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Abstract

Compressed Sensing offers the possibility to jointly compress and encrypt sparse
or compressible signals during the sampling process, i.e. directly at the sensor
level. For the purpose of encryption, only the sampling matrix, which is also
needed for the signal recovery, must be kept secret. However, this type of
encryption scheme is no longer secure if multiple signals are encrypted, since
the same plaintext will always yield the same ciphertext. This thesis proposes
modes of operations for Compressed Sensing that allow the secure encryption
of multiple signals.

First, different attacks and threat models are analyzed in order to develop
security definitions for Compressed Sensing based encryption and Compressed
Sensing modes of operations. The results from this analysis are used to design a
general model for Compressed Sensing modes, which ensure confidentiality and
additionally reduce the information leakage of Compressed Sensing encryption.
The security and performance of cryptographic constructions that are suitable
for implementing the general model are evaluated and three dedicated modes
with different quality of service properties are derived from the general design.
These modes of operation and their corresponding security analysis are the first
main result of this thesis.

In addition to confidentiality, which is achieved through encryption, another
important security service is data integrity. This work also examines so-called
authenticated-encryption modes for Compressed Sensing, which ensure confi-
dentiality and data integrity simultaneously. A general model for Compressed
Sensing with authenticated-encryption is developed and dedicated schemes are
derived from this model. The security of these schemes is reduced to the secu-
rity of the underlying cryptographic constructions and primitives. Compressed
Sensing with authenticated encryption provides security even in the case where
an adversary has the ability to tamper with the ciphertext.
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The final contribution of this thesis is the integration of the proposed Com-
pressed Sensing modes into a distributed application. A software architecture for
Industry 4.0 applications is developed and implemented. The designed system
includes all necessary components for the usage of Compressed Sensing modes,
like key-establishment and parameter exchange. Next to security, a main design
goal of this system is usability. The user just determines the security service for
his application and all security relevant operations are handled by the software,
transparent for the user. This approach prevents security problems that are
caused by inappropriate usage of cryptographic schemes.

The Compressed Sensing modes developed in this thesis are suitable for a
wide range of real world applications due their joint sampling, compression
and end-to-end security that starts at the sensor level. The proposed software-
system completes the contribution of this work, since it realizes all necessary
components for the usage of the designed modes.
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Zusammenfassung

Compressed Sensing bietet die Möglichkeit spärlich besetzte oder komprimier-
bare Signale bereits bei der Abtastung - also im Sensor - zu komprimieren
und gleichzeitig zu verschlüsseln. Dabei muss zur Verschlüsselung lediglich die
Abtastmatrix, welche auch für die Signalrekonstruktion notwendig ist, geheim
gehalten werden. Allerdings ist diese Verschlüsselungstechnik nicht mehr sicher,
wenn mehrere Signale verschlüsselt werden, da derselbe Klartext immer densel-
ben Schlüsseltext ergibt. Deshalb befasst sich diese Dissertation mit Betriebs-
arten für Compressed Sensing, die eine sichere Verschlüsselung von mehreren
Signalen ermöglichen.

Zunächst werden verschiedene Angriffe und Angreifermodelle untersucht, um
Sicherheitsdefinitionen für Compressed Sensing basierte Verschlüsselung und
Compressed Sensing-Betriebsarten zu entwickeln. Basierend auf den Ergebnis-
sen dieser Analyse wird ein generelles Modell für Compressed Sensing-Betriebs-
arten entworfen, welche Vertraulichkeit gewährleisten und darüber hinaus den
Informationsverlust der Compressed Sensing-Verschlüsselung reduzieren. Nach
einer Sicherheits- und Performancebewertung der für die Implementierung ge-
eigneten kryptographischen Verfahren werden drei dedizierte Betriebsarten aus
dem generellen Design abgeleitet, die verschiedene Dienstgüteeigenschaften wie
Parallelisierbarkeit oder Selbstsynchronisation aufweisen. Diese Betriebsarten
und die damit verbundenen Sicherheitsanalysen sind das erste Hauptergebnis
dieser Dissertation.

Zusätzlich zur Vertraulichkeit, die durch Verschlüsselung erreicht wird, ist
Datenunversehrtheit ein weiterer wichtiger Sicherheitsdienst. Deshalb werden
in dieser Arbeit auch sogenannte Authenticated-Encryption-Betriebsarten für
Compressed Sensing entworfen, die Vertraulichkeit und zeitgleich den Schutz
der Datenunversehrheit gewährleisten. Auch hier wird zunächst ein generelles
Modell für diese Betriebsarten entwickelt, aus dem dann konkrete Implementie-
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rungen abgeleitet werden, deren Sicherheit auf die zugrundeliegenden krypto-
graphischen Verfahren zurückgeführt wird. Compressed Sensing mit Authenti-
cated-Encryption bietet auch dann Sicherheit, wenn ein Angreifer gezielt Schlüs-
seltexte manipulieren kann.

Ein letzter Aspekt, der in dieser Arbeit betrachtet wird, ist die Integrati-
on der entwickelten Betriebsarten in eine verteilte Anwendung. Dazu wird eine
Softwarearchitektur für Industrie 4.0-Anwendungen entworfen und implemen-
tiert, welche die nötigen Komponenten für den Einsatz der Compressed Sensing-
Betriebsarten, wie Schlüsselvereinbarung und Parameteraustausch, beinhaltet.
Neben der Sicherheit ist ein Hauptziel des entworfenen Systems die Benutzer-
freundlichkeit. Alle sicherheitsrelevanten Operationen werden für den Anwender
transparent von der Software durchgeführt, sodass der Anwender lediglich fest-
legen muss, wie die Daten seiner Anwendung geschützt werden sollen. Auf diese
Weise werden Sicherheitsprobleme vermieden, die durch unsachgemäße Verwen-
dung von kryptographischen Verfahren entstehen.

Die in dieser Arbeit entwickelten Betriebsarten für Compressed Sensing sind
durch die gleichzeitige Abtastung und Komprimierung für viele reale Anwen-
dungsfälle interessant und ermöglichen echte Ende-zu-Ende-Sicherheit, die be-
reits im Sensor beginnt. Das vorgestellte Softwaresystem vervollständigt den
Beitrag dieser Arbeit, da es die nötigen Komponenten für die Verwendung der
entworfenen Betriebsarten realisiert.
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Chapter 1
Introduction

1.1. Motivation

The amount of data generated in today’s world grows rapidly. Compression

gains an increasingly important significance, since it makes the massive amount

of data controllable. Data is compressed right after sampling in order to reduce

the data quantity by keeping only the important information for storage and

further processing. However, it would be more efficient and natural to measure

the important parts of the data directly, instead of collecting a lot of data just

to throw it away moments later.

Compressive Sensing (CS) is an inspiring technique that might offer a solu-

tion to the aforementioned problem. Candès, Donoho, Romberg and Tao are re-

garded as the founders of this sampling paradigm [CT05, CT06, CRT06, Don04,

Don06]. CS allows to recover sparse signals from far less samples than the

Nyquist rate pretends in accordance with the Whittaker-Shannon-Kotelnikow

sampling theorem [Whi35, Sha49a, Kot33]. By this means, compression is in-

tegrated directly into the sampling process. Random sampling shows the most

promising dimensionality reduction, i.e. compression, guarantees even in pres-

ence of noise. Interestingly, Candès and Tao mentioned in [CT06] that this ran-

dom encoding can be used to implement a robust symmetric encryption scheme

1



1. Introduction

just by treating the random sampling operator – a matrix – as a secret shared

between legitimized parties. The additional overhead for this encryption is min-

imal and limited by the necessary key-establishment and -management. Hence,

Compressive Sensing might offer real end-to-end encryption that is directly in-

tegrated into the sampling process, which means that data can be protected

right at the sensor level.

When multiple signals are encrypted under the same sampling operator, the

Compressed Sensing based encryption scheme is no longer randomized like a

block cipher with a fixed key. As a consequence, identical plaintext signals

will be encrypted to the same ciphertext. From a privacy point of view this

means that an eavesdropper will recognize if the same plaintext is encrypted

repeatedly. Even more critical, the system can easily be broken by an active

and simple key recovery attack [Fay16, FR16].

The main problem with Compressive Sensing based encryption is the pre-

dictable behavior of the cipher after fixing the secret sensing matrix. In modern

cryptography, a block cipher is used in an appropriate mode of operation that

randomizes the encryption process and achieves security against active adver-

saries. This work introduces modes of operation to Compressive Sensing based

encryption, which allow to encrypt multiple signals securely under a single key.

1.2. Outline

This work is organized as follows. The next chapter presents an overview of

proposed Compressed Sensing encryption schemes and other work that is related

to this thesis. The related work is discussed and categorized in order to give

the reader an insight of the state-of-the-art techniques for Compressed Sensing

encryption. After that, open problems partially extracted from the related work

are stated in section 2.3. These outstanding issues and some more are addressed

in this thesis.

Chapter 3 contains an introduction to Compressed Sensing and symmetric

cryptography. Formal definitions are provided in order to establish the nota-

tion that is used throughout the thesis. At first, the concept of sparsity, different

sampling models and the requirements on the sampling system are presented.

The basic method for Compressive Sensing reconstruction is explained, which

also shows why CS achieves some robustness against noise. Section 3.2 of-

2
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fers an introduction to symmetric cryptography. Basic primitives and security

models are defined. The security models are used to provide formal defini-

tions for the security of various cryptographic schemes. These definitions ex-

press precisely what the word “secure” means for a scheme in a specific context.

Standardized block cipher modes are presented and their properties are summa-

rized. Finally, the basic concept of authenticated-encryption and authenticated-

encryption with associated-data is introduced.

Chapter 4 explains the concept of Compressed Sensing based encryption. A

security definition for this kind of encryption schemes is established for two

important scenarios. At first, security for the case where just a single signal is

encrypted with a fixed matrix is studied in section 4.2. The impact of different

sampling matrix designs on the security of CS based encryption is discussed in

section 4.2.2 and experimental results regarding the behavior of the compressed

ciphertext are presented. Section 4.3 deals with the many-time encryption sce-

nario, i.e. the case in which multiple plaintexts should be encrypted. Possible

attacks on CS based encryption with a fixed sampling matrix are shown and

implemented. The results from this analysis are used to establish a security def-

inition for the many-time encryption scenario. This definition builds the basis

for the security analysis of all CS modes of operation proposed in this thesis.

Compressive Sensing encryption modes are presented in chapter 5. These

modes will ensure the confidentiality of plaintext signals in the many-time en-

cryption scenario, and they are resistant to chosen-plaintext key recovery at-

tacks. Some results of this chapter are published in [Fay16] and [FR16]. A

general design for Compressed Sensing encryption modes is presented in section

5.2.1. The design can be split into two parts, namely matrix generation and

normalized encryption, which are explained in section 5.2.2 and 5.2.3. Neces-

sary implementation details for the matrix generation algorithm are discussed

in section 5.2.2.2 together with suitable primitives, constructions and recom-

mended parameters. A formal security analysis of the proposed constructions

against generic attacks is presented in section 5.2.2.3 and their performance is

analyzed in section 5.2.2.4. Dedicated modes derived from the general design

are presented in section 5.3, 5.4 and 5.5. A security analysis is also provided for

each of the designs. Section 5.6 compares the proposed confidentiality modes

and their properties, while experimental results are presented in section 5.7.

Chapter 6 bases on [FR17] and deals with Compressed Sensing modes that

3
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achieve confidentiality and integrity. Generic constructions, i.e. combinations of

confidentiality schemes and message authentication schemes are analyzed. The

findings of this analysis are used to establish a general design for Compressed

Sensing authenticated-encryption schemes in section 6.3.1. Suitable construc-

tions for the implementation of these schemes are presented, and it is discussed,

under which conditions these schemes achieve the claimed security goal.

Compressive Sensing modes

confidentiality (5)

CS-
CTR
(5.3)

CS-
CBC
(5.4)

CS-
CFB
(5.5)

authenticated-encryption (6)

generic
constructions

(6.2)

CSE
and

MAC
(6.2.2)

MAC
then
CSE
(6.2.3)

CSE
then
MAC
(6.2.4)

dedicated
designs

(6.3)

Figure 1.1.: Overview of the designed modes and the roadmap for the subse-
quent sections.

Fig. 1.1 presents an overview of the designed modes of operation that are

studied in this thesis. The rectangular nodes describe the modes classification,

divided into confidentiality modes and authenticated-encryption. The nodes

with rounded corners show the proposed modes resp. the considered generic

constructions. The corresponding section numbers are given in round brackets.

Chapter 7 introduces a framework for secure sensor networks, especially for

Industry 4.0 applications. This framework is the use-case for the developed

encryption schemes presented in the previous chapters. The proposed software

framework allows implementers to create services that communicate securely

with each other. However, one of the main design goals of this framework is

usability and misuse resistance. Therefore, all cryptography and security related

operations are handled by the system, transparent for the implementer who just

chooses the security service he/she wants for the data.
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1.3. Remarks

The final chapter 8 concludes the thesis, summarizes their main contribution

and proposes future work.

1.3. Remarks

An accurate mathematical notation is important for the understanding of scien-

tific work. The provided List of Symbols contains the most important symbols

used in this thesis. Unless otherwise noted, the basic mathematical operators

used in this work are in accordance with ISO 80000-2. Terminology from the

field of cryptography and information security can be found in [ISO16].
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Chapter 2
Related Work

2.1. Security of Compressed Sensing Based Encryption

The goal of this thesis is to develop and analyze Compressive Sensing encryp-

tion modes that are usable to encrypt multiple signals securely with respect

to precisely formalized threat models. Hence, the first question that comes to

mind is: how secure is Compressive Sensing based encryption? Candès and Tao

mentioned in [CT06] that Compressive Sensing offers security and robustness

as long as the sampling operator is unknown to an eavesdropping adversary. It

took two years until Rachlin and Baron published the first security analysis of

Compressed Sensing measurements in [RB08]. They were able to show that,

in general, Compressive Sensing cannot achieve perfect secrecy in the Shannon

sense [Sha49b]. This means that an adversary learns information about the

plaintext just by observing the ciphertext. However, Rachlin and Baron also

showed that Compressive Sensing based encryption is computationally secure,

which means that it is computational infeasible for an adversary to recover the

original plaintext when he/she is just given the ciphertext but not the key.

Of course, it must be assumed that some parameters like the key-size are suffi-

ciently large. Further contributions by [OASB08] and [TZ12] support the results

of Rachlin and Baron. Cambareri et al. [CMP+15a, CMP+15b] and Bianchi et

al. [BBM14, BBM16] studied the information leakage in Compressive Sensing
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with respect to different matrix designs and assumptions. Both found that the

signals energy is in fact the only information that an adversary might extract

from eavesdropped measurements. It must be noted that all this studies target

one-time encryption.

2.2. Related Encryption Schemes

Various encryption schemes that make use of Compressive Sensing were pro-

posed in the last years, see [CHP+13, HRU14, ZWLZ14, ZWX+14]. A literature

review on Compressed Sensing encryption schemes can be found in [ZZZ+16].

In general, the proposed schemes can be divided into two categories. One type

of systems use Compressive Sensing just for sampling and compression while en-

cryption is performed by additional enciphering layers. Those schemes follow the

compress-then-encrypt paradigm. An example for such a system is presented in

[HRU14]. The authors use Compressive Sensing as sampling method and apply

additional cipher layers in order to protect the compressed measurements dur-

ing communication. Huang et al.’s system [HRU14] is able to encrypt multiple

signals under a single key and the authors also claim security against chosen-

plaintext attacks. However, systems from the compress-then-encrypt family do

not offer joint encryption, compression and sampling. Therefore, it is not clear

whether they can be integrated into a CS-sensor. Moreover, their security is

mainly due to the additional cipher layers. The robustness of the compressed

measurements against noise is also lost with high probability. Hence, one could

just encrypt the measurements after sampling using standardized and mature

ciphers.

The other type of systems contains encryption schemes that use the inher-

ent security of Compressive Sensing to ensure the confidentiality of a plaintext

signal. Examples include one-time encryption schemes like [CHP+13], but also

systems like [ZWLZ14] that provide security in the case where multiple signals

are encrypted. Zhang et al. [ZWLZ14] proposed a bi-level protection of the

compressed measurements with a key dependent sampling basis besides the se-

cret sampling matrix. However, in practice it might prove hard to find a suitable

sampling basis for each application scenario that does not harm the recovery

guarantees. On top, the only random components of this system are the random

keys used to generate the matrices. If the same keys are used to encrypt iden-

8
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tical plaintexts multiple times the encryption scheme is no longer randomized.

Hence, an adversary will learn that the same plaintext is encrypted repeatedly,

since same plaintext will produce same ciphertext. This shows an additional

disadvantage of most of the proposed CS based encryption schemes: they are

lacking a concrete and formal security treatment.

2.3. Open Problems

The related literature shows some open issues, but other interesting questions

have not been asked yet. The following open problems form the objectives of

this thesis.

Encrypting multiple signals

Compressive Sensing based encryption becomes deterministic when multiple

signals are encrypted under one key. This means that the same plaintext will

always produce the same ciphertext under a fixed key. Previously proposed

encryption schemes are either lacking a concrete security treatment or they are

just one-time key encryption schemes. The Compressive Sensing encryption

modes presented in this thesis will use the inherent security of Compressive

Sensing to protect multiple signals that are encrypted under a single key. The

security of the proposed modes of operation is analyzed with respect to formal

and well defined threat models.

Hiding the signals energy

[CMP+15a] and [BBM16] agreed that the signals energy is in fact the only in-

formation that an adversary might learn from the eavesdropped measurements.

[BBM14] proposed to normalize the signals in order to hide their energy. The

normalization value should be sent securely to the recipient for a correct signal

reconstruction. However, no actual system with integrated protection of the

signals energy has been proposed.

Integrity protection

Data integrity is an important security service, but the proposed CS based

encryption schemes are only dealing with confidentiality. It is not even clear how

9
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to combine Compressive Sensing based encryption with message authentication

schemes.

System integration

It is another open problem to investigate how the proposed encryption schemes

can be integrated into a complete system. The majority of the proposed encryp-

tion schemes assume that, for example, secret keys are already shared between

communicating parties. Other parameters that are necessary for the system to

work correctly are not discussed in detail. Hence, it is not clear which parame-

ters might be publicly available and which must be secret.

10



Chapter 3
Fundamentals

3.1. Compressive Sensing

3.1.1. Signal representation

This section provides the necessary notation for an introduction to Compressed

Sensing and the concept of sparsity. Let V be a vector space of dimension N

over the field F and define a norm on V as follows (cf. [FR13, Def. A.1]):

Definition 3.1. (Norm)

A norm on V, denoted by ∥ · ∥, is defined as a function ∥ · ∥ : V → R
+
0 where

the following axioms hold for all x⃗, y⃗ ∈ V and all scalars a ∈ F:
(I) ∥x⃗∥ = 0 iff x⃗ = 0⃗; ∥x⃗∥ > 0 otherwise

(II) ∥a · x⃗∥ = |a| · ∥x⃗∥
(III) ∥x⃗+ y⃗∥ ≤ ∥x⃗∥+ ∥y⃗∥

The p-norm of x⃗ ∈ V is given by (cf. [BDDH11, Eq. (2.1)])

∥x⃗∥p =

(

n
∑

i=1

|xi|p
)1/p

= (|x1|p + |x2|p + . . .+ |xn|p)1/p , for p ≥ 1. (3.1)

In the case where 0 < p < 1, Eq. (3.1) defines a so called quasi-norm, since

the function ∥ · ∥p does not fulfill axiom (III) from Def. 3.1. Fig. 3.1 presents

the unit circles for different (quasi-)norms in R
2.
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∥x∥2

∥x∥1

∥x∥p=0.3

Figure 3.1.: Unit circles for different (quasi-)norms.

In case that p equals zero, let ∥x⃗∥0 be the number of nonzero elements in x⃗,

e.g. the vectors Hamming weight. The sparsity s of a signal s⃗ is now defined

using ∥ · ∥0.

Definition 3.2. (Sparse signals)

A signal s⃗ ∈ R
N is s-sparse if at most s entries of s⃗ are nonzero, meaning

that ∥s⃗∥0 ≤ s holds, for some s ∈ N with s ≤ N .

Sparsity plays an important role in CS, but natural signals, like images, are

most likely not directly sparse in the domain where they were sampled originally.

However, it turns out that these signals might be sparse in a different domain

Ψ. If some domain Ψ exists where x⃗ = Ψs⃗ holds, with ∥s⃗∥0 ≤ s, the vector x⃗

is called s-sparse in the sparsifying basis Ψ. Images, for example, are sparse or

compressible in the wavelet domain, which is used in JPEG 2000 compression

standardized in ISO 15444.

A signal is called compressible in a domain Ψ, if only a small number of its

transformed entries have large values, while most of the entries are close to

zero, see Fig. 3.2 for an example. In this case, the compressible signal can be

approximated using an s-sparse signal by setting the entries that are below a

12
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Figure 3.2.: The power-law decay of the wavelet coefficients of an image com-
pared to the original coefficients from the spatial domain.

certain threshold to zero. Of course, this kind of approximation will result in a

loss of information.

The CS systems considered in this thesis work by taking a small set of m

linear measurements y⃗ from a finite N -dimensional, s-sparse or compressible,

signal x⃗ by:

y⃗ = A · x⃗ ! A ·Ψ · s⃗, ∥s⃗∥0 ≤ s, (3.2)

where the sampling matrix A ∈ R
m×N is a linear map from R

N → R
m and

m ≥ s. It is assumed that N is much larger than m, hence the sampling process

given by Eq. (3.2) contains an implicit dimensionality reduction.

One might either implement Eq. (3.2) by treating x⃗ as a vector of discrete sam-

ples obtained by classical Nyquist sampling or by acquiring y⃗ directly. Therefore,

the following two sampling models are defined:

Definition 3.3. (Sampling models)

(M1) The vector y⃗ of compressed measurements is acquired directly by the

compressed sampling system.

(M2) x⃗ is assumed to be a vector of discrete samples obtained by classical sam-

pling in accordance to the Whittaker-Shannon-Kotelnikow sampling the-

orem [Whi35, Sha49a, Kot33], and x⃗ is compressed to y⃗ using Eq. (3.2).
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Clearly, the preferred and most interesting sampling model is (M1), since

the sampling process collects the important information directly. When x⃗ is

s-sparse and (M2) is used, the system acquires a large number of samples just

to discard most of them later. However, (M2) is often assumed for experimental

or theoretical purpose.

3.1.2. Requirements on the sampling system

Consider a set X = {x⃗0, x⃗1, . . . , x⃗l−1} of s-sparse or compressible signals that is

sampled as stated in Eq. (3.2), and later the original signal should be recovered

from the obtained measurements Y = {y⃗0, y⃗1, . . . , y⃗l−1}. It must be ensured

that the dimensionality reduction preserves the information contained in the

signals. Otherwise, it would be impossible to recover the original signal from

the compressed measurements. In the case where m ≪ N , the system Ax⃗ = y⃗

is heavily underdetermined and has an infinite number of solutions in general.

The fact that x⃗ is s-sparse relaxes the problem, since from the set of all possible

solutions only the s-sparse solutions are from interest. The sampling matrix

A must be designed in a way that ensures that the considered system of lin-

ear equations has a unique sparse solution. This can be formalized using the

restricted isometry property (RIP) that was introduced by [CT05].

Definition 3.4. (Restricted isometry property)

A matrix A ∈ R
m×N is said to satisfy the restricted isometry property (RIP)

of order s if for all s-sparse x⃗ the following inequality holds

(1− βs) ||x⃗||22 ≤ ||A · x⃗||22 ≤ (1 + βs) ||x⃗||22. (3.3)

βs is called the restricted isometry constant of the matrix A and 0 < βs < 1.

An RIP matrix of order 2s preserves the distances between any pair of s-sparse

vectors [BDDH11, Sec. 3.3]. No pair of s-sparse vectors will be mapped to the

same measurement vector, which ensures that the system has a unique solution.

Moreover, the distance preservation introduces some robustness against noise.

Verifying that a certain matrix meets the RIP of order s was assumed to be

computationally intractable for a long time and later it was proven to be an NP-

hard problem by [TP14]. Surprisingly, [CT05][CT06] found that sub-Gaussian

matrix ensembles satisfy the RIP with overwhelmingly high probability, i.e.
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1 − exp(−C1 · m) [FPRU10]. For this results to hold, the minimal number of

measurements, given by m, must be bounded by

m ≥ C2 · s · log
(

N
s

)

, (3.4)

with some positive constant C1, C2 depending only on βs [FPRU10]. As

shown in [FPRU10], the bound from Eq. (3.4) is indeed optimal and according

to [FR13, Sec. 5.4] most deterministic matrix constructions only yield m ≥ C·s2,
for some positive constant C.

