34.09 36.96 40.51 47.24 42.73 48.17 51.61 58.38
nfr = 11 35.77 40.86 45.73 63.21 44.43 52.16 56.91 74.57

Summing up the results, it can be stated that by using the proposed torque distribution
strategy, the overall driving efficiency can be significantly increased. In addition, also
symmetrical discharge of traction batteries and balancing of motor losses can be achieved.
With calculation time less than 80 ms for dynamic torque distribution optimization and
prediction of corresponding propulsion energy required for completing a given driving
mission, the proposed algorithm can be used at runtime, enabling also fast reactions
to unexpected faults and changes in powertrain state. The adaptivity of the proposed

165



Chapter 6. Powertrain Control and Propulsion Energy Prediction

Table 6.12.: Predicted losses ratio of front left to right motor (Remflr.loss) for Example 2.
constant bounds for α(t) variable bounds for α(t)

Remflr.loss nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 1.0 0.984 0.983 0.983 1.000 0.984 1.018 0.983
nfr = 3 1.0 1.017 1.013 0.986 1.000 1.018 0.982 1.020
nfr = 5 1.0 1.019 1.019 1.018 1.000 0.982 1.019 0.983
nfr = 11 1.0 0.982 0.982 1.018 1.000 0.987 0.988 1.012

Table 6.13.: Predicted losses ratio of rear left to right motor (Remrlr.loss) for Example 2.
constant bounds for α(t) variable bounds for α(t)

Remrlr.loss nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 1.0 0.984 0.983 0.983 1.000 0.984 1.018 0.983
nfr = 3 1.0 0.988 1.017 1.018 1.000 0.986 1.013 1.012
nfr = 5 1.0 0.987 0.987 0.985 1.000 0.987 1.014 1.013
nfr = 11 1.0 0.988 0.989 1.013 1.000 1.017 1.018 0.981

Table 6.14.: Predicted losses ratio of front to rear axle motors (Remfr.loss) for Example 2.
constant bounds for α(t) variable bounds for α(t)

Remfr.loss nlr = 1 nlr = 3 nlr = 5 nlr = 11 nlr = 1 nlr = 3 nlr = 5 nlr = 11
nfr = 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
nfr = 3 1.101 0.940 0.935 0.935 0.994 0.975 0.974 0.975
nfr = 5 0.989 1.001 1.001 0.998 0.993 0.978 0.978 0.978
nfr = 11 1.007 0.970 0.970 0.969 1.008 1.004 1.005 0.999

algorithm and automated fault reactions are exemplified in the next subsection.

6.4.5. Simulation Results for Failure Case Operation

The proposed algorithm for the control of fail-operational powertrain enables also auto-
mated fault reactions. Using the diagnostic data, the control of powertrain is adapted
to its current state. Three different scenarios assuming unexpected powertrain state or
faults in components are presented in this section. Simulation results are provided for the
use case as introduced in Section 6.4.4 and the driving trajectory depicted in Fig. 6.15.

Example 1: Asymmetrical Initial Battery State of Charge

For the first example, asymmetrical initial state of charge for batteries is assumed with
SoCf equal to 60 % for front, and SoCr to 80 % for rear axle. Simulation results for this
example are depicted in Fig. 6.18.
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Figure 6.18.: State of charge balancing with β1 = 1, β2 = 0.1, β3/4 = 0.25 and β5 = 0.

By applying equal torque distribution, both batteries are used for propulsion and recuper-
ation equally. The state of charge for front (SoCeq

f ) and rear (SoCeq
r ) battery at the end

of the driving cycle is equal to 55.607 % and 75.778 %, what corresponds to the average
battery discharge dSoCeq

avg of 4.308 %. The initial delta of 20 % in battery state of charge
is even increased to 20.17 % at the end of the driving mission. Since the open circuit
voltage of a battery decreases with decreasing state of charge, more battery current is
required at the output to provide the same output power, resulting in slightly higher
discharge of front battery compared to rear battery. Similarly to examples presented in
Section 6.4.4, the delta in motor losses between left and right side for front (dEeq

emflr.loss)
and rear (dEeq

emrlr.loss) axle and between the front and rear axle (dEeq
emfr.loss) is equal to zero.

The delta in battery losses between front and rear axle (dEeq
batfr.loss) is slightly increased

due to asymmetrical output current as a result of asymmetry in battery state of charge.
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By applying optimized torque distribution, it can be seen in Fig. 6.18 that the initial
delta in battery state of charge can be reduced. The state of charge at the end of the
driving mission for front (SoCopt

f ) battery equals to 60.651 % and to 71.769 % for rear
(SoCopt

r ) battery. The state of charge of front battery is even slightly higher at the end of
driving mission, which is the result of activated state of charge balancing (β2 = 0.1). With
optimized torque distribution, the rear axle is used more for propulsion phases, while more
energy is recuperated in the front battery. In addition to the state of charge balancing,
also the energy efficiency can be increased in this example. The average battery discharge
dSoCopt

avg equals to 3.790 %, resulting in approx. 12.01 % of efficiency increase compared
to equal torque distribution.

With activated balancing of motor losses (β3 = β4 = 0.25), also the delta in dissipated
energy between left and right side motors for front (dEopt

emflr.loss) and rear (dEopt
emrlr.loss) axle

is kept small. Since the front axle is used more for recuperation and the rear axle for
propulsion, the delta in motor losses (dEopt

emfr.loss) and battery losses (dEopt
batfr.loss) between

the axles is higher than in the examples presented in Section 6.4.4. Due to high delta
in battery state of charge, the control goal for state of charge balancing becomes more
important compared to motor losses balancing. By increasing the weighting factor β4,
the balancing of motor losses between the axles could be enforced to the disadvantage of
energy efficiency and symmetry in battery discharge.

Example 2: Decreased Efficiency of Front Left Motor

For the second example, again a symmetrical initial state of charge for batteries is assumed
with SoCf and SoCr equal to 80 %. A failure in the front left motor resulting in a decrease
of motor efficiency by 20 % is used as fault injection by setting the efficiency scaling factor
cemfl.eff to 0.8 using (6.19). Simulation results for this example are depicted in Fig. 6.19.

By applying equal torque distribution, all motors are used for propulsion and recuperation
equally. The state of charge for front (SoCeq

f ) and rear (SoCeq
r ) battery at the end of the

driving cycle is equal to 75.011 % and 75.778 %, which corresponds to the average battery
discharge dSoCeq

avg of 4.606 %. Since the efficiency of front left motor is decreased, the
discharge of the front battery is higher than of rear battery.

The delta in motor losses between left and right side for rear axle (dEeq
emrlr.loss) is equal

to zero due to symmetry in topology and torque request, while the delta in motor losses
between left and side for front axle (dEeq

emflr.loss) and between the front and rear axle
(dEeq

emfr.loss) is significantly increased due to the asymmetry in motor efficiencies at front
axle. This leads also to asymmetry in battery output current, resulting in slightly in-
creased delta in battery losses between front and rear axle (dEeq

batfr.loss) and delta in battery
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Figure 6.19.: Motor fault injection with β1 = 1, β2 = 0.1, β3/4 = 0.25 and β5 = 0.

state of charge dSoCeq
fr equal to 0.766 %.

By applying optimized torque distribution, it can be seen in Fig. 6.19 that the operation of
faulty motor can be reduced, increasing so significantly the energy efficiency. The state of
charge at the end of the driving cycle for front (SoCopt

f ) battery equals to 76.250 % and to
76.249 % for rear (SoCopt

r ) battery. This results in the average battery discharge dSoCopt
avg

equal to 3.751 % and corresponding increase of energy efficiency of approx. 18.56 %. In
addition to this automated fault reaction reducing the operation time of faulty motor to
a minimum, also the symmetrical battery discharge with dSoCopt

fr equal to 0.008 h can
be achieved in contrast to equal torque distribution.

With activated balancing of motor losses (β3 = β4 = 0.25), also the delta in dissipated
energy between left and right side motors for rear axle (dEopt

emrlr.loss) and between the axles
(dEopt

emfr.loss) is kept small. Since due to the decreased efficiency of the front left motor the
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Figure 6.20.: Battery fault injection with β1 = 1, β2 = 0.1, β3/4 = 0.25 and β5 = 0.

balancing of motor losses between left and right side motors for front axle (dEopt
emflr.loss)

becomes more costly compared to the increase of energy efficiency, no reduction compared
to equal torque distribution is achieved, but could be enforced by using a higher value
for the weighting factor β3. Comparing the battery losses it can be seen that due to
activated state of charge balancing, the delta in battery losses (dEopt

batfr.loss) between the
axles is reduced compared to equal torque distribution.

Example 3: Increased Resistance of Front Battery

For the third example, the initial state of charge for both batteries is set to 80 %. A
fault in the front battery resulting in an increase of internal resistance by 50 % is used as
fault injection by setting the internal resistance scaling factor cbatf.rin to 1.5 using (6.26).
Simulation results for this example with activated state of charge (β2 = 0.1) and motor
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losses balancing (β3 = β4 = 0.25) are depicted in Fig. 6.20.

By applying equal torque distribution, all motors are used for propulsion and recuperation
equally. The state of charge for front (SoCeq

f ) and rear (SoCeq
r ) battery at the end of

driving cycle is equal to 75.697 % and 75.778 %, which corresponds to the average battery
discharge dSoCeq

avg of 4.263 %. Since the internal resistance of front battery is increased,
the discharge of the front battery is higher than of rear battery resulting in delta state of
charge dSoCeq

fr equal to 0.081 %.

The delta in motor losses between left and right side for front (dEeq
emflr.loss) and rear

(dEeq
emrlr.loss) axle is equal to zero due to symmetry in topology and torque request. Since

the internal resistance of batteries is asymmetrical, the delta in battery losses between
front and rear axle (dEeq

batfr.loss) is increased. Additionally, also the supply voltage for
motors at front and rear axle becomes asymmetrical. Due to the dependability of motor
efficiencies on the supply voltage, the delta in motor losses (dEeq

emfr.loss) between the axles
is slightly greater than 0.

By applying optimized torque distribution, it can be seen in Fig. 6.20 that the operation
of faulty battery can be reduced, increasing so the energy efficiency. The state of charge at
the end of the driving cycle for front (SoCopt

f ) battery equals to 76.247 % and to 76.244 %
for rear (SoCopt

r ) battery. This results in the average battery discharge dSoCopt
avg equal to

3.755 % and corresponding increase of energy efficiency of approx. 11.92 %. In addition,
also the symmetrical battery discharge with dSoCopt

fr equal to 0.036 h can be achieved in
contrast to equal torque distribution.

With activated balancing of motor losses (β3 = β4 = 0.25), also the delta in dissipated
energy between left and right side motors for front axle (dEopt

emflr.loss), rear axle (dE
opt
emrlr.loss)

and between the axles (dEopt
emfr.loss) is kept small.

For the balancing of battery losses, also the fifth control goal can be used by defining the
weighting factor β5. The simulation results with additional balancing of battery losses
with β5 set to 5 are depicted in Fig. 6.21. Compared to the previous setting with β5

equal to 0, the delta in battery losses between the axles is reduced approx. by factor 2
to the disadvantage of energy efficiency. The state of charge at the end of the driving
cycle for front (SoCopt

f ) battery now equals to 76.242 % and to 76.240 % for rear (SoCopt
r )

battery. This results in the average battery discharge dSoCopt
avg equal to 3.759 % and

corresponding increase of energy efficiency of approx. 11.82 %, what is by 0.1 % less than
without balancing of battery losses.

The adaptivity of the proposed prediction and control algorithm with automated fault
reactions is of high importance for the concept of safety-based range extension. By increas-
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Figure 6.21.: Battery fault injection with β1 = 1, β2 = 0.1, β3/4 = 0.25 and β5 = 5.

ing the energy efficiency, the vehicle driving range in normal and failure case operation
can be extended and the predicted propulsion energy can be used by the EMS for accu-
rate energy distribution for the supply of powernet auxiliaries. In the next chapter of this
work, two different system architectures for the EMS controlling fail-operational powernet
and powertrain with single and multiple motors are proposed.
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Model Predictive Energy Management

The EMS proposed in this work is designed for safety-based range extension with the
main goal to optimize the powertrain and powernet control in a way allowing to complete
the driving mission at the safest possible position with minimized risks for the passengers
as described in Section 4. Four main modules of the model predictive EMS, namely
(1) energy distribution optimization, (2) prediction of the remaining discharge energy,
(3) prediction of the driving trajectory and (4) prediction of the propulsion energy were
presented in Section 5 and 6. The adaptive energy distribution optimization is used
for establishing the reliable power supply for the duration of a given driving mission
and was presented in Section 5. With an appropriate formulation of the optimization
problem based on a generic model of a fail-operational powernet, both normal and failure
case operation are covered, allowing also to automate the fault reactions. Therefore, the
proposed energy distribution optimization also integrates the automation of fault reactions
of a functional safety concept required by ISO 26262 [10] for safety-critical subsystems.

The optimization of the energy distribution is based on predicted remaining energy re-
sources and energy demand required for propulsion and supply of the powernet auxiliaries.
A prediction algorithm for the estimation of the remaining discharge energy of batteries
was proposed in Section 5.5. Using the parameters arde and Erde0 for the linear approx-
imation of the remaining discharge energy as a function of battery output power, also
the optimal discharge of multiple batteries was integrated in the energy distribution op-
timization problem. For an accurate prediction of the energy required for propulsion and
supply of powernet auxiliaries, the duration of a given driving mission as well as the
corresponding driving trajectory are required.

An approach for the driving trajectory prediction based on electronic horizon was pre-
sented in Section 6.2. The entire route to the destination is approximated by dividing it
into segments with constant acceleration and slope value. This approximation is then fur-
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ther processed by the module for the propulsion energy prediction. Using the quasistatic
approach [29] with a variable stepsize, the powertrain model is calculated for each segment
of the driving trajectory for the prediction of the propulsion energy required for mission
completion. In powertrain topologies with multiple traction motors, also a prediction of
the torque distribution profile as presented in Section 6.4 is required, since the driving
efficiency and therefore the driving range can be significantly increased by an appropriate
torque distribution strategy. In this chapter, these four basic modules are combined to
the model predictive EMS, which is then integrated into the vehicle control. Two energy
management architectures for the control of a powertrain topology with single and mul-
tiple traction motors are introduced and verified with simulation results in Section 7.1.
and 7.2.

7.1. Energy Management Architecture for Powertrain
with Single Motor

As already mentioned in the introduction, one of the main goals of the safety-based range
extension is to optimize the control of the powertrain and powernet in a way allowing to
arrive at the safest possible location for the passengers. According to Fig. 4.1, different
scenarios for the automated vehicle transition to a safe state (standstill) in case of a failure
can be defined. Braking in the current driving lane is assumed to be a worst case scenario
with a minimum level of safety for the passengers, since the vehicle remains within the
active traffic, leading to a hazardous situation for the passengers and the following traffic.
A fail-degraded driving to the desired destination (driving home) is considered to be the
best case scenario with maximum level of safety for the passengers.

According to Fig. 4.1, an automated transition to a standstill with the scenarios emergency
braking (SSL G), comfort stop in current lane (SSL F) and coasting to the rightmost lane
(SSL E) might be executed without a fail-operational driving functionality. A powertrain
topology with a single traction battery and a single motor can be used for these scenarios,
but still requiring a fail-operational powernet for the reliable power supply of the safety-
critical subsystems braking and steering. Therefore, a powernet topology with a minimum
of three subpowernets can be assumed, one containing a 48 V or HV traction battery and
motor (subpowernet 1) and further two (subpowernet 2 and 3) for the redundant supply
of the low voltage braking and steering subsystems. For the control of this powertrain
and powernet configuration, an EMS architecture depicted in Fig. 7.1 is proposed and
explained in Section 7.1.1. Simulation results verifying its functionality for an exemplary
powertrain and powernet configuration as depicted in Fig. 6.7 and 7.2 are provided in
Section 7.1.2.
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7.1.1. System Architecture for Powertrain with Single Motor

The EMS architecture as depicted in Fig. 7.1 is a map-enabled application [40] designed
for the predictive control of the vehicle powertrain and fail-operational powernet. The
prediction of the driving trajectory from the current vehicle position s0, estimated using
the DGPS unit, to the destination sssl is based on the electronic horizon. The electronic
horizon is transmitted to the EMS using the ADASISv3 protocol by an ADAS horizon
provider. The ADAS horizon provider can be for example a part of a navigation system
containing static map data or a part of a Connectivity Control Unit (CCU) with a mobile
connection (e.g. 4G/5G) to the cloud, allowing permanent updates of the static map data.

On the energy management side, the ADAS horizon reconstructor receives the electronic
horizon and converts it to the three profiles ehlim, ehslope and ehstops as depicted in Fig. 6.2.
The profile ehlim contains the bounds vmin and vmax for the set velocity vems with vems ∈
{vmin..vmax} and the bounds amin and amax for the set acceleration aems with aems ∈
{amin..amax} for each entry i of the electronic horizon profile. According to the three-level-
degradation concept presented in Section 4.1, the EMS can degrade the driving profile
for the reduction of the propulsion energy required for completing a given driving cycle
to the destination sssl. For this, the driving velocity can be degraded with the variable
dpdv and the acceleration with dpda, both summarized to the degradation vector dpdx in
Fig. 7.1.

