KIT | KIT-Bibliothek | Impressum | Datenschutz

Self-Healing and Shape Memory Effects in Gold Microparticles through the Defects-Mediated Diffusion

Kovalenko, Oleg; Brandl, Christian 1; Klinger, Leonid; Rabkin, Eugen
1 Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM), Karlsruher Institut für Technologie (KIT)

Abstract:

Some metal alloys subjected to irreversible plastic deformation can repair the inflicted damage and/or recover their original shape upon heating. The conventional shape memory effect in metallic alloys relies on collective, or “military” phase transformations. This work demonstrates a new and fundamentally different type of self-healing and shape memory in single crystalline faceted nano and microparticles of pure gold, which are plastically deformed with an atomic force microscope tip. It is shown that annealing of the deformed particles at elevated temperatures leads to nearly full recovery of their initial asymmetric polyhedral shape, which does not correspond to global energy minimum shape. The atomistic molecular dynamic simulations demonstrate that the shape recovery of the particles is controlled by the self-diffusion of gold atoms along the terrace ledges formed during the particles indentation. This ledge-guided diffusion leads to shape recovery by the irreversible diffusion process. A semiquantitative model of healing developed in this work demonstrates a good agreement with the experimental data.


Volltext §
DOI: 10.5445/IR/1000072258
Originalveröffentlichung
DOI: 10.1002/advs.201700159
Scopus
Zitationen: 15
Dimensions
Zitationen: 19
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien - Werkstoff- und Biomechanik (IAM-WBM)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 08.2017
Sprache Englisch
Identifikator ISSN: 2198-3844
urn:nbn:de:swb:90-722587
KITopen-ID: 1000072258
HGF-Programm 43.22.01 (POF III, LK 01) Functionality by Design
Erschienen in Advanced science
Verlag Wiley Open Access
Band 4
Heft 8
Seiten Arrt.Nr. 1700159
Vorab online veröffentlicht am 07.07.2017
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page