Prominent examples for sub-Gaussian matrix ensembles are Gaussian ma-

trices whose entries are drawn independently and identical from the standard

normal distribution, and Bernoulli matrices whose entries are drawn uniformly

at random from {+1,−1}. Another benefit of sub-Gaussian matrix ensembles

is that the product AΨ satisfies Eq. (3.3) with very high probability for some

orthonormal basis Ψ [BDDW08, Thm. 5.2], i.e. the RIP holds even in the case

where x⃗ is s-sparse in Ψ. This property is sometimes called universality. In

contrast, deterministic matrices are not universal in the sense that Ψ must be

considered explicitly in the construction of A.

3.1.3. Reconstruction

In order to reconstruct a sparse signal x⃗ ∈ R
N from compressed measurements

y⃗ ∈ R
m one must find the sparsest solution to the underlying system of linear

equations. The conditions introduced in the last section will ensure that a

unique solution exists, even for noisy measurements. The sparsest solution

given y⃗ = Ax⃗ can be found by solving the following optimization problem:

argmin
x̃∈RN

∥x̃∥0 subject to y⃗ = A · x̃. (3.5)

When the measurements are contaminated with noise, the optimization prob-

lem becomes:

argmin
x̃∈RN

∥x̃∥0 subject to y⃗ = A · x̃+ ϵ, (3.6)

where ϵ is some bounded noise term, i.e. ∥ϵ∥2 ≤ η.
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Unfortunately, the optimization problems from Eq. (3.5)/(3.6) are non-convex

and therefore computationally hard to solve. A major breakthrough in the area

of sparse signal recovery was the work of [Don04] and [CT05] who found that

for RIP matrices replacing ∥ · ∥0 by ∥ · ∥1 in Eq. (3.5)/(3.6) yields the correct

solution. Finding the solution to Eq. (3.5)/(3.6) with the minimal ∥ · ∥1 norm

relaxes the sparse signal recovery problem to a convex optimization problem,

which can be solved by linear programming (see [FR13, chap. 15] for some

example algorithms). In order to get a rough intuition why ∥ · ∥1 is a adequate

approximation for ∥ · ∥0 in Eq. (3.5)/(3.6) the reader is referred to [BDDH11,

Sec. 2.1/4.1]. In the case of compressible or noisy signals the reconstruction

will introduce some error, which has to be considered. Let y⃗ = A · x⃗ + ϵ with

∥ϵ∥2 < η and define the error of the best s-sparse approximation to x⃗ ∈ R
N as

(cf. [FR13, Def. 2.2]):

∆s(x⃗)1 := min
∥z⃗∥0≤s

∥x⃗− z⃗∥1. (3.7)

Following [FR13, Thm. 4.22], the ∥ · ∥2-error of the reconstruction algorithm

can be estimated by

∥x⃗− x̃∥2 ≤ C√
s
∆s(x⃗)1 +Dη, (3.8)

where C, D > 0 are constants.

Fig. 3.3 presents exemplary the impact of noise in the reconstruction of the

“gray-scale” test image. The original test image was sampled column-wise with

a Gaussian random matrix and reconstructed with TVAL3 recovery [Li09], an

algorithm specially suitable for the reconstruction of images. The rightmost

columns of the original image have more zero-entries than the others due to the

black area, hence the noise in the reconstructed columns is hardly visible. In

contrast, the bright columns on the left-hand side are visibly corrupted with

noise.
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(a) (b)

Figure 3.3.: The impact of reconstruction noise in Compressed Sensing. (a)
shows the original test image, while (b) presents the reconstruction
of the original image with TVAL3 recovery [Li09].

3.2. Symmetric Cryptography

3.2.1. General

A symmetric encryption scheme that should provide data confidentiality is de-

fined as a three-tuple Π = (K, Ek,Dk), where K (the key space) is a finite and

nonempty set of binary strings k called keys. Let | · | denote the length of a bi-

nary string in bits, e.g. |k| is the length of the key k. The encryption algorithm

Ek is a keyed deterministic or randomized and efficient (i.e. polynomial-time)

algorithm. An algorithm is randomized if it uses internal sources of randomness

during its execution, otherwise the algorithm is called deterministic. The en-

cryption algorithm takes a key k and a plaintext message m ∈ {0, 1}∗ as input

and outputs a ciphertext c ∈ {0, 1}∗. This process is denoted by c ← Ek(m).

Throughout this thesis, the key inputs to keyed functions and algorithms are

written as subscript in order to differentiate between keys and other function

inputs. The polynomial-time decryption algorithm Dk is a keyed determinis-

tic algorithm that takes as input a ciphertext c and outputs a message m, i.e.

m ← Dk(c). In general, decryption is defined to be whatever necessary, to be

the inverse of encryption, which means that Dk(Ek(m)) = m holds for all k ∈ K
and m ∈ {0, 1}∗. A high level view of a symmetric encryption system using the

17



3. Fundamentals

c ← Ek(m)

Sender

k

m ← Dk(c)

Recipient

c

k

Figure 3.4.: High level view of a symmetric encryption system.

aforementioned notation is presented in Fig. 3.4, the legitimized communicating

parties are sharing the same key k and therefore the system is called symmetric.

Encryption schemes are constructed from primitives, such as pseudorandom

functions (PRF) and pseudorandom permutations (PRP) that are used to model

the behavior of an idealized cipher. In practice, these primitives are replaced by

concrete ciphers and constructions that have withstood an intensive cryptanaly-

sis. This means that a lot of experienced cryptanalysts have tried to distinguish

these ciphers from ideal primitives, but they were not able to find serious weak-

nesses. To date, an example for a secure PRP is the Advanced Encryption

Standard (AES) while HMAC instantiated with secure hash algorithm (SHA)-2

is often used as a PRF.

Definition 3.5. (Pseudorandom functions)

A pseudorandom function family F is a map F : K×{0, 1}|m| → {0, 1}|c|,
where |m|, |c| ≤ n (n ∈ N). For each key k ∈ K let fk(m) = F (k,m) be a

deterministic polynomial-time function fk : {0, 1}|m| → {0, 1}|c|. The function

fk is called pseudorandom if no efficient algorithm (called adversary) is able

to distinguish fk from a random function F from the same domain and range,

when k is chosen uniformly at random (cf. [KL15, p. 77 f.]).

Definition 3.6. (Pseudorandom permutations)

A family of pseudorandom permutations P is defined as P : K × {0, 1}n →
{0, 1}n, where |m| = |c| = n (n ∈ N). Let ρk = P (k,m) be an efficient deter-

ministic bijection on {0, 1}n and further let ρ−1
k (c) be the efficiently computable

inverse function. A permutation ρk is called pseudorandom if no efficient algo-

rithm (called adversary) is able to distinguish ρk from a random permutation

P on the same set, when k is chosen uniformly at random (cf. [KL15, p. 79
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f.]). Each pseudorandom permutation is also a pseudorandom function, which

is implied by the PRP/PRF switching Lemma [BR04, Lemma 1].

An efficient adversary A is modeled as an algorithm, and therefore, like all

other efficient algorithms, A is supposed to run in polynomial-time with respect

to some security parameter κ. κ is often determined by the key size such that

κ ≤ |k|. However, κ is treated as implicit parameter and unless otherwise noted

it is omitted as function input. Now, consider that the adversary’s goal is to

distinguish a random function/permutation from a pseudorandom function/per-

mutation. Hence, A is given access to an oracle Ofun resp. Operm chosen with

probability 1/2 to be either Ofun(m) = fk(m), Operm(m) = ρk(m) where k is

chosen uniformly at random from K, or Ofun(m) = F(m), Operm(m) = P(m).

The adversary has to guess how the oracle O was chosen and if the probability

that he/she guesses correctly is not greater than 1
2 + ε(κ) for some negligible

function ε(κ), the pseudorandom function/permutation is said to be indistin-

guishable from a random function/permutation (cf. [KL15, Def. 3.25/3.28]).

The experiment is called the real or random experiment, abbreviated Expror
A .

A function ε(κ) : N → R is called negligible, if for every positive polynomial

poly(·) there exists a positive integer N such that ε(κ) < 1/(poly(κ)) holds

∀κ > N [KL15, Def. 3.4].

3.2.2. Security for one-time key encryption

The concept of indistinguishability plays an important role in the security anal-

ysis of encryption schemes. The security of an encryption scheme Π is often

established using a reductionist approach, meaning that the security of Π is

reduced to the security of the underlying primitive, e.g. a PRP. A well stud-

ied and widely applied technique used to define the security of an encryption

scheme is based on interactive experiments (often called games) that involve

an adversary A and an honest party called the challenger who uses Π (see

[GM82, BDJR97, BR04]). The adversary’s power and his/her goal must be

specified in order to define what it means for a system Π to be secure against

specific types of adversaries, regardless of their concrete implementation.

Consider the experiment from Fig. 3.5 that is denoted by Expcoa
A,Π(b). On input

of a bit b ∈ {0, 1} the challenger draws a key k randomly from the key space K.

The adversary chooses two plaintext messages m0,m1, both of equal length, and
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Expcoa
A,Π(b)

k
rnd← K

c ← Ek(mb)

Challenger
b ∈ {0, 1}

m0,m1

|m0| = |m1|

Adversary A

m0,m1

c

b′ ∈ {0, 1}

Figure 3.5.: The ciphertext only indistinguishability experiment Expcoa
A,Π(b).

sends them to the challenger. According to the bit b the challenger encrypts mb

by c ← Ek(mb) and sends the challenge ciphertext c to the adversary. A outputs

a bit b′ ∈ {0, 1} that represents his/her guess which message was encrypted

and b′ is also the output of the experiment. The adversary A observes only a

single ciphertext encrypted under the key k and therefore this attack is called

a ciphertext only attack (COA) (see [KL15, p. 54 f.]). In order to complete

the threat model, the adversary’s goal must be specified. Since A tries to guess

the bit b, his/her goal is to distinguish between the encryption of m0 and m1.

The advantage Advcoa
A,Π ∈ [0, 1] of an adversary A against Π in the experiment

Expcoa
A,Π(b) is defined as

Advcoa
A,Π := |Pr[Expcoa

A,Π(0)=1]− Pr[Expcoa
A,Π(1)=1]|. (3.9)

Definition 3.7. (IND-COA security)

A symmetric encryption scheme Π = (K, Ek,Dk) has ciphertext indistin-

guishability in presence of a ciphertext only adversary, or it is said to be IND-

COA secure for short, if

Advcoa
A,Π ≤ ε(κ)

holds for a negligible function ε(κ) and all efficient adversaries A.

The fact that A is allowed to choose the two messages m0 and m1 simu-

lates that the adversary might have partial or full knowledge about the plain-

text. Even in this case he/she should not be able to distinguish the plain-
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texts given only a single ciphertext. The probabilities Pr[Expcoa
A,Π(0)=1] and

Pr[Expcoa
A,Π(1) = 1] from Eq. (3.9) are equal if the adversary is just guessing the

bit b′ at random and thus his/her advantage is zero. Hence, Def. 3.7 states

that a system achieves IND-COA if no efficient adversary, regardless of his/her

strategy, can do much better than guessing.

3.2.3. Modes of operation

3.2.3.1. Security in the many-time key scenario

The adversaries considered so far were only allowed to eavesdrop on one cipher-

text encrypted under a single secret key k. This section discusses encryption

schemes, so called modes of operation, which are secure against more powerful

adversaries in the case where a single key is used to encrypt multiple plaintexts.

The experiment Expcpa
A,Π(b) described in Fig. 3.6 is used to define a stronger se-

curity notation than IND-COA, since the adversary is now able to send multiple

equal length messages mi,0, mi,1 to the challenger, who replies with ci ← Ek(mi,b)

for 0 ≤ i ≤ l − 1. The rest of the experiment is quite similar to the experiment

Expcoa
A,Π(b) from the previous section. Note that the adversary is now able to

perform a chosen plaintext attack (CPA) and use this knowledge for further

queries, because he/she might choose a plaintext m and send m = mi,0 = mi,1,

which leads to ci = Ek(m). The following security notation was introduced

in the seminal work of [BDJR97] and is the most common security notation

that confidentiality only encryption schemes are required to achieve in modern

cryptography.

Expcpa
A,Π(b)

k
rnd← K

ci ← Ek(mi,b)

Challenger
b ∈ {0, 1}

mi,0,mi,1

|mi,0| = |mi,1|

Adversary A

(0 ≤ i ≤ l-1)

mi,0,mi,1

ci
b′ ∈ {0, 1}

Figure 3.6.: The chosen plaintext indistinguishability experiment Expcpa
A,Π(b).
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Definition 3.8. (IND-CPA security)

A symmetric encryption scheme Π = (K, Ek,Dk) has ciphertext indistin-

guishability in presence of a chosen plaintext adversary, or it is said to achieve

IND-CPA for short, if

Advcpa
A,Π := |Pr[Expcpa

A,Π(0)=1]− Pr[Expcpa
A,Π(1)=1]| ≤ ε(κ)

holds for a negligible function ε(κ) and all efficient adversaries A.

Remark 3.9. Note that IND-CPA includes IND-COA.

3.2.3.2. Standardized block cipher modes

The encryption scheme ECB[P ] = (K, Eecb
k ,Decb

k ) is called Electronic Codebook

(ECB) mode and is defined for a PRP family P : K × {0, 1}n → {0, 1}n by

Eecb
k (m) = ρk(m) and Decb

k (m) = ρ−1
k (m). The choice of P also determines the

key space and block size n, for example, with the block cipher AES-128 the key

space is {0, 1}128 and n = 128. The key k is assumed to be shared between the

legitimized communicating parties. ECB[P ] achieves IND-COA (Def. 3.7) for a

random k and |m| = n, because in order to distinguish the two experiments, the

adversary must be able to distinguish the PRP ρk from a random permutation.

By the assumption that ρk is a PRP, he/she is not able to do so, hence the

security of ECB[P ] reduces to the block ciphers indistinguishability from a PRP.

However, ECB[P ] does not achieve the stronger IND-CPA notation. As an

example, let the adversary A in Expcpa
A,ECB[P ](b) ask for the encryption of two

n-bit messages m0,0 = m0,1 = m and on his second query m1,0 = m, m1,1 ̸= m.

In the case where the adversary sees c0 = c1 he/she outputs b′ = 0, otherwise

the output is b′ = 1. The adversary from this simple example has advantage

Advcpa
A,ECB[P ] = 1, which stems from the fact that the same plaintext encrypted

under the same key always yields the same ciphertext. As noted in [ISO06],

the ECB mode is only secure if exactly one n-bit block is encrypted under a

single key (which is given by IND-COA), or if it can be ensured that the same

plaintext is never encrypted repeatedly. ECB mode should not be used for

messages longer than one block, because it does not achieve IND-CPA.

Except for ECB, the other standardized modes from ISO 10116 [ISO06] or

NIST SP 800-38A [Dwo01], namely Cipher Block Chaining (CBC), Cipher Feed-

back mode (CFB), Output Feedback mode (OFB) and Counter mode (CTR),
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achieve IND-CPA under some specific requirements. All this modes of oper-

ation are based on an n-bit block cipher and require an initialization vector

IV ∈ {0, 1}n, which is often assumed to be drawn at random from the set of

all n-bit strings at the beginning of the encryption algorithm Ek(·). The IV
is used to randomize the encryption algorithm in such a way that same plain-

text messages will not be mapped to the same ciphertext. In order to decrypt

properly, the IV is treated as the first ciphertext block and send in the clear

to the recipient. Assuming a random IV, the number of signals that might

be encrypted securely under one key can be upper bounded by considering the

number of adversarial queries q and the block length n. Bounds for CBC and

CTR are given in [BDJR97], and for CFB in [AGPS02]. In addition, [BDJR97]

also established IND-CPA security for CTR mode under the assumption that

the IV is a number only used once (nonce). In practice, providing a random IV
is sometimes not possible, however, constructing the IV by encrypting a nonce

with a block cipher (i.e. PRP) using a different key is also secure for all modes.

Next to the IND-CPA security, all approved modes have different properties,

like parallelizability or self-synchronization in case of bit slips. Table 3.1 sum-

marizes some of this properties and the reader is referred to Annex-B of ISO

10116 for further information. A summary of the same modes, but in accordance

with NIST standards, can be found in [Rog11, Figure 4.1].
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Properties CBC CFB OFB CTR

IND-CPA
established

for
random

IV
[BDJR97]

for
random

IV
[AGPS02]

for
random
IV∗

for
random or
nonce IV
[BDJR97]

Needs an
invertible
primitive

Yes No No No

Parallel
processing
(Ek/Dk)

(No/Yes) (Yes/Yes)† (No/No) (Yes/Yes)

Self-
synchronizing
(w.r.t. bit slips)

No,
unless slip

of full
blocks

Yes,
for bitwise
encryp-

tion

No No

Error
propagation

Yes,
an error

in ci

corrupts
mi and
mi+1

Yes, until
corrupted
bits are

no longer
used as
feedback

No,
bit errors
affect only
the corr.
plaintext

bit

No,
bit errors
affect only
the corr.
plaintext

bit

Padding
required if the
plaintext is not
a multiple of
the processed
block length

Yes,
except for

CBC-
CTS‡

No,
for bitwise
encryp-

tion

No,
for bitwise
encryp-

tion

No

∗analogous to CTR [ISO06].
†Not for every combination of the allowed parameters (cf. [ISO06, B.4.1]).
‡Ciphertext stealing (CTS).

Table 3.1.: Summary of some important properties of the IND-CPA secure ISO
10116:2006 encryption modes.

24



3.2. Symmetric Cryptography

3.2.4. Data integrity and authentication-encryption

3.2.4.1. Message unforgeability

Expcma
A,Ξ

k
rnd← K

tagi ← Tk(mi)

Vk(m, tag)

Challenger

mi ∈ {0, 1}∗

m, tag

Adversary A

(0 ≤ i ≤ l-1)

mi

tagi

(m, tag)

b ∈ {0, 1}

Figure 3.7.: The chosen message unforgeability experiment Expcma
A,Ξ.

Data integrity is another important security service, which ensures “[...] that

data has not been altered or destroyed in an unauthorized manner” [ISO16].

Typical symmetric security mechanisms that establish data integrity are mes-

sage authentication schemes based on message authentication codes (MACs) like

HMAC or CBC-MAC [BCK96, BKR00]. MACs might also be called message

error detection codes, since they cannot distinguish between an active forgery

or a transmission error.

A message authentication (MA) scheme Ξ = (K, Tk,Vk) is defined for a key

space K and two polynomial time algorithms Tk,Vk (cf. [KL15, Def. 4.1]). The

keyed tag generation algorithm Tk (e.g. the MAC) is a deterministic algorithm

that takes a message m ∈ {0, 1}∗ and outputs a fixed length authenticator

tag ∈ {0, 1}n (n ∈ N). On input of (m, tag) the verification algorithm Vk will

either output a symbol ! indicating that the tag verification succeeded or ⊥
meaning that the tag verification has failed. For all keys k and all messages

m it is essential that Vk(m, Tk(m)) will result in !. In general, the verification

algorithm Vk(m, tag) works by recomputing the tag, i.e. tag′ = Tk(m), and

comparing both tags. The verification is only successful if tag′ = tag otherwise

the message will be regarded as not authentic.
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To define security for a message authentication scheme Ξ, the adversary – not

given the secret key – is allowed to perform an adaptive chosen message attack

(CMA), meaning that he/she might ask for the tag of arbitrary messages up

to a specific limit l. The adversaries goal is to come up with a new message/-

tag pair that gets accepted by the verification algorithm. This pair is called

an existential forgery, hence a secure message authentication scheme is (exis-

tentially) unforgeable under adaptive chosen message attacks. The experiment

Expcma
A,Ξ presented in Fig. 3.7 is used to establish this security definition more

formally. The adversary might perform up to l chosen message queries mi and

the challenger, who starts by generating a random key k, answers the queries

with tagi ← Tk(mi). After that, the adversary outputs his forgery attempt

(m, tag) and sends it to the challenger. The challenger computes Vk(m, tag) and

outputs b = 1 if the verification returns ! and the message was not submitted

before, i.e. m /∈ {m0,m1, ...,ml−1}, otherwise the output is b = 0. The output

of the experiment is given by the bit b. Now, the security of Ξ against adaptive

chosen message attacks can be defined (see [KL15, p. 112]).

Definition 3.10. (Message unforgeability)

A message authentication scheme Ξ = (K, Tk,Vk) with security parameter

κ ≤ |k| has message unforgeability under adaptive chosen message attacks, or

is just said to be secure or unforgeable, if

Advcma
A,Ξ := Pr[Expcma

A,Ξ=1] ≤ ε(κ)

holds for a negligible function ε(κ) and all efficient adversaries A.

A well established result due to [GGM85][GGM86][BKR00, Prop. 2.7] is that

a secure fixed output PRF is also a secure MAC. However, even with a secure

MAC, a message authentication scheme is not secure against replay attacks,

i.e. when the adversary sends an eavesdropped message/tag pair to the original

recipient. In order to protect a message authentication scheme against replay

attacks, legitimized parties add time variable parameters like timestamps or

sequence numbers to the messages before the authentication tags are computed.
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3.2.4.2. Authenticated-encryption

An authenticated-encryption (AE) scheme is used to protect the data integrity

(unforgeability) as well as data confidentiality (privacy). In general, an AE

scheme can be implemented by either combining an IND-CPA-secure encryp-

tion scheme with a secure message authentication scheme, so called generic

constructions [BN00], or by dedicated authenticated-encryption modes. In

addition, Rogaway [Rog02] introduced the term authenticated-encryption with

associated-data (AEAD) for schemes that ensure the confidentiality of a plain-

text while simultaneously protecting its integrity as well as the integrity of

additional associated-data (AD) that will not be encrypted, like package head-

ers. An AEAD scheme is defined as a triplet Π = (K,Ek,Dk), where k is a key

drawn uniformly at random from K. Ek takes an n-bit nonce N , a binary string

AD containing the associated-data and a message m as input and outputs a

ciphertext c. Note that AD might be empty, which defines an AE scheme. Dk

takes N , AD and c as input and outputs a message m or ⊥ if it regards the input

as invalid. As usual, it is required that decryption is the inverse of encryption.

Authenticated-encryption should ensure privacy in the IND-CPA manner

and unforgeable encryption, which is a variation of message unforgeability but

adopted to the AEAD definition of Π. Let A be an efficient adversary with ac-

cess to an encryption oracle Ek(N ,AD,m) and denote the set of A′s encryption

queries with Q. Π is said to achieve unforgeable encryption if the probability

Advauth
A,Π that A outputs (N ,AD, c) with c ̸=Ek(N ,AD,m), ∀(N ,AD,m) ∈ Q and

Dk(N ,AD, c) ̸= ⊥ is negligible. Stated differently, the adversary should not

be able to come up with a new decryption query (N ,AD, c) that decrypts to

a valid message (cf. [Rog02, Section 3]). It is important to note that in this

model, the adversary is assumed to respect nonces, meaning that all N ’s that

are submitted by A are unique values.

Another strong privacy notation for AE and AEAD is ciphertext indistin-

guishability under adaptive chosen ciphertext attacks (IND-CCA) [KL15, p. 96

f.], which is established with the experiment from Fig. 3.8.
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Expcca
A,Π(b)

k
rnd← K

ci ← Ek(mi,b)

mj ← Dk(cj)

Challenger
b ∈ {0, 1}

mi,0,mi,1

|mi,0| = |mi,1|

cj /∈ {c0, ..., ci-1}

Adversary A

mi,0,mi,1

ci

(0 ≤ i <j ≤ l-1)

cj

mj b′ ∈ {0, 1}

Figure 3.8.: The adaptive chosen ciphertext indistinguishability experiment
Expcca

A,Π(b).

Definition 3.11. (IND-CCA security)

A symmetric (authenticated-)encryption scheme Π = (K, Ek,Dk) has cipher-

text indistinguishability in presence of an adaptive chosen ciphertext adversary,

or it is said to achieve IND-CCA for short, if

Advcca
A,Π := |Pr[Expcca

A,Π(0)=1]− Pr[Expcca
A,Π(1)=1]| ≤ ε(κ)

holds for a negligible function ε(κ) and all efficient adversaries A.

The first part of Expcca
A,Π(b) is similar to the chosen plaintext indistinguishabil-

ity experiment (see sec. 3.2.3.1). After the chosen plaintext part, the adversary

is now enabled to ask for the decryption of chosen ciphertexts, as long as they

were not obtained by a chosen plaintext query. At the end of the experiment,

the adversary outputs a guess b′ ∈ {0, 1}. Hence, the adaptive chosen ciphertext

adversary is more powerful than the chosen plaintext adversary.

Authenticated-encryption schemes are standardized in ISO 19772 [ISO09] or

NIST SP 800-38 C/D. Examples for authenticated-encryption schemes are Off-

set Codebook (OCB) [Rog02], Counter with CBC-MAC (CCM) [WFH03], Galois

Counter Mode (GCM) [MV04a] or encrypt-than-MAC [BN00].

28



3.2. Symmetric Cryptography

The AEAD init, update and final functions

Cryptographic application programming interfaces (APIs) like OpenSSL lib-

crypto or the JAVA Cryptography Architecture (JCA) define AEAD schemes

as function-triplets consisting of three stateful functions: init, update and fi-

nal. This definition abstracts from the concrete implementation of the scheme

and it enables application developers to treat the AEAD scheme as a black box.

