Zitieren Sie bitte immer diesen URN: urn:nbn:de:kobv:b43-484610

Temperature in micromagnetism: Cell size and scaling effects of the stochastic Landau-Lifshitz equation

  • The movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagneticThe movement of the macroscopic magnetic moment in ferromagnetic systems can be described by the Landau-Lifshitz (LL) or Landau-Lifshitz-Gilbert (LLG) equation. These equations are strictly valid only at absolute zero temperature. To include temperature effects a stochastic version of the LL or LLG equation for a spin density of one per unit cell can be used instead. To apply the stochastic LL to micromagnetic simulations, where the spin density per unit cell is generally higher, a conversion regarding simulation cell size and temperature has to be established. Based on energetic considerations, a conversion for ferromagnetic bulk and thin film systems is proposed. The conversion is tested in micromagnetic simulations which are performed with the Object Oriented Micromagnetic Framework (OOMMF). The Curie temperatures of bulk Nickel, Cobalt and Iron systems as well as Nickel thin-film systems with thicknesses between 6.3 mono layer (ML) and 31ML are determined from micromagnetic simulations. The results show a good agreement with experimentally determined Curie temperatures of bulk and thin film systems when temperature scaling is performed according to the presented model.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Anzahl der Zugriffe auf dieses Dokument
Metadaten
Autor*innen:Marc Benjamin HahnORCiD
Dokumenttyp:Zeitschriftenartikel
Veröffentlichungsform:Verlagsliteratur
Sprache:Englisch
Titel des übergeordneten Werkes (Englisch):Journal of physics communications
Jahr der Erstveröffentlichung:2019
Organisationseinheit der BAM:6 Materialchemie
6 Materialchemie / 6.6 Physik und chemische Analytik der Polymere
Veröffentlichende Institution:Bundesanstalt für Materialforschung und -prüfung (BAM)
Verlag:IOPscience
Verlagsort:England
Jahrgang/Band:3
Ausgabe/Heft:7
Erste Seite:075009-1
Letzte Seite:075009-8
DDC-Klassifikation:Technik, Medizin, angewandte Wissenschaften / Ingenieurwissenschaften / Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwörter:Alpha; Bloch wall; Cell size; Co; Cobalt; Curie temperature; Damping factor; Domain wall; Exchange interaction; Exchange length; Fe; Ferromagnetism; Gamma; Iron; LL equation; LLG; Landau Lifshitz Gilbert equation; Landau Lifshitz equation; Magnet coupling; Magnetic Nanoparticles; Magnetic anisotropy; Magnetic interacion; Magnetic moment; Magnetization dynamics; Micromagnetism; Neel wall; Ni; Nickel; OOMMF; Object oriented micromagnetic framework; Paramagnetism; Phase transition; Simulation; Spin; Steel; Stochastic Landau Lifshitz Gilbert equation; Stochastic Landau Lifshitz equation; Superparamagnetism; Temeprature scaling; Temperature effects; Thin film systems; temeprature dependent exchange length
Themenfelder/Aktivitätsfelder der BAM:Material
Material / Nano
DOI:10.1088/2399-6528/ab31e6
URN:urn:nbn:de:kobv:b43-484610
Zugehöriger Identifikator:https://doi.org/10.26272/opus4-51169
Verfügbarkeit des Dokuments:Datei für die Öffentlichkeit verfügbar ("Open Access")
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung
Datum der Freischaltung:15.07.2019
Referierte Publikation:Ja
Datum der Eintragung als referierte Publikation:21.08.2019
Schriftenreihen ohne Nummerierung:Wissenschaftliche Artikel der BAM
Einverstanden
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.