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Abstract:
The present work investigates the influence of external perturbations on the ground states of
spin-1/2 antiferromagnetic Heisenberg chains and two-dimensional spin lattices. The lifting of
the well-known zero-energy excitations (soft modes) of the unperturbed Heisenberg chain due to
suitably chosen periodicities of applied perturbations is presented. The evolution of excitation en-
ergies and transition matrix elements is described by a complete set of differential equations and
scaling solutions for small perturbations are discussed. A variety of topic quasi-one-dimensional
spin systems (spin-Peierls chain, spin ladders in different geometries) are then embedded in the
descriptive scheme of periodically perturbed Heisenberg chains. In particular, the energy gaps
and, most noticeable, the formation of magnetization plateaus occurring in these systems are
discussed in a single prediction scheme related to the soft mode positions of the previously un-
perturbed chain. Plateaus due to various kinds of perturbations are furthermore shown to be
observable in static correlation functions of the perturbed chain. Particular emphasis is laid on
the consideration of processes of spontaneous breaking of symmetry. The latter aspect is dis-
cussed for translationally invariant perturbations that do not provide an explicit change of the
periodicity of the spin system. The presented investigations finally turn to two-dimensional spin
systems first addressing the formation of a non-zero staggered magnetization (long range order)
for increased two-dimensionality in terms of a translationally invariant perturbed (helical) spin
system. Finally, first stages of a present study on the formation of magnetization plateaus in
square spin lattices with frustrating diagonal couplings are given.

1Habilitationsschrift im Sinne von 3 Abs. 2 der Habilitationsordnung des Fachbereichs Naturwissenschaften I
der Bergischen Universitaet- Gesamthochschule Wuppertal.
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Chapter 1

Introduction

The physics of quantum spins is not even a century old and is deeply connected with the origin of
quantum mechanics itself. It began in the early 1920s with the investigation and classification of
the origins of the Zeeman effect and the spectral multiplicity of atomic spectra by Sommerfeld,
Pauli and Landé.
A lot of work was necessary to achieve a consistent classification scheme of atomic spectra
and moreover to develop a concise understanding of the “self-rotating electron”. In 1925-26,
important ideas like the exclusion principle, the electron spin and Thomas’ theory appeared and
Heisenberg and Schrödinger developed matrix and wave mechanics, respectively.
The attempt of incorporating spin into quantum mechanics was first done by Pauli [171] (1927)
introducing the Pauli matrices, however, a complete and relativistic theory was first achieved
and established by Dirac [64] one year later in 1928.
We will now narrow down the broad field of further developments of quantum spin, e.g. proton
spin, spinors, isospin, elementary particles, .., and concentrate on the coupling of spins and in
particular its appearing in the condensed matter theory of magnetism. First, however, Tomon-
aga’s The Theory of Spin only lately given in English translation shall be recommended for an
exhaustive treatment of the topic. The phenomenon of magnetism is inextricably linked with
quantum mechanics since a truely classical system cannot have a magnetic moment in the ther-
modynamical limit (TDL) – even if a magnetic field is applied. We will further narrow down
the broad field of magnetism in condensed matter (see e.g. [12, 153]) to systems that form
spontaneous magnetic moments that even exist prior to the application of an external magnetic
field. The latter requires magnetic moments and electron spins to arrange in a regular pattern.
The simplest of these patterns is the ferromagnet showing a complete alignment of spins. Then,
antiferro- and ferrimagnetic types –with different degrees of freedom like tilted or spirally ordered
spins– do follow. Here, the simple antiferromagnet (parallel spins with alternating orientation)
is the only regular spin pattern that has no finite spontaneous magnetic moment (saturation
moment).
The study of ferromagnetism has a long history (cf. e.g. Gilbert’s De Magnete [93]). Ferro-
magnetism is much easier and directly to observe than other forms of magnetic order as e.g.
ferri- or antiferromagnetism. The latter phenomena –in particular the simple antiferromagnet–
require considerably more advanced experimental techniques for their study (see e.g. [12] and
in particular [146, 152] for qualitative and more detailed descriptions of the theory and the
use of X-ray and neutron scattering investigations in condensed matter physics). For that rea-
son it is understandable that the study of magnetism first concentrated on the phenomenon of
ferromagnetism.
A current explanation of ferromagnetism e.g. of Fe at the described time was Weiss’ assumption
of strongly interacting molecular magnets that could explain a variety of experimental results.
An interpretation and explanation of these strong interactions, however, was first given by
Heisenberg. Heisenberg gave a new interpretation of spectral terms of alkaline earths [107] and
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subsequently applied his results on symmetry properties and their connection to the statistic
of particles to the problem of a ferromagnetic crystal [108] where he introduced an exchange
interaction between adjacent atoms. The exchange integrals had to be chosen positive in order
to explain ferromagnetic order as well as Weiss’ assumption of an interatomic field (the latter
is proportional to the exchange integral). The tendency towards a formation of such a regular
spin pattern is opposed by increasing thermal fluctuations for increasing temperatures – at a
particular temperature (Curie temperature TC for a ferromagnet, Neél temperature TN for a
simple antiferromagnet) a transition from a magnetically ordered to a disordered phase occurs.
The advent and success of quantum mechanics 1 and Heisenberg’s interpretation of exchange
interactions set the beginning of a continuous study of “Heisenberg spin systems” for the inves-
tigation of magnetic properties of crystalline systems with localized spins. In condensed matter
localized spins are usually given by ions with incompletely filled (inner) orbitals resulting in
a net magnetic moment according to Hund’s rules. The main contribution to the coupling of
quantum spins in a magnetic crystal is caused by the overlap of orbitals located at adjacent
sites. Therefore, a basic Heisenberg Hamiltonian of coupled quantum spins first of all has to
take into account these nearest-neighbour pairs of spins. The quantum nature of spin results in
definite signatures and deviations from a classical description of spin systems appearing the more
plain the smaller the considered quantum spin and dimensionality of the considered spin system
(see below). –For antiferromagnetic chains the temperature where quantum effects dominate is
expected to be exponentially small O(e−πS for large S [2].
The basic form of a Heisenberg spin-S Hamiltonian with nearest-neighbour (< i, j >) exchange
coupling J is given by

H = −J ·
∑

<i,j>

SiSj (1.1)

with i, j denoting the sites of the considered quantum spins Si. The scalar products SiSi of
the spin operators fulfill the relation SiSi = S(S + 1) for integer and half-odd-integer quantum
spins S = n · 1/2, n = 1, 2, . . .. The coupling J has to be chosen positively to obtain a ferro-
magnetic, or parallel, alignment of spins. Antiferromagnetic nearest neighbour spin couplings in
a one-dimensional system (chain) will be described subsequently by retaining the positiveness
of J , however, removing the sign of Hamiltonian 1.1. It should be noted that under more gen-
eral conditions (higher dimension, longer ranges of couplings, non-bipartite lattices,..) a global
change of the sign of the couplings will not necessarily result in an antiferromagnetic order as
e.g. the sign reversal for a ferromagnet on a triangular lattice leads to a frustrated irregular spin
ordering.
The influence of the type and orientation of the contributing orbitals on the resulting nature of
magnetic couplings has been analyzed and partially formulated in the Goodenough, Kanamori,
Anderson rule (e.g. resulting in a ferromagnetic exchange for the 900-exchange between two
half-filled orbitals.
As mentioned above, the study of one-dimensional spin S = 1/2 Heisenberg chains addresses
magnets that most enunciately show the influence of quantum fluctuations. Rather early, Bethe
[22] (1931) and later Hulthén [120] (1938) gave exact results for eigenvalues and eigenstates
of the chain using the Bethe ansatz to diagonalize the Hamiltonian. The complicate structure
and rather minor exploitability of the obtained eigenstates for the interesting evaluation of
correlation functions in the succession led to various further approaches as e.g. the spin wave
approximation (Anderson (1952) [10], Kubo (1952) [138]) and later to the bosonization approach
of the low-energy excitations (free mass-less compactified bosons, see e.g. Tsvelik [201]) of the

1Even earlier Lenz [142] proposed a similar classical model of coupled (classical) spins. Ising’s solution [124] of
the one-dimensional Lenz-Ising model and in particular the non-existence of a finite spontaneous magnetization
was mistakenly assumed to hold for arbitrary dimensions and led to a decrease of interest in this model over a
number of years (see e.g. [33]).
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antiferromagnetic Heisenberg chain (Luther and Peschel [147] (1975)). A further important
development, the numerical study of spin-1/2 Heisenberg chains, is linked to the detailed study
of ferro- and antiferromagnetic chains given by Bonner and Fisher [32] (1964). The finite-
size behaviour of small chains (N = 2, 3, .., 11) was discussed in much detail and shown to allow
extrapolations for certain static quantities. Further applications and the wide range of numerical
investigations will be addressed and partly used in later chapters.
A particular point of interest in low dimensional spin systems is the form and existence of phase
transitions. In 1966, Mermin and Wagner [155] proved the “Absence of ferromagnetism or
antiferromagnetism in one- or two-dimensional isotropic Heisenberg models” for temperatures
T > 0. A phase transition at T = 0 could not be ruled out and indeed does occur for the
spin-1/2 Heisenberg chain. As will be discussed in Chapter 2, at the critical point (T = 0)
correlation functions of the chain decay as a power law as expected for a critical system. Here,
it should be noted that the criticality of arbitrary-S antiferromagnetic Heisenberg chains is
restricted to the sub-class of half-odd-integer spin S. According to Haldane’s conjecture [101]
the ground states of integer spin antiferromagnetic chains are massive, i.e. a finite energy gap
to the lowest excitations exists. It should be remarked, however, that the latter property does
not unrestrictedly hold for all integer spin chains. A generalized –bilinear-biquadratic– spin-1
model

H(Θ) = cosΘ
∑

i

SiSi+1 + sin Θ
∑

i

[SiSi+1]2 , (1.2)

containing the Haldane-gapped spin-1 Heisenberg model with Θ = 0, e.g. contains the gap-less
(critical) SU(3) symmetric Lai-Sutherland model for Θ = π/4 (which is solvable in the sense
of Yang-Baxter equations; see [159, 180]). The investigation of the response of a critical spin
chain with integer spin to external perturbations therefore is possible, however, requiring an
adequately chosen spin Hamiltonians.

Looking now at experimental realizations of low-dimensional or even quasi-one-dimensional spin
systems, one has to take into account that such systems usually are 3-dimensional objects (see
further discussion below). This means that at very low temperatures the formerly neglected
out-of-chain or out-of-plane spin couplings will finally lead to the corresponding 3-dimensional
low-T behaviour.
Quasi-one-dimensional spin systems are known and experimentally accessible in an increasing
number during the last decades. Best-known and thoroughly investigated quasi-one-dimensional
spin-1/2 antiferromagnets are KCuF3 and CuCl2 · 2N(C5D5) (CPC). Compounds that are dis-
playing one-dimensional magnetic properties in most cases are classified by the presence of large
non-magnetic ions separating the magnetic chains (in the cases given above formed by copper
ions). In KCuF3, however, the one dimensionality is attributed by Jahn-Teller distortions of the
octahedral environment of the Cu2+ ions [114, 177]. Neutron scattering studies led to important
insight into energetic and dynamical properties, supported by X-ray studies of the respective
crystal structures. Valuable comparisons between the theoretical picture of spin-1/2 chains and
their assumed experimental realizations could be performed. One important point is given by
the dispersion relation ω(q) for the lowest excited states of the spin-1/2 antiferromagnetic chain.
It first has been determined by desCloizeaux and Pearson [48] (dCP) to be

ω(q) = πJ | sin q| (1.3)

(given for a lattice constant/nearest-neighbour separation a ≡ 1). Interestingly, a linear spin
wave theory for classical spins –i.e. expected to give reliable descriptions in the large-S limit–
gives the same q-dependence for ω(q), however a changed pre-factor (2 instead of π). The lat-
ter difference between the two extreme limits (extreme quantum limit S = 1/2 and classical
limit S → ∞ has been found reasonably well realized in experiments on the spin-1/2 material
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CuCl2 · 2N(C5D5) [67] –striking confirmation of dCP– and in contrast the spin-5/2 material
(CD3)4NMnCl3 (TMMC) [23]. The quasi-one-dimensionality of the magnetic spin-1/2 system
was confirmed experimentally by the highly anisotropic spin wave spectrum below the Neél
temperature. Investigations of the latter spin wave spectra led to the ratio of the interchain to
intrachain magnetic couplings Ja/Jc = −0.01± 0.001 of the investigated single crystal (tetrag-
onal magnetic unit cell (a, a, 2c)) of KCuF3 [177] showing the exceptional anisotropy of the
material. In the following, neutron scattering studies (inelastic scattering, magnetic susceptibil-
ity measurements and further investigations) showed the approximate correspondence of systems
like KCuF3 [161, 189] and Cu(C6D5COO)2 · 3D2O (Copper-benzoate) [62] to the dynamical
behaviour of spin-1/2 chains (see further discussion in Chapter 2) as well as incommensurate
ordering phenomena along the chain direction for Cs2CuCl4 [50].
Investigations as well turned to the interesting case of perturbed spin systems and spin ladder
systems. In the first case, the discovery of CuGeO3 as the first known inorganic (quasi-one-
dimensional) spin-Peierls system [105] led to an important renaissance (cf. e.g. [126]) and
increase of scientific interest in this field. Shortly thereafter, NaV2O5 [123] joined as a sec-
ond inorganic spin-Peierls material. It is interesting to note that a neutron scattering study
of quasi-one-dimensional (orthorhombic) CuGeO3 [164] resulted in a not so pronounced one-
dimensionality (chain coupling Jc, Ja ≈ −0.01Jc, Jb ≈ 0.1Jc) as compared to the earlier dis-
cussed KCuF3. The above-mentioned copper-benzoate has as well been discussed in the context
of perturbation effects and the observed opening of a gap in homogeneous magnetic fields (see
further discussion in Sec. 3.2.4).
Spin ladders on the other hand revealed “Surprises on the way from one to two dimensional
quantum magnets: the ladder materials” [58] meaning the alternation from critical to massive
behaviour depending on the odd or even number of legs of the considered ladder (see e.g. [59]
for a current overview of ladder materials).
Both, the alternating strength of nearest-neighbour spin couplings J1 (J1 = J0

(
1 + (−1)i · δ),

dimerization δ magneto-elastically given by a periodic lattice distortion present for temperatures
below the spin-Peierls temperature (T < TSP ) for spin-Peierls chains and the existence of more
than one spin chain coupled to a nl-leg ladder structure, i.e. nl > 1, leads to the observation
of plateaus at well defined places in the magnetization curve of the respective system. The
fitting of a spin-1/2 chain Hamiltonian to experimental data of CuGeO3 (e.g. susceptibilities)
led to the interesting necessity of an additional –non-alternating– next-to-nearest neighbour spin
coupling J2 with a finally determined ratio J2/J0 = 0.342 [74] presenting an example for the
simultaneous presence of a periodic ((−1)iδ · J0) and a translationally invariant perturbation
(J2) of the underlying spin-1/2 antiferromagnetic chain (J0

∑
i SiSi+1). The reaction of the

latter spin chain with respect to external perturbations has been discussed taking into account
the criticality, i.e. the existence of zero-energy excitations (soft modes) at field (magnetization)
dependent momenta, of the Heisenberg chain. Oshikawa, Yamanaka, Affleck [168] presented a
quantization rule giving magnetization values of possible plateaus for a considered perturbation.
The formation of a magnetization plateau is accompanied by the opening of an energy gap in the
excitation spectrum of the perturbed chain and certain degenaracies or changes of symmetry. For
the case of translationally invariant perturbations, an occurring plateau unambiguously marks
a spontaneously broken symmetry.
The situation and rigorousity of the description of (perturbed) spin systems significantly changes
when turning to two-dimensional spin lattices. Exact solutions are scarce and the numerical
treatment of finite spin systems is restricted to rather small systems. At present, a most com-
prehensive theory of the low-temperature static and dynamic behaviour of 2d square lattice
quantum Heisenberg antiferromagnets is considered to be given in terms of the quantum non-
linear sigma model [45, 46, 202]. Neutron scattering studies of the square-lattice antiferromagnet
Sr2CuO2Cl2 [95] e.g. led to a qualitative agreement of Monte Carlo results and predictions of
the latter model for spin-spin correlation lengths in a wide range of temperatures. A satisfying
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description and in particular explanation of observed magnetization plateaus in two-dimensional
systems does not exist yet. The existence of long range order (LRO) in two dimensions –a non-
zero staggered magnetization– and in particular its formation when changing from one to two
dimensions will be addressed later in Sec. 5.4.2.

The present work is a study of zero temperature properties of mainly antiferromagnetic spin-1/2
Heisenberg spin systems (of one and partly two dimensions) that are exposed to the influence
of an additional external field or other perturbations. The discussion will first treat the case
of periodic perturbations and later as well turn to translationally invariant perturbations. A
point of major importance in both cases will be the loss of criticality of the in most cases
underlying antiferromagnetic Heisenberg chain due to the applied perturbation. The change
from a gap-less to a massive spectrum due to the applied perturbation is most suitably observed
in the course of the magnetization curve of the spin system. In particular ground state level
crossings and changes of symmetries in the process of the opening of an energy gap for relevant
excitations of the perturbed spin chain/system are distinctively visualized in the formation of
plateaus within the respective magnetization curves. The latter process will be studied by
extrapolating finite-system calculations of magnetization curves (“staircases”). Moreover, the
occurrence of magnetization plateaus will be accompanied by their classification with respect
to the quantization rule of Oshikawa, Yamanaka, Affleck [168] and another soft mode approach
[86]. Both prediction schemes are furthermore supplemented by an analysis of classes of static
structure factors that turn out to offer methods of plateau forecasts beyond purely predictive
ones.

The introductory Chapter 2 gives a rather thorough discussion of the isotropic antiferromagnetic
spin-1/2 Heisenberg chain with or without the additional presence of a uniform magnetic field.
Static and dynamical structure factors, the criticality of the spin chain and in particular the
connections and consequences resulting from the existence of the zero-energy excitations (soft
modes) as well as the proof of the latter given by Lieb, Schultz, Mattis (LSM) [143] will be
outlined and discussed. Special attention is paid to the quality of the presented numerical
results for the description of the considered Heisenberg chains. Numerical evaluations and the
presentation of numerical support or evidence for certain theoretical pictures will play a dominant
part in the following chapters.
Sec. 2.3 gives a brief discussion of the application of Conformal Field Theory results to the
finite-size behaviour of certain critical quantities. Tests for the latter relations are exemplarily
discussed. Finally, a short discussion of frequency-moments of the dynamical structure factor and
their importance for certain problems and questions in this context [158, 80, 132] is presented.

Chapter 3 first gives a general discussion of periodically perturbed Heisenberg chains. A complete
set of differential equations [84] –so called evolution equations– is given, describing the changes of
excitation energies and transition matrix elements under the influence of the perturbation under
consideration. The existence of a particular scaling solution for the case of a longitudinally
staggered field is treated and the behaviour of weakly perturbed Heisenberg chains is studied
for a variety of perturbations.
The investigation then broadens to the topical fields of ladder and spin-Peierls systems. Their
discussion in terms of periodically perturbed Heisenberg chains in particular leads to certain
ambiguities and the consideration of strongly perturbed chains in case of ladder Hamiltonians.
Chain Hamiltonians with the respective periodic perturbations –in preparation of their discussion
in Chapter 4– are presented. In addition to the cases of regular nl-leg ladders, a number of more
complex zig-zag- and Kagomé-type ladders also expressed as periodically perturbed Heisenberg
chains are included.
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Chapter 4 gives a thorough discussion of magnetization properties (plateaus) of the periodically
perturbed spin chains introduced in Chapter 3 and extrapolations and classifications (quantiza-
tion condition [168], soft mode approach [86]) of the obtained magnetization plateaus. A critical
comparison of both prediction schemes is given.
The interplay of different periodic perturbations and the combination of periodic and transla-
tionally invariant perturbations is addressed as well. The discussion of regular spin ladders is
used to explain the earlier assumption/observation of gapped ground states for even-leg ladders
(Dagotto, Rice [58]), i.e. magnetization plateaus at magnetization m = 0.
Finally a discussion of static structure factors of perturbed systems is presented and a different
way to reach at non-probabilistic predictions for the formation of magnetization plateaus is
suggested.

Chapter 5 addresses the class of translationally invariant perturbations which were only briefly
mentioned in the preceding chapter treated as an additional next-to-nearest neighbour spin
coupling. In this chapter, some well-known translationally invariant chain Hamiltonians will be
introduced. Then, a translationally invariant analogue of a 2-leg ladder –formerly described as
a periodically perturbed chain– will be discussed and the freedom of the chosen mapping of the
considered spin ladder on a single chain Hamiltonian will lead to the interesting phenomenon of
spontaneous symmetry breaking.
Finally, the discussion turns to translationally invariant representations of two-dimensional
(square) spin lattices and the possible existence of magnetization plateaus. First results of
an at present ongoing investigation will be presented. Before, results of an investigation ([83])
concerning the onset of long range (magnetic) order (LRO), i.e. the occurrence of a non-zero
staggered magnetization, for the transition from one- to two-dimensional spin systems will be
reviewed and discussed.

Chapter 6 will finally summarize the obtained results and give a perspective of future applications
of the presented investigations of perturbed antiferromagnetic spin-1/2 Heisenberg systems.
The Appendices A − C are devoted to some discussion and explanations of certain methods and
calculations used or refered to in the sequel of the chapters: (A) Recursion method [79, 81, 83];
(B) Calculation of magnetic saturation fields; (C) Bulirsch-Stoer (BST) extrapolation method
[36, 110].
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Chapter 2

The isotropic translation invariant
antiferromagnetic Heisenberg chain

The present chapter will summarize basic properties of the spin-1/2 antiferromagnetic Heisen-
berg chain which will be the starting point of all further discussions.
The Hamiltonian for a N -site spin chain with periodic boundary conditions (i.e. Sj+N = Sj ,
Sj ≡ ~Sj) is given by

H0 = 2
N−1∑

j=0

SjSj+1 (2.1)

=
∑

j

[
S+

j S−j+1 + S−j S+
j+1 + 2Sz

j Sz
j+1

]
(2.2)

=
∑

j

[
P (j, j + 1)− 1

2
1

]
(2.3)

where j denotes the sites of the chain; S+, S−, Sz are the S = 1/2 spin operators and P (j, j +1)
is the permutation operator. The Sm

j (m = x, y, z) are related to the Pauli spin matrices via
Sm

j = 1
2σm

j and fulfill the well-known (anti-)commutation relations:

[
Sz

j , S±j′
]

= ±δjj′ · S±j , [Sa
j , Sb

j′ ] = δjj′ · εabcS
c
j , a, b, c ∈ {x, y, z}

(2.4)

{S+
j , S−j } = 1 ,

[
S+

j , S−j′
]

= 0 for j 6= j′ .

The prefactor of 2 in Eq. 2.1 is of course not really essential for the model (giving however the
“clearest” appearance of the underlying SU(2)-symmetry) and will be skipped occasionally in
the course of this chapter (not without mentioning). In any case –here and later– additional
interaction terms to the Hamiltonian, external magnetic fields, etc. will be normalized to a
prefactor of 1 paying tribute to the general formulation of the model.

The Hamiltonian as given above (2.1-2.3) has experienced a variety of treatments. The widely
known analytical method, the Bethe ansatz (BA) (Bethe (1931) [22]), very early led to the de-
termination of the infinite-system ground state energy (Hulthen (1938) [120]) and in the course
of time (see e.g. Mattis (1993) [154], Karbach (1994) [129] and further references therein) to the
determination of various other quantities. However, the BA technique is comparatively com-
plicated and mainly useful for static or thermodynamic quantities. Moreover, its applicability
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fades when modifications of the Hamiltonian (e.g. second-nearest neighbor interactions, periodic
perturbations, . . .) are considered.
Second to mention are ansätze and approximations for the infinite-N model, e.g. spin-wave ap-
proximations (Anderson (1952) [10]), many-particle treatments based on the fermionic represen-
tation of H0 (see e.g. Lieb, Schultz, Mattis (1961) [143]), renormalization group studies (Hallberg,
Horsch, Martinez (1995) [104] or the exp(S)-method (Bishop (1991/92) [24, 25, 26, 27]. More-
over, important insight in the low-energy excitation physics has been achieved by bosonization
of the fermionized spin-Hamiltonian (Luther and Peschel (1975) [147], Haldane (1983) [101]).
The last techniques to mention are the group of finite-system methods as complete diagonaliza-
tion (Bonner and Fisher (1964) [32], Fabricius et al. (1991, . . .) [69, 72, 73]), Lancos-techniques
[139, 145], quantum Monte Carlo (QMC) methods (e.g. Ceperly (1995) [44] and density ma-
trix renormalization group (DMRG) calculations (White (1992/93) [212, 214], the latter method
offering both treatments of finite and infinite systems.

2.1 Symmetries of the Heisenberg chain

The model (2.1-2.3) possesses a wide class of symmetries – accompanied by the related conserved
quantities.
For the chosen periodic boundary conditions, H0 is invariant under translations, rotations and
reflections on the spin lattice. Furthermore, the total spin S and one of its components, Sz, are
conserved:

S =
∑

j

Sj , Sz =
∑

j

Sz
j , [H0,S] = [H0, S

z] = 0 . (2.5)

Since they are translationally invariant the eigenstates of H0 can be classified by an eigenvalue
of momentum p (here and in the following the term momentum is allways used in the meaning
of crystal momentum). The translation operator T , defined as

T = P (0, N − 1)P (0, N − 2) . . . P (0, 1) (2.6)

for an N -site chain, obeys [H0, T ] = 0 and its application on a momentum eigenstate |p > yields

T |p > = e−ip|p > . (2.7)

For a periodic chain of even length (N = 2n, n ∈ N) the reflection operator R is given by

RSN−1−jR = Sj , j = 0, 1, . . . N − 1 (2.8)

and commutes with H0, S2 and Sz, however it anticommutes with the momentum operator P .
Since R transforms states with momentum p to −p, this means that exclusively in the subspace
of p = 0 and p = π states the reflection operator can be diagonalized in addition.
Finally, an infinite set of additional conservation laws, so called hidden symmetries shall be
mentioned in short. The existence of such a set of commuting transfer matrices T (λ) (each of
them commuting with H0) proves the integrability of the considered Heisenberg system [18, 19].
For details, references and particular applications of some of those nontrivial conservation laws
for efficient numerical computation (complete and exact diagonalization of antiferromagnetic
Heisenberg rings) see e.g. [68], [69].

An important quantity connected with the translational symmetry of spin chains with periodic
boundary conditions (PBC) is the ground state momentum p0(N, Sz) (Sz =

∑
x Sz(x)) of the

chain in the respective magnetization sectors m ≡ Sz/N – note [H0, Sz] = 0.
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Spin chains can formally be subdivided in the 2 classes of systems with an even or odd number
of sites. Systems of the first class, namely the usually discussed chains with an even number of
sites (N = 2n, n ∈ N), have non-degenerate ground states, i.e. ground state momenta 0 or π,
that alternate for increasing/decreasing Sz-values according to

p0(N = 2n, Sz) = π ·
(

Sz +
N

2

)
mod 2π . (2.9)

The non-degenaracy of the ground state of H0 for even N (i.e. the total spin being S = 0) has
been proven by Lieb, Schultz, Mattis (1961) [143] strengthening an earlier result of Marshall
(1955) [151] who proved the singlet character of the ground state without being able to exclude
its possible degenaracy.
A second important theorem –given in the same work of Lieb, Schultz, Mattis– that concerns
zero-energy excitations of the Heisenberg chain will be explained in a separate part (Sec. 2.6.2)
together with some generalizations.
Turning back to the ground state momenta, it should be noted that the even-N class can be
further subdivided in two subclasses (N = 4n, N = 4n + 2) that have Sz = 0-ground state
momenta q0(4n, 0) = 0 and q0(4n+2, 0) = π. Both classes, however, yield a fully spin-polarized
(Sz = ±N/2) ground state with q0(2n,±N/2) = 0.
Spin chains of odd length (N = 2n + 1), forming the second class, have been shown [130] to
have 2-fold degenerate ground states with ground state momenta that can be summarized as

q0(N = 2n + 1, Sz) = π ·
(

Sz + exp (iπ(N + 1)/2) ·
[
1
2
±

(
Sz

N
− 1

2

)])
mod 2π(2.10)

i.e. the degeneracy disappears for Sz/N = ±1/2 again resulting in a fully polarized state with
q0(2n + 1,±N/2) = 0. As before, two different subclasses (N = 4n − 1, N = 4n + 1 with
exp(iπ(N + 1)/2) = ±1) appear.
Due to a different finite-size behaviour (see e.g. [32]) and a lacking paramagnetic ground state
(Sz = m = 0) – at least for finite N – spin chains of odd length are rarely treated and will as
well be left out in this work.

The discussion of another powerful symmetry related to conformal invariance, will be the subject
of an independent paragraph (Sec. 2.3) and the reader may as well be revised to Faddeev and
Takhtadzhan [75] for further and more detailed discussion.

2.2 Finite-size scaling

The occurrence of singularities in certain physical quantities at so-called critical points is exclu-
sively restricted to the thermodynamic limit (TDL), i.e. particle or spin number N →∞. Since
evaluations for finite system sizes are very common and often forced by the complexity of the
considered system, inevitably the connection between the behaviour of finite systems and the
TDL has to be established.
This task had first been accomplished by Fisher (1972) [77] and Fisher and Barber (1972) [78],
who showed that in the vicinity of a critical point (e.g. expressed by the smallness of a reduced
temperature t = (T−Tc)/Tc near a phase transition) and for sufficiently large N a single-variable
scaling function f should exist that relates observables of a finite (Γ(t,N)) and infinite (Γ(t))
system by

Γ(t,N) = Γ(t) · f(z) . (2.11)

Here, Γ(t) is supposed to behave as Γ(t) ∼ t−φ close to the critical point and the scaling variable
z only depends on a combination of N and t, namely

z =
N

ξ(t)
∼ Ntν (2.12)

9



with a genuine behaviour ξ(t) ∼ t−ν for the correlation length of an infinite system for t → 0.
Considering now a fixed and finite N , i.e. Γ(t, N) must not have a singularity, the previous
relations lead to

Γ(t,N) = f(z) · Γ(t) ∼ (Ntν)x · t−φ (2.13)

and require x to be x = φ/ν in order to prevent the occurrence of a singularity for finite N ,
therefore resulting in the N -dependece

Γ(t,N) ∼ Nφ/ν (2.14)

for t → 0.
Since the Heisenberg quantum-spin model is known not to show phase transitions with ordering
at finite temperatures in one and two dimensions (Mermin, Wagner (1966) [155]) finite-size scal-
ing applications for Heisenberg chains usually address singularities that show a sharp signature
in momentum space like the later discussed static and dynamical structure factors (SSF, DSF,
see Secs. 2.5,2.49). Typical ansätze for these cases would read

Γ(q,N) = Γ(q) · f(z) , z = N · q (2.15)

with finite chain momenta q = (2π/N) · n and n integer. These cases have been widely studied
and reviewed (see e.g. [73, 128, 131, 179, 13]) In particular the applicability of relations of
the given kind to data obtained from rather small system sizes has been checked – note that
finite-size scaling theory gives no minimal N -value for the validity of relation 2.11.

2.3 Critical exponents, Conformal field theory

In 1970 Polyakov [172] realized that physical systems in the critical regime not only are scale
invariant, but also a local scale invariance –the conformal invariance– had to be assumed. The
link of conformal invariance to statistical mechanics has been put forward in 1984, when Belavin,
Polyakov and Zamolodchikov (BPZ) [21] presented a wealth of applications and developments
in statistical mechanics (for further references see e.g. [125, 88]).
Here, we are not going to give an introduction to conformal invariance. The reader may be
advised to [110] where conformal invariance and its importance in the framework of critical
phenomena is discussed. In this section we shortly want to address the determination of critical
exponents in conformal field theory [29, 41].
The spin-1/2 Heisenberg chain considered in this chapter is known to be conformally invariant
in case that no external magnetic field is applied. Switching on such a field results in a breaking
of rotational invariance. The system, however, remains gapless and as discussed in [81] the low-
energy physics of the Heisenberg model may still be assumed as being governed by conformal
field theory (see also Tsvelik [201]). Discussing dynamical structure factors (DSFs) Saa(q, ω) (cf.
Sec. 2.6, a = 3,+,−) as the Fourier transforms of the zero-temperature dynamical correlation
functions [81], the DSF Saa(q, ω) was shown to have the following behaviour (q0 denoting the
ground state momentum of the Heisenberg chain for fixed magnetization m)

Saa(q, ω) ∼ [ω ± v(m)(q − qa(m))]−2αa(m) (2.16)

v(m) =
d

dq
E(q, m, N)

∣∣∣∣
q=q0

= lim
N→∞

E(q0 + 2π/N,m, N)− E(q0,m, N)
2π/N

(2.17)

in the vicinity of the soft modes (zero energy excitations) at qa(m), i.e. Saa(qa, ω) ∼ ω−2α(m).
Here, the critical exponents αa and ηa of the dynamical and static structure factors (cf. Secs.
2.5, 2.6) are related via

αa(m) = 1−Θa(m) (2.18)
ηa(m) = 2Θa(m) . (2.19)
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The still unspecified quantities – scaled energy differences Θa(m)– are very convenient for finite-
size evaluations and will be addressed in more detail in Sec. 2.6.3.
In summary, assuming that conformal invariance describes the low-energy physics of gapless
Heisenberg chains, critical exponents for the infrared singularities of static and dynamic structure
factors may be determined via the evaluation of the spin wave velocity v(m) and the scaled
energy differences Θa(m). It should be mentioned that in the discussion sketched above the
dynamical correlation function is proportional to a matrix element Aa(m) which is assumed to
be non-vanishing. Otherwise, the correlation function under consideration would not represent
the dominant contribution to the considered DSF.
Moreover, it ought to be mentioned that we only assumed the low-energy physics being governed
by conformal invariance in situations with broken rotational invariance. We will return to this
assumption when reviewing in Sec. 2.6.3 numerical investigations [81] of the obtained relations
discussed in this section.
Furthermore, a second investigation on the validity of the above-mentioned assumption con-
cerning conformal invariance, being performed on Heisenberg chains in a magnetic field that are
additionally exposed to a next-nearest neighbour coupling (J2/J1 = α), shall be mentioned here
[91]. Good agreement with the predictions of conformal invariance has been found for (η1(m,α):
−1/2 < α < 1/4), (η3(m,α) : 0 < α < 1/4). Deviations from the predictions of conformal
invariance and the behaviour of related excitation spectra will be addressed in Chap. 5.
As a final remark we want to mention a work of Affleck and Haldane [2] on quantum spin
chains and CFT. These authors used a generalized Hubbard model ([118, 16]) representation to
show significant differences in the behaviour (existence of energy gaps) for half-odd-integer and
integer spin antiferromagnets. We will encouter a similar form of this difference –earlier given
as Haldane’s conjecture [101]– in later discussions of spin-1/2 ladders with an odd/even number
of legs.

2.4 Homogeneous external fields – Magnetization curves

The partition function Z of an isotropic nearest-neighbor chain (H0) in a homogeneous external
magnetic field ( ~B = B · ~ez), i.e. H0 commuting with Stot

z =
∑

x Sz(x), is given by

Z = e−βF = Tr e−β(H0−2B·M) ; β =
1

kBT
(2.20)

= Tr e−β2N(e(m)/2−Bm) . (2.21)

The factor of 2 in eq.2.20 has been chosen to compensate the additional factor 2 in the definition
of H0. At zero temperature the partition function is determined by the minimum of the exponent

min
m
{e(m)/2−Bm} = min

m
{e0(m)/2−Bm} ; e(m) = E(m)/N

which yields (in case of differentiability)

B(m,T = 0) = B(m) =
∂e(m)/2

∂m
. (2.22)

Furthermore, the theory of thermodynamic equilibrium requires the fulfilment of the stability
condition

∂2e(m)
∂m2

≥ 0 . (2.23)

In 1964 the magnetization curve of isotropic Heisenberg chains has as well been calculated for
finite chains (Bonner and Fisher [32]) and analyzed by means of the Bethe ansatz (Griffiths
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[96]). A part of these results, namely the smooth behaviour of magnetization curves of a system
with a continuous (gapless) spectrum, is sketched in Fig. 2.1. They will later be compared with
the corresponding curves of systems that are gapped and show magnetization plateaus.
The isotropic chain, however, has smooth derivatives of e(m), a saturation field BSat = 2 (see
also App. B) and the magnetization behaves asymptotically as

m(B) B→BSat−→ 1
2
−
√

2
π

(BSat −B)1/2 + O(BSat −B) (2.24)

closely below the saturation field BSat. This result has been obtained by Bethe ansatz calcu-
lations (Yang and Yang[220]) and as well been confirmed by finite-size studies [178] where the
B-dependence near saturation has been compared with the case of frustrated chains (see Sec.
5.1.2).
Furthermore, the small-B behaviour of m(B) at zero temperature calculated by means of the
Bethe ansatz is known to be

m(B) =
B

π2


 1︸︷︷︸

a

+
−1
2︸︷︷︸
b

1
lnB

+
−1
4︸︷︷︸
c

ln | ln B|
ln2 B

+ const. · 1
ln2 B

+ . . .


 . (2.25)

The coefficients a, b, c are given by Griffiths[96], Babujian[15] and Lee and Schlottmann[140],
respectively.
Using the above-mentioned results the zero-temperature susceptibility

χ(B) =
d

dB
m(B) (2.26)

for the 2 cases is given in leading order

χ(B ¿ 1) =
1
π2
·
(

1− 1
2 lnB

− 1
4

ln | ln B|
ln2 B

+ . . .

)
(2.27)

χ(B → BSat) =
1√
2π

· 1√
Bsat −B

+ . . . . (2.28)

The result χ(B = 0) = 1/π2 will be refered to in Sec. 2.6.8 as one of the sum rules for
frequency-moments of the dynamical spin-spin structure factor (see below).
The thermodynamic limit of e0(m = 0, N)/2 is known to be [120]

lim
N→∞

e0(m = 0, N) = − ln 2 +
1
4

= −0.443147 . . .

and will be used in App. C as an illustration for the method of finite-size analysis of Bulirsch,
Stoer (BST)[36] used throughout this work.
Fig. 2.1 shows the derivatives dn

dmn
e0(m,N)

2 = e(n)(m,N))/2 , n = 0, 1, 2 and the magnetization
curve of the isotropic chain calculated for the finite system lengths N = 20, 22, . . . , 28. Here,

e
(1)
0 (m,N) = (E0(m+, N)−E0(m−, N)) /2 (2.29)

e
(2)
0 (m,N) = N · (E0(m+, N))− 2E0(m,N) + E0(m−, N)) (2.30)

with m± = m± 1/N have been used. The magnetization curve (Fig. 2.1d) has been calculated
using the Bonner-Fisher (B.-F.) technique [32]. The latter curve coincides with Fig. 2.1c reflected
at the bisector of the given area.
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Figure 2.1: Derivatives of e0(m,N)/2, Magnetization m(B)
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Figure 2.2: Magnetization curve for a 28-site ring and 2 infinite-N approximations (see text)

Magnetization curves calculated by means of the Bonner-Fisher (B.-F.) technique, i.e. connect-
ing the midpoints (open circles in Fig. 2.2 of the finite-N magnetization staircase, agree rather
well with another infinite-N approximation given by Müller et al. [157]

m(B) =
1
π

arcsin
(
1− π

2
+

π

B

)−1
(2.31)
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and in particular well for magnetization m = 0.25 as magnified in the figure for the example of
a 28-site ring. The given field values will be refered to and used later in this chapter. Without
reaching Griffith’s rigorousity [96] it is apparent that the range of applicability of the B.-F.
technique reaches far beyond.
We finally want to analyze the m-dependence of e0(m) = E0(m)/N . Due to the behaviour
m(−B) = −m(B) of the magnetization a power series

e0(m) = e0(m = 1/2) +
∑

n

An

(
1
2
−m

)n

(2.32)

consists of odd powers of n exclusively. This is illustrated for H = 2
∑

n(SnSn+1−BS3(n)) and
system sizes N = 20, 22, .., 28 in Fig. 2.3

0 0.1 0.2 0.3 0.4 0.5

m
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e 0
(m
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=

20
,2

2,
..,

28
)

n=1 ; A1=-2BSat=-4

n=3 ; A3=4.2

n=5 ; A5=2.6

Figure 2.3: Ground state energy per site e0(m) vs. m

where subsequently the first 3 odd powers of (1/2 − m) have been taken into account. In
particular, the coefficient A1 –together with the pre-factor 2 in H (Eq. 2.1)– is given by

A1 = −d e0(m)
dm

∣∣∣∣
m=1/2

= −2BSat = −4 (2.33)

(BSat = 2 cf. App. B). A situation of particular interest –the almost linear behaviour of e0(m)
close to m = 1/2– will again show up in the discussion of ladder systems (see Sec. 4.1.3).

2.5 Static correlations and structure factors (SSFs)

The investigation of ordering and spatial correlations in the ground state of quantum spin Heisen-
berg chains is nearly as old as the formulation of the model. Independent of the smallness of
the quantum spin (S = 1/2, i.e. the extreme quantum limit), the classical Heisenberg antifer-
romagnet with its perfectly Néel-ordered ground state quite often served as a reference point in
the discussion of the quantum chain/system.
At this place, only a few remarks on static quantities that will later appear to be closely related
to zero-energy excitations (soft modes) of the Heisenberg chain will be presented.
In order to discuss translational invariant systems and in particular their spatial correlations
the consideration of Fourier-transformed (with respect to chrystal momentum q) quantities often
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proves to be very efficient. In the following we consider static structure factors (SSFs)

Saa(q, m, N) ≡ < 0|S+
a (q)Sa(q)|0 > , a = z,+,− (2.34)

with

Sa(q) =
1√
N

N−1∑

x=0

eiqxSa(x) (2.35)

Sa(x) =
1√
N

2π−2π/N∑

q=0

e−iqxSa(q) (2.36)

∑
q

eiq(x−x′) = N · δx,x′ (2.37)

and |0 > being the ground state of an N -site chain with magnetization m. The SSF is given as

Saa(q, m, N) =
1
N

∑

x,x′
eiq(x−x′) < 0|S+

a (x′)Sa(x)|0 > (2.38)

=
∑

x

eiqx < 0|S+
a (0)Sa(x)|0 > (2.39)

where translational invariance has been used in the second part. Furthermore, S++ and S−−
are related by the operator identity

S++(q, m, N) = S−−(q,m, N)− 2m. (2.40)

The transverse spin-spin SSF is given by

Sxx(q, m, N) =
1
4
(S++(q,m, N) + S−−(q,m, N))

and will be discussed later. Finally it should be mentioned that in case of

Sa(q = 0)|0 > = αa(0)|0 >

with αa(0) 6= 0 usually the connected part of the SSF

Saa,conn.(q, m, N) = < 0|S+
a (q)Sa(q)|0 > −| < 0|Sa(q)|0 > |2

is considered in order to avoid peaks at q = 0 (e.g. αz(0) =
√

N ·m).