Fig. 3.9 presents flow charts for the AEAD init, update and final functions in ac-

cordance to the DIN 66001 flowcharting notation. The dashed lines in Fig. 3.9

indicate abstract processes whose realizations differ depending on the AEAD

scheme that is used for the implementation.

Let mi denote the plaintext, ci the ciphertext and adi the associated data,

for i = 0, ..., l− 1. The AEAD init function takes a key k, a nonce N , optional

associated-data ad0 and a flag as input. The flag is a condition variable that

is used to determine whether the scheme is going to perform encryption or

decryption. N and ad0 are added to the internal computation of the authenti-

cation tag. If flag = encrypt, the update function consumes plaintext mi and

associated-data strings adi of arbitrary length. Internally, buffers are used to

hold the data that will be processed, since most AEAD schemes work on n-bit

blocks (see [ISO09]). In case that |mi| = λ · n, for some λ ∈ N
+, the plaintext

is encrypted and the update function outputs a ciphertext, which is a multiple

of n-bit in length. If the plaintext is not a multiple of the block length, the

update function encrypts n-bit plaintext blocks. The remaining bits are kept

in the internal buffer and processed in further calls or during final. The update

function adds each processed block to the internal tag computation. When the

whole plaintext is consumed by the update function, the final function must

be called. The function outputs the authentication tag and possibly a padded

ciphertext block c̄.

If init is called with the decryption flag, the update function processes the

ciphertext and associated-data. N and ad0 are added to the internal tag com-

putation during init. The update function decrypts the ciphertext and it also

adds ci together with the associated-data strings to the tag computation. The

plaintext should only be released if the ciphertext is authentic. Hence, the final

function is called with the received tag′ as input and it releases the plaintext

M = {m0, ...,ml−1} in case that tag = tag′ and otherwise it outputs ⊥.
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Figure 3.9.: The AEAD init, update and final functions.
(a) AEAD init.
(b) AEAD update.
(c) AEAD final.
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Chapter 4
Compressive Sensing Based Encryption

4.1. General

A Compressive sensing based encryption system is a symmetric encryption sys-

tem (see sec. 3.2.1) with the goal to protect the confidentiality of sampled signals

x⃗. A high level description of a CS encryption system is depicted in Fig. 4.1.

A sub-Gaussian random matrix A ∈ R
m×N is treated as a secret key and is

assumed to be shared between the legitimized parties. Encryption is performed

by taking m random samples y⃗ from the plaintext signal x⃗ according to A, i.e.

y⃗ = Ax⃗. Under the assumptions that x⃗ is sparse or compressible and since A

achieves the RIP with very high probability [CT05, CT06], the signal can be re-

constructed resp. decrypted from y⃗ using an appropriate algorithm that solves

the sparse recovery problem (see sec. 3.1). Let rec denote this reconstruction

algorithm, which takes as input the sampling matrix A together with the mea-

surements y⃗ and an optional sparsifying basis Ψ and outputs x̃ = x⃗+ ϵ, where

ϵ is some bounded noise term introduced by the sampling system as discussed

in section 3.1.3. The communicating parties publicly agree on an algorithm rec

prior to encryption, hence it is expected that rec is also known to the adversary.

Example algorithms for rec include orthogonal matching pursuit [TG07] or basis

pursuit [CDS01], but for sake of simplicity and without loss of generality rec is

viewed as a black box.
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y⃗ = A · x⃗ ! A ·Ψ · s⃗,
∥s⃗∥0 ≤ s

Sender
A

x̃ ← rec (A, y⃗, [Ψ])

Recipient

y⃗

A

x̃

Figure 4.1.: High level description of CS based encryption.

Achieving confidentiality during the sampling process by keeping A as a

shared secret was already mentioned in the seminal work of Candès and Tao

[CT06]. They argued that a Compressive Sensing system achieves confidential-

ity against eavesdropping adversaries due to the randomness of the sampling

matrix A. In order to reconstruct the signal from eavesdropped measurements,

an adversary has to perform an exhaustive search to find the secret matrix,

which is computational infeasible. Rachlin and Baron [RB08] were the first who

studied the secrecy of the compressed measurements and they found that, while

not perfectly secure [Sha49b] in general, CS is computational secure even if the

adversary has some knowledge about the signals sparsity. The following section

presents more detailed and recent results on the security of CS encryption in

the one-time and many-time encryption scenario. Consequently, security of CS

encryption schemes is defined more formally for different threat models.

4.2. Secrecy for One-Time Encryption

4.2.1. Establishing security definitions

A Compressive Sensing based encryption system Π is a symmetric encryption

scheme of the form Π = (Gen, EA,DA). Note the slight difference to the defi-

nition of a symmetric encryption scheme from section 3.2.1. Instead of fixing a

finite key space, a probabilistic function Gen is defined, which is used to gen-

erate the key (i.e. the random matrix). The reason for this is that the key

space might be an uncountable set, for example when the entries of the matrix

A are drawn from a standard normal distribution. The encryption algorithm

EA takes a signal x⃗ ∈ R
N as input and outputs y⃗ ∈ R

m, while the decryption

algorithms DA takes y⃗ and outputs x̃ = x⃗+ ϵ. All algorithms are supposed run

in polynomial time with respect to some implicit parameter κ.
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Expcs-coa
A,Π (b)

A ← Gen

y⃗ ← EA(x⃗b)

Challenger
b ∈ {0, 1}

x⃗0, x⃗1

Adversary A

x⃗0, x⃗1

y⃗

b′ ∈ {0, 1}

Figure 4.2.: The Compressive Sensing ciphertext only indistinguishability ex-
periment Expcs-coa

A,Π (b).

Now, consider the experiment Expcs-coa
A,Π (b) presented in Fig. 4.2. Similar

to the experiments from section 3.2.2, the adversary is allowed to choose two

plaintext signals x⃗0, x⃗1 of equal length and sends them to the challenger. The

challenger generates an RIP-matrix A by calling Gen and sends the encrypted

signal x⃗b back to the adversary, i.e. y⃗ = Ax⃗b. The adversary will output a guess

b′. As before, the encryption scheme is called secure if the adversary cannot

distinguish between the two experiments determined by the choice of b.

Unfortunately, the adversary wins Expcs-coa
A,Π (b) with advantage 1 due to the

nature and linearity of the encryption process. While the RIP from Eq. (3.3)

is a necessary condition ensuring the reconstructability of the signal from com-

pressed measurements, it also introduces some restrictions to the encryption

process. For example, the adversary might ask for the encryption of x⃗0 = 0⃗

and x⃗1 = s⃗, for some s-sparse vector s⃗, and he/she outputs b′ = 0 if y⃗ = 0⃗

and b′ = 1 otherwise. For all s-sparse signals, the RIP matrix A preserves the

signals energy ∥s⃗∥22, consequently the adversary is able to distinguish encrypted

signals with different energy.

Rachlin and Baron [RB08] were the first who noted this undesirable behavior

of CS encryption and they used it to proof that CS does not achieve perfect

secrecy. Later, Cambareri et al. [CMP+15a, CMP+15b] and Bianchi et al.

[BBM14, BBM16] extended the security analysis of Compressed Sensing based

encryption and they showed that for large enough sensing matrices the signals

energy is in fact the only information an adversary learns from eavesdropped

measurements. Another experiment must be defined in order to derive a suitable

security definition for CS.
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Expcs-rnd
A,Π (b)

A ← Gen

x⃗0, x⃗1
rnd← X

y⃗ ← EA(x⃗b)

Challenger
b ∈ {0, 1}

Oenc

Adversary A

call Oenc

x⃗0, x⃗1, y⃗
b′ ∈ {0, 1}

Figure 4.3.: The Compressive Sensing random plaintext indistinguishability ex-
periment Expcs-rnd

A,Π (b)

The experiment shown in Fig. 4.3 is used to establish a slightly weaker se-

curity definition for CS encryption, however, this notation is appropriate for

practical Compressive Sensing systems with respect to the preferred sampling

model (M1). The adversary gets access to a randomized encryption oracle Oenc,

which will be simulated by the challenger. When the encryption oracle is called,

it draws two plaintext signals x⃗0, x⃗1 uniformly at random from the set of all pos-

sible respectively applicable plaintexts, denoted by X . According to the bit b,

the oracle encrypts one signal x⃗b with a random sub Gaussian matrix A and

sends the three-tuple (x⃗0, x⃗1, y⃗ ← Ax⃗b) back to the adversary. The experiments

output is the adversary’s guess b′.

The fact that an adversary might distinguish ciphertext obtained from plain-

text signals with different energy remains, but now the challenger controls which

plaintext is encrypted. If X is restricted to the unit (N − 1)-sphere denoted

by SN−1 all signals will have the same energy and are therefore asymptotically

indistinguishable for large enough N as noted by [CMP+15a, BBM16]. Nev-

ertheless, restricting the set of all applicable signals is not the most promising

approach with respect to practical applications. Certainly, each signal with

positive energy ∥x⃗∥22 > 0 can be projected to SN−1 by a simple normalization,

i.e. x̂ = x⃗/∥x⃗∥2, which was proposed originally by [BBM14] in order to increase

security. This normalization can be integrated in the encryption algorithm EA,

but the signals norm must be transmitted securely to the recipient for a proper

decryption.
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While the threat model considered in Expcs-rnd
A,Π (b) is weaker than the one

of Expcs-coa
A,Π (b), the random plaintext indistinguishability experiment captures

the fact that the adversary might not be able to choose plaintext messages

in sampling model (M1) directly. CS based encryption is integrated into the

sampling process, which means that whoever wants to encrypt chosen plaintext

needs physical control over the sensing system. When the adversary has physical

control over the sampling system, he/she might also obtain the sensing matrix,

for example if the matrix is implemented by an array of micromirrors like the

single pixel camera [WLD+06]. Now, a formal definition of the security of an

CS encryption scheme can be given using Expcs-rnd
A,Π (b).

Definition 4.1. (ν-Indistinguishability)

A Compressive Sensing encryption scheme Π = (Gen, EA,DA) is said to

achieve ν-indistinguishability, if

Advcs-rnd
A,Π := |Pr[Expcs-rnd

A,Π (0)=1]− Pr[Expcs-rnd
A,Π (1)=1]| ≤ ν

holds for some negligible ν depending on the sampling matrix and all efficient

adversaries A.

Weak matrices

The matrix A achieves the RIP with very high probability if the entries of A

are drawn at random from a sub-Gaussian distribution, which ensures that the

equation Ax⃗ = y⃗ has a unique solution x⃗ ∈ R
N (see sec. 3.1.2). However, it

is still possible, but highly unlikely, that some weak A is chosen that has an

undesired structure, for example if all entries of A are identical or the rows/-

columns are too strongly related. In these cases, A does not fulfill the necessary

conditions for a successful signal recovery. The system of interest has infinitely

many solutions, which makes it infeasible for an adversary and also for the le-

gitimized recipient to recover the original x⃗. More formally, let rank(A) denote

the rank of the matrix A and let null(A) be the dimension of nullspace(A). For

A ∈ R
m×N with N ≫ m it holds that rank(A) ≤ m and due to the rank-nullity

theorem [KM03, Proposition 3.2.13] it follows that null(A) + rank(A) = N .

Hence, null(A) = N − rank(A) ≥ N −m > 0, which means that the dimension

of A’s nullspace is greater than zero. For every v⃗ ∈ nullspace(A) the equation

A · (x⃗+ v⃗) = y⃗ gives another possible solution.
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4.2.2. Impact of different sensing matrix designs

Security implications

In contrast to the definitions from section 3.2, Def. 4.1 contains a measure ν that

represents the level of achievable security, which depends on the sensing matrix

design. Bianchi et al. established bounds on ν for Bernoulli random matrices

and Gaussian random matrices in [BBM16]. They were able to prove that, at

least in theory, measurements obtained with a Gaussian random matrix achieve

ν = 0 for all x⃗ ∈ SN−1, which is equivalent to perfect secrecy. This result stems

from the fact that the indistinguishability is limited by δ(Pr[y⃗|x⃗0], Pr[y⃗|x⃗1]) ≤ ν

where δ(Pr[y⃗|x⃗0], Pr[y⃗|x⃗1]) denotes the statistical distance (i.e. total varia-

tion distance) between the two conditional probability measures (see [BBM16,

Lemma 4]). In the case of normalized signals or x⃗ ∈ SN−1 the measurements

cannot be distinguished from Gaussian random variables, which is compliant

with the results from [CMP+15a], and Pr[y⃗|x⃗0] = Pr[y⃗|x⃗1] = Pr[y⃗] follows

[BBM16, Prop. 1]. Unfortunately, those results are mainly of theoretical inter-

est, because it is not practical to take random samples according to a continuous

Gaussian distribution.

In the discrete case, it is expect that the entries of A vary from Gaussian,

which is mainly due to the limited floating point precision, hence ν will depend

on the difference of A from a Gaussian matrix. The generation of discrete Gaus-

sian distributed numbers is an important problem in the field of lattice-based

cryptography, especially for cryptosystems based on the learning with error

problem [DG14, Fol14]. An overview of general techniques to obtain discrete

Gaussian samples is given in [Dev86]. Usually, a uniform random bit-string

from a random number generator builds the basis for the generation of discrete

Gaussian samples by using large lookup tables that map from one distribution

to the other. Example algorithms are variants of the Knuth-Yao random walk

[SRVV14] or the discrete Ziggurat [BCG+14]. In order to derive bounds for

the ν-indistinguishability of Compressive Sensing encryption schemes based on

discrete Gaussian matrices, the quality and precision of the discrete Gaussian

sampling and the underlying random number generator must be considered. It

is also not clear how the discrete Gaussian sampling methods perform in CS

cryptosystems with respect to properties like unpredictability or leakage of se-

cret information, which are required for cryptographically secure pseudorandom
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bit generators (cf. [ISO11]). It is still an open problem to verify if the bounds

on ν for the continuous Gaussian matrices can be transferred to the discrete

case.

Prominent Compressive Sensing applications, like the single pixel camera

[WLD+06], are based on binary random matrices with values from {+1,−1}.
Bernoulli sensing matrices are discrete random matrices where each entry is

drawn uniformly at random from the set {+1,−1}. An advantage of these

matrices is that they are implementable in hardware and they need far less

memory than floating point based Gaussian matrices. The secure generation

of Bernoulli random matrices can rely on trusted and well studied designs for

deterministic random bit generators as standardized in ISO 18031 [ISO11]. The

bounds from Bianchi et al. [BBM16, Lemma 5] on the parameter ν show that

Bernoulli sensing matrices cannot achieve the same level of security as Gaussian

matrices. In the asymptotic case, i.e. when N → ∞ and m is large enough,

the Lindeberg-Feller central limit theorem (cf. [Vaa00, Prop. 2.27]) applies and

the measurements distribution converges to the standard normal distribution

(cf. [CMP+15a, Prop. 2] and the corresponding proof). Hence, for Bernoulli

matrices ν → 0 for N → ∞ and m large enough. [BBM16] and [CMP+15a]

verified that the convergence rate is about O(N−1).

Asymptotic indistinguishability with Bernoulli matrices

Due to the practical relevance of the Bernoulli matrix ensemble, the asymptotic

behavior of Compressed Sensing with Bernoulli random matrices is investigated

in an application scenario using the two sample Cramér-von-Mieses test [And62].

This statistical test determines if two random samples are drawn from the same

underlying distribution. The test returns a p-value and if this value is greater

than the significance α = 0.05 the null hypothesis is accepted, meaning that

the two samples are drawn from the same distribution. While p-values under

the null hypothesis are uniformly distributed, the p-values under the alternative

hypothesis will be close to zero. Compared to other applicable statistical tests,

like the Kolmogorov-Smirnov test [Hod58], the Cramér-von-Mieses test shows a

better accuracy [And62].
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Figure 4.4.: An excerpt of the test set for the Cramér-von-Mieses test.
(a) The “baboon” test image with the corresponding energy values.
(b) The “tiffany” test image with the corresponding energy values.

The experiments are performed on a test set consisting of the 25 images of

size 512 × 512 from volume three of the USC-SIPI image database∗, except

for the “ruler” image. Images are chosen as a test set for several reasons. On

the one hand, CS-imaging is a possible application scenario for Compressed

Sensing encryption. On the other hand, the signals are not drawn at random,

since randomness might influence the results from the statistical test in an

∗http://sipi.usc.edu/database/database.php?volume=misc
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Figure 4.5.: Cramér-von-Mieses p-value histograms of
(a) the “baboon” test image and
(b) the “tiffany” test image, both with 512× 512 pixel.

unintended way. Moreover, the usage of a publicly available and static image

database makes the results reproducible. Fig. 4.4 presents two images from

the test set with the corresponding energy values for each column vector. Due

to the implications on the indistinguishability of random measurements, the

signals energy is an important characteristic in the experiment. It can be seen

that the energy values of the “tiffany” test image – roughly from column 90 on

– differ only slightly from each other, meaning that the variation of the energy

is not so strong. In contrast, the energy values of the “baboon” test image vary

more strongly especially in the centered image area.

For the experiments, all images are processed column-wise with independent

Bernoulli random matrices, meaning that each signal x⃗i is a column of the

image consisting of N = 512 pixel values and each signal is sampled with a

fresh Bernoulli random matrix (i = 0, ..., 511). The compression ratio 1 − m
N

was set to 60%. All the resulting measurements are compared with the Cramér-

von-Mieses test, which yields
(

512
2

)

= 130816 p-values for each image.

Fig. 4.5 shows the resulting p-value histograms for the two examples from

Fig. 4.4. It can be seen that the statistical test is able to distinguish the com-

pressed measurements by their distribution. The peaks around zero shows that

there are a lot of p-values supporting the alternative hypothesis, however, there

are also differences in the p-value histograms obtained from the different images.

For signal sets with a stronger variation in the signals energy, like the “baboon”,
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Figure 4.6.: Cramér-von-Mieses p-value histograms for normalized signals. (a)
results from the “baboon” test image and (b) results from the
“tiffany” test image.

it can be seen that more p-values are close to zero compared to images with

a smaller variation in energy, like “tiffany” (see Fig. 4.4). This shows the con-

nection between the signals energy and the indistinguishability of compressed

measurements.

When the signals are normalized by x̂i = x⃗i/∥x⃗i∥2, the statistical test is not

able to distinguish the measurements. In order to see this, consider Fig. 4.6. The

p-values tend to be uniformly distributed, which shows that the statistical test

confirms the null hypothesis. This result also supports the results from [BBM16]

and [CMP+15a] on the asymptotic indistinguishability of random measurements

sampled with Bernoulli matrices.

To study the asymptotic behavior of the ν-indistinguishability, the test set is

scaled down to 128 × 128 and 256 × 256 pixel by cubic interpolation. The p-

value histograms for the normalized “baboon” and “tiffany” signal sets are given

in Fig. 4.7. It can be seen that even for relatively small N the statistical test

supports the null hypothesis when the signals are normalized to equal energy.

By comparing the results from Fig. 4.6 and Fig. 4.7 one observes the asymptotic

secrecy of the compressed measurements, since the distribution of the p-values

tends stronger to uniform when N increases.
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Figure 4.7.: Cramér-von-Mieses p-value histograms for different image sizes.
(a1) shows the test outcome for “baboon” 128 × 128 and (a2) is
“baboon” 256×256. (b1) “tiffany” 128×128, (b2) “tiffany” 256×256.

4.3. Secrecy for Many-Time Encryption

The considered Compressive Sensing encryption schemes achieve a decent level

of security in the one-time encryption scenario that mainly depends on the

sensing matrix design. When multiple signals are encrypted under the same

matrix, the encryption algorithm is no longer randomized with the consequence

that an adversary will recognize if the same plaintext signal is encrypted multiple

times. Moreover, the RIP (cf. Def. 3.4) ensures that the distance between two

s-sparse vectors will be preserved, which implies continuity, since neighboring

signals will be encrypted to similar measurements. Normalizing the signals

to equal energy defends against this information leakage, but more powerful

attacks can easily break the encryption scheme. Assume that the adversary
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is able to ask for the encryption of N plaintext signals and let e⃗i denote the

i-th unit vector of the standard basis R
N . On input e⃗i, the challenger outputs

a⃗i = Ae⃗i, i.e. the columns of the secret matrix, which enables the adversary

to decrypt all subsequent ciphertexts after N queries. Even if the signals are

normalized to equal energy, the adversary would gain enough useful information

to break the system. For example, assume that Bernoulli matrices are used. In

this case, the adversary is just interested in the measurements sign, which does

not change due to normalization. With Gaussian matrices, the obtained sensing

matrix is equal to the original matrix up to a scaling factor and still useful for

reconstruction (cf. [BDDH11, Chapter 3]).

Fig. 4.8 presents an analysis of a chosen plaintext attack against a system

using a fixed Bernoulli random matrix A. First, the adversary obtains en-

crypted measurements Y = {y⃗0, ..., y⃗l−1} of the “baboon” 256× 256 test image

with a color depth of D = 8 bit per pixel, sampled row-wise, i.e. N = 256.

The adversary’s goal is to obtain enough content information in order to de-

cide which image is encrypted. The adversary starts by generating a Bernoulli

random matrix A′ and with each unit vector query, the corresponding column

of A′ is replaced by a⃗i. Fig. 4.8 presents the peak signal-to-noise ratio (PSNR)

(Eq. (4.1)) of the image that the adversary recovers by using A′ in the publicly

known reconstruction algorithm compared to the original image.

The PSNR is computed by [BL11]:

PSNR(img1, img2) = 10 · log10

(

(

2D − 1
)2

MSE

)

[dB] (4.1)

where D denotes the color depth of the images. Further, MSE is the mean

squared error of the two l ×N images [BL11]:

MSE(img1, img2) =
1

l ·N

l−1
∑

i=0

N−1
∑

j=0

(

img1(i, j)− img2(i, j)
)2

(4.2)

As it can be seen in Fig. 4.8, the PSNR increases with the number of cho-

sen plaintext queries. After about 150 queries, the silhouette of the “baboon”

becomes more and more visible and after 220 queries the PSNR is around 10 dB.
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Figure 4.8.: Analysis of a chosen plaintext attack against CS with a fixed matrix
A ∈ {+1,−1}m×N .

In contrast, consider Fig. 4.9, where each signal was encrypted using an inde-

pendent random Bernoulli matrix Ai. The PSNR is close to zero, independently

of the number of chosen plaintext queries. The reason for this is that the ad-

versary obtains columns of independent matrices that are not suitable for the

reconstruction of the eavesdropped measurements. The only visible structure

comes from the reconstruction algorithm, which outputs some sparse vector

(cf. section 3.1.3). However, since sampling was performed with another ma-

trix, the reconstruction algorithm is not able to recover the original signal.

If a CS encryption scheme is used to encrypt multiple signals it can only be se-

cure if each signal is encrypted with a different random sampling matrix [Fay16].

If the matrices are independent of each other, the adversary has to solve multiple

instances of the Expcs-rnd
A,Π (b) experiment (cf. Fig. 4.3). Hence, if the challenger

normalizes the signals to equal energy, the resulting measurements achieve ν-

indistinguishability [BBM16]. An CPA-adversary only obtains columns of inde-

pendent random matrices by the aforementioned chosen-plaintext key recovery

attack, which does not help him/her to predict further matrices or to trace

previous matrices.
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Figure 4.9.: Analysis of a chosen plaintext attack against CS with fresh random

matrices Ai
rnd← {+1,−1}m×N .

A formal security definition for many-time encryption

Formally, a Compressive Sensing encryption scheme Π = (Gen, E ,D), which

achieves ν-indistinguishability for all x⃗ ∈ SN−1 in a many-time encryption sce-

nario, works by generating fresh random matrices Ai for each signal x⃗i, where

0 ≤ i ≤ l − 1. This can be formulated using another experiment, depicted in

Fig. 4.10.

Expcs-mult
A,Π (b)

Ai ← Gen

x⃗i,0, x⃗i,1
rnd← X

y⃗i ← Ai · x⃗i,b

Challenger
b ∈ {0, 1}

Oenc

Adversary A

(0 ≤ i ≤ l-1)

call Oenc

x⃗i,0, x⃗i,1, y⃗i
b′ ∈ {0, 1}

Figure 4.10.: The Compressive Sensing multiple random plaintext indistin-
guishability experiment Expcs-mult

A,Π (b).
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4.3. Secrecy for Many-Time Encryption

Definition 4.2. (ν-Indistinguishability for many-time encryption)

A Compressive Sensing encryption scheme Π = (Gen, E ,D) achieves ν-indis-

tinguishability for many-time encryption, if

Advcs-mult
A,Π := |Pr[Expcs-mult

A,Π (0)=1]− Pr[Expcs-mult
A,Π (1)=1]| ≤ ν

holds for some negligible ν depending on the sensing matrix design and all

efficient adversaries A.

