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Abstract

Owing to the ever-growing volume of mobile traffic and wireless devices as shown in

network traffic reports over the last decades, the wireless mobile technology is required

and expected to offer continuous improvements on the major communication perfor-

mance such as data rate and connection density. Besides expanding such communi-

cation performance, various application-centric Quality of Service (QoS) requirements

have been raised from a wide range of application fields, imposing on the research

community the need of diverse wireless solutions to satisfy such heterogeneous QoS

requirements.

In light of the above, this dissertation intends to contribute to the aforementioned

trend by addressing three essentials in future wireless systems: massive connectivity,

low-latency, and reliability, offering the corresponding algorithm design(s) and quan-

titative analyses to evaluate the performance.

Massive connectivity aims to increase the connection density of wireless commu-

nication systems serving a certain area. Given the fact that the number of mobile

devices will likely grow continuously over the next decade subject to the limitation

on the available wireless resources, the future wireless systems are expected to resort

to non-orthogonal transmission, in which the number of available resources at the re-

ceiver is below that at the transmitter. One of the main challenges in this context

is an efficient receiver design enabling symbol detection even under overloaded (i.e.,

underdetermined) conditions. To this end, we propose a new symbol detection frame-

work inspired by compressed sensing (CS), which is composed of an adaptive tight

approximation of the `0-norm and a quadratic transformation via fractional program-

ming (FP), leading to a generalization of the conventional linear estimators (i.e., zero-

forcing (ZF) and linear minimum mean square error (LMMSE)) in terms of adherence

to the prescribed discrete constellation set.

Another challenge in uplink due to the increase in the number of mobile devices

is the resource overhead required to jointly acquire channel state information (CSI)

and sporadic user activity, which scales with the number of potential users, resulting

in unacceptable data transmission delay (i.e., latency). An emerging approach to

address this issue is grant-free non-orthogonal multiple access (NOMA), in which the
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CSI and user activity patterns are jointly estimated by taking advantage of the sparsity

due to the sporadic access as well as non-orthogonal sequences transmitted by the

users. In this context, we aim to achieve the following two different objectives. The

first objective is to enhance the per-user throughput in grant-free access systems by

jointly performing active user detection (AUD), channel estimation (CE), and multi-

user detection (MUD) while exploiting the pseudo-orthogonality of randomly generated

data sequences. The latter is to handle a peculiar phenomenon in distributed multiple-

input multiple-output (MIMO) architectures, that is, spatial non-stationarity, which is

the fact that the signal from each user is received only at part of the distributed antenna

array, resulting in the sparsity in the antenna domain (i.e., array activity), while jointly

addressing AUD and CE in a grant-free fashion. We tackle the aforementioned two

challenging estimation problems by means of bilinear Bayesian inference, proposing a

tailored estimation algorithm for each problem.

The demand for higher data rate and the growth of the number of mobile de-

vices jointly pose a dearth of spectrum resources in sub-6GHz frequency bands, which

motivates the use of higher frequencies such as millimeter wave (mmWave) bands.

Although there has been great progress in combating major challenges of mmWave

systems including the severe propagation loss and efficient radio frequency (RF) de-

sign, a remaining challenge is the susceptibility of mmWave signals to random path

blockage. To maintain the reliability of mmWave systems against such random block-

age, we propose a novel stochastic-optimization-based framework to mitigate the QoS

violation (i.e., outage probability) by means of cooperative beamforming in distributed

wireless architectures.

Numerical performance assessments via computer simulations are offered to evalu-

ate the aforementioned proposed methods, illustrating their advantages against exist-

ing counterparts.
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B Derivations of QCSIDCO 163

C Derivation of equation (3.24) and (3.25) 165

D Own Publications 167

Bibliography 172

x



List of Figures

1.1 Structure and contributed areas of the thesis . . . . . . . . . . . . . . . 7

2.1 Illustration of the `0-norm approximation via equation (2.10) for differ-

ent values of α with L = 1 for the sake of visualization. It is visible

that the smooth approximation asymptotically approaches the `0-norm

as α→ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Bit-error rate (BER) performance with fully-loaded conditions. . . . . . 34

2.3 BER performance with moderately overloaded conditions. . . . . . . . 35

2.4 BER performance with severely overloaded conditions. . . . . . . . . . 36

2.5 Convergence and asymptotic behaviors of the iterative discrete least

square (IDLS) detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Low-density parity-check code (LDPC)-coded BER performance with

perfect channel state information (CSI). . . . . . . . . . . . . . . . . . . 39

2.7 Uncoded BER performance of Robust IDLS detector compared to state-

of-the-art (SotA) alternatives, under fully-loaded (γ = 1) conditions in

spatially correlated channels and subjected to different CSI error and

hardware impairment levels. . . . . . . . . . . . . . . . . . . . . . . . . 50

2.8 Uncoded BER performance of Robust IDLS detector compared to SotA

alternatives, under overloaded (γ = 1.25) conditions in spatially corre-

lated channels and subjected to different CSI error and hardware im-

pairment levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.9 Coded BER performance with imperfect CSI. . . . . . . . . . . . . . . . 52

2.10 Normalized-mean-square error (MSE) (NMSE) performance evaluations

of the proposed discrete-aware matrix completion (MC) algorithms (red)

and other state-of-the-art methods (gray and black) with respect to

different observation ratios. ©2020 IEEE . . . . . . . . . . . . . . . . . 58

2.11 NMSE performance behavior on the MovieLens-100k data set as a func-

tion of algorithmic iterations with 20% observation of the total non-zero

entries. ©2020 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 System and Signal Model. . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Belief generation and combining model. . . . . . . . . . . . . . . . . . . 73

