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Abstract

Balancing geophysical flows is a procedure to decompose the system state into a bal-
anced flow and unbalanced gravity-wave components. These gravity waves are generated
spontaneously, orographically or via forcing, and presumed to contribute significantly to
dissipation of energy in the ocean. This energy route is understood to a limited extent,
and our understanding needs to be improved to develop more accurate climate models.
For this purpose, accurate gravity-wave diagnostics are crucial. In this thesis, we focus on
the decomposition method called optimal balance.

Optimal balance was introduced by Viúdez and Dritschel (2004) in a special numeri-
cal setting where potential vorticity is advected by a semi-Lagrangian scheme, so it was
specifically named optimal potential vorticity balance. Optimal balance works through adi-
abatically deforming the nonlinear model into its linear form where mode decomposition
is exact. This leads to a boundary value problem in time, which is solved by iterative
backward-forward nudging scheme. At the linear-end boundary, gravity waves are re-
moved. At the nonlinear-end boundary, a base-point coordinate is restored. This process
is repeated until convergence to a balanced state that is characterised by the given base-
point coordinate. Global geophysical ocean models use traditional variables (velocity and
tracer fields) rather than potential vorticity and complementary variables, so that optimal
balance should be performed in these variables. In this thesis, we therefore apply opti-
mal balance to the f -plane shallow water model governed by the primitive velocity-height
variables as a first step toward optimal balance for full ocean models.

Our model implementation is based on a pseudo-spectral scheme in velocity-height vari-
ables on a spatially periodic domain; nevertheless, kinematic potential vorticity inversion
formulas appear if potential vorticity is set as base point. The core of this thesis focuses
on a systematic investigation of design parameters included in our numerical setting: in-
tegration time scale, ramp function, linear projector at the linear end, and base-point
coordinate at the nonlinear end. We also explored numerically the applicability of vis-
cosity term, the sensitivity of convergence tolerance, diagnostic tools, the initial-condition
structure. Out of all parameters, the linear projector and the base point are found as be-
ing the most critical. The use of the linear oblique projector and the base point potential
vorticity is the best combination. The oblique projector spectrally maps the flow onto its
Rossby-wave mode along its gravity-wave mode, and it can be reformulated as a PDE-
based projector, which corresponds to preservation of linear potential vorticity. As base
point, the potential vorticity is advantageous with its fast convergence. With the choice
of this combination, we support the use of the potential vorticity-preserving end-point
conditions in the balancing procedure. On the other hand, the height field as base point
gives good quality balance with some restrictions, so that it is also a prominent candidate
as base point, which is convenient for models formulated in primitive variables.

The numerical investigation in the thesis points to convergence issues of the backward-
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forward nudging scheme. Though the method always gives well-balanced flows, the se-
quence of iterates produced by the nudging scheme converges to the base point only up
to a small residual that does not vanish as the number of iterations is increased. Working
on a lower-dimensional model, we split the overall error into a balance error and a ter-
mination residual. We prove that the termination residual is of the same small order as
the balance error. As a result, the nudging iterates “quasi-converge,” i.e., the termination
residual decreases at algebraic order in the time-scale separation parameter.

We conclude that optimal balance an accurate balance-imbalance decomposition in
primitive variables. Its simplicity comes from its applicability as a diagnostic tool over
existing numerical codes without the need of any asymptotic analysis. We expect that
the behaviour of the different linear and nonlinear end boundary condition will carry over
when implementing optimal balance for complicated systems such as the models on the
sphere and global ocean models. In practice, the PV-based conditions will be of particular
importance as they can be implemented by solving an elliptic PDE on general domains.



Chapter 1

Introduction

In large-scale ocean dynamics, geophysical flows at mid-latitudes are dominated by a
balance between the pressure gradient and the Coriolis force in the horizontal direction,
and by the gravity and buoyancy forces in the vertical direction, which are respectively
called geostrophic balance and hydrostatic balance. These flows evolve over long-time
scales and are described as slow balanced flow. The large-scale dynamics of the ocean is
predominantly balanced; however, on small scales there are also gravity waves that evolve
over short-time scales and are described as fast unbalanced waves. In the literature, the
balanced flow is found under terms such as Rossby waves, vortex dynamics, vortical flow,
slow-geostrophic mode and so on; terms used to represent the unbalanced flow are gravity
wave, gravity-wave mode, fast-ageostrophic mode and so on.

The balanced flow and unbalanced wave evolving on different time scales can be sepa-
rated from each other. For a linear flow, this separation is exact, where the flow is divided
into balanced Rossby-wave and unbalanced gravity-wave components. For a nonlinear
flow, explicit separation is not possible, as gravity waves are excited spontaneously by the
nonlinear coupling between the different modes. If linear-mode decomposition is used to
describe a nonlinear state, the nonlinear balanced (geostrophic) component contains not
only linear Rossby waves, but also a contribution from the linear gravity-wave modes that
is “slaved” to the Rossby-wave modes. To clarify the terminology, we call the nonlinear
unbalanced component as unbalanced gravity waves throughout the thesis.

The strength of gravity-wave excitation is characterised by the time-scale separation
parameter ε, which is, in our work, Rossby number

ε = U

fL

with horizontal velocity scale U , horizontal length scale L, and Coriolis frequency f . This
number ε indicates the effect of Earth’s rotation on the fluid, and in terms of time scales, it
characterises the magnitude of the slow dynamics at frequency 1/T relative to the Coriolis
frequency f . When ε takes relatively large values, the slow-fast dynamics are strongly
coupled resulting in a substantial amount of gravity-wave emission. This occurs, e.g., in
the equatorial ocean and in regions close to strong fronts. In this regime, the flows with
frequency equal to or larger than f are excited and classified under “unbalanced flow”.
When ε takes smaller values, ε � 1, the rotation effects become dominant and near-
geostrophic balance persists over long-time scales. In this regime, the coupling between
motion on the two-time scales is weak and gravity-wave emission is small with respect to
ε. The flows excited with frequency much smaller than f are, then, identified as “balanced

1



2 CHAPTER 1. INTRODUCTION

flow”. In our work, we mainly focus on the small-Rossby-number regime, where the two
time scales can be distinguished due to the large frequency gap.

The gravity-wave-permitting nature of geophysical fluid models makes the flow-wave
decomposition to characterise balance flows a long-standing issue, which we also deal with
in this thesis. The decomposition is important for several reasons:

i) Flows completely void of (geostrophic) gravity waves fail to capture accurate dy-
namics for ageostrophic phenomena such as intense mesoscale fronts. An improved
understanding of gravity-wave emission and activity is crucial to improve our under-
standing of such processes (Vanneste and Yavneh, 2004).

ii) Available numerical weather prediction or climate models require to be initialised by
near-balanced flows. Starting with flows disturbed by spurious gravity waves leads
to erroneous short-range forecasts (Lynch, 2006).

iii) The effect of gravity waves can be seen on larger scales despite their small scale struc-
ture, so that unresolved gravity waves contributes significantly to the uncertainty of
weather forecast (Kim et al., 2003).

iv) The bulk of energy in the ocean is assumed to be dissipated by gravity waves and
this energy transfer is not well understood. The energy transfer can be included
in the global climate models after the identification of its route to provide accurate
climate forecasts (von Storch et al., 2019).

This thesis contributes to the development of applicable diagnostics that accurately quan-
tify gravity waves in geophysical flows.

The characterisation of balanced flows is usually done by asymptotic analysis. We,
here, work with the purely numerical method “optimal balance”. The numerical study
of optimal balance is achieved, earlier than the theoretical results, in the context of geo-
physical flow models by Viúdez and Dritschel (2004). The novelty of their work rests
in constructing balanced flows implicitly while a specified potential vorticity is taken as
a base point coordinate (or fixed reference field), so that their work is called optimal
potential vorticity (PV) balance. The application of optimal balance involves solving a
boundary value problem in time, which is done via an iterative backward-forward nudg-
ing scheme. The formulation of Viúdez and Dritschel (2004) requires a special numerical
scheme formulated in geostrophic-ageostrophic variables, where the q fields is advected in
the Lagrangian form; the other fields in the Eulerian form. Operational global models,
however, do not employ these geostrophic-ageostrophic variables. The implementation of
optimal PV balance with its scheme on the global models can also be computationally
expensive despite very strong convergence of the method. This drawback will persist with
optimal balance in primitive variables!

The theoretical study of optimal balance is achieved in a finite-dimensional model
analogous to the evolution of single-column fluid in a specific regime, which is derived in
Section 2.3.1. After optimal balance is realised as adiabatic invariance of slow manifolds
(Cotter and Reich, 2006), the improvement in the later work (Gottwald et al., 2017)
provided exponentially small residual of the method in the same model with rigorous
settings. The theoretical results are discussed in details in Section 2.4.

In this thesis, we apply the theory of optimal balance in such a way that it can poten-
tially provide diagnostics for global models without the requirement of a special numerical
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treatment. To explore the concept, we choose to work in a simple setting: a single-layer
rotating shallow water model moving on the f -plane in velocity-height variables. We im-
plement the scheme over an existing pseudo-spectral shallow water code. The numerical
implementation of optimal balance comes together with several design parameters, which
are thoroughly examined. Among a wide range of parameters, our numerical results em-
phasised the significance in the selection of two parameters: the projector at the linear-end
boundary and base point at the nonlinear-end boundary. We find that optimal balance
works with PV-based projectors – which are the strongest choice – or with primitive
variable-based projectors which are useful for general domains and global models, which
all are reported and compared in Chapter 6.

While Viúdez and Dritschel (2004) report rapid convergence of the backward-forward
nudging scheme, the proof of convergence to the solution of the boundary value problem
is, yet, an open question. In this thesis, we provide initial theoretical results to this issue
in the finite-dimensional setting that the other theoretical results are also built upon.
According to our results, convergence does not occur in the strict mathematical sense:
The nudging scheme gives sufficiently close consecutive iterates, but as the number of
iterates gets larger, a small residual does not disappear. However, we can show that this
termination residual will be small alongside with the balance error, and is of algebraic
order in ε.

1.1 Thesis Outline

Chapter 2 introduces the general concept of balance in a generic slow-fast model. We
discuss an infinite-dimensional model, the rotating shallow water model on the f -plane,
and finite-dimensional models, an analogue evolutionary model of single-column fluid and
the spring-mas pendulum. Optimal balance is introduced in the framework of the generic
model with precise explanation of each component. The theoretical work related on the
finite-dimensional model is recalled, and as an initiative implementation, the optimal PV
balance is described.

Chapter 3 focuses on the quasi-convergence of the backward-forward nudging scheme
in the context of the finite-dimensional system.

Chapter 4 deals with the application of optimal balance to the rotating shallow water
model on the f -plane, in primitive velocity-height variables. After analysing the time scales
of the model, the optimal balance boundary value problem is constructed. We suggest
different choices for the formulation of the boundary conditions to be tested numerically.

Chapter 5 describes the experimental set-up. The numerical implementation of the
problem over an available code, the choice of ramp function and the choice of initial
conditions to start up test cases are introduced. To diagnose the performance of opti-
mal balance, a special diagnostics, named “diagnosed imbalance”, is used. Gathering all
components, we describe the complete numerical set-up.

Chapter 6 reports the systematic investigation of the behaviour of optimal balance de-
pending different combinations of the design parameters. We identify the best combination
which yields high-quality balance with reasonable convergence.

Chapter 7 concludes this thesis with the highlights of the theoretical and numerical
aspects and the discussion of possible future works.

Appendix A includes additional simulation results, mostly in the quasi-geostrophic
scaling limit, which are not presented in Chapter 6.





Chapter 2

Model and method description

In this chapter, we describe several mathematical models and the method of optimal
balance. We initially formulate an abstract slow-fast system to review the general con-
cept of balance. Then, two concrete examples, the shallow water equations and a finite-
dimensional model are introduced. We then formulate optimal balance on the abstract
model. As last, relevant theoretical and numerical studies on these models are revised, as
a starting point for our original work.

2.1 A class of abstract slow-fast systems

The geophysical fluid models can be expressed in a general compact form. If the compact
form is linear, the time-scale separation of fluid dynamics is exact, and we denote fluid
dynamics with slow geostrophic component s and fast ageostrophic components f . We
keep the same s-f notation for the nonlinear form, but the components are, here, separated
only approximately, which will be explained clearly later on. The compact two-time-scale
form is, then, written as

∂ts = Ns(s,f) , (2.1.1a)

∂tf = 1
ε
Lf +Nf (s,f) , (2.1.1b)

where ε is a small-scale separation parameter, Ns and Nf are nonlinear operators, and L
is a linear operator with purely imaginary eigenvalues. The nonlinear operator represents,
for example, the advection term in fluid dynamical equations while the linear operator
causes oscillatory behaviour of fast variables. The rotating shallow-water model and the
Euler-Boussinesq equations can be written in this compact form, see respectively Dritschel
et al. (2017) and Franzke et al. (2019).

2.1.1 Balanced flow components

In geophysical flows, we separate the dynamical fields into a geostrophic, a balanced
ageostrophic and unbalanced components, as it is expressed in Danioux et al. (2012).
Regarding the compact form (2.1.1), the general flow is written as

s+ fbag + funb .

The balanced ageostrophic component fbag is given by higher-order corrections to the
leading-order geostrophic component s. This component is obtained systematically in

5
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powers of time-scale separation parameter ε. In this context, the parameter is the Rossby
number. The remaining part of f forms the unbalanced ageostrophic component funb,
which we call the unbalanced flow or gravity waves. We will explain how to derive fbag
as a power series in ε and how to determine the amplitude of funb in the upcoming
sections. The balanced flow is, then, identified by the geostrophic component s for linear
flows, where the mode separation is exact, and by s + fbag for nonlinear flows, where
the nonlinear-mode interaction is present. The main point of the thesis is to characterize
balance for nonlinear flows.

2.1.2 Balance relation and balanced model

The balanced flow s+ fbag is described by a relation between the slow component s and
the fast component f at an instantaneous time. By this relation, the dynamics of the
flow is reduced to expressed by fewer degrees of freedom, generally by a single dependent
variable, the slow variable s. The geostrophic balance is the least accurate member of
these relations at leading order, which excludes the fast variable f . For higher-order
relations, the nonlinear interactions Ns(s,fbag) and Nf (s,fbag) are crucial to describe
minimal ageostrophic features, fbag. The balance relation or filtering condition is defined
as a functional map Gn : s→ fbag such that

fbag = Gn(s) , (2.1.2)

where n is the order of the relation. As Gn parameterizes a slow manifold by s, we call s
base-point coordinate or base variable. In other words, the balance relation Gn slaves the
component fbag to the slow variable s, so that fbag is also referred to as slaved variable.

The relation Gn has the properties of being kinematic or diagnostic. Due to being
kinematic, the relation does not involve any explicit time dependency: It is free of any
expression of time, time derivatives and time integrals. At the same time, it is diagnostic
in the sence that it can reconstruct the complete phase space coordinates when the slow
variable s is known at some certain time t, but any time-dependent information of s stays
unknown (McIntyre, 2015). The balance relation, thus, does not provide the evolutionary
state of the flow.

A balance model, on the other hand, approximates the evolutionary process of the
whole dynamics providing only slow-time evolution. It consists of a single prognostic
equation, and the simplest model is obtained by inserting Gn(s) into the slow equation
(2.1.1a), that is,

∂ts = Ns(s,Gn(s)) . (2.1.3)

The single variable s is enough to initialise the balanced model and provide the dynamics
in the extended phase space. Balance model hierarchies are, then, constructed employing
increasingly accurate relations Gn.

To derive higher-order balance relations, we combine the equations in the model (2.1.1)
using Gn instead of f , then we obtain the superbalance relation,

εNs(s,Gn) · ∂sGn + LGn − εNf (s,Gn) = 0 . (2.1.4)

This superbalance relation is approximated in increasing order using different approaches,
which lead to next-order accurateGn. The one of the two approaches that we will introduce
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is to expand fbag in power series of ε, i.e.,

fbag = εf1 + ε2f2 + · · ·+ εnfn =
n∑
i=1

εif i(s) . (2.1.5)

The variable s is updated at each step according to the obtained fbag. As fbag has zero
leading order, the leading-order model is

fbag = 0, ∂ts = Ns(s, 0) .

The model at O(ε) becomes

fbag = εL−1Nf (s, 0), ∂ts = Ns(s,fbag) .

The pattern of fbag becomes clear at O(ε2), so the model at nth ε-order yields

fbag = εL−1
(
Nf (s,fn)−Ns(s,fn) · ∂sfn

)
, ∂ts = Ns(s,fbag) .

As the second approach, the superbalance equation (2.1.4) is approximated iteratively,
and the (n+ 1)th iterate gives

Gn+1 = εL−1
(
Nf (s,Gn)−Ns(s,Gn) · ∂sGn

)
,

where Gn is known from the previous iteration. In the same manner, a model hierarchy
follows at each iteration step. We refer Warn et al. (1995) for these approaches and
Vanneste (2013) for a review in other type of derivations.

2.1.3 Slow manifold

Slow manifold is a subset of phase space, not a manifold in topological sense, more precisely,
it is an invariant manifold tangent to slow subspace of equilibrium points for nonlinear
dynamical systems see Verhulst (1990). The notion of the slow manifold is established
by the balance relation Gn and the corresponding balanced model is understood as a
projection of the whole system dynamics on this slow manifold. The whole concept of
balance is, then, reduced to find a flow state placed on the slow manifold.

The system dynamics on the slow manifold has contribution of only slow balanced
motion but of no fast oscillations. The slow manifold and these fast oscillations cannot,
thus, theoretically coexist. The manifold is unique and invariant for dissipative systems;
however, there is no slow object with these properties for nondissipative systems. The
uniqueness and invariance of slow manifold are relaxed due to nonexistence of explicit
scale separation, while the manifold properties can be maintained rigorously, see MacKay
(2004). These nearly invariant slow manifolds are named as balanced manifolds or approx-
imate slow manifolds. There are also terminologies like fuzzy manifold and quasi-manifold
used to address the vagueness in invariance. In the thesis, we are interest in nondissipative
systems, and so the term “slow manifold” always refer a nearly invariant one.

For nondissipative systems, the slow manifold is constructed as an asymptotic series
of expansion or iterative procedures (2.1.5). The accuracy of balance can be improved to
a desired order of accuracy, O(εn), obtained by the series expansion of the first n terms
or by the iteration at nth step. While the improvement is asymptotically possible in the
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Slow manifold

Balanced
trajectory

Exact
trajectory

s₁

s₂

f₁

f₂

Figure 2.1: Exponentially small fast oscillations are spontaneously excited after some time. To provide an
illuminating interpretation, we consider a dynamical system with an extended phase space, which consists
of two slow (s1, s2) and two fast (f1, f2) variables, as being different than the phase space of our general
model (2.1.1). The exact trajectory (green path) initialised on the nearly invariant slow manifold remains
in close distance to it for long slow time. After some time, the model dynamics excites abrupt oscillations,
which are exponentially small, and the exact trajectory drifts away from the balanced trajectory (red path)
obtained from the balanced model. Drawn after Vanneste (2013).

limit of ε→ 0 for fixed n, the convergence to a slow manifold is limited by the divergent
nature of the series expansion as n → ∞. This analytical divergence corresponds to the
nonexistence of an exactly invariant slow manifold.