The degradation vector dpdx as well as the vehicle destination sssl are the output of
the energy distribution optimization, meaning that the EMS is embedded in the motion
control of the vehicle. The EMS estimates in this way the vehicle destination sssl and the
settings dpdx for the driving profile which are feasible from the energetic point of view.
These values can be then used by the superior motion controller for the model predictive
vehicle control. Based on the current vehicle velocity v0, the driving trajectory to the
destination can be approximated according to the algorithm presented in Section 6.2.

The output of the submodule "driving trajectory prediction" contains the remaining driv-
ing duration dT ssl and the driving trajectory consisting of three ntraj-by-1 vectors dT seg,
aems and sl in the format as depicted in Fig. 6.6. Each segment i (i ∈ {1..ntraj}) of the
driving trajectory is then specified by the corresponding segment duration dT [i]

seg, segment
acceleration a[i]

ems and segment road slope sl[i]. Since the driving trajectory is estimated
periodically taking into account also the current vehicle velocity with a defined cycle time,
e.g. 100 ms, it can be also used as a trajectory feedback control with the set acceleration
equal to the first entry a[1]

ems of the vector aems. This feedback control of the velocity profile
can be used superimposed to the control of the traction motor.
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Figure 7.1.: Energy management architecture for powertrain with single motor.

In the next step, the energy required for completing the driving mission at the destination
sssl with the velocity profile according to the degradation vector dpdx can be predicted
using the algorithm as proposed in Section 6.3. This prediction algorithm is based on
the models describing the longitudinal vehicle dynamics, traction battery and drivetrain
consisting of a traction motor and a gearbox with fixed transmission ratio. In the energy
management architecture as depicted in Fig. 7.1, two types of batteries are distinguished.
The first battery (Battery 1) is a traction battery, while the remaining batteries (Battery
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2..nspn), if present, are used for the voltage stability within the corresponding subpowernet.
They are also used for the supply of the safety-critical loads for a limited duration in case
of a breakdown of the traction battery.

The prediction of the required propulsion energy takes into account the diagnostics of the
powertrain components. The diagnostic data of the traction motor (Motor 1) is stored in
the vector Dem and consists of the scaling factors cem.eff and cem.trq describing a decrease
in the motor efficiency and in the maximum output torque according to the model of the
electrical machine presented in Section 6.1.4. Also the scaling factor cgb.eff (not depicted
in Fig. 7.1) modeling a decrease of the gearbox efficiency as described in Section 6.1.3 is
considered. Similarly, the diagnostic data of the traction battery (Battery 1) is stored
in the vector D{1}bat containing the scaling factors cbat.q0 and cbat.rin. As introduced in
Section 6.1.5, these factors are used for modeling the battery failures resulting in the
decrease of the nominal battery capacity Qbat0 and in the increase of the internal battery
resistance Rbat.in.

A two stage algorithm was proposed for solving the mixed-integer optimization problem
for energy distribution in Section 5.2. The mixed-integer optimization was divided into
the continuous energy distribution optimization with a superimposed integer parameter
variation. With the algorithm described in Section 5.2.3, the number of valid combi-
nations of mixed-integer variables, for which a continuous optimization is executed, was
significantly reduced. For each of these valid combinations, a prediction of the driving
trajectory, propulsion energy, remaining driving time and remaining discharge energy
is required as input for the energy distribution optimization. For the reduction of the
computational burden, an adapted approach is used.

The powernet topology considered in this section has only one traction battery. It can
be therefore assumed, that the energy required for the supply of the traction motor is
provided by this battery only. As depicted in Fig. 7.1, a virtual state of charge SoC ∗{1}0

of the traction battery is estimated as the output of the submodule "propulsion energy
prediction". This value corresponds to the state of charge of the traction battery after
completing the driving mission with all comfort and safety-critical loads switched off.
Since all powernet loads, except the traction motor, are switched off, the state of charge
of the batteries 2 to nspn remains unchanged. The virtual state of charge SoC ∗{1}0 can be
then used as the initial condition for the traction battery in the energy distribution opti-
mization. Since the energy required for the propulsion is already covered by the virtual
discharge of the traction battery from SoC {1}0 at the beginning of the driving trajectory
(t = t [i]

0 ) to SoC ∗{1}0 at its end (t = t [i]
0 +dT ssl), only the supply of the comfort and safety-

critical loads must be considered in the energy distribution optimization. By denoting
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the current profile of the traction motor by Iem(t), the virtual state of charge SoC ∗{1}0 at
the end of the driving mission can be defined as:

SoC ∗{1}0 = SoC {1}0 − 1
cbat.q0(t)Qbat0

∫ t0+dTssl

t=t0
Iem(t)dt (7.1)

The virtual state of charge SoC ∗{1}0 and accordingly the approximation of the remaining
discharge energy of the traction battery must be updated only if the driving destination
sssl or the degradation vector dpdx is changed. Since the state of charge of the batteries 2
to nspn remains unchanged, the approximation of the remaining discharge energy for these
batteries is required only once per cycle period. As depicted in Fig. 7.1, the prediction of
the remaining discharge energy of the batteries 1 to nspn takes into account the diagnostic
data D{1}bat to D{nspn}

bat , which is provided in the same format as described above for the
traction battery by the corresponding Battery Management System (BMS). The output
of the submodule "remaining discharge energy prediction" containing the parameters E{i}rde0

and dp{i}bat with i ∈ {1..nspn} for the linear approximation of the remaining discharge energy
of a battery as a function of the discharge power is then used for the energy distribution
optimization.

As depicted in Fig. 7.1, the diagnostic state D{j}pl of the powerlink j with j ∈ {1..npl} and
the diagnostic state D{i}load with i ∈ {1..nspn} of the loads are considered in the optimiza-
tion. The diagnostic state D{j}pl for the powerlink j corresponds to the model description
in Section 5.4. The diagnostic state D{i}load for the load i in subpowernet i describes a
possible change in the average power demand due to a failure or the operating condition.
The operating modeM{j}

pl of the powerlink j as well asM{i}
load for the load i in subpowernet

i are the output of the submodule "energy distribution optimization" and used for their
control. The operating mode M{i}

load defines the degradation of the load i. The operating
mode M{j}

pl for the powerlink j corresponds to the model description in Section 5.4. Also
the driving destination sssl and the driving profile degradation vector dpdx are the output
of the energy distribution optimization, describing a feasible driving mission from the
energetic point of view. For verification of the proposed predictive energy management,
a MATLAB/Simulink model for each submodule according to the description in corre-
sponding chapters was implemented. In the next section, simulation results verifying the
functionality of the discussed energy management architecture are provided.

7.1.2. Simulation Results for Powertrain with Single Motor

The powernet topology with a single traction motor used for the simulation in this sec-
tion was proposed in [8] and is depicted in Fig. 7.2, which is a detailed version of the

178



7.1. Energy Management Architecture for Powertrain with Single Motor

Figure 7.2.: Exemplary powernet topology with single motor.

topology already discussed in Section 5.7.2 and depicted in Fig. 5.19. It consists of one
HV subpowernet (net 1) and three low voltage (12 V) subpowernets (net 2 to 4). For the
simulation it is assumed that the subpowernet 1 contains a lithium-ion HV battery B{1}

with a nominal capacity Q{1}bat0 of 63 Ah and a nominal voltage of 355 V. Both subpower-
nets 2 and 3 contain a lead-acid battery (B{2}/B{3}) used for the voltage stability with a
nominal capacity Q{2/3}bat0 of 30 Ah and a nominal voltage of 12 V.

For the battery B{1} an initial state of charge equal to 45 % and to 90 % for B{2} and
B{3} is assumed. The energy from the battery B{1} is transferred to the 12 V loads
in subpowernet 1 via the HV/12 V DC/DC converter, which can be operated either in
forward (net 1 to 2) or off mode. An additional 12 V/12 V bidirectional DC/DC converter,
which can be operated in forward (net 2 to 3), reverse (net 3 to 2) and off mode, couples
the subpowernets 2 and 3. Both subpowernets 2 and 3 are required for the redundant
supply of the safety-critical loads R{2}s and R{3}s , which are assumed to be redundant
in the functionality, meaning that a failure in one of these loads can be tolerated. The
safety-critical loads R{4}s in subpowernet 4 can be supplied either by subpowernet 2 or 3.

The average power consumption of the comfort loads R{1}c and R{2}c is set to 2500 W and
to 1000 W. It is assumed that the power demand of R{1}c and R{2}c can be degraded in
five (nlp = 6) equally distributed steps to 0 W. An average power demand equal to 200 W
is set for the safety-critical loads R{2}s and R{3}s and 100 W for R{4}s . In contrast to the
comfort loads R{1}c and R{2}c , no degradation is assumed for the safety-critical loads R{2}s ,
R{3}s and R{4}s . For all powernet components, the operating temperature is set to 25 ◦C
and a fault-free initial state is assumed.
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At the beginning of the simulation, the vehicle destination sssl is set to 40 km, which
corresponds to the safe stop location "driving home" (SSL A) (refer to Fig. 4.1). For
the degradation of the vehicle destination, four further safe stop locations are considered,
namely "parking area" (SSL B), "emergency stop bay" (SSL C), "emergency lane" (SSL
D), comfort stop in "current lane" (SSL F) and "emergency braking" (SSL G). Since
"emergency braking" is the worst case scenario which is executed when no other solution
exists (refer to Section 5.2), only the scenarios SSL A, B, C, D and F are used for the
degradation concept (nssl = 5). Starting at the beginning of the route (s0 = 0 km), it is
further assumed that a parking area is available each 10 km, an emergency stop bay each
5 km and an emergency lane each 1 km. For the comfort stop, a coasting distance equal
to 0.2 km is assumed. In the simulation, the driving profile can be degraded in four equal
steps (ndp = 5). A vehicle configuration and a driving route according to Appendix A are
used in the MATLAB/Simulink simulation. The results are depicted in Fig. 7.3 and 7.4.

As depicted in Fig. 7.3, no degradation is active (nssl = ndp = nlp = 1) at the beginning
of the driving mission (t = 0 min). The energy flow efficiency of both DC/DC converters
in forward mode is set to 95 % throughout the simulation (η{1,2}pl and η

{2,3}
pl in subplot

"Powerlink Output Efficiency [%]" of Fig. 7.4). Due to the internal losses in DC/DC
converters it becomes more energy efficient to discharge the 12 V lead-acid batteries. For
the optimization, the maximum allowed discharge power for the batteries B{2} and B{3} is
set to 250 W (P{2/3}bat.max in subplot "Battery Output Power [W]" of Fig. 7.4). The remaining
discharge energy E{2/3}rde0 at t = 0 min of both 12 V batteries is equal to 0.212 kWh and
the remaining driving time dT ssl to 0.92 h. The safety-critical loads R{3}s can be fully
supplied by B{3} for the entire duration of the driving mission, resulting in the average
discharge power of B{3} equal to 200 W (P{3}bat in subplot "Battery Output Power [W]" of
Fig. 7.4). Also for the supply of the comfort and safety-related loads R{2}c and R{2}s in
subpowernet 2 it is more efficient to deplete the energy from the 12 V battery B{2}. A
maximum discharge of B{2} with 250 W would be possible, but is limited by the energy
manager to 222.7 W at t = 0 min (P{2}bat in subplot "Battery Output Power [W]" of Fig. 7.4).
This corresponds to the maximum output power completely discharging the battery B{2}

during the driving time dT ssl under consideration of the average power losses P{2}bat.loss

(P{2}bat.max = E{2}rde0/dT ssl − P{2}bat.loss).

The safety-critical load R{4}s in subpowernet 4 can be supplied by either subpowernet 2
or 3. The energy flow efficiency from net 2 to 4 (η{2,4}pl ) and from 3 to 4 (η{3,4}pl ) is set to
90 % and 85 % at the beginning of the simulation (subplot "Powerlink Output Efficiency
[%]" of Fig. 7.4). Considering the powerlink and battery losses (with dp{1}bat ≈ 0.006 and
dp{2/3}bat ≈ 0.035) it is more efficient to supply R{4}s from subpowernet 1 via subpowernet 2
(assuming that the discharge of B{2} is already used for the supply of R{2}s and R{2}c ).
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Figure 7.3.: Simulation results for a powernet topology with single motor (part 1).
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Figure 7.4.: Simulation results for a powernet topology with single motor (part 2).
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The operating conditions of powernet components remain stable until the first fault is
injected at t = 0.5 min increasing the internal resistance of B{2} by factor 2 (c{1}bat.rin in
subplot "Scaling Factor for Battery Resistance [-]" of Fig. 7.4). The internal resistance of
B{2} and B{3} is assumed to be unchanged for the entire simulation. As a fault reaction,
the energy manager stops discharging the battery B{2} due to the increased internal losses
(dp{2}bat ≈ 0.077 at t = 0.5 min). Instead, the entire energy for the supply of R{2}s , R{2}c and
R{4}s is provided by B{1}, resulting in an increase of the output energy from subpowernet
1 to 2 by approx. 234.5 W (P {1,2}out in subplot "Powerlink Output Power [kW]" of Fig. 7.4).

The second fault is injected at t = 1 min decreasing the initial capacity of B{1} by 60 %
(c{1}bat.q0 in subplot "Scaling Factor for Battery Initial Capacity [-]" of Fig. 7.3). The nom-
inal capacity of the batteries B{2} and B{3} is assumed to be unchanged throughout the
simulation. As a fault reaction, the energy manager degrades the driving profile to idp = 3
and the load profile to ilp = 6. With this setting, a degraded driving to the initial des-
tination with sssl = 40 km is still possible. Due to the degradation of the driving profile,
the remaining driving time also increases (dT ssl ≈ 1.26 h at t = 1 min). This results in a
decrease of the average discharge power of B{2} from 200 W by approx. 40.1 W. With the
adapted discharge power, the remaining discharge energy E{3}rde0 = 0.179 kWh (t = 1 min)
would be fully depleted at the end of the driving mission.

For the supply of R{3}s additional energy must be provided, leading so to the increase of
the output power from subpowernet 2 to 3 by approx. 42.2 W at t = 1 min (P {2,3}out in
subplot "Powerlink Output Power [W]" of Fig. 7.4). Due to the reduced available energy
in B{1}, the energy manager starts to discharge B{2} also despite of the increased internal
losses. For enabling the arrival at sssl = 40 km with current degradation (idp = 3 and
ilp = 6), the discharge of battery B{2} is increased from 0 W to 88.7 W. The remaining
energy for the supply of R{2}s , R{2}c and R{4}s is provided by B{1} via the HV/12 V DC/DC
converter (P {1,2}out in subplot "Powerlink Output Power [kW]" of Fig. 7.4).

At t = 1.5 min, the injected fault reducing the capacity of B{3} is disabled. As a reaction,
the energy manager reduces again the degradation of the driving and load profile to no
degradation (idp = ilp = 1). The operation of the powernet components changes again to
the state before the injection of the second fault. Also the first injected fault resulting in
the increase of the internal resistance of battery B{2} is disabled at t = 2 min. Again, the
energy manager adapts the control of the powernet components similar to the fault-free
operation at the beginning of the driving mission.

The third transient fault is injected at t = 2.5 min for the duration of 0.5 min resulting
in the decrease of the energy flow efficiency from subpowernet 2 to 4 from 90 % to 80 %
(η{2,4}pl in subplot "Powerlink Output Efficiency [%]" of Fig. 7.4). As a fault reaction,
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the energy manager toggles the supply of R{4}s from subpowernet 2 to 3, since this path
becomes more energy efficient (P {2,4}out and P {3,4}out in subplot "Powerlink Output Power [W]"
of Fig. 7.4). The energy flow from subpowernet 1 to 2 is slightly reduced and the discharge
power of the battery B{3} is increased to 223.9 W. Considering the internal losses of B{3}

(dp{3}bat ≈ 0.035), this output power would result in a fully discharged battery at the end
of the driving mission with E{3}rde0 ≈ 0.204 kWh and dT ssl ≈ 0.88 h at t = 2.5 min.

The next fault is injected at t = 4 min resulting in the linear decrease of the nominal ca-
pacity of B{1} from 100 % to 5 % within 190 s. As a fault reaction, the energy manager first
starts to degrade the load profile from ilp = 1 at t ≈ 4.24 min to ilp = 6 at t = 5.33 min.
Due to the decreasing available energy of the traction battery it becomes impossible to
reach the destination also with all loads degraded. Therefore, the energy manager pro-
ceeds with the degradation of the driving profile from idp = 1 at t ≈ 5.59 min to idp = 4
at t ≈ 6.02 min. After finally degrading the driving destination at t ≈ 6.12 min to the
next parking area (SSL B) at sssl = 10 km (issl = 2) , it becomes again possible to turn on
all loads (ilp = 1) and to drive without degradation of driving profile (idp = 1). Similarly,
due to the ongoing decrease of the battery capacity, the load profile is degraded again
starting from ilp = 1 at t ≈ 6.78 min to ilp = 6 at t ≈ 6.98 min, followed by the degrada-
tion of the driving profile from idp = 1 at t ≈ 6.96 min to idp = 5 at t ≈ 7.10 min. After
degrading the driving destination at t ≈ 7.13 min to the next emergency bay (SSL C) at
sssl = 5 km (issl = 3), the degradation of the load and driving profile is disabled again.
With the remaining energy resources the driving mission is completed at sssl = 5 km at
t ≈ 8.37 min. The corresponding distance (sv), velocity (vv), slope (sl) and acceleration
profile (av) are depicted in Fig. 7.3.

