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Summary

This thesis studies balance models for a rotating stratified three-dimensional

fluid on a tangent plane with full Coriolis force. Derivations are done for two differ-

ent regions, namely mid-latitude and equator, which we considered separately.

Each model is studied via a variational approach which is based on Lagrangian

dynamics assuming smallness of the Rossby number and allowing for anisotropy in

the horizontal length scales. We assume semigeostrophic scaling, akin to the deriva-

tion of the L1 model by Salmon (1985) for the rotating shallow water equations. Con-

trary to Salmon’s derivation, we start with an arbitrary change of coordinates and

then choose the transformation to fix the degeneracy on the first order of the La-

grangian, L1, as suggested by Oliver (2006). In our setting, the full projection of

the rotation vector of the Earth is considered, so that the horizontal component of

the Coriolis vector is taken into account. For each model, conservation laws for the

energy and the potential vorticity are valid because of the Hamiltonian structure.

Our first model is a balance model for the mid-latitude on the f -plane in semi-

geostrophic scaling. It is an extended version of the primitive equation model de-

rived by Oliver and Vasylkevych (2016). We achieve to obtain a valid balance model

keeping the L1 structure. It includes two prognostic equations for density and po-

tential vorticity, and one kinematic equation which provides a relationship between

some component of the velocity field and prognostic variables. It is an elliptic equa-

tion when the fluid is stably stratified and all prognostic variables have sufficiently

small fluctuation. It is the most general model obtained so far in semi-geostrophic

scaling.

The other model concerns balance model on the equatorial β-plane. The situ-

ation differs totally from the f -plane model because the vertical component of the

Coriolis vector is not constant on the β-plane. This brings additional complexity.

Other than this, obtaining a workable scaling is a major challenge in this region. We

discuss three different scaling assumptions corresponding to different dynamics. We

then focus on one of them for which the rotation is dominant. Under the additional

assumption of construction of zero-meridional velocity as suggested by the leading

order dynamics, an equatorial balance model is obtained.
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1

Introduction

Balance is a well-known concept in the geophysical fluid dynamics. It is very useful

in climate sciences due to the link between the balance motion and large-scale atmo-

spheric or oceanic circulation processes. Basically, a balance model is obtained by

filtering out inertia-gravity waves which have a higher frequency set comparing to

the other waves, especially Rossby waves. Ideally, the resulting model does not con-

tain any inertia-gravity wave, as the model includes only the slow dynamics. One

can think that inertia-gravity waves evolve on a small time scale and they do not in-

teract with other waves according to linear wave theory. Then, the scale separation

is easier in linear dynamics. However, it becomes a challenge in non-linear models

because of the interactions. At this point, some characteristic ratios like the Rossby

number and Froude number help to make this elimination via scaling.

One of the most famous scaling was described by Charney (1948). It is quasi-

geostrophic scaling. However, it is not proper for large-scale dynamics. Around that

time, semi-geostrophic scaling was introduced by Eliassen (1948), but it gained the

popularity after Hoskins and Bretherton (1972) and Hoskins (1975). Mostly, Rossby

number or Froude number is used to obtain the dynamics in these specific scalings.

On the other hand, Leith (1980) obtained the balance model in quasi-geostrophic

scaling, but without using the Rossby number. Their method might be useful in

regions like the equator where the Rossby number vanishes.

There are mainly two types of equations which have dynamically distinct charac-

ter in a balance model. One of them is the diagnostic eqution for the fast variable. It

is known as the balance relation, too. In other words, it is an invariant object through

a phase-space constraint (Franzke et al., 2019). The entire motion is controlled by it

because it is acting as a constraint. The other one is the prognostic equation or the

evolution equation for the slow variable. It is mostly for a conserved quantity like

potential vorticity. It gives the dynamics of the model (McIntyre and Norton, 2000)

(Hoskins, McIntyre, and Robertson, 1985). The importance of having this conserved
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quantity in the model directly takes the attention to models based on the Hamilton’s

principle because it provides the conserved quantities automatically. Salmon (1982;

1985; 1988) is the pioneer in this field. Roulstone and Sewell (1996), Allen, Holm,

and Newberger (2002) followed the Hamilton’s principle on their balance models.

In our derivations, the balance model compromises of the set of equations of

motion derived via variational principle which is applied to the Lagrangian of the

fluid. One of the most important advantages of this approach is the relationship with

conservation laws because this approach provides the symmetry property. More

precisely, the resulting model brings conserved quantities by Noether’s theorem. For

instance, the fluid has a symmetry called as particle labeling symmetry. According to

it, the Lagrangian of the fluid is invariant under composition of the flow map (Holm,

Marsden, and Ratiu, 1998; Franzke et al., 2019). The related conserved quantity is

the potential vorticity. This property makes it convenient to solve the system even

if it changes its behavior but remains conserved. Then, conservation laws help to

study the flow behavior.

We use the full Coriolis force in our models. It is obtained by the non-zero hori-

zontal component of the Coriolis vector, and so it includes two more terms implied

with "full". One of them appears in the vertical component of the Coriolis force and

the other one is on the horizontal term with the vertical velocity. The axis of rotation

does not project to the local vertical with this assumption. Then, the model is more

realistic than the one with the traditional approximation, which retains the projec-

tion of the axis of rotation to the local vertical. Thus, it is expected that these extra

terms cause some complexity on the resulting model. Effects of them firstly studied

on giant planets by Busse (1994) and Yano (1998). More general phenomena related

to it is review by Gerkema et al. (2008a).

The usage of the full Coriolis force is more pronounced to explain some missing

parts such as dynamics on internal wave (Gerkema and Shrira, 2005b), equatorial

circulations like Madden-Julian oscillation (Hayashi and Itoh, 2012) and Intertrop-

ical Convergence Zone (ITCZ) (Ong and Roundy, 2019). Then, new components

which are ignored in the traditional approach might bring new perspectives on the

theory. In addition to these phenomena, Kohma and Sato (2013a) show how the hor-

izontal component of the Coriolis vector promotes the evolution of edge waves like
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boundary Kelvin wave and topographic Rossby waves using anelastic equations set

on f -plane.

Our derivations are done for two different regions, namely mid-latitude and

equator. We start with the mid-latitude to show that a non-hydrostatic balance

model is viable. Then, we apply our approach to the equatorial model in the long-

wave scaling to examine the feasibility of the method around the equator and we

aim to obtain a valid balance model for this specific region.

Coriolis vector aligns parallel to the local horizontal plane around the equator.

Therefore, the traditional approximation is not proper for rotating flows in this re-

gion because it ignores the rotation by having zero components there. In other

words, the fluid does not rotate in the same sense as in the mid-latitude. Thus, the

horizontal component of this vector gains importance in order to keep the rotation

effect.

There is a clear time scale separation on generated waves at least in the mid-

latitude, as they have different characters. For example, inertia-gravity waves are

moving very fast compared to Rossby waves because these waves are high fre-

quency waves. By choosing a proper scaling, it is possible to eliminate them from

the model. However, the picture changes dramatically around the equator since two

more waves, which have both fast and slow parts, appear in this region.

Matsuno (1966) made the first description of the equatorial waves as an eigen-

mode solution using shallow water equations on the β-plane. He linearized inviscid

shallow water equations about the stationary state. He showed that Kelvin waves

and mixed Rossby-gravity waves which are generated only around the equator in

addition to Rossby and inertia-gravity waves. These new types have different char-

acters from Rossby waves and inertia gravity waves which move in certain speed,

fast or slow. For instance, Kelvin waves with low wavenumbers behave slowly,

but higher wavenumbers are fast. Similarly, mixed Rossby-gravity waves, which

are sometimes called Yanaii waves, westward mixed Rossby-gravity waves move

slowly like Rossby waves. However, the eastward part of them is fast like inertia-

gravity waves. Thus, it is hard to apply known scale separation in this region. The

existence of these new waves were shown by observations (Wallace, 1968; Kiladis

et al., 2009) and so their slow parts must be included into the balance model.
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Around the equator, the surface temperature is quite warm. This causes the

wave-guide effect so that some waves like Kelvin wave are trapped in this region.

This feature has a significant influence on the weather prediction for the mid-latitude

in the long term (Dutrifoy and Majda, 2006). Then, it is worth to have a balance

model near the equator. However, present equatorial models do not satisfy the no-

tion of balance, which implies the dynamics without only inertia-gravity waves. De-

pending on the approach, some slow waves do not appear on the model (Verkley

and Velde, 2010; Mohebalhojeh and Theiss, 2011; Chan and Shepherd, 2013; McIn-

tyre, 2015). Then, the approach with proper scaling is very important for this critical

region.

For the balance model, the full Coriolis force is suggested to handle the singular-

ity in the vicinity of the equator by Verdière and Schopp (1994). They show that the

hydrostatic approximation can be applied to the upper part of the ocean (above the

characteristics) and it is necessary to use the non-traditional term for the rest. This

is taken up in Section 1.2.2. Then, we keep the horizontal component of it because

we work on the characteristics for both regions and we assume infinitely deep layer

only around the equator.

We choose rotating Boussinesq equations on the local tangent plane on which the

potential term covers the pressure and the geopotential. This system of equations is

based on the perturbation on the density and the pressure, which are considered

more important for incompressible and compressible fluids, respectively. Here, we

consider the stratified and incompressible fluid. Our derivations are done for non-

hydrostatic dynamics. Specifically, we work on the f -plane for the mid-latitude and

we use β-plane for the equatorial case. Then, this work may be used as a reference

for other giant planets such as Jupiter and Saturn since shallow layer assumption

fails (Juárez, Fisher, and Orton, 2002).

Last, we note that non-hydrostatic approximation needs to be integrated to present

models as the horizontal resolution is getting higher by improvements in the perfor-

mance on computing technology. For instance, the European Centre for Medium

Range Weather Forecasts (ECMWF) nearly doubles the horizontal resolution every

8 years (Wedi, 2014). Then, the higher resolution on the horizontal scale makes the

vertical scale comparable with the horizontal one. As a result, hydrostatic models
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become invalid near feature. Hence, we apply this approximation on our models too

and so we keep the vertical momentum equation.

The aim of the thesis

The aim of this work is to study variational balance models in the mid-latitude and

in the vicinity of the equator. We derive a model for each case with the full Cori-

olis force. Although we have accurate models with the traditional approximation,

recently it was shown that neglected components have significant effects under spe-

cific circumstances by Gerkema and Shrira (2005a). Considering the full Coriolis

force, this dissertation firstly addresses the following question:

• Is it possible to extend the balance model which is derived by primitive equa-

tions (Oliver and Vasylkevych, 2016) to the three-dimensional case with the

full Coriolis force on f -plane?

We observe that the resulting model allows us to work on a three-dimensional model

with extra terms coming from the horizontal component of the Coriolis vector. Fol-

lowing it, we question the similar structure of the model for another region, the

equator. It is known that a balance model is a challenge in this region because the

traditional Coriolis component vanishes. However, the non-traditional component

is claimed to handle this complexity (Verdière and Schopp, 1994). Therefore, this

dissertation focuses on the next question:

• How can a balance model be constructed in the vicinity of the equator via

variational approach on the β-plane?

While working on the second question, we use the long-wave scaling specifically

because we use the anisotropy on the horizontal length scales as a small number. The

main aim while answering this question is to obtain a valid balance model covering

all slow waves in the long-wave scaling.
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Plan of the thesis

This dissertation includes one peer-reviewed paper and one manuscript addressing

the aforementioned questions in the study of balance models for the mid-latitude

and the equator one by one.

The outline of the thesis is described as follows. In this part, the introduction of

the research topic and the motivation are given. The rest of the thesis is divided to

five main chapters. In the first chapter, we elaborate on some basic concepts such

as the Boussinesq equations, the full Coriolis force and the scale analysis. Moreover,

the model equation with the full Coriolis force is shown on the f -plane and β-plane

separately because the geometry and so the scaling differs on them. In Chapter 2,

the idea of the Hamilton’s principle and how to apply it to the geostrophic flows are

given. Chapter 3 represents the full text of the peer-previewed article about the bal-

ance model on the f -plane. Details of some derivations are deferred to the Appendix

at the end of this chapter. Chapter 4 provides the manuscript about balance model

on the β-plane in the vicinity of the equator. Chapter 5 draws the summary of the

research findings and the outlook. Finally, Appendix A gives a brief derivation on

one of the scaling option for the equator and Appendix B shows how to derive the

horizontal mean field on the f -plane.
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Chapter 1

Model

1.1 Boussinesq equations

The idea of Boussinesq approximation comes from the density decomposition. It

is used more common in the ocean dynamics as it ignores the density fluctuation

and so the fluid is stratified (LeBlond and Mysak, 1978; Franzke et al., 2019). For

compressible fluids, some more assumptions are necessary. For instance, Boussinesq

equations do not support acoustic waves and so the velocity must be less than the

speed of the sound. On our models, we assume that the fluid is strongly stratified so

that the total density is decomposed as the perturbation density ρ′ and the vertical

profile ρ̄

ρ(x, t) = ρ̄(z) + ρ′(x, t) , (1.1)

with the condition ρ̄ ≫ ρ′. Besides, the flow is assumed to be inviscid and incom-

pressible.

To economize the notation, we use boldface for three-dimensional vector fields

and non-boldface without suffix for horizontal vector fields unless otherwise stated.

For instance, ui for i = 1, 2, 3 represents a component of the velocity field, u =

(u1, u2, u3) is a three-dimensional velocity field, and u = (u1, u2) is the horizontal

velocity field. Similarly, we introduce the gradient operator as ∇ = (∂x, ∂y, ∂z) act-

ing on three-dimensional fields and ∇ = (∂x, ∂y) acting on two-dimensional fields.

Then, the system is

Dtu + 2Ω × u = − 1
ρ0

∇p − g
ρ0

ρk , (1.2a)

∇ · u = 0 , (1.2b)

Dtρ = 0 . (1.2c)
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where p is the pressure and, g is the gravity constant and the Coriolis vector with

components is

2Ω =


Ωx

Ωy

Ωz

 . (1.3)

It is known as angular velocity too. Components of it depend on the constant lati-

tude ϕ. We define the material derivative as

Dt = ∂t + u ·∇ . (1.4)

For simplicity, the diffusion is neglected because we analyze the large-scale circula-

tion where the dissipation range is small. Besides, we want to keep the Hamiltonian

structure on the model, so that the energy is conserved with the lack of dissipation.

The equation system in (1.2) provides the general model and some further assump-

tions are done via scaling in Section 1.3 and 1.4.

Rigid lid approximation is used for the vertical boundaries. According to this

approximation, the fluid domain is restricted to a flat surface, but free surface dis-

placements are recovered via the pressure equation (Gill, 1982). For lateral bound-

aries, the domain is periodic at least on the mid-latitude model. We have a periodic

boundary condition only in the x-direction for the equatorial model.

The fluid is restricted vertically in a non-dimensional unity length for the mid-

latitude model. It has certain boundaries at the top and the bottom. However, we

have no strict bottom boundary around the equator. For simplicity, it is assumed that

the vertical layer is infinitely deep. Similarly the meridional plane is taken infinitely

long as the meridional velocity vanishes towards the boundary. In the vertical direc-

tion, there is zero-flux boundary condition i.e,

k · u = 0


at z = −1, 0 for the mid-latitude ,

at z = 0 for the equator ,
(1.5)
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where vertical boundaries appear only at the surface in the vicinity of the equator.

Therefore, we define the corresponding domain for each region as

D =


T2 × [−1, 0] for the mid-latitude ,

T × [−∞, ∞]× [−∞, 0] for the equator .
(1.6)

1.1.1 Dispersion relationship for stratified flows

In this section, we show the normal mode solution of the linear Boussinesq equations

with the full Coriolis force. The linear Boussinesq equations are

∂tu1 − Ωz u2 + Ωy u3 = − 1
ρ0

∂x p , (1.7a)

∂tu2 + Ωz u1 = − 1
ρ0

∂y p , (1.7b)

∂tu3 − Ωy u1 = − 1
ρ0

∂z p − g
ρ0

ρ′ , (1.7c)

∇ · u = 0 , (1.7d)

∂tρ
′ + ∂zρ̄ u3 = 0 . (1.7e)

We sum up the x derivative of (1.7a), the y derivative of (1.7b) and the z derivative

of (1.7c). Then, we have

− ∂x(Ωz u2) + ∂x(Ωy u3) + ∂y(Ωz u1)− ∂z(Ωy u1) = − 1
ρ0

∆p − g
ρ0

∂zρ′ , (1.8)

because ∂t∇ · u = 0 by (1.7d). Next, we apply the three-dimensional Laplacian ∆ to

(1.7c) and we obtain

∂t∆u3 − ∆(Ωy u1) = − 1
ρ0

∂z∆p − g
ρ0

∆ρ′ . (1.9)

To eliminate the pressure term, we take the partial derivative of (1.8) with respect to

z which is

− ∂xz(Ωz u2) + ∂xz(Ωyu3) + ∂yz(Ωz u1)− ∂zz(Ωy u1) = − 1
ρ0

∂z ∆p − g
ρ0

∂zzρ′ . (1.10)
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Then, we combine (1.9) and (1.10) into one equation which is

∂t∆u3 − ∆(Ωyu1) =− ∂xz(Ωzu2) + ∂xz(Ωyu3) + ∂yz(Ωzu1)− ∂zz(Ωyu1)

+
g
ρ0

∂zzρ′ − g
ρ0

∆ρ′ . (1.11)

At the same time, we follow Majda (2003) to see the effect of the gravity. We rewrite

the continuity equation (1.7e)

g
ρ0

∂tρ
′ − N2 u3 = 0 , (1.12)

where

N2 = − g
ρ0

∂ρ̄

∂z
(1.13)

is the buoyancy or Brunt-Väisälä frequency. Afterwards, we combine the time deriva-

tive of (1.11) and the second vertical derivative of (1.12) into one

∂tt∆u3 − ∂t∆(Ωyu1) =− ∂xzt(Ωz u2) + ∂xzt(Ωy u3) + ∂yzt(Ωz u1)− ∂zzt(Ωy u1)

+ ∂zz(N2 u3)− ∆(N2 u3) . (1.14)

Next, we choose the ansatz as (u1, u2, u3, ρ) = (ǔ1, ǔ2, ǔ3, ρ̌) ei(kx+ly+mz−ωt) for the

eigenmode system and insert it into (1.14), it yields

−i ω
(
(k2 + l2)Ωy + lm Ωz

)
ǔ1 + ikm Ωz ω ǔ2

+
(
ω2(k2 + l2 + m2)− ikm Ωy ω − N2(k2 + l2)

)
ǔ3 = 0 , (1.15)

where we assume Ωy, Ωz and N2 are constant.

We apply the same procedure that we did for the vertical momentum equation

to the horizontal momentum equations. We obtain

(
ω2(k2 + l2 + m2)− ikl Ωz ω + ikm Ωy ω

)
ǔ1 − i(l2 + m2)Ωz ω ǔ2

+
(
i(l2 + m2)Ωy ω + kmN2)ǔ3 = 0 , (1.16)
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and

i ω
(
(k2 + m2)Ωz + lm Ωy

)
ǔ1 +

(
ω2 (k2 + l2+m2) + ikl Ωz ω

)
ǔ2

− l (ik Ωy ω − mN2)ǔ3 = 0 . (1.17)

At the end, we have 3 linear homogeneous equations which are (1.16), (1.17) and

(1.15). This system has non-trivial solutions only if its determinant is zero. This

leads to a non-linear relationship between ω and (k, l, m), which is called dispersion

relation. Here, we only give a simple special case. The full dispersion relation is

more complex. Firstly, in the absence of rotation, the dispersion relation is

ω4 (k2 + l2 + m2)2 (ω2 (k2 + l2 + m2)− N2 (k2 + l2)
)
= 0 . (1.18)

The non-zero solution of (1.18) is

ω± = ± N
√

k2 + l2
√

k2 + l2 + m2
. (1.19)

Next, we consider that the Coriolis vector has a non-zero component only vertically,

i.e. Ω = (0, 0, Ωz), the dispersion relation then reads

ω4 (k2 + l2 + m2)2(ω2 (k2 + l2 + m2)− Ω2
z m2 − (k2 + l2) N2) = 0 . (1.20)

It results

ω± = ±
(

Ω2
z m2 + (k2 + l2)N2

k2 + l2 + m2

)1/2

. (1.21)

Waves on the β-plane

We assume linear Boussinesq equations on the β-plane with the full Coriolis force,

see Section 1.2 for a detailed discussion. It is based on the small angle approximation

sin ϕ ≈ ϕ , and cos ϕ ≈ 1 (1.22)
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where ϕ = y/a with the radius of the Earth a. Then, the vertical component of the

Coriolis vector is given as Ωz = βy and β is given by

β =
2|Ω|

a
≈ 2.3 × 10−11m−1s−1 . (1.23)

Then, the Coriolis vector is Ω = (0, Ωy, βy). We follow the same procedure as above,

but we choose (u1, u2, u3, ρ) =
(
ǔ1(y), ǔ2(y), ǔ3(y)

)
ei(kx+mz−ωt). Then, we have

ω

[(
ω(k2 + m2)− kβ + ikm Ωy

)
ǔ1 − k β y ∂yǔ1 − ω2 ∂2

yǔ1

]
+iω

[(
k2(β y − 1)− m2)ǔ2 + β ∂yǔ2 + β y ∂2

yǔ2

]
+

[(
iωm2Ωy + kmN2)− iω Ωy ∂2

yǔ3

]
= 0 ,

(1.24a)

ω

[
−β y(k2 + m2)ǔ1 + (−β + im Ωy)∂yǔ1

]
+ω

[(
−k2 − m2 + iβk

)
ǔ2 + ik β y ∂yǔ2 + ∂2

yǔ2

]
+

[
−iωk Ωy + mN2

]
∂yǔ3 = 0 ,

(1.24b)

−iω
[(

Ωy(−k2 − m2)− imβ − m2 Ωy
)
ǔ1 − im β y ∂yǔ1 − Ωy ∂2

yǔ1

]
+iωkm β y ǔ2 +

[(
ω2(k2 + m2)− iωkm Ωy + ω2 N2)ǔ3 − ω2 ∂2

yǔ3

]
= 0 , (1.24c)

where ǔ1, ǔ2 and ǔ3 are y-dependent. As a result, we have three equations and three

variables. We expect that the reduced equation for meridional velocity matches with

the result of Gerkema and Shrira (2005a). Then, the result contains Rossby waves,

internal gravity waves and related Kelvin waves and mixed Rossby-gravity waves.

They did not go further on their derivations as we did here because of the com-

plexity. The full derivation of the dispersion relation for the internal waves using

three-dimensional Boussinesq equation is still an open question.