2.5.1 Numerical results, scaling and critical exponents of the spin-spin SSF

In this paragraph investigations of singularities of SSFs –based on evaluations of rings of up
to 28/(36) sites– are briefly presented and summarized –for more detailed studies and further
references see e.g. [128, 131, 179].
Fig. 2.4 sketches important aspects of the behaviour of SSFs of rings in zero and non-zero
magnetic field, the latter exemplified for the case of magnetization m = 1/4 which is realized
for all chain lengths N = 4n. In this particular case, the 2 field-dependent positions

qx(m) ≡ q1(m) = 2πm (2.41)
qz(m) ≡ q3(m) = π(1− 2m) (2.42)

of singularities in the longitudinal and transverse SSFs coincide at q = π/2.
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Figure 2.4: Static structure factors (SSFs) for m = 0, 1/4

The main point of attention in this section is the classification of the singular behaviour of the
SSFs in the vicinity of the critical q-values q = π and q1,3(m) here in particular considered for
m = 0 and m = 1/4.
This will be quantified by the η-exponents η1, η3. The transverse SSF at momentum π behaves
as

Sxx(q = π, m,N) N→∞−→ const. ·N1−η1(m) (2.43)

and the same exponent is found to describe the approach to the singularity

Sxx(q,m,∞)
q→π−→ const.′ ·

(
1− q

π

)−(1−η1(m))
(2.44)

The case m = 0, where no further singularities between 0 and π are present, is well known. Luther
and Peschel (1975) [147] showed for the large distance behaviour of the spin-spin correlators
< 0|S(0)S(x)|0 > of the isotropic Heisenberg chain

< 0|S(0)S(x)|0 > ∼ (−1)x

x
, (2.45)

i.e. logarithmic behaviour of the SSF-components (ses Sec. 2.5). Fig. 2.5 gives the almost linear
behaviour in the accordingly chosen logarithmic variables expressing η1(m = 0) = η3(0) = 1.
(A discernible signature of a later determined additional factor of order (lnN)1/2 (Affleck et al.
(1988) [3]) to expression 2.45 lies beyond the scope of the present treatment.)
Turning now to the case m = 1/4, the field-dependent singularities deserve a separate discussion.
Two different types of behaviour have been esstablished [81]. First, the transverse SSF shows a
different exponent (η±1 (m)) when approaching q1(m) from below (η−1 (m)) or above (η+

1 (m)):

Sxx(q → q1(m)± 0,m,∞) ∼
∣∣∣∣1−

q

q1(m)

∣∣∣∣
−(1−η1(m))

(2.46)

with exponents (cf. Fig. 2.6) η−1 (1/4) = 0.8 . . . 1.2 and η+
1 (1/4) = 2.17. A determination of

η1(m = 1/4) had to be omitted since it would have required considerably longer chains. Looking
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Figure 2.6: Scaling of the transverse SSF Sxx(q, m = 1/4, N)

at the given range of numerical values to assign an η−1 (1/4)-exponent (based on the given chain
lengths) a similar comment seems to be deserved.
The exponent η1(m = 1/4), given in 2.43, could be determined to be η1(m = 1/4) = 0.65 (see
left panel of Fig. 2.6).
Results for the longitudinal SSF are summarized in Fig. 2.7. Here, the assignment of an
η-exponent for the approach of q3(m = 1/4) from the right (starting from greater q-values)
turned out to be problematic on the basis of the calculated data. On the other hand, the two
remaining cases (from the left; at the singularity) led to a reliable and equal-valued exponent
η3(m = 1/4) = 1.51. The approach of the singularity from the right –assuming coincidence of
the η-exponent– is shown in the inset on the r.h.s. of Fig. 2.7.
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Figure 2.7: Scaling of the longitudinal SSF Szz(q,m = 1/4, N)

At the end of this section we shall return to relation 2.39. It provides a link between the large
distance behaviour of spin-spin correlators and a Fourier transform of the singularities of the
SSFs in particular. Taking into account all the singularities of the spin-spin SSFs an obvious
generalization of 2.45 reads:

< 0|S1(0)S1(x)|0 >
x→∞−→ cos(πx)

A1(m)
xη1(m)

+ cos(q1(m)x)
(

A+
1 (m)

xη+
1 (m)

+
A−1 (m)

xη−1 (m)

)
(2.47)

< 0|S3(0)S3(x)|0 >disc.
x→∞−→ cos(q3(m)x)

A3(m)
xη3(m)

. (2.48)

In the sequel of the next section the relation between these critical η(m)-exponents (eqns.
2.47,2.48) and scaled energy gaps of the spin chain, as predicted by conformal field theory
(CFT) (see Sec. 2.3), will be considered.

2.6 Dynamical structure factors (DSFs)

A quite general definition of zero-temperature DSFs for systems with a unique ground state
reads:

Xaa(q, ω, N, T = 0) =
∑
n

| < n|Xa(q)|0 > |2 · δ(ω − (En −E0)) (2.49)


=

1
2π

1
N

∑

x,x′
eiqx

∫ ∞

−∞
dt eiωt < 0|X+

a (x′, t)Xa(x + x′, 0)|0 >


 (2.50)

with |0 > being the ground state and |n > the whole set of eigenstates of the considered dynam-
ical system (in our case given by the Hamiltonian H0). Moreover, Xa(x, t) = e−iHtXa(x, 0)eiHt

and the familiar transformations

Xa(q) =
1√
N

N−1∑

x=0

eiqxXa(x) (2.51)
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Xa(x) =
1√
N

2π−2π/N∑

q=0

e−iqxXa(q) (2.52)

∑
q

eiq(x−x′) = N · δx,x′ (2.53)

are used with discrete q-values q = n · (2π/N), n = 0, 1, . . . , N − 1.
The particular choice of Xa now determines which subsets of eigenstates contribute to the
sum of excitations in 2.49. In case of the isotropic Heisenberg chain the spin-spin DSF, i.e.
Xa(q) = Sz(q), S+(q), S−(q), i.e. a = z,+,−, contains the most important information about
the spectrum as will be discussed below. Strong restrictions on the occurrence of non-vanishing
contibutions to 2.49 are given by the selection rules

< Sz|Sz(q)|S′z > = 0 if Sz 6= S′z (2.54)
< Sz|S±(q)|S′z > = 0 if not S′z = Sz ± 1 (2.55)

< k|Sa(q)|k′ > ∼ δk,k′+q mod 2π (2.56)

< S|Sa(q)|S′ > = 0 if
{ |S − S′| 6= 0, 1

S = S′ = 0
. (2.57)

For example, the given rules state that finite non-diagonal components (S+−, Sz+, . . .) do not
exist.
Moreover, the static structure factors (SSFs) Xaa(q, T = 0) already discussed are given by

Xaa(q) =
∫

dω Xaa(q, ω) =
∑

n

| < n|Xa(q)|0 > |2 (2.58)

which shows that all non-vanishing excitations add up to the SSF where the dominant contri-
butions arise from the dominant elements of the DSF which will be explained below. In doing
so, a particular importance will be atributed to the form of singularities of the DSF that will be
deduced from the finite-size data obtained from numerical calculations based on spin chains of
up to 28 sites.
Finally, some interesting examples of operators Xa(q) with a different selection of non-zero
transition matrix elements < n|Xa(q)|0 > shall be given. The following operators do neither
change total spin S nor total Sz, the latter not even changes the momentum of the state it is
acting upon:

Dj(q) =
1√
N

∑
x

eiqxS(x) · S(x + j) j = 1, 2, . . . (2.59)

O(q) = S(−q) · S(q) . (2.60)

These operators will be used in part in later chapters of this work.

2.6.1 Excitation spectra, Soft modes

As a starting point for the discussion Fig. 2.8 shows a classification of the excitation energies
ωn(q,m) = En(q, m) − E0(m) (m = Sz/N) for a 12-site chain (H0 = 2

∑
i SiSi+1) and magne-

tization values m = 0, 1/4. The complete range of the excitation spectra has been truncated
roughly to half of its extent, however, within the shown part all excitations and a classification
of their respective total spins S are given. In addition, the left-hand part of the figure (case
m = 0) shows the des Cloizeaux-Pearson [48] lower bound of excitations for the N →∞ isotropic
(m = 0) Heisenberg ring.
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Figure 2.8: Complete diagonalization results for low excitations ωn(q, S, m) of a 12-site chain

First of all, the 2 plots show that the ground states (ωn = 0) have total spins S = N ·m = Sz

and momenta p0(m) according to relation 2.9. Moreover, the lowest lying excitations in both
cases are those that can contribute to the spin-spin DSF according to selection rule 2.57 as far
as the total spin is concerned.
Second, the lowest excitations in the m = 0- case already show a reasonable approximation
(q > 0) to the N →∞ limiting curve of des Cloizeaux-Pearson which becomes more clearly for
longer chains (see N = 28 in Sec. 2.6.3).
Anticipating further features, the figure already shows traces of the zero-frequency excitations
(soft modes) of the infinite system (q = 0, π for m = 0; q = qz(m) = π(1 − 2m) = π/2 =
qx(m) = 2πm, π for m = 1/4). The relation of these soft modes to symmetries of the underlying
Heisenberg Hamiltonian and further important conclusions will be given in the next paragraph.

2.6.2 The Lieb, Schultz, Mattis construction

In 1961 Lieb, Schultz, Mattis (LSM) [143] showed that an antiferromagnetic spin-1/2 Heisenberg
chain with an even number of sites has a non-degenerate ground state (i.e. total spin S = 0,
momentum q0 = 0 or π). Then, they addressed the important question of the existence of an
energy gap above the ground state energy that will later be discussed for the more general case
of magnetization m > 0. They introduced an operator (their notation is partly changed in the
following)

Uk = eik
P

n nSz(n) ,
[
Sz(n), Sz(n′)

]
= δn,n′ · 1

4
· 1 (2.61)

=
∏
n

eiknSz(n) (2.62)

=
∏
n

(
(cos

kn

2
) · 1 n + i(sin

kn

2
) · σz(n)

)
(2.63)

with

U−1
k Sx(n)Uk = cos(kn)Sx(n) + sin(kn)Sy(n) (2.64)
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U−1
k Sy(n)Uk = − sin(kn)Sx(n) + cos(kn)Sy(n) (2.65)

U−1
k Sz(n)Uk = Sz(n) . (2.66)

The states

|Ψk > ≡ Uk|Ψ0 > , (|k >= Uk|0 >) (2.67)

with |0 > being the non-degenerate ground state of H0 =
∑

n S(n)S(n + 1) with Sz = S =
0. |Ψk > has been shown to be orthogonal to the ground state (< 0|k >= 0) for momenta
k = 2πj/N with odd integer j. Restricting to the smallest permitted k-value (k = 2π/N) and
making explicit use of [H0, Sz] = 0, Lieb, Schultz, Mattis showed the following inequality for the
energy difference ∆E =< 0|U−1

k H0Uk|0 > − < 0|H0|0 > to hold:

∆E = (cos(k)− 1)
∑

n

< 0|Sx(n)Sx(n + 1) + Sy(n)Sy(n + 1)|0 > ≤ 2π2

N
. (2.68)

Therefore, for infinite N no finite energy gap remains. The authors as well discussed general-
izations to more than one dimension.

As was already mentioned in Sec. 2.1, the spin-1/2 chain retains the non-degenaracy of its
ground states under the influence of a uniform magnetic field for magnetizations m > 0. The
application of the LSM scheme, and in particular the determination of the momentum of the
state |k > has been given explicitely by Oshikawa et al. (1997) [169] and results directly from
applying the generalized LSM-relation

TUkT
−1 = eiπjeikNm · Uk , k = 2πj/N (2.69)

(here T is the translation operator defined in Sec. 2.1) to

TUk|0 > = TUkT
−1T |0 >= e−ip0TUkT

−1|0 > (2.70)
= e−ip0eiπjeikNmUk|0 > (2.71)
= e−i(p0+j·π(1−2m))Uk|0 > (2.72)
= e−ipjUk|0 > . (2.73)

The resulting momenta pj are the momenta of the longitudinal soft modes that will be further
discussed in the sequel of this chapter as well as demonstrated for finite-N evaluations in the
next subsection. At present, however, we are not able to specify the precise nature of the state
approaching the ground state energy and forming the soft mode, i.e. classifying what type of gap
does not exist. The method so far only gives information about the existence of an additional
state Uk|0 > – the soft mode.
Below, we apply the LSM scheme to obtain further information on the total spin of the soft
mode. Before addressing this point we briefly want to add that for general m the required
orthogonality condition for < Ψ0|Ψk >= 0 reads

eiπj(1−2m) 6= 1 , (2.74)

including the choice of odd integers j for m = 0.

A final point that may be elucidated with the help of LSM in this context concerns the total
spin of the additionally generated soft mode states |k >= Uk|0 > [86]. One calculates

< 0|U−1
k S2Uk − S2|0 > = 2

∑

n<n′

(
cos(kn) cos(kn′)− 1

) · (2.75)

< 0|Sx(n)Sx(n′) + Sy(n)Sy(n′)|0 > .
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Introducing

|f c
k,x > =

1√
N

∑
n

cos(kn)Sx(n)|0 > (2.76)

Sc
xx(k) ≡ < f c

k,x|f c
k,x >=

1
N

∑

n,n′
cos(kn) cos(kn′) < 0|Sx(n)Sx(n′)|0 > (2.77)

=
∑

n

cos(kn) < 0|Sx(n)Sx(0)|0 > , (2.78)

the difference of total spin expectation values for the states |0 > and |k > can be expressed as

< 0|U−1
k S2Uk − S2|0 > = N

(
Sc

xx(k)− Sc
xx(0) + Sc

yy(k)− Sc
yy(0)

)
(2.79)

= 2N (Sc
xx(k)− Sc

xx(0)) (2.80)

with

Sc
xx(k) =

1
2

(Sxx(k) + Sxx(−k)) (2.81)

Sxx(k) =
∑

n

eikn < 0|Sx(n)Sx(0)|0 > . (2.82)

While this itself does not give a definite answer, the consideration of the static structure factors
(e.g. as discussed in Sec. 2.5) allows for the discussion of a small-k behaviour of

2N (Sxx(k = 2π/N, m)− Sxx(0,m)) N→∞−→ A(m)
(

2π

N

)βk(m)

. (2.83)

E.g. at m = 0 the right-hand side of Eq. 2.79 is non-vanishing, demanding that the soft mode
state |k > has total spin components greater than 0, i.e. excluding the existence of a singlet-
triplet gap. The occurrence of βk(m > 0) > 0 (see e.g. [131]) indicates that in this case the soft
mode state |k > has the same total spin as the ground state |0 >.

The LSM construction and its generalizations introduced here for the (unperturbed) Heisenberg
chain will be frequently refered to and applied to the more general cases evolving in the sequel
of this work. In particular, we will later (see Sec. 5.3) discuss the application of the presented
scheme to the case of translation invariant spin systems with long range couplings. We will
show connections to plateau formations and the related spontaneous symmetry breaking in
these systems.

2.6.3 Numerical results, scaling and critical exponents of the spin-spin DSF

In this section first there will be presented some numerical results for the spin-spin DSF in both
zero and non-zero external magnetic field (the latter for a resulting magnetization of m = 1/4).
Then, results of finite-size scaling applications on the determination of different types of critical
quantities (see below) will be summarized.
Figs. 2.9,2.10 show excitation energies ωaa,n(q,m, N) and a binning of relative weigths

waa,n(q, m,N) =
wtot

aa,n(q,m, N)
Saa(q, m,N)

=
| < n|Sa(q)|0 > |2

< 0|S+
a (q)Sa(q)|0 >

, a = z,+,− (2.84)

where |0 > is the ground state for magnetization m and chain length N . Here, the maximum
value N = 28 for the presented calculations has been chosen. The legend given on the left-hand
side of Fig. 2.9 applies for all 4 plots. The use of relative weigths, i.e. the indepent normalization
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Figure 2.9: Excitations ωzz,n(q,m = 0, 1/4, N = 28)
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Figure 2.10: Excitations ωaa,n(q,m = 1/4, N = 28) with a = +,−

of matrix elements < n|Sa(q)|0 > |2 for each q-value, requires the additional consideration of the
static structure factors (SSFs) given in Sec. 2.5 to get a general impression on the proportions
of the DSFs.
The numerical evaluations of ωaa,n, waa,n have been done using a recursion algorithm that is
presented in Appendix A. The ground states needed for the application of the algorithm were
calculated with Lanczos-techniques [139, 53] using a Lin-coding [145].

The excitation spectrum for zero magnetic field again shows the N →∞ lower boundary of the
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energy spectrum [48] and the degree of its approximation may be contrasted with the spectrum
of the 12-site chain given above. The symbols underline the dominance of weight carried by the
lowest excitations.
For non-zero magnetic fields no boundaries as rigorous as des Cloizeaux-Pearsons do exist. The
lines given in the concerning parts of the figures go back to Müller et al. (1981) [157] where
lower boundaries of spin-wave continua have been given. These need the relation B(m) and the
2 types of lines in the figures refer to the 2 cases shown in Fig. 2.2 (solid line: B=1.516; dashed
line: B=1.583). Bounds for ω++(q < π/2,m = 1/4, N) have not been given since in that region
the absolute weights w++,n(q,m, N) · S++(q, m, N) are almost zero (see SSF in Fig. 2.4). The
most striking omission of the given boundaries may be seen in their disregard of low excitations
ωzz,n(q,m, N) below q = π. The existence of a soft mode at q = π was derived by the Lieb,
Schultz, Mattis argument [143] (cf. Sec. [143]), however, with no specification of the related
weight. (In the numerical part of the work of Müller et al. these excitations do not appear due
to limitations of managable system sizes (N ≤ 10).)

In order to clearify and define expressions for the remaining part of this paragraph we use

q±1 (m) = q1(m)±∆p , ∆q =
2π

N
, m± = m± 1

N
=

Sz

N
± 1

N
(2.85)

ωzz(q3(m), m,N) = E(q0 + q3(m),m, N)− E(q0,m, N) (2.86)
ωxx(π, m,N) = E(q0 + π, m+, N)−E(q0,m, N) (2.87)

ω±±(q±1 (m), m,N) = E(q0 + q±1 (m),m±, N)− E(q0,m,N) (2.88)

where q0, the ground state momentum for magnetization m, is q0 = 0, π according to the rules
given in Sec. 2.9 and the ωaa therefore belong to the lowest excitations which are going to
become soft for infinite N . Extrapolating Nωaa to the thermodynamic limit (TDL), namely

Ω3(m) ≡ lim
N→∞

Nωzz(q3(m),m,N) (2.89)

Ω1(m) ≡ lim
N→∞

Nωxx(π, m, N) (2.90)

Ω±1 (m) ≡ lim
N→∞

Nω±±(q±1 (m),m, N) (2.91)

leads to the relation

Ω±1 (m) = Ω1(m) + Ω3(m) (2.92)

and, using the spin-wave velocity v(m)

v(m) =
d

dq
E(q,m, N)

∣∣∣∣
q=q0

= lim
N→∞

E(q0 + ∆q, m,N)− E(q0,m, N)
∆q

, (2.93)

finally leads to the definition of the scaled energy gaps

2Θa(m) ≡ Ωa(m)
πv(m)

, a = 1, 3 (2.94)

2Θ±
1 (m) ≡ Ω±1 (m)

πv(m)
= 2 (Θ3(m)±Θ1(m)) . (2.95)

Fig. 2.11 gives results for the m-dependence of 2Θ1,3(m) based on a Bethe ansatz (BA) evalu-
ation of a spin chain of 2048 spins [81] which is in accord with and supplemented by analytical
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Figure 2.11: Scaled energy gaps 2Θ1(m), 2Θ3(m)

results of Bogoliubov, Izergin, and Korepin (1986, 1987) [29, 30], namely

2Θ1(m) =
1

2Θ3(m)
(2.96)

2Θ3(m) m→0−→ 1 +
(

ln
1

m2

)−1

(2.97)

2Θ3(m)
m→1/2−→ 1 + 2m . (2.98)

In particular, the 2Θa(m) values for the 2048-spin chain evaluated with BA methods for mag-
netization m = 1/4 read

2Θ1(m = 1/4) = 0.65308 . . . , 2Θ3(m = 1/4) = 1.58584 . . .

2Θ+
1 (m = 1/4) = 2.23892 . . . , 2Θ−

1 (m = 1/4) = 0.93276 . . .

which might serve for comparison.
Using the critical quantities 2Θ(m), η(m) and in addition α the exponent of the infrared singu-
larity of the DSF that had been treated in the finite-size scaling ansatz [81]

Saa(ω, q,m, N) = ω−2αa(q,m)ga

(
ω

ωa(q,m, N)
, na(q,m, N)

)
, a = 3, +,− (2.99)

na(q,m, N) = (q − qa(m))/∆q (2.100)

the prediction

2Θ(m) = η(m) = 2(1− α(q,m)) (2.101)

of CFT has been tested for the case of magnetization m = 1/4 [81].
The results, listed in Table 2.1, show a good agreement of the listed critical quantities for the
first two cases with deviations lying within numerical uncertainty. The finite-size dependence
of the weight of the lowest excitation dominantly influencing the value of α is seemingly in
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q a 2Θ(±)
a (m) η

(±)
a (m) 2(1− αs(q, m)) s

q3(m) 3 1.5312 1.51 1.54 3
π 1 0.6531 0.65 0.62 | 0.68 +|−

q+
1 (m) 1 2.1843 2.17 2.40 +

q−1 (m) 1 0.8781 0.8-1.2 2.1 −

Table 2.1: Critical quantities 2Θ(m), η(m) and 2(1−α(m)) at soft-mode positions for m = 1/4

accordance with the prediction of CFT. In the 3rd case the exponent 2(1 − α+(q+
1 (m),m)) is

about 15% greater than the remaining two ones that agree rather well.
Only in the last case, where the former dominance of the lowest excitations in carrying the major
part of spectral weight is no longer manifest, numerical data cannot establish identity 2.101.

Now, we will intermediately leave the subject of spin chains exposed to a uniform magnetic field
and turn to an important topic of the field-free model, analytical ansätze for the dynamical
structure factor (DSF), that so far still long for an extension to finite magnetic fields.

2.6.4 The Müller ansatz (MA) for the spin-spin DSF

On the basis of finite-size calculations (DSF for small rings), matching of infrared exponents
and sum rule considerations Müller et al. [156] proposed in 1981 the following ansatz for the
DSF of the 1-dimensional Heisenberg antiferromagnet in zero magnetic field:

(2π) · SMA(q, ω) = A · Θ(ω − ωl(q))Θ(ωu(q)− ω)√
ω2 − ω2

l (q)
(2.102)

where “MA” symbolizes the later well-known name “Müller ansatz” and A is a constant O(1).
The factor (2π) in Eq. 2.102 has been added to Müller’s original formulation in order to use the
standard notation (for frequency-moments, sum rules, etc.) in the following.
The important observation leading to the ansatz was that the dominant contribution of ex-
citations forming the DSF have been recognized to be a particular class of Bethe ansatz [22]
solutions – the so-called 2-spinon solutions. For infinite systems these excitations are confined
to the 2-spinon continuum that is bounded by the lower (l) and upper (u) boundaries

ωl(q) =
π

2
sin q (2.103)

ωu(q) = π sin
q

2
(2.104)

where the Hamiltonian H0 =
∑

i SiSi+1 underlies (the continuum is sketched on the left-hand
side of Fig. 2.12.) The lower boundary had been first calculated by des Cloiyeaux, Pearson
[48]. Moreover, using the methods of des Cloizeaux, Pearson [48] and des Cloizeaux, Gaudin
[49] Müller et al. [156, 157] determined the whole variety of 2-spinon excitations for 0 ≤ q ≤ π
and 0 ≤ qm ≤ q to be

ωm(q) = π sin
q

2
cos

(q

2
− qm

2

)
(2.105)

with m denoting the different branches of solutions (ωl(q) = ω(qm = 0), ωu(q) = ω(qm = π)).
In 1975 Luther and Peschel [147] determined the threshold exponent α of S(q = π, ω)|ω→0 ∼
ω−α, i.e. the infrared singularity of S(q = π, ω), to be α = 1/2 which is fulfilled by the ansatz
2.102.
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Guided by the well-known exact result of the XX-model (see 5.1.1), namely the factorization of
SXX(q, ω) = DXX(q, ω) ·MXX(q, ω) in the smooth transition-rate function M and the density
of states (DOS) D, Müller et al. [156] found evidence (no proof) that the exact 2-spinon DSF
should be of the form

(2π) · S2−sp(q, ω) = M2−sp(q, ω) ·D2−sp(q, ω) (2.106)

with the 2-spinon DOS

D2−sp(q, ω) =
Θ(ω − ωl(q))(Θ(ωu(q)− ω)√

ω2
u(q)− ω2

, (2.107)

On one hand Müller knew that 2.102 could not fulfill a sequence of checked sum rules for a
unique choice of the parameter A (see e.g.[157]), on the other hand he proved that 2.102 shows
the correct q-dependence for all odd frequency-moments

K(n)
zz (q) =

∫
dω ωnS(q, ω) . (2.108)

In addition, the sum rules considered could be satisfied by using values of A from a quite small
interval (1 ≤ A ≤ 1.5).
Since its first formulation SMA(q, ω) underwent several tests and in particular experienced ex-
perimental confirmations based on inelastic neutron scattering (INS) experiments on quasi 1-
dimensional systems [189, 62]. In summary, many pieces of evidence have been collected to show
that the Müller ansatz covers in general the detailed dynamical picture of the Heisenberg chain
to a large extent.
In the next section further developments, namely the exact determination of M2−sp(q, ω) achieved
in 1996 will be given. After this and a brief look at an attempted modification of the Müller
ansatz, the different ansätze will be discussed in the framework of frequency-moments of the
respective ansätze/solutions and compared with the frequency-moments of the total DSF of the
Heisemberg chain.

2.6.5 Complete solution for the 2-spinon part of the spin-spin-DSF

In 1996 Bougourzi et al.[31] were able to derive the exact contribution of the 2-spinon part for
M(q, ω) in a work that has been based on the context of quantum groups. Shortly thereafter,
Bougourzi, Karbach and Müller[132] presented analytical expressions for the 2-spinon contribu-
tion M2−sp(q, ω) and, based on the earlier conjecure [156] for the 2-spinon DOS 2.107 expressions
for the 2-spinon DSF S2−sp(q, ω) = D2−sp(q, ω)M2−sp(q, ω). In particular, a proper separation
of a singular part in the result of [31] led to

M2−sp(q, ω) =
1
2

exp
[
1
2

(
I0 + ln

(
t sinh2 πt

4

)
+ h(t)

)]
(2.109)

with

I0 = 0.3677103 . . .

t =
4
π

ln(z +
√

z2 − 1) , z =

√
ω2

u(q)− ω2
l (q)

ω2 − ω2
l (q)

h(t) = Ci(t) +
∫ ∞

1

dx

x

cos(xt)
cosh2 x

−
∫ 1

0

dx

x

cos(xt)
coth2 x

.

The right-hand side of Fig. 2.12 shows for the case of q = π/2 a direct comparison of the earlier
Müller ansatz SMA(q, ω) and the 2-spinon solution S2−sp(q, ω) given above. The figure already
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Figure 2.12: 2-spinon continuum and DSFs (MA, 2-spinon) at q = π/2

contains the key essentials that hold for all q-values: While the step-like behaviour of SMA(q, ω)
at ω = ωu overexpresses the spectral weight at higher frequencies it diverges less pronounced at
the lower boundary ωl(q) (analytical expressions see below).
For the numerical calculation the alternative formula [133]

S2−sp(q, ω) = SMA(q, ω) ·
(
C ′ · t · e−f(t)

)
(2.110)

f(t) =
∫ ∞

0

dx

x

(
sin xt

2

coshx

)2

C ′ = 0.814272459 . . .

has been used. The fast decay of the integrand of f(t) allows the controlled limitation of the
numerical integration to a finite interval and the advantageous use of finite-interval routines
(e.g. NAG-routine D01AJF). A more detailed study of the behaviour of S2−sp(q, ω) close to the
spectral boundaries resulted in [132]:

(2π) · S2−sp(q, ω) ω→ωl−→
√

C/2
π

(
ω2

u(q)− ω2
l (q)

ωl(q)(ω2
u(q)− ω2)

)1/2

·
√
− ln(ω − ωl(q))

ω − ωl(q)
(2.111)

(2π) · S2−sp(q, ω) ω→ωu−→ 4
√

2C

π

√
ωu(q)

ω2
u(q)− ω2

l (q)
·
√

ωu(q)− ω (2.112)

C =
1
2
eI0 = 0.72221 . . . , (2.113)

where minor mistakes in [132] have been corrected and again for reasons of standardization a
factor (2π) has been added. In particular this means that the singularity of the 2-spinon DSF
for ω → ωl(π) behaves at the soft mode momentum q = π as

(2π) · S2−sp(q = π, ω) ω→0∼ 1
ω

√
ln

1
ω

, (2.114)
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i.e. compared with the Müller ansatz it contains a logarithmically enhanced infrared singularity.
Again, besides the soft mode the divergence of the DSF at the lower boundary of the 2-spinon
continuum is less pronounced (see formulas).
As a final comparison it should be added that the degree of fulfillment of the simple sum rule

IT =
∫ 2π

0

dq

2π

∫ ∞

0
dωSzz(q, ω) = | < 0|Sz(x = 0)|0 > |2 =

1
4

(2.115)

has been checked for the MA (A = 1) and the 2-spinon solution [157, 132] with the result

IMA
T = 0.7424.. · IT , I2−sp.

T = 0.7289.. · IT . (2.116)

In the following two sections the concept of frequency-moments will be discussed which supplies
further insight into the comparison of the discussed ansätze and above that into the question of
place value of the whole 2-spinon part within the dynamics of the isotropic Heisenberg model.

2.6.6 Frequency-moments for the spin-spin DSF

As mentioned earlier frequency-moments for Heisenberg chains have so far been considered for
the case of zero magnetization [158, 80] in order to check ansätze for the dynamical structure
factor Sxx(q, ω) = Szz(q, ω). As pointed out by Müller [158] odd frequency moments are given
in the form

K(l)
zz (q, N) =

l∑

n=0

T (l)
zz,n(N) · (1− cos q)l , T

(l)
zz,0(N) = 0 (2.117)

the T
(l)
zz,n containing spin correlations which at most exceed n+1- sites on the ring of spins. The

latter property does not hold for even moments.
Before dicussing the importance of sum rules on the basis of frequency-moments the extension to
the case of a spin chain in a uniform magnetic field will be treated. Zero-temperature frequency-
moments are defined as

K(l)
aa (q, T = 0) =

∫
dω ωl Saa(q, ω) , a = x, z

=
∑

n

∫
dω ωl δ(ω − (Em,n −Em,0))| < n|Sa(q)|m > |2

=
∑

n

(Em,n − Em,0)l| < n|Sa(q)|m > |2

= < m|S+
a (q)(H −Em,0)lSa(q)|m > . (2.118)

Here, |m > is the ground state in the sector with Sz/N = m and |n > are excited states. The
Hamiltonian H reads

H = H0 −B
∑

x

Sz(x) ≡ H0 −BŜz (2.119)

Em,0 = E0 −BSz = E0 −NBm (2.120)

with E0 refering to the ground state energy of H0 in the Sz- sector Sz = Nm. For this discussion
the prefactor 2 in H0 will be omitted – it results in factors 2l in K(l) in case of a properly scaled
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B. Moreover, the magnetic field B causing the non-zero magnetization m(B) considered in the
following will be used as the approximated N →∞- value (cf. [157])

B(m) = π

(
π

2
− 1 +

1
sin(πm)

)−1

. (2.121)

The reduced symmetry in spin space requires the additional evaluation of the transverse x, y-
components of

< m|S+
a (q)(H − Em,0)lSa(q)|m >

= < m|S+
a (q)

[
H0 −BŜz − (E0 −NBm)

]l
Sa(q)|m > ,

leading to the terms

a = z < m|Sz(H0 −E0)lSz|m >

a = + < m|S−(H0 − (E0 + B))lS+|m >

a = − < m|S+(H0 − (E0 −B))lS−|m >

where Sx, Sy have been expressed by the raising and lowering operators S+, S−. For the analyt-
ical calculation of odd moments it is convenient to use the commutator form (see e.g.[158]):

K(n)
aa (q) =

1
2

< m|[. . . [S+
a (q),H],H], . . . , H], Sa(q)]|m > (2.122)

including (n + 1)- commutators. As an example consider

K(1)
xx (q) =

1
2
· 1
4

< m|[[S+(−q) + S−(−q),H0 −BŜz], S+(q) + S−(q)]|m > (2.123)

= (part B=0)− B

8
< m|[[S+(−q) + S−(−q), Ŝz], S+(q) + S−(q)]|m > (2.124)

= (part B=0) +
1
2
Bm (2.125)

where

[S−(−q), Ŝz] = S−(−q)

[S+(−q), Ŝz] = −S+(−q)

[S−(−q), S+(q)] = − 2
N

Ŝz

has been used and (part B = 0) yields

K(1)
xx (q)

∣∣∣
m, B=0

= −
(

< m|S1(x)S1(x + 1) + Sz(x)Sz(x + 1)|m >
)
(1− cos q) (2.126)

= −
(

< m|1
2
S+(x)S−(x + 1) + Sz(x)Sz(x + 1)|m >

)
(1− cos q) .(2.127)

This result is to be compared with the longitudinal component

K(1)
zz (q) = −2 < m|Sz(x)Sz(x + 1)|m > (1− cos q) (2.128)
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and it shows the identity of logitudinal and transverse components in the isotropic zero-field
case (m = 0) with T

(1)
xx,1 = T

(1)
zz,1 = −2

3E0/N . This m = 0-result has been given in 1975 as one of
a small number of sum rules for the DSF by Hohenberg and Brinkman [116]:

K(1)(q,m = 0) = −2
3

E0

N
(1− cos q) . (2.129)
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Figure 2.13: Frequency moments K
(l)
zz (q, N) vs. q/π, l = 0, 1, 2, 3 for magnetization m = 0

Figs. (2.13,2.14) show frequency-moments K
(l)
xx(q,N), K(l)

zz (q, N) for l = 0, 1, 2, 3 versus q/π
for magnetizations m = 0 and m = 1/4. In the latter case the Kzz curves allways start at
K

(l)
zz (q = 0, N) = 0. Calculations of T

(l=odd)
aa,n for n, l > 1 are rather costly and results shall not be

presented here. Only as a remark it should be added that T
(1)
xx,0 = Bm/2, T

(3)
xx,0 = B3m/2, . . ..

Moreover, the figures indicate that finite-size corrections for the shown frequency-moments are
rather weak and controllable [79, 80]. The used system sizes already supply a very good tool
in order to compare analytical ansatzes for the DSF or its 2-spinon part with the complete
Heisenberg chain where no analytical results for the DSF exist. This will be considered in the
next section.

2.6.7 Frequency-moments and sum rules for the spin-spin DSF

In this paragraph numerical evaluations of the frequency-moments n = 1, . . . 5 of the Heisenberg
chain will be used to compare different DSF ansätze with evaluations of the DSF on the basis
of the complete chain Hamiltonian and its frequency-moments. The latter are finite-N data,
however with a finite-size behaviour that is negligible for the presented survey.
In the following we will consider the Frequency-moment ratios

K
(n)
i (q)

K
(1)
i (q)

; n = 2, 3, 4, 5 ; i = H0 (a), ,MA (b), 2− spinon (c), mod. MA (d) ,

whereby the DSF ansatz (d) represents a modified version of the Müller ansatz (MA) that will
be briefly sketched below. All shown DSFs (Fig. 2.15) have in common that they share the

31



K(0)
aa(q,N)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

N=16

N=20

N=24

N=28N=28

K(1)
aa(q,N)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

K(2)
aa(q,N)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

K(3)
aa(q,N)

0 0.2 0.4 0.6 0.8 1
0

1

2

Figure 2.14: Frequency moments K
(l)
aa (q, N) vs. q/π, l = 0, 1, 2, 3, a = x, z for magnetization

m = 1/4

correct q-dependence of sum rule 2.129, however with prefactor ratios

K
1)
2−sp(q)

K(1)(q)
= 0.7130.. ,

K
1)
MA(q)

K(1)(q)
= 0.8462.. ,

K
1)
mod.MA(q)
K(1)(q)

= 1.0 ,

where case (a) has been used for K(1)(q). That both of the two ratios are lower than 1
above, shows the incompleteness of spectral weight restricted to the 2-spinon part of exci-
tations. however, the ratio of 1 for case (d) must not interpreted as completeness. Here,
the prefactor A and ωu(q) of the Müller ansatz have been given further degrees of freedom
(A → A(q), ωu(q) → u(q)ωu(q), the lower boundary ωl(q) remained unchanged) with A(q), u(q)
fixed by the requirement of fulfillment of the frequency-moments K(−1)(q) (see Sec. 2.6.8) and
K(0)(q), K(1)(q). It turned out that no further conditions (sum rules) could be additionally
fulfilled within this approach (cf. [79, 80]), instead, it helped to get some more insight into the
2-spinon part of the DSF prior to its rigorous determination and will be addressed in Fig. 2.15.
As already might have turned out in the above discussion a reason for the consideration of
frequency-moment ratios may be seen in the fact that these ratios circumvent any ambiguity in
the choice of a constant prefactor (e.g. A in 2.102 which would have to be chosen A = 1.1817
[157] to give the correct prefactor in 2.129).
The comparison of frequency-moment ratios in Fig. 2.15 shows the following interesting points:

1. The ratios R(n)(q) = K(n)(q)/K(1)(q) approach a non-zero value for q → 0 – a behaviour
not present in any of the 2-spinon based ansatzes/solutions which all go to zero. This may
be understood as a hint that in the long wavelength regime R

(n≥2)
(a) (q) is dominantly given

by non-2-spinon contributions (see also finite-N spectrum given below).

2. The frequency-moment ratios R
(n)
(c) (q) of the exact 2-spinon solution is correctly located

under the curves R
(n)
(a)(q) in the whole q-interval (other than the 2-spinon excitations are

not taken into account) and the coincidence of both sets of curves demonstrates the earlier
observation of Müller et al. [156] that the 2-spinon excitations dominate the DSF.
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Figure 2.15: Frequency moment ratios K
(n)
zz (q)/K

(1)
zz (q) vs. q/π, n = 2, 3, 4, 5 for magnetization

m = 0

3. The higher the power of n of the considered frequency-moments the larger is the influence of
non-2-spinon excitations – especially those at higher energies above the 2-spinon continuum
(see discussion below). Therefore, R

(n)
(b,c,d)(q) show stronger deviations from R

(n)
(a)(q) for

increasing n.

4. The ratios R
(n)
(b) (q) of the Müller ansatz (MA) cross and exceed R

(n)
(a)(q) at about q ' π/3.

In retrospective of Sec. 2.6.5 this behaviour reflects the earlier argued [80] fact that
SMA(q, ω) underestimates the spectral weight close to the lower continuum boundary ωl(q)
and overestimates it (due to the finite-heigth step at ωu) close to ωu(q).

5. The above-mentioned unphysical excess of R
(n)
(a)(q) could be overcome by the modified

MA, however, the requirement of correct fulfillment of the mentioned moment conditions
shows a strong and likewise artificial influence on the width of the contributing part of
the spectrum and is sketched in the discussion given below of the complete low-energy
excitation spectrum of a finite chain (N = 28).

Fig. 2.16 supplies information about the positions ωn(q) and relative weights wn(q) of excitations
contributing to the spin-spin DSF

Szz(q, ω)
Szz(q)

=
∑

n

| < n|Sz(q)|0 > |2
< 0|Sz(−q)Sz(q)|0 >

· δ(ω − (En −E0)) (2.130)

≡
∑

n

wn(q) · δ(ω − (En − E0)) (2.131)

for a 28-site chain. To achieve this, excitations and weights have been calculated by means
of the recursion method (Appendix A) and H0 has been chosen as H0 = 2 · ∑i SiSi+1. The
relative weights wn(q) are subdivided in the given 4 ranges of values and any 2-spinon excitation
is marked by a “+” in the belonging open circle (the latter classification is not being given by
the recursion method but from the application of the Bethe ansatz method [22, 133]). It should
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Figure 2.16: Excitation energies ωn(q) and relative weights wn(q) for a 28-site chain

be pointed out that this way of representation does not allow for an immediate comparison
of spectral weights for different q-values which requires the additional knowledge of the SSF
Szz(q,N) given in Sec. 2.5.
It shows first of all that about 2 thirds of the excitations within the 2-spinon continuum are of
2-spinon type and that these are carrying predominant weights. However, it shows as well that
in particular for q ≤ π/3 there is nonvanishing weight above ωu(q), i.e. the upper boundary of
the shaded 2-spinon continuum. As mentioned above these contributions, though having rather
small weights, will be of increasing importance the higher the considered frequency-moments
which are a rather subtle measure for the high-frequency part of the underlying spectrum.
Finally, the thick solid line in Fig. 2.16 shows the upper continuum boundary ω̂u(q) = u(q)ωu(q)
that was enforced by the momentum requirements within the modified MA. On one hand it
shows that ωu(q) had to be exceeded for q ≤ π/3 (especially to meet the conditions given by
K(−1,0,1)(q → 0)), on the other hand it shows the growing decrease of ω̂u(q) for larger q-values.
Besides a lacking attractivity and friendliness of application a gradual merit of the modified MA
may be seen in the fact that its frequency-moments are well bounded by K(n)(a)(q), however
we are not going to follow this concept any further.

At the end of this section it remains to be remarked that to the author’s knowledge so far no
attempt has been made to redo the explanation of INS experiments (e.g. [189, 62]) on the basis
of the complete 2-spinon solution that have been successfully described with the MA-DSF before.
It remains questionable how far the quite subtle differences between the two solutions should
appear in an experimental situation without being overlaid by non-2-spinon excitations of the
Heisenberg chain, or even beyond by deviations of the measured specimen from the idealized
1-D Heisenberg case.
Another open problem is given in the still outstanding formulation of an DSF ansatz for the
presence of a (homogeneous) external magnetic field. In 1997 Dender et al. [63] observed for
the first time an incommensurate shift of the soft mode in copper benzoate, a 1D spin-1/2
antiferromagnet. The future situation of having experimental systems at disposal only stresses
the importance of such an ansatz.
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2.6.8 Susceptibilities

In this final part of the chapter some remarks shall be given on static susceptibilities of Heisen-
berg chains.
The static susceptibility χaa(q) and its relation to the DSF is given by

χaa(q) = 2 ·
∫ ∞

0
dω ω−1Saa(q, ω) = 2K(−1)

zz (q) . (2.132)

Fig. 2.17 shows three different results for χzz(q,m = 0) (for the Hamiltonian H0 =
∑

n S(n)S(n+
1)):

• Finite-size data χzz(q, N, m = 0) for N = 16, 18, . . . , 28 obtained from ωzz,n(q, N), wzz,n(q, N)
given by the recursion method (cf. Appendix A) and the SSF Szz(q, N):

χzz(q,N) = 2 ·
∑
n

1
ωzz,n(q, N)

· wzz,n(q,N)Szz(q, N) (2.133)

with wzz,n(q, N)Szz(q,N) forming the total weight | < n|Sz(q,N)|0 > |2.
• Evaluations of χzz(q) for the Müller ansatz (MA) and the exact 2-spinon contribution to

the DSF both being introduced in this chapter.
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Figure 2.17: Susceptibility χzz(q) for magnetization m = 0

The 2 main drafts of the figure show the behaviour for q < π (left) and q = π (right) and the
inset on the left-hand side resolves the small-q behaviour. The only well-known point in the
figure [96, 220] is given by

χzz(q = 0) =
1
π2

(2.134)

(see also Sec. 2.4) which is precisely fulfilled by the MA (see inset) for the choice A = 1 of the
free constant in the ansatz (Eq. 2.102) – the choice being used for the MA in Fig. 2.17.
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Figure 2.18: N -dependence of χzz(q = π, N) for magnetization m = 0

Again, for increasing q the finite-N data are better approximated by χ2−sp.
zz (q) for which the

following relations have been shown [132]

χ2−sp.
zz (q)

q→π−→ ∼ 1
π − q

(− ln(π − q))1/2 (2.135)

χ2−sp.
zz (π, N) N→∞−→ 2π−5/2

√
2C ·N

√
ln N (2.136)

with C being given in Sec. 2.6.5. The N -dependence of the latter relation is to be contrasted
with the N -behaviour shown in the right-hand plot in Fig. 2.17; the given points show a very
clear linear N -dependence presented in Fig. 2.18 together with a linear fit to the data. As
mentioned before, the presented finite-chain evaluations are restricted to system sizes that are
too small to resolve logarithmic corrections to algebraic behaviour (presumably not only present
in the 2-spinon solution) with exponents unequal to zero (the latter is e.g. clearly resolvable in
the case of the SSF at q = π, see Fig. 2.5).
The linear N -dependence of χzz(q = π,N) (up to some logarithmic corrections) is in accordance
with ωl(q = π, N) ∼ N−1, Szz(ω, q = π,N) ∼ ω−1,Szz(q = π, N) ∼ N0 (∼ ln N) appearing
earlier in this chapter.