The degradation of the load profile, driving profile and driving destination has also an
impact on the discharge of the batteries B{2} and B{3}. After degrading the driving
destination to the next parking area (SSL B) (issl = 2) at t ≈ 6.12 min, the remaining
driving time is also reduced to dT ssl ≈ 8 min. Since the discharge of B{2} as explained
above is more efficient than transmitting the energy from B{1} via the DC/DC converter,
B{2} is discharged with maximum allowed power equal to 250 W. Also in the discharge
of the battery B{2} short peaks can be seen. Before degrading the load profile, battery
B{3} is temporarily used for the partly supply of R{4}s , releasing so the energy of B{2} for
the supply of R{2}s and R{2}c , which is required due to the lack of energy in the traction
battery B{2}.

The simulation results presented in this section exemplified and verified the functionality
of the adaptive and predictive EMS. Due to the automated fault reactions, the energy
manager adapts the control of the fail-operational powernet for arriving at the safest pos-
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sible position for the passengers. In the presented example, despite multiple faults, the
control of the powernet was optimized, so that the arrival at the next emergency bay
at 5 km distance was possible. In the next section, the proposed EMS architecture is
extended for the control of fail-operational powertrain and powernet topologies with mul-
tiple traction motors by embedding also the predictive torque distribution optimization
in the model predictive control.

7.2. Energy Management Architecture for Powertrain
with Multiple Motors

A powertrain with a single traction motor and a fail-operational powernet with a minimum
of three subpowernets can be used for an automated transition to a standstill in case of a
failure with the scenarios emergency braking (SSL G), comfort stop in current lane (SSL
F) and coasting to the rightmost lane (SSL E). According to Fig. 4.1, a fail-operational
drive functionality is required for more complex failure reactions with degraded propulsion
functionality enabling to reach an emergency lane (SSL D), next emergency stop bay
(SSL C), next parking area (SSL B) or even the desired destination (SSL A). For this,
a fail-operational powertrain containing at least two traction motors each supplied by
an independent traction battery is required. For establishing reliable power supply for
the safety-critical subsystems braking and steering, again a fail-operational powernet is
required. Therefore, a powernet configuration with a minimum of four subpowernets
can be assumed, two of them (subpowernet 1 and 2) containing a 48 V or high voltage
traction battery and motor(s) and further two subpowernets (subpowernet 3 and 4) for
the redundant supply of the low voltage braking and steering subsystems. For the control
of this powertrain and powernet configuration, an EMS architecture depicted in Fig. 7.5
is proposed and explained in Section 7.2.1. Simulation results verifying its functionality
for an exemplary fail-operational powertrain with four EMs and a powernet with five
subpowernets as depicted in Fig. 6.10 and 7.6 are provided in Section 7.2.2.

7.2.1. System Architecture for Powertrain with Multiple Motors

The basic structure of the EMS architecture controlling a fail-operational powertrain and
powernet is similar to the architecture presented in Section 7.1.1. As depicted in Fig. 7.5
it consists again of four main submodules: (1) "driving trajectory prediction", (2) "torque
distribution profile and propulsion energy prediction", (3) "remaining discharge energy
prediction" and (4) "energy distribution optimization". The ADAS horizon provider trans-
mits the electronic horizon to the EMS, which is converted to the required format for the
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prediction of the driving trajectory by the ADAS horizon reconstructor at the energy
management side.

For the powernet topology it is assumed that both traction batteries (Battery 1 and 2)
as well as the four traction motors (Motor 1 to 4) are located in the subpowernets 1 and
2. One of the control goals for the predictive torque distribution optimization was the
symmetrical discharge of the independent traction batteries. As it will be exemplified in
the next subsection, the discharge asymmetry can be also caused by asymmetrical com-
fort and safety-critical loads in the corresponding subpowernet as well as by asymmetrical
supply of other subpowernets (refer e.g. to the powernet topology depicted in Fig. 7.6).
Therefore, for ensuring the symmetrical discharge by the torque distribution, first the
average power required for the supply of the comfort loads (P{k,ilp}rc ), safety-critical loads
(P{k,ilp}rs ) and of other subpowernets (∑nspn

i=1 P
{k,i}
out ) must be estimated (for the notation refer

to Fig. 5.1). This average power demand, denoted by P {k}sc in Fig. 7.5, can be then taken
into account for the torque distribution optimization. Assuming that the subpowernets
1 and 2 containing the traction batteries cannot receive energy from other subpowernets,
the average power demand P{k,ilp}sc can be defined as:

P{k,ilp}sc = P{k,ilp}rs + P{k,ilp}rc +
nspn∑
i=1

P
{k,i}
out with k = {1, 2}, i = {1..nspn} \ {1, 2} (7.2)

At the beginning of each optimization cycle, first the driving trajectory is predicted (ana-
log to the description in Section 7.1.1). In the next step, using the current battery state
of charge values (SoC {1..nspn}

0 ) and the current diagnostic state vectors (D{1..nspn}
bat ) (for

notation refer to Section 7.1.1), the remaining discharge energy of the traction batteries
(Battery 1..2) and voltage stability batteries (Battery 3..nspn) is estimated. In contrast to
Section 7.1.1 no virtual state of charge SoC ∗{1/2}0 after subtracting the propulsion energy
is estimated in this version of the EMS. Therefore, the remaining discharge battery is
estimated only once per optimization cycle.

After estimation of the remaining driving time dT ssl and battery discharge energies mod-
eled with the parameters E{1..nspn}

rde0 and dp{1..nspn}
bat , the required input for the torque distri-

bution optimization is provided. The energy distribution optimization is then executed
under consideration of the current diagnostic vectors for the powerlinks (D{1..npl}

pl ) and for
the loads (D{1..nspn}

load ) (for notation refer to Section 7.1.1) and with the assumption that no
energy is required for the propulsion. After optimizing the energy distribution in this way,
provided a valid solution exists, sufficient energy resources are allocated for all powernet
loads excluding the propulsion loads.

The energy provided by the traction batteries can be divided in two parts. The first part

186



7.2. Energy Management Architecture for Powertrain with Multiple Motors

Figure 7.5.: Energy management architecture for powertrain with multiple motors.

is required for the supply of the traction motors. The second part is used for the supply
of the safety-critical and comfort loads of the corresponding subpowernet as well as for
the supply of other subpowernets, resulting in the average discharge power equal to P{1/2}sc

as defined in (7.2), which is estimated as output of the energy distribution optimization.
In the next step, the optimal torque distribution profile as well as the corresponding
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Figure 7.6.: Exemplary powernet topology with multiple motors.

propulsion energy are estimated using the control strategy and algorithms presented in
Section 6.4. At the end of the torque distribution and propulsion energy prediction it is
checked if the minimum allowed state of charge of at least one of the traction batteries
is exceeded. In this case, the energy stored in the traction batteries is not sufficient for
the entire driving mission and degradation of overall energy demand is required. This
information flag is then transmitted to the energy distribution optimization with the
integrated three-level-degradation concept as presented in Section 4.1. The degradation
variables for the load profile, driving profile and driving destination are then adapted and
this process is repeated until a valid solution is found. In the next section, simulation
results verifying and exemplifying the functionality of the discussed energy management
architecture in normal (fault-free) and failure case operation are provided.

7.2.2. Simulation Results for Powertrain with Multiple Motors

The fail-operational powernet topology with multiple traction motors used for the simu-
lation in this section is depicted in Fig. 7.6, which is a detailed version of the topology
already discussed in Section 5.7.1 and depicted in Fig. 5.17. It consists of two 48 V subpow-
ernets (net 1 and net 2) containing each an independent traction battery (B{1} and B{2}),
comfort loads (R{1}c and R{2}c ) and two traction motors (R{11}

prop/R{12}
prop and R{21}

prop/R{22}
prop).

Both subpowernets can supply the third 48 V subpowernet (net 5) via a toggle switch
containing a high power comfort load R{5}c , which might be for example an air condition-
ing system. In this way, the asymmetry in the discharge of the traction batteries B{1}

and B{2} due to the asymmetrical load R{5}c can be avoided. Two independent low voltage
(12 V) subpowernets (net 3 and 4) are used for the supply of the safety-critical loads R{3}s
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and R{4}s as well as comfort loads R{3}c and R{4}c . The low voltage batteries B{3} and B{4}

are used for establishing the voltage stability in subpowernets 3 and 4 in case of high
power dynamic load conditions. They are also used for the supply of the safety-critical
loads for the duration of automated transition to the safe state in case the main energy
source (B{1} for subpowernet 3 and B{2} for subpowernet 4) fails. The safety-critical loads
R{3}s and R{4}s are assumed to be redundant in the functionality, meaning that a failure
in one of these loads can be tolerated.

For the simulation it is assumed that the subpowernet 1 and 2 contain each a lithium-
ion battery B{1}/B{2} with a nominal capacity Q

{1/2}
bat0 of 300 Ah and a nominal voltage

of 48 V. Both subpowernets 3 and 4 contain a lead-acid battery (B{3}/B{4}) with a
nominal capacity Q

{3/4}
bat0 of 30 Ah and nominal voltage of 12 V. For the batteries B{1}

and B{2} an initial state of charge equal to 30 % and to 90 % for the batteries B{3} and
B{4} is assumed. The energy from the 48 V batteries B{1} and B{2} is transferred to the
12 V loads in subpowernet 3 and 4 via the 48 V/12 V DC/DC converters, which can be
operated either in forward or off mode.

For the comfort loads R{1}c and R{2}c in subpowernet 1 and 2 an average power consumption
equal to 1000 W is assumed. The average power consumption of the high power comfort
load R{5}c in subpowernet 5 is set to 2000 W and to 1250 W for the low voltage comfort
loads R{3}c and R{4}c . It is further assumed that the average power demand of all comfort
loads can be degraded in five (nlp = 6) equally distributed steps to 0 W. An average
power demand equal to 200 W with no degradation is assumed for the safety-critical loads
R{3}s and R{4}s in subpowernets 3 and 4. For all powernet components, the operating
temperature is set to 25 ◦C and a fault-free initial state is assumed.

At the beginning of the simulation, the vehicle destination is set to 4.8 km, which cor-
responds to the safe stop location "driving home" (SSL A). For the degradation of the
vehicle destination sssl, four further safe stop locations are considered, namely "parking
area" (SSL B), "emergency stop bay" (SSL C), "emergency lane" (SSL D), comfort stop in
"current lane" (SSL F) and "emergency braking" (SSL G). Since "emergency braking" is
the worst case scenario which is executed when no other solution exists (s. Section 5.2),
again only the scenarios SSL A, B, C, D and F are used for the degradation concept
(nssl = 5). Starting at the beginning of the route (s0 = 0 km), a parking area each 1 km,
an emergency stop bay each 800 m and an emergency lane each 400 m is assumed. For the
coasting distance in case of the comfort stop again 200 m are assumed. In the simulation,
the driving profile can be degraded in 4 equal steps (ndp = 5). A vehicle configuration and
a driving route according to Appendix B are used in the MATLAB/Simulink simulation.
The results are depicted in Fig. 7.7 and 7.8.
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Figure 7.7.: Simulation results for a powernet topology with multiple motors (part 1).
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Figure 7.8.: Simulation results for a powernet topology with multiple motors (part 2).
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As depicted in Fig. 7.7, no degradation is active (nssl = ndp = nlp = 1) at the beginning
of the driving mission (t = 0 min). The energy flow efficiency of both DC/DC converters
in forward mode is set to 95 % throughout the simulation (η{1,3}pl and η

{2,4}
pl in subplot

"Powerlink Output Efficiency [%]" of Fig. 7.8). Due to the internal losses in DC/DC
converters it becomes more energy efficient to discharge the 12 V lead-acid batteries,
which is limited to 250 W (P{3/4}bat.max and P{3/4}bat in subplot "Battery Output Power [W]"
of Fig. 7.8) at the beginning. The remaining discharge energy of the batteries B{3} and
B{4} (E{3/4}rde0 ≈ 0.212 kWh) is also sufficient for providing the maximum discharge power
of 250 W for the entire duration of the driving mission with dT ssl ≈ 18.3 min.

The high power comfort load R{5}c in subpowernet 5 can be supplied by either subpowernet
1 or 2. The energy flow efficiency from net 1 to 5 (η{1,5}pl ) and from 2 to 5 (η{1,5}pl ) is set to
85 % and 90 % at the beginning of the simulation (subplot "Powerlink Output Efficiency
[%]" of Fig. 7.8). Considering the losses of the toggle switch it is more efficient to supply
R{5}c fully from subpowernet 2 (P {1,5}out and P

{2,5}
out in subplot "Powerlink Output Power

and Power Limit [kW]" of Fig. 7.8). For the energy distribution optimization, the output
power of the DC/DC converters and of the toggle switch is limited to 2 kW (P {1,3}out.max,
P
{2,4}
out.max, P

{1,5}
out.max and P

{2,5}
out.max in subplots "Powerlink Output Power and Power Limit

[kW]" of Fig. 7.8).

The operating conditions of powernet components remain stable until the first transient
fault is injected at t = 0.5 min for the duration of 1 min decreasing the capacity of B{1}

by 80 % (c{1}bat.q0 in subplot "Scaling Factor for Battery Initial Capacity [-]" of Fig. 7.7).
As a fault reaction, the energy manager degrades the average power consumption of the
powernet loads (ilp = 2). Also the capacity of B{2} is reduced to 20 % by a transient
fault injected at t = 1 min for the duration of 1 min (c{2}bat.q0 in subplot "Scaling Factor for
Battery Initial Capacity [-]" of Fig. 7.7). As a fault reaction, the energy manager further
degrades the load profile to the maximum level (ilp = 6). For enabling the arrival at the
set destination sssl = 4.8 km (SSL A), also the degradation of the driving profile to the
maximum level (idp = 5) is required, resulting in the increased driving time of approx.
32.8 min. Since only the safety-critical loads R{3}s and R{4}s are active after degradation,
the discharge power of the batteries is reduced for the supply of these loads with 200 W
(P{3/4}bat in subplot "Battery Output Power and Power Limit [W]" of Fig. 7.8).

The first fault is disabled at t = 1.5 min, increasing again the capacity of the traction
battery B{1} to 100 %. It becomes again possible to turn on more comfort loads reducing
the degradation of load profile to ilp = 2 and to reduce the driving time by setting
the degradation of driving profile to idp = 1, resulting in the remaining driving time of
approx. 17.1 min. Both low voltage batteries B{3} and B{4} are discharged again with
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the maximum allowed power of 250 W and the remaining power for the supply of loads
in subpowernet 3 and 4 is provided by the traction batteries via the DC/DC converters.
Also the supply of R{5}c is activated again, but now taking the energy flow path with lower
efficiency (85 % from net 1 to 5), since the capacity of B{2} is still reduced and not enough
energy is available for the supply of R{5}c by subpowernet 2 (90 % from net 2 to 5).

The supply of R{5}c toggles back to the more energy efficient path from subpowernet 1
to 2 after disabling the second fault increasing again the capacity of the traction battery
B{2} to 100 %. It becomes again possible to turn on all the powernet loads by reducing
the degradation level of the load profile to ilp = 1.

At t = 2.5 min a change in the control of the battery B{3} is applied, reducing the maxi-
mum allowed discharge power from 250 W to 150 W. The discharge power of the battery
B{3} follows this reduction resulting also in the increased energy flow from subpowernet
1 to 3. At t = 3 min, a fault increasing the internal resistance of the battery B{3} by
factor 5 is injected, resulting in no discharge of B{3} and the supply of the comfort and
safety-critical loads R{3}c and R{3}s by the traction battery B{1} via the DC/DC converter,
which becomes more energy efficient. After this transient fault is disabled at t = 3.5 min,
the battery B{3} is again discharged with maximum allowed 250 W.

At t = 4 min, the next change in the control is applied, reducing the maximum allowed
output power of the toggle switch pin connecting subpowernet 2 and 5 to 1.5 kW. The
average power consumption of R{5}c equals to 2000 W at the currently set level for the load
profile. Therefore, despite the lower energy flow efficiency, the energy manager transmits
the remaining 0.5 kW from subpowernet 1 by operating the toggle switch in PWM mode.
At t = 5 min, the next fault is injected resulting in the decrease of the energy flow
efficiency from subpowernet 2 to 5 by 10 %. The energy transfer from subpowernet 1 to 5
with efficiency of 85 % becomes now more efficient compared to the path from subpowernet
2 to 5 with 80 % of efficiency. Therefore, the energy manager starts to supply R{5}c fully
from subpowernet 1.

