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ABSTRACT 
This work provides a contribution to the positional tracking of the drill head in directional 

drilling considering real-time communication along the drill string. Particularly in the context 

of the development of oil and gas fields where target-oriented positions including the 

orientation of the drill head at large depths should be achieved. There are relatively large 

budgets available for such drilling projects to create suitable solutions using the latest 

technologies. In the construction industry, various deep drilling concepts are used, but with 

considerably lower depths. At the same time, high demands are also placed on position tracking. 

However, with these applications, lower technology budgets are available. Appropriate 

automatic measuring methods that provide online data in the process are not yet available even 

if the basic measurement technologies exist. An overall concept, which can meet the various 

requirements, is missing.  

Regarding the scope of application, special attention is paid to the vertical drilling process used 

in Deep Soil Mixing. The Deep Soil Mixing process mixes the in-situ soil with cement or other 

binders to improve the mechanical and physical properties. This process results in a higher 

strength, lower permeability and low compressibility of the original soil [1-2]. Based on these 

systemic constraints, a new model is being developed and validated for the acquisition of sensor 

data and communication in the soil along the drill string and in real time during the drilling 

process (MWD). Based on the geometric model of the drill string, the signal model is developed 

to provide precise navigation data along the entire drill string. With the help of a new 

communication technology and the signal model, it is investigated which implementation 

concepts are possible and which performance is generated in each case. To provide a suitable 

reference, an error model is used, which has been defined by the Industry Steering Committee 

for Wellbore Accuracy (ISCWA). This model is used as a uniform basis for evaluation to 

improve the overall accuracy with regard to the tracking of the drilling process. 

The newly developed communication technology enables a new form of sensor data acquisition, 

data distribution and data fusing. Precision and stability can be significantly increased without 

increasing the cost of the technology. An important aspect here is the possibility of transporting 

sensor data in an ad-hoc sensor network in both directions along the drill string. This concept 

is also independent of the length of the drill string and thus also of the depth of a drilling 

operation to be achieved. The consequent use of navigation concepts and their optimized 

adaptation to the developed system model allows the acquisition of all position parameters of 
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the drill head in a directional drilling. The consistent use of known fault model specifications 

allows a deep analysis of the developed navigation concept with other known measuring 

technology components and different sensor platforms. The analysis of the realization platforms 

with data from field tests gives a further Impression of the practicability of the developed 

concept. 
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KURZFASSUNG 
 

Diese Arbeit liefert einen Forschungsbeitrag zum Positions-Tracking des Bohrkopfs bei 

Richtbohrungen unter Berücksichtigung einer Echtzeitkommunikation entlang des Bohrstrangs  

Besonders im Zusammenhang mit der Erschließung von Erdöl- und Gas-Feldern sind zielgenau 

Positionen inklusive der Orientierung des Bohrkopfes in großen Tiefen zu erreichen. Für solche 

Bohrvorhaben stehen relativ große Budgets zur Verfügung, um mit Hilfe neuster Technologien 

geeignete Lösungen zu schaffen. In der Bauindustrie werden ebenfalls vielfältige 

Tiefbohrkonzepte,   Allerdings bei deutlich geringeren Tiefen, eingesetzt. Gleichwohl werden 

dabei ebenfalls hohe Anforderungen an ein Positions-Tracking gestellt. Bei diesen 

Anwendungen stehen allerdings geringere Technik-Budgets zur Verfügung. Geeignete 

automatisch messende Verfahren, die Online-Daten im Prozess bereitstellen sind bisher nicht 

verfügbar, auch wenn die prinzipiellen Mess-Technologien existieren. Es fehlt bisher ein 

Gesamtkonzept, welches die verschiedenen Anforderungen erfüllen kann. 

Hinsichtlich des Anwendungsbereichs liegt das besondere Augenmerk auf dem vertikalen 

Bohrprozess, der beim Deep Soil Mixing angewandt wird. Der Deep Soil Mixing Prozess 

vermischt das vorgefundene Erdreich mit Zement oder anderen Bindemitteln, um die 

mechanisch-physikalischen Eigenschaften zu verbessern. Dieser Prozess verhilft zu einer 

höheren Festigkeit, geringerer Durchlässigkeit und niedriger Komprimierbarkeit des 

ursprünglichen Bodens[1-2]. 

 

Ausgehend von diesen systemischen Randbedingungen wird hier ein neues Modell für die 

Erfassung von Sensordaten und der Kommunikation im Erdreich entlang des Bohrstrangs und 

in Echtzeit während des Bohrvorgangs (MWD) entwickelt und validiert.  

Auf Basis des geometrischen Modells des Bohrstrangs wird das Signalmodell entwickelt, um 

präzise Navigationsdaten entlang des gesamten Bohrstrangs bereitzustellen.  

Mit Hilfe einer neuen Kommunikations-Technologie und dem Signalmodell wird untersucht, 

welche Realisierungskonzepte möglich sind und welche Leistungsfähigkeit dabei jeweils 

entsteht. Um eine geeignete Referenz zu ermöglichen, wird ein Fehlermodell verwendet, 

welches vom Industry Steering Comittee for Wellbore Accuracy (ISCWA) festgelegt wurde. 

Dieses Modell wird als einheitliche Basis zur Evaluation eingesetzt, um eine Verbesserung der 

Gesamtgenauigkeit hinsichtlich des Tracking des Bohrvorgangs zu erreichen. 
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Die neu entwickelte Kommunikationstechnologie ermöglicht eine neue Form der 

Sensordatenerfassung, Datenverteilung und der Datenfusion. Präzision und  Stabilität können 

deutlich erhöht werden ohne die Kosten für die Technologie vergleichbar zu erhöhen. 

Wesentlicher Gesichtspunkt ist hier die Möglichkeit, Sensordaten in einem Ad-hoc 

Sensornetzwerk in beide Richtungen entlang des Bohrstrangs zu transportieren. Dieses Konzept 

ist im besonderen Maße auch unabhängig von der Länge des Bohrstrangs und somit auch von 

der zu erreichenden Tiefe eines Bohrvorgangs. 

Die Systematische Verwendung von Navigationskonzepten und deren optimierte Anpassung 

an das entwickelte Systemmodell ermöglicht die Erfassung von allen Lageparametern des 

Bohrkopfes bei einer Richtbohrung. 

Die systematische Verwendung von bekannten Fehlermodellvorgaben ermöglicht eine 

tiefgehende Analyse des erarbeiteten Navigationskonzepts mit anderen bekannten 

Messtechnik-Komponenten und verschiedenen Sensorplattformen. 

Die Analyse der Realisierungsplattformen mit Daten von Feldversuchen gibt einen weiteren 

Eindruck für die Praxistauglichkeit des erarbeiteten Konzeptes. 
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CHAPTER 1 

1. Introduction 

1.1 Motivation 

The Intelligent Tube (I-TUBE) Project is an on-going project at the Center for Sensor and 

Systems (ZESS), University of Siegen and served as the framework within which this thesis 

work was based. The main goal of the I-TUBE project is to develop a borehole telemetry system 

with the objective of obtaining the latest information in real-time on all relevant data during a 

drilling operation. This data is taken into account for faster complex decision-making process, 

which affect the actual drilling (drilling, completion, intervention and process control). This is 

motivated by but not limited to the deep soil mixing process, a process whereby the ground soil 

is mixed in situ with cement or compound binders to form  a soil-mix or soil-cement column, 

where quality and accurate vertical drilling is essential to save cost. In a deep soil mixing 

process, there are several considerations made at the planning stages, geotechnical design phase 

and the execution phase [1]. One such consideration of which has been established from field 

experience is that the effectiveness of the columns is bounded, that is, when columns are too 

close there is no further gain in overall strength of the column, and too far apart, the columns 

behave individually with no net benefits [2]. Secondly, there is the tendency of the vertical bore 

to deviate from its straight-line course thereby also compromising the overall strength of the 

columns especially with longer columns [5-6]. These are caused by factors such as layered 

formations through which the drill hole passes, alternating hard and soft layers within rock 

formation through which the drill hole passes, the type of bit, rate of feed, and bit load and their 

influence on hole deviation [5].  Such a situation, when detected, requires for counter measures 

to mitigate the effect on the overall strengthening capacity.  The extent of the lateral overlap of 

the columns are basically due to factors such as difficulty in predicting the properties of the 

underground soil and difficulty in assurance of a precise straight vertical drilling process as 

planned or designed. As a result, in defining the spacing of the columns, an acceptable error 

margin is determined based roughly from past drilling processes within the location or the same 

type of terrain. This method however results in the over-usage of resources and errors are 

sometimes unavoidable thus increasing the overall production cost and time. Figure 1.1-3 shows 

results of deep soil mixing (DSM) processes, the column pattern as well as how the process is 

undertaken. 
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Figure 1:  Exposed cut-off wall with secant DSM columns: Courtesy: Keller, Deep Soil Mixing [1]. 

 

Figure 1.2: DSM column pattern: Courtesy: Keller, Deep Soil Mixing [1]. 

 

Figure 1.3: Grout is injected during penetration and withdrawal phases with the amount varied 
depending on soil conditions. Courtesy: Keller, Deep Soil Mixing [1] 

In the aforementioned process, after the required drilling depth is reached, the displacement 

measurements of the wellbore at uniform depth intervals are logged  for further analysis. This 

recording is carried out before the grout jetting process is initiated. Jetting is the spewing of 

grout; a mixture of water, cement, sand and sometimes fine gravel from the nozzle of the drill 

head as the drill pipe is slowly retracted from the borehole bottom at a very low rotation speed. 
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The wellbore survey is done by disconnecting the immediate top drill tube above ground  and 

slowly guiding the measuring instrument, for instance a cabled digital inclinometer probe, 

through the middle inner tube to the bottom of the borehole [1]. The wellbore survey 

measurements in the form of x- and y-axis displacements in a defined reference frame, are taken 

at incremental steps of about 2 meters until the bottom of the wellbore is reached. This 

information is post-processed at a later time to obtain a high resolution wellbore profile in the 

designated reference frame. From the preceding description, it can be inferred that the actual 

trajectory is not known immediately until after the drilling process is complete. This 

measurement method adds to the production time depending on factors such as the depth and 

shape of the wellbore, the instrument handling technique and, moreover, there is a risk of 

loosing pressure in the tube which keeps fluid from seeping into an outer channel. Not so much 

importance has been associated with measurement while drilling during the vertical drilling 

processes despite such issues as miss-guided trajectories, which results in re-drilling and in 

effect raises production costs. Figure 1.4 shows a real-world example of wall damage due to 

column deviation during the deep soil mixing process. 

 

Figure 1.4: Wall damage due to column deviation during the deep soil mixing process. Courtesy: Deep 
Foundations Institute, TreviGroup [3]. 

Figure 1.5 shows a real example of the results of an “as-built drawings” of a jet grouting cut-

off formed by the deep mixing process with over 60% of the columns deeper than 30 meters. 

The number of jet grouting columns was 1100 and the spacing was at 0.75 meters with the 

required thickness of the wall at 0.80 meters [3, 4]. 
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Figure 1.5: Jet grouting cut-off. Courtesy: Diavik A418, Deep Foundations Institute, TreviGroup [3] 

The blue circle shows an additional column added because of the notable deviation at point 

COW 0+593.25. The acceptable margin of error or accuracy of the survey instrument of use 

can be deduced from the specification depending on the application of interest. In this case, for 

a thickness of 0.80 m and spacing of 0.75m, the diameters of the column should basically be 

greater than or equal to 0.55 m assuming perfect symmetry. 

 

 

 

 

 

 

 

 

 

Figure 1.6: Plan and vertical sectional view of two adjacent columns; assuming perfect symmetry. 

Figure 1.6 shows the plan and vertical view of two adjacent columns as specified by the Jet 

Grouting Cut-off described above. Assuming perfect symmetry and a column top surface 

radius, x of value 0.6 m which implies an extra thickness of approximately 0.14 m, the deviation 

angle below which the thickness of 0.80 m is maintained for a given length of column can be 

deduced using simple geometry. The value of the deviation angle is worked out to be 

approximately 0.27° for a column length of 30m which represents a 0.46% deviation. In reality, 

such symmetry might not be achievable as shown in figure 1.5 but such deduction could serve 

0.75m 

Column Top Surface 

0.80m 
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as a guide for determining the acceptable error margin for the survey instrument to be used. For 

instance, an error tolerance of +/- 5 cm could be considered sufficient for such an application. 

In Chapter 4, analysis of the uncertainty of different IMU sensors utilized for survey 

measurements is made to acetain their suitability for the drilling application of interest. 

1.2 Previous Research 

Measurement while drilling (MWD) provides data which is utilized in directional drilling to 

monitor the position and orientation of the lower part of the drill string also called the bottom 

hole assembly (BHA) [8]. In the drilling industry, the conventional magnetometer-based MWD 

surveying system is generally used. This normally consists of three accelerometers and three 

magnetometers mounted in three mutually orthogonal directions. At a predetermined survey 

station, the accelerometers measure the earth gravity components to determine the BHA 

inclination and tool face angles while the magnetometers measure the earth’s magnetic field to 

determine the BHA azimuth [8]. The trajectory between two survey stations is then computed 

geometrically by a standard method, such as the minimum curvature method [12]. The 

magnetometer-based MWD surveying system is characterized by high costs and severely 

degraded performance due to geomagnetic interferences [9]. The option of using the gyro-based 

MWD technique as an alternative to the magnetometer based downhole surveying has also been 

researched [9]. This uses compensated data from an inertia measurement unit sensor to calculate 

its position and orientation. An inertia measurement unit (IMU) is a microelectromechanical 

system (MEMS) sensor that measures and reports a craft’s velocity, orientation and 

gravitational forces using a combination of accelerometers and gyroscopes, sometimes also 

magnetometers. Through a machination estimation process, the position and orientation of the 

IMU sensor can be determined. Furthermore, there has also been research on the use of 

Adaptive-Filter-Based In-Drilling Alignment techniques which is shown experimentally to 

successfully limit the error growth associated with both gyro- and magnetometer-based MWD 

[9-10]. In the aforementioned technique, the induction of precisely controlled and observed 

motion of the IMU sensor in the horizontal north-east plane is done while the entire BHA is at 

rest. This enables for the observability of the azimuth error for estimation in an extended 

Kalman filter implementation. Analysis of the observability of the azimuth error as a result of 

this horizontal controlled motion is further detailed in another referenced publication. This 

dynamic observation is then used as a reference measurement to align the IMU if of a smaller 

variance than the routine IMU measurements. However, for vertical drilling processes, such 

controlled linear motion in the north-east geographical frame is difficult to attain due to 

mechanical restrictions of the drilling tubes.  
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1.3 Thesis Assumptions 

Survey measurements are taken at designated points or depths along the wellbore-path called 

survey stations as shown in figure 1.7 and made available in real-time over a wireless 

underground ad hoc network borehole telemetry system. These survey measurements are used 

for the estimation of the wellbore trajectory between any two survey stations.  There are several 

wellbore-survey techniques for estimating the wellbore trajectory between two stations, but due 

to the nature of the trajectory [12], which is close to a straight line, the approach using the 

balanced angle method was considered. This is basically an improvement to the average angle 

method because it takes into consideration survey measurements at both survey stations [7]. 

The measurements taken at the survey stations are used to compute the north, east and true 

vertical depth coordinate positions with respect to a designated reference frame. These 

measurements are recorded at each survey station during the entire drilling process and, finally, 

a high-resolution trajectory is plotted from the vector additions of the coordinate positions after 

the borehole survey process is completed. Figure 1.7 shows a three-dimensional view of a 

wellbore trajectory showing how the various measurement parameters are used to determine its 

overall trajectory. k denotes the azimuth angle at survey station k  relative to the designated 

frame of reference, k represents the inclination angle at survey station k , kSS  denotes the 

survey station k , k  and k  represents the change in the north and east direction of the 

designated frame of reference respectively at survey station x . kMD  denotes the measured 

depth which is the length along the drill tube in the ground and kTVD  denotes the true vertical 

depth of the wellbore. Figure 1.8 shows the inclination and yaw angle orientation of the sensor 

node within the drill tube.   denotes the angle the sensor node face makes with the north 

direction of the designated frame of reference. 
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Figure 1.7: A three-dimensional view of the wellbore trajectory. 

Basically, the aim is to track the yaw angle position of the sensor , which is body-fixed, aligned 

with the drill tube and rotates with the tube about its axis of rotation. This angle is required to 

resolve the 3-axis accelerometer output data relative to the designated frame of reference before 

the direction of tilt angle xI  is determined. 
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Figure 1.8: Inclination and yaw angle orientation of sensor within the drill tube 

 

The resolution of the accelerometer output data to the designated frame of reference is 

given in Eq. 1.1 
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where '
xf , '

yf and '
zf  denote the x-, y- and z-axis accelerometer output when sensor 

position is displaced at a yaw position of  from the reference north position of the 

designated reference frame while xf , yf and zf denotes the resolved x-, y- and z-axis 

accelerometer output  
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Figure 1.9: The trajectory between two survey stations; station one and two with the indicated 
inclination and azimuth as well as the accelerometer output 
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where I denotes the inclination and  denotes the tool-face angle which is the angle between 

the y-axis and the north reference position of the tube. For a clearer insight into the concept 

explained in this section, the next section discusses the error model of the wellbore trajectory 

and further elaborates the error sources, how it effects the survey measurements which 

consequently effect the north, east and true vertical depth position coordinates in the designated 

frame of reference at each survey station. Keeping accurate track of the sensor node yaw angle 
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position improves the accuracy of both the inclination and the azimuth measurements which 

further reduces the uncertainty at the target location. Due to the challenge that arises by the 

periodic stoppages of the drilling process to insert or remove a drill tube, it is essential to enable 

the sensor node keep track of its yaw position autonomously. Periodic update of the sensor node 

yaw angle position relative to a pre-defined reference frame is essential to ensure that the yaw 

angle position errors are bounded. 

1.4 Thesis Objectives and Contributions 

1.4.1 Thesis Objectives 

The primary objective of this thesis is to reduce the margin of uncertainty (ellipsoid of 

uncertainty) mostly attributed to the measurement instrument capabilities, in reaching a targeted 

location under consideration. The main purpose of which is to improve the overall accuracy of 

the wellbore trajectory by means of the possibility of introducing corrective measures in real-

time. To accomplish this, the position of the sensor node within the borehole assembly is 

required to be accurately tracked in the designated frame of reference so that there is improved 

accuracy in the computation of the inclination angle and its direction of tilt or azimuth. The 

design of this scheme is motivated by the known challenges attributed to mechanical and 

borehole telemetry network architecture constraints of the deployment environment; size 

constraints of metal drill tube and an unpredictable underground terrain in terms of the physical 

and chemical properties of the ground soil, lateral and vertical vibrations etc [6]. 

A second objective is to investigate the feasibility for real-time sensor data acquisition over a 

wireless ad hoc network underground independent of the depth to be used as a borehole 

telemetry system. As mentioned earlier, this is to enable for critical intervention or control tools 

to be deployed. 

1.4.2 Thesis Contributions 

This thesis introduces a mathematical model representation and implemented of a data 

processing scheme to enable the fusion of higher accurate data source at low bandwidth from 

an external aid with a high bandwidth noisy data output from locally embedded inertia sensors 

for tracking a sensor toolface position within a defined reference frame. Essentially, this shows 

the feasibility of the use of this scheme for wellpath surveying as used within a vertical drilling 

process which is further extended to directional drilling.  Application of the afformentioned 

concepts shows the improvement of the trajectory tracking capabilities of the BHA wellpath 

with the acquisition of sensor data for observation executed by an in-house developed borehole 

telemetry scheme.  
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Secondly, the thesis analyzes the feasibility of sustaining a wireless underground ad hoc 

network for borehole telemetry. Elaboration is made on the propagation of the electromagnetic 

waves between nodes within the soil medium and within the metal drill tubes with further 

emphasis on the factors that enable for the sustained connectivity. It further describes an 

implementation of it and some field results for verification. This telemetry system enables for 

real-time acquisition of the measurement information for prompt interventions to be made 

during the drilling process. 

1.5 Thesis Structure 

This thesis is structured as follows, chapter 2 describes the wellbore positioning error model 

which is the standard model designed by the Industrial Steering Committee for Wellbore Survey 

Accuracy (ISCWSA). It describes how the position uncertainty is computed from the survey 

station observations and how the measuring instrument errors translate into the position errors 

at each survey station, survey leg and finally the target position. Chapter 3 describes the 

approach to improve the estimation of the trajectory using the indirect Kalman filter processing 

scheme in the feedforward configuration, where the optimal estimate of the filter is used as a 

measurement update for the Kalman filter process in an adjacent node. Chapter 4 gives the 

performance analysis of the data processing scheme; some simulation results as well as results 

from laboratory and field tests of the applied mathematical model. Chapter 5 describes the work 

done with regards to the feasibility of a wireless ad hoc network underground for real-time data 

acquisition for the borehole telemetry system. Chapter 6 finally gives a conclusion and an 

outlook of the thesis. Also included are the appendices, which give further elaboration of some 

used mathematical concepts within the thesis. 
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Chapter 2 

2. Wellbore Navigation  

2.1 Error Model Description 

The error model defines how various error sources affect the observations in the wellbore and 

therefore the positional uncertainties along the wellbore. The Industry Steering Committee for 

Wellbore Survey Accuracy (ISCWSA) which is a recognized body of industry wellbore 

surveying experts has developed a model for error representation to be used as an industrial 

standard [7].  The ISCWSA defines the Instrument Performance Model (IPM) which describes 

the error sources, their magnitudes and how they propagate. Basically, the error sources are 

multiple and varied in which each error source affects the positional accuracy of the given 

survey station. The ISCWSA error model defines the effect of the error sources on the measured 

depth, the inclination and the azimuth observations at the respective survey station and how this 

in turn affects the respective north, east and true vertical depth (TVD) position in the designated 

frame of reference. These definitions are represented by what is referred to as the weighting 

functions [7]. The weighting function is obtained by the partial derivative of the function 

relating the survey measurement of interest; measured depth, inclination or azimuth, with 

respect to the sensor output of interest. The error model basically refers to the inaccuracies of 

instruments and measurement systems. 

The planned trajectory is represented in 3-dimensional space by vector coordinates that link the 

various survey stations which therefore imply that the total trajectory from the start point to the 

target is calculated geometrically. A survey station coordinate position in the given 3-

dimensional space is associated with the measured depth, the inclination and the azimuth and 

is represented by the north, east and true vertical depth Position with respect to the designated 

frame of reference. There are several methods of estimating the trajectory between two survey 

stations which include the average angle method, minimum curvature method, balanced angle 

method and the tangential angle method. The balanced tangential method gives a near accurate 

approximation of the true trajectory between the two survey stations for less curvy trajectories. 

The computation method for the balanced tangential method is illustrated in Figure 2.1 and 

Eqns. 2.1-3. Figure 2.1 shows the wellbore path between two survey stations and the various 

parameters used in defining the wellbore position. 
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Figure 2.1: Wellbore path or trajectory between two survey stations. 

The formulation for finding the coordinates for the position at the respective survey stations 

using the balanced tangential method is shown in Eq. 2.1-3 with further background on the 

derivation of the equations given in Appendix IV 

  1
, 1 1 1sin cos sin cos

2
k k

k k k k k k
MD MD+

+ + +

−
 =     +     (2.1) 

  1
, 1 1 1sin sin sin sin

2
k k

k k k k k k
MD MD+

+ + +

−
 =     +     (2.2) 

  1
, 1 1cos cos

2
k k

k k k k
MD MDTVD +

+ +

−
 =   +   (2.3) 

where ΔNk,k+1, ΔEk,k+1 and ΔTVDk,k+1 denotes the change in the north, east and true vertical 

depth respectively from survey station k  to survey station 1k +  in the designated reference 

frame. Ik, Ik+1, Ak, Ak+1 are the inclination angles and azimuths measured at stations one and 

two respectively. MDk and MDk+2 are the measured depths at survey stations k  and 1k +

respectively and are associated with the north, east, true vertical depth of the designated 

reference frame. However, the accumulation of errors from sources such as sensor residual 

errors cause a deviation from the planned wellbore trajectory as shown in figures 2.2a-b. It is 

important to know how each error source affects the survey measurements at each survey station 

and how these errors subsequently effect the position measurement errors. An illustration of 
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how the various error sources affect the observations at the survey stations is given in figures 

2.2a-b. 

It is important to know how each error source affects the observations at each survey station 

and how the observation errors affect the well path in the North N , East E and True Vertical 

Depth TVD  directions. A description of how the various error sources affect the observations 

at the survey stations is given in figures 2.2a-b. 

 

 

 

 

 

 

 

 

Figure 2.2a: Effect of measured depth MD  error on the North ( N ), East ( E ) and the True Vertical 
Depth (TVD ) observations at the survey stations with fixed inclination and azimuth. 