The best balance approximation results after the truncation of the series expansion
at optimal term, nopt ∼ 1/ε, which gives the smallest coefficient in the last term, and
the accuracy turns out to be an exponential order, O(exp(−c/ε)) for some c > 0. After
the term nopt, the remainder of the series becomes significant, and the balance error
increases, see Vanneste (2013) and references therein. As the slow manifold is exponentially
accurate, the dynamical systems with optimally truncated initialisations start exciting fast
unbalanced motion with exponentially small amplitude, see Figure 2.1. This “spontaneous
excitation” or “spontaneous generation” justifies the nonexistence of exactly invariant slow
manifold.

The exponentially small deviation of fast dynamics from the slow manifold is achieved
rigorously in different type of systems, but not all results provided the exponent 1 of ε,
that is O(exp(−c/εα)) for different α. For a generic finite-dimensional system as in (2.1.1),
the exponential decay of imbalance is obtained with α = 1/2 and α = 1 in Wirosoetisno
(2004) and Vanneste (2008), respectively. When a specific Hamiltonian system is studied,
to be introduced in Section 2.3.1, the fast dynamics remain close to the slow manifold
with the residual of O(exp(−c/ε)) over long times of O(exp(c/ε)) provided that the fast
dynamics are vanished at the initial time, see Cotter (2013). In the same system, the
residual is found to decay slower with the power α = 1/3, where it is not strict but 1 is
not reached, in Gottwald et al. (2017). As an infinite-dimensional model, the hydrostatic
primitive equations are studied, and the bound with α = 1/3 is found, see Temam and
Wirosoetisno (2007, 2010, 2011).
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2.2 Infinite-dimensional model

In this part, we introduce the rotating shallow water equations as an infinite-dimensional
model, which can be reformulated in the form of (2.1.1). Our main numerical work is also
built on this model. Besides the description of the model, we separate linear shallow-water
flow exactly into its balanced Rossby-wave and imbalanced gravity-wave components by
the normal-mode decomposition. The separation can be conducted by the application of
the spectral projectors on the flows.

2.2.1 The rotating shallow water equations

The rotating shallow-water equations describe the evolution of fluid columns in shallow
fluid layer with mean height H0. The fluid dynamics is described by free surface displace-
ment h = h(x, t) and velocity field u = u(x, t) on the 2π-doubly periodic domain in the
following equations:

∂tu+ u · ∇u+ f u⊥ + g∇h = 0 , (2.2.1a)
∂th+∇ · (hu) +H0∇ · u = 0 , (2.2.1b)

where u⊥ = (−v, u), the fluid domain has the Coriolis parameter f and the gravity
acceleration g.

The nondimensionalisation of the equations (2.2.1) characterises physical regimes in
the fluid domain depending on scaling limits. We introduce a horizontal velocity scale
U , horizontal length scale L, fluid depth scale H, and time scale T , and describe each
quantity in (2.2.1) as multiplication of its scale with its nondimensional form, which we
denote, for simplicity, by the same letter. The equations, then, become

U

T
∂tu+ U2

L
u · ∇u+ fUu⊥ + gH

L
∇h = 0 , (2.2.2a)

H

T
∂th+ HU

L
∇ · (hu) + H0U

L
∇ · u = 0 . (2.2.2b)

Assuming an advective time scale, T = L/U , we obtain three nondimensional param-
eters: The Rossby number is denoted by

ε = U

fL
, (2.2.3)

and it can be written as ε = 1/(fT ) in terms of time scales demonstrating the magnitude
of the dynamics frequency 1/T in the domain relative to the local Coriolis frequency f .
The second parameter is called the Burger number, and it is given by

Bu = L2
d

L2 = gH0
f2L2 , (2.2.4)

where the Rossby deformation radius Ld = c/f with characteristic wave speed c =
√
gH0

indicates the length scale that a gravity wave can travel until having a significant change
under the effect of the Coriolis force. The third parameter is the nondimensional layer
depth

h0 = H0
H

. (2.2.5)
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The nondimensional shallow-water equations (2.2.2), then, become

ε (∂tu+ u · ∇u) + u⊥ + 1
h0

Bu
ε
∇h = 0 , (2.2.6a)

∂th+∇ · (hu) + h0∇ · u = 0 . (2.2.6b)

Focusing on the small-Rossby-number regime, ε� 1, the Coriolis term u⊥ dominates
the material advection terms (∂tu+ u · ∇u). In this case, the Coriolis term is balanced
by the pressure gradient ∇h to a leading order in the momentum equation (2.2.6a), when
Bu = εh0. This leading-order geostrophic balance is

ug =∇⊥h . (2.2.7)

Two main distinguished scaling limits are considered:

i) The quasi-geostrophic limit arises from Burger number of order one, Bu = O(1). The
nondimensional mean height, therefore, becomes h0 = O(ε−1), and small amplitude
of height variations h = O(ε) follow.

ii) The semi-geostrophic limit arises from Burger number of order ε, Bu = 0(ε). The
heights h0 and h, therefore, take the same order O(1).

We, thus, admit h0 = ε−1 for the quasi-geostrophic scaling; h0 = 1 for the semi-geostrophic
scaling. In this thesis, we work on both scaling regimes.

2.2.2 Normal-mode decomposition

For the linear rotating shallow-water equations,

ε∂tu+ u⊥ +∇h = 0 , (2.2.8a)
∂th+ h0∇ · u = 0 , (2.2.8b)

described on the periodic domain, the u-h variables are spectrally represented in Fourier
space: When k = (k, l) is the wave-number vector with k and l, respectively, in x and y
directions, for u we write

u(x, t) =
∑
k∈Z

uk(t) eik·x . (2.2.9)

After multiplication with e−ik·x and integration over domain, the linear equations (2.2.8)
turn into the system of zk = (uk, hk),

∂tzk = iAkzk with Ak =

 0 −i/ε −k/ε
i/ε 0 −l/ε
−h0 k −h0 l 0

 . (2.2.10)

For each k, the matrix Ak holds eigenvalues, so-called dispersion relations, λrw
k = 0 and

λgw
k = ±(εh0|k|+1)/ε2, and their corresponding eigenvectors υk,0 and υk,1, υk,2 take the

form

υk,0 =

−ilik
1

 and υk,1, υk,2 =

 0
i/ε
−h0k

 ,

−i/ε0
−h0l

 . (2.2.11)
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The Rossby-wave mode υk,0 and the gravity-wave modes (υk,1, υk,2) are not orthogonal
to each other.

The Rossby-wave component is along υk,0, which defines the kernel of Ak (denoted
KerAk), and the gravity-wave component is the projection onto the span of υk,1 and υk,2,
which define the range of Ak (denoted RangeAk). These components are, then, found by
the Rossby-wave projector Prw and its complement, gravity-wave projector, Pgw = I−Prw,
providing the following decomposition

zk = (Prw + Pgw) zk. (2.2.12)

To test in numerical experiments, we construct the projector Prw in two different ways:
First, we follow the non-orthogonal nature of subspaces, which are then oblique, and
for each wave number k, we construct the oblique projector Prw,obliq

k onto KerA along
RangeA. This Rossby-wave projector intrinsically retains existing modes on RangeA,
while vanishes modes on KerA, i.e.,

Prw,obliq
k

(
υk,0 υk,1 υk,2

)
=
(
υk,0 0

)
, (2.2.13)

where the mode matrix is invertible, and as a result, we obtain the Rossby-wave projection
matrix,

Prw,obliq
k = 1

h0 |k|2 + ε−1

 h0 l
2 −h0 kl −il/ε

−h0 kl h0 k
2 ik/ε

ih0 l −ih0 k 1/ε

 . (2.2.14)

Second, we assume orthogonality between the subspaces, and the orthogonal projector is
constructed directly onto KerAk, by the orthogonal projection formula,

Prw,orth
k =

υk,0 υ
∗
k,0

‖υk,0‖2
= 1
|k|2 + 1

 l2 −kl −il
−kl k2 ik
il −ik 1

 , (2.2.15)

where υ∗k,0 denotes the Hermitian conjugate. The complementary projectors Pgw, for
the two cases, immediately follow. These projectors are used in our application of the
diagnostic flow-wave separation method, and we leave the analysis of these projectors in
Section 4.3.

2.3 Finite-dimensional models

The concept of balance and spontaneous wave generation are studied through simple
finite-dimensional models which structurally resemble geophysical flow models. These
simple models are advantageous for numerical computation and theoretical study, which
are important to understand the fundamental features of the original ones. In this section,
we cover two Hamiltonian systems: a system derived variationally in the semi-geostrophic
scaling limit and a spring-mass pendulum derived by truncating the shallow-water model.
The former system is important to build the background of our further studies, and the
spring-mass pendulum is visited as an analogue of balance and spontaneous wave genera-
tion.
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2.3.1 Approximating shallow-water flows

The first toy model describes the dynamics for the position vector r : [0, T ] → R2d and
the corresponding momenta p in a smooth potential V ∈ Cn+1. Denoting time derivatives
by overdot, e.g, dr/dt = ṙ, we write the system in the form of

ṙ = p ,

εṗ = Jp−∇V (r) ,
(2.3.1)

where ε is again a small time-scale separation parameter, and J is the canonical symplectic
matrix in 2d dimensions,

J =
(

0 −Id
Id 0d

)
.

This model is analysed in several different studies (Cotter and Reich, 2006; Oliver, 2006;
Cotter, 2013; Gottwald and Oliver, 2014) and we recall the transformation of this model
in the form of the abstract formulation (2.1.1) in Section 2.1.

The model (2.3.1) is interpreted as the evolution of a single fluid column, when d = 1.
The model reduction is explained by the rotating shallow-water model (2.2.6) in the semi-
geostrophic scaling limit. For a single fluid column initiated at Lagrangian label coordinate
a, we define a fluid map ηt(a) in time t through where the fluid particle advects. The
particle takes the Eulerian position r(t) = ηt(a), and the Lagrangian velocity is given by
∂tηt(a) = u(ηt(a), t). The momentum conservation equation (2.2.6a), then, gives

εr̈ − J ṙ +∇h(r) = 0 , (2.3.2)

where J ṙ represents the Coriolis term u⊥, the limit ε → 0 indicates rapid rotation, and
h takes the role of the potential for a fixed layer depth, V (r) := h(r). After introducing
the momenta p = ṙ, the equation (2.3.2) is written as a system of first-order differential
equations (2.3.1).

An alternative understanding of the model underlies the evolution of a single charged
particle r with a potential V on a plane in the presence of an external magnetic field, that
is normal to the plane (Gottwald and Oliver, 2014; Gottwald et al., 2007). In this case,
the term Jr in the equation (2.3.2) is the Lorentz force and the limit ε → 0 corresponds
to the zero mass limit of the particle while its charge is unchanged.

Two different time scaled motions are identified in the toy model. When the potential
is neglected, the linear system

εr̈ = J ṙ (2.3.3)
describes fast harmonic oscillations, and when ε = 0, the slow geostrophically balanced
motion is represented by

ṙ = −J∇V (r) . (2.3.4)
The slow dynamics evolves on the time scale O(1) and the fast dynamics evolves on
the time scale O(ε−1). As introduced earlier, the accuracy of balanced motion can be
increased order by order. The asymptotic series with regard to the parameter ε are
practically convenient, but their explicit construction are a tedious work for most of the
dynamical systems due to complicated recursive terms. As a simple example, we restate
the construction for the model (2.3.1) in the following theorem. The theorem shows
only the algebraic-order accuracy, and the exponential accuracy is achieved, when the
remainder term is estimated carefully. The core of our work, however, builds the slow
manifold implicitly via numerical methods.
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Theorem 2.3.1 (Gottwald and Oliver (2014)). For n ∈ N, suppose V ∈ Cn+2 and set

Gn(r) =
n∑
i=0

εigi(r) (2.3.5)

with coefficient functions gi recursively defined via

g0(r) = −J∇V (r) ,
gk(r) = −J

∑
i+j=k−1

Dgi(r)gj(r) . (2.3.6)

For fixed initial positions r0 ∈ R2d and a > 0, let r(t) denote a solution to

ṙ = Gn(r) (2.3.7)

with r(0) = r0. Let rε(t) solve the full parent dynamics (2.3.1) consistently initialised via
rε(0) = r0 and pε(0) = Gn(r0). Then, there exist ε0 > 0 and c = c(r0, a, V ) such that

sup
t∈[0,T ]

‖rε(t)− r(t)‖ ≤ c εn+1 (2.3.8)

for all 0 < ε < ε0.

2.3.2 The spring-mass pendulum

The use of finite-dimensional models is initiated when Lorenz (1980) suggested a model
with five degrees of freedom. After the introduction of forced-dissipative terms (Lorenz and
Krishnamurthy, 1987), it is also called the Lorenz-Krishnamurthy model. The Lorenz’s
model is reduced to a two-component Hamiltonian system that corresponds closely to
a simple mechanical system, the spring-mass pendulum, or the swinging pendulum, by
Camassa (1995) and Bokhove and Shepherd (1996).

The spring-mass pendulum is one of the well-known example to explain the essence
of balanced and unbalanced motions. The pendulum is composed of a stiff elastic spring,
whose mass is negligible, being attached to a fixed central point at one end and carrying a
mass at the other end, see in Figure 2.2. When the pendulum departs at a certain angle θ
from the vertical equilibrium position, it starts swinging with slow frequency in the angular
direction, and it accelerates under the effect of the gravity. Over the time evolution, the
mechanical system also generates small amount of spring compression with fast frequency,
which changes the length of the spring `, consequently the restored energy. The swinging
mode corresponds to slow balanced flow, and the compressional mode corresponds to fast
gravity waves. The small time scale-separation parameter ε is, then, given by the ratio
of the pendulum frequency to the spring frequency. Adding initial spring stretch is also
possible at the start of the motion, but then the amplitude of fast vibrations might not
be small any more.

The stiffness of the spring determines the excitation of fast vibrations. The compress-
ible spring extends close to the equilibrium position, where the mass moves faster; it
contracts while traversing away from the inertial position, where the mass moves slower.
If it is sufficiently stiff, then the compressional mode can be neglected, and the swinging
mode gives the same analogy of geostrophic balance or the leading-order balance. If it is
stiff to include minimal compression, the analogy of the quasi-geostrophic theory is ob-
tained. More accurate approximations follows in hierarchy by changing the stiffness of the
spring.
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`

θ

Figure 2.2: The spring-mass pendulum is a paradigm of balance. This system consists of a spring attached
to a fixed point with a mass at the other end. The pendulum oscillations with angle θ are considered
analogous to slow balanced dynamics, and the spring compression, so that the spring length `, corresponds
to fast gravity waves for geophysical fluids. The ratio of pendulum frequency to spring frequency gives the
time scale-separation parameter.

2.4 Diagnostic flow-wave separation

The separation of balanced flow and gravity waves is performed by many different diag-
nostic approaches, but we study the theory of optimal balance. The foremost study of
the method was a numerical implementation in the context of semi-Lagrangian schemes
for rapidly-rotating fluid flows provided under the name “optimal PV balance” by Viúdez
and Dritschel (2004), see Section 2.4.3.

The theoretical understanding of optimal balance is derived by Cotter (2013) for a sys-
tem of single Lagrangian particle (2.3.1) in fast-time scale. He described optimal balance
as an approach to constrain a phase space on the slow manifold, which is used to obtain
the assimilated initial data from noisy observations. In this approach, the model is inte-
grated symplectically, where the Hamiltonian characteristics are preserved, over very long
time scaled with ε. The excitation of fast dynamics is, then, restricted to be exponentially
small depending on his earlier theoretical work (Cotter and Reich, 2006), and by this, he
put forward the optimal balance procedure as adiabatic invariance of slow manifolds.

The exponential residual between the fast dynamics and the slow manifold was achieved
under the assumption of an analytic ramp function and an analytic potential (Cotter,
2013). The derivatives of the ramp function converged asymptotically to zero as the ramp
time diverges to ±∞. For finitely-long ramp time, however, the issue of undefined deriva-
tives at temporal boundaries emerged, which was not discovered due to the special choice
of the ramp function. Gottwald et al. (2017) observed the need to define derivatives and
proved theoretically the exponential estimate with smaller power of ε, when the derivatives
of ramp functions vanish at the boundaries, see Section 2.4.2.

The remaining part of the section first describes general characteristics of optimal bal-
ance on the abstract model (2.1.1) with approaches to solve an optimal balance boundary
value problem (BVP). Next, we recall the algebraic and exponential estimate of the bal-
ance error for (2.3.1) in Gottwald et al. (2017). As last, optimal PV balance is presented
in details, which is greatly beneficial for our own implementation.



2.4. DIAGNOSTIC FLOW-WAVE SEPARATION 15

f (0) = 0

f (T )

f

s

τ = 0

τ = T

s(T ) = s∗

Γ0

Γτ

ΓT

Figure 2.3: The schematic drawing presents the geometry of optimal balance in two-dimensional phase
space. In the course of the artificial-time τ evolution, the slow manifold Γ0 determined by f(0) = 0 is
deformed, and a surface of approximate slow manifolds Γτ is generated by the homotopy (green-shaded
area). A particle initially located on Γ0 moves through a path (red line), which remains in close neigh-
bourhood of Γτ for long-time τ horizon. When the deformation is inactive, a path on ΓT deviates away
due to the excitation of exponentially small oscillations (green-dotted line). Adapted from Gottwald et al.
(2017). Adapted with permission.

2.4.1 Theory of optimal balance

The principal idea of optimal balance is to adiabatically deform the dynamical equations
resulting in a smooth homotopy between the linear and the fully nonlinear equations,
the simplified geometry of optimal balance is displayed in Figure 2.3. This deformation is
performed over an artificial time τ . It gradually turns on the nonlinear interactions starting
from the linear system on a linear slow manifold Γ0 at τ = 0, computed by f(0) = 0. The
system ramps up to the fully nonlinear form on an approximate slow manifold ΓT at τ = T .
On ΓT , it is desired to meet with the specified fixed coordinate s(T ) = s∗. Over the time
range τ ∈ [0, T ], the nonlinear interactions change the slow manifold in a controlled way,
and hence, time-dependent approximate slow manifolds Γτ are created. The manifolds
are shown in the green-shaded area in Figure 2.3. As the deformation over long τ is slow,
a path of a particle initiated on Γ0 stay close to Γτ , which is drawn by the red line. In
other words, the deviation of the path from Γτ between the temporal-end points goes to
zero under the limit τ →∞, and this asymptotic behaviour is called adiabatic invariance.
When the deformation parameter is frozen, ΓT is approximately invariant. A path on ΓT ,
therefore, deviates away with exponential residual in terms of the time scale separation
parameter ε, this deviation is illustrated by the green-dotted line.