The next fault is injected at t = 5 min resulting in the linear decrease of the nominal
capacity of B{1} and B{2} from 100 % to 20 % within 200 s. As a fault reaction, the
energy manager first starts to degrade the load profile from ilp = 1 at t ≈ 6.65 min to
ilp = 6 at t = 7.83 min. Due to the decreasing available energy of the traction batteries
it becomes impossible to reach the destination also with all loads degraded. Therefore,
the energy manager proceeds with the degradation of the driving profile from idp = 1 at
t ≈ 8.08 min to idp = 5 at t ≈ 8.15 min. Since the average driving velocity in this example
is already low, the effect of the driving profile degradation to the overall energy reduction
remains also low. After finally degrading the driving destination at t ≈ 8.16 min to the
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next parking area (SSL B) at sssl = 3 km (issl = 2), it becomes again possible to turn
on all loads (ilp = 1) and to drive without degradation of the driving profile (idp = 1).
With the remaining energy resources the driving mission is completed at sssl = 3 km at
t ≈ 11.45 min. The corresponding distance (sv), velocity (vv), slope (sl) and acceleration
profile (av) are depicted in Fig. 7.8.

Despite various injected faults, changes in the system state and in the control settings, also
the control goals for the torque distribution optimization could be met. It can be seen that
the traction batteries B{1} and B{2} are discharged symmetrically (SoC{1} and SoC{2} in
subplot "State of Charge [%]" of Fig. 7.8). With the appropriate torque distribution it
becomes also possible to compensate the asymmetrical discharge of the batteries due to
the asymmetrical high power load R{5}c . Considering the balancing of the motor losses
it can be also seen that this control goal can be achieved for the balancing between the
motors Mfl/Mfr at front and the motors Mrl/Mrr at rear axle (Eemfl.loss/Eemfr.loss for front
axle, Eemrl.loss/Eemrr.loss for rear axle in subplot "Energy Loss of Traction Motor [Wh]" of
Fig. 7.8). For the balancing of the losses between the axles it can be seen that the delta
is small at the beginning of the driving mission, but then slightly increases. At the end
of the driving mission, the delta of the energy losses between the axles is reduced again.

Summing up the results it can be stated that the proposed EMS architecture manages
to adapt the control of the fail-operational powernet and powertrain allowing to arrive at
the next parking area at 3 km despite multiple faults and changes in the control settings
by additionally enhancing the operation of the powernet and powertrain components.
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Conclusion

With the introduction of automated driving, new safety and reliability requirements arise
for the power supply of the safety-critical functions (e.g. braking or steering) involved in
the automated vehicle motion and transition to a safe state in case of a failure. Besides
new designs for the fail-operational powernet topologies addressing the fulfillment of these
requirements, also new strategies and algorithms for their control in fault-free and failure
case operation are required. The work presented in this dissertation studied a novel
and generic approach for the energy management of fail-operational powernets combining
both, the control in fault-free states and the functional safety concept, which is required
for all safety-critical functions by ISO 26262, ensuring the reliable power supply for the
entire duration of the vehicle transition to a standstill in case of a failure.

As the main control goal, the arrival of the automated vehicle at the safest possible location
for the passengers also in case of a failure was defined. For the realization of this safety-
based range extension, a model predictive and adaptive approach based on the theory of
optimal control was proposed. For the formulation of the optimization problem, a generic
mathematical model considering also possible failure states of a fail-operational powernet
with up to nspn subpowernets interconnected via powerlinks was defined. The ease of
adaptation of this model to various powernet topologies by means of parametrization was
demonstrated with two examples.

For the allocation of sufficient energy resources for all powernet loads for the entire driving
mission, a constraint for the energy distribution optimization problem forcing a positive
energy balance for each subpowernet was used, taking into account the predicted values
for the available energy resources as well as the trip-based energy consumption of all
loads. In case that the energy balance cannot be achieved, meaning that the overall
energy consumption exceeds the available resources, a three-level-degradation concept
was integrated in the optimization problem by modeling the degradation of the loads with
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integer valued optimization variables. As a measure for the reduction of the overall energy
demand, the degradation of the comfort loads reducing the average power consumption per
time unit was foreseen at the first level. The degradation of the driving profile reducing
the average propulsion energy per driven kilometer and the degradation of the driving
destination reducing the travel distance was foreseen at the second and third level.

The main goal for the predictive energy distribution is to arrive at the safest possible des-
tination with a minimum of driving time, a maximum of driving comfort and a minimum
of energy losses. For achieving these goals, a multi-objective mixed-integer function was
defined maximizing the available energy resources at the end of the driving mission (hence
minimizing the energy losses) and minimizing the degradation of the driving destination,
of the driving profile and of the comfort loads. The losses of the energy distribution in
a powernet can be basically divided into two types: (1) internal losses in the powerlink
components (coupling elements) due to the energy exchange between the subpowernets
and (2) internal losses in the energy storage components (batteries) due to the conversion
of the chemical energy into electrical energy. The proposed algorithm for the energy dis-
tribution addresses both types of losses by automatically selecting the most efficient paths
for the energy transmission as well as by optimizing the discharge strategy of multiple
batteries within the powernet. For the selection of the optimal energy flow paths, the
operation of the powerlinks in different modes is modeled with integer-valued optimiza-
tion variables, so that in addition to the average power to be transferred via all powerlink
outputs, also the optimal operation mode for each powerlink is estimated. Furthermore,
by adding additional constraints to the energy distribution optimization, also the average
output power of the powerlinks and the average discharge power of the batteries is limited
to the specified maximum rated power.

In the multi-objective cost function used for the mixed-integer energy distribution opti-
mization additional penalty terms were added enabling to customize the energy flow via
each powerlink output as well as the discharge of each battery. While the general formu-
lation of the penalty terms leaves room for various customization scenarios, two examples
were discussed, namely the balancing of the thermal heating of the powerlinks and the
balancing of batteries’ state of charge.

The functionality of the proposed EMS for the control of a fail-operational powernet was
exemplified and verified on two exemplary powernet topologies with four and five subpow-
ernets. In addition to the control strategy, also runtime optimized algorithms solving the
mixed-integer energy distribution problem were proposed, developed and implemented in
MATLAB/Simulink. With calculation times in the range of tens of milliseconds imple-
mentation of the proposed control strategy in embedded applications becomes feasible.
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The model predictive energy distribution and control of the fail-operational powernet
requires as basic input precise estimation of the remaining energy resources as well as of
the trip-based energy demand for the propulsion and comfort loads. By taking the average
power demand of the comfort and safety-critical loads, the total energy consumption can
be estimated if the duration of the driving mission is known. The total propulsion energy
required for completion of a given driving mission is dependent on the velocity profile, the
number and duration of the stops on the way to the destination, on the road slope as well
as on the current health state of the powertrain components. For the estimation of the
remaining driving time and for the approximation of the velocity profile from the current
vehicle position to the destination under consideration of driving profile degradation, an
algorithm based on the usage of map data provided by means of electronic horizon was
proposed. The entire route was divided into segments with constant acceleration and road
slope and the corresponding duration of each segment was estimated. This representation
of the driving trajectory was then used for the quasi-static estimation of the propulsion
energy required for its completion. The proposed algorithms were runtime optimized
enabling the approximation of the driving trajectory and estimation of the propulsion
energy for an EV with a single EM in the range of several tens of milliseconds.

With fail-operational powertrain topologies the availability of the automated driving sys-
tems can be increased, so that a breakdown of an automated vehicle in hazardous situ-
ations, as for example on a highway within the active traffic, can be avoided. For this,
powertrain topologies with multiple traction motors and independent power supply must
be considered. Furthermore, by appropriate torque distribution between the motors also
the overall driving efficiency and therefore the driving range can be significantly increased,
which is of high importance for the safety-based range extension. A general approach for
the control of a fail-operational powertrain was derived and five main goals enhancing the
fail-operability were identified. For the extension of the driving range, the increase of the
overall powertrain efficiency by appropriate torque distribution is required. Furthermore,
for ensuring approximately the same driving range in case of a breakdown of one axle,
the independent traction batteries must be discharged approximately symmetrically. For
the control, also the heating of the powertrain components leading possibly to a faster
aging and wear must be avoided. For this, three control goals were formulated, ensuring
the balancing of energy losses between the EMs at the front axle, at the rear axle as
well as between the axles of a fail-operational powertrain. Also a possibility for balancing
of energy losses of both independent traction batteries was incorporated in the torque
distribution strategy.

For achieving these goals, a torque distribution optimization problem was formulated
under consideration of the limitations of the powertrain components as well as their

197



Chapter 8. Conclusion

current health state. With this approach, also the adaptivity to possible abnormalities
and failure states with automated fault reactions was achieved. The proposed strategy
for the control of the powertrain was implemented and verified in MATLAB/Simulink for
an exemplary topology consisting of four EMs and two independent traction batteries. A
decrease of the energy losses by approx. 12 % for the given powertrain configuration and
use case was achieved while also ensuring the symmetrical battery discharge and load of
the traction motors.

For the accurate prediction of the propulsion energy in EV drivetrains with multiple
EMs, the assumption of equally distributed torque between the motors would enable a
computationally efficient estimation of the driving range similarly to the approach used
for drivetrains with a single EM. But on the other side the estimated driving range would
be pessimistic, leading for example to a decision to degrade the driving destination, which
is not in the sense of the safety-based range extension. Therefore, consideration of the
torque distribution is of high importance for the prediction of the remaining driving range.
A runtime optimized algorithm for the estimation of the torque distribution profile for
the entire driving mission based on the optimization problem used for the control of the
fail-operational powertrain was developed and combined with the prediction of propulsion
energy. A computational time less than 100 ms was achieved for a given use case, making
the implementation of the proposed algorithm in embedded applications feasible.

Finally, the application of the main submodules for the model predictive energy manage-
ment in automated vehicles, namely optimization of the energy distribution, prediction
of the remaining energy resources, approximation of the driving trajectory as well as pre-
diction of the torque distribution and propulsion energy was exemplified on two different
powertrain and powernet configurations. The benefits of the proposed control strategy
were verified with simulation results in fault-free operation as well as by means of fault
injection in failure case operation. Despite multiple faults, the proposed EMS was able to
find automatically the best suited fault reactions and to establish reliable power supply
for the entire duration of the transition to the standstill. With the generic approach used
for the design of the proposed model predictive EMS and runtime optimized algorithms,
a framework for further implementation in future automated vehicles is provided.
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Appendix A.

Definition of Use Case 1

Vehicle and Gearbox Parameters

Table A.1.: Vehicle parameters used in simulation for use case 1.
parameter description value unit

ρ density of ambient air 1.18 [ kg
m3 ]

g acceleration due to gravity 9.80665 [m
s2

]
Af vehicle frontal area 2.0 [m2]
mv vehicle mass 1474 [kg]
rw wheel radius 28.2 [cm]
cd aerodynamic drag coefficient 0.32 [−]
cr rolling friction coefficient 0.009 [−]
γgb gearbox transmission ratio 9.59 [−]
ηgb gearbox transmission efficiency 0.95 [−]

Velocity/acceleration limits profile ehlim

Table A.2.: Velocity/acceleration limits profile used in simulation for use case 1.
i soff vmin vmax amin amax i soff vmin vmax amin amax

1 0.0 10 30 0.30 1.50 44 26.3 30 70 0.50 2.00
2 0.5 15 50 0.30 1.50 45 27.5 15 50 0.30 1.50
3 1.1 30 70 0.50 2.00 46 28.2 30 70 0.50 2.00
4 1.4 30 80 0.50 2.00 47 28.4 20 60 0.30 1.50
5 2.4 15 50 0.30 1.50 48 28.8 30 70 0.50 2.00
6 3.0 10 30 0.30 1.50 49 29.3 10 30 0.30 1.50
7 3.5 15 50 0.30 1.50 50 29.5 15 50 0.30 1.50
8 4.5 30 100 0.50 2.00 51 29.8 10 30 0.30 1.50
9 5.8 30 80 0.50 2.00 52 30.0 10 30 0.30 1.50
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i soff vmin vmax amin amax i soff vmin vmax amin amax

10 6.3 30 70 0.50 2.00 53 30.5 15 50 0.30 1.50
11 7.5 15 50 0.30 1.50 54 31.1 30 70 0.50 2.00
12 8.2 30 70 0.50 2.00 55 31.4 30 80 0.50 2.00
13 8.4 20 60 0.30 1.50 56 32.4 15 50 0.30 1.50
14 8.8 30 70 0.50 2.00 57 33.0 10 30 0.30 1.50
15 9.3 10 30 0.30 1.50 58 33.5 15 50 0.30 1.50
16 9.5 15 50 0.30 1.50 59 34.5 30 100 0.50 2.00
17 9.8 10 30 0.30 1.50 60 35.8 30 80 0.50 2.00
18 10.0 10 30 0.30 1.50 61 36.3 30 70 0.50 2.00
19 10.5 15 50 0.30 1.50 62 37.5 15 50 0.30 1.50
20 11.1 30 70 0.50 2.00 63 38.2 30 70 0.50 2.00
21 11.4 30 80 0.50 2.00 64 38.4 20 60 0.30 1.50
22 12.4 15 50 0.30 1.50 65 38.8 30 70 0.50 2.00
23 13.0 10 30 0.30 1.50 66 39.3 10 30 0.30 1.50
24 13.5 15 50 0.30 1.50 67 39.5 15 50 0.30 1.50
25 14.5 30 100 0.50 2.00 68 39.8 10 30 0.30 1.50
26 15.8 30 80 0.50 2.00 69 40.0 10 30 0.30 1.50
27 16.3 30 70 0.50 2.00 70 40.5 15 50 0.30 1.50
28 17.5 15 50 0.30 1.50 71 41.1 30 70 0.50 2.00
29 18.2 30 70 0.50 2.00 72 41.4 30 80 0.50 2.00
30 18.4 20 60 0.30 1.50 73 42.4 15 50 0.30 1.50
31 18.8 30 70 0.50 2.00 74 43.0 10 30 0.30 1.50
32 19.3 10 30 0.30 1.50 75 43.5 15 50 0.30 1.50
33 19.5 15 50 0.30 1.50 76 44.5 30 100 0.50 2.00
34 19.8 10 30 0.30 1.50 77 45.8 30 80 0.50 2.00
35 20.0 10 30 0.30 1.50 78 46.3 30 70 0.50 2.00
36 20.5 15 50 0.30 1.50 79 47.5 15 50 0.30 1.50
37 21.1 30 70 0.50 2.00 80 48.2 30 70 0.50 2.00
38 21.4 30 80 0.50 2.00 81 48.4 20 60 0.30 1.50
39 22.4 15 50 0.30 1.50 82 48.8 30 70 0.50 2.00
40 23.0 10 30 0.30 1.50 83 49.3 10 30 0.30 1.50
41 23.5 15 50 0.30 1.50 84 49.5 15 50 0.30 1.50
42 24.5 30 100 0.50 2.00 85 49.8 10 30 0.30 1.50
43 25.8 30 80 0.50 2.00

202



Slope profile ehslope

Table A.3.: Slope profile used in simulation for use case 1.
i soff sl i soff sl i soff sl i soff sl

1 0.0 0.0 127 12.6 -2.0 252 25.1 2.4 377 37.6 0.0
2 0.1 0.1 128 12.7 -1.9 253 25.2 2.8 378 37.7 0.0
3 0.2 0.2 129 12.8 -1.8 254 25.3 2.4 379 37.8 0.0
4 0.3 0.1 130 12.9 -1.5 255 25.4 2.1 380 37.9 0.0
5 0.4 -0.2 131 13.0 -1.2 256 25.5 2.4 381 38.0 0.0
6 0.5 0.1 132 13.1 -1.3 257 25.6 2.0 382 38.1 0.0
7 0.6 0.3 133 13.2 -1.0 258 25.7 1.7 383 38.2 0.0
8 0.7 0.2 134 13.3 -0.8 259 25.8 1.5 384 38.3 0.0
9 0.8 0.1 135 13.4 -0.6 260 25.9 1.3 385 38.4 0.0
10 0.9 0.0 136 13.5 -0.2 261 26.0 1.2 386 38.5 0.0
11 1.0 -0.1 137 13.6 0.0 262 26.1 1.1 387 38.6 -0.2
12 1.1 -0.2 138 13.7 0.2 263 26.2 0.9 388 38.7 -0.4
13 1.2 -0.3 139 13.8 0.4 264 26.3 0.8 389 38.8 -0.6
14 1.3 -0.4 140 13.9 0.6 265 26.4 0.6 390 38.9 -1.0
15 1.4 -0.5 141 14.0 0.9 266 26.5 0.5 391 39.0 -1.2
16 1.5 -0.7 142 14.1 0.7 267 26.6 0.4 392 39.1 -1.0
17 1.6 -0.9 143 14.2 0.3 268 26.7 0.4 393 39.2 -0.8
18 1.7 -1.0 144 14.3 0.5 269 26.8 0.4 394 39.3 -0.6
19 1.8 -1.2 145 14.4 0.6 270 26.9 0.4 395 39.4 -0.4
20 1.9 -1.5 146 14.5 0.8 271 27.0 0.4 396 39.5 -0.2
21 2.0 -1.7 147 14.6 1.0 272 27.1 0.4 397 39.6 0.0
22 2.1 -2.0 148 14.7 1.2 273 27.2 0.2 398 39.7 0.0
23 2.2 -2.1 149 14.8 1.4 274 27.3 0.2 399 39.8 0.0
24 2.3 -2.2 150 14.9 1.8 275 27.4 0.0 400 39.9 0.0
25 2.4 -2.4 151 15.0 2.2 276 27.5 0.0 401 40.0 0.0
26 2.5 -2.2 152 15.1 2.4 277 27.6 0.0 402 40.1 0.1
27 2.6 -2.0 153 15.2 2.8 278 27.7 0.0 403 40.2 0.2
28 2.7 -1.9 154 15.3 2.4 279 27.8 0.0 404 40.3 0.1
29 2.8 -1.8 155 15.4 2.1 280 27.9 0.0 405 40.4 -0.2
30 2.9 -1.5 156 15.5 2.4 281 28.0 0.0 406 40.5 0.1
31 3.0 -1.2 157 15.6 2.0 282 28.1 0.0 407 40.6 0.3
32 3.1 -1.3 158 15.7 1.7 283 28.2 0.0 408 40.7 0.2
33 3.2 -1.0 159 15.8 1.5 284 28.3 0.0 409 40.8 0.1
34 3.3 -0.8 160 15.9 1.3 285 28.4 0.0 410 40.9 0.0
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i soff sl i soff sl i soff sl i soff sl