For statistically independent matrices, Expcs-mult
A,Π (b) can be viewed as multiple

instances of the Expcs-rnd
A,Π (b) experiment (cf. Fig. 4.3). The adversary is allowed

to query the encryption oracle Oenc at most l times and because A is efficient,

the number of queries is at most polynomial in the running time of A.

Under the assumption that ν is negligible in the experiment Expcs-rnd
A,Π (b) and

since the sum of negligible functions is still negligible [KL15, Prop. 3.6] the

adversary does not gain a notable advantage in the Expcs-mult
A,Π (b) experiment.

It must be noted that for Bernoulli random matrices ν is only negligible in the

asymptotic case, i.e. for large enough N, m (cf. section 4.2.2).

Limited signal spaces and known plaintext attacks

A possible strategy to break Π in experiment Expcs-rnd
A,Π (b) would be to use

x⃗i,0, x⃗i,1 and y⃗i in order to find the secret sensing matrix Ai. In practice, the

set of possible x⃗ might be limited by the application. For example x⃗ could

represent an image with a color depth of 8 bit per pixel. Assume that an

adversary knows a pair of x⃗ and y⃗ and tries to find the matrix A that was used

for encryption. When the entries of A are drawn from a continuous distribution

there are infinitely many possible solutions for A. Even in the case where A is

discrete, for example when A is a Bernoulli random matrix, there are still many

candidate solutions to Ax⃗ = y⃗ for a given x⃗, y⃗ pair. [CMP+15b] investigated the

complexity of such a known-plaintext attack against Bernoulli random matrices.

They proved that the adversary’s problem is equivalent to multiple instances of

a subset sum problem, a special case of knapsack problem. While the subset

sum problem is in general NP-complete, [CMP+15b] showed that the solution to

a known plaintext attack (KPA) on CS with Bernoulli random matrices can be

found in polynomial time. In order to establish this results, [CMP+15b] assumed
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4. Compressive Sensing Based Encryption

that x⃗ has only nonzero entries. This is a very strong restriction in general, but it

favors the attacker. However, the obtained solutions are not unique and for each

row there exists an enormous number of candidate solutions that grows with

O(
√
N

−1 · 2N ) (see [CMP+15b, Theorem 1/2]). Hence, the success probability

of a known plaintext attack is negligible for large enough N . Furthermore, it is

very likely that x⃗ is the only signal that is encrypted with the matrix A. Even

if the adversary would be successful with his/her known plaintext attack, the

obtained information does not help to predicting another sampling matrix that

is used in the encryption scheme.
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Chapter 5
Compressive Sensing Encryption Modes

5.1. Introduction

Similar to block cipher modes of operation, a Compressive Sensing encryption

mode should ensure the confidentiality of plaintext that consists of multiple

signals. The findings from the previous sections can now be used to develop

CS encryption schemes that meet the security requirements and besides that

have other interesting properties. While ν-indistinguishability is the strongest

security notation that Compressive Sensing based encryption can achieve, the

modes of operation should not harm security significantly. Therefore, the modes

of operations presented in this thesis will be analyzed with respect to their

security. In addition, the proposed modes are compared and their properties

are examined.

Generating sensing matrices from a key

The legitimized communicating parties must share many random sensing matri-

ces in order to encrypt multiple signals. Given the large size of these matrices it

seems unreasonable to exchange them all previous to encryption. It is more con-

venient to rely on trusted key establishment mechanisms, like the authenticated

ephemeral (elliptic curve) Diffie-Hellman key exchange, to establish a shared

key k, which is then used to generate sensing matrices. Moreover, generating
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5. Compressive Sensing Encryption Modes

sensing matrices from a shared key allows to create sensing matrices when they

are needed for sampling, such that signals can be sampled “on the fly”.

Let Π = (Gen, E ,D) be a Compressed Sensing encryption scheme that achieves

ν-indistinguishable for many-time encryption by encrypting each signal x⃗i ∈
SN−1 with a statistically independent sampling matrix Ai (cf. Def. 4.2). Fur-

ther let Π̄ = (K, Ek,Dk) be a modified version of Π. The difference between the

two schemes is that in Π̄ a key k is chosen uniformly at random from K and at

each call of Ek,Dk the keyed pseudorandom number generator (PRNG) Genk

is used to generate Ai. With the modified encryption scheme, the communicat-

ing parties just need to exchange a single key that is used to generate sensing

matrices deterministically. The following lemma establishes the security of Π̄

based on the assumption that Genk is a cryptographically secure PRNG.

Lemma 5.1. Let A be an efficient adversary that makes at most l queries and

let Π be a Compressive Sensing encryption scheme achieving ν-indistinguish-

ability in Expcs-mult
A,Π (b). Further let Π̄ = (K, Ek,Dk) be a modified encryption

scheme where each Ai is generated using a PRNG Genk with a random k. When

the probability to distinguish the output Genk from random is at most εprng(κ),

for some negligible function εprng(κ), the advantage of A against Π̄ is limited

by
∣

∣

∣
Pr[Expcs-mult

A,Π̄ (b) = b]− Pr[Expcs-mult
A,Π (b) = b]

∣

∣

∣
≤ εprng(κ) (5.1)

Lemma 5.1 is confirmed using a transition between the two experiments based

on the indistinguishability of the output of the PRNG from random following

the seminal framework of [BR04] and [Sho04]. The reader is referred to [KL15,

Section 3.3.2] for an introduction to proofs by reduction.

Proof. Let B be an efficient adversary that has oracle access to an algorithm O

and tries to tell if he/she is interacting with an oracle that outputs random ma-

trices, denoted by Ornd, or an oracle Oreal that outputs pseudorandom matrices

using Genk with a random k. Now, B is using A as a black box in order to

distinguish Ornd from Oreal. Therefore, B simulates Expcs-mult for A and on the

event that A succeeds in the experiment, B guesses that O is pseudorandom,

otherwise O is regarded as random. Formally, B is constructed as follows:

1. fix b ∈ {0, 1}.

2. choose x⃗i,0, x⃗i,1
rnd← SN−1 and call O to receive an Ai.
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3. give x⃗i,0, x⃗i,1 and y⃗ ← Ai · x⃗i,b to A.

4. continue to simulate Expcs-mult (i.e. repeat step 2.-3.) for A while i < l.

5. When A outputs a bit b′, output 1 if b′ = b and 0 otherwise.

Two cases need to be considered according to the oracle O:

I) B is interacting with Ornd:

In this case, B mimics Expcs-mult
Π (b) exactly from the perspective of A.

Each measurement is encrypted using an independend random matrix Ai

as it would be in Π. Let B → 1 denote the event that B outputs 1, then

Pr[B(Ornd) → 1] = Pr[Expcs-mult
A,Π (b) = b]. (5.2)

II) B is interacting with Oreal:

Here, B simulates Expcs-mult
Π̄ (b) from the perspective of A. Each measure-

ment is encrypted using a pseudorandom matrix Ai obtained by calling

Genk with a random k, as it would be in Π̄, such that

Pr[B(Oreal) → 1] = Pr[Expcs-mult
A,Π̄ (b) = b]. (5.3)

According to the assumption that the output of Genk cannot be distinguished

from random with probability greater than εprng(κ) it follows that
∣

∣

∣
Pr[B(Oreal) → 1]− Pr[B(Ornd) → 1]

∣

∣

∣
≤ εprng(κ) (5.4)

Using Eq. (5.2) and Eq. (5.3), Eq. (5.4) can be written as
∣

∣

∣
Pr[Expcs-mult

A,Π̄ (b) = b]− Pr[Expcs-mult
A,Π (b) = b]

∣

∣

∣
≤ εprng(κ) (5.5)

and the claim follows.

Lemma 5.1 shows that the security loss against computationally bounded

adversaries by using a cryptographically secure PRNG to generate matrices can

be reduced to the security of the PRNG.
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5. Compressive Sensing Encryption Modes

5.2. The General Design

5.2.1. Design goals

The following sections present the general design for Compressive Sensing based

confidentiality modes. This general design is developed according to the follow-

ing design goals derived from the analysis of Compressed Sensing based encryp-

tion presented previously.

◃ ν-indistinguishability in the many-time encryption scenario:

Compressive Sensing encryption modes should achieve asymptotic ν-in-

distinguishability in the many-time encryption scenario (cf. Def. 4.2). In

order to handle signals with different energy, the signals should be nor-

malized and the normalization value should be transmitted securely next

to the compressed measurements. Legitimized recipients who share the

secret encryption key should be able to decrypt the norm and obtain the

correctly scaled plaintext signal.

◃ Resistance against chosen plaintext key recovery: Each signal

should be encrypted using a fresh pseudorandom matrix generated from

a shared key k. Hence, a CS encryption mode turns the deterministic

behavior of the encryption algorithm EA after fixing the matrix into a

randomized encryption scheme Ek.

◃ Reconstructability and adaptability: The matrices generated by a

Compressive Sensing encryption mode should fulfill the necessary con-

ditions for sparse recovery like the RIP, as introduced in section 3.1.2.

By this means, the modes of operation are adaptable in the sense that

multiple Compressive Sensing reconstruction algorithms can be used.

◃ Security by design: Dedicated CS confidentiality modes should be de-

signed in such a way that their security can be examined and justified.

Therefore, they should be based on trusted cryptographic primitives and

construction. In addition, the restrictions under which the security of a

dedicated design holds must be stated explicitly. This will help that im-

plementers, who are no experts in cryptography, are able to implement

the modes of operation correctly.
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Apart from the general design goals, certain modes may have different desirable

properties like parallelizability or self-synchronization in case of ciphertext losses

or errors.

5.2.2. Matrix generation

5.2.2.1. Matrix generation algorithm

The CS encryption modes developed in [Fay16, FR16, FR17] are using a matrix

generation function Genk to obtain Bernoulli random matrices. The decision

to use Bernoulli random matrices instead of other sub Gaussian ensembles has

several reasons: on the one hand, binary matrices need less memory than float-

ing point matrices and on the other hand approved and trusted constructions

can be used to generate cryptographically secure pseudorandom binary matri-

ces. Moreover, Gaussian matrix ensembles are mainly from theoretical interest

and prominent Compressive Sensing applications rely on binary matrices. The

asymptotic secrecy of Bernoulli matrices is convenient for most Compressive

Sensing applications, since the signal dimensions are in general very large.

Genk is defined as a function that takes as input a key and an n-bit nonce

Ni and outputs a sampling matrix Ai ∈ {+1,−1}m×N that is indistinguishable

from a truly random matrix from the same set (i = 0, . . . , l − 1). Therefore,

the matrices satisfy the conditions for sparse recovery, like the RIP, with over-

whelmingly high probability (see section 3.1.2). Various Compressive Sensing

reconstruction algorithms that are based on the RIP can be used to recover

the signals even from noisy measurements given the correct key. From now on,

binary strings are treated as either from {0, 1}∗ or {+1,−1}∗, since they can

be mapped easily from one set to the other by a simple conversion function.

The matrix generation algorithm is modeled using an unlimited output pseu-

dorandom function (PRF∗) defined by f ℓ
k : K × {0, 1}∗ → {+1,−1}ℓ. Note

that the output length ℓ might be arbitrary large and ℓ is used as an implicit

function parameter. Genk(Ni) works by calling fm·N
k (Ni) in order to produce

m · N bits. The pseudorandom bits are then reshaped into the m × N matrix

Ai, which is the output of Genk. More formally stated, if the pseudorandom

bits outputted by fm·N
k (Ni) are denoted by b0, b1, . . . , bmN−1, fill the rows of

Ai = (α0,α1, . . . ,αm−1)
T as described in Eq. (5.6).
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α0 =(b0, b1, . . . , bN−1)

α1 =(bN , bN+1, . . . , b2N−1)

...

αm−1 =(b(m−1)N , b(m−1)N+1, . . . , bmN−1).

(5.6)

5.2.2.2. Implementation details

In general, unlimited output pseudorandom functions are built from PRFs fk :

K× {0, 1}∗ → {+1,−1}L with a limited and implicit output length L. In order

to build a PRF∗ from fk, the PRF output is extended by running fk in counter

mode or feedback mode as shown in Fig. 5.1. The counter mode construction

works by incrementing an n-bit counter CTRi with a random initial value CTR0

(cf. [Che09, Section 5]). The counter is given as an input to the PRF such that

each PRF call yields an distinct output Bi ∈ {+1,−1}L. The feedback mode

requires an n-bit random initialization vector IV as input to the first PRF call.

The PRF output is then used as feedback for the next call. Both constructions

allow optional input, denoted by [·]. After ⌈ℓ/L⌉ calls to the PRF, the sequence

of outputs B0, B1, ... is concatenated and, if necessary, truncated to ℓ bit.

PRF

k
CTR0 [·]

B0

PRF

CTR1 [·]

B1

...

...

concatenate or truncate to ℓ bit

(a) Counter mode

PRF

k
IV [·]

B0

PRF

[·]

B1

...

...

concatenate or truncate to ℓ bit

(b) Feedback mode

Figure 5.1.: Example constructions to build a PRF∗ from a PRF [Che09].
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Suitable primitives to implement the PRF

Various primitives can be used to implement the PRF in the aforementioned

PRF → PRF∗ constructions. Natural candidates are keyed cryptographic hash

functions or block ciphers. When ℓ is large, like it is the case in most Compres-

sive Sensing applications, keyed hash functions are more suitable due to their

larger output length of up to 512 or even 1024 bit. In comparison, standardized

block ciphers are limited by their 64 or 128 bit block size.

The simplest construction to implement a PRF using a hash function H is the

key prefix method, which works by prepending a key to the message and hashing

the concatenated bit string, i.e. H(k ||m). Unfortunately, hash functions that

are built from the iterative construction from ISO 10118-1 [ISO00] are no PRFs

in the key prefix construction. Dedicated and standardized hash functions like

SHA1 or SHA256 are built from this design. In order to see that these hash

functions are no PRFs, when the key is prepended to the message, consider

Fig. 5.2. A compression function f that processes L bit blocks is used to build

the hash function H. At first, the message m is padded to a multiple of L bits

and the padded message m̄ is split into L bit blocks. During the iteration phase,

each block m1, ...,m⌈|m̄|/L⌉ is processed by the compression function f and the

final hash h is obtained after an optional truncation step.

m1 m2 ... m⌈ |m̄|
L ⌉|| pad

f f ... fIV [trunc]

h

m [pad] split(|m̄|, L)

Figure 5.2.: The general design of a hash function H built from a com-
pression function f , originally proposed by Merkle and Damgård
[Mer90][Dam90].
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The compression function f and the IV must be specified in order to define a

dedicated hash function. Now, if an adversary obtains a message m together

with H(k ||m) he/she is able to extend m for example by a block x and compute

f(H(k ||m), x) = H(k ||m ||x). This is a well known length extension attack

[Tsu92]. Hence, the adversary is able to distinguish the keyed hash function

from a PRF.

Secure constructions for keyed hash functions are NMAC [BCK96]:

NMACk=(k1||k2)(m) := H (k1 ||H (k2 ||m)) (5.7)

and a special instance of NMAC called HMAC [BCK96]:

HMACk(m) := H (k ⊕ opad ||H (k ⊕ ipad ||m)) . (5.8)

The constants opad and ipad in HMAC are standardized and used to derive

different keys for the inner and outer hash function calls (cf. [Tur08]). The

security of NMAC and HMAC was proven in [Bel06] under the assumption that

the compression function f is a PRF for a random k. Therefore, NMAC and

HMAC can be used with all standardized hash functions to build a secure PRF.

NIST [Che09] recommends HMAC as PRF for key derivation functions (KDFs)

in counter or feedback mode (see Fig. 5.1). KDFs can be regarded as a special

use case of the aforementioned PRF → PRF∗ constructions.

Extendable-output functions

Another group of interesting constructions that can be used to build PRF∗

straightforwardly are extendable-output functions (XOFs). An XOF is a hash

function with an unlimited output length. Examples for XOFs include the

recently standardized SHAKE [NIS14] – a variation of SHA-3 resp. Kec-

cak [BDPA11a] – and another finalist of the SHA-3 competition called Skein

[FLS+10]. Both function families are built on a different design than the one

presented in Fig. 5.2. The sponge construction, that is used in Keccak and

SHA-3, is presented in Fig. 5.3. Two parameters, the rate r and the capacity c

can be chosen. At first, the message is padded to a multiple of r bit and then

the padded message is processed in r bit blocks m1, ...,m⌈|m̄|/L⌉. The round

function f is a permutation working on w = r+ c bits, where c can be regarded
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as security parameter of the hash function. After processing the message (the

absorbing phase in Fig. 5.3) the round function is used to output r bits on each

further invocation, which is called the squeezing phase. In comparison to the

construction from Fig. 5.2 with a fixed output length, the squeezing phase can be

extended until the desired number of ℓ bits is produced. The sponge construc-

tion shows how the design of hash functions that support variable output length

differ from the classical ISO 10118-1:2000 design [ISO00]. The main advantage

of XOFs is that they do not need an additional output extension through counter

mode or feedback mode unlike limited output length hash functions. It must

be noted that an XOF with output length ℓ and security parameter c cannot

provide more than ℓ/2 resp. c/2 bits security against collisions, depending on

whichever is less (cf. [NIS14, A.1]). Hence, the security of an XOF is given by

d = min(ℓ/2, c/2), under the assumption that f is a PRF.

In addition to the variable output length, Keccak, SHAKE and Skein are

secure PRFs when a random key is used as a prefix to the message and both

function families can be used securely in the NMAC or HMAC construction

[BDPA11b][BKL+09]. Therefore, the keyed versions of Keccak, SHAKE and

Skein can be defined by H(k ||m).

sponge

0

0

r

c

f

⊕

f

⊕

f

⊕

f f ...

absorbing squeezing

[pad]

m

m1 m2 m3

[trunc]

/r /r /r

h

Figure 5.3.: The sponge construction used in Keccak, SHA3 and SHAKE
(adapted from [BDPVA12]).
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Recommended constructions and parameters

PRF∗

Output
length of

the
primitive

Security
level of the
primitive
(in bit)†

Number of
primitive
calls for
ℓ = m ·N

bits

Standardized
in

keyed
SHAKE256‡ arbitrary min(256, ℓ/2) 1 [NIS14]

keyed
XOF-Skein512

arbitrary min(256, ℓ/2) 1 -

counter mode
HMAC-SHA3-

512
L = 512 256

⌈

m·N
L

⌉ [Che09]
[NIS14]

counter mode
HMAC-SHA-

512
L = 512 256

⌈

m·N
L

⌉ [Che09]
[ISO04]

†A security level of b bit means that the computational complexity of a generic attack
against the primitive is ≥ 2b (in case of hash functions the best generic attack is a birthday
attack).

‡Remark: The 256 in SHAKE256 describes the security level of the function (i.e. c/2)
and unlike the common notation it does not describe the output length of the function or
the size of its inner state. This notation is due to [NIS14] and used here for conformity.

Table 5.1.: List of recommended PRF∗ construction and primitives for the usage
in Genk.

Table 5.1 presents a list of recommended PRF∗ constructions that might be used

in Genk. The list is ordered, meaning that the entries are sorted descendingly

by suitability and security as well as performance, all with respect to the usage

in Genk. Keyed XOFs are preferred over HKDF constructions due to their

simplicity and better performance. SHAKE is preferred over Skein, because

the construction is standardized and hardware support of SHAKE/SHA3 is

very likely in the near future. The recommended constructions from Table 5.1

are built from cryptographic hash functions with a security level of 256 bit

against generic attacks, which is high enough in the foreseeable future. Note

that a generic attack is an attack against a cryptographic primitive that can be

performed independently of the concrete implementation of the primitive, for

example an exhaustive key search or a birthday attack.
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Even with respect to attacks with quantum computers, especially Grover’s

algorithm [Gro97], the hash functions security decreases by the order of a square

root. The security of the candidates from Table 5.1 against Grover’s algorithm

and variants thereof is around 128 bit [Ber09], which is still sufficient.

5.2.2.3. Security analysis

Table 5.1 contains a summary of the security level of the primitives that are

recommended for the usage in the matrix generation function. This section es-

tablishes the security of Genk(Ni) by analyzing the attack complexity of generic

attacks against the PRFs and the PRF → PRF∗ constructions. This way, con-

crete bounds for the security of the matrix generation function are given that

establish the security of the encryption scheme for equal energy signals accord-

ing to Lemma 5.1.

PRF security

real random

primitive
PRF
fk

k

! random
F

primitive

D

q q

b′ ∈ {0, 1}

Figure 5.4.: Real or random distinguishing experiment - Expror
D (with reference

to [BDPA11b]).

Let D be an algorithm that tries to distinguish between the PRF fk drawn

from the pseudorandom function family F according the random key k and a

random function F . A high level view of the experiment, denoted by Expror
D ,
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is given in Fig. 5.4 (cf. sec. 3.2.1). Two kinds of computational costs should be

considered for the PRF security analysis [BDPA11b].

◃ Online complexity: An attack is said to be online if the distinguisher is

allowed to interact with the oracle Ofun, which is either real, i.e. fk or

random, i.e. F (cf. Fig. 5.4). Online complexity describes the costs of an

online attack by considering the number of queries q to the oracle Ofun.

It should be noted that the access to the pseudorandom function can be

limited in practice.

◃ Offline complexity: In contrast to online attacks, offline attacks do not

need access to Ofun and can therefore not be prevented or mitigated in

practice. The offline complexity models queries to the underlying primitive

of the oracle.

Clearly, the security of HMAC and the keyed versions of Skein and SHAKE is

limited by the key size |k|, since an exhaustive key search can be performed with

an offline complexity of 2|k|. For other kinds of generic attacks except exhaustive

key search, it is clear that D succeeds if it recognizes the connection between

the primitive and fk when interacting with Ofun. This connection is marked

with an exclamation mark in Fig. 5.4. The importance of this connection stems

from the fact that the random function F does not depend on the primitive,

but fk does.

The PRF-security of HMAC was first established by [BCK96] and later con-

firmed under weaker assumptions on the underlying primitive by [Bel06]. Recent

research results by [NW16] show that HMAC instantiated with SHA3 achieves

a PRF-security of O(q2 · 2−L), where L is the fixed output length of the hash

function (see Fig. 5.3). Stated differently, the PRF advantage of a distinguisher

D in Expror
D against HMAC-SHA3 is

Advror
D,F := |Pr[Dfk → 1]− Pr[DF → 1]| ≤ q

2L/2
. (5.9)

The PRF-security of the keyed versions of Keccak/SHAKE and Skein is

similar [BDPA11b][BKL+09], but L/2 must be replaced by d = min(ℓ/2, c/2).

In comparison, HMAC-SHA2 achieves a PRF-security of O(t · q2 · 2−L), where

t is the maximal length of the HMAC input [NW16].
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Note that the stated bounds hold under the assumption that the primitive

underlying the hash function has no structural weakness.

PRF → PRF∗ security

In addition to the PRF security of the recommended hash function, the PRF →
PRF∗construction has an impact on the security of Genk. Recap that q denotes

the number of HMAC resp. the keyed hash function queries and let l be the

number of signals encrypted under a single key. In the counter mode PRF →
PRF∗ construction, q increases by

⌈

m·N
L

⌉

at each call of Genk. In contrast,

for XOFs q increases just by one for each generated matrix and by using the

PRF-security bounds it can be seen that l ≤ q ≤ 2d signals can be encrypted

securely under a single key, which is indeed optimal with respect to the PRF

security (d = min(ℓ/2, c/2)). For PRFs with the counter mode output extension

the number of signals that can be encrypted under a single key decreases by
⌈

m·N
L

⌉

at each call of Genk. The security margin of the recommended functions

is large enough such that this degeneration is only from theoretical interest and

will hardly have an impact in practice. However, because of this undesired

behavior it is recommended to use keyed XOFs rather than the counter mode

output extension.

5.2.2.4. Performance analysis

This section presents a performance analysis of the standardized HMAC key

derivation functions in counter mode (HKDF) [Che09] and keyed XOFs. The

Skein hash function is used in both constructions, because of its good software

performance [CPB+12]. Fig. 5.5 shows the average results from ten runs of a

performance evaluation (output length vs. time), based on the code from the

final round NIST submissions (v1.3). The code was compiled with the native

Visual Studio 2015 compiler optimized for speed, i.e. with the flag /O2. The

evaluation was performed on a single core of an Intel® CoreTM i7-4770 with

3.40 GHz and 16 GB RAM. The results for XOF-Skein are almost identical for

all state sizes, because of that, only XOF-Skein512 is plotted for better visibility.

The number of PRF calls that are needed to generate an m×N matrix depend

strongly on the output size of the hash function. Hence, hash functions with

bigger output size perform best in the counter mode HKDFs, when the overall
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5. Compressive Sensing Encryption Modes

number of output bits increases. However, Fig. 5.5 shows that XOFs outperform

HKDF significantly. The reason for this is that XOFs work by iterating the inner

round function until enough bits are produced. The repeated padding, splitting

and finalization needed in HKDF comes at high computational costs compared

to the simpler XOFs. This is another reason why XOFs are preferred over HKDF

like schemes.
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Figure 5.5.: Performance analysis of some PRF∗ constructions.