 

 

 

 

 

 

 

 

Figure 2.2b: Effect of azimuth error on the north and east observations at the survey station with fixed 
inclination and measured depth. 

 ,  , , TVD  and MD denote the error in the azimuth, north, east, true vertical depth 

respectively and the measured depth, I and A  denote the inclination and the azimuth 
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respectively. Figure 2.2a illustrates how the measured depth error affects the north, east and 

true vertical depth observations at the survey stations while Figure 2.2b shows the effect of 

azimuth error on the north and east observations in the designated reference frame. There is no 

effect of the azimuth error on the true vertical depth as observed. A weighting function is used 

to determine the effect any error source will have on the measured depth, inclination and 

azimuth respectively. The weighting function is determined by finding the partial derivative of 

the equation relating the survey measurement and the sensor output source with respect to the 

latter. For instance, from chapter 1, combining Eq. 1.1 and 1.3, and writing the yaw angular 

position as a function of the z-axis gyroscope output and change in time given as 

 zGt =  (2.4) 

results in the equation relating the azimuth to the gyroscope output which is written as 
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
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f
fA

sin'cos'
sin'cos'

arctanarctan  (2.5) 

where zG denotes the z-axis gyroscope output and t denotes the time duration over which the 

integration is done. The weighting function of the z-axis gyroscope bias is given as the partial 

derivative of Eq. (2.5) as shown in Eq. (2.6) below 

 t
G
A

z

=



. (2.6) 

The azimuth error in the designated frame of reference due to the z-axis gyroscope bias is 

therefore given as 

 bias
z

bias
z

z

GtG
G
A

=



. (2.7) 

Since the z-axis gyroscope bias error source affects just the azimuth, the weighting function is 

given as the vector [0, 0, t ] implicit that there is no effect of the error source on the measured 

depth (MD) and the inclination as indicated by the zeros in the first two components of the 

vector representation.  
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Figure 2.3 shows the measured position at SS2 denoted by the vector pr  and the actual or true 

position of the borehole assembly or drill-head denoted by the vector ar . pn , pe , pv  denotes the 

north, east and vertical depth components of the postion vector pr while an , ae , av denotes the 

north, east and vertical depth components of the position vector ar . These two vector positions 

represent the measured and the true coordinate positions of the drill head in the designated 

frame of reference. in , ie , iv , denote the coordinates in the north, east and true vertical directions 

in the designated reference frame.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The measured wellbore trajectory and the actual wellbore trajectory 

The difference between the measured and the actual/true position is represented as the vector 

difference between the two position vectors pr and ar . This is denoted by the error position 

vector r . r  is a function of the survey measurements; measured depth, inclination and 

azimuth, along the planned path and its magnitude is given as 

 ap rrr 
−=  (2.8) 

A representation of Eqn. 2.8 is expressed as 

 ( , , , , , ; )a p a p a pf n n e e v v r =   (2.9) 
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 ( ) ( ) ( )
2 2 2

( , , , , , ; )a p a p a p p a p a p af n n e e v v n n e e v v = − + − + −  (2.10) 

where ( , , , , , ; )a p a p a pf n n e e v v  denotes the distance or error vector magnitude between the 

measured survey position and the actual survey position traced by the borehole assemble/drill-

head. The aim is to determine the most likely estimate of the error function by finding the values 

of pn , pe , and pv  for which the measured survey position is closest to the actual survey position 

of the borehole assembly (accurately reflects the error).  denotes the particular survey 

measurement of interest (N, E, TVD). To obtain this, the derivative of the function 

( , , , , , ; )a p a p a pf n n e e v v  with respect to the components an , ae , av is found and the result is 

assigned to zero. This is given as 

( , , , , , ; ) ( , , , , , ; ) ( , , , , , ; ) ( , , , , , ; )
( , , )

a p a p a p a p a p a p a p a p a p a p a p a p

a a a a a a

df n n e e v v df n n e e v v df n n e e v v df n n e e v v
d n e v dn de dv

   
= + +  (2.11) 

Differentiating Eqn. 2.11 results in  

 
( ) ( ) ( )

( ) ( ) ( )
2 2 2

( ) ( ) ( )
( , , , , , ; )

0
( , , )
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n n e e v vdf n n e e v v d d d

d n e v n n e e v v

− − −
− + − + −   = =

− + − + −

 (2.12) 

which is further expressed as 

 ( ) ( ) ( ) 0p p p
p a p a p a

dn de dv
n n e e v v

d d d
− + − + − =

  
 (2.13) 

2.2 Borehole Assembly Position Uncertainty 

The borehole assembly position error at a survey station is represented as a 3-dimensional 

ellipse of uncertainty which indicates the uncertainty in the inclination, azimuth and measured 

depth or projected as uncertainties in the north, east and true vertical depth planes in the 

designated reference frame. The uncertainty is generally modelled as a 3-dimensional Gaussian 

probability density function. The phenomenon described in the preceding section can be 

modelled as a linear regression problem to enable the estimation of the parameters that relate 

the independent true values of the survey station position to the observed or measured values. 

The expression for the linear regression analysis is given as 

 1, 2,i i i i iy r r= + +  (2.14) 
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where iy depict the thi observation vector; the measured position of the borehole assembly at 

the thi survey station, ir  represents the thi regression vector parameters and is the true/actual 

position at the same survey station. 1,i and 2,i  denote the parameters that establish the linear 

relationship between the observations and the regression vector at thi survey station and ir

denotes the zero-mean white Gaussian noise of the measurement. Another form of this equation 

is written as 

 Y r=+  (2.15) 

where Y


denotes with m  observations and is an 1m vector where 2m n such that the number 

of observations made is equal or greater than the number of unknowns ,   denotes the known 

regression parameter matrix of size 2n n  which is also a matrix of the regression vector 

parameters ir  as shown in Eq. 2.16,  denotes the parameters that is to be found which is a 

vector of size 2 1n  and r denotes the zero-mean Gaussian noise vector of size 1n . 
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 (2.16) 

The covariance of the error vector r is expressed as shown in Eqn. 2.17 
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where r which denotes the zero-mean white Gaussian noise vector is expressed as  

 r Y = −  (2.18) 

This is further represented as a probability density function given as 
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The aim is to find the maximum likelihood estimate of the parameter  conditioned on n  

observations of iy that maximizes the probability density function ( )r if r  . This is written 

further in terms of natural log to enable easier differentiation. This is given as 
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Differentiating (2.21) with respect to i


, we have 
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where T denotes the transpose of . ̂  is a 1n vector. The calculated survey position can 

be obtained using Eqn. 2.22 

In the special case where the covariance matrix R is diagonal, the probability density function 

can be further written as 
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where  in ,  ie  and  iv  represents the position error covariance in the north, east and true 

vertical depth coordinates at thi survey station in the designated reference frame. A 
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representation of the 3-dimensional ellipse of uncertainty is therefore obtained such that each 

ellipse has the length of the north, east and true vertical depth semi-major axes given as ns R

, es R  and vs R where s is the normalized length of the semi major principal axes of the 

confidence region ellipsoid. 

 

2.3 Error Model Equation 

The error model equation for the propagation of errors from the error source; the noise 

characteristic of the sensor element, through to the survey position error is defined as [7] 

 
( )( )

i i
i

pr pe
p







=  

 
 (2.32) 

where ie  denotes the error size in the north, east and true vertical depth in the designated 

reference frame and due to the error source i  at the current survey station; a 3 1  vector. i

denotes the magnitude of the thi error source (a scalar), 
( )

i

p







denotes the weighting functions (

3 1  vector) which is the effect of the thi error source on the survey measurements, i.e. the 

measured depth, inclination and azimuth. This is a partial derivative of survey measurement as 

a function of the sensor element outputs with respect to the sensor element output of interest.  

( )r p
p




is the effect of the survey errors in measured depth, inclination and azimuth on the 

wellbore position in the north, east and the true vertical depth in the designated reference frame 

(3 3  matrix). This represents the partial derivatives of the survey position as a function of the 

survey measurements with respect to the survey measurements. This is further written as a 

Jacobian given as 
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The matrix depends on the surveys at either end of the interval. Further details of the 

mathematical derivation of the error model can be found in Appendix I. 
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CHAPTER 3 

3. Data Fusion Approach for Wellbore Trajectory Tracking 

3.1 Approach using Data Fusion 

Data fusion is the aggregation of observations made by a distributed group of sensors observing 

a common physical phenomenon to form a robust and true representation of what pertains in 

the real world based on which decisions are made. Data fusion approach is basically sub-divided 

into a four-level hierarchy of processing [57]. Process levels 1 and 2 on the hierarchy are 

composed mainly of track formation, identity, information estimation and the fusion of 

information from several sources to arrive at an estimate of the location and identity of objects 

in an environment while levels 3 and 4 are concerned with knowledge or intelligence extraction 

and decision making [57]. The focus of this work is within the scope of process levels 1 and 2 

which entails numerical information and numerical fusion methods. This basically includes the 

direct fusion of sensor data or information and the indirect fusion of estimates obtained from 

the local fusion centers.  

3.2 Data Fusion Approach used in the I-Tube Drill-head Position Tracking 

The data fusion architectures considered in this thesis are both the centralized data fusion 

architecture and the distributed or decentralized data fusion architecture. With the centralized 

data fusion architecture, unprocessed or raw sensor data is transferred to a central processing 

station called the ground station where the data or information is fused to obtain a true 

representation of the survey parameters being observed. In this scenario, virtually little or no 

processing is done at the sensor nodes whereas in the distributed data fusion system some level 

of data processing and fusion is done on each node having its own local processor from which 

extraction of useful information from the sensor data prior to communication is possible. This 

obviously reduces the computational load on the central processor but in turn reduces the level 

of control of the individual nodes from the central fusion station. In this thesis, a combination 

of the centralized and the distributed data fusion architecture in creating a true representation 

of the wellbore trajectory is considered. Estimation of the inclination and azimuth of the well 
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path at each station is done using the probabilistic data fusion technique where a recursive 

update of these states is made at a central fusion station (ground station). The distributed data 

fusion approach is used for the local tracking of the sensor position within the drill tube using 

a suitable tracking algorithm. Tracking information is computed or estimated locally in each 

node using the Kalman filter after which the information is communicated to an adjoining 

sensor node and made available at a central processing unit known as the ground station. The 

ground station fuses the information to give a true representation of the trajectory of the well 

path in this context. Figure 3.1 shows an illustration of a single level hierarchical multiple 

sensor tracking system where ( )Y k represents the observations made by the sensors, and ˆ( )x k  

denotes the estimates of the observed phenomenon computed by the tracking system which is 

transferred to a central fusion center where the track fusion algorithms are used to fuse the 

information from the sensor to generate the combined track. 

 

 

 

 

 

Figure 3.1: A single level hierarchical multiple sensor tracking system approach for the Wellbore 
trajectory tracking. 

3.3 Data Fusion Approach using the Kalman filter 

To track the sensor position within the drill tube, a data fusion method using the Kalman filter 

in the indirect feedforward configuration is utilized. This is whereby the error state space or 

indirect Kalman filter estimates the error in the yaw position using the difference between the 

noise-corrupted output of the internal mathematical model and an external data source. The 

output of the mathematical model for tracking the sensor location is fused with measurement 

data from an external rotatory encoder for the estimation of the yaw angle position in a 

designated reference frame. In this data fusion approach, the reference measurement update 

information provided by the rotary encoder is propagated sequentially over the successive nodes 

until the main sensor node embedded within the BHA located at the bottome end of the 

drillstring is updated 
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3.4 The Basis of the Development of the System Model Description for the Wellbore 

Trajectory Tracking Approach 

The z-axis of the sensor module is body aligned with the z-axis of the body frame of the BHA 

and at a fixed radial distance from its central axis and rotates with it during drilling. Figures 

3.2-3 show the internal placement and alignment of the sensor module axis with that of the drill 

tube. At periodic intervals, reference measurement information from the external aiding system; 

the rotary encoder, is made available to update the yaw angle position at each node. This is 

done sequentially until the final measurement update is made at the main sensor node in the 

borehole assembly. Each node has an embedded IMU sensor within which there is an 

implementation of the internal mathematical model for tracking the sensor position. The output 

of the internal model is fused with the measurement data from the encoder using the indirect 

Kalman filter to provide an optimal estimate of the yaw angle position. Due to processor 

resource constraints of the nodes in terms of execution speed and memory storage, the Euler 

method was the numerical method of choice for integrating the rate output of the gyroscope. 

The top node obtains its reference yaw angle measurement update information directly from 

the aiding system. It then makes an optimal prediction of its yaw angle position at each time 

step during the data outage period until the next measurement update is available. At regular 

intervals, it transmits its current optimal yaw angle position estimate with its error covariance 

to the next node as measurement update information. This process repeats sequentially over all 

connected nodes until the final update is made at the main sensor node. At each survey station 

or position, the drilling process is stopped, and the optimally estimated yaw angle position is 

used to resolve the accelerometer output into the designated frame of reference to compute the 

inclination and azimuth.  

 

Figure 3.2: A cross-section of the drill string showing the position of the embedded sensor node 

IMU Sensor 
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Figure 3.3: A top view of the borehole assembly with embedded sensor module aligned with the body 
frame of reference.  Xb, Yb, and Zb represents the axis of body frame of reference 

The yaw angle position   is saved during this transition and then continued from the saved 

state upon resumption of the drilling process. A newly inserted tube is given an attitude 

measurement update from the encoder, which then propagates and provides measurement 

information updates on the adjoining lower nodes sequentially until the main sensor node in the 

borehole assembly receives its yaw angle position measurement update.  
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Figure 3.4: A block diagram of the processing scheme with the indirect Kalman filter in the feed-
forward configuration for the estimation of the yaw angle position. 

where EKF denotes the extended Kalman filter. Figure 3.4 shows the block diagram of the 

processing scheme with the indirect Kalman filter in the feed-forward configuration for the 

estimation of the yaw angle position where n denotes the angular rate plus noise as output 

from node n ; a 13 vector, n denotes the calculated attitude; roll, pitch and yaw from node n

, n̂


denotes the estimated attitude update from node n , n


 denotes the attitude difference 

between node n  and the incoming update from node 1n− and n denotes the estimated 

attitude difference between node n  and the incoming update from node 1n− . Figure 3.5 shows 

the measurement update formulations at each node during each transmit-receive cycle where

nt denotes the time difference from the point of reading the optimal estimate of the yaw angle 

position at node 1n− , to the instant at which it is used as measurement update in node n . This 

update procedure is repeated sequentially over the connected nodes at each transmission-

reception window until the main sensor node in the borehole assembly is updated.  
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Figure 3.5: Measurement update of each node during the transmit-receive cycle of each node until the 

sensor node is reached.  

 

3.5 Mathematical Model Description 

3.5.1 The Extended Kalman filter 

The Kalman filter is a recursive optimal estimator which is used to make an optimal estimation 

of the states of a discrete-time controlled process described by a linear model. In applications 

where the state transition and the mapping of the states into the observation space are nonlinear, 

the extended Kalman filter could be used. It basically combines the stochastic characteristics of 

the internal model of the system and that of the external aiding system to give a better estimation 

of the states of interest. Since the target system for its implementation is a digital computer 

system, its formulation using discrete-time dynamics and discrete-time measurements is given 

as follows; given the angle state vector nRx and the measured angle vector also given as
mRz ; the non-linear state space model is given as: 

  1111 ,, −−−−= kkkkk wuxfx 
 (3.1) 

  kkkk vxhz  ,=  (3.2) 

1−kf  is a non-linear state transition map at time 1k − , 1kx − , 1ku − and 1kw − denote the state vector, 

the input vector and the process noise vector at time instant 1k − respectively. kh denotes the 
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non-linear observation map at time instant k , and kv denotes the measurement noise. 1kw −  and 

kv are assumed to be non-correlated zero-mean white Gaussian noise and their covariance are 

given as shown in Eq. (3.3-4). 

 { } 0kw = ,  
0

{ } { kQ k jT
k j k jw w =


  =  (3.3) 

 { } 0kv = ,  
0

{ } { kR k jT
k j k jv v =


  = . (3.4) 

where kQ represents the covariance matrix of the process noise and kR denotes the covariance 

matrix of the measurement noise [24]. The prediction step or time update of the extended 

Kalman filter is computed by first finding the Jacobian matrices given as 
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And consequently, the time update of the state estimate and estimation-error co-variance is 

given as 

 ( )0,,ˆˆ
111 −

+

−−

− = kkkk uxfx 
 (3.7) 

 T
kkk

T
kkkk GQGFPFP 111111 −−−−

+

−−

− +=  (3.8) 

where kP− denotes the a priori estimate of the state covariance at time instant k , kP+  denotes the 

a posteriori estimate of the covariance at time instant 1k − , 1kG − denotes the noise gain matrix 

at the time instant 1k − . The correction or measurement update of the EKF is computed by first 

finding the Jacobian matrices given as 

 
−


=

kx

k
k x

h
H

̂
  (3.9) 

 
−


=

kx

k
k v

h
M

̂
  (3.10) 

and consequently, results in the measurement update of the state estimate and estimation-error 

covariance given as 
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 1][ −−− += T
kkm

T
kkk

T
kkk MRMHPHHPK  (3.11) 

  0,ˆ −−= kkk xhzr 
 (3.12) 

 kkkk rKxx 
+= −+ ˆˆ  (3.13) 

 −−+ −= kkkkk PHKPP  (3.14) 

where kK , kH , kz and kr  represent the gain matrix, the measurement matrix, the measurement 

vector and the residual vector at time instant k  respectively. ˆ
kx+  and kP+ denote the a posteriori 

state estimate and a posteriori state covariance matrices respectively. The initial value of the 

state estimate and covariance is given as 

 }ˆ{ˆ
00 xx 

=+  (3.15) 

 })ˆ)(ˆ{( 00000
TxxxxP 

−−=+  (3.16) 

  

3.5.2 The Design Model 

The mathematical model for the gyroscope sensor output is given in Eqn. 3.17-18 

 vt nb 
++=  (3.17) 

 bnbb 
+−=



1
 (3.18) 

where represents the measured angular rate, t denotes the true angular rate, b represents the 

bias modelled as an exponential time-correlated Gaussian random process with a correlation 

time of   seconds, bn denotes the driving process noise and vn is the wideband process noise 

represented as a zero-mean Gaussian white noise. The variance of the wideband process noise 

is given in the continuous form as 

   2
3 3( ) ( ') ( ) ( ')v v vn t n t t t t I 
  =  −   (3.19) 

where ( )vt  denotes the standard deviation of the zero-mean Gaussian process noise. )'( tt −  

and 3 3I  represents the Delta function and a three-by-three-unit matrix respectively. The power 
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spectral density of the driving process noise for the bias
bnQ is described by the standard 

deviation of the bias 
b and the time constant . This is given as 

 
22

b

b
nQ 




=  (3.20) 

Eqs. 3.1-3.20 are used in developing the 6-state EKF for the estimation of the attitude 

information. The dynamic equation for the propagation of the Euler angles which describes the 

attitude is given in (3.21) 
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where the variables ,  and represent the roll, pitch and yaw angles respectively and the 

variables, x , y and z represent the angular rate measurements obtained from the three 

orthogonal rate gyroscope. Further details of the derivation of Eqn. 3.21 are given in Appendix 

II. The scale factor and misalignment errors are assumed to be constant and therefore are 

estimated and removed using the mean square estimate as described in Appendix III. Inclusion 

of the scale factor and the inclination errors modeled as Gaussian white noise results in nine 

extra states which presents a challenge considering the limitation of the processor on which 

implementation is to be done. 

 

3.5.3 Error State Dynamic Model 

For the indirect Kalman filter, the error state dynamic model is used. The error state dynamic 

model with bias estimation is written as a linear model in the form 

 x F x G w =  +   (3.22) 

The error state vector x is given as 

 
x y z

x b b b      =      
 

 (3.23) 

where F  denotes the error state dynamic matrix as defined in Eq. 3.5, G denotes the noise gain 

matrix as defined in Eq. 3.6, and x  denotes the error state vector and w represents the process 

noise vector. The state space representation of the error state dynamic Jacobian matrix, the noise 

gain matrix and the process noise covariance matrix is therefore given as in Eqs. 3.24-26. 
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where  ,   and   denote the standard deviation of the wideband measurement errors on 

the x , y  and z  gyroscope outputs and
x

 ,
y  and

z
 denote the standard deviation of the 

driving noise terms and 
x

 ,
y  and

z
 denote their correlation times respectively, s , s c
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and c  denote the compact notations for the trigonometric functions sin , cos , sin  , and

cos , respectively. 

3.5.4 Compensation and Measurement Model 

The attitude measurement update information received from the previous node’s optimal 

prediction estimate is adjusted to consider transmission delays. This is given as the angular state 

estimate plus the attitude angle difference due to the time difference from the point of reading 

the optimal estimate of the yaw angle position at node 1n− , to the instant at which it is used as 

measurement update in node n . The measurement model at each node is given as 

 

  k k kz h x v= +  (3.27) 
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which is further written as, 

 nknnknk t ,,)1(, ˆ  =+−  (3.29) 
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,k n , ,k n , ,k n represent the roll, pitch and yaw update at node n  from node 1n− , ,ˆk n  and nt  

represent the yaw angular rate and the time interval (as defined earlier) at node n . The 

measurement noise covariance in the discrete form is given as 

 0
{ } { kR k lT

k l k lv v =


  =  (3.32) 

3.6 Innovative Approach to Wellbore Trajectory Tracking Improvement 

During the buildup of the wellbore path or drill trajectory, multiple survey measurements at a 

single survey station of interest are made whereby drilling is stopped temporarily. These survey 

measurements at the survey station of interest is identified as an independent, identical 
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distribution of measurements. The survey measurements at this single survey station are 

therefore fused to obtain a single estimate of the survey measurement at that survey station of 

interest which is used later in the overall estimation of the wellbore path or trajectory. Two 

main considerations in view of obtaining the observations or measurements at the single survey 

station of interest are made. These are  

a) a cluster of sensors (IMU sensors) mounted on the same tube and making observations 

simultaneously at the same survey station of interest. This involves the fusion of data 

from two or more independent sources with the capability of inclination and azimuth 

measurements based on the previously derived processing scheme. 

b) the survey measurements made by different sensor clusters mounted on separate tubes, 

at the survey station of interest whereby the measurements are displaced in both space 

and time. This is where each tube sensor cluster makes a measurement upon arriving at 

the given survey station of interest.  

Furthermore, two scenarios are considered as the survey measurements are processed. These 

are: 

a) The ideal situation where survey measurements at each survey station can be described 

as non-biased in the sense that they are considered identical and independent since the 

quantity of interest being measured; inclination and azimuth, does not change – no 

dynamics involved.  

b) The second situation can be described as when the quantity of interest; inclination and 

azimuth, undergo some degree of dynamics such that the measurements at the survey 

station of interest are not identical. 

3.6.1 Background Theory using Probabilistic Data Fusion Approach with 

Recursive Bayes Updating 

Survey measurements made at each survey station i.e. the inclination and the azimuth are the 

observations made by the inertial sensors and are estimated using probabilistic models based 

on the concept of recursive Bayes updating. This concept of probabilistic data fusion is 

associated with the incremental or recursive addition of new information in the determination 

of revised posterior distribution on the state defined as the inclination and the azimuth in this 

context. The Bayes Theorem can be stated as a conditional probability density function, given 

given that it exists for the corresponding probability distribution function, of the variable of 

interest conditioned on the available measurement at that time and is given as 
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where x denotes the phenomenon of interest; a Gaussian random variable which could either 

be the inclination, the azimuth or the measured depth.  denotes the realized or actual  value 

of x in Euclidean 1-dimensional space, y denotes the measurement variable; also a Gaussian 

random variable, and  denotes the realized (observed) measurement also in Euclidean 1-

dimensional space. ( )xf  denotes the prior probability density function of the variable of 

interest, ( )yf  denotes the survey measurement also a probability density function. The 

posterior likelihood density distribution | ( | )x yf y =  is a function of the true state of nature 

by variable x ; that is the true inclination, azimuth or measured depth. This is computed from 

the prior distribution of x  and the information gained by observation as in the distribution 

represented by | ( | )y xf     as given in Eqn. 3.33. Therefore, using the concept of recursive Bayes 

updating, and given all measurements at a survey station of interest up to the present 

measurement as  1,k k
kY y Y − where ky denotes the single observation at k , the following can 

be expressed: 
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which represents the recursive Bayes updating formulation. The posterior likelihood,
1

| ( | )k
x yf Y −  is the only term computed and stored. The sensor model, represented as a 

likelihood function, is a probability distribution about a specific observation ky  with known 

variance 2
y and is expressed as 
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Given that the a priori distribution of x after taking the first 1k − observations is also Gaussian 

with variance 2
1k −

 and expressed as 
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the posterior distribution of x after the first k observations is therefore expressed as 
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where C is a constant independent of x chosen to ensure that the posterior is approximately 

normalized. The resultant or new mean is written as 
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and the variance is given as 
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3.6.2 Weighted Position Estimate from Survey Station Measurements in View of 

Trajectory Dynamics 

The scenarios in the introductory of section 3.6 is used to subsequently describe or define the 

context by which the data fusion technique is approached in this analysis. At each survey 

station, independent, identical measurements also known as random measures are made, figure 

3.7. In this regard, multiple independent identical measurements of inclination and azimuth at 

any the survey station of interest is made. The approach using probability distributions as a set 

of weighted samples of the underlying state space values by using probabilistic inference 

through the Baye’s rule can be used. The state space values in this context are the observed 

inclinations and azimuths.  
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Figure 3.7. Trajectory movement dynamics as drilling progresses: Measurements at each survey 
station are subject to movement dynamics as each node is inserted. 