35 3.4 -0.6 161 16.0 1.2 286 28.5 0.0 411 41.0 -0.1
36 3.5 -0.2 162 16.1 1.1 287 28.6 -0.2 412 41.1 -0.2
37 3.6 0.0 163 16.2 0.9 288 28.7 -0.4 413 41.2 -0.3
38 3.7 0.2 164 16.3 0.8 289 28.8 -0.6 414 41.3 -0.4
39 3.8 0.4 165 16.4 0.6 290 28.9 -1.0 415 41.4 -0.5
40 3.9 0.6 166 16.5 0.5 291 29.0 -1.2 416 41.5 -0.7
41 4.0 0.9 167 16.6 0.4 292 29.1 -1.0 417 41.6 -0.9
42 4.1 0.7 168 16.7 0.4 293 29.2 -0.8 418 41.7 -1.0
43 4.2 0.3 169 16.8 0.4 294 29.3 -0.6 419 41.8 -1.2
44 4.3 0.5 170 16.9 0.4 295 29.4 -0.4 420 41.9 -1.5
45 4.4 0.6 171 17.0 0.4 296 29.5 -0.2 421 42.0 -1.7
46 4.5 0.8 172 17.1 0.4 297 29.6 0.0 422 42.1 -2.0
47 4.6 1.0 173 17.2 0.2 298 29.7 0.0 423 42.2 -2.1
48 4.7 1.2 174 17.3 0.2 299 29.8 0.0 424 42.3 -2.2
49 4.8 1.4 175 17.4 0.0 300 29.9 0.0 425 42.4 -2.4
50 4.9 1.8 176 17.5 0.0 301 30.0 0.0 426 42.5 -2.2
51 5.0 2.2 177 17.6 0.0 302 30.1 0.1 427 42.6 -2.0
52 5.1 2.4 178 17.7 0.0 303 30.2 0.2 428 42.7 -1.9
53 5.2 2.8 179 17.8 0.0 304 30.3 0.1 429 42.8 -1.8
54 5.3 2.4 180 17.9 0.0 305 30.4 -0.2 430 42.9 -1.5
55 5.4 2.1 181 18.0 0.0 306 30.5 0.1 431 43.0 -1.2
56 5.5 2.4 182 18.1 0.0 307 30.6 0.3 432 43.1 -1.3
57 5.6 2.0 183 18.2 0.0 308 30.7 0.2 433 43.2 -1.0
58 5.7 1.7 184 18.3 0.0 309 30.8 0.1 434 43.3 -0.8
59 5.8 1.5 185 18.4 0.0 310 30.9 0.0 435 43.4 -0.6
60 5.9 1.3 186 18.5 0.0 311 31.0 -0.1 436 43.5 -0.2
61 6.0 1.2 187 18.6 -0.2 312 31.1 -0.2 437 43.6 0.0
62 6.1 1.1 188 18.7 -0.4 313 31.2 -0.3 438 43.7 0.2
63 6.2 0.9 189 18.8 -0.6 314 31.3 -0.4 439 43.8 0.4
64 6.3 0.8 190 18.9 -1.0 315 31.4 -0.5 440 43.9 0.6
65 6.4 0.6 191 19.0 -1.2 316 31.5 -0.7 441 44.0 0.9
66 6.5 0.5 192 19.1 -1.0 317 31.6 -0.9 442 44.1 0.7
67 6.6 0.4 193 19.2 -0.8 318 31.7 -1.0 443 44.2 0.3
68 6.7 0.4 194 19.3 -0.6 319 31.8 -1.2 444 44.3 0.5
69 6.8 0.4 195 19.4 -0.4 320 31.9 -1.5 445 44.4 0.6
70 6.9 0.4 196 19.5 -0.2 321 32.0 -1.7 446 44.5 0.8
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i soff sl i soff sl i soff sl i soff sl

71 7.0 0.4 197 19.6 0.0 322 32.1 -2.0 447 44.6 1.0
72 7.1 0.4 198 19.7 0.0 323 32.2 -2.1 448 44.7 1.2
73 7.2 0.2 199 19.8 0.0 324 32.3 -2.2 449 44.8 1.4
74 7.3 0.2 200 19.9 0.0 325 32.4 -2.4 450 44.9 1.8
75 7.4 0.0 201 20.0 0.0 326 32.5 -2.2 451 45.0 2.2
76 7.5 0.0 202 20.1 0.1 327 32.6 -2.0 452 45.1 2.4
77 7.6 0.0 203 20.2 0.2 328 32.7 -1.9 453 45.2 2.8
78 7.7 0.0 204 20.3 0.1 329 32.8 -1.8 454 45.3 2.4
79 7.8 0.0 205 20.4 -0.2 330 32.9 -1.5 455 45.4 2.1
80 7.9 0.0 206 20.5 0.1 331 33.0 -1.2 456 45.5 2.4
81 8.0 0.0 207 20.6 0.3 332 33.1 -1.3 457 45.6 2.0
82 8.1 0.0 208 20.7 0.2 333 33.2 -1.0 458 45.7 1.7
83 8.2 0.0 209 20.8 0.1 334 33.3 -0.8 459 45.8 1.5
84 8.3 0.0 210 20.9 0.0 335 33.4 -0.6 460 45.9 1.3
85 8.4 0.0 211 21.0 -0.1 336 33.5 -0.2 461 46.0 1.2
86 8.5 0.0 212 21.1 -0.2 337 33.6 0.0 462 46.1 1.1
87 8.6 -0.2 213 21.2 -0.3 338 33.7 0.2 463 46.2 0.9
88 8.7 -0.4 214 21.3 -0.4 339 33.8 0.4 464 46.3 0.8
89 8.8 -0.6 215 21.4 -0.5 340 33.9 0.6 465 46.4 0.6
90 8.9 -1.0 216 21.5 -0.7 341 34.0 0.9 466 46.5 0.5
91 9.0 -1.2 217 21.6 -0.9 342 34.1 0.7 467 46.6 0.4
92 9.1 -1.0 218 21.7 -1.0 343 34.2 0.3 468 46.7 0.4
93 9.2 -0.8 219 21.8 -1.2 344 34.3 0.5 469 46.8 0.4
94 9.3 -0.6 220 21.9 -1.5 345 34.4 0.6 470 46.9 0.4
95 9.4 -0.4 221 22.0 -1.7 346 34.5 0.8 471 47.0 0.4
96 9.5 -0.2 222 22.1 -2.0 347 34.6 1.0 472 47.1 0.4
97 9.6 0.0 223 22.2 -2.1 348 34.7 1.2 473 47.2 0.2
98 9.7 0.0 224 22.3 -2.2 349 34.8 1.4 474 47.3 0.2
99 9.8 0.0 225 22.4 -2.4 350 34.9 1.8 475 47.4 0.0
100 9.9 0.0 226 22.5 -2.2 351 35.0 2.2 476 47.5 0.0
101 10.0 0.0 227 22.6 -2.0 352 35.1 2.4 477 47.6 0.0
102 10.1 0.1 228 22.7 -1.9 353 35.2 2.8 478 47.7 0.0
103 10.2 0.2 229 22.8 -1.8 354 35.3 2.4 479 47.8 0.0
104 10.3 0.1 230 22.9 -1.5 355 35.4 2.1 480 47.9 0.0
105 10.4 -0.2 231 23.0 -1.2 356 35.5 2.4 481 48.0 0.0
106 10.5 0.1 232 23.1 -1.3 357 35.6 2.0 482 48.1 0.0
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i soff sl i soff sl i soff sl i soff sl

107 10.6 0.3 233 23.2 -1.0 358 35.7 1.7 483 48.2 0.0
108 10.7 0.2 234 23.3 -0.8 359 35.8 1.5 484 48.3 0.0
109 10.8 0.1 235 23.4 -0.6 360 35.9 1.3 485 48.4 0.0
110 10.9 0.0 236 23.5 -0.2 361 36.0 1.2 486 48.5 0.0
111 11.0 -0.1 237 23.6 0.0 362 36.1 1.1 487 48.6 -0.2
112 11.1 -0.2 238 23.7 0.2 363 36.2 0.9 488 48.7 -0.4
113 11.2 -0.3 239 23.8 0.4 364 36.3 0.8 489 48.8 -0.6
114 11.3 -0.4 240 23.9 0.6 365 36.4 0.6 490 48.9 -1.0
115 11.4 -0.5 241 24.0 0.9 366 36.5 0.5 491 49.0 -1.2
116 11.5 -0.7 242 24.1 0.7 367 36.6 0.4 492 49.1 -1.0
117 11.6 -0.9 243 24.2 0.3 368 36.7 0.4 493 49.2 -0.8
118 11.7 -1.0 244 24.3 0.5 369 36.8 0.4 494 49.3 -0.6
119 11.8 -1.2 245 24.4 0.6 370 36.9 0.4 495 49.4 -0.4
120 11.9 -1.5 246 24.5 0.8 371 37.0 0.4 496 49.5 -0.2
121 12.0 -1.7 247 24.6 1.0 372 37.1 0.4 497 49.6 0.0
122 12.1 -2.0 248 24.7 1.2 373 37.2 0.2 498 49.7 0.0
123 12.2 -2.1 249 24.8 1.4 374 37.3 0.2 499 49.8 0.0
124 12.3 -2.2 250 24.9 1.8 375 37.4 0.0 500 49.9 0.0
125 12.4 -2.4 251 25.0 2.2 376 37.5 0.0 501 50.0 0.0
126 12.5 -2.2

Stops profile ehstops

Table A.4.: Stops profile used in simulation for use case 1.
i soff dTstop i soff dTstop i soff dTstop i soff dTstop

1 0.40 10 10 12.50 20 19 24.00 30 28 39.60 20
2 0.70 15 11 13.30 5 20 27.70 10 29 40.40 10
3 2.50 20 12 14.00 30 21 29.60 20 30 40.70 15
4 3.30 5 13 17.70 10 22 30.40 10 31 42.50 20
5 4.00 30 14 19.60 20 23 30.70 15 32 43.30 5
6 7.70 10 15 20.40 10 24 32.50 20 33 44.00 30
7 9.60 20 16 20.70 15 25 33.30 5 34 47.70 10
8 10.40 10 17 22.50 20 26 34.00 30 35 49.60 20
9 10.70 15 18 23.30 5 27 37.70 10
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Appendix B.

Definition of Use Case 2

Vehicle and Gearbox Parameters

Table B.1.: Vehicle parameters used in simulation for use case 2.
parameter description value unit

ρ density of ambient air 1.18 [ kg
m3 ]

g acceleration due to gravity 9.80665 [m
s2

]
Af vehicle frontal area 5.5 [m2]
mv vehicle mass 2800 [kg]
rw wheel radius 27.5 [cm]
cd aerodynamic drag coefficient 0.6 [−]
cr rolling friction coefficient 0.02 [−]
γgb gearbox transmission ratio 30.0 [−]
ηgb gearbox transmission efficiency 0.95 [−]

Velocity/acceleration limits profile ehlim

Table B.2.: Velocity/acceleration limits profile used in simulation for use case 2.
i soff vmin vmax amin amax i soff vmin vmax amin amax

1 0.000 2.5 5 0.38 1.50 3 4.726 2.5 5 0.38 1.50
2 0.074 10 20 0.38 1.50

Slope profile ehslope

Table B.3.: Slope profile used in simulation for use case 2.
i soff sl i soff sl i soff sl i soff sl

1 0.0 2.0 20 1.4 -7.0 38 2.5 -0.5 56 3.5 4.5
2 0.0 6.5 21 1.4 -7.5 39 2.6 0.0 57 3.6 1.0
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i soff sl i soff sl i soff sl i soff sl

3 0.1 2.0 22 1.4 -5.5 40 2.6 0.5 58 3.6 1.5
4 0.1 -3.0 23 1.5 -3.5 41 2.6 0.0 59 3.7 1.0
5 0.1 -1.5 24 1.7 -3.0 42 2.7 -0.5 60 3.8 1.5
6 0.2 -1.0 25 1.8 -3.5 43 2.7 0.0 61 3.9 2.0
7 0.5 -2.0 26 1.8 -3.0 44 2.8 0.5 62 4.1 1.5
8 0.5 -5.5 27 1.9 -2.5 45 2.8 2.0 63 4.1 0.0
9 0.6 -2.5 28 2.0 -2.0 46 2.8 2.5 64 4.1 2.0
10 0.7 -2.0 29 2.0 -1.5 47 2.9 3.0 65 4.1 2.5
11 0.7 0.0 30 2.0 -0.5 48 3.0 2.5 66 4.2 5.5
12 0.7 -2.0 31 2.1 0.5 49 3.0 3.0 67 4.3 1.5
13 0.9 -1.5 32 2.2 -0.5 50 3.1 3.5 68 4.3 1.0
14 1.0 -1.0 33 2.2 0.0 51 3.3 7.0 69 4.6 1.5
15 1.1 -2.0 34 2.3 0.5 52 3.4 7.5 70 4.7 2.0
16 1.2 -0.5 35 2.3 0.0 53 3.4 6.0 71 4.7 3.0
17 1.2 -1.0 36 2.3 -0.5 54 3.5 2.5 72 4.7 -1.5
18 1.2 -4.5 37 2.4 0.0 55 3.5 3.5 73 4.7 -6.0
19 1.3 -3.5

Stops profile ehstops

Table B.4.: Stops profile used in simulation for use case 2.
i soff dTstop i soff dTstop i soff dTstop i soff dTstop

1 0.2 14.0 4 1.4 2.0 7 2.5 14.0 10 3.8 14.0
2 0.5 14.0 5 1.9 2.0 8 3.2 2.0 11 4.4 14.0
3 1.2 14.0 6 2.2 2.0 9 3.6 2.0 12 4.7 14.0
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List of Symbols and Notations

List of Notations

Symbol Description Unit

0 vector or matrix with all elements equal to 0 —
1 vector or matrix with all elements equal to 1 —
a0 value of a at t0 —
a vector or matrix —
a{i} i-th element of vector a —
a{i,k} element in the i-th row and k-th column of matrix a —
a〈i〉 column i of matrix a —
a〈i〉 row i of matrix a —
aeq value of a with equal torque distribution —
aopt value of a with optimal torque distribution —
apred predicted value of a —
aqs value of a estimated with quasistatic approach —
a∗ value of a at a given set of integer variables —
av1 value of a in Version 1 of energy distribution optimization —
av2 value of a in Version 2 of energy distribution optimization —
d1a value of a delayed by one sample period with d1a[n] = a[n−1] —
∆aqs relative deviation of apred from aqs %
I nspn × nspn identity matrix —

List of General Symbols

Symbol Description Unit

a signal a —
B{k} energy storage of subpowernet k —
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List of Symbols for Powernet Control

Symbol Description Unit

dT eval time required for evaluation s
i index variable —
j index variable —
k index variable —
M{xy} motor at position x and y —
R2 coefficient of determination %
R{k}c comfort components of subpowernet k —
R{k}load load components of subpowernet k —
R{k}prop propulsion components of subpowernet k —
R{k}s safety-critical components of subpowernet k —
t driving time s
t0 start time s
tend end time s

List of Symbols for Powernet Control

Symbol Description Unit

Abat.lp nspn × n2
spn matrix for definition of f edo.pen.bat in LP —

Aeq.lp n2
spn × n2

spn matrix for linear equality constraints in LP —
Aeq.nlp nspn × nspn matrix for linear equality constraints in NLP —
Aespn.lp nspn × n2

spn matrix for definition of Espn.lp in LP —
Aineq.lp 3nspn × n2

spn matrix for linear inequality constraints in LP —
Aineq.nlp nspn × nspn matrix for linear inequality constraints in NLP —
Apen.pl.lp nspn × n2

spn matrix for definition of f edo.pen.pl in LP —
a{k}rde factor approximating total losses of B{k}, stored in anspn×1

rde h
beq.lp n2

spn × 1 vector for linear equality constraints in LP kWh
beq.nlp nspn × nspn matrix for linear equality constraints in NLP kWh
bineq.lp 3nspn × 1 vector for linear inequality constraints in LP kWh
bineq.nlp nspn × nspn matrix for linear inequality constraints in NLP kWh
c
{k}
bat.q0 scaling factor for capacity Q{k}bat0 of B{k}, stored in D{k}bat —
c
{k}
bat.rin scaling factor for resistance R{k}bat.in of B{k}, stored in D{k}bat —

ceq.nlp nspn × nspn nonlinear equality constraints in NLP kWh
cineq.nlp nspn × nspn nonlinear inequality constraints in NLP kWh
D{k}bat diagnostic state vector for B{k} with c{k}bat.rin and c{k}bat.q0 —
D
{i}
load diagnostic state of load i —

dp{k}bat factor approximating average losses of B{k}, stored in dpnspn×1
bat —
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List of Symbols for Powernet Control