Finally, it should be mentioned that the left-hand side of Fig. 2.17 (main plot as well as inset)
very distinctively shows some of the groups of points belonging to the same zi(q)-value (cf. Sec.
2.2, Eq. 2.15) describing the approach of q1 = 0 and q2 = π:

z1 = N · q

π
(2.137)

z2 = N ·
(
1− q

π

)
. (2.138)

The inset clearly shows the group z1 = 2, whereas the 7 members (N = 16, 18, . . . , 28) of z2 = 2
at the far right of the main figure are immediately ascertainable. We shall meet again this type
of classification and a particular finite-size scaling application in Sec. 5.4.2.
At this place, however, finite-size scaling of the static susceptibility shall not be pursued further.
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Chapter 3

Periodically perturbed spin chains

In this part we will turn to the case of a spin chain described by the Hamiltonian H0 that is
perturbed by a periodic perturbation of strength hadescribed by Ha(q):

H(ha) = H0 + ha ·Ha(q) (3.1)

H0 = 2
∑

n

S(n)S(n + 1) (3.2)

Ha(q) = 2
√

NXa(q) = 2
∑

n

eiqnXa(n) . (3.3)

In certain cases it may be more convenient to study the perturbation modeled by

Hc
a(q) ≡ 1

2
(Ha(q) + Ha(−q)) = 2

∑
n

cos(qn)Xa(n) . (3.4)

In this introductory chapter the wave number q of the perturbation will be restricted to the
interval q ∈]0, 2π[, i.e. q 6= 0, 2π. As will become clear soon, the case q = 2π · n is tied
to a different initial condition when a perturbation of the Heisenberg chain with a respective
momentum is applied. The latter case will be discussed separately in Chap. 5.

The outline of what follows will be 2-fold:
First, the behaviour of the Heisenberg chain under the inclusion of small periodic perturbations
(i.e. opening of gaps, changes of energies, transition amplitudes, critical exponents, etc.) will be
addressed and described by means of a closed set of differential equations (DEs). Here, results
of the preceding chapter will serve as initial conditions of the unperturbed chain. As well, it will
be shown that scaling solutions do exist, that fulfil the set of DEs order by order ( neglecting the
omnipresent logarithmic corrections). The latter part will be presented for one of the periodic
perturbations (2

√
NS3(π)) being introduced in the following section.

Second, we will turn away from the smallness requirement for the periodic perturbations in order
to address a wide variety of interesting physical systems (spin ladders, spin-Peierls materials,
. . . ) that make it necessary to increase the strengths of the perturbations. Here, the applicability
of predictions originating from small perturbation analysis will be discussed. In particular, the
discussion of dimer-like periodic perturbations will be required.
The very unambiguous fingerprint of the opening of a gap due to an applied periodic perturbation
(conserving the spin component forming the magnetization), the appearance of magnetization
plateaus, will be discussed later in Chap.4.
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3.1 General types of periodic perturbations

The choice of types of periodic perturbations is related to their degree of interest in the contempo-
rary discussion of quantum spin systems as well as to their generalizability to later applications.
The first cases to consider are periodic perturbations of homogeneous external transverse or
longitudinal fields:

transverse: X(n) = Sx(n) (3.5)
longitudinal: X(n) = Sz(n) . (3.6)

The second group of perturbations is the group of dimer-like spin-spin interactions Dj(n) between
j-th nearest neighbors that will be needed in particular be needed when tayloring new spin-
geometries starting from the isotropic Heisenberg chain e.g. when describing spin ladders as
linear spin systems; see Sec. 3.4:

dimer: X(n) = Dj(n) (3.7)

with

Dj(n) ≡ S(n)S(n + j) , j = 0, 1, 2, . . . . (3.8)

The discussion will be restricted to these cases including the occurrence of a simultaneous pres-
ence of some of the given types.

3.2 Theory – general description of periodic perturbations

The following review of a theoretical description and development of a scaling ansatz [84, 85]
for a periodically perturbed system is based on the key elements of a system described by the
Hamiltonian H(h) (see below):

• Eigenvalues En(N, h), eigenfunctions |Ψn(N,h) >:

H(N,h)|Ψn(N, h) > = En(N, h)|Ψn(N,h) > (3.9)

• Excitation energies ωmn(N,h):

ωmn(N, h) = Em(N, h)− En(N, h) (3.10)

• Transition amplitudes Tmn(N, h):

Tmn(N, h) = < Ψm(N,h)|2
√

NX(q)|Ψn(N,h) > . (3.11)

Restricted to the cases q = 0, π or using Xc(q) otherwise results in a symmetric matrix T ,
i.e. Tmn = Tnm.

First, the discussion will focus on the case of a single periodic perturbation of the isotropic
Heisenberg chain. Furthermore, the specification of the system size N in the following formulas
will be omitted wherever misunderstanding seems avoidable.
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3.2.1 Behaviour of excitation energies and transition matrix elements

A first important property evolves when looking at the changes in translational symmetry caused
by H(q) for a non-zero coupling strength h. It turns out that

TmH(h)T−m = H(−h) , for m =
π

q
(3.12)

holds, where T is the translation operator (intoduced in Sec. 2.1, Eqns. 2.6, 2.7). Using the
momentum values of a N -site chain, i.e. q = (2π/N) · j, j = 0, 1, . . . , N − 1 this results in

m =
N

2j
, (3.13)

e.g. m = 2 for q = π/2 etc.. Here, a first signature of the exceptional case of q = 2πn appears,
which is not able to show the above symmetry.
At this point it should be remarked that the classification of momenta will usually be that of
the unperturbed Heisenberg chain and no reductions of the 1st Brillouin zone will occur.
Making use of Eq. 3.12 the Schrödinger equation 3.9 yields

T−m TmH(h)T−m

︸ ︷︷ ︸
=H(−h)

Tm|Ψn(h) >︸ ︷︷ ︸
=|Ψn(−h)>

= En(h)T−m Tm|Ψn(h) >︸ ︷︷ ︸
=|Ψn(−h)>

(3.14)

→ En(h) = En(−h) . (3.15)

An immediate consequence of this relation is that for differentiable En(h) and q 6= 0

d

dh
En(h)

∣∣∣∣
h=0

= 0 ∀N (even) (3.16)

holds. Turning again to the Schrödinger equation 3.9 it is a simple task to obtain

d

dh
En(N, h) = < Ψn(h)|2

√
NX(q)|Ψn(h) >= Tnn(N, h) (3.17)

d

dh
|Ψn(h) > = −

∑

m6=n

Tmn(N, h)
ωmn(N,h)

|Ψm(h) > (3.18)

with Tmn = Tnm for real symmetric Xc(q).

3.2.2 A complete set of differential equations (DEs): evolution equations

Proceeding further in evaluating 2nd derivatives of the eigenvalue equation one obtains a closed
system of DEs that governs the h-dependence of the En(N, h) and Tmn(N, h):

d2

dh2
En = −2

∑

l 6=n

|Tln|2
ωln

(3.19)

d

dh
Tmn = −

∑

l 6=m,n

(
TmlTln

ωlm
+

TmlTln

ωln

)
− Tmn

ωnm

dωnm

dh
(3.20)

Turning now to the different types of periodic perturbations the initial conditions (i.e. h = 0)
will differ for the respective cases. Eq. 3.17, however, tells that in all considered cases for q 6= 0

d

dh
En(h)

∣∣∣∣
h=0

= 0
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has to hold.
In the following, we will first apply the initial conditions and scaling properties of solutions
of the evolution equations for the case of a longitudinal staggered field (q = π, m = 0) [84]
before turning to the influence of a transverse staggered field (q = π) on a Heisenberg chain in
a uniform longitudinal magnetic field as well as to the influence of a staggered longitudinal field
on such a chain [85].
As an important feature the connection between the soft mode positions of the Heisenberg chain
(given by LSM; see Sec.2.6.2) and the magnetization values mpl. of plateaus being formed under
the influence of a periodic perturbation respectively several periodic perturbations will emerge.

3.2.3 Scaling solutions for a longitudinal staggered field (q = π, m = 0)

In the course of this section a scaling solution and its expansion for small scaling variables (see
below) will be discussed completely neglecting any logarithmic correction in the initial conditions
as well as in the set of evolution equations. This neglect will a posteriori be commented and to
some extent justified.
The staggered longitudinal field with momentum q = π is given as

Hz(q = π) = 2
√

NSz(π) = 2
N−1∑

x=0

eiπxSz(x) , (3.21)

i.e.

TH(h)T−1 = H(−h) ; |Ψ(−h) >= T |Ψ(h) > (3.22)

(see Eq. 3.12). Bearing in mind to look at the soft mode position of the unperturbed infinite
chain (q3(m = 0) = π) again, 1, 2, 3 is used synonymously for x, y, z, the following classification
of the unperturbed eigenstates |Ψn(0) > with momenta qn = 0, π appears to be appropriate:
While in case of h 6= 0 those 2 momenta are degenerate, for h = 0 we define for the 2 groups of
eigenstates with momenta q = q0(N) (1), q = q0(N) + π (2) the following order:

q = q0 : n = 0, 2, 4, . . . , |Ψ0(h = 0) >≡ ground state (3.23)
q = q0 + π : n = 1, 3, 5, . . . (3.24)

E2n(N, 0) < E2n+2(N, 0) ; E2n+1(N, 0) < E2n+3(N, 0) . (3.25)

i.e. the 2 sequences are independently ordered and q0(N) has been given in Sec.2.1. For the
energy differences ωm0 and transition amplitudes Tm0 –connecting ground state and excited
state m– and under the mentioned neglects we expect the following initial conditions to hold:

ωm0(N, 0) N→∞−→ am0 ·N−1 (3.26)

Tm0(N, 0) N→∞−→ bm0 ·Nκ . (3.27)

The exponent κ (κ ' 1/2) will be discussed and compared with CFT results later in the following
section. We Define

imn ≡ eiπ(m−n) = (−1)m−n , (3.28)

and coefficients bm0 = 0 for im0 = 1. The latter relation is to be considered since the momentum
change ∆q = π caused by the operator S3(π) leads to

Tmn(N, 0) = 0 for imn = 1 .
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Moreover, the transition amplitudes T2n−1,0(N, 0) are related to the matrix elements wtot
zz,n(π, N)

(cf. e.g. Sec. 2.6.3) by

wzz,n(π, N, h = 0) =
1
N
· |T2n−1,0(N, 0)|2 ; n = 1, 2, . . . .

Turning now to a scaling ansatz, i.e. combining the 2 limits N → ∞, h → 0 in a fixed scaling
variable

x ≡ N · hε (3.29)

–for reasons of convenience a modification from standard finite-size scaling theory (using y =
x1/ε) [173, 174] has been made–, we start assuming the following scaling behaviour for the
elements of the evolution equations

ωmn(N, h) = hεΩmn(x) (3.30)
Tmn(N, h) = NhσΘmn(x) (3.31)

to hold for all {m,n}. Second, the generalized initial conditions

ωmn(N, 0) N→∞−→ amn ·N−1 (3.32)

Tmn(N, 0) N→∞−→ bmn ·Nκ ; bmn = 0 for imn = +1 . (3.33)

should result in

Ωmn(x) x→0−→ amnx−1 (1 + emn(x)) (3.34)

Θmn(x) x→0−→
{

amnx−2fmn(x) imn = +1
bmnx−σ/ε (1 + fmn(x)) imn = −1

. (3.35)

As a first relation between the 3 different exponents one obtains

κ = 1− σ

ε
. (3.36)

Discussing then conveniently chosen expressions containing ωmn(N,h) and/or Tmn(N,h), the
application of the evolution equations as well as the scaling relations lead to a matching scaling
behaviour when choosing [84]

σ = 2ε− 1 , (3.37)

i.e.

σ = (1− κ)(1 + κ)−1 ; ε = (1 + κ)−1 , (3.38)

so both exponents are fixed by the finite-size dependence of the initial conditions.
Finally, the consideration of the small-x behaviour, i.e. assuming an expansion of the scaling
functions

emn(x) = e(0)
mnxφ0 + e(1)

mnxφ1 + . . . (3.39)
fmn(x) = f (0)

mnxφ0 + f (1)
mnxφ1 + . . . (3.40)

–at the beginning allowing for different φe, φf– lead in the 2 lowest orders to φe = φf with

φ0 = 2/ε , φ1 = 2φ0 = 4/ε . (3.41)
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Furthermore, the coefficients of the lowest order in x of the scaling functions are given by the
initial values amn, bmn:

e(0)
mn = 2δ−mn

b2
mn

a2
mn

− 1
amn

∑

l 6=m,n

[
δ−lm

b2
lm

alm
− δ−ln

b2
ln

aln

]
(3.42)

imn = +1 : f (0)
mn = −

∑

l 6=m,n

δ−lmδ−ln
bmlbln

amn

(
1

alm
+

1
aln

)
(3.43)

imn = −1 : 2(e(0)
mn + f (0)

mn) =
∑

l 6=m,n

(
δ+
lmfml

blnaml

bmn
+ δ+

lnfln
bmlaln

bmn

)(
1

aml
+

1
aln

)
(3.44)

with δ±ij ≡ 1
2
(1± (−1)i−j) . (3.45)

Here, the first relation is exact while for the remaining two (cases imn = ±1) the asymptotic
behaviour of the underlying relation has been used.
Then coefficients of the next order (e, f (1)

mn) are determined by {aij , bij} together with the lowest
order coefficients {eij , fij}.

3.2.4 Numerical check of the finite-size scaling ansatz (staggered field, m = 0)

A numerical check of the scaling arguments and assumptions presented above starts with the
consideration and test of the assumptions being made for the initial conditions (h = 0) in the
last section.
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Figure 3.1: ω10(N, 0), T10(N, 0) for N = 8, 10, . . . , 24 and fits to the asymptotic behaviour

Fig. 3.1 shows the N -dependence of the lowest non-zero excitation energy ω10(N, 0) and transi-
tion amplitude T10(N, 0) which both show an approximately linear behaviour in N−1 and N1/2,
respectively. The excitation energy, however, shows stronger deviations from a purely algbraic
behaviour. Therefore, besides a N−1-fit a fit containing as well a first logarithmic correction
N−1(1 + c · 1

ln N ) has been done (Fig. 3.1 (a)). The coefficient a10 in

ωm0(N, 0) N→∞−→ am0 ·N−1

changes from a10 = 8.53 (no logarithmic corrections) to a10 = 9.74 (including the logarithmic
corrections) while the exact value is a10 = π2 = 9.86 . . . [9].
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Using the definition given above

Tm0(N, 0) N→∞−→ bm0 ·Nκ , im0 = −1 ,

Fig. 3.1 (b) results in κ ' 1/2. Both, the leading algebraic behaviour of ω10(N, 0), T10(N, 0) are
in agreement with CFT (κ = a10/2π2 = 1/2; for references see e.g. [84]). In the framework of
finite-system evaluations we conclude that the restriction to purely algebraic N -dependences of
the initial conditions as well as for the following scaling analysis seems to be consistent within
the margin of numerical accuracy.
We turn to the scaling behaviour of the perturbed quantities ωm0(N, h), Tm0(N,h). First of all,
relations 3.38 determine ε = 2/3 = 2σ using κ = 1/2. Then, Eqns. 3.30, 3.34 predict scaling
behaviour

ωm0(N,h)
ωm0(N, 0)

= 1 + em0(x) = 1 + e
(0)
m0 · x2/ε + . . . (3.46)

and Eqns. 3.31, 3.35 result in

Tm0(N, h)
Tm0(N, 0)

= 1 + fm0(x) = 1 + f
(0)
m0 · x2/ε + . . . , for im0 = −1 , (3.47)

i.e. the latter scaling relation restricted to Tm0(N, 0) 6= 0. Eqns. 3.46, 3.47 in particular give a
(in leading order) quadratic behaviour (x2/ε ∼ h2) of Xm0(N,h)/Xm0(N, 0)− 1 (X = ω, T ). In
general only even powers of h occur which is a consequence of the initial conditions for periodic
perturbations. Later (in Sec. 5.2.3) we will comment on an example of a translation invariant
perturbation (qpert. = 2π · n, n integer).

0 2 4

x3  ;  ε=0.66  ;  S3(π)

1

1.05

1.1

1.15

1.2

ω
m

0(
N

,h
)/

ω
m

0(
N

,0
)

m=1 ; x2.96(5)

m=2 ; x3.00(5)

m=3 ; x3.04(5)

0 2 4

x3  ;  ε=0.66  ;  S3(π)

0.8

0.85

0.9

0.95

1

T
m

0(
N

,h
)/

T
m

0(
N

,0
)

m=1 ; x2.94(5)

m=3 ; x2.99(5)

Figure 3.2: Scaling of the ratios 3.46, 3.47 for small x and N = 8, 10, . . . , 24

Numerical data for the predicted type of scaling for low excitations (m = 1, 2, 3) and system
sizes N = 8, 10, . . . , 24 are shown in Fig. 3.2. Optimal scaling has been achieved for ε = 0.66 and
the region of small x agrees quite well with the x2/ε = x3-behaviour as derived in the discussion
of the scaling limit.
It should be mentioned that the numerical results shown in this section are related to the
Hamiltonian H = 2

∑
n (SnSn+1 + exp(iπn)S3(n]), i.e. the factor of 2 has been kept as an

overall factor of the Hamiltonian. The exponents of the small-x behaviour, given in [84], remain
unchanged of course.
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Figure 3.3: Scaling behaviour of T00(N,h) and T20(N,h) for small x

The scaling of the quantities T2m,0(N, h) has to be dealt with in a different way. Using e.g. Eq.
3.35 for T00(N, h) a scaling of type

T00(N, h) = Nhσx−2f00(x) , (3.48)

i.e.

T00(N,h)
Nhσ

= f
(0)
00 x + f

(1)
00 x4 + . . . (3.49)

(ε = 2/3) is predicted. Assuming moreover, that T2m,0(N, h) and ω2m,0(N, h)/h scale in the
same manner (see the evolution equations), we expect for instance

T20(N,h)
ω20(N,h)/h

= f20(x) (3.50)

(e.g. ∼ x3 for x ¿ 1, ε = 2/3). Both cases are shown in Fig. 3.3 and the scaling hypotheses
appear to be fulfilled quite well.
A final point in this section will be a comment on the limit x →∞ which for small (non-zero!)
fields h contains information on the existence of a finite gap in the TDL (N →∞). Such a gap
is then predicted to open ∼ hε. As a matter of fact, a scaling analysis on the basis of finite-
system evaluations appears to be easier tractable than trying to obtain a complete solution of
the evolution equations for arbitrary x. For the given investigation, a BST-analysis (see also
App. C) of the finite-system data led to

lim
x→∞Ω10(x) = Ω∞10 ' 4 , (3.51)

i.e. in the TDL a gap opens proportional to hε. Interestingly, such opening of a gap has been
predicted by different theoretical approaches, it moreover has been observed experimentally (INS
measurements) for copper benzoate (Dender et al. (1997)) [63]. Copper benzoate –so far being
considered a spin-1/2 1d-Heisenberg antiferromagnet candidate– not only for the first time made
the shift of the field-dependent soft mode observable, it in addition showed the opening of a gap
due to the applied external magnetic field B with EGap ∼ Bε, ε ' 2/3. Since such a gap does not
occur in a Heisenberg chain, these authors –and later more detailed Oshikawa and Affleck[169]–
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discussed the existence of a local g-tensor for the Cu ions resulting in an additional staggered
type field.
The coexistence of a staggered field (transverse or longitudinal) together with an uniform mag-
netic field and in particular the opening of gaps at the field-dependent and -independent soft
modes will be the topic of the next section.

3.3 Coexistence of uniform and periodic perturbations

We will now switch to the discussion of a Heisenberg chain in a uniform magnetic field B = B ·~e3

that is perturbed by either a transverse or a longitudinal periodic field, i.e.

H = H0 − 2B
√

NS3(q = 0) + 2ha

√
NSc

a(q)
≡ H0(B) + 2ha

√
NSc

a(q) (3.52)

= 2
∑

n

[
S(n)S(n + 1)−B · S3(n) + ha · cos(qn)Sa(n)

]
; a = 1, 3 .

The physics of the unperturbed chain –H0(B)– has been outlined in Chap. 2. The quantum
numbers of the ground state (Sec. 2.1: q0 = 0, π, S0 = Sz,0 = Nm), the gapless spectrum and
the monotonic slope of the magnetization curve have been discussed. In the limit of infinite
N the lowest excitations of the chain reached by S3(q) and S±(q) acting on the ground state
|q0, S >

ω3(q,B, N) = E(q0 + q, S, N)− E(q0, S, N) (3.53)
ω±(q,B, N) = E(q0 + q, S ± 1, N)− E(q0, S, N)±B (3.54)

vanish for certain qk(m). The corresponding soft modes

qk(m) = q0 + k · π(1− 2m) mod 2π , k = 0, 1, 2, . . . (3.55)

have been predicted in particular by the LSM-theorem (see Sec. 2.6.2). In the following discus-
sion, based on finite-chain evaluations, we will again focus on the case m = 1/4 and on those
soft mode momenta that appeared most clearly and stable in the scaling procedure presented in
Sec. 2.6.3, namely

qa(m) =
{

π , a = 1 (, 2)
π(1− 2m) , a = 3

. (3.56)

In Sec. 2.3 it has been reviewed that CFT describes the critical behaviour at the soft modes.
In particular (cf. Sec. 2.6.3) the η-exponents, expressing the finite-size behaviour of the SSFs
at the soft mode momenta qa,

Saa(qa, N) N→∞−→ const. ·N1−ηa(m) , (3.57)

are given by

ηa(m) =
1

πv(m)
· lim

N→∞
(Nωa(qa(m), B)) (3.58)

v(m) = lim
N→∞

(E(q0 + dq, S)− E(q0, S)) /dq , dq =
2π

N
. (3.59)

Finally, it shall be pointed out that the finite-size behaviour of the transition amplitudes

2N1/2 < S ± 1, qs + q1(m), N |S±(q1(m), N)|S, q0, N >
N→∞−→ ∼ Nκ1(B) (3.60)

2N1/2 < S, qs + q3(m), N |S3(q3(m), N)|S, q0, N >
N→∞−→ ∼ Nκ3(B) (3.61)
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and the behaviour of the SSFs at the soft mode momenta qa(m) (Eq. 3.57) result in the relation

κa(B) = 1− ηa(m(B))
2

, (3.62)

leading to

εa(B) = (1 + κa(B))−1 =
2

4− ηa(m(B))
. (3.63)
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Figure 3.4: Critical exponents ε1,3(B) determined from BA solutions for a 2048-site chain

3.3.1 Transverse staggered field in a uniform longitudinal magnetic field

Now, the evolution equations given above will be applied to the investigation of the opening
of a gap under the influence of a staggered transverse field [85]. For zero uniform magnetic
field Oshikawa and Affleck [169] showed that the gap rises ∼ h

2/3
1 . For general B the relations

3.38, 3.62 can be used to determine the exponents εa(B) from the η-exponents ηa(m) that are
accessible by Bethe ansatz (BA) calculations [84] as well as via the solution of non-linear integral
equations derived from BA (quantum transfer method QTM in particular) [135]. Fig. 3.4 shows
results for εa(B) resulting from BA solutions for a 2048-site chain (note, BSat(h1 = 0) = 2 ; see
e.g. App. B). B = 0 yields the above-mentioned exponent 2/3 related to κ(B = 0) = 1/2.
Addressing first the soft mode at q = π, the first excited states accessable by S1(π) are

|n = ±1 > = |q0 + π, S3 = S ± 1 > (3.64)

with

ω±1,0(π,B, h1 = 0) = E(q0 + π, S ± 1)−E(q0, S)±B
N→∞−→ ∼ N−1 (3.65)

T±1,0(B, h1 = 0) = 2N1/2 < ±1|S±(π)|0 >
N→∞−→ ∼ Nκ1(B) . (3.66)

A useful scaling analysis of the type

ω10(π,B, h1)
ω10(π, B, 0)

= 1 + e10(x,B) = 1 +
1

a10
xΩ10(x) (3.67)
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with x = Nh
ε1(B)
1 requires a careful choice of B on a given finite-N magnetization plateau (see

e.g. Fig. 2.2) – precisely at the 2 boundaries of such a plateau the energy differences to be scaled
vanish. The midpoint Bmid(m,N) of this mentioned plateau i.e. the value of a Bonner-Fisher
construction [32] coincides with the 2 gaps ω±1,0(π,Bmid, 0) which are of equal and nonzero
size. Since < ±1|S1(π)| ± 1 >= 0, this degeneracy is not lifted within 1st order perturbation
theory and in the following, Bmid(m = 1/4, N) –as given in Table 3.1– will be used for the
discussion of the scaling behaviour of the gap.

N Bmid(m = 1/4, N)

8 1.5642
12 1.5758
16 1.5798
20 1.5816

Table 3.1: Midpoint magnetic fields Bmid(N,m = 1/4) for the considered chain lengths

The smallness of the largest N -value used in the calculations presented below (compared with
N = 24, 28) results from the lost conservation of S3 for non-zero h1 requiring to account for
all different S3-classes in the calculations. Moreover, numerical evaluations had to be restricted
to the determination of the ground state energy (q0 = 0, π) as well as the energy of the first
excited state (q = π, 0), which make a direct scaling investigation at soft mode momentum q3(m)
impossible.
Fig. 3.5 shows an intermediate stage of the determination of an optimal exponent describing
the scaling of the excitation energy ratios (Eq. 3.67) and Fig. 3.6 gives a comparison of the
scaling with the optimal scaling exponent ε1(m = 1/4) = 0.595 and the m = 0-exponent
ε1(m = 0) = 0.666. The latter showing distinct scaling violations for m = 1/4.
Moreover, the plot of the energy ratios versus x2/ε1(m) makes use of the small-x analysis of Sec.
3.2.3 (φ(0) = 2/ε) and the expected linear behaviour in x2/ε is sufficiently well established for the
left-hand plot in Fig. 3.6. In addition, the determined optimal value ε1(m = 1/4) = 0.595(5)
compares very well with ε1(B(m = 1/4)) = 0.5975.. as obtained from Fig. 3.4.
Now, we will turn to a different starting point, namely the discussion of the scaling of ground
state energies at the soft mode positions when the field h1 is applied (calling the lowest energy
E0(B, 0) at q = π/2 ground state energy as well despite of the non-degeneracy of E0(B, 0; q0 =
0, π) (see Sec. 2.1)). For that purpose, the 2nd derivative of the ground state energy (Eq. 3.19)
will be 2-fold integrated and scaling results for the small-x behaviour of Ω10(x), Θ10(x) will be
used. It is important to note that due to the momentum changes ∆q = π caused by S1(π) the
2 sets of momenta 0, π and ±π/2 are independently described by the evolution equations. For
both classes of soft mode momenta a scaling ansatz

ωmn(qa, B, h1) = h
ε(B)
1 Ωmn(x) (3.68)

Tmn(B, h1) = Nhσ(B)Θmn(x) (3.69)

is appropriate (x = Nh
ε(B)
1 ). We will now evaluate the changes in ground state energies

∆E0(B, h1):

∆E0(B, h1) = E0(B, h1)− E0(B, 0) (3.70)

=
∫ h1

0
dh′1

∫ h′1

0
dh′′1

d2

dh′′21

E0(B, h′′1) (3.71)
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ω10(N,Bmid(m,N),h1)/ω10(N,Bmid(m,N),0)    vs   Nh1
ε  ;  m=1/4  ;  S1(π)
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Figure 3.5: Course of the determination of the optimal scaling exponent ε1(m = 1/4)
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Figure 3.6: Comparison of optimal scaling ε1(1/4) = 0.595 and scaling with m = 0-exponent

and keep N fixed. The upper relation is valid due to the vanishing of the 1st derivative

d

dh1
E0(B, h1)

∣∣∣∣
h1=0

= 2N1/2 < 0|S1(π)|0 >
∣∣∣
h1=0

= 0 , (3.72)

an important feature of periodic perturbations with q 6= 0 as has been emphasized in the first
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part of this chapter. The 2nd derivative of the ground state energy (see Eq. 3.19)) reads

d2

dh2
1

E0 = −2
∑

l 6=0

|Tl0|2
ωl0

= −2(Nh
σ(B)
1 )2h−ε(B)

1

∑

l 6=0

|Θl0|2(x)
Ωl0(x)

(3.73)

= −2N1+2κ(B)x1−2κ(B)
∑

l 6=0

|Θ2
l0(x)|

Ωl0(x)
. (3.74)

Defining now

f(x) ≡ x1−2κ(B)
∑

l 6=0

|Θ2
l0(x)|

Ωl0(x)
(3.75)

y ≡ x1/ε(B) = h1N
1+κ(B) (3.76)

∆E0(B, h1) is given by

∆E0(B, h1) = −2
(

h1

y

)ε(B) ∫ y

0
dy′

∫ y′

0
dy′′f(y′′) . (3.77)

The insertion of the leading orders in the small-x behaviour of Ω10(x) and Θ10(x) (see e.g.
Eqns. 3.34, 3.35), i.e. Ω10(x) ∼ x−1, Θ10(x) ∼ xκ1(B)−1 = x−2+1/ε1(B), results in f(y) ∼ y0 and
therefore

∆E0(B, h1) ∼ −h
ε(B)
1 · y2−ε(B) = −h

ε(B)
1 · x2/ε(B)−1 . (3.78)
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Figure 3.7: Scaling of (a) ∆E0(B, h1) (Eq. 3.70) and (b) gap ratio (Eq. 3.87)

A check of this type of scaling for the numerically accessible class of momenta (0, π) is given in
the left-hand side of Fig. 3.7. The figure shows a plot of ∆E0(B, h1)/h

ε1(B)
1 vs. x2/ε−1 with an

optimal ε = ε1 = 0.595, i.e. showing the same hε1
1 -dependence as found before for the excitation

energies ωm0(π, B, h1) (ω10 to be precise).

The lowering of the ground state energy for the field dependent momenta q = q3(m), q3(m)+π,
i.e. here q = ±π/2, requires a consideration of the respective initial conditions, namely the
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knowledge of κ± = 1− η±/2 describing the finite-size behaviour of the transition amplitudes

< ±1|2N1/2S1(π)|0 > = 2N1/2 < q0 + π + q3(m)|S1(π)|q0 + q3(m) (3.79)
= b±1,0(B)Nκ±(B) . (3.80)

In [85] CFT relations between η-exponents and scaled energy differences (cf. Sec. 2.6.3) have
been used to obtain

η±(m) = η1(m) +
v±(m)
v(m)

= η1(m) + 1 . (3.81)

Here, the slopes of the 2 dispersion curves (v±(m)) approaching q3(m)±2π/N and the respective
slope at q0 have been determined to be of identical size (compare e.g. Fig. 2.10; here q0 = π).
It is important to note that the above given exponents η±(m) differ from those discussed in Sec.
2.6.3 since different processes are considered. Here, we consider excitations of the lowest energy
state at the soft mode q1(m) caused by the operator S1(π) (i.e. momentum changes ∆q = π)
while in Sec. 2.6.3 the field dependent soft mode q1(m) (= q3(m) only for m = 1/4) has been
reached by a ground state excitation with momentum q1(m) (i.e. ∆q = q1(M)):

η±(m)|Sec.2.6.3 = lim
N→∞

N

πv(m)
[
E(q0 + q1(m)± 2π/N, m±, N)−E(q0,m,N)

]

η±(m)|Eq.3.81 = lim
N→∞

N

πv(m)
[
E(q0 + π + q3(m),m±, N)− E(q0 + q3(m),m,N)

]

with m± = m± 1/N . For convenience, same symbols for the critical exponents have been used.
Applying the results given by Eq. 3.81 one obtains

ε+ = ε− =
2

3− η1
> ε1 (3.82)

leading to

(E(q1 = q3(m), h)− E(q3(m), 0))︸ ︷︷ ︸
∼h

ε+
1

¿ (E(q1 = π, h)− E(π, 0))︸ ︷︷ ︸
∼h

ε1
1

for h1 ¿ 1 . (3.83)

This means that for small perturbations h1 the opening of a gap at the field dependent soft
mode will be dominated by the much larger decrease of the true ground state energy (q0 = 0, π).
The field dependence of this opening of a gap is described by the same exponent ε1(B) as in
case of the field independent soft mode, i.e.

E(q0 + q3(m), S)−E(q0, S) ∼ h
ε1(B)
1 . (3.84)

3.3.2 Longitudinal staggered field in a uniform longitudinal magnetic field

We will now briefly sketch the situation of a staggered longitudinal field ∼ √
NS3(q):

H(B, h3) = H0(B) + 2h3

√
NSc

3(q) . (3.85)

In this case, the 3-component of the total spin vector is conserved and Sc
3(q) causes changes

of momentum of ±q when acting on a momentum eigenstate. This means that the evolution
equations couple momentum states

qk = q0 + kq , k = 0, 1, 2, . . . . (3.86)
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Neglecting the uniform case q = 2πn, transition amplitudes T3(B, h3 = 0) = 2N1/2 < q0 ±
q, S|S3(±q)|q0, S > only show singular behaviour if q coincides with a soft mode momentum,
e.g. q = q3(m):

ω3(q, B, h3 = 0) N→∞−→ a3(B) ·N−1 (3.87)

T3(B, 0) N→∞−→ b3(B) ·Nκ3(B) . (3.88)

Following the same lines we expect a scaling behaviour of the gap

ω3(q3, B, h3)
ω3(q3, B, 0)

= 1 + e3(x, B) (3.89)

ex(x,B) ∼ x2/ε3(B) . (3.90)

The right-hand side of Fig. 3.7 shows an optimized finite-size scaling of ratio 3.87 on the basis
of system sizes N = 8, 12, 16, 20 and for magnetization m = 1/4. The resulting exponent
ε3(m = 1/4) = 0.81.. agrees very well with the value ε3(m = 1/4) = 0.81011.. derived from the
data of Fig. 3.4. In the small-x regime the numerical data (rhs. Fig. 3.7) again and even better
shows the linear behaviour in the predicted power of the scaling variable.
In the next chapter we will return to this briefly presented system and discuss the magnetization
plateau formation under the influence of a correctly chosen periodic perturbation h3(q).

3.3.3 Periodic dimer perturbation D1(π), m = 0

At the end of the part concerned with the discussion of small periodic perturbations and their
scaling properties some nearest neighbour dimer perturbations shall be considered. We start
again at zero magnetization ([84]) and use

H = H0 + 2h ·HD1(π) = H0 + 2h ·
√

ND1(π) (3.91)

= 2
∑

n

(
1 + h · eiπn

)
SnSn+1 . (3.92)

Hamiltonians of this kind extended by an additional (non-periodic) next-to-nearest neighbour
coupling have been discussed for spin-Peierls systems (see e.g. [175, 35, 105]) which will be
taken up again in Sec. 3.5. Here, we proceed in a way that meanwhile should appear quite
habitually: first determining the exponent κ given by the initial conditions (i.e. h = 0), then
considering the finite-size scaling predictions of type

ω10(N, h)
ω10(N, 0)

= 1 + e10(x) (3.93)

T10(N, h)
T10(N, 0)

= 1 + f10(x) . (3.94)

The first step is summarized in Fig. 3.8, where chains of N = 8, 10, . . . , 24 have been evaluated.
Again, ω10(N, 0) shows distinct deviations from a clean 1/N -behaviour and a fit of additional
logarithmic corrections has as well been included in the respective part of the figure. However,
an even stronger deviation is shown for T10(N, 0) – here, CFT predicts κ = 1/2 [163, 9] (as
found for longitudinal staggered fields (Sec. 3.2.4). The value of κ ' 0.37 is influenced quite
certainly by finite-size effects and κ = 0.5 is expected to be the TDL value.
Fig. 3.9, however, shows that the deviating κ-value is in agreement with the scaling of the
energy- and transition amplitude ratios (Eq. 3.93, 3.94): κ ' 0.37, ε = (1 + κ)−1 ' 0.73 and
φ = 2/ε ' 2.74 are very well fulfilled by the shown quantities (note, that some of the fit values in
Figs. 3.8, 3.9 show slight differences to the values given in [84] – an independent reexamination
has been performed). The surprising existence of a finite-size pair of (κ, ε)-exponents almost
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without contradiction to the scaling properties may be complemented with effective scaling
dimensions by Affleck and Bonner [6]. These authors took the implications of logarithmic
corrections into consideration, determining an exponent ε = 0.78 for a 20-site chain.

Finally, 2 features shall briefly be mentioned. First, the coefficients e10 and f10 fulfill the relation

e10 + f10 ' 0

approximately. The relation that follows from Eqns. 3.42, 3.44 when neglecting contributions
of all higher excitations.
Second, an analysis of the large-x behaviour analogously to the discussion given at the end of
Sec. 3.2.4 results to

Ω∞10 = 6.0(1) . (3.95)
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3.3.4 Periodic dimer perturbation Dc
1(q), m > 0

We will now conclude the consideration of finite-size scaling behaviour of Heisenberg chains
exposed to weak periodic perturbations. This will be done discussing periodic nearest neighbour
dimer perturbations N1/2Dc

1(q) in the presence of a uniform magnetic field B = B~ez. A further
degree of freedom is given in the additional presence of a constant second nearest neighbour
coupling J2

H(α, B, hq) ≡ H(B, α) + 2hqN
1/2Dc

1(q) (3.96)

H(α, B) = 2
∑

n

(
S(n)S(n + 1) + α · S(n)S(n + 2)−B · S3(n)

)
, (3.97)

i.e. the ratio of second to nearest neighbour coupling reads J2/J1 = α with α usually designated
as frustration. Note that J1 is normally chosen to J1 ≡ 1.
Right here it is not the point to discuss frustrated spin chains – this will be done in some more
detail in Chap. 5. Here it is sufficient to note that for the 2 cases α = 0, 0.25 considered below,
the Heisenberg chain for finite N and hq = 0 still is in the so-called spin-liquid phase, i.e. has
a gapless spectrum. This behaviour ends at α = αc ' 0.25, a gap is discussed to open like
(Egap ∼ ec/(α−αc), α > αc) [99, 47] (however, no rigorous proof is known) and quantum numbers
of the ground state change (for more details see Chap. 5).
At present we want to confine ourselves to a first consideration of the scaling of gap ratios at
the location of the 1st LSM-soft mode (k = 1)

q(k)(m) = k · π(1− 2m) , (3.98)

i.e. if the momentum q of the perturbation Dc
1q coincides with a soft mode momentum q(k)(m),

the opening of a gap between the ground state |0;α,B, hq > and the lowest lying state accessible
via the perturbation (operator) Dc

1(q) is predicted:

ω(k)(α, B, hq)
∣∣∣
q=q(k)(m)

=
(
hq(k)(m)

)ε(k)(m,α)
Ω(k)(x; m,α) , m = m(α,B) . (3.99)
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The results of a check for the above-mentioned predictions are given in Fig. 3.10. There, the
scaling of

ω
(1)
10 (α, B, hq)

ω
(1)
10 (α,B, 0)

= 1 + e
(1)
10 (x; α, B) , m = 1/4, q = π/2 (3.100)

for magnetization m = 1/4, q = q(k=1)(m) (i.e. q = π/2) and the 2 frustrations α = 0, 0.25 have
been considered for system sizes N = 8, 12, 16, 20.
The data points (as well as the given linear fits) of the figure clearly show the scaling of the
considered ratios as well as the different ε-exponents for the 2 frustrations that have determined
to be

ε(1)(m = 1/4, α) =
{

0.81(1) , α = 0
0.64(3) , α = 0.25

. (3.101)

Again, the gap ratio is found to scale ∼ x2/ε – note the occurrence of a misprint in [86] concerning
this dependence.

We will now end the consideration of scaling behaviour of the Secs. 3.2, 3.3. It should be
stressed here, that so far only small perturbations have been considered. All presented scalings
have been based on ha-perturbation strengths ha ∈ [10−3, 5·10−2] for the given units (i.e. nearest
neighbour coupling J1 in H0 equal to 1 – note that the prefactor 2 has always been treated as an
overall prefactor of the respective Hamiltonians). This smallness will vanish when now turning to
ladder geometries of spin systems. Retaining the picture of the 1-dimensional Heisenberg chain,
its relationship between soft mode locations of the unperturbed chain and predictability of gap
openings of periodically disturbed ones will make it affordable to turn to stronger perturbations.
This procedure and moreover the limits of the above-mentioned predictability will be treated in
the subsequent part of the chapter.
In addition, the next chapter will be devoted to a finite-size analysis of magnetization curves
which is a very helpful technique: the formation of magnetization plateaus under the influence
of periodic perturbations will be a main aspect.

3.4 Special classes I – ladder systems

In 1996 Dagotto and Rice [58] published the work “Surprises on the Way from One- to Two-
Dimensional Quantum Magnets: The Ladder Materials” – a paper that has strongly influenced
and amplified earlier discussion (e.g. [56] of spins on ladder systems. One of the most striking
points is the different behaviour of spin-1/2 ladders with an even or odd number of legs. Fig.
3.11 shows a regular 2-leg ladder with indicated periodic boundary conditions (PBCs) along
the legs (PBCs for the rungs only result in a modified rung coupling for the 2-leg ladder – see
below). Ladders with an even number of legs have a finite energy gap to the lowest S = 1
excitation (in the TDL), an exponential decay of spin-spin correlations and ground states with
purely short-range spin correlations.
In contrast to this, ladders with odd numbers of legs still show properties of a single chain: gapless
behaviour with power-law fall-off of spin-spin correlations. Those fundamental differences have
found experimental confirmation, e.g. for the 2-leg spin-1/2 ladders (V O)2P2O7, SrCu2O3,
organic Cu2(C5H12N2)2Cl4 or 3-leg ladder Sr2Cu3O5. However, it is important to note that
the description of (V O)2P2O7 (one element out of a much wider group of ladder materials
than listed here) changed [90]. Inelastic neutron scattering (INS) measurements showed that
(V O)2P2O7 has to be considered as an alternating spin chain orthogonal to the formerly assumed
ladder direction.
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Figure 3.11: Geometry of a regular 2-leg ladder

The difference between ladders with odd and even numbers of legs finds a rather simple expla-
nation when considering the case of rungs that are only weakly coupled in leg direction. Here,
the ground states of the rungs have a total spin that is integer (even) or half-integer (odd) and
the occurrence of a gap for even-leg ladders can be understood in terms of Haldane’s conjecture
[100, 101] for chains with integer spin. Here, the whole ladder can be considered as a single
chain of integer spins formed by each rung.
It should be obvious that the discussion of more general cases (arbitrary strengths and signs
of rung and leg couplings, different ladder geometries, etc.) requires different techniques. The
following section contains some general considerations about the mapping of ladder structures
on 1d-Heisenberg Hamiltonians, i.e. the description of ladder systems as periodically disturbed
Heisenberg chains. The next chapter, however, will deal with a number of cases discussing
their magnetization curves and showing the links between the magnetization values of emerging
plateaus and the periodicity of the underlying periodicities of perturbations of the Heisenberg
chain.