1.2 Full Coriolis force

The simplest assumption with the Coriolis vector is called traditional approxima-

tion, which was defined by Eckart (1960). It is obtained by projections of the Earth’s

rotation vector to the local vertical. Then, the rotation of the Earth has non-zero ver-

tical component and the Coriolis force is constructed with it. This idea was first used
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by Laplace (Gerkema et al., 2008a).

When the axis of rotation is retained as it is in the actual form (without any pro-

jection to the local vertical), the rotation is expressed more realistic. For this case, the

corresponding force is called "full Coriolis force".

Figure 1.1 illustrates the components of the Coriolis vector on a tangent plane at

the latitude ϕ. On the mid-latitude, every component has non-zero values. However,

horizontal component is nearly parallel to the horizontal plane around the equator

and so Ωz is close to zero there. Then, traditional approximation, which keeps only

the vertical component of the Coriolis vector, looses the validity for rotating flows

near the equator where Ωz vanishes.

Ω

z

ϕ

y
ΩΩ

(A) at the mid-latitude

Ω

z
ϕ

y

Ω

Ω

(B) near the equator

FIGURE 1.1: Schematic representation of components of the Coriolis
vector on a tangent plane at the latitude ϕ.

Before showing components of the full Coriolis force, we define a vector R as the

vector potential of the Coriolis vector to be used on further derivations and so

∇× R =


−∂zRy + ∂yRz

∂zRx − ∂xRz

−∂yRx + ∂xRy

 = 2Ω . (1.25)

R can be chosen as

R =
1
2
Jx =

1
2


0 −Ωz Ωy

Ωz 0 −Ωx

−Ωy Ωx 0




x

y

z

 =
1
2


−Ωzy + Ωyz

Ωzx − Ωxz

−Ωyx + Ωxy

 . (1.26)
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The matrix J is skew-symmetric, i.e, JT = −J. Moreover,

J = ∇R −∇RT (1.27)

and, for every vector v,

Jv = Ω × v . (1.28)

In the following, we choose coordinates in which Ωx is zero. Then, the unit vector

in the direction of the axis of rotation is

Ω =


0

cos ϕ

sin ϕ

 , (1.29)

for a constant latitude ϕ and

J =


0 −Ωz Ωy

Ωz 0 0

−Ωy 0 0

 =


0 − sin ϕ cos ϕ

sin ϕ 0 0

− cos ϕ 0 0

 . (1.30)

Then, the full Coriolis force is

Ω × u = Ju =


−Ωzu2 + Ωyu3

Ωzu1

−Ωyu1

 . (1.31)

Terms with Ωy in (1.31) are not seen on the model derived by the traditional approx-

imation. Following parts give some details about effects of the Coriolis vector with

non-zero horizontal component.

1.2.1 Geostrophy

The simplest balance between Coriolis force and the pressure gradient is called as

geostrophic balance,

Ω × u = −∇p − ρk . (1.32)
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Obtained from the momentum equations in the leading order of a small parameter,

it provides a relationship which is called thermal wind relation. The solution of this

equation gives the geostrophic velocity. To obtain, the pressure term is eliminated

by taking the curl of (1.32). Then, the left hand side of it reads by the vector identity

∇× (Ω × u) = Ω(∇ · u)− (Ω ·∇)u + (u ·∇) Ω − u(∇ · Ω) . (1.33)

The first term is zero by the incompressibility feature of the fluid. The last term yields

zero for each region even for the equatorial model because the vertical component

of the Coriolis vector depends on y by the β-plane approximation. The result of the

remaining terms in (1.33) depends on the region.

For the mid-latitude, the problem is simpler because we take the Coriolis vector

as constant. Then, the reduced equation for the mid-latitude yields

(Ω ·∇)u =

−∇⊥ρ

0

 , (1.34)

where ∇⊥ = (−∂y, ∂x).

The vertical component of the Coriolis vector varies with y as given in (1.68) near

by the equator. Therefore, we have

− (Ω ·∇)u + (u ·∇) Ω = −∇× (ρk) . (1.35)

Although we have the same reduced equation horizontally, the situation is interest-

ing in this region. On the vertical component we have

− (Ω ·∇)u3 + u2 = 0 . (1.36)

This was shown by Sverdrup (1947). The integration of the vertical velocity with

zero flux boundary conditions along the z-axis provides the Ekman pumping.

We refer the equation (1.35) as a general thermal wind relation for incompress-

ible fluids. It suggests that the velocity field can be predicted as a constant of the

integration of an observed quantity like density along specific lines. These lines are
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called characteristics and the idea on how to work with them is given in the next

part.

1.2.2 Characteristics

In this section, we analyze (1.35) using the method of characteristics. Characteristics

are a bunch of lines on which we have constant fields like velocity. In our models,

they have a distinct character for each region.

We return our reduced problem which is a first order PDE (Partial Differential

Equation) given in (1.35). For the solution, we convert it to an appropriate ODE (Or-

dinary Differential Equation) using method of characteristics (Evans, 1998). Then,

we describe

x(s) =
(
x(s), y(s), z(s)

)
(1.37)

with the help of parameter s. We assume that u has a solution on D and so

p(s) := u(x(s)) (1.38)

is the value of u on the curve. Then, we write characteristic equations for (1.35)

ẋ(s) = Ω , (1.39a)

ṗ(s) = p(s) ·∇Ω −∇× (ρk) , (1.39b)

where the derivative is taken with respect to s,
(
˙ = d

ds

)
, only for the system in

(1.39). Therefore, (1.35) is reduced to an ODE system via (1.39) and so characteristics

provide a surface on which the solution is supposed to be. For the mid-latitude,

these curves are straight lines because the first term of (1.39b) is zero. On the other

hand, the situation is different around the equator as the vertical component of Ω

depends on y. The Figure 1.2 provides the schematic representation of these lines

for each region on the tangent plane.
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Ω
z = 0

z = −1 

z

y

ϕ

(A) at the mid-latitude

z = 0

z = -�

z

y

∞

(B) near the equator

FIGURE 1.2: Characteristics for each region on the tangent plane.
They are shown by dashed lines for the mid-latitude parallel to the
axis of rotation. Near the equator, they are curve and the axis of rota-

tion is tangent to them, inspired from Verdière and Schopp (1994).

Firstly, these lines intercept the vertical boundaries on the mid-latitude because

there are certain points at the top and the bottom. They are straight and parallel to

the axis of rotation on the local tangent plane. We use the arclenght parameter along

the characteristics on the derivations for the mid-latitude as a convenient choice.

In the equator, characteristics do not intercept the bottom boundary. This is un-

fortunate because it is necessary to have certain integral boundaries on the deriva-

tions. To deal with it, we use the both hemisphere of the Earth. This brings that we

have two boundary conditions again, but both of them are at the surface. Different

than the mid-latitude, these are curves, not straight lines. It means that the value

of the components are different for any two points on different latitudes. They vary

with the value of y because of the β−plane approximation. Equations (1.35) and

(1.34) points out this difference. For simplicity, we prefer to use y−coordinate for

the parameterization in this region. Otherwise, we have the determinant varying

with y in the mapping and this causes some complex terms in the integration.

1.3 Scale analysis for the mid-latitude

In this section, we show how to obtain the equations of motion for the mid-latitude

on the f -plane. The model is expected to show the large-scale dynamics. Then, non-

dimensionalization is done considering the semi-geostrophic scaling to reduce the

complex physical system to a simpler one. This scaling is defined with some certain
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parameters like the Rossby number and the Froude number. On the following parts,

these details are given for the mid-latitude model.

1.3.1 Non-dimensionalization

The main aim of the non-dimensionalization is to obtain the simplest equations of

motion with minimal set of parameters that characterize the system. For this, di-

mensional quantities are introduced by characteristic scales. For instance, we non-

dimensionalize with U, V, and W which are the characteristic zonal, meridional, and

vertical velocity scales, X, L and H which are the characteristic zonal, meridional,

and vertical length scales. T is the characteristic time scale, P is the characteristic

pressure scale, and Γ is the typical density perturbation scale so that

x = Xx̂ , y = Lŷ , z = Hẑ , t = Tt̂ , ρ = Γρ̂ ,

u1 = Uû1 , u2 = Vû2 , u3 = Wû3 , p = Pp̂ , (1.40)

where dimensionless quantities are shown by hat and capital letters represent the

characteristic scales for each variable.

The aspect ratio is defined as the ratio between horizontal and vertical length

scales

α =
H
L

, (1.41)

and the anisotropy parameter is

δ =
L
X

. (1.42)

In general, we write the Coriolis vector given in (1.3) with components 2Ω = (0, Ωy, Ωz).

Its non-dimensional form will be given separately for the mid-latitude and the equa-

tor later because it differs on f - and β-plane.

Afterwards, we ignore the (ˆ) sign for dimensionless variables and Boussinesq

equations are

U
T

∂tu1 +
UV

L
(u · ∇)u1 +

UW
H

u3 ∂zu1 − ΩzVu2 + ΩyWu3 = − P
Xρ0

∂x p , (1.43a)

V
T

∂tu2 +
V2

L
(u · ∇)u2 +

VW
H

u3 ∂zu2 + ΩzUu1 = − P
Lρ0

∂y p , (1.43b)



1.3. Scale analysis for the mid-latitude 19

W
T

∂tu3 +
VW

L
(u · ∇)u3 +

W2

H
u3 ∂zu3 − ΩyUu1 = − P

αLρ0
∂z p − gΓ

ρ0
ρ , (1.43c)

V
L
(∇ · u) +

W
H

∂zu3 = 0 , (1.43d)

Γ
T

∂tρ +
VΓ
L

(u · ∇)ρ +
WN2

0 ρ0

g
u3 ∂zρ = 0 , (1.43e)

where the typical buoyancy frequency is defined

N2
0 = − g

ρ0

[
∂ρ

∂z

]
, (1.44)

where [∂ρ/∂z] denotes the typical vertical density gradient. We note that the differ-

ence to (1.13) where the constant ∂ρ̄
∂z is defined into N2. Here, we keep the perturba-

tion part of the density on the general buoyancy definition into N0 for scaling. Then,

we prefer to make an assumption on the strength of the stratification later.

We obtain the scaling bound for the vertical velocity using density equation as

(Franzke et al., 2019),

W ≤ gΓ
ρ0

V
N2

0 L
=

gΓ
ρ0

L
V

α2 Fr2 , (1.45)

on which the density is taken as three-dimensional advected quantity depending on

the stratification profile by the Froude number, Fr, defined in (1.48). The other im-

portant relation is obtained by the horizontal momentum equation and hydrostatic

approximation via

Assumption F1. The vertical momentum equation is assumed nearly hydrostatic, i.e.,

ΩzLUρ0 ∼ P ∼ gΓH . (1.46)

1.3.2 Characteristic parameters

The fluid motion is characterized with two important features, rotation and stratifi-

cation. The smallness assumption on some dimensionless parameters related with

them gives the time separation between two different motions. Firstly, the rotation

is characterized by the Rossby number. It is the ratio between the frequency of the

flow to the non-zero component of the Coriolis vector,

Ro =
f f low

fCoriolis
=

U/L
f

=
U
f L

. (1.47)
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Ro ≪ 1 states the velocity of the fluid is smaller than the velocity due to the rotation

of the Earth, and that the rotation is strong. Therefore, the flow has a slow motion

in such a regime. Then, the smallness assumption on the Rossby number is more

suitable for large-scale motions on which the rotation is dominant. However, this

case is underestimated for low latitudes because the Coriolis vector is parallel to the

surface of the Earth there. This special case will be taken up later.

When the Rossby number is large, i.e, Ro ≈ 1 or Ro ≫ 1, the scales are not

easily separated. Then, fast and slow motions are coupled and so the emission of

inertia-gravity wave is allowed (Zeitlin, 2008).

The other important parameter is the Froude number which is the ratio between

the fluid velocity and the characteristic wave speed. It is mathematically given as:

Fr =
U
c

(1.48)

where c = c1 = N0 H
π is the first internal gravity wave speed for Boussinesq flows.

It identifies the stratification of the flow with buoyancy frequency given in (1.44).

When it is small, i.e, Fr ≪ 1 with positive buoyancy frequency, N0 > 0, the strat-

ification is strong. If ∂zρ < 0, then the flow is stably stratified. It implies that the

density decreases with the height. Otherwise, ∂zρ > 0, the density increases with

the height and the flow is unstably stratified (Majda, 2003). If Fr ≫ 1, the stratifica-

tion is weak.

With these two dimensionless parameters, one can nearly eliminate the fast mo-

tion from the slow motion which gives the dynamical core of the flow. Besides, the

model becomes simpler.

The regime of the fluid can be defined considering the relationship between Fr

and Ro. To understand it, we get help from another parameter called Burger number,

Bu =

(
Ld

L

)2

(1.49)

where Ld = c/ f is the Rossby deformation radius. This horizontal length scale is

frequently used in atmosphere and oceanic dynamics to indicate that the efecct of

the rotation is important as much as the buoyancy (Gill, 1982). This ratio can be
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written using the Froude number and the Rossby number (Franzke et al., 2019),

Bu =
Ro2

Fr2 . (1.50)

For example, when we assume Fr ∼ Ro, then, the resulting Burger number becomes

nearly unity Bu ∼ 1. That is known as quasi-geostrophic regime. In this regime, the

length scale is nearly equal to the deformation radius, L ∼ Ld.

Another important regime appears when Fr2 = Ro, and so Bu ∼ Ro. It is called

semi-geostrophic regime. Generally, it is used for specific regions like mid-latitude

where the non-zero vertical component of the Coriolis vector provides non-zero Ro.

This approximation works for larger scale regimes than quasi-geostrophic one be-

cause the length scale is larger than the deformation radius, L > Ld.

1.3.3 The equations of motions on the f -plane

We assume that components of the Coriolis vector are constant in the mid-latitude.

It is non-dimensionalized as

2Ω =


0

c

s

 , (1.51)

where c = cos ϕ and s = sin ϕ for a specified latitude ϕ. Then, we make following

assumptions:

Assumption F2. The horizontal flow is assumed isotropic,

U ∼ V . (1.52)

Assumption F3. The fluid parcel is advected on the horizontal time scale,

1
T

∼ U
L

. (1.53)

We apply the scaling parameters to the Boussinesq equations (1.43). Then, non-

dimensional equations of motion read

Ro
(
∂tu1 + (u · ∇)u1

)
+ Fr2u3 ∂zu1 − u2 + αc

Fr2

Ro
u3 = −∂x p , (1.54a)



22 Chapter 1. Model

Ro
(
∂tu2 + (u · ∇)u2

)
+ Fr2 u3 ∂zu2 + u1 = −∂y p , (1.54b)

α2 Fr2 (∂tu3 + (u · ∇)u3
)
+ α2 Fr4

Ro
u3 ∂zu3 − α

c
s

u1 = −∂z p − ρ , (1.54c)

∇ · u = 0 , (1.54d)

Dtρ = 0 . (1.54e)

Assumption F4. Under the assumption of semi-geostrophic scaling on the f -plane,

the relationship between characteristic parameters is set as

Ro ∼ Fr2 . (1.55)

This scaling provides strong non-linearity, i.e, three-dimensional advected fluid. The

non-linearity is weaker on the quasi-geostrophic models since the fluid is horizon-

tally advected.

Assumption F5. The fluid is assumed non-hydrostatic,

α = 1 . (1.56)

Assumption F6. Rossby number is the small parameter in the model to separate the

fast and slow motions,

ε = Ro =
U
sL

. (1.57)

Altogether, Boussinesq equations in the semi-geostrophic scaling on the f -plane

reads
ε Dtu + Ω × u = −∇p − ρk ,

∇ · u = 0 ,

Dtρ = 0 .

(1.58)

1.4 Scaling near the equator

The vertical component of the Coriolis vector becomes zero at the equator, and so

this does not allow to have a clear scale separation between the fast and the slow

motions as we have in the mid-latitude. This degeneracy indicates a new mathemat-

ical phenomena around this region.



1.4. Scaling near the equator 23

Yoshida (1959) introduced that equatorial region acts as a wave-guide. Later,

Matsuno (1966) showed that some of equatorial waves, which have low frequency

like Kelvin waves, are trapped in this region. Thus, the standard isotropic scaling

is not proper on this region. The domain needs to cover the circumference of the

Earth in the zonal direction as the dynamics suggests. Then, the anisotropy between

horizontal length scales on which the length scale in the zonal direction is taken very

long as required there.

Long-wave approximation was firstly defined by Pedlosky (1965). In that work,

this approximation was used for the mid-latitude. It was introduced for an equato-

rial oceanic model by Cane and Sarachik (1977) using anisotropy. By this approx-

imation, the geostrophic balance is obtained only in the meridional direction. In

addition, waves on this dynamics have low frequencies. Thus, it is known as low

frequency and meridional geostrophy too (Boyd, 2018). A model with this approx-

imation provides only Rossby wave and low frequency Kelvin waves around the

equator. It nearly does not contain any inertia-gravity wave and mixed-Rossby grav-

ity wave, which requires non-zero meridional velocity. This approximation with

the linear theory is often preferred to model El-Nino phenomena for the equatorial

ocean dynamics (Gill, 1982; Majda, 2003).

Long-wave scaling was used by Majda (2003) and Chan and Shepherd (2013) in

the concept of the equatorial balance. We state options on the long-wave scaling

considering differences on these reference works in following parts.

1.4.1 The equations of motion on the β-plane

In this part, we show the scaling for the equator in the long-wave scaling to filter out

the fast waves in the asymptotic limits. Whole derivations are done for the equatorial

β−plane.

We assume equatorial long-wave scaling where

δ =
L
X

≪ 1 . (1.59)
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Moreover, the vertical aspect ratio is also small, i.e.,

α =
H
L

≪ 1 . (1.60)

Then, the rescaled divergence condition reads

0 =
U
X

∂xu1 +
V
L

∂yu2 +
W
H

∂zu3 =
V
L

(
δU
V

∂xu1 + ∂yu2 +
W
αV

∂zu3

)
. (1.61)

Thus, to have a sensible leading-order balance, the meridional and vertical terms

must be in balance, i.e., W = αV. In principle, the leading-order balance could also

be between the zonal and the vertical contribution, with the meridional component

coming in at the lower order. However, this would require an extreme smallness

assumption on the meridional velocity. Alternatively, it might be between the first

and the second terms on (1.61). Then, the parameter

γ =
δU
V

(1.62)

may either be 1, which corresponds to the long-wave scaling of Majda (2003), or

small, e.g. γ = δ, which corresponds to the long-wave scaling of Chan and Shepherd

(2013). To cover both cases, we define the rescaled gradient operator

∇γ = (γ ∂x, ∂y, ∂z) . (1.63)

The Coriolis vector on the β-plane is

2Ω =


0

f0

βy

 , (1.64)

where f0 = 2|Ω| by (1.22). With these provisions, inserting u = Uû, x = X x̂, etc.,

into the Euler–Boussinesq equations (1.2) and dropping the “hats”, we obtain

U
T

∂tu1 +
UV

L
u ·∇γu1 − βLV y u2 + α f0 V u3 = −δ

P
Lρ0

∂x p , (1.65a)
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V
T

∂tu2 +
V2

L
u ·∇γu2 + βLU y u1 = − P

Lρ0
∂y p , (1.65b)

αV
T

∂tu3 +
αV2

L
u ·∇γu3 − f0 U u1 = − P

αLρ0
∂z p − gΓ

ρ0
ρ , (1.65c)

V
L
∇γ · u = 0 , (1.65d)

Γ
T

∂tρ +
VΓ
L

(γ u1 ∂xρ + u2 ∂yρ) +
αVN2

0 ρ0

g
u3 ∂zρ = 0 . (1.65e)

Here, N0 is the buoyancy frequency given in (1.44). We set

κ =
α f0

βL
. (1.66)

Then, we note that the rescaled Coriolis vector potential reads

R = βL2 (κ z − 1
2 y2) i , (1.67)

and correspondingly,

2Ω = βL


0

κ/α

y

 . (1.68)

We now make a few basic assumptions.

Assumption E1. Pressure gradient and “traditional” Coriolis forces balance to the

leading order in the zonal momentum equation (1.65a), i.e.,

βLV = δ
P

L ρ0
. (1.69)

Assumption E2. We assume a “meridionally advective scaling” where

1
T

=
V
L

. (1.70)

Assumption E3. We assume that the vertical momentum equation is hydrostatic and

so

βL2U ρ0 ∼ P ∼ gΓH . (1.71)
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Inserting Assumptions E1-E3 into the momentum equations, we obtain

γ

δβLT
(∂tu1 + u ·∇γu1)− y u2 + κ u3 = −∂x p , (1.72a)

δ

βLT
(∂tu2 + u ·∇γu2) + γ y u1 = −∂y p , (1.72b)

δ α2

βLT
(∂tu3 + u ·∇γw)− γ κ u1 = −∂z p − ρ . (1.72c)

The rescaled mass conservation equation reads

∂tρ + (γ u1 ∂x + u2 ∂y)ρ +
δ

βLT
1

Fr2 u3 ∂zρ = 0 , (1.72d)

where the Foude number is defined using the meridional velocity

Fr =
V

N0H
. (1.73)

Assumption E4. We assume

Fr2 =
δ

βLT
(1.74)

to have three-dimensional advective density in (1.72d). Basicaly, we use the circum-

ference of the Earth for the zonal length scale and we know the value of β by (1.23).

The zonal wind is taken 5m/s as observations suggest (Gill, 1982, (Fig 9.3)) for the

value of T. Then, the ratio roughly yields Fr ≈ 0.05. This implies that the fluid is

strongly stratified.

Alternatively, the factor in front of the vertical density advection might be as-

sumed small, and so

∂tρ + u · ∇γρ = 0 . (1.75)

With this horizontally advected fluid, we have again small Fr, and so the fluid is still

strongly stratified. In addition to this, when γ is taken small, and we have simpler

case

∂tρ + u2 ∂yρ = 0 , (1.76)

which gives one-dimensional transport equation.
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1.4.2 Cases on the equatorial scaling

Now to get a sensible leading-order balance for the meridional momentum equation

(1.72b), we have the following options.