Symbol Description Unit

D
{k}
pl diagnostic state of powerlink k, stored in Dnpl×1

pl —
dT {k}dcha time for discharge of B{k} (SoC {k}0 to SoC {k}min) h
dT {k}dcha.min time for discharge of B{k} (SoC {k}0 to SoC {k}min) with P{k}bat.max h
E{k}bat discharge energy of B{k}, stored in Enspn×1

bat kWh
E{k}bat.loss discharge losses of B{k} kWh
E
{i,k}
in energy flow at input i of subpowernet k kWh

E{k}load energy demand of R{k}load, stored in Enspn×1
load kWh

E
{i,k}
out energy flow at output k of subpowernet i, stored in Enspn×nspn

out kWh
E
{i,k}
out.max output energy limit for E{i,k}out , stored in Enspn×nspn

out.max kWh
E{k}prop energy demand of R{k}prop kWh
E{k}rc energy demand of R{k}c kWh
E{k}rde0 electrochemical energy of B{k}, stored in Enspn×1

rde0 kWh
E{k}rde remaining discharge energy of B{k}, stored in Enspn×1

rde kWh
E{k}rs energy demand of R{k}s kWh
E{k}spn energy balance of net k, stored in Enspn×1

spn kWh
Espn.lp nspn × 1 energy balance vector in LP kWh
E{k}spn.opt energy balance of net k with E{k}bat.loss, stored in Enspn×1

spn.opt kWh
Espn.opt.lp nspn × 1 energy balance vector with E{k}bat.loss in LP kWh
fedo multi-objective function for energy distribution optimization kWh
fedo.dp objective for minimization of driving profile degradation —
fedo.loss.opt objective for minimization of powerlink/battery losses kWh
fedo.loss.opt.lp objective for minimization of powerlink/battery losses in LP kWh
f edo.loss.opt n2

spn × 1 vector for minimization of powerlink/battery losses
in LP

—

fedo.loss.pl objective for minimization of powerlink losses kWh
fedo.loss.pl.lp objective for minimization of powerlink losses in LP kWh
f edo.loss.pl n2

spn × 1 vector for minimization of powerlink losses in LP —
fedo.lp objective for minimization of load profile degradation —
fedo.opt multi-objective function for energy distribution and multiple

batteries discharge optimization
kWh

fedo.path objective for selection of optimal energy flow paths kWh
fedo.path.opt objective for selection of optimal energy flow paths with op-

timal multiple batteries discharge
kWh

fedo.pen.bat penalty function for discharge of batteries kWh
fedo.pen.bat.lp penalty function for discharge of batteries in LP kWh
fedo.pen.pl penalty function for energy flow via powerlink outputs kWh
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List of Symbols for Powernet Control

Symbol Description Unit

fedo.pen.pl.lp penalty function for energy flow via powerlink outputs in LP kWh
f edo.pen.bat n2

spn × 1 penalization vector for discharge of batteries in LP —
f edo.pen.pl n2

spn × 1 penalization vector for energy flow via powerlink
outputs in LP

—

fedo.ssl objective for minimization of driving destination degradation —
f obj.lp objective vector for optimization in LP formulation —
fobj.nlp objective function for optimization in NLP formulation kWh
I
{x}
bat output current of B{k} A

idp degradation step of driving profile with idp ∈ {1..ndp} —
ids combined degradation step variable with ids ∈ {1..nds} —
ilp degradation step of load profile with ilp ∈ {1..nlp} —
imod counter variable for valid Mpl with imod ∈ {1..nmod} —
issl degradation step of driving destination with issl ∈ {1..nssl} —
lblp n2

spn × 1 lower bound vector for x lp in LP kWh
lbnlp nspn × nspn lower bound matrix for xnlp in NLP kWh
M
{i}
load operating mode of load i —

Mpl npl × 1 powerlink operating mode state vector —
M
{i}
pl operating mode of powerlink i, stored in Mnpl×1

pl —
ndp number of degradation steps for driving profile —
nds number of degradation steps for ids —
nlp number of degradation steps for load profile —
nmod number of valid powerlink operating mode vectors Mpl —
n{i}mod number of valid operating modes of powerlink i —
npbat number of discharge power breakpoints for prediction of E{k}rde —
npl number of powerlinks in powernet —
nsoc number of SoC breakpoints used for prediction of E{k}rde —
nspn number of subpowernets —
nssl number of degradation steps for driving destination —
P{k}bat average discharge power of B{k}, stored in P nspn×1

bat kW
P{k}bat.loss average discharge power losses of B{k} at P{k}bat kW
P{k}bat.loss.max maximum average discharge power losses of B{k} at P{k}bat.max kW
P{k}bat.max maximum discharge power of B{k}, stored in P nspn×1

bat.max kW
P{k}bat.min minimum discharge power of B{k} for prediction of E{k}rde kW
PL

{i}
eff vector with current energy flow efficiencies of powerlink i —

PLmod npl × nmod matrix with the set of valid Mpl vectors —
PL

{i}
mod n{i}mod × 1 vector with the set of valid M{i}

pl —
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List of Symbols for Powernet Control

Symbol Description Unit

PL
{i}
pin description of powernet connections of powerlink i —

P{k}load average power demand of R{k}load kW
P
{i,k}
out power flow at output k of subpowernet i, stored in P nspn×nspn

out kW
P
{i,k}
out.max output power limit for P {i,k}out , stored in P nspn×nspn

out.max kW
P
{i,k}
pl.max maximum allowed power at input i of subpowernet k kW

P{k,ilp}rc average power demand of R{k}c at degradation step ilp kW
P{k,ilp}rs average power demand of R{k}s at degradation step ilp kW
P{k,ilp}sc sum of P{k,ilp}rc , P{k,ilp}rs , P {k,i}out with i ∈ {1..nspn} \ {k} at ilp kW
Q
{k}
bat0 nominal capacity of B{k} Ah

R
{k}
bat.in internal resistance of B{k} Ω

SNK set of subpowernets classified as a sink —
SoC{k} state of charge of battery k %
SoC {k}0 state of charge of battery k at t = t0 %
SoC

{k}
end state of charge of battery k at the end of the driving mission %

SoC {k}min minimum allowed discharge threshold for battery k %
S
{i,k}
out state of energy flow E

{i,k}
out , stored in Snspn×nspn

out —
S∗{i}pl nspn × nspn energy flow activation matrix of powerlink i —
S
{i,k}
pl activation state of energy flow E

{i,k}
out , stored in Snspn×nspn

pl —
SRC set of subpowernets classified as a source —
S{k}spn operational state of subpowernet k, stored in Snspn×1

spn —
T
{k}
bat temperature of B{k} K
T
{i,k}
jun.pl junction temperature of powerlink output for E{i,k}out K
T
{i,k}
nom.pl nominal temperature of powerlink output for E{i,k}out K

ublp n2
spn × 1 upper bound vector for x lp in LP kWh

ubnlp nspn × nspn upper bound matrix for xnlp in NLP kWh
V
{x}

bat output voltage of B{k} V
V
{k}

bat.oc open circuit voltage of B{k} V
x lp n2

spn × 1 optimization variable vector in LP problem kWh
xnlp nspn × nspn optimization variable matrix in NLP problem kWh
β
{k}
bat penalty factor for discharge of B{k}, stored in βnspn×1

pl —
βedo.dp weighting factor for fedo.dp kWh
βedo.lp weighting factor for fedo.lp kWh
βedo.path weighting factor for fedo.path —
βedo.ssl weighting factor for fedo.ssl kWh
β
{i,k}
pl penalty factor for energy flow E

{i,k}
out , stored in βnspn×nspn

pl —
γrde scaling factor for remaining discharge energy delta in β{k}bat h/K
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Symbol Description Unit

γtemp scaling factor for temperature delta in β{i,k}pl h/K
ηfrw energy flow efficiency of a DC/DC converter in forward mode %
ηon energy flow efficiency of a power switch %
ηon1 energy flow efficiency of a toggle switch from pin0 to pin1 %
ηon2 energy flow efficiency of a toggle switch from pin0 to pin2 %
η{i}pl nspn × nspn efficiency flow matrix of powerlink i %
η
{i,k}
pl efficiency of energy flow E

{i,k}
out , stored in ηnspn×nspn

pl %
ηrev energy flow efficiency of a DC/DC converter in reverse mode %

List of Symbols for Powertrain Control

Symbol Description Unit

Af vehicle frontal area m2

Atrq nα × 3 matrix with set of discrete valued α —
cbat{x} scaling factor for size of battery at position x in fobj5 —
cd aerodynamic drag coefficient —
cem{xy} scaling factor for motor size at position x and y in fobj3/fobj4 —
cem{xy}.eff scaling factor for efficiency of motor at position x and y —
cem{xy}.trq scaling factor for torque limit of motor at position x and y —
cgb{x}.eff scaling factor for efficiency of gearbox at position x —
cr rolling friction coefficient —
dT [i] duration of interval i s
dEbatfr.loss delta in battery losses between front and rear axle Wh
dEemfr.loss delta in motor losses between front and rear axle Wh
dEem{x}lr.loss delta in losses between left and right motor at axle x Wh
Dem{xy} diagnostic state vector for M{xy} with cem{xy}.eff and cem{xy}.trq —
dSoCavg average battery discharge %
dSoC fr delta in SoC between front and rear battery %
dT calc calculation time step for propulsion energy prediction s
dTmin minimum required calculation time step with dT calc ≤ dTmin s
dηSoC relative reduction in SoC consumption %
Ebat{x}.loss losses of battery at position x Wh
Eem{xy}.loss losses of motor at position x and y Wh
eqfr nfr × 1 vector with equally distributed breakpoints for αfr —
eq lr 1× nlr vector with equally distributed breakpoints for α{x}lr —
Erde{x} remaining discharge energy of battery at position x kWh
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List of Symbols for Powertrain Control

Symbol Description Unit

fobj multi-objective function for optimal torque distribution —
fobj1 objective for minimization of powertrain losses %
fobj2 objective for (a) SoC{x} or (b) Erde{x} balancing %
fobj3 objective for balancing of losses between left/right motor Wh
fobj4 objective for balancing of losses between front/rear motors Wh
fobj5 objective for balancing of losses between front/rear battery Wh
Ft vehicle traction force N
g acceleration due to gravity m/s2

Ibat{x} output current of traction battery at position x A
Ibat{x}.chrg.max maximum charge current of battery at position x A
Ibat{x}.dcha.max maximum discharge current of battery at position x A
Iem{xy} current of motor at position x and y A
j

[i]
sub number of subsegments in segment i —
limbat{x} constraint function for battery at position x bool
limbat{x}.I flag for current limitation of battery at position x bool
limbat{x}.SoC flag for SoC limitation of battery at position x bool
limbat{x}.V flag for voltage limitation of battery at position x bool
limem{xy} constraint function for motor at position x and y bool
limem{xy}.P flag for power limitation of motor at position x and y bool
limem{xy}.T flag for torque limitation of motor at position x and y bool
limem{xy}.η flag for efficiency limitation of motor at position x and y bool
lim{x} constraint function for axle x bool
mv vehicle mass kg
ncalc number of calculation steps for propulsion energy prediction —
neff.gen.rot number of breakpoints in ωem.eff.gen —
neff.gen.trq number of breakpoints in T em.eff.gen —
neff.mot.rot number of breakpoints in ωem.eff.mot —
neff.mot.trq number of breakpoints in T em.eff.mot —
nfr number of breakpoints for αfr —
nlr number of breakpoints for α{x}lr —
nα number of discrete valued α in the set Atrq —
Pbat{x} output power of traction battery at position x kW
Pbat{x}.load load power of auxiliaries supplied by battery at position x kW
Pbat{x}.loss power losses of traction battery at position x W
Pem{xy} electrical power of motor at position x and y kW
Pem{xy}.lim.gen power limit of motor at position x and y in generator mode kW
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Symbol Description Unit

Pem{xy}.lim.mot power limit of motor at position x and y in motor mode kW
Pem{xy}.loss power losses of motor at position x and y W
Pem{xy}.mech mechanical power of motor at position x and y kW
Remfr.loss losses ratio of front to rear axle motors —
Rem{x}lr.loss losses ratio of front to right motor at axle x —
rw wheel radius m
SoC{x} state of charge of battery at position x %
SoC{x}.max minimum state of charge of battery at position x %
SoC{x}.min minimum state of charge of battery at position x %
T em.eff.gen neff.gen.trq × 1 torque vector for look-up of ηem.gen Nm
T em.eff.mot neff.mot.trq × 1 torque vector for look-up of ηem.mot Nm
Tem.loss.gen torque for calculation of motor losses in generator mode Nm
Tem.loss.mot torque for calculation of motor losses in motor mode Nm
Tem{xy} output torque of motor at position x and y Nm
Tem{xy}.lim.gen torque limit of motor at position x and y in generator mode Nm
Tem{xy}.lim.mot torque limit of motor at position x and y in motor mode Nm
Tem{xy}.req torque request for motor at position x and y Nm
Tgb.in torque at gearbox input shaft (motor side) Nm
Tgb.out torque at gearbox output shaft (wheel side) Nm
Tgb{x} total torque required at motor side of gearbox at position x Nm
Tgb{y}.in torque at gearbox input y (motor side) Nm
Tw total wheel torque Nm
Twf front wheel torque Nm
Twr rear wheel torque Nm
Vbat{x} output voltage of traction battery at position x V
Vbat{x}.max maximum output voltage of battery at position x V
Vbat{x}.min minimum output voltage of battery at position x V
Vem{xy} supply voltage of motor at position x and y V
x axle position with x = f for front and x = r for rear axle —
y motor position with y = l for left and y = r for right side —
α torque distribution vector containing αfr and α{x}lr —
αem{xy} nfr × nlr torque split matrix for motor at position x and y —
αfr factor for torque split between front and rear axle —
αfr.max upper bound for αfr —
αfr.min lower bound for αfr —
αmax upper bounds for torque distribution vector α —
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Symbol Description Unit

αmin lower bounds for torque distribution vector α —
αrd road angle ◦

α{x}lr factor for torque split between left and right motor at axle x —
α{x}lr.max upper bound for α{x}lr —
α{x}lr.min lower bound for α{x}lr —
β{i} weighting factor for fobj{i} with i ∈ {1..5} and u = 1/[fobj{i}] u
γgb gearbox transmission ratio —
ηem.gen efficiency of electric motor in generator mode %
ηem.mot efficiency of electric motor in motor mode %
ηem{xy} efficiency of motor at position x and y %
ηem{xy}.lim lower bound for efficiency of motor at position x and y %
ηgb gearbox transmission efficiency %
ρ density of ambient air kg/m3

ωem.eff.gen neff.gen.rot × 1 torque vector for look-up of ηem.gen rpm
ωem.eff.mot neff.mot.rot × 1 torque vector for look-up of ηem.mot rpm
ωem.loss.gen speed for calculation of motor losses in generator mode rad/s
ωem.loss.mot speed for calculation of motor losses in motor mode rad/s
ωem{xy} angular speed of motor at position x and y rad/s
ωgb.in angular wheel speed at gearbox input shaft (motor side) rad/s
ωgb.out angular wheel speed at gearbox output shaft (wheel side) rad/s
ωgb{x} angular speed (motor side) of gearbox at position x rad/s
ωw angular wheel speed rad/s

List of Symbols for Driving Trajectory Prediction

Symbol Description Unit

aems acceleration of driving trajectory, stored in antraj×1
ems m/s2

amax upper bound for acceleration degradation m/s2

amin lower bound for acceleration degradation m/s2

av vehicle acceleration m/s2

dpda variable for degradation of vehicle acceleration av %
dpdv variable for degradation of vehicle velocity vv %
dpdx driving profile degradation vector containing dpda and dpdv %
ds[i] length of segment i km
dTa1 duration of acceleration phase s
dTa2 duration of deceleration phase s
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Symbol Description Unit

dTc duration of constant velocity phase s
dT [i]

seg duration of segment i in driving trajectory, stored in dT ntraj×1
seg s

dT ssl remaining driving time h
dTstop duration of a vehicle stop s
ehcomb electronic horizon profile combining ehlim, ehslope and ehstops —
ehlim electronic horizon profile for velocity and acceleration bounds —
ehslope electronic horizon profile containing road slope —
ehstops electronic horizon profile containing vehicle stops —
mseg maximum number of segments in ehcomb —
nseg number of segments after merging ehlim and ehslope —
nstops number of entries in ehstops —
ntraj maximum number of entries in predicted driving trajectory —
s0 vehicle position at t = t0 km
sl road slope in driving trajectory, stored in slntraj×1 %
sssl vehicle destination km
sv vehicle position km
v0 vehicle start velocity km/h
vavg average velocity km/h
vems set velocity km/h
vend end velocity km/h
vend.max maximum possible end velocity km/h
vend.rev end velocity estimated in reverse calculation km/h
vmax upper bound for velocity degradation km/h
vmin lower bound for velocity degradation km/h
vpeak peak velocity assuming no constant velocity phase km/h
vstart start velocity km/h
vstart.frw start velocity estimated in forward calculation km/h
vstart.max maximum possible start velocity km/h
vv vehicle velocity km/h

218



List of Publications

1. K. Gorelik, A. Kilic, and R. Obermaisser, “Energy management system for auto-
mated driving: Optimal and adaptive control strategy for normal and failure case
operation,” in Annual IEEE International Systems Conference, April 2017, pp. 597–
604.