3.4.1 The liberties in mapping a ladder system on a 1-dimensional chain

In the following some of the ways of forming a one-to-one correspondence between a 1-dimensional
chain and a ladder system with nl legs will be addressed. Only focussing on regular coverings
of a given ladder, one has to correct the chain Hamiltonian by adding or subtracting couplings
SjSj+x at every j-th point within a unit length nu of the chain (e.g. subtracting the diago-
nal couplings in Fig. 3.12 (b),(c)). This is accomplished by adding/subtracting the periodic
“perturbation(s)”

∑
n

fn(nu, j) · 2SnSn+x (3.102)

with

fn(nu, j) =
1
nu

nu−1∑

m=0

ei 2π
nu

(n−j)m =
N/nu−1∑

p=0

δn,j+p·nu (3.103)

to/from the chain Hamiltonian H0 = 2
∑

n SnSn+1 expressed by the thick lines in Figs. 3.12,
3.13. Here, and in what follows

∑
n always means

∑N−1
n=0 . Some examples for the explicit form

of the fn(nu, j) are

fn(2, j) =
1
2

(1 + cosπ(n− j))

fn(3, j) =
1
3

(
1 + 2 cos

2π

3
(n− j)

)
(3.104)
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fn(4, j) =
1
4

(
1 + 2 cos

π

2
(n− j) + cosπ(n− j)

)
,

i.e. all multiples (2π/nu) · p, p = 0, 1, . . ., with (2π/nu) · p ≤ π are contributing (note, that
fn(1, 0) = fn(1, 1) = 1):

fn(nu, j) =
1
nu

[nu/2]−∑

k′=−[nu/2]++1

cos
(

2π

nu
(k′ − j)

)
(3.105)

with [nu/2]± = nu/2 for even nu and [nu/2]± = (nu ± 1)/2 for odd nu.
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Figure 3.12: Description of (2-leg) ladders on the basis of a 1-dim. Heisenberg chain

The relations given above will now be used to express the 3 different parts H‖, H⊥, Hpbc
⊥ of

the ladder Hamiltonian. Here, PBCs in leg direction will be assumed; their influence, however,
is much weaker –disappearing for N → ∞– than those for the rungs that have a sustainable
impact on the (anti-)ferromagnetic spin orientation and/or frustration along the rungs of the
ladder. The resulting components for the cases (a), (b), (c) in Fig. 3.12 –generalized to nl-legged
ladders– read (

∑
n always meaning

∑N−1
n=0 ):

(a)

H⊥ = H0 − 2
∑
n

fn(nl, nl − 1)SnSn+1 (3.106)

Hpbc
⊥ = 2

∑
n

fn(nl, 0)SnSn+nl−1 (3.107)

H‖ = 2
∑

n

nl−1∑

j=0

fn(nl, j)SnSn+2(nl−j)−1 (3.108)
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(b)

H⊥ = H0 − 2
∑

n

fn(nl, nl − 1)SnSn+1 (3.109)

Hpbc
⊥ = 2

∑
n

fn(nl, 0)SnSn+nl−1 (3.110)

H‖ = 2
∑

n

SnSn+nl
(3.111)

(c)

H⊥ + Hpbc
⊥ = 2

∑
n

SnSn+N/nl
(3.112)

H‖ = H0 − 2
∑
n

fn(N/nl, N/nl − 1)SnSn+1

︸ ︷︷ ︸
(∗)

(3.113)

Considering the 3 descriptions from the point of view of moderately, periodically perturbed
Heisenberg chains one is led to the following observations:

1. Every single perturbation is not moderate (couplings of equal strength appear or disappear
not meaning a small perturbation as discussed in Secs.3.2, 3.2.1, pp.). Instead, “moderate”
can only be limited and classified by the total number of perturbations (e.g. O(nl) in term
(∗), Eq. 3.113), or –looking from the unperturbed Heisenberg chain– by the manyfold, the
periodicity and range of the additionally appearing couplings.

2. The 2-leg ladder takes a special place in the ladder scheme: First, PBCs along the rungs
are simply incorporated doubling the contribution of H⊥; Second, only in this case the
contribution of H0 in case (a) (Fig. 3.12) can as well be attributed to H‖ with the same
number of bonds to be corrected.

3. Scheme (b) appears to be more preferable at least considered from the point of finite-size
calculations than (a) since it only contains couplings up to nl-th nearest neighbours instead
of 2nl − 1 in case (a). It should be noted, however, that the momenta of the contributing
periodic perturbations do not differ.

4. Schemes (a) and (b) have contributions of H0 in both the rung- and leg-part of the ladder,
i.e. they do not offer a useful starting point to study weakly coupled legs or rungs in a
ladder. Such investigations are usually done applying perturbation theory/bosonization
techniques/renormalization group methods to the situation of weakly coupled chains/legs
(see e.g. [38, 134]).

5. In the TDL term (∗) appearing in case (c) is negligible and the Hamiltonian H⊥ +
HPBC
⊥ + H‖ turns out to be completely translational invariant only containing q = 2πn-

perturbations. Here, legs and rungs are decoupled, offering –in principle– weak coupling
treatments. The case of translationally invariant perturbations will be postponed to Sec.5.

6. Discussion of type (c) without PBC along the rungs and nl > 2 is accompanied by the
occurrence of O(N)-periodic perturbations (see below) extending the usefulness of the
concept of periodic perturbations.

Fig. 3.13 shows a more general case that in the 2 limits nh = 1, nh = N/nl contains the schemes
(b) and (c) of Fig. 3.12 and might help to gain some further insight. The above discussed
components of the ladder Hamiltonian read for the case of Fig. 3.13 (generalized to arbitrary
nl, nh)
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Figure 3.13: Generalized formulation for ladders of type (b) and (c); here nl = 2, nh = 3

(d)

H⊥ = 2
∑

n

(nl−1)·nh−1∑

j=0

fn(nl · nh, j)SnSn+nh
(3.114)

Hpbc
⊥ = 2

∑
n

nh−1∑

j=0

fn(nl · nh, j)SnSn+(nl−1)·nh
(3.115)

H‖ = H0 + 2
∑

n

fn(nh, nh − 1)
(
SnSn+(nl−1)·nh+1 − SnSn+1

)
(3.116)

containing couplings of up to (nl − 1) · nh (+1)-nearest neighbours. For the choice nh = N/nl

the sum of the contributions H⊥ and HPBC
⊥ result in the term given above in scheme (c) – each

term of its own containing O(N)-momentum contributions ((2π/N) ·l) that only in case of PBCs
for the rungs disappear.
In summary, scheme (a) as well as scheme (d) (the latter in particular for 1 ¿ nh ¿ N/nl)
do not turn out to be useful as a ladder description acceptably well suited to the concept of
periodically perturbed Heisenberg chains presented so far. Therefore, scheme (b) will be used in
the following, scheme (c) -as repeatedly mentioned- will be postponed to Chap.5.
The ladder Hamiltonian H⊥ for type (b) can be written in the form

H⊥ = H0 − 2
∑
n

fn(nl.nl − 1)SnSn+1 (3.117)

= H0 − 2
∑
n

1
nl





[nl/2]−∑

k′=−[nl/2]++1

cos
(

2π

nl
k′(n− nl + 1)

)

SnSn+1 (3.118)

= H0 − 2
nl

√
N

∑

n,k′
(cos(qk′(nl − 1))Dc

1(qk′) + sin(qk′(nl − 1))Ds
1(qk′)) (3.119)

= H0 − 2
nl

√
N

∑

n,k′
cos(qk′(nl − 1))Dc

1(qk′) (3.120)

with qk′ = 2πk/nl and

Ds,c
j (q) =

1√
N

∑
n

sin(qn)
cos(qn)

· SnSn+j . (3.121)

The latter form of H⊥ immediately gives the number and type of periodic perturbations appear-
ing when this particular description of the ladder is used. The inclusion of PBCs for the rungs,
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i.e. Hpbc
⊥ , requires additional periodic dimer perturbations

Hpbc
⊥ =

2
nl

√
N

∑

k′
Dc

nl−1(qk′) . (3.122)

We will return to these representations when discussing the locations of possible magnetization
plateaus for nl-leg ladder systems in the next chapter.

We will finally discuss ladder Hamiltonians sketched in Fig. 3.11 i.e. using components x and y
for the leg and rung directions, for the example of 2-leg ladders:

H(J‖, J⊥;B) = 2


J‖

nl−1∑

y=0

nr−1∑

x=0

S(x, y)S(x + 1, y)

+ J⊥
nr−1∑

x=0

nl−1∑

y=0

S(x, y)S(x, y + 1)−B
∑
x,y

S3(x, y)


 (3.123)

with nr = N/nl. Here, the situation is different and no periodic perturbations with q 6= 2πn
appear. We will encounter such situations again, when discussing more generally q = 2πn-
perturbations in Chap. 5.
The following Figs. 3.14-3.17 refer to some properties of a 2-leg ladder described by Hamiltonian
3.123 and parameters J‖ = 1, J⊥ = h = 0.5, −1.0 and B = m = 0. These 2-leg ladders with
N = 4n, n ∈ N have ground state momentum ~q0 = (qx,0, qy,0) = (0, 0) [215] and their lowest
excitatuions (S = 1) can be accessed via the excitations of the DSF S33(ω, qx, qy, h, N).
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Figure 3.14: SSFs S33(~q, h,N) for rung couplings h = −1.0, 0.5 and N = 12, 16, 20, 24

Figs. 3.14-3.17 refer to situations where the inter-leg (rung) coupling h is already of substantial
importance. An increasing ferromagnetic rung coupling (h < 0) more and more drives the ladder
system to an effective spin-1 chain (the 2 spin-1/2s on a rung forming an effective spin-1) and
the energy gap of the spin-1/2 ladder approaches the Haldane gap [100, 101] for the spin-1 chain
saturating at a finite gap value Egap, S=1 = 0.41049(2) [94]. – Schollwöck and Jolicœur [181, 182]
further studied quantum spin chains with integer spin (S = 1, 2). DMRG calculations led to a
significantly smaller TDL of the S = 2 gap (∆ = 0.085(5)J) that would have to be discussed in
the framework of the energy gap of a corresponding 4-leg spin-1/2 ladder.
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For antiferromagnetic rung couplings (h > 0) on the other hand, the gap shows an almost linear
increase in h. We will again encounter the h-dependence of the energy gap of a ladder in Chap.
5 and will not discuss this case here. Moreover, [215] contains a broad discussion of this and
most of the following aspects of spin-1/2 2-leg ladders. Fig. 3.14 shows SSFs S33(qx, qy, h,N)
for the mentioned h-values for both qy = 0, π. The figure clearly shows the sign dependence of
the dominant part of the SSF on h (approaching qx = π, where the gap is located for both signs
of h).
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Figure 3.15: N -dependence of lowest excitations for h = −1.0, 0.5 and N = 12, 16, 20, 24

This is in particular demonstrated in Fig. 3.15 that shows the location of the gap at qx = π.
The dominant parts of the SSFs close to qx = π are clearly related to the lowest excitations of
the respective ladder. The N -dependence of the increase of the dominant SSF-parts (qy = 0 for
h < 0 and qy = π for h > 0) however shows the limitations of the present range of numerical
evaluations: The already mentioned approach of the ladder to a spin-1 chain with inreasingly
negative rung coupling –the latter having a finite correlation length of ξ ' 6.2 [94]– and on
the other hand the fitted behaviour of S33(π, 0, h ≤ −1, N ≤ 24) ∼ ln N manifests that the
manageable system lengths are too small for a consistent determination of the large-N behaviour
of S33(π, 0, h ≤ −1, N) which is expected to be finite. The situation moderately changes for
h > 0. Here, only in a small window around h = 0.5 S33(π, π, h > 0, N ≤ 24) appears to
behave ∼ ln N , however, definite answers about the infinite-N limit are out of range [215].
An extension of manageable system sizes by roughly one order of magnitude applying DMRG-
techniques [214] should allow the treatment of systems that are sufficiently large to include a
multiple of the above-mentioned correlation lengths.
The gaps Egap(h) indicated in the plots of the lowest excitation energies in Fig. 3.15 (qy = 0
for h < 0; qy = π for h > 0) have been analyzed in [215] using a particular N−1 exp(−N/N0)-fit
[17]. The shown cases yield Egap(−1.0) = 0.3321(2), Egap(0.5) = 0.4533(2). Moreover, for all
rung couplings outside the vicinity of h = 0 a finite gap was observed. The explanation of the
opening of the gap for small perturbations, however, remains to be accomplished. This will be
postponed to Chap. 5.
Figs. 3.16, 3.17 show the low-energy part of the whole excitation spectra (parts accessible by
means of the recursion method; App. A) for S33(qx, qy = 0, π, h,N). Especially for those qy

belonging to the excitations that form the gap at qx = π the branch of lowest excitations carries
almost the complete spectral weight for each qx (relative weight 0.9...1.0, see figures).
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Figure 3.16: Excitation spectra (qy = 0, π) for rung coupling h = −1.0 and N = 24
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Figure 3.17: Excitation spectra (qy = 0, π) for rung coupling h = 0.5 and N = 24

For such a situation, Figs. 3.16, 3.17 as well show the results of an approximation (here: 2-mode
approximation) that does not make use of the recursion method but on frequency moments.
Assuming

S2−mode
33 (~q, ω) = w1δ(ω − ω1) + w2δ(ω − ω2) , (3.124)

the 2 weights wj and frequencies ωj are unequivocally determined by

w2 = K(0) − w1

w1 =
(
K(1) − ω2K

(0)
)

/ (ω1 − ω2)

ω1 =
(
K(2) − ω2K

(1)
)

/
(
K(1) − ω2K

(0)
)

(3.125)
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0 =
(
K(2) − 2ω2K

(1) + ω2
2K

(0)
)(

K(3) − ω3
2K

(0)
)(

K(1) − ω2K
(0)

)

−
(
K(2) − ω2K

(1)
)3

+ ω3
2

(
K(1) − ω2K

(0)
)3

using the frequency-moments K(0)(~q, h,N), . . . , K(3)(~q, h, N) (see as well Sec. 2.6.6). The figures
show the good reproduction of the low-energy dispersion and the average-like consideration of
the remaining spectrum (not all evaluated excitations are shown in the figures). However, it
ought to be noted that this simpler form of determining lowest excitations requires the a priori
knowledge of their high contribution to the total weight at the respective q-value.
Finally, Figs. 3.18, 3.19 show the 4 frequency-moments being used for the 2-mode approximation.
Again, odd frequency-moments of the ladder can be expressed as

K
(2l+1)
33 (~q, h, N) =

2l+1∑

n=0

T
(2l+1)
33,n (h, qy, N) · (1− cos qx)l (3.126)

T
(2l+1)
zz,0 (h,N) = 0 for qy = 0 (3.127)

(cf. Sec. 2.6.6). The lines given for K(1) and K(3) in Figs. 3.18, 3.19 result from fitting 3.126 to
the N = 28 data. Table 3.2 gives the results for T

(n,j)
33,l for the moments n = 1, 3, qy = j · π and

system sizes N = 20, 24, 28 (Note, that the number of spins in a leg is N/nl = N/2). Similar to
the case of the unperturbed Heisenberg chain the frequency-moments of the spin-spin DSF only
have very small finite-size contributions.

N n j h T
(n,j)
33,0 T

(n,j)
33,1 T

(n,j)
33,2 T

(n,j)
33,3 h T

(n,j)
33,0 T

(n,j)
33,1 T

(n,j)
33,2 T

(n,j)
33,3

20 1 0 -1.0 0.0 0.562 0.5 0.0 0.561
24 1 0 -1.0 0.0 0.560 0.5 0.0 0.557
28 1 0 -1.0 0.0 0.559 0.5 0.0 0.556
20 1 1 -1.0 0.270 0.562 0.5 0.179 0.561
24 1 1 -1.0 0.271 0.560 0.5 0.182 0.557
28 1 1 -1.0 0.272 0.559 0.5 0.184 0.556
20 3 0 -1.0 0.0 1.827 9.268 -3.765 0.5 0.0 1.853 10.713 -3.771
24 3 0 -1.0 0.0 1.848 9.129 -3.687 0.5 0.0 1.901 10.503 -3.672
28 3 0 -1.0 0.0 1.861 9.051 -3.644 0.5 0.0 1.932 10.385 -3.617
20 3 1 -1.0 6.903 10.726 8.230 -3.765 0.5 2.510 5.546 6.954 -3.771
24 3 1 -1.0 6.846 10.739 8.103 -3.687 0.5 2.516 5.579 6.751 -3.672
28 3 1 -1.0 6.811 10.747 8.036 -3.644 0.5 2.522 5.595 6.637 -3.617

Table 3.2: Coefficients T
(2l+1)
33,n (h, qy, N) with qy = j · π and N = 20, 24, 28

Note, that this time the frequency-moments K(n) are carrying a prefactor 2n due to the actually
used Hamiltonian 3.123.
Now we will turn to some other types of ladders that will as well be considered in the next
chapter concerning the opening of gaps and formation of magnetization plateaus. These types
are the so-called zig-zag and, in addition, Kagomé-like ladders.

3.4.2 Different types of ladder geometries

In this section a number of different ladder types will be introduced that have been discussed
by several authors for different reasons [39, 208]. Here, the ladder systems shall be introduced
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Figure 3.18: Frequency-moments K(n)(~q, h,N) for h = −1.0 an N = 16, 20, 24, 28
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Figure 3.19: Frequency-moments K(n)(~q, h,N) for h = 0.5 an N = 16, 20, 24, 28

and their discussion and anew treatment with help of the methods given in the present work
will be a topic of the next chapter.

The first systems are 2- and 3-leg zig-zag ladders shown in parts (a) and (b) of Fig. 3.20.
The couplings have been chosen according to the choices used in [39]. Variables Ji,± refer to
Ji,± = Ji · (1± h).
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Starting with case (a), the Hamiltonian is simply written as

H(a) = J1H0 + 2J2,+

∑
n

(fn(4, 0) + fn(4, 3))SnSn+2

+2J2,−
∑

n

(fn(4, 1) + fn(4, 2))SnSn+2 (3.128)

with J2,± = J2 · (1 ± h) and Hj = 2
∑

n SnSn+j (H1 being equivalent to the operator formerly
named H0). Using the relations given in Eqns. 3.104 one arrives at

H(a) = J1H1 + 2J2

∑
n

SnSn+2 + 2J2h
∑

n

(
cos

π

2
n− sin

π

2
n
)
SnSn+2 (3.129)

= J1H1 + J2H2 + 2
√

2J2h
∑

n

cos
(π

2
(n + 1/2)

)
SnSn+2 , (3.130)

i.e. periodic perturbations with q = π/2 together with second nearest neighbour couplings
appear, the choice of J2,+ on one leg and J2,− on the other would have resulted in a perturbation
∼ D2(π).
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Figure 3.20: Description of zig-zag ladders (a, b) and Kagomé-like 3-leg ladders (c)

Turning now to the 3-leg zig-zag ladder shown in Fig. 3.20 (b), the Hamiltonian reads

H(b) = 2J1,−
∑

n

SnSn+1 + 2J3

∑
n

SnSn+3

+2J2,+

∑
n

(fn(3, 0) + fn(3, 1))SnSn+2 (3.131)

with Ji,± = Ji(1± h) and again using Eqns. 3.104 yields

fn(3, 0) + fn(3, 1) =
1
3

(
2 + cos

2π

3
n +

√
3 sin

2π

3
n

)
(3.132)
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and finally

H(b) = J1,−H1 + J3H3 +
2
3
J2,+

[
H2 − 2

∑
n

cos
(

2π

3
(n + 1)

)
SnSn+2

]

= J1,−H1 +
2
3
J2,+H2 + J3H3 − 4

3
J2,+

∑
n

cos
(

2π

3
(n + 1)

)
SnSn+2 . (3.133)

In this case the additional degree of freedom due to the presence of h is not responsible for
the periodic perturbation itself (as it was in the 2-leg case) but serves as an additional free
parameter. Here, only for the special choice h = −1 the second-nearest neighbour couplings
(respectively the corresponding perturbation) vanish. Otherwise, for all non-zero J2 and h 6= 1
the perturbations will be present.

Considering finally in this context the 3-leg ladder with open boundary conditions (obc) for
the rungs, we only have to remove the vertical couplings in Fig. 3.20(b) which constitute the
periodic rung couplings. We arrive at

H(b),obc = H(b) − 2J1,−
∑

n

fn(3, 1)SnSn+1 (3.134)

= H(b) −
1
3
J1,−

[
H1 + 4

∑
n

cos
(

2π

3
(n− 1)

)
SnSn+1

]
(3.135)

=
2
3
(J1,−H1 + J2,+H2) + J3H3

−4
3

∑
n

[
J1,− cos

(
2π

3
(n− 1)

)
SnSn+1 + J2,+ cos

(
2π

3
(n + 1)

)
SnSn+2

]
.(3.136)

Finally the 3-leg Kagomé-like ladders (part (c) in Fig. 3.20) are obtained by removing the middle
leg and all vertical bonds of the 3-leg zig-zag ladder (b). This leads to

H(c) = 2J1

∑
n

(fn(3, 0) + fn(3, 2))SnSn+1 + 2J2

∑
n

(fn(3, 0) + fn(3, 1))SnSn+2

+2J3

∑
n

(fn(3, 1) + fn(3, 2))SnSn+3 (3.137)

= J1H1 + J2H2 + J3H3

−2
∑

n

{J1fn(3, 1)SnSn+1 + J2fn(3, 2)SnSn+2 + J3fn(3, 0)SnSn+3} (3.138)

=
2
3

[J1H1 + J2H2 + J3H3]− 4
3

∑
n

[
J1 cos

(
2π

3
(n− 1)

)
SnSn+1

+ J2 cos
(

2π

3
(n− 2)

)
SnSn+2 + J3 cos

(
2π

3
n

)
SnSn+3

]
. (3.139)

Here, h-dependences of the couplings have been left out of the formulas, however, their inclusion
would again not have affected the nature of the occuring periodic perturbations. As before, the
3-leg ladder case is determined by periodic perturbations with q = qc ≡ 2π/3.
It should be added that a change in the numbering of the lattice sites 0, 1, ..., N −1 → 1, 2, ..., N
–e.g. used in [216, 217]– simply requires a change j → j − 1 in the used terms fn(nu, j).
At the end of this part a recent preprint of Dagotto (1999) [59] shall be mentioned. It gives an
overview of experimental results and theoretical achievements in the study of ladder materials
in recent years.
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3.5 Special classes II – spin-Peierls systems

In 1993 Hase et al. [105] for the first time discovered a spin-Peierls transition in an inorganic
material – the cuprate CuGeO3. Due to its much simpler structure (compared with earlier
investigated organic materials, see e.g. [126]) and the higher quality and size of single crystals
this phenomenon of unusual magnetoelastic transition in quasi 1-dimensional antiferromagnets
(insulators) gained new rising attention and wide interest.
Experiments revealed that basic properties of CuGeO3 are in accord with earlier established
descriptions of spin-Peierls materials [175, 35, 51, 52]. In particular, the presence of lattice
dimerization at low temperatures [115] and the existence of a singlet-triplet gap of magnetic
excitations [164] had been established. Deviating from standard spin-Peierls theory [35, 51],
however, the consideration of magnetic susceptibility resulted in additionally taking into ac-
count frustrating second-nearest neighbour antiferromagnetic spin couplings J2. The first values
suggested have been α = J2/J1 ' 0.24 [43] and α ' 0.36 [176] – later being improved and
corrected towards α = 0.354(0.01) [74]. Since α > αc = 0.241167 ± 5 · 10−6 [66] this means,
that a gap is already present without any dimerization ∼ D1(π) leading to a potential sponta-
neous long-range dimerization of the ground state. One should keep in mind, however, that the
opening of a gap due to frustration is rather small in the vicinity of αc.
In the following, we will not put further weight on still outstanding questions in the above
sketched field (temperature dependence of the Heisenberg coupling constants, phonon-induced
nature of the lattice dimerization and many other points, see e.g. [211]) but turn our focus to
the excitations and formation of magnetization plateaus in case of dimerized and frustrated spin
chains. In the next section the respective Hamiltonian and some of its general properties are
given and the next chapter contains results for magnetization curves. Following the discussions
in case of CuGeO3 we will choose frustration parameters α = 0.25, 0.3, 0.35, however, thereby
extending the strengths of the dimerized nearest-neighbour coupling (∼ 0.03) by far.

3.5.1 Dimerized and frustrated spin chains

In Chap. 4 (Sec. 4.1.5) we will give results for magnetization plateaus of systems described by
the Hamiltonian (choosing J1 = 1)

H = 2

{
J1

∑
n

(1 + δ · eiπn)SnSn+1 + J2

∑
n

SnSn+2

}

= 2J1

{∑
n

(1 + δ · eiπn)SnSn+1 + α
∑
n

SnSn+2

}
(3.140)

= J1

(
H0(α) + 2δ ·

√
ND1(q = π)

)
.

In the context of the inorganic spin-Peierls material CuGeO3 this Hamiltonian has been discussed
for frustration values α ranging in the interval from closely below (0.24) to well above (0.345)
αc = 0.2411... We will take the course of determining the optimal α-value for CuGeO3 as cause
to compare the processes of gap and plateau formation in dimerized spin chains (D1(q = π)) in
unfrustrated and frustrated spin chains (using the above-mentioned α-values).
In general, not many rigorous results and properties of Hamiltonian 3.140 are known and have
been reviewed e.g. in [47] (together with newly obtained results for ground state energies, energy
gaps and other quantities in the unmagnetized phase). For m = 0 exact results are limited to
the lines δ = 0 and δ + 2α = 1. The latter one –exact ground states have been given by Shastry
and Sutherland [185]– is considered as dividing line between the so-called Néel (δ < 1− 2α) and
spiral (δ > 1− 2α) phases. In the Néel phase the maximum of the spin-spin SSF S(q) is located
at qmax = π and gradually decreases to qmax = π/2 (for very large α) in the spiral phase. Chitra
et al. [47] obtained minimal correlation lengths ξ along the line 2α + δ = 1 reflecting highly
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disordered ground states. They identified this line as a disorder line separating ground states
with qmax = π and qmax < π.
Finally the special choice δ = 1 can be understood as a regular 2-leg ladder (see Fig. 3.11)
with rung couplings 2δ = 2 and leg couplings α (a dimerization strength δ 6= 1 would result in
additional diagonal couplings). In particular (α = 0; δ = 1) is the simple case of independent
rungs and can serve as a starting point for perturbation theory for small frustration α.
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Chapter 4

Opening of gaps and formation of
magnetization plateaus

In this chapter different types of spin-1/2 systems that possibly lead to magnetization plateaus
will be discussed. Here, the first aspect will be to present a classification scheme that does allow
the prediction of magnetization values of potential plateaus.
For that purpose we map the respective spin systems as already discussed in the last chapter
on single Heisenberg chains. These spin chains will carry certain perturbations of their isotropic
character due to the respective mapping process. For regular spin systems these perturbations
will be periodic ones. In the next section we will therefore begin to study the influence of a
single periodic perturbation (with momentum qpert.) on the magnetization curve of the spin
chain. We will concentrate on the relation between the periodicity of the perturbation qpert. and
the soft mode positions q

(k)
1,3 (m) of the unperturbed Heisenberg chain at a given magnetization m

–according to an application of the quantization rule of Oshikawa, Yamanaka and Affleck [169]
to a half-integer spin chain. A spin-S chain Hamiltonian that is invariant under translations of
multiples of n sites is predicted to possibly have massive phases –with explicit or spontaneous
breaking of translational symmetry– for magnetizations m that fulfill the quantization condition

n · (S −m) = integer . (4.1)

The soft modes of a spin chain are to be considered the most susceptible parts of the spectrum of
the unperturbed chain. The correspondence of qpert. and one of the soft mode positions will be
shown to give sufficient conditions for the locations of possible magnetization plateaus and will
allow to apply the above given quantization condition from the point of view of the unperturbed
chain. On the basis of such a description, however, it will remain an open question to decide, in
case of which given possibility a gap/plateau finally will appear.
At the end of the chapter (Sec. 4.3) we will discuss the relationship between the above given
quantization condition of Oshikawa, Yamanaka and Affleck –that is based as well on the known
manifold of soft modes of the unperturbed chain given by Lieb, Schultz and Mattis (LSM)2.6.2–
and the classification scheme that is used in the following. The latter one gives a direct link
between the considered perturbation qpert. and the particular longitudinal/transverse soft mode
taking part in plateau formation.
For that reason we will finally turn to the second aspect, namely the behaviour of suitably chosen
static structure factors (SSFs) under the influence of an applied periodic perturbation. It will be
underlined that the mere location of soft modes of the unperturbed Heisenberg chain does not
supply sufficient information for an unambiguous prediction of plateaus. Only the investigation
and observation of relevant changes in the considered SSFs allows for predictions that will turn
out to be in accord with the evaluated plateaus that will be discussed for a variety of examples
in the next section.
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The next section (Sec. 4.1) will first address general types of periodic perturbations. Then,
regular ladder geometries, ladders with competing interactions and ladders with zig-zag- and
Kagomé-like geometries will be discussed. Concerning the latter points, DMRG-calculations
–by R. M. Wiessner– will be shown. The mapping of these structures on 1-dimensional spin
chains (see discussion in the preceding chapter) will be used for plateau predictions in the
respective magnetization curves. Moreover, some statistical properties of ladders with competing
interactions and their m-dependent ground state energies per site (E0(m)/N) will be discussed.
At the end of the section, the formation of plateaus in frustrated spin-Peierls chains (more
generally treated by Totsuka [200]) at m = 0 and m = 1/4 is discussed for frustration strengths
α = 0, 0.25, 0.30, 0.35.
In Sec. 4.2 we will try to leave the partly heuristic position of the plateau discussion of Sec.
4.1 and turn to a consideration of the related background of the formation of plateaus. This
will include the sizes of relevant transition matrix elements appearing in static structure factors
(SSFs) of unperturbed and perturbed chains. A number of cases of plateau formations (given
in the next section) will be analyzed again. It will be exemplified that all plateau formations
are accompanied by distinct changes in the SSFs.

4.1 Magnetization curves and plateaus

We will begin this section reconsidering periodic perturbations 2
√

NX(q) that have been dis-
cussed in the last chapter:

X(q) = S3(π/2), D1(π), D1(π/2), D2(π)

– this time using perturbation strengths that are at least an order of magnitude larger than
in the context of the scaling solutions discussed earlier. Here, the emergence of magnetization
plateaus and the dependence of their widths on periodic perturbation strengths will be discussed.
In addition, the presence of 2 different periodic perturbations –Dc

1(π/3) + Dc
1(2π/3)– will be

addressed.
We will settle our considerations on the earlier observation, that the appearance of a gap –due
to an applied periodic perturbation of momentum qpert.– is intimately related to the location of
the soft modes of the unperturbed system (H0) with magnetization m and soft mode momenta

q(k3)(m) = k3 · π(1− 2m) ; q(k1)(m) = k1 · 2πm .

Plateaus in the magnetization curve of a periodically perturbed system should –if at all– occur
at magnetization

mplateau(q, k3) =
1
2
·
(

1− qpert.

k3π

)
(4.2)

mplateau(q, k1) =
1
2
· qpert.

k1π
(4.3)

with q –the wave number of the periodic perturbation– being equal to one of the soft mode wave
numbers q(k1,3)(m). While in the discussion of the opening of gaps in the previous chapter mainly
k = 1-soft modes appeared, we will as well turn to magnetization plateaus related to higher k-
values in the course of this chapter. Moreover, we will be led to the necessity of considering
both k1 and k3 within the given description. Such a situation will appear in the discussion
of magnetization plateaus in case of the periodic perturbation X(q = 2π/3) = Dc

1(π/3). This
particular case will as well be taken up again in the discussion of structure factors in Sec. 4.2
and in the final paragraph (Sec. 4.3) where the correspondence of the quantization rule 4.1 and
the contributing soft modes will be discussed.
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In this section the occurrence of magnetization plateaus and their description according to the
scheme of soft mode momenta of the unperturbed chain will be presented. One of the remaining
questions, however, “Which soft mode momenta will be the ones belonging to predominantly
emerging plateaus?” will be addressed in the following section 4.2.
As another point of particular interest, it remains to be checked to what extent critical exponents
ε that have been determined for small perturbations (discussing the opening of gaps ∼ hε) give
adequate descriptions for increasing perturbation strengths.
Again, we will proceed performing finite-size scaling analyzes on the results of finite-chain eval-
uations. This will be done by means of the BST-algorithm [36] (see App. C). Fig. 4.1 shows
typical results for magnetization curves evaluated for small systems and different types of per-
turbations (type and strength of perturbation are given in the figure). The thick solid lines
show the determined plateaus – the remaining parts of these lines are based on the longest chain
involved in the respective evaluation and does not represent results of a finite-size analysis. The
accuracy of the plateau positions and widths is better than 10−3 in general (cf. App. C).

D1(π) ; h=0.1

N=8,12,16,20

m(B)  vs.  B

0 1 2
0

0.2

0.4
D1

c(π/2) ; α=1/4, h=0.1

N=8,12,16,20

0 1 2
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0.2

0.4

D1
c(π/3)+D1

c(2π/3)

N=6,12,18  ;  h=0.1

0 1 2
0

0.2

0.4
D2(π) ; h=0.7

N=8,12,..,24

0 1 2
0

0.2

0.4

Figure 4.1: Course of plateau determination for various X(q) (see text)

Fig. 4.1 is intended to provide a certain estimation of the N -dependence of plateau formations
for some selected perturbation strengths. The then following Figs. 4.2-4.5 show lower and upper
bounds and plateau widths for a broader range of strengths of the periodic perturbations.
To begin with, Fig. 4.2 shows the clear appearance of magnetization plateaus (Bu −Bl > 0) at
m = 1/4 with

Bu =
1
2

(
E0(q0 + π, m + 1/N)− E0(q0,m)

)
(4.4)
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Figure 4.2: Plateau boundaries and width for Sc
3(q = π/2), m = 1/4 (N = 8, 12, 16, 20)

Bl =
1
2

(
E0(q0,m)−E0(q0 + π,m− 1/N)

)
(4.5)

for the periodic perturbation ∼ S3(π/2). Here, E0(q0, m) denotes the ground state energy of
H0 = 2

∑
n SnSn+1 in the sector with magnetization m, i.e.

Bu −Bl =
1
2

(
E0(q0 + π, m + 1/N)− 2E0(q0,m) + E0(q0 + π,m− 1/N)

)
. (4.6)

The opening of the gap (plateau width ∼ hε, ε = 0.8101) has been fitted to the larger coupling
strengths with a slightly increased exponent 0.85. The m-value of the plateau is –according to
Eq. 4.2– m = 1/4, i.e. k3 = 1.
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Figure 4.3: Plateau boundaries for D1(q = π), m = 0, 1/4i (N = 8, 12, 16, 20)

The following case of a perturbation type D1(q = π) (Fig. 4.3) first shows the magnetization
plateau at m = 0 (k3 = 1) on the l.h.s. of the figure, and then on the r.h.s. documents the
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vanishing width of a potential plateau for k3 = 2 (m = 1/4). The given fit Bu(m = 0) = 2.0·h0.75

for the extended range of h-values means in particular, that for h = 1 the plateau at m = 0
exceeds the whole interval [0, BSat] with BSat = 2 for h ≤ 2 (see App. B).
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Figure 4.4: Plateau boundaries and widths for Dc
1(q = π/2), m = 1/4 and α = 0, 1/4 (N =

8, 12, 16, 20)

A halving of the q-value of the applied perturbation, i.e. choosing Dc
1(q = π/2), results in

the observation of magnetization plateaus at m = 1/4 (k3 = 1). Similar to the last chapter,
the 2 cases of frustrations α = 0, 1/4 have been considered. The fits for the h-dependence
of the belonging plateau widths (gaps) show a good agreement with the exponents that have
been determined in the last chapter in the regime of small perturbation strengths (Eqns. 3.101,
3.101. The disturbed curvature of Bu(h, α = 1/4,m = 1/4) (l.h.s. of Fig. 4.4) documents a
comparatively bad finite-size behaviour of the numerical data.
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Figure 4.5: Plateau boundaries and width for D2(q = π), m = 1/4 (N = 8, 12, 16, 20)
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We now turn to the first case of a plateau formation related to k3 = 2. Considering X(q) =
D2(q = π), no plateau occurs at m = 0 –as in the case of D1(π)– and only for perturbation
strengths exceeding h ' 0.4 finite-size analysis reveals the opening of a plateau at m = 1/4
(Fig. 4.5). The sharp kink in the plateau width can be retraced to the lower plateau boundary.
The shown behaviour of Bl(h,m = 1/4) is a typical sign of ground state level crossings. Indeed,
as h exceeds the value h ' 0.5 the alternation of q0 = 0, π of ground state momenta in the
whole sequence of magnetization values m starts getting violated (q0(m) = ±π/2 appears for m
closely below the saturation value m = 1/2). This deviation of ground state momenta proceeds
to smaller m-values for increasing h and finally reaches the plateau value m = 1/4 almost
precisely at h = 0.7.
The above discussion can be extended when referring to the quantization rule 4.1 of Oshikawa,
Yamanaka and Affleck. The rule states that the q = π-perturbation on its own cannot account
for the observed m = 1/4-plateau. An additional spontaneous symmetry breaking is afforded to
result in the required symmetry factor n = 4. In Sec. 4.2 we will turn again to perturbations
X(q) = D2(q = π) and address the h-dependence of various static structure factors (SSFs).
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Figure 4.6: Plateau boundaries and widths for Dc
1(π/3) + Dc

1(2π/3), m = 1/6, 1/3

We will now turn to a case that includes a combination of 2 perturbations with different period-
icities. Here, one is constrained to a small number of momenta q that still allow for a finite-size
analysis when being evaluated on small systems. We chose to consider an equally weighted sum
of perturbations Dc

1(n · π/3), n = 1, 2:

X(q) = Dc
1(π/3) + Dc

1(2π/3) . (4.7)

The evaluation of only 3 system sizes N = 6, 12, 18 and the following BST-analysis of plateau
widths at m = 1/6, 1/3 clearly reveals the occurrence of 2 plateaus in the respective magne-
tization curves (Fig. 4.6, [86]). The opening of the upper plateau (m = 1/3) appears to be
fairly linear for larger h-values whereas the lower plateau at m = 1/6 does not turn out to be
sufficiently well described by a single power hε. Note in addition, that Fig. 4.6 seems to indicate
that the development of the lower plateau is dominated by that of the upper one.
In order to get further insight, we will now separately consider both of the above combined
periodic perturbations. Figs. 4.7, 4.8 show the resulting pictures for the perturbations Dc

1(π/3)
and Dc

1(2π/3). In case of Dc
1(π/3) we observe 2 plateaus at m = 1/6 and m = 1/3, the latter

one is described with k3 = 1. The first one, however, requires to take into account the transverse
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Figure 4.7: Plateau boundaries and widths for Dc
1(π/3), m = 1/6, 1/3 (N = 6, 12, 18)

soft mode momenta q
(k1)
1 (m) = k1 · 2πm and is classified by k1 = 1. The periodic perturbation

Dc
1(2π/3) generates a single plateau at m = 1/6 consistently described by k3 = 1.
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Figure 4.8: Plateau boundaries and widths for Dc
1(2π/3), m = 1/6 (N = 6, 12, 18)

Attempts of giving satisfactory simple fits for the plateau widths in the last cases failed. Their
h-dependence is not comparable to the cases discussed before. This in particular led to the
decision not to access the scaling properties of the perturbations Dc

1(π/3) and Dc
1(2π/3) in the

regime of small perturbations.
Finally, Fig. 4.9 supplies 2 finite-N examples for the plateau formation in case of the perturba-
tion Dc

1(π/3) (for coupling strengths h = 0.2, 0.5. A BST-analysis of the shown and additional
cases led to the plateau widths shown in Fig. 4.7. For further discussions of perturbations with
q = π/3, 2π/3 the reader is referred to discussions in Sec. 4.2 – addressing the predictability of
plateau formations.
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Figure 4.9: Forming of plateaus for Dc
1(π/3) for both magnetizations m = 1/6, 1/3 (N =

6, 12, 18)

We will now briefly return to a point of discussion in Chap. 2, namely the behaviour of ground
state energies and their derivatives. Here, we will consider e

(0)
0 (m,h, N) and e

(2)
0 (m,h, N) (cf.

Eq. 2.30 in Sec. 2.4). In Sec. 2.4 the smooth behaviour of ground state energy and derivatives
in case of the unperturbed Heisenberg chain has been documented – Fig. 2.1 shows finite-size
data. In order to contrast this behaviour Figs. 4.10, 4.11 show the corresponding behaviour for
a Heisenberg chain perturbed by X(q) = D2(π).
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Figure 4.10: e
(0)
0 (m,h, N) for perturbations D2(q = π) and h ≥ 0.4

For coupling strengths h that went along with clearly visible magnetization plateaus (see Fig.
4.5) Fig. 4.10 indicates a kink of E0(h, m)/N at the plateau magnetization m = 1/4. This
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h=0.4

e0
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Figure 4.11: Derivative e
(2)
0 (m,h, N) for perturbations D2(q = π) and h ≥ 0.4

kink gets much more pronounced when looking at the 2nd derivative (Fig. 4.11). A sharp
peak at m = 1/4 arises, which is most strongly marked at h = 0.7 where the plateau width is
maximally developed. Moreover, in the vicinity of this coupling the 2nd derivative of e(0)(h,m)
seems to approach negative values indicating the closeness to the boundary (or loss of stability
itself) given by stability criteria (cf. Sec. 2.4). These phenomena occurring well apart (below)
m = 1/4 could not be explained within the analysis of plateau formation and width carried out
above.
The consideration of smaller h-values (h < 0.4) where no unambiguous formation of plateaus
could be observed (see Fig. 4.12) shows no anomalies comparable to the cases 0.4 ≤ h ≤ 0.9.
Only the 2nd derivative e

(0)
0 (m,h, N) shows subtlely emerging discontinuities most clearly visible

for h = 0.3.

4.1.1 Gaps and plateaus for ladder systems

We will now discuss predictions of the location of magnetization plateaus of ladder systems.
Therefore, we use the description type (b) being introduced in Sec. 3.4.1. Considering nl-leg
ladders we are concerned with the periodically perturbed Hamiltonian

H = H⊥ + Hpbc
⊥ + Hl (4.8)

H⊥ = H0 − 2
∑

n

fn(nl, nl − 1)SnSn+1 (4.9)

Hpbc
⊥ = 2

∑
n

fn(nl, 0)SnSn+nl−1 (4.10)

H‖ = 2
∑

n

SnSn+nl
. (4.11)

In the following we will leave out the term Hpbc
⊥ , however, this will not change the occurring

types of periodic perturbations of the isotropic Heisenberg chain.
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Figure 4.12: Energies and derivatives e
(0,2)
0 (m, h,N) for perturbations D2(q = π) and h =

0.1, 0.2, 0.3

Using the expressions for fn(m, j) given in Eq. 3.104 and the following generalizations, it turns
out that periodic perturbations of type

∑
n

cos(sin)qnl,jSnSn+1 , qnl,j =
2π

nl
j (4.12)

with qnl,j ≤ π are present. E.g. the Hamiltonian H = H⊥ + Hl for the cases nl = 2, 3, 4 reads

H = H0 + Hl − 2
nl

∑
n

SnSn+1





(1− cosπn) , nl = 2
(1− cos 2π

3 n +
√

3 sin 2π
3 n) , nl = 3

(1− 2 sin π
2 n− cosπn) , nl = 4

. (4.13)

An evaluation of possible plateau locations of nl-leg ladders on the basis of periodically perturbed
spin chains (Eqns. 4.2, 4.3) is given in Table 4.1 for ladders with nl = 2, 3, . . . , 6 legs. There, we
have used the first 2 soft mode momenta qk=1,2

1,3 for both transverse and longitudinal soft modes
– although most of the results in the preceding sections showed that the first longitudinal soft
mode in many cases suffices for a classification of magnetization plateaus.

nl 2 3 4 5 6
qnl,j π 2π/3 π/2 π 2π/5 4π/5 π/3 2π/3 π

k3 = 1 0 1/6 1/4 0 3/10 1/10 1/3 1/6 0
k3 = 2 1/4 1/3 3/8 1/4 4/10 3/10 5/12 1/3 0
k1 = 1 (1/2) 1/3 1/4 (1/2) 1/5 2/5 1/6 1/3 (1/2)
k1 = 2 1/4 1/6 1/8 1/4 1/10 1/5 1/12 1/6 1/4

Table 4.1: Possible plateau positions for nl-leg ladders refering to soft mode momenta qk=1,2
1,3 (m)

As a first remark, it should be pointed out that the fundamental difference between ladders with
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an odd or even number of legs –the gap at m = 0 for ladders with an even number of legs–
appears quite naturally in our analysis of periodic perturbations.
Second, the occasional appearance of the saturation value m = 1/2 (for ladders with an even
number of legs, k1 = 1 and q = π) deserves some correction: In case that all spins are fully
aligned, Sz-conserving perturbations cannot alter the momentum q = 0 (see Sec. 2.1) of the
unperturbed ground state –meaning that the trivial plateau at m = 1/2 is of course present in
all possible cases (consider Eq. 4.2 for q = 0). However, the saturation plateau will be of no
further concern for the discussion.
Taking into account that plateaus in many of the considered cases were related to k3 = 1-
soft modes, Table 4.2 comprises these “most probable” values. Some more discussion about
this will be given in Sec. 4.3 where we will consider the present soft mode description and its
relationship to the quantization condition of Oshikawa, Yamanaka and Affleck [169]. The next
section, however, will give another interesting example which is not described by these “most
probable” values.

nl 2 3 4 5 6
m 0 1/6 0, 1/4 1/10,3/10 0, 1/6, 1/3

Table 4.2: “Most probable” plateau locations for nl-leg ladders

Finally it should be stressed that we are sofar in most cases unable to decide whether transverse
or longitudinal soft modes are responsible for the formation of a particular plateau. As an
exception the periodic perturbation

√
NDc

1(π/3) may serve where the plateau at m = 1/6 could
only be described by k1 = 1. As already mentioned, in Sec. 4.2 we will introduce a different
approach and consider the behaviour of static structure factors under the influence of applied
periodic perturbations. This will suggest a way from the qualitative prediction of possible
plateau positions towards quantitative ones.