Two different sources of imbalances are present in the optimal balance procedure. The
first source is emerged by the excitation of the exponentially small oscillations without an
active deformation through the physical-time dynamics of the nonlinear system on. The
second one arises from the slow deformation of Γ0 over artificial time τ . For the system
(2.3.1), the error estimate of the first source has been stated in Theorem 2.3.1, and the
error estimates the second source are in the following section (Gottwald et al., 2017).
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The application of optimal balance performs an explicit slow deformation to the non-
linear terms by a smooth monotonic ramp function ρ : [0, 1] → [0, 1] with ρ(0) = 0 and
ρ(1) = 1, which returns an optimal balance BVP in time. For the abstract system (2.1.1),
the BVP is formed as

∂τs = ρ(τ/T )Ns(s,f) ,

∂τf = 1
ε
Lf + ρ(τ/T )Nf (s,f) ,

(2.4.1)

and the boundary conditions are imposed at the temporal-end points,

f(0) = 0 and s(T ) = s∗ , (2.4.2)

which are called respectively the linear-end and the nonlinear-end boundary condition
as regards to the type of the dynamical system, where the conditions are applied upon.
The linear-end condition alone is enough to provide a balanced state without the role of
the nonlinear-end condition, but the latter condition ensures balance to build for a fixed
quantity s∗. Besides this explicit deformation (Gottwald et al., 2017), the deformation
can be also carried out implicitly without direct effect to the nonlinear terms (Viúdez and
Dritschel, 2004).

The precise definition of balance is determined by the choice of projector which maps
on an approximate slow manifold and the choice of base point s coordinate. The optimal
balance method is our projector and the coordinate is chosen among fields which pre-
dominantly structure the geostrophic component of the flow. The use of height field h
is a common choice in balance relations, especially in the variationally derived balanced
models initiated by Salmon (1983). The balance relation for u is formulated as

u = ug + ubag = ug +O(ε) (2.4.3)

where each term is kinematically dependent on h, see the geostrophic balance ug in (2.2.7).
Alternatively, the use of the PV q is proposed by Viúdez and Dritschel (2004). The
complementary fields can be, then, written as velocity divergence δ and ageostrophic
vorticity γ, which are precisely defined for the rotating shallow-water fluid in Chapter 4.
The q-δ-γ variables capture the leading-order separation, and a general flow becomes

q + (δ, γ)bag + (δ, γ)unb ,

where the first two terms denote the balanced flow. Any balance relations in the form of
(2.4.3) come with another kinematic relation between h and q, and so both points can be
inverted to another one (Dritschel et al., 2017; Calik et al., 2013). We, therefore, employ
h and q as base points with no theoretical obstacle, and our work proves their numerical
applicability with some conditions in Chapter 6.

To solve the optimal balance BVP (2.4.1), the simple shooting method is implemented
on a lower-dimensional system (2.3.1) by Gottwald et al. (2017). It integrates the sys-
tem of equations as an initial value problem with the initial value (s(0),f(0)) to match
with the given boundary value s(T ) = s∗. In higher dimensions, however, the shooting
method needs to compute (approximate) Jacobian implicitly, which comes with expensive
computational cost. Any other advanced boundary solvers can possibly fail in a similar
way.

The backward-forward nudging scheme is suggested by Viúdez and Dritschel (2004)
in the context of geophysical fluid dynamics, which is discovered as a stable and robust
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solver. The scheme consists of repeated backward and forward integrations while nudging
the desired boundary condition after each one-sided integration: At τ = 0, f(0) is removed
by the linear-end boundary, and the other component s(0) is preserved. At τ = T , s(T ) is
restored to s∗ by the nonlinear-end boundary, and f(T ) is maintained. For the nudging
scheme, we refer the work of Auroux and Nodet (2012), though the practical usage is
different. In this work, the observational data to be converged by the state variable is
added as a nudging term in the equations of a dynamical system, and the back-and-
forth integrations are successively proceeded with the initial conditions provided by the
final state of the previous integration. The convergence of the backward-forward nudging
scheme is, yet, not understood theoretically, although its rapid convergence is reported
numerically. For a lower-dimensional setting (2.3.1), we study its convergence in Chapter 3.

The balanced state (s∗,f(T )) is obtained as an approximate solution to the BVP
(2.4.1) with its boundaries (2.4.2). At each step in the τ -integration, optimal balance
constructs a slow vector field on Γτ by projecting s(τ) onto the full phase space, i.e.,

Qn(s(τ), τ) =
n∑
i=1

εiqi(s(τ), τ)

with functions qi to be determined. As τ → T , the solution of the BVP on Γτ becomes
closer to the one obtained by the optimal truncation of the series describing ΓT , in other
words,

f(τ) = Qn(s(τ), τ)→ Gn(s∗) as τ → T .

The error of optimal balance is, then, computed by the following residual

‖f(T )−Gn(s∗)‖ ,

which is exponentially small. The rigorous establishment of Qn and Gn is mostly computa-
tionally inconvenient, so that optimal balance becomes practically important to construct
a balanced state. Gottwald et al. (2017) defined this method as “the best practically
available characterisation of slow manifold” and named it as optimal balance.

The approximate slow manifold ΓT is restricted to preserve its approximately invariant
nature over long time disregarding the choice of base point (MacKay, 2004). This require-
ment is naturally satisfied, at least for small ε values, by the selection of the boundary
conditions: The flow becomes free of fast dynamics Γ0 at the linear end, and it is pro-
jected on ΓT by a base point evolving mainly the geostrophic component of the flow at the
nonlinear end. The slow manifold ΓT is, thus, well-defined by the optimal balance BVP.

2.4.2 Optimal balance

The finite-dimensional Hamiltonian model (2.3.1) is considered to theoretically understand
optimal balance, and the optimal balance BVP becomes

∂τr = p , (2.4.4a)
ε∂τp = Jp− ρ(τ/T )∇V (r) , (2.4.4b)

with boundary conditions
p(0) = 0 and r(T ) = r∗ . (2.4.5)

The slow-fast dynamics are entangled in this system: r represents the slow dynamics,
while p indicates both type of dynamics. At τ = 0, however, slow and fast dynamics
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are explicitly separated in the linear system. At τ = T , the leading-order slow balanced
motion in the nonlinear system is given by (2.3.4).

The asymptotic behaviour of optimal balance is, first, associated with the smoothness
of the potential and ramp functions by Cotter (2013). Later on, Gottwald et al. (2017)
indicate a crucial feature of ρ to obtain the desired order of accuracy. They achieved the
algebraic accuracy O(εk+1) provided that the first finite n derivatives of ρ vanish at the
temporal-end points of the problem, which can be seen in the following theorem. Without
the vanishing derivatives, additional terms at O(εk) stay present and limit the accuracy
of optimal balance.

Theorem 2.4.1 (Gottwald et al. (2017)). For n ∈ N, suppose ρ ∈ Cn+1 with ρ(0) = 0
and ρ(1) = 1 satisfying the algebraic order condition

ρ(i)(0) = ρ(i)(1) = 0 (2.4.6)

for i = 1, . . . , n. Suppose further that V ∈ Cn+2. Fix a > 0 and consider a sequence of
ramp times T = a and a sequence of solutions (r,p), implicitly parametrised by ε, to the
boundary value problem (2.4.4). Then there exists a constant c = c(ρ, a, n, V ) such that

‖p(T )−Gn(r∗)‖ ≤ c εn+1 .

To obtain beyond-all-order accuracy, the ramp function ρ must have all derivatives zero
at the end points as a consequence of Theorem 2.4.1. The ramp function ρ, nevertheless,
cannot satisfy the analyticity and vanishing derivatives at the same time. In this case, ρ
can be chosen from a special Gevrey class 2, G2(0, 1), which is a class of analytic functions
with bounded derivatives, see Gottwald et al. (2017) for the definition in exact terms.
This class of ρ functions with analytic potential V lead an exponential separation of fast
dynamics in the cube root of ε, O(exp(−c/ε1/3)), which is the optimal convergence.

Theorem 2.4.2 (Gottwald et al. (2017)). Suppose ρ ∈ G2(0, 1) with ρ(0) = 0 and ρ(1) = 1
satisfying the exponential order condition

ρ(i)(0) = ρ(i)(1) = 0 (2.4.7)

for all i ∈ N∗. Fix a > 0, and consider a sequence of ramp times T = a and a sequence of
solutions (r,p), implicitly parametrised by ε ≤ 1, to the boundary value problem (2.4.4).
Now suppose there exists a compact subset of phase space K ⊂ R2d containing this sequence
of solution trajectories and that there exist R > 0 and z0 ∈ R2d with K ⊂ BR/2(zo) such
that V is analytic on BR(z0). Then there exist n = n(ρ, a, V, ε) ∈ N and positive constants
c = c(ρ, a, V ) and d = s(ρ, a, V ) such that

‖p(T )−Gn(r∗)‖ ≤ d exp
(
− c

ε1/3

)
.

These theoretical results are significant to decide the order of optimal balance error
in higher dimensions, as the system (2.3.1) is an approximation of the higher-dimensional
rotating shallow-water model in the semi-geostrophic regime, see Section 2.3.1. We, thus,
expect to partially meet with these results in our numerical implementation.
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2.4.3 Optimal potential vorticity balance

Optimal PV balance is supported by the idea of PV being materially conserved and de-
termining the bulk of the slow dynamics even in inertial-gravity-waves-permitting models,
see Viúdez and Dritschel (2004). The method, thus, requires the geophysical flow models
in the slow geostrophic and fast ageostrophic quantities. The required equations of motion
obey the abstract form (2.1.1) for s = q and f = (δ, γ). Due to the material conservation
of q, the slow equation materially advects q, and the fast equation is maintained as the
Eulerian evolution of ageostrophic fields (δ, γ), i.e.,

∂tq + u ·∇q = 0 , (2.4.8a)

∂t

(
δ
γ

)
= 1
ε
L
(
δ
γ

)
+Nδ,γ(q, δ, γ) , (2.4.8b)

where L and Nδ,γ again indicate a skew linear and a nonlinear operators. As the velocity
u is included in the modified formulation, the equations of motion are closed by a PV-
inversion equation to obtain u from (q, δ, γ).

The intrinsic nature of their method rests in using Lagrangian advection to approx-
imate the slow-q equation (2.4.8a) and to make this approximation dependent on time.
The PV q as a Lagrangian quantity is advected through a fluid map ηt(a) in physical time
t, the map is defined in Section 2.3.1. Given the initial PV field q0(a) at the coordinate
a, the material conservation of q (2.4.8a) is written as

q(ηt(a), t) = q0(a)

through the advection. The PV q has its reference field qr(r) satisfiying Nδ,γ(qr, δ, γ) = 0,
and (qr, δ, γ) gives the stationary solution of the system (2.4.8).

As next step, the Lagrangian approximation is evolved over artificial time τ ∈ [0, T ] for
a frozen physical time t. For the corresponding flow map ητ of the τ -evolution, the PV is
ramped starting from the reference field qr up to a given PV q∗, and the PV conservation
yields

q(ητ (r), τ) = qr(ητ (r)) + ρ(τ/T )(q∗(r)− qr(r)) , (2.4.9)

where the ramp function ρ is a cosine function,

ρ(θ) = (1− cos(πθ))/2 , (2.4.10)

with ρ(0) = 0 and ρ(T ) = 1. In the way qr is defined, this ramping procedure implicitly
provides smooth transition of the nonlinear system into the linear system. The flow map
ητ is restricted to start from the position r of the actual fluid particles. At τ = T ,
therefore, the particles return back their actual position, i.e., ηT (r) = r, and the PV
satisfies the desired condition q(r, T ) = q∗(r).

The equations of motion, now, consist of the ramped PV equation (2.4.9) and the
evolution of the δ-γ fields (2.4.8b) in τ . The conditions for q are automatically applied
by the derivation of the former equation, and the ageostrophic δ-γ fields need the initial
condition,

δ(r, 0) = γ(r, 0) = 0 ,

to evolve the later equation. The optimal PV method is tested for two systems: a three-
dimensional baroclinic model on f -plane and a two-dimensional rotating shallow-water
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model on the sphere. As a result, they reported rapid convergence to a balanced state
(q∗(r), δ(r, T ), γ(r, T )), only a few iterations in the backward-forward nudging scheme.
The balanced state depends weakly on the ramp function ρ and the ramp-time length
T . They implemented this model in a special contour advection code governed by the
geostrophic-ageostrophic variables, which is explained below in details, but most numerical
geophysical-fluid codes use a different set of variables.

The contour-advective semi-Lagrangian algorithm

For their purely numerical model, they modified their special contour-advective semi-
Lagrangian (CASL) algorithm for the needs of the optimal PV balance (Dritschel and
Ambaum, 1997). In this contour-based algorithm, the materially conserved PV q is de-
scribed as a piecewise-uniform function by level sets, which are distinguished by contours,
and these contours are advected in an entirely Lagrangian way. This special treatment
to PV q makes their work innovative. On the other hand, fields which are not materially
conserved are discretised on a coarse fixed grid and advected by a pseudo-spectral method
in a standard Eulerian way.

To create these q-contours, the computational domain is divided into level sets shar-
ing uniform q, and the difference between the level sets is given by the PV jump. The
q-contours are, then, placed a set of nodes to separate these levels (Dritschel et al., 1999).
Through the advection of the q-contours, the characteristics of q is resolved on very small
scales finer than the grid scales, and steeper gradients of q are preserved by construction,
which cannot be provided by the coarse grid resolution. As a result, when the computa-
tional grid is refined, the numerical solution is improved.

The advection of q-contours is carried out by the trajectory integration, which requires
the velocity field u. For the computation of u, the PV q is interpolated on the grid by
projecting in a finer grid and then averaging down to the actual computational-grid scale
until obtaining a smooth q. Given h field, ageostrophic vorticity ζ is computed straight
forward using the definition of q. The field u is, then, computed from the stream function
ψ and velocity potential φ, these PV-inversion formulas will be also used in our work, see
Section 4.4.2. As next, all nodes on the q-contours are evolved forward in time, which
may follow by possible redistribution of nodes on each contour. Through the evolution,
long narrow PV filaments emerge. Once they occur, contour surgery is applied to remove
these filamentary structures and reconnect contours from the cut edges (Dritschel, 1988).

The implementation of the optimal PV balance method can be, now, explained in
terms of the CASL algorithm. The ramp function is applied to the PV anomalies q∗ − qr
in (2.4.9). This ramping procedure is simply performed by multiplying the PV jumps
within the level sets. In the course of the backward integration, the q-contours get similar
structure with the ones of the reference field qr. At the end, at τ = 0, the q-contours are
maintained to initialise the forward integration. After the forward integration, at τ = T ,
the boundary condition is imposed by replacing the advected q-contours at the final time
with the q-contours of the actual flow, and the other fields follow in a standard way. The
iterative integrations are assumed to converge a balance state when sufficiently small flow
states are produced at the end of each iteration. As a result, a high-quality balance is
provided with affordable computational cost by the implicit definition of a balance relation.



Chapter 3

Quasi-convergence of the optimal balance
nudging scheme

The theory of optimal balance was numerically studied by solving the associated BVP
using backward-forward nudging by Viúdez and Dritschel (2004). There are, however,
open questions that have not been answered up to now. We do not know whether the
BVP is well-posed and if it is, whether the nudging scheme converges to the solution of the
BVP. In this chapter, assumed that the BVP is well-posed, we analyse the convergence of
the nudging scheme in the context of the finite-dimensional model (2.3.1).

3.1 Construction of slow manifold

The finite-dimensional model (2.3.1) and the application of optimal balance on this model
are introduced in Section 2.3.1 and 2.4.2 respectively, yet we recall the essential parts
with some details from Gottwald et al. (2017). The model evolves the position vector
r : [0, T ] → R2d and the corresponding momenta p with the small time scale-separation
parameter ε and the potential V ∈ Cn+1. Optimal balance is applied to this model,

∂tr = p ,

ε∂tp = Jp− ρ(t/T )∇V (r),
(3.1.1)

with boundary conditions
p(0) = 0 and r(T ) = r∗ . (3.1.2)

using a smooth monotonic function ρ : [0, 1]→ [0, 1] satisfying ρ(0) = 0 and ρ(1) = 1. We,
here, assume that the ramp function holds the algebraic order condition (3.1), i.e.,

ρ(i)(0) = ρ(i)(1) = 0 for i = 1, . . . , n .

A slow manifold Qn of this model is constructed by a power series expansion,

Qn(r, t) =
n∑
i=0

qi(r, t)εi ,

where the recursive functions qi are defined by

q0(r, t) = −ρ(t/T )J∇V (r) ,
qk(r, t) = −J∂tqk−1 − J

∑
i+j=k−1

Dqi(x, t)qj(x, t) ,

21
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for k = 1, · · · , n. As p denotes the fast and slow motions together, the fast motion is given
by the remainder,

w(t) = p(t)−Qn+1(r, t) , (3.1.3)
which depends on the order n of the slow manifold. The model (3.1.1) can be rewritten
in the r-w variables as

ṙ = Qn+1 +w ,

ẇ =
(1
ε
J −DQn+1

)
w + 1

ε
(JQn+1 − ρ∇V )− ∂tQn+1 −DQn+1Qn+1 .

After the cancellation of some terms up to the order of εn+1, we obtain

ṙ = Qn+1 +w , (3.1.4a)

ẇ =
(1
ε
J −DQn+1

)
w +O(εn+1) , (3.1.4b)

and the boundary conditions (3.1.2) correspond to

w(0) = 0 and r(T ) = r∗. (3.1.5)

Our analysis is built on this slow-fast splitted form (3.1.4) with the imposed boundary
conditions (3.1.5) instead of the original system (3.1.1). In the analysis, we do not consider
beyond-all-order estimates, so the exponential order condition (2.4.7) of the ramp function
and rigorous construction of the remainder term are not required, see Masur et al. (2022)
for further results.