2. K. Gorelik, A. Kilic, and R. Obermaisser, “Modeling and simulation of optimal and
adaptive real-time energy management system for automated driving,” in IEEE
Transportation Electrification Conference and Expo, June 2017, pp. 356–363.

3. K. Gorelik, A. Kilic, and R. Obermaisser, “Dynamic and route based range predic-
tion for automated electric vehicles: Connected energy management system with
range extension for improved safety,” in IEEE Vehicle Power and Propulsion Con-
ference, December 2017, pp. 1–6.

4. K. Gorelik, A. Kilic, and R. Obermaisser, “Range prediction and extension for
automated electric vehicles with fail-operational powertrain,” in Annual IEEE In-
ternational Systems Conference, April 2018, pp. 120–126, Best Paper Award.

5. K. Gorelik, A. Kilic, and R. Obermaisser, “Optimal, adaptive and predictive real-
time control of fail-operational powertrain for automated electric vehicles,” in IEEE
Transportation Electrification Conference and Expo, June 2018, pp. 977–984.

6. K. Gorelik, A. Kilic, R. Obermaisser, and N. Müller, “Modellprädiktives Energie-
management mit Steuerung der Fahrzeugführung für automatisiertes Fahren,” at -
Automatisierungstechnik, vol. 66, no. 9, pp. 735–744, September 2018.

7. K. Gorelik, A. Kilic, and R. Obermaisser, “Connected energy management sys-
tem for automated electric vehicles with fail-operational powertrain and powernet,”
IEEE Transactions on Vehicular Technology, 2019.

219





Bibliography

[1] W. Bernhart, J.-P. Hasenberg, M. Winterhoff, and L. Fazel, “A CEO agenda for
the (r)evolution of the automotive ecosystem,” Think Act, March 2016.

[2] W. Bernhart, J.-P. Hasenberg, M. Winterhoff, and L. Fazel, “Transformation
archetypes,” Think Act Automotive Insights 2016: Transformation of the Car In-
dustry, May 2016.

[3] C. McKerracher, I. Orlandi, M. Wilshire, C. Tryggestad, D. Mohr, E. Hannon,
E. Morden, J. T. Nijssen, S. Bouton, S. Knupfer, S. Ramkumar, S. Ramanathan,
and T. Moeller, “An integrated perspective on the future of mobility,” McKinsey &
Company, Inc. and Bloomberg New Energy Finance, Tech. Rep., October 2016.

[4] W. Bernhart, H. Kaise, Y. Ohashi, T. Schönberg, and L. Schilles, “Reconnecting
the rural - autonomous driving as a solution for non-urban mobility,” Roland Berger
Focus, March 2018.

[5] T. Henzelmann, T. Schönberg, C. Neuenhahn, D. Frei, and T. Wunder, “Urbane
Mobilität 2030: zwischen Anarchie und Hypereffizienz,” Roland Berger Focus, Oc-
tober 2017.

[6] Taxonomy and definitions for terms related to driving automation systems for on-
road motor vehicles, SAE Std. J3016, 2016.

[7] “Automated driving systems 2.0: A vision for safety,” U.S. Department of Trans-
portation (DOT) and National Highway Traffic Safety Administration (NHTSA),
Tech. Rep., September 2017.

[8] J.-L. Augier, T. Huck, A. Kilic, W. Müller, and G. Pieraccini, “Efficient, safe and
reliable powernet for AD,” in Elektrik/Elektronik in Hybrid- und Elektrofahrzeugen
und elektrisches Energiemanagement VII, June 2016, pp. 398–411.

[9] A. Kilic, T. Shen, and K. Gorelik, “Entwicklung eines fail-operational Bordnetzes
für autonomes Fahren,” in VDI/VDE AUTOREG 2017 - Automatisiertes Fahren
und vernetzte Mobilität, July 2017, pp. 449–460.

221



Bibliography

[10] Road vehicles - Functional safety - Part 3: Concept phase, ISO Std. 26 262-3:2011,
2011.

[11] T. Shen, A. Kilic, and K. Gorelik, “Dimensioning of power net for automated driv-
ing,” in The 30th International Electric Vehicle Symposium & Exhibition (EVS30),
October 2017, pp. 1–11.

[12] Road vehicles - Functional safety - Part 5: Product development at the hardware
level, ISO Std. 26 262-5:2011, 2011.

[13] C. Ress, A. Etemad, D. Kuck, and M. Boerger, “Electronic horizon - supporting
ADAS applications with predictive map data,” in 13th World Congress on Intelligent
Transport Systems, October 2006.

[14] C. Ress, D. Balzer, A. Bracht, S. Durekovic, and J. Löwenau, “ADASIS protocol for
advanced in-vehicle applications,” in 15th World Congress on Intelligent Transport
Systems, November 2008, pp. 1–15.

[15] X. Yuan and J. Wang, “Torque distribution strategy for a front- and rear-wheel-
driven electric vehicle,” IEEE Transactions on Vehicular Technology, vol. 61, no. 8,
pp. 3365–3374, October 2012.

[16] S. Koehler, A. Viehl, O. Bringmann, and W. Rosenstiel, “Energy-efficient torque
distribution for axle-individually propelled electric vehicles,” in IEEE Intelligent
Vehicles Symposium (IVS), June 2014, pp. 1109–1114.

[17] W. Bernhart, M. Winterhoff, C. Hoyes, V. Chivukula, J. Garrelfs, S. Jung, and
S. Galander, “Autonomous driving,” Think Act, November 2014.

[18] K. Heineke, P. Kampshoff, A. Mkrtchyan, and E. Shao, “Self-driving car technology:
When will the robots hit the road?” Automotive & Assembly, May 2017.

[19] I. Koren and C. M. Krishna, Fault-Tolerant Systems, 1st ed. Elsevier, Inc., 2007.

[20] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to
Fault Tolerance, 1st ed. Springer-Verlag Berlin Heidelberg, 2006.

[21] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Appli-
cations, 2nd ed. Springer New York Dordrecht Heidelberg London, 2011.

[22] H. Kopetz, “Fault containment and error detection in the time-triggered architec-
ture,” in Proceedings of the Sixth International Symposium on Autonomous Decen-
tralized Systems (ISADS), April 2003, pp. 1–8.

[23] V. Gebhardt, G. M. Rieger, J. Mottok, and C. Gießelbach, Funktionale Sicherheit

222



Bibliography

nach ISO 26262 - Ein Praxisleitfaden zur Umsetzung, 1st ed. dpunkt.verlag GmbH,
2013.

[24] Road vehicles - Functional safety - Part 1: Vocabulary, ISO Std. 26 262-3:2011, 2011.

[25] T. P. Kohler, J. Froeschl, C. Bertram, D. Buecherl, and H.-G. Herzog, “Approach
of a predictive, cybernetic power distribution management,” World Electric Vehicle
Journal, vol. 4, no. 1, pp. 22–30, 2010.

[26] M. Schmidt, “Ein selbstadaptierender, dynamischer Energiemanagementansatz für
das elektrische Kraftfahrzeugbordnetz,” Ph.D. dissertation, University of Kassel,
Department of Electrical Engineering and Computer Science, Kassel, Germany,
2008.

[27] S. Büchner, “Energiemanagement-Strategien für elektrische Energiebordnetze in
Kraftfahrzeugen,” Ph.D. dissertation, Technical University of Dresden, Department
of Transport and Traffic Sciences, Dresden, Germany, 2008.

[28] Regulation No 13-H of the Economic Commission for Europe of the United Nations
(UN/ECE) - Uniform provisions concerning the approval of passenger cars with
regard to braking [2015/2364], UN/ECE Std. R13-H, 2015.

[29] L. Guzzella and A. Sciarretta, Vehicle Propulsion Systems, 3rd ed. Springer-Verlag
Berlin Heidelberg, 2013.

[30] S. Cui, S. Han, and C. C. Chan, “Overview of multi-machine drive systems for
electric and hybrid electric vehicles,” in IEEE Conference and Expo Transportation
Electrification Asia-Pacific (ITEC Asia-Pacific), August 2014, pp. 1–6.

[31] H. Laitinen, A. Lajunen, and K. Tammi, “Improving electric vehicle energy effi-
ciency with two-speed gearbox,” in IEEE Vehicle Power and Propulsion Conference
(VPPC), December 2017, pp. 1–5.

[32] J. Liebl, M. Lederer, K. Rohde-Brandenburger, J.-W. Biermann, M. Roth,
and H. Schäfer, Energiemanagement im Kraftfahrzeug - Optimierung von CO2-
Emissionen und Verbrauch konventioneller und elektrifizierter Automobile, 1st ed.
Springer Vieweg, 2014.

[33] L. Rosario, P. C. K. Luk, J. T. Economou, and B. A. White, “A modular power
and energy management structure for dual-energy source electric vehicles,” in IEEE
Vehicle Power and Propulsion Conference (VPPC), September 2006, pp. 1–6.

[34] L. C. Rosario and P. C. K. Luk, “Implementation of a modular power and energy

223



Bibliography

management structure for battery-ultracapacitor powered electric vehicles,” in IET
Hybrid Vehicle Conference, December 2006, pp. 141–156.

[35] M. Papageorgiou, M. Leibold, and M. Buss, Optimierung - Statische, dynamische,
stochastische Verfahren für die Anwendung, 4th ed. Springer Vieweg, 2015.

[36] A. Kleimaier, “Optimale Betriebsführung von Hybridfahrzeugen,” Ph.D. disserta-
tion, Technical University of Munich, Department of Electrical and Computer En-
gineering, Munich, Germany, 2003.

[37] The MathWorks, Inc., MATLAB R2015b Documentation: Optimization Toolbox,
2015.

[38] M. Back, “Prädiktive Antriebsregelung zum energieoptimalen Betrieb von Hybrid-
fahrzeugen,” Ph.D. dissertation, University of Karlsruhe, Department of Electrical
Engineering and Information Technology, Karlsruhe, Germany, 2005.

[39] C. Ress, A. Etemad, D. Kuck, and J. Requejo, “Using predictive digital map data
to enhance vehicle safety and comfort,” in Proceedings of the 2nd International
Workshop on Intelligent Vehicle Control Systems - Volume 1: IVCS (ICINCO),
2008, pp. 40–49.

[40] S. Durekovic and N. Smith, “Architectures of map-supported ADAS,” in IEEE
Intelligent Vehicles Symposium (IVS), June 2011, pp. 207–211.

[41] J. Ludwig, “Elektronischer Horizont für vorausschauende Kartendaten,” ATZelek-
tronik, vol. 9, no. 7, pp. 24–27, October 2014.

[42] Y. Horita and R. S. Schwartz, “Extended electronic horizon for automated driving,”
in 14th International Conference on ITS Telecommunications (ITST), December
2015, pp. 32–36.

[43] J. Requejo, C. Ress, A. Etemad, and D. Kuck, “Using predictive digital map data
to enhance vehicle safety and comfort,” in Proceedings of the 2nd International
Workshop on Intelligent Vehicle Control Systems - Volume 1: IVCS (ICINCO),
2008, pp. 50–59.

[44] T. P. Kohler, “Prädiktives Leistungsmanagement in Fahrzeugbordnetzen,” Ph.D.
dissertation, Technical University of Munich, Department of Electrical and Com-
puter Engineering and Information Technology, Munich, Germany, 2013.

[45] M. Koot, J. T. B. A. Kessels, B. de Jager, W. P. M. H. Heemels, P. P. J. van den
Bosch, and M. Steinbuch, “Energy management strategies for vehicular electric

224



Bibliography

power systems,” IEEE Transactions on Vehicular Technology, vol. 54, no. 3, pp.
771–782, May 2005.

[46] J. T. B. A. Kessels, P. P. J. van den Bosch, M. Koot, and B. de Jager, “Energy
management for vehicle power net with flexible electric load demand,” in IEEE
Conference on Control Applications (CCA), August 2005, pp. 1504–1509.

[47] J. T. B. A. Kessels, M. Koot, B. de Jager, P. P. J. van den Bosch, N. P. I. Aneke, and
D. B. Kok, “Energy management for the electric powernet in vehicles with a con-
ventional drivetrain,” IEEE Transactions on Control Systems Technology, vol. 15,
no. 3, pp. 494–505, May 2007.

[48] J. P. Trovão, V. D. N. Santos, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes,
“Comparative study of different energy management strategies for dual-source
electric vehicles,” in World Electric Vehicle Symposium and Exhibition (EVS27),
November 2013, pp. 1–9.

[49] J. P. Trovão, P. G. Pereirinha, H. M. Jorge, and C. H. Antunes, “A multi-level
energy management system for multi-source electric vehicles – an integrated rule-
based meta-heuristic approach,” Applied Energy, vol. 105, pp. 304–318, 2013.

[50] J. P. F. Trovão, V. D. N. Santos, C. H. Antunes, P. G. Pereirinha, and H. M.
Jorge, “A real-time energy management architecture for multisource electric vehi-
cles,” IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp. 3223–3233,
May 2015.

[51] J. P. F. Trovão, M.-A. Roux, É. Ménard, and M. R. Dubois, “Energy- and power-
split management of dual energy storage system for a three-wheel electric vehicle,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 7, pp. 5540–5550, July
2017.

[52] O. Gomozov, J. P. F. Trovão, X. Kestelyn, and M. R. Dubois, “Adaptive energy
management system based on a real-time model predictive control with nonuniform
sampling time for multiple energy storage electric vehicle,” IEEE Transactions on
Vehicular Technology, vol. 66, no. 7, pp. 5520–5530, July 2017.

[53] J. Becker, C. Schaeper, and D. U. Sauer, “Energy management system for a multi-
source storage system electric vehicle,” in IEEE Vehicle Power and Propulsion Con-
ference (VPPC), October 2012, pp. 407–412.

[54] J. Becker, C. Schaeper, S. Rothgang, and D. U. Sauer, “Development and validation
of an energy management system for an electric vehicle with a split battery storage

225



Bibliography

system,” Journal of Electrical Engineering & Technology, vol. 8, no. 4, pp. 920–929,
2013.

[55] J. T. B. A. Kessels, J. H. M. Martens, P. P. J. van den Bosch, and W. H. A. Hendrix,
“Smart vehicle powernet enabling complete vehicle energy management,” in IEEE
Vehicle Power and Propulsion Conference (VPPC), October 2012, pp. 938–943.

[56] T. Eymann, K. Williams, K. Benninger, A. Vikas, and C. Lillie, “Holistic vehicle
energy management - moving towards CAFE’s target,” in SAE World Congress &
Exhibition. SAE International, April 2011, pp. 1–9.

[57] K. D. Nguyen, E. Bideaux, M. T. Pham, and P. L. Brusq, “Game theoretic approach
for electrified auxiliary management in high voltage network of HEV/PHEV,” in
IEEE International Electric Vehicle Conference (IEVC), December 2014, pp. 1–8.

[58] T. C. J. Romijn, M. C. F. Donkers, J. T. B. A. Kessels, and S. Weiland, “A dual
decomposition approach to complete energy management for a heavy-duty vehicle,”
in 53rd IEEE Conference on Decision and Control (CDC), December 2014, pp.
3304–3309.

[59] T. C. J. Romijn, M. C. F. Donkers, J. T. B. A. Kessels, and S. Weiland, “Complete
vehicle energy management with large horizon optimization,” in IEEE Conference
on Decision and Control (CDC), December 2015, pp. 632–637.

[60] T. C. J. Romijn, M. C. F. Donkers, J. T. B. A. Kessels, and S. Weiland, “A dis-
tributed optimization approach for complete vehicle energy management,” IEEE
Transactions on Control Systems Technology, pp. 1–17, 2018.

[61] H. Chen, J. T. B. A. Kessels, M. C. F. Donkers, and S. Weiland, “Game-theoretic
approach for complete vehicle energy management,” in IEEE Vehicle Power and
Propulsion Conference (VPPC), October 2014, pp. 1–6.

[62] H. Chen, J. T. B. A. Kessels, and S. Weiland, “Online adaptive approach for a game-
theoretic strategy for complete vehicle energy management,” in European Control
Conference (ECC), July 2015, pp. 135–141.

[63] C. Romijn, T. Donkers, J. Kessels, and S. Weiland, “Real-time distributed eco-
nomic model predictive control for complete vehicle energy management,” Energies,
vol. 10, no. 8, pp. 1–28, 2017.

[64] A. Sciarretta and L. Guzzella, “Control of hybrid electric vehicles,” IEEE Control
Systems Magazine, vol. 27, no. 2, pp. 60–70, April 2007.

[65] E. Silvas, T. Hofman, N. Murgovski, L. F. P. Etman, and M. Steinbuch, “Review

226



Bibliography

of optimization strategies for system-level design in hybrid electric vehicles,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 1, pp. 57–70, January 2017.