4.1.2 Ladder systems with competing interactions – spontaneous magnetiza-
tion

In this section we will discuss spin ladders that have a competition between an antiferromagnetic
rung coupling and a ferromagnetic leg coupling [216]. This situation will be contrasted by the
wholly antiferromagnetic ladder. Since in this part we are going to present some DMRG-results
(cf. [214, 218]) for ladders of up to 5 legs, we expand our discussion considering in addition
ladders that as well have open boundary conditions (obc) in the leg direction of the ladders.
The ladder Hamiltonian in this case reads (cf. Sec. 3.4.1, note the changed boundary conditions):

H(Jl, Jr;B) = 2


Jl

nl−1∑

y=0

nr−2∑

x=0

S(x, y)S(x + 1, y)

+ Jr

nr−1∑

x=0

nl−2∑

y=0

S(x, y)S(x, y + 1)−B
∑
x,y

S3(x, y)


 . (4.14)

The open boundary conditions for the legs are mainly chosen for reasons of applicability of
DMRG calculations. In the following we are going to contrast this choice of boundary conditions
by evaluations of smaller systems with periodic boundary conditions for the legs.
Despite of the changed leg-boundary conditions we argue that our analysis of periodic pertur-
bations still holds. In the preceding section we took care of the open ends in the rung direction,
effects of open ends of the legs are expected to be less susceptible and disappear in the TDL. In
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the course of this section we will comment on the influence of the chosen boundary conditions for
the situations of 2- and 3-leg ladders with both competing and purely antiferromagnetic interac-
tions concerning the finite-size dependence of ground state energies per site e0(m) = E0(m)/N .
Before presenting some of the mentioned DMRG results for the above-mentioned ground state
energies e0(m) and magnetizations m(B) we will address some of the basic properties of even- and
odd-leg ladders studying 2- and 3-leg ladders of up to 24 sites. Here, we will look at properties of
single legs of these ladders (total Sz/leg, total spin Stot/leg), which might support the assessment
of a variational ansatz given in [216] (see below). Furthermore, interesting features arising from
the magnetization curves will be considered.

Jr=1 ; 2 legs
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Figure 4.13: Magnetization curves for open 2− and 3−leg ladders with Jr = 1, Jl = ±1

Fig. 4.13 shows magnetization curves for the 2- and 3-leg ladder. Here, the boundary conditions
(legs, rungs: obc) have been chosen according to the situation occurring in the DMRG calcu-
lations. We contrast the cases Jl = ±1 keeping Jr = 1 fixed. Again we use the BST-algorithm
to determine the plateau widths and saturation fields on the basis of the finite-system data
(N = 12, 16, 20, 24 for nl = 2; N = 12, 18, 24 for nl = 3). Otherwise, the shown thick lines
represent the Bonner and Fisher curves [32] for the longest used chain (N = 24).
The even-leg ladder (nl = 2) shows the expected m = 0-plateaus (k = 1), however, for the case
Jl = 1 a small plateau at m = 1/4 is present, which again is a non-“most probable” case (k = 2).
The 3-leg ladders show plateaus at m = 1/6, however, no signatures at m = 1/3. This again may
be seen as a predominance of the longitudinal soft modes for the plateau prediction (see Table
4.1). Even more interesting, the 3-leg ladder with ferromagnetic leg coupling (Jl < 0) shows
spontaneous magnetization. The ground state energies in the sectors Sz/N = 0 up to a limiting
value S∗z/N = m∗ are degenerate – the corresponding states all having total spin Stot = Nm∗.
In [216] it has been shown that this property follows as a consequence of an argument given
by Lieb and Mattis (1962) [144] in the general context “Ordering Energy Levels of Interacting
Spin Systems”. The considered nl-leg ladder systems fall in a class of spin systems for which
these authors proved the following inequalities (for the lowest energy eigenvalues E(Stot) in each
Stot-sector):

E(Stot + 1) > E(Stot) for Stot ≥ 1
2
· n∗ (4.15)

E(Stot) > E(Stot = n∗/2) for Stot <
1
2
· n∗ , (4.16)
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i.e. E(Stot = n∗/2) is the minimal ground state energy for all 0 ≤ Sz ≤ n∗/2 leading to a
spontaneous magnetization m∗ for n∗ > 0.
While n∗ remains zero in ladders with purely antiferromagnetic couplings on rungs and legs,
odd-leg ladders with ferromagnetic leg couplings have a non-zero n∗ = N/nl [216] – which
means a spontaneous magnetization m∗ = 1/2nl as shown in Fig. 4.13. This does not hold for
even-leg ladders.
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Figure 4.14: Ground state energies per site e0(m,Jl = −1, Jr) vs. m for 2-leg ladders

The investigation of spin ladder systems with competing interactions disclosed a quite unex-
pected property of the spin ladders (nl = 2, 3, 4). As exemplified in Fig. 4.15 for a 3-leg ladder,
the ground state energies per site e0(m,Jr, Jl) as a function of the magnetization m for different
Jr and a fixed Jl = −1 not only show the above-mentioned spontaneous magnetization m∗ but in
addition a very precise single crossing point of all curves at a higher magnetization value mx. As
will be shown later, this crossing phenomenon does not mean a peculiar property of ladder sys-
tems with competing interactions. The same phenomenon is present in purely antiferromagnetic
ladders showing the same mx-value as in case of competing interactions.
Fig. 4.14 shows a similar single crossing point for the case of 2-leg ladders with competing
interactions. The 2 Figs. in addition provide a comparison of calculations with open boundary
conditions (obc: a) ) and periodic boundary conditions (pbc: b) ) for the leg direction. It turns
out that in case of obc (resembling the DMRG case) finite-size effects are distinctively more
pronounced than in case of periodic leg couplings (pbc). The open ends of the legs lead to
1/N -corrections as can e.g. be seen for the un-coupled legs at Jr = 0:

obc: e0(m,Jr = 0, Jl) =
(

1
2
− nl

N

)
· Jl

pbc: e0(m,Jr = 0, Jl) =
1
2
· Jl .

DMRG calculations for comparatively large systems led to e0(mx, Jl = −1, Jr) = −1/2 and
mx(nl = 2) ' 0.375, mx(nl = 3) ' 0.385 [216]. Results for a 48-site 3-leg ladder are given in
Fig. 4.15 a2) and in good agreement with Fig. 4.15 b), i.e. results that were obtained from
smaller systems using periodic leg-boundary conditions. Figs. 4.14 b), 4.15 b) show that the 2
crossing points (nl = 2, 3) are in good approximation given by mx(nl = 2) ' 6/16 = 0.375 and
mx(nl = 3) ' 7/18 = 0.388...
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Figure 4.15: Ground state energies per site e0(m,Jl = −1, Jr) vs. m for 3-leg ladders

Since until now no rigorous explanation could be achieved, the closeness of mx to the saturation
value msat = 1/2 led to an approximate description [216] of the situation starting from the
saturation point m = 0.5 of the magnetization. (Another description for all considered cases of
couplings, however for periodic leg couplings, is given further below.) Owing to the ferromagnetic
leg coupling each leg of a ladder below the saturation magnetization is described by applying
lowering operators on the fully magnetized legs |0 >:

|leg > (mleg =
1
2
(1− k/(N/nl))) = (S −

leg)
k|0 > ; S −

leg ≡
N/nl−1∑

x=0

S −
x,leg . (4.17)

I.e., the total spin of each leg remains fixed at the saturation value Stot,leg = N/(2nl) and only
the Sz-value is lowered. Moreover, periodic boundary conditions for the leg direction have been
chosen in this picture (leading to small deviations that are expected to vanish for increasing
N/nl). Under these assumptions for a variational ansatz for the ground state (based on a
superposition of product states), in [216] it was shown that

(e0(m)− e0(mx))/Jr

(
= m + g(m)

)
(4.18)

is an almost linear function in m (for mx < m < msat) with no further dependence on Jr thus
explaining the unique crossing point and the linear dependence in m (see Figs. 4.14, 4.15).
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Figure 4.16: Comparison of < Sz >leg 2 / < Sz >leg 1 with a variational ansatz (see text)

The above sketched variational approach has been tested twofold. First, (e0(m) − e0(mx))/Jr

was shown to be independent of Jr to a satisfactory level for m > mx(nl) [216]. Second, the
ratio of Sz-expectation values for the inner and outer legs of a 3-leg ladder (−Jl = Jr = 1)

< Sz >inner leg

< Sz >outer leg
(m) =

∑N/3−1
x=0 < Sz(x, y = 2) > (m)

∑N/3−1
x=0 < Sz(x, y = 1) > (m)

(4.19)

have been calculated within the variational ansatz and compared with numerical results for 3-leg
ladders (here, y = 1, 2, 3 has been used for the numbering of the legs, 1, 3 denoting the outer
ones).
Fig. 4.16 shows results for systems (N = 12, 18, 24, obc for legs and rungs) and the variational
ansatz and a growing inadequacy becomes apparent for decreasing m. In the following figures
(Figs. 4.17,.., 4.19; obc for legs and rungs) results for < Sz,tot >leg for finite-N 2- and 3-leg
ladders are given. For further comparison, the case −Jl = Jr = 1 (solid symbols) is confronted
with Jl = Jr = 1 (open symbols), i.e. the completely antiferromagnetically coupled ladder.
For 2-leg ladders no difference of expectation values for the 2 legs appears. Expectation values
of < Stot >leg 1,2 (normalized by (N/nl) · 1/2 = N/4) in Fig. 4.17 show that the ground state
expectation values < Stot >leg /(N/2nl) indeed decrease much slower from the saturation value
in case of the ferromagnetic leg couplings. The same holds for the 3-leg ladder (Fig. 4.18),
where the values for the inner (solid lines) and outer (dotted lines) legs differ. The maximum
value of < Stot >leg /(N/2nl) = 1, however, is only retained for the first value m = 1/2 − 1/N
below msat = 1/2.
The < Sz >leg expectation values for the 3-leg ladder on the other hand show almost no dif-
ferences between Jl = ±1 well above mx(3) (Fig. 4.19; the 2-leg case gives identical linear
behaviour in the whole interval 0 ≤ m ≤ 1/2 (r.h.s. Fig. 4.17)). Further below mx signifi-
cant differences appear and the onset of the spontaneous magnetization for Jl = −1 is clearly
indicated by the beginning of plateaus in < Stot >leg and kinks in < Sz >leg.
We have seen clear differences in properties of completely antiferromagnetic ladders and those
with competing interactions. In the latter case ferromagnetic leg couplings have been considered
and it ought to be supplemented that the other case (ferromagnetically coupled antiferromagnetic
chains) has been discussed in [39] where unusual behaviour has been reported as well.
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Figure 4.17: Expectation values of Stot, Sz for the legs of a 2-leg ladder
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Figure 4.18: Expectation values of Stot for the inner(2) and outer(1,3) legs of a 3-leg ladder

Moreover, a variational ansatz has been discussed that offered an explanation for the single
crossing point of the ground state energies per site in case of ferromagnetic leg couplings (Fig.
4.15. Reasons and limitations for the assumptions made in this context have been given and
the different situation in case of (antiferromagnetically coupled) ferromagnetic chains has been
exemplified in a comparison of the 2 cases Jl = ±1.
At this place, however, it should be pointed out that in case of purely antiferromagnetic ladders
the same feature (single crossing point of energies per site) is present. Fig. 4.20 shows this
phenomenon for 2- and 3-leg ladders and Jl = +1. Periodic boundary conditions for the leg
direction have been applied leading again to very small finite-size dependences.
The shown crossing points again are in fairly good accuracy given by mx = 6/16 (nl = 2),
mx = 7/18 (nl = 3) as in case of the ferromagnetic legs (in both cases with obc in rung
direction; pbc for the rungs shift the crossing point as shown in Fig. 4.15 c) ). For the 3-leg
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Figure 4.19: Expectation values of Sz for the inner(2) and outer(1,3) legs of a 3-leg ladder
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Figure 4.20: Ground state energies per site e0(m, Jl = +1, Jr) vs. m for 2- and 3-leg ladders

ladders a small non-zero ordinate value (e0(mx, Jl = +1) = 0.03) has been empirically chosen
to optimally locate the crossing point of the shown data. The non-zero value, however, remains
questionable. Differences in particular become evident in case of the un-coupled legs. While
e0(m,Jr = 0, Jl < 0) constantly remains at Jl/2 (defining the ordinate value of the crossing
point), antiferromagnetic leg couplings evolve a non-constant m-dependence even at Jr=0. In
this case finite-size effects are clearly visible for m < mx. A number of un-coupled legs does not
behave as a single chain in a magnetic field – the total Sz-value has to be distributed on the
manifold of legs, which causes an interdependence without existing rung couplings.
We are now going to complete our discussion of the antiferromagnetically coupled ferromagnetic
chains (again combined with a comparison of the fully antiferromagnetic ladders) showing in
addition the magnetization behaviour of 4- and 5-leg ladders. This will close our discussion of
the classification of magnetization plateaus in regular ladder systems with or without competing
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Figure 4.21: DMRG-results for magnetization m(B) of 4- and 5-leg ladders; Jr = 4, Jl = ±1

interactions.
The situation with an even number of legs (nl = 4) first shows the expected gap(plateau)
at m = 0 and moreover a second gap at m = 1/4 as given in Table 4.2. The change from
ferromagnetic to antiferromagnetic leg couplings mainly affects the second plateau (position
and width). The plateau width decreases despite the increasing saturation field BSat.
The 5-leg ladder shows the plateau values m = 1/10, 3/10 as given in Table 4.2 for both types
of leg couplings. The situation of ferromagnetic leg couplings (Jl = −1) shows a spontaneous
magnetization of m = m∗ = 1/(2nl) = 1/10 – disappearing for Jl > 0 – as discussed earlier.
As in the 4-leg ladder case the second plateau decreases and BSat increases when turning from
ferro- to antiferromagnetic leg couplings.

We finally want to offer an alternative explanation/description for the observed singular crossing
points of e0(m,Jr; nl, Jl). All of the shown cases have in common that e0(m) behaves to a very
high degree of accuracy linear in the relevant regime below m = 1/2. We therefore describe the
m-dependence of e0(m) as

e0(m,Jr; nl, Jl) = e0(1/2, Jr; nl, Jl)− 2BSat(Jr; nl, Jl) · (1/2−m) + O
(
(1/2−m)3

)

(compare Sec. 2.4) – due to the very small finite-size dependences of the shown data (for periodic
leg couplings) we omitted the N -dependence in the upper relation. Demanding now the existence
of a unique crossing point (mx, e0,x)

e0(mx, Jr; nl, Jl) = e0(mx, J ′r;nl, Jl) (4.20)

we obtain

mx =
1
2

(
1− e0(1/2, Jr; nl, Jl)− e0(1/2, J ′r;nl, Jl)

BSat(Jr; nl, Jl)−BSat(J ′r; nl, Jl)

)
+ O

(
(1/2−mx)3

)
(4.21)

m(1)
x =

1
2

(
1− e0(1/2, Jr; nl, Jl)− e0(1/2, J ′r;nl, Jl)

BSat(Jr; nl, Jl)−BSat(J ′r; nl, Jl)

)
. (4.22)

Due to the various boundary conditions it is much more convenient to use the numerical results
(e=(m = 1/2) and BSat = (E0(m = 1/2) − E0(m = 1/2 − 1/N))/2) then to follow the way of
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analytical evaluations as e.g. presented in App. B. An overview of results for m
(1)
x for various

2- and 3-leg ladders (all with periodic leg couplings) is given in Table 4.3. The values of m
(1)
x

all give upper bounds for the crossing points shown in Figs. 4.14, 4.15, 4.20. The smallness of
m

(1)
x −mx is consistent with the smallness of the next-to-leading term ((1/2−mx)3 < 10−2).

nl Jl legs rungs e0(m = 1/2) BSat m
(1)
x

2 +1 pbc obc +1/2 + 1/4 · Jr 2 + Jr 3/8
2 -1 pbc obc −1/2 + 1/4 · Jr Jr 3/8
3 +1 pbc obc +1/2 + 1/3 · Jr 2 + 3/2Jr 7/18
3 -1 pbc obc −1/2 + 1/3 · Jr 3/2Jr 7/18
3 +1 pbc pbc +1/2 + 1/2 · Jr 2 + 3/2Jr 1/3
3 -1 pbc pbc −1/2 + 1/2 · Jr 3/2Jr 1/3

Table 4.3: Crossing point magnetizations m
(1)
x for several ladders and boundary conditions

At the end of this consideration we shortly want to turn to the antiferromagnetic 3-leg ladder
(Jl, Jr > 0) with periodic leg and rung couplings. Here, as shown in Fig. 4.22, for the first
time deviations from the existence of single crossing points of ground state energies per site for
ladder systems become apparent.
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Figure 4.22: Ground state energies per site e0(m,Jl = +1, Jr) vs. m for 3-leg ladders with both
periodic legs and rungs

While for large rung couplings the determined m
(1)
x = 1/3 again approximates the crossing point

from above (Fig. 4.22 a) ), small couplings (magnified in Fig. 4.22 b) ) do no longer show a
unique crossing behaviour with negligible finite-size corrections. This only underlines that the
observed phenomenon is not a genuine feature of spin ladder systems.
In summary, it has to be pointed out that the given explanation, while giving a good description
of existing crossing points, does not give a definite explanation for the general situation.

In the next section we will turn our attention to the additional “different types of ladder geome-
tries” which have been introduced in Sec. 3.4.2 and again classify magnetization plateaus that
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occur in these systems.

4.1.3 Different ladder geometries – a DMRG study

We will close the discussion of spin systems with ladder geometry by applying our prediction
scheme for magnetization plateaus to the zig-zag-type and Kagomé-like ladders introduced in
Sec. 3.4.2. Following this outline we will first review some recently published DMRG results
[217].
In the next paragraph we will discuss the applicability of open leg boundary conditions (which
had to be used for the presented DMRG calculations) for the treatment of problems that do
require periodic boundaries –or the approach of system sizes that make the choice of boundary
conditions rather insignificant. For this purpose the evaluations of 3-leg ladders presented in
this section will be carried out again by means of the standard Lanczos techniques applying the
required periodic leg boundary conditions. The different finite-size behaviour for both choices
of leg boundary conditions will be discussed and documented.
Zig-zag ladders have only recently been investigated by Cabra, Honecker and Pujol [39] applying
bosonization techniques and numerical evaluations. Here, the appearance of magnetization
plateaus will again be considered by mapping the respective Hamiltonians onto 1-dim. spin
chains (see Sec. 3.4.2). Compared with the regular ladders that have been treated in the last
section, the composition of contributing and perturbed couplings differ. In the following, the
Hamiltonians given in Sec. 3.4.2 will be shortly reproduced –together with a classification of
potential plateaus and some recently published DMRG results [217] for the respective cases.
In addition, the discussion of 2- and 3-leg zig-zag ladders will be supplemented by similar
considerations concerning the recently discussed [208] Kagomé-type 3-leg ladder.
We will now give again the Hamiltonians of Sec. 3.4.2 –this time, however, omitting the addi-
tional h-dependences of the couplings J1,2 for the 3-leg cases. In order to achieve a terse notation
we define

D̄r(q, j) ≡ 1√
N

N−1∑

n=0

cos q(n + j) · SnSn+r (4.23)

and refer to the symbols (a)(2-leg zig-zag ladder), (b) (3-leg zig-zag ladder), (b′) (3-leg zig-zag
ladder with open rung couplings) and (c) (Kagomé-like 3-leg ladder) used in Fig. 3.20. The 4
respective Hamiltonians now read (with q3 ≡ 2π

3 , q4 ≡ π
2 )

H(a) = J1H1 + J2

[
H2 + 2

√
2NhD̄2(q4, 1/2)

]
(4.24)

H(b) = J1H1 +
2
3
J2H2 + J3H3 +−4

3
J2

√
ND̄2(q3, 1) (4.25)

H(b′) =
2
3
(J1H1 + J2H2) + J3H3 − 4

3

√
N

[
J1D̄1(q3,−1) + J2D̄2(q3, 1)

]
(4.26)

H(c) =
2
3
(J1H1 + J2H2 + J3H3)− 4

3

√
N

[
J1D̄1(q3, 2) + J2D̄2(q3, 1) + J3D̄3(q3, 0)

]

. (4.27)

The equations show that with increasing complexity periodically perturbed interactions of an
increasing number of ranges occur. We now want to apply the scheme of prediction of potential
magnetization plateaus as already done for the regular ladder systems. Moreover, these pre-
dictions will be accompanied by several calculated (DMRG calculations) magnetization curves
as presented in [217]. The application of DMRG algorithms again requires to consider ladders
with open leg boundary conditions meaning respective adjustments for the given Hamiltonians.
Looking back on the discussion of finite-size effects in the last section –particularly marked in
case of obc for the legs– and taking into account the higher complexity (number and ranges of
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the periodic perturbations) of the above given Hamiltonians, higher demands on evaluated sys-
tem sizes for controllable finite-size effects are to be expected. Below, we will give a comparison
with Lanczos evaluations using periodic leg boundary conditions for one of the reported DMRG
calculations. The important influence of leg boundary conditions will be discussed in the next
section.
Concerning magnetization plateaus, we expect –if at all– plateaus in cases where the wave vector
q coincides with one of the (longitudinal or transverse) soft mode momenta q

(k1,3)
1,3 (m), leading

to plateau magnetizations

m(3)(k3) =
1
2

(
1− q

k3π

)
(4.28)

m(1)(k1) =
1
2

q

k1π
=

1
2
−m(3)(k3 = k1) . (4.29)

A first application to the 2-leg zig-zag ladder (an example for the parameters J1 = 1, J2 = 2,
h = 0.6, 0.8, 1.0 is shown in Fig. 4.23) leads to

q =
π

2
m(3) =

1
4
,

3
8
, .. k3 = 1, 2, .. (4.30)

m(1) =
1
4
,

1
8
, .. k1 = 1, 2, .. . (4.31)

Since cos π
2 = cos 3π

2 , sin π
2 = − sin 3π

2 , one might consider q = 3π/2 in this particular case as
well (in all other cases only multiples of 2π may be added to a given q), leading to

q =
3π

2
m(3) = −−,

1
8
, .. k3 = 1, 2, .. (4.32)

m(1) = −−,
3
8
, .. k1 = 1, 2, .. . (4.33)
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Figure 4.23: m(B) for a 2-leg zig-zag ladder with J1 = 1, J2 = 2 and h = 0.4, 0.6, 1.0

Fig. 4.23 shows two plateaus at m = 1/8, 1/4, however, no signatures at m = 3/8 are visible.
The plateau at m = 0 is not described by q = π/2 (3π/2). Here, the large q = 0 (2π)-contribution
J2H2 (note α = J2/J1 = 2) leads to the opening of a gap at m = 0 (cf. Chap. 5). The occurrence
of the m = 1/8-plateau strongly depends on the ratio α = J2/J1 = 2. Shifting this ratio to
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either side results in the vanishing of the plateau. Note that the figure only shows results for a
single system size (N = 48) to maintain legibility.
The magnetization of a 3-leg zig-zag ladder (Hamiltonian H(b)) is shown in Fig. 4.24 (b) for
parameters J1 = J2 = 1.5, J3 = 1.0 and a 3× 24-spin ladder. For the finite-size analysis of the
(upper) plateau boundaries system sizes N = 24, 36, . . . , 96 have been used.
Applying the prediction scheme for possible plateau formations in presence of a perturbation
with q = q2 = 2π/3 results in

q =
2π

3
m(3) =

1
6
,

1
3
, .. k3 = 1, 2, .. (4.34)

m(1) =
1
3
,

1
6
, .. k1 = 1, 2, .. . (4.35)
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Figure 4.24: m(B) for 3-leg zig-zag ladders with periodic (b) and open (b’) rung couplings

Both plateaus are clearly visible in Fig. 4.24 (b). The Bonner and Fisher constructions (cf.
Sec. 2.4) for the magnetization curves show rather large finite-size behaviour, requiring the
comparatively large system sizes. The different behaviour for periodic leg couplings (using
smaller systems) will be considered below.
On this level (calculating m(B)), we cannot definitely specify which kind of soft mode is re-
sponsible for the plateaus and again we have to refer to Sec. 4.2 for further considerations. In
addition, the 3-leg zig-zag ladder has been discussed in [39] (same couplings have been chosen
here) for different types of rung boundary conditions (types A, B and C) and the formation of
plateaus has been found to react very sensitively on the chosen boundary conditions (no plateau
for type B, plateaus at m = 1/6 for A and C).
The case of the 3-leg zig-zag ladder with open rung couplings (H(b′)) consists of periodic per-
turbations of the same qpert. as Hamiltonian H(b), however with different weights and different
contributing coupling lengths of the perturbations. The general analysis of potential magneti-
zation plateaus for q = q2 = 2π/3 remains unchanged. For coupling strengths J1 = J2 = 3/4,
J3 = 1 it was shown in [39] that at both magnetizations (m = 1/6, 1/3 plateaus clearly evolve.
In addition, changing from antiferromagnetic to ferromagnetic leg couplings, i.e. J3 < 0, spon-
taneous magnetization (mspon. = 1/6 for J1 = J2 = 3/2, J3 = −1 has been established, see Fig.
4.24 (b’)). In this case, a plateau at m = 1/3 is no longer observable.
Finally, we turn to the 3-leg Kagomé-like ladder that already has been discussed in [208] where
the authors addressed the question whether the singlet-triplet gap of the Kagomé lattice as well
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Figure 4.25: m(B) for Kagomé-like 3-leg ladders (c) with J1 = J2 = 1, J3 = 0.4, 0.6, 1.0

exists for the 3-spin Kagomé-like ladder, i.e. a plateau at m = 0 does exist. The observed
behaviour, however, has been found to be gap-less in a wide range of coupling strengths [208].
Furthermore, Azaria et al. [14] recently discussed a different 3-leg Kagomé-like ladder system.
The couplings of Hamiltonian H(c) (q = q3 = 2π/3) again result in the prediction of m =
1/6, 1/3 as possible plateau values. Fig. 4.25 shows magnetization curves for different strengths
of the leg coupling J3. While all cases remain gap-less, an interesting behaviour of the lower
plateau (m = 1/6) appears. At the lowest considered J3-value a spontaneous magnetization
(or ferrimagnetism) is observed – the plateau beginning at B = 0. This B-value changes to
B ' 0.1 when changing from J3 = 0.4 to J3 = 0.6 showing a steep increase of m(B) at B = 0.
The m = 1/6 plateau further decreases when choosing J3 = 1.0. Here, a first hint of the
second plateau at m = 1/3 appears, followed by an immediate jump of m to the saturation
magnetization. The latter phenomenon –a so-called meta-magnetism– has e.g. been discussed
in [92]. Like in the earlier presented cases of 3-leg zig-zag ladders certain large finite-size effects
at upper plateau boundaries seem to be present (compare with periodic leg coupling evaluations
given in the following section).

4.1.4 Open and periodic leg boundary conditions – a comparison

In this part we are going to present results for the earlier given 3-leg evaluations (types (b), (b′)
and (c)) of the previous section –this time choosing periodic leg boundaries. The same coupling
strengths will be chosen to allow for an immediate comparison of the behaviour of both types
of boundary conditions.
For this purpose, we will first turn to the finite-size dependences visible in Fig. 4.24 and contrast
them with the respective behaviour of ladders with periodic leg boundary conditions. Besides
the infinite-N curves (thick lines; shown plateaus resulting from finite-size (BST) analyzes of
system sizes out of the ranges given in parentheses in the figure) each part of the figure shows
one finite-N magnetization curve (N value as well given in the figure) to illustrate the size of
the N -dependences occurring in the performed DMRG calculations. Strong finite-size behaviour
appears at the upper plateau boundaries – an effect that is as well observable in the single system
results of Fig. 4.25. In particular, for the case J3 = 1.0 in the latter figure the existence of a
m = 1/3-plateau could not be decided on the basis of the shown data determined with open leg
boundary conditions. Experiences out of the comparison of DMRG calculations and calculations
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with periodic leg boundary conditions (see e.g. Sec. 4.1.2) may indicate –however, do not prove–
that the above-mentioned effects are more likely effects of the applied boundary conditions than
genuine effects of the considered perturbations. In the following, we are going to compare the
presented 3-leg ladder (types (b), (b′) and (c)) magnetization curves with solutions obtained
from smaller spin systems and using periodic leg boundary conditions.
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Figure 4.26: Finite-size effects of type-(b′) ladders with open and periodic leg boundary condi-
tions

Considering first the 3-leg zig-zag ladder with open rung couplings, the use of periodic bound-
ary conditions for the leg direction indeed considerably “improves” the N -dependence of the
magnetization curves as is shown in Fig. 4.26. Here, the N → ∞ DMRG result –shown in
Fig. 4.24 (based on N = 48 for magnetizations aside from the kink position)– is contrasted with
finite-N magnetization curves (N = 12, 18, 24) for ladders with periodic leg boundary conditions
that were accessible for standard Lanczos diagonalizations. Fig. 4.26 (l.h.s.) shows that the
m = 1/6-plateau is approached very regularly and to a good degree of approximation even for
the small manageable system sizes.
The Bonner-Fisher construction for m(B) (1/6 < m < 1/2, N = 12, 18, 24) –shown as well
on the l.h.s. of Fig. 4.26– already shows good convergence, however, a certain difference to
the DMRG result in this regime remains (note that for this interval no finite-size scaling for
the DMRG-results of m(B) have been performed). The latter point –together with the finite-
size dependence of magnetization curves determined for open leg boundaries– is shown on the
r.h.s. of the figure. Open leg boundary conditions clearly enhance finite-size effects and the
determination of plateau boundaries (for the given case further supplemented by N = 72 data
around the kink of the magnetization curve) in the considered example appears to be expensive.
The different data shown in the figure clearly favour the case of periodic leg boundary conditions
and show that the N = 48 magnetization curve still carries small finite-size contributions in the
interval 1/6 < m < 1/2. Moreover, the range ∆B of the finite-size effect shown in Fig. 4.24 (b′)
appears to be independent of N – its height decreases with increasing N .
Fig. 4.27 now shows similar considerations for the type-(b) (periodic rung couplings) ladder.
Again, periodic leg boundaries improve the smallness and direction of finite-size corrections.
While both evaluations approximately agree in the course of the magnetization curve between
the plateaus and in width and position of the upper plateau, the lower (m = 1/6) plateau
appears to be somehow shifted to higher B values. The indicated bulge between both plateaus
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Figure 4.27: Finite-size effects of type-(b) ladders with open and periodic leg boundary conditions

(DMRG result) cannot be commented on the basis of the presented pbc-calculations. In this
type-(b) example, as well as in the following type-(c) example, the aforementioned excess of
the obc-calculations at the upper plateau is again present (compare Figs. 4.24, 4.25). It should
moreover be noted that the number of Lanczos iterations needed to reach the demanded accuracy
level (10−10 for all cases) considerably increased when turning from open (b′)to periodic (b) rung
couplings of the zig-zag ladder. The latter effect may be understood as a consequence of the
imposed frustration of odd-leg ladders due to the periodic rung couplings.
Turning now again to the three Kagomé cases, Fig. 4.28 at first sight shows that system sizes
N = 12, 18 are sufficient to give the bounds of the lower (m = 1/6) plateau for J3 = 0.4, 0.6.
The mentioned obc excesses at the upper plateau bounds do not exist. Calculations for ladders
with N = 24 spins on one hand show the occurrence of irregular finite-size dependence at the
upper bound of the m = 1/6 plateau –which corresponds to the larger finite-size effects for
J3 = 1.0 for the DMRG calculations. On the other hand, the inclusion of the third system size
(N = 24) allows for a first finite-size (BST) analysis of the possible existence of a second plateau
at m = 1/3. While the answer is negative for J3 = 0.4, 0.6 a non-zero plateau exists for J3 = 1.0
–as can as well be immediately seen in the figure. The latter fact only had to be argued on the
basis of the performed obc calculations.
As a first summary it remains to be realized that the presented small system calculations with
periodic leg boundary conditions not only resulted in the same results as obtained from larger
spin systems treated by DMRG evaluations (using open leg boundaries) but moreover avoided
the documented finite-size problems occurring for open leg boundaries. In addition, as was
shown for the Kagomé-type ladders, pbc calculations proved to be better suited for the check of
the existence of the “secondary” plateaus at m = 1/3.
The latter judgement of course has to be considered in the context of technical capabilities.
While qpert. = 2π/3 has been rather at the edge of a standard Lanczos diagonalization (three
different system sizes are at least needed to assess finite-size dependences in simple cases, DMRG
applications can be extended by about one order of magnitude for system sizes and more complex
problems can be treated. Nevertheless, the discussed pbc evaluations offer valuable help for
the assessment of situations that are no longer treatable with standard Lanczos techniques
that allow to apply the important periodic boundary conditions required by the very nature of
the discussed problems right from the beginning. The given comparison showed that O(102)
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Figure 4.28: Finite-size effects of type-(c) ladders with open and periodic leg boundary conditions

considered spins may not be sufficient to reach in all cases a situation where the applied boundary
conditions appear to be sufficiently uninfluential. The upper comparisons may as well support
the classification of obc (DMRG) results obtained for above-mentioned cases (e.g. spin-1, -3/2,
..., Hubbard- and t− J-models) where similar Lanczos treatments are no longer possible.
The discussion moreover may help to influence endeavours to better and less costly incorporate
periodic boundary conditions in DMRG calculations. The necessity of standard (obc) DMRG
calculations for the discussed range of problems, however, may be scrutinized.

4.1.5 Gaps and plateaus for the spin-Peierls chain

We will now turn turn to frustrated and dimerized spin chains that have been discussed in the
framework of quasi-1-dimensional spin-Peierls materials – in particular CuGeO3 that in 1993
has been reported the first inorganic spin-Peierls material [105]– in Sec. 3.5.
In the present case, we will leave out particular aspects and details of spin-Peierls materials and
only consider the periodically perturbed and frustrated 1-dimensional spin-1/2 Hamiltonians
that have been found to give proper descriptions for CuGeO3 [43, 176, 74]:

H = J1

(
H0(α) + 2δ ·

√
ND1(q = π)

)
(4.36)

choosing J1 = 1 and changing δ to the so far used parameter h. Moreover, we will largely extend
the range of the dimerization strength to the interval 0 ≤ h < 1.
We will first consider the opening of the spin-Peierls gap, i.e. the gap at magnetization m = 0.
Fig. 4.29 shows results of BST-fits (see App. C) based on finite-chain calculations for N =
8, 12, 16, 20. The figure includes the earlier obtained results for α = 0 (Fig. 4.3) as well as the
3 frustration values (α = 0.25, 0.3, 0.35) discussed in Sec. 3.5.
In the un-frustrated case the opening of the gap can be described by a single exponent in the
whole interval 0 < h ≤ 1. One should note, however, that the investigation of the scaling
behaviour for very small dimerization strengths (compare Sec. 3.3.3 and Fig. 3.9) resulted in a
slightly smaller exponent (0.73 instead of 0.75).
The frustrated chains show a drift away from an algebraic increase at smaller dimerization
strengths already well below h = 1 changing to an almost linear increase. This change is
accompanied by a ground state level crossing in the sector Sz = 1. The same level crossing
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Figure 4.29: m = 0 dimer gap (q = π) for frustrations α = 0.0, 0.25, 0.3, 0.35 (N = 8, 12, 16, 20)

happens for the un-frustrated chain precisely at h = 1. For the regime h < 0.5 the data indicate
that a growing frustration results in a lowering of the exponent describing the opening of the
gap. In the regime of larger dimerization h all curves for α > 0 are fitted by straight lines of the
same slope. Especially at h = 1 these lines seem to approach the value of 2 for the un-frustrated
case almost equidistantly – a point that will be considered in a perturbation expansion below.
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Figure 4.30: m = 1/4-dimer gap (q = π) for frustrations α = 0.0, 0.25, 0.3, 0.35 (N =
8, 12, 16, 20)

Now, first we will turn to situations of plateaus at a non-zero magnetization. In retrospect to
the quantization condition 4.1 it appears that an additional spontaneous symmetry breaking
is needed for magnetization plateaus at non-zero magnetization. This spontaneous symmetry
breaking is provided by the considered frustrations α > αc (compare Totsuka [200]).
Fig. 4.30 shows that for the considered α-values a second plateau exists for h-values below
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h = 1 (see figure). The dependence of the m = 1/4-plateau on α and h has been discussed
in much more detail by Totsuka [200] (see phase diagram –Fig. 6– there) using bosonization
techniques. The 3 non-zero α-values of Fig. 4.30 and the shown range of perturbation strengths
h lie well within the plateau region determined by Totsuka. The entire h-dependence of the
plateaus shown on the r.h.s. of Fig. 4.30, however, exceeds the range of Totsuka’s treatment.
Using the LSM-predictions given in Eqns. 4.2, 4.3 we can classify the m = 1/4-plateaus by
k1 = k3 = 2, i.e. again a case where higher soft mode momenta occur. Quite interestingly, it
seems that even in the parameter range discussed for CuGeO3 (h ≤ 0.05) a second magnetization
plateau is predicted. However, considering J1 ' 80K (note the factor of 2 in H) magnetic fields
greater than 50T (100T ) would be required to reach the plateau magnetization m = 1/4.
The maximum of each plateau width is characterized by level crossings for the ground state
energies in the sectors m = 1/4, 1/4 ± 1/N as is exemplified for N = 8, 12 in Fig. 4.31 which
shows the course of the 2 lowest energies E0,1(h,m, N)/N . Again the un-frustrated case (with
no second plateau for h < 1) is not affected by any level crossing of ground states in that
regime. The 2 cases of frustrated systems show level crossings/ lifts of degeneracy at h-values
that roughly coincide with the maximum widths of the respective plateaus.
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Figure 4.31: Lowest energies E0,1(h,m, N) for α = 0, 0, 0.25, 0.35 and N = 8, 12 ; D1(π)

Turning now back to the “spin-Peierls” gap at m = 0 we want to reconsider the situation at
h = 1. In the un-frustrated case consists of N/2 un-coupled dimers. A singlet-triplet excitation
of a single dimer (Esinglet = −3/4, Etriplet = 1/4) affords ∆E = 2 (J = 1 + h = 2) resulting in
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the gap width shown in Fig. 4.29.
Discussing now the influence of an additional frustration for dimerization strength h = 1, we
treat the considered frustrations (with ratios α/(1 + h) = α/2 < 1) as small perturbations for
the dimers – now forming the rungs of a 2-leg ladder (see Fig. 4.32). We therefore calculate the
gap value Egap = E0(Sz = 1)−E0(Sz = 0) up to lowest relevant order perturbation expansion.

0123
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J=1+h=2

α

. . .

←



↑

y

x

Figure 4.32: Resulting Hamiltonian for the dimerized (q = π) chain at h = 1

For the unperturbed (α = 0) ground states in the 2 Sz-sectors we choose

Ψ0(Sz = 0) =
∏
x

S0(x) (4.37)

Ψ0(Sz = 1) =
1√
N/2

N/2−1∑

x=0

eiq0xT1(x)
∏

x′ 6=x

S0(x′) (4.38)

with S0, T0,±1 denoting the singlet and the 3 triplet states of each rung (thick lines in Fig. 4.32)
of the ladder. The calculation of < Ψ0(Sz)|H|Ψ0(Sz) > with

H = Hrung + Hα

Hrung = 2
∑

x

(1 + 1)︸ ︷︷ ︸
≡J

S(x, 0)S(x, 1) =
∑

x

Hrung(x) (4.39)

Hα = 2α
∑

x

1∑

y=0

S(x, y)S(x + 1, y) =
∑

x

Hα(x, x + 1)

leads to

Hrung(x)S0(x) = −3
2
JS0(x) , Hrung(x)T0,±1(x) =

1
2
JT0,±1(x) (4.40)

Hα(x, x + 1)S0(x)S0(x + 1) = α
(
T0(x)T0(x + 1)− T1(x)T−1(x + 1)

−T−1(x)T1(x + 1)
)

(4.41)

and

(Hα(x− 1, x) + Hα(x, x + 1))S0(x− 1)T1(x)S0(x + 1) =

α
(
T1(x− 1)S0(x)S0(x + 1) + S0(x− 1)S0(x)T1(x + 1)

)
. (4.42)
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First, it turns out that E0(Sz = 0) in 1st order is not changed by Hα (since < S0(x)Tj(x) >= 0).
–A second order calculation would result in

E
(2)
0 (Sz = 0, α) = E

(0)
0 (0, 0)

(
1 +

1
2

(α

J

)2
)

. (4.43)

The 1st order contribution of E
(1)
0 (Sz = 1, α) reaches its minimum value for the choice q0 = π

(see Eq. 4.38) yielding

Hα|Ψ0(Sz = 1, q0 = π) > = −2α|Ψ0(1, π) > (4.44)

and one finally obtains

E(1)
gap = E

(1)
0 (Sz = 1, α)− E

(1)
0 (Sz = 0, α)

=
(
(N/2− 1)J(−3

2
) + J · 1

2
− 2α

)
−NJ(−3

2
)

= 2J − 2α

= 2(2− α) . (4.45)

Disregarding the pre-factor 2 (definition of H) the leading (2 − α)-dependence of the energy
gap at h = 1 is clearly visible in Fig. 4.29 – reaching the shown limit Egap(α = 0) = 2 for the
limiting case of independent dimers.
The figure implies that the leading linear dependence in α persists down to the level crossing at
hl.c.(α) < 1. However, we are not going to apply further perturbation calculations to this case
but continue our discussion of periodically perturbed spin systems.

In the following section we will leave the field of a mere descriptive analysis of plateau formation
when only making the right choice of magnetization m and period of the perturbation q (ac-
cording to Eqns. 4.2, 4.3). We will determine the actual size of matrix elements < n|X(q)|0 >
that are crucial for the shift of ground state energy levels at magnetization values m± in the
immediate neighbourhood of a possible plateau at m. Here, static structure factors (SSFs) will
turn out to be of importance for the development of magnetization plateaus.