3.4 Work flow of the proposed detection process. . . . . . . . . . . . . . . . 73

3.5 BER comparisons as a function of transmit power. . . . . . . . . . . . . 84

xi



3.6 Effective throughput comparisons as a function of transmit power. . . . 86

3.9 MSE performance prediction via the state evolution of Algorithm 3 in

comparison with the actual numerical evaluation as a function of trans-

mit power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.10 Illustration of the uplink of a multiuser extra large MIMO (XL-MIMO)

system with spatial non-stationarity, whereby each user independently

activates different subarrays of the XL-MIMO array depending propa-

gation conditions. ©2022 IEEE . . . . . . . . . . . . . . . . . . . . . . . 93

3.11 NMSE performance with respect to SNR with N = 400 and M = 200

for different pilot lengths. ©2022 IEEE . . . . . . . . . . . . . . . . . . 106

3.12 AER performance with respect to SNR with N = 400 and M = 200 for

different pilot lengths. ©2022 IEEE . . . . . . . . . . . . . . . . . . . . 107

3.13 Convergence and scalability of the proposed method. ©2022 IEEE . . . 108

3.14 Comparison between Matérn-cluster point process (MCPP) and Poisson

point process (PPP) based sub-array activity models. ©2022 IEEE . . 111

3.15 NMSE Performance with respect to SNR with N = 400, M = 200, and

L = 70 with MCPP for different µ. ©2022 IEEE . . . . . . . . . . . . . 113

3.16 AER Performance with respect to SNR with N = 400, M = 200, and

L = 70 with MCPP for different µ. ©2022 IEEE . . . . . . . . . . . . . 114

3.17 NMSE performance of the proposed algorithm for different cluster-related

parameters. ©2022 IEEE . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1 Illustration of the considered millimeter wave (mmWave) coordinated

multipoint (CoMP) system subject to blockage. . . . . . . . . . . . . . 121

4.2 Outage probability and effective throughput comparisons with transmit

antennasNt = 32, number of users U = 3, the target throughputRtarg =

9, and the subcarrier bandwidth W = 20 [MHz]. . . . . . . . . . . . . . 128

4.3 Convergence behavior of the proposed method for different channel con-

ditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.4 Cumulative density function (CDF) of achieved data rates for different

blockage probabilities with target rate of 3 [bps/Hz] and perfect CSI. . 147

4.5 CDF of achieved data rates for different blockage probabilities with tar-

get rate of 5 [bps/Hz] and perfect CSI. . . . . . . . . . . . . . . . . . . 148

4.6 CDF of achieved data rates for different blockage probabilities with tar-

get rate of 3 [bps/Hz] and CSI errors. . . . . . . . . . . . . . . . . . . . 151

4.7 CDF of achieved data rates for different blockage probabilities with tar-

get rate of 5 [bps/Hz] and CSI errors. . . . . . . . . . . . . . . . . . . . 152

4.8 Effective throughput as a function of the blockage probabilities, with

and without CSI uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . 153

xii



List of Tables

1.1 Note of the conjugate Wirtinger derivative of key functions. . . . . . . . 11

2.1 Table of Complexity Order. . . . . . . . . . . . . . . . . . . . . . . . . 48

List of Algorithms

1 IDLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 Robust IDLS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Bilinear GaBP (Part 1: Belief Consensus) . . . . . . . . . . . . . . . . . 78

4 Bilinear GaBP (Part 2: Hard Decision) . . . . . . . . . . . . . . . . . . 79

5 Proposed JACE in XL-MIMO with Non-Stationarity . . . . . . . . . . . 102

6 Full Digital OutMin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Partially-Connected Hybrid OutMin . . . . . . . . . . . . . . . . . . . . 142

List of Acronyms

1G first generation

2G second generation

3G third generation

4G fourth generation

5G fifth generation

5G+ beyond fifth generation (5G)

6G sixth generation

ADAM adaptive moment estimation

ADC analog-to-digital converter

ADMM alternating direction method of multipliers

AER activity error rate

xiii



AF amplify-and-forward

AoD angles of departure

AoI age of information

AMP approximate message passing

AP access point

AR augmented reality

ARP Autoradiopuhelin

AUD active user detection

AWGN additive white Gaussian noise

BER bit-error rate

BiGAMP bilinear generalized approximate message passing

BiGaBP bilinear Gaussian belief propagation

BP belief propagation

BS base station

BSGD block-coordinate stochastic gradient descent

CDF cumulative density function

CDMA code division multiple access

CE channel estimation

CF-MIMO cell-free MIMO

CFO carrier frequency offset

CoMP coordinated multipoint

CPU central processing unit

CS compressed sensing

CSI channel state information

CSIDCO complex sequential iterative decorrelation via convex optimization (SIDCO)

DAC digital-to-analog converter

DCC dynamic cooperation clustering

DFT Discrete Fourier Transform

DoF degrees-of-freedom

Eb/N0 energy per bit to noise power spectral density ratio

EE energy efficiency

EM expectation-maximization

eMBB enhanced mobile broadband

EP expectation propagation

ERM empirical risk minimization

ERTS enhanced reactive tabu search

FA false alarm

FDMA frequency division multiple access

flops floating point operations

xiv



FP fractional programming

FPGA field programmable gate array

GaBP Gaussian belief propagation

GD gradient descent

GIGD graph-based iterative Gaussian detector

IDD iterative detection-and-decoding

IDLS iterative discrete least square

i.i.d. independent and identically distributed

IoT Internet of Things

IRS intelligent reflecting surfaces

ISI inter-symbol interference

ITU-R International Telecommunication Union Radiocommunication Sector

IW-SOAV iterative weighted-SOAV

JACDE joint activity, channel and data estimation

JACE joint activity and channel estimation

JCDE joint channel and data estimation

KKT Karush Kuhn Tucker

KPI key performance indicator

LASSO least absolute shrinkage and selection operator

LDPC low-density parity-check code

LLR log-likelihood ratio

LMMSE linear minimum mean square error

LoS line-of-sight

LRMC low-rank matrix completion

LS least squares

LSP log-sum-penalty

MAP maximum a posteriori

MC matrix completion

MCPP Matérn-cluster point process

MD miss-detection

MIMO multiple-input multiple-output

ML maximum likelihood

MMSE minimum mean squared error

mMTC massive machine-type communications

MMVABP multiple measurement approximate belief propagation

MMV-AMP multiple measurement vector approximate message passing

mmWave millimeter wave

MNS minimum norm solution

MRT maximum ratio transmission

xv



MSE mean-square error

MSGD mini-batch stochastic gradient descent

MUD multi-user detection

MUI multiuser interference

NLoS non-line-of-sight

NMSE normalized-MSE

NN nuclear norm

NOMA non-orthogonal multiple access

NP non-deterministic polynomial-time

NR new radio

OFDM orthogonal frequency division multiplexing

OFDMA orthogonal frequency division multiple access

OMA orthogonal multiple access

OMP orthogonal matching pursuit

OTFS orthogonal time frequency space

PA power amplifier

PAM pulse amplitude modulation

PDF probability density function

PG proximal gradient

PIC parallel interference cancellation

PMF probability mass function

PPP Poisson point process

PSK phase shift keying

PSTN public switched telephone network

QAM quadrature amplitude modulation

QCQP-1 quadratically constrained quadratic program with one convex constraint

QCSIDCO quadratic complex SIDCO (CSIDCO)