[66] H. Banvait, S. Anwar, and Y. Chen, “A rule-based energy management strategy for
plug-in hybrid electric vehicle (PHEV),” in American Control Conference (ACC),
June 2009, pp. 3938–3943.

[67] C. Zhang and A. Vahidi, “Route preview in energy management of plug-in hybrid
vehicles,” IEEE Transactions on Control Systems Technology, vol. 20, no. 2, pp.
546–553, March 2012.

[68] A. Wilde, “Eine modulare Funktionsarchitektur für adaptives und vorausschauendes
Energiemanagement in Hybridfahrzeugen,” Ph.D. dissertation, Technical University
of Munich, Department of Electrical and Computer Engineering, Munich, Germany,
2008.

[69] J. von Grundherr zu Altenthan und Weiyherhaus, “Ableitung einer heuristischen
Betriebsstrategie für ein Hybridfahrzeug aus einer Online-Optimierung,” Ph.D. dis-
sertation, Technical University of Munich, Department of Mechanical Engineering,
Munich, Germany, 2010.

[70] H.-G. Wahl, “Optimale Regelung eines prädiktiven Energiemanagements von Hy-
bridfahrzeugen,” Ph.D. dissertation, Karlsruhe Institute of Technology (KIT), De-
partment of Mechanical Engineering, Karlsruhe, Germany, 2015.

[71] M. Stiegeler, “Entwurf einer vorausschauenden Betriebsstrategie für parallele hy-
bride Antriebsstränge,” Ph.D. dissertation, Ulm University, Department of Engi-
neering and Computer Science and Psychology, Ulm, Germany, 2008.

[72] T. Salcher, “Optimierte Betriebsstrategie hybrider Antriebssysteme für den Se-
rieneinsatz,” Ph.D. dissertation, Technical University of Munich, Department of
Electrical and Computer Engineering, Munich, Germany, 2013.

[73] S. G. Li, S. M. Sharkh, F. C. Walsh, and C. N. Zhang, “Energy and battery manage-
ment of a plug-in series hybrid electric vehicle using fuzzy logic,” IEEE Transactions
on Vehicular Technology, vol. 60, no. 8, pp. 3571–3585, October 2011.

[74] S. J. Moura, H. K. Fathy, D. S. Callaway, and J. L. Stein, “A stochastic optimal
control approach for power management in plug-in hybrid electric vehicles,” IEEE
Transactions on Control Systems Technology, vol. 19, no. 3, pp. 545–555, May 2011.

[75] S. Stockar, V. Marano, M. Canova, G. Rizzoni, and L. Guzzella, “Energy-optimal

227



Bibliography

control of plug-in hybrid electric vehicles for real-world driving cycles,” IEEE Trans-
actions on Vehicular Technology, vol. 60, no. 7, pp. 2949–2962, September 2011.

[76] Z. Chen, C. C. Mi, J. Xu, X. Gong, and C. You, “Energy management for a power-
split plug-in hybrid electric vehicle based on dynamic programming and neural
networks,” IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1567–
1580, May 2014.

[77] T. Radke, “Energieoptimale Längsführung von Kraftfahrzeugen durch Einsatz vo-
rausschauender Fahrstrategien,” Ph.D. dissertation, Karlsruhe Institute of Technol-
ogy (KIT), Department of Mechanical Engineering, Karlsruhe, Germany, 2013.

[78] A. Freuer, “Ein Assistenzsystem für die energetisch optimierte Längsführung eines
Elektrofahrzeugs,” Ph.D. dissertation, University of Stuttgart, Department Engi-
neering Design, Production Engineering and Automotive Engineering, Stuttgart,
Germany, 2016.

[79] G. Becker, “Ein Fahrerassistenzsystem zur Vergrößerung der Reichweite von Elek-
trofahrzeugen,” Ph.D. dissertation, University of Stuttgart, Department Engineer-
ing Design, Production Engineering and Automotive Engineering, Stuttgart, Ger-
many, 2016.

[80] K. Li, A. Bouscayrol, S. Han, and S. Cui, “Comparisons of electric vehicles using
modular cascade machines system and classical single drive electric machine,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 1, pp. 354–361, January 2018.

[81] X. Yuan, J. Wang, and K. Colombage, “Torque distribution strategy for a front
and rear wheel driven electric vehicle,” in IET International Conference on Power
Electronics, Machines and Drives (PEMD), March 2012, pp. 1–6.

[82] S. Koehler, A. Viehl, O. Bringmann, and W. Rosenstiel, “Optimized recuperation
strategy for (hybrid) electric vehicles based on intelligent sensors,” in International
Conference on Control, Automation and Systems (CCAS), October 2012, pp. 218–
223.

[83] A. M. Dizqah, B. Lenzo, A. Sorniotti, P. Gruber, S. Fallah, and J. D. Smet, “A
fast and parametric torque distribution strategy for four-wheel-drive energy-efficient
electric vehicles,” IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp.
4367–4376, July 2016.

[84] Y. Wang, H. Fujimoto, and S. Hara, “Torque distribution-based range extension
control system for longitudinal motion of electric vehicles by LTI modeling with gen-

228



Bibliography

eralized frequency variable,” IEEE/ASME Transactions on Mechatronics, vol. 21,
no. 1, pp. 443–452, February 2016.

[85] L. Guo, X. Lin, P. Ge, Y. Qiao, L. Xu, and J. Li, “Torque distribution for electric
vehicle with four in-wheel motors by considering energy optimization and dynamics
performance,” in 2017 IEEE Intelligent Vehicles Symposium (IVS), June 2017, pp.
1619–1624.

[86] Y.-P. Yang, Y.-C. Shih, and J.-M. Chen, “Real-time torque-distribution strategy
for a pure electric vehicle with multiple traction motors by particle swarm optimi-
sation,” IET Electrical Systems in Transportation, vol. 6, no. 2, pp. 76–87, May
2016.

[87] N. Jinrui, S. Fengchun, and R. Qinglian, “A study of energy management system
of electric vehicles,” in IEEE Vehicle Power and Propulsion Conference (VPPC),
September 2006, pp. 1–6.

[88] S. G. Wirasingha and A. Emadi, “Classification and review of control strategies
for plug-in hybrid electric vehicles,” IEEE Transactions on Vehicular Technology,
vol. 60, no. 1, pp. 111–122, January 2011.

[89] C. M. Martinez, X. Hu, D. Cao, E. Velenis, B. Gao, and M. Wellers, “Energy
management in plug-in hybrid electric vehicles: Recent progress and a connected
vehicles perspective,” IEEE Transactions on Vehicular Technology, vol. 66, no. 6,
pp. 4534–4549, June 2017.

[90] Q. Gong, Y. Li, and Z.-R. Peng, “Optimal power management of plug-in HEV
with intelligent transportation system,” in IEEE/ASME International Conference
on Advanced Intelligent Mechatronics (AIM), September 2007, pp. 1–6.

[91] Q. Gong, Y. Li, and Z.-R. Peng, “Trip-based optimal power management of plug-in
hybrid electric vehicles,” IEEE Transactions on Vehicular Technology, vol. 57, no. 6,
pp. 3393–3401, November 2008.

[92] Q. Gong, Y. Li, and Z.-R. Peng, “Trip based power management of plug-in hybrid
electric vehicle with two-scale dynamic programming,” in IEEE Vehicle Power and
Propulsion Conference (VPPC), September 2007, pp. 12–19.

[93] Q. Gong, Y. Li, and Z.-R. Peng, “Trip based optimal power management of plug-in
hybrid electric vehicles using gas-kinetic traffic flow model,” in American Control
Conference (ACC), June 2008, pp. 3225–3230.

[94] H. Yu, M. Kuang, and R. McGee, “Trip-oriented energy management control strat-

229



Bibliography

egy for plug-in hybrid electric vehicles,” IEEE Transactions on Control Systems
Technology, vol. 22, no. 4, pp. 1323–1336, July 2014.

[95] D. Karbowski, N. Kim, and A. Rousseau, “Route-based online energy management
of a PHEV and sensitivity to trip prediction,” in IEEE Vehicle Power and Propul-
sion Conference (VPPC), October 2014, pp. 1–6.

[96] T. J. Boehme, F. Held, M. Schultalbers, and B. Lampe, “Trip-based energy man-
agement for electric vehicles: An optimal control approach,” in American Control
Conference (ACC), June 2013, pp. 5978–5983.

[97] T. J. Boehme, F. Held, C. Rollinger, H. Rabba, M. Schultalbers, and B. Lampe,
“Application of an optimal control problem to a trip-based energy management
for electric vehicles,” SAE International Journal of Alternative Powertrains, vol. 2,
no. 1, pp. 115–126, April 2013.

[98] K. Gebhardt, V. Schau, and W. R. Rossak, “Applying stochastic methods for range
prediction in e-mobility,” in 15th International Conference on Innovations for Com-
munity Services (I4CS), July 2015, pp. 1–4.

[99] A. Basler, “Eine modulare Funktionsarchitektur zur Umsetzung einer
gesamtheitlichen Betriebsstrategie für Elektrofahrzeuge,” Ph.D. dissertation,
Karlsruhe Institute of Technology (KIT), Department of Mechanical Engineering,
Karlsruhe, Germany, 2015.

[100] R. Isermann, Fault-Diagnosis Applications - Model-Based Condition Monitoring:
Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems, 1st ed.
Springer-Verlag Berlin Heidelberg, 2011.

[101] G. Liu, M. Ouyang, L. Lu, J. Li, and J. Hua, “A highly accurate predictive-adaptive
method for lithium-ion battery remaining discharge energy prediction in electric
vehicle applications,” Applied Energy, vol. 149, pp. 297 – 314, 2015.

[102] IBM Corporation, IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual,
Version 12 Release 7, 2016.

[103] MOSEK ApS, MOSEK Optimization Suite Release 8.1.0.56, 2018.

[104] J. Löfberg, “YALMIP : a toolbox for modeling and optimization in MATLAB,”
in IEEE International Symposium on Computer Aided Control Systems Design
(CACSD), September 2004, pp. 284–289.

[105] G. Walla, A. Herkersdorf, A. S. Enger, A. Barthels, and H. U. Michel, “An auto-
motive specific MILP model targeting power-aware function partitioning,” in Inter-

230



Bibliography

national Conference on Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), July 2014, pp. 299–306.

[106] G. Wu, K. Boriboonsomsin, and M. J. Barth, “Development and evaluation of an
intelligent energy-management strategy for plug-in hybrid electric vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 15, no. 3, pp. 1091–1100,
June 2014.

[107] C. Wouters, E. S. Fraga, A. M. James, and E. M. Polykarpou, “Mixed-integer op-
timisation based approach for design and operation of distributed energy systems,”
in Australasian Universities Power Engineering Conference (AUPEC), September
2014, pp. 1–6.

[108] J. Guanetti, S. Formentin, and S. M. Savaresi, “Energy management system for
an electric vehicle with a rental range extender: A least costly approach,” IEEE
Transactions on Intelligent Transportation Systems, vol. 17, no. 11, pp. 3022–3034,
November 2016.

[109] M. S. Taha, H. H. Abdeltawab, and Y. A.-R. I. Mohamed, “An online energy man-
agement system for a grid-connected hybrid energy source,” IEEE Journal of Emerg-
ing and Selected Topics in Power Electronics, pp. 1–15, 2018.

[110] S. Terwen, M. Back, and V. Krebs, “Predictive powertrain control for heavy duty
trucks,” IFAC Proceedings Volumes, vol. 37, no. 22, pp. 105–110, April 2004.

[111] P. Elbert, T. Nüesch, A. Ritter, N. Murgovski, and L. Guzzella, “Engine on/off con-
trol for the energy management of a serial hybrid electric bus via convex optimiza-
tion,” IEEE Transactions on Vehicular Technology, vol. 63, no. 8, pp. 3549–3559,
October 2014.

[112] N. Murgovski, B. Egardt, and M. Nilsson, “Cooperative energy management of
automated vehicles,” Control Engineering Practice, vol. 57, pp. 84 – 98, 2016.

[113] Y. Wang, Z. Chen, and C. Zhang, “On-line remaining energy prediction: A case
study in embedded battery management system,” Applied Energy, vol. 194, pp.
688–695, 2017.

[114] M. Ceraolo and G. Pede, “Techniques for estimating the residual range of an electric
vehicle,” IEEE Transactions on Vehicular Technology, vol. 50, no. 1, pp. 109–115,
January 2001.

[115] M. Ceraolo, “New dynamical models of lead-acid batteries,” IEEE Transactions on
Power Systems, vol. 15, no. 4, pp. 1184–1190, November 2000.

231



Bibliography

[116] J. Welc and P. J. R. Esquerdo, Applied Regression Analysis for Business, 1st ed.
Springer International Publishing AG, 2018.

[117] G. Antoni, “On the mechanical friction losses occurring in automotive differential
gearboxes,” The Scientific World Journal, vol. 2014, pp. 1–11, January 2014.

[118] A. H. Bonnett and C. Yung, “Increased efficiency versus increased reliability,” IEEE
Industry Applications Magazine, vol. 14, no. 1, pp. 29–36, January 2008.

[119] A. J. Bazurto, E. C. Quispe, and R. C. Mendoza, “Causes and failures classification
of industrial electric motor,” in IEEE ANDESCON, October 2016, pp. 1–4.

[120] D. Burgstahler, A. Xhoga, C. Peusens, M. Möbus, D. Böhnstedt, and R. Steinmetz,
“RemoteHorizon.KOM: Dynamic cloud-based eHorizon,” in AmE 2016 - Automotive
meets Electronics; 7th GMM-Symposium, March 2016, pp. 1–6.

[121] P. Conradi, “Reichweitenprognose für Elektromobile,” ATZelektronik, vol. 7, no. 3,
pp. 186–191, June 2012.

232


	Title page
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation and Research Contributions of Thesis
	Thesis Overview

	Basic Concepts
	Driving Automation
	Aspects of Fault-Tolerant System Design
	Functional Safety for Road Vehicles
	Powernet System
	Powertrain System
	Classification of Control Strategies
	Electronic Horizon

	State of the Art in Energy Management Systems
	Classification of Energy Management Systems
	Powernet Energy Management
	Complete Vehicle Energy Management
	Powertrain Energy Management
	Trip-Based Energy Management
	Research Gap in Energy Management for Automated Driving

	Energy Management for Safety-Based Range Extension
	Safety-Based Range Extension
	Requirements for Energy Management System
	Requirements for Energy Distribution Optimization
	Requirements for Remaining Energy Prediction
	Requirements for Driving Trajectory Prediction
	Requirements for Propulsion Energy Prediction


	Energy Distribution Optimization
	Definition of Mixed-Integer Optimization Problem for Energy Distribution
	Mathematical Model of Fail-Operational Powernet
	Failure Modes of Powernet Components
	Energy Distribution with Optimal Path Selection
	Energy Distribution with Optimal Multiple Battery Discharge

	Algorithm for Online Mixed-Integer Energy Distribution Optimization
	Continuous Energy Distribution Optimization (Version 1)
	Continuous Energy Distribution Optimization (Version 2)
	Integer Parameter Variation with Feasibility Check

	Solving Continuous Energy Distribution Optimization
	Energy Distribution (Version 1) with Nonlinear Programming
	Energy Distribution (Version 1) with Linear Programming
	Energy Distribution (Version 2) with Nonlinear Programming
	Energy Distribution (Version 2) with Linear Programming

	Modeling of Powerlink Components
	Generic Behavioral Description of Powerlinks
	Examples for Behavioral Powerlink Model

	Prediction of Battery Remaining Discharge Energy
	Battery Model for Prediction of Remaining Discharge Energy
	Prediction with Constant Discharge Power
	Approximation as a Function of Discharge Power

	Simulation Results for Battery Remaining Discharge Energy Prediction
	Examples for Prediction with Constant Discharge Power
	Examples for Approximation as a Function of Discharge Power

	Simulation Results for Energy Distribution
	Example for Continuous Energy Distribution
	Example for Mixed-Integer Energy Distribution Optimization


	Powertrain Control and Propulsion Energy Prediction
	Powertrain Model
	Failure Modes of Powertrain Components
	Vehicle Model
	Gearbox Model
	Electric Motor Model
	Traction Battery Model

	Driving Trajectory Prediction
	Concept for Driving Trajectory Prediction
	Algorithm for Online Driving Trajectory Prediction

	Prediction for Powertrain with Single Motor
	Online Propulsion Energy Prediction
	Simulation Results for Powertrain with Single Motor

	Prediction for Fail-Operational Powertrain with Multiple Motors
	Optimal Control Strategy for Fail-Operational Powertrain
	Propulsion Energy Prediction for Fail-Operational Powertrain
	Algorithm for Online Torque Distribution Optimization
	Simulation Results for Fault-Free Operation
	Simulation Results for Failure Case Operation


	Model Predictive Energy Management
	Energy Management Architecture for Powertrain with Single Motor
	System Architecture for Powertrain with Single Motor
	Simulation Results for Powertrain with Single Motor

	Energy Management Architecture for Powertrain with Multiple Motors
	System Architecture for Powertrain with Multiple Motors
	Simulation Results for Powertrain with Multiple Motors


	Conclusion
	Appendices
	Definition of Use Case 1
	Definition of Use Case 2

	List of Symbols and Notations
	List of Publications
	Bibliography