3.2 Some primary estimates

To use in our main result, we first provide a general estimate to bound smoothly differ-
entiable functions in the following lemma and the generalisation of Gronwall’s inequality.
In the following, we extend the lemma in Hunter and Nachtergaele (2001), which bounds
the function g : Rk → R.
Lemma 3.2.1. Suppose that g : R2d → R2d is smoothly differentiable function with
bounded partial derivatives. Then, there exist a ball of radius R, BR ⊂ R2d, and for
all x, y ∈ BR, we have

‖g(x)− g(y)‖ ≤ C(R)‖x− y‖ , (3.2.1)
and

C(R) = sup
z∈BR

‖Dg(z)‖ . (3.2.2)

Proof. Using the fundamental theorem of calculus, we get

g(x)− g(y) =
∫ 1

0
Dg(sx+ (1− s)y)(x− y)ds ,

and taking the norm of the equation implies

‖g(x)− g(y)‖ ≤
∣∣∣∣∣∣∣∣∫ 1

0
Dg(sx+ (1− s)y)ds(x− y)

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣∫ 1

0
Dg(sx+ (1− s)y)ds

∣∣∣∣∣∣∣∣ ‖x− y‖
≤
∫ 1

0
‖Dg(sx+ (1− s)y)‖ds‖x− y‖
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by the Jensen’s inequality (Hunter and Nachtergaele (2001)). The upper bound, then,
becomes

‖g(x)− g(y)‖ ≤ sup
0≤s≤1

‖Dg(sx+ (1− s)y)‖ ‖(x− y)‖ ,

and for a ball of radius R such that ‖x− y‖ < R,

‖g(x)− g(y)‖ ≤ sup
z∈BR

‖Dg(z)‖ ‖(x− y)‖ .

With the coefficient (3.2.2), hence, the estimate (3.2.1) follows.

The generalisation of Gronwall’s inequality could be obtained from Chandra and Davis
(1976). This generalisation bounds two linear inequalities in two variables with exact
solutions of the corresponding equalities. In particular, we seek a bound for z ∈ R2

satisfying
ż(t) ≤ Az(t) + k ,

where k is a two-dimensional vector, and A ∈ R2×2 is a positive semi-definite matrix, i.e,
xTAx ≥ 0 for all x ∈ R2. The following proposition provides the bound for this problem.

Proposition 3.2.2. Suppose z ∈ R2, k is a two-dimensional vector, and A is a positive
semi-definite matrix such that

ż(t) ≤ Az(t) + k , (3.2.3)

for 0 ≤ t ≤ T , then

z(t) ≤ z(0) + kt+
∫ t

0
eA(t−s)A(z(0) + ks)ds . (3.2.4)

Proof. The linear inequalities (3.2.3) implies

z(t) ≤ z(0) + kt+
∫ t

0
Az(s)ds . (3.2.5)

We have the integral operator, say K, defined by

Kz(t) =
∫ t

0
Az(s)ds.

To use the argument in Chandra and Davis (1976), we need to show that K is a monotone
operator, which follows from, for z = (z1, z2),

〈z,Kz〉 =
∫ T

0

∫ t

0
z(t)Az(s)dsdt

=
∫ T

0

∫ t

0

(
z1(t) + z2(t)

)(
z1(s) + z2(s)

)
dsdt

=
∫ T

0

(
z1(t) + z2(t)

) ∫ t

0

(
z1(s) + z2(s)

)
dsdt

= 1
2

(∫ T

0

(
z1(t) + z2(t)

)
dt

)2

≥ 0 .

Using the monotonicity of K, we apply their theorem on (3.2.5) and we obtain (3.2.4).
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3.3 Algebraic estimate of the nudging scheme

The backward-forward nudging scheme is applied to the BVP (3.1.4) with its boundary
conditions (3.1.5). The backward scheme gives the solution (r−,w−) starting with an
arbitrary fiber coordinate w0 and a fixed base point r∗ such that (w0, r

∗) is a point on
Qn+1, which are written as

r−(T ) = r∗ and w−(T ) = w0 .

The system is evolved back to t = 0 (linear end) and the forward scheme with the solution
(r+,w+) is initialised by

r+(0) = r−(0) and w+(0) = 0 . (3.3.1)

After solving the forward scheme up to t = T (nonlinear end), the base point is set while
the other variable is preserved for the next iteration,

r+(T ) = r∗ and w+(T ) = w−(T ) . (3.3.2)

We, hence, define an optimal balance map,

Φ : w0 7→ w+(T ) ,

and by calling w+(T ) = w1, the iterative application of the map Φ constructs a sequence
(wm), i.e.,

wm = Φ(wm−1) = Φm−1(w0) .

According to this, in the nudging scheme each cycle ends with its iterates (rm,wm) where
(rm) is the sequence of complementary component.

The analysis of the nudging scheme is described on the approximate slow-fast variables
r-w for convenience, but the variable w is only theoretically exist. As the scheme itself is
a numerical process, it is a right approach to analyse using the variable p and then switch
to w through the definition in (3.1.3), see Masur et al. (2022) for improved results.

Theorem 3.3.1. Solve the optimal balance BVP (3.1.4) with boundary conditions (3.1.5)
over time horizon t ∈ [0, T ] using the backward-forward nudging scheme. Assume that the
ramp function ρ satisfies the algebraic order condition (3.1). For any 0 < ε ≤ T , there
exists σ = σ(ρ, T, n, V,R) and β = β(ρ, T, n, V,R) such that the optimal balance map is
bounded as follows

‖Φ(wm)− Φ(w̃m)‖ ≤ σ‖wm − w̃m‖+ βεn+1 . (3.3.3)

where wm and w̃m are constructed by the nudging scheme.

Proof. First, we want to find the energy estimates for w and r, and to do so, we use the
two systems with the variables (r±,w±) and (r̃±, w̃±). Subtracting the forward systems
from each other, we get the first equation as

d

dt
(r+ − r̃+) = Qn+1(r+, t)−Qn+1(r̃+, t) + (w+ − w̃+) .

Taking the dot product with (r+ − r̃+) implies

‖r+ − r̃+‖ d
dt
‖r+ − r̃+‖ = (r+ − r̃+) ·

(
Qn+1(r+, t)−Qn+1(r̃+, t) + (w+ − w̃+)

)
.
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It, then, follows

‖r+ − r̃+‖ d
dt
‖r+ − r̃+‖ =

∣∣(r+ − r̃+) ·
(
Qn+1(r+, t)−Qn+1(r̃+, t) + (w+ − w̃+)

)∣∣
≤ ‖r+ − r̃+‖

(
‖Qn+1(r+, t)−Qn+1(r̃+, t)‖+ ‖w+ − w̃+‖

)
,

where first the triangle inequality and later the Cauchy-Schwarz inequality are used, and
we obtain

d

dt
‖r+ − r̃+‖ ≤ ‖Qn+1(r+, t)−Qn+1(r̃+, t)‖+ ‖w+ − w̃+‖ . (3.3.4)

Depending on the smooth differentiability of ρ and V , each term of Qn+1 satisfy the
assumptions of Lemma 3.2.1, therefore

‖Qn+1(r+, t)−Qn+1(r̃+, t)‖ ≤
(
c0 + · · ·+ cn+1ε

n+1
)
‖r+ − r̃+‖

where ci = ci(ρ, V, T,m), i = 0, · · · , n + 1 are constants, with appropriate radius m,
‖r+ − r̃+‖ < m. Since ε < 1, we choose δ0 = δ0(ρ, V, T,m) to have constant δ0 =
c0 + · · ·+ cn+1 such that

‖Qn+1(r+, t)−Qn+1(r̃+, t)‖ ≤ δ0‖r+ − r̃+‖ .

The inequality (3.3.4), hence, becomes

d

dt
‖r+ − r̃+‖ ≤ δ0‖(r+ − r̃+)‖+ ‖w+ − w̃+‖ . (3.3.5)

In the same manner, for the second equation, we get

d

dt
(w+ − w̃+) = 1

ε
J(w+ − w̃+)− (DQn+1(r+, t)w+ −DQn+1(r̃+, t)w̃+) +O(εn+1) .

After writing the second term on the right hand side as

DQn+1(r+, t)(w+ − w̃+) +
(
DQn+1(r+, t)−DQn+1(r̃+, t)

)
w̃+ ,

the dot product with (w+ − w̃+) gives

d

dt
‖w+−w̃+‖ ≤ ‖DQn+1(r+, t)(w+−w̃+)‖+‖DQn+1(r+, t)−DQn+1(r̃+, t)‖‖w̃+‖+O(εn+1) .

In Theorem 2.4.1, the term w̃+ is bounded above by O(εn+1), and using Lemma 3.2.1, we
get

d

dt
‖w+ − w̃+‖ ≤ δ1‖w+ − w̃+‖+ δ2‖r+ − r̃+‖+O(εn+1) . (3.3.6)

The above two energy estimates in (3.3.5) and (3.3.6) could be reformulated as a linear
system of inequalities,

ż+(t) ≤ δAz+(t) + k ,

where

z+(t) =
(
‖r+(t)− r̃+(t)‖
‖w+(t)− w̃+(t)‖

)
, A =

(
1 1
1 1

)
, k =

(
0

αεn+1

)
.
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for two constants δ = max{δ0, δ1, δ2} and α = α(ρ, T, n, V ). To bound this linear system,
we use using the Gronwall-type inequality Proposition 3.2.2 and obtain

z(t) ≤ z(0) + kt+ δA

∫ t

0
eδA(t−s)(z(0) + ks)ds . (3.3.7)

Since the matrix A satisfies An = 2n−1A, then we have

AeδAt =
∞∑
n=0

An+1(δt)n

n! = A
∞∑
n=0

(2δt)n

n! = Ae2δt ,

and Ae−δAt = Ae−2δt. The integral operator in (3.3.7) is handled as follows

δA

∫ t

0
eδA(t−s)ds = δA

∫ t

0
e2δ(t−s)ds = 1

2A(e2δt − 1) ,

and in the same manner,

δA

∫ t

0
eδA(t−s)sds = δA

∫ t

0
e2δ(t−s)sds = A

(
− t2 + e2δt − 1

4δ

)
.

The system of inequalities (3.3.7), hence, becomes

z+(t) ≤ P1(t)z+(0) + P2(t)k , (3.3.8)

where
P1(t) = I + 1

2A(e2δt − 1) and P2(t) = t(I − 1
2A)− e2δt − 1

4δ A .

with the explicit expressions of

P1(t) = 1
2

(
e2δt + 1 e2δt − 1
e2δt − 1 e2δt + 1

)
and P2(t) =

(
−t/2 + e2δt−1

4δ
t/2 + e2δt−1

4δ

)
αεn+1 .

For the system evolving back in time, we get the following estimate

z−(t) ≤ P1(T − t)z−(T ) + P2(T − t)k . (3.3.9)

Regarding the boundary conditions (3.3.1) and (3.3.2), the inequality (3.3.8) at t = T
becomes

‖w+(T )− w̃+(T )‖ ≤ 1
2
(
e2δT − 1

)
‖r+(0)− r̃+(0)‖+

(
T

2 + e2δT − 1
4δ

)
αεn+1 , (3.3.10)

and the inequality (3.3.9) at t = 0 takes the form

‖r−(0)− r̃−(0)‖ ≤ 1
2
(
e2δT − 1

)
‖w−(T )− w̃−(T )‖+

(
−T2 + e2δT − 1

4δ

)
αεn+1 . (3.3.11)

As r−(0) = r+(0) and r̃−(0) = r̃+(0) at the linear end, we insert (3.3.11) in (3.3.10). To
write the estimate for any iterate, we use Φ on wm and w̃m and obtain the inequality
(3.3.3) where

σ = 1
4
(
1− e2δT )2 and β = α

T

4
(
3− e2δT )+ α

e4δT − 1
8δ . (3.3.12)
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Corollary 3.3.2. Consider the assumptions and settings of Theorem 3.3.1. There exists
a constant β > 0 for all 0 < ε < T , and we have, for any δ < ln 3

2T ,

lim sup
m

‖wm+1 −wm‖ ≤
1

1− σβε
n+1 . (3.3.13)

Proof. We estimate the difference of two consecutive terms from above using (3.3.3):

‖wm+1 −wm‖ = ‖Φ(wm)− Φ(wm−1)‖
≤ σ‖wm −wm−1‖+ βεn+1

≤ σ2‖wm−1 −wm−2‖+ (σ + 1)βεn+1

...

≤ σm‖w0 −w1‖+ 1− σm

1− σ βεn+1 .

When δ is smaller than ln 3
2T , σ < 1, which with m→∞ gives the estimate (3.3.13).

As it is shown in the above corollary, two consecutive fast iterates in the nudging
scheme may not converge in mathematical sense, but these iterates can get closer up
to a residual of algebraic order as powers of ε, which we call this behaviour as “quasi-
convergence”. If the term β/(1 − σ)εn+1 vanishes, given the continuous dependence of Φ
on r∗, the sequence (wm) would be characterised as a Cauchy sequence since the same
term also appears for any two member of (wm), and then, there would exist a unique
solution. The estimate (3.3.13), nevertheless, does not say whether the numerical solution
of the nudging scheme is unique or depends continuously on the base point.

Theorem 3.3.3. Assume that a ramp function ρ ∈ Cn+1[0, 1] satisfies the algebraic order
condition (3.1). The backward-forward nudging scheme is used to create nudging iterates
(rm,pm). For any T < ln 3

2δ , there exist a constant C = C(ρ, T, n, V ) such that the nudging
iterates gets closer to the slow manifold with the following residual,

lim sup
m

‖pm −Qn+1(r∗, T )‖ ≤ Cεn+1 . (3.3.14)

Proof. Notice that

‖pm −Qn+1(r∗, T )‖ ≤ ‖pm −Qn+1(rm, T )‖+ ‖Qn+1(rm, T )−Qn+1(r∗, T )‖
≤ ‖wm‖+ δ‖rm − r∗‖ .

For the second term ‖rm − r∗‖, we write the first component of the inequality (3.3.8) at
t = T :

‖r+(T )− r̃+(T )‖ ≤ 1
2
(
e2T + 1

)
‖r+(0)− r̃+(0)‖+

(
−T2 + e2δT − 1

4δ

)
αεn+1 .

Using the inequality (3.3.11) with r−(0) = r+(0), it becomes

‖r+(T )− r̃+(T )‖ ≤ η‖w−(T )− w̃−(T )‖+ κεn+1 ,

where
η = 1

4
(
e4δT − 1

)
and κ = α

T

4
(
− 3− e2δT )+ α

e2δT − 1
4δ

e2δT + 3
2 .
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In the nudging scheme, two consecutive cycles require an additional condition w−(T ) =
w+(T ) together with fixing the base point coordinate r∗. The above inequality for the
iterates (rm,wm), then, becomes

‖rm − r∗‖ ≤ η‖wm −wm−1‖+ καεn+1 .

As m→∞, the estimate (3.3.13) yields

lim sup
m

‖rm − r∗‖ ≤
( ηβ

1− σ + κ
)
αεn+1 .

From Theorem 2.4.1, we know that ‖w(T )‖ is of order εn+1, and moreover for a constant
α = α(ρ, T, n, V ),

‖wm‖ ≤ αεn+1 , ∀m > 1 .

Then, the estimate (3.3.14) follows.

In our main result, the “nudging balance error” is estimated as the closeness of the
balanced state (r∗,pm) to a point Qn+1(r∗, T ) on the slow manifold of order n+ 1. This
estimate has two error components: i) the balance error ‖wm‖ and ii) the termination
residual ‖rm − r∗‖. The balance error is bounded in Gottwald et al. (2017), can be
explicitly seen in Theorem 2.4.1. As the termination residual and this error has the same
order of εn+1, the nudging balance error immediately follows. Our numerical test cases for
the rotating shallow-water flows will prove that optimal balance produces well-balanced
states, albeit the nudging cycles are terminated by the sufficient closeness of consecutive
iterates, quasi-convergence of iterates.

In practical use, the contribution of the termination residual could be cancelled by a
proper BVP solver, for example, the simple shooting method applied by Gottwald et al.
(2017). When finite-dimensional problems are considered, however, this type of solvers cost
computationally high, because the fast time needs to be resolved properly, also discussed
in Section 2.4.1. We, then, conjecture the requirement of a numerical scheme to solve the
backward-forward nudging integrations such that the scheme is stable in the presence of
the fast time but does not need to be accurate in that scale.

For the rest of this thesis, we clarify the terminology depending on our theoretical
result presented here: By the convergence of the nudging scheme, we always mean its
quasi-convergence without loss of generality.



Chapter 4

Optimal balance for shallow-water flows

In this chapter, we apply the method of optimal balance to the rotating shallow-water
equations written in primitive height and velocity variables. After analysing time scales
of the equations, the optimal balance BVP is explicitly defined with two boundary con-
ditions. At the linear-end boundary, we require linear wave separation through spectral
mode decomposition or partial differential equation (PDE) based approaches. At the
nonlinear-end boundary, on the other hand, we require some kinematic transformations
of the primitive variables and PV-inversion formulas. This chapter together with the fol-
lowing two chapters describe our original work already published in Masur and Oliver
(2020).

4.1 Eulerian time scales of the shallow-water equations

The rotating shallow-water equations are fully described in Section 2.2.1, and here, we
recall the equations as a brief reminder before building up the application of optimal
balance: The nondimensional shallow-water model reads

ε (∂tu+ u · ∇u) + u⊥ + 1
h0

Bu
ε
∇h = 0 , (4.1.1a)

∂th+∇ · (hu) + h0∇ · u = 0 , (4.1.1b)

with the Rossby number ε (2.2.3), the Burger number Bu (2.2.4) and the nondimensional
layer depth h0 (2.2.5). Two distinguished scaling limits give geostrophic balance (2.2.7) at
leading order: the quasi-geostrophic and semi-geostrophic scaling limits, characterised by
h0 = ε−1 and h0 = 1, respectively. We will work with these two scaling regimes to analyse
the performance of optimal balance.

The time scales of Eulerian dynamics is different in the quasi-geostrophic vs. the
semi-geostrophic scaling limits. To determine these time scales, we substitute the balance
relation ug+O(ε) in (2.4.3) into the continuity equation (4.1.1b) with the respective scaling
for h0. In the quasi-geostrophic scaling, we obtain

∂th = −∇ · (hu)− 1/ε∇ · u
= −∇ · (h (ug +O(ε)))− 1/ε∇ · (ug +O(ε))
= −∇ · (h ug)− 1/ε∇ · ug +O(1)

where the terms of ∇ · ug vanish. In the semi-geostrophic scaling, following the same
manner, we obtain

∂th = −∇ · (hu)−∇ · u = O(ε) .

29
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The estimates yield that Eulerian dynamics evolve on a time scale of O(1) in the
quasi-geostrophic scaling and O(ε−1) in the semi-geostrophic scaling. In the numerical
studies of optimal balance, we scale time interval of dynamical evolution by ε−1 in the
semi-geostrophic scaling, and we choose the time interval independent of ε in the quasi-
geostrophic scaling. Similar analysis for L1-balance model in the semi-geostrophic scaling
is already carried out by Dritschel et al. (2017).

4.2 Optimal balance in primitive variables

The theory of optimal balance has been applied in different approaches due to the equations
of motion and associated variables (Section 2.4). The difference in approaches comes from
the deformation type of nonlinear interactions: The implicit deformation in the optimal
PV balance (Viúdez and Dritschel, 2004) and the explicit deformation in optimal balance
(Cotter, 2013; Gottwald et al., 2017). We, now, apply optimal balance the rotating shallow-
water model (4.1.1). The formulation of the model allows the use of explicit deformation,
then the optimal balance BVP becomes

ε (∂τu+ ρ(τ/T )u · ∇u) + u⊥ +∇h = 0 , (4.2.1a)
∂τh + ρ(τ/T )∇ · (hu) + h0∇ · u = 0 , (4.2.1b)

which needs to be closed at the temporal-end points.
At the linear end, τ = 0, the exact decomposition of fast and slow dynamics is achieved

by the boundary condition,
Pgw(u, h)

∣∣
τ=0 = 0 , (4.2.2)

where the matrix Pgw projects the linear flow onto its fast imbalanced component, gravity
wave, and therefore, only slow balanced component, Rossby wave, remains on trivial slow
manifold Γ0. At the nonlinear end, τ = T , a prescribed base-point coordinate is applied.
As motivated in Section 2.4.1, the choice of base points are the PV q or the height h fields.
We fix the base-point coordinates,

q(T ) = q∗ or h(T ) = h∗ . (4.2.3)

with specific q∗ or h∗ fields on an approximate slow manifold ΓT .
The optimal balance BVP (4.2.1) is, hence, set up with its boundary conditions, (4.2.2)

and (4.2.3). We need to built the concrete structure of end boundaries: the derivation of
Pgw and some useful transformations for base point q, to be introduced in the rest of the
chapter.

4.3 Linear wave separation

The optimal balance BVP (4.2.1) at τ = 0 is reduced to the linear rotating shallow-water
equations (2.2.8) which dynamically preserve the linear potential vorticity,

qlin = ε ζ − h/h0 . (4.3.1)

This linear quantity can be derived by linearising the nonlinear PV of the full shallow-
water model (4.1.1), which is to be introduced in the upcoming section, as well as, a direct
computation from the linear system (2.2.8). We apply the linear-end boundary condition
(4.2.2) to the model (4.2.1) with two methods: a normal-mode decomposition and an
equivalent PDE-based approach.
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4.3.1 Normal-mode decomposition

The linear-end boundary condition can be applied via the oblique projector Prw,obliq
k and

orthogonal projector Prw,orth
k derived in Section 2.2.2. For wave-number vector k = (k, l)

with k in x direction and l in y direction, these spectral projectors are

Prw,obliq
k = 1

h0 |k|2 + ε−1

 h0 l
2 −h0 kl −il/ε

−h0 kl h0 k
2 ik/ε

ih0 l −ih0 k 1/ε

 (4.3.2)

and

Prw,orth
k =

υk,0 υ
∗
k,0

‖υk,0‖2
= 1
|k|2 + 1

 l2 −kl −il
−kl k2 ik
il −ik 1

 , (4.3.3)

where υk,0 is the eigenvector corresponding the Rossby-wave mode, λrw
k = 0, and υ∗k,0

denotes the Hermitian conjugate.
To analyse the oblique and orthogonal projectors, we compare the projectors, and

the position of the Rossby-wave and gravity-wave modes in respect of each other. The
orthogonal projector acts independent of ε and h0; however, the characteristics of the
oblique projector change depending on these parameters. In the quasi-geostrophic scaling,
where h0 = ε−1, as the subspaces of Rossby-wave and gravity-wave modes are orthogonal,
the oblique projector corresponds to the orthogonal one. In the semi-geostrophic scaling,
where h0 = 1, the subspaces of the modes are oblique, then taking the oblique projector
as reference, we examine the behaviour of the orthogonal projector in details in Section
6.4.

4.3.2 PDE-based approach

The approach of building projection matrices by normal-mode decomposition is easy on
the periodic domain, but this approach is fluid-model and fluid-domain dependent, and it
might be tiresome or it might not be, even, practically available for more general ocean
models and more general domains. In these general cases, we require PDE-based ap-
proaches which implicitly apply the linear-end projection. Since the linear boundary pre-
serves slow dynamics spanned via the Rossby modes and the geostrophic balance (2.2.7)
supplies the exact Rossby-mode representation for the linearised system, we can use this
balance for the implicit PDE-based approaches.

First, the most natural choice is to “preserve h” and compute u by the geostrophic
balance (2.2.7). The condition is advantageous to be easily computed by any other scheme
rather than spectral differentiation. After application of the condition, we evolve the opti-
mal balance problem (4.2.1) starting from the linear system (2.2.8), where the geostrophic
u field is placed, and we experience the loss of order one derivative: As a disadvantage,
“preserve h” gives rise to “loss of derivatives” in each recursive iteration which injects
small-scale noise and, ultimately, results in failure of convergence in the backward-forward
nudging scheme. Moreover, for large ε values, we expect the convergence issue become
stronger regardless the choice of the base point, since in the large-ε case, the h field involves
higher amplitude of variations mostly with steep gradient.

Second, to deal with the issue of “loss of derivatives”, we offer an approach to preserve
vorticity ζ = ∇⊥ · u for the given u field. The h field is obtained in the manner of a
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stream function by solving
∆h = ζ , (4.3.4)

then the u field is constructed only by its divergence-free component – the curl-free com-
ponent is removed– using (2.2.7). In this formulation, one derivative for ζ and double
integral for h followed by another derivative for u: No order of derivatives is lost. We
theoretically expect better convergence in “preserve ζ” than “preserve h”; however, this
alternative approach do not perform well in our numerical results as it is foreseen.

Third, as the nonlinear PV can be a candidate as base point, we can use the corre-
sponding linear PV qlin (4.3.1) at the linear end and construct a projector to “preserve
qlin”. The linear quantity is advectively conserved by the linear system, while the non-
linear one is materially conserved by the nonlinear system. The qlin-preserving projector
is constructed in the following way: We take a new state (u′, h′) to be determined which
satisfies the geostrophic balance,

u′ =∇⊥h′, (4.3.5)

and (u′, h′) is restricted to preserve qlin obtained by an already-known state (u, h),

qlin = ε∇⊥ · u− h/h0 . (4.3.6)

We obtain h′ from qlin by
ε∆h′ − h′/h0 = qlin ,

or in other words, h′ is found by solving the constant-coefficient Helmholtz operator,

h′ = (−h−1
0 + ε∆)−1(ε∇⊥ · u− h/h0) . (4.3.7)

The computation of u′ follows from the assumption (4.3.5). Since the above equations
include linear operators, qlin (4.3.6) is written in spectral representation as follows

qlin,k =
(
−ε ih0 l ε ih0 k −h−1

0

)
zk ,

while the equations in (4.3.7) and (4.3.5) correspond to

h′k = −1
h−1

0 + ε |k|2
qlin,k , and u′k =

(
−il
ik

)
h′k ,

and hence, zk = (u′k, h′k) is easily written as

z′k = 1
h0 |k|2 + ε−1

−il
ik
1

(ih0 l −ih0 k ε−1
)
zk .

The matrix operator applied to zk is the same as the oblique projector in (4.3.2). The
oblique projector is explained in terms of the PDEs in (4.3.5) and (4.3.7), which can be
used without available explicit mode decomposition. This equivalence becomes visible
while formulating a projector to preserve the existing linear PV. In the results, we notice
the advantages of PV-based projectors at both linear and nonlinear ends, which supports
the use of PV in numerical balance models.
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4.4 Nonlinear-end boundary condition

The problem (4.2.1) at τ = T becomes fully nonlinear, and we apply the nonliner-end
boundary (4.2.3) to this nonlinear system. When h is considered as base point, the ap-
plication of the boundary condition, h(T ) = h∗, is simple. When q is set as base point,
it requires some kinematic equations. The base point h neglects these equations from the
backward-forward nudging scheme, and the simplified scheme involves only the primitive
u-h variables.

4.4.1 Geostrophic-ageostrophic variables

The fluid dynamics in our setting are evolved in the u-h variables. Preservation of
base point q, however, requires to convert the given (u, h) fields into the geostrophic-
ageostrophic variables: PV q, velocity divergence δ, and ageostrophic vorticity γ. With
the relative vorticity ζ =∇⊥ · u, the q-δ-γ variables are defined by

q = εζ + 1
h0 + h

, δ =∇ · u , γ = ζ −∆h , (4.4.1)

and we call them the transformations for geostrophic-ageostrophic variables. If the u-h
fields are geostrophically balanced, the ageostrophic δ-γ variables vanish at leading order,
since ∇ ·∇⊥h = 0 and inserting ζ = ∆h in the γ equation cancels these terms.

4.4.2 PV-inversion equations

The flow states in the (q, δ, γ) variables need to be inverted into the corresponding (u, h)
due to the formulation of the fluid dynamics. These inverse transformations are called
PV-inversion equations. First, we want to recover velocity u field. The (q, δ, γ) definitions
in (4.4.1) do not carry the information of mean velocity ū, so that u can be established
up to its mean ū. In our case, ū is known due to the evolution of fluid dynamics in the
u-h variables, in other words, ū is also preserved along with base point q. To determine
the full velocity field u, we use the Helmholtz decomposition which splits the mean free
velocity, u− ū, into its divergence-free and curl-free components,

u =∇⊥ψ +∇φ+ ū, (4.4.2)

with the stream function ψ and the velocity potential φ. These functions are obtained by
solving two Poisson equations, ∆ψ = ζ and ∆φ = δ, on the doubly periodic domain.

Second, we insert ζ obtained by the γ definition into the q definition and obtain the
following problem,

(−q + ε∆)h = −εγ + qh0 − 1 . (4.4.3)

To recover the height field h, this problem is treated as the Helmholtz equation with a
constant-coefficient operator. We split q into its mean q̄ and mean-free q− q̄ components,
and the constant-coefficient (−q̄+ε∆) remains on the left hand side. The obtained problem
is solved iteratively and quickly converges provided that q̄ > 0 and q − q̄ is sufficiently
small. At the end, we, in total, solve three different linear elliptic equations to obtain
(u, h) from given (q, δ, γ).





Chapter 5

Experimental set-up

The numerical implementation of the optimal balance method for shallow water flows
is presented in this chapter. For this implementation, we modified an existing rotating
shallow-water code, which is the open source code PyRsw by Poulin (2016). Our modified
numerical code is also accessible (Masur, 2022). In numerical experiments, the BVP uses
different ramp functions and initial conditions. In the backward-forward nudging scheme,
the solution of the BVP, or a balanced state, is found as a point close to the given base-
point coordinate within some tolerance. The quality of the balanced state is determined by
a special diagnostics, the diagnosed imbalance. Different than our work Masur and Oliver
(2020), the complete set-up of the nudging scheme is extensively explained, supported by a
schematic for better comprehension. Through this chapter, we consider all time variables
as in time scale of the quasi-geostrophic scaling, which is of O(1). To adjust them to the
semi-geostrophic scaling, we scale the physical time t and the artificial time τ variables
with ε−1.

5.1 Numerical implementation

The numerical model is set up to evolve either in artificial time τ or in physical time t.
Through τ evolution, we solve the optimal balance BVP (4.2.1), where the ramp function
is employed. Although the scheme is introduced in Section 2.4.1, we briefly remind:
The scheme integrates the problem backward in time as a final value problem starting
from τ = T , and forward in time as an initial value problem starting from τ = 0. At
the boundaries, the respective boundary conditions, (4.2.2) and (4.2.3), are imposed on
shallow-water flows which are linear at τ = 0 and nonlinear at τ = T . The scheme
together with setting the boundaries goes on iteratively until getting sufficiently close to
a fixed base-point coordinate and, consequently, reaches a balanced state. Throughout
the t evolution, the ramp function is turned off, so we solve the nonlinear shallow-water
equations (4.1.1) starting from t = 0 up to some time t = t′ in a usual manner.

The numerical settings in the model are as follows: The 2π-doubly-periodic domain
keeps the same grid resolution n = 256 in the x and y directions. The spatial derivatives are
computed in the spectral space, while the nonlinear products are computed in the physical
space. To remove aliasing, we use a spectral filter with full dealising according to the 2/3
rule; then, the maximal resolved wave-number becomes n/3. The flow model is adaptively
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evolved by the third-order Adams-Bashforth method, and time step is computed by

∆tu = ncfl
∆x

|u|max + 2ε−1

with the CFL number ncfl = 0.5. For the purpose of substantial analysis, the model set-up
gives permission to reach geostrophic-ageostrophic q-δ-γ fields via the equations (4.4.1)
at each time step. We, additionally, checked other time steppers and time steppings for
ageostrophic fields, ∆tδ and ∆tγ , where ∆tγ turned the shortest time step. Our results
do not, nevertheless, depend on the choice of time stepper and time stepping.

Our numerical model is integrated over the ramp-time length T and the physical-time
length t′ which are of order of one eddy turnover time or less, so that dissipation does
not play a crucial role through the evolution of the model. Though the dissipation is not
essential, some test cases are, still, carried out including the non-dimensional viscosity
term, ε/Re∆u where Reynolds number is

Re = UL

ν
(5.1.1)

with the kinematic viscosity ν. Activated in the numerical model, the viscosity term is
treated as any other nonlinear term, i.e., it is deformed by the ramp function over the
τ evolution. The model is stable, when the viscosity term is applied dissipatively in the
direction of integration. It means that the viscosity term has a reverse sign in front to keep
dissipative manner through the integration backward in time. Moreover, optimal balance
supports our choice of the viscous dissipation, as it executes primarily slow fields by its
setting, and enstrophy transfer to small scales is prevented. Eddy viscosity or turbulent
viscosity is, therefore, unnecessary.

5.2 Ramp functions

Different ramp functions took place in the optimal balance method up to so far. In the
optimal PV balance, Viúdez and Dritschel (2004) used the cosine ramp function

ρ(θ) = (1− cos(πθ))/2 ; (5.2.1)

in optimal balance, Gottwald et al. (2017) implemented ramp functions of the form

ρ(θ) = f(θ)
f(θ) + f(1− θ) , (5.2.2)

where the choice f(θ) = θk corresponds to a method of algebraic order k and the expo-
nential ramp with f(θ) = exp(−1/θ). Being different than the former work, the analytical
aspects of ramp functions are studied in the later one which decides the order of balance,
see in Section 2.4.2. The cosine ramp (5.2.1) is determined as second order with respect to
its analytical aspect. In our numerical implementation, we investigate the effect of ramp
functions on optimal balance with the given choices above.
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5.3 Initial conditions

The initial configurations to start numerical test cases are, randomly, generated such that
the features of these configurations in spectral energy can be regulated. At every wave
number k, spectral energy density of h is described by

Sh = |k|7

(|k|2 + ak2
0)2b

with a = 4b/7 − 1 and b = (7 + d)/4, so that Sh ∼ k−d when k → ∞. The parameter
k0 sets the maximum of the spectral energy density at |k| = k0, while d sets the order
of spectral decay. Unless we analyse the effect of initial-condition structure on optimal
balance, we create a random h perturbation with k0 = 6 and d = 6. We scale this h
perturbation to deviate from the equilibrium with |h| < 1/5 . The total height h + h0 is,
then, built by adding the mean-free h component to the mean height: h0 = ε−1 for the
quasi-geostrophic scaling and h0 = 1 for the semi-geostrophic scaling.

After h is randomly generated, we choose to build the velocity fields u of the initial
configuration in two ways: setting geostrophic velocity u = ug by (2.2.7) and setting
zero velocity u = 0. The majority of our test cases are initialised by the geostrophic
configuration (ug, h). When optimal balance is run using the base point h, we expect that
test runs with these two configurations converge the same optimally balanced state, where
the speed of convergence may not be similar. When it is run using base point q, the test
runs differ in both balanced states and the convergence speed due to having different PV
q fields.

5.4 Diagnosed imbalance

The quality of balanced states can be assessed by the balance error, for base point q

‖(δT , γT )−Gn(q∗)‖ , (5.4.1)

with the reference slow vector field Gn, see Section 2.4.1. At the end of each nudging
iteration, we get iterates (uT , hT ), where τ = T is written as subscript for simplicity.
As our numerical setting transforms between two different type of fields, the iterate can
be represented by (qT , δT , γT ). For base point h, Gn(q∗) is replaced by Gn(h∗). The
description of the slow manifold Gn field is not directly accessible, so that the balanced
state obtained by optimal truncation of Gn is not available. To estimate the balance error,
we adopt a special representation called diagnosed imbalance in the work of Gottwald et al.
(2017).

The diagnosed imbalance to the rotating shallow-water equations executes the following
steps:

i) Balance the initial flow (u∗, h∗) by solving the optimal balance BVP (4.2.1) over the
ramp time T at t = 0 and obtain the balanced state (uT , hT ).

ii) Evolve the balance flow (uT , hT ) through the shallow-water equations (4.1.1) starting
from t = 0 up to the physical time t′ and the flow at final time is indicated by (u′, h′).

iii) Rebalance the evolved flow (u′, h′) by optimal balance at t = t′ and reach the new
balanced state (u′T , h′T ).
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iv) Using the imbalance fields of the evolved flow (u′, h′) and those of the rebalanced
flow (u′T , h′T ), define the diagnosed imbalance by the following symmetrised relative
error:

I = ‖(δ′, γ′)− (δ′T , γ′T )‖
1
2
(
‖(δ′, γ′)‖+ ‖(δ′T , γ′T )‖

) , (5.4.2)

where ‖·‖ denotes the Euclidean norm.

The absolute error is used in the diagnosed imbalance (5.4.2) as an alternative to is
replaced by the relative error, and the diagnosed imbalance becomes

I = ‖(δ′, γ′)− (δ′T , γ′T )‖ . (5.4.3)

These two errors can be also formulated for the velocity u and the height h separately.
Although the choice of the diagnostic norm might alter the computation of imbalances by
order, we anticipate similar scaling of the diagnosed imbalanced in numerical tests results,
see Section 6.7.2.

5.5 Stopping criterion

The stopping criterion is a condition to stop the iterative nudging scheme, when the chosen
nonlinear-end boundary condition is fulfilled up to some tolerance. With the choice of base
point q, in particular, the nudging iterates qT is expected to converge to the given base
point q∗. In the nudging scheme, the speed of convergence differs for some combinations of
the linear-end and the nonlinear-end boundary conditions. We, therefore, let the shallow-
water flow get out of the iterative loop, when the relative difference between two successive
iterates of the nudging scheme are below the prescribed tolerance. The value of this
tolerance is set to terminate each combinations of boundary conditions. The stopping
criterion is, then, determined as follows:

‖qT (n+ 1)− qT (n)‖
1
2
(
‖qT (n+ 1)‖+ ‖qT (n)‖

) ≤ κ , (5.5.1)

where qT (n) and qT (n + 1) denote successive iterates, and the convergence tolerance pa-
rameter is κ = 10−4.

When h is used as base-point coordinate, we replace h instead of q in the relative error
(5.5.1). Keeping the same tolerance of base point q is, however, not feasible for the current
base point, it needs to be updated. The height field h includes slow and fast dynamics
at the same time unlike the slow variable q. The nudging scheme, thus, provides very
slow convergence for ε ≈ 1, and the tolerance κ is forced to be 0.02, which is gradually
decreasing to 10−4 when ε gets smaller.

The stopping criterion includes two different parameters to be tested: the computa-
tional norm and the tolerance κ. We perform both parameters only for base point q,
because the κ values for base point h are determined in a way that no further convergence
are observed. First, as done in the diagnosed imbalanced, the absolute error is used in the
criterion as follows

‖qT (n+ 1)− qT (n)‖ ≤ κ , (5.5.2)

Second, the smaller κ values can be investigated to terminate the nudging scheme. As
a result, both parameters give reason to the same impact, increase in the number of
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iterations. The quality of convergence to the prescribed base points is affected by these
parameters; however, the quality of balance is independent of them. Further explanation
and numerical test cases can be seen in Section 6.6.

5.6 The complete set-up

The complete set-up of our numerical implementation consists of the backward-forward
nudging scheme and the diagnosed imbalance, which respectively provide the balanced
states and computes the error of these balanced states. We, here, describe this set-up as
an computational algorithm and, further, schematise it in Figure 5.1, where the quasi-
geostrophic scaling limit and base point q are considered.

The balancing procedure includes backward and forward integrations, and the appli-
cation of the linear-end and the nonlinear-end boundary conditions, which is the nudging
scheme itself. At the frozen real time t = 0 (Step i)), the optimal balance BVP (4.2.1)
initialised with (u∗, h∗) is integrated backward in the artificial time starting from τ = T
down to τ = 0, and through ramping the nonlinear terms in the system, the problem
becomes linear at final step. The gravity-wave component in the linear flow is vanished
by the application of the linear-end boundary condition (4.2.2). The slow flow on a triv-
ial slow manifold Γ0 is integrated forward up to τ = T , and the problem becomes fully
nonlinear again on an approximate slow manifold ΓT .

The nonlinear-end boundary condition (4.2.3) is set according to the PV q∗ or height h∗
of the initial flow (u∗, h∗). When base point q is chosen, we derive geostrophic-ageostrophic
variables by the kinematic transformations (4.4.1): (q∗, δ∗, γ∗) of the initial configuration
(u∗, h∗) and (qT , δT , γT ) of the nudging iterate (uT , hT ). Depending on q∗ and qT , we
check if the stopping criterion (5.5.1) is satisfied to stop the balancing loop. The stopping
criterion is defined for two successive nudging iterates, qT (n) and qT (n + 1), but the
schematics in Figure 5.1 represents, for simplicity, only the first iteration.

a) If the criterion fails, qT is set to q∗ while preserving the ageostrophic δT -γT variables,
i.e., the flow (q∗, δT , γT ) is obtained. By the PV-inversion equations, we derive the
corresponding (u, h) variables and start a new iteration with this flow.

b) If the criterion is satisfied, the optimally balanced flow (uT , hT ) is reached.

On the other hand, when base point h is chosen, the transformations and the PV-inversion
equations are completely removed from the algorithm, and then, the stopping criterion is
checked for h∗ and hT . The failed criterion leads to setting hT as h∗ while preserving uT ,
and a new iteration starts with the flow (uT , h∗). The satisfied criterion ends the nudging
scheme with (uT , hT ).

The propagation of (uT , hT ) provides the flow (u′, h′) at t = t′ (Step ii)). At the
frozen time t = t′, (u′, h′) is rebalanced by optimal balance in the same manner as in the
balancing procedure, and the rebalanced flow (u′T , h′T ) is received (Step iii)). At the end of
the algorithm, we diagnostically quantify spontaneously generated imbalances depending
on the corresponding ageostrophic components of (u′, h′) and (u′T , h′T ), which are (δ′, γ′)
and (δ′T , γ′T ), by the diagnosed imbalance (5.4.2) (Step iv)). If optimal balance provides a
well-balanced flow, the evolution of (uT , hT ) up to t′ remain in the close neighbourhood
of ΓT . Less imbalances are, thus, excited, and the evolved and the rebalanced flow shall
not have much difference. In the numerical experiments, we analyse the performance of
optimal balance in this computational algorithm.
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Figure 5.1: Optimal balance applied on the rotating shallow-water equations is studied in a special
computational algorithm presented in the schematic form, and the diagnosed imbalance I (5.4.2) is used
to determine the quality of optimal balance. The balancing procedure runs at t = 0, and the physical-time
t evolution up to t = t′ is followed by the rebalancing procedure at final time step. The calculation of the
diagnosed imbalance I ends the algorithm. The quasi-geostrophic scaling in time variables and base point
q are set in the schematics.



Chapter 6

Numerical implementation results

After describing the analytical and experimental set-up, we explore the quality of optimal
balance with different test cases and its dependency on several design parameters. First,
we visually demonstrate the performance of optimal balance applied on shallow-water
flows. For some test cases, we check the quality of balanced states a priori. Although
the viscosity term, not eddy viscosity in the context of turbulence closure, is not active in
simulations, it is still studied in our setting. We, later on, investigate the convergence of
the backward-forward nudging scheme for different combinations of boundary conditions.
For further simulations, we set reasonable length of physical and ramp times to use in
the diagnostics. With the obtained time lengths, the parameters of the computational
algorithm are tested, which are convergence tolerance, linear-end boundary condition,
base-point coordinate, and ramp function. We, further, compare the quantification of
imbalances at linear end vs. the nonlinear end, and diagnostic error computed by relative
error vs. absolute error. Finally, the chapter is closed with the effect of the initial-condition
structure on optimal balance.

The base settings of optimal balance are decided, based on our preliminary observa-
tions, as follows: Our test cases are initialised at geostrophic balance with random flow
fields (ug, h), explained in Section 5.3. The oblique projector, the preservation of the
linear PV qlin, is used as the linear-end boundary condition, and the PV q is chosen as the
base-point coordinate. The exponential ramp function, (5.2.2) with f(θ) = exp(−1/θ), is
employed. We focus on the wide range of Rossby number, ε = 2−m/2, where m = 2, . . . , 11,
and for some specific test trials where ε is fixed, we choose ε = 0.1 within this range. The
convergence tolerance κ is fixed, κ = 10−4 for base point q; it is forced to be increased
for base point h concerning the parameter ε values, and in the specific tests, for ε = 0.1,
we set κ = 10−3. We remind that the viscosity is inactive in the scheme. These base
settings are kept unless otherwise stated. Each test case is run for both quasi-geostrophic
and semi-geostrophic scaling regimes, and we mostly present both results to observe the
differences. We, explicitly, refer parts of Appendix A for the results not displayed in this
chapter.

6.1 Qualitative analysis

Optimally balanced states of shallow-water flows are visualised starting at two different
initial configurations with the same randomly generated h field: a flow near balance,
(ug, h), and a second flow far from balance, (0, h). Both configurations are introduced in
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Section 5.3. We apply optimal balance in two ways: i) directly on the initial configurations,
ii) on the evolved states of the initial configurations.

In this section, we present some important test results (balanced states) only in the
semi-geostrophic regime, and all other results executed in both regimes, mainly in the
quasi-geostophic ones, can be found in Appendix A.1. For ε = 0.1, the shallow-water
fields show free surface h, mean-free PV q̂ = q− q̄, velocity divergence δ, and ageostrophic
vorticity γ. The ageostrophic δ-γ fields are zero when the test cases are started near
balance, and the velocity divergence δ field is zero when they are started with unbalanced
initialisation, a flow with zero velocity. Optimal balance employs the ramp time T = 0.1/ε.
The base settings are kept the same except the choice of base point, which are explicitly
stated.

First for test case i), the direct application on the initial configurations show the effect
of base-point choice on balanced states. When base point q is chosen, the nearly balanced
and the unbalanced initialisations correspond to different balanced states in characteristics
and magnitude, as the initial configurations hold different q fields, see the second column
in Figures A.1 and A.2 in the appendix, in order, for the semi-geostrophic regime. When
base point h is chosen, both initialisations should correspond to identical balanced states
because of holding the same h fields. Due to the issue of convergence and its tolerance,
however, the balanced states possess only moderately alike appearance in large scales in
both regimes. Although the stopping criterion is also satisfied with a smaller tolerance κ
for the considered ε parameter, slow convergence of h in the nudging scheme is the obstacle
to improve the balanced states by much.

The choice of base-point coordinate can be recognised by its preserved structure, which
is up to some tolerance. For the unbalanced initialisation, the choice is clearly visible due to
qualitative differences in the balanced state. For the nearly-balanced initialisation (ug, h),
nevertheless, as the γ field becomes zero, the PV-inversion equation (4.4.3) to recover h
field matches with the definition of q in (4.4.1): Using base point q returns the same h,
which is used to define q. As a consequence, it gives unsubstantial differences between
balanced parts provided by both base points, and for base point h, the convergence issue
can be distinguished at the PV q̂ field. This test case returns the same observations for
the quasi-geostrophic regime, can be seen in Figures A.3 and A.4.

Second for test case ii), we aim to generate more typical flows, so the configurations first
evolved up to the respective physical time t′ of the scaling regimes; then, optimal balance
is applied on the evolved states for the frozen t′ value. For ε = 0.1, we present initial fields
at t = 0, evolved fields at t = t′ and balanced parts at t = t′. The physical-time length
t′ is chosen longer to evolve dynamics of the nearly-balanced initial flow in considerable
extent. Regarding the chosen T = 0.1/ε values, we have t′ = 1/ε and t′ = 0.1/ε for the
nearly balanced and unbalanced initialisations, respectively.

Starting with the nearly-balanced initialisation produces less imbalances through the
physical-time t evolution, see in Figure 6.1. These imbalances are extracted by optimal
balance procedure using base points q and h, especially from ageostrophic δ-γ fields, see
first two columns in Figure 6.2. The balanced states obtained using both base points keep
similar structure, but they have non-zero residual, see the last column in the latter figure.

Starting with the initial flow holding zero velocity gives rise to an evolved flow domi-
nated by higher imbalances, which are especially shock waves, noisy small scale structures,
see Figure 6.3. The shock waves are visible in all fields except in the PV q, and these waves
are only obtained in the semi-geostrophic regime, for the other regime, see Figure A.7 in
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base point q base point h

iteration ‖δg‖ ‖γg‖ ‖δg‖ ‖γg‖

1 142 2113 142 2113
2 0.032 0.139 185 2575
3 8 · 10−6 3 · 10−5 181 2580
...

...
...

85 145 2579

Table 6.1: The convergent nudging scheme provides decreasing norm of unbalanced components at the
linear end in each iteration. In the table, we present the norm of unbalanced components of δ-γ variables,
‖δg‖ and ‖γg‖, for both base points. The scheme using base point q produces less imbalances and finished
in 3 iterations, but on the other hand, the scheme using base point h cannot decrease the excitation of
imbalances through 85 iterations.

Appendix A.1. Optimal balance using base point q projects onto the full phase space,
which is smooth and small in magnitude, see first column in Figure 6.4. The h field does
not have a regular structure, yet optimal balance can use h as base point. In this case, op-
timal balance does not converge to a balanced state; it only executes a flow state disturbed
by shock waves, see the second column in the later figure. We check the convergence of
consecutive nudging iterates up to a tolerance to terminate the nudging scheme, therefore
h in the last iterate can be notably different than the base point h∗. A thorough analysis
is needed to specify proper test results where optimal balance can employ h as base-point
coordinate, which is carried out in the upcoming section.

6.2 A priori quality check

The quality of the optimal balance can be detected a priori before receiving balanced
states as an outcome. For this examination, we consider the test case initialised with
the unbalanced flow in the semi-geostrophic regime, displayed in Figure 6.3. The shown
evolved flow is balanced using both base points, and the low quality of balance obtained
employing base point h can be distinguished earlier, see second column in Figure 6.4.

In the nudging scheme, for a priori quality check, we consider an additional criterion
at the linear end, where the norm of unbalanced components of δ-γ fields is analysed,
denoted as ‖δg‖ and ‖γg‖ in Table 6.1. The same analysis can be achieved for the u-h
variables too. When optimal balance uses base point q, ‖δg‖ and ‖γg‖ decrease quickly at
each nudging iteration, and the nudging scheme terminates after the third iteration. When
optimal balance uses base point h, we however observe no improvement at these norms
despite of higher number of iterations, that is 85 iterations until being stopped owing to
generating sufficiently close nudging iterates. We, then, stop the balancing procedure for
base point h, if the procedure executes norm-wise non-decreasing sequence of imbalanced
components and conclude that applying base point h fails to provide a convergent nudging
scheme in the current setting. In our upcoming test cases, flows with shock waves do not
appear, so that we do not apply this criterion at the linear end in optimal balance.
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h

initial fields, εt = 0 evolved fields, εt = 1 balanced part, εt = 1
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Figure 6.1: The nearly-balanced initial flow is balanced via optimal balance after its evolution while
preserving PV q and vanishing imbalances from ageostrophic δ-γ fields in the semi-geostrophic regime. For
ε = 0.1, we present the initial shallow-water flow fields in geostrophic balance (left column), the evolved
fields (middle column) of the initial flow at t = 1/ε and the optimally balanced part (right column) of the
evolved flow using the oblique projector, base point q, and ramp time T = 0.1/ε.
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h
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base point h,
balanced part, εt = 1
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Figure 6.2: The evolved flow in Figure 6.1 is optimally balanced using base point h besides base point q.
Both balanced parts show similar pattern, but they relatively differentiate from each other (right column).
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Figure 6.3: With the initial fields holding zero velocity instead of geostrophic balance, we carried out the
same test case as in Figure 6.1 for shorter physical-time length t = 0.1/ε in the semi-geostrophic regime.
The change in the initial fields results in unphysical structures in the evolved fields; however, optimal
balance smooths these imbalances fixing base-point coordinate q.
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Figure 6.4: Optimal balance employing base point h is also applied on the evolved fields in Figure 6.3, and
the nudging scheme preserving h does not converge to a balanced state. The obtained state disturbed by
shock waves is indeed not a balanced state, albeit the backward-forward nudging scheme is stopped by the
criterion at the nonlinear end.
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Figure 6.5: The viscosity term dissipates energy at small scales, so flow fields have smooth pattern being
significantly void of small-scale structures. The figure displays the effect of the viscosity term with Re =
3 × 103 in the semi-geostrophic regime. The test case is the same as in Figure 6.1, which is run without
the viscosity term.
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6.3 Viscosity

Dissipation, and so the viscosity term, is not a crucial concept in our numerical model,
as the artificial-time and the physical-time lengths are of order one or less than eddy
turnover time in test cases, where we analyse the performance of optimal balance in the
computational algorithm. The viscosity term, thus, remains deactivated in test cases; still,
we investigate a possible application of viscosity in the artificial-time τ and the physical-
time t integrations, simultaneously.

By running a long-time simulation of shallow-water model without using optimal bal-
ance, the viscosity coefficient, Reynolds number in (5.1.1), is determined. We discovered
Re = 3 × 103, which is large enough to prevent pile-up of spectral energy in higher wave
numbers near the resolution scale. When the viscosity term with the current Re value
is applied in both integrations dissipatively, details in Section 5.1, energy decreases in all
evolved fields, where the effect is mainly seen on small-scale energy and, as a result, on
balanced states.

To analyse the effect of viscosity, we rerun the test case in Figure 6.1, that is in the
semi-geostrophic regime, using the viscosity term. As the t-integration length is chosen
longer than one eddy turnover time in the qualitative analysis, the considerable amount of
large-scale energy has decreased, see in Figure 6.5. The test case in the quasi-geostrophic
regime can be seen in Figure A.9 in the appendix. By this result, we justified the use
of viscosity in optimal balance, when the notion of dissipation is unavoidable to stabilise
numerical models.

6.4 Convergence of the nudging scheme

The convergence of the backward-forward nudging scheme is analysed in this section by
plotting energy spectra of the nudging iterates for different combinations of linear-end
and nonlinear-end boundary conditions. The nudging scheme is, here, run without being
terminated by the stopping criterion. The iterates are selected among the first 40 itera-
tions, but if the manner of convergence is unclear, we consider up to 300 iterations. In
our other test cases, in the case of convergent nudging scheme, the balancing procedure is
terminated before reaching the last iterate.

The parameters are in our base configuration: The scheme is initialised near balance
and uses the exponential ramp function. Both geostrophic scaling regimes are tested
with their respective ramp times T = 1 and T = 0.1/ε for three different ε values, ε =
0.5, 0.1, 0.03. We compare the four choices of the linear-end boundary condition: the
oblique, orthogonal, h-preserving and ζ-preserving projectors, all have been introduced
in Section 4.3. Our observation on convergence indicates both scaling regimes unless
there exist different behaviour. We simply refer the row numbers in the related figures:
Figures 6.6 and 6.8 when optimal balance uses base point q; Figures 6.7 and 6.9, when
optimal balance uses base point h. The quasi-geostrophic regime is presented in Figures 6.6
and 6.7; the semi-geostrophic one is in Figures 6.8 and 6.9.

First, preserving h (first rows in the figures) at the linear end diverges immediately in
both regimes, when h is applied as base point at the nonlinear end. We present until the
last iterations before the scheme is completely disturbed by noise, see all other flow fields in
the semi-geostrophic regime in Appendix A.3. When q is taken as base point, for ε = 0.5,
the scheme diverges again after the first iteration. For smaller ε values, nevertheless, the
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Quasi-geostrophic regime

base point q base point h

linear-end boundaries small ε large ε small ε large ε

preserve h X
preserve ζ X X

oblique projector X X X
orthogonal projector X X X

Table 6.2: In the quasi-geostrophic regime, the oblique and orthogonal projectors coincide with each
other and give convergent iterates except for large ε values, when base point h is applied in the nudging
scheme. The table shows the behaviour of the nudging scheme using different combinations of the linear-end
boundary and the nonlinear-end boundary (base points) conditions. The (X) and (X) symbols stand for
the combinations resulting in convergent schemes, which are displayed in Figures 6.6 and 6.7; however, we
approve only the combinations indicated with the (X) symbol, and we reject the combinations indicated
with the (X) symbol due to slower rate of convergence. If a combination holds no symbol, then the
combination causes a divergent scheme.

nudging iterates converge to balanced states, where the spatial spectra are very close to the
lowest energy level but at a slower rate relative to other linear boundary conditions. Given
that the h-preserving projector works only with base point q and given its slow convergence
at smaller parameter range are enough to reject this projector as the linear-end boundary
condition.

Second, preserving ζ (second rows) is suggested as an alternative to preserving h.
The ζ-preserving projector alongside base point q gives a convergent nudging scheme.
The balanced states are reached in a few iterations, but they have higher energy level
than those of obtained by the oblique and orthogonal projectors, which can be recognised
better for smaller ε values. When base point is switched to h, though, using preserving
ζ provides diverging iterates, which is delicate to notice at early iterations. The energy
in base point h is not properly damped, and especially in large scales, the projector fails
to act on some specific wave numbers. In the semi-geostrophic regime, the effect of this
failure on other fields can be seen ε = 0.1 in Appendix A.3. The ζ-preserving projector
is, hence, another poor choice because of its divergence when base point h is applied and
the higher energy level of its converged states when base point q is applied.

Third, the spectral oblique and orthogonal projectors (third and fourth rows, in order)
have different features, which fundamentally arise from the angle between the Rossby-
wave and gravity-wave subspace as a result different performance in the nudging scheme.
In the quasi-geostrophic regime, these subspaces are orthogonal, so the projectors are
identical giving the same convergence speed; in the semi-geostrophic regime, they are
non-orthogonal, so the behaviour of the projectors changes under the effect of ε and wave
numbers. As a general overview in both regimes, smaller ε values excite less imbalances
as expected, and the fast convergence is notable relative to larger ε values for the nudging
schemes converging balanced states.

In the semi-geostrophic regime, for ε ≈ 1, the subspaces are close to orthogonality,
especially more orthogonal at large wave numbers. The oblique projector behaves as a
rough orthogonal projector. Independent of the base-point choice, consequently, qualita-
tively close balanced states are produced, and for ε = 0.5, each nudging iteration piles
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Semi-geostrophic regime

base point q base point h

linear-end boundaries small ε large ε small ε large ε

preserve h X
preserve ζ X X

oblique projector X X X
orthogonal projector X X

Table 6.3: In the semi-geostrophic regime, the oblique projector provides convergent nudging scheme
except when base point h is employed with large ε values. The table is prepared in the same format of
Table 6.2: the (X) and (X) symbols for the combinations providing convergent schemes, which can be seen
in Figures 6.8 and 6.9, and the (X) symbol for the accepted combinations.

up more energy at small scales. For ε � 1, more oblique subspaces are obtained, and
the angle becomes smaller particularly at small wave numbers. The orthogonal projector
provides Rossby-wave components with less energy at the linear end, and the rate of the
energy decreases while ε getting smaller. Choosing q as base point balances the energy
changes in the Rossby components, and yet, the orthogonal projector converge at a slower
rate than the oblique one. Base point h, nevertheless, is unsuccessful to maintain regular-
ity. The orthogonal projector cannot progressively reduce the amplitude of the spectral
energy at each iterate, and this leads to straight divergence at large scales. The same type
of divergence is also observed for the ζ-preserving projector, although the underlying rea-
son might be different. The oblique projector, however, generates convergent iterates with
slower rate of convergence, which come down to almost zero at small scales, in comparison
with the case applying base point q. The last observation is also obtained in the quasi-
geostrophic regime. Given the divergence in the current setting, the orthogonal projector
is unacceptable as a linear-end boundary. On the other hand, the weakness of the oblique
projector arises only when base point h is used with larger ε values.

Our work on all combinations of the linear-end and nonlinear-end boundary conditions
for different ε values is summarised in Tables 6.2 and 6.3 for the related regimes. The
diverging nudging schemes occur as a result of i) using base point q with the h-preserving
projector for large ε values in both regimes and ii) using base point h with the linear-end
conditions except the oblique and orthogonal projectors in the quasi-geostrophic regime
and the oblique projector in the semi-geostrophic regime for small ε values. The oblique
projector is, hence, the most robust choice for the linear-end boundary condition provid-
ing convergence, and base point q as the nonlinear-end boundary condition makes this
convergence stronger. Besides the robust convergence, the oblique projector is recovered
as the linear PV qlin-preserving projector formulated by a PDE–based approach in Section
4.3.2. Using the oblique projector and base point q together also maintain the existing PV
at both temporal-end points. On the other hand, we shall not discard directly the choice
of base point h and shall analyse it further in the diagnosed imbalanced, as base point h
returns reasonable decrease of energy in large scales while optimal balance employs the
oblique projector for smaller ε values.
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Figure 6.6: The convergence speed of the backward-forward nudging scheme is affected by the linear-end
boundary conditions and the Rossby number ε values in the quasi-geostrophic regime. Energy spectra of
selected nudging iterates are presented for four linear-end boundaries and three ε values. Optimal balance
initialised near balance uses the base point q, the ramp time T = 1, and the exponential ramp function.
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Figure 6.7: The base point h slows down the convergence speed of the nudging scheme for all linear-end
boundary conditions over all ε values. Due to resulting into divergent schemes, the linear-end conditions
preserving h and ζ are excluded. The energy spectra as in Figure 6.6 is executed for base point h with the
same settings.
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Figure 6.8: The nudging scheme using base point q has convergent iterates for all linear-end boundary
conditions in the semi-geostrophic regime, except the h-preserving projector for the larger ε-range values,
like the case in the quasi-geostrophic regime. The test case in Figure 6.6 is, here, performed in the semi-
geostrophic regime. All other settings are kept the same, but the ramp time is T = 1/ε.
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Figure 6.9: The nudging iterates of the ζ-preserving and the orthogonal projectors diverge for smaller ε
values in the semi-geostrophic regime being different than the result of the quasi-geostrophic one as in
Figure 6.7. The oblique projector shows clear divergence with energy pile-up not only at small scales but
also at large scales for ε = 0.5. The test case in Figure 6.8 is, here, executed for base point h.
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6.5 Optimal integration time scales

The lengths of ramp-time τ and physical-time t in the computational algorithm in Sec-
tion 5.6 are important to provide reliable quantitative analysis of optimal balance. To
determine good choices, we tested diagnosed imbalance as a function of either ramp-time
length T or physical-time length t′ for a fixed ε = 0.1 in both scaling regimes. All results of
diagnosed imbalance, which are presented here or in the forthcoming sections, are plotted
on a logarithmic scale for both axes. As earlier, we preserve the base settings of optimal
balance using the oblique projector, base point q and the exponential ramp function.

The range of ramp-time length T are decided from Figure 6.10 and Figure A.12 in
the appendix for the quasi-geostrophic and semi-geostrophic regimes, respectively. The
sensitivity of the diagnosed imbalance to different t′ values become distinguishable if T is
long enough. After the least imbalance is diagnosed, where the algorithm takes the best
ramp time, more imbalances are produced longer the T values gets, and the sensitivity to
t′ decreases. Based on these results, the computational algorithm can be studied for the
T values, that are smaller than or equal to the best ramp time: T = 0.5, . . . , 2 for the
quasi-geostrophic regime and εT = 0.05, . . . , 0.2 for the semi-geostrophic regime.

The physical time t′ values are selected by studying the diagnosed imbalance as a
function of t′, see Figure 6.11 and Figure A.13 in the appendix. For different T values, as
expected, shorter physical-time integration produces comparable amount of imbalances.
After the t integration becomes long enough to excite different amount of imbalances;
however, longer it is more the diagnosed imbalance is. To select the t′ lengths, we focus
on the range, where the diagnosed imbalance is nearly insensitive to slight changes in t′,
and the reasonable choices are, in order, t′ = 0.5 and t′ = 0.05/ε for the quasi-geostrophic
and the semi-geostrophic regimes.

To examine the effect of ramp time T choice further, we execute the diagnosed imbal-
ance across the range of ε, ε = 2−m/2 with m = 2, . . . , 11, for three different ramp times T
in both scaling regimes, see Figures 6.12 and 6.13. Longer ramp times are advantageous
in optimal balance, and flows that are initially well balanced in the balancing procedure
stay near an approximate slow manifold through the t evolution, i.e, less imbalances are
produced. The advantage is visible across the whole range of ε, but for the small ε-range,
optimal balance reaches physical limits due to numerical limitations, especially for the
semi-geostrophic regime. In our upcoming test cases, we display only ramp times T = 1
and T = 0.1/ε for the corresponding scaling regimes. Test cases can be, still, successfully
carried out for the determined range of ramp times, without any convergence problem.
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Figure 6.10: Diagnosed imbalance I has a particular range of ramp time to study diagnostic analysis. The
figure presents the diagnosed imbalance as a function of ramp-time length T , I(T ), in the quasi-geostrophic
regime for ε = 0.1. Optimal balance uses the oblique projector, base point q and the exponential ramp.
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Figure 6.11: Diagnostic analysis also requires appropriate physical-time lengths t′. We display I(t′) in the
quasi-geostrophic regime for ε = 0.1. The same optimal balance settings as in Figure 6.10 are maintained.
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Figure 6.12: Longer ramp time T provides smaller diagnosed imbalances in the quasi-geostrophic regime.
The figure shows the diagnosed imbalances I as a function of ε for different ramp times. The base settings
are used with the physical-time length t′ = 0.5.
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Figure 6.13: The same observation as in Figure 6.12 is received in the semi-geostrophic regime. The test
is run with the same settings except the artificial-time length indicated in the figure and the physical-time
length t′ = 0.05/ε.
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6.6 Systematic exploration of the algorithm parameters

The quality of optimal balance is explored depending on the choice of design parame-
ters: convergence tolerance, linear-end boundary condition, base-point coordinate and
ramp function. We, then, discover the “best” option in terms of the excitation of less
imbalances. The interested range of Rossby number stays the same, ε = 2−m/2 with
m = 2, . . . , 11. If not specifically stated, the parameter comparison is mainly carried out
with the combination of the oblique projector at the linear end and base point q at the
nonlinear end, when test cases start with a geostrophically balanced flow.

6.6.1 Convergence tolerance

In the stopping criterion (5.5.1), the convergence tolerance κ is decided as κ = 10−4, when
base point q is used. When the κ value is decreased to κ = 10−8, we get no improvement
in the quality of balance despite of more iterations, since the former tolerance is enough to
provide sufficient convergence to base point q and to lead a balanced state. The diagnosed
imbalance is, hence, κ-insensitive, see Figures A.14 and A.15 in the appendix. The κ-
sensitivity test, on the other hand, cannot be applied to base point h due to the limitation
on the speed of convergence. The different κ values are chosen across ε values in a way
that no further convergence is possible: κ = 0.02 for ε ≈ 1 and decreasing to κ = 10−4

for ε � 1. We can also report the effect of ε values on the speed of convergence for base
point q, but it is weak to limit the κ value.

6.6.2 Linear-end boundary condition

The linear-end boundary condition is another parameter be explored. When q is chosen
as base point, the ζ-preserving, oblique and orthogonal projectors provide a converging
scheme over the determined ε-range, while the h-preserving projector yields a diverging
scheme for large ε values. Even if some projectors are rejected to be used as the linear-end
boundary, see in Section 6.4, we analyse them for convergent cases.

Using different linear-end conditions impacts the characteristics of the computational
algorithm. The balancing procedure provides different balanced states, which are shown
in Section 6.4, but the same amount of imbalances are diagnosed, see Figures 6.15 and
6.16 for the respective regimes. We choose the longest ramp times, T = 2 and T = 0.2/ε,
to observe the characteristics, when optimal balance uses the spectral projectors, which
are the oblique and the orthogonal ones, and the ζ-preserving projector. In the semi-
geostrophic regime, we recall that small ε values characterise the angle between Rossby-
wave and gravity-wave subspaces as far from being orthogonal. The orthogonal projector,
therefore, requires more iterations in the nudging scheme for initial balancing, right figure
in Figure 6.14. The increase in the number of iterations is also visible in the ζ-preserving
projector. In the quasi-geostrophic regime, nevertheless, the oblique and the orthogonal
projectors requires the same number of iterations because of being identical, shown under
the label “spectral projectors” in the left figure in Figure 6.14. We again observe that the
ζ-preserving projector needs more iterations while ε gets smaller.

In the context of diagnosed imbalance, the h-preserving projector is studied within
the different ε range, ε = 2−m/2 with m = 6, . . . , 11, due to the convergence issue of
the projector for larger ε values. The scaling of the diagnosed imbalance is qualitatively
similar to those of other projectors, see Figures A.16 and A.17 in the appendix. By these



60 CHAPTER 6. NUMERICAL IMPLEMENTATION RESULTS

0.022 0.1 0.5

Rossby number ε

2

3

4

5

6

Number
of

iterations

Quasi-geostrophic scaling

T = 2, spectral projectors

T = 2, preserve ζ

0.022 0.1 0.5

Rossby number ε

5

10

15

20

25

30

35

Semi-geostrophic scaling

εT = 0.2, oblique projector

εT = 0.2, orthogonal projector

εT = 0.2, preserve ζ

Figure 6.14: The linear-end boundary conditions conclude the nudging scheme with different character-
istics. The figure shows the number of iterations in the quasi-geostrophic regime (left) and in the semi-
geostrophic regime (right) for the linear-end boundary conditions: the spectral projectors, which are the
oblique and the orthogonal projectors, and the ζ-preserving projector. Optimal balance uses T = 2 and
t′ = 0.5 for the quasi-geostrophic regime, and T = 0.2/ε and t′ = 0.05/ε for the semi-geostrophic regime.

results, the diagnosed imbalance is emphasised as being independent of the choice of the
linear-end boundary condition.

6.6.3 Base-point coordinate

In this section, we explore the response of optimal balance to the choice of base point. The
quality of balanced states obtained using both base points are quantitatively close to each
other in terms of the diagnosed imbalance except using base point q comes with slight
better results in the γ field, see in Figures 6.17 and 6.18. In the presence of convergent
nudging iterates, we opt for base point q to be used in optimal balance. Base point q
is physically grounded because of its slow nature in linear case and its consistency in
convergence, but it comes with a drawback of an computational algorithm with the PV-
inversion equations. Providing the possible choice of base point h is, however, a strong
result, and base point h fits the formulation of the model dynamics. It also simplifies the
application of the computational algorithm by omiting the inversion equations, but as a
drawback, it requires more nudging iterations.

The diagnosed imbalance of base point q (not shown here) is few order smaller than
that of other fields, but we do not observe this for base point h. The slow convergence
of base point h limits the convergence to a fixed point h∗, while the nudging iterates gets
closer to each other, and then, the scheme is terminated due to sufficiently small norm of
the iterates. This slower convergence also reasons to the requirement of more iterations
for base point h. In our published work Masur and Oliver (2020), the diagnosed imbalance
of h takes total height h + h0 into account instead of only free surface h. The imbalance
provides smaller error of two order in h, as anticipated, but this small order emerge only
due to slightly different definition.
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Figure 6.15: The liner-end boundary conditions give the same quality of balance in the quasi-geostrophic
regime. Optimal balance uses the spectral projectors, the oblique and orthogonal ones and the ζ-preserving
projectors with T = 1 and t = 0.5.
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Figure 6.16: In the semi-geostrophic regime, the test case in Figure 6.15 is performed with T = 0.1/ε and
t′ = 0.05/ε. The diagnosed imbalance is independent of the choice of the linear projectors, which give a
convergent nudging scheme across the whole ε-range.
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Figure 6.17: The base-point coordinates provide quantitatively closer diagnosed imbalances in the quasi-
geostrophic regime. The diagnosed imbalance as I(ε) is presented for base points q and h, when optimal
balance uses T = 1 and t′ = 0.5, and the exponential ramp function.
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Figure 6.18: The test case in the above figure is run for the semi-geostrophic regime, when the settings
kept the same except T = 0.1/ε and t′ = 0.05/ε. The quality of balance is comparable for both base points
as in the quasi-geostrophic case.
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Figure 6.19: Ramp functions helps to build homotopy between the nonlinear equations and its linear form.
The figure displays four different ramp functions ρ: i) in the form of the function (5.2.2) with f(θ) = θ,
f(θ) = θ3 and f(θ) = exp(−1/θ), which are respectively called the “linear”, “cubic” and “exponential”
functions, and ii) the “cosine” ramp function in (5.2.1).

6.6.4 Ramp function

The choice of ramp function is the last parameter to be tested for the quality of balance.
We work on four possible choices of ramp functions: three of them are formulated in the
expression (5.2.2) with f(θ) = θ (“linear”), f(θ) = θ3 (“cubic”) and f(θ) = exp(−1/θ)
(“exponential”), and the fourth one is the “cosine” ramp (5.2.1) of second order, which
are drawn in Figure 6.19. The exponential ramp results in exponential decay; the other
functions give algebraic decay as regards to their order, see Section 2.4.2.

The order of balance error is correlated with two components: i) a “dynamic” compo-
nent determined by the derivatives of the ramp function and ii) a “boundary” component
dependent on the vanishing derivatives of the ramp function at the end points. When
ε is large, the dynamic component becomes dominant in the balance error. As the co-
sine ramp has smaller component, it gives better balance, which is more visible in the
semi-geostrophic regime, see in Figures 6.20 and 6.21. A rapid change in the balance
errors are visible starting from a specific ε value, where the type of the dominant error
component changes. When ε is small, the boundary component, if not zero, becomes
important, then it restricts the quality of balance. The small-ε asymptotics is clear in the
quasi-geostrophic regime; the error due to the spatial resolution might conceal the impact
of boundary component in the semi-geostrophic regime, see the Section 6.8 for the spatial
resolution.
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Figure 6.20: The cosine ramp function gives slightly less imbalances over practically important ε-range in
the quasi-geostrophic regime. The figure shows diagnosed imbalances across the ε-range for different ramp
functions. The base settings are preserved, and the integration lengths are T = 1 and t′ = 0.5.
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Figure 6.21: In the semi-geostrophic regime, smaller diagnosed imbalances using the cosine ramp are, here,
more distinguishable over the same ε-range as in Figure 6.20. The test is executed with the base settings
when T = 0.1/ε and t = 0.05/ε.
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6.7 Systematic exploration of diagnostics

The diagnosed imbalance in Section 5.4 is investigated by the comparison of diagnostics
at linear and nonlinear ends and the type of error computation used in the diagnostics.
We, still, preserve the base settings in optimal balance: the oblique projector, base point
q and the exponential ramp function.

6.7.1 Diagnostics at linear vs. nonlinear end

In the computational algorithm, the diagnosed imbalance is quantified on nonlinear dy-
namics. We justify the possibility of comparable diagnostics at the linear end by introduc-
ing an alternative algorithm. The quantification of imbalances at the linear end eliminates
the necessity of the full backward-forward nudging scheme in the rebalancing procedure.
After the physical-time evolution up to t = t′, the flow (u′, h′) is integrated backward to
the linear end, and the quantification follows in two ways: i) the norm of the gravity-wave
component of a linear flow and ii) the relative difference between the linear flow and its
Rossby-wave component as in our actual diagnosed imbalance (5.4.2). In Figures 6.22 and
6.23, we use the label of “linear end ‖.‖g” for the error in i), “linear end” for the error in
ii), and “nonlinear end” for our actual error.