5.2.3. Normalized encryption

A Compressive Sensing based encryption scheme can only achieve ν-indistin-

guishability if the signals that should be encrypted have equal energy (cf. section

4.2/4.3). There are three different approaches for the normalization. A sparse

or compressible signal x⃗i (i = 0, ..., l − 1) can be normalized by x̂i = x⃗i/∥x⃗i∥2,
if the signal is either known prior to sensing or if the normalization value is

obtained using a separate sensor. Now the Compressive Sensing encryption

function Ek can be defined as

ŷi = Ai · x̂i, (5.10)

where Ai ← Genk(Ni) for an n-bit nonce Ni (cf. section 5.2.2).
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Another possible normalization method is to scale the entries of the sampling

matrix by 1/∥x⃗i∥2, thus the encryption function becomes

ŷi =

(

1
∥x⃗i∥2

·Ai

)

· x⃗i ,whereAi ← Genk(Ni) . (5.11)

Unfortunately, scaling the matrix arbitrarily is not possible in practical ap-

plications [BDDH11, 3.3.1]. As in the first method, the signals norm must be

known prior to sensing. This is a strong assumption for systems relying on the

sampling model (M1), since the signals norm must be obtained separately.

The RIP ensures that the sampling process approximately preserves the sig-

nals energy (cf. Def. 3.4), leading to the information leakage described and

analyzed in section 4.2. As a consequence, the third approach is to normalize

the measurements y⃗. (M1)-systems have access to the measurements y⃗ and it

is simple to compute their norm. Therefore, it is proposed that CS encryption

modes work by normalizing the measurements after the sampling and compres-

sion process. This means that the encryption function obtains the compressed

measurements with y⃗i = Ai · x⃗i (see sec. 4.1) and after that, the measurements

are normalized using the measurements norm, that is ŷi = y⃗i/∥y⃗i∥2.
The correct scaling factor needs to be known to the recipient, otherwise he/she

will not be able to recover the original signal with sufficient quality. The se-

cure encryption of ∥y⃗i∥2 should be included in Compressed Sensing encryption

modes. In addition, the encrypted norm can be used to provide interesting

properties like self-synchronization (see section 5.4). Let πk be an encryption

scheme that achieves IND-CPA (cf. Def. 3.8) and further let π−1
k denote the

appropriate decryption algorithm. For now, one may think of πk as a block

cipher in an appropriate mode of operation like CTR or CBC. πk is treated as

a placeholder in the general design of CS encryption modes. Later it will be

integrated in the dedicated modes of operation.

sign exponent fraction

1 bit 11 bit 52 bit

63 52 0

Figure 5.6.: Example of the IEEE 754 floating point representation with preci-
sion p = 64. (with reference to [IEE08]).
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πk processes binary strings, but ∥y⃗i∥2 is a real number. The conversion from

the reals to binary and vice versa is performed with the IEEE 754 floating

point arithmetic [IEE08]. Let ⟨u⟩p denote the binary representation of a scalar

u ∈ R as a p-bit floating point number with precision p ∈ [64, 128]. Fig. 5.6

presents an example of the IEEE 754 floating point representation with p = 64.

Further let ⟩b⟨ be the floating point representation of a binary string b, also

with precision p. The conversion functions can be found in [IEE08]. It must

be noted that the limited floating point precision also affects the security, since

independently from πk an adversary might perform a dictionary attack in order

to find ⟨∥y⃗i∥2⟩p. Therefore, it is recommended that p is at least 64 bit.

The encryption side in accordance with the general model is presented in

Fig. 5.7. The ciphertext vector γ⃗i contains the compressively encrypted signal

consisting of the compressed measurements ŷi and the encrypted measurements

norm denoted by ⟩ci⟨, precisely:

γ⃗i = (ŷi, ⟩ci⟨)T , where ci = πk(⟨∥y⃗i∥2⟩p) and ŷi = y⃗i/∥y⃗i∥2. (5.12)

The set of all ciphertext vectors is called Γ = (γ⃗0, γ⃗1, ..., γ⃗l−1).
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ŷ0

⟩c0⟨

γ⃗0

A0

y⃗0

ŷ0
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Figure 5.7.: Encryption side of the general model for CS confidentiality modes.
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5.2.4. Decryption
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Genk
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ŷ1

A1
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Figure 5.8.: Decryption side of the general model for CS confidentiality modes.

As usual, decryption is defined as the inverse of encryption. The decryption

algorithm must use a suitable recovery algorithm rec to recover the original

signal x̃. Unlike classical block cipher modes of operations, like CTR, it is not

possible to rely only on the encryption functionality of the block cipher. A CS

encryption mode is never inverse-free, which means that the mode has to use

rec for decryption.

Legitimized recipients are meant to share the secret key k. The decryption

starts by generating a pseudorandom sampling matrix via Ai ← Genk(Ni). It

is crucial that encryption and decryption are synchronized, which means that

the same nonce is used during matrix generation for corresponding plain- and

ciphertexts. For now, it is assumed that the nonces are known to the recipient,

but it is not predetermined how they are exchanged or derived. Each dedicated

mode will define this separately. The scaling factor is decrypted by computing

∥y⃗i∥2 = ⟩π−1
k (ci)⟨. The signal is reconstructed using the matrix Ai by calling

rec(Ai, ∥y⃗i∥2 · ŷi), which outputs x̃i = x̂i+ϵ (cf. section 3.1.3). Fig. 5.8 presents

the decryption side of the general model.
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5.3. Compressive Sensing Counter Mode

5.3.1. Design and concept
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Figure 5.9.: Encryption with the Compressive Sensing Counter Mode.

The Compressive Sensing Counter Mode (CS-CTR) was proposed in [Fay16] us-

ing a fixed matrix generation function and without normalized encryption. The

design was extended in [FR16]. Now, it can be used with various matrix genera-

tion functions and normalized encryption is integrated in the mode of operation

without additional block ciphers. The mode of operation follows the design ra-

tionals from the general design presented in section 5.2. In addition, the main

design goal behind CS-CTR is high performance, which means minimal over-

head due to the normalized encryption and parallelizability of encryption and

decryption. Moreover, the design allows precomputation of sensing matrices,

which offers a time-memory trade-off. The sender side of CS-CTR is presented

in Fig. 5.9. The notation used in this section is in conformance with section 5.2.
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According to the general design, the mode of operation has to define how the

nonces are derived and exchanged. The Compressive Sensing Counter Mode uses

a counter as nonce, which gives the mode its name. The encryption algorithm

starts by generating an n-bit initialization vector IV, for example, one might

draw the IV uniformly at random from the set of all n-bit strings. Let N0 = IV
and derive the other nonces by counting onward, for example:

Ni = (N0 + i) mod 2n, i = 1, . . . , l − 1, l < 2n. (5.13)

In practice, the mode might also be used with another counting method then

the one given in Eq. (5.13) as long as encryption and decryption are using the

same method. However, it must be ensured that the IV and all intermediate

counter values are nonces, which means that they must never be used more than

once under one key.

Now, fix a pseudorandom function family F , a PRF → PRF∗ construction

and draw a key k uniformly at random using an unpredictable source of random-

ness (see [ISO11]). The matrix generation algorithm in CS-CTR, denoted by

Genctr
k , produces m ·N+p pseudorandom bits on each call using the underlying

PRF∗. Given a nonce Ni as input, fm·N+p
k (Ni) outputs the pseudorandom bits

b0, b1, . . . , bmNp−1 and the leading m · N bits are reshaped to form the matrix

Ai ∈ {+1,−1}m×N as in Eq. (5.6). The remaining p bits form a pseudorandom

keystream denoted by k̂i ∈ {0, 1}p, which is used to encrypt the measurements

norm:

ci = ⟨∥y⃗i∥2⟩p ⊕ k̂i . (5.14)

CS-CTR implements the encryption scheme πk by means of a stream cipher

that is integrated directly into the matrix generation algorithm. Observe that

this stream cipher construction is nothing else than a pseudorandom function

in CTR mode (cf. [ISO06]). The additional p bits output of fm·N+p
k (Ni) add

only an insignificant computational overhead compared to the output of m ·N
bits that are anyway needed for the sampling matrix. In addition, k̂i and Ai do

not depend on the encryption of other signals, which means that they can be

computed in parallel and also prior to encryption.
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The plaintext signal x⃗i is encrypted by

y⃗i = Ai · x⃗i ,where Ai ← Genctr
k (Ni) (5.15)

and the measurements are normalized

ŷi =
y⃗i

∥y⃗i∥2
. (5.16)

Finally, the ciphertext is formed by prepending the IV to Γ, such that Γ =

{IV, γ⃗0, γ⃗1, ..., γ⃗l−1} with γ⃗i = (ŷi, ⟩ci⟨)T . The IV is used as the initial counter

value and therefore it is needed for decryption when the ciphertext vectors are

sent to another party, stored on a hard drive or in the cloud.

As usual, decryption is defined to be the inverse of encryption. Given the

ciphertext Γ, which contains IV = N0 as input, the decryption algorithm must

derive the correct nonces for calling Genctr
k (Ni) using the counter function (see

Eq. (5.13)). The matrix generation algorithm outputs Ai and k̂i, which are used

to decrypt γ⃗i. The measurements norm is decrypted

∥y⃗i∥2 = ⟩ci ⊕ k̂i⟨ , (5.17)

and the signal is recovered by

x̃i = rec(Ai, ∥y⃗i∥2 · ŷi). (5.18)

5.3.2. Security analysis

An adversary might distinguish CS-CTR from an encryption scheme Π that

achieves ν-indistinguishability by either breaking πk or the matrix generation

function. Therefore, the security of CS-CTR reduces to the indistinguishabil-

ity of the output of Genctr
k (Ni) from random. On the one hand, the random

bits are used as a pseudorandom sensing matrix and on the other hand the

random bit stream encrypts the measurements norm. Thus, πk is integrated

into Genctr
k (Ni). The counter is used to call the inherent PRF∗ on distinct

inputs, which ensures fresh output. This means that the output of Genctr
k (Ni)

is never used to encrypt more than one plaintexts. This mode of operation,

i.e. the Counter mode, is standardized for the usage with n-bit block ciphers in

[Dwo01][ISO06]. However, an n-bit block cipher is invertible and modeled as a
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PRP, rather than a PRF. The PRP/PRF switching lemma [BR04, Lemma 1]

implies that no efficient adversary can distinguish a PRP ρk : {0, 1}n → {0, 1}n

from a PRF fk : {0, 1}n → {0, 1}n with an advantage greater than q · 2−(n/2),

where q is the number of oracle queries. It is easy to see that the adversary can

distinguish ρk from fk by observing whether their occurs an output collision

after hitting the birthday bound at around 2n/2 distinct queries or not. When

the oracle is a pseudorandom function, the probability of a collision increases

significantly after 2n/2 queries, while there are no output collisions with a PRP,

since ρk is a bijection. This observation is then used to prove the switching

lemma.

Most security bounds are first established for PRFs rather than PRPs, because

this makes the analysis easier. The results are then lifted to the PRP setting

by applying the switching lemma (see for example [BDJR97]). Interestingly,

only the encryption functionality of the block cipher is used for encryption

and decryption in CTR mode, which means that one does not need a PRP

and might as well use a PRF directly. This has a significant impact on the

security of CTR mode [BKR98]. According to [BDJR97, Theorem 13] and the

corresponding proof, the IND-CPA advantage of an adversary A that asks at

most polynomial many queries q in Expcpa
A,CTR[F ](b) is

Advcpa
A,CTR[F ] ≤ 2 · Advror

A,F . (5.19)

Remark. It should be noted that for CTR[P ] the q ·2−n/2 security degeneration

from the switching lemma must be added on the right side of Eq. (5.19).

The intuition behind the proof of the bound stated in Eq. (5.19) is that CTR

mode would be ideal with a random function. This means that the advantage

of any efficient adversary would be zero if the encryption is performed with

a uniform random bit string, like in the case of the one-time-pad. The secu-

rity loss from Eq. (5.19) arises when the random function is replaced with a

pseudorandom function family F .

From the CTR[F ] security bound (5.19), the PRF-security bounds from

5.2.2.3 and Lemma 5.1 it can be seen that the “loss” of security when CS-CTR

is used instead of Π is negligible.
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Restrictions on the IV

Equation (5.13) contains a very important restriction on the number of en-

crypted signals, precisely l < 2n, where n = |IV| in bit. An independent

requirement next to the PRF security is that nonces never repeat under a single

key and therefore l must be restricted in a way that guarantees that no counter

value repeats. When the IV is drawn uniformly at random from the set of all

n-bit strings, n must either be sufficiently large such that collisions in different

IVs and intermediate counter values have only a negligible probability, or this

uniqueness must be checked separately. The same restrictions hold if the IV is

generated by encrypting for example an incremented counter under a different

key.

Unlike a secret key, the IV must not be stored or transmitted confidential

and the fact that the IV is known to the adversary does not harm the IND-

CPA-security of the CTR mode. In case of a more powerful chosen ciphertext

attack (CCA) the IV as well as the rest of the ciphertext must be protected

against tampering by an appropriate message authentication scheme (see section

3.2.4.1).

5.3.3. Properties

This section presents further properties of CS-CTR next to its security.

◃ General: Genctr
k requires implementers to specify a PRF∗ and CS-CTR

is secure under the assumption that fk is a PRF. When the confidence in a

certain function family fades due to stronger attacks, one can easily replace

the PRF with another. The adaptable IV size n may increase the number

of signals which can be safely encrypted under a single key, whereas the

variable precision p affects the systems performance and reconstruction

quality.

◃ Error propagation: An error during the transmission of γ⃗i has no effect

on the output of Genctr
k (Ni+1). Hence, errors are not propagated into

the next γ⃗i+1. If the error occurs in ŷi, the Compressed Sensing offers

some robustness, e.g. against noise, if an appropriate recovery algorithm

is used. Similar to CTR, a bit error in ci will result in an error of the

corresponding plaintext bit.
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◃ Parallelizability: Parallel sampling and reconstruction of multiple sig-

nals is a huge benefit in Compressive Sensing. CS-CTR processes each

signal independently, such that encryption and decryption are fully par-

allelizable. In addition, this property also ensures random access, which

means that a particular ciphertext vector can be decrypted without de-

crypting any other ciphertext. Of course, the corresponding nonce must

be used for decryption.

◃ Synchronization: The critical variable with respect to synchronization

is the implicit counter used to derive Ni (i > 0) synchronously for encryp-

tion and decryption. Whenever the counters lose synchronization, e.g.

through the loss of some γ⃗i during transmission or changes in the cipher-

text order, the decryption algorithm will use a different nonce to generate

Ai and the decryption will not succeed correctly. CS-CTR cannot restore

synchronization by itself. To compensate for this, one may use sequence

numbers of connection-oriented protocols to derive the nonces.

Connection-less protocols are sometimes preferred because they are faster than

connection-oriented protocols. For example, large sensor networks and internet

of things (IoT) applications often rely on UDP. In this case, the Compressive

Sensing confidentiality modes presented in the next two sections are suitable,

since they offer self-synchronization after a few ciphertexts are decrypted.
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5.4. Compressive Sensing with Cipher Block Chaining

5.4.1. Design and concept
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Figure 5.10.: Compressive Sensing with Cipher Block Chaining encryption.

The Compressive Sensing confidentiality mode presented in this section is de-

signed to ensure self-synchronization in the case where ciphertext vectors got

lost in transmission or when their order is changed. It is clear that this kind

of self-synchronization can only be ensured when consecutive ciphertext vectors

are somehow interdependent. Fig. 5.10 presents the encryption algorithm of the

proposed mode of operation, which is called Compressive Sensing with Cipher

Block Chaining (CS-CBC) (cf. [FR16]). The CS-CBC mode follows the design

rationals from section 5.2, therefore it must be defined how the nonces used as

input to the matrix generation function are derived and how the normalized

encryption is performed.
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The encryption algorithm starts by generating a random n-bit IV and setting

N0 = IV. Fix a pseudorandom function family F , a PRF → PRF∗ construction

and draw a key k = k1 || k2 at random using an unpredictable source of random-

ness. In addition, choose a family of pseudorandom permutations P (i.e. a block

cipher family) and define the encryption function as ρk2 : {0, 1}n → {0, 1}n.

Note that ρk2 works on n-bit blocks and its inverse function is ρ−1
k2

. Further

let p ≤ n, such that ⟨∥y⃗i∥2⟩n denotes the binary representation of ∥y⃗i∥2 (see

[IEE08]), which is optionally padded to n bits when p < n. The encryption

scheme πk2 is implemented by a PRP in CBC mode and the resulting cipher-

text blocks are used as input to generate the next sensing matrix. By this

means, the mode of operation makes use of the fact that the measurements

norm should be transmitted confidential anyway. On top of this, the encrypted

norm is accessible to the encryption and decryption algorithm and can therefore

be used to achieve the intended self-synchronization.

Formally, the encryption of the measurements norm is defined as

ci = ρk2(Ni ⊕ ⟨∥y⃗i∥2⟩n),where

⎧

⎨

⎩

N0 = IV

Ni = ci−1 (i > 0)
(5.20)

The matrix generation function Gencbc
k1

works by calling fm·N
k1

(Ni) to obtain

m · N pseudorandom bits b0, b1, . . . , bmN−1, which are reshaped into Ai as in

Eq. (5.6). The signals are jointly sampled, encrypted, and compressed by

y⃗i = Ai · x⃗i ,where Ai ← Gencbc
k1

(Ni) (5.21)

and the measurements are normalized

ŷi =
y⃗i

∥y⃗i∥2
. (5.22)

After l signals are encrypted, the ciphertext is formed by prepending the IV
to Γ. Here, l must be restricted to l ≪ 2n/2 for security reasons, which are

explained in section 5.4.2.

The decryption algorithm, which is given Γ obtains ∥y⃗i∥2 by

∥y⃗i∥2 = ⟩Ni ⊕ ρ−1
k2

(ci)⟨, where

⎧

⎨

⎩

N0 = IV

Ni = ci−1 (i > 0)
(5.23)
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The compressed measurements are reconstructed and rescaled to form the

plaintext signal by Ai ← Gencbc
k1

(N i) and

x̃i = rec(Ai, ∥y⃗i∥2 · ŷi). (5.24)

5.4.2. Security analysis

Distinguishing CS-CBC from a CS encryption scheme Π that achieves ν-in-

distinguishability might be done by either breaking πk2 or Gencbc
k1

. CS-CBC

is designed with two different keys for the two functions. The reason for this

decision is that both functions are sharing the same IV and when they are

built from the same underlying primitive, using the same key and IV might

result in undesirable and insecure behavior. Hence, it was decided to follow the

“one key for one application” paradigm, like when combining a IND-CPA secure

encryption scheme with a MAC.

The security analysis of the matrix generation algorithm was already pre-

sented in section 5.2.2.3 and is not repeated here. Lemma 5.1 bridges the gap

between the pseudorandom matrix generation and random matrices. What

plays an important role in the security analysis of CS-CBC is the impact of the

CBC encryption, since the chained ciphertext blocks are treated as nonces. The

ciphertext blocks must be distinct to ensure that Gencbc
k1

(ci−1) produces fresh

pseudorandom matrices for each signal. Interestingly, the IND-CPA security

of the CBC block cipher mode holds up to the point where a collision in the

ciphertexts blocks gets likely. To see this, let A be an efficient chosen plaintext

adversary attacking CBC[P ] with a random IV that asks at most q queries. Now

consider the following bound on the security of CBC from [BDJR97, Theorem

17]

Advcpa
A,CBC[P ] ≤ 2 · Advror

A,P +
q

2n/2
, (5.25)

where P is a PRP-family with members ρk : {0, 1}n → {0, 1}n. The proof of

this bound is given in [BDJR97].

Since the output of the PRP cannot be distinguished from random, one would

expect repetitions of ci’s roughly at the birthday bound, i.e. after 2n/2 blocks.

This is exactly the security degeneration that is stated in Eq. (5.25). An adver-

sary that achieves the stated advantage might for example ask for the encryption
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of a long message where all plaintext blocks are the same n-bit string. When the

adversary observes an output collision of the form ci = cj where i ̸= j he/she

is able to confirm that the encryption oracle is CBC by verifying if ci+1 = cj+1

(cf. [Rog11, 4.5]). This attack shows that the bound stated in Eq. (5.25) is

tight, which means that CBC mode cannot achieve a higher level of security.

Additionally, the security bound from Eq. (5.25) has the consequence that

after the encryption of 2n/2 signals in CS-CBC mode the key must be changed

even if the underlying functions have a greater security margin. If l ≥ 2n/2 one

can either expect a collision in some ci, which violates the assumption that ci

is a nonce, or an adversary is able to break CBC encryption. In contrast to

CS-CTR, it can be seen that the CBC mode introduces very strict restrictions,

since n is not variable and determined by the choice of the block cipher.

Restrictions on the IV

The IND-CPA security guarantees of CBC stated in Eq. (5.25) hold only for a

random IV. Using a nonce like an incremented counter as IV is not sufficient to

ensure IND-CPA security with CBC. The same applies to an encrypted nonce

under the same key, but a nonce encrypted under a different key is sufficient to

ensure security (cf. [Rog04]). Moreover, using the last ciphertext block as IV
for the next run of the encryption algorithm is also not secure. Ignoring this

requirements has led to various practical attacks on protocols that are using

CBC mode like SSH and SSL [BKN02][Bar06]. Therefore, it is recommended

to use an unpredictable IV, like a nonce encrypted under a different key, if it

is not possible to generate the IV at random. Similar to every other IV based

encryption mode from ISO 10116 the IV must not be kept confidential to ensure

IND-CPA.

5.4.3. Properties

◃ General: The CS-CBC design does not restrict implementers to use a

specific primitive or construction. However, CS-CBC is not as flexible as

CS-CTR, mainly due to the PRP, which limits the number of encrypted

signals under a single key by l ≪ 2n/2. In addition, if p < n the plaintext

blocks must be padded to a multiple of n bits, which will introduce further

overhead.
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◃ Error propagation: An error in just a single bit of ci leads to a wrong

scaling of the corresponding decrypted signal. The following ciphertext

vector is not decrypted correctly because of this error, but the error does

not propagate further. Compared to that, the error through noisy mea-

surements ŷi might be mitigated by the inherent robustness of CS against

noise.

◃ Parallelizability: Encryption can not be performed in parallel due to the

cipher block chaining, whereas decryption is parallelizable, if Γ is received

prior to decryption. This is a benefit in Compressed Sensing, since the

recovery algorithm is more expensive then the sensing process.

◃ Synchronization: The main goal of CS-CBC is to ensure self-synchro-

nization after the loss or interchange of some γ⃗i, while offering confiden-

tiality in the many-time encryption scenario. This property is a great

advantage for example in sensor networks used in internet of things ap-

plications, where connection less protocols are preferred because of their

performance. Self-synchronization is introduced by the cipher block chain-

ing, which also provides the nonces used for matrix generation. The ci-

phertext vectors are interdependent meaning that the decryption of γ⃗i

depends on γ⃗i−1. For example, assume that i ≥ 2 and let c0 = IV. The

loss of γ⃗i−1 has the consequence that ŷi is reconstructed with the wrong

matrix Ai−1 ← Gencbc
k1

(ci−2) instead of Ai ← Gencbc
k1

(ci−1). The result-

ing plaintext signal is just a random sparse signal, since the Compressive

Sensing reconstruction algorithm is not able to reconstruct the original

signal by using the wrong matrix. The corresponding ciphertext is also

not decrypted properly by the PRP. However, synchronization can be re-

covered directly, such that the following vectors are decrypted correctly if

there were no further transmission errors. A similar behavior is shown in

the case where the order of ciphertext vectors is changed.

Fig. 5.11 demonstrates an example of the CS-CBC self-synchronization in the

case where 20% of the ciphertext vectors got lost during transmission. It can be

seen that a ciphertext vector who follows directly after a ciphertext vector that

was lost during transmission cannot be recovered correctly. The next vector can

be reconstructed as long as its predecessor was received in order.
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(a) (b)

Figure 5.11.: CS-CBC self-synchronization in case of ciphertext losses.
(a) shows the original “boats” image consisting of 32 signals, the
signals that are lost during transmission are marked with stripes.
(b) is the recovered image decrypted from the 26 received cipher-
text vectors using TVAL3 [Li09].

5.5. Compressive Sensing with Cipher Feedback

5.5.1. Design and concept

The price that is payed to achieve the self-synchronization property of CS-CBC

is the additional block cipher that is needed for the cipher block chaining resp.

feedback to the matrix generation algorithm. An additional key should be used

for this block cipher and if p < n the plaintext must be padded. The block

size n of the block cipher restricts the number of signals that can be encrypted

securely under a single key in such a way that the security margin of CS-CBC is

not as good as it is with CS-CTR. On top of this, n is no longer a variable that

can be adapted freely in accordance to security and application requirements.