Figure 3.7 shows how each survey station is measured by a cluster of sensors embedded within 

each tube. The measurement from the first sensor cluster, A, at survey station 1(SS1) is denoted 

as A1. Upon insertion of the second tube associated with sensor cluster B, a second 

measurement B1 is made again at SS1. This approach is used for all subsequent measurements 

at SS1 as well as the other adjoining survey stations with each insertion of a drill tube as 

illustrated in figure 3.7.  All measurements at SS1; A1, B1, C1 and D1 as noted in this case are 

statistically combined to obtain an estimate of the survey measurement at SS1. This is done as 

explained in section 3.6 with further explanation given later. Each cluster has N sensors such 

that the state of interest; inclination or azimuth, measured by each of the sensors within a sensor 

cluster is given as i
tx ; 1i N= where t denotes the time at which the survey measurement at a 

given survey station of interest is taken and i denotes the thi sensor within the sensor cluster of 

N sensors and with a corresponding set of normalized weights i
tw ; 1i N=  which is deduced 

from the noise variance of each of the sensors within the cluster. The weights are taken as the 

reciprocal of the error variance of each sensor and normalized such that 1i
tw = . Therefore, 

for a given sensor cluster within a tube,  , at a given survey station, m  the posterior probability 

distribution function , ( )p m tF x at m at a given time   is given as 

 ,
1

1( ) ( )
N

i i
p m t t p t

i
F x w F x

N =

=  , (3.42) 

Considering the measurements made by the different sensor clusters mounted on separate tubes 

at a survey station of interest as described earlier and illustrated in figure 3.7, the posterior 

probability distribution at survey station m  then becomes 
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where  represents the weighting assigned to the measurement made at survey station m by the 

sensor cluster of interest, and M  denotes the total number of measurements made by the 

different sensor clusters at survey station m . Where again
1

N
i
t

i


=

 .  As drilling proceeds, the 

number of survey stations increases and the distribution of the importance weights for each 

cluster measurement at a given survey station becomes difficult to gauge or assign as 

measurements from past sensor clusters at a survey station of interest might due to changed 

dynamics become of less or no significance. This is to the extent that after a couple of tubes are 

inserted, some past survey measurements may not be necessary to consider in the survey 

measurement estimation at the survey station of interest. To address this issue, an empirical 

determination of the significance of the various survey measurements on the estimate of the 

survey measurement at the station of interest is observed using simulation to capture the effects 

of changing dynamics on the survey measurement. This is to enable adequate representation of 

the posterior distribution of the survey measurements at the survey station of interest. Also, of 

interest and to be deduced is how current measurements in the adjoining stations affects the 

survey measurement at the survey station of interest. In a situation where accuracy is not a 

stringend requirement, a threshold system could be used. In this case, a threshold defined as the 

two times the standard deviation of )(, tmp xF  is set such that a measurement within this 

deviation implies not much dynamics has taken place and thus equal weight  are placed on all 

measurements made at that survey station. In the event of a measurement falling out of twice 

the standard deviation, a check is made to sense if there is a corresponding change in the two 

adjacent observations of survey station m  i.e., 1−m and 1+m . If the nature of change 

correlates with the new measurement, then full weight is given to the new measurement while 

weights from previous measurements are assigned 0 to nullify the influence of the previous 

measurements. 

3.7 Conclusion 

This chapter presented the mathematical model scheme developed for processing data from the 

inertia measurement unit output data with measurements from the external encoder for the 

overall tracking of the wellbore path. It also discussed a probabilistic approach to improving 

survey station measurements using data from multiple sensor clusters. These input data are 

available because of different sensor clusters taking measurements at the same survey station 
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of interest sequentially in the time domain as the wellbore depth increases. Furthermore, as 

described in chapter 2, the region of uncertainty is generally modelled as a 3-dimensional 

Gaussian probability density function whereby the phenomenon is modelled as a linear 

regression problem to enable the estimation of the parameters that relate the independent true 

values of the survey station position to the observed or measured values. 
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CHAPTER 4 

4. Design, Analysis and Verification of the Proposed Model 

In this chapter, an application of the concepts described in chapter 3 is used with actual field 

data as well as simulated data to investigate the overall effectiveness of the outlined methods 

therein. However, to develop a basis by which to appreciate the use of the outlined concept, the 

ISCWSA error model is first used for the analysis of the region of uncertainty in error using 

sensors with different performance specifications. This approach not only highlights the main 

error sources which are of more significance to the region of uncertainty in error of the survey 

measurements, it also serves as a prelude to help compare to the results of the implementation 

of the mathematical model and processing scheme and to show the improvement achieved in 

the survey position measurements thereof.  It begins by showing how the performance 

specification on the datasheet is converted to the required error source magnitude used in the 

error model to compute the region of uncertainty in error at each of the survey stations. Finally, 

the probabilistic scheme is applied to investigate how the effect of multiple measurements at a 

single survey station which are statistically combined are affected by a shift in the measurement 

at a survey station under investigation and how the weights can be distributed to the respective 

measurements to improve the overall accuracy of the survey station of interest. 

This chapter is categorized into two main sections with regards to experiments conducted and 

analysis done. The first part analyses actual field data and investigates the error of uncertainty 

of the measurements made using sensors of different performance specifications based on the 

ISCWSA error model. It shows how the sensor performance specifications or intrinsic noise 

characteristics of the sensor element effect the region of uncertainty in error in the survey 

position measurement of the wellpath at each survey station. It further makes a comparison 

using two times the standard deviation error uncertainties, assuming conservativeness, to 

highlight the direct effect of the noise characteristics on the accuracy of the wellbore trajectory. 

The second part shows the results of the direct implementation of the outlined mathematical 

model in chapter 3 on the wireless sensor node modules. It shows its effect on the limitation of 

the azimuth errors and thereby improving the overall wellbore trajectory accuracy. It makes a 

comparison of the results to acceptable error uncertainty limits in survey measurements defined 
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by the ISCWSA. Finally, the probabilistic scheme is applied to investigate how the effect of 

multiple measurements at a single survey station which are statistically combined are affected 

by a shift in the measurement at a survey station under investigation and how the weights can 

be distributed to the respective measurements to improve the overall accuracy of the survey 

station of interest. 

4.1 Field Data Analysis using the ISCWSA Error Model for IMU Sensors with 

Differing Performance Specifications 

In this section, an analysis was made from actual recorded data of two field drilling. As 

mentioned in chapter one, these measurements were made after the completion of the drilling 

process. This involved two approximately 20-meter deep vertical wellbores for the purposes of 

deep soil mixing at a location in Potsdam, Berlin. The data recorded showed the displacement 

of the wellbore at intervals of 2 meters on an A-, B- axis orthogonal to each other and which 

defined the frame of reference for the wellbore trajectory. This reference frame is synonymous 

to the North-East plane on the geographical reference frame. A comparison based on the 

standard ISCWSA error model with regards to the measuring instrument used to take the actual 

measurements to when such same measurements are done using three alternative IMU sensors 

of different performance specification was made. In other words, the comparison was based on 

the error in uncertainty in position attributed to each IMU sensor considered as compared to an 

acceptable error tolerance limit which is dependent on the application at hand and deemed 

acceptable by the ISCWSA standards committee. This is further compared to when such 

measurements are made using the processing scheme as described in Chapter 3 in the next 

section.  The recorded field data provided by the company was used to calculate the azimuth at 

each survey station up until the target or last survey station. This is shown in Tables 4.1-2. The 

calculated inclination and azimuth were then used to compute the error of uncertainty in 

position at each survey station using the parameter specifications of the digital inclinometer 

probe within a confidence region of double the standard deviation error. This was compared to 

the error of uncertainty for the same trajectory but using IMU sensors with different 

performance specifications. Figures 4.1-2 shows the 2-dimensional trajectory of the wellbore 

path in the A- vertical depth plane, A-B horizontal plane and B-vertical depth plane of each 

wellbore path. The gyroscope survey method used was the continuous measurement mode since 

orientation of tool is known at the start with continuous integration of gyroscope measurement 

done as survey tool transverses the well path [30].  
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Figure 4.1: A 2-dimensional trajectory of first wellbore path in the A-depth plane, A-B horizontal plane and B-depth plane, WELLBORE 1 

Azimuth 
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Figure 4.2: A 2-dimensional trajectory of second wellbore path in the A-depth plane, A-B horizontal plane and B-depth plane, WELLBORE 2 

Azimuth 
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Table 4.1: WELLBORE 1:  A summary of the calculated inclination and azimuth data from the 
measurement record in Figure 4.1 

Survey Station No. B-axis (cm) A-axis (cm) IB (deg) IA (deg) Inclination (deg) Azimuth (deg) 
Wellbore Top: 0 0 0.00 0  0 0.00 

Survey Station 1: 0.1 -0.25 0.03 -0.07 0.08 248.20 
Survey Station 2: 0.5 -1 0.14 -0.29 0.32 243.43 
Survey Station 3: 0.75 -2 0.21 -0.57 0.61 249.44 
Survey Station 4: 0.75 -3 0.21 -0.86 0.89 255.96 
Survey Station 5: 1 -4.5 0.29 -1.29 1.32 257.47 
Survey Station 6: 1.75 -5.75 0.50 -1.65 1.72 253.07 
Survey Station 7: 2.75 -7.75 0.79 -2.22 2.35 250.46 
Survey Station 8: 3 -9.25 0.86 -2.65 2.78 252.03 
Survey Station 9: 2.25 -10.25 0.64 -2.93 3.00 257.62 
Survey Station 10: 2 -11.75 0.57 -3.36 3.41 260.34 

 

Table 4.2: WELLBORE 2:  A summary of the calculated inclination and azimuth data from the 
measurement record in Figure 4.2 

Survey Station No. B-axis (cm) A-axis (cm) IB (deg) IA (deg) Inclination (deg) Azimuth (deg) 
Wellbore Top: 0 0 0.00 0 0.00 0.00 

Survey Station 1: 2 0.1 0.57 0.03 0.57 177.14 
Survey Station 2: 5 1 1.43 0.29 1.46 168.69 
Survey Station 3: 9 2 2.58 0.57 2.64 167.47 
Survey Station 4: 16 5 4.57 1.43 4.79 162.65 
Survey Station 5: 20 8 5.71 2.29 6.15 158.20 
Survey Station 6: 24 10 6.84 2.86 7.42 157.38 
Survey Station 7: 30 12 8.53 3.43 9.20 158.20 
Survey Station 8: 34 13 9.65 3.72 10.34 159.08 
Survey Station 9: 38 14 10.76 4.00 11.48 159.78 

Survey Station 10: 42 18 11.86 5.14 12.93 156.80 
 

The inclination ,A BI was calculated as 

 







=

L
d

I BA
BA

,
, arcsin  (4.1) 

where L denotes the length between the two survey stations of interest. In this case, the survey 

interval was 2 m as deduced from the measurement data sheets in Figures 4.1-2. and xd denotes 

the displacement from the A or B axis. The resultant inclination I is therefore given as 

 22
BA III +=  (4.2) 



Chapter 4: Design, Analysis and Verification of the Proposed Model 
 

43 
 

4.1.1 Accelerometer Error Influence on Survey Measurements 

In the real world, there is a duration between the time the sensor cluster is switched on to the 

time the survey measurements are made at the respective survey station. As mentioned earlier, 

the inclination measurement is derived from the accelerometer measurements as explained in 

chapter 2. An important consideration therefore, is the effect of this time duration on the 

accelerometer or inclinometer bias which consequently affects the accuracy of the measured 

inclination. Firstly, an investigation into the significance of the accelerometer or inclinometer 

bias on the inclination is highlighted in the decription given below after which the effect of the 

time duration is investigated in view of the intrinsic noise characteristics of the accelerometer. 

For a given angle of inclination, I , and the known gravity constant g , the x-axis, y-axis and 

z-axis components of the accelerometer output is deduced and subsequently an expression for 

the the corresponding inclination error I  because of the bias errors is obtained.  

 coszf g I=   (4.3) 

 ( )' coszf g I I=  +  (4.4) 

 ( )( )' cos cosz z zf f f g I I I = − =  − +  (4.5) 

 ( )0 1 cosbias
z zIf f g I 

=
= =  −  (4.6) 

Therefore, given the z-accelerometer bias bias
zf , the resulting inclination error I  is given as  

 arccos 1
bias

zfI
g


 

= − 
 

 (4.7) 

The resulting inclination error given the x, y accelerometer bias is derived as shown below 

 sinx yf f g I= =   (4.8) 

 ( )' sinxf g I I=  +  (4.9) 

 ( )( )' sin sinx x xf f f g I I I = − =  + −  (4.10) 

 0 sinbias
x xIf f g I 

=
= =   (4.11) 

This also results in an inclination error given as 
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,arcsin
bias

x yf
I

g


 
=   

 
 (4.12) 

where xf , yf , zf denotes the x, y, z components of the accelerometer output given an 

inclination, I  , and '
xf , '

yf , '
zf denotes the three axis components of the accelerometer output 

given an inclination of I I+ . From Eqn. 4.7 and 4.12 it is easy to see the effect the 

accelerometer or inclinometer bias on the inclination error.  

Secondly, the time duration effect on the sensor bias is best captured by looking at the analysis 

of both the short and long-term stability; in view of their stochastic errors, of the 

accelerometer/inclination IMU sensors bias. The Allan variance (defined by IEEE std. 952-

1997) used as the method for this analysis (analysis is in the time domain for easy interpretation 

and it has a lower computational complexity as compared to the power spectral density method). 

It shows the intrinsic noise characteristic of the sensor as a function of the integration time in 

the time domain. A further derivation and explanation of the Allan variance method is given in 

Appendix I and further elaborated in Appendix V. From the Allan variance plot, the velocity 

random walk, bias instability, rate random walk and rate ramp can be observed. If the noise 

sources are statistically independent, the computed Allan variance is the sum of the squares of 

each error type. The significance of Allan variance results in view of the related measurements 

and the subsequent effect on the inclination measurement is highlighted by the following 

example sample whereby a given IMU accelerometer, the STIM300 accelerometer is 

considered with its Allan variance plot shown in figure 4.3 (from datasheet). The STIM300 

accelerometer, a typical example with the 10g accelerometer is observed to have a velocity 

random walk of 0.06 m/s/ h .  

The Allan variance plot in figure 4.3, enables important processes such as the velocity random 

walk and bias instability of the accelerometer output data from all 3 axes to be determined. 

Table 3.1 gives a summary of the random walk and bias instability values of the STIM300 

accelerometer as determined by the Allan variance plot given in figure 4.3. The value of 

acceleration due to gravity was taken as 9.81m/s2. 
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Figure 4.3: Allan variance of STIM300 accelerometer (10g) showing the instantaneous outputs of the 
x-axis, y-axis and z-axis of the accelerometer in g respectively 

 

Table 4.3: A summary of the random walk and bias instability noise measurements of all three axes of 
the STIM300 accelerometer 

 Bias Instability Velocity Random Walk 
x-axis  0.035mg=1.236m/s/h 0.00128m/s/sqrt(s) =0.077m/s/ h   
y-axis  0.038mg=1.342m/s/h 0.00108m/s/sqrt(s) = 0.065m/s/ h  
z-axis  0.04mg=1.413m/s/h 0.00108m/s/sqrt(s) = 0.065m/s/ h  

 

Further details of the Allan variance plot are given in Appendix V. The white noise component 

appears in the Allan deviation plot the gradient portion of -0.5. Fitting a straight line through 

the slope and reading its value at t=1 results in the velocity random walk. The bias instability 

appears on the plot as a flat region around the minimum section of the plot. Its numerical value 

is the minimum value on the Allan deviation plot where by the correlation time is the time the 

minimum value occurs on the integration time axis. The standard deviation of the velocity 

random walk grows proportionally to the square root of time. This is obtained by the integration 

of the white noise of the accelerometer over time. The effect of the accelerometer white noise 

on the position measurement is also obtained by the double integration of the accelerometer 

x-axis 
y-axis 
z-axis 
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white noise. A detailed description is given in [58].  The quoted value of 0.06m/s/ h for the y-

axis for example is sometimes given in units given as ~0.001m/s2/ Hz  obtained by dividing by 

60 as illustrated below. 

Explanation hereby is given as:  

 1 1 1 11 1
603600

m m m
s s sh s s

  =   =    (3.59) 

 2

1 1 1 1
60 60

m s m
s ss s Hz

=    =    (3.60) 

The significance of which is that the standard deviation of the velocity random walk because 

of the accelerometer white noise after for instance 10 minutes unaided and under stable 

conditions e.g. temperature is given as: 

 10 60 0.06 / 0.0245 /
3600

s m s m s
s


 =  (3.61) 

The bias instability, with definition given in Appendix I, of the STIM300 is also observed to be 

~0.04mg which is equivalent to 3.924 x 10-4 m/s2. The summation of the biases, after conversion 

to white noise first standard deviation values, therefore gives an approximation of the 

accelerometer bias and its effect on the inclination measurement is obtained using the 

formulation in Eqn. 4.3-4.12. This bias is factored into the determination of the error of 

uncertainty contributing to the inclination error at each respective survey station. Another 

consideration of importance is the temperature effect on the accelerometer or inclinometer bias.  

The datasheet provides the temperature effect on bias per degree celsius rise in temperature. 

Adjustments for varying temperature can therefore be obtained with respect to a given reference 

which is normally given at 25°C. In the case of the STIM300, a degree-celsius change in 

temperature per minute results in a bias of +/-2mg root mean square error which therefore leads 

to a measurement adjustment given as: 

 ( )/ (25 )m ref oT T T f  −    (3.62) 

where /T denotes the change in degree rise,  mT  denotes the measured temperature, 

( )25refT   denotes the reference temperature taken at 25° and of denotes the accelerometer 

output. 



Chapter 4: Design, Analysis and Verification of the Proposed Model 
 

47 
 

4.1.2 Description of Calculation Method for the Region of Uncertainty in Error 

The error of uncertainty model enables one to determine how far one could be when estimating 

a position. As mentioned in chapter 2, the error in uncertainty in position is derived from the 

effect of the physical errors of the sensor element on the survey measurements; inclination, 

azimuth and measured depth, which subsequently translate to survey position errors; north, east 

and true vertical depth, in the designated reference frame. To further highlight this explanation, 

a simple calculation using a fundamental approach for finding the error of uncertainty is given 

below. 

To determine the error of uncertainty in the survey position measurements at survey station two 

given the wellbore path scenario shown in Figure 4.4. which uses the balanced angle method 

wellbore trajectory computation (see Appendix III) is given as follows 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Wellbore trajectory showing the inclination and azimuth measured at station 2 

Survey Position Error due to IMU sensor accelerometer biases: 

This calculation is based on the derivation given in Eqs. 4.3-4.12. Assuming an inclination error 
of +/- 0.01° implies that for the 3-axis IMU accelerometer, the error magnitudes are given as; 

 x-axis, y-axis accelerometer bias bias
xyf  = 1.712168 * 10-3 m/s2 

 z-axis accelerometer bias bias
zf = 1.494 * 10-7 m/s2 

Station 2 

Measured depth (MD2) = 3m 

Inclination (I2) = 5.0° 

Azimuth (A2) =30.0° 

 

2A  

Station 1 (Top) 

Measured depth (MD1) = 0m 

Inclination (I1) = 0° 

Azimuth (A1) = 0° 

 E  

 

 

 

Station 1 

Station 2 
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To obtain the corresponding survey position errors; 1st standard deviation, in the north, east 

and true vertical depth, in the designated frame of reference, the given equations in Eqs. 2.1-

2.6 are used which results in: 

error in the northern direction N =2.259 * 10-4 m 

error in the eastern direction E =1.304 * 10-4 m 

error in the vertical direction TVD =2.284 * 10-5 m 

The alternative to the calculation above of the region of uncertainty in error is using the error 

model as given by Eqs. 2.32 with the derivation given in Appendix I. The given error model 

equation is used with the weighting functions which have already been pre-computed as given 

in the appendix of [7]. The error model equation is repeated here as given in the equation below 

1 1 2 2 2 1 2 2 2 1 2 2
2

1 1 2 2 2 1 2 2 2 1 2 2
2

1 2 2 1 2

sin cos sin cos ( )cos cos ( )sin sin
1 sin sin sin sin ( )cos sin ( )sin cos
2

cos cos ( )sin 0

I A I A MD MD I A MD MD I A
r I A I A MD MD I A MD MD I A

p
I I MD MD I

+ − − − 
  

= + − −   + − − 

 (4.3) 

 2 2

2
t t

r pe
p




  
=   

  
 (4.4) 

 ( )total t tE e e=   (4.5) 

where te  denotes the total errors due to the error source t  which in this case represents the 
accelerometer biases; x-,y-,z-axis, as the different error sources, t denotes the error magnitude 

due to each source t , 2

2

r
p




 denotes the partial derivative of the position coordinates in the north, 

east and true vertical depth with respect to the survey measurements; measured depth, 

inclination and azimuth at the survey station two, 2p





denotes the partial change in the survey 

measurements with respect to the error sources. It is assumed that there are no errors at station 
one. 

Applying this computation scheme to our simple example, we obtain  

 
0.000225

0.0001299
0.00002273

N
E m

TVD

   
   

 =   
      

  

which agrees with the previous computation of the error in the north, east and true vertical depth 

survey position at survey station two. A similar computation for that of the IMU gyroscope is 

given as shown below 
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Survey Position Error due to IMU gyroscope biases: 

Given the z-axis gyroscope bias bias
zG = 0.01°/s with elapsed time being 100 seconds, the 

corresponding survey position errors using Eq. 2.7 are computed to give:  

error in the northern direction N =1.141 * 10-3 m 

error in the eastern direction E =1.976 * 10-3 m 

error in the vertical direction TVD = 0 m. 

Computation using Eqs. 4.3-5 gives the error in survey position as 

0.00114081
0.0019759

0

N
E m

TVD

   
   

 =   
      

 

So basically, taking the parameter specification of the IMU sensor of interest, one can 

determine, using the error model with the appropriate weighting functions, the error of 

uncertainty at every given survey station. The list of weighting functions is given in the 

appendix of [5].  

4.1.3 Determination of the Region of Uncertainty in Error of Survey Position 

Measurements for Sensors with Different Performance Specification 

The error sources used were as per-given in the performance specifications listed in the 

respective data sheet of the sensor elements. The main sensors used as listed below: 

The Digital Inclinometer Probe: -    RST Digital Inclinometer Probe  

IMU:     -    Vectornav-100T IMU Sensor 

- STIM300 IMU Sensor 

- IPST-RQH Sensor 

The RST digital inclinometer probe which is embedded with a 2-axis accelerometer is used in 

the following section to show how the listed performance specifications map to the error sources 

defined by the ISCWSA standard board. 
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The RST digital inclinometer probe: 

The digital inclinometer probe consists of a 2-axis MEMS accelerometer sensor which fits in 

the model error profile defined by the ISCWSA with the weighting function of the respective 

error sources for a 2-axis accelerometer also defined.  

Error source 1: System accuracy maps to the accelerometer bias defined in the ISCWSA error 

model. This is given as +/- 2mm per 25 m in the RST digital inclinometer probe datasheet. 

Representation in degrees: sin-1(2/25000) = +/-0.004584° 

Representation in ms-2: g * sin (0.004584°) = ~7.85 * 10-4 ms-2 

Error source 2: Axis alignment maps to accelerometer misalignment. RST system is digitally 

nulled due to 2-way measurement. 

Error source 3: Cable stretch maps to depth stretch type defined in the ISCWSA error model. 

This is given as 7.0mm per 50m and considered in the generation of the uncertainty envelope 

during the analysis. See table 4.3. 

Error source 4: Data resolution defined as; the ratio between the maximum signal measured to 

the smallest part that can be resolved or the degree to which a change can be theoretically 

detected, also as known as the sensitivity. It maps to the scale factor error of the accelerometer 

in the ISCWSA error model. This is given in the datasheet as 0.005mm deviation per 500mm 

distance. 

Represented in degrees = sin-1(0.005/500) = 5.73 * 10-4 ° per 500mm 

Represented in (x-, y- acceleration axes) ms-2 = g * sin (5.73*10-4 °) = 9.81 * 10-5ms-2 per 

500mm. 