Case 1. The meridional pressure gradient balances the Coriolis term, i.e. γ = 1, and

we allow propagation of zonal linear waves at leading order, i.e.,

1
δβLT

= 1 . (1.77)

Then, the momentum equations read

∂tu1 + u ·∇u1 − y u2 + κ u3 = −∂x p , (1.78a)

δ2 (∂tu2 + u ·∇u2) + y u1 = −∂y p , (1.78b)

α2 δ2 (∂tu3 + u ·∇u3)− κ u1 = −∂z p − ρ , (1.78c)

and

∂tρ + u · ∇ρ +
δ2

Fr2 u3 ∂zρ = 0 . (1.79)

Case 1 corresponds to the non-linear equatorial long-wave scaling used by Majda

(2003, Section 9.3), there for the shallow water equations. We refer a short analysis

for his model to Appendix A which shows the derivation of the kinematic balance

relation. Apparently, there is a problem on the solvability. Then, we expect to similar

issues for our Boussinesq model with the same scaling. Therefore, we skip this case

and leave it as an open question in the context of existence and the well-posedness

of the model with this scaling as Majda’s did.

Case 2. The meridional pressure gradient balances the Coriolis term, i.e. γ = 1, and

we allow the propagation of zonal linear waves at higher order, i.e.,

1
δβLT

= ε̂ ≪ 1 . (1.80)

In this case, we obtain

ε̂ (∂tu1 + u ·∇u1)− y u2 + κ u3 = −∂x p , (1.81a)

ε̂ δ2 (∂tu2 + u ·∇u2) + y u1 = −∂y p , (1.81b)
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ε̂ δ2 α2 (∂tu3 + u ·∇u3)− κ u1 = −∂z p − ρ , (1.81c)

and

∂tρ + u · ∇ρ + ε̂
δ2

Fr2 u3 ∂zρ = 0 . (1.82)

So this is more extreme scaling than Case 1 and should lead to simpler dynamics.

Therefore, we follow this option on the derivation of the equatorial balance model.

Alternatively, we have one more option which might be interesting for the the-

oretical perspective due to the necessity of Lagrange multiplier for the incompress-

ibility, (Majda, 2003).

Case 3. The meridional pressure gradient balances the inertial forces, i.e.

δ

βLT
= 1 . (1.83)

Then, to get a sensible leading-order balance in the zonal momentum equation (1.72a),

we require that γ = δ2 or even smaller. In this case, we obtain

γ

δ2 ∂tu1 + u ·∇γu1 − y u2 + κ u3 = −∂x p , (1.84a)

∂tu2 + u ·∇γu2 + γ y u1 = −∂y p , (1.84b)

α2 (∂tu3 + u ·∇γu3)− γ κ u1 = −∂z p − ρ , (1.84c)

and

∂tρ + u · ∇γρ +
1

Fr2 u3 ∂zρ = 0 . (1.85)

In this regime, the rotation is not the only dominant factor. Then, we do not pre-

fer to use it, but it might be an interesting application because the incompressibility

condition changes. It works on to the meridional-vertical velocity.

1.4.3 Discussion of alternatives

In this section, we collect comments on alternatives and on the rationales for not

choosing them.
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The alternative to the meridionally advective scaling, Assumption E2, would be

a “weakly nonlinear scaling” where

ε

T
=

V
L

, (1.86)

for a small number ε. This corresponds to the scaling used by Chan and Shepherd

(2013) with γ = δ. We observe that this scaling breaks the geometry, but it is pos-

sible to do formal variational asymptotics with weakly non-linearly scaled Lin con-

straints. Similarly, Case 3 can be tailored in this way.

Another alternative is that the zonal inertia term balances the Coriolis force, i.e.,

U
T

= βLV . (1.87)

In that case, the only reasonable leading order balance in the meridional momentum

equation is that between pressure gradient and Coriolis term; if it wasn’t, the leading

order horizontal dynamics would be fully pressure-less, which is unphysical. I.e., we

also impose

βLU =
P

Lρ0
. (1.88)

Keeping, once again, the “meridionally advective scaling” (1.70) and near-hydrostaticity

(1.46), the resulting momentum equations read

∂tu1 + u ·∇γu1 − y u2 + κ u3 = −γ ∂x p , (1.89a)

ε2

γ2 (∂tu2 + u ·∇γu2) + y u1 = −∂y p , (1.89b)

α2 ε2

γ2 (∂tu3 + u ·∇γu3)− κ u1 = −∂z p − ρ , (1.89c)

and

∂tρ + u · ∇γρ +
ε

γ

c2

V2
1

βLT
u3 ∂zρ = 0 . (1.90)

When γ = 1, we are back to Case 1, but here, γ may also be smaller, so it looks like

a proper generalization of Case 1. However, for γ ≪ 1, the leading-order dynamics

is Burgers with rotation in the zonal direction, which is likely unphysical. Also, a

variational “weak pressure” approximation breaks the geometry.
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Finally, for the sake of discussion, let us assume that the zonal leading-order

balance is between the traditional and the non-traditional Coriolis force, i.e.,

βL = α f0 . (1.91)

In the meriodional momentum equation, we still need to assume that (1.88) holds

true, for the same reason as in the previous case. Keeping, once again, the “merid-

ionally advective scaling” (1.70) and near-hydrostaticity (1.46), the resulting momen-

tum equations read

γ

ε

1
βLT

(∂tu1 + u ·∇γu1)− y u2 + u3 = −γ ∂x p , (1.92a)

ε

γ

1
βLT

(∂tu2 + u ·∇γu2) + y u1 = −∂y p , (1.92b)

ε

γ

α2

βLT
(∂tu3 + u ·∇γu3)− u1 = −∂z p − ρ , (1.92c)

and

∂tρ + u · ∇γρ +
ε

γ

c2

V2
1

βLT
u3 ∂zρ = 0 . (1.93)

Here, we have quite a bit freedom to play. For example, we might set γ = ε and

1
βLT

= ε , (1.94)

to obtain

ε (∂tu1 + u ·∇γu1)− y u2 + u3 = −ε ∂x p , (1.95a)

ε (∂tu2 + u ·∇γu2) + y u1 = −∂y p , (1.95b)

ε α2 (∂tu3 + u ·∇γu3)− u1 = −∂z p − ρ , (1.95c)

and

∂tρ + u · ∇γρ + ε
c2

V2 u3 ∂zρ = 0 . (1.96)
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Chapter 2

Balance models via the Hamilton principle

In the fluid dynamics context, Hamiltonian balance models have the advantage of

the absence of the dissipation and the conservation of circulation (or equivalently

conservation of potential vorticity). Then, we show how a balance model is con-

structed via the Hamilton’s principle in this chapter. This construction not only

brings the equations of motion, but also maintains analogs of the conservation laws.

2.1 Variational principle

In this part, it is shown how to obtain the equations of fluid motion by a variational

principle. To do this, we explain Lagrangian coordinates first because the variational

principle is most naturally formulated in this coordinate system. The main differ-

ence from the Eulerian coordinates is that Lagrangian coordinates refer to a fixed

fluid parcel, while Eulerian coordinates refer to a fixed observer. In the following,

we write x to denote the Eulerian or fixed observer position and u = u(x, t) to de-

note the corresponding velocity. Similarly, we write a to denote the Lagrangian label

of the parcel initially at location a. The time dependent map from the label space to

positions is called the flow map η. Then, x = η(a, t) is the position of the parcel

originating at a after time t. At time t = 0, η is the identity map, i.e., a = η(a, 0).

Figure 2.1 provides the mapping from the label space to the inertial space.
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FIGURE 2.1: The mapping from the label space to the inertial space,
inspired from Pozrikidis (2011).

We assume that η is differentiable with respect to label a and time t. Then, the

Lagrangian velocity, the velocity of the parcel labeled a, is related to the Eulerian

velocity field as

∂tη(a, t) = u(η(a, t), t) . (2.1)

It can be abbreviated using the symbol "◦" which denotes the composition of maps,

η̇ = u ◦ η . (2.2)

The variations for the flow map, which are in the Lagrangian setting, can be associ-

ated with an Eulerian vector field via

δη = v ◦ η , (2.3)

where the variation vector field v associated with η is divergence free because η must

be volume preserving.

2.1.1 Lin Constraints

Generally speaking, it is easier to work on Eulerian coordinates. Therefore, we need

to find an expression for the variations of u in terms of variations of η. It allows to

switch between Eulerian and Lagrangian framework in the variational principle. It

is obtained by cross differentiation of (2.2) and (2.3). Firstly, the variation is applied
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to the abstract velocity given in (2.2),

δη̇ = δ(u ◦ η)

= δu ◦ η+ (∇u) ◦ η δη

= δu ◦ η+ (∇u) ◦ η v ◦ η

=
(
δu + v ·∇u

)
◦ η . (2.4)

Then, the time derivative of (2.3) is taken

δη̇ = ∂t(v ◦ η)

= ∂tv ◦ η+ (∇v) ◦ η η̇

= v̇ ◦ η+ (∇v) ◦ η u ◦ η

=
(
v̇ + u ·∇v

)
◦ η . (2.5)

We combine these two equations into one, and we have

δu = v̇ + u ·∇v − v ·∇u , (2.6)

where v is the variation vector field. The advection of the density equation (1.2c) can

be written in an equivalent form

ρ ◦ η = ρin , (2.7)

where ρin is the initial density distribution . Then, we have

δ(ρ ◦ η) = δρ ◦ η+ (∇ρ) ◦ η δρ

= δρ ◦ η+ (∇ρ) ◦ η v ◦ η

= (δρ + v ·∇ρ) ◦ η , (2.8)

and so

δρ + v ·∇ρ = 0 , (2.9)
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a conservation law for the density. (2.6) and (2.9) are known as "Lin constraints"

which were firstly shown by Bretherton (1970).

2.1.2 The equations of motion

The Lagrangian for the rotating Boussinesq equations is given by Franzke et al.

(2019)

L(η, η̇; ρin) =
∫
D

R ◦ η · η̇+
1
2
|η̇|2− g

ρ0
ρinη3 da

=
∫
D

R ◦ η · (u ◦ η) +
1
2
|u ◦ η||u ◦ η|− g

ρ0
(ρ ◦ η)(z ◦ η) da

=
∫
D

(
R · u +

1
2
|u|·|u|− g

ρ0
ρz
)
◦ η da

=
∫
D

(
R · u +

1
2
|u|2− g

ρ0
ρz
)

dx ≡ l(u, ρ) , (2.10)

where the vector potential of the Coriolis vector R is defined in (1.26). The La-

grangian is written here in the dimensional form. It is given in the Lagrangian per-

spective first. Then, the "reduced Lagrangian" l(u, ρ), the equivalent form from the

Eulerian perspective, is obtained via (2.2), the change of the variables formula, and

(2.7). We note that the Lagrangian includes the rotational contribution here, and so

it is not only the difference between kinetic and potential energies.

The action S is defined as the integral with fixed t1 and t2 of the Lagrangian,

S =
∫ t2

t1

L(η, η̇, t) dt . (2.11)

Critical values of (2.11) are given by

δS = 0 . (2.12)

It means that the action is stationary. This is known as Hamiltonian’s principle. We

insert the Lagrangian defined in (2.10) into the action S. Then, we take the variation

as follows

δS =
∫ t2

t1

∫
D

R ◦ η · δη̇+∇R ◦ η δη · η̇+ η̇ · δη̇− g
ρ0

δ(ρinη3) da dt



2.2. Conservation Laws 35

= −
∫ t2

t1

∫
D

(
−∇R ◦ η η̇ · δη+ δη ·∇RT ◦ η · η̇+ η̈ · δη+∇u ◦ η η̇ · δη

+
g
ρ0

ρ ◦ η δη3

)
da dt

= −
∫ t2

t1

∫
D

((
∇RT −∇R

)
u · v + ∂tu · v +∇uu · v +

g
ρ0

ρ k · v
)
◦ η da dt

= −
∫ t2

t1

∫
D

(
∂tu + u ·∇u +

(
∇× R)× u +

g
ρ0

ρ k
)
· v dx dt . (2.13)

On this derivation, integration by parts is applied on the second and third lines.

Terms in the parentheses on the last line equal to the gradient due to Hodge decom-

position, i.e,

∂tu + u ·∇u +
(
∇× R)× u +

g
ρ0

ρ k = ∇ϕ (2.14)

with the potential

ϕ = − p
ρ0

− 1
2
|u|2 , (2.15)

where p denotes the pressure and the vector identity

(∇× u)× u = u ·∇u − 1
2
∇|u|2 (2.16)

is used. Therefore, momentum equations are recovered and we have

∂tu + u ·∇u +
(
∇× R)× u = − 1

ρ0
∇p − g

ρ0
ρk . (2.17)

They are now called Euler-Poincaré equations via Lagrangian l (Holm, Marsden,

and Ratiu, 1998). The corresponding theorem is given in Theorem 3.2.1 using the

variational principle on the action S, and it states the equivalence between the full

and the reduced variational principle.

2.2 Conservation Laws

Working with the variational principle brings the conserved quantites by the sym-

metry property. Noether has stated a general theorem that every (Lie) symmetry

of the Lagrangian in the action gives rise to a conservation law (Noether, 1918;

Kosmann-Schwarzbach, 2011). In this section, we have a brief look on the conserved
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quantites in our particular setting.

First of all, the model obtained via Lagrangian is invariant under time transla-

tion. The corresponding Hamiltonian for Boussinesq equations is

H =
∫
D

δl
δu

· u dx − l(u, ρ)

=
∫
D

1
2
|u|2 + g

ρ0
ρ z dx , (2.18)

where l is given on the last line of (2.10). By chain rule, we define δ f (t) = ḟ (t) δt

for an arbitrary time dependent function f . We take the variation of the Lagrangian

using (2.18)

δS =
∫ t2

t1

d
dt

(∫
D

δl
δu

· u dx − H
)

δt dt

=
∫ t2

t1

∫
D

(
d(R + u)

dt
· u + (R + u) · du

dt

)
dx δt dt −

∫ t2

t1

dH
dt

δt dt

= −
∫ t2

t1

dH
dt

δt dt . (2.19)

We apply the integration by parts in time to the first integral in the second line and

it vanishes. Therefore, we have only variation of the Hamiltonian. It implies

dH
dt

= 0 , (2.20)

and so the energy is conserved as a result of the Hamilton’s principle in the case

δS = 0.

Next, we work on the particle relabeling symmetry because it provides the po-

tential vorticity as a conserved quantity. In this case, the Lagrangian is invariant

to translation in compositions of the flow map with arbitrary volume and domain

preserving maps. Geometrically, Euler-Poincaré equation reads

(∂t + Lu)m +
δl
δρ

dρ = dϕ , (2.21)
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where d represents the exterior derivative and Lu is the Lie derivative in the direc-

tion of u. First, we write the exterior derivative of (2.21)

(∂t + Lu)dm = d
(
− δl

δρ dρ + dϕ
)
= −dρ ∧ dz . (2.22)

Similarly, the density satisfies

(∂t + Lu) ρ = 0 , (2.23)

and so the exterior derivative of it

(∂t + Lu)dρ = 0 . (2.24)

Then, the exterior product of (2.22) and (2.24) is by product rule for Lie derivatives

(∂t + Lu)dm ∧ dρ = 0 , (2.25)

or in the vector calculus notation

∂tq + u ·∇q = 0 . (2.26)

Here q is the conserved quantity on fluid particles and it is called potential vorticity

i.e,

q = (∇× m) ·∇ρ . (2.27)

Invariance of the Lagrangian under particle relabeling provides the potential vortic-

ity as a conserved quantity. It is known as Ertel’s theorem, too (Ertel, 1942). Here, we

take the advantage of the abstract notation as having brief and concise derivation.

Alternatively, these derivations can be performed directly via the action principle as

we do it for the energy conservation.

For details of the conservation laws, we refer to Ripa (1981), Salmon (1982; 1983),

Holm (2011).
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2.3 Hamilton’s principle for nearly geostrophic fluids

Hamilton’s principle is used to derive a balance model for many years and Salmon

(1983) is the pioneer in this field. He showed a new approach for nearly geostrophic

flow in a layer of shallow water. He applied to all approximations to the Lagrangian

of the model, and then he obtained the equations of motion using Hamilton’s prin-

ciple. His major reason for choosing this method is to have the symmetry property

of the Hamiltonian systems. With this property, conservation laws like energy and

potential vorticity are preserved automatically.

Salmon (1985) applied his method to a semi-geostrophic scaled model. In this

model, variation in the vertical component of the Coriolis vector is allowed. He con-

structed equations in two steps. First, he extended the Lagrangian which includes

the rotational energy of the fluid in the leading of small Rossby number. In the

first order, there is no kinetic energy contribution as a result of the extension. Then,

he replaced the kinetic energy contribution by the one from the geostrophic veloc-

ity in the next order. In this model, the geostrophic velocity is a part of the total

velocity and the rest is called ageostrophic velocity. Thus, one can think that the

geostrophic velocity provides the slow motion because it is eliminated as its local

rate of change is zero. Then, inertia-gravity waves are directly eliminated from the

dynamics. The new Lagrangian provides new equations set via the Hamilton’s prin-

ciple. This new model is called L1 model. By doing this, he showed that the model

for nearly geostrophic flows on which the horizontal length scale is assumed larger

than the deformation of the Rossby radius. This makes the model is appropriate

for simple numerical models of ocean thermocline. It includes the relative vorticity

effect on the large-scale flow.

Second, he imposed the transformation to L1 to make the Hamiltonian structure

canonical. However, it makes the model dynamically ill-posed, even transformation

makes the model simpler. L1 model still obeys conservation laws because the scale

analysis is directly applied to Lagrangian. Then, the transformation coordinate is

determined by the direct substitution to L1. In the model, the geostrophic velocity is

replaced by the real velocity.

He applied the Hamilton’s method to the stratified fluid using f -plane primitive
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equations in semi-geostrophic scale in the assumption of small Rossby number. He

named it as LSGE model (Salmon, 1996). On the derivations, the velocity field is

decomposed into mean and mean-free parts along the vertical axis and the elliptic

equation is written for the mean-free part. Again, he applied the transformation to

make the model constrained by the geostrophic velocity simpler. However, higher-

order terms are dropped by doing this even he has the desired L1 term. He claimed

that the resulting model does not include any fast motion. In addition to this ar-

gument, he mentioned that 2D elliptic equation is enough in contrast to quasi- and

semi-geostrophic approximations on which it is necessary 3D elliptic equation.

Oliver (2006) revisited and generalized Salmon’s method. In contrast to Salmon,

his derivations start with an arbitrary change of coordinate for variables. Then, he

expanded the Lagrangian in powers of the small number. At the end, the Lagrangian

truncates at the desired order, and so the system is constrained to a sub-manifold

as a Dirac constraint. Then, the balance in the leading order in a small number

approximation like small Rossby number is obtained. The degenerate Lagrangian

brings the balance relation for semi-geostrophic models.

To sum up, Salmon puts the constraint to the model in advance on which the

balance model is obtained after the transformation. On the other hand, Oliver (2006)

made the transformation before constraining in contrast to Salmon. Then, he sug-

gests to look for a degeneracy on the Lagrangian which brings a constraint automat-

ically. By doing this, higher order models which are not available Salmon’s method

become possible to obtain. Besides, his approach allows us to keep some important

mathematical features such as regularity of the potential vorticity inversion. It is also

possible to obtain a balance model for different scales, i.e. semi-geostrophic, quasi-

geostrophic and LSGE with his generalization. In the next part, we explain how to

set the degeneracy condition with Oliver (2006)’s approach.
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2.3.1 Transformation on L1 model

In this part, we explain how to construct a transformation that creates a degeneracy

on the truncated Lagrangian to have a balance relation. First, we define a near-

identity change of coordinates for the flow map and the density as

ηε = η+ ε η′ +O(ε2) , (2.28a)

ρε = ρ + ε ρ′ +O(ε2) , (2.28b)

for some small number ε. Next, we insert them to the Lagrangian of Boussinesq

equations in the non-dimensional form. Here, it is written for a general model. Then,

variables might be different for the scaled region. For instance, the velocity field

is taken as a full velocity for the mid-latitude scaling, but it keeps only the zonal

velocity contribution as u = (u1, 0, 0) for the derivations around the equator. Thus,

the following derivations are taken up in Chapter 3 and 4 separately in detail. The

expansion of the non-dimensionalized Lagrangian reads

Lε =
∫
D

R ◦ ηε · η̇ε +
ε

2
|η̇ε|

2 da −
∫
D

ρε z dx

=
∫
D
(R ◦ η+ ε (∇R) ◦ η η′) · (η̇+ ε η̇′) +

ε

2
|η̇+ ε η̇′|2 da

−
∫
D
(ρ + ε ρ′) z dx +O(ε2) . (2.29)

Here, we are interested in (2.29) up to the first order. Then, we insert Lin constraint

given in (2.6) to obtain the equivalent Eulerian form,

Lε =
∫
D

R ◦ η · η̇ da −
∫
D

ρ z dx

+ ε
∫
D
(∇R) ◦ η η′ · η̇+ R ◦ ηη̇′ +

1
2
|η̇|2 da + ε

∫
D
∇ · (ρv) z dx

=
∫
D

R ◦ η · η̇ da −
∫
D

ρ z dx

+ ε
∫
D
(∇R − (∇R)T) ◦ η η′ · η̇+

1
2
|η̇|2 da − ε

∫
D

ρ v ·∇z dx

=
∫
D

u · Jx − ρ z dx + ε
∫
D

u · Jv +
1
2
|u|2 − ρ k · v dx

= L0 + ε L1 , (2.30)
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where

L0 =
∫
D

u · Jx − ρ z dx , (2.31a)

L1 =
∫
D

u · Jv +
1
2
|u|2 − ρ k · v dx . (2.31b)

Before going further, we split the velocity field

u = ū + û , (2.32)

where ū is the mean velocity along the characteristics. The reminder, the perturba-

tion from the mean velocity, is denoted û.

The degeneracy condition is imposed via the vector v which corresponds to the

change of coordinates. Thus, it must be chosen in the form which makes the La-

grangian of order ε affine in the mean-free velocity field û. Here, the matrix J is

not invertible. Then, we cannot write directly the approximate form of the vector v.

Some more assumptions need to be done. For the f -plane model, we use the pro-

jection matrix P and the corresponding kinematic relation is derived in Chapter 3.

On the β-plane model, we have simpler case because of the scaling but nonconstant

Coriolis vector causes complexity on the derivation of the model. Details are given

in Chapter 4.