QoS Quality of Service

QP quadratic program

QPSK quadrature phase shift keying

QT quadratic transform

RAM random-access memory

RF radio frequency

SBR simplicity-based recovery

SCCR sum of concave-over-convex ratios

SCSR sum of complex sparse regularizers

SD sphere decoding

SDP semidefinite programming

SDR software defined radio

xvi



SE spectrum efficiency

SGD stochastic gradient descent

SIC soft interference cancellation

SIDCO sequential iterative decorrelation via convex optimization

SINR signal-to-interference-plus-noise ratio

SISO single-input single-output

SNR signal-to-noise ratio

SOAV sum of absolute value

SotA state-of-the-art

SRM sum-rate maximization

SVD singular value decomposition

SVT singular value thresholding

TDD time division duplex

TDMA time division multiple access

TD-SCDMA time-division synchronous code division multiple access

THz terahertz

UE user equipment

ULA uniform linear array

UPA uniform planar array

URA unsourced random access

URLLC ultra reliable low-latency communications

VR visibility region

WB Welch bound

WCDMA wideband code division multiple access

XL-MIMO extra large MIMO

ZF zero-forcing

Notation

Unless otherwise specified the vector notation used in the sequel assumes column ori-

entation.

R set of real numbers

C set of complex numbers

X matrix notation

x vector notation

xvii



(·)H conjugate Hermitian operation

(·)T transposition operation

(·)∗ element-wise complex conjugate operation

1M all-ones vector of length M

0M all-zeros vector of length M

IM M ×M identity matrix

0M×N M ×N all-zeros matrix

X−1 inverse of the square matrix X (if it exists)

diag (x) diagonal matrix with x on the main diagonal

diag (X) column vector extracted from the main diagonal of matrix X

rank (X) rank of matrix X

vec (X) vectorization operation of the matrix

vec−1(x) reciprocal operation of vectorization

‖x‖p `p-norm of vector x with p ≥ 0

‖X‖2 spectral norm of the matrix X

‖X‖F Frobenius norm of the matrix X

◦ Hadamard entry-wise product

Ex [·] expectation operation over the random variable x

R [·] real part entry-wise extractor of complex quantities

I [·] imaginary part entry-wise extractor of complex quantities

xviii



(page intentionally left blank)





Chapter 1. Introduction

Chapter 1

Introduction

1.1 General Background

The wireless technology becomes the core of networks and information infrastructures,

which play the essential role of connecting people worldwide and runnning social and

business activities as highlighted by unique challenges imposed by the outbreak of the

COVID-19 pandemic. One of the earliest ancestors of the mobile telephone service is a

car phone, in which equipments are often mounted in an automobile and was used as

part of the public switched telephone network (PSTN). These services were introduced

in different countries such as Finland (Autoradiopuhelin (ARP)), Germany (A-Netz)

and the United States.

The concept of cellular networks was introduced by first generation (1G) in the

1980’s [1], where a voice call is analogly modulated to a higher frequency by means of

frequency division multiple access (FDMA) with circuit-switched control. The digital-

ization took place in the second generation (2G) cellular networks thanks to advances of

digital circuits, which enables not only digitally-encrypted phone calls but also higher

spectrum efficiency and basic data transmission such as text messages. The 2G mo-

bile system mainly relies on time division multiple access (TDMA)-based transmission,

while starting to explore the code domain (i.e., code division multiple access (CDMA)).

Although the latter technology was not the common choice in 2G networks, its vari-

ants (e.g., wideband code division multiple access (WCDMA), CDMA2000, and time-

division synchronous code division multiple access (TD-SCDMA)) had been adopted

and deployed in the third generation (3G) systems from 2001, aiming at a high-speed

data communication up to the effective rate of a few megabits per second [2]. In re-

sponse to demands for higher data rate owing to emerging information applications, the

wireless communications industry and adademic community concentrated their efforts

on streching the communication capability, leading to the fourth generation (4G) cellu-
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lar networks featured by a combination of orthogonal frequency division multiplexing

(OFDM) and multiple-input multiple-output (MIMO) technologies.

Unlike the aforementioned precedents focusing merely on improving the commu-

nication capabilities, the fifth generation (5G) networks currently being deployed in

many countries aim not only to further improve the latter but also to satisfy strin-

gent Quality of Service (QoS) requirements arising from wide-ranging fields such as

augmented reality, Internet of Things (IoT), and vehicle and financial realtime appli-

cations, which may go beyond the capability of the previous generations. In order to

throw light on its definition, the International Telecommunication Union Radiocom-

munication Sector (ITU-R) has defined three main usage areas expected to be offered

by the 5G systems [3, 4]:

• enhanced mobile broadband (eMBB) aiming at human-centric applications with

requirements of high data rate access such as augmented/virtual reality and 3D

gaming.

• ultra reliable low-latency communications (URLLC) addressing latency-stringent

applications with reliable connection such as industrial automation and intelli-

gent transportation.

• massive machine-type communications (mMTC) focusing on massive connectiv-

ity for a large number of devices typically with short packet communication of

non delay sensitive data, such as smart cities.