Compressive Sensing with Cipher Feedback (CS-CFB) achieves self-synchro-

nization and limited error propagation in a more flexible fashion than CS-CBC,

since the feedback comes from a stream cipher that is integrated in the matrix

generation algorithm, like in CS-CTR. The main advantage over CS-CBC is that

no additional block cipher must be used and implementers are not restricted to

a fixed n. As before, the design follows the general model from section 5.2.1.

The encryption side of CS-CFB is shown in Fig. 5.12.
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ŷ2

c2

k̂2

IV

N1 N2

Figure 5.12.: Encryption side of the Compressive Sensing with Cipher Feedback
mode.

Let IV = N0 be a bit string of length n that is drawn uniformly at random

from the set of all n-bit strings. Given a random key k and a nonce as input,

Gencfb
k (Ni) outputs a pseudorandom matrix Ai ∈ {+1,−1}m×N and a p-bit

keystream k̂i. Recap that p is the number of bits used to represent ⟨∥y⃗i∥2⟩p
and let n = λ · p, for λ ∈ N

+. Gencfb
k is essentially the same as Genctr

k and

the reader is referred to section 5.3.1 for a concrete description of this function.

CS-CFB uses the ciphertexts obtained by encrypting the measurements norm

as feedback in order to derive the nonces that are used for matrix generation.

Let x⃗i be a sparse or compressible signal that is encrypted by

y⃗i = Ai · x⃗i ,where Ai ← Gencfb
k (Ni). (5.26)

The measurements are normalized as described in Eq. (5.27).
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ŷi =
y⃗i

∥y⃗i∥2
. (5.27)

The additional keystream outputted by Gencfb
k is used to encrypt the mea-

surements norm,

ci = ⟨∥y⃗i∥2⟩p ⊕ k̂i . (5.28)

The ciphertext is formed by prepending the IV to Γ. πk is implemented as a

pseudorandom function in cipher-feedback mode where the plaintext length is

limited to p.

Let lsbitt(u) denote the t least significant bits of the bit string u and further

let

Ni+1 = lsbitn−p(Ni) || ci . (5.29)

The feedback from Eq. (5.29) might be implemented using an n-bit shift

register as feedback buffer. The register is initialized with IV and shifted by

p-bit after each signal (see Fig. 5.12).

The decryption algorithm extracts the IV from Γ, initializes the shift register

to decrypt γ⃗0 and updates it as in Eq. (5.29) for each following ciphertext vector.

Decryption is performed by

x̃i = rec
(

Ai, ⟩ci ⊕ k̂i⟨ · ŷi
)

. (5.30)

5.5.2. Security analysis

Similar to CS-CTR, the security of CS-CFB is reduced to the indistinguisha-

bility of the output of Gencfb
k from random in order to apply Lemma 5.1 and

establish the CPA security of πk. The CFB mode of operation is standardized

for the usage with an n-bit block cipher in [Dwo01] and [ISO06]. Due to the

stream cipher encryption, the mode of operation only needs the encryption rou-

tine of the block cipher. This means that no invertible primitive is necessary

for CFB and the block cipher can be replaced with a non-invertible PRF.

However, the important factor with respect to the security of CS-CFB is

the cipher feedback, which is used to derive nonces for Gencfb
k . Clearly, an

adversary is able to distinguish the output of Gencfb
k from random if the input

to the matrix generation function is no longer unique. In contrast to CS-CTR,
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the nonces are not independent of the underlying PRF∗ and collisions in the

feedback buffer become likely after roughly 2n/2 signals are encrypted. This

can also be seen from the following bound that states the IND-CPA security of

CFB for a random function family F against an adversary A that asks at most

q CPA-queries:

Advcpa
A,CFB[F ] ≤ 2 · Advror

A,F +
q

2n/2
(5.31)

This bound was first established and proven in [AGPS02] by using the typical

transition based on the indistinguishability of the pseudorandom function from

a random function. It should be noted that the bound from Eq. (5.31) is tight,

since an attack comparable to the one discussed for CBC mode in section 5.4.2

can be applied to CFB. All randomized modes with feedback, i.e. CBC, CFB

and OFB, show the q2 · 2−n security degeneration. Therefore, the key must

be changed when l approaches 2n/2, even if the underlying PRF has a greater

security margin. In contrast to CS-CBC, n is no longer determined by the block

cipher.

Restrictions on the IV

The security of CS-CFB can only be guaranteed if either a random IV or a

nonce encrypted under a different key is used as IV.

5.5.3. Properties

◃ General: The CS-CFB design does not need an invertible primitive to

achieve synchronization when ciphertext vectors got lost. As a conse-

quence, the mode of operation works with a single key, since πk is inte-

grated into Gencfb
k . The mode is also flexible, because n might be adapted,

for example, to increase the number of signals that can be securely en-

crypted under one key. On top of this, no padding is required to encrypt

∥y⃗i∥2. In contrast to the CFB block cipher mode of operation (cf. [ISO06]),

CS-CFB uses all the random bits that are produced by the underlying

PRF, which means that not a single pseudorandom bit is wasted.

◃ Error propagation: The relationship between n and p plays an impor-

tant role with respect to error-propagation caused by corrupted c′is. As
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long as n = p, a bit error in ci propagates into the decryption of the next

ciphertext vector. When ci+1 is received correctly, the following ciphertext

vector is decrypted correctly. In case that p < n, errors in ci affect the

decryption of subsequent ciphertext vectors as long as the corrupted bits

are inside the feedback buffer. Implementers should consider this behavior

and choose n, p in accordance with their security goals and application.

Errors or noise in ŷi does not affect other ciphertext vectors and might be

mitigated by the inherent robustness of Compressive Sensing.

◃ Parallelizability: The CS-CFB mode is not easily parallelizable, but

pipelining can be used to enhance performance. The state of the feedback

buffer might be precomputed for a parallel decryption when the mode is

implemented in software and all ciphertext vectors are received prior to

decryption.

◃ Synchronization: After the loss of some γ⃗i, synchronization is recovered

with the next correctly received ciphertext vector for n = p. In the more

general case where p < n, synchronization is not achieved directly. Sender

and recipient are working synchronously, when their feedback buffers have

the same state. Fig. 5.13 shows an example of the synchronization prop-

erty of CS-CFB for n = p and n = 2 · p. In Fig. 5.13, 20% of the 32

signals got lost during transmission. It can be seen that synchronization

is recovered faster when n = p, since the state of the feedback buffer is up-

dated completely with each received ciphertext vector. A similar behavior

is shown when the order of the ciphertext vectors is changed.
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(a)

(b) (c)

Figure 5.13.: Synchronization with CS-CFB for different parameters.
(a) shows the original image that consists of 32 signals, the signals
that are lost during transmission are marked with stripes.
(b) is the recovered image with n = p using TVAL3 [Li09].
(c) is the recovered image with n = 2 · p using TVAL3 [Li09].
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5.6. Comparison of the Proposed Modes

All proposed confidentiality modes follow the design rationals from section 5.2

and achieve the design goals stated in section 5.2.1. The presented modes rely

on Bernoulli sensing matrices and therefore asymptotic ν-indistinguishability

in the many-time encryption scenario is the best achievable security notation.

Table 5.2 summarizes further properties and security restrictions of the proposed

Compressive Sensing confidentiality modes. As before, let d = min(ℓ/2, c/2)

denote the security parameter of the PRF, let l be the number of signals that

should be encrypted and further let n be the size of IV in bit.

For a fixed PRF with d bits of security, it is clear that the PRF-security fades

with O(q ·2d) and that an exhaustive key search has an offline complexity of 2|k|

(see section 5.2.2.3 for further details). Table 5.2 states the number of signals

that can be securely encrypted under a single key when n < d, since n might be

chosen freely in CS-CTR and CS-CFB. In this case, the security of the mode

of operation against online attacks is limited by the choice of n rather than the

PRF security as an implementer might believe. Note that increasing n such

that n > d does not increase security beyond the PRF-security. In contrast, the

online security of CS-CBC is limited by the underlying n-bit block cipher.

The ubiquitous confusions about the IV for an n-bit block cipher mode have

led to various practical attacks, see for instance [BKN02, Bar06] or the BEAST

attack on Transport Layer Security (TLS) 1.0. Table 5.2 contains the restric-

tions on the IV under which the proposed Compressive Sensing confidentiality

modes work as designed and the reader is referred to section 5.3.2, 5.4.2 and

5.5.2 for more details. CS-CTR is the only proposed mode that is secure when

the IV is a nonce rather than a random n-bit string. In some application

scenarios it might be easier to provide a nonce instead of a random string. Un-

fortunately, it seems that misuse resistant modes like Synthetic Initialization

Vector (SIV) [RS07] cannot be adapted for the usage in Compressive Sensing.

A misuse resistant mode achieves a decent and formally defined security goal

even if it is used incorrectly. To attain misuse resistance, SIV uses a CBC-MAC

of the plaintext as IV, but in the CS sampling model (M1) from Def. 3.3 it is

impossible to perform computations on the signal.
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CS-CTR CS-CBC CS-CFB

Maximal number
of signals until
the key must
change (n < d)

≤ 2n − 1 ≪ 2n/2 ≪ 2n/2

Restrictions on
the IV

nonce
(or random)

random random

Needs a block
cipher for
encryption

No Yes No

Number of keys 1 2 1

Parallel
processing
(Ek/Dk)

(Yes/Yes) (No/Yes) (No/Possible)

Precomputation
of Ai possible

Yes No No

Self-
synchronizing
(w.r.t. losses or
reordering)

No Yes

Yes,
impact

depends on
n, p

Error
propagation
(w.r.t. ci)

No,
an error in ci
affects the

scaling of ŷi

Yes,
an error in ci
affects the

scaling of ŷi
and x̃i+1

cannot be
recovered

Yes,
impact

depends on
n, p

Robustness
against noisy
measurements

Yes Yes Yes

Padding required
(if p < n)

No Yes No

Free parameters
(independent of
any primitive)

n, p p n, p

Table 5.2.: Comparison of the proposed confidentiality only modes.
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The other properties of the proposed modes offer the possibility to choose

a mode of operation in accordance to its use case. The main advantages of

CS-CTR is its full parallelizability, simplicity and the limited impact of errors.

Each signal is treated independently and therefore, the mode cannot recover

from losses of ciphertext vectors or changes in their order. To compensate

for this, external values like sequence numbers of connection-oriented protocols

might be used to derive the correct counter value.

CS-CBC and CS-CFB will restore synchronization after a few ciphertext vec-

tors in case of losses or reordering. CS-CFB is more flexible than CS-CBC

mainly due to the stream cipher design used for the encryption of the measure-

ments norm. Both modes do not support parallel encryption, because of the

feedback resp. cipher block chaining. The Compressive Sensing reconstruction

algorithm is more expensive then the sampling process, hence parallel decryp-

tion is a desirable feature. Performing parallel decryption is simple in CS-CBC

as long as the required portions of the ciphertext are accessible. In case of CS-

CFB, the parallel decryption property depends on the implementation of the

feedback buffer.

85



5. Compressive Sensing Encryption Modes

5.7. Experimental Results

5.7.1. Proof of concept
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Figure 5.14.: Perfect recovery of five random sparse signals with CS-CTR using
basis pursuit.

Random sparse signals

A design goal for the proposed confidentiality modes is reconstructability. This

means that the modes of operation should not harm the necessary conditions

for a successful signal recovery, this is the reason why the sampling matrices

used in CS encryption modes should achieve the RIP. However, it is important

to investigate how the encryption modes work with respect to different signals.

At first, all modes are tested on s-sparse signals with randomly drawn entries,

since the theoretical results from section 3.1 can be used to establish sufficient

parameters. Fig. 5.14 presents the result from a simulation performed with CS-

CTR using SHAKE128 as underlying PRF∗. Five random signals, each with

N = 512 entries and a sparsity of s = 25, are sampled with m = 120. As it

can be seen from Fig. 5.14, the signals are lossless recovered with basis pursuit

[CDS01]. The basis pursuit simply performs the ℓ1-optimization as it is stated

in Eq. (3.5)/(3.6). The results from simulations with more signals and the other

proposed modes of operation are similar, which shows that Compressed Sensing
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encryption modes are applicable for a wide range of use cases where the signals

of interest are actually sparse.

Imaging application

Imaging is another popular application for Compressed Sensing, since most nat-

ural images are sparse in a wavelet domain for instance. The examples that were

presented in section 5.4.3 and 5.5.3 already showed that the proposed modes

can be applied in Compressed Sensing imaging. The imaging application has

another advantage when it comes to simulations: the encrypted image visualizes

the view of an eavesdropper. For most of the presented simulations, the images

are sampled column wise or with signals that consist of multiple columns. This

was mainly done for performance reasons and in a practical application one

would probably sample the hole image at once.

Fig. 5.15 presents the encryption of the 512×512 “plane” test image with CS-

CTR based on SHAKE128 and CS with a fixed binary matrix A ∈ {−1, 1}m×N .

All the adversary sees in case of CS-CTR is just a bunch of random measure-

ments without any visual structure. In contrast, the image encrypted with a

fixed matrix shows some structure, which can be regarded as information leak-

age due to the fact that similar signals are encrypted to similar measurements.

With a measurement dimension of m = 205 and TVAL3 recovery [Li09] the

PSNR between the original image and the recovered one is around 33 dB, which

is still an acceptable PSNR value for lossy image compression. The recovery

error is a result from the sparse representation of the image and it is also influ-

enced by the recovery algorithm. For more suitable images, like the “phantom”

test image presented in the top left corner of Fig. 5.16, the PSNR values are

much better.

A natural question to ask is if the proposed confidentiality modes introduce

further recovery errors compared to the classical Compressive Sensing with a

fixed Bernoulli matrix. Fig. 5.16 presents the results from 100 runs performed

on the “phantom” test image with CS-CTR, CS-CBC and CS with a fixed ma-

trix per run. It can be seen that the proposed modes do not introduce more

recovery errors than the classical CS. Further experiments with other signals

and parameters support this statement. The results from the “phantom” image

are presented here, because it shows a good PSNR in general and if the modes

of operation would introduce further errors these would certainly be visible.
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(original) (encrypted w/ a fixed A)

(encrypted w/ CS-CTR) (decrypted w/ CS-CTR
& TVAL3 [Li09])

Figure 5.15.: Encryption examples for an imaging application
(m = 307, N = 1024, l = 256).
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Figure 5.16.: Comparison of the recovery PSNR for the “phantom” test image.

The results presented in Table 5.3 show that the recovery quality of the

“plane”, “baboon” and “boats” test images are not sufficient if the recipient

cannot apply the correct scaling. This means that in case of general images the

measurements norm must be transmitted to the recipient and this transmission

cannot be omitted for performance reasons.

Image
(size)

PSNR(orig., rec.)
ŷ scaled with the

correct norm

PSNR(orig., rec.)
ŷ normalized , i.e.

∥ŷ∥2 = 1

“phantom”
(256× 256)

83.0826 dB 43.6868 dB

“plane”
(256× 256)

33.0826 dB 15.8967 dB

“baboon”
(256× 256)

20.5456 dB 4.7898 dB

“boats”
(512× 512)

30.3159 dB 5.6377 dB

Table 5.3.: The TVAL3 [Li09] recovery PSNR(original, recovery) for correctly
scaled measurements and measurements without proper scaling.
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5.7.2. Measurement distribution

In order to achieve asymptotic ν-indistinguishability, the ciphertext vectors

should be indistinguishable from random vectors drawn from a normal distribu-

tion (see section 4.2). The parameters N, m and s will have a significant impact

on the measurements distribution, especially when Bernoulli random matrices

are used. The measurements obtained by running one of the proposed modes

with their normalized encryption tend to the standard normal distribution in

accordance to the central limit theorem. Consider Fig. 5.17 for an example of

the measurements obtained by the encryption of the “plane” test image with

CS-CTR, again sampled column wise. The normal probability plot shows that

the distribution of the measurements is very close to a normal distribution.

Statistical tests like the Cramér-von-Mieses test or the Anderson-Darling test

[And62] cannot distinguish the measurements by their distribution. The results

from the statistical tests are as presumed very similar to the results presented

in section 4.2.2 for Bernoulli random matrices and therefore not repeated here.
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Figure 5.17.: Normal probability plot of the encrypted 512 × 512 “plane” test
image with CS-CTR.
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Figure 5.18.: Normal probability plot of the encrypted 512 × 512 “plane” test
image with CS-CTR but without normalization.

In contrast, when the measurements are not normalized during the encryp-

tion process, the distribution of the measurements can be distinguished by a

statistical test. Fig. 5.18 shows the probability plot of the “plane” image with

CS-CTR but without normalization. It can be seen that the results are not

aligned with the dashed line that represents a normal distribution.

Special care must be taken in cases where the signals are either too sparse or

the sampling rate is too small. Following Eq. (3.4) the sampling rate depends on

the signals sparsity and if the sparsity is known a-priory one might choose a very

small number of measurements, which harms the measurements indistinguisha-

bility. In order to see the impact of s and m on the measurements distribution,

consider Fig. 5.19, which shows the histograms of two random sparse signals

encrypted with CS-CTR. When the number of measurements is too small, e.g.

with a compression ratio (m/N) of nearly 5% as in Fig. 5.19, the measurements

are not normally distributed. The signals in this example are pretty sparse

and have a large dimension. This type of construction is not too likely in real

applications, where N and m are both quite large.
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Figure 5.19.: Measurement histogram compared to a normal distribution.
(a) shows measurements obtained from the encryption of a random
sparse signal with CS-CTR and N = 512, m = 24, s = 5.
(b) another set of CS-CTR measurements but from a different
signal with N = 512, m = 65, s = 20.

Noisy measurements

Another interesting idea is to investigate whether the inherent robustness of

Compressive Sensing can be used to enhance the security of general Compressive

Sensing applications. The sampling process will introduce some noise to the

measurements and this noise might be helpful to hide the signals energy from

an eavesdropper. The legitimized recipient, however, would be able to recover

a noisy signal and normalization could be avoided. Unfortunately, simulations

with various signal-to-noise ratios (SNR) show that even under adaptive white

Gaussian noise (AWGN) with an SNR of 5 dB as reported in Fig. 5.20 the

measurement distribution can be distinguished from a normal distribution. In

contrast to the example from Fig. 5.18 the distribution becomes better with

respect to indistinguishability, but it will not be as good as with normalized

measurements (cf. Fig. 5.17). For this reason it is important to perform the

normalization in the proposed modes of operation as long as it cannot be ensured

that the sampled signals all have similar energy.
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Figure 5.20.: Normal probability plot with noisy measurements of the “plane”
test image encrypted with CS-CTR but without normalization
(AWGN with 5 dB SNR).

5.7.3. Error sensibility

A mayor advantage of Compressed Sensing based encryption against compress-

then-encrypt schemes like [HRU14] is the robustness of the encrypted measure-

ments against noise. The CS encryption modes proposed in this thesis prevent

the information leakage introduced by the RIP with their normalized encryp-

tion (cf. section 5.2.3). The encrypted measurements norm c is included in the

ciphertext vector γ⃗, but c does not benefit from the robustness of CS. Hence,

the impact of bit errors in c must be investigated.

Recap, that the measurements norm ∥y⃗∥2 is converted into a bit string with

precision p using the IEEE 754 floating point arithmetic [IEE08]. The resulting

bits are then encrypted with πk, which is implemented using a block cipher

mode in case of CS-CBC, or with an XOR cipher in case of CS-CFB and CS-

CTR. Fig. 5.21 reports the impact of a single bit error in different bit positions

of c = πk(⟨∥y⃗∥2⟩p) for the three proposed confidentiality modes.
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Figure 5.21.: The impact of a bit error in different positions of c.

A randomly generated signal x⃗ ∈ R
512 with ∥x⃗∥2 = 10 and s = 30 is encrypted

with double precision, i.e. p = 64. All modes used the same key for the matrix

generation, SHAKE128 as PRF∗ and a randomly chosen IV. CS-CBC applied

AES with a random 128 bit key and zero padding. Fig. 5.21 presents the mean

squared error (see Eq. (4.2)) of the output of the decryption using the smoothed

ℓ0 recovery [MBZJ09] compared to the original signal x⃗ for each bit of c.

In case of CS-CFB and CS-CTR, it can be seen that the MSE decreases

towards the low-order bits of c. This behavior stems from the stream cipher

design used for the encryption scheme πk. By looking at the IEEE 754 double

precision floating point representation (cf. Fig. 5.6 on page 63), one can see

that an error in the high-order bits will affect the exponent that is used for

the floating point representation. Errors in the exponent have a greater impact

than errors in the low-order fraction bits. Errors in the sign bit do not show a

huge impact (MSE ≈ 0.0367). A bit error in the fraction bits can be mitigated

by the robustness of the CS recovery as the results from Fig. 5.21 demonstrate.
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In contrast, CS-CBC shows a worse error behavior due to the block cipher. A

bit error has the consequence that each decrypted bit changes with a probability

of ≈ 50%, independently from the position of the corrupted bit. Hence, the MSE

values for CS-CBC are pseudo-randomly distributed. Higher MSE values than

1040 are only indicated in Fig. 5.21 for better visibility.

Different normalization methods and error propagation

Section 5.2.3 described two different methods for the necessary normalization in

CS encryption modes. The behavior of different normalization methods in case

of bit errors in c must be considered. In addition to the practicality reasons

stated in section 5.2.3, this analysis will justify the choice of the normalization

method.

The proposed confidentiality modes work by normalizing the measurements

after sampling and they encrypt the measurements norm. In the following

experiments, these modes are marked with [y] as subscript. The modes with the

alternative normalization method are marked with [x], which indicates that the

signal is normalized prior to encryption and the signals norm is encrypted. The

definitions of CS-CBC[x], CS-CFB[x] and CS-CTR[x] are given in appendix A on

page 129. A set of sparse signals X = {x⃗0, ..., x⃗14} is encrypted with either CS-

CTR[x] or CS-CTR[y] and for all of the signals the same bits in ci are changed

(i = 0...14). The remaining parameters of the experiment are the same as

in the experiment previously presented in this section. CS-CTR is the only

possible mode for this experiment, since it has no error propagation. The other

confidentiality modes use ci for the matrix generation, which is why decryption

cannot succeed if all ci’s are corrupted. Fig. 5.22 (a) shows the impact of bit

errors in the exponent bits of ci, while Fig. 5.22 (b) reports the behavior in case

of errors in the fraction bits, both for ∥x⃗i∥2 = 10. For a better visibility, only

the seven least significant exponent bits are plotted in Fig. 5.22 (a).

The results from Fig. 5.22 show that normalizing the measurements is less

sensible to bit errors in ci than normalizing the signals prior to sensing. This

behavior can be explained by the different signal reconstructions. The proposed

CS encryption modes perform the reconstruction by ∥y⃗i∥2 = ⟩π−1
k (ci)⟨ and

x̃i = rec(Ai, ∥y⃗i∥2 · ŷi) = x̂i + ϵ. Hence, an error in ∥y⃗i∥2 might be mitigated

by the CS recovery algorithm.
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Figure 5.22.: The impact of a bit errors in ci with p = 64 for ∥x⃗i∥2 = 10.
(a) seven least significant exponent bits
(b) fraction bits
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In case of the alternative normalization method, errors in ∥x⃗i∥2 are multiplied

with the reconstruction error ϵ, which follows from the signal reconstruction:

∥x⃗i∥2 = ⟩π−1
k (ci)⟨

x̃i = rec(Ai, ŷi) · ∥x⃗i∥2
= (x̂i + ϵ) · ∥x⃗i∥2.

(5.32)

Fig. 5.23 presents the results from another simulation with a different set of

signals X = {x⃗0, ..., x⃗14} where ∥x⃗i∥2 = 256 (i = 0...14). It can be seen that the

general MSE is higher than in the experiments from Fig. 5.22, which shows that

the error also depends on the original norm. Moreover the difference between

CS-CTR[x] and CS-CTR[y] is even more visible.
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Figure 5.23.: The impact of a bit errors in ci with p = 64 for ∥x⃗i∥2 = 256.
(a) seven least significant exponent bits
(b) fraction bits
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Chapter 6

Compressive Sensing with

Authenticated-Encryption

6.1. Introduction

The Compressive Sensing encryption modes presented in the previous chapter

are designed to ensure confidentiality. Another important security service is

data integrity. The proposed confidentiality only modes, for now just called

Compressive Sensing encryption schemes (CSEs), are not designed to withstand

active forgery attacks. Hence, an adversary might for example tamper with the

ciphertext, change its order, or replay eavesdropped messages, which leads to

significant attacks in practice. This chapter presents Compressed Sensing based

authenticated-encryption schemes, which are modes of operations that ensure

confidentiality as well as message unforgeability. The focus of this work is on the

security of messages during transport or data at rest and message unforgeability

under chosen message attacks (cf. section 3.2.4.1), i.e. hard authentication, is

the demanded integrity goal.
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6. Compressive Sensing with Authenticated-Encryption

6.2. Generic Constructions

6.2.1. General

First, three possible compositions of a secure CSE Π = (K, Ek,Dk) and a secure

message authentication (MA) scheme, so called generic constructions, are ana-

lyzed with respect to their security, implementability and behavior. Remember

that an MA scheme Ξ = (K, Tk,Vk) consists of a key space K, a keyed tag gen-

eration algorithm Tk (e.g. a MAC) and the keyed tag verification algorithm Vk

(see section 3.2.4.1). Tk takes as input a message m and outputs a authenticator

tag ← T k(m). V takes a message m
′ and a tag as input and outputs ! if the tag′

computed over the message m
′ equals the input tag and ⊥ otherwise. The three

generic constructions are presented in Fig. 6.1. Following general conventions,

different keys should be used for the two primitives.