To illustrate the procedure, we consider a hydrostatic fluid and we take Ω =

(0, 0, 1). This corresponds to the primitive equations setting Oliver and Vasylkevych

(2016). Then, the Lagrangian is

L =
∫
D

u · R − ρ z dx + ε
∫
D

u · v⊥ +
1
2
|u|2 − ρ k · v dx . (2.33)

We set the transformation vector as following

v =
1
2

 û⊥

∇⊥ · Û

− λ

 u⊥
g

∇⊥ · Ug

 , (2.34)
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where the vertical components are chosen such that both terms on the right-hand

side of (2.34) we namely divergence free,

Û =
∫ z

−1
û dz′ , and Ug =

∫ z

−1
ug dz′ . (2.35)

After inserting (2.34) into (2.33) of order ε, we have

L1 =
∫
D

λ û · ug +
1
2
|ū|2 − ρ∇⊥ ·

(
1
2

Û − λUg

)
dx

=
∫
D

ν û · ug +
1
2
|ū|2 − λ |ug|2 dx , (2.36)

where ν = 1
2 + λ. On the first line, integration by parts is applied to the last term

and the thermal wind relation is taken as ∂zug = −∇⊥ρ. We take the variation of

(2.36) to obtain the equations of motion via Theorem 3.2.1. We have

u⊥

ρ

+ ε

∂t p + u⊥ζ + u3 ∂z p

−u · ∂z p

− ε∇ρ∇⊥ · B = ∇ϕ , (2.37)

where B = νÛ − 2λUg, the potential ϕ is

ϕ = −p − ρ z − 1
2
|u|2 , (2.38)

and ζ = ∇⊥ū + ν ∆θ with

θ = −
∫ 0

−1
z ρ dz′ −

∫ z

−1
ρ dz′ . (2.39)

We take the curl of (2.37) to eliminate the potential term. Its horizontal component

is

−(1 + ε ζ) ∂2
z B + εν ∂zρ ∆B − 2εν∇ρ∇∂zB

= (ν − 2λ − 2ελζ − 2ενλ∆θ)∇⊥ρ + εν2(∇ū + (∇ū)⊥
)
∇ρ + 4ενλ∇ug∇ρ .

(2.40)
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Equation (2.40) provides a relationship between the velocity field and the density.

The average of the vertical component of the curl of (2.37) is

∂tω + ū · ∇ω = ∇ρ · ∇⊥∇⊥ · B +∇ · (∇ρ∇ · B − ν û∆θ) , (2.41)

where ω = ∇⊥ · ū. The overline represents the average along the characteristics. At

the end, the resulting balance model includes a kinematic relationship (2.40) and the

evolution equation for the vorticity (2.41).

In our derivations, we use particularly L1 dynamics and we follow the same

strategy to that Oliver and Vasylkevych (2016). In their approach, the velocity field

is determined by up to a constant of integration, while Oliver (2006) determined

the velocity field completely by geostrophic balance. We do the same without hy-

drostatic approximation. Our derivations are constructed on the separation of the

velocity field, namely mean and mean-free velocity. The mean field is defined us-

ing the axis of rotation on which the horizontal component of the Coriolis vector

is not ignored. The key point is that the transformation is imposed by considering

the mean-free part of the velocity field in the Lagrangian because it causes the de-

generacy. We fix it via a transformation vector. Resulting models have two main

components. One of them is a transport equation for the prognostic variable which

provides the slow dynamics of the system. The other component is the kinematic re-

lationship which corresponds to balance relation. The velocity field can be obtained

via them. The resulting model for the mid-latitude is the most generalized model

in semi-geostrophic scaling. The other model is the promising work to provide a

equatorial balance model.

In this chapter, we give a general overview on how to use Hamilton’s princi-

ple on rotating flows. Following two chapters derive the balance model using the

Hamilton’s principle for L1 model on f - and β-plane for two different regions, mid-

latitude and equator.
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Chapter 3

Variational balance models for the

three-dimensional Euler-Boussinesq

equations with full Coriolis force

Reproduced from [Özden, G., & Oliver, M. (2021, Jul). Variational balance models for

the three-dimensional Euler–boussinesq equations with full coriolis force. Physics of

Fluids, 33(7), 076606.], with the permission of AIP Publishing.
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Variational balance models for the three-dimensional Euler-Boussinesq

equations with full Coriolis force

Abstract

We derive a semi-geostrophic variational balance model for the three-dimensional

Euler–Boussinesq equations on the non-traditional f -plane under the rigid lid ap-

proximation. The model is obtained by a small Rossby number expansion in the

Hamilton principle, with no other approximations made. We allow for a fully non-

hydrostatic flow and do not neglect the horizontal components of the Coriolis pa-

rameter, that is, we do not make the so-called “traditional approximation”. The

resulting balance models have the same structure as the “L1 balance model” for the

primitive equations: a kinematic balance relation, the prognostic equation for the

three-dimensional tracer field, and an additional prognostic equation for a scalar

field over the two-dimensional horizontal domain which is linked to the undeter-

mined constant of integration in the thermal wind relation. The balance relation is

elliptic under the assumption of stable stratification and sufficiently small fluctua-

tions in all prognostic fields.

Keywords

Boussinesq equation, full Coriolis force, variational asymptotics, balance models

3.1 Introduction

We describe the derivation of a semi-geostrophic variational balance model for the

three-dimensional Euler–Boussinesq equations on the non-traditional f -plane under

the rigid lid approximation. In non-dimensional variables, the Euler–Boussinesq

system takes the form

ε (∂tu + u ·∇u) + Ω × u = −∇p − ρ k , (3.1a)

∇ · u = 0 , (3.1b)

∂tρ + u ·∇ρ = 0 . (3.1c)
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FIGURE 3.1: Geometry of the f -plane approximation at latitude ϕ
with the full Coriolis vector. Here, x, y, and z are directed toward
the east, the north, and upward, respectively. The dashed lines paral-
lel to the axis of rotation in the y-z plane represent the characteristics

of the thermal wind relation.

where ε = U/( f L) is the Rossby number (here, U denotes a typical horizontal veloc-

ity scale, L a typical horizontal length scale, and f the Coriolis frequency in physical

units), assumed small, u is the three-dimensional velocity field,

Ω =


0

cos ϕ

sin ϕ

 ≡


0

c

s

 (3.2)

the full Coriolis vector at constant latitude ϕ which, without loss of generality, is

assumed to lie in the y-z plane as shown in Figure 3.1, p is the pressure, ρ the density,

and k the unit vector in the vertical. See, e.g., Majda, 2003 or Vallis, 2017 for details

on the Euler–Boussinesq equations and Franzke et al., 2019 for an explicit exposition

of the semi-geostrophic scaling limit.

For simplicity, we assume periodic boundary conditions in the horizontal and

rigid lid boundary conditions in the vertical on a layer of fluid with constant depth,

D = T2 × [−1, 0] , (3.3)

so that

k · u = 0 at z = −1, 0 . (3.4)
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The semi-geostrophic scaling used in (3.1) corresponds to a regime of strong ro-

tation and weaker stratification, expressed by a Burger number Bu = ε (or, equiva-

lently, ε = Fr2, where Fr denotes the Froude number). In the more widely studied

quasi-geostrophic regime, rotation and stratification are equally important so that

the Burger number is O(1). The quasi-geostrophic approximation must be made in

conjunction with the assumption that the density is a small perturbation of a con-

stant, stably stratified background density. The quasi-geostrophic limit as it is found

in textbooks e.g. Pedlosky, 1987; Vallis, 2017 is commonly studied under the addi-

tional assumption of the hydrostatic and traditional approximations and is widely

used for proof-of-concept studies. However, Embid and Majda, 1998 have shown

that it is possible to derive quasi-geostrophic limit equations without hydrostatic-

ity and with the full Coriolis vector; this limit has a rigorous justification within

the framework of averaging over fast scales developed in Embid and Majda, 1996.

Julien et al., 2006 systematically explore generalized quasi-geostrophic models by

allowing, in contrast to the earlier work of Embid and Majda, 1998, different do-

main aspect ratios and different tilting regimes of the axis of rotation; see Lucas,

McWilliams, and Rousseau, 2017 for recent rigorous analysis and Nieves et al., 2016

for a numerical study. We also refer the reader to Babin, Mahalov, and Nicolaenko,

2002 for a detailed discussion of the different scaling regimes for rotating stratified

flow and for a discussion of resonances when averaging over fast waves. A more

expository survey can be found in Franzke et al., 2019.

In our setting, there is no need to split off a small perturbation density from a

stably stratified background profile a priori. However, we shall see that this condition

does not disappear altogether but comes back in slightly weaker form as a solvability

condition for the balance relation. By keeping the density as a Lagrangian tracer, it is

possible to retain the variational formulation of the equation of motion throughout

the limit.

As in Embid and Majda, 1998, Julien et al., 2006 and Lucas, McWilliams, and

Rousseau, 2017, we use the full Coriolis vector, in contrast to the more common “tra-

ditional approximation” where only the vertical component of the Coriolis vector

is retained—a consistency requirement if the hydrostatic approximation is made cf.

White, 2002. Vice versa, when the aspect ratio, the ratio of typical horizontal and
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typical vertical scales is of order one so that the model is fully non-hydrostatic, as is

assumed here, both horizontal and vertical components of the Coriolis vector con-

tribute to the leading order on the mid-latitude f -plane. Whitehead and Wingate,

2014 perform a more idealized numerical study for the non-hydrostatic Boussinesq

equations with only traditional Coriolis forces (a “polar f -plane”) in three differ-

ent limits: the quasi-geostrophic regime, the strongly stratified regime where the

Rossby number remains O(1) while the Froude number goes to zero (both limits

as considered by Embid and Majda, 1998) as well as the case of strong rotation

and weak stratification where the Froude number remains O(1) while the Rossby

number goes to zero. Whitehead, Haut, and Wingate, 2018 also consider interme-

diate regimes between quasi-geostrophy and the weak stratification limit, such as

the semi-geostrophic limit considered here, within the theoretical framework of Em-

bid and Majda, 1996. More recent related theoretical results are due to Ju and Mu,

2019. Wetzel et al., 2019 perform a numerical study of balance for a moist atmo-

sphere with phase changes, and Kafiabad and Bartello, 2018; Kafiabad and Bartello,

2017; Kafiabad and Bartello, 2016 and Kafiabad, Vanneste, and Young, 2021 study

the exchange of energy between balanced and unbalanced motion.

Our derivation is based on variational asymptotics. Approximations to Hamil-

ton’s variational principle for the equations of rotating fluid flow were pioneered

by Salmon, 1983; Salmon, 1985 in the context of the shallow water equations and

later, in Salmon, 1996, for the primitive equations of the ocean. The basic idea is to

consider the “extended Hamilton principle” or “phase space variational principle”

and use the leading order balance relation (geostrophic balance for the shallow wa-

ter equations or the thermal wind relation for the primitive equations) to constrain

the momentum variables. The stationary points of the constrained action with re-

spect to variations of the position variables give a balance relation that includes the

next-order correction to the leading order constraint. In principle, this method can

be iterated to obtain higher-order balance relations. For example, Allen, Holm, and

Newberger (2002) derive second order models and show that the so-called L1 and

L2 models are numerically well behaved.

A second idea, also proposed in Salmon, 1985, is the use of a near-identity coor-

dinate transformation to bring the resulting variational principle or the equations of
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motion into a more convenient form. This transformation may be applied perturba-

tively, so that the resulting models coincide only up to terms of a certain order. From

an analytic perspective, higher-order terms may matter and it turns out that a trans-

formation to a coordinate system in which the Hamilton equations of motion take

canonical form, the original motivation behind this approach, leads to ill-posedness

of the full system of prognostic equations.

An even more general framework is obtained by reversing the steps “constrain”

and “transform”. Oliver (2006) noted that is possible to assume an entirely gen-

eral near-identity change of coordinates and expand the transformed Lagrangian in

powers of the small parameter. Whenever the transformation is chosen such that

the Lagrangian is degenerate to the desired order, the variational principle implies

a phase space constraint. This approach gives rise to a greater variety of candidate

models that are not accessible via Salmon’s approach. In particular, it allows us to

retain some important mathematical features such as regularity of potential vorticity

inversion. In the context of the shallow water equations on the f -plane, it turns out

that the L1 model first proposed by Salmon is already optimal among a larger fam-

ily of models (Dritschel, Gottwald, and Oliver, 2017). In other configurations, such

as when the Coriolis parameter is spatially varying (Oliver and Vasylkevych, 2013),

or in the fully three dimensional situation considered here, the additional flexibility

that comes from putting the change of coordinates first is necessary.

While our scaling is consistent with the geostrophic momentum approximation

(Eliassen, 1948), the derivation and the resulting equations are different. Hoskins,

1975 has shown that the geostrophic momentum approximation can be formulated

as potential vorticity advection in transformed coordinates, known as the semi-

geostrophic equations. His transformation has subsequently been interpreted as a

Legendre transformation, providing a sense of generalized solutions via the theory

of optimal transport (Cullen and Purser, 1984; Benamou and Brenier, 1998; Cullen,

2006; Colombo, 2017; Roulstone and Sewell, 1997). On the other hand, L1-type mod-

els, at least in the shallow water context, have strong solutions in a classical sense

(Çalık, Oliver, and Vasylkevych, 2013). Semi-geostrophic theory can be seen as a

particular choice of truncation and transformation in the framework of variational
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asymptotics (Oliver, 2014); for a different view on generalized semigeostrophic the-

ory, see McIntyre and Roulstone, 2002.

In this work, we show that variational asymptotics in the semi-geostrophic regime

can be done directly for the three-dimensional Euler–Boussinesq system with full

Coriolis force without any preparatory approximations. Our motivation derives,

first, from the role of the Boussinesq equation as the common parent model of nearly

all of geophysical fluid dynamics. Second, we would like to see how “non-traditional”

Coriolis effects, associated with the vertical component of the Coriolis force and hor-

izontal Coriolis forces coming from the vertical velocity, enter the balance dynamics.

Non-traditional effects are significant in a variety of circumstances (Gerkema and

Shrira, 2005a; Gerkema and Shrira, 2005c; Gerkema et al., 2008b; Brummell, Hurl-

burt, and Toomre, 1996; Juárez, Fisher, and Orton, 2002; Hayashi and Itoh, 2012) and

are also studied in the context of other reduced models such as layers of shallow wa-

ter (Stewart and Dellar, 2010; Stewart and Dellar, 2012) and models on the β-plane

(Dellar, 2011).

Our approach is similar, in principle, to the primitive equation case (Oliver and

Vasylkevych, 2016), and we find that the resulting balance models have the same

structure: a kinematic balance relation which is elliptic under suitable assumptions,

the prognostic equation for the three-dimensional tracer field, and an additional

prognostic equation for a scalar field over the two-dimensional horizontal domain

which is linked to the undetermined constant of integration in the thermal wind re-

lation. This field, in the present setting, takes the form of a skewed relative vorticity

averaged along the axis of rotation.

On the technical level, the computations are considerably more difficult than for

the primitive equation. Some expressions, such as the thermal wind relation, take

a natural form in an oblique coordinate system where the axis of rotation takes the

role of the “vertical”. Other expressions, most notably the top and bottom bound-

ary conditions and the gravitational force, are most easily described in the usual

Cartesian coordinates. This incompatibility requires a detailed study of averaging

and decomposition of vector fields in oblique coordinates, and of the translations

between oblique and Cartesian coordinates.
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The remainder of the paper is organized as follows. Section 3.2 recalls the vari-

ational derivation for the Euler–Boussinesq equations in the language of the Euler–

Poincaré variational principle. Section 3.3 explains the general setting for variational

asymptotics in this framework. In Section 3.4, we set up an oblique coordinate sys-

tem whose vertical direction is aligned with the axis of rotation and introduce the

notion of averaging along this axis. Section 3.5 discusses the leading order balance,

the thermal wind relation, on the mid-latitude f -plane with full Coriolis force. In

Section 3.6, we derive the first order balance model Lagrangian. To ensure that the

Lagrangian is maximally degenerate, we carefully decompose the expression for ki-

netic energy into the parts that can be removed by a suitable choice of the transfor-

mation vector field and a residual component which cannot be removed. In Sec-

tion 3.7, we derive the balance model Euler–Poincaré equations from the balance

model Lagrangian. In Section 3.8, we find that it can be decomposed into a single

evolution equation for a scalar field in the two horizontal variables, and a kinematic

relationship for all other components. We show that this kinematic relationship is el-

liptic under the assumption of stable stratification and sufficiently small fluctuations

in all prognostic fields. Section 3.9 discusses the reconstruction of the full velocity

field from the balance relation and the prognostic variables. Then, we give a brief

discussion and conclusions. Finally, four technical appendixes contain results on

averaging along the axis of rotation, the decomposition of vector field in oblique co-

ordinates, associated inner product identities, and some details of the computation

of the balance model Lagrangian.

3.2 Variational principle for the Boussinesq equations

In this section, we recall the derivation of the equations of motion via the Hamilton

principle, here in the abstract setting of Euler–Poincaré theory.

We write Diffµ(D) to denote the group of Hs-class volume-preserving diffeo-

morphisms on D that leave its boundary invariant. The associated “Lie algebra” of

vector fields is the space

Vdiv = {u ∈ Hs(D, R3) : ∇ · u = 0, k · u = 0 at z = −1, 0} . (3.5)
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Here, Hs is the usual Sobolev space of order s consisting of functions with square

integrable weak derivatives up to order s. For s > 5/2, Diffµ(D) is a smooth infinite-

dimensional manifold and Vdiv is its tangent space at the identity (Palais, 1968; Ebin

and Marsden, 1970).

Let η = η( · , t) ∈ Diffµ(D) denote the time-dependent flow generated by a time-

dependent vector field u = u( · , t) ∈ Vdiv, i.e.,

∂tη(a, t) = u(η(a, t), t) (3.6)

or η̇ = u ◦ η for short; here and in the following we use the symbol “◦” to denote

the composition of maps and the dot-symbol to denote the partial time derivative.

In the Lagrangian description of fluid flow, x(t) = η(a, t) is the trajectory of a fluid

parcel initially located at a ∈ D. We retain the letter x for Eulerian positions and a

for Lagrangian labels throughout.

To formulate the variational principle, we note that the continuity equation (3.1c)

is equivalent to

ρ ◦ η = ρ0 , (3.7)

where ρ0 denotes the given initial density field. The Lagrangian for the non-dimensional

Euler–Boussinesq system is given by

L(η, η̇; ρ0) =
∫
D

R ◦ η · η̇+
ε

2
|η̇|2−ρ k · η da

=
∫
D

R · u +
ε

2
|u|2−ρ z dx ≡ ℓ(u, ρ) . (3.8)

The vector R is a vector potential for the Coriolis vector, that is, ∇× R = Ω; it arises

from the transformation into a rotating frame of reference e.g. Landau and Lifshitz,

1976. Here, on the f -plane, we can choose

R =
1
2
Jx =

1
2


cz − sy

sx

−cx

 , (3.9)
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where J is the skew-symmetric matrix

J =


0 −s c

s 0 0

−c 0 0

 . (3.10)

As we see in the second line of (3.8), the Lagrangian can be written as a functional of

u and ρ alone. In this form, it is referred to as the reduced Lagrangian ℓ. Computing

variations of the full Lagrangian L with respect to the flow map η is equivalent to

computing variations of the reduced Lagrangian ℓ with respect to u and ρ subject to

so-called Lin constraints. This is summarized in the following theorem.

Theorem 3.2.1 (Holm, Marsden, and Ratiu, 1998). Consider a curve η in Diffµ(D) with

Lagrangian velocity η̇ and Eulerian velocity u ∈ Vdiv. Then the following are equivalent.

(i) η satisfies the Hamilton variational principle

δ
∫ t2

t1

L(η, η̇; ρ0) dt = 0 (3.11)

with respect to variations of the flow map δη = v ◦ η, where v is a curve in Vdiv

vanishing at the temporal end points.

(ii) u and ρ satisfy the reduced Hamilton principle

δ
∫ t2

t1

ℓ(u, ρ) dt = 0 (3.12)

with respect to variations δu and δρ that are subject to the Lin constraints δu =

v̇ + u ·∇v − v ·∇u and δρ + v ·∇ρ = 0, where v is a curve in Vdiv vanishing at

the temporal end points.

(iii) m and ρ satisfy the Euler–Poincaré equation

∫
D
(∂t + Lu)m · v +

δℓ

δρ
Lvρ dx = 0 (3.13)

for every v ∈ Vdiv, where Lu is the Lie derivative in the direction of u and

m =
δℓ

δu
(3.14)



56
Chapter 3. Variational balance models for the three-dimensional Euler-Boussinesq

equations with full Coriolis force

is the momentum one-form.

In the language of vector fields on a region of R3, (3.13) reads

∫
D

(
∂tm + (∇× m)× u +∇(m · u) +

δℓ

δρ
∇ρ

)
· v dx = 0 (3.15)

for every v ∈ Vdiv. This implies that the term in parentheses must be zero up to a

gradient of a scalar potential ϕ.

For the Euler–Boussinesq Lagrangian (3.8),

m =
δℓ

δu
= R + ε u and

δℓ

δρ
= −z . (3.16)

Setting ϕ = −p − z ρ − 1
2 ε |u|2 and using the vector identity (∇× u)× u = u ·∇u −

1
2∇|u|2, we see that (3.15) implies the Euler–Boussinesq momentum equation (3.1).

As the Lagrangian L is invariant under time translation, the corresponding Hamil-

tonian

H =
∫
D

δℓ

δu
· u dx − ℓ(u, ρ) =

∫
D

ε

2
|u|2 + z ρ dx (3.17)

is a constant of the motion. A second conservation law arises via the invariance of

the Lagrangian with respect to “particle relabeling”, that is, composition of the flow

map with an arbitrary time-independent map in Diffµ(D): Ripa, 1981 and Salmon,

1982 have shown that this symmetry implies material conservation of the Ertel po-

tential vorticity

q = (∇× m) ·∇ρ = (Ω + ε∇× u) ·∇ρ , (3.18)

that is, q satisfies the advection equation

∂tq + u ·∇q = 0 . (3.19)

3.3 Variational asymptotics

Our variational balance model is based on the following construction. Suppose that

the flow of the balance model is related to the flow of the full model via a near-

identity change of variables. To be explicit, let η̇ε denote the Lagrangian velocity

and uε the corresponding Eulerian velocity field of the full Euler–Boussinesq flow,
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that is,

η̇ε = uε ◦ ηε . (3.20)

The corresponding Lagrangian and Eulerian balance model velocities are denoted η̇

and u, so that

η̇ = u ◦ η . (3.21)

We suppose that the flow map of the full model is related to the flow map of the

balance model by a change of coordinates that is the flow of a vector field vε with ε

as the flow parameter (thus, formally, ε plays the same role here that t plays above),

namely

η′ε = vε ◦ ηε , ηε

∣∣
ε=0 = η . (3.22)

Here and in the following, we use the prime symbol to denote a derivative with

respect to ε. Cross-differentiation of (3.20) and (3.22) gives

u′
ε = v̇ε + uε ·∇vε − vε ·∇uε . (3.23)

Likewise, differentiation in ε of the Lagrangian density gives

ρ′ε + vε ·∇ρε = 0 . (3.24)

These two relations can be seen as the Lin constraints for the ε-flow, cf. the Lin con-

straints for the t-flow stated in Theorem 3.2.1.