4.2 LSM theorem, structure factors and predictability for the
occurrence of plateaus

In this section we want to try to give some further insight into the process of magnetization
plateau formation. Throughout our whole discussion the important relationship between a pe-
riodically perturbed spin chain and the starting point –the isotropic Heisenberg chain with
its massless excitations (at m-dependent positions)– has been emphasized. We therefore first
present a survey of a selection of static structure factors Xaa,conn.(q,m, N) at different magne-
tizations (see Fig. 4.33, m = 1/6, 1/4, 1/3):

Xaa(q, m,N) = < 0|X+
a (q)Xa(q)|0 >

Xaa,conn.(q, m,N) = Xaa(q, m, N)− | < 0|Xa(q)|0 > |2 . (4.46)

The figure shows the transverse and longitudinal SSFs S11(q), S33(q) that already appeared in
Chap. 2 (Sec. 2.5.1) and moreover shows D11(q), D22(q) for the operators D1,2(q). The latter
2 operators have served as well as some of the periodic perturbations discussed in the preceding
chapters. The shown lines here and in the following figures are merely for orientation purposes.
In case of several system sizes the longest chain data (N = 24) is always connected with straight
lines allowing to estimate the finite-size behaviour.
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Figure 4.33: Static structure factors of the unperturbed and frustrated (α = 0.25) Heisenberg
chain for m = 1/6, 1/4, 1/3

In addition, the influence of a second-nearest neighbour coupling J2 (J2/J1 ≡ α) has been
included for a frustration α = 0.25 (open symbols). The assignment of the 3 magnetization
values is simply accomplished by identifying the location of the field dependent soft modes
(q1(m) for S11(q, m); q3(m) for the remaining curves) that mark singularities of the SSFs (the
“tiny” singularity of S11(q) at q = q1(m) has been magnified in Fig. 2.4 for the case m = 1/4 –
note S++ = 2S11−m). (See also Chap. 2 for SSFs at zero magnetization that will be addressed
further below.)
The η-exponents for the N -dependences of

S11(q = π, N) ∼ N1−η1(m)

S33(q = q3(m)) ∼ N1−η3(m)

have been shown already for general m (0 ≤ m ≤ 1/2) in Fig. 2.11 obtained from Bethe
ansatz (BA) calculations of scaled energy gaps of a 2048-site chain [81]. For the 3 selected
magnetizations the exponents are given again in Table 4.4.
Since BA calculations are impracticable for frustrated spin chains, in [86] η3(m = 1/4, α = 1/4)
was extrapolated as

η3(m = 1/4, α = 1/4) ' 0.72

and was as well extrapolated for the 3 chosen magnetizations in [91] for a range of frustrations
α. For all cases η3(m,α = 1/4) < 1 was obtained –however, α must not fall short of 0.25 too
far for this property still to hold.
Moreover, in [86] –dealing with m = 1/4– it was argued that the N -dependence of D11(q3(m), N)
is governed by the same exponent η3(m) as that of S33(q3(m), N). For all shown cases –S33,
D11, D22– the applied frustration obviously decreases the η-exponents (increases N1−η) leading
to diverging SSFs for η < 1.
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m 1/6 1/4 1/3
η3(m)|q=q3(m) 1.39 1.53 1.68
η1(m)|q=π 0.72 0.65 0.60

Table 4.4: Critical exponents η1(m), η3(m) for the unperturbed chain with α = 0

We will now start to consider the behaviour of D11(q) and D22(q) for the earlier discussed
periodically perturbed Hamiltonians

Hj(h) ≡ H0 + 2h ·N1/2Dj(π) ; j = 1, 2 , (4.47)

assuming that the type of periodic perturbations should be well represented by these SSFs. As
presented in Figs. 4.1, 4.3 and 4.5 the Hamiltonians differ in forming magnetization plateaus
at m = 0 or m = 1/4. Here, we will first look at the case of plateau formation at m = 1/4
–a process that had been classified as a secondary (k = 2) one. This situation will later be
contrasted by that of plateaus at m = 0 (only formed under the influence of H1(h), then being
a primary (k = 1) process.
The above-mentioned SSFs D11(q) and D22(q) (connected parts) for magnetization m = 1/4
are shown in Figs. 4.34, 4.35 for 24-site chains, Hamiltonians H1,2(h) and various couplings.
It should be noted that the subtraction of disconnected parts only affects momenta q = 0, π,
the SSFs at all other momenta remain unchanged. Moreover, the notation “r = 0” in the
legends of the figures will be explained below in context with Fig. 4.37. It simply refers to the
standard form of SSFs. In addition, open symbols in the following figures have been chosen for
perturbations and parameter values showing magnetization plateaus for infinite N . Finally it
ought to be mentioned that the lines in the following figures are meant to guide the eye. In
particular one should be aware that e.g. in Fig. 4.35 no broad maximum at q = π/2 exists but
a sharp peak.
Looking at the formation of m = 1/4-plateaus we have to keep in mind that these have been
classified as k = 2-plateaus, i.e. we are dealing with qperturbation = π = 2 · q3(m = 1/4). The
peaks in the SSFs of the unperturbed chain mark a fundamental susceptibility of the chain at its
soft modes, however, the influence of applied perturbations on the singularities at q(m) is crucial.
The appearance of an energy gap should involve clear changes in the finite-size behaviour at the
soft mode position in the formerly gap-less spectrum.
Figs. 4.34, 4.35 now show important differences for the behaviour of the SSFs in case of H1(h)
and H2(h). While the peaks of the SSFs at q3(m) remain almost unchanged under the influence
of perturbations ∼ h · D1(π), perturbations ∼ h · D2(π) result in distinct changes when going
beyond a certain finite perturbation strength h. The latter is very well in accord with the
finite value of h shown in Fig. 4.5 that is needed to form a detectable plateau – though the
observed increases at q = π/2 are somewhat counterintuitive. The opening of a gap going along
with the plateau formation should usually be associated with decreasing singular behaviour (as
e.g. shown in D11 apart from q = π/2; compare also the m = 0-case, below) –as long as no
discrete mode at a continuum border appears. One should keep in mind, however, that even the
existence of a δ-like peak (a soft mode in the sector Sz = N ·m) does not rule out the existence
of a gap in neighbouring Sz-sectors resulting in the observed plateau. The peak in D11,conn.(q)
at q = π/2 moreover may be interpreted as a signature of the spontaneous symmetry breaking
that is needed to appear in case of m = 1/4-plateaus resulting from q = π-perturbations (see
quantization condition 4.1).
As was in addition demonstrated in Fig. 4.3, periodic perturbations ∼ h · D1(π) do not give
rise to m = 1/4-plateaus. We will now change to the situation of frustrated spin chains and
consider the case α = 0.25. As was shown in Fig. 4.30 (and discussed earlier by Totsuka [200]),
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Figure 4.34: D11,22;conn.(q, N = 24) for H = H1(h), h = 0.0, 0.3, 0.4, .., 0.7 and m = 1/4
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Figure 4.35: D11,22;conn.(q, N = 24) for H = H2(h), h = 0.0, 0.3, 0.4, .., 0.7 and m = 1/4

such a frustration leads to the occurrence of m = 1/4-plateaus. Looking again at perturbations
∼ h · D1(π) –this time of a frustrated chain– Fig. 4.36 demonstrates a clear change in the
behaviour of the SSFs. While the situation hardly changes for small h (see development of
the plateau in Fig. 4.30), the changes for α > 0.2 are again well in accord with the observed
plateaus.
Here, some remarks on finite-size behaviour shall be given. Figs. 4.34-4.36 only contain a single
system size (N = 24) which has been chosen for reasons of clarity. Fig. 4.37 will contain examples
of systems N = 16, 20, 24 for 2 of the shown cases of SSFs and their finite-size behaviour. It
remains to be added, however, that the singular peak of D11(q = π/2) shows a strong –almost
linear– N -dependence in case of H2(h > 0.3) that even might be in accord with a single δ-peak at
q = π/2. Such a peak might indicate –as mentioned above– the expected spontaneous symmetry
breaking going along with the plateau formation for the considered periodic perturbation.
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Figure 4.36: D11,22;conn.(q,N = 24) for H = H1(h, α = 0.25), h = 0.0, 0.3, 0.4, 0.5 and m = 1/4

At this place, we will briefly address the changed translational symmetry of the periodically
perturbed spin chain. The former invariance of the unperturbed Hamiltonian under translations
x → x+1 changes to x → x+R, R = 2π/q̂ for perturbations of momentum q̂. Now, R operators
Xr(q), r = 1, 2, . . . , R may be defined that reflect symmetries of the reduced Brillouin zone:

Xr(q,N) ≡ 1√
N/R

N/R−1∑

x=0

eiqRxX(Rx + r − 1, N) (4.48)

Xr(q,N) = Xr(q + 2π/R, N) (4.49)

and certain degeneracies due to superpositions of momentum eigenstates of the unperturbed
chain can be avoided.
Fig. 4.37 gives 2 examples of structure factors being calculated with X = D1, D2, for the case
q̂ = π (i.e. R = 2) with r = 1(≡ A), 2(≡ B) that have been discussed in this section. The
notation r = 0 is meant to indicate the standard SSF (Eq, 4.46)). Relations of SSFs for this
case e.g. read:

X(q) =
1√
2

(
XA(q) + eiqXB(q)

)
(4.50)

SXX,r=0(q) =
1
2

(SXX,A(q) + SXX,B(q)) + W ′
AB · cos q −W ′′

AB · sin q (4.51)

WAB ≡ < 0|X+
A (q)XB(q)|0 > (4.52)

with W ′ = <(W ), W ′′ = =(W ).
Fig. 4.37 shows that the symmetric components (A,B, Snn,A(B)(π/2− q) = Snn,A(B)(π/2 + q))
allow for a better distinction of peaks less clear visible in the standard SSF (see e.g. discussion
in [217]).
Some further examples will be shown below for the following case of m = 0-plateaus for H1(h).
Fig. 4.38 displays the connected parts of D11,22(q) for system sizes N = 12, 16, 20, 24 and
h = 0.0, 0.1, 0.3, 0.5 at zero magnetization. The l.h.s. of the figure clearly shows the change
of the finite-size behaviour of D11(q3(m = 0) = π) when the perturbation of the system sets
in. This type of behaviour is consistent with the opening of a gap and the identification of the
η-exponent describing D11(q = q3(m), N) with η3(m).
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Figure 4.37: Translation-invariant forms (A,B) of selected SSFs in reduced Brillouin zones;
m=1/4, N = 16, 20, 24

Moreover, the behaviour of the structure factors for H = H2(h) is as well contained in Fig. 4.38:
The increase of h does not result in an observable change of the h = 0-structure factors, i.e. for
H = H2(h) the SSFs remain unchanged and coincide with the shown h = 0-SSFs for H = H1(h).
Again this gives (strong) evidence that the h = 0-situation persists and no magnetization plateau
is formed at m = 0.
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Figure 4.38: D11,22;conn.(q, N) for H = H1(h), h = 0.0, 0.1, 0.3, 0.5 and m = 0

Returning to the SSFs for H = H1(h), Fig. 4.39 gives further examples for both symmetric,
sub-lattice-dependent components of D11(q) and D22(q) at zero magnetization.
While D22,A(q) = D22,B(q) holds for all perturbation strengths h, the components (A,B) of
D11(q) (l.h.s. of Fig. 4.39) show different behaviour for h > 0. The displayed cases (h =
0.1, 0.3, 0.5) for both components decrease for increasing h (for the B-component this only holds
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Figure 4.39: D11,22,A(B);conn.(q, N) for H = H1(h), h = 0.0, 0.1, 0.3, 0.5, m = 0, N as in Fig.
4.38

close to q = 0, π). As before, SSF-data of the longest shown chain (N = 24) has been connected
by auxiliary lines. The former singularity of D11,r=0(q) at q = π for the unperturbed chain now
appears at q = 0, π whereas the occurrence of an approximate crossing point of all D11,r=0(q)
close to π/2 disappeared. Both Fig. 4.38 and Fig. 4.39 clearly demonstrate the influence of
periodic perturbations ∼ h ·D1(π) on the size and shape of the shown SSFs. This together with
the absence of any of those changes for the system H = H2(h) shows again the attachment of
the described behaviour and the formation of energy gaps and magnetization plateaus.

We will now conclude our considerations of static structure factors and their predictive pow-
ers for the formation of magnetization plateaus by resuming the earlier discussion of periodic
perturbations Dc

1(qpert.) with momenta qpert. = π/3 or qpert. = 2π/3:

H = H1(h, n · π/3)
= H0 + 2h

√
NDc

1(n · π/3) ; n = 1, 2 (4.53)

Dc
1(q) =

1√
N

N−1∑

x=0

cos(qx)SxSx+1 .

The evaluation of magnetization curves (Figs. 4.7,4.8) resulted in the observation of a single
plateau at m = 1/6 for qpert. = 2π/3, whereas plateaus at m = 1/6, 1/3 had been determined
for qpert. = π/3. The plateaus in both cases were found to exist for any non-zero perturbation
strength h.
Fig. 4.40 shows D11,conn.(q) for both Hamiltonians H1(h, n · π/3), n = 1 (l.h.s.), 2 (r.h.s.) and
both magnetizations m = 1/6, 1/3 for h = 0.0, 0.1, 0.3, 0.5 and system sizes N = 18, 24. Finite-
size corrections of the shown structure factors appear to be rather small. The figure clearly shows
significant changes/decreases of the SSFs in the cases where plateaus are observed. Increasing
perturbation strength h results in a decreasing height of the peaks of the SSFs.
In case of the two plateaus for H1(h, π/3) the different behaviour of the decrease of the SSFs for
the shown magnetizations bears strong resemblance with the different opening of the plateaus
given in Fig 4.7. A comparison of the decreases of the SSFs for the considered Hamiltonians
at m = 1/6 is as well in a qualitative agreement with the evaluated opening of the respective
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Figure 4.40: D11,conn.(q, N) for H = H1(h, n · π/3), h = 0.0, 0.1, 0.3, 0.5, N = 18, 24 and
m = 1/6, 1/3

plateaus. Finally, the subtle changes of D11,conn.(q = π/3) for increasing h are also in agreement
with the unobserved m = 1/3-plateau for H = H1(2π/3).

The absence of the latter plateau is in accord with the quantization rule of Oshikawa, Yamanaka
and Affleck [169] that was given at the beginning of the chapter. As long as no additional
spontaneous symmetry breaking occurs, the translational invariance x → x + 3 of the ground
state of H1(2π/3) does not allow for

3 ·
(

1
2
− 1

3

)
= integer . (4.54)

We finally want to address the type of the soft mode (longitudinal/transverse) that had to be
used for the plateau classification within our scheme. In particular the m = 1/3-plateau for
qpert. = π/3 could only be classified by the k1 = 1 transverse soft mode.

A consideration of the longitudinal SSF S33,conn.(q,N = 18, 24) for both qpert. = π/3, 2π/3 and
m = 1/6, 1/3 (Fig. 4.41) shows that the same information of Fig. 4.40 is as well –even in a
sharper form– contained in the purely longitudinal structure factor. We therefore can find no
immediate connection to transverse SSFs or even their sole importance for the plateau formation
at m = 1/3.

In this section we have seen that the observation of significant changes in the considered struc-
ture factors coincided very well with the occurrences of magnetization plateaus that have been
determined in the previous section. This coincidence has been shown for plateaus that open for
h > 0 and systems that first undergo a spontaneous symmetry breaking at finite h –either due
to a frustration (translational invariant second-nearest neighbour coupling) or for the example
of a periodically perturbed second-nearest neighbour coupling ∼ h ·D2(q = π). The latter cases
of course do not exhaust the number of possibilities but might serve as representative examples.

We will now compare the presented classification scheme with the quantization condition of
Oshikawa et al. [169] and look for general correspondences and counterparts for the transverse
soft mode momenta occurring in the present scheme.
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Figure 4.41: D33,conn.(q, N) for H = H1(h, n · π/3), h = 0.0, 0.1, 0.3, 0.5, N = 18, 24 and
m = 1/6, 1/3

4.3 Quantization condition and soft mode approach

In this final part of the chapter we are going to discuss the presented method of assigning soft
modes of the unperturbed spin-1/2 chain to potentially forming plateaus under the influence of a
periodic perturbation. We will consider perturbations with qpert. = q = 2π/n, n = 1, 2, 3, 4, 6, 8
and give a comparison with the predictions of possible magnetization plateaus due to the quan-
tization condition of Oshikawa, Yamanaka and Affleck (OYA) [169] for spin S = 1/2.
To this aim, Eqns. 4.55-4.57 first summarize the respective relations for both condition schemes.
Here, the integer factor nsp has been added to Eq. 4.55 (OYA) in order to represent the
possibility of a spontaneous symmetry breaking (nsp > 1) – otherwise nsp ≡ 1 results in the
known form of the quantization condition. The factor n of qpert. = q = 2π/n simply gives the
number of required translations to keep the Hamiltonian of the perturbed chain invariant.

n · nsp ·
(

1
2
−m

)
= I ; 1− 2m =

2I

nsp · n , I : integer (4.55)

q3(m) = k3 · π(1− 2m) ; 1− 2m =
2

k3 · n (4.56)

q1(m) = k1 · 2πm ; 1− 2m = 1− 2
k1 · n (4.57)

The following Table 4.5 contains an overview of the predictions resulting from both sets of
conditions for magnetizations 0 ≤ m < 1/2. Each q-value in the table shows all possible values
of m that are consistent with nsp = 1, 2, i.e. m = j · 1/(2 · n), j = 0, 1, .., n − 1. As mentioned
earlier, the prediction of the trivial saturation plateau m = 1/2 can be derived both prediction
systems.
At first glance, the table shows correspondences and as well a number of differences that will
be addressed in the following. In any case, it first of all demands to realize that both sets of
predictions do not coincide – though both having their origin in the soft mode structure of the
unperturbed chain (based on LSM [143]).
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First, the equations given above show that for I = 1 the predictions of OYA coincide with the
longitudinal soft mode position k3 = nsp. Relating a certain importance to the smallness of I,
this first statement may be considered as supporting our earlier classification of “most probable”
plateau locations (see Sec. 4.1.1).

qpert., n m nsp I k3 k1

q = 2π
1 = 0, n = 1 0 2 1 2 –

q = 2π
2 = π, n = 2 0 1 1 1 –

1/4 2 1 2 2

q = 2π
3 , n = 3 0 2 3 – –

1/6 1 1 1 2
2/6 2 1 2 1

q = 2π
4 = π

2 , n = 4 0 1 2 – –
1/8 2 3 – 2
2/8 1 1 1 1
3/8 2 1 2 –

q = 2π
6 = π

3 , n = 6 0 1 3 – –
1/12 2 5 – 2
2/12 1 2 – 1
3/12 2 6 – –
4/12 1 1 1 –
5/12 2 1 2 –

q = 2π
8 = π

4 , n = 8 0 1 4 – –
1/16 2 7 – 2
2/16 1 3 – 1
3/16 2 5 – –
4/16 1 2 – –
5/16 2 3 – –
6/16 1 1 1 –
7/16 2 1 2 –

Table 4.5: Plateau predictions for spin-1/2 chains: quantization condition vs. presented soft
mode assignment

The table moreover shows that the restriction to I = 1, 2 correspondingly results in k1,3 = 1, 2
– which can be shown explicitly for the considered magnetization values. Taking into account
higher nsp-values results in k3 = nsp for m = 1/2 − 1/(nsp · n) (see Eq. 4.56) and vice versa
m = 1/(nsp · n) for the respective k1. The latter in particular means that the presented soft
mode assignment method does not result in the same uniform distribution of possible plateau
magnetizations as the OYA-condition does. The latter is already indicated in Table 4.5 for the
considered nsp = 1, 2.
Additional support for the above “small I”-statement, i.e. the prime importance of predictions
with a small value of I, may be obtained from the consideration of m = 0-plateau predictions.
In Sec. 4.1.1 we showed that the existence of m = 0-plateaus for even-leg ladders can be retraced
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to periodic perturbations with q = π (cf. Table 4.1) – at the same time excluding all other (non-
zero) q. A translation invariant perturbation (q = 0, 2π, . . ., e.g. frustration α > αc) affords a
spontaneous symmetry breaking. The OYA-quantization condition –though not being as strict–
only gives the same 2 possibilities for the lowest integer I = 1 (I > 0 for 0 ≤ m < 1/2).
The given table, however, shows as well that the importance of small I –I = 1 that is– is only
valid for plateaus classified by k3. In general, including k1, we obtain:

k3 : k3 = nsp , I = 1 (4.58)

k1 : k1 = nsp , I =
nspn

2
− 1 (4.59)

with k1 –in the latter relation– given as integer solution (k1 > 0) of

k1 =
2
n
· k3n

k3n− 2
. (4.60)

We may use the comparison given in Table 4.5 to advance the choice of k3 in favour of k1 in case
of both possibilities occurring at the same magnetization m. The table shows that the latter
only happens for few –however in most cases investigated– situations or in the special case of
m = 1/4 where q(1)(m = 1/4) = q(3)(1/4).
We have to admit, however, that neither the presented discussion of static structure factors
nor a decomposition of the considered cos qpert.n perturbations in single exponentials could give
a satisfying reason for the occurrence of transverse soft modes in the presented classification
scheme.

It further remains an open question at this place whether the OYA-scheme gives too many
possible plateau positions or the presented soft mode oriented classification underestimates the
manifold of possibilities. The only possibility within this descriptive discussion of magnetization
plateaus would be given in form of a counterexample, i.e. a plateau predicted by OYA and not
predicted by the presented formalism. So far, we are neither aware of such a counterexample
(among the presented examples and as well among other works dealing with magnetization
plateaus in spin-1/2 chains –the latter of course limited to the author’s knowledge) nor of any
proof of the completeness of the given description. It therefore remains to be summarized that
both the OYA as well as the presented scheme to present knowledge give sufficient predictions
for the occurrence (of indeed observable) magnetization plateaus, however, both schemes differ
in the total number of predicted possibilities for the locations (m-values) of plateaus.

In the following and final chapter of this work we will turn to the remaining class of periodic
perturbations for the considered spin chains: chains with translation invariant (q = (0), 2π)
perturbations of the underlying isotropic Heisenberg chain. For a consistent notation we will
choose for these cases

qpert. =
2π

1
= 2π

showing that the related ground state –in the absence of spontaneous symmetry breaking–
remains invariant under a single translation (i.e. n = 1).
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Chapter 5

Translation invariant periodic
perturbations

5.1 Introduction

As we already announced at different places in course of the previous chapters, we will now
turn to the case of translation invariant perturbations of the isotropic Heisenberg chain. Such
perturbations –classified as q = 0-perturbations– require a spontaneous symmetry breaking to
show the formation of a magnetization plateau, i.e. the opening of a related gap (see e.g.
discussion of Table 4.5 in Sec. 4.3).
Among the various translation invariant “perturbations” of the spin-1/2 Heisenberg chain

H1 (≡ H0) = 2
N−1∑

n=0

SnSn+1 (5.1)

the 2 most prominent exponents are

a) the XXZ-model

H(∆) = H1 + (∆− 1) · 2
N−1∑

n=0

Sz(n)Sz(n + 1) (5.2)

≡ HXX + 2∆
N−1∑

n=0

Sz(n)Sz(n + 1) (5.3)

b) the frustrated spin chain

H(α) = H1 + α · 2
N−1∑

n=0

SnSn+2 . (5.4)

Both types of models and some of their known properties will briefly be introduced in subsequent
paragraphs. Then, we turn to a quite different class of additional translation invariant spin-spin
couplings, namely long ranged interactions:

c) kth-nearest neighbour interaction

Hk(h) = H1 + h · 2
N−1∑

n=0

SnSn+k ≡ H1 + h ·Hk (5.5)
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Couplings of the latter type have e.g. been discussed in Sec. 3.4.1 (see discussion of ladder
description type (c) – Fig. 3.12) with k = N/nl – N giving the total number of spins in a nl-leg
ladder.
Another application appears in the approximate modeling of quadratic spin lattices by a 1-
dimensional spin chain Hamiltonian with couplings to nearest and k-nearest neighbours (Hk(h)).
As was shown e.g. in [98] the best approximation is obtained for chain interaction ranges

k2 = N ± 1 . (5.6)

Examples for N = 5× 5± 1, e.g. k = 5, are given in Fig. 5.11 (see also [221]).

5.1.1 The XXZ-model

A first consequence of the reduced symmetry of the XXZ Hamiltonian 5.2 for ∆ 6= 1 compared
to the SU(2) symmetric isotropic Heisenberg chain (∆ = 1) is the loss of conservation of total
spin ([H,S] 6= 0). This deviation close to the XXX point (∆ = 1) is illustrated in Table 5.1
for the expectation values of the total spin for the 3 lowest –non-degenerate– eigenstates with
momenta qi = 0, π, π of a N = 12 chain at magnetization m = 0. For small deviations from
∆ = 1 the formerly integer total spin remains retractable and no abrupt changes occur. The
total Sz-value for the XXZ Hamiltonian remains a conserved quantity.

∆ 0.85 0.90 0.95 1.00 1.05 1.10 1.15
E0 0.27824.. 0.19852.. 0.10777.. 0 0.10847.. 0.20093.. 0.29304..
E1 1.00573.. 1.00265.. 1.00068.. 1 1.00073.. 1.00299.. 1.00687..
E2 0.17866.. 0.12343.. 0.06435.. 0 0.06288.. 0.11812.. 0.16763..

Table 5.1: “Total spin” of the 3 lowest energy eigenstates of a N = 12 XXZ spin chain close to
the XXX point

First our short introduction to the case of XXZ-type chains will dwell further on properties
already arising in complete diagonalization studies of small spin chains. Fig. 5.1 shows the ∆-
dependence of the two lowest energy eigenvalues for momentum eigenvalues qn = 2π/N, n =
0, 1, .., N/2 of chains with N = 8, 10, 12 spins at zero magnetization.
The figure contains marks for the two best known cases, namely the isotropic Heisenberg chain
(XXX, ∆ = 1) and the planar XX model (∆ = 0). The latter is distinguished by its complete
solvability of its spectrum of eigenvalues by Lieb, Schultz and Mattis [143]. These authors gave
solutions for the more general case of the XY model – allowing different couplings for x- and
y-spin components. Later, solutions for longitudinal [162] and transverse [192] structure factors
for the XX model were given. Fig. 5.1 shows the high degree of degeneracies typical for the XX
chain. Similar properties of the XXX chain already have been the subject of Chap. 2.
The XX point moreover is a symmetry point for a particular unitary transformation that relates
couplings ∆ and −∆. The application of

Uk=π = eiπ
P

n nSz(n) (5.7)

(compare Eq. 2.61) results in

UπH(∆)U−1
π = −H(−∆) . (5.8)

The latter property is of course not visible in Fig. 5.1 since 5.8 relates highest states ∆ with
lowest states −∆ and vice versa at fixed magnetization m. However it gives a valuable tool for
the discussion of ground state energies.
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Figure 5.1: 2 Lowest energies E0,1(qn, ∆, N) with qn = 2πn/N and E0 (solid), E1 (open symbols);
N = 8, 10, 12, m = 0

The figure further shows the onset of “two-fold degenerate” ground states (|E0(∆, q = 0, N) −
E0(∆, q = π,N)| → 0 for N → ∞, ∆ > 1. The exponentially fast disappearance of the
energy gap –see lower right of the figure– with the length of the system N often leads to the
designation “two ground states” –see below. The isotropic Heisenberg chain (∆ = 1, ground
state energy firstly calculated by Bethe [22] and Hulthén [120]) –the starting point of all presented
discussions of perturbed spin-1/2 systems– is located right at a crossing point of two regimes.
The application of a generalized Bethe ansatz (Orbach [167], Walker [209], des Cloizeaux and
Gaudin [49]) led to analytical solutions for −1 < ∆ ≤ 1 (with unique ground states), while
the ground state is 2-fold degenerate for ∆ > 1 with an energy gap (indicated by the small
system results) above. A number of proofs and detailed calculations is furthermore given by
Yang & Yang [220]. In the Ising limit of large ∆ the system ground state has classical Néel order
whereas it has ferromagnetic order for all ∆ ≤ −1. Precisely at ∆ = 1 a Kosterlitz-Thouless
[137] transition from the gap-less regime with unique ground states (−1 < ∆ ≤ 1) to 2-fold
degenerate, Néel-ordered ground states with an energy gap above takes place.
The size dependence of the energy difference between the above-mentioned almost degenerate
ground states –at ∆ = 1 + 0– is rather subtle and the algebraic type of description used in
previous chapters does not apply. A study of one of the two relativistic continuum limits of the
model has been given by Hauer et al. [106]. For the Hamiltonian

H =
1
π

(
H(∆)− N

2
∆

)
, ∆ = cosh γ > 1 (5.9)

and in the limit γ → 0, N →∞, a → 0 (finite L = N ·a) these authors showed that the limiting
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massive relativistic theory with mass M ,

4
a
e−π2/2γ → M ,

leads to a finite but (in the length L of the system) exponentially small energy difference

∆E0 =
(

8M

πL

)1/2

e−LM (5.10)

of the two “ground states”.
Besides the basic spin-1/2 XXZ Hamiltonian (Eq. 5.2 and numerical examples in this paragraph)
XXZ-type models have been discussed with an additional next-nearest-neighbour coupling (see
e.g. [92, 113] and references therein) or/and higher quantum spin (see e.g. [112], S = 1). We
will not proceed further into this direction but turn to a brief introduction and discussion of
the second basic translation invariant perturbation of the (spin-1/2) Heisenberg chain: Spin
frustration via next-nearest-neighbour (NNN) couplings.
We will meet the case of frustrated Heisenberg chains as another example of spin chains with
translation invariant Hamiltonians that show the opening of gaps in a not purely algebraic way
in the next section. Later we furthermore will explicitely take up the example of a translation
invariant 2-leg ladder Hamiltonian to address the problem of finding scaling solutions for a
translation invariant spin system.

5.1.2 Frustrated spin chains

The S = 1/2 antiferromagnetic Heisenberg chain with next nearest neighbour (NNN) interac-
tions is a typical example of spin systems with competing interactions. Positive α (see Hamil-
tonian 5.4 change (frustrate) a Néel-type order of spins caused by the antiferromagnetic H0.
Increased α leads to substantial changes for the ground state and lowest excitations of the spin
chain. For zero magnetization this is exemplarily showed for system sizes N = 8, 10, 12 in Fig.
5.2. Since the Hamiltonian with additional NNN couplings still has conserved total spin (and
e.g. total S3), the figure shows the lowest E(qn, S) for all qn = 2πn/N and total spin S = 0, 1.
The figures first of all show that the ground state of frustrated spin chains at m = 0 either have
q0(α) = 0 or q0(α) = π –for small α < 0.5 following Marshall’s sign rule [151] (see e.g. Sec. 2.1).
At α = 0.5 a particular situation with exactly solvable ground state –first given by Majumdar
and Gosh [148, 149, 150]– occurs. Here, the ground state is a twofold degenerate pure dimer
state (spin singlet pairs, ’valence bonds’) and H(α) has the special property

H(α = 1/2) =
1
2

∑
n

(Sn + Sn+1 + Sn+2)
2 + const. (5.11)

meaning that for the two ground states the sum of any three neighbouring spins is S = 1/2 (for
further discussion see e.g. [5]).
The number of solvable models with competing interactions has later been enlarged by Shas-
try and Sutherland [185] considering a “dimerized next-neighbor antiferromagnetic chain” (see
Hamiltonian (3.140)). The additional presence of a dimerization δ · √ND1(π) leads to ex-
actly known ground states for δ + 2α = 1. Affleck,Kennedy, Lieb and Tasaki (AKLT) [4] later
showed the existence of a gap between the two ground states and the first excited state at the
Majumdar-Gosh point (α = 0.5) in the TDL.
Starting from α = 0.5 the ground state of a N = 4n + j · 2 (n ∈ N, j = 0, 1) chain changes its
momentum for another (N−2j−4)/4 times (see also [193]). While α = 0.5 and as well the large-
N limit of αc (see below) are finite and fixed values, the values α2(N) (uppermost α with twofold
degenerate ground state) as well as αu(N) (q = π/2 becoming the lowest excitation for N = 4n)
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Figure 5.2: Lowest energies E0(qn, S, α, N) with qn = 2πn/N and S = 0 (solid), S = 1 (open
symbols); N = 8, 10, 12, m = 0

diverge (see lower right of Fig. 5.2), meaning that no further finite singular point in the phase
diagram of frustrated spin chains exists, i.e. no finite upper boundary of the dimer phase in the
TDL is to be expected. Though the number of exact degeneracies in the interval [0.5, α2(N)]
increases proportional to N , a finite-size study of max |E0(q = π, α)−E0(q = 0, α)|(S = 0) leads
to the assumption of the two states (q = 0, π) becoming degenerate in the thermodynamic limit
(TDL).
The determination of the onset of the dimer phase (α = αc) started in 1982 with Haldane [99]
and the up to now best approximation (αc = 0.241167 ± 0.000005) has been given by Eggert
[66] in 1996. The latter value is shown in Fig. 5.2. The point of degeneracy of the lowest S = 0
and S = 1 excitation –the fluid-dimer transition point– for the considered small systems already
approaches αc very well (for more and quantitative details see App. C).
The shown figures moreover give some information concerning structure factors of frustrated
spin chains. While the system for small α (0 ≤ α < αc) stays in the spin liquid phase showing
singlet-triplet excitations (∆S = 1) as lowest ones, increasing α leads to the shown changes in
lowest S = 0 and S = 1 excitations. For the S33(q, α) SSF –SSFs will not be further discussed
in detail here– the maximum shifts from q = π towards q = π/2 for increasing α. The latter
shift is accompanied by the change of the lowest ∆S = 1 excitation from ∆q = π to ∆q = π/2
(reflecting the decoupling of the chain in two subsystems of twice the unit length for large α.
Considering the competing interaction of strength α as a perturbation of the critical Heisenberg
chain an important effect not visible in Fig. 5.2 arises. The spin chain remains gap-less for
α < αc and then a very small gap opens in a non-algebraic form. A scaling starting near a line
of unstable fixed points motivated Haldane [99] to an approximation of the dimerized spin chain
with the sine-Gordon (SG) field theory [60] resulting in a critical scaling behaviour of dimer gap,
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order parameter and inverse correlation length as

(α− αc)1/2 exp[−a/(α− αc)] ; α > αc . (5.12)

A similar behaviour (Egap ∼ exp[−a/(α − αc)]) was discussed by Chitra et al. [47]. These
authors remarked that even calculations for 300 spins (DMRG) result in gaps indistinguishable
from zero for α . 0.3. These unfavourable conditions hindered earlier attempts of determining
αc by direct observation of the opening gap (see e.g. [193]). Again this shows differences to
the behaviour of periodically perturbed spin chains discussed in Chap. 3: There is neither a
α ↔ −α symmetry in the behaviour of frustrated chains, nor does the opening of the gap (at
αc > 0 !) admit a description by the earlier used scaling variables.

Antiferromagnetic Heisenberg chains with competing NNN interactions (frustration) in a ho-
mogeneous external magnetic field (i.e. m > 0) are not known to show further gaps in their
spectra. Their ground states –shown in Fig. 5.3 for m = 1/4 and N = 8, 12– are no longer
restricted to momenta q0(α) = 0, π. This latter fact will of course show its influence on the
shape of structure factors for varying α. Again, we will keep these and other topics beyond
the range of this introductory part of well established translation invariant perturbations of the
underlying critical Heisenberg chain.
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Figure 5.3: Lowest energies E0(qn, S, α,N) with qn = 2πn/N and S = mN (solid), S = mN +1
(open symbols); N = 8, 12, m = 1/4

Fig. 5.3 shows separate magnifications of the low excitation parts of the considered systems.
These show that not really the number of degeneracies of the m = 0 ground state is present
(however, a q = π/2 excitation approximately approaches the ground state energy at a single α
value.
As a final remark we want to note that for the shown m = 1/4 cases the lowest excitations
with total spin S = Nm and S = Nm + 1 seem to be well separated. This separation is a
consequence of the chosen quantity that is plotted. For m 6= 0 the shown energy differences
–though all quantities are shown for the same Sz– are affected by different Zeeman terms for
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different total spin, meaning that energies for S = Nm + 1 are shifted upwards by a single (N
dependent) Zeeman contribution compared to those with S = Nm.
In the following paragraph we will turn to different types of translation invariant “additives”
(perturbations) of the Heisenberg chain. These will contain O(N) or O(N1/2) ranges of spin
couplings – couplings that on first sight do not allow the use of the LSM theorem [143] e.g. to
pinpoint soft mode positions in gap-less systems.

5.1.3 Macroscopic coupling ranges of additional interactions

A first type of long coupling ranges appeared in Sec. 3.4.1 in type (c) of the discussed ladder
parameterizations. nl-leg ladders had been mapped on a single spin chain in such way that
the rung couplings of the ladder were given by spin couplings of range N/nl. A translation
invariant type of such spin systems will be considered for 2- and 3-leg ladders in the next
section. The relation of such parameterizations to the earlier discussed ladder representations
based on periodically perturbed chains will be discussed.
We will then briefly discuss the problem of scaling solutions at the example of translation
invariant formulations of spin ladders. We will not be able to present sufficient scaling behaviour,
however elucidate the changed initial conditions needed for the evolution equations 3.2 as well
as the inaccessibility of purely algebraic combinations of scaling variables.
At the end of this chapter we will address another type of translation invariant perturbations:
systems with helical boundary conditions (see Sec. 5.4. Such boundary conditions allow an
approach to 2-dimensional systems [98]. We will comment on a very precise statement about
the onset of staggered (sub-lattice) magnetization when starting to couple chains to form a
2-dim. matrix [83].
This will end our study of (periodically) perturbed spin-1/2 critical antiferromagnetic Heisenberg
spin systems.

5.2 Translationally invariant coupled chains

In this section we are going to consider the case of spin ladders that are given as a translationally
invariant spin system (chain). The respective Hamiltonian of a nl-leg ladder has been introduced
in Sec. 3.4.1 (there given for Jleg = Jrung = 1) as:

Htr. inv.(Jleg, Jrung, nl) = H1 + HN/nl

= 2
∑

n

{
Jleg · SnSn+1 + Jrung · SnSn+N/nl

}
(5.13)

= 2Jrung ·
∑

n

{
SnSn+N/nl

+
Jleg

Jrung
· SnSn+1

}
(5.14)

with

J tr. inv.
1 = Jleg (5.15)

J tr. inv.
N/nl

= Jrung . (5.16)

The resulting Hamiltonian has been visualized in Fig. 3.12 (type (c) for the case of a 2-leg
ladder. In the present discussion we are not going to subtract long range terms (see term (∗),
Eq. 3.113) but keep the translation invariant form of H.
The following discussion of 2- and 3-leg ladders described by Hamiltonian 5.13 will underline
the equivalence of the different ways of ladder descriptions and parameterizations discussed in
Sec. 3.4.1. In particular we will refer to the classification of magnetization plateaus – this time
related to periodic perturbations with qpert. = 2π.
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So far, nl-leg ladders have been discussed as periodically perturbed spin chains with qpert. =
2π/nl (see previous chapters 3 and 4 for further information). The following equations for
periodically perturbed 2- and 3-leg ladders already contain the choice h = 1.0 necessary to
prevent diagonal couplings in the considered ladder –compare Sec. 3.4.1.

• 2-leg ladder

H = 2J1

∑
n

[
2fn(2, 0) · SnSn+1 + α2 · SnSn+2

]
(5.17)

• 3-leg ladder

H = 2J1

∑
n

[
(1− fn(3, 2)) · SnSn+1

+fn(3, 0) · SnSn+2 + α3 · SnSn+3

]
(5.18)

In the following, we will turn to translation invariant systems (Hamiltonian 5.14, nl = 2, 3) that
form the closest approximation of the perturbed systems described above.

5.2.1 2-leg ladders

The translation invariant 2-leg ladder has the special property –like other 2-leg ladders as well–
that the periodic rung boundary conditions given by the Hamiltonian 5.13 are equivalent to
open rung couplings of double strength. This particular property allows to identify

Htr. inv.(Jleg, Jrung, nl = 2) = J1 ·
(
H0(α) + 2h

√
ND1(π)

)
(5.19)

with

J1 ≡ Jrung|h=0 (5.20)

α ≡ Jleg

Jrung

∣∣∣∣
h=0

. (5.21)

We are therefore in the position to identify Hamiltonian 5.13, 5.14 (nl = 2) –up to the additional
boundary terms (∗), Eq. 3.113– with the spin-Peierls Hamiltonian 4.36 discussed in Sec. 4.1.5.
There, the frustration α = J2/J1 expressed the strength of the leg coupling of the 2-leg ladder
and has been discussed for α = 0.0, 0.25, 0.30, 0.35.
Fig. 5.4 shows the results of BST studies (see App. C) for the widths and locations of possible
magnetization plateaus at m = 0 and m = 1/4. The m = 0 plateau is clearly present and for
Jrung & 1, .., 2 -i.e. α . 0.5, .., 1– an almost linear increase (∼ Jrung) of Bu(m = 0, Jrung) –i.e.
the plateau width– appears:

Bu(m = 0, Jrung; Jleg) = Jrung ·
(

2− Jleg

Jrung

)
= Jrung · (2− α) . (5.22)

Such a behaviour was shown to hold in the spin-Peierls case for h = 1.0 as well, see Sec. 4.1.5, Eq.
4.45. The vertical line in Fig. 5.4 at Jrung = 4 refers to one of the frustration values (α = 0.25)
displayed in Fig. 4.29. Up to an overall pre-factor (Jrung = 4) both figures give the same result
for the plateau width and its leading α-, Jleg/Jrung-dependence which had to be expected based
on the freedom of description of the spin system. The repeatedly mentioned additional terms
(∗) in the translation invariant description seem to be of the expected insignificance and do not
cause substantial differences for both types of descriptions. The shown range of linear behaviour
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Figure 5.4: Jrung-dependence of m = 0- and m = 1/4-plateaus for translation invariant 2-leg
ladder with Jleg = 1.0; (N = 8, 12, 16, 20, (24))

of Bu(m = 0, Jrung) moreover seems to indicate a rather large α interval that is well described
by the lowest order perturbation theory discussed in Sec. 4.1.5.
The same degree of correspondence between both types of description is present for the second
plateau (m = 1/4) that has first been discussed in Sec. 4.1.5 for perturbation strengths 0 ≤ h ≤
1. Its non-existence is concurringly shown in Figs. 4.30 (h = 1.0) and 5.4. The latter figure in
addition shows the same linear Jrung dependence of Bu(m = 0) and B(m = 1/4). Both lines in
parallel increase with B(m = 1/4)−Bu(m = 0) ' 3/2.
The plateau predictions discussed in the last chapter result in nsp. = k3 = 2 for qpert. = 2π
(n = 1) and m = 0. A possible plateau at m = 1/4 would have to be classified by nsp. = k3 = 4.
The open symbols used for Bu(m = 0, Jrung) for small Jrung symbolize cases of insufficient
accuracy of the actual BST fits. The above-mentioned predictions of spontaneous symmetry
breaking are moreover consistent with determinations of ground state momenta for varying m.
For all shown Jrung > 0 the m = 0 ground state has momentum q = π, while for m = 1/4
although no plateau is present the ground state has momentum q = π/2.

5.2.2 3-leg ladders

In case of the translation invariant 3-leg ladder no direct periodically perturbed analogue has
been discussed earlier in this work. It is obvious, however, that the preparation of the respective
3-leg ladder affords periodic changes of nearest and next-to-nearest neighbour couplings with
qpert. = 2π/3 –see e.g. the discussion of different 3-leg ladder geometries in Sec. 4.1.3. We are
therefore led to examine the appearance of magnetization plateaus at m = 1/6 and m = 1/3.
Fig. 5.5 shows the respective BST results for plateau widths of the 3-leg ladder. Again, the
lower (m = 1/6) of the two investigated plateaus clearly emerges (for Jrung/Jleg > 1), whereas
no definite identification of a finite m = 1/3 plateau is possible. Moreover, the narrow shaded
regime in the figure has to be identified with the rather low BST accuracy for the extrapolations
of the m = 1/3 plateau. The unobserved m = 1/3 plateau is consistent with earlier discussions of
qpert. = 2π/3 perturbations. In all discussed cases only the m = 1/6 plateau had been confirmed.
The two thick horizontal marks at Jrung = 0 moreover mark the positions of B(m = 1/6, 1/3)
for the unperturbed Heisenberg chain (Bonner& Fisher construction, see e.g. Sec. 2.4).
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Figure 5.5: Jrung-dependence of m = 1/6- and m = 1/3-plateaus for translation invariant 3-leg
ladder with Jleg = 1.0; (N = 6, 12, 18, 24)

Definite statements concerning the existence and width of the m = 1/6 plateau for small
Jrung/Jleg are not possible on the basis of the considered system sizes. The linear behaviour
of Bu(m = 1/6) for larger Jrung/Jleg (as well as the almost linear behaviour of Bl(m = 1/6i))
again points to lowest order effects in Jleg/Jrung as in case of Bu(m = 0) for the 2-leg ladder
(see Eq. 5.22). Here, we do not want to pursue this line further.
Now, we rather want to turn to the more complex situation of weakly, translationally invariant
coupled chains. At the example of the 2-leg ladder we will briefly present the changed starting
point (initial conditions for the evolution equations 3.2.2) and the problems arising when looking
for scaling solutions in the regime of small perturbations (chain couplings) h.
In addition, the application of the Lieb-Schultz-Mattis (LSM) construction (see Sec. 2.6.2) to
spin systems with longer ranges (O(Nβ), β = 1/2, 1, see below) of couplings will be discussed.