X

Ek1

Γ

T k2

Tk2(X )

(a)

X

Ek1

Γ

T k2

Tk2 (X )

(b)

X

Ek1

T k2

Tk2(Γ)Γ

(c)

Figure 6.1.: Overview of the generic constructions with explicit key inputs.
(a) Compressed Sensing encryption and MAC (CSE&MAC).
(b) MAC then Compressed Sensing encryption (MAC-then-CSE).
(c) Compressed Sensing encryption then MAC (CSE-then-MAC).
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6.2.2. CS-encrypt-and-MAC

The first construction to consider is called CS-encrypt-and-MAC, abbreviated

CSE&MAC, and it is shown in Fig. 6.1 (a). The plaintext X that probably

consists of multiple signals x⃗i is encrypted with an appropriate CS confiden-

tiality mode (e.g. CS-CTR) and the MAC is computed over the plaintext, e.g.

tag ← HMACk(X ) (cf. Eq. 5.8 on page 56).

Encrypting and authenticating the plaintext is not recommended in general,

since this type of constructions are only secure under very narrow conditions

[BN08, NRS14]. The reason for this is that encryption and authentication

should provide two different security services. While the encryption scheme

ensures that the plaintext is confidential, the MA scheme should guarantee that

every tampering attempt will be noticed. However, the tag computed by the

MA scheme might leak some information about the plaintext, since it is not de-

signed to achieve confidentiality. For example, imagine that the same plaintext

is encrypted and authenticated multiple times in the CSE&MAC fashion. The

ciphertext outputted by the randomized encryption algorithm is different for

each run, so no adversary will recognize that the same plaintext is encrypted

multiple times. Since the MAC is also computed on the plaintext, the tags will

be equal as long as the plaintext is equal and therefore, by observing the tags,

the adversary learns that the same plaintext is used multiple times. Moreover,

when the IV is generated by the CS encryption algorithm Ek it will not be

protected by the MAC, because the IV is treated as a part of the ciphertext.

This means that in contrast to the definition of the proposed CS confidentiality

modes from chapter 5 the IV must be provided externally and used as input to

the CSE and MA scheme.

CSE&MAC can be implemented easily assuming a system is working with

sampling model (M2). In the preferred sampling model (M1) it is not possible

to compute the MAC on the plaintext unless the MAC computation is directly

integrated into the Compressive Sensing system. It should be noted that using

the measurements as tag cannot achieve strong message unforgeability under

chosen message attacks, due to the additivity of the compressed measurements.

Another issue with CSE&MAC is that the reconstructed signal is often con-

taminated with noise. A secure MAC is designed to treat even a single bit flip

as an malicious forgery attend, which means that V outputs ⊥ if the recovered
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plaintext differs from the original one. Thus, computing the MAC on the plain-

text is inappropriate in most CS applications when perfect recovery cannot be

guaranteed.

6.2.3. MAC-then-CS-encrypt

The next construction, presented in Fig. 6.1 (b), is called MAC-then-CSE. As

the name suggests, the MAC is computed on the plaintext and then both, i.e.

the tag and the plaintext, are provided as input to the CSE. On the one hand,

this construction is impossible to implement in sampling model (M1), because

the plaintext signal is not known prior to sampling. With respect to (M2) on the

other hand it is pretty simple to build a MAC-then-CSE construction by slightly

tweaking the proposed confidentiality modes to be capable to encrypt the MAC.

The integrity of the IV must be ensured and it must be provided externally.

Similar to CSE&MAC authenticating the plaintext seems inappropriate in case

of error prone signal recovery.

An example: CS-CTR-SIV

Although the MAC-then-CSE constructions are not implementable in (M1),

a dedicated Compressed Sensing authenticated-encryption mode can be build

quite easily for the usage in systems that rely on (M2). The mode of operation is

an adaptation of the SIV mode proposed in [RS07]. First a synthetic initializa-

tion vector is computed for a nonce N by IV ← HMAC(N ||X ) and this IV is

used as input to CS-CTR (cf. section 5.3). The ciphertext Γ = (IV, γ⃗0, ..., γ⃗l−1)

and N are needed as input for decryption, hence the nonce is just send in the

clear. The receiver side decrypts the ciphertext with CS-CTR and obtains X̂ .

Finally, the decryption algorithm computes tag ← HMAC(N || X̂ ) and outputs

⊥ if IV ̸= tag and otherwise it releases the authentic plaintext X̂ . Note that

the original SIV mode uses CBC-MAC rather than HMAC.

An interesting property of this mode, called CS-CTR with synthetic initializa-

tion vector (CS-CTR-SIV), is that it is misuse resistant. Here, misuse resistance

means that the security of the mode does not fall apart when an implementer

chooses an N that is not a nonce (see [RS07]).

As mentioned before, the mode can only be implemented in (M2) and it is

only suitable when the signals can be lossless recovered. To visualize this, the
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Figure 6.2.: Pairwise Hamming distance between the tag and IV in CS-CTR-
SIV for lossless and lossy recovery.

pairwise Hamming distance between the IV and the tag are shown in Fig. 6.2 for

different signals. The simulation is performed for the “plane” and “phantom”

test image presented already in section 5.7. While the “phantom” image is

sparse enough to ensure a good recovery quality, the “plane” image shows a

higher recovery error. To mitigate the recovery error, the recovered signals are

rounded to the next integer. It can be seen that the pairwise Hamming distance

between the tag and the IV is zero in case of the “phantom” image. This shows

that the recovery together with the simple post processing is enough to ensure

that the reconstructed signal is the same as its original. However, for the “plane”

image, the image content is clearly visible (PSNR(original,recovered) ≈ 35dB),

but the recovered signal is not identical to the original. Hence, the pairwise

Hamming distance between tag and IV is around 0.5, which is the expected

value for a secure MAC.

6.2.4. CS-encrypt-then-MAC

The third generic composition of a CSE and MA scheme is called CS-encrypt-

then-MAC. First, the signals are encrypted with a Compressive Sensing con-

fidentiality mode and the integrity of the ciphertext vectors is protected by
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employing a MAC on the ciphertext Γ. Computing the MAC on the cipher-

text has the advantage that the MAC does not leak something useful about the

plaintext to an adversary, since the ciphertext vectors are asymptotically indis-

tinguishable from random. Treating the IV as part of the ciphertext ensures

that each tampering attempt will result in V rejecting the ciphertext. Moreover,

the integrity of the ciphertext is verified prior to decryption. This has the ad-

vantage that manipulated ciphertexts will not be decrypted and no unauthentic

plaintext will be released.

CSE-then-MAC can be implemented in both sampling models and it is the

only construction that can be implemented easily in (M1). On top of this, the

noise introduced during the sampling resp. recovery has no impact on the tag.

As a consequence, CSE-then-MAC can be applied even when lossless recovery

cannot be guaranteed.

6.3. CS Authenticated-Encryption Modes

6.3.1. Design and concept

A Compressive Sensing authenticated-encryption (CS-AE) mode is defined as a

three tuple Π = (K, Ek,Dk). The encryption algorithm Ek takes a set of signals

X = {x⃗0, x⃗1, ..., x⃗l−1} as input and – in contrast to a Compressive Sensing

confidentiality mode – it outputs Γ = {IV, γ⃗0, γ⃗1, ..., γ⃗l−1, tag}. The decryption

algorithm takes Γ as input and outputs the recovered plaintext X̃ in case that

the ciphertext is authentic and ⊥ otherwise.

In order to derive a general design for CS-AE, the general model for the

design of Compressive Sensing confidentiality modes can be extended. Fol-

lowing the results from section 6.2 the design should use the CSE-then-MAC

approach. Now recap that a CSE consists of two main parts, matrix generation

and normalized encryption. Protecting the integrity of either the measurements

or the encrypted norm is not enough, since the adversary might tamper with

the unprotected part. The proposed extension to the CSE general design is

straightforward. The signals are sampled with fresh pseudorandom matrices

derived from a shared key and the measurements are normalized to ensure their

confidentiality as discussed in section 5.2.1. Instead of encrypting the measure-

ments norm with an IND-CPA secure encryption scheme, it is proposed to use
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an appropriate AEAD scheme, like OCB (see section 3.2.4.2 for more details).

This way, the integrity and confidentiality of the normalization value is assured.

The measurements that are already encrypted are given as associated-data (AD)

input to the AEAD scheme, which ensures their integrity.

The general CS-AE model

Let k be a random key of length |k| and derive to sub-keys k1 and k2 of equal size

from k. The key k1 is used for the AEAD scheme and k2 controls the pseudoran-

dom matrix generation. Further, define an AEAD scheme as a function-triplet

consisting of the stateful functions init, update and final (cf. section 3.2.4.2 and

Fig. 3.9 on page 32). The init function takes an n-bit IV, a key k1, an optional

associated-data string AD and a flag as input. The flag is a condition variable

that indicates whether the AEAD scheme performs encryption or decryption.

It is required that the IV is a nonce and if it is drawn at random the uniqueness

of the IV must be ensured separately. The IV and AD strings are added to the

internal computation of the authentication tag.

When initialized for encryption, the update function consumes plaintext and

associated-data strings of arbitrary length and it outputs ciphertext blocks ci

(0 ≤ i ≤ l − 1). The update function adds each processed block to the internal

tag computation. When the whole plaintext is consumed by the update function,

the final function is called and it outputs the authentication tag.

In the case that init is called with the decryption flag, the update function

processes the ciphertext and associated-data blocks. The IV and AD strings are

added to the internal tag computation during init. The update function decrypts

the ciphertext and it also adds the ciphertext together with the associated-data

strings to the tag computation. The plaintext is just released if the ciphertext

is authentic. Therefore, the final function is called with the received tag′ and

it outputs ⊥ if tag ̸= tag′, otherwise it outputs the authentic plaintext.

The general model for CS-AE encryption is presented in Fig. 6.3. The en-

cryption algorithm starts by initializing the AEAD scheme with the encryption

flag, IV, k1 and optional AD. The AD might for example be used to include

time variable parameters in the tag computation to prevent replay attacks.
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ŷi

⟨ŷi⟩
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while 0 ≤ i ≤ l − 1

do

Figure 6.3.: The general design of an encryption algorithm for Compressive
Sensing with authenticated-encryption. The associated-data input
to the AEAD update function is marked with “>”.

Let l be the number of signals that should be encrypted under one k. The

matrix generation algorithm Genk2 takes a counter CTRi, i.e. a value that is

meant to be distinct and that never repeats, as input. Set CTR0 = IV and use

an appropriate counting method to increment the counter, see Eq. (6.1) for an

example.

CTRi = (IV + i) mod 2n, i = 1, 2, . . . , l − 1, l < 2n. (6.1)
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Genk2 outputs a pseudorandom matrix Ai ∈ {+1,−1}m×N . Genk2 is similar

to the counter mode matrix generation function and the reader is referred to

section 5.2.2 and 5.3 for more details. There is no reason against using the

counter mode construction here, since an CS-AE mode cannot benefit from

the self-synchronization property of other type of constructions from chapter

5. Every error will be treated as a tampering attempt and even if the mode

of operation might restore synchronization after the loss of some ciphertext,

the resulting plaintext will not be authentic. On top of this, the counter mode

construction is even more secure than feedback modes (cf. 5.6). The plaintext

signals are encrypted as before,

y⃗i = Ai · x⃗i, (6.2)

and the measurements are normalized

ŷi = y⃗i/∥y⃗i∥2. (6.3)

The AEAD update function is used to encrypt the measurements norm rep-

resented as a binary string ⟨∥y⃗i∥2⟩p and simultaneously it takes the binary

representation of ŷi as associated-data input. ⟨ŷi⟩ denotes the floating point

representation of the vector ŷi, where each entry of ŷi is represented with p-bit

precision. The output of the update function is the encrypted norm ci, which

is concatenated with ŷi in order to form the ciphertext vectors γ⃗i = (ŷi, ⟩ci⟨ )T .

After processing all signals, the AEAD final function is called to produce the

authentication tag. The ciphertext is Γ = {IV, γ⃗0, γ⃗1, ..., γ⃗l−1, tag} and the

optional AD might be send in the clear, for example as package header.

The general design for the decryption algorithm of a CS-AE scheme is shown

in Fig. 6.4. The AEAD scheme is now initialized with the decrypt flag. The

AEAD update function decrypts the measurements norm given ci and it pro-

cesses ⟨ŷi⟩ as associated-data for the computation of the authentication tag.

The matrix generation is exactly the same as for encryption. Ai and y⃗i is given

to the Compressed Sampling recovery algorithm rec, which recovers the signal

x̃ = x̂i + ϵ. When all ciphertext vectors are processed, the received tag′ is

given to the final function, which outputs ⊥ if tag′ does not match the tag

computed on the processed data. Otherwise, the scheme releases the authentic

plaintext X̃ = {x̃0, x̃1, ..., x̃l−1}. In general, the CS-AE scheme might output
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rec

Genk2

CTRi
IV, [AD]

decrypt

AEAD
initk1

γ⃗i

ŷi ⟩ci⟨

ŷi · ∥y⃗i∥2
y⃗i

AEAD
update

x̃i

ci⟨ŷi⟩

>

Ai

x̂i + ϵ

⟩||y⃗i||2⟨

AEAD
final

tag′

X̃ or ⊥

while 0 ≤ i ≤ l − 1

do

Figure 6.4.: The general design of a decryption algorithm for Compressive Sens-
ing with authenticated-encryption.

each x̃i immediately when it is processed. For example, this is necessary when

the decryption device does not offer enough memory to store all plaintext sig-

nals or when the system should achieve some real-time requirements. However,

releasing the plaintext before it is verified is not recommended and raises serious

security risks. The reader is referred to [ABL+14] for a formal analysis of this

problem with respect to some prominent AEAD schemes.

6.3.2. Implementation and security

6.3.2.1. Implementation details

This section presents implementation details for CS-AE and its main focus is on

the AEAD schemes. The reader is referred to section 5.2.2.2 for implementation

details regarding the matrix generation function. Suitable AEAD schemes for

CS-AE must support the simultaneous processing of associated-data and plain-

text. This is due to way AEAD update is used in CS-AE. The measurements

norm and the compressed measurements are processed together in a single up-

date call. From the authenticated-encryption schemes of ISO 19772 [ISO09],

108



6.3. CS Authenticated-Encryption Modes

the most prominent schemes, namely GCM and OCB, support this simulta-

neous processing. CAESAR [CAE17] is a current competition that seeks for

authenticated-encryption schemes. The goal of the CAESAR competition is to

find strong AEAD schemes primarily as a successor of GCM, since the widely

employed GCM has some drawbacks. For example, when the IV in GCM is

not a nonce, confidentiality and integrity is lost completely [Fer05]. This means

that a small implementation mistake, like drawing the IV at random with-

out ensuring its uniqueness, reduces the number of plaintext and AD blocks

to which GCM can be applied by the order of a square root. [BZD+16] found

that a large number of servers use random IVs for their TLS connections while

running GCM and might therefore be vulnerable to nonce collision attacks.

The third round candidates of the CAESAR competition were announced

just recently. Four out of the 16 third round candidates support simultaneous

processing of plaintext and associated-data – one of them is OCB. Even more of

the proposed AEAD schemes might offer this functionality when implemented

accordingly. Table 6.1 on the following page compares AEAD schemes from ISO

19772 and the third round of CAESAR that are suitable for CS-AE implemen-

tations. The preferred modes for CS-AE implementations are Keyak and OCB.

The reason for choosing OCB is that it is standardized, simple and fast (see

[KR11]). Keyak on the other hand, is based on the Keccak-f permutation,

which is also the primitive used in SHAKE (cf. section 5.2.2.2). Hence, matrix

generation and authenticated-encryption might be performed by SHAKE resp.

Keyak and only a single primitive must be implemented. This is especially

interesting in environments with limited code space or when the primitive is

implemented in hardware. On top of this, Keyak offers the possibility to out-

put intermediate authentication tags that can be used to ensure the integrity

of parts of the ciphertext. With intermediate tags, the decryption algorithm is

able to verify parts of the ciphertext as they are decrypted and these parts of

the plaintext can be released earlier.
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AES-
OTR

Deoxys̸= GCM Keyak OCB

Underlying
primitive

AES AES
128 bit
block
cipher

Keccak-
f

128 bit
block
cipher

Simultaneous
processing
of AD and
plaintext

Yes Yes Yes Yes Yes

Nonce
misuse

resistance
No No No No No

Intermediate
tags

No No No Yes No

Parallel
(enc./dec.)

Yes/Yes Yes/Yes
interlea-

ving
possible

Yes/No Yes/Yes

Formal
security
analysis

Yes Yes Yes Yes Yes

Intellectual
property

patent
pending

might
fall

under
OCBs
patents

free from
patents

free from
patents

patented,
but free
licenses
avail-
able

Literature
source

[Min15] [JNP15]
[Dwo07,
MV04b]

[GJM+15] [KR14]

Table 6.1.: Summary of suitable AEAD modes for CS-AE implementations.
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6.3.2.2. Security analysis

The two important parts with respect to security of CS-AE modes are the

counter mode matrix generation algorithm and the AEAD scheme. Both parts

are independent of each other, since it is required that distinct keys are used.

The security of Genk2 and the asymptotic ciphertext indistinguishability of the

compressed measurements were already discussed in section 5.3.2 and 5.2.2.3.

Hence, this results will not be repeated here.

All proposed AEAD schemes for CS-AE come with a formal security analysis

against generic attacks and the reader is referred to the literature presented

in Table 6.1 for the concrete security bounds of each scheme. The security

analysis of AEAD schemes is split into a privacy (IND-CPA) and a integrity

(unforgeable encryption) analysis (see section 3.2.4.2). It is crucial that the IV
is a nonce and as noted in Table 6.1, none of the proposed schemes guarantees

security if a nonce is repeated. Another important parameter that might be

chosen by an implementer is the length (in bit) of the authenticator tag, denoted

by |tag|. An adversary that just guesses a tag at random will succeed with

probability 1/2|tag|, hence after q decryption queries the probability becomes

q/2|tag|. This applies to all the modes from Table 6.1 except for GCM. In

case of GCM, |tag| is more important, because an adversary might forge a

tag with probability (q · (l + 1)) /2|tag|, where l is the total number of AD and

plaintext blocks processed under a single key (see [MV04b, Theorem 1/2]). A

concrete attack on GCM with short |tag| is presented in [Fer05]. This attack is

practical even for |tag| = 64. A throughout discussion of GCM can be found

in [Rog11, Section 12]. The recommended tag size for CS-AE is 128 bit, but

for other AEAD schemes then GCM smaller sizes are also reasonable for some

applications as long as the probability of a successful forgery is small enough.

Replay protection

Recognizing replay attacks is quite simple with the proposed CS-AE general

design. The optional AD string that is an input to the AEAD init function

can be used to include time variable parameters (TVP) like time stamps or se-

quence numbers. The recipient must verify the plausibility of the received TVP

separately. Random numbers are also possible, but the legitimized recipient

must keep track of all received random numbers. If an adversary tampers with
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the TVP during transport, the CS-AE mode will not output the unauthentic

plaintext. When Keyak is used with intermediate tags, it is possible to add the

TVP as associated-data into the update step that produces the intermediate

tag.

6.3.2.3. Proof of concept

Figure 6.5 shows the encryption and decryption of the “cameraman” image with

a dedicated CS-AE mode called Compressive Sensing with Offset Codebook (CS-

OCB). This CS-AE mode uses the block cipher AES128 in OCB mode [KR14]

as AEAD scheme. Fig. 6.5 (a) shows the plaintext, and the output of the CS-

AE encryption is presented in Fig. 6.5 (b) together with the tag′, i.e. the last

128-bit of the ciphertext (cf. 6.3.1). SHAKE128 is used as PRF∗ for the matrix

generation and N = l = 512, m = 205. Using the TVAL3 [Li09] recovery, the

decryption algorithm outputs the plaintext from Fig. 6.5 (c), since the tag that

is computed during the decryption equals the tag′ on the ciphertext.

(a)

tag′(hexadecimal):
95 84 54 65 F7 8E 70 25
E5 E7 C7 1C 89 4C E0 27

(b)

tag (hexadecimal):
95 84 54 65 F7 8E 70 25
E5 E7 C7 1C 89 4C E0 27

(c)

Figure 6.5.: Encryption and decryption of the “cameraman” image with CS-
OCB.
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Chapter 7
Fog Computing Security by Compressive

Sensing Modes

7.1. System Design

Most companies feel uncomfortable when their production or manufacturing

data is handled “somewhere” in the Cloud. Fog computing is an architecture in

which data is aggregated and processed with close proximity to the data-source

and -sink [BMZA12]. This offers various benefits like rapid data analytics and

fast response times. On top of this, the data stays under control and only the

necessary information might leave the local network.

This section proposes a system for secure Fog computing in Industry 4.0

and IoT applications, with a focus on (industrial) sensor networks. Some re-

sults from this section are published in [FBK+17]. Here, a software framework

is presented that serves as a use case for the Compressed Sensing encryption

modes presented in this thesis. Compressed Sensing modes with their joint

encryption, compression and sampling offer a huge advantage in this setting.

The mechanisms that are needed for the usage of the CS modes, like param-

eter arrangement, key-exchange resp. -management, authentication and many

more are included in the presented system. In addition, also block cipher based

encryption schemes and cryptographic hash functions are provided by the frame-
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7. Fog Computing Security by Compressive Sensing Modes

work. By this means, the system is usable even without Compressed Sensing

devices. The developed system is designed in such a way that it can be in-

tegrated in an existing network without exposing the sensible (sensor-)data to

other network users or applications. The underlying security mechanisms are

handled by the framework to enhance usability and avoid usage errors. This

means that the software hides the security mechanisms from the implementer

and generates keys, IVs etc. in the correct way.

Network topology

Fig. 7.1 presents the network topology and system design. It is supposed that

the system is integrated in an existing network infrastructure and there are no

specific requirements on this network.

WAN

VPN

master

service
user

x̃i

... ...

service
provider

CS

device γ⃗i

x⃗i

rec

common
sensor

... ...
end-
node

aggregator-
node

end-node

level

aggregation

level

master

level

CRL

DB

SLP-DA

Figure 7.1.: The system design with Compressed Sensing encryption.
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The components of the system are called nodes and communication inside the

network is based on services. Each node is offering services that can be used by

other nodes, like it is shown exemplary on the lower left side of Fig. 7.1. Services

that a node provides are announced and registered centrally using the Service

Location Protocol (SLP) [GPVD99]. Other nodes are able to locate a service

by asking a central instance, the SLP directory agent (SLP-DA). The SLP-DA

answers with a service reply that contains the Uniform Resource Locator (URL)

under which the service is accessible.

The system components are organized hierarchically in three abstract levels.

The highest level is the master level and it contains a single master-node. This

master offers central services that are provided by third party software, like

the SLP-DA or a local database (DB) connection. Moreover, the master-node

controls the information that leaves the Fog network or the data that is stored

in the database. Authorized external users might access the master-node over

a secure VPN connection to perform system management tasks. The master

is highly important for the system and it might become a single point of fail-

ure. Hence, suitable mechanisms are implemented that increase reliability and

availability. In case that a master-node fails, an election algorithm is used to

select a new master-node from the nodes of the underlying aggregation level (see

Fig. 7.1). The winner of this election will take over the services performed by

the original master-node, like the SLP-DA. Services that are already located by

the service user are still accessible even if the SLP-DA on the master-node is

not reachable, but searching and registering services will not work. SLP services

must be re-registered in a timely manner and if a SLP service provider does not

receive alive messages from the SLP-DA it will register the service again at

another available SLP-DA.

Nodes on the aggregation level are called aggregator-nodes or aggregators

for short. Their task is to collect, process or categorize the data that they

receive from the end-node level. After aggregation, the data is transmitted to

the master-node for further processing or storage if applicable. The hardware

of an aggregator and master-node should have more performance, memory and

storage in comparison to end-nodes. Suitable hardware for end-nodes are single-

board computers like the Raspberry Pi 3, since they offer a good trade-off

between costs and performance and many end-nodes might be needed in the

system. The task of an end-node is quite simple, it should collect data from data
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sources, e.g. an optical or capacitive sensors. The communication between the

end-node and the data source is outside of the controlled Fog network and cannot

be protected. This is the point where Compressed Sensing devices become

interesting, equipped with Compressed Sensing encryption modes they offer

real end-to-end encryption that is integrated into the sampling process.