At this point, the choice of vε is completely arbitrary and no assumptions have

been made. However, we will always restrict ourselves to incompressible transfor-

mations which leave the domain invariant, so that vε ∈ Vdiv.

We now treat ε as a perturbation parameter, expanding (3.23) and (3.24) in ε.

Likewise, we expand the Lagrangian as a formal power series in ε and use the Lin

constraints to eliminate all ε-derivatives of u and ρ. Model reduction is achieved via

the following steps:

(i) Truncate the expansion of the Lagrangian at some fixed order. Here, we will

only look at the truncation to O(ε), the first nontrivial case.
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(ii) Choose the expansion coefficients of the transformation vector fields such that

the resulting Lagrangian is maximally degenerate. When computing the model

reduction to first order, the zero-order transformation vector field v = vε|ε=0 is

the only choice to be made.

(iii) Apply the Euler–Poincaré variational principle to derive the equations of mo-

tion. Since the Lagrangian is degenerate, some degrees of freedom will be

kinematic, thus imply a phase-space constraint that can be understood as a

so-called Dirac constraint (e.g. Salmon, 1988).

The first two steps are done in reverse order relative to the original method of

Salmon, 1985 who constrained the system first, using the readily available leading

order balance relation, and transformed to different coordinates second. In fact, in

his approach, the second step is optional and it turns out that, for f -plane shallow

water, the so-called L1 model, which skips the transformation, is superior to all other

models in a more general family (Dritschel, Gottwald, and Oliver, 2017). In our

viewpoint, the transformation is always necessary. The advantage is that the con-

straint arises as a consequence of the formalism and does not need to be guessed or

derived a priori. In simple cases, it is possible to choose the transformation such that

it vanishes to the order considered; in this case, we reproduce Salmon’s L1 model. In

more complicated cases, in particular in our setting here, it is not possible to cancel

all terms in the transformation vector field at the order considered. This means that

a direct application of Salmon’s method would result in a model with additional

spurious prognostic variables. We finally remark that at least in finite dimensions,

the procedure is rigorous and the resulting model is correct to the expected order of

approximation (Gottwald and Oliver, 2014). For partial differential equations, this

question is open; it is clear, though, that additional conditions are necessary.

3.4 Oblique vertical coordinate and oblique averages

The axis of rotation defines the direction of the characteristics of the thermal wind

relation. Here, we introduce notation used throughout the paper to describe the
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decomposition of vector fields along and perpendicular to this axis, as well as a

basic averaging operation along the axis of notation.

Let

Q = ΩΩT =


0 0 0

0 c2 cs

0 cs s2

 (3.25)

denote the orthogonal projector onto the direction of the axis of rotation; the projec-

tor onto the orthogonal complement is then given by

P = I−Q =


1 0 0

0 s2 −cs

0 −cs c2

 . (3.26)

Note that Ω spans the kernel of J and is perpendicular to the range of J. Thus, Q is

the orthogonal projector onto Ker J and P is the orthogonal projector onto Range J.

We introduce the oblique coordinate system

x =


x

y

0

+ ζ Ω ≡ Aξ ≡ χ(ξ) (3.27)

where ξ ≡ (x, ζ)T, where x and y are the horizontal coordinates of each characteristic

line at the surface, ζ is the arclength parameter along the characteristics with ζ = 0

being at the surface and ζ = −s−1 being at the bottom, and

A =


1 0 0

0 1 c

0 0 s

 . (3.28)

We note that detA = s. Then, for any scalar function f ,

∂i( f ◦ χ) =


(∂i f ) ◦ χ for i = x, y

(Ω ·∇ f ) ◦ χ for i = ζ

(3.29)
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so that, for arbitrary vector fields u, v,

∇ · (v ◦ χ) = (∇ · Av) ◦ χ , (3.30a)

(∇ · Pu) ◦ χ = ∇ · (SPu ◦ χ) , (3.30b)

where (3.30b) follows from (3.30a) with v = A−1Pu since A−1P = SP with

S = diag(1, s−2, s−1) . (3.31)

For any function ϕ, we define ϕ̄ as its mean along the axis of rotation, that is,

ϕ̄ ◦ χ = s
∫ 0

−s−1
ϕ ◦ χ dζ . (3.32)

Further, we write ϕ̂ = ϕ − ϕ̄ to denote the deviation from the mean. The defini-

tion for vector fields is analogous. Since, for arbitrary functions ϕ and ψ, ψ̄ ◦ χ is

independent of ζ and detA = s, we see that

∫
D

ϕ̂ ψ̄ dx = s
∫

T2

∫ 0

−s−1
ϕ̂ ◦ χ dζ ψ̄ ◦ χ dx = 0 . (3.33)

In other words, mean and fluctuating components in the sense of (3.32) are L2-

orthogonal.

3.5 Thermal wind

The formal leading order balance in the Euler–Boussinesq momentum equation (3.1a)

gives an expression for the thermal or geostrophic wind ug,

Ω × ug = −∇p − ρ k . (3.34)

Taking the curl to remove the pressure, we obtain the thermal wind relation

Ω ·∇ug =

−∇⊥ρ

0

 . (3.35)
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The characteristics of this first order equation are the lines parallel to the axis of

rotation. With the notation set up in Section 3.4, it is easy to integrate (3.35) along its

characteristic lines. Splitting ug = ûg + ūg, we first note that (3.35) determines only

the mean-free component ûg. Indeed,

∂ζ(ûg ◦ χ) = (Ω ·∇ûg) ◦ χ =

−∇⊥ρ ◦ χ

0

 . (3.36)

The mean-free component ûg must further satisfy

0 = s
∫ 0

−s−1
ûg ◦ χ dζ = ûg ◦ χ(−s−1)− s

∫ 0

−s−1
ζ ∂ζ(ûg ◦ χ) dζ , (3.37)

where we write χ′ to abbreviate χ(x, y, ζ ′). Then,

ûg ◦ χ = ûg ◦ χ(−s−1) +
∫ ζ

−s−1
∂ζ(ûg ◦ χ′) dζ ′

= s
∫ 0

−s−1
ζ ∂ζ(ûg ◦ χ) dζ +

∫ ζ

−s−1
∂ζ(ûg ◦ χ′) dζ ′ . (3.38)

Inserting the thermal wind relation (3.36), we find that the vertical component of the

thermal wind is independent of ζ, so k · ûg = 0, and the horizontal components of

the thermal wind are given by

ûg = ∇⊥θ (3.39a)

with

θ ◦ χ = −s
∫ 0

−s−1
ζ ρ ◦ χ dζ −

∫ ζ

−s−1
ρ ◦ χ′ dζ ′ . (3.39b)

Equation (3.39) shows that ûg is horizontally divergence-free. Since k · ûg = 0, we

also have ∇ · ug = 0.

3.6 Derivation of the first-order balance model

We now implement the procedure outlined in Section 3.3 at first order in ε. Using

the Lin constraints for the ε-flow, (3.23) and (3.24), we can write

uε = u + ε (v̇ + u ·∇v − v ·∇u) + O(ε2) (3.40)
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and

ρε = ρ − ε∇ · (ρv) + O(ε2) . (3.41)

The transformation vector field v will be specified in the following. By construction,

we assume that all flows are volume-preserving and leave the domain invariant, so

that u, v ∈ Vdiv. For technical reasons, we also assume that the domain-mean of u is

zero. This is not a restriction since the assumption is only removing a steady solid-

body translation from the system, which is a constant of the motion of the full Euler–

Boussinesq system so that it remains zero if it vanishes initially. The transformation

vector field v shall also be chosen so as not to generate a solid body translation in

balance model coordinates.

Inserting these relations into the Euler–Boussinesq Lagrangian (3.8), expanded

in powers of ε and truncated to O(ε), we obtain after a short computation

L =
∫
D

R ◦ ηε · η̇ε +
ε
2 |η̇ε|

2 da −
∫
D

ρε z dx

=
∫
D

u · Jx − ρ z dx + ε
∫
D

u · Jv + 1
2 |u|

2 − ρ v · k dx

= L0 + ε L1 . (3.42)

Here we have used the divergence theorem to rewrite the potential energy contri-

bution to L1, where the boundary integral vanishes due to the boundary condition

k · v = 0.

We must now choose the transformation vector field v such that it removes, to

the extent possible, all terms that are quadratic in components of u. In preparation,

we decompose the kinetic energy part of L1 as

∫
D
|u|2 dx =

∫
D
|û|2 + 2 û · ū + |ū|2 dx . (3.43)

The cross term in (3.43) vanishes due to (3.33). The square terms are decomposed

into terms that can be written as an L2-pairing with Pû, and a final remainder term

which cannot. Starting with the contribution from |û|2, we write

∫
D
|û|2 dx =

∫
D

û · Pû + û ·Qû dx =
∫
D

û · P(û + C[û]) dx , (3.44)



3.6. Derivation of the first-order balance model 63

using Lemma 3.13.1 in the final equality. The contribution from |ū|2 is split differ-

ently. Setting S0 = diag(1, s−2, 0), noting that s (I− S0P)ū = Ω ū3, and noting that

(S0P)T − S0P is skew so that S0Pū · ū − ū · S0Pū = 0, we write

∫
D
|ū|2 dx =

∫
D
(I+ S0P)ū · (I− S0P)ū + S0Pū · S0Pū dx

= −s−1
∫
D

û · P∇(Ω · (I+ S0P)ū) z dx +
∫
D
|S0Pū|2 dx . (3.45)

The second equality is based on Lemma 3.13.2 with ϕ̄ = s−1 Ω · (I+ S0P)ū. Note that

Lemma 3.13.2 could be used in different ways so long as we retain a pairing of some

function ϕ̄ with ū3. Our chosen splitting is distinguished, due to Lemma 3.12.1, by

the fact that the remainder integral in (3.45) is proportional to the kinetic energy of

a divergence-free two-dimensional vector field. In the following, this remainder term

will be the only term that yields an evolution equation in the variational principle.

As S0Pū is divergence-free, this evolution equation can always be written in terms

of a scalar stream function, that is, is determined by the evolution of a single scalar

field. Any other splitting would yield a two-component evolution equation except

for one special tilt of the axis of rotation, which is not desirable.

Collecting terms, we find

∫
D
|u|2 dx =

∫
D

û · PV̂ dx +
∫
D
|S0Pū|2 dx (3.46)

with

V = û + C[û]− s−1 ∇
(
Ω · (I+ S0P)ū

)
z . (3.47)

Even though V is not necessarily mean-free, only its mean-free component V̂ con-

tributes to the Lagrangian due to the pairing with û.

Since J has a one-dimensional kernel, it is impossible to remove all quadratic

terms from the L1 Lagrangian, but choosing the transformation vector field v as a

solution to the equation

Jv = −1
2
PV̂ , (3.48)

up to terms that only depend on ρ, we can make L1 affine in û: Noting that J is

invertible on RangeP with pseudo-inverse JT, and further that PJT = JT = JTP, we
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seek v in the form

v = Pv̂ +Qv̂ + v̄ (3.49)

with

Pv̂ = −1
2
JT V̂ + λ JTV̂ g . (3.50)

In this expression, λ is a free parameter and

V g = ûg + C[ûg] (3.51)

which takes the same form as V with u replaced by ug. Since ug is not constrained

by the thermal wind relation, we do not include a term that matches the third term

of (3.47) into the ansatz for V g.

The terms Qv̂ and v̄ in (3.49) are chosen such that v becomes divergence free and

tangent to the top and bottom boundaries. Using the construction from Lemma 3.12.4,

we write Qv̂ ≡ Ω ĝ, where

ĝ ◦ χ = ĝ ◦ χ(−s−1)−
∫ ζ

−s−1
∇ · (SPv̂ ◦ χ′) dζ ′ . (3.52)

By Lemma 3.12.5, v̂ is divergence-free. By Lemma 3.13.3, v̄ can be chosen such that

the zero flux boundary condition

v̄3 ◦ χ = −k · Pv̂ ◦ χ(−s−1)− s ĝ ◦ χ(−s−1)

= −k · Pv̂ ◦ χ(0)− s ĝ ◦ χ(0) . (3.53)

is satisfied and, moreover, v̄ is divergence free. Lemma 3.13.4 shows that the choice

of the horizontal components v̄ will not enter the computation of the equations of

motion. Only the contribution from v̄3 will appear, but it is directly a function of v̂3

by (3.53), so that the final expression will not contain any references to v̄.

Combining the contributions from rotation and kinetic energy, we find

∫
D

u · Jv + 1
2 |u|

2 dx =
∫
D

û · JJT
(
− 1

2 V̂ + λV̂ g
)
+ 1

2 û · PV̂ + 1
2 |S0Pū|2 dx

=
∫
D

λ û · PV̂ g +
1
2 |S0Pū|2 dx



3.7. Derivation of the balance model equations of motion 65

=
∫
D

λ û · ûg +
1
2 |S0Pū|2 dx (3.54)

where, in the last equality, we have used Lemma 3.13.1 and the fact that the geostrophic

velocity is exclusively horizontal. The contribution to the L1-Lagrangian from the

potential energy term is

−
∫
D

ρ v · k dx =
∫
D

ûg ·
( 1

2 û − λ ûg
)

dx ; (3.55)

the details of this calculation are given in Appendix D. Altogether, the L1-Lagrangian

then reads

L1 =
∫
D

λ û · ûg +
1
2 |S0Pū|2+ûg · ( 1

2 û − λ ûg) dx

=
∫
D

ν û · ûg +
1
2 ū ·Mū − λ |ûg|2 dx , (3.56)

where ν = λ + 1
2 and

M = PS2
0P =


1 0 0

0 1 −c/s

0 −c/s c2/s2

 . (3.57)

In the following, we choose λ such that ν > 0.

3.7 Derivation of the balance model equations of motion

Taking the variation of (3.56), we obtain

δL1 =
∫
D

δu · (ν ûg +Mū) + ν u · δûg − 2λ δûg · ûg dx

=
∫
D

δu · p + δûg · b̂ dx , (3.58)

where

p = Mū + ν ûg and b̂ = ν û − 2λ ûg , (3.59)

To rewrite the second term on the right of (3.58), we insert the expression for the

geostrophic velocity (3.39), change variables, and recall that horizontal derivatives
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and composition with χ commute, so that

∫
D

δûg · b̂ dx = −s
∫
D

∫ ζ

−s−1
∇⊥δρ ◦ χ′ dζ ′ · b̂ ◦ χ dξ

= s
∫
D
∇⊥δρ ◦ χ ·

∫ ζ

−s−1
b̂ ◦ χ′ dζ ′ dξ

= −s
∫
D

δρ ◦ χ∇⊥ ·
∫ ζ

−s−1
b̂ ◦ χ′ dζ ′ dξ

= −
∫
D

δρ∇⊥ · B dx , (3.60)

where B is the anti-derivative of b along the axis of rotation, i.e.,

B = ν U − 2λ Ug (3.61)

where

U ◦ χ =
∫ ζ

−s−1
û ◦ χ′ dζ ′ (3.62)

and Ug is defined likewise. Inserting (3.60) into (3.58), we have

δL1 =
∫
D

δu · p − δρ∇⊥ · B dx . (3.63)

We recall the general Euler–Poincaré equation (3.15), which can be written

∂tm + (∇× m)× u +
δℓ

δρ
∇ρ = ∇ϕ̃ (3.64)

with ϕ̃ an arbitrary scalar field. Here,

m =
δℓ

δu
= R + ε p and

δℓ

δρ
= −z − ε∇⊥ · B , (3.65)

so that, with ϕ̃ = −ϕ − zρ,

Ω × u + ρk + ε (∂t p + (∇× p)× u −∇ρ∇⊥ · B) = −∇ϕ . (3.66)

As c ∂z = −s ∂y when applied to averaged quantities, we find that ∇×Mū = Ω ω

with ω = s−1 ∇⊥ ·Mhū. Hence,

ξ ≡ ∇× p = Ω ω + ν γ (3.67)
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with

γ = ∇× ûg = −∇× curl θ =

−∇∂zθ

∆θ

 , (3.68)

where we recall that ûg = ∇⊥θ, write curl f = ∇× (0, 0, f ) to identify the curl of a

scalar field with the curl of a vector field oriented in the vertical, and use ∆ to denote

the horizontal Laplacian. With this notation in place, taking the curl of (3.66) and

noting that ∇× (ξ × u) = u ·∇ξ − ξ ·∇u as both u and ξ are divergence-free, we

find

− Ω ·∇u +∇× (ρk) + ε
(
∂tξ + u ·∇ξ − ξ ·∇u +∇ρ ×∇∇⊥ · B

)
= 0 . (3.69)

The corresponding balance model Hamiltonian, via (3.17), is given by

H =
∫
D

ρ z + ε
( 1

2 ū ·Mū + λ |ûg|2
)

dx . (3.70)

The potential vorticity for the balance model reads

q = (∇× m) ·∇ρ

= (Ω + ε Ω ω + εν γ) ·∇ρ

= (s + εs ω + εν ∆θ) ∂zρ + (Ω + ε Ω ω − εν ∂z∇θ) · ∇ρ

= −(s + εs ω + εν ∆θ) ∂z(Ω ·∇θ)− (Ω + ε Ω ω − εν ∂z∇θ) · ∇(Ω ·∇θ) , (3.71)

where Ω = (0, c). In the last equality, we have used that ρ = −Ω ·∇θ. Alternatively,

we can write

q =

∣∣∣∣∣∣∣
−(s + εs ω + εν ∆θ) ∇(Ω ·∇θ)

(Ω + ε Ω ω − εν ∂z∇θ) ∂z(Ω ·∇θ)

∣∣∣∣∣∣∣ . (3.72)

We remark that the relation between q and θ can be seen as a second order nonlinear

differential operator of the form

q = F(ω, D2θ) , (3.73)
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which is nonlinearly elliptic (e.g. Gilbarg and Trudinger, 2001) so long as

[Fij] =
∂F

∂(D2θ)
(3.74)

is positive (or negative) definite. Direct computation shows that

[Fij] =


εν∂zρ − 1

2 εc ξ1 − 1
2 ε (ξ1 + ν∂xρ)

− 1
2 εc ξ1 εν∂zρ − c(c + εξ2) − 1

2

(
2cs + ε(cξ3 + sξ2 + ν∂yρ)

)
− 1

2 ε (ξ1 + ν∂xρ) − 1
2

(
2cs + ε(cξ3 + sξ2 + ν∂yρ)

)
−s2 − εs ξ3

 ,

(3.75)

so that −F is positive definite provided its principal minors are positive, that is,

−εν∂zρ > 0 , (3.76a)

−εν ∂zρ + c
[
c + ε

(
ξ2 +

1
4

cξ2
1

ν∂zρ

)]
> 0 , (3.76b)

det F < 0 . (3.76c)

Condition (3.76c) can be written more explicitly as

− (εsν∂zρ)2 + ε2 f (ξ,∇ρ; ξ, ρ) < 0 , (3.77)

where f is linear in its first two arguments. Hence, these conditions are satisfied if

the fluid is stably stratified so that ∂zρ < 0, the deviations from a steady mean state

are sufficiently small, and ε is sufficiently small.

3.8 Separation of balance relation into dynamic and kine-

matic components

In the following, we show that the balance relation is mostly a kinematic relationship

between density ρ and balanced velocity field. However, there is one horizontal

scalar field, ω, which evolves dynamically via the vertical component equation

∂tξ3 + u ·∇ξ3 = ξ ·∇u3 +∇ρ · ∇⊥∇⊥ · B + ε−1 Ω ·∇û3 . (3.78)
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Note that the seemingly unbalanced O(ε−1)-term in this equation is actually only an

O(1)-contribution because u is an O(ε) perturbation of ug whose vertical component

is zero.

Taking the average of (3.78) along the axis of rotation and using Lemma 3.11.1

and Lemma 3.11.2 from the appendix to commute averaging with directional deriva-

tives where possible, we find that the evolution equation for ξ3 reduces to a prog-

nostic equation for ω,

∂tω + ū ·∇ω = ∇ρ · ∇⊥∇⊥ · B − ν (∂z∇θ · ∇u3 − ∆θ ∂zu3 + u ·∇∆θ) . (3.79)

All other contributions to (3.69) are entirely kinematic. To see this, we start with

multiplying (3.79) by Ω, then subtract this expression from (3.69) to obtain

0 =− Ω ·∇u +∇× (ρk) + ε
[
ν ∂tγ + Ω û ·∇ω + ν u ·∇γ − ξ ·∇u

+∇ρ ×∇∇⊥ · B + Ω∇ρ · ∇⊥∇⊥ · B + ν Ω (γ ·∇u3 − u ·∇∆θ)
]

. (3.80)

We now assume that the flow is strongly and uniformly stratified. More specifically,

we shall assume that

∂zρ = −α + ∂zρ̃ (3.81)

where ρ̃ is small in a suitable norm, to be specified further below. It is possible to

weaken this assumption and allow variations in the stratification profile so long as

stratification is uniformly stable across the layer, but the simpler assumption (3.81)

makes the structure of the problem more transparent.

Inserting (3.81) into the definition of γ and noting that Ω ·∇θ = −ρ, we find

Ω ·∇γ̇3 = ∆(Ω ·∇θ̇) = ∆(u ·∇ρ) = −α ∆u3 + ∆(u ·∇ρ̃) . (3.82)

Decomposing

U = ∇⊥Ψ +∇Φ , (3.83)

and, setting ζ = ∆Ψ, we have

∇ρ ×∇∇⊥ · B = −αν k ×∇ζ + ν∇ρ̃ ×∇ζ − 2λ∇ρ ×∇∇⊥ · Ug . (3.84)
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Inserting (3.82) and (3.84) into (3.80), taking the horizontal curl of the horizontal

component equations, and applying Ω ·∇ to the vertical component equation, we

obtain a pair of kinematic balance relations:

(Ω ·∇)2ζ + εαν ∆ϕζ = −∆ρ̃ + ε f , (3.85a)

(Ω ·∇)2u3 + εαν ∆ϕu3 = ε g (3.85b)

with

f = Ω · ∇⊥ (û ·∇ω) + ν∇⊥ · (u ·∇γ)−∇⊥ · (ξ ·∇u)− ν∇ · (∇ρ̃ ∂zζ)

+ ν∇ · (∇ζ ∂zρ̃) + 2λ∇ · (∇ρ ∂z∇⊥ · Ug)− 2λ∇ · (∇∇⊥ · Ug ∂zρ)

− 2λ Ω · ∇⊥ ∇ρ̃ · ∇⊥∇⊥ · Ug + ν Ω · ∇⊥ (∇ρ̃ · ∇⊥ζ + γ ·∇u3 − û ·∇∆θ) ,

(3.85c)

g = ν ∆(u ·∇ρ̃) + s û ·∇ω + ν Ω ·∇(u ·∇γ3 − ξ ·∇u3 −∇ρ̃ · ∇⊥∇⊥ · B) .