5.2.3 Evolution equations, scaling and opening of gaps in (weakly) coupled
chains

We will now return to the particular case of the translation invariant 2-leg ladder already dis-
cussed in Sec. 5.2.1. First we will discuss lowest excitations and quantum numbers for a broader
range of inter-chain couplings in some detail, and then further address the situation of weakly
coupled chains.
Considering the case of zero magnetization and using the Hamiltonian

H = H1 + h ·HN/2 ; Hk ≡ 2
∑

n

SnSn+k , (5.23)

i.e. h = Jrung/Jleg, Fig. 5.6 gives results for the lowest excitations E1(h, S) with total spin
S = 0, 1 for N = 8, 10, 12 and magnetization m = 0. Momenta of the respective eigenstates
are classified by qn = 2πn/N . The ground state –with energy E0(h, q0, S = 0)– changes its
momentum at the S = 0 soft mode position hS (E1(h, S = 0)− E0(h, S = 0) → 0 for h = hS):

q0(N) =
{

0
π

for
{

h < hS(N)
h > hS(N)

. (5.24)
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Since the operator HN/2 conserves total spin and momentum, the study of opening gaps (plateaus)
is restricted to coupling regimes where the ground state already underwent a change ∆q = π of
its momentum with respect to the momentum of the unperturbed chain symbolizing the spon-
taneous breaking of symmetry (see discussion in Sec. 5.2.1). The latter change of momentum
does not take place at h = 0+ for all finite N e.g. as in case of D1(π) for the spin-Peierls gap
but at the finite hS(N). We will yet firstly stick to the standard form and application of the
evolution equations.
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Figure 5.6: Lowest excitations E1(S = 0, 1;h) for translation invariant 2-leg ladders (N =
8, 10, 12) at m = 0

In the displayed interval (−5 ≤ h ≤ 5) E1(h, S = 1,m = 0) as well only changes its momentum
once. Besides the narrow region around hS(N) –and in particular at h = 0– the lowest excitation
of the ladder is of singlet-triplet (∆S = 1) character. For systems with N = 4n, 4n+2 this region
differently extends from h = 0 to h < 0, h > 0. The lowest S = 0 excitations E1(N, h,m = 0)
–shown in Fig. 5.6– furthermore differ for almost all h and N by ∆q = π from q0(N, h,m = 0),
which means that E1 − E0 does not represent an excitation ω01 of the momentum conserving
HN/2 with

ω10(N,h, m) ≡ E1(h, m; q0(h,N,m))− E0(h,m; q0(h,N, m)) (5.25)

(further details are given in Fig. 5.10 below).
The evolution equations 3.2 need the first derivative of E0(N,h) at h = 0 as one essential initial
condition for the description of the evolution of energies and matrix elements under the influence
of a perturbation of strength h. Following Sec. 3.2.1 we obtain

d

dh
E0(N, h) = < 0|HN/2|0 >≡ T00(h) (5.26)

= N · < 0|S0SN/2|0 >≡ N · t00(h) . (5.27)

A first overall picture of T00(N,h, m)/N for a broader range of perturbation strengths h (and
magnetization m = 0) is given on the l.h.s. of Fig. 5.7.

119



The figure resembles that for |h| À 1 the rungs are in a Srung = 1 (h ¿ −1) or Srung = 0
(h À 1) state and furthermore that at h = 0 the derivative of E0(N,h, m = 0) is unequal to
zero.
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Figure 5.7: First derivative of E0(N,h)/N for system sizes N = 8, 10, 12, |h| ≤ 3 (l.h.s.) and
fits to the N -dependence of t00(N,h = 0) (r.h.s.)

For growing |h| a dominant exponential h-dependence of t00(N, h, 0) becomes apparent. A
large-N extrapolation of finite-N data to a simple description combining algebraic behaviour
for |h| ¿ 1 and the shown saturation for large |h|:

t00(h, 0) = a + b · e−c·|h|d (5.28)

led to the two sets of parameterizations for negative h given in Table 5.2 –depending on keeping
t00(−∞, 0) fixed (= 1/2) or adjustable. System sizes of up to N = 24 and perturbations
−3 ≤ h ≤ 0 entered the extrapolations.

ai bi ci di

0.49 0.516 2.984 0.671
1/2 0.533 2.762 0.635

Table 5.2: Parameterizations ai + bi · e−ci·|h|di for the large-N behaviour of t00(N, h,m = 0);
h < 0

The quality of the exponential fits, however, does not allow for reasonable applications in the
range of small h addressing the scaling behaviour of the two weakly coupled legs.
The above discussion furthermore shows that the direct extension from h = 0 to finite h considers
ladder systems with unchanged ground state momentum (q0(m = 0) = π·N/2), i.e. the evolution
equations in their originally given form do not apply to the interesting case of the potential
formation of magnetization plateaus for small inter-chain coupling.
We continue considering the N -dependence of t00(N, h = 0,m), i.e. the unperturbed (initial)
situation. The r.h.s. of Fig. 5.7 shows results of fits fi(N) separately performed for “even”
(N = 4n) and “odd” (N = 4n + 2) N . The two resulting functions fi(N) are given by

feven(N, m = 0) =
1
N
· (1.9248 + 0.2974 · log(N − 3.2920))

fodd(N, m = 0) =
1
N
· (2.4962 + 0.0582 ·N0.5788) ,
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suggesting a different leading large-N behaviour

t00(N, h = 0,m = 0) N→∞−→ (log N)κ

N
, N = 4n (5.29)

t00(N, h = 0,m = 0) N→∞−→ N−κ′ , N = 4n + 2 (5.30)

for the two classes N = 4n and N = 4n + 2. A similar treatment of the situation m = 1/N led
us to fits of comparably good quality –this time given by single powers of 1/N :

feven(N,m = 1/N) =
1
N
· (1.3814 + 4.2012 ·N−1 − 7.1338 ·N−2

)

fodd(N,m = 1/N) =
1
N
· (−1.3820 + 1.0544 ·N−1 + 7.1848 ·N−2

)
.

The presented fits of course do not represent rigorous statements on the analytical form of
the finite-size behaviour of t00(N, h, m), however give first indications of peculiarities for the
m = 0-case.
The expectation value T00(h) is shown in Fig. 5.8 for a narrow region around h = 0. Both parts
of the figure again show the different behaviour of the two sets N = 4n and N = 4n + 2. In
addition, the figure shows for both cases the dominant linear component in h for the behaviour
of T00(N, h). Odd powers of the perturbation strength did not appear for periodically perturbed
systems –compare e.g. discussion of Eqns. 3.46, 3.47 in Chap. 3.
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Figure 5.8: First derivative of E0(N, h) for system sizes N = 8, 10, . . . , 24, |h| ≤ 0.01

We are now going to sketch parts of the scaling behaviour and comment on limitations of a
more general treatment discussing the two magnetizations m = 0 (Sz = 0) and m = 1/N
(Sz = 1). We will first present the scaling of T00(N,h, m) for perturbation strengths h fulfilling
−(−1)N/2|h| = h, i.e. negative h for N = 4n and vice versa for N = 4n + 2 (e.g. the low-
h regions without crossings shown for m = 0 in Fig. 5.7). The latter means that we avoid
entering the regime of the (spontaneously) changed ground state momentum (q0(N) : 0 ↔ π)
for m = 0. Then, we will end this paragraph with some brief remarks concerning the discussion
of ∆q = ∆S = 0 excitations caused by the translation invariant perturbation HN/2.
Fig. 5.9 shows results of optimization processes for the determination of scaling exponents ε
that allow for a scaling plot of the different system sizes at the respective magnetization as a
function of the scaling variable x = N |h|ε. Table 5.3 gives the results of the interpolations of
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m = 0, 1/N

the data that are as well shown in Fig. 5.9 as solid lines. The given values strongly emphasize
a leading

T00(x,m)
T00(0,m)

− 1 ∼ x1/ε(m)

behaviour for small x again giving the aforementioned linear h-dependence for fixed N . ε(m)
as well depends on the two classes of chain lengths Neven = 4n, Nodd = 4n + 2. The considered
2 m values seem to indicate a growing divergence of εodd/even(m) for growing m, however, offer
no proof.

m N εi ai bi 1/bi

0 4n 0.58 0.047 1.70 0.588..
0 4n + 2 0.62 0.0753 1.62 0.617..

1/N 4n 0.56 0.104 1.79 0.558..
1/N 4n + 2 0.73 0.520 1.37 0.729..

Table 5.3: Fits fi(x) = ai · xbi given as solid lines to the scaled data (exponents εi) in Fig. 5.9

Several attempts have been made to yield a consistent scaling description of the h-dependence
of the ground state energy, its first and second derivative and as well as the lowest excitation
ω01(N, h,m). N -dependent shifts of the zero positions of the applied scaling, combinations of
algebraic and exponential h-dependences and further modifications have been tested. In none
of these attempts, however, a consistent scaling description could be obtained. Furthermore
it turned out, that by no means a satisfying analytical treatment nor verification of scaling
solutions –as presented in Sec. 3.2.3 for the example of a longitudinal staggered field– was
feasible. Definite answers on the opening of gaps and plateaus for small h –like in case of the
BST extrapolations in Secs. 5.2.1, 5.2.2– could not be obtained.
We will not pursue the variety of briefly mentioned investigations any further at this place
but end the paragraph with some final remarks on the complex situation of lowest non-zero
excitations with ∆q = ∆S = 0.
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Figure 5.10: Lowest excitations E1(N, h,m, S == m ·N ; q) for optimal q and q = q0(N,h, m),
i.e. ∆q = ∆S = 0 excitations; N = 8, 10, (12)

Fig. 5.10 shows for N = 8, 10, 12 at m = 0, 1/N the courses of the lowest excitations

∆Ei0(N, h, m, S = mN ; ∆qi0, ∆S = 0) = Ei(N, h, m, S = mN ; qi)
−E0(N,h, m, S = mN ; q0) ; i = 1, 2 .

While i = 1 refers to the absolute lowest excitation of ∆S = 0-type (for m = 0 also given in Fig.
5.6), i = 2 denotes the sub-class of lowest excitations additionally fulfilling ∆q = 0, i.e. q2 = q0.
Both energies are given by same symbols and are to be distinguished using E2(h) ≥ E1(h). The
ground state momentum only changes once (as function of h) for both values of magnetization
m. For m = 1/N the changes are π → ±2π/N (N = 4n) and 0 → ±(π − 2π/N) (N = 4n + 2)
– characterized by E1(h) = 0 in the figure.

The l.h.s. of the figure (m = 0) shows the almost linear behaviour of (E2 − E0)(h) at those
h0(N) where the ground state changes its symmetry pointing at a possible description through

ω(h− h0(N))
ω(−h0(N))

− 1 ∼ x̃1/ε ; x̃ = N |h− h0(N)|ε .

In any case, the figure demonstrates a complicate pattern of finite-size dependent changes in
quantum numbers and lowest excitations not at but close to h = 0 that cause the problems
within a consistent scaling description of weakly coupled chains.

The described scaling problem is yet an unsettled one and requires further investigation. At this
place, however, we will not proceed any further and do content ourselves with the explanation
of some of the details that have to be addressed by a following analysis.

We will now leave the field of scaling ansatzes and theories and turn to the discussion of another
technical tool that can offer some insight –as well as giving new directions– for further discussions
and investigations of magnetization phenomena (in particular plateaus). In the next section the
soft mode investigation scheme of Lieb, Schultz, Mattis (LSM) [143] is applied to spin chains
with long-range couplings. These will be translation invariant ladder Hamiltonians as well as
translation invariant (approximate) square lattices of spins.
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5.3 LSM application to spin chains with long ranges of spin
couplings

In this paragraph we want to consider applications of the construction of Lieb, Schultz, Mattis
(LSM) [143] –introduced in Sec. 2.6.2– to spin chains with far reaching interactions. Right at the
beginning it should be stressed that the following results do not claim the status of rigorous and
final proofs. They rather intend to show relations to other statements concerning the existence
of magnetization plateaus in the respective spin systems. Moreover, the presented discussion of
two-dimensional spin systems only covers some aspects of a still ongoing investigation.
We will start discussing translation invariant nl-leg ladder Hamiltonians (coupling range N/nl,
i.e. O(N) for the up to now discussed ladder types) [86]. Later we will turn to spin systems with
helical boundary conditions that will be briefly commented in the final section of this chapter.
In the following we will use translation invariant ladder Hamiltonians in the form

H(h) = H1 + h ·Hτ ; Hm ≡
∑

n

SnSn+m (5.31)

with τ = N/nl and h = Jrung/Jleg. Redoing the analysis of LSM (see also [86]) now leads to
the energy difference ∆Ek =< 0|UkHU−1

k −H|0 >:

∆Ek = (cos(k)− 1) ·
∑
n

< 0| (Sx(n)Sx(n + 1) + Sy(n)Sy(n + 1)) |0 >

︸ ︷︷ ︸
O(N)

+(cos(kτ)− 1) · h ·
∑

n

< 0| (Sx(n)Sx(n + τ) + Sy(n)Sy(n + τ)) |0 >

︸ ︷︷ ︸
O(N)

(5.32)
+ sin(k) ·

∑
n

< 0| (Sx(n)Sy(n + 1)− Sy(n)Sx(n + 1)) |0 >

︸ ︷︷ ︸
= < I >

+sin(kτ) · h ·
∑

n

< 0| (Sx(n)Sy(n + τ)− Sy(n)Sx(n + τ)) |0 >

︸ ︷︷ ︸
= < II >

with k = 2π · j/N , j = 1, 2, . . .. Using the separate conservation of the total Sz for H1 and Hτ

([H(h), Sz] = 0 holds as well), i.e.

< I > = < 0|[H1, Sz]|0 >= 0 (5.33)
< II > = < 0|[Hτ , Sz]|0 >= 0 , (5.34)

it only remains to establish the vanishing of the first two lines of the equation. The factor
[cos kτ − 1] = [cos(2πj/nl) − 1] only vanishes for j = n · nl which as well leads to the decay of
the first part (H1 contribution) as ∼ O(N−1).
We now want to address the above-mentioned link to plateau predictions for translation invariant
ladder systems. The presented calculations do not provide states |j >= |k(j) >= Uk(j)|0 > that
are degenerate with the ground state in the TDL for j-values j = 1, 2, .., nl − 1 (k = 2π · j/N).
Taking now into account the momentum pj of the state |k(j) > (see e.g. Sec. 2.6.2):

pj = p0 + j · π(1− 2m) (5.35)

one notices that situations of particular interest (pj = p0 + n · 2π), i.e. a complete loss of
degeneracy, occur for pj − p0 = n · 2π leading to

j ·
(

1
2
−m

)
= n = integer . (5.36)
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The latter equation is equivalent to the quantization condition 4.1 of Oshikawa, Yamanaka and
Affleck [169] for S = 1/2. It should be noted, however, that the factor j must not be interpreted
as describing the explicit symmetry breaking given by the Hamiltonian –which simply would
give n = 1– but has to be interpreted as j = n · nsp = nsp ( see also Chaps. 4, 5).
Furthermore the reader should be reminded that the above statement is by no means a rigorous
one. It should however serve as an additional approach to the phenomenon of the opening of gaps
and formation of magnetization plateaus. Spontaneous breaking of symmetry, the occurrence
of a complete lifting of ground state degeneracy (obtained from the above given LSM soft mode
scheme) and the appearance of magnetization plateaus have been presented in a unique picture
free of immediate contradictions.

We finally want to address the Hamiltonian Hhel.(α, k) (Eq. 5.44) as a further example of a spin
system exposed to a translationally invariant perturbation. The helical boundary conditions (cf.
Fig. 5.11 and Sec. 5.4 for further discussion) allow for an approximate treatment of a square
lattice of Heisenberg spins. In the present section we again want to apply the LSM scheme
and want to figure out possibilities for the occurrence of soft modes or a spontaneous symmetry
breaking accompanying the formation of magnetization plateaus. Here, as well as in the next
section, we will restrict on the outlines of a still ongoing study of magnetization phenomena in
two-dimensional spin-1/2 systems.
The application of LSM and the evaluation of the energy difference ∆Eq =< 0|UqHU−1

q −H|0 >
–using q = 2π · j/N and omitting the pre-factor 2 of Hamiltonian 5.44– results in

∆Eq = (cos(q)− 1) < H⊥
1 > +(cos(kq)− 1) < H⊥

k > (5.37)

+α ·
[
(cos(q(k − 1))− 1) < H⊥

k−1 > +(cos(q(k + 1))− 1) < H⊥
k+1 >

]

= (cos(q)− 1) < H⊥
1 > +(cos(kq)− 1) < H⊥

k >

+α ·
[
(cos(kq) cos(q)− 1)

(
< H⊥

k−1 > + < H⊥
k+1 >

)

+sin(kq) sin(q)
(
< H⊥

k−1 > − < H⊥
k+1 >

) ]
(5.38)

with

< H⊥
a > ≡

∑
n

< 0|Sx(n)Sx(n + a) + Sy(n)Sy(n + a)|0 > . (5.39)

and |0 > denoting the ground state for the considered magnetization m.
Not all of the four q-dependent factors in Eq. 5.38 show the required O(N−(1+δ)) (δ > 0)
behaviour to result in ∆Eq → 0 for an appropriately chosen q and N →∞. The latter condition,
however, can be fulfilled when using the transformation properties of H1, Hk with respect to
the permutation

Q : x → 1 + (x− 1) · k . (5.40)

The latter permutation transforms horizontal into vertical nearest neighbours (and vice versa):

QH1Q
+ = Hk , QHkQ

+ = H1 , (5.41)

however leave the Hamiltonians Hk−1, Hk+1 with the diagonal couplings invariant. Relation
5.41 yields

∆Eq = (cos(kq) cos(q)− 1)
[1
2

(
< H⊥

1 > + < H⊥
k >

)
+ α ·

(
< H⊥

k−1 > + < H⊥
k+1 >

) ]

− (1− cos(q)) (1− cos(kq))
1
2

(
< H⊥

1 > + < H⊥
k >

)

+α · sin(kq) sin(q)
(
< H⊥

k−1 > − < H⊥
k+1 >

)
(5.42)
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and here the last two lines of Eq. 5.42 may be chosen to vanish in the limit N →∞, k =
√

N ± 1.
What remains is the so far unprecedented situation of bringing the whole expression to vanish
by fulfilling the final implicit condition for the size of the applied frustration value α, namely

α = −1
2

< H⊥
1 > + < H⊥

k >

< H⊥
k−1 > + < H⊥

k+1 >
. (5.43)

We will return to Eq. 5.43 in the final part of the following section and present some first
provisional results from an ongoing study of the immediate vicinity of the boundaries of magne-
tization plateaus and the interpretation of soft modes in 2-dimensional spin-1/2 systems using
LSM constructions, static and dynamical structure factors as well as frequency-moments of the
latter in our discussion of extensions to 2-dimensional spin-1/2 systems (Sec. 5.4.3).

5.4 Two-dimensional antiferromagnetic spin-1/2 systems

In this final section we will approach two-dimensional (quadratic) Heisenberg spin systems as
well as the transition from one-dimensional spin chains to two-dimensional spin lattices. This will
be mainly done in a parameterization using helical boundary conditions that will be introduced
and defined in the next paragraph. The latter description/mapping of spin systems and its
relation to quadratic spin lattices will be commented.
We will further present a discussion of staggered magnetizations mstagg. that play an important
role for the discrimination one- or two-dimensional behaviour of a spin system (see Sec. 5.4.2).
A study of the first derivative of mstagg. –strictly speaking: m2

stagg.– for the cross-over from un-
coupled chains to a two-dimensional matrix of nearest-neighbour coupled spins will be reviewed
as a further application of helical boundary conditions. In particular, the development of a
non-zero mstagg. for increasing lateral spin couplings and the determination of the precise size
of Jlateral at the transition point mstagg. = 0 – mstagg. > 0 will be addressed.
The final paragraph (Sec. 5.4.3) will be used for a presentation of first results concerning
the meaning of relation 5.43 for the formation of magnetization plateaus in frustrated two-
dimensional spin lattices. These aspects will be accompanied by the presentation of selected
magnetization curves that may serve as first building blocks of evidence for plateau formations
since no theoretical scheme has been presented yet.

5.4.1 Spin systems with helical boundary conditions

The following Hamiltonian (depicted for N = k2 ± 1, k = 5 in Fig. 5.11) gives an approximate
square lattice (H1 + Hk) with an additional square lattice (Hk−1 + Hk+1) forming the diagonal
bonds of the previous.

Hhel.(α, k) = 2
∑

n

Sn · (Sn+1 + Sn+k) + α · 2
∑
n

Sn · (Sn+k−1 + Sn+k+1)

= H1 + Hk + α (Hk−1 + Hk+1) (5.44)

Helical boundary conditions translate into a quantization of a 2-dimensional wave vector ~q =
(qx, qy) via

qx =
2π

N
· n, qy =

2π

N
· k · n, n = 0, . . . ,

N

2
, (5.45)

which deviates from the usual periodic boundary conditions.
The degree and quality of approximations of square lattices of systems H1+Hk was first discussed
in [98] and comparisons with results obtained directly from systems with periodic boundary
conditions were performed.
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Figure 5.11: Square lattices with helical boundary conditions for k = 5: N = k2± 1 = 24 (left),
26 (right); dashed lines: frustrating couplings – see text

The influence of frustrating diagonal couplings have e.g. been discussed by means of diagonal-
izations of N = 16, 20 Dagotto, Moreo [55], 4 × 4 and 6 × 6 lattices (Schulz, Ziman [183]) or
applications of helical boundary conditions (Yang, Mütter [221]). The final two papers concen-
trated on characteristics of critical behaviour in two dimensions, ground state ordering as well as
the α-dependence of the position of extrema of static structure factors. It should be noted that
the smaller 4× 4-system is known [70] to be interfered in its meaning as a further square lattice
with at the same time representing the smallest 4-dimensional (N = 24) system with periodic
boundary conditions. The latter property gives rise to certain symmetries (degeneracies) that
are not genuine for two-dimensional (square) spin lattices.
We will return to 2-dimensional behaviour, existence of gaps and related spontaneous breaking
of symmetry in part 5.4.3. There, we will present first results based on the α-fixing given by
Eq. 5.43 and some magnetization curves. Before, we will remark on the transition from one-
dimensional behaviour with zero staggered magnetization to two-dimensional spin systems with
a finite staggered magnetization. Increasing the coupling strengths Jk of H = J1 H1 + Jk Hk

from zero, in [83] the onset value Jk,0 of non-zero staggered magnetization has been determined
[83] to be located at Jk,0 = 0. The latter result, however, is not un-contradicted and some
references will be given.

5.4.2 Sub-lattice magnetization at the 1d− 2d transition

In this section we want to recall a recent study [83] of spin systems with helical boundary
conditions to determine the size of lateral spin couplings for the point of appearance of a non-
zero staggered magnetization mstagg.. The N →∞ limit of the latter quantity,

m2
stagg. =

1
N

< 0|S+(π)S(π)|0 >=
1

N2

∑
mn

eiπ(m−n) < 0|S(m)S(n)|0 > , (5.46)

127



has earlier been determined in [98] for an approximate two-dimensional lattice (Θ = 0 in the
following Hamiltonian)

H(Θ) =
1
2
(1 + Θ) ·H1 +

1
2
(1−Θ) ·Hk , Hj ≡ 2

∑
n

S(n)S(n + j) , (5.47)

by an extrapolation from finite helical systems. The obtained mstagg. ' 0.25..0.3 appeared to be
in reasonable agreement with results obtained from extrapolations of square lattices (mstagg. '
0.2765) [183].
The staggered magnetization should not be put in direct relation to the z-component magneti-
zation m considered sofar. Its importance for the discussion of antiferromagnetic spin systems
emerges more clearly when e.g. considering its homogeneous q = 0 counterpart mhom.

m2
hom. =

1
N

< 0|S+(q = 0)S(q = 0)|0 >= S(S + 1) . (5.48)

While the total spin S of the ground state of an antiferromagnetic spin system (cf. e.g. [144])
is zero for all dimensions, the staggered magnetization mstagg. offers an interesting dependence
on the dimensionality of the antiferromagnetic Heisenberg system. mstagg. is known to be zero
for 1d-Heisenberg chains, the known long-range behaviour

lim
x→∞ < 0|S0Sx|0 > ∼ (−1)x · 1

x
(5.49)

is insufficient to conclude for a non-zero mstagg., and non-zero for d ≥ 3 (in each case for
N → ∞). The study of mstagg. and antiferromagnetic ordering in 2d-spin systems –the latter
point in particular stimulated by the advent of high-temperature superconductivity [20]– as
well led to a finite staggered magnetization. The reduction of mstagg. from its classical value
mstagg. = S –due to zero point quantum fluctuations–has been investigated by means of spin
wave theory [10, 138], perturbation theory [61, 170, 121], on small systems [165, 183, 98] as well
as experimentally [219, 210] (considering the quasi-two-dimensional systems K2NiF4, K2MnF4,
Rb2MnF4).
Introducing now lateral couplings of variable strength, the onset of a non-zero staggered mag-
netization has been again treated with several techniques. In most cases, spin wave theories,
mean field approaches (reference see e.g. [122]) as well as e.g. a “heuristic” renormalization
group argument (Affleck, Gelfand, Singh [7]) resulted in onset values Jlateral/Jchain . O(10−2)
leading to the suggestion mstagg.(Jlateral) 6= 0 for all Jlateral > 0. It should be mentioned, how-
ever, that a recent study [122] –based on a Green’s function approach and finite-lattice Lanczos
diagonalizations (of up to N = 36 sites– arrived at a considerably larger threshold value of
Jlateral/Jchain ' 0.2. –It finally should be added that investigations of particular systems with
non-integer or fractal dimensionality between one and two (e.g. non-translational Sierpiński
lattices of dimension d = ln 3/ ln 2 ' 1.58; Tomczak, Ferchmin, Richter [190]) led to disordered
ground states –i.e. zero staggered magnetization– and further to the speculation that Heisenberg
antiferromagnets on fractal lattices quite generally may not order below dimension two.
In the following we will instead give a brief review of an investigation ([83]) giving strong
evidence to the before-mentioned suggestion of an onset of finite staggered magnetizations (in
translational lattices) for all Jlateral > 0.
In [83] the dimensional behaviour of the staggered magnetization was investigated via the Θ-
dependence –mstagg.(Θ)– of the helical spin system 5.47. The Θ-evolution of eigenvalues En(Θ),
eigenvectors |Ψn(Θ) > and of matrix elements of hermitian operators O(Θ) was presented,
resulting in

d

dΘ
m2

stagg.(Θ) = − 2
N

∑

n 6=0

< Ψn(Θ)|(H1 −Hk)/2|Ψ0(Θ) >

ωn(Θ)
·Mn(Θ, π) (5.50)
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= − 1
N

∑
p

(
e−ip − e−ipk

) ∑

n 6=0

(2) ·Mn(Θ, p)Mn(Θ, π)
ωn(Θ)

︸ ︷︷ ︸
≡ Σ(Θ,p,π,N)

(5.51)

with

ωn(Θ, N) = En(Θ, N)− E0(Θ, N) (5.52)

Mn(Θ, p, N) = < Ψn(Θ)|S(−p)S(p)|Ψ0(Θ) > (5.53)

=
1
N

∑

l,l′
e−ip(l−l′) < Ψn(Θ)|S(l)S(l′)|Ψ0(Θ) > . (5.54)

Note in particular, Eq. 5.50 showing the independence of the given derivative with respect to the
chosen prefactor of Hamiltonian 5.47. In the following, we will maintain definition 5.47 without
further explicitly marking the respective factor (2)·.
The latter equation in particular leads to

∑
p

e−ipjMn(Θ, p) =
∑

l

< Ψn(Θ)|S(l)S(l + j)|Ψ0(Θ) > (5.55)

and important sum rules like
∑

p

Mn(Θ, p, N)
∣∣∣
n 6=0

=
∑

p

Σ(Θ, p, p′, N)
∣∣∣
n 6=0

= 0 (5.56)

< Ψn(Θ)|H(Θ)|Ψ0(Θ) >
∣∣∣
n 6=0

=
∑

p

[
(1 + Θ)e−ip + (1−Θ)e−ipk

]
Mn(Θ, p)

∣∣∣
n6=0

= 0 . (5.57)

The first sum rule has been portrayed in App. A where its importance as a check for applications
of the recursion method was discussed.
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Figure 5.12: l.h.s.: Σ(1, p, π,N) for N = 8, 10, .., 28 (open symbols), finite-size fits (solid symbols;
see text) and prediction 5.59 (solid line); r.h.s.: corresponding fit 5.58 for Σ(1, π, π, N)/N

A more significant importance fell to sum rule 5.57 for the determination of the N → ∞
behaviour of Σ(1, p, π, N) in the limit p → π. The sum rule allowed to transfer (see [83]) the
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clear logarithmic dependence of Σ(1, π, π, N)/N :

Σ(1, π, π, N)/N N→∞−→ A ln
N

N0
(5.58)

(see r.h.s. of Fig. 5.12; A = 0.0542(5), N0 = 4.853(6)) to

Σ(1, p, π, N)
p→π−→ −A

1− p/π
. (5.59)

The latte prediction is supported by a finite-size scaling analysis whose results are addition-
ally shown in Fig. 5.12 (l.h.s.). The controlled behaviour (smallness) of finite-size effects of
Σ(1, p, π,N) for momenta p away from the singularity (p = π) allows the discussion of a com-
bined limit:

p → π, N →∞, z ≡ (1− p/π) ·N fixed (5.60)

leading to the scaling ansatz

Σ(1, p, π, N) = Σ(1, p, π,∞) ·G(z) . (5.61)

Similar ansatzes had earlier been used for the study of the singular behaviour of static structure
factors of Heisenberg chains [127, 128]. Here, the application of scaling ansatz 5.61 to the
determination of the solid points (N = 16, 20, .., 56, z = 4) in the left.-hand part of the figure
uses

Σ(1, p, π, 2N) =
G(4)
G(2)

· Σ(1, p, π,N) ;
G(4)
G(2)

=
Σ(1, p, π, 2N ′)
Σ(1, p, π, N ′)

(5.62)

p = π − 2π

N
.

The weak “N -dependence” of G(4)/G(2) as well as its extrapolated N →∞ limit are illustrated
in Table 5.4. The obtained scaling result is already close to the predicted behaviour 5.59.

2N Σ(1, z = 4, π, 2N) N Σ(1, z = 2, π,N) Σ(1,z=4,π,2N)
Σ(1,z=2,π,N) ;

G(4)
G(2)

16 -0.10552295 8 -0.12983263 0.81276142
20 -0.15869572 10 -0.19882874 0.79815282
24 -0.21198842 12 -0.27062879 0.78331807
28 -0.26698573 14 -0.34482702 0.77425988

BST extrapolation: 0.76560

Table 5.4: Remaining N -dependence of the scaling coefficient G(4)/G(2); BST(see App. C)-
extrapolation value

The obtained singularity 5.59 finally yields the leading contribution to the investigated derivative
of m2

stagg.(Θ) at Θ = 1:

d

dΘ
m2

stagg.

∣∣∣∣
Θ=1

N→∞−→ −A

2
ln N , (5.63)

i.e. meaning that the turning away from the 1-dimensional (mstagg. = 0) behaviour takes place
at Θ = 0+. It is important to recapitulate that the use of the (rigorous) sum rule 5.57 decisively
enforced the latter result. Finite-size evaluations of the derivative of m2

stagg.(Θ) alone –as well
discussed in [83]– would under no circumstances have been sufficient to reach this result.

130



The latter remark might help to elucidate the ongoing and still unsettled discussion (see above)
concerning the starting point (size of the lateral couplings) of a non-zero staggered magnetiza-
tion. The result of the above briefly sketched study strongly favours the exceptional situation
of the truely 1-dimensional spin chain (Θ = 1).
We finally want to add some errata not impairing the general result to [83]: 1. a missing pre-
factor 1/2 on the r.h.s. of Eq. (3.5); 2. a mis-typed y-label in FIG. 1 of the publication (compare
Fig. 5.12); N0 given in Eq. (3.11) should be read as NA

0 ; 3. the matrix elements given in Table
1 have to be doubled to give values consistent with prior definitions.

5.4.3 Opening investigation of formations of magnetization plateaus in two
dimensions

In this final paragraph of the present work some preliminary aspects, forming in part the basis
or starting point of a current investigation, shall be discussed. In Sec. 5.3 we applied the
original argument of Lieb, Schultz and Mattis [143] to certain spin chains/systems with long
range interactions. In case of nl-leg ladders we arrived at the quantitzation rules [168] for the
occurrence of magnetization plateaus requiring a complete loss of degeneracy, i.e. pj−p0 = n ·2π
for the momentum pj of the obtained state U(k(j))|0 >.
Subsequently, we obtained for the Hamiltonian Hhel.(α) (5.44) the following condition to hold
for the existence of a soft mode in the sense of LSM:

α = −1
2
· < H⊥

1 > + < H⊥
k >

< H⊥
k−1 > + < H⊥

k+1 >
≡ −1

2
· f1,k

fk−1,k+1
. (5.64)

In the following we will give some first discussion of the meaning of the latter equation and
numerical data will be presented that indicate the non-existence of a solution. We will not,
however, proceed at this place to further investigations on the existence and nature of soft
modes at the ends of magnetization plateaus. The latter will be left to a future publication
[160].
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Figure 5.13: Magnetization curves for N = 52 − 1 = 24 (k = 5), α = 0.5 and periodic perturba-
tions h1 = 0, 0.5 (l.h.s.) as well as different α, h1 = 0 for m = 1/3, 5/12 (r.h.s.)

Considering first the shape of magnetization curves of systems described by Hamiltonian Hhel.(α, k)
(5.44), a frustration value α = 0.5 has been chosen guided by earlier investigations of 4 × 4−,
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6 × 6− square lattices (Schulz et al. [183, 184]), as well as helical spin lattices (Yang, Mütter
[221]). The l.h.s. of Fig. 5.13 shows the total magnetization curve –α = 0.5, N = 24, helical
boundary conditions– for both the translation invariant Hamiltonian 5.44 as well as a “uniaxi-
ally” perturbed system:

H = Hhel.(α, k) + h1 ·H1(π) (5.65)

H1(π) = 2
∑

n

eiπnSnSn+1 . (5.66)

The latter magnetization curve –evaluated for h1 = 0.5– has been empirically used to guide first
estimates on the position of possible magnetization plateaus (see arrows). The small number of
system sizes that can be treated numerically offers scarce possibility for the kind of extrapolations
used for one-dimensional systems. Evaluations of helical k = 7 (N = 48) systems are confined
to rather large m. Due to the long coupling ranges, DMRG calculations are limited to similar
system sizes and the finite-size behaviour of their different boundary conditions still has to be
classified.
The r.h.s. of Fig. 5.13 moreover shows the α-dependence for the two highest plateau candidates
(m = 1/3, 5/12) for a range of frustrations α = 0.5, 0.55, . . . , 0.75 of the translation invariant
N = 24 (k = 5) lattice. For the used discretization of α the magnetization step at m = 1/3
appears broadest for α = 0.6. The same α value only leads to a relative maximum of the step
width at m = 5/12 = 0.416. Further increase in α leads to a further increase of the saturation
field B(m = 1/2, α, k) = Bsat.(α, k) starting from Bsat. = 4 for α ≤ 0.5.
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Figure 5.14: Minimum position p = p0(k, α) of E0(Sz = N/2 − 1, p;α, k) and saturation field
BSat(α, k) for Hhel.(α, k), N = k2 − 1

An analytical evaluation of the saturation field BSat(α, k) –cf. App. B– leads to

BSat(α, k) =
1
2

max
p

[
E0(Sz = N/2;α, k)− E0(Sz = N/2− 1, p;α, k)

]

= 2(1 + α)− cos p0 − cos kp0 − 2α cos kp0 cos p0 . (5.67)

Fig. 5.14 shows the α- and N -dependence of the maximum value p0 and the respective BSat(α, k)
for systems N = k2 − 1. The shaded region (0.5 ≤ α . 0.7) denotes a cross-over region for
the change p0 = π (α < 0.5) → p0 = 0;π (α > 0.5). The width shrinks for increasing N and
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disappears in the TDL. The thick solid line on the r.h.s. of the figure gives the k → ∞ result
of BSat for N = k2 ± 1. N = k2 + 1 gives similar finite-k results for p0(α, k) with π · (k + 1)/N
instead of π/(k + 1) for α & 0.7.
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Figure 5.15: Magnetization step boundaries and widths at m = 0, 1/4, 1/3, 5/12 for a 24-site
(k = 5) system and varying frustrations α

The type of cross-over may be compared with the findings of Schulz an Ziman [183] for frustrated
Heisenberg models in two dimensions. Finite-size analyses on 4× 4 and 6 × 6 lattices (m = 0)
resulted in the existence of an intermediate phase without magnetic long-range order (LRO) for
0.4 < α < 0.65 between an ordered phase (α < 0.4, ~p = (π, π)) and a collinear phase (α & 0.65,
~p = (0, π), (π, 0)). Though the width of the cross-over region in the helical one-magnon case
disappears in the TDL, the ground state momenta for the two remaining regimes resemble the
respective results of [183].
We further present in Fig. 5.15 a combined overview of the α-dependence of the m = 0, 1/4,
1/3, 5/12 magnetization step widths for a N = 52 − 1 helical spin system. Both, the step
widths for m = 1/3 and m = 5/12 show a relative maximum at α ' 0.6. Further studies
concentrate on additional characteristica capable of providing information on level crossings,
symmetry breaking and plateau formation. Two elements of such studies are given by static
longitudinal and transverse structure factors as well as frequency moments (cf. Sec. 2.6.6) of
dynamical structure factors. The first frequency moment is e.g. related to the first derivative
dE0(α)/dα and further moments are to be considered to check for peculiarities of the spectral
width when crossing a potential plateau value of α. First studies of static structure factors
already resulted in significant changes for the courses of the p = π and p = π/6 components (the
helical k = 5 analogues of the quadratic LRO (π, π)- and collinear (π, 0)-,(0, π)-phases). We will
not follow these investigations any further at this place.
We however finally turn to the condition given by Eq. 5.64 and present results for N = 24
and various m in Fig. 5.16 as well as a comparison of N = 24, 48 (helical) and N = 36
(square lattice) results for m = 5/12 –the latter allowing for a basic assessment of finite-size and
boundary effects.
First it appears that the given data indicate the existence of a solution of Eq. 5.43 (crossing
of the dashed line (l.h.s.) or zero (r.h.s.) in Figs. 5.16, 5.17) in no conclusive way. Increasing
deviations occur for decreasing m.
The two different helical spin systems (k = 5, 7) compared for m = 5/12 do not give evidence for
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addition: quadratic 6× 6-lattice

finite-size effects closing the remaining gaps. Similar evaluations for the 6×6 spin lattice –though
not directly addressed by the evaluations leading to 5.43– almost lead to identical behaviour of
the shown coefficients for α . 0.4. All shown data have in common an almost linear behaviour
for α . 0.4..0.5 and α & 0.6, again pointing to the phases obtained by Schulz and Ziman.
At this place we will not further continue the presented start of a study that not only concentrates
on magnetization plateaus in two-dimensional spin systems but quite generally addresses DOS
and soft mode phenomena at the edges of forming plateaus [160] that will possibly help to
address and explain a manifold of newer experiments on the magnetization of approximately
2-dimensional spin-1/2 antiferromagnets.

134



Chapter 6

Summary, conclusions and outlook

In the present work we investigated and discussed the behavior of ground states of antiferro-
magnetic spin-1/2 Heisenberg systems under the influence of periodic or translation invariant
external fields and perturbations. Mostly the corresponding field- or perturbation-terms have
been added to the symmetric, translation invariant Hamiltonian of the antiferromagnetic Heisen-
berg chain and their particular impact on excitation energies and matrix elements were studied.
A point of major importance was the investigation and classification of magnetization plateaus
and their relation to level crossings, symmetry changes or spontaneously broken symmetries.

The guiding importance of the unperturbed Heisenberg chain has been particularly emphasized
by the extended introductory discussion in Chapter 2. Special attention has been laid on the
criticality, i.e. the existence of zero-energy excitations (soft modes), of the unperturbed chain
which is getting manifest in a singular behaviour of static and dynamic correlation functions
(structure factors) at the well-defined positions (momenta) of the soft modes. Particular em-
phasis was given to a proof of the existence of soft modes in the antiferromagnetic Heisenberg
chain by Lieb, Schultz, Mattis [143] in 1961. The general idea and technique of the respective
proof reappeared in different parts of the work and has been used in discussions of eventual
formations of magnetization plateaus in differently perturbed spin systems.
Furthermore, an informal discussion of applications of Conformal Field Theory (CFT) to the
approximate determination of critical exponents of correlation functions based on numerical
evaluations of finite spin systems has been given and different models/approximations for the
dynamical structure factor of the Heisenberg chain at zero magnetization have been reviewed.
In the remaining part of the chapter, the concept of frequency-moments and related sum rules
[116, 158] has been discussed. Their technical importance was exemplarily presented for the
valuation of ansatzes for the dynamical structure factor (at zero magnetization [158, 80, 132])
and in addition the application of frequency-moments in cases of non-zero magnetization has
been introduced.
Finally, the important aspect of evaluation and extrapolation of magnetization curves shall not
remain unmentioned. While Chapter 2 only addresses the topic of smooth magnetization curves
of the isotropic Heisenberg chain –as well as the introduction of the important Bonner and Fisher
[32] technique to obtain rather smooth finite-N magnetization curves–, subsequent chapters and
appendices apply and explain extrapolation schemes neccessary for the manifestation of finite
remaining step widths (plateaus) in the thermodynamic limit (number of spins N →∞).
For further details and publications concerning this and the following chapters the reader is
generally referred to the respective chapters.

Turning away from the isotropic spin-1/2 chain, Chapter 3 introduced several classes of pertur-
bations (periodic tranverse or longitudinal fields, additional periodic dimer-like Hamiltonians,...)
perturbing the initial Heisenberg chain with a strength h. The response of the Heisenberg chain
with respect to such perturbations, i.e. the changes of excitation energies and transition ma-
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trix elements, was shown to be governed by a complete, however complicate, set of differential
equations, the so-called evolution equations.
In this work the study of periodic perturbations concentrated on the most susceptible effect,
namely the correspondence of the wave number (vector) of the perturbation and the location
of the soft mode(s) of the unperturbed chain. The dominant and clearest detectable effect that
may arise in such cases is the loss of criticality, i.e. the opening of a gap in the excitation
spectrum.
The latter effect, as well as the behaviour of related energies and matrix elements, has first
been studied for several types of perturbations in the limit of small perturbation strengths h.
Exemplarily, the existence of a scaling solution consistently fulfilling the general set of differential
equations could be shown [84] and provided with good numerical evidence. The particular
scaling limit allows –in leading order– the determination of the xαi-dependence (scaling variable
x = Nhε) of essential quantities (gap, lowest excitations,..). It is important to note that the
interrelation to the exact evolution equations (logarithmic corrections of the initial conditions
had to be omitted) results in non-perturbative, non-integer exponents for perturbation strength
h and system length N . Comparisons with different predictions/determinations (e.g. CFT)
were performed and partially good correspondence was achieved. The lacking consideration of
logarithmic or other non-algebraic corrections, however, makes a similar discussion connecting
evolution equations and scaling solutions in more advanced cases where the neglect of these
contributions no longer seems tenable impracticable.
It should be added that the unperturbed chain not only establishes the initial conditions for
the description of the perturbed system. The exponent describing the opening of the respective
energy gap can furthermore be traced back to the critical η-exponents of the static structure
factors of the unperturbed chain.
A number of periodic perturbations and some of their combinations were investigated before
the range of description was opened to include a field of broader current interest: the formation
of magnetization plateaus in various and in particular ladder-type spin systems. Magnetization
plateaus are an unambiguous fingerprint of the opening of a gap in the formerly continuous
spectrum of the unperturbed Heisenberg system. As a preparation of the detailed discussion of
plateaus in Chapter 4, different ladder types and the ambiguities for mappings of these structures
on one-dimensional spin chains –a unifying concept of description– have been discussed. Further-
more, the magnetic spin-Peierls Hamiltonian i.e. without phononic parts has been introduced
as an example of a periodically perturbed spin-1/2 chain.
The presented Hamiltonians for regular ladders with nl legs in particular showed the interesting
dichotomy of either representing the system by a translation or non-translation invariant Hamil-
tonian. The related aspect of a spontaneous breaking of symmetry was addressed in subsequent
chapters.