The balance error of the u-h fields are analogous at “nonlinear end” and “linear end” in
both regimes. The relative error in the δ-γ fields at “linear end”, nonetheless, are constant
across different ε values, since these fields have no contribution to the linear Rossby-wave
component. This problem can be solved using the norm of linear gravity-wave components
at “linear end ‖.‖g”. The latter norm also supplies close proportional scaling to the error at
the “nonlinear end” for all fields. We, hence, verified reasonable diagnostics of imbalance
at the linear end by introducing a new algorithm, which is advantageous to computational
time.

6.7.2 Diagnostics error type

Our main settings include the stopping criterion (5.5.1) and the diagnosed imbalance
(5.4.2) with the relative error. To observe the effect of diagnostic error type, we choose
the absolute error instead, and the referred equations are replaced with (5.4.3) and (5.5.2),
respectively. The absolute error inevitably reasons more iterations to terminate the nudg-
ing scheme for the same κ value, which does not enhance the quality of a balanced state:
It has been already observed in the test of κ-sensitivity. We, then, see the effect of error
mainly on the computation of the diagnosed imbalance.

The effect of the error type becomes visible on scaling the order of terms, which
occurs in the relative error. The δ-γ fields, same for δ′-γ′, are decomposed as follows
δ′ = O(ε)+ small imbalanced contributions (see Section 2.4), and in the rebalanced flow,
the imbalanced contributions become exponentially small. The u-h fields, however, has
O(1)-term additionally. Regarding both regimes, the scaling of the diagnosed imbalances
differentiates in the δ-γ fields, especially for large ε values; it is quantitatively comparable
in the u-h fields, see in Figures 6.24 and 6.25. The choice of error type, hence, changes
only the computation of diagnostics without any effect on the quality of balance. This
test is only possible to perform while preserving base point q, because base point h holds
some limitations on convergence.
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Figure 6.22: The quantification of imbalances at the linear and nonlinear ends give similar observation in
the quasi-geostrophic regime. These quantifications are done by the norm of linear gravity waves (linear
end ‖.g‖), the relative norm of the linear flow and its Rossby wave (linear end), and the relative norm of
nonlinear flow (nonlinear end). The time lengths are T = 1 and t′ = 0.5.
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Figure 6.23: The above test is performed in the semi-geostrophic regime using T = 0.1/ε and t′ = 0.05/ε.
The diagnostics of imbalance is possible at the linear end, as well as at the nonlinear end.
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Figure 6.24: Using the absolute norm in the diagnosed imbalance and the stopping criterion gives reliable
quantification of imbalances in the quasi-geostrophic regime. The figure shows the diagnosed imbalances
for the absolute and the relative norms, and time lengths are T = 1 and t′ = 0.5 in the simulations.
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Figure 6.25: The above test case is executed in the semi-geostrophic regime, while time lengths are T =
0.1/ε and t′ = 0.05/ε. The diagnostics of imbalances is also carried out using the absolute norm.
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Figure 6.26: The randomly generated height h field has different energy distribution at a particular spatial
scale depending on spectral maximum k0 and spectral decay rate d. In the left figure, d = 6 is fixed; k0
gets different values. In the right figure, k0 = 6 is fixed; d gets different values.

6.8 Initial condition structure

Optimal balance provides different balanced states depending on the structure of the
initial condition. Our commonly used initial conditions consist of the randomly created
h field with spectral maximum k0 = 6 and spectral decay rate d = 6, and u field is
set by the geostrophic balance. To test the dependence of the quality of balance on the
structure of initial conditions, we produce several different initial conditions: When one of
the parameters k0 and d stayed fixed, say 6, and the other takes values among 3, 6, 9, 12.
These initial flows have energy spectra as displayed in Figure 6.26.

The test cases for different k0 and d indicate the impact of spatial resolution on op-
timally balanced states: Smaller k0 and larger d are analogous to finer resolution in the
model. In the quasi-geostrophic regime, our general initial data is already well resolved,
so smaller k0 and larger d values put forward no significant progress in balance, see Fig-
ures A.18 and A.19 in the appendix. In the semi-geostrophic regime, nevertheless, finer
spatial resolution improves the quality of balance especially for small ε values. This im-
provement can be noticed after a cutover in the ageostrophic δ-γ fields, see Figures 6.27 and
6.28. A finer resolution also lowers the ε limit that can be studied without any numerical
restriction as expected; hence, it advanced the quality of balance in the semi-geostrophic
scaling regime.

To stress the reliability of optimal balance, we perform the same experiment for turbu-
lent flows using he “Kolmogorov -5/3 spectrum” which predicts the energy spectrum of u
field in a turbulent flow. In our settings, this flow is a geostrophic u field with the spectral
decay d = 5/3. To derive it, we work with randomly created h fields, where d = 11/3
for different k0 values. Depending on the above result, the sensitivity of the diagnosed
imbalance on the turbulent flow can be anticipated, but yet, we separately present the
results to emphasise some restrictions and diverging cases. The spatial energy distribution
of turbulent flows and their diagnosed imbalances are displayed in Appendix A.7.
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Figure 6.27: Holding the spectral decay d = 6 and the spectral maximum k0 at large scales, initial
configurations result into higher quality of balance especially for small ε values. This test case uses the
PV-based boundaries and the integration lengths: T = 0.1/ε and t′ = 0.05/ε.
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Figure 6.28: Initial condition with steeper spectral tail increases the quality of balance especially smaller
ε-range in the semi-geostrophic regime. The settings as in Figure 6.27 are reused.





Chapter 7

Discussion and Conclusion

The method of “optimal balance”, in this thesis, is numerically investigated in a single-
layer rotating shallow-water model on the f -plane. The novelty of our work lies under the
application of optimal balance in the primitive velocity-height variables and the simplicity
of its application. Implementing at the top of an existing code, optimal balance provides
good-quality balance without any special treatment and expensive computational cost.
This method has already numerically studied by Viúdez and Dritschel (2004) in a special
Lagrangian setting, but as the majority of global models is operated in Eulerian primitive
variables, it was essential for us to work in these variables.

The application of optimal balance returns a boundary value problem in time solved
iteratively by a backward-forward nudging scheme, and an obtained solution is an opti-
mally balanced state. We, in this thesis, tested methodically the quality of balance for
the effect of several design parameters in our numerical setting. Besides the numerical
implementation, we have also provided “quasi-convergence” of the nudging scheme in a
finite-dimensional model, which has similar dynamics to the evolution of rotating shallow-
water model in the semi-geostrophic scaling limit. In the upcoming sections, we summarise
the key findings of this thesis under two aspects: theoretical and numerical ones.

7.1 Theoretical aspects

The convergence in the nudging scheme is characterised by the closeness of two following
iterates. For the finite-dimensional model (3.1.1), the difference between the successive
iterates decreases only up to a small, non-vanishing residual: There is no convergence to
the solution of the BVP, when the number of nudging iterations are getting larger. The
nudging scheme, therefore, has no unique solution and we call this convergence behaviour
“quasi-convergence”.

The nudging balance error between the obtained balanced state and the slow manifold
is determined by the quality of the optimal balance scheme and the quality of convergence
of the nudging implementation. This gives rise to two components of the overall error,
the balance error and the termination residual. The balance error comes from the direct
transition of the system from the trivial slow manifold to an approximate nonlinear slow
manifold, and it is already bounded by O(εn+1) by Gottwald et al. (2017). The termination
residual is the contribution of the nudging scheme to the overall error, proved in Chapter 3.
As it is of the same order as the balance error, it has no impact on the asymptotics of the
overall error. In this result, it is assumed that the ramp function holds the algebraic order
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condition. For future work, the convergence of the nudging scheme should be analysed
for the ramp function satisfying the exponential order condition, see Masur et al. (2022).
Another further step could be a rigorous analysis in infinite dimensions, e.g., for the
rotating shallow-water equations.

7.2 Numerical aspects

The quality of optimally balanced states of the shallow-water flows is explored in the
definition of the diagnosed imbalance. When the best parameters are chosen in the com-
putational algorithm, the balance error is limited by small-scale dynamics resolved by
the spatial grid scale. By testing the structure of the initial data, we observed: In the
quasi-geostrophic regime, the initial condition employed in the test cases is well-resolved.
In the semi-geostrophic regime, initial conditions with less small-scale dynamics near the
grid resolution decrease the excitation of imbalances especially for the small-ε range. It is
concluded that the spatial resolution influences the quality of balance more in the semi-
geostrophic regime. Through the diagnostics, therefore, smaller imbalances are obtained
for smoother flows, though optimal balance is also very successful to balance highly non-
smooth flows.

Providing better balance states is also correlated by the properties of continuous de-
formation. The choice of longer ramp time, not longer than the optimal value, makes
transition between the linear and nonlinear dynamics smoother and produces better bal-
ance. As another parameter, the choice of ramp function also improves balance slightly
due to the effect on the deformation. The cosine ramp is a good choice for the large-ε
range, that is practically used. For small-ε range, the numerical restrictions, like grid
scale, play role in the semi-geostrophic regime, and the cubic ramp gives better balance
in the quasi-geostrophic regime.

The most decisive parameters in the algorithm are the linear projector acting on a
linear flow and the nonlinear projector, so-called base point. The best combination of
these parameters is using base point q and the oblique projector together. Though both
choices of base point balance flows in close quality, base point q is preferred to base point
h due to its faster convergence and larger basin of convergence. On the other hand, using
base point q brings about a more complicated computational algorithm, where the PV-
inversion equations become necessary, albeit the model dynamics is free of the PV field. As
an important aspect of our work, the variable h can be, however, replaced as base point in
convergent cases. Base point h is more in the line with using the primitive variables. This
yields a simpler algorithm without need of inversion equations, but there is a compromise
in the number of nudging iterations.

The choice of linear projector depends critically on the angle between the Rossby-
wave and gravity-wave subspaces. Since smaller-ε values make the subspaces more non-
orthogonal, the oblique projector stands out by its better convergence in every case. This
boundary condition projects the linear phase space onto the Rossby modes in spectral
space, but it is also represented by some elliptic PDEs solving a linear PV-inversion pre-
serving the linear PV. By this formulation, the oblique projector becomes advantageous
to apply on general models in general geometries. In those general settings, when base q
is also included, the computational effort to solve elliptic PDEs for the linear and non-
linear inversion equations might need a careful care. As a result, the robust convergence
is provided by the projectors preserving linear and nonlinear PVs in the algorithm, and
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this result supports strongly the idea of working with PV-based balancing algorithms in
geophysical fluid dynamics.

Our implementation is based on the simple f -plane rotating shallow water model. As
next step, the performance of optimal balance can be investigated on the β-plane in the
equatorial region or on the sphere. Getting closer to the equatorial region where the
mixed Rossby-gravity waves becomes visible in the domain of dynamics, the time scale of
the Rossby and gravity-wave modes are poorly separated. In this case, the effect of the
design parameters can be more perceivable especially the choice of boundary conditions.
When stratified models are concerned, a reference stratification must be the part of the
formulation while ramping its perturbation. As the main target is to apply optimal balance
to full atmosphere and ocean models, a significant difficulty is not foreseen. There is,
nevertheless, a need to formulate the linear-end and nonlinear-end boundary conditions
carefully. Due to large model sizes, the choice of parameters of optimal balance might
need careful tuning, but the method itself is a diagnostic tool that can be switched on if
necessity, possibly even locally in parts of the domain.
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Additional figures

This appendix includes unshown figures in Chapter 6.
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A.1 Qualitative analysis
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Figure A.1: Optimally balanced parts of the nearly-balanced flow show rather similar characteristics for
both base points in the semi-geostrophic regime. The figure presents, for ε = 0.1, the initial shallow-water
flow fields in geostrophic balance (left column), and their balanced parts obtained using base point q
(middle column) and by base point h (last column) with the oblique projector and ramp time T = 0.1/ε.
The fields are shallow water free surface h (first row), mean-free potential vorticity (PV) q̂ = q− q̄ (second
row), velocity divergence δ (third row), and ageostrophic vorticity γ (last row).
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Figure A.2: The same test case as in Figure A.1 is performed with zero velocity instead of holding
geostrophic balance in the initial flow. Starting with this unbalanced flow, optimal balance executes
balanced parts with dissimilar quality for base point q and h.
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Figure A.3: Starting with the initial condition near balance, optimal balance with both base points con-
verges to very close balanced states. The test case in Figure A.1 is executed, here, in the quasi-geostrophic
regime. While keeping all other settings the same, optimal balance employs ramp time T = 1.
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Figure A.4: By keeping all the settings as in Figure A.3, the test case is run starting with the initial flow
fields involving zero velocity. In this case, optimal balance for different base points produces qualitatively
different balanced states.



80 APPENDIX A. ADDITIONAL FIGURES

h

initial fields, t = 0 evolved fields, t = 10 balanced part, t = 10

4

0

−4

×10−1

q̂

2.6

0.0

−2.6

×10−1

δ

3.5

0.0

−3.5

×10−2

γ

30

0

−30

Figure A.5: Optimal balance employing base point q is used to balance the evolved fields (middle column)
in the quasi-geostrophic regime, and it is successful to remove excessive parts of ageostrophic fields (see
last column). The evolved fields, for ε = 0.1, are generated by evolving the initial fields (first column) up
to t = 10. Optimal balance uses ramp time T = 1 and base point q.
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Figure A.6: The balanced parts extracted using base points q and h are nearly identical in the quasi-
geostrophic regime, as can be seen in the relative difference (last column). The evolved fields in Figure A.5
are also balanced for base point h with the same ramp time, and the balanced part of both base points
are displayed: that of base point q (left column) and that of base point h (middle column).
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Figure A.7: Using zero velocity instead of holding geostrophic balance in the initial fields, the same test as
in Figure A.5, is executed for a shorter physical-time length, t = 1, in the quasi-geostrophic regime. The
change of the initial configuration produces ageostrophic δ-γ fields, which are dominated by imbalance,
and optimal balance using base point q removes their significant part.
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Figure A.8: Optimal balance with base point h is also applied on the evolved fields in Figure A.7, while the
design settings are retained. The balanced parts of base points q and h show structural difference unlike
those for the nearly-balanced initial condition in Figure A.6.
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A.2 Viscosity
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Figure A.9: The viscosity term dissipates the energy at small scales, so that flow fields have smooth pattern
by being significantly void of small-scale structures. The figure displays the effect of the viscosity term for
Re = 3 × 103 in the quasi geostrophic regime. The test case is the same as in Figure A.5 which is run
without the viscosity term.
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A.3 Convergence of the nudging scheme
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Figure A.10: The nudging iterates diverge for all fields, when h is preserved at the linear end in the semi-
geostrophic regime. The iterative scheme using the h-preserving projector for ε = 0.1 is repeated with the
same setting as in Figure 6.9, and energy spectra of all fields are separately presented.
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Figure A.11: The height field h diverges from base point h; however, energy accumulates at higher wave
numbers for other fields, when ζ is preserved at the linear-end boundary in the semi-geostrophic regime.
The other settings for the nudging scheme are maintained as in Figure 6.9.
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A.4 Optimal integration time scales
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Figure A.12: Diagnosed imbalance I is analysed as a function of the ramp-time length T , I(T ), in the
semi-geostrophic regime for ε = 0.1. The ramp-time length T horizon shows only T values, which are
scaled by ε−1 in the computational algorithm. The base settings of optimal balance are preserved.
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Figure A.13: For quantitative analysis, the physical time length t′ is also needed. The diagnosed imbalance
is studied as I(t′) employing the same setting as in Figure A.12. The t′ horizon, here, is scaled by ε−1.
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A.5 Convergence tolerance
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Figure A.14: Smaller convergence tolerance κ values used to terminate the nudging scheme provides
comparable quality of balance in the quasi-geostrophic regime. The figure presents the diagnosed imbalance
for κ = 10−4, which takes place in the standard optimal balance setting, and the smaller tolerance κ = 10−8

with T = 1 and t′ = 0.5.
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Figure A.15: The κ-sensitivity above is repeated for the semi-geostrophic regime using T = 0.1/ε and
t′ = 0.05/ε. The diagnosed imbalance is κ-independent for base point q.
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A.6 Linear-end voundary condition
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Figure A.16: Preserving h at the linear end provides convergence in the nudging scheme for smaller ε
values, and the diagnosed imbalance has comparable quality to that of the oblique projector in the quasi-
geostrophic regime. Using the h-preserving projector, the test is run for T = 1 and t′ = 0.5.
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Figure A.17: The above test is executed in the semi-geostrophic regime with T = 0.1/eps and t′ = 0.05/ε.
The diagnostics of the h-preserving projector have the same quality as other converging projectors over
smaller ε-range.
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A.7 Initial condition structure
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Figure A.18: Initial data holding spectral maximum k0 at small wave numbers are balanced better for a
fixed spectral decay d = 6 in the quasi-geostrophic regime. The potential vorticity q is preserved at both
end points in the nudging scheme, when T = 1 and t′ = 0.5.

0.022 0.1 0.5

10−4

10−3

100
Velocity divergence δ

d = 3

d = 6

d = 9

d = 12

0.022 0.1 0.5

10−7

10−6

10−1

100

Diagnosed
imbalance

I

Ageostrophic vorticity γ

d = 3

d = 6

d = 9

d = 12

0.022 0.1 0.5

Rossby number ε

10−7

10−6

10−1

Horizontal velocity u

d = 3

d = 6

d = 9

d = 12

0.022 0.1 0.5

Rossby number ε

10−6

10−5

10−1

Diagnosed
imbalance

I

Fluid depth h

d = 3

d = 6

d = 9

d = 12

Figure A.19: Initial condition with fixed k = 6 and d > 3 are balanced with rather close quality in the
quasi-geostrophic regime. Optimal balance uses the setting as in Figure A.18.
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Figure A.20: Turbulent flows with the Kolmogorov −5/3 spectrum excites more imbalances, when the
spectral maximum k0 is at larger wave numbers in the quasi-geostrophic regime. The figure demonstrates
the diagnosed imbalances of the turbulent flows in Figure A.22. The simulations have ramp time T = 1
and forward time t′ = 0.5.
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Figure A.21: The test case in Figure A.21 is applied in the semi-geostrophic regime with T = 0.1/ε and
t′ = 0.05/ε. The small k0 values, which gives the effect smaller resolution, increases the quality of balance.
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Figure A.22: The height h fields are randomly created when spectral decay is of order d = 11/3 and
spectral maximum k0 takes three values (left figure). The corresponding velocity u fields are found by
geostrophic balance, and the spectral decay gives the “Kolmogorov -5/3 spectrum” (right figure).
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