From a technical perspective, in order to iron out the spectral clog in the sub-

6GHz bands, the 5G wireless systems have extended its operating frequency to higher

spectral bands, leading to a wider bandwidth1 and higher throughput. At the moment,

5G waveforms leverage the same multiplexing technology as in 4G (i.e.,OFDM) both in

downlink and uplink, which is envisioned to be exploited up to the 71 GHz bands. This

extension comes along with the advanced directional signal transmission to compensate

the severe attenuation of high frequency bands such as the ones mentioned above,

which is supported and enabled by the massive MIMO technology. In addition to the

above, another key feature of 5G new radio (NR) is the channel coding schemes: the

low-density parity-check code (LDPC) coding is adopted for the data channels while

the polar coding is utilized for the control channels. Also, several other features such

as enhanced mobility, high accurate 5G localization, dynamic spectrum sharing, and

energy efficiency continue to be discussed and incorporated, aiming at standarization

in future releases such as Release 18 planned to be initiated at the beginning of 2022

and frozen by mid-2023.

1Release 16 supports up to 400 MHz carrier bandwidth with 120 kHz subcarrier spacing [5].
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Future Directions: Drivers and Requirements

In the context briefly described above and given the fact that the 5G networks are

now in deployment phase, the research community is starting to shift their atten-

tion to future wireless systems including beyond 5G (5G+) and sixth generation (6G)

systems. Although it is challenging and perilous to fully determine applications and

required technological enablers in such future wireless systems at the time of writing,

it is highly predictable that the volume of wireless traffic and mobile devices will con-

tinuously increase in the 2020’s as estimated by several existing reports [6, 7]. At the

moment, a recent report [8] revealed that the total global mobile data traffic in Q1

2021 exceeded 66EB, which corresponds to the year-on-year growth rate of 46 percent

compared with that of Q1 2020, confirming the accuracy of the aforementioned trafffic

forecasts. This at least implies the need of further improvements of the key technical

requirements in 5G systems such as peak data rate, connection density, latency, and

energy efficiency. Aiming to shed light on the required quality of 6G key performance

indicators (KPIs) such as those aforementioned, recent survey articles (e.g., [9, 10])

have provided quantitative analyses on the latter. To name but a few, the peak data

rate and user-experience rate is envisioned to reach 1 tera and giga bits per second,

respectively, while that in 5G networks corresponds to 20 giga bits per second and

100 mega bits per second, respectively. As for the connection density, the authors

of [9, 10] suggested tenfold increase compared with the connection density envisaged

in 5G systems, namely, ten million devices within square kilometre.

In a similar way to the aforementioned extension of 5G networks, it is also ex-

pected in future wireless systems to integrate the conventional 5G usage scenarios

(i.e., eMBB, URLLC, and mMTC) such that the future application areas at least in

the 6G era include their possible combinations such as ultra reliable low-latency massive

communications, reliable enhanced mobile broadband, or even a combination of the

three. The potential 6G use cases envisioned in [11] such as high-fidelity holographic

society, digital twin, and pervasive intelligence in fact impose a joint requirement of

high throughput, low-latency, high-reliablity and/or massive connectivity, which can

not be fully covered by the 5G networks.

In addition to the further expansion of the 5G KPIs, data-oriented communication

aspects such as security [12] and semantics [13] may be also incorporated as one of

the new 6G KPIs, imposing a quantitative measurement to properly determine the

required quality of such new KPIs. One of the typical strategy to measure the security,

for example, is the secrecy rate that is a signal-to-noise ratio (SNR) advantage over

the eavesdropper. On the other hand, how to measure the semantics of data is still

controversial, although there are existing approaches to (at least partially) measure

the latter such as the age of information (AoI) [14] and semantic entropy [15].
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As briefly illustrated above, future wireless networks need to cover more hetero-

geneous requirements than those in the previous generations including 5G; thus, the

research community is required to offer diverse solutions to many different usage sce-

narios. Consequently, technical enablers in physical-layer are also expected to be mis-

cellaneous according to different potential applications, which should be a combination

of different spectrum-, protocol-, and system-level technologies. From a view point of

the carrier frequency, for instance, sub-6GHz, millimeter wave (mmWave), terahertz

(THz), and visible light bands will be the spectra of choice in 6G, which should be

chosen according to the bandwidth requirement. In turn, distributed passive/active

MIMO setups including cell-free MIMO (CF-MIMO), extra large MIMO (XL-MIMO),

and intelligent reflecting surfaces (IRS) may be considered from a system perspective,

while non-terrestrial networks can also be an infrastructure-level enabler to further

increase the coverage worldwide. In other words, a wide variety of solutions aiming at

different possible combinations of KPIs in different scenarios need to be served by the

research community.

1.2 Thesis Contributions and Outline

1.2.1 Contributions

In light of the above, this thesis contributes to the aforementioned trend by addressing

part of the key KPIs in future wireless systems (i.e., massive connectivity, latency, and

reliablity). To elaborate, the contributions made during the course of our research are

listed below:

Massive Connectivity

Due to the ever-growing number of mobile devices and the limited amount of avail-

able wireless resources, the future wireless systems highly-likely adopt non-orthogonal

transmission (e.g., non-orthogonal multiple access (NOMA) and overloaded MIMO),

in which the number of resources at the effective transmitter exceeds that at the

receiver. In this context, one of the main bottlenecks at the receiver is how to effi-

ciently detect the transmitted symbols under the underdetermined condition raised

by the non-orthogonality, in which the traditional well-adopted linear estimators such

as linear minimum mean square error (LMMSE) and zero-forcing (ZF) methods lead

to an unacceptable high error floor due to the fact that they are not aware of the

discreteness of the transmitted symbols. Although the maximum likelihood (ML)

and tree-search-based approaches including sphere detectors are capable of effectively

finding the transmitted symbols even in such a severe condition, their scalability is

questionable due to high-complexity, which contradicts the trend of massive commu-
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nications. To overcome this difficulty, we propose a new detection framework that

offers a reasonable compromise between the low-complexity implementation-friendly

nature of linear detectors and the detection performance of the brute-force search. To

elabotate further, the contributions can be compactly listed in the sequel:

• a new compressed sensing (CS)-inspired regularizer that facilitates searching

overlapped transmitted symbols while adhering to the prescribed discrete con-

stellation is proposed, where convexification is performed so that the resultant re-

ceiver becomes a generalization of the conventional linear detectors (i.e., LMMSE

and ZF).

• the proposed regularizer is then applied not only to a conventional ideal MIMO

setup, where the channel is perfectly known and the hardware imposes no impair-

ments, but also to an non-ideal MIMO channel with channel state information

(CSI) and hardware imperfection in order to illustarte the flexibility of the pro-

posed approach.