Finally, table 4.4 subsequently gives a summary of the performance specification of the digital 

inclinometer probe while tables 4.5-6 shows the results of the computed two times the standard 

deviation errors obtained from applying the error model to the performance specifications of 

the digital inclinometer probe. 
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Table 4.4: Summary of the digital inclinometer probe performance specification. 

Inclinometer Parameter Metric System Notes 
Full-scale range +/- 30°  
Data resolution 0.005mm per 500mm SF: 5.73 * 10-4 ° or x/y- SF=9.81 * 10-5ms-2 
Repeatability +/- 0.002°  
System Accuracy +/- 2mm per 25 m +/-0.004584°or x/y- accel: ~7.85 * 10-4 ms-2 

Axis alignment Digitally nulled 2-way measurement 
Temperature rating -40° to +70°  
Sensor Type MEMS Accelerometer, Biaxial  
Cable Stretch 7.0mm Per 50 meters… => 0.00014m Per meter 

 

Table 4.5: WELLBORE 1:  Summary of the region of uncertainty in error (2 x standard deviation) in 
the A-, B- and TVD axis for the digital inclinometer probe 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 0.028 0.064 2.1 
Survey Station 2: 0.042 0.096 2.96 
Survey Station 3: 0.026 0.128 3.64 
Survey Station 4: 0.056 0.16 4.2 
Survey Station 5: 0.062 0.194 4.7 
Survey Station 6: 0.074 0.23 5.14 
Survey Station 7: 0.088 0.27 5.54 
Survey Station 8: 0.1 0.314 5.94 
Survey Station 9: 0.106 0.358 6.3 
Survey Station 10: 0.108 0.37 6.38 

 

Table 4.6: WELLBORE 2:  Summary of the region of uncertainty in error (2 x standard deviation) in 
the A-, B- and TVD axis for the digital inclinometer probe. 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 0.092 0.012 2.04 
Survey Station 2: 0.152 0.028 2.9 
Survey Station 3: 0.226 0.052 3.54 
Survey Station 4: 0.316 0.09 4.08 
Survey Station 5: 0.414 0.138 4.56 
Survey Station 6: 0.52 0.188 5 
Survey Station 7: 0.634 0.238 5.38 
Survey Station 8: 0.754 0.284 5.74 
Survey Station 9: 0.876 0.332 6.08 
Survey Station 10: 0.906 0.346 6.16 
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The scale factor and misalignment are calibrated for and removed at the beginning using the 

least square estimate method (see Appendix III).  To reflect this, misalignment is divided by a 

factor of 100. The time duration between two adjacent survey stations, in view of the gyro drift, 

is assumed to be 1 minute (60 s) for each case. Furthermore, no external updates or correction 

was used. 

The Vectornav-100T IMU Sensor: 

Table 4.7: A summary of the Vectornav-100T performance specification. 

Vectornav-100T  Parameter Value 

Bias Instability (0.04mg) => 0.0023° deviation bias
xyf  4.99611 * 10-4 m/s2  

„ bias
zf  1.2722 * 10-8 m/s2  

Linearity <0.5% Full Scale . .S F errorf . 
8.0 * 10-3  

Misalignment (calibrated out normally)  Misalignmentf  
0.05° /100 

Bias Instability DriftG  2.78 * 10-3 °/s 

Gyro Angle Random walk ARWG  3.5 * 10-3 °/s/ Hz  

 

Table 4.8: WELLBORE 1:  A summary of the region of uncertainty in error (2 * standard deviation) 
for the A-, B- and TVD axis – Vectornav-100T 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 1.28 0.84 7.2*10-4 
Survey Station 2: 3.4 1.76 0.002 
Survey Station 3: 6.34 2.52 0.004 
Survey Station 4: 10.26 3.28 0.002 
Survey Station 5: 15.06 4.56 0.008 
Survey Station 6: 20.9 6.8 0.01 
Survey Station 7: 27.76 9.34 0.014 
Survey Station 8: 34.78 11.02 0.018 
Survey Station 9: 42.1 11.98 0.02 
Survey Station 10: 43.96 12.18 0.022 
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Table 4.9: WELLBORE 2:  A summary of the region of uncertainty in error (2 * standard deviation) in 
the A-, B- and TVD axis – Vectornav-100T 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 1.4 7.54 0.004 
Survey Station 2: 3.72 16.88 0.008 
Survey Station 3: 8.6 31.78 0.016 
Survey Station 4: 16.6 50.1 0.024 
Survey Station 5: 25.64 68.86 0.036 
Survey Station 6: 35 89.94 0.046 
Survey Station 7: 44.14 112.98 0.038 
Survey Station 8: 52.78 136.52 0.07 
Survey Station 9: 62.88 160.76 0.082 
Survey Station 10: 65.74 166.8 0.086 

 

The STIM300 IMU Sensor: 

Table 4.10: A Summary of the performance specification of the STIM300 IMU sensor from Sensornor 
ButterflyGyro 

STIM300 Parameter  Value 

Bias instability (0.05mg) => 0.002865° deviation bias
xyf  4.905 * 10-4 m/s2 

“ bias
zf  1.222 * 10-8 m/s2 

Scale factor accuracy => +/- 200ppm . .S F errorf . 
2 * 10-4 

Misalignment (calibrated out normally) => 1mrad Misalignmentf  
0.057° /100 

Bias instability (0.5°/h) DriftG  1.39 * 10-4 °/s 

Gyro Angle Random Walk (0.15°/sqrt(hr)) ARWG  2.5 * 10-4  °/s/ Hz  

 

Table 4.11: WELLBORE 1:  A summary of the region of uncertainty in error (2 * standard deviation) 
in A-, B- and TVD axis – STIM300 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 0.006 0.26 8.12*10-4 

Survey Station 2: 0.14 0.4 0.002 
Survey Station 3: 0.36 0.54 0.004 
Survey Station 4: 0.66 0.64 0.006 
Survey Station 5: 1 0.78 0.008 
Survey Station 6: 1.42 0.98 0.012 
Survey Station 7: 1.92 1.18 0.016 
Survey Station 8: 2.42 1.36 0.01 
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Survey Station 9: 2.98 1.46 0.022 
Survey Station 10: 3.12 1.48 0.024 

 

Table 4.12: WELLBORE 2:  A summary of the region of uncertainty in error (2 * standard deviation) 
in A-, B- and TVD axis – STIM300 

 

The IPST-RQH Sensor: 

Table 4.13: A summary of the performance specifications of IPST-RQH 

 Parameter  Value 

Accuracy (pitch & Roll) = 0.25° bias
xyf  4.9653 * 10-3 m/s2 

 bias
zf  1.25658 * 10-6 m/s2 

Resolution (100ug) . .S F errorf . 
9.81 * 10-4 

Alignment Error (calibrated Out) Misalignmentf  
0.00 

Bias stability (0.003°/h) DriftG  8.33 * 10-7 °/s 

Gyro random walk (0.003°/sqrt(hr)) ARWG  5.0 * 10-5 °/s/ Hz  

 

Table 4.14: WELLBORE 1:  A summary of the region of uncertainty in error (2 * standard deviation) 
in the A-, B- and TVD axis – IPST-RQH 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 0.074 0.174 6.52*10-4 

Survey Station 2: 0.1 0.248 0.0017 
Survey Station 3: 0.11 0.31 0.002 
Survey Station 4: 0.112 0.362 0.004 
Survey Station 5: 0.114 0.41 0.006 
Survey Station 6: 0.118 0.452 0.006 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 0.32 0.54 0.004 
Survey Station 2: 0.56 1.2 0.01 
Survey Station 3: 0.96 2.28 0.018 
Survey Station 4: 1.58 3.62 0.028 
Survey Station 5: 2.28 4.98 0.014 
Survey Station 6: 3.02 6.52 0.052 
Survey Station 7: 3.74 8.22 0.066 
Survey Station 8: 4.4 9.94 0.078 
Survey Station 9: 5.18 11.74 0.092 
Survey Station 10: 5.4 12.18 0.096 
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Survey Station 7: 0.118 0.492 0.012 
Survey Station 8: 0.118 0.53 0.016 
Survey Station 9: 0.12 0.566 0.018 
Survey Station 10: 0.12 0.574 0.02 

 

Table 4.15: WELLBORE 2:  A summary of the region of uncertainty in error (2 * standard deviation) 
in the A-, B- and TVD axis – IPST-RQH 

 

Tables 4.4-15 shows the 2   region of uncertainty in error results of 5 different survey 

measuring sensors using the measurement data obtained from two wellbores shown in Tables 

4.1-2. Measurements using the digital inclinometer probe, with specifications shown in Table 

4.4, for the first wellbore; WELLBORE 1, shows its maximum error uncertainty of +/-0.108cm 

for the B-axis of the reference frame while that for the A-axis were approximately +/-0.37cm at 

the final target depth. That for the second well showed a maximum error uncertainty of 

approximately +/-0.906 cm on the B-axis of the defined reference frame while that of the A-

axis were approximately +/-0.346 cm respectively. Due to the cable stretch factor of the digital 

inclinometer probe as shown in Table 4.3, approximately +/-6.2 cm region of uncertainty error 

was observed in both wellbore measurements. Depending on the application at hand, these 

uncertainties can be considered as an acceptable tolerance limit of the measurement. However, 

the disadvantage with this survey method is that it is done after the drilling process has been 

completed such that there is hardly a possibility of corrective actions or a control measure to be 

carried out in real time. Secondly, due to handling, human influenced errors, which can not be 

specifically quantified and eliminated are prone to occur. 

The second sensor considered is the Vectornav-100T IMU Sensor with its specifications shown 

in Table 4.7 basically considering its on-board processing scheme. The first wellbore analysis 

showed a maximum error uncertainty of about +/-44cm in deviation on the B-axis of the 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
 2   2   2   

Wellbore Top: 0 0 0 
Survey Station 1: 0.186 0.004 0.004 
Survey Station 2: 0.264 0.004 0.008 
Survey Station 3: 0.332 0.022 0.014 
Survey Station 4: 0.392 0.042 0.022 
Survey Station 5: 0.45 0.066 0.032 
Survey Station 6: 0.504 0.102 0.042 
Survey Station 7: 0.558 0.148 0.052 
Survey Station 8: 0.608 0.198 0.062 
Survey Station 9: 0.66 0.248 0.074 
Survey Station 10: 0.672 0.26 0.076 
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designated reference frame while that of the A-axis was approximately +/-12.2cm. For the 

second wellbore, the maximum error uncertainty was approximately +/-65.7cm in deviation on 

the B-axis while that for the A-axis was approximately +/-167cm. The region uncertainty in the 

true vertical depth was approximately +/-0.09 cm without the effects of stretching as observed 

with the digital inclinometer probe. Although it is of moderate cost and the data can be obtained 

in real-time with a suitable borehole telemetry system, the obvious disadvantage here is the 

large values for the region of uncertainty in error in determining the displacements of the survey 

stations in the designated reference frame.  

The STIM300 IMU sensor with specifications shown in Table 4.10, for the first wellbore 

analysis, showed a maximum error uncertainty of approximately +/-3.12cm in deviation on the 

B-axis of the designated reference frame while that of the A-axis were approximately +/-1.48cm. 

For the second wellbore, the maximum error uncertainty was approximately +/-5.4cm in 

deviation on the B-axis while that for the A-axis was about +/-12.2cm respectively. The region 

of uncertainty in error in the true vertical depth was approximately +/-0.07cm without the effects 

of stretching as was observed with the case of the digital inclinometer probe. In addition to the 

fact that the high-end STIM300 IMU has high cost implications, the moderate values of the 

error uncertainty may not satisfy the acceptable error limit of measuring instruments in certain 

applications 

The third sensor under consideration was the iPST-RQH, a high-performance navigation grade 

IMU sensor from iMAR Navigation and Control GmbH. This is originally a pipeline surveying 

tool normally used for pipeline inspection and its performance specifications are given in Table 

4.13. The first wellbore analysis shows a maximum error uncertainty of approximately +/-

0.12cm in deviation on the B-axis of the designated reference frame while that of the A-axis 

was approximately +/-0.57cm respectively. For the second wellbore, the maximum error of 

uncertainty was +/-0.67cm for the deviations on the B-axis while that for the A-axis was 

approximately +/-0.26cm respectively. The uncertainty in the true vertical depth was 

approximately +/-0.076cm and also without the effects of stretching as observed with the digital 

inclinometer probe. The results for this IMU sensor obviously shows very desirable or low 

values for error uncertainty, but the main challenge is its high cost as well as the difficulty in 

adapting it for use in such borehole assembly system.  
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Figure 4.5: Comparison of the two times the standard deviation region of uncertainty in error for the 
B- and A- axis displacement for the Digital Inclinometer Probe (DIP) and the IPST-RQH IMU sensor; 

tables 4.3-5 and tables 4.12-14: WELLBORE 1. 

 

Figure 4.6: Comparison of the two times the standard deviation region of uncertainty in error for the 
B- and A- axis displacement for the Vectornav-100T IMU sensor and the STIM300 IMU sensor 

derived from tables 4.6-11: WELLBORE 1. 

Figure 4.5 shows a graph of the comparison of the two high-performance measurement sensors 

taking into consideration the second standard deviation region of uncertainty in error for both 

axis while Figure 4.6 shows the comparison of the two MEMS IMU sensors of lesser 

performance specification in the same regard. It is clear from Eqn 2.33 that the region of 

uncertainty depends also on the survey measurements at a given survey station such that the 

survey instrument or IMU sensor would have a lower error uncertainty for smaller values of 

inclination and azimuth. This explains why generally, from both graphs, for a given IMU 

sensor, the uncertainty on the B-axis is higher than that of the A-axis. In the case of the 

STIM300, its uncertainty falls within the acceptable error margin for the first trajectory but falls 
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short of the acceptable range in the second trajectory scheme if to be used in the real-world 

example (+/-5cm – either axis) discussed in Chapter 1. The digital inclinometer probe and the 

IPST-RQH both fall within the acceptable error margin in both trajectories while the Vectornav-

100T, without measurement updates do not meet the preset accuracy requirement. Taking into 

consideration the jet grouting cut-off example given in Chapter 1, for a tolerance of +/-3 cm 

deviation uncertainty, the IPST-RQH sensor form iMAR best meets this criterion. This is 

followed by the digital inclinometer probe when considering the displacement uncertainty in 

the B- and A-axis. However, as mentioned earlier, the former is of a high cost while the latter 

can basically only be used after the completion of the drilling process and is also prone to human 

influenced errors. 

4.2 Experiment to Investigate the Improvement in Accuracy using the Described 

Processing Scheme  

This experiment was done to investigate the improvement in accuracy attained after the 

implemented mathematical model. The low-cost consumer grade MPU6500 IMU sensor was 

used as the sensor of choice due to its low power consumption, as well as ease of integration 

into the sensor node module for usage. To give a perspective of the performance of the 

MPU6500 IMU sensor, the standard deviation region of uncertainty in error was first 

determined using the ISCWSA error model as shown in tables 4.16-18 with its performance 

specifications given as per data sheet in table 4.16. 

Table 4.16: A summary of the performance specification of the MPU6500 IMU Sensor. 

MPU6500 Parameter Value 

Accuracy (pitch & Roll) ~0.02° bias
xyf  5.886*10-1 m/s2 

 bias
zf  5.378*10-6 m/s2 

Scale Factor Error  . .S F errorf . 
1.0*10-3 

Alignment Error  Misalignmentf  
1.0*10-3 

Bias stability DriftG  <1.0*10-2 °/s 

Gyro random walk ARWG  <1.0*10-2 °/s/ Hz  

 

 

 

 

 



Chapter 4: Design, Analysis and Verification of the Proposed Model 
 

59 
 

Table 4.17: WELLBORE 1:  A summary of the region of uncertainty in error (standard deviation) in 
the A-, B- and TVD axis – MPU6500. 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- cm) 
       

Wellbore Top: 0.000 0.000 0.000 
Survey Station 1: 4.980 12.173 0.060 
Survey Station 2: 6.034 17.663 0.153 
Survey Station 3: 6.068 22.472 0.273 
Survey Station 4: 8.529 26.959 0.431 
Survey Station 5: 14.658 31.762 0.629 
Survey Station 6: 24.687 37.784 0.879 
Survey Station 7: 39.512 44.922 1.170 
Survey Station 8: 57.963 51.409 1.459 
Survey Station 9: 80.347 56.673 1.750 
Survey Station 10: 87.007 57.940 1.824 

 

Table 4.18: WELLBORE 2:  A summary of the region of uncertainty in error (standard deviation) for 
A-, B- and TVD axis – MPU6500. 

Survey Station B uncertainty (+/- cm) A uncertainty (+/- cm) TVD uncertainty (+/- 
cm)        

Wellbore Top: 0.000 0.000 0.000 
Survey Station 1: 14.152 0.507 0.373 
Survey Station 2: 20.976 5.746 0.840 
Survey Station 3: 28.827 19.908 1.601 
Survey Station 4: 40.602 43.202 2.566 
Survey Station 5: 56.632 73.877 3.573 
Survey Station 6: 76.603 116.466 4.692 
Survey Station 7: 99.738 171.397 5.896 
Survey Station 8: 125.062 235.999 7.115 
Survey Station 9: 157.457 310.979 8.391 
Survey Station 10: 167.779 332.589 8.715 

 

Figure 4.7 shows the graphical representation of the region of uncertainty in error for the B- 

and A- axis displacement for WELLBORE 1 using the MPU6500 IMU sensor. The error 

uncertainty at the final survey positions is approximately +/-87cm and +/-131cm for the A- and 

B- axis displacement respectively without any form of processing.  To achieve better accuracy 

and as well as real-time data acquisition in view of moderately cost IMU sensors, the 

experimental setup in the next section was conducted to show a proof of the concept. The results 

of the experiment in the next section gives an insight in terms of the improvement of the 

gyroscope drift and angular random walk and how this in turn improves the overall error of 

uncertainty of the survey measurements based on the field data given in Tables 4.1-2.  
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Figure 4.7 The region of uncertainty for the B- and A- axis displacement for the low-cost MPU6500 
IMU Sensor: WELLBORE 1. 

 

4.2.1 Determination of Accuracy and Precision of Sensor 

The error characteristics or performance specifications of the IMU sensor was verified against 

the provision made in the datasheet using the results from Allan variance curve (see Appendix 

V). The accuracy of the MPU6500 IMU sensor was determined by taking the inclination 

measurement values of the sensors at pre-defined deviation settings on the Acutronic AC1120S 

turn table. The accuracy is given as the difference between the preset value on the turn-table 

and the reading given by the sensor which is then converted to a percentage. The mean of the 

determined accuracies and precision was then obtained to determine the accuracy and precision 

of the MPU6500; and that of the Vectornav-100T for comparison.  

Several measurements were made at each of the preset values after which the mean value and 

the standard deviations are calculated. The accuracy at each of the preset inclinations were then 

computed by finding the difference between the preset value (true value) and the calculated 

mean value and expressed as a percentage. This difference represented the observed sensor 

accuracy at each preset position of which a probability distribution for the sensor accuracy is 

deduced. Preceding the experiment, a calibration of the sensor was made. This was a six-point 

calibration process using known gravity with the vertically placed turn-table at room 

temperature. The bias and misalignment vector and matrix were determined respectively using 

the least square estimate method with the corresponding adjustment for the temperature effect. 

See more details in Appendix III for more details on the background theory and the determined 

vector and matrix values. The determination of the accuracy and precision for both Vectornav-
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100T and MPU6500 was done. The turn-table placement of sensor module for near perfect pitch 

and roll measurements for deducing the sensor accuracy as decribed earlier and the precision 

of the inclination measurements were made. This was used to establish the probability density 

distribution for each of the sensors in terms of their respective accuracies and the precision 

where the accuracy denotes the mean error and the precision denotes the first standard deviation 

from the mean value. Table 4.19 below shows the values obtained after the measurements were 

taken 

Table 4.19: Summary of the relative accuracy and standard deviations from a series of measurements 
taken at preset inclinations on a turn-table. 

Preset Inclination ( kx ) (degrees) 0.5° 1° 1.5° 2.5° 3.5° 5° 10° 

Mean ( ˆkx ) (degrees) 0.488 1.006 1.480 2.478 3.429 4.982 9.966 

Standard Deviation ( ) (degrees) 0.027 0.022 0.038 0.025 0.141 0.014 0.029 

Relative Accuracy ˆ
100%k k

k
k

x xy
x
−

=   2.388 0.571 1.313 0.867 2.041 0.368 0.336 

 

where the percentage accuracy is given as the preset inclination minus the mean with the result 
expressed as a percentage of the preset value. Considered, is the conditional probability 
distribution ( )| |y x k kF y x , which represents the sensor’s probability distribution model with k 

representing the different angular measurements taken. This is interpreted as the probability 
distribution of the relative accuracy ky conditioned on the preset inclination kx . Assuming 

( )| |y x k kF y x  is differentiable, the expressed probability density function is given as  

 

2

2

1 ( )
2

| 2
1( | )

2

k

y

y

y x k k
y

f y x e







−
−

=  (4.6) 

Since ky  represents the accuracy with zero-mean and therefore 0 = . The distribution is 

represented by the mean of ky −  written as
ky , and the standard deviation denoted as y . 

This is represented as ( ),
ky yF     in this context. The prior distribution ( )F x also represented 

in this context as ( ),x xF    is given as the turn-table model described with a zero-mean 

accuracy and a standard deviation which is given as ~1/3600° from the datasheet. The posterior 

distribution hence considering the observed inclination difference and the known a priori 

distribution (from turn-table model) and expressed as a probability density function is given as 



Chapter 4: Design, Analysis and Verification of the Proposed Model 
 

62 
 

 |
|

( | ) ( )
( | )

( )
x y k k x k

x y k k
y k

f y x f x
f x y

f y


= , (4.7) 

 ( , ) ( , ) ( , )
kk y y x xF F F     =  , (4.8) 

where ( )y kf y  is considered a normalizing factor. The resultant means, and standard deviation 

as deduced from the formulation in Eq. 4.7 is given as 
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and the variance is given as 

 
2 2
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

 


=

+
 (4.10) 

The mean relative accuracy and  for the MPU6500 IMU sensor from the results of the 

experiment is shown in Table 4.20 and illustrated graphically in Figure 4.8. 

Table 4.20: Mean relative accuracy and standard deviation for MPU6500 sensor 

Relative Accuracy   1.126 
  0.0422 
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Figure 4.8: A representative distribution showing the mean accuracy (  ) of 1.126% and the standard 
deviation ( ) of 0.0422 for the MPU6500 sensor 

This implies that any time a measurement is taken, the accuracy of the measurement would be 
+/-1.126% of the measured value with a distribution of 0.0422°. 

The mean relative accuracy; and the standard deviation for the Vectornav-100T with preset 

inclinations of 0°, 1°, 2°, 3°, 4°, 5° and 10° are shown in table 4.21 

Table 4.21: Mean accuracy and 1st standard deviation for the Vectornav-100T IMU sensor 

Vectornav Angle 
(deg) Inclination 

Inclination 
accuracy 

Inclination % 
accuracy 

Inclination 1st st. Dev. 
(deg) 

0 0.000 0  0.005 
1 1.002 0.002 0.2 0.005 
2 2.005 0.005 0.25 0.005 
3 3.005 0.005 0.167 0.006 
4 4.006 0.006 0.15 0.005 
5 5.006 0.006 0.12 0.005 

10 10.012 0.012 0.12 0.005 

   0.168 0.0052 
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Table 4.22: Mean relative accuracy and   for Vectornav-100T IMU Sensor 

Relative Accuracy   0.168 
  0.0052° 

 

Figure 4.9: Representative distribution showing the mean accuracy of 0.168% and the first standard 
deviation of 0.0052° for the Vectornav-100T sensor 

This implies that any time a measurement is made, the accuracy of the measurement would be 
+/-0.168% of the measured value with a distribution of 0.0052. 

Table 4.23: Resultant mean accuracy and precision: MPU6500 and Vectornav-100T combined 

   %   
MPU6500 1.126 0.0422 
Vectornav-100T 0.168 0.0051 
Combined_1 0,182 5.06E-3 

 

The accuracy of the combined reading of both MPU6500 and Vectornav-100T is 0.182% with 

a slightly improved standard deviation of 5.06E-3°. Increase in the number of different 

measurement sensors with better accuracy characteristics results in higher accuracy and 
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standard deviation. Consequently, if a more accurate inclinometer is added to the sensor fray at 

the given position of measurement, an improvement in the measurement accuracy is achieved 

with a smaller variance spread. For example, addition of a hypothetical sensor, Sensor C with 

accuracy 0,1% and standard deviation 0.0005 

Table 4.24: Resultant mean accuracy and precision: MPU6500 and Vectornav-100T 

   %   
mpu6500 1.126 0.0422 
vn-100T 0.168 0.0051 

Combined 1 0.182 0.00506 
Sensor C 0.1 0.0001 

Combined_2 0.100032 9.998E-5 
 

Addition of Sensor C improves the accuracy to 0.100032% with a standard deviation of 

9.998E-5. 