(3.85d)

This elliptic problem is augmented by homogeneous Dirichlet boundary conditions

on both ζ and u3. These boundary conditions encode, for u3, the no-flux conditions

of the full velocity field, and for ζ that it is the antiderivative along Ω of a mean-free

field with an arbitrary choice of gauge that disappears upon differentiation.

The right hand functions f and g still contain terms that depend on the unknown

functions ζ and u3, so they need to be solved by fixed point iteration. In the next

section, we will argue that this can be done under suitable smallness assumptions

for ρ̃ and ω.

3.9 Closing the balance model

To close the balance relation and the prognostic equations, we need to recover the

full velocity field u from ω, ζ, and u3. We express the horizontal component of the

velocity in terms of stream function ψ and velocity potential ϕ,

u = ∇⊥ψ +∇ϕ . (3.86)
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First, note that ∇⊥ ·Mhū = ∇⊥ · ū − c/s ∂xū3 = s ω by definition, so that

∆ψ̄ = s ω + c
s ∂xū3 . (3.87a)

Next, due to (3.83),

∆Ψ = ζ . (3.87b)

Finally, by incompressibility,

∆ϕ = −∂zu3 (3.87c)

so that, altogether,

u = ∇⊥ψ̄ + Ω ·∇∇⊥Ψ +∇ϕ . (3.87d)

This expression for the horizontal components of the velocity field, first, proves that

the kinematic balance relation (3.85) can be solved by iteration. Seeking a solution in

the Sobolev space Hs+2, Hs denoting the space of square integrable functions with

square-integrable derivatives up to order s where we take s large enough so that

products of such functions are also contained in Hs, we need to verify that all terms

that appear in f and g are contained in Hs. For example, for the term ∇⊥ · (ξ ·

∇u) which appears in the expression for f , the highest derivatives on the unknown

functions appear as

ξ ·∇(∂xū3 + Ω ·∇ζ) , (3.88)

so this term is contained in Hs provided ζ, u3 ∈ Hs+2. All other terms are either sim-

ilar or have only lower-order derivatives on the unknowns. Further, the coefficients

that appear, here ξ, depend only on ω and ρ̃, so they are small if the data is close

enough to the stably stratified rest state in a Sobolev norm of sufficiently high order.

Thus, the balance relation (3.85) defines a contraction in Hs+2 and can be solved by

iteration.

Second, the reconstructed velocity field u is used to propagate ω and ρ (or, alter-

natively, the potential vorticity q), in time. Then the complete set of balance model

equations is given by the the kinematic balance relation (3.85), the reconstruction
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equations (3.87), the continuity equation in three dimensions,

∂tρ + u ·∇ρ = 0 , (3.89a)

and the evolution equation in two spatial dimensions for ω,

∂tω + ū ·∇ω = ∇ρ · ∇⊥∇⊥ · B − ν (∂z∇θ · ∇u3 − ∆θ ∂zu3 + u ·∇∆θ) . (3.89b)

where B is defined in (3.61) and θ is the geostrophic stream function which depends

on ρ via (3.39b).

3.10 Discussion and Conclusion

In this paper, we have achieved a variational model reduction for the full three-

dimensional Euler–Boussinesq equation with a full Coriolis force. We have studied a

simple setting, namely the f -plane approximation, a layer of fluid of constant depth,

and periodic boundary conditions in the horizontal. The picture which emerges is

structurally identical to that of variational balance models for the primitive equa-

tions as derived by Salmon, 1996 and generalized in Oliver and Vasylkevych, 2016:

(i) There are two prognostic variables of the first-order balance model, the density

ρ (equivalently, a potential temperature) and a scalar generalized vorticity ω.

(ii) The generalized vorticity ω depends only on the two velocity components that

are perpendicular to the axis of rotation, and it is averaged along the axis of

rotation. Thus, ω is independent of the oblique vertical coordinate ζ.

(iii) All other components of the velocity field, that is, all deviations from the verti-

cal mean as well as the vertical mean of the velocity component pointing along

the axis of rotation, are kinematic. In other words, these components are slaved

to ρ and ω via a balance relation.

(iv) The balance relation is elliptic if rotation is sufficiently fast and the prognostic

fields are small perturbations of a stably stratified equilibrium state.
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(v) The balance model conserves energy and has a materially conserved potential

vorticity.

Thus, we have verified that the variational derivation of balance models of semi-

geostrophic type extends all the way to one of the most general models of geophys-

ical flows. In particular, the assumption of hydrostaticity and of the “traditional

approximation” changes details, but does not change the structural features of the

semigeostrophic limit.

At the same time, a full Coriolis force causes difficulties that are not seen in the

simpler cases. Since the axis of rotation is not aligned with the direction of gravita-

tional force, there are two distinguished “vertical” directions. This is an obstacle to

using a fully intrinsic geometric formulation of the derivation in the spirit of Arnold

and Khesin, 1999 or Gilbert and Vanneste, 2018, forcing us to resort to detailed co-

ordinate calculations. The resulting equations, therefore, appear to lack the relative

simplicity of balance models in more idealized settings; many of the new terms sim-

plify or disappear when the Coriolis force is acting exactly in the horizontal plane.

We emphasize that our derivation requires a nontrivial change of coordinates

already at O(ε). The associated transformation vector field depends on the prog-

nostic part of the mean velocity, cf. the last term in (3.47). We believe that it is not

possible to remove this contribution to the transformation at O(ε) since there is no

leading-order constraint through the thermal wind relation on this component. For

the analogous computation for the primitive equations, it suffices to set λ = 1
2 in

(3.50), which formally cancels all terms at O(ε). For the Euler–Boussinesq system,

it is the last term in (3.47) that cannot be canceled. This additional contribution to

the transformation vector field appears even in the case when the axis of rotation is

aligned with the geometric vertical and only disappears when the hydrostatic ap-

proximation is made. Thus, the more straightforward derivation by Salmon, 1996,

who inserts the thermal wind relation directly into the extended Lagrangian to con-

strain the variational principle does not work in this case; the more general setting

described in Section 3.3 must be used.

When the axis of rotation is aligned with the horizontal, i.e., for the equatorial f -

plane, all our final expressions remain non-singular, which is surprising given that
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some of the intermediate expressions do contain diverging terms. What fails, how-

ever, is ellipticity of the balance relation. Stratification is providing regularization in

the horizontal plane, rotation is providing regularization in the vertical. When the

axis of rotation is tilted into the horizontal, all control in the geometric vertical is

lost. We do not expect that the model remains well posed in this limit.

The balance relation allows, under the conditions stated, stable reconstruction

of the slaved components of the velocity field from sufficiently smooth prognos-

tic variables. A full analysis of well-posedness of the balance model is more diffi-

cult, as the right hand side of the balance relation contains high-order derivatives

of the prognostic variables, and remains open. In practical terms, the balance re-

lation might be most useful as a diagnostic relation independent of the full system

of prognostic relations. Nonetheless, the full balance model can be solved numeri-

cally in the formulation given in Section 3.9. For balance models in two dimensions,

potential vorticity based methods provide an alternative, numerically robust setting

(Dritschel, Gottwald, and Oliver, 2017). As for primitive equation balance models,

potential vorticity based numerics require the solution of a nonlinear elliptic equa-

tion (cf. Oliver and Vasylkevych, 2016; Akramov and Oliver, 2020). This alternative

formulation would require the solution of one more Monge–Ampère-like equation,

here with oblique derivatives, but may be more stable because the potential vorticity

is materially advected.
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3.11 Appendix A. Averaging along the axis of rotation

This appendix states two simple lemmas on the properties of the oblique averaging

operation. The first shows that it distributes over products as expected.

Lemma 3.11.1. Let ϕ and ψ be arbitrary functions and v an arbitrary vector field on D.

Then

(i) ψ ϕ̄ = ψ̄ ϕ̄,

(ii) v ·∇ϕ̄ = v̄ ·∇ϕ̄.

Proof. For (i), note that ϕ̄ ◦ χ is independent of ζ, so that

ψ ϕ̄ ◦ χ = s
∫ 0

−s−1
ψ ◦ χ ϕ̄ ◦ χ dζ = s

∫ 0

−s−1
ψ ◦ χ dζ ϕ̄ ◦ χ = ψ̄ ◦ χ ϕ̄ ◦ χ .

For (ii), note that Ω ·∇ϕ̄ = 0, so that the z-derivative can be replaced by an equiv-

alent y-derivative. Since horizontal derivatives commute with taking the average,

part (i) applies and yields the claim.

Commutation of vertical derivatives of arbitrary functions with averaging is more

subtle, as the next lemma shows. Here and in the following, we write χ(0) and

χ(−s−1) to indicate that the expression is evaluated at the top (ζ = 0) or at the

bottom boundary (ζ = s−1), as a function of the remaining horizontal variables.

Lemma 3.11.2. Let ϕ be a function with ϕ ◦χ(0) = ϕ ◦χ(−s−1) and v an arbitrary vector

field on D. Then

(i) ∂zϕ̄ = ∂zϕ,

(ii) v̄ ·∇ϕ = v̄ ·∇ϕ̄.

Proof. On the one hand, Ω ·∇ϕ̄ = 0, so that s ∂zϕ̄ = −c ∂yϕ̄. On the other hand,

∂zϕ ◦ χ = s
∫ 0

−s−1
(∂zϕ) ◦ χ dζ

=
∫ 0

−s−1
(∂ζ − c ∂y)(ϕ ◦ χ) dζ

= − c
s

∂yϕ̄ ◦ χ + ϕ ◦ χ(0)− ϕ ◦ χ(−s−1) . (A.1)



76
Chapter 3. Variational balance models for the three-dimensional Euler-Boussinesq

equations with full Coriolis force

Under the condition stated, the boundary terms cancel. This implies (i). For (ii), we

use Lemma 3.11.1 to move v̄ out of the average. Horizontal derivatives can be moved

out of the average without restrictions; for the z-derivative, part (i) applies.

3.12 Appendix B. Splitting of divergence free vector fields

We proceed to prove a number of identities which describe the splitting of divergence-

free vector fields with zero-flux boundary conditions into, on the one hand, mean

and mean-free components and, on the other hand, components along and perpen-

dicular to the axis of rotation.

Lemma 3.12.1. Let v ∈ Vdiv. Then ∇ · ShPv̄ = 0.

Proof. For a divergence-free vector field, ∇ · Pv = −∇ · Qv = −Ω ·∇(Ω · v), so

that (3.30b) turns into

∇ · (ShPv ◦ χ) = −∂ζ(Ω · v ◦ χ)− ∂ζ(S3Pv ◦ χ) = −s−1 ∂ζ(v3 ◦ χ) , (B.1)

where the last equality can be verified by direct computation in coordinates. Inte-

grating in ζ and noting that the right hand side is zero due to the boundary condi-

tions, we obtain the statement of the lemma.

The following is a somewhat weaker converse of Lemma 3.12.1.

Lemma 3.12.2. Let v be a vector field with ∇ · ShPv̄ = 0. Then ∇ · v̄ = 0.

Proof. The assumption implies

0 = ∇ · v̄ − c
s

∂yv̄3 . (B.2)

Since v̄3 ◦ χ is independent of ζ, this implies ∇ · (A−1v̄ ◦ χ) = 0. By (3.30a), this

implies that ∇ · v̄ = 0.

Corollary 3.12.3. If v ∈ Vdiv, then ∇ · v̂ = ∇ · v̄ = 0.

Proof. Lemma 3.12.1 followed by Lemma 3.12.2 yields ∇ · v̄ = 0. Then û = u − ū is

also divergence-free.
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Lemma 3.12.4. Let u ∈ Vdiv. Then Qû is uniquely determined by Pû and given by the

formula Qû = Ωĝ with

ĝ ◦ χ = −s
∫ 0

−s−1
ζ ∇ · (SPû ◦ χ) dζ −

∫ ζ

−s−1
∇ · (SPû ◦ χ′) dζ ′ . (B.3)

Proof. With u = Pu +Qu, the divergence condition reads

0 = ∇ · u = ∇ · Pu +∇ ·Qu . (B.4)

Recalling that Q = ΩΩT and setting g = Ω · u, we can write Qu = Ωg. Then,

Ω ·∇ĝ = Ω ·∇g = −∇ · Pu (B.5)

so that, due to (3.29),

∂ζ(ĝ ◦ χ) = (Ω ·∇ĝ) ◦ χ = −(∇ · Pu) ◦ χ = −∇ · (SPu ◦ χ) = −∇ · (SPû ◦ χ) .

(B.6)

The third equality in (B.6) is due to (3.30b) and the last equality is due to u = û + ū,

where ū ◦ χ is independent of ζ, so that the entire contribution from ū vanishes by

Lemma 3.12.1. Equation (B.6) determines g uniquely up to a constant of integration

on each of the characteristic lines; we write g = ĝ+ ḡ and choose ḡ as this constant of

integration. The condition that ĝ is mean-free along each characteristic line implies

0 = s
∫ 0

−s−1
ĝ ◦ χ dζ = ĝ ◦ χ(−s−1)− s

∫ 0

−s−1
ζ ∂ζ(ĝ ◦ χ) dζ . (B.7)

Then, substituting (B.6) and (B.7) into

ĝ ◦ χ(ζ) = ĝ ◦ χ(−s−1) +
∫ ζ

−s−1
∂ζ(ĝ ◦ χ′) dζ ′ , (B.8)

we obtain (B.3), which determines Qû uniquely.

The next lemma provides a converse statement to Lemma 3.12.4.
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Lemma 3.12.5. Suppose Pû is a given vector field which is mean-free and contained in the

range of P. Define ĝ as in Lemma 3.12.4, that is,

ĝ ◦ χ = −s
∫ 0

−s−1
ζ ∇ · (SPû ◦ χ) dζ −

∫ ζ

−s−1
∇ · (SPû ◦ χ′) dζ ′ . (B.9)

Then û = Pû +Qû with Qû = Ωĝ is mean-free and divergence-free.

Proof. The fact that ĝ, hence û, is mean-free is a direct consequence of the choice of

constant of integration in the proof of Lemma 3.12.4.

To prove that û is divergence-free, we take the ζ-derivative of (B.9),

∂ζ(ĝ ◦ χ) = −∇ · (SPû ◦ χ) . (B.10)

This implies that

0 = ∂ζ(ĝ ◦ χ) +∇ · (SPû ◦ χ)

= (Ω ·∇ĝ) ◦ χ + (∇ · Pû) ◦ χ

= (∇ ·Qû) ◦ χ + (∇ · Pû) ◦ χ

= (∇ · û) ◦ χ . (B.11)

Since χ is invertible, we find that ∇ · û = 0.

3.13 Appendix C. Inner product identities for decomposed

vector fields

Lemma 3.13.1. Let u ∈ Vdiv; we write û to denote its mean-free component as before.

Further, let ŵ be any mean free vector field. Then

∫
D

ŵ ·Qû dx =
∫
D

û · PC[ŵ] dx (C.1)

with C[ŵ] defined by

C[ŵ] ◦ χ = −S∇
∫ ζ

−s−1
Ω · ŵ ◦ χ′ dζ ′ . (C.2)
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Proof. By Lemma 3.12.4,

∫
D

ŵ ·Qû dx =
∫
D

ŵ · Ω ĝ dx = s
∫

T2

∫ 0

−s−1
Ω · ŵ ◦ χ ĝ ◦ χ dξ , (C.3)

where ĝ ◦ χ is given by (B.3). As it is integrated against a mean-free vector field, the

first term on the right of (B.3) does not contribute to the integral (C.3), so that

∫
D

ŵ ·Qû dx = −s
∫

T2

∫ 0

−s−1
Ω · ŵ ◦ χ

∫ ζ

−s−1
∇ · (SPû ◦ χ′) dζ ′ dξ

= s
∫

T2

∫ 0

−s−1
∇ · (SPû ◦ χ)

∫ ζ

−s−1
Ω · ŵ ◦ χ′ dζ ′ dξ

= −s
∫

T2

∫ 0

−s−1
û ◦ χ · PS∇

∫ ζ

−s−1
Ω · ŵ ◦ χ′ dζ ′ dξ

=
∫
D

û · PC[ŵ] dx (C.4)

where C[ŵ] is given by (C.2). We remark that the second inequality is based on

integration by parts in ζ, the third equality is due to the divergence theorem. In both

cases, the boundary terms vanish due to the mean-free condition on ŵ. We have

further used the symmetry of the matrices S and P.

Lemma 3.13.2. Let u = û + ū ∈ Vdiv and let ϕ̄ be the vertical mean of an arbitrary scalar

field. Then ∫
D

ϕ̄ ū3 dx = −
∫
D

û · P∇ϕ̄ z dx . (C.5)

Proof. By Lemma 3.12.4, Qû = Ωĝ with

ĝ ◦ χ(−s−1) = −s
∫ 0

−s−1
ζ ∇ · (SPû ◦ χ) dζ . (C.6)

At the bottom boundary, k · ū = −k · û = −k · Pû − k ·Qû, so that

∫
D

ϕ̄ ū3 dx = s
∫

T2

∫ 0

−s−1
ϕ̄ ◦ χ

[
−k · Pû ◦ χ(−s−1)− s ĝ ◦ χ(−s−1)

]
dξ

=
∫

T2
ϕ̄ ◦ χ

[
−k · Pû ◦ χ(−s−1) + s2

∫ 0

−s−1
ζ ∇ · (SPû ◦ χ) dζ

]
dx

= −
∫

T2
ϕ̄ ◦ χ k · Pû ◦ χ(−s−1) dx

+ s2
∫

T2

∫ 0

−s−1
ϕ̄ ◦ χ

(
∇ · (ζ SPû ◦ χ)−∇ζ · SPû ◦ χ

)
dξ . (C.7)
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Since ∇ζ = k, the second term in the last integral vanishes as the vertical integration

is over a mean free quantity. For the first term in the last integral, we integrate by

parts. The boundary term from the upper boundary is zero. The boundary term

from the lower boundary exactly cancels the integral on the second last line, so that

∫
D

ϕ̄ ū3 dx = −s2
∫

T2

∫ 0

−s−1
û ◦ χ · PS∇(ϕ̄ ◦ χ) ζ dξ

= −s
∫

T2

∫ 0

−s−1
û ◦ χ · PS(AT∇ϕ̄ z) ◦ χ dξ , (C.8)

where the last equality is due to ∇( f ◦ χ) = (AT∇ f ) ◦ χ and z = sζ. Noting that

PSAT = P and changing back to Cartesian coordinates, we obtain (C.5).

Lemma 3.13.3. Under the conditions of Lemma 3.12.5, there exists ū, also divergence free,

such that u = û + ū satisfies the zero-flux boundary condition k · u = 0 at z = 0,−1.

Proof. By Lemma 3.12.5, û is divergence free. We now choose ū3 such that the vector

field u is tangent to the top and bottom boundaries. At z = −1, 0, we require

k · ū = −k · û . (C.9)

Observe that

û3 ◦ χ(0) = k · Pû ◦ χ(0) + s ĝ ◦ χ(0)

= k · Pû ◦ χ(0) + s ĝ ◦ χ(−s−1)− s
∫ 0

−s−1
∇ · (SPû ◦ χ) dζ

= k · Pû ◦ χ(0) + s ĝ ◦ χ(−s−1)− k · Pû ◦ χ(0) + k · Pû ◦ χ(−s−1)

= k · Pû ◦ χ(−s−1) + s ĝ ◦ χ(−s−1) . (C.10)

This implies û3 takes the same value at the bottom and top boundaries along any

line in the direction of the axis of rotation. Consequently, we can use (C.9) to define

k · ū at the bottom, that is, we set

ū3 ◦ χ = −k · Pû ◦ χ(−s−1)− s ĝ ◦ χ(−s−1) . (C.11)

Then the boundary condition (C.9) is satisfied at z = 0 as well.
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We now choose ū such that u is divergence-free. Indeed, due to Lemma 3.12.2,

it suffices to ensure that ∇ · ShPū = 0, cf. (B.2) for an explicit expression. Setting

ū = ∇ϕ, we see that this implies

∆ϕ =
c
s

∂yū3 , (C.12)

which can be solved as a Poisson equation on T2.

Lemma 3.13.4. Let u, v ∈ Vdiv be such that their domain-mean is zero. Then

∫
D

u · Jv dx =
∫
D

û · Jv̂ dx . (C.13)

Proof. The mean of u over the domain D is zero if and only if the horizontal mean

of ū is zero, and likewise for v. Moreover, by Lemma 3.12.1, ∇ · (ShPū) = 0 and

∇ · (ShPv̄) = 0. Thus, there exist scalar fields ψ and θ such that ShPū = ∇⊥ψ and

ShPv̄ = ∇⊥θ. We write

S−1
h =


1 0

0 s2

0 −cs

 (C.14)

to denote the pseudo-inverse of Sh on RangeP. It satisfies

Sh S
−1
h = I2 , (C.15a)

where I2 denotes the 2 × 2 identity matrix, and

S−1
h Sh P = P . (C.15b)

Then, Pū = S−1
h ∇⊥ψ and Pv̄ = S−1

h ∇⊥θ. Further, observing that

S−T
h J S−1

h = s J2 , (C.16)
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where J2 denotes the canonical 2 × 2 symplectic matrix, and recalling that PJ = J =

JP, we compute

∫
D

ū · Jv̄ dx =
∫
D
Pū · JPv̄ dx

=
∫
D
S−1

h ∇⊥ψ · JS−1
h ∇⊥θ dx

=
∫
D
∇⊥ψ · S−T

h JS−1
h ∇⊥θ dx

= −s
∫
D
∇⊥ψ · ∇θ dx . (C.17)

By orthogonality of gradients and curls, the last integral is zero, which implies

(C.13).

3.14 Appendix D. Derivation of potential energy contribu-

tion to L1

In the following, we give a detailed derivation of the potential energy contribution to

the L1-Lagrangian. Inserting the boundary condition for the transformation vector

field (3.53) and the representation of Qv̄ via (3.52), we compute:

−
∫
D

ρ v · k dx = −s
∫

T2

∫ 0

−s−1
ρ ◦ χ

(
k · v̄ ◦ χ + k · Pv̂ ◦ χ + k ·Qv̂ ◦ χ

)
dξ

= s
∫

T2

∫ 0

−s−1
ρ ◦ χ

[
k · Pv̂ ◦ χ(−s−1) + s ĝ ◦ χ(−s−1)− k · Pv̂ ◦ χ

− s ĝ ◦ χ(−s−1) + s
∫ ζ

−s−1
∇ · (SPv̂ ◦ χ′) dζ ′

]
dξ

= s
∫

T2

∫ 0

−s−1
ρ ◦ χ

[
k · Pv̂ ◦ χ(−s−1)− k · Pv̂ ◦ χ

+
∫ ζ

−s−1
∂ζ(k · Pv̂ ◦ χ′) dζ ′ + s

∫ ζ

−s−1
∇ · (ShPv̂ ◦ χ′) dζ ′

]
dξ

= −s2
∫

T2

∫ 0

−s−1
∇ρ ◦ χ ·

∫ ζ

−s−1
ShPv̂ ◦ χ′ dζ ′ dξ (D.1)

Further, inserting (3.50), using the identity

Sh J
T = −s−1 J2 Ph , (D.2)
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and noting that horizontal gradients and composition with χ commute, we obtain

−
∫
D

ρ v · k dx = −s2
∫

T2

∫ 0

−s−1
∇ρ ◦ χ ·

∫ ζ

−s−1
ShJ

T
(
− 1

2 V̂ + λ V̂ g
)
◦ χ′ dζ ′ dξ

= s
∫

T2

∫ 0

−s−1
∇ρ ◦ χ ·

∫ ζ

−s−1
J2 Ph

(
− 1

2 V̂ + λ V̂ g
)
◦ χ′ dζ ′ dξ

= s
∫

T2

∫ 0

−s−1
∇⊥ρ ◦ χ ·

∫ ζ

−s−1
Ph

( 1
2 V̂ − λ V̂ g

)
◦ χ′ dζ ′ dξ . (D.3)

Inserting the thermal wind relation (3.36), integrating by parts with respect to ζ, and

changing variables, we continue the computation:

−
∫
D

ρ v · k dx = −s
∫

T2

∫ 0

−s−1
∂ζ(ûg ◦ χ) ·

∫ ζ

−s−1
Ph

( 1
2 V̂ − λ V̂ g

)
◦ χ′ dζ ′ dξ

=
∫
D

ûg · Ph
( 1

2 V̂ − λ V̂ g
)

dx

=
∫
D

ûg ·
( 1

2 û − λ ûg
)

dx (D.4)

where, in the last step, we have made use of Lemma 3.13.1, Lemma 3.13.2, and the

fact that k · ug = 0.
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Chapter 4

Variational Balance model for the

equatorial long-wave dynamics

This chapter is in preparation for the submission.
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Variational Balance model for the equatorial long-wave dynamics

Abstract

We consider the motion of the rotating fluid in the long-wave scaling regime. It is

governed by the three-dimensional Boussinesq equations on the equatorial β-plane.

The full Coriolis force is taken into account to keep the rotational effect on the model

because the axis of rotation of the Earth aligns the horizontal plane at the equator.

This is contrary to the so-called "traditional approximation" in which the horizontal

component of the Coriolis vector is zero. The model is constructed via variational

principle which depends on the Lagrangian dynamics. The reduced model is called

as L1 model which is derived firstly by Salmon (1985) using Hamilton’s principles.

On the construction, the similar strategy to that Oliver and Vasylkevych (2016) is

followed to derive Euler-Poincare equations. Derivations are done considering the

anisotropy on the horizontal scaling. In the long term, we aim to obtain the balance

model which includes slow equatorial long-wave dynamics.

Keywords

equatorial β-plane, Boussinesq equations, full Coriolis force, variational approxima-

tion, long-wave dynamics

4.1 Introduction

We consider the Euler–Boussinesq equations on the β-plane,

∂tu + u ·∇u + 2Ω × u = − 1
ρ0

∇p − gρ

ρ0
k , (4.1a)

∇ · u = 0 , (4.1b)

∂tρ + u ·∇ρ = 0 , (4.1c)

where u is the three-dimensional velocity field,

2Ω =


0

f0

βy

 (4.2)
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is the angular velocity describing the rotation of the Earth on the equatorial β-plane,

ρ0 a constant reference density, p the departure from hydrostatic pressure, g the con-

stant of gravity, ρ the departure from the constant reference density, and k the unit

vector in the vertical. We write x = (x, y, z) with x the zonal, and y the meridional

coordinate, and the velocity is u = (u1, u2, u3).

The domain is defined as D = T × [−∞, ∞]× [−∞, 0] on which we have infinite

layer depth, and similarly we have infinite boundary in the meridional direction for

simplicity. In the zonal direction, we have periodic boundary and

u2 = 0 as y → ±∞ , (4.3a)

u3 = 0 at z = 0 , (4.3b)

which implies that we have rigid lid approximation on the surface, and we assume

that the meridional velocity decays sufficiently rapid towards the boundary.

We apply the variational principle to the reduced Lagrangian (e.g. Franzke et al.,

2019)

ℓ =
∫
D

R · u +
1
2
|u|2 − g

ρ0
ρz dx (4.4)

on the Lie algebra of divergence free vector fields. Here, R is a vector potential for

the Coriolis vector which satisfies 2Ω = ∇× R. A convenient choice is

R = ( f0 z − 1
2 β y2) i , (4.5)

where i is the unit vector in the zonal direction. Alternatively, we can encode the

incompressibility constraint as a Lagrange multiplier, so that

ℓ =
∫
D

R · u +
1
2
|u|2 − g

ρ0
ρz dx +

∫
D

p∇ · u dx . (4.6)

The dispersion relation for the equatorial waves on the β-plane was shown by

Matsuno (1966). We illustrate it in Figure 4.1 using TIGAR which solves the shal-

low water equation on the globe (Vasylkevych and Žagar, 2021). The scale sepa-

ration is clearly seen between Rossby waves and inertia-gravity waves. However,
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two extra waves appear in this region, namely Kelvin wave and mixed Rossby-

gravity wave. Both waves fills the frequency gap between inertia-gravity waves

and Rossby waves. For instance, Kelvin waves span the whole frequency range.

Similarly, mixed Rossby-gravity waves with positive wavenumbers move fast as

inertia-gravity waves and the rest with negative wavenumbers are slow as Rossby

waves. As a consequence of this, some waves are in the same frequency range, but

for a certain equivalent height.

(A) D = 400m (B) D = 4000m

FIGURE 4.1: Dispersion curves of linear wave solutions at different
equivalent heights for a shallow water model.

One of the main characteristic elements to decide which waves appear on the

balance model is the equivalent height for shallow water models. The range of the

frequency gap varies with the equivalent height as shown in Figure 4.1 and detail

analysis is done by Žagar et al. (2015). Then, it is expected to have Kelvin waves

but with mixed Rossby-gravity waves on a very shallow layer (Wheeler and Kiladis,

1999). Besides, these waves propagate vertically (Wallace and Kousky, 1968; Yanai

and Maruyama, 1966) and so the three-dimensional model might be an advantage

to capture them.

The scaling around the equator is a challenge for reduced models because of

Kelvin waves and mixed Rossby-gravity waves. In addition, Charney (1948) is the

pioneer of the quasi-geostrophic scaling on the mid-latitude which is a very pow-

erful tool in the scale analysis. Rossby number is used as a small parameter for the

scale separation to obtain a balance model there, but it vanishes due to the vertical

component of the Coriolis vector on the equator. Thus, it is not applicable in the
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vicinity of the equator. On the other hand, a reduced model can be obtain with-

out using any scaling parameter as Theiss and Mohebalhojeh (2009) obtained one

via non-linear normal mode initialization. On their model, there is no Kelvin wave,

but Rossby wave with mixed-Rossby-gravity wave on the generalized model. They

mention that Kelvin wave can be obtained as a separate model as Gill (1982) de-

clared because it is characterized by having zero meridional velocity. They claimed

that their model is suitable to extend to a bounded, forced and stratified fluids.

Chan and Shepherd (2013) applied the long-wave scaling to the weakly non-

linear shallow water equation. They obtained Rossby waves and Kelvin waves to-

gether in their model excluding mixed Rossby-gravity and inertia-gravity waves.

They used the slaving method by which the prognostic equation variable is based

on the height field. Thus, it is not slow as in potential vorticity (PV) based models.

This helps to keep Kelvin wave in their model because it is invisible in PV-based bal-

ance models (Hoskins, McIntyre, and Robertson, 1985). In addition to this weakly

non-linear model, they showed two more cases. One is for a fully linear shallow

water equations and the other one is for the stratified flow with primitive equations.

We infer that equatorial waves differ into two main categories as fast and slow

by their speed. Fast motions are split off regarding the direction of the motion

east/west. Slow motions are separated as rotational and divergent. In a general

view, balance models include only the slow part of this dynamics. Because of the

geometry, we work on the infinite depth and our model covers the vertical motion.

We expect to obtain a balance model covering the slow part of the dynamics.

The non-traditional terms have a central role in equatorial wave dynamics. Hence,

we have quite large motivation to work on this region with the full Coriolis force.

From this perspective, Dutrifoy and Majda (2006) have a new PDE analysis using

raising and lowering operator which are defined for the quantum harmonic oscil-

lator. Their linear long-wave regime provides the existence of the solution. Ad-

ditionally, these terms are used to explain some phenomena in the atmosphere. For

instance, Kohma and Sato (2013b) used it to examine atmospheric waves in the equa-

tor. Hayashi and Itoh (2012) used it with "quasi-hydrostatic" approximation in the

scaling (on spherical coordinates) following Dellar (2011) to explain some impor-

tant circulations like Madden–Julian oscillation. They imply that non-traditional
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components might interact with the diabatic heating and these terms might be help-

ful to explain such influential phenomena. Besides, these phenomena are related

with equatorial waves mainly like Kelvin waves (Dunkerton, 1995) and so corre-

sponding works definitely reveal the wave generation for this specific region. Sim-

ilarly, Ong and Roundy (2019) show the behavior of the zonally symmetric heating

source to mimics Intertropical Convergence Zone (ITCZ) for the large scale flows

with/without non-traditional Coriolis term on their model. It is constructed via

anelastic equations set on the β-plane forced by a heating source. Therefore, it is

worth to include horizontal component of the Coriolis vector into the model.

Verdière and Schopp (1994) claim that hydrostatic approximation can be used for

the upper part of the ocean (above characteristics) and for the rest non-hydrostatic

approximation must be used with the full Coriolis force. Similarly, Kuo (1977) ex-

plains some scaling relationship for the upper part of the atmosphere and ocean. He

implies that there is no couple model for Kelvin waves and it exists independently

in both atmosphere and ocean. Then, we go with the non-traditional approximation

for non-hydrostatic flows. While doing this, we take the ratio between Coriolis vec-

tor components, κ given in (1.66) in our model, large as suggested by Verdière and

Schopp (1994).

In our previous paper (Özden and Oliver, 2021), we observed the effect of the

non-zero horizontal component of the Coriolis vector on the balance model for a

stratified fluid. In the present draft, we investigate the variational model reduction

in the long-wave regime on the equatorial β-plane. We expect the reduced model

is simpler than the mid-latitude model, but it will bring another complexity as a

consequence of the singularity. Here, the special case comes from the characteristics

which do not intercept the bottom boundary. This work is important to complete the

work on characteristics because derivations change completely in the equator.

Yano and Bonazzola (2009) performed the scale analysis considering a param-

eter which is the ratio of the acceleration of the flow to the Coriolis force on their

diabatic models. Then, the horizontal length scale is the main character on their

scaling options. To have the balance on the large scale, they claimed that the initial

conditions should be chosen as a strong constraint. Otherwise, thermodynamic bal-

ance is well-posed only initially. The scaling on our model is done considering their
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specified parameter as large on which the rotation is dominated on the dynamics.

Specifically, we add the anisotropy as a small parameter because Rossby number

vanishes.

We use the variational principle to obtain the equatorial balance model. This

principle is based on the Lagrangian dynamics. It was identified by Salmon (1982;

1985), using Hamilton’s principles. In our derivations, equations of motion are ob-

tained following the similar strategy to that Oliver and Vasylkevych (2016). The

reduced model is called L1 model. In our derivations, the anisotropy on the hori-

zontal scale is taken as a small parameter because it is one of the main characteristic

features on the equator. We choose Case 2 which is one of the scaling options defined

in the main part of the thesis for the derivations. We suggest to work on other cases

for the theoretical interest.

The Section 4.2 provides a brief derivation on how to obtain the equations of

motion via variational principle for Case 2. In Section 4.3, we introduce the nota-

tion considering the axis of rotation. Next, we show the geostrophic velocity under

the chosen scaling in Section 4.4. Truncated Lagrangian is given in Section 4.5. In

Section 4.6, we apply the variational asymptotic to obtain L1 model for Case 2. In

Section 4.7, we show how the conservation laws work on the chosen dynamics. Sec-

tion 4.8 gives the conclusion and the outlook for the problem.

4.2 Derivations for Case 2

We rewrite the momentum equations

ε̂ (∂tu1 + u ·∇u1)− y u2 + κ u3 = −∂x p , (4.7a)

ε̂ ε2 (∂tu2 + u ·∇u2) + y u1 = −∂y p , (4.7b)

ε̂ ε2 α2 (∂tu3 + u ·∇u3)− κ u1 = −∂z p − ρ . (4.7c)

In the leading order, we obtain

Ω × u = −∇p − ρk , (4.8)
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where the vector in the direction of rotation axis is

Ω =


0

κ

y

 . (4.9)

The corresponding Lagrangian reads

ℓ =
∫
D

R u1 +
1
2

ε̂

(
u2

1 + ε2 u2
2 + α2 ε2 u2

3

)
− ρ z dx

+
VP
L

∫
D

p∇ · u dx , (4.10)

where R = κ z − 1
2 y2.

Since the incompressiblity condition is unchanged by the scaling, we can eas-

ily incorporate incompressibility by restricting to flow map to be volume preserv-

ing. Therefore, we do not need the Lagrange multiplier in the Lagrangian. Further,

dropping terms beyond first order and renaming ε̂ to ε, we obtain

ℓ =
∫
D

R · u +
ε

2
u2

1 − ρ z dx . (4.11)

For the simplest model, we take the variation of (4.11) in the leading order with

the Lin constraints δu = v̇ +∇v u −∇u v and δρ = −u ·∇ρ. Here, we set the

parameter given in (1.62) as γ = 1. Then, we have

δℓ =
∫ t1

0

∫
D

R · δu + ε δu1 · u1 − δρ z dx dt

=
∫ t1

0

∫
D

R · v̇ + R ·∇v u − R ·∇u v + ε u1 · v̇ + ε u1 ·∇v u

− ε u1 ·∇u v + v ·∇ρ z dx dt

=−
∫ t1

0

∫
D

(
(∇RT −∇R)u + ε u̇1 + ε (∇uT

1 −∇u1)u + ρk
)
· v dx dt

=−
∫ t1

0

∫
D

(
∂t(R + ε u1) + (∇× (R + ε u1))× u + ρk

)
· v dx dt , (4.12)

where u1 = (u1, 0, 0) and

m =
δℓ

δu
= R + ε u1 , and

δℓ

δρ
= −z . (4.13)
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Ω
z = 0

z = −∞

z

y

Ω

z

FIGURE 4.2: Geometry of the β-plane approximation around the
equator with the full Coriolis vector. Here, x, y, and z are directed
toward the east, the north, and the upward, respectively. The dashed
lines represent the characteristics of the thermal wind relation, in-
spired from Verdière and Schopp (1994), and the axis of rotation is

tangent to them.

Thus, the Euler–Poincaré equation reads

ε (∂t + u ·∇)u1 + Ω × u = −∇p − ρk , (4.14)

which coincides with (4.7) up to terms O(ε). Taking the curl of (4.14), noting that Ω

and u are divergence free, we find

− ε

 0

∇⊥
m(∂t + u ·∇)u1

+ u ·∇Ω − Ω ·∇u =

∇⊥ρ

0

 , (4.15)

where ∇⊥ = (−∂y, ∂x) and ∇⊥
m = (−∂z, ∂y).

4.3 Notation on the tilted axis

While the geostrophic balance holds the horizontal velocity in the mid-latitude, this

situation vanishes in the equator. The leading order gives the dominant balance

only in the meridional direction. For the solution of (4.33), we need to integrate the

velocity field along characteristics which are shown in 4.2. These lines are not in the

same direction as the axis of rotation. Additionally, they are not straight as we have

on f−plane model because characteristics are deformed when we transform them

to the Cartesian coordinate.
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Around the equator, there are four types of characteristics having own specific

features. Two of them intercept the bottom boundary. Then, the zero-flux boundary

condition is valid for the flow at the bottom and at the top. However, these two types

appear on each side of the equator, respectively. The other type of characteristics is

the equator itself. It appears as a point on the meridional-vertical plane. In this

special case, y = 0. The last type is defined for lines which are very close to the

equator and so the value of y is very small. The main feature of this type is that the

characteristics do not intercept the bottom boundary in the vicinity of the equator.

Then, the derivation of the model is different from the mid-latitude model (Özden

and Oliver, 2021).

We are mainly interested in the dynamics near the equator. Thus, the character-

istics that we work on are curves that have vertical boundaries only on the surface.

We repeat the parameterization of the characteristics as we did in the previous

paper (Özden and Oliver, 2021). The corresponding mapping is

x =


x

y

z

 = χ(ξ) =


ξ

κ η

ζ + 1
2 κ η2

 , (4.16)

where η is a parameter along the characteristic curve and ζ is its depth at the equator.

To keep the Jacobian is free from the coordinate, we use the meridional coordinate

for the scaling. The characteristic lines will touch the surface at

η±(η) = ±
√

2
κ |ζ| . (4.17)

Then

∂ξ( f ◦ χ) = (∂x f ) ◦ χ , (4.18a)

∂ζ( f ◦ χ) = (∂z f ) ◦ χ , (4.18b)

∂η( f ◦ χ) = κ (∂y f ) ◦ χ + κ η (∂z f ) ◦ χ = (κ ∂y f ) ◦ χ + (y ∂z f ) ◦ χ = (Ω ·∇ f ) ◦ χ .

(4.18c)
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For the general representation, any scalar function f with the mapping defined in

(4.16) satisfies

∇( f ◦ χ) = (AT∇ f ) ◦ χ , (4.19a)

(∇ f ) ◦ χ = A−T ◦ χ∇( f ◦ χ) , (4.19b)

where the matrix A is

A =


1 0 0

0 κ 0

0 y 1

 , (4.19c)

and we note that detA = κ. For the vector field v,

∇ · (v ◦ χ) = (A : ∇vT) ◦ χ , (4.20)

and

(∇ · v) ◦ χ = A−1 : ∇(vT ◦ χ) . (4.21)

We define the average of a function f along the characteristics that crosses the equa-

tor at (ξ, 0, ζ) via

f̄ ◦ χ =
∫ η+(ζ)

η−(ζ)
f ◦ χ dη , (4.22)

where ∫ b

a
ϕ dη =

1
b − a

∫ b

a
ϕ dη . (4.23)

We now introduce an operator Λ acting on vector fields via Λu = ∇ × (Ω × u)

which, if u is divergence free, reads

Λu = u ·∇Ω − Ω ·∇u . (4.24)

We now show that u ∈ Ker Λ if and only if u = ū with u2 = 0. Suppose first that

u ∈ Ker Λ. Then, for the horizontal components, Λhu = Ω ·∇u = 0, so u = ū. For

the vertical component, we note that

0 = Λ3u =
∫ η+(ζ)

η−(ζ)
u2 ◦ χ − (Ω ·∇u3) ◦ χ dη . (4.25)
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The second term under the integral does not contribute and so we have ū2 = 0

because u3 = 0 at the vertical boundaries. This implies that u2 = ū2. Therefore, we

also have u2 = 0 and further, from the vertical component equation, u3 = ū3. This

proves the forward implication. The converse implication is obvious.

Since û is mean-free,

∫ η+(ζ)

η−(ζ)
η ∂η(û ◦ χ) dη = η+(ζ) û ◦ χ(η+(ζ))− η−(ζ) û ◦ χ(η−(ζ)) . (4.26)

We use the following lemma on integration by parts along the characteristics.

Lemma 4.3.1. Let f an arbitrary function and ĝ is mean free along characteristics. Then,

∫
D

f T[ĝ] dx = −
∫
D

T[ f ] ĝ dx , (4.27)

where T denotes the antiderivative along characteristics, defined as

T[ f ] ◦ χ =
∫ η

η+(ζ)
f ◦ χ′ dη′ . (4.28)

Proof. Integrating by parts in ξ-coordinates, we compute

∫
D

f T[ĝ] dx = κ
∫

T

∫ 0

−∞

∫ η+(ζ)

η−(ζ)
f ◦ χ T[ĝ] ◦ χ dη dζ dξ

= κ
∫

T

∫ 0

−∞
T[ f ] ◦ χ T[ĝ] ◦ χ

∣∣∣∣η=η+(ζ)

η=η−(ζ)

dζ dξ

− κ
∫

T

∫ 0

−∞

∫ η+(ζ)

η−(ζ)
T[ f ] ◦ χ ĝ ◦ χ dη dζ dξ

= −
∫
D

T[ f ] ĝ dx , (4.29)

where boundary terms vanish so long as ĝ.

Remark 1. If the function f has an odd symmetry with respect to the equator, i.e,

∫ η+(ζ)

0
f ◦ χ dη = −

∫ 0

η−(ζ)
f ◦ χ dη , (4.30)
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then it is mean-free along the characteristics by the definition in (4.22)

0 =
∫ η+(ζ)

0
f ◦ χ dη +

∫ 0

η−(ζ)
f ◦ χ dη

=
∫ η+(ζ)

η−(ζ)
f ◦ χ dη , (4.31)

or

T[ f ] ◦ χ(η−(ζ)) = 0 , (4.32)

which means that it vanishes at the boundary.

4.4 Geostophic velocity

The leading order of (4.15) reads Λu = u ·∇Ω − Ω ·∇u = −∇× (ρk). In compo-

nents,

−Ω ·∇u = ∇⊥ρ , (4.33a)

−Ω ·∇u3 + u2 = 0 . (4.33b)

Integrating (4.33a) along characteristics, we obtain

ûg ◦ χ = ûg ◦ χ(η+(ζ)) +
∫ η+(ζ)

η
(∇⊥ρ) ◦ χ′ dη′ . (4.34)

Setting θ = −T[ρ] so that −Ω ·∇θ = ρ, we can express the geostrophic velocity as

Ω ·∇ûg = ∇⊥(Ω ·∇θ) = Ω ·∇∇⊥θ − i ∂zθ . (4.35)

Integrating this expression along characteristics, we obtain

ûg = ∇⊥θ − T[∂zθ] i + ϕ , (4.36)

where ϕ is constant along characteristics. Therefore, the geostrophic velocity is not

automatically mean-free and so θ is not mean-free as we have on the f -plane model.
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4.5 Truncated Lagrangian

We adapt variational framework developed by Oliver (2006) and extended to the f -

plane Boussinesq equations (Özden and Oliver, 2021) to the equatorial β-plane here.

We expand all terms up to O(ε), dropping contributions at O(ε2) without further

mention. We write

uε = u + ε u′ , (4.37a)

ρε = ρ + ε ρ′ , (4.37b)

where the first order terms are subject to the Lin constraints u′ = v̇+ u ·∇v− v ·∇u

and ρ′ = −v ·∇ρ, where v is the vector field generating the transformation. It is

assumed to be divergence free and to leave the domain invariant. Then,

Lε =
∫
D

R · uε +
1
2

ε (i · uε)
2 − ρε z dx

=
∫
D

R · u − ρ z dx + ε
∫
D

R · u′ +
1
2

u2
1 − ρ′ z dx

=
∫
D

R · u − ρ z dx + ε
∫
D
(∇RT −∇R) u · v +

1
2

u2
1 + z v ·∇ρ dx

≡ L0 + ε L1 . (4.38)

Since R = (κz − 1
2 y2, 0, 0), cf. (4.10). Introducing the skew-symmetric matrix

J = ∇R −∇RT =


0 ∂yRx ∂zRx

−∂yRx 0 0

−∂zRx 0 0

 =


0 −y κ

y 0 0

−κ 0 0

 , (4.39)

and integrating by parts in the last term in (4.38), we can write

L1 =
∫
D

u · Jv +
1
2

u2
1 − ρ k · v dx . (4.40)

We seek to determine v such that L1 becomes affine in û1. This requires that Jv =

− 1
2 û1 i up to terms that do not depend on û1. We choose

Jv = −1
2

û1 i + λ ûg1 i , (4.41)
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so that v1 = 0 and

− y v2 + κ v3 = −1
2

û1 + λ ûg1 , (4.42)

where λ is the free parameter. We refer Oliver and Vasylkevych, 2016 for the detail

analysis on the effect of λ.

A solution is given by

v =
1
2


0

−∂zψ

∂yψ

− λ


0

−∂zψg

∂yψg

 , (4.43)

where

ψ ◦ χ = −
∫ η

η+(ζ)
û1 ◦ χ′ dη′ = −T[û1] ◦ χ , (4.44)

and

ψg ◦ χ = −
∫ η

η+(ζ)
ûg1 ◦ χ′ dη′ = −T[ûg1 ] ◦ χ , (4.45)

where T is defined in (4.28). As required, v is divergence free by the construction and

the usage of the stream function on the construction of v guarantees this property.

Moreover, ψ and ϕ are zero on the top boundaries, so that k · v = 0 on the surface.

Similarly, they are vanishing towards the meridional boundaries, j · v = 0 as T[û1]

and T[ûg1 ] are zero at the meridional boundaries. Therefore, û tends to zero fast

enough as y → ∞ in the infinite domain.

With this choice, the kinetic energy and rotational contribution to the L1-Lagrangian

(4.40) read

∫
D

u · Jv + 1
2 u2

1 dx =
∫
D

λ û1 ûg1 +
1
2 ū2

1 dx . (4.46)

The potential energy term is

−
∫
D

ρ k · v dx = −
∫
D

ρ
( 1

2 ∂yψ − λ ∂yψg
)

dx

=
∫
D

ρ
( 1

2 ∂yT[û1]− λ ∂yT[ûg1 ]
)

dx

= −
∫
D

∂yρ
( 1

2 T[û1]− λ T[ûg1 ]
)

dx

=
∫
D

T[∂yρ]
( 1

2 û1 − λ ûg1

)
dx . (4.47)
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We have applied the integration by parts on the third line. The boundary term yields

zero because T[û1] and T[ûg1 ] vanish at the boundary. For the last equality, we have

used Lemma 4.3.1. Now, inserting the first component of the thermal wind relation

(4.33a), we continue:

−
∫
D

ρ k · v dx =
∫
D

T[Ω ·∇ûg1 ]
( 1

2 û1 − λ ûg1

)
dx

=
∫
D

1
2 ûg1 û1 − λ û2

g1
dx . (4.48)

We note that, in general, T[Ω ·∇ûg1 ] = ûg1 only up to a constant of integration on

each characteristic. Here, as we are integrating against a mean-free quantity. This

constant of integration does not contribute to the integral. Hence it can be omitted.

Altogether,

L1 =
∫
D

ν û1 ûg1 +
1
2 ū2

1 − λ û2
g1

dx , (4.49)

where ν = 1
2 + λ.

4.6 Variational principle

The variation of (4.49) is

δL1 =
∫
D

δu1 (ū1 + ν ûg1) + δûg1 (ν û1 − 2λ ûg1) dx ≡
∫
D

δu1 p1 + δûg1 b̂1 dx , (4.50)

where

p1 = ū1 + ν ûg1 , and b1 = ν û1 − 2λ ûg1 . (4.51)

We rewrite the last term of (4.50) with the help of (4.33a) as

∫
D

δûg1 b̂1 dx = −
∫
D

δT[∂yρ] b̂1 dx =
∫
D

∂yδρ T[b̂1] dx = −
∫
D

δρ ∂yB1 dx , (4.52)

where we define B1 = T[b̂1]. The general Euler–Poincaré equation reads

∂tm + (∇× m)× u +
δl
δρ

∇ρ = ∇ϕ̃ . (4.53)
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We have

m =
δl
δu

= R + ε p , and
δl
δρ

= −z − ε ∂yB1 (4.54)

with p = (p1, 0, 0), so that, setting ϕ̃ = −ϕ − zρ, we obtain

Ω × u + ρk + ε
(
∂t p + (∇× p)× u −∇ρ ∂yB1

)
= −∇ϕ . (4.55)

Setting

ξ ≡ ∇× p =


0

∂zū1

−∂yū1

+ ν


0

∂zûg1

−∂yûg1

 ≡ ω + ν ζ , (4.56)

and taking the curl of (4.55) to remove the pressure term, we find

u2 k − Ω ·∇u +∇× (ρk) + ε
(
∂tξ + u ·∇ξ − ξ ·∇u +∇ρ ×∇∂yB1

)
= 0 . (4.57)

The vertical component of (4.57) is

0 = u2 − Ω ·∇u3 + ε
(
∂tξ3 + u ·∇ξ3 − ξ ·∇u3 −∇ρ · ∇⊥∂yB1

)
. (4.58)

We rewrite it,

∂tω3 + u ·∇ω3 = −ν ∂tζ3 − ν u ·∇ζ3 + ξ ·∇u3 +∇ρ · ∇⊥∂yB1 − ε−1(u2 −Ω ·∇u3
)

.

(4.59)

We note that the vertical component of the geostrophic velocity is zero and so O(ε−1)-

term is actually contributing at O(1). Then, we take the average of (4.59) and we

obtain

∂tω3 + ū ·∇ω3 = ω ·∇u3 + ν
(
−u ·∇ζ3 + ζ ·∇u3

)
+∇ρ · ∇⊥∂yB1

−
(
u ·∇ω3 − ū ·∇ω3

)
− ε−1ū2 , (4.60)

where ū2 is small enough and so it is the (slow) prognostic equation. We note that

the commutation idea as given in Lemma 3.11.1-3.11.2 do not work here. Coriolis

vector depends on y-coordinate and so it does not allow to take some terms out of
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the integral that we define the average directly.

To obtain the balance relation, we proceed as follows. Firstly, we check the time

derivative term on (4.57) which appears on the meridional-vertical plane given by

∂tξm = −∂t∇⊥
mū1 − ν∂t∇⊥

mûg1

= −∂t∇⊥
mū1 + ν∇⊥

mT[∂y(u ·∇ρ)]

= −∂t∇⊥
mū1 +

ν
κ ∇

⊥
m(u ·∇ρ)− ν∇⊥

m
(
T[ y

κ ∂z(u ·∇ρ)]
)

, (4.61)

since ûg1 = T[∂yρ].

We assume the strong stratification with small ρ̃ via

∂zρ = −α + ∂zρ̃ , (4.62)

and so the last term on (4.57) is

∇ρ ×∇∂yB1 =

−∇⊥ρ̃ ∂yzB1 − α∇⊥∂yB1

∇⊥ρ̃ · ∇∂yB1

 . (4.63)

We insert U into û, i.e, û = Ω ·∇U, and we obtain the second order differential

equation for U on the horizontal component of (4.57)

LU = −∇⊥ρ + ε

(
∂tzū1 − ν

κ ∂z(u ·∇ρ) + ν ∂z
(
T[ y

κ ∂z(u ·∇ρ)]
))

j + ε Ω ·∇U ·∇ξ

− ε ū ·∇(Ω ·∇ξ)− ε∇⊥ρ̃ ∂yzB1 − ε αν∇⊥∂yUg1 + κ ∂zU − ε ξ2∂zU , (4.64)

where the second order differential operator acting on U is

LU = (κ2 + ε ξ2) ∂2
yU + (2κ y + ε Ω · ξ) ∂yzU + (y2 + ε ξ3y) ∂2

zU + ε α∇⊥∂yU1 (4.65)

which is not elliptic equation because there is a time-derivative term in the merid-

ional component. Besides, there are some higher order terms on the right-hand

side of the meridional equation and they are not easily split because of the oper-

ator T. Before making some more assumptions, we check the meridional-vertical

plane component for another possible balance relation. We apply the curl on the
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meridional-vertical plane onto (4.61), we have

∂t∇⊥
m · ξm = −∂t∆mū1 + ν∆mT[∂y(u ·∇ρ)]

= −∂t∆mū1 − αν∆mT[∂yu3] + ν∆mT[∂y(u ·∇ρ̃)] (4.66)

which suggest a balance relation for u3. However, it is not enough for the construc-

tion of the velocity field.

4.6.1 A special case on the construction of the balance model

We go on an extreme case on the meridional velocity which is taken small as before.

We choose that u2 = ū2 = 0 and the density is free from the zonal dependence, i.e,

ρ = ρ(y, z, t) and so θ = θ(y, z, t). Therefore, the velocity field is u = (u1, 0, u3).

Then, we rewrite the elliptic equation

LU1 = −∂yρ − ε ∂yρ̃ ∂yzB1 − ε αν ∂2
yUg1 − κ ∂zU1 + ε ξ2∂zU1 , (4.67)

where the operator L acting on U1 is

LU1 = (κ2 + ε ξ2) ∂2
yU1 + (2κ y + ε Ω · ξ) ∂yzU1 + (y2 + ε ξ3y) ∂2

zU1 . (4.68)

The related prognostic equation becomes

∂tω3 + ū ·∇ω3 = ω ·∇u3 + ν
(
−u ·∇ζ3 + ζ ·∇u3

)
+∇ρ · ∇⊥∂yB1

−
(
u ·∇ω3 − ū ·∇ω3

)
. (4.69)

For the first glance, we have two evolution equations for the prognostic variables

ω3 and ρ, one kinematic relationship, incompressibility condition and u2 = 0. It

seems that they are enough for the construction of the velocity field. Detail analysis

is necessary for this ongoing work.
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4.7 Conservation laws

Hamiltonian of the reduced Lagrangian is

H =
∫
D

ε

(
1
2

ū2
1 + λ û2

g1

)
+ ρz dx . (4.70)

Therefore, the energy is conserved in the combination of the potential energy and

the kinetic energy from the contribution of the zonal component of the velocity field

on the reduced model. Then, the extreme choice in Subsection 4.6.1 might be reason-

able.

The other conserved quantity is potential vorticity given by

q = (∇× m) ·∇ρ

= (∇× R) ·∇ρ + ε(∇× p) ·∇ρ

= Ωm · ∇mρ − ε∇⊥
mū1 · ∇mρ − εν∇⊥

mûg1 · ∇mρ

= (κ + ε ∂zū1 + εν ∂zûg1) ∂yρ + (y − ε ∂yū1 − εν ∂yûg1) ∂zρ . (4.71)

The potential vorticity appears on the meridional-vertical plane. We know that ûg1 =

T[∂yρ] and Ω ·∇θ = −ρ so it can be written as

q =

∣∣∣∣∣∣∣
y − ε ∂yū1 + εν ∂yT[∂y(Ω ·∇θ)] −∂y(Ω ·∇θ)

κ + ε ∂zū1 − εν ∂zT[∂y(Ω ·∇θ)] −∂z(Ω ·∇θ)

∣∣∣∣∣∣∣ , (4.72)

on which it is expected to have a non-linear second order operator for θ. However,

terms with the operator T brings complexity and we cannot write directly T[∂y(Ω ·

∇θ)] = ∂yθ because Ωz = y.

4.8 Conclusion and Outlook

In this draft, we have studied a balance model on the equatorial β-plane with the full

Coriolis force. The tangent layer has periodic boundary conditions along x-axis and

rigid-lid approximation is assumed vertically. For simplicity, we assume that it is in-

finite on yz-plane and so the meridional velocity vanishes towards the boundary. We
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have constructed derivations via imposing degeneracy to the truncated Lagrangian

which is called variational model reduction.

The identical setting was used in primitive equations by Salmon (1996) and Oliver

and Vasylkevych (2016). Then, it was extended to the three-dimensional Boussinesq

equation by Özden and Oliver (2021). This work provides the derivations for the

long-wave regime constructed on the same idea following these works.

The ellipticity of the balance relation for the general model fails in our deriva-

tions. To handle it, we assume that the strong stratification on which the horizon-

tal variation might be ignored. We lost the control on the geometry because of the

anisotropy and the nearly horizontal the axis of rotation in the vicinity of the equator.

Then, we worked on more extreme case with assumptions on the meridional veloc-

ity and the density. With this special case, it makes the construction of the fields

possible and the detail analysis must be done for this ongoing work. It is consistent

with the energy conservation because only the zonal component of the velocity field

contributes to the conservation. In addition, we cannot write directly the ellipticity

on the potential vorticity equation because of the complexity on variables with the

operator T.

The equator is the special part of the Earth. The axis of the rotation aligns par-

allel to the horizontal plane. Then, we have not expected to have a similar result

as we have in higher latitudes. β-plane approximation seems very convenient for

the equatorial region. However, it causes a complexity in our derivations because of

the y dependence on the vertical component. We expect to obtain a valid equatorial

balance model in the long term.
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Chapter 5

Conclusion

In this dissertation, we considered three dimensional stratified Euler-Boussinesq

equations with the full Coriolis force. We derived the balance model on the f -plane

for the mid-latitude and worked on the β-plane for an equatorial balance model. We

used the non-hydrostatic approximation on each model and so our models include

the vertical velocity. We pursued our derivations using variational principle because

conservation laws follow automatically.

First, we investigate the balance model on the f -plane for the mid-latitude. It is

an extended version of the model obtained by Oliver and Vasylkevych (2016) using

primitive equations. Then, it is the most general model in the semi-geostrophic scal-

ing with the full Coriolis force. The axis of rotation is not parallel to the local vertical.

This makes the derivations difficult because of the non-zero horizontal component

of the Coriolis vector. As a result of working on tilted lines, we obtain extra terms

on the resulting model which are not seen on the primitive equation model.

We further examine the balance model on the β-plane in the long-wave scaling.

In this case, the horizontal aspect ratio between meridional and zonal length scales is

used as a small parameter. This approximation provides the geostrophic balance in

the meridional direction. Thus, it supports Kelvin wave which appears on dynamics

with zero-meridional velocity (Majda, 2003). According to the theory, the mixed

Rossby-gravity wave is not seen on this scale because this wave requires asymmetry

in the meridional direction (Boyd, 2018). This wave is not meridionally geostrophic.

Therefore, the long-wave approximation implies the dynamics which contains only

Rossby waves and Kelvin waves because meridional geostrophy does not support

mixed Rossby-gravity wave even it is in Rossby-like regime. Kelvin waves require

zero meridional velocity, but mixed Rossby-gravity waves need asymmetry in the
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meridional direction. Thus, the equatorial balance model which is free from only

gravity waves needs a different approach.

The scaling is the main challenge on the equator. We considered three different

scaling assumptions. We followed one of them for which the rotation is dominant.

We choose it because we are interested the large-scale motions with rotation. On this

region, the Coriolis vector depends on y-coordinate because of the β-plane approx-

imation and the characteristics are not straight lines. So far, we have not obtained

any convincing result in the general model, but it is promising work in more extreme

case on which the meridional velocity is zero.

The following items remain open for the equatorial balance model:

• We have briefly checked the f -plane model for the equator assuming that the

axis of the rotation horizontally aligns. However, it seems that the ellipticity

of the balance relation fails there, but a full proof is necessary. We believe that

it is due to the geometry. The coordinate dependence of the Coriolis vector

presents an extra difficulty and then we suggest to construct the model on f -

plane with constant latitude ϕ.

• The scaling that is used by Majda (2003) does not provide a solvable model,

a brief derivation of the kinematic relation is given in Appendix A. On the

other hand, Chan and Shepherd (2013) have a model with Kelvin waves in

addition to Rossby waves. However, the variable of the prognostic equation is

the height field and so it is not slow. In conclusion, we did not find any well-

posed balance model in the literature. We expect to have a valid model with

our ongoing work.

When we look at the literature, we observe that one needs to sacrifice one of

the wave type from the resulting model depending on the method. For instance,

Theiss and Mohebalhojeh (2009) obtain an equatorial balance model, but without

Kelvin waves. Similarly, Chan and Shepherd, 2013 do not have mixed Rossby-

gravity waves in their model. Therefore, a balance model near the equator covering

all slow equatorial waves is still missing. Mathematically, it is expected to have in-

teresting features (Majda, 2003). We hope to combine the variational approach with

long-wave scaling in the future work.
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Appendix A

Towards the solution of the equatorial

balance model for Case 2

In this part, non-linear equatorial long-wave equations on the β-plane is briefly dis-

cussed. It was derived by Majda (2003) for the shallow water equations. In the

leading order, we have

∂tu1 + u · ∇u1 − y u2 = −∂xh , (A.1a)

y u1 = −∂yh , (A.1b)

∂th +∇ · (hu) = 0 . (A.1c)

where h denotes the total height field. We apply the cross-differentiation to the mo-

mentum equations (A.1a) and (A.1b), and we obtain

∂ytu1 + u · ∇∂yu1 + ∂yu · ∇u1 = ∇ · (yu) , (A.2)

Taking two y-derivatives of (A.1b), we have

2 ∂yu1 + y ∂yyu1 = −∂yyyh . (A.3)

We differentiate (A.3) in time, and we get

(2 + y ∂y)∂ytu1 = −∂yyy∂th . (A.4)

Then, we insert (A.2) and (A.1c) to (A.4), and we find

(2 + y ∂y)(∇ · (yu)− u · ∇∂yu1 − ∂yu · ∇u1) = ∂yyy∇ · (hu) . (A.5)
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We now sort all terms containing u2 onto the left, everything else onto the right hand

side:

(2 + y ∂y)
(
∂y(yu2)− u2 ∂yyu1 − ∂yu1 ∂yu2

)
− ∂yyyy(hv)

= −(2 + y ∂y)
(
∂x(yu1)− u1∂xyu1 − ∂yu1 ∂xu1

)
+ ∂xyyy(hu) . (A.6)

Separating out linear terms (assuming that h is a small perturbation about h = 1),

we find

2 u2 + 3 y ∂yu2 + y2 ∂yyu2 − ∂yyyyu2 + NL = RHS , (A.7)

where "NL" denotes the whole non-linear terms on the left-hand side of (A.6) and

"RHS" represents terms on the right-hand side of the same equation. Unfortunately,

the fourth-order term has the "wrong" sign, and so we are not going to get a coercive

bilinear form from the linear operator. Otherwise the expression would not look too

bad: On a sufficiently small strip, the left-hand linear operator would be invertible,

e.g. with homogeneous Dirichlet and Neumann conditions. But as things stand, there

will be resonances for particular meridional widths of the channel. We conclude that

the model with the scaling given in Case 1 does not provide a solvable kinematic

balance relation.
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Appendix B

Horizontal mean field on the mid-latitude

The following lemma gives the derivation of the horizontal mean field. Derivations

are done for the mid-latitude and the coefficients are defined in Chapter 3. Here,

we draw attention to the main difference between the Boussinesq and the shallow

water models. The Boussinesq equations describe incompressible flow while and

we do not have such a property for the shallow water models.

Lemma B.0.1. Let ⟨ϕ⟩ denote the average over the entire three-dimensional domain, ⟨ϕ⟩ =

0 if and only if the horizontal mean of ϕ̄ is zero for any function ϕ.

Proof. The average over the entire domain D of some function ϕ

⟨ϕ⟩ = s
∫

T2

∫ 0

−s−1
ϕ ◦ χ dx =

∫
T2

ϕ̄ ◦ χ dx = 0 , (B.1)

so ⟨ϕ⟩ = 0 if and only if the horizontal mean of ϕ̄ is zero.

We check this argument of the Euler–Boussinesq equations. Initially, we assume

⟨u⟩ = 0. Thus, we have to look at the Euler–Boussinesq momentum equations term

by term. The advective term is

⟨u ·∇u⟩ =
∫
D

u ·∇u dx

= −
∫
D

u∇ · u dx +
∫

∂D
u u · n dS

= 0 , (B.2)

where the divergence theorem is used on the second line. The first term on it is

zero by the incompressibility, and the second term vanishes by the zero-flux and

the periodic boundary conditions. We note that for the shallow water equations,
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this argument does not work as the divergence of u is not necessarily zero, so the

advective term can change the mean.

We know that the horizontal mean cannot be zero. Then, we split it into a steady

vertical profile and a perturbation density, ρ = ρ̄(z) + ρ′(x, t). Setting

pstatic =
∫ 0

z
ρ̄(z′) dz′ , (B.3)

and

⟨ρ⟩ =
∫
D

ρ ◦ χ dx

=
∫

T2

∫ 0

−H
ρ̄ + ρ′ dx =

∫
T2

∫ 0

−H
ρ′ dx , (B.4)

which contributes to the hydrostatic part of the pressure term which is just a con-

stant. Thus, the mean of ρ does not change in time. Altogether, we rewrite the

Boussinesq momentum equations as

ε (∂tu + u ·∇u) + Ω × u = −∇(p − pstatic)− ρ′ k . (B.5)

The average of the horizontal momentum equations over the entire domain is zero,

but that of the vertical momentum equation needs more detail analysis.
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