Chapter 4 has been devoted to the analysis of magnetization plateaus in periodically perturbed
spin-1/2 chains. The investigation covered the basic types of perturbations formerly discussed
in the framework of small perturbations in Chapter 3 as well as the different types of ladders
introduced there. Infinite-N extrapolations of the finite system evaluations of magnetization
curves were performed (BST extrapolations; discussion and examples see App. C) and the ob-
tained plateaus were shown to be covered by both the quantization rule of Oshikawa, Yamanaka
and Affleck (OYA) [168, 169] and a further soft mode approach [85, 86] presented in this work.
The latter approach is based on the immediate correspondence of a soft mode position q(k)(m)
of the unperturbed chain and the q-value of the considered perturbation. In most of the con-
sidered cases the longitudinal soft modes of the Heisenberg chain proved to be adequate for the
prediction of the magnetizations of possible plateaus.
In particular, the presented scheme for plateau predictions –based on a short-range ladder rep-
resentation with periodically perturbed couplings [86]– directly leads to the basic difference of
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ladders with even and odd numbers of legs: As discussed by Dagotto and Rice [58] for the first
time, even-leg spin-1/2 ladders show a magnetization plateau at zero magnetization (m = 0).
Investigations showed that perturbation components with qpert. = π –only occurring in even-leg
ladders– are responsible for this particular gap/plateau. A similar perturbation is e.g. present
in the spin-Peierls chain (see Sec. 4.1.5) equally leading to a plateau formation at m = 0 for
non-zero perturbations.
In the course of the chapter different variants and courses of plateau formations were studied:
(a) immediate opening of a gap/plateau with beginning perturbation, (b) finite threshold value
hc for (observable) plateau, (c) requirement of additional (translationally invariant) coupling.
The different types of plateaus were classified with respect to the order of the soft mode required
for the prediction in the latter approach. The cases (b) and (c) were shown to be cases that
need the occurrence of a spontaneous symmetry breaking prior to the plateau formation – again
in accordance to OYA.
This chapter as well gave examples for the behaviour of ground state energies and their (2nd)
derivatives in and around situations of plateau formation. Examples for the spin-Peierls chain
with zero and non-zero frustration in particular underlined the importance of level crossings for
a plateau formation. Extrapolations for larger N (Fig. 4.30) showed the opening of a m = 1/4-
plateau for the spin-Peierls system beginning at frustrations α ' 0.25 in accord with Totsuka’s
[200] αthreshold = αc = 0.2411 . . .. Perturbation expansions for the m = 0, small α case later
served as orientation for the discussion of translationally invariant 2-leg ladders.
The discussion of ladder systems furthermore contained studies of various combinations of anti-
and ferromagnetic rung and leg couplings. While the change to ferromagnetic leg couplings
(antiferromagnetic rungs) led to the occurrence of a spontaneous magnetization for ladders with
an odd number of legs [216] other plateau features for both odd and even leg numbers proved
to be remarkably stable in their occurrence. An equally continuous appearing phenomenon was
shown for the ground state energies per site that formed to good approximation singular crossing
points (m = mx) for arbitrary rung couplings, Jleg fixed. The latter phenomenon was described
using the approximately linear behaviour of the magnetization curve m(B) in the regime of
mx close to m = 1/2 as earlier exemplified for the unperturbed Heisenberg chain in Sec. 2.4.
Correspondingly, we gave some discussion of the basics of a variational ansatz that had been
used earlier [216] for an explanation of the crossing phenomenon.
Furthermore, the discussion of magnetization curves of ladder systems repeatedly referred to
results contributed by applications of the Density Matrix Renormalization Group (DMRG)
technique [212, 214, 218] (the latter performed by R. M. Wießner [216, 217]). This technique
allows the approximate treatment of spin systems up to (O(10)) larger than those accessible
by Lanczos diagonalizations. Since the used DMRG technique affords the employment of a
different kind of boundary conditions for the treated chains (open instead of periodic ones), the
presentations of DMRG results have at the same time been used for a comparison of the effects
of the changed boundary conditions – an inappropriate change that in the given context is only
determined by its function. The application of this numerical technique on spin systems that
are intimately related (in their unperturbed state) to critical Heisenberg chains consequently
affords the DMRG data being obtained from sufficiently large systems keeping the influence
of the open ends of controllable/negligible size. We therefore contrasted in Secs. 4.1.2-4.1.4
standard Lanczos evaluations applying periodic boundary conditions to the investigated spin
chains or ladders with those of DMRG using open chain or leg boundary conditions. The
comparisons clearly showed the expected higher suitability and better convergence of calculations
with periodic boundary conditions. Periodic chains or ladder systems of up to 24 sites not
only proved to show all the plateaus given by DMRG applications, their respective finite-size
behaviour turned out to be superior to that of open ended systems of up to quadruple length.
In one of the given comparisons (Kagomé-like 3-leg ladder) evaluations with periodic boundary
conditions for the first time allowed for a definite identification of secondary plateaus (cf. Secs.
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4.1.3, 4.1.4). The given Lanczos evaluations should in any case be used as a support for the
interpretion and classification of DMRG results in cases of complex problems (e.g. multi-leg
ladders, spin S > 1/2, . . .) that do no longer allow for finite-size analyses of Lanczos or similar
results.
We then proposed an opportunity to overcome the mere status of predictability of magnetization
plateaus in a consideration of correlation functions for a variety of earlier discussed cases of
plateau formation. Static spin and dimer structure factors were –for all considered cases– shown
to develope significant increases at soft mode positions related to observed plateaus while the
maxima at the uninvolved former soft modes remained almost unchanged. It is important to
recapitulate that not the very extremum of static structure factors of the unperturbed chain at
a soft mode position already gives reliable information about plateau formation but the study
of its behaviour under the influence of the perturbation.
Finally we presented a comparison of the two discussed and applied plateau prediction schemes
(OYA, soft mode approach). The OYA quantization rule was shown to give a higher number of
possible plateau magnetizations, however, no example or counterexample could be given for a
possible distinction of the predictive powers of both schemes.

In Chapter 5 the investigation switched to spin systems with translationally invariant pertur-
bations. At the beginning, two well known examples of “translationally invariant perturbed”
spin-1/2 chains –the XXZ chain and chains frustrated by next-to-nearest neighbour interactions–
have been introduced emphasizing the different (compared with periodically perturbed chains)
algebraic behaviour of certain characteristic quantities. The opening of a gap beginning at finite
frustration values α = J2/J1, however, should not be considered characteristic and exclusively
present for this type of perturbation – note e.g. the opening behaviour of the m = 1/4 plateau
for the periodic perturbation D2(π) (Fig. 4.5). The unifying aspect, instead, may be seen in the
assessed soft mode (k = 2) for both cases, i.e. showing a link between secondary soft modes for
a periodic perturbation and the k = 2 needed for the description of the spontaneous symmetry
breaking leading to a m = 0 plateau for the translation invariant system.
The consideration then turned to the earlier mentioned dichometry arising from the capricious-
ness of choosing periodic or translationally invariant perturbations for the representation of the
same spin ladder. For 2-leg ladders, the ambivalence of both types of description was shown in
detail. The equally discussed 3-leg ladder had no immediate counterpart in the 3-leg ladders
discussed in Chapter 4 where different rung boundary conditions had been considered. Both,
the 2-leg and 3-leg ladders showed clearly formed plateaus at m = 0, m = 1/6 respectively, for
Jrung & Jleg, whereas plateaus at m = 1/4 (m = 1/3 respectively) were unobservable. The latter
phenomenon again was in accord with earlier findings for the respective systems with periodic
perturbations. BST extrapolations for plateau widths of the first group of plateaus and weak
rung couplings, however, did not allow for any conclusive statements.
In the following, an application of the scaling treatment –given in Secs. 3.2.3, 3.2.4– to the
situation of weakly and translationally invariant coupled chains (legs) was touched on. The
change at the situation of initial conditions for the evolution equations (Secs. 3.2-3.2.2) and
the different behaviour of “perturbed” systems was discussed for the example of a 2-leg ladder.
Satisfactory scaling solutions (e.g. for a possible gap or plateau) have not been obtained until
now and a definite description therefore had to be left open. The general practicability of a
scaling treatment of the earlier described form (longitudinal perturbation ∼ S3(π)) for more
advanced and complicate situations is questionable.
The remaining part of the chapter treated –or supplied preparations for the following treatment–
physical aspects of more than one-dimensional Heisenberg antiferromagnets. The concept of
spin systems with helical boundary conditions was recapitulated and used as an approximate
description of two-dimensional spin systems. Before, the existence of long-range spin couplings
–arising in the prior ladder parameterizations and as well in the helical spin Hamiltonians–
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have been analyzed following the outlines of the original Lieb, Schultz, Mattis theorem [143]
addressing the existence of soft modes in Heisenberg antiferromagnets. The latter consideration
on one hand reproduced (no solid rigorousity was intended nor obtained) the earlier given plateau
quantization rules ([168]) for spin ladders, on the other hand resulted in a particular condition
for the ratio (α) of diagonal and orthogonal coupling strengths of the considered spin lattice.
Before finally turning to a potential decision on the existence of a solution for the latter condition,
a further application of helical boundary conditions, namely the determination of the onset
of a non-zero staggered magnetization of laterally coupled isolated chains, was given ([83]).
The exploitation of a rigorous sum rule (energy conservation rule) allowed to delimit/overcome
certain finite-size effects to locate the mentioned onset immediately at the one-dimensional chain
expressing its exceptional situation in the dimensionality of Heisenberg spin systems. As was
already set out in Sec. 5.4.2, the latter position is not generally accepted.
The following and initial discussion of magnetization plateaus in frustrated two-dimensional
spin systems –mainly the helical approximation of square lattices– has essentially been limited
to Lanczos diagonalizations of N = 24 spins (k = 5, see Sec. 5.4.1) covering the whole range of
magnetizations 0 ≤ m ≤ 1/2 and smaller manageable regimes of m (below saturation m = 1/2)
for the larger helical k = 7 (N = 48) and the quadratic N = 6 × 6 system. The presented
considerations have not been intended to represent solid arguments concerning the existence of
plateaus but offer first indications. The given sequences of magnetization curves for the helical
N = 24 system at varying frustrations resulted in characteristic α-dependences of magnetization
step widths for selected values of m. Beforehand, the latter selection had been given additional
support by considering the influence of a periodic perturbation of the spin coupling in x-direction
of the spin lattice. The most susceptible points (frustration values) for the step widths of
the translationally invariant system turned out to be at α ' 0.6. Referring to the earlier
investigation of quadratic spin systems (Schulz an Ziman [183]), this α-value coincides with the
cross-over region between two ordered phases of the frustrated lattice: |~p0 = (π, π)| . . . |~p0 =
(0, π), (π, 0) |. Such a change of symmetry forms an important characteristic for the process of
plateau formation.
The following discussion of the particular α-condition originating from the LSM application
to systems with helical boundary conditions showed that the condition was unrealizable for
any m well apart from m = 1/2. The shown approach of the required zero (see Sec. 5.4.3)
with increasing m is consistent with the obtainable existence of a solution in the one-magnon
(Sz = N/2−1) sector. Evaluations for N = 48 spins in addition widely excluded finite-size effects
responsible for the observed unrealizability of the condition. Furthermore, evaluations for the
quadratic 6 × 6-lattice resulted in good correspondence for small frustrations and comparable
behaviour for large α. Although they did not provide solutions for the remaining m < 1/2−1/N ,
the corresponding evaluations again showed the existence of a cross-over regime –around α = 0.6–
between two well-behaved regimes.

The incomplete status of the latter paragraph directly leads up to the first part of the Out-
look addressing ongoing and intended further projects following the sequence of investigations
described in the presented work.
At present, further evaluations of longitudinal and transverse static structure factors and re-
spective frequency-moments are being performed and the smaller 4× 4-lattice is to be included
in further studies. In particular, the non-monotonic α-dependence of lower and upper bound-
aries of the described magnetization steps (again for α ' 0.6) will be investigated. Moreover, it
remains to be decided to further enlist the support of DMRG calculations. They at least provide
evaluations of all magnetization sectors
The behaviour of magnetization curves close to plateaus (e.g. the algebraic dependence m ∼
|B − Bl,u|1/n at the plateau boundaries) has not been particularly emphasized in this work.
Investigations close to BSat (Schmidt et al. [178]) resulted in a different exponent n for α
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approaching α = 0.5 (Majumdar-Gosh point [148, 149]) in a frustrated chain (different n for
α 6= 0.5 (n = 2) and α = 0.5 (n = 4)) and Cabra et al. [39] gave an analytical treatment
of one- and two-spin wave excitations for the transition to saturation for 2-leg zig-zag ladders.
Respective Taylor expansions clearly relate changes of n to the discontinuation of particular
components. General considerations of the analytical behaviour of magnetization functions in
the surroundings of plateaus mark a further intention.
It further appears that there still remains a certain need of clarification of the nature of soft
modes. This as well rises the problem of classification of certain measured (susceptibility)
singularities as e.g. the assignment of transverse soft modes (cf. e.g. Figs. 4.7, 4.40 and related
discussion) in the described soft mode approach.
It then remains the possibility of leaving the field of spin-1/2 Heisenberg systems and extend
the performed investigations to spin models with higher spin and/or include itinerant fermion
models like t−J or Hubbard systems (see e.g. [16]). Such models offer the possibility to discuss
plateau formations in chemical potentials. It has to be taken into account, however, that the
preparation of the needed critical initial systems can considerably narrow down the parameter
space of these systems.
The fractional character of systems showing magnetization plateaus finally brought the physics
of quantum-Hall systems closer to the physics of one-dimensional quantum phenomena. The
question arose whether suitably chosen one-dimensional systems –e.g. Hubbard chains– do allow
for a qualitative mapping of certain characteristics of quantum-Hall systems (see e.g. [76]). A
discussion of these aspects will of course afford the prior study of the before-mentioned classes
of (spin) systems.
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Appendix A

The recursion method

A.1 Description of the method

In the following a numerical technique is described that is used to evaluate products of matrix
elements of type

fBA(q, n) = < 0|B+(q)|n >< n|A(q)|0 >

and as well the related energy differences ω0n ≡ ωn = En−E0 approximately. Hereby, |0 > and
|n > denote the ground state and excited states (n) of a given spin Hamiltonian of a translation
invariant N -site system.
First, the case B = A that is required for the calculation of DSF-components fAA(q, n, N) of

fAA(q, ω, N) =
∑

n

| < n|A(q, N)|0 > |2︸ ︷︷ ︸
fAA(q,n,N)

·δ(ω − (En(q, N)− E0(q0, N))︸ ︷︷ ︸
ωn(q,N)

) (A.1)

will be considered. For simplicity the variables q, N will not be given explicitely. The Laplace
transform of fAA(ω) reads

fAA(τ) =
∑

n

e−ωnτ | < n|A|0 > |2 (A.2)

= < 0|A+e−(H−E0)τA|0 >≡< f0|f(τ) > (A.3)

with |f0 >= A|0 > and |f(τ) > fulfilling

∂

∂τ
|f(τ) > = −H̄|f(τ) > (H̄ = H − E0). (A.4)

Now, a Gram-Schmidt construction is used (see also [207]) to form an orthogonal set of states
{|fk >}, namely

|fk+1 > = H̄|fk > −ak|fk > −b2
k|fk−1 > (A.5)

ak =< fk|H̄|fk > / < fk|fk > ; k = 0, 1, 2, .., L− 1 (A.6)
b2
k =< fk|fk > / < fk−1|fk−1 > ; k = 1, 2, .., L− 1 , b2

0 ≡ 0 (A.7)

and |f(τ) > is given by

|f(τ) > =
L−1∑

k=0

Dk(τ)|fk > . (A.8)
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L denotes the dimension of the Hilbert sub-space, i.e. the number of states |n > leading to
nonzero matrix elements < n|A|0 >. The upper differential equation leads to

∑

k

Ḋk(τ)|fk > = −
∑

k

Dk(τ)
{
|fk+1 > +ak|fk > +b2

k|fk−1 >
}

(A.9)

or in matrix notation ~̇D = −M~D with M being a tridiagonal (non-symmetric!) L × L-matrix
with eigenvalues ωn and eigenvectors ~en. The eigensolutions vk(τ) of the set of linear differential
equations read vk(τ) = v0

ke
−ωkτ leading to

Dk(τ) =
∑
n

(~en)kv
0
ne−ωnτ . (A.10)

Here, the v0
k are given by the initial condition ~D(τ = 0) = (1, 0, 0, ..., 0)T yielding for fAA(τ)

fAA(τ) = D0(τ) < f0|f0 > =
∑

n

e−ωnτv0
n(~en)0 < f0|f0 > (A.11)

i.e. | < n|A|0 > |2 = v0
n(~en)0 < f0|f0 >. It should be noted that the eigenvalues of M are real,

however, the non-symmetrical structure of M does not require the ~en to be orthogonal. The
approximation in the described scheme is given by the fact that the numerical treatment does
not allow for generating the whole set of L orthogonal states. The number of iterations in A.5
is reduced to L̃, the matrix M truncated to L̃× L̃ and the presented evaluation is performed on
this reduced set of states.

Now we turn back to the more general expression given at the beginning of the appendix.
Expressions of type A.1 are contained in

< g|f(τ) > = < g|e−τH̄ |f0 > (A.12)

=
∑

n

e−ωnτ < 0|B+|n >< n|A|0 > (A.13)

with |f0 >= A|0 >, |g >= B|0 >, A and B acting on the same space. Using the series
representation (A.8) of |f(τ) > we obtain

< 0|B+|n >< n|A|0 > =
∑

k

v0
n(~en)k < g|fk > (A.14)

which contains the transition probabilities | < n|A|0 > |2 for the choice B = A.

The described method was developed independently, howewer it is closely related to the earlier
proposed method of Gagliano, Balseiro [89] of computation of real-frequency correlation func-
tions in finite systems at zero temperature. Both methods make use of the ground state vector
|0 > and energy E0 of a given finite system (using e.g. Lanczos techniques [53]) and coefficients
ak, b2

k (A.6). They formally differ in the way of extracting energies and matrix elements (con-
tinued fraction vs. differential equations) from the input data, howewer, make use of the same
input.

A.2 Accuracy of the method

The reliability of the recursion method –as well as its shortcomings– have been investigated by
various methods and techniques.
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DSF Sz(q, ω,N = 16) ; q = π/2, π

n ωn(q,N = 16) wn(q, N = 16)

1 3.3806613858893 8.603551483282 ·10−1

2 4.197135363571 1.288323108707 ·10−1

3 4.59757074255 6.12984208 ·10−3 q = π/2
4 4.73871528573 1.48596359 ·10−3

5 4.902809151 9.727121 ·10−5 Sz(q = π/2, N = 16) =
6 5.35132697 1.723352 ·10−4 0.6794375761266
7 5.8903 3.01 ·10−4

8 5.9 1.875 ·10−3

9 6.47 8. ·10−5

1 0.540379364500 8.01345217378 ·10−1

2 2.79206117219 1.4109158151475 ·10−1 q = π
3 4.668596605332 4.6691968837931 ·10−2

4 5.475947091450 1.636197084 ·10−4 Sz(q = π, N = 16) =
5 5.9070165813 1.044901942 ·10−2 4.292303508279
6 5.994081 1.03778 ·10−6

7 6.573253 1.55186 ·10−4

8 6.80283 6.702 ·10−5

9 7.1 O(10−7)

Table A.1: Comparison: Recursion Method – Complete Diagonalization

In case of the DSF of the unperturbed Heisenberg chain (cf. Sec. 2.6) results have been compared
with complete diagonalization results [72, 79, 81] and Bethe Ansatz calculations [133]. Table A.1
shows results for the first nine excitations ωn(q) and matrix elements wn(q) = | < n|Sz(q)|0 >
|/ < 0|Sz(−q)Sz(q)|0 > of the DSF Sz(q, ω) for a 16-site chain with no external field for 2 values
of q. Only those digits are displayed that agree with complete diagonalization data.
The shown data (as well as all the remaining q-values of the chain) can be taken as an example
for a more general situation discussed in [79, 81]: The recursion method gives reliable results
with high accuracy (∼ 10 . . . 14 digits) for the first few excitations if these carry the dominant
part of spectral weight.
If considerable contributions do occur at much higher excitations (see e.g. [81]) the smallness
of L̃ does not allow for a satisfying evaluation of these contributions. However, even in these
cases the lowest excitation and its matrix element are obtained with high precision. Since this
excitation is the most influential one for dynamical properties, the recursion method remains a
useful tool even in such situations.

Moreover, in certain cases sum rules can be used as a global criterion for the degree of validity
of recursion results. As an example for calculations of the < 0|B+(q)|n >< n|A(q)|0 >-type
within the recursion method we consider an application of sum rule 5.56 for the choice Θ = 1
(cf. Sec. 5.4.2):

Σ(1, p, q,N) =
∑

m6=0

1
Em − E0

< 0|S(−p)S(p)|m >< m|S(−q)S(q)|0 > , (A.15)

i.e. a summation of matrix elements where the states |m > are required to have the same total
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spin and momentum as the ground state |0 > to give non-zero contributions (see also discussion
in Sec. 5.4.2):

∑
p

Σ(1, p, q,N) =
N−1∑

n=0

Σ
(

1, p =
2π

N
· n, q, N

)
(A.16)

=
∑

m6=0

∑
p

Mm(1, p)

︸ ︷︷ ︸
= N ·S(S+1)·δm,0

Mm(1, q)
ωm(1)

(A.17)

= 0 for m 6= 0 (A.18)

(cf. [83], Sec. 5.4.2). Table A.2 shows results for
∑

p Σ(p, q, N = 20) with |0 > being the ground
state of a 20-site nearest-neighbor Heisenberg chain at zero magnetization. Moreover, the table
shows results for three different truncation numbers L̃ used in the recursion algorithm, i.e. the
given sum rule can as well be used to optimize the parameters for the algorithm.
The static structure factors (SSFs) of the earlier discussed examples do not serve as a compu-
tational test of the recursion method. They only form initial conditions (given via A|0 >) and∑

n wn = 1 by construction.
Finally, it should be added that the described method only uses the constraint

∑
n wn(q) = 1,

however, not wn(q) ≥ 0. The latter conditions are usually fulfilled to very high accuracy and
they are used as a limitation for the value L̃ which tends to be about 20 . . . 40 as long as L̃ < L.
In summary, the recursion method is limited to the approximate determination of a finite number
(L̃) of excitations caused by the considered operator A. The optimal truncation number L̃ is
limited by numerical precision of the recursion process and the size L of the Hilbert space
(depending on system size N and the considered operator A).
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q/π Σ(1, 0, q, N) + Σ(1, π, q, N)
∑

p6=0,π Σ(1, p, q, N)
∑

p Σ(p, q, N)

0.100 0.17678495288824E − 01 −0.17678495342919E − 01 −0.5410E − 10
0.200 0.86810293873461E − 02 −0.86810294164457E − 02 −0.2910E − 10
0.300 0.40681950717119E − 02 −0.40681961695584E − 02 −0.1098E − 08
0.400 0.50030193195723E − 04 −0.50029992915329E − 04 0.2003E − 09
0.500 −0.50673764697107E − 02 0.50673767434741E − 02 0.2738E − 09 L̃ = 20
0.600 −0.13606385253498E − 01 0.13606384885101E − 01 −0.3684E − 09
0.700 −0.31364290001213E − 01 0.31364294572298E − 01 0.4571E − 08
0.800 −0.79347860219535E − 01 0.79347862698623E − 01 0.2479E − 08
0.900 −0.28949125375861E + 00 0.28949125564118E + 00 0.1883E − 08
1.000 0.77679883152275E + 00 −0.77679883152298E + 00 −0.2275E − 12

0.100 0.17678495313556E − 01 −0.17678495313198E − 01 0.3585E − 12
0.200 0.86810293867244E − 02 −0.86810293885494E − 02 −0.1825E − 11
0.300 0.40681954558274E − 02 −0.40681954719143E − 02 −0.1609E − 10
0.400 0.50030431580794E − 04 −0.50030430849441E − 04 0.7314E − 12
0.500 −0.50673764199077E − 02 0.50673764188729E − 02 −0.1035E − 11 L̃ = 25
0.600 −0.13606386170858E − 01 0.13606386197690E − 01 0.2683E − 10
0.700 −0.31364291524992E − 01 0.31364291551446E − 01 0.2645E − 10
0.800 −0.79347859109161E − 01 0.79347859112591E − 01 0.3430E − 11
0.900 −0.28949125312430E + 00 0.28949125312952E + 00 0.5228E − 11
1.000 0.77679883152273E + 00 −0.77679883152305E + 00 −0.3214E − 12

0.100 0.17678495313832E − 01 −0.17678489474219E − 01 0.5840E − 08
0.200 0.86810293863549E − 02 −0.86810640209939E − 02 −0.3463E − 07
0.300 0.40681954586067E − 02 −0.40681863881122E − 02 0.9070E − 08
0.400 0.50030436287957E − 04 −0.50081692596133E − 04 −0.5126E − 07
0.500 −0.50673764180295E − 02 0.50675162011048E − 02 0.1398E − 06 L̃ = 30
0.600 −0.13606386183473E − 01 0.13606328125024E − 01 −0.5806E − 07
0.700 −0.31364291540077E − 01 0.31364610656580E − 01 0.3191E − 06
0.800 −0.79347859097145E − 01 0.79347656407129E − 01 −0.2027E − 06
0.900 −0.28949125311789E + 00 0.28949124997464E + 00 −0.3143E − 08
1.000 0.77679883152272E + 00 −0.77679883152307E + 00 −0.3445E − 12

Table A.2: Sum rule 5.56 for Σ(Θ = 1, p, q,N = 20), Sz = 0 and different iteration numbers L̃
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Appendix B

Magnetic saturation fields BSat for
various spin chains

B.1 Calculation of BSat

As being discussed in Sec. 2.4 the saturation field BSat for Hamiltonians that do conserve the
total Sz value (positive curvature of M(B) in the vicinity of BSat is assumed) is given by

2BSat =
dε0(m)

dm

∣∣∣∣
m=1/2

= E0(Sz = N/2)− E0(Sz = N/2− 1) (B.1)

with ε0(m) = E0(m = Sz/N)/N . The factor 2 in B.1 accounts for the overall factor of 2 in the
Hamiltonian (s. below).
The upper relation shall now be demonstrated for cases of periodic spin-1/2 chains

H0(B, α) = 2
N−1∑

i=0

(
SiSi+1 + αSiSi+2 −BSz,i

)
(B.2)

that are perturbed by Dc
j(q) (cf. Sec. 3.1), namely

Hj,q(B, α, δ) ≡ H0(B,α) + 2δN1/2Dc
j(q) , (B.3)

with j = 1, 2 and p = π, π/2 will be considered. Here, we exchanged the general strength h of
the periodic perturbation by the more frequently used δ in case of dimer-like perturbations.
Choosing system sizes N = 2n for q = π and N = 4n for q = π/2 (n ∈ N) all 4 cases have ground
state energies E0(Sz = Stot

z = N/2) = (1 + α)N/2 and the unique ground state has momentum
p = 0.
It now remains to calculate E0(Stot

z − 1, p) and to determine

BSat = max
p

1
2

{
E0(Stot

z )− E0(Stot
z − 1, p)

} ≡ max
p

1
2
∆Etot

0 (p) . (B.4)

For that purpose momentum eigenstates |p > are used that are generated via

|p > =
1√
N

N−1∑

x=0

eipxT x|rep > ; < rep|rep >=< p|p >= 1

|rep > being a representative “one-magnon” state with N − 1 up spins on positions 0 . . . N − 2
and one flipped spin at site N − 1. The translation operator T satisfies

T |p > = e−ip|p > .
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Finally, the unperturbed operator H0(α) fulfills

H0(α)|p > = (1 + α)
(

N

2
− 2

)
+ 2 cos(p) + 2α cos(2p) (B.5)

resulting in

BSat = max
p

< p|1 + α− cos p− α cos 2p− D̂j(q)|p > . (B.6)

In the following the p-value of the maximum will be denoted p0.

B.2 Frustrated chain

A simple calculation yields:

BSat =
{

2 for α ≤ 1/4 , p0 = π
1 + 2α + 1

8α for α ≥ 1/4 , p0 = arccos
(− 1

4α

) (B.7)

B.3 Dimerization D1(π), D2(π)

Using the relations given in B.1 one obtains

N1/2Dj(π)|p > =
{

i sin(p + π)|p + π > j = 1
(1− cos(p + π))|p + π > j = 2

(B.8)

and, considering states |p >, |p + π > with p ∈ ]− π/2, π/2] (a first Brillouin zone for a system
with a doubled unit cell in real space), one obtains the eigenvalues

∆Etot
0 (p) = −2(1 + α− α cos 2p)± 2 ·





√
cos2(p) + δ2 sin2(p) , j = 1

√
cos2(p) + 4δ2 sin4(p) , j = 2

. (B.9)

They obey ∆Etot
0 (p) = ∆Etot

0 (p + π) – the expected behaviour of a perturbation with q = π.
Results of the evaluation of the magnetic saturation fields for the two cases are summarized in
figures B.1, B.2.
It should be added that the classification p0 = π/2 in the figures requires system sizes N = 4n.
Those with N = 4n + 2 would yield a momentum p0 = π/2− π/N instead.

B.4 Dimerization Dc
1(π/2), Dc

2(π/2)

In the case of q = π/2 the first Brillouin zone can be chosen to be ]−π/4, π/4] with 4 eigenvalues
for each p-value of the intervall.
One first calculates

N1/2Dc
1(π/2)|p > =

1 + i

4
(1− cos(p) + sin(p))|p +

π

2
>

+
1− i

4
(1− cos(p)− sin(p))|p− π

2
> (B.10)

N1/2Dc
2(π/2)|p > = −1

2
sin(2p)

(
|p +

π

2
> −|p− π

2
>

)
(B.11)

and then – using the states |pl >≡ |p + l · π/2 >, l = 0, 1, 2, 3, (|pl >= |pl+4 >) – diagonalizes
the resulting 4× 4-matrix.
Since analytic expressions for po(α, δ) and BSat(α, δ) are not easy to present the figures B.3i,
B.4 and B.5, B.6 show numerical results for these quantities obtained for N = 1000. Again, for
system sizes N = 8n + 4 p0 = π/4 has to be replaced by p0 = π/4− π/N .
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Figure B.1: Minimum position p = p0 of E0(α, δ, Sz = N/2− 1, p) and magnetic saturation field
BSat for H1,π(B,α, δ)
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Figure B.2: Minimum position p = p0 of E0(α, δ, Sz = N/2− 1, p) and magnetic saturation field
BSat for H2,π(B,α, δ)
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Figure B.5: Magnetic saturation field BSat for H1,π/2(B,α, δ)
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Figure B.6: Magnetic saturation field BSat for H2,π/2(B,α, δ)
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Appendix C

Finite-size analysis – the
“Bulirsch-Stoer” (BST)-method

In a 1964 publication “Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei
Verfahren vom Richardson-Typus” Bulirsch and Stoer [36] presented an algorithm that –in later
applicationsi [109]– turned out to be very reliable and useful for applications to critical phenom-
ena. The algorithm’s applicability was shown to be in most cases equal or superior to other -in
particular the van den Broeck- Schwartz (VBS) [205]– algorithms.
The BST-algorithm is extensively described and discussed in [109, 110], as well as compared
with the VBS-algorithm. Here, we are not going into technical aspects but give two examples
for the algorithm’s application to a sequence of finite-system data.

C.1 Ground state energy per site for the isotropic Heisenberg
chain (m = 0)

As a first set of finite-size data we consider the ground state energies per site E0(N, Sz =
0)/N shown in Fig. C.1 for the isotropic Heisenberg chain described by the Hamiltonian H =
2

∑
n SnSn+1.

e0(∞)=2*(-ln 2 + 1/2)=-0.88629436..
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Figure C.1: Ground state energies E0(N,Sz = 0)/N of the isotropic Heisenberg chain
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Together with the energies for systems N = 4, 6, .., 28 (calculated with help of the Lanczos
algorithm) the figure as well shows the limiting value limN→∞E0(N)/N = e0(∞) = 2(− ln 2 +
1/4) [120] (cf. Sec. 2.4).
In the following we will apply the BST-algorithm for 3 different subsets of the given data
to show how the algorithm approaches the (in this particular example known) result for the
TDL. The data (eN ≡ E0(N)/N) obviously fulfill a basic prerequisite for the application of
the algorithm – a limiting, convergent behaviour of the input data, that is arranged in the
consecutive list fi = f(hi), i = 0, 1, .., Nm. Following [110] (here hi = 1/Ni), the initial sequence
of data (hi, fi, i = 0, .., Nm) forms T (0, 0), T (0, 1), .., T (0, Nm) (T (−1, i) = 0 ∀ i), which is
consecutively narrowed to TNm,0:

T (0, 0)
T (1, 0)

e.g. for Nm = 2: T (0, 1) T (2, 0) ,
T (1, 1)

T (0, 2)

Table C.1: Evaluation scheme of the Bulirsch-Stoer(BST) algorrithm

following the rule

T (m, i) = T (m− 1, i + 1) + (T (m− 1, i + 1)− T (m− 1, i)) ·
[(

hi

hi+m

)ω (
1− T (m− 1, i + 1)− T (m− 1, i)

T (m− 1, i + 1)− T (m− 2, i + 1)

)
− 1

]−1

. (C.1)

m = 1, 2, .., Nm , i = 0, 1, .., Nm −m

The exponent ω is a free parameter that is used to minimize e.g. the difference ∆TNm−1 ≡
|T (Nm − 1, 0)− T (Nm − 1, 1)| of the last occuring T (Nm − 1, 0), T (Nm − 1, 1).
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Figure C.2: Performance of the BST-algorithm for 3 sets of data and resolution dω = 0.01
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The latter process is now shown in Fig. C.2 where ω has been varied in steps of 0.01 and 3
subsets N = 4, 6, .., 12; 4, 6, .., 20; 4, 6, .., 28 have been evaluated. The l.h.s. of the figure shows
the difference between the obtained extrapolation of e0,BST (N,ω) and the exact one, while the
r.h.s. gives the common logarithm of ∆TNm−1. The obtained results –even for N ≤ 12– are
already very accurate (leading to ω ' −1 see Table C.2), however, especially the inclusion of
more and more sites shows the appearance of further relative minima ω∗.

N ω T (Nm, 0) ∆TNm−1) 1− T (Nm, 0)/e0(∞)
4, 6, . . . , 12 -1.10 -0.8858995685E+00 0.1381766189E-04 0.4454418726E-03
4, 6, . . . , 12 -1.00 -0.8862966031E+00 0.1329150175E-05 -0.2529611163E-05
4, 6, . . . , 12 -1.00 -0.8862943677E+00 0.1590312326E-08 -0.7424293492E-08

Table C.2: BST-results for dω = 0.01 and comparisons with the known result

dωmin ωmin ∆TNm−1 T (Nm, 0) N

.01 -1.10000 0.1381766189E-04 -0.8858995685E+00
.001 -1.09600 0.8946852482E-06 -0.8859117396E+00 4,6,..,12
.0001 -1.09620 0.1518724292E-06 -0.8859111257E+00

.01 -1.00000 0.3715772090E-07 -0.8862943797E+00
.001 -1.00300 0.3134795867E-08 -0.8862937652E+00 4,6,..,20
.0001 -1.00300 0.3134795867E-08 -0.8862937652E+00

.01 -1.00000 0.1590312326E-08 -0.8862943677E+00
.001 -1.03700 0.5493834276E-09 -0.8862931590E+00 4,6,..,28
.0001 -1.03710 0.4393009290E-09 -0.8862931563E+00

Table C.3: Influence of higher resolution (smaller dω) on BST-results

This might on one hand be due to the additionally occuring logarithmic corrections in the
ground state energies, on the other hand, when using a higher resolution for the dω (shown in
Table C.3) one has in addition to take into account that the used energy values carry subtle
uncertainties due to the Lanczos iteration. In any case, the BST algorithm gives excellent
numerical approximations to the known ground state energy per site – this even on the basis of
very few and small system sizes.

Fig. C.3 shows another important influence of the chosen subsets for the extrapolation – the
seperate choice of “even (N = 4n) or odd (N = 4n + 2)” system sizes (n ∈ N). The l.h.s. of
the figure shows the unambiguous approach of a single ω∗, whereas the r.h.s. shows that the
inclusion of the largest system (N = 28) –though determined with the same Lanczos termination
error– again leads to the appearance of further minima. The choice of the “right” ω∗, however,
is profoundly simplified. The obtained accruracies, though, are comparable to those obtained
earlier for similar Nmax (e0 = −0.88629 + O(10−5).

The BST-evaluations of plateau widths and boundaries that are frequently used in the main
parts of this work usually reached ∆TNm−1 ' 10−4...10−6.
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Figure C.3: Different choice of data sets (N = 4n, 4n + 2 for the BST extrapolation

C.2 Evaluation of αc (fluid-dimer transition) on the basis of N =
8, 10, 12 spins and comparison with Okamoto, Nomura [166]

In this paragraph we briefly want to comment on the behaviour and quality of small system
evaluations of αc, i.e. the frustration value characterizing the transition from the spin-fluid to
the dimerized phase (see Sec. 5.1.2).
Fig. 5.2 already documented the closeness of the finite-system results for the degeneracy of the
lowest singlet and triplet excitation. We will now use the three αc(N) values –given in Table
C.4 (simply obtained from the linearized behaviour of the two excitation energies closest to
their crossing point; ∆α = 0.02)– and apply the BST-algorithm to determine their approximate
N →∞ limit. In addition, we will use data from Okamoto, Nomura [166] (N = 8, 10, .., 24) and
give results of BST fits.

N αc(N) αc(N) (Okamoto, Nomura ’92)
8 0.246315 0.24630338
10 0.244488 0.24449187
12 0.243470 0.24348191
14 0.24286642
16 0.24246468
18 0.24218827
20 0.24199002
22 0.24184301
24 0.24173095

Table C.4: Fluid-dimer transition values for systems N = 8, 10, 12 and data from Okamoto,
Nomura[166]

Table C.4 first shows that the mentioned linearizations to obtain αc(N) (N = 8, 10, 12) approach
the data of Okamoto, Nomura (∆α = 0.01) very well. Indeed, BST fits of both subsets do almost
give the same results (see Table C.5; data of Sec. 5.1.2 shown in seperate line).
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Fig. C.4 shows the results of BST fits performed for different subsets of data taken from
Okamoto, Nomura. The choice of subsequent system sizes again produces the occurrence of
several minima for increasing Nmax (l.h.s. of the figure), whereas the differentiation of “even
(N = 4n) and odd (N = 4n + 2)” system sizes shown on the r.h.s. results (for N < 24) in an
unambiguous minimum close to ω = −2.0. As in case of the ground state per site discussed in
the previous paragraph the uniqueness of ω∗ is lost for increasing N . The hint to ω∗ ' −2.0,
however, is very evident.
The latter exponent agrees very well with

αc(N) = αc +
const.

N2
(C.2)

analyzed by [166]. Together with the behaviour shown on the r.h.s. of Fig. C.4 this will be used
to consider relative minima ω∗ for all sets of data closest to ω = −2.0 (see Table C.5). Table
C.5 as well gives the deviation ∆Nm−1(ω∗) of the final step of the algorithm (cf. Sec. C.1).
Comparing the BST results, a VBS extrapolation ([205]) and further analyses done in [166] with
the to date best known value of αc (Eggert [66]; αc = 0.241167±0.000005), it turns out that the
BST results give slightly more accurate extrapolations than VBS (0.24112218 in [166]), however,
the least squares fit to C.2 (0.241155 ± 3 · 10−6 [166]) came even closer to Eggert’s value. The
shown extrapolations as well as the result of [166] may be summarized as αc = 0.2411+O(10−4.
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Figure C.4: BST fits for different subsets of data from Table C.4

The numerical data of [166] –αc(N) given up to 8 digits– result from a linear interpolation (step
width ∆α = 0.01) as well and we did not attempt any improvement. Moreover, it does not seem
advisable to try the evaluation of αc(N) for slightly larger spin chains. The latter aspect appears
unfavourable considering the N -dependence of αc(N) given in Table C.5 and might reflect the
influence of logarithmic corrections by marginal terms or even higher order contributions from
irrelevant terms..
As the authors and others pointed out (see Sec. 5.1.2) the determination of αc is a highly
susceptible problem and its approach to O(10−5 with rather small system sizes again underlines
the usefulness of small system evaluations.
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N ω∗ αc(N) ∆TNm−1(ω∗)
8,10,12 -1.82 0.2409205 0.27400E-06
8,10,12 -1.82 0.2409507 0.19779E-05
8,10,..,16 -1.99 0.2411384 0.57113E-06
8,10,..,20 -1.99 0.2411384 0.21372E-06
8,10,..,24 -1.98 0.2411357 0.28408E-07
8,12,..,24 -1.98 0.2411349 0.16961E-06
8,12,16,20 -2.03 0.2411499 0.97790E-06
10,14,18,22 -2.00 0.2411399 0.53845E-06

Table C.5: BST results for minima ω∗ closest to ω = −2.0 for different sets of data

C.3 Résumé

The performed and shown evaluations are thought to underline the following quite general points:

1. The BST algorithm is known to give reliable results for the TDL of given input data
with a generic convergent behaviour. Even a small number of points can therefore be
used to obtain insight and information about the respective finite-size behaviour – as will
extensively be used in the discussion of magnetization plateaus.

2. Expectations in the accuracy of the obtained BST-results e.g. the value for e0(∞) of the
first example discussed in this appendix should be oriented at the precision and number
of the input data.

3. The obtained exponent ω0 minimizing ∆TNm−1 cannot automatically be considered the
single exponent describing the h-dependence of the data input. In case of the occurrence of
several exponents or even subleading logarithmic corrections (not to mention a completely
logarithmic behaviour) the obtained ω-value can only be considered a kind of effective
exponent for the problem.

4. There is no general argument about the BST algorithm being superior to others. Its
increasing use by different scientists, however, may serve as a priori argument for its
value.

Generally speaking, a reliable interpretation of the obtained BST-results is strongly improved
by a frequent application and use of the algorithm and –as far as possible– related to tests
of its results on the basis of exactly known results or types of behaviour like the one in this
appendix. The exponent ω0 ' −1.00 for the above example is e.g. in good agreement with
known conformal theories.
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Methodische Grundprinzipien:

(1) In einer wissenschaftlichen Untersuchung darf man nur von
dem ausgehen, was wahr ist und mit Evidenz gewußt wird. (2) Alle
Fragestellungen einer Untersuchung sind derart in kleine Einhei-
ten zu unterteilen, daß man zunächst bei jenen Problemen anset-
zen kann, die sich lösen lassen. (3) Zunächst muß man bei den
einfachen und leicht zu erkennenden Dingen ansetzen und darf
erst danach zu den schwierigeren vordringen. (4) Alle Probleme
sind in einer Untersuchung möglichst vollständig aufzuzählen.

René Descartes, Discours de la méthode

(Bd. VI, 18 f. aus Œuvres de Descartes. Publiées par Ch. Adam et P. Tan-
nery. 11 Bde. Paris 1982-91 (”Nouvelle présentation“). Übersetzung: Dominik
Perlera.)

aL. Kreimendahl (Hrsg.), Philosophen des 17. Jahrhunderts, Wissenschaftliche
Buchgesellschaft Darmstadt (1999)
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sicht der vorliegenden Arbeit.
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ihre Hilfe beitrugen sowie denjenigen, die das Begutachten derselben vornehmen werden.

Meinen Eltern gebührt steter Dank.