4.2.2 Filter Tuning 

The initial phase of the experiment involved the tuning of the Kalman filter. As mentioned 

before, the noise characteristics of the gyroscope includes the deterministic errors i.e. the 

constant bias which is estimated and removed from subsequent gyroscopic data measurements 

and the stochastic bias which includes the bias modeled as a time correlated Gaussian random 

process described by the variance and a correlation time. In addition to the stochastic error is 

the zero-mean white Gaussian noise process (Eq. 3.17-18). The gyroscope noise characteristics 

was determined from over 2 hours of data collected with the IMU sensor at stand still using the 

Allan variance curve (see description and results in Appendix V). However, during operation, 

due to noise noise effects caused by engine activity and vibrations during the drilling process, 

the noise characteristics change during operation making it difficult to determine the level of 

noise to attribute to the process noise within the filter for optimal tuning. Tuning the Kalman 

filter is done by re-location of the Kalman filter estimator poles, which is described shortly. The 

Kalman filter gain is mapped to the error state covariance as given in Eq. 4.11 and the error 

state covariance is consequently mapped to the noise gain matrix as shown in Eq. 4.12. The 

noise gain matrix is written as a function of the tuning factors A and B as shown in Eq. 4.14-

15.   

 1][ −−− += k
T
kkk

T
kkk RHPHHPK  (4.11) 

 T
kkk

T
kkkk GQGFPFP 111111 −−−−

+

−−

− +=  (4.12) 
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where 1kF −
  denotes the error state dynamic matrix, kK  and kH denotes the gain matrix and the 

measurement matrix at time instant k  respectively. kP− denotes the a priori estimate of the state 

covariance at time instant k , 1kP+

−
denotes the a posteriori estimate of the covariance at time 

instant 1k − , 1kG −
 denotes the noise gain matrix at the time instant 1k − . Formulation for the 

closed loop characteristics of the extended Kalman filter of the error model is given as 

 

 ( ) kkkkk zKxHKIx +−= −+ ˆˆ  (4.13) 

where ˆkx+ , kz  and kP+ denote the a posteriori error state estimate, the measurement vector and 

a posteriori state covariance matrices respectively with the eigenvalues of the matrix kI K H−

being the poles of the estimator. The noise gain matrix Eq. 3.25 is re-written with the tuning 

factors as shown in Eq. 4.15. 
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where the variables  ,  ,  represent the roll, pitch and yaw angles respectively and s , s

c and c  denote the compact notations for the trigonometric functions sin , cos , sin  , 

and cos , respectively. 

The noise gain matrix written further as  

 3 3

3 3

0
0

C x

x D

G
G

G
 

=  
 

 (4.15) 

, 3C i jG G +=  and 3, 3D i jG G + += ,where 1 3i   and 1 3j   where A and B are the tuning 

parameters for the Kalman filter estimator and affect the pole locations of the estimator. Large 

values of A and B results in faster poles thereby resulting in a faster response time but at the 

cost of a noisier signal. In the filter tuning process, a suitable value of B is selected that enables 

a faster estimation of the bias. The results of the comparison of the tuned filter with B = 5 
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compared with B = 1 is shown in the graphs of Figure 4.11b. The rate bias is estimated during 

the measurement update period. The filter is tuned such that the gyro bias convergence speeds 

up without significantly magnifying the noise in the Euler angle estimate. 

 

 

Procedure: 

1. A miniature drill string on which a sensor node is attached is set to an inclination 

of 2° as shown in figure 4.12. 

2. The bias estimation and alignment offset correction is executed from the 1st to 

300th second  

- String is kept stationary for the first 100 seconds at a pre-defined position. 

- 3.6°/sec rotation rate for 2 revolutions to estimate and remove the alignment 

offset. This is described further in section 4.2.2. 

3. This is followed by 20 rotations at 71°/sec beginning at the 300th second 

4. Observation of the estimated yaw angle position error and gyroscope bias were 

made. Also recorded were the encoder position measurement, raw gyroscope 

position measurement; estimated yaw position, computed inclination and 

toolface/azimuth, and the gyroscope integration time. 

5. The data rate is set at 1.9Hz whereby the sensor data is read, measurement data 

received, data processed by the indirect Kalman filter and the result transmitted. The 

execution cycle with the timing for each event is shown in figure 4.10  

 

 

 

 

Figure 4.10: The execution cycle showing the acquisition and processing times of the sensor data and 
incoming measurement data as implemented on the micro-processor. 
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Table 4.21: Summary of the Explanations of the Events Shown in Execution Cycle Diagram in figure 

4.10. 

Event Details 
1 Synchronization of encoder and node module timers or clocks 
2 Execution begins 
3 Request for encoder information by the node module 
4 Read encoder data by encoder module 
5 Send encoder data by encoder module and receive encoder data by node module 
6 Processing (Extended Kalman filter) 

 

Figure 4.11a shows the velocity profile of the drill string used in the experiment with a total 

operation time of approximately 620s. The velocity profile shows the first stationary phase 

where the bias estimation is done and then followed by the slow rotation phase to enable for the 

correction of inclination alignment offset. This is followed by the second stationary phase where 

by the system transients’ decays before the first set of initial readings is taken after which the 

rotation phase, which simulates the actual drilling, occurs. Finally, the last stationary phase; 

again, the system transients are made to decay before readings are taken. Figure 4.11b shows 

the estimated bias in all phases and shows the effect of the tuning parameters used as explained 

in section 4.2.1. Figures 4.11c-d show the computed inclination and azimuth for the various 

phases from the accelerometer output data and the processed gyroscope data output after the 

yaw position angle has been estimated using the indirect Kalman filter with measurement 

update data from the encoder; the aiding system.
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Figure. 4.11a: Velocity profile used: ~45sec 
for online bias estimation, alignment offset 

determination and removal with slow rotation 
of 3.6°/s from 36th to 235th second and then 

rotation at 71°/s from ~278s to 343s. 

 

 

Figure 4.11b: The tuned filter (with 5B = ) 
shows a faster convergence at approximately 

0.2°/s after rotation stops i.e. ~82.8sec 
compared to ~177.98sec in the case where B = 

1. 

 

 

 

 

Figure. 4.11c: Computed inclination data from 
accelerometer output data. Inclination 

measurements are read at stationary phases 
after applying a moving average filter to 

smoothing the signal. 

 

 

Figure. 4.11d: Computed azimuth data from 
accelerometer output data and the estimated 

yaw position. Azimuth measurements are read 
at stationary phases after applying a moving 

average filter for signal smoothing.
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4.2.3 Description of Experimental Setup 

Two categories of tests were made to investigate the ability of the sensor node module with the 

implemented filter algorithm as described in Chapter 3 to accurately track the position of the 

sensor node with respect to defined measurement update modes and consequently, the effect it 

has on the azimuth errors. The two main test conditions include 

a. Continuous measurement updates interspersed with data timeout periods where data 

timeout refers to periods of unavailability of measurement updates. 

b. Single measurement updates with decreasing frequency. 

And finally, multiple nodes sequential measurement update for the above two scenarios. The 

first condition consists of continuous measurement updates at 1.9Hz; the same bandwidth as 

gyroscope sampling rate, with periodic data timeouts by which the filter coasts through relying 

on gyroscope data alone for estimation of the yaw position. This is further categorized into 

i. Update at 1.9Hz continuously (no measurement data timeout periods) 

ii. Continuous 20s measurement updates at 1.9Hz with 5s, 10s, 15s, 20s, 25s, 30s, 35s, 

40s, 45s, 50s, and 1-minute data timeout periods over a given time duration. 

The miniature drill string setup as shown in figure 4.10 has a 1024 count incremental encoder 

interfaced to the C1101 868Hz transceiver and serves as the aiding system attached to it. It 

reads the angular position relative to the pre-defined reference position and sends it alongside 

the angular velocity information to the sensor node. The sensor node consists of the MPU6500 

IMU sensor also interfaced with the 868Hz, C1101 wireless transceiver. The encoder, as an 

aiding system, provides the measurement update to the sensor node. The sampling rate at which 

the MEMS MPU6500 triple-axis gyroscopic sensor is read is at 1.9Hz, which includes reading 

sensor data, application of the moving average filter, and execution of the indirect Kalman filter; 

see figure 4.8, while ensuring that dynamics of the rotating drill string or rotation rate does not 

exceed 0.95Hz (57rev/min) to satisfy the Nyquist rate. At each iteration of the filter, the node 

receives measurement data from the aiding system as measurement update when available. This 

implies that the measurement update would be at the same frequency of 1.9Hz in the event of 

its continuous availability. The test begins with an initial 50s for the estimation and removal of 

the fixed bias of the gyroscope output data using simple averaging followed by the calibration 

phase which involves a very slow rotation at ~7°/s for 2 revolutions for the removal of the 

alignment offset error. This occurs from the 50th to the 250th second. During this phase, the 

maximum and minimum pitch and roll measurements are determined, added and divided by 



Chapter 4: Design, Analysis and Verification of the Proposed Model 
 

71 
 

two for subtraction from each subsequent pitch and roll reading to correct for any alignment 

offset. The inclination data is then generated from the pitch, roll measurement as the square 

root of the square sum of the pitch, and roll measurements.  This removes the alignment errors 

in the inclination measurement.  

 

  

Figure 4.12: Miniature drill string as setup in the laboratory for the experiment; first picture is the 
frontal view and the next picture is the side view. 

The tuned indirect Kalman filter is applied, in the estimation of the yaw position and the bias 

of the system both during and after the rotation dynamics and the observations are herein noted.  

The consequent effect on the survey measurements; the inclination and azimuth, and then 

subsequently, the resulting effect on the error uncertainty in the position measurements with 

respect to the designated frame of reference is investigated. As mentioned before, the survey 

measurements are taken at stationary positions after the drill string rotation comes to a stop. To 

reduce the noise on the sensor measurement, a 32-point moving average filter is applied and 

therefore a period of approximately 20 seconds is required for the measurements to stabilize 

before the survey measurements are taken. Preceeding each test run, the true inclination and 
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azimuth is determined after the initial calibration. The miniature drill string is then rotated at 

71°/s for 20 revolutions and then brought to a halt. The survey measurements were logged 

during the entire process together with the encoder position data, estimated yaw position, raw 

gyroscope position data, gyroscope angular rate data, encoder velocity and the gyroscope bias. 

After the removal of the constant bias and the alignment offset error, the bias estimate is 

observed to converge to its true value of approximately -0.02°/s. Observation is made of the 

time duration for the bias estimation after rotation (at 71°/s) comes to a stop. The thin dashed 

vertical lines in the graphs in figures 4.14 shows the periods of available measurement updates 

and the measurement data timeout periods where the update sequence value 0 denotes the data 

timeout periods for the respective measurement update modes.  

4.2.4 Continuous Measurement Update Interspersed with Measurement Update 

Timeout Periods 

 

 

Figure 4.13: Convergence time of the bias estimation of the different measurement modes defined for 
continuous measurement update scheme interspersed with data timeout periods. 

Figure 4.13 shows the convergence time for the estimated bias to be averaging at 50s for the 

measurement update mode with data timeout periods less than 45 seconds with a gradual 

increase in the convergence time as the timeout approaches one minute. Convergence time is 
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defined here as the time the estimated bias reaches approximately -0.02°/s. Considering selected 

measurement modes; in the first measurement update mode with continuous measurement 

updates, the time duration for convergence of the bias to its true value after stoppage is 

approximately 46s (320th – 366th second). In the measurement update mode with 10s timeout 

periods, after rotation, convergence of the estimated bias is after approximately 57s (314th – 

371st second) with the delay attributed to a data timeout period occurring at the time of rotation 

stoppage as shown in figure 4.14b. For that of the 30s-timeout period, after rotation, the 

convergence time for the estimated bias is approximately 49s (347th to 396th second).  In the 

final measurement update mode with one-minute timeout periods, there is a delay in the bias 

estimation because of the long data timeout period that occurs just before rotation comes to an 

end, figure 4.14d. The convergence time is approximately 156s (320th – 476th second). 

Convergence of the bias estimate is faster when the measurement update period coincides with 

the period during rotation stoppage.  Figure 4.14a shows the estimated yaw position error for 

the continuous measurement update case. Since the measurement update rate or frequency is 

the same as the time update rate due to the fact that measurements are only recorded after the 

system transients have decayed after rotation comes to a stop, the measurement data with a 

much lower measurement noise covariance acts as a reset thereby assigning a high weight to 

the Kalman gain which makes the data from the encoder of more significance. Figures 4.14b, 

d, f, and h show the estimation of the bias during the entire duration of the test for selected 

measurement update modes. Generally, the bias is estimated during the period of availability 

of measurement updates. Appropriate tuning of the indirect Kalman filter provides fast 

convergence of the bias during the measurement update periods as observed in each case after 

the rotation comes to a stop. Figure 4.14e shows the estimated position errors where growth of 

the error occurs during the instances of absence of measurement update information or data 

timeout periods. However, a higher yaw position error; about 1.3° is observed during the first 

data time out period (370th to 396th second) when the estimated bias hadn’t converged yet to its 

true value. It is observed that during the subsequent time out periods; within the 423rd to the 

446th second period and within the 467th to the 496th second, the estimated yaw position error 

is much reduced to within +/-0.4°. A similar such observation is seen in Figure 4.14f with the 

estimation of the yaw positon error. A larger error (~+/-0.7°) is observed during the first data 

timeout period (417th to 476th second) after which the subsequent data timeout period shows a 

much-reduced estimated yaw position error during the period 502nd to 550th second within +/-

~0.4°. 
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Figure 4.14a: Estimated yaw position error 
with continuous measurement update at 

~1.9Hz. 

 

Figure 4.14b: Estimated gyro bias with 
continuous measurement update at ~1.9Hz  

 

 

Figure 4.14c: Estimated yaw position error 
with 20s continuous measurement update 
periods interspersed with 10 seconds’ data 

timeout periods.  

 

Figure 4.14d: Estimated gyro bias with 20s 
continuous measurement update periods 

interspersed with 10 seconds’ data timeout 
periods.  

 

Figure 4.14e: Estimated yaw position error 
with 20s continuous measurement update 
periods interspersed with 30s data timeout 

periods.  

 

Figure 4.14f: Estimated gyro bias with 20s 
continuous measurement update periods 

interspersed with 30 seconds’ data timeout 
periods. 
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Figure 4.14g: Estimated yaw position error 
with 20s continuous measurement update 
periods interspersed with 1-minute data 

timeout periods. Data timeout when update 
seq. no = 0.  

 

Figure 4.14h: Estimated gyro bias with 20s 
continuous measurement update periods 
interspersed with 1-minute data timeout 

periods. Data timeout when update seq. no = 0. 

 

Effect on Azimuth measurements (continuous) 

As mentioned in Chapter 1, what is of importance is how the yaw position errors translates to 

azimuth errors since it is directly related to the toolface angle as given in Eq. 1.3. Therefore, 

alongside the bias estimation, the effect of differing measurement update modes on the 

inclination errors and azimuth errors were observed. Figure 4.15 shows the graphical 

representation of the computed inclination and azimuth errors from the yaw position estimate 

results from the indirect Kalman filter. 

The graph in figure 4.15 gives a representation of the inclination errors and azimuth errors 

corresponding to the different measurement update modes mentioned earlier. The root mean 

squared azimuth error is estimated at approximately 0.4° with measurement update timeout 

periods between 10 seconds through 35 seconds with better performance observed with 

continuous measurement update with no timeout; ~0.03°, as well as with 5 seconds timeout 

periods; ~0.25°, both recording under 0.3° azimuth errors. There is a general increase in the 

azimuth error with increasing measurement update timeout periods while the inclination errors 

are unaffected by yaw position errors. The high azimuth error shown with a timeout period of 

50 seconds shows the potential irregularity of the azimuth errors as the timeout periods 

increases. Further analysis for comparison purposes is given in section 4.2.5. From the graphs 

in Figures 4.16, MAF refers to the 100-point moving average filter applied to the computed 

inclination and azimuth output data to remove the high frequency noises to enable for a clean 

signal to be recorded.   
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Figure 4.15. Graphical Representation of the Summary of Inclination and Azimuth Errors with 
Increasing Measurement Data Timeout Periods 

Table 4.22 A Summary of Inclination and Azimuth Errors with Increasing Measurement Data Timeout 
Periods 

 

 

Figure 4.16a: Estimated and True Inclination 
in continuous measurement update mode 

 

Figure 4.16b. Estimated and True Azimuth in 
continuous measurement update mode 
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Measurement Mode RMS Inclination Error (deg) RMS Azimuth Error (deg) 
Continuous Measurement Update 0.01 0.029 
20s update with 5s time out period 0.085 0.250 
20s update with 10s-time out period 0.002 0.384 
20s update with 30s-time out period 0,000 0.351 
20s update with 50s-time out period 0.015 1.0 
20s update with 1 min time out period 0.005 0.565 
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Figure 4.16a-b shows the estimated inclination and azimuth measurements alongside their true 

values with continuous availability of measurement update for the observation period between 

350th to 550th second within which the sensor was at rest (no rotation was taking place) and the 

system transients had decayed. The root mean square inclination and azimuth errors are 

observed for the different measurement modes as shown in Table 4.22. A 32-point moving 

average filter, implemented in the micro-processor, was applied to the output data to reduce the 

noise effect. This was used in computation of the azimuth after translation from the body frame 

of reference to the designated reference frame with the estimated yaw position as given by the 

equation in Eq. 1.3 

4.2.1 Single Measurement Updates with Increasing Frequency 

 

 

Figure 4.17: Logarithmic plot of the convergence time of estimated bias with increasing measurement 
update frequency 

Figure 4.17 shows a logarithmic plot of the convergence time for the estimated bias with 

increasing measurement update frequency for selected frequencies. There is a general decrease 

in convergence time with increasing measurement update frequencies. Measurement update 

frequencies above 0.1Hz show a convergence time in the region towards 50s. Figure 4.16 shows 

the estimated positions and their corresponding estimated bias with selected varying 

measurement update frequencies.  The dashed lines show the measurement updates. For 

selected measurement update rates; at update rate of 0.0167Hz convergence time is after 

approximately 165s (310th – 476th second), 0.05Hz update rate shows convergence after 

approximately 120s (317th – 437th second), 0.01Hz update rate shows convergence after 
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after stoppage with an update frequency of 0.2Hz. The yaw position error is observed to be 

within +/-0.2°. Figure 4.16c shows much higher yaw position errors within +/-0.4° with the 

estimated bias clearly showing some noisiness. Figure 4.16e shows much higher estimated 

positon errors up to the 437th second after which it reduces to within +/-0.4° as the estimated 

bias gradually becomes steadier. Figure 4.16g shows the same trend with the estimated yaw 

postion errors during the measurement timeout period with the estimated position error growing 

to ~-3°. As the bias estimate converges to its true value, the position error is observed to reduce 

to +/-0.4°.  Depending on the required accuracy, the duration of time after stoppage to take 

measurement is important with respect to the frequency of update. For very low measurement 

update rate, more time is required to enable for more accurate measurement to be made.   
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Figure 4.18a: Estimated yaw position error with measurement update 
frequency of 0.2Hz 

 

Figure 4.18b: Estimated bias with measurement update frequency of 0.2Hz. 

 

Figure 4.18c: Estimated yaw position error with measurement update 
frequency of 0.1Hz.  

 

Figure 4.18d: Estimated bBias with measurement update frequency of 
0.1Hz.  
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Figure 4.18e: Estimated yaw position error with measurement update 
frequency of 0.05Hz 

 

Figure 4.18f: Estimated gyro bias with measurement update frequency of 
0.05Hz 

 

Figure 4.18g: Estimated yaw position error with measurement update 
frequency of 0.0167Hz 

 

Figure 4.18h: Estimated gyro bias with measurement update frequency of 
0.0167Hz 
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Effect on Azimuth Errors 

 Figure 4.19 shows the corresponding logarithmic plot of the inclination errors and azimuth 

errors with increasing measurement update frequency. The azimuth errors are generally higher 

(averaged at 0.5°) as compared to the measurement mode of continuous updating with 

interspersed data timeout periods of corresponding data timeout period length and again with 

the inclination errors independent of the estimated bias observed. Frequencies below 0.03Hz 

show irregular azimuth errors in addition to the general increase in azimuth error observed. 

Further analysis for comparison purposes is given in section 4.2.5. 

 

Figure 4.19. Logarithmic plot of the inclination errors and azimuth errors with increasing 
measurement update frequency 

 

From the graphs in Figures 4.20, MAF refers to the 100-point moving average filter applied to 

the computed inclination and azimuth output data to remove the high frequency noises to enable 

for a clean signal to be observed.   
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Table 4.22 A Summary of Inclination and Azimuth Errors with Increasing Measurement Data Timeout 
Periods 

 

 

 

Figure 4.20a: Estimated and true inclination 
with measurement update frequency of 0.2Hz. 

 

Figure 4.20b: Estimated and true azimuth with 
measurement update frequency of 0.2Hz. 

 

Figure 4.20a-b shows the estimated inclination and azimuth measurements alongside their true 

values measurement with update frequency of 0.2Hz for the observation period between 350th 

to 550th second within which the sensor was at rest (no rotation was taking place) and the system 

transients had decayed. The root mean square (rms) inclination and azimuth errors are observed 

to be approximately 0.0089° and 0.5213° respectively. 
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4.2.2 Multiple Node Measurement Update 

The experiment was repeated this time using two nodes for the case of multiple node 

measurement update. As described in chapter 3, the optimal estimate after the time update 

period in the top node (node A) was used as the incoming measurement update for node B with 

the measurement noise covariance equal to the optimal estimate of the error state covariance. 

This was repeated and showed a azimuth error averaging at 0.4°. The results of the effect on 

the inclination and azimuth are shown in figures 4.21-22 and Tables 4.24-25. The measurement 

noise covariance was of negligible change from node A to node B as compared to that of the 

encoder to node A as the updates from the encoder are highly accurate. This therefore can be 

approximated to single node updates as in the results of the encoder-single node update. 

 

 

Figure 4.21: Estimated and true inclination 
with measurement update of node A with 

update frequency of 0.8Hz. 

 

Figure 4.22: Estimated and true azimuth with 
measurement update of node A with update 

frequency of 0.8Hz. 

 

Figure 4.21-4.22 shows the Estimated and True Inclination and Azimuth errors with 

measurement update frequency of 0.8Hz for the observation period between the 600th to 1150th 

seconds within which the sensor was at rest (no rotation was taking place). The root mean square 

(rms) inclination and azimuth errors are observed to be approximately 0.002° and 0,442° 

respectively.

1,7

1,8

1,9

2

2,1

2,2

2,3

600 800 1000 1200

IN
C

LI
N

A
TI

O
N

 (D
EG

)

TIME (SEC)

Est. Inclination (MAF)
True Inclination

-10

-8

-6

-4

-2

0

600 800 1000 1200

A
ZI

M
U

TH
 (D

EG
)

TIME (SEC)

Est. Azimuth (MAF)
True Azimuth

Measurement Mode RMS Inclination Error (deg) RMS Azimuth Error (deg) 
measurement update of node A 0.002 0.442 
measurement update of node B 0.027 0.761 



Chapter 4: Application of Concept Model and Performance Analysis of Results 
 

84 
 

4.2.3 Results Analysis 

This section provides a prelude for the basis of comparison of the azimuth results to that of the 

one defined by the ISCWA. In the case of the magnetic based survey measurement systems 

used in wellbore surveying, the metallic drill string together with its rotation action causes the 

drill string to be magnetized in the direction along the drill string axis and consequently, locally 

influences the earth’s magnetic field thereby corrupting the horizontal component of the earth’s 

magnetic field [30]. This makes it difficult to accurately measure the magnetic azimuth. 

Therefore, further measures such as the insertion of non-magnetic drill collars (NMDC) into 

the drill string are usually taken to reduce this magnetic effect for better magnetic azimuth 

measurement. The magnetic interference azimuth error as described by the ISCWSA, is of the 

order of 0.25° + 0.6 x sin I x sin A which implies that higher azimuth errors are obtained with 

navigation at higher inclination towards the eastern or western directions, see graph in figure 

4.23. The ISCWSA determines an acceptable azimuth accuracy to be 0.25°, when employing 

the use of a non-magnetic drill collars for reducing the magnetic interference of the drill string 

in the determination of the azimuth. For standard MWD, the azimuth error uncertainty is 

prefered to be 0.36° [30]. However, to achieve such acceptable or a defined azimuth error limit, 

the use of NMDC length selection charts are required for various wellbore inclinations and 

azimuths for a maximum acceptable azimuth error [30]. Figure 4.23 shows the corresponding 

azimuth error with increasing inclination angle when drilling is done towards the eastern 

direction using the magnetic north navigation frame system. In this situation, the azimuth error 

is observed to increase linearly with increase in the inclination, which therefore requires extra 

effort of the use of the NMDC to reduce the magnetic influence. The results of the experiments 

conducted shows an improved azimuth accuracy, better than 0.25°, with a measurement update 

rate of 1Hz or greater as shown in figure 4.17. However, having continuous measurement 

updates as in the case with 20s of 1.9Hz continuous measurement update frequency interspersed 

with 10s through 30s data timeout periods generally showed a better azimuth performance with 

root mean square azimuth errors averaging at approximately 0.35° as compared to single 

measurement updates with decreasing update frequencies as in the case of frequencies at 

0.05Hz, 0.1Hz and 0.2Hz which have azimuth errors averaging at approximately 0.5°. The 

azimuth error here is consistent and independent of the direction of drilling with respect to the 

geographical east or west. An advantage with this scheme is that there is no need for the use of 

NMDC as the azimuth errors are independent of the inclination or azimuth measurements.  
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Figure 4.23: The azimuth error assuming drilling in the eastern direction (azimuth =090°) with 

increasing inclination (ISCWSA). 

4.2.4 Effect on the Region of Uncertainties in Error at the Various Survey Stations 

Along the Wellbore Path. 

A further observation is made on how the improved azimuth error affects the region of 

uncertainty in error at the various survey stations given in tables 4.1-2. Considering the 

MPU6500 and utilizing the error model defined by ISCWSA; the standard deviation error of 

the region of uncertainty and an azimuth error of 0.25° is used to plot the graphs in Figures 

4.24-27 showing the improvement in the region of uncertainty error in the position survey 

measurement using the filtered output using the described indirect Kalman filter scheme in 

comparison to the unfiltered output. In effect, at each survey station, the contribution of the 

azimuth error is 0.25° and is used in the computation of the region of uncertainty in error of the 

B- and A-axis displacements at each survey station as a replacement of the product of the 

weighting function and the error magnitude relating to the gyroscope angle random walk and 

bias instability. From the standard deviation error in the region of uncertainty plot of 

WELLBORE 1 shown in figure 4.24, it is observed that after the third survey station (SS3) the 

region of uncertainty in error of the filtered outputs shows an improvement as compared to the 

unfiltered output case. It shows to converge to a constant value as the number of survey station 

increases. On the B-axis the region of uncertainty in error shows improvement after the fifth 

station and approaches a fixed value of about 9 cm. At the final station there is ~9.5-fold 

improvement; ~9.2cm for the filtered output as compared to 87cm for unfiltered output, for the 

B-axis displacement error while for the A-axis displacement error, there is a 1.5-fold 

improvement; ~39.2cm for the filtered output as compared to ~58cm for the unfiltered output.   
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Figure 4.24: WELLBORE 1: The comparison of the filtered and unfiltered estimated standard 
deviation error uncertainty for B- and A- axis displacements for the low-cost MPU6500 IMU Sensor.  

 

Figure 4.25: WELLBORE 2: The comparison of the filtered and unfiltered estimated standard 
deviation error uncertainty for B- and A- axis displacements for the low-cost MPU6500 IMU Sensor.  

Figure 4.25 shows the improvement of the standard deviation error of uncertainty for the B- 

and A- axes displacement for the case of WELLBORE 2 trajectory using the MPU6500 IMU 

sensor. Again, a convergence to a constant value as the number of survey station increases is 

observed.  A 3.9-fold improvement is observed in the B-axis standard deviation error in 

displacement; ~43 cm for filtered data as compared to ~168cm for unfiltered data, while an 

~44.5-fold reduction is observed for the A-axis deviation; ~7.5cm for filtered data as compared 

to ~333cm for unfiltered data. 

An extension of the azimuth error results from the MPU6500 sensors, an application of the 
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uncertainties. The Vectornav-100T, regarding its performance specifications, theoretically has 

a lower azimuth error than that of the MPU6500 IMU sensor. The first standard deviation error 

uncertainty at each survey station is computed with an azimuth error of 0.25° replacing the 

product of the weighting function and the error source. In this case, an improvement in the 

uncertainty for both the B- and A-axis is observed from the second survey station (SS”) 

onwards. An ~4.7-fold improvement in the B-axis displacement error of uncertainty is observed 

in the B-axis; 7.11cm for filtered data as compared to 33.2cm for unfiltered data, while an ~3.8-

fold increase is observed for the A-axis deviation;2.4cm for filtered data as compared to 9.18cm 

for unfiltered data as shown on the graph of figure 4.26. 

 

Figure 4.26: WELLBORE 1: The comparison of the filtered and unfiltered estimated first standard 
deviation error of uncertainty for B- and A- axis displacements for the low-cost MPU6500 IMU 

Sensor.  

Figure 4.27 shows the improvement for the standard deviation region of uncertainty in error for 

the B- and A- axes displacement for the case of WELLBORE 2 trajectory using the Vectornav-

100T IMU sensor. As before, a convergence to a constant value as the number of survey stations 

increases is observed. A ~4.4-fold reduction is observed in the B-axis second standard deviation 

error; ~11cm for filtered output data as compared to ~50cm for unfiltered output data, while an 

approximately 4.6-fold reduction is observed for the A-axis uncertainty; ~27.4cm for filtered 

output data as compared to ~126cm for unfiltered output data. The asymtotical approach 

towards a constant value is due to the constant azimuth errors because of using the filter. 
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Figure 4.27: WELLBORE 2: The comparison of the filtered and unfiltered estimated second standard 
deviation error of uncertainty for B- and A- axis displacements for the low-cost MPU6500 IMU 

Sensor. 

In summary, this chapter basically looked at the application of the ISCWSA error model in the 

determination of the region of uncertainty in error when using key survey instrument 

measurement tools to establish the accuracy of recorded wellbore trajectory.  It looked at actual 

data recorded in the field to determine the ellipsoid of uncertainty given as the two times the 
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respective sensors used within these tools. It shows how the error sources attributed to the 
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which is the extremely high costs and difficulty in its adaptation to the application at hand 

(implementation within the drill tube). The digital inclinometer probe has no gyroscope and 

measurements are made in a fixed fame of reference by way of a fixed orthogonal A and B axis 

frame and therefore shows a better region of uncertainty in error as compared to the other two 

MEMS sensors. However, due to errors attributed to cable stretch, it is shown to have the worst 

error uncertainty in the true vertical depth direction in the designated frame of reference. 

Secondly, an experiment was conducted to investigate the effect of running the indirect Kalman 

filter in the feed-forward configuration on a low-cost MEMS IMU gyroscopic sensor with 

worse performance specifications when compared with the aforementioned IMU sensors.  To 

highlight the resulting improvement, the ISCWSA error model was applied to investigate the 

region of uncertainty in error associated with using this sensor in the absence of any processing.  

A description of the experiemental setup was given to show the determination of the noise 

characteristic of the sensor; its accuracy and precision, which was subsequently used in the 

model equation used for the Kalman filter to estimate the yaw position of the sensor within the 

drill tube. The results from the outcome of the experiment shows the improvement in the 

estimation of the sensor yaw position which translates into improved azimuth accuracy by way 

of reduced azimuth errors and consequently, improved survey position estimate. it discussed 

two different measurement update modes considered which includes the continuous 

measurement update mode interspersed with data timeout periods and single measurement 

update modes at varying frequencies. The results from the former are observed to be more 

favourable for a given range of interspersed data timeout periods and generally of better 

performance in terms of lower azimuth errors as compared to the single measurement updates 

at varying frequencies within the context of the borehole telemetry system. A further 

comparison of the results was made with that considered acceptable by the ISCWSA 

standardization committee. It shows an improvement in general in the sense of the listed below: 

1. Reduced survey position error uncertainty especially when drilling is performed 

towards the eastern or western directions. 

2. Position errors, because of using the indirect Kalman filter, in the northern and eastern 

directions show a convergence asymptotically towards a constant value as the number 

of survey stations increase since the gyro drift is removed. 

3. There is no need for the implementation of the non-magnetic drill colars (NMDC) to 

mitigate the effects of earth magnetic field components induced along the drilling string 

which influences the accuracy of magnetic based survey sensors. 
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4. Due to the need to record measurements at stationary positions and coupled with 

relatively low dynamics due to relatively slow rotations during drilling, the 

measurement update rate and time update rate can be decreased effectively thereby 

reducing network overhead and improving battery life. Furthermore, it enables making 

a continuous measurement update system feasible which is shown in the experiment to 

be of better performance wih regards to improvement of the resulting survey position 

uncertainty errors. 

4.3 Probabilistc Approach using Weighting Functions 

A trajectory is designed to have four survey stations as shown in figure 3.7. Each of the tubes 

is fitted with a cluster of four identical sensors and the output of these four sensors statistically 

combined as explained in sections 3.6 and 3.7 to obtain the estimated survey measurements; 

inclination and azimuth. The survey measurements are made sequentially as each tube is 

inserted after the previous has completely entered the ground. Measurements are combined 

using the weighted average means as elaborated in section 3.7.  The measurements are recorded 

at the following times;  1t ,  2t  ,  3t  and 4t  as illustrated in the table 4.26.  

Table 4.26: A summary of the sequential measurement scheme of the various survey stations showing 
the measurement times; the previous or old measurements, the new measurement in the ideal case that 
represents the ground truth, and the actual measurement recorded after combination with previous 
measurements. 

 SS1 SS2 SS3 SS4 

Survey Measurement Times    1t  2t   3t  4t  2t   3t  4t   3t  4t  4t  

Combined previous measurements with equal 
weights 
used in the weighted average 

1
oA 1

oB 1
oC 1

oD  
2
oA 2

oB 2
oC  

3
oA 3

oB  
4
oA  

New Measurement: Ideal Case 
Equal weight given to all measurement 
(New trajectory assuming all measurements 
picked new changeds: Ground Truth) 

1
NA 1

NB 1
NC 1

ND  
2
NA 2

NB 2
NC  

3
NA 3

NB  
4
NA  

Actual Measurement Recorded: Change  
detected only by clusters with measurements at  

4t  
1
oA 1

oB 1
oC 1

ND  
2
oA 2

oB 2
NC  

3
oA  

3
NB  

4
NA  

 

In table 4.26, 1
oA  denotes the sensor cluster A where the subscript represents the survey station 

number, the superscript denotes measurement category; that is either the previous combined 

measurement depicted as “o” at observation times 1t ,  2t and 3t  or depicted as “N” which 

represents the new measurement at 4t . This representation follows for the clusters B, C and D.  
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Let xM be the new position measurement vector; north, east and true vertical depth, in the ideal 

case assuming all the clusters always picked up the new change; and represents the ground 

truth. Then we let ˆ
xM be the actual measurements recorded because of the combined previous 

measurements and the current measurement at 4t where the change in trajectory was picked up. 

The change in trajectory is because of a change in the survey measurement at survey station 2 

(SS2). The basis for investigation is centered around the error matrix (covariance matrix) R 

which is given as 

 ˆ ˆ( ) ( )x x x xR M M M M = −  −  (4.16) 

The square root of the diagonal components which represents the first standard deviation of the 

error in the north, east and true vertical depth is used. The error trend is investigated by keeping 

all measurements constant while slowly varying the inclination in steps of 0.5° to observe the 

effect of the error in the resultant combined measurement; using equal weights for previous and 

current sensor measurements, on the error in the position measurement with increasing 

inclination. A similar investigation is done for the azimuth which is also varied in steps of 5° 

to observe the effect of the error in measurement, also using equal weights for previous and 

current sensor measurements, on the error in the position measurement with increasing azimuth. 

The results of which is used to advise on the appropriate weighting ratio to assign to previous 

and current survey measurements for a good estimate of the survey position measurement at 

the survey station of interest. It should be noted that this is more of using heurestics and not 

using the least square estimate method as mentioned in chapter 2. Table 4.27 shows the 

performance specifications of the 4 identical sensors used in a single sensor cluster. 

Table 4.27: A summary of the performance specification of the IMU sensor  

 Parameter Value 

Bias Instability (0.04mg) => 0.0023° deviation 

The effective bias on the xy-axis and z-axis is  

calculated 

bias
xyf  4.99611 x 10-4 m/s2  

„ bias
zf  1.2722 x 10-8 m/s2  

Linearity <0.5% Full Scale . .S F errorf . 8.0 x 10-3  

Misalignment (calibrated out normally)  Misalignmentf  0.05 x 10-4 °  

Azimuth Error Contribution  0.25° 
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An arbitrary trajectory is then chosen as shown in Table 4.28 below with the respective 
measured depth, inclination and azimuth given respectively. 

Table 4.28: A summary of the survey measurements from the welltop through to survey station 4  

Survey Station Measured Depth (m) Inclination (°) Azimuth (°) 
Well Top 0 0 0 

SS1 2 1 120 
SS2 4 1 120 
SS3 6 1 120 
SS4 8 1 120 

 

The balanced tangential method (see Appendix IV) for wellbore path determination is used to 

generate the respective changes in the north east and vertical depth position at each survey 

station. This is shown in the table 4.29. 

Table 4.29: A summary of the conversion of the change in the north, east and TVD using the balanced 
tangential method. 

Survey Station Change North ΔN (cm) Change East ΔE (cm) Change in Depth ΔTVD (cm) 
Well Top 0 0 0 

SS1 -0.87 1.511 2 
SS2 -1.75 0.64 2 
SS3 -1.75 0.64 2 
SS4 -1.75 0.64 2 

 

As mentioned earlier, the inclination in SS2 is increased in steps of 0.5 to simulate a change in 

inclination at the measurement time 4t which is only picked up by the clusters at all stations at 

that measurement time but however incorporated in the resultant estimated survey 

measurements made by combining previous measurements at each survey station recorded to 

obtain the actual measurement.  

The graphs in figures 4.28a-c show how the error of uncertainty is reduced using increasing 

number of sensors in a single cluster after statistically combination explained in section 3.6.  
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Figure 4.28a: The standard deviation north error for increasing combination of sensor within a cluster 
at each survey station 

 

Figure 4.28b: The standard deviation east error for increasing combination of sensor within a cluster at 
each survey station 
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Figure 4.28c: The standard deviation in TVD error for increasing combination of sensor within a 
cluster at each survey station. 

The survey measurements at survey stations 1, 3 and 4 are held constant while the measured 

inclination for survey station 2 is varied stepwise of 0.5° from 1° to 10° to observe the effect of 

the error because of combining the previous measurements and the current measurement using 

equal weights. The next is the variation of the azimuth also at survey station 2 by increments of 

5° from 120° to 200° so as the observe the variation of the errors whiles the survey 

measurements at other stations are also kept constant.  

The graphs in figures 4.29a-f show the results of the measurements as described in Table 4.29.  

The north position change shows the previous measurement trajectory for survey stations 1 

through to 4. The ground truth which is the true measurement as explained earlier, is represented 

by the blue graph in figures 4.28a-c which is the “best” estimate of the true trajectory after the 

change in the inclination angle at SS2. The green graph, also in figures 4.29a-c, shows the actual 

measurement recorded after the combination with the previous measurements using equal 

weighted averaging. The graph, also in figures 4.29a-c, shows the recording of the sensors 

before the change in survey measurements in SS2 occurred.  So basically, figure 4.29d shows 

errors in the north position of ~1.18cm and ~0.85cm in survey stations 2 and 3 respectively for 

an inclination increase of 2° at survey station 2. The corresponding errors in the east position, 
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shown in figure 4.29e, is ~ 2cm and ~0.8cm in the survey stations 2 and 3 respectively with the 

same inclination angle. Finally, the TVD position; figure 4.28f, shows errors of 0.08cm and 

0.06cm in the same respective survey positions for the same inclination displacement. These 

same measurement scenario is done for the mentioned inclination increments as well as similar 

such recordings for the azimuth measurement increments at the same survey station 2. A plot 

of the error trend ploted graphically in figures 4.29-33.

 

Figure 4.29a: The north position change for the old trajectory, new trajectory and the estimated 
trajectory measured 
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Figure 4.29d: The north absolute error due to the difference between the true trajectory and the 
estimated trajectory measure 

 

 

Figure 4.29b: The east position change for the old trajectory, new trajectory and the estimated 
trajectory measured 
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Figure 4.29e: The east absolute error due to the difference between the true trajectory and the 
estimated trajectory measure 

 

Figure 4.29c: The TVD position change for the old trajectory, new trajectory and the estimated 
trajectory measured 
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Figure 4.29f: The TVD absolute error due to the difference between the true trajectory and the 
estimated trajectory measure 

 

 

 

 

Figure 4.30: The error in north position due to increasing inclination at survey station 3 
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Figure 4.31: The error in east position due to increasing inclination at survey station 3 

So basically, figures 4.30-31 show a scaled quadratic increase in the errors observed with the 

best fit quadratic equation also given for the absolute errors recorded for all stations as a 

function of increasing inclination angle in the north and east position respectively. It is further 

observed that negligible errors occur in the first station, SS1 and the 4th stations SS4, for both 

the northern and eastern positions. The errors basically show a significant effect on survey 

station 3 although lower in magnitiude for the corresponding absolute error in survey station 2. 

overall, for a given increase in inclination, the north position error is less than the east position 

error. 

 

Figure 4.32: The error in TVD position due to increasing inclination at survey station 3 
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Figure 4.33: The error in north position due to increasing inclination at survey station 3 

Figure 4.32-33 show the scaled quadratic increase in the errors in the TVD also with the best 

fit quadratic equation as in the case of the north and east position errors but with a much lower 

overall error value as compared to those for the north and east positions. Figure 1 below shows 

negative scaled quadratic increase in errors at survey stations 2 and 3 with increasing azimuth 

at survey station 3. Again, errors in survey stations 1 and 4 are observed to be negligible. 

 

 

Figure 4.33: The error in east position due to increasing inclination at survey station 3 

Figure 4.34 above again shows the error in the east position with again the scaled quadratic 
increase in position error at survey stations 2 and 3 respectively with increasing azimuth error 
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Figure 4.34: The error in TVD position due to increasing inclination at survey station 3 

Basically, the increase in the azimuth measurement shows negligible increase in the TVD error 
measurement in all stations. The weighting scheme considered were; equal weighting, linear 
weighting 1,2,3,4, quadratic increasing, and cubic increasing. Table 4.30 shows a summary of 
the weighting rations with the correspoing weights used in the combination of the previous and 
current measurements. 

Table 4.30: A summary of the weighting ratios with the corresponding weights used in the 
combination of the previous and current measurements 

Weighting Ratio  

Sensor Cluster A B C D 
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1    
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1    

Cubic (P_O_3) 

1/154 8/154 81/154 64/154 
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In table 4.30 and likewise figure 4.35, EQUAL denotes the use of equal weights for both 

previous and current measurements, L_1234 denotes a simple linear increase in the weight 

functions, P_O_2 represents a quadratic increase and P_O_3 denotes the cubic increase as 

shown table 4.30.  

Figure 4.35 shows how the error ratio decreases with the different weighting schemes from 

which an appropriate weighting function scheme is selected for combination of the errors from 

the different clusters. As expected, a noticeable error decrease is observed for survey stations 2 

and 3, while those of survey stations 1 and 4 are negligible. 

 

Figure 4.35: Error decrease ratio with the different weighting scheme when used at the different 
survey stations because of change in the Inclination or azimuth at survey station 2.  

The linear weighting scheme used shows a decrease in error by a factor of ~0.75 at survey 

station 2 and ~0.67 at survey station 3 while that for the quadratic weighting scheme shows a 

decrease by a factor of ~0.53 at station 2 and a factor of 0.4 at survey station 3. Cubic weighting 

scheme as observed enables more weight to be assigned to the current measurement while very 

little weight is assigned to previous measurements. Figures 4.36a-f show the decrease in the 

absolute position error in the northern and eastern directions over increasing inclination angle 

stepwisely from 1.5° through to 10° occurring at survey station station 2. As expected, the error 

decrease factor is observed for each of the measurements made using the mentioned weighting 

factors. A similar approach is done in figure 4.37a-f which shows the decrease in the absolute 
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position error in the northern and eastern directions over stepwise increase in azimuth from 5° 

through to 200° occurring at survey station 2. Also, as expected, the error decrease factor is 

observed for each of the measurements made using the mentioned weighting factors.  

A selection should be based on the difference between the current measurement and the 

statistically combined past measurements and an appropriate weighting scheme selected based 

on this difference. For instance, for lower differences, a simple linear scheme for the weighting 

functions could be used. For larger differences, a quadratic weighing scheme or cubic weighting 

scheme could be adopted to minimize the effect of the error growth given that the cluster sensor 

can be trusted.  
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Figure 4.36a: Absolute error in north position 
for increase in inclination at survey station 3 

using a linear weighting ratio 

 

Figure 4.36d: Absolute error in east position 
for increase in inclination at survey station 3 

using a linear weighting ratio 

 

Figure 4.36b: Absolute error in north position 
for increase in inclination at survey station 3 

using a quadratic weighting ratio 

  

Figure 4.36e: Absolute error in east position 
for increase in inclination at survey station 3 

using a quadratic weighting ratio 

 

Figure 4.36c: Absolute error in north position 
for increase in inclination at survey station 3 

using a cubic weighting ratio 

 

Figure 4.36f: Absolute error in east position for 
increase in inclination at survey station 3 using 

a cubic weighting ratio
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Figure 4.37a: Absolute error in north position 
for increase in azimuth at survey station 3 

using a linear weighting ratio 

 

Figure 4.37d: Absolute error in east position 
for increase in azimuth at survey station 3 

using a linear weighting ratio 

 

Figure 4.37b: Absolute error in north position 
for increase in azimuth at survey station 3 

using a quadratic weighting ratio 

 

Figure 4.37e: Absolute error in east position 
for increase in azimuth at survey station 3 

using a quadratic weighting ratio 

 

Figure 4.37c: Absolute error in north position 
for increase in azimuth at survey station 3 

using a cubic weighting ratio 

 

Figure 4.37f: Absolute error in east position for 
increase in azimuth at survey station 3 using a 

cubic weighting ratio
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CHAPTER 5 

5. Wireless Ad hoc Network Underground for Borehole Telemetry 

This section describes an innovative approach using a wireless ad hoc and sensor network 

solution in a borehole telemetry system as developed and implemented within the framework 

of the I-Tube project. The description of two network structure configurations are given, as 

embedded in the drill tubes, to enable for telemetry.  It further validates the feasibility of 

achieving a reliable wireless communication network underground with real-time data 

acquisition with respect to the described borehole telemetry system drawing from the theoretical 

concepts and the related work of [1-2]. Finally, the results of simulations with further analysis 

using the model equations to verify the feasibility of a reliable communication framework 

underground is made. 

5.1 Underground Wireless Ad hoc Network Structure 

5.1.1 Wireless Telemetry Outside of Drill-Pipes 

The borehole telemetry system requires reliable communication between transceiver nodes 

within the underground environment where the radio transmission packets are received without 

significant losses irrespective of the prevailing soil medium conditions. To achieve this, the 

nodes are designed such that the radio transceivers are placed at the ends of each drill tube. This 

arrangement enables for a proximity of the communicating transceiver modules; ~100mm to 

~300mm apart within the underground environment seen in figure 5.1. Within each tube, the 

end to end transceivers are connected to each other via a microcontroller and a power supply 

by cable to form a node as again shown in Figure 5.1. The nodes are programmed to enable for 

routing of data within the wireless ad hoc network setup with the individual wireless nodes 

forming an ad hoc network strand irrespective of the order of the tubes. Sensor data from the 

borehole assembly is wirelessly transmitted to the adjacent nodes respectively located in the 

mechanically flanged pipe of the drill string. On the surface, the last node used in the drill string 

pipe connects with the base station communication interface outside of the drill string. The base 

station also known as the ground station forms the interface to various system controls. The 

next section introduces the model equations used in the verification of the feasibility of a 

reliable underground wireless communication framework. 
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5.1.2 Related Work 

A modification of the Frii’s transmission equation of the received signal strength, as described 

in [31], expressed in the logarithmic form is given as  

 ( ) ( ) ( ) ( ) ( ) ( )r mW t mW r t o mP dB P dB G dB G dB L dB L dB= + + − −  (5.1) 

where ( )r mWP dB and ( )t mWP dB denote the power at the receiver and the transmitter 

respectively, ( )rG dB and ( )tG dB  denotes the receiver and transmitter gains respectively, 

( )oL dB and ( )mL dB denotes path loss in free space and soil medium respectively. It is apparent 

that this modified equation considers the path loss of the signal in the soil medium. The path 

loss is the reduction in power density or the attenuation of the radio signal as it propagates 

through a medium. Further deductions [31] show that the direct path loss considering both free 

space and the soil medium is given as 

 6.4 20log 20log 8.69pL d d = + + +  (5.2) 

 p o mL L L= +  (5.3) 

where  and   represent the attenuation constant (1/m) and the phase shift constant 

(radians/m) respectively. These quantities depend on the dielectric permittivity of the medium 

through which the signal passes as described also in [32, 33]. A further detail of the 

mathematical model is given in [31]. d denotes the distance between the transmitter and the 

receiver. Figure 5.1 shows the schematic of the interconnecting drilling tubes with the 

integrated wireless ad hoc network. 

5.1.1 Antenna Selection 

As the signals propagate through the soil medium there is a decrease in wavelength as compared 

to transmission through air [36]. This is taken into consideration in the antenna selection process 

in view of a higher frequency compared to the specified sub-gigahertz frequency of the 

transceiver modules. The resulting frequencies during transmission within the ground soil could 

be deduced using the relation given in [31]. An integrated chip or ceramic antenna designed for 

such high frequencies is considered for such underground wireless communication purpose. 
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Figure 5.1: The schematic of the interconnecting drilling tubes with the integrated wireless ad hoc 
network. 

5.1.2 Investigation of the Effect of Soil Properties on Signal Strength 

Signal path loss depends on the transmission frequency, distance between the transceiver nodes, 

soil clay content, soil sand content and the volumetric water content of the soil [33]. The I-

TUBE project makes use of the sub-gigahertz unlicensed frequency spectrum, which in this test 

case was a frequency of 868MHz, for wireless transmission between two adjoining transceiver 

nodes at a distance range of approximately 300mm for wireless communication. Eqn. 5.1-3 

model equations were used in a simulation with varying values of clay content, sand content 

and water content, to determine the feasibility of the underground communication network 

under different soil conditions with regards to the range for the direct path loss as well as the 

power received at the receiver node or the received signal strength (RSS). The near ideal case 

with soil volumetric water content (VWC) of 1% is observed and compared to increasing VWC 

of 25% and 80% respectively. The volumetric water content here is defined as the ratio of water 
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contained in the soil to the total volume of the soil. The effect of the different proportions of 

clay to sand content in the soil on the path loss and consequently the received signal strength 

(RSS) is observed. The RSS is the measurement of the power present in the received radio 

signal. Figures 5.2-4 show the received signal strength at the receiver at constant volumetric 

water content with varying ratios of clay to sand in each soil medium for volumetric water 

content values of 1%, 25% and 80%. 
 

  

Figure 5.2: The received signal strength of varying ratios of sand and clay with a constant volumetric 
water content of 1% by volume. 
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Figure 5.3: The received signal strength of varying ratios of sand and clay with a constant volumetric 
water content of 25% by volume. 

 

Figure 5.4: The received signal strength of varying ratios of sand to clay with a constant volumetric 
water content of 80% by volume. 
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From the datasheet of a practical example of a wireless transceiver module, AMB8420 with an 

embedded CC1101 transceiver [35], the minimum sensitivity is given as -110dBm for a 50 Ω 

antenna and the output power of the transmitter is typically 2dBm but also determined by the 

region of operation. From the results, as indicated in Figures 5.2-4 above, the RSS value in all 

cases falls within the radio frequency sensitivity limit, which indicates the feasibility of wireless 

communication for the given condition of the soil medium as indicated by the graphs. 

Furthermore, it can also be inferred from the graph that the RSS value at the receiver tends to 

decrease with increase in sand and clay content of the soil. This is more significant with higher 

volumetric water content of the soil. An increase in the VWC from 1%, through to 80%, also 

as shown in figures 5.2-4 results in a consequent reduction of the RSS from about -54.5dBm 

with 1% VWC to about -95.1dBm with 80% VWC which lies within the threshold limits of -

103dbm; the transceiver sensitivity limit. This observation therefore suggests that for a 

transmission frequency of 868MHz and proximity of 300mm between transceiver modules, 

reliable communication underground is feasible under a wide range of possible soil conditions. 

However, on the work field, certain properties of the ground soil such as the chemical or salt 

content also have a significant effect on the dielectric characteristics of the soil [34]. Salty 

ground soil conditions tend to increase the path losses; therefore, decreasing the power at the 

receiver node or RSS largely [34].  

 

5.2 Wireless Telemetry within Standard Drill-Pipes  

This section investigates the feasibility of a wireless telemetry system within the standard drill-

tubes for borehole sensor data acquisition. It looks at the propagation of electromagnetic waves 

in the well-known industrial, scientific and medical radio bands used for connecting electronic 

devices wirelessly. Research work has been done in the efficient ways for data acquisition 

during borehole drilling processes to enable for informed drilling of which includes mud-pulse 

telemetry, wired-line telemetry, electromagnetic (EM) telemetry and acoustic telemetry [43]. 

However, these telemetry systems present their own unique limitations. This section identifies 

some physical properties of the drill-tube that enable for the feasibility of wireless telemetry 

within the drill-pipe as well as the limitations thereof. The physical attributes of the standard 

drill tube that enables it act as a metallic cylindrical waveguide for EM wave propagation is 

given. The attenuation sources of the EM waves within the tube and to which extent it affects 

it is discussed and with the relevant simulations for verification given.  
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5.2.1 The Drill-Tube as a Metallic Cylindrical Waveguide 

The drill-tube structure is comparable to that of a hollow metallic cylindrical waveguide with 

an outer conductive metal tube having a fixed radius and a hollow interior; see figure 5.5, which 

is an air-filled space (insulation medium) through which sometimes fluids are channeled to aid 

the drilling process [44]. The concept of a waveguide, which allows propagation of 

electromagnetic waves in the transverse electric or transverse magnetic operating mode based 

on the frequency of transmission, can therefore be applied to it [39]. The hollow metallic 

cylindrical waveguide is characterized by a cut-off frequency based on the radius of the 

waveguide cross-section, the relative electric permittivity of the transmission medium as well 

as the relative magnetic permeability of the transmission medium [39]. The cylindrical 

waveguide hence behaves as a high pass filter, which allows signals with frequencies above the 

cut-off frequency to propagate within the tube while attenuating signals at frequencies below 

the cut-off frequency. Further description of the mathematical model for the electromagnetic 

wave propagation and the derivation for the cut-off frequencies for the metallic cylindrical 

waveguide is provided in [39]. The equations for the cut-off frequency for the metallic 

cylindrical waveguide transmitting in the transverse electric (T.E.) mode is given as [39] 

 
'

2mn

TE mn
C

Xf
a 

=  (5.4) 

and that for transverse magnetic (T.M.) mode is given as 

 
2mn

TM mn
C

Xf
a 

=  (5.5) 

where  '
mnX  and mnX  define the thn zero of the thm order Bessel function and Bessel function 

derivative evaluated at integer orders 0,1, 2…6 respectively [39].  ,   and   denote the 

radius of the metal cylindrical tube, the magnetic permeability and the electric permittivity 

respectively. The above equations were the basis for the analysis of the different cut-off 

frequencies of the EM waves within the drill-tubes of different radii. 
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Figure 5.5: The drill-tube structure as compared to a metallic cylindrical wave guide of radius, r. 

5.2.2 Attenuation within the Drill-Tube 

The drill tube as a metallic cylindrical waveguide is subject to two main loss mechanisms. These 

are conductor losses due to the carbon steel cylinder and dielectric loss due to the fluid (air) 

within the hollow space of the tube [39]. Fields associated with the propagating waveguide 

modes produce currents that flow in the walls of the waveguide [39]. The walls act like resistors 

and dissipate energy in the form of heat given that the waveguide walls are constructed from an 

imperfect conductor.  The dielectric within the waveguide is not ideal. It also dissipates energy 

in the form of heat [39, 40]. The general equations for the metallic cylindrical waveguide in 

both the transverse electric (T.E.) and transverse magnetic (T.M.) mode attenuation constants 

due to the conductor losses are given by; In the transverse, electric mode:  

 














−
+



























−

=
22

22

2 '
1'

mX
m

f
f

f
f

a

R

mn

C

C

sTE
C

mn

mn

mn



  (5.6) 

and in the transverse magnetic mode: 
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


 ='  (5.8) 

where sR  denotes the surface resistance of the waveguide walls, |
mn

TE TM
C  denotes the radius of 

the cylindrical tube, f denotes the frequency of the electromagnetic wave, 
mnCf  denotes the cut-

off frequency. More details about the derivation is given in [39, 40]. These equations are used 

α 

µ, 𝜺 

Carbon steel conductor 
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to perform the simulations as described in the next section. Eqn. 5.6-8 show that the attenuation 

is dependent on the surface resistivity of the waveguide walls. This observation therefore 

prompted a further look into the composition and characteristic of the drill tube material which 

directly affects its electrical resistivity property. The American Petroleum Institute (API) 

provides the specification: API 5L & API 5LX for carbon steel seamless pipes & tubes used in 

the drilling industry [9]. The specification gives an indication of the mechanical and chemical 

properties of the carbon steel grade that makes it suitable for use in conveying gas, water, and 

oil in both the oil and natural gas industries [41, 47]. What is of interest in this study is the 

surface resistivity/conductivity of the carbon steel under varying conditions of temperature. It 

is shown that this effect is also dependent on the carbon content of the steel grades that fall 

under the API 5L & API 5LX specification [42]. The study of this effect is important because 

during the normal drilling process, the borehole assembly (BHA) can attain high temperatures 

beyond 200°C [49]. The main point of this investigation is to know to what extent this 

temperature increase would affect the attenuation of the EM waves within the tube and 

subsequently degrade the wireless telemetry performance. In this specification [41], two basic 

product specifications levels (PSL) are recognized and categorized into PSL 1 and PSL 2. PSL 

1 is a standard quality for line pipe while PSL 2 contains additional chemical, mechanical 

properties, and testing requirement. The grades covered by this specification are A25, A, B, 

X42, X46, X52, X56, X60, X65, X65 X70, X80. What is of interest here is the carbon content 

existing for each of the grades enumerated. According to specification described in [41], the 

percentage by weight of the carbon content in the grades enlisted is specified in Table 5.1. 

SMLS refers to seamless steel line pipes and ERW refers to electrical resistance welded steel 

line pipes. An investigation into the electrical resistivity of carbon steel, considering the effects 

of the nonlinearities of the temperature and carbon content is investigated in [42].  Figure 5.9 

shows the variation of the electrical resistivity for carbon steel with different carbon steel 

content with increasing temperature. Results from the investigation showed a strong 

dependence of the electrical resistivity on the carbon content of carbon steel within the range 

of 0.06-1.22C wt. %. This range covers well the range within which the carbon content of the 

carbon steel specified in the API 5L & API 5LX specification falls [41] as shown in table 5.1. 

 

 

 



Chapter 5: Wireless Ad hoc Network Underground for Borehole Telemetry 

115 
 

Table 5.1: Carbon Content of Carbon Steel Grades for API 5L & API 5LX 

Grade Carbon content %wt 
A25 0.21 
A (SMLS) 0.22 
B (“) 0.27 
A (ERW) 0.21 
B (“) 0.26 
X-42 (SMLS) 0.29 
X-46 (“) 0.31 
X-52 (“) 0.31 
X-60 (“) 0.26 
X-42 (ERW) 0.28 
X-46 (“) 0.30 
X-52 (“) 0.30 
X-60 (“) 0.26 

 

More details on the mathematical formulation and regression analysis of this dependency can 

be obtained from [42]. 

 

Figure 5.9: Temperature dependence of electrical resistivity for different carbon content (by weight %) 
of carbon steel. 

5.2.3 Simulations and Results 

Simulations were done in Matlab to investigate the cut-off frequencies for varying drill tube 

diameters. The fixed frequencies considered for usage were 2.4GHz and 5GHz band. This is 

because these frequencies are the available industrial, scientific and medical (ism) frequency 

band popularly used for wireless connectivity in electronic devices and can be obtained 

conveniently off the shelf. 
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5.2.4 Cut-off Frequency Investigation 

It has been shown in [39] that '
mnX  and mnX  define the thn zero of the thm - order Bessel function 

and Bessel function derivative respectively  are given as shown in tables 5.2-3 below and their 

corresponding values are used in the simulations 

 

Table 5.2: Transverse Magnetic Mode 

mnX  m=0 m=1 m=2 m=3 m=4 m=5 m=6 
n=1 2.4049 3.8318 5.1357 6.3802 7.5884 8.7715 9.9361 
n=2 5.520 7.105 8.417 9.761 11.064 12.338 13.589 
n=3 8.653 10.17 11.61 13.015 14.372 15.700 17.003 

 

Table 5.3: Transverse Electric Mode 

'
mnX  m=0 m=1 m=2 m=3 m=4 m=5 m=6 

n=1 3.831 1.841 3.054 4.2012 5.317 6.415 7.501 

n=2 7.015 5.331 6.706 8.0153 9.2824 10.519 11,734 

n=3 10.173 8.536 9.969 11.345 12.681 13.987 15.268 

 

It is observed that the dominant mode in a circular waveguide is the 11TE mode, followed in 

order by the 01TM mode and the 21TE  and 01TE modes respectively. The graph in figure 5.10 

shows the cutoff frequency curve for the 3 different modes at tube diameters up to 10 cm. From 

the graph, it is observed that the cut-off frequency decreases with increase in drill tube diameter. 

 



Chapter 5: Wireless Ad hoc Network Underground for Borehole Telemetry 

117 
 

 

Figure 5.10. The cut-off frequency curves for the 11TE , 01TM  and 21TE . 

The table shows the cut-off frequencies of the three propagation modes for a selected drill-tube 

radius of 3cm. The minimum cutoff as shown in table 5.4 is approximately 2.928 GHz. This is 

above the 2.4GHz ultra high frequency band used for Wi-Fi connectivity, which includes 

Bluetooth. Transmission at 5.0 GHz, also used in Wi-Fi connectivity, falls within the range for 

connectivity.  

Table 5.4: Cut-off Frequencies at Radius of 3cm 

 

 

 
 

 

 

Propagation Mode Cut-off Frequency 

11TE  2.928 GHz 

01TM  3.828 GHz 

21TE  4.858 GHz 
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5.2.5 Attenuation Investigation 

Figure 5.11 shows the attenuation of the electromagnetic waves in Nepers per unit meter, which 

can be expressed also in dB, within the drill tube as a metallic cylindrical waveguide at a fixed 

frequency of 5GHz at varying radii. In the simulation, the dielectric was assumed air and a 

typical value for carbon content in carbon steel is chosen at room temperature. It is observed 

that in consistency with non-ideal waveguides, the attenuation per unit length decreases sharply 

as the radius of the drill tube increases. 

  

Figure 5.11. Attenuation in dB per meter versus varying drill tube radius for, 11TE and 01TM modes. 

For this analysis, the standard drill tube radius under investigation has a radius of 3cm. The dB 

loss per meter is observed from the simulation results to be to be ~0.034dB for the case of 

transmission in the 11TE  mode while it is ~0.082dB per meter in the 01TM  mode as observed 

on the graph in figure 5.11. A further simulation was done to determine the losses in dB with 

increasing length of tube. The corresponding analysis of the losses in dB of the signal strength 

within the tube as a relation to its length is shown in the graph of figure 5.12. Considering the 

sensitivity of the of a typical wireless module at approximately -100dBm and an input power 
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of about 10dBm which corresponds to a loss of 110dB from the graph, the corresponding length 

of tube is about 3666m. This value is regarded as approximate, given that it is assumed a long 

uniform tube with uniform material properties µ, within. 

 

 

Figure 5.12: Losses in dBm of electromagnetic waves in relation to the length of the metallic 
cylindrical drill tube. 

The implication is that the nodes (wireless modules) could be placed any distance apart within 

this distance range inside the tube to enable for data communication. However, it must be taken 

into consideration the fact that there are other factors such as inconsistency of inner material 

property which might contribute to higher losses (reflection and dispersion) and subsequent 

reduction in the calculated distance. Figure 5.13 shows the electrical resistivity dependence of 

attenuation of EM wave propagation inside a carbon steel cylindrical drill pipe of radius 3cm, 

acting as a wave guide for different carbon content of the carbon steel. It is observed that the 

attenuation increases with increasing electrical resistivity. 
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Figure 5.13: Electrical resistivity dependency of carbon steel on temperature  
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CHAPTER 6 

6. Conclusion, Contribution of Thesis and Outlook 

The first chapter basically gave an overview of the vertical drilling concept used in industry for 

in-situ soil mixing and highlighted the challenges in attaining accuracy in the determination of 

the wellbore path with regards to the measurement techniques currently used. It proceeded to 

give an overview of the wellbore path within the concept of the tracking of the BHA or drillhead 

in a designated reference frame and highlighted the parameters necessary for keeping accurate 

track of to impove the tracking of the wellbore trajectory.  

The second chapter touched on the wellbore trajectory computation techniques as well as the 

error model derivation defined by the ISCWSA which forms a basis by which the determination 

of the error uncertainty in the computation of the wellbore path is based. This region of 

uncertainty is generally modelled as a 3-dimensional Gaussian probability density function 

whereby a linear regression solution approach is used to determine the estimation of the 

parameters that relate the independent true values of the survey station position to the observed 

or measured values. 

Chapter 3 presented the mathematical model scheme developed for processing data from the 

inertia measurement unit output data with measurements from the external encoder for the 

overall tracking of the wellbore path. It also discussed a probabilistic approach to improving 

survey station measurements using data from multiple sensor clusters. These input data are 

available because of different sensor clusters taking measurements at the same survey station 

of interest sequentially in the time domain as the wellbore depth increases. The data fusion 

concept using the indirect Kalman filter in the feed forward configuration was adopted as a 

basis for fusing sensor input data with external measurements to improve the tracking of the 

sensor position within the drill string.   

 

In chapter 4, an application of the concepts described in chapter 3 was used with actual field 

data as well as simulated data to investigate the overall effectiveness of the outlined methods 

therein. The ISCWSA error model was used as a framework by which to appreciate the use of 

the outlined concepts, for the analysis of the region of uncertainty in error using sensors with 

different performance specifications. This approach highlighted the main error sources of more 

significance to the region of uncertainty in error of the survey measurements, served as a 
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prelude to aid comparison to the results of the implementation of the mathematical model and 

processing scheme and showed the improvement achieved in the survey position measurements 

thereof.  It commenced by showing how the performance specification on the datasheet is 

converted to the required error source magnitude used in the error model to compute the region 

of uncertainty in error at each of the survey stations. It was observed that there is a strong 

correlation between the sensor performance specifications and the region of uncertainty in error 

and that the major contributing factor to the error uncertainty is from the gyroscope bias and 

gyroscope drift by way of the angle random walk and bias instability. External updates from a 

rotary encoder for tracking the physical position of the sensor unit within the drill tube was used 

as a high accurate measurement source in the filter to improve its yaw position estimate which 

improves its azimuth errors and consequently the survey position accuracy. The gyroscope bias 

was modeled as a Gauss-Markov process which was used to augment the state variables in the 

model equation used in the indirect Kalman filter. Two measurement update modes were used 

in this approach by which aiding data from the rotary encoder is used as measurement update 

within the sensor node unit to improve the yaw position estimate of the sensor device. A 

comparison of the improved tracking output data is made with that defined by the ISCWSA, 

which is a standardization committee for wellbore surveying accuracy in collaboration with the 

society of petroleum engineers (SPE).  

It has been shown that, depending on the measurement update mode, using the low-cost MEMS 

gyroscope with an aiding system such as the rotary encoder, an improved azimuth error of 

uncertainty can be achieved as compared to that provided by the magnetic based surveying tool. 

Results show that the continous measurement update mode interspersed with periodic data time 

updates provides a better performance in terms of the reduction of azimuth errors as compared 

with single measurements update at varying frequencies. It is therefore inferred that with such 

processing scheme results, there is no need for the incorporation of the NMDC in an extra effort 

in reducing the effect of the magnetic influence of the metallic drill string which induces errors 

in the azimuth measurements thereby helping to cut down on production costs. Furthermore, in 

the case of the measurement approach used in vertical drilling processes for in situ soil mixing, 

surveying is done using the digital inclinometer probe and carried out only after completion of 

the drilling process, this situation results in the increase in production time and subsequently, 

an increase in production costs due to the need to “break” the drillstring before the digital 

inclinometer probe is inserted for measurement. This concept therefore in addition to the in-

house developed borehole telemetry system will cut down on such costs without sacrificing 

performance and accuracy. Finally, the probabilistic scheme was applied to investigate how the 
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effect of multiple measurements at a single survey station which are statistically combined are 

affected by a shift in the measurement at a survey station under investigation and how the 

weights can be distributed to the respective measurements to improve the overall accuracy of 

the survey station of interest. It was observed that an appropriate weighting scheme is best 

selected depending on the difference between the previous survey measurements and the current 

survey measurements. For small differences, a simple linear weighting scheme can be adopted, 

and for larger differences, a quadratic or cubic weighting scheme so as to give a more accurate 

reflection of the inclination or azimuth at the survey station of interest.  

 

Chapter 5 investigated the concept of real-time acquisition of sensor data over a wireless ad hoc 

network by way of electromagnetic telemetry. This involves sensor nodes data acquisition and 

preprocessing, on the back of an in-house developed wireless data routing scheme for real-time 

acquisition of survey measurements. One aspect investigated the electromagnetic wave 

propagation through the soil during tube-to-tube wireless communication externally 

underground to enable for real time borehole telemetry. In this concept, the effect of the losses 

in the soil medium due to the main soil constituents such as clayey, sand and volumetric water 

content of the soil is investigated using well established model equations. It is observed that the 

wireless signals attenuate strongly with increasing clayey and volumetric water content for a 

given displacement between transceiver and receiver modules. From this observation, it was 

deduced that for a given practical displacement of 300mm between these modules at a given 

transmission power, the signal sensitivity threshold would not be exceeded for a given practical 

range of soil conditions. This therefore enables for reliable wireless communication for an 

implementation of the telemetry system based on the concept. Another aspect was the results 

of a feasibility study and the investigation and implementation of the “inside” drill tube wireless 

communication by determining a selection criterion for the transmission frequency based on 

the physical properties of the drill tube. It was deduced that the physical and material properties 

of the cylindrical drill string within which electromagnetic waves propagate makes it acts as a 

high pass filter only enabling wireless transmission after exceeding a frequency threshold. We 

learned that specification of carbon steel seamless pipes & tubes used in the drilling industry 

by the American Petroleum Institute (API) gives an indication of its constituent mechanical and 

chemical properties of the carbon steel grade. It is therefore deduced that there is a variation of 

the electrical resistivity for carbon steel with different carbon steel content with increasing 

temperature with results from the investigation showing a strong dependence of the electrical 

resistivity on the carbon content of carbon steel within the range of 0.06-1.22C wt.  From this 
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the carbon content of the respective specification for the drill tube was looked into; and 

investigated the effect of temperature rise on the electrical resistivity of the metal drill tube 

from which one could infer the effect on the attenuation of the electromagnetic signals used 

within it. We learned that there is a linear increase in the electrical resistivity of the tube with 

increase in temperature and therefore the distance threshold between transceiver nodes by 

which reliable wireless connectivity can be sustained given a tube with specified dimensions 

could be deduced. So, for instance, a drill tube with a radius of approximately ~3cm, one can 

effectively transmit data at 5Ghz without significant losses due to the material properties of the 

drill tube which affect its resistivity. 

This thesis provides for a further extension of the current work as it provides a test bed for 

further research work. For instance, it provides a platform for possible further sensor 

integration, processing and communication to monitor the physical condition of the drill tube 

such as tube defects and cracks, over time among other purposes. 

 

 

 

 

 



 

125 
 

Appendix I 

I. Mathematical Derivation of the Error Propagation Model  

The survey measurements define the depth, inclination and azimuth at either end of an interval, 

the position over an interval depends on the survey measurements at the two stations 

(ISCWSA).  

Let vector kr


  be the displacement between survey station 1−k  and k  and 1kr + the 

displacement between stations k  and 1+k , then it follows that 
r
p



can be split into the 

variation over the preceding and following intervals and this is given as [5] 
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where klie ,,


denotes the error vector due to the thi error source at the thk survey station in the thl

survey leg, k

k

r
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
denotes the effect of the errors in the survey measurements at station k , on the 

position vector from survey station 1k −  to survey station k , and 1k
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denotes the effect of 

the errors in the survey measurements of station k  to survey station 1+k .  

Using the balanced tangential method as a wellbore survey method of preference k
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determined with no significant loss of accuracy [30].  
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for the interval between stations 1−k and k , it can be written as 
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Substituting k for i and differentiating Eqn. I.3 gives 
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When put together it becomes 
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Similarly, the interval between stations k  and 1+k can be given as 
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Substituting 1+= ki and differentiating equation (I.2) gives 
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And subsequently 
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This represents the 3x3 matrix equation which describes the change in the wellbore position, in 

the north, east, true vertical depth co-ordinate frame caused by changes to the survey 

measurement at any preceding given station, k. For the last survey station of interest, only the 

preceding interval is applicable and this is given as 

 *
, , ,

K K
i l K i l

K i

r pe
p




 
=  

 
 (I.13) 

All calculated contributions to the error ellipse from each error source, at each survey station in 

each leg of the well are summed up. There are two basic error cases, these include 

- Correlated errors eg. The z-axis magnetometer bias which has the same value from 

survey station to survey station and the effects of the error builds all the way down the 

wellbore. For cases like this error are added in the usual arithmetic way ie 

 1 2totale e e= +  (I.14) 

- Uncorrelated or statistically independent errors. This used fused using the root sum 

squared method 

 1 2totale e e= +  (I.15) 

All the error sources are combined by make a sum over all survey legs, survey stations and error 

sources which apply to a particular well. The propagation mode is used to define at what step 

in the summation arithmetic addition is used and at what stage root sum squared addition is 

required. Generalizing the sums to include more than two error sources, and remembering that 

for the error model at a particular point, the e variables will actually be 3x1 vectors and the 

squaring would actually be i ie e . The equations become 

 ( ) ( )1 1totalE e e


=    (I.16) 
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 ( )1total iE e e=   (I.17) 

Therefore totalE  is a 3x3 covariance matrix, whose lead diagonal terms are the 2
totale values 

along the principal axes. For the final error summations, three summations are considered – 

over the error sources, the surveys legs and the survey stations. The propagation modes are used 

to determine at which steps arithmetic summation is appropriate and at which root squared 

summation is required. The overall summation of random, systematic and global/well by well 

error sources is 

 


++=
},{

,,, ][][][][
GWi

well
ki

Si

syst
ki

Ri

rand
ki

svy
k CCCC  (I.18) 

where klie ,,
 is the vector contribution of the thi error source, in the thl survey leg at the thk survey 

station (3x1 vector) 

klie ,,
* is the vector contribution of the thi error source, in the thl survey leg at the last survey 

point of interest. i.e. the thK survey station (3x1 vector), i denotes the summation over error 

sources from 1… l , k denotes the summation of survey stations from 1… K : the current survey 

station and l denotes the summation over survey legs from 1… L : the current survey leg. The 

contribution of the random errors is given by 

 ( ) ( ) ( ) ( )
1 * *
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1 1

[ ] [ ]
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l k

C C e e e e
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and 
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1
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The systematic errors are given as 
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 (I.22) 

The well by well and global errors: 
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Appendix II 

II. Development of the Attitude Dynamic Equation 

The Euler angle method involves the transformation from one co-ordinate frame to another 

defined by three successive rotations about different axes taken in turn. The direction cosine 

matrix for vector transformation from body axes br  to reference axes nr is given as [20] 

 n n b
br C r=   (II.1) 

The propagation of DCM with time or rate of change of n
bC with time is derived as 

 
0 0

( ) ( )lim lim
n n n

n b b b
b t t

C C t t C tC
t t →  →

 + −
= =

 
 (II.2) 

As a product of two matrices, ( )n
bC t t+  can be written as: 

 ( ) ( ) ( )n n
b bC t t C t A t+ =   (II.3) 

where )(tA is a direction cosine matrix which relates the b-frame at time t  to the b-frame at time

t t+ .  For small angle rotations: 

 ( )  A t I = +  (II.4) 

where by  

 
0

0
0

 

  

 

−  
 

 =  − 
 −  

 (II.5) 

where  ,   and   are the small rotation angles through which the b-frame has rotated 

over the time interval t about its yaw, pitch and roll axes, respectively. Substituting for 

( )n
bC t t+ into Eqn. II.3 and using small angles, we get 
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 (II.6) 
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which therefore results in 

 n n b
b b nbC C=   (II.8) 

Transformation from one co-ordinate frame to another carried out as three successive rotations 

about different axes. These are  ,   and   which denote the rotation angle about the z, y, and 

x-axis respectively and are also referred to as the Euler rotation angles. The mathematical 

expression of the three rotations as three separate direct cosine matrices is given as 

Rotation   about z-axis,  

 



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
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−=

100
0cossin
0sincos

1 



C  (II.9) 

Rotation  about y-axis,  

 2

cos 0 sin
0 1 0
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C

 

 

− 
 
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 
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 (II.10) 

Rotation  about x-axis,  

 3

1 0 0
0 cos sin
0 sin cos

C  

 

 
 

=  
 − 

 (II.11) 

 

Transformation from reference to body axes is expressed as 

 3 2 1
n
bC C C C=    (II.12) 

Transformation from body to reference axes given by 

 1 2 3
n b
b nC C C C C   = =    (II.13) 
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 (II.14) 
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For small angle rotations: 
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 (II.15) 

Propagation of Euler angles with time is given as the Euler rotation rates as related to the body 

rates x , y , and z  and expressed as 
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 (II.16) 

This is further re-arranged and expressed in the form: 
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Appendix III 

III. Sensor Calibration 

Mounting of the gyroscopic sensor presents the issue of misalignment which affects the 

accuracy of the computed angle of rotation. The sensor misalignment is described as the angular 

difference between each gyroscope’s axis of rotation and the system defined inertial reference 

frame or global frame. The alignment accuracy is basically depended on the IMU’s 

misalignment error and the precision of the mechanical system that holds it in place during 

operation. This section focuses on a detailed account on the development of a correction 

alignment matrix that corrects the gyroscope to respond as if they were aligned with the global 

frame when it is applied to the gyroscope array. 

 

 

 

 

 

Figure III.1.1: Sensor Module showing its body-fixed reference frame 

 

Rotation around each axis on the global frame (system input) =   

System input bias = b  

Gyroscope output/responses (system output) = G  

Misalignment Matrix (Misalignment & Scale factor) between input and output = M  

 

 G M b= +  (III.1.1) 
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 (III.1.2) 

Also implies that, 

 ( )1M G b −= −  (III.1.3) 

z 

y 

x 
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 (III.1.4)                                                                          

The accuracy of motion and the gyroscope measurement have a direct impact on the process. 

The reduction of the impact of the residual bias error is done by the application of rotation twice 

of equal magnitude and opposite in direction. Given the true rotation about an axis in a given 

reference frame or system input to be TR , the positive rotation as P  and the negative rotation 

(opposite) as N , the following can be expressed 

 P TRG M b= +  (III.1.5) 

 N TRG M b= − +  (III.1.6) 

 
2

P N P N

P N TR

G G G GM
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− −
= =

−
 (III.1.7) 

The assumption is that the bias error is constant during both measurements and therefore can 
be obtained by expressing as 

 2P NG G b+ =  (III.1.8) 

 
2

P NG Gb +
=  (III.1.9) 

Generation of the misalignment matrix for compensation; by rotation of the entire system 
around one axis at a time to isolate each element 

Rotation about the x-axis ( ), 0, 0x TR y z   = = =  
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−

=  (III.1.10) 
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M

221

−
=  (III.1.11) 
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−

=  (III.1.12) 

Rotation about the y-axis ( 0,,0 === zTRyx  ) 
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=  (III.1.13) 
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−
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Rotation about the z-axis ( TRzyx  === ,0,0 ) 

 
TR

xNxP GGM
213
−

=  (III.1.16) 

 
TR

yNyP GG
M

223

−
=  (III.1.17) 

 
TR

zNzP GGM
233
−

=  (III.1.18) 

 

III.1 Least-Squares Estimation Approach 

This approach uses no stochastic information but instead treats the parameter-estimation task 

as a deterministic optimization problem. It assumes the form 

 Y HX n= +  (III.1.19) 

where n  denotes an unknown disturbance or noise. The problem is to select an estimate X̂  of 

X such that the mean-square error criterion  

 1( ) ( ) ( )
2

TJ X Y HX W Y HX= − −  (III.1.20) 

is minimized. The necessary condition for the LS estimator is 

 
ˆ

( ) 0
X XLS

J X
X

=


=


 (III.1.21) 

The Least Square Estimator is therefore given as 

 1ˆ ( )T T
LSX H WH H WY−=  (III.1.22) 

 

This is further written as 

 1 1 1ˆ ( )T T
LS n nX H R H H R Y− − −=  (III.1.22) 

Where  

 1−= nRW  (III.1.23) 

 cov{ }nR n=  (III.1.24) 
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where H  is the observation matrix, W is the weighing matrix, Y  is a vector of measurement 

made and n  is the zero-mean white Gaussian noise process with a covariance matrix R  and X

is the unknown vector to be estimated. Given that the IMU sensor output is given as: 

 m ta Ma b w= + +  (III.1.25) 

where ma  is the observed measurement vector, ta is the true value vector, M  is the 

misalignment Matrix, b  is the static bias and w  is the zero-mean white Gaussian noise. The 

equation represents that for which a linear regression analysis by which an attempt to find the 

best, in the least-square sense, straight line to fit a given set of data can be made. Given a set of 

parameter values iH  and observations iY , the estimate X can be calculated. The general 

equation is written in the form 

 i i iY H X n= +  (III.1.26) 

This is further expressed as 
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 (III.1.28) 

 
T

x y z xx xy xz yx yy yz zx zy zzX b b b M M M M M M M M M =  

 (III.1.29) 

 
T

i x y zn w w w =    (III.1.30) 

where i  denotes the thi measurement for a series of measurements of the same parameters. The 

noise parameter values are obtained from the datasheet or the result of the Allan variance curve.  

The MPU6500A IMU sensor module was placed on the turn table and rotated twice at a 

specified speed; each in the opposite directions to the other and of equal magnitude. This is 

repeated for each of the three axes in turn and the gyroscope sensor output data is recorded. The 

sensor module is then placed at a position aligned with known gravity; first in the upward 

direction and then in the downward (opposite) direction. This is repeated for each of the three 
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axes in turn and the accelerometer sensor output data is recorded. The room temperature is at 

25°. The speed is at 2Hz or 720°s-1.  

 

Table III.1. Main sensor node A1 measurement data: 

Gyro A1 Rot. x A (°s-1) x B (°s-1) y A (°s-1) y B (°s-1) z A (°s-1) z B (°s-1) 
1 716.2084308 -715.9929612 14.49795449 -6.80763253 0.364140862 1.999178115 
2 -12.03490368 12.55532309 720.9942175 -713.3807697 -4.558543653 6.297926614 

3 -2.385929991 2.653575454 0.876423744 6.638105506 718.6773275 
-

716.7366958 
Accel A1 Pos.  (g)  (g)    (g)   (g)   (g)   (g) 

1 1.000935045 -1.005289688 -0.00404969 -0.023163268 0.059909618 0.054202705 
2 0.005217674 0.012908493 0.996808028 -1.007808505 0.063251776 0.062394318 

3 -0.010567275 0.014795754 -0.007718669 -0.016554088 1.060747885 
-

0.955146155 
 

 

Table III.2. Results using the basic alignment approach: 

Gyro Static Bias Misalignment Error 
Bgx  0.167255742 M11  0.9945843 M12  -0.017076546 M13  -0.003499657 
Bgy  3.803049838 M21  0.014795547 M22  0.996093741 M23  -0.004001168 
Bgz  1.007222273 M31  -0.001135443 M32  -0.007539215 M33  0.996815294 

Accel. Static Bias             
Bax  0.003 M11  1.003112367 M12 -0.003845409 M13  -0.012681514 

  Bay -0.010414365 M21  0.009556789 M22  1.002308266 M23  0.00441771 
  Baz  0.057560025 M31  0.002853456 M32  0.000428729 M33  1.00794702 
 

 

Table III.3. Results using the least-squares estimation approach: 

Gyro A1 Static Bias Misalignment Error 
Bgx 0.167256 M11  0.994584 M12  -0.0170765 M13  -0.00349966 

Bgy 3.80305 M21  0.0147955 M22  0.996094 M23  -0.00400117 
Bgz 1.00722 M31  -0.00113544 M32  -0.00753922 M33  0.996815 

Accel A1     
Bax 0.003 M11  1.00311 M12  -0.00384541 M13  -0.0126815 
Bay -0.0104144 M21  0.00955679 M22  1.00231 M23  0.00441771 
Baz 0.05756 M31  0.00285346 M32  0.000428729 M33  1.00795 
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Appendix IV 

IV. Wellpath Calculation Methods 

Wellpath is calculated by finding the approximation of the trajectory between adjacent survey 

stations which are added up to determine the final wellpath. There are several methods of 

determining or computing this trajectory of which includes the average angle method, the 

tangential method, the balanced tangential method, radius of curvature method and minimum 

curvature method [10,56]. The next section explains how some of the above listed survey 

methods are derived. 

IV.1 Balanced Tangential Method 

The balanced tangential method calculates the survey position measurements in the north, east 

and true vertical direction of both the upper and lower survey station and then finds the average 

of the two survey position measurements to represent the survey measurement over the 

incremental measured path. From figure IV.1 the change in displacement in the north, east and 

true vertical depth is obtained as shown below using simple geometry. 

 

 

Figure IV.1 Balanced tangential method of wellpath computation  
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The first part is considered tantential to k and k and the second part is considered as being 

tangential to 1k+ and 1k+ . The average survey position of these two parts is used as the survey 

position from survey station k to survey station 1k +  . 

For the upper part 

 ( )1
1 sin cos
2k k k k kMD MD+ = −      (IV.1) 

 ( )1
1 sin sin
2k k k k kMD MD+ = −      (IV.2) 

 ( )1
1 cos
2k k k kTVD MD MD+ = −    (IV.3) 

The lower part is also given as 

 ( )1 1 1 1
1 sin cos
2k k k k kMD MD+ + + + = −      (IV.4) 

 ( )1 1 1 1
1 sin sin
2k k k k kMD MD+ + + + = −      (IV.5) 

 ( )1 1 1
1 cos
2k k k kTVD MD MD+ + + = −    (IV.6) 

 

The computation for the wellpath between the two stations is therefore deduced as 
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Appendix V 

V. Allan Variance Method for Stochastic Parameter Determination 

Allan variance is a method of analysis which is used to obtain the intrinsic noise characteristics 

(random noise) of the IMU sensor in the time domain. It describes the variance of a signal as a 

function of integration time. It was originally developed to study frequency stability of 

oscillators. It basically quantifies the various stochastically-driven errors present on an inertial 

sensor output which includes angle random walk, rate random walk, bias instability, 

quantization noise and rate ramp [53-54]. The results of the Allan variance curve provide the 

parameter values for the bias model used in the dyanamic model for the indirect Kalman filter 

in Chapter 3.  

V.1 Mathematical Description 

The IMU sensor instantaneous output can be denoted as a signal with noise which creates an 

uncertainty in the output signal. This noise is expressed as a frequency deviation error or a 

phase noise normally expressed as a time error.  

Background: 

Given the instantaneous signal, based on the oscillator model, as a function of time and denoted 

as  

 ( ) ( )( )sinoV t V t=    (V.1) 

where oV denotes the signal amplitude and ( )t  denotes the instantaneous angle measurement. 

Assuming the signal has a nominal frequency nv  and a corresponding nominal angular 

frequency denoted as n  where by it is expressed as 

 2n nv =    (V.2) 

The noise associated with this signal is denoted either as a phase noise or a frequency noise 

which is expressed as a time error ( )x t or frequency deviation error ( )y t respectively. 

The expression in V.2 can be rewritten as   

 ( ) ( )( )sin 2o nV t V v t t =     +  (V.3) 
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and the time error and frequency deviation can subsequently be derived as follows:  

For the time error ( )x t : 

 ( ) ( )( )( )sin 2o nV t V v t x t=    +  (V.4) 

where ( )x t is expressed as: 

 ( )
( )

2 n

t
x t

v



=

 
 (V.5) 

For the frequency deviation error ( )y t : 

Rewriting equation V.1 as an instantaneous frequency expression 

 ( ) ( )( )sin 2oV t V v t=     (V.6) 

whereby  

 ( )
( )( ) ( )21 1

2 2
n

n

d v t t d t
v t v

dt dt
  

 

   +
=  = + 

 
 (V.7) 

The 2nd part of the right-hand side of Eqs V.7 represents the frequency noise which is given as  

 
1 ( )( )

2
d tv t

dt



 = 


 (V.8) 

The frequency deviation which is expressed as the change in frequency (frequency noise) 

nomalized with the norminal frequency is given as 

 
( ) 1 ( )( )

2n n

v t d ty t
v v dt






= = 

 
 (V.9) 

From the above equation, it becomes obvious that the frequency deviation error is a derivative 

of the time error and can be expressed as 

 ( )
( )dx t

y t
dt

=  (V.10) 

 

A further expression for the average frequency deviation error which is basically the average 

taken over the observation time  (also known as the integration time) is given as 
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  ( ) ( )
0

1, v vy t y t t dt





= +  (V.11) 

And since ( )y t is a derivative of the time error ( )y t , it follows that the above equation can be 

rewritten as 

 ( )
( ) ( ),

x t x
y t

 




+ −
=  (V.12) 

Assuming the number of frequency samples in a frequency deviation series is M and assuming 

the number of time error samples in a time error series is denoted with N. The time error series 

is written as ( )ix x i=   which denotes the ith sample of the continuous time function ( )x t

whereby the time error sample series N denotes the number of samples ( )1o nx x − . For the 

average frequency deviation series, iy denotes the ith sample of the average continuous 

frequency deviation function ( )y t which can be written as ( ),iy y i =  . This is further written 

as 

 ( )
( ) ( )

0

1
i v v

x i x i
y y i t dt

 

 

+ − 
= + =  (V.13) 

where by in the case of the Allan variance, T  which is the time between each frequency sample 

is equal to  the integration time, and the resulting expression can be rewritten as 

 1i i
i

x xy


+ −
=  (V.14) 

M as defined earlier is represented by the number of samples ( )1 My y  from which the M-

sample variance is defined as 

 ( )
221 1

2 1 1

0 0

1 1, ,
1

M M
i i i i

y
i i

x x x xM
M M

  
 

− −
+ +

= =

 − −   
=  −    −      

   (V.15) 

or with the averaged frequency deviation time series expressed as 

 ( )
21 1

2 2

0 0

1 1, ,
1

M M

y i i
i i

M y y
M M

  
− −

= =

   
=  −   −    

   (V.16) 

The Allan variance is a two-sample variance and is defined with M=2 and denoted as  
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 ( ) ( )2 2 2, ,y y    =  (V.17) 

where represents the ensemble average and Eqn V.17 can be expressed as 

 ( ) ( ) ( )
2 22

1 2 12

1 1 2
2 2y k k n n ny y x x x 


− + += − = − +


 (V.18) 

with the estimate of the variance expressed as 

 ( )
( )

( )
22

1
1

1
2 1

N

y k k
i

y y
N

  −

=

= −
−
  (V.19) 

Considering it as a spectral analysis tool and in relation to the power spectral density, the Allan 

variance can be written as 

 ( ) ( ) ( )

2

2
y y ky t h t t dt 



−

 
=  − 

 
  (V.20) 

Filtering in the frequency domain, the Allan variance is given as 

 ( ) ( ) ( )
22

0
y y yS f H f df 



=   (V.21) 

with the fourier transform ( )
2

yH f   expressed as 

 ( ) ( )( )
( )

( )

422

2

sin
2y y

f
H f FT h t

f

 

 

 
= = 

 
 (V.22) 

Therefore, the spectral form of the Allan variance is given as 

 ( ) ( )
( )

( )

4
2

2
0

sin
4y y

f
S f df

f

 
 

 

  
= 

 
  (V.23) 

V.2 Procedure 

Each sensor was placed in a stationary position and connected to the PC via a serial interface. 

The Vectornav-100T was read at 40Hz while the MPU6500 IMU sensor was also read at 65Hz. 

For both sensors, two hours of data was collected and logged.  

The procedure is such that a consecutive number of data points   from the logged data, at a 

data rate with period nt is obtained. N is then subdivided into n  conservative clusters such that 
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the length for each cluster  is related to the period of the sampling rate given as nt n =  . For 

instantaneous output form the IMU sensor given as ( )t , the cluster average is given as 

  ( ) ( )
1 k

k

t

t

t t dt


 


+

=   (V.24) 

where ( )t  denotes the cluster average of the instantaneous output data which starts from the thk  data 

point and contains n data points. The average for the subsequent cluster is given as 

 ( ) ( )
1

1

1 k

k

t

next next
t

t t dt


 


+

+

+

=   (V.25) 

where  

 1k kt t + = +  (V.26) 

The differences for each two adjoining clusters;  ( ) ( )next k   −  for each cluster of time  forms a 

set of random variables. The variance over all such random variables for clusters of similar size is 

represented as the Allan variance. The Allan variance therefore of a cluster of length can  therefore be 

denoted as 

 ( ) ( ) ( )
22 1

2 next k      = −   (V.27) 

where denotes the averaging operation over the ensemble of clusters. This is further be expressed as 

 ( )
( )

( ) ( )
2 22

1

1
2 2

N n

next k
kN n

     
−

=

 = − −
  (V.28) 

where 2
Nn  . 

This basically shows that for a finite number of data points N , a finite number of clusters of a fixed 

length  can be formed. The estimated variance depends on the number of independent clusters of a 

fixed length. The characteristics of the underlining noise processes expressed as the Allan deviation is 

given as   

 ( ) ( )2   =  (V.29) 

The given data-rate and duration of data collection was enough to show its random walk and 

bias instability as indicated on the accompanying graphs in figures V.1 and V.2. Errors 
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occurring at higher averaging times such as rate random walk and drift ramp were not included 

since this is influenced much by temperature variations (Laboratory environment with no 

temperature control). Furthermore, the estimation of the Allan variance is based on a finite 

number of independent clusters that are formed from any finite length of data, where the 

confidence of estimation improves as the number of independent clusters is increased [55]. The 

error for the Allan variance is given as  

 ( )
1

2 1
n

  =
 
− 

 

 (V.30) 

where N is the total number of data points in the entire run, and n  is the number of data points 

contained in the cluster. From Eq. V.29, it is obvious that the estimation error increases with 

increase in the averaging time or cluster size. 

Errors: 

Angle Random Walk (ARW):  known as the wideband noise is the high frequency noise and it 

is observed as the short-term variation in the output [55]. The distribution is proportional to the 

square root of the elapsed time. It has a correlation time much shorter than the sampling time 

and is characterized by a white noise spectrum on the gyro rate output. The associated rate noise 

PSD is represented by 

 2( )yS f N=  (V.31) 

where N is the angles random walk co-efficient. Substitution of Eq. V.31 into Eq. V.23 and 

performing the integration results in  

 



2

2 )( N
=  (V.32) 

A log-log plot of ( )  versus has a slope of -0.5 and the numerical value of N is read directly 

from the slope line at 1=  (see figures V.1 and V.2). 

Bias Instability: it has an impact on the long-term stability of the sensor output. It represents 

the slow fluctuations or low frequency noise in the sensor output [55]. Bias instability 

determines the best stability that could be achieved with fully modelled sensor and active bias 

estimation. The rate power spectral density associated with this noise is given as [53] 
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2 1 ,
2

0,

( )
o

o

B f f
f

y

f f

S f


 
  
 
 







= 



  (V.33) 

where B and of denotes the bias instability coefficient respectively. Substituting Eq. V.33 into 

Eq. V.23 and performing the integration results in 

 ( ) 







−++−= )4()2(cos4sin

2
sin2ln2)( 2

32
2 xXixCixxx

x
xB


  (V.34) 

where x  denotes of     and iC denotes cosine-integral function. The log-log plot of Eq. 

V.34 reaches a horizontal or flat form for much longer than the inverse cut off frequency [53]. 

This region is thus examined to estimate the limit of the bias instability as well as the cutoff 

frequency of the underlying low-frequency noise. 

Table V.1: Summary of the stochastic parameters of the MPU6500 and the Vectornav-100T 
gyroscopic sensors as read from figures V.1 and V.2 

 MPU6500 IMU Gyroscope Vectornav-100T Gyroscope 
Axis Random Walk °/ s   

+/- 0.77% err  

Bias Stability °/s 
+/- 4.2% err  

Random Walk °/ s  +/- 
0.83% err 

Bias Stability °/s +/- 
4.6% err 

x-axis 8.9 * 10-3 7.9 * 10-3 1.87 * 10-3 1.92*10-4 

y-axis 6.9 * 10-3 3.83 * 10-3 2.01 * 10-3 3. 4*10-4 

z-axis 7.38 * 10-3 3.33 * 10-3 3.11 * 10-3 4.66 * 10-4 
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Figure V.1 Allan deviation curve for the MPU6500 Gyroscopic MEMS Sensor 

 

 

Figure V.2 Allan deviation curve for the Vectornav-100T Gyroscopic MEMS Sensor 

The results of the Allan variance are compared to the given specification of the sensors. It is 

observed that the Vectornav-100T sensor clearly has a better parameter specification with an 

angle random walk of averaging at 2 * 10-3 deg/ s  as compared to the MPU6500 gyroscope 

averages at about 7.5 * 10-3 deg/ s  . The bias stability of the Vectornav-100T also shows a 

superior performance to that of the MPU6500 as observed from table V.1 and Figures V.1-2. 

The values of both sensors come close to their datasheet specification. In the datasheet, the 

MPU6500 has an angle random noise (rate noise spectral density) specified as 0.01°/s/ Hz . 

This is very close to the values of obtained using the Allan variance method. The bias instability 

and the rate random walk are however not specified. The bias drift or angle random walk given 

by the Vectornav-100 in its datasheet is 0.005°/s/ Hz  
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