Design goals

The system is designed with respect to the following main goals:

◃ Security by design: The data inside the Fog network is protected on the

application layer by security mechanisms in accordance to a given security

service (e.g. authenticity). A security service is a technology independent

description of a security measure in order to react to the threats and risks

of a distributed system. Each service in the Fog network must define the

security service that indicates how the data of the service is protected.

The communication with third party software that is used by the system,

for example the local database, is protected by existing protocols like TLS.

◃ Usability: Although, security is the main design goal of the system,

another important factor is usability. Handling cryptographic keys, gen-

erating the correct IV for a given scheme or determining an appropriate

tag length is a problem for many implementers. Therefore, the realization

of the security services and the key establishment are handled by the sys-

tem and the implementer must only develop the service and determine its

security service.

◃ Scalability: The system consists of various components and is easily

expandable by adding further nodes. The design allows multiple Fog net-

works that are locally and technically separated from each other, but

controlled and monitored by an external instance, e.g. a central provider.

Security services

A service must specify a security service. Three different security services are

offered by the framework.

116



7.1. System Design

◃ Authenticity: The integrity of the transmitted data and its origin is

ensured by a symmetric message authentication scheme. Sequence num-

bers and time stamps are used to protect against replay attacks. The

transmitted data is send in the clear.

◃ Confidentiality and Authenticity: Authenticated-encryption with as-

sociated-data or CS with authenticated-encryption (cf. chapter 6) is used

to ensure confidentiality and integrity. Sequence numbers and time stamps

are treated as associated-data. Confidentiality without authenticity is not

offered, since it cannot resist powerful active attacks.

◃ Non-Repudiation: Digital signatures, together with time stamps and

sequence numbers are used to achieve non-repudiation. Non-repudiation

means that a recipient is able to proof that the transmitted message was

sent from the entity that has signed the message.

The abstraction through security services has the advantage that implementers

who are no experts in cryptography are able to understand in which way a

service is protected. All security relevant cryptographic operations, including

key-establishment and -management, are handled by the developed software,

transparent for the user.

Public key infrastructure

Each node of the system has a private key pair to perform the Elliptic Curve

Digital Signature Algorithm (ECDSA) and an X.509v3 certificate that guar-

antees the authenticity of the corresponding public key. The certificate must

be signed by a certificate authority (CA) that is trusted by all nodes inside

the system. It is also possible to use other algorithms than ECDSA, but the

proposed system uses only digital signatures and no asymmetric encryption.

The master-node has access to all certificates and is used to provide the certifi-

cates to other nodes, for example with the Lightweight Directory Access Protocol

(LDAP) protected by TLS. Additionally, the master-node publishes a certificate

revocation list (CRL) that contains revoked certificates. Certificates that are in

the CRL are no longer trusted and requests that are signed with a revoked key

are dropped by the system, e.g. during authentication.
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7.2. Implementation

7.2.1. Software architecture

The following sections describe the proof of concept implementation of the sys-

tem described in section 7.1. The main software framework is implemented

using JAVA SE 1.8, but user-provided services might rely on functionality im-

plemented in another programming language like C++ or Python. This het-

erogeneity of programming is established by two components, RabbitMQ and

Protocol Buffers [Piv16, Goo16a].

RabbitMQ – used in version 3.6.5 – is a cross-plattform message oriented

middleware that supports several popular languages. It implements the Ad-

vanced Message Queuing Protocol (AMQP), which allows binary communication

on the application layer. Messaging with RabbitMQ is asynchronous, fast and

reliable. Acknowledgements sent by the middleware are used in the proposed

system to recognize malicious message blocking.

Protocol Buffers uses an interface definition language to provide a mecha-

nism for serializing structural data that is platform- and language-neutral. It

is smaller, faster and simpler than XML. The desired data structure is defined

once with name-value pairs and some attributes like data types (see [Goo16b]

for further information). The Protocol Buffers code generator creates source

code that includes write and read methods for serialization and deserialization.

7.2.2. The service framework

Providing a service

The software supports two different types of services, publish-subscribe (PS)

services and remote procedure calls (RPCs). In general, PS services are used in

the case where a service provider (called publisher) sends messages to an arbi-

trary and possibly empty set of service users. If a service user is interested in

the publisher’s information, the service user subscribes to the service. Service

provider and service user authenticate each other in the presented system and

the service provider verifies if the requesting subscriber is authorized to use the

service. RPCs are implemented to allow distributed inter-process communica-

tion. Figure 7.2 presents an UML class diagram containing the most important

classes for a service provider.
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Thread

<<abstract>>
AbstractService

+settings : Settings

<<abstract>>
Service

- securityServiceHandler : SecuritySer-
viceHandler
- statusKeyChangeLock : Lock
- serviceURL : String
- certificateManager : CertificateManager
- privateKeyIndex: int
- serviceKeyMap :
ConcurrentHashMap<String,ServiceKeys>
- statusQueue : StatusQueue

+ run() : void
# registerService() : boolean
- deregisterService() : boolean

<<abstract>>
PSService

- psConnection : Rabbit-
MqPSServerConnection
- sequenceNumber : long
- serviceKeyPS : ServiceKeys
- ses : E SecServ

+ run() : void
+ doPS() : byte[]
- handleSeS(header : PSHeader,
payload : byte[]) : GeneralPS-
Data
# fillPSHeader(payloadType
: String, seqNumber : long) :
PSHeader

<<abstract>>
RPCService

∼ rpcConnection : RabbitMqR-
PCServerConnection

+ run() : void
+ handleRPC(procedureName
: String, parameterList :
List<byte[]>) : byte[]
- handleSeSReverse(rpcRequest :
GeneralRPCData ) : byte[]
# isHeaderValid(RPCheader :
Header, name : String) : boolean
# fillRPCHeader(rpcName :
String, receiverID : String) :
RPCHeader

SecurityServiceHandler

- serviceURL : String
E Algorithm : enum[CS-CTR+MAC, CS-OCB, ...]
E SecServ : enum[Conf+Auth,Auth,Nonrep]

+ callSecServAuth(header, payload, key) : authOutput
+ callSecServAuthVerify(header, payload, key, tag) :
authVerifyOutput
+ callSecServConfAuth(header, payload, key) : conf-
AuthOutput
+ callSecServConfAuthDecrypt(header, ciphertext, key,
tag) : confAuthVerifyOutput
+ callSecServNonrep(header, payload, privKeyIdx:int)
+ callSecServNonrepVerify(header, payload, sig,
pearPublicKeyIdx:int)
+ close() : void
+ generateECDHKeyPair() : ECDHKeyPair
+ computeECDHSecret(privateDH : byte[], peerDH :
byte[]) : byte[]
+ generateRandomKey(secServ : E SecServ) : byte[]
... and others

CryptoProvider

- remainingCalls : long

+ encryptCS-CTR SHAKE128(key) : byte[]
+ decryptCS-CTR SHAKE128(ciphertext, key) : byte[]
+ computeHMAC-SHA3(plaintext, key) : byte[]
+ verifyHMAC-SHA3(message,key, tag) :
Tuple<byte[], boolean>
... and others

header, payload, key(s),
tag and ciphertext are
serialized i.e. byte[].

The output from the
SecurityService calls
is an object that con-
tains data obtained
from the CryptoProvider
(datatype and structure
varies, see Π definitions).

Settings

- defaultSLPLifetime : int
- type : ServiceType
- secServAlgo : HashMap<E SecServ,
E Algorithm>
- serviceName : String
- serviceAttributes : HashMap<String,String>
- serviceJar : String

+ parseFromFile(configFile : String) : Settings
... and others

Each Service is ini-
tialized by loading a
config from file. The
results are stored in
a Settings object.

StatusQueue

- sequenceNumber:long
- psConnection : RabbitMqPSServerConnection
- secServHandler : SecurityServiceHandler
- service : Service
- statusKeys : StatusKeys

+ changeServiceKeys(notification : String):void
+ run() : void
+ sendAlive() : void
+ writeError(errorMessage : String) : void
... and others

UserProvidedService

+handleRPC
or
+doPS
... and others

The service that a user of the framework
implements. It might be either a remote-
procedure-call or a publish-subscribe ser-
vice. Settings::serviceJar:String must refer
to the userProvidedService.jar file.

has

uses

uses

offers

<<abstract>>
ServiceUser

- serviceProxy : ServiceProxy

+run() : void
+useService() : void
... and others

has

KeyManager

- kekMap : HashMap<String, byte[]>
- rpcConnection : RabbitMqRPC-
ServerConnection

- handleDiffieHellman(peerBoxID :
String, dhRequestPayload : DHPay-
load) : GeneralRPCData
- handleKeyEstablishment(peerBoxID :
String, rpcPayload : RPCRequestPay-
load) : GeneralRPC
- isHeaderValid(header : RPCHeader) :
boolean
... and others

uses

Figure 7.2.: UML class diagram for offering a service in the JAVA prototype.

Fig. 7.3 shows the Protocol Buffer message formats for the two different ser-

vice types. The message is defined by different fields that consist of key-value

pairs of the form Name:DataType . In addition, a field might contain other fields.

Optional fields are surrounded by [·] and fields that might be repeated arbitrar-

ily are marked with {·}. Default values for a field are stated in round brackets.

Whether the fields that are marked with the dashed brackets in Fig. 7.3 are au-

thentic and confidential or just authentic depends on the security service that

is specified for the service.
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BoxID

Sender

: String

BoxID

Recipient

: String

SecServ

: int32

Timestamp

: int64

[PayloadType]
: String

(bytes)

Header : RPCHeader

Payload : bytes

[MAC] : bytes

or
[Sig] : bytes

RPCMessage : GeneralRPCData

confidential

authentic

BoxID

Publisher

: String

SecServ

: int32

Sequence

number

: int64

[PayloadType]
: String

(bytes)

Header : PSHeader

Payload : bytes

[MAC] : bytes

or
[Sig] : bytes

PSMessage : GeneralPSData

confidential

authentic

Figure 7.3.: Message format of a general RPC and PS message using the Pro-
tocol Buffers notation.

Publish-subscribe services use sequence numbers for replay protection whereas

RPC messages include time stamps. This is simply due to the different con-

cepts. It is assumed that a PS session contains multiple messages that are sent

periodically, while a remote procedure call is in general not performed too fre-

quently. The most natural use cases for Compressed Sensing encryption modes

in (M1) are publish-subscribe services. For example, they could be used to pro-

vide end-to-end protection of periodically published sensor data. However, due

to the lack of real Compressed Sensing devices it was just possible to simulate

CS modes in the fashion of sampling model (M2).

The service provider fixes the security service used for the communication and

accordingly it generates service keys. This is done during the service initializa-

tion, i.e. in the constructor of the “Service” class. Each service has a “Settings”

object for the initial configuration that is loaded from a file (see Fig. 7.2). This

service configuration file contains the SLP-service name, SLP-attributes, the

service type and the location of the source code for the service. The classical,

i.e. non-CS, security algorithms that are used to perform the cryptographic op-
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erations are predetermined for each security service. However, the user might

change the algorithm to another one provided by the framework via the service

configuration file.

Using a service

A service is used with the help of a “ServiceProxy” object that handles all

necessary tasks like authentication and key establishment. Fig. 7.4 presents the

most important classes for a service user or client (see also Fig. 7.2 for missing

classes). Similar to a service, the service proxy might either be an publish-

subscribe or remote procedure call proxy.

<<abstract>>
ServiceProxy

- attempts : int
- certManager : CertificateManager
- foundServices : ServiceLocationEnumeration
- isConnected : boolean
- keyExchangeAttempts : int
- keyExchangeConnection : RabbitMqRPCClientConnection
- keyExchangeDone : AtomicBoolean
- peerServiceKeys : ConcurrentHashMap<String,ServiceKeys>
- privateKeyIndex : int
- rpcMap : HashMap¡String, Tuple<E SecServ, E SecServ>>
- serviceList : List<Tuple<ServiceURL, HashMap<String,String>>>
- serviceName : String
- sesHandler : SecurityServiceHandler
- statusQueueClient : StatusQueueClient
- statusQueueMap : HashMap<String, E SecServ>
- statusSequenceNumber : int
- statusSynchronized : boolean
+ hostName : String
+ peerBoxID : String
+ serviceAttributeList : HashMap<String,String>
+ serviceURL : String

# clearKeys() : void
+ connect() : void
+ fillRPCHeader(rpcName : String, boxIDReceiver : String) : RPC-
Header
# findService() : void
# registerService() : boolean
# handleSES(header : RPCHeader, payload : byte[] ) : GeneralRPC-
Data
# handleSESReverse(data : GeneralRPCData) : byte[]
# handleSESReverse(data : GeneralPSData) : byte[]
# isHeaderValid( header : RPCHeader, name : String) : boolean
# keyExchange(address : String, serviceName : String) : boolean
+ lazyDisconnect() : void
+ reconnect() : void
# tryDisconnectRPC() : void
# tryRPC(message : GeneralRPCData, rpcName : String, rpc-
Connection : RabbitMqClientConnection) : GeneralRPCData

<<abstract>>
PSServiceProxy

- connection : RabbitMqPS-
ClientConnection
- sequenceNumber : long
- synchonized : boolean
+ sesForPSData : E SecServ

+ connect() : void
+ disconnect() : void
# isHeaderValid( header :
PSHeader) : boolean
+ lazyDisconnect() : void
+ nextPSData() : byte[]
+ reconnect() : void

<<abstract>>
RPCServiceProxy

- rpcConnection : RabbitMq-
RPCClientConnection

+ connect() : void
+ disconnect() : void
+ lazyDisconnect() : void
+ reconnect() : void
+ runRPC(rpcName : String,
parameter : List<byte[]>) :
byte[]

<<abstract>>
ServiceUser

- serviceProxy : Service-
Proxy

+run() : void
+useService() : void
... and others

The ServiceUser needs
a remote-procedure-
call proxy or a publish-
subscribe proxy for com-
munication. It might be
configured by a Settings
object.

The ServiceProxy class
contains all methods re-
quired to establish a con-
nection to a Service, in-
cluding authentication,
key-exchange and Sta-
tusQueue connection.

UserProvidedClass
...

+run() : void
+useService() : void
... and others

Figure 7.4.: UML class diagram for a service user in the JAVA prototype.

As soon as a client wants to use a service, the service proxy sends an SLP

service requests in order to locate the service. After the service is located, the

client performs a specific remote procedure call – the Diffie-Hellman (DH)-RPC

– which all service providers in the system offer. The DH-RPC is used to carry
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out a bilateral authenticated and ephemeral Elliptic Curve DH key exchange.

This way, the key exchange achieves perfect forward secrecy. It is crucial that

each connection uses fresh public/secret Diffie-Hellman parameters, but this is

handled by the framework.

The structure of the messages that are exchanged during the key establish-

ment are presented in Fig. 7.5. The DH-RPC message is a special type of the

RPCMessage known from Fig. 7.3. While the RPCMessage is a generic message

type for general RPCs, the DH-RPC message is only used during key estab-

lishment. The security service for a DH-RPC message is non-repudiation, but

the digital signatures are just used to ensure the integrity of the message and

its origin. The DHPayload contains the RPCs name, the public Diffie-Hellman

parameter and an optional algorithm that is used to ensure confidentiality and

authenticity of the service key exchange. A default algorithm will be used if no

specific algorithm is given in this field.

... ...
SecServ

= Non-
rep.

...
PayloadType
= DHPayload

Header : RPCHeader Payload : DHPayload

[RPCName]
: String

(DH)

PublicDH

param

: bytes

[Algo Conf

and Auth]
: int32

Sig : bytes

RPCMessage : GeneralRPCData DH

authentic

... ...
SecServ

= Conf.
and Auth.

...
PayloadType
= KeyEst-
RespPayload

Header : RPCHeader Payload : KeyEstRespPayload

***
MAC : bytes

RPCMessage : GeneralRPCData

authentic

confidential

KeyEstablishmentResponse

[Auth
Algo]
: int32

[Auth
ServKey]
: bytes

[Algo Conf

and Auth]
: int32

[Conf Auth

ServKey]
: bytes

Auth

StatusKey

: bytes

ConfAuth

StatusKey

: bytes

{ additionalInfo
: additionalInfo }

Payload : KeyEstRespPayload

Figure 7.5.: Message format of a DH and KeyEstablishmentResponse message.
The fields that contain “...” are the same as in Fig. 7.3.
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7.2. Implementation

The service provider handles the DH-RPC call by verifying the signature and

the header. For example, the service provider checks if the sender and recipient

ID fields are semantically correct and if the time stamp is plausible or not. After

a successful verification, the service provider calls the DH-RPC of the service

user, such that both sides are able to compute the DH secret.

The service user calls the KeyEstablishment-RPC and the service provider

answers with a KeyEstablishmentResponse message, which contains the en-

crypted service key to the requested service and the security algorithm. The

corresponding Protocol Buffers message format is shown in Fig. 7.5. The mes-

sage is protected by an authenticated-encryption scheme. The key for this

scheme, called key-encryption-key (KeK) in Fig. 7.2, is derived from the shared

DH secret using a key derivation function.

The KeyEstablishmentResponse message also contains the keys for the status

queue, which is a special PS sub-service that belongs to the service. All services

offer this status queue in order to inform their clients, for example, when the

service keys are renewed. The additionalInfo field is used for parameter ex-

change and might be repeated or empty. It contains a list of security services

used for the offered RPCs or the security service for a publish-subscribe service.

In case that the service uses Compressed Sensing encryption modes, this field

contains the parameters m,N,Ψ and possibly rec(·). Fig. 7.6 summarizes the

PS service usage in form of an UML sequence diagram. A prototype application

of the proposed system is presented in [FBK+17].
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:ServiceUser :Master :SLPDA :PS-ServiceProvider

findService(name)

serviceList

ServiceProxy.connect()

DH-RPC(DH-RPCMessage)

verifySig()

certRequest()

[cert],[CRL]

verifyHeader()

computeECDHSecret()

DH-RPC(DH-RPCMessage)

verifySig()

certRequest()

[cert],[CRL]

verifyHeader()

computeECDHSecret()

KeyEstRequest-RPC()

verfiyMessage()

KeyEstRespMessage

verfiyMessage()

KeyEstablishmentKeyEstablishment

ServiceProxy.nextPSData()

GeneralPSData

ConnectedConnected while(true)

Figure 7.6.: UML sequence diagram for a PS service usage.

124



Chapter 8
Conclusion

8.1. Contributions

Compressive Sensing confidentiality modes and Compressive Sensing with au-

thenticated-encryption were proposed in this thesis. A software framework for

secure Fog networks in Industry 4.0 applications was presented and implemented

as a use-case for the proposed modes. Some results from this thesis are pub-

lished in [FBK+17, FR17, FR16, Fay16]. The main research contributions are

summarized below.

Section 4.2.1 presented a formal security notation for Compressive Sensing

based encryption in the one-time encryption scenario based on results from the

related literature. The impact of weak random matrices was studied and it

was shown that weak matrices cannot fulfill the necessary requirements for a

successful signal recovery. The results from section 4.2.2 indicate that Bernoulli

sampling matrices achieve asymptotic ν-indistinguishability even in a practical

use case. The statistical test applied in the presented experiment cannot dis-

tinguish the measurements in distribution as long the they are obtained from

signals with equal energy. The results from sec. 4.3 show how Compressive Sens-

ing based encryption with a fixed matrix might be attacked. Countermeasures

were discussed and a formal security definition for secure Compressed Sensing

encryption was presented with respect to the many-time encryption scenario.
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8. Conclusion

Lemma 5.1 shows that the loss of security is negligible when random matrices

are replaced with the output of a secure pseudorandom number generator seeded

with a random key. Hence, the security of the encryption scheme reduces to

the security of the underlying PRNG. A general design for Compressive Sensing

confidentiality modes was presented in section 5.2. Implementation details are

addressed in section 5.2.2.2. Suitable constructions and primitives were analyzed

and a summary of recommended constructions and parameters was given based

on the security and performance considerations presented in section 5.2.2.3 resp.

5.2.2.4. The results show that the recently proposed XOFs outperform iterative

PRF→PRF∗ designs in performance and security aspects. Three dedicated

modes of operation with different interesting properties were derived from the

general model and each of them is analyzed with respect to security. While CS-

CTR is highly parallelizable, CS-CBC and CS-CFB offer self-synchronization

in case of losses or changes in the ciphertext order. The proposed modes are

summarized and compared in section 5.6. The experimental results from section

5.7 show that the proposed modes do not introduce further recovery errors.

Additionally, the distribution of the compressed measurements was analyzed in

5.7.2 and the impact of different parameters on the indistinguishability of the

compressed measurements was presented.

The results from chapter 6 show that Compressed Sensing encryption followed

by a MAC is the only generic composition that can be implemented in sampling

model (M1). Moreover, computing the MAC on the plaintext is inappropriate

in most Compressive Sensing applications as long as perfect reconstruction can-

not be guaranteed. Because of this results, the general model for Compressive

Sensing with authenticated-encryption, proposed in section 6.3.1, follows the

CSE-then-MAC approach. Suitable AEAD constructions for dedicated CS-AE

modes were presented, analyzed and compared. Next to the security analysis

from section 6.3.2.2, it was shown how replay protection can be achieved with

the proposed CS-AE constructions.

Finally, an application scenario for CS modes including key-establishment

and parameter exchange was presented in chapter 7. The developed software

framework offers a secure service based approach for Industry 4.0 applications.

All cryptography related actions are performed by the framework such that

implementers without a deep knowledge in cryptography can easily build a

secure application. The software is also usable in absence of CS devices just
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8.2. Future Work

with classical encryption schemes. With the proposed encryption modes, one

achieves real end-to-end security that is directly integrated into the sensor.

8.2. Future Work

The general models for Compressive Sensing confidentiality modes and CS-AE

should inspire researchers to develop further modes. Other interesting open

issues are discussed in this section.

Hardware implementations

The experimental results presented in this thesis were achieved through sim-

ulations. All proposed designs were developed such that they can be used in

sampling model (M1), but due to the lack of CS hardware it was not possible

to investigate the behavior of the proposed encryption modes in (M1) systems.

Clearly, implementing the proposed modes in hardware, e.g. as imaging sensor,

is a challenging and interesting future work.

Security of CS with discrete Gaussian matrices

As discussed in section 4.2.2, it is not sure whether discrete Gaussian sampling

matrices achieve the same level of security as the continuous Gaussian matrices.

It must be investigated how the discrete Gaussian sampling methods from the

field of lattice-based cryptography perform in the Compressive Sensing setup.

It is clear that those methods will introduce further costs and therefore the

performance security trade-off needs to be studied.

Performance comparison with compress-then-encrypt

Encryption schemes from the compress-then-encrypt family cannot offer a joint

robust encryption and compression. However, they are targeting similar security

goals than CS modes. The performance analysis published in [FR17] shows that

Compressed Sensing followed by classical encryption in the binary domain with

a suitable encryption mode is more than twice as fast as dedicated CS encryption

modes. The presented results are only based on simulations and different results

are expected if the encryption modes are implemented in hardware. In addition,

no special encoding and quantization were used, but the compression ratio and
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8. Conclusion

thus the throughput of CS can be enhanced by further suitable mechanisms

(see [LLY+14] for an example). Hence it is left as future work to show whether

an optimized CS system with the proposed encryption modes can outperform

compress-then-encrypt schemes in speed and compression ratio.

Misuse-resistant modes

Misuse resistance has become an important factor in recently proposed AEAD

modes (see the candidates from [CAE17]). CS-CTR-SIV, presented as example

in section 6.2.3, shows some kind of nonce-misuse resistance. However, this

mode can only be applied in (M2). In general, misuse resistance is achieved

by performing computations on the plaintext. In case of SIV one computes a

MAC on the plaintext and uses the MAC as IV. This might only be possible

in Compressive Sensing when the MAC generation is integrated into the sam-

pling process in a CSE&MAC construction, but till now no concrete scheme is

proposed for this purpose. This leads to the following open issue.

Integration of soft verification

Computing a MAC on the plaintext signal is a problem when the signals are not

strictly sparse but compressible or when the measurements are contaminated

with noise. The recovery error will lead to tags and data that will be rejected by

the verification algorithm. Soft verification resp. soft authentication describes

message authentication schemes that are robust against some sort of noise (see

for example [TZ14]). With soft verification, a Compressive Sensing encryption

scheme could offer confidentiality and robust authentication that is directly

integrated into the sampling and reconstruction process.
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Appendix A
Alternative Confidentiality Mode Designs

This annex contains alternative definitions of the proposed CS confidentiality

modes. Instead of encrypting the measurements norm, the modes work by

encrypting the signals norm. The reader is referred to section 5.2.3 for more

details. An experimental comparison of these modes with the modes proposed

in chapter 5 can be found in section 5.7.3.
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Figure A.1.: Encryption side of the Compressive Sensing Counter Mode with
normalized signals abbreviated CS-CTR[x].
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ŷ2

x⃗2

x⃗2
∥x⃗2∥2

⟨∥x⃗2∥2⟩n

⊕

ρk2

x̂2

c2

IV
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