Latency

Another challenge in uplink stemming from the increase on the number of mobile de-

vices is the resource overhead required for CSI acquisition and active user identification

due to their sporadic traffic. Existing multiple access schemes (i.e., orthogonal multi-

ple access (OMA)) impose a prohibitive amount of overhead as the number of potential

users increases, since an orthogonal pilot sequence needs to be allocated simply to a

single user. A promising approach to address this issue is a combination of grant-free

NOMA and CS-based detection mechanisms, where active user identification and CSI

acquisition are jointly performed by taking advantage of the sparsity due to the inac-

tive users (i.e., users transmitting zeros). Following this trend, we offer the following

contributions:

• we proposed a frame-theoretic pilot design so as to efficiently non-orthogonalize

the pilot sequence.

• we proposed a novel grant-free access scheme based on the bilinear inference,

which jointly and efficiently takes advantage of the non-orthogonal pilot and

subsequent data sequences, leading to higher spectrum efficiency per user, while

being compatible with either centralized or distributed MIMO setups.

• we also proposed another grant-free access method based on the bilinear inference

framework with the aim of addressing spatial non-stationarity issues raised in the

context of XL-MIMO systems.
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Reliability

The increasing demands for higher data rate and the growth of the number of poten-

tial users jointly impose a lack of spectrum resources in sub-6GHz bands. To tackle

this upcoming shortage, mmWave technology has been intensively studied in the last

decade, offering excellent solutions to major challenges of mmWave systems such as the

severe signal attenuation and high expenditure for mmWave hardware. A fundamental

challenge that remains, however, is the susceptibility of mmWave signals to random

path blockage due to the mobility of the surroundings. This leads to unpredictable

channel uncertainties, affecting the performance reliablity. Our contribution to the

reliablity issue in mmWave systems subject to random path blockage is as follows:

• we proposed novel outage-reduced robust beamforming algorithms based on a

stochastic optimization framework so as to preserve, as much as possible, the

QoS requirements even under such random path blockage.

Besides the above high-level descriptions of the contributions, more technical details

of each contribution will be offered later in an itemized manner in the corresponding

section. It is also worth-mentioning that most of the above contributions have been

disseminated through publications in peer-reviewed IEEE journals and conferences. A

list of the publications made during the course of this PhD study is shown in Appendix

D.

1.2.2 Outline

This dissertation is organized as follows:

• In Chapter 1, we provide a historical background of the mobile communications

and envisage the future direction, illustrating the need of diverse wireless solu-

tions to satisfy the upcoming more heterogeneous requirements in future wireless

systems. We then offer a list of high-level descriptions of the contributions made

by the dissertation. Lastly, mathematical preliminaries to the techniques utilized

in the subsequent sections are offered.

• In Chapter 2, we propose a new regularization approach for inverse problems with

discrete inputs, aiming to generalize the conventional linear estimators with ad-

herence to the prescribed digital (discrete) constellation. Then a wide range

of applicability of the proposed regularizer is illustrated by showing the effec-

tiveness of the latter in different signal processing applicaitons. One of the key

applications offered in this section is the receiver design of NOMA systems, in

which it is shown that the proposed regularizer indeed contributes to the massive

connectivity requirement.
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Figure 1.1: Structure and contributed areas of the thesis

• In Chapter 3, we turn our attention to latency issues in the uplink of massive

devices, where the overhead for CSI acquisition and active user identification is

considered one of the major challenges. Following the trend of distributing access

points (APs) over a service area, we consider two emerging distributed MIMO

scenarios (i.e., CF-MIMO and XL-MIMO), for which we propose a bilinear infer-

ence framework to jointly address CSI acquisition and active user identification

issues. In particular, the proposed algoithm for CF-MIMO systems is designed to

be joint activity, channel and data estimation (JACDE) with the aim to enhance

the per-user throughput while reducing the overhead. In contrast, the one for

XL-MIMO is designed to be joint activity and channel estimation (JACE) with

the aim to tackle its peculiarity (i.e., spatial non-stationarity) while focusing on

the overhead reduction.

• In Chapter 4, we tackle the reliablity issue of mmWave systems, which is posed by

the susceptibility of high frequency signals to random path blockage. To this end,

we propose a stochastic optimization framework to minimize the QoS violation

(i.e., the QoS outage probability), resulting in a blockage-robust waveform design

for such systems.

• In Chapter 5, we conclude the thesis and offer a list of potential future works as

meaningful extensions of the research carried out during the PhD study.

Summarizing the above, for the sake of visualization, Figure 1.1 illustrates the

structure of the thesis, highlighting that the thesis addresses three major requirements

in future wireless systems, namely, massive connectivity, latency, and reliability.
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1.3 Preliminaries

In this section, we offer technical descriptions of essential mathematical tools, which

will be leveraged throughout the rest of the thesis. The key ingredients utilized in

this thesis are mainly two-fold: optimization theory and Bayesian inference, for each

of which fundamentals and pragmatic techniques are described below.

1.3.1 Optimization Techniques

Fractional Programming

Convex and non-convex optimization techniques have been intensively leveraged in the

wireless communications literature over the last decade [16–18], due to their flexiblity

and affinity with the linearly-represented signal processing in wireless communication

systems. In particular, fractional programming (FP) has been recognized as a powerful

tool to address a vast array of problems in wireless systems such as resource allocation

and channel estimation, which is a branch of optimization theory concerning optimiza-

tion of (multiple) fractional functions.

When it comes to designing wireless systems, the signal-to-interference-plus-noise

ratio (SINR) at the receiver is inextricably related with the latter as the corresponding

achievable data rate is characterized by the logarithm of SINR. Since SINR is a ratio

between the power of the incoming signal of interest and that of the interference-plus-

noise component [19], namely,

SINR ,
Power of Received Intended Signal

Power of Interference Signals + Noise Power
, (1.1)

FP is a natural and suited solution to optimization problems involving SINR expres-

sions.

Furthermore, the efficiency of data transmission in wireless communications (i.e.,

energy efficiency (EE)) is often concerned in academic publications as well as among

industries, which measures the gained utility per unit cost, that is, bits per Joule in

wireless communications. In this context, the EE expression is defined as a fraction

between the spectrum efficiency (SE) and the consumed energy, which is given by

EE ,
Data Rate [bit/s]

Energy Consumption [Joule/s]
[bit/Joule], (1.2)

demonstrating the convenience of FP when optimizing EE-aware wireless applications

[20].

As illustrated above, it is concluded that FP is suited for a wide range of problems

raised in wireless communications. In case of single-ratio scenarios, FP in general
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mathematically aims to solve the optimization problem of

maximize
x∈CN

A(x)

B(x)
(1.3a)

subject to x ∈ X , (1.3b)

where X ∈ CN is a nonempty and compact convex set, A(x) : CN → R+ is a non-

negative function, and B(x) : CN → R++ is a strictly positive function.

It is naturally conceived from equation (1.3) that the objective ratio function can

not be guaranteed to be concave even in case of a simple linear-over-linear function.

In order to address this problem at low-complexity, one can leverage the Dinkelbach’s

algorithm, whose convergence guarantee has been shown e.g., in [20, Sec. 3], which

transforms equation (1.3) into the following parametrized formulation

maximize
x∈CN

A(x)− βB(x) (1.4a)

subject to x ∈ X , (1.4b)

with a newly-introduced auxiliary variable β that is iteratively updated as

β =
A(x)

B(x)
, (1.5)

where the numerator and denominator are computed with the solution obtained at the

previous iteration round.

It is worth-mentioning that if the single-ratio function given in equation (1.3) is

concave-over-convex, the Dinkelbach’s algorithm indeed converges to the global opti-

mum. As stated in [20, 21], however, the Dinkelbach’s algorithm can not be directly

generalized to solve the sum-of-ratios problem given by

maximize
x∈CN

∑
i

Ai(x)

Bi(x)
(1.6a)

subject to x ∈ X , (1.6b)

where the numerator and denominator of each ratio are indexed with i ∈ Z.

It is shown in [21, Sec. II] that the function value of the transformed objective

upon convergence is not necessarily the same as that of the original objective in case of

multiple-ratios problems. In order to tailor the transform to meet the equivalence in the

objective value while preserving the convergence guarantee and optimality conditions

of the Dinkelbach’s algorithm, a new FP technique, dubbed as quadratic transform
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(QT), has been reported in [21], which transform equation (1.6) into

maximize
x

∑
i

2βi
√
Ai(x)− β2

iBi(x) (1.7a)

subject to x ∈ X , (1.7b)

where

βi ,

√
Ai(x)

Bi(x)
, (1.8)

is a scaling quantity iteratively updated based on the solution obtained at the previ-

ous iteration and designed to ensure that, at that pivot point, the original objective

function in equation (1.6) is equivalent to the transformed function given in equation

(1.7a).

The convergence and optimality analyses of the QT have been offered in [21] for

concave-over-convex scenarios. It has also been reported in e.g., [20, Alg. 4] that a

Dinkelbach-like algorithm can be utilized to solve sum-of-ratios problems. However

the latter is not applicable to convex-quadratic-over-convex-quadratic problems as is

the case with SINR-involved problems, which can be directly tackled via the QT as a

sequence of convex programs with convergence guarantee to a stationary point thanks

to the square root applied to the numerator.

It is also worth-mentioning that there are global optimization frameworks to seek

the global optimal of sum-of-ratios problems by means of, e.g., branch-and-bound

search [22–24], which is however limited to a problem with small search spaces due

to their prohibitive complexity. Having said that, a hybrid method that leverages

well-established optimization frameworks and quantum computing to overcome the

combinatorial complexity has recently been shown in [25], implying that a global search

for the above sum-of-ratios problem may be feasible with reasonable run time in the

near future.

Last but not least, the above FP techniques will be exploited in Section 2.

Wirtinger Derivatives

Optimization in signal processing and communications often encounters a maximiza-

tion (minimization) problem of a real-valued utility (cost) objective function with

complex-valued variables. For instance, a waveform design in wireless communications

can be optimized by maximizing the (real-valued) system throughput with respect

to complex-valued quantities such as beamforming vectors/matrices controlled at the

transmitter and/or receiver. In order to solve such problems, it is often required to

calculate the gradient with respect to a complex variable, for which a useful tool often

utilized in engineering is the Wirtinger derivative. In this section, we intend to briefly
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Table 1.1: Note of the conjugate Wirtinger derivative of key functions.

Function: f(z) Conjugate Wirtinger Derivative: ∂f(z)
∂z∗

aTz = zTa 0

aTz∗ = zHa a

zHz = zTz∗ z

zHAz = zTATz∗ Az

zHAz

zHBz

Az

zHBz
− zHAz

(zHBz)2
Bz

describe fundamentals of the Wirtinger derivative, collecting the latter of several key

functions, which will be exploited later in this thesis. Since the purpose of this section

is not to offer a thorough review of the Wirtinger derivative but to provide a concise

set of notes for quick reference, interested readers are kindly referred to [26, 27] for

more technical details.

In what follows, we briefly introduce the need of the Wirtinger derivative in signal

processing applications by showing the practical inconvenience of complex differentia-

bility, summarizing the section by collecting a set of the conjugate Wirtinger derivative

of some major functions considered in this thesis. Starting from the definition, the

derivative of function f : C→ C at a point z0 is given by [28]

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
. (1.9)

If the limit exists, the function f is said to be complex-differentiable at z0. The

complex-differentiable functions are also known as holomorphic functions, which must

satisfy the Cauchy–Riemann equations

∂<{f}
∂<{z}

=
∂={f}
∂={z}

, (1.10a)

∂<{f}
∂={z}

= −∂={f}
∂<{z}

. (1.10b)

Although the theory of complex differentiability and holomorphic functions has

been well established in complex analysis, their applicability to practical systems is

limited, since many key real-valued objective functions with complex variables fail to

satify the Cauchy–Riemann equations and complex-valued objective functions make

no sense in many signal processing applications including communications. To tackle

this bottleneck, the Wirtinger calculus has been commonly used for such optimization

11



1.3. Preliminaries

problems, which suggests to consider z and its conjugate z∗ as separate variables of

the function f . Thanks to this change of coordinate system, partial derivatives of the

function can be written as

∂

∂z
=

1

2

(
∂

∂<{z}
− j · ∂

∂={z}

)
, (1.11a)

∂

∂z∗
=

1

2

(
∂

∂<{z}
+ j · ∂

∂={z}

)
. (1.11b)

Equation (1.11) is the well-known definition of the Wirtinger derivatives of first

order. When it comes to optimization, the update rule of gradient descent algorithms

to minimize a real-valued objective loss function f can be simply written as [27]

zi+1 = zi − α1

2

(
∂f

∂<{z}
+ j · ∂f

∂={z}

)
= zi − α ∂f

∂z∗
, (1.12)

with a step size α and i denoting the iteration index.

Interestingly, the above equation suggests that only the conjugate Wirtinger deriva-

tive is needed to update complex variables to minimize (maximize) a real-valued ob-

jective function by means of gradient-based algorithms. Although we consider a scalar

case in the above paragraphs for the sake of simplicity, this principle applies to multi-

dimensional variables such as complex-valued vectors and matrices. Following this

important principle, we offer in Table 1.1 a set of the conjugate Wirtinger derivative of

key functions, which will be leveraged later so as to design gradient-based algorithms.

As for the derivative of the composition of two or more functions, the chain rule can be

applied, omitting such cases in the table for brevity. The techniques described above

will be leveraged mostly in Section 4.

1.3.2 Bayesian Inference

The goal of this section is to offer fundamentals of the Bayesian inference [29–31] and

its key techniques so that the proposed methods can be smoothly introduced later.

Bayesian inference is a method for parameter estimation based on Bayes’ theorem,

which is compactly represented as

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, (1.13)

where θ is a vector representation of a set of parameter(s) of interest with N denoting

the number of parameters; y denotes the observation (e.g., received signals in commu-

nications); p(y) is called the marginal likelihood normalizing the posterior probability;

p(θ) is the prior distribution of θ; p(y|θ) is the probability of y for fixed θ; and p(θ|y)

is the posterior probability that combines the prior probability and the likelihood given
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observations.

In case of discrete parameter(s), we instead obtain

p(θ|y) =
p(y|θ)p(θ)∑
θ p(y|θ)p(θ)

. (1.14)

The denominator of the above equations is introduced to ensure that the posterior

probability integrates to one. It can be concluded from the above equations that

the posterior is proportional to the likelihood linearly scaled by the prior. With the

possession of the posterior expression, the Bayesian estimate of θ to minimize the

mean-square error (MSE) is the mean of the posterior, namely,

θ̂ =

∫
θ · p(θ|y)dθ, (1.15)

which is also equivalent to the maximum a posteriori (MAP) estimate if the mean

equals the mode of the posterior, as is the case with the Gaussian distribution.

Note that the integration above becomes the summation in case of discrete param-

eters. Despite the beauty of the Bayesian parameter estimation, it is often difficult to

calculate the exact expression of the likelihood p(y|θ) as well as the posterior in practi-

cal signal processing applications, resorting to approximating the latter to a tractable

parametric distribution in such cases. This is the core idea of many Bayesian estima-

tion methods such as message passing algorithms (e.g., approximate message passing

(AMP) [32] and variants of expectation propagation (EP) [33]) widely utilized for in-

ference problems in signal processing applications. To elaborate, one may consider the

posterior to be proportional to the prior times a certain surrogate function, for which

different approaches have been considered. Among them, one of the popular choices in

the signal processing literature is the Gaussian distribution, whose legitimacy mostly

relies on the central limit theorem. In other words, we have

p(y|θ) ≈
exp

(
−(θ − µ)HΣ−1(θ − µ)

)
πN |Σ|

, (1.16)

where µ and Σ is the mean and covariance matrix characterized by the observed

information y, respectively, and how to model µ and Σ based on y depends on the

considered system model.

Assumig equation (1.16), the posterior can then be approximated as

p(θ|y) ≈ 1

C
exp

(
−(θ − µ)HΣ−1(θ − µ)

)
p(θ)︸ ︷︷ ︸

Function of θ

, (1.17)
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with the constant term

C ,
∫

exp
(
−(θ − µ)HΣ−1(θ − µ)

)
p(θ)dθ. (1.18)

One can observe from equations (1.15) and (1.17) that the Gaussian approximation

now enables us to obtain the minimum mean squared error (MMSE) estimate of the

parameter θ for any prior distribution p(θ) under the assumption that the Gaussian

approximation holds well, although burdensome numerical integration may be needed

unless a closed-form expression of the integral in equation (1.15) is available. Fortu-

nately, however, such closed-form expressions indeed exist in many practical scenarios

such as channel estimation and symbol detection problems in wireless communications,

which have led to a low-complexity estimation paradigm. To illustrate this, let us con-

sider a simple but pragmatic scenario, where the parameter θ follows the circularly

symmetric multivariate complex Gaussian distribution, namely,

p(θ) ∝
exp

(
−θHΓ−1θ

)
πN |Γ|

, (1.19)

which yields

p(y|θ)p(θ)

≈
exp

(
−(θ − µ)HΣ−1(θ − µ)

)
πN |Σ|

·
exp

(
−θHΓ−1θ

)
πN |Γ|

=
exp

(
− µH (Σ + Γ)−1µ

)
πN |Γ + Σ|

×
exp

(
−
(
θ −

(
Σ−1 + Γ−1

)−1
Σ−1µ

)H(
Σ−1 + Γ−1

)(
θ −

(
Σ−1 + Γ−1

)−1
Σ−1µ

))
πN |

(
Σ−1 + Γ−1

)−1|︸ ︷︷ ︸
=CN

((
Σ−1+Γ−1

)−1
Σ−1µ,

(
Σ−1+Γ−1

)−1
)

,

(1.20)

and therefore

C =

∫
p(y|θ)p(θ)dθ =

exp
(
− µH (Σ + Γ)−1µ

)
πN |Γ + Σ|

. (1.21)

Given the above equations, the MMSE estimate of θ following the multivariate

complex Gaussian distribution under the Gaussian approximation can be written as

θ̂ =

∫
θ

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

dθ =
(
Σ−1 + Γ−1

)−1
Σ−1µ = Γ (Σ + Γ)−1µ, (1.22)
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where we utilized the identity
(
A−1 +B−1

)−1
= B (A+B)−1A by the Woodbury

inverse lemma.

It is worth-noting that instead of the Gaussian model, one can leverage the Gaus-

sian mixture model in conjunction with the expectation-maximization (EM) technique

as shown in [34], which brings more flexibility to deal with a wider range of inference

problems. Having said that, as shown in the above example, the Gaussian approxima-

tion often facilitates deriving a closed-form estimate of parameter(s) with different prior

distributions (e.g., [35,36]), which leads to a foundation of low-complexity Bayesian pa-

rameter estimation frameworks including ones proposed later in this thesis. Also, part

of the derivation given above will be revisited when designing the proposed Bayesian

inference algorithms in Section 3.
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Chapter 2. Discreteness-Aware Regularizer with Application to
Symbol Detection in Massive Non-Orthogonal Systems

Chapter 2

Discreteness-Aware Regularizer

with Application to Symbol

Detection in Massive

Non-Orthogonal Systems

In this chapter, we present a novel discreteness-aware regularizer for massive over-

loaded wireless systems subject to a prescribed discrete modulation set as is the case

with the conventional digital wireless communication systems, aiming to improve the

detection performance at the receiver. The key concept of the discreteness-aware reg-

ularization approach is to explicitly incorporate the prior information of discretely

modulated symbols into the conventional least squares (LS) method by means of CS-

inspired techniques. Despite this simple modification, the proposed method is shown to

be effective not only in underloaded scenarios, where the available resource dimension

at the receiver exceeds that of the transmitter, but also in overloaded cases. We fur-

ther demonstrate wide applicability of this discreteness-aware regularization approach

in other signal processing domains by showing its efficacy in the low-rank matrix com-

pletion (LRMC) problem with discrete entries, which often appears in recommendation

systems.

Part of this chapter is reprinted and enhanced from the following publication:

• Hiroki Iimori, Giuseppe Thadeu Freitas de Abreu, Takanori Hara, Koji Ishibashi, Razvan-
Andrei Stoica, David González G, and Osvaldo Gonsa: “Robust Symbol Detection in Large-
Scale Overloaded NOMA Systems,” IEEE Open J. Commun. Society, vol. 2 pp. 512–533,
Mar. 2021.

• Hiroki Iimori, Giuseppe Thadeu Freitas de Abreu, Omid Taghizadeh, and Koji Ishibashi:
“Discrete-Aware Matrix Completion via Proximal Gradient,” Proc. Asilomar Conference on
Signals, Systems, and Computers, Nov. 2020. ©2020 IEEE
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2.1 Background and Contributions

Due to the continuing growth in the number of users and network traffic, future wireless

systems will need to employ non-orthogonal transmission strategies in order to cope

with the unavoidable shortage of spectral resources [37, 38]. This foreseeable future

panorama may require receivers capable of handling underdetermined (overloaded)

conditions in which the dimension of transmit signals is significantly larger than that

of observed (received) signals [39–46]1.

The design of such (possibly massively) overloaded receivers must therefore differ

fundamentally from the conventional and well-known linear ZF and LMMSE detec-

tors, which exhibit high error floors in overloaded scenarios. In particular, unlike

the classical ZF and LMMSE approaches, receivers for massively overloaded signal-

ing must not only enforce minimal distance between reconstructed overlapped signals

over the continuous multidimensional space, but also maximize the likelihood that

the reconstruction satisfies the constraints imposed by the actual discrete transmit

constellation(s).

An indirect mechanism to enforce such adherence to discrete constellation is par-

allel interference cancellation (PIC), in the sense that in PIC receivers the most-likely

constellation-bound interfering signal combinations are removed from the observed

signals towards detection. Several PIC receiver designs exploiting the sphere detec-

tion method have been proposed in the past [39, 44], which illustrate the feasibility

of asymptotically approaching the optimal ML detection performance in overloaded

systems at somewhat controlled computational complexity.

Despite the progress attained by contributions such as those mentioned above,

sphere detection algorithms are known not to scale well, so that a new approach for the

design of receivers for massively overloaded systems typical of ultra-dense scenarios is

still a major challenge to be conquered. Aiming at addressing this challenge, lower com-

plexity signal detectors based on a novel finite-alphabet signal regularization technique

introduced in [48] have been recently proposed for non-orthogonal systems [40, 45].

In [40], for instance, an overloaded signal detector based on the Douglas-Rachford al-

gorithm was proposed for large overloaded MIMO systems, which was shown to yield

a significant bit-error rate (BER) gain over the conventional LMMSE. That technique,

referred to as sum of absolute value (SOAV), was later generalized into the sum of

complex sparse regularizers (SCSR) method proposed in [45], in which the alternating

direction method of multipliers (ADMM) algorithm is leveraged in order to enable the

detector to deal with complex-valued discrete signals.

Although the SOAV and SCSR detectors are steps in the right direction, as indi-

1Not to mention, this situation may include not only point-to-point communications but also multi
access schemes such as uplink non-orthogonal access systems [47].
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cated by the fact that both were shown to outperform previous state-of-the-art schemes

including the graph-based iterative Gaussian detector (GIGD) [49], the Quad-min [50]

and the enhanced reactive tabu search (ERTS) [51], both in terms of detection error

and computational complexity, in those methods the `0-norm regularization function

employed to capture the discreteness of input signals is replaced by an `1-norm approx-

imation, leading to inefficiencies that can be mitigated. It is also worth-mentioning

that the authors in [48,52] proposed yet another transform-based soft quantization ap-

proach, referred to as the simplicity-based recovery (SBR), to address the discreteness

of signal reconstruction problems.

In light of this background, we introduce here an alternative mechanism to ef-

fectively tackle the non-convex `0-norm-based formulation of the optimal brute-force

search without resorting to an `1-norm approximation, so as to yield efficient and high-

performing receivers for overloaded MIMO systems, which had yet to be presented.

Contributions

In light of the above, the contributions offered in this section are listed as follows:

• A novel tightly-convexified discreteness-aware regularizer for the detection prob-

lem of discrete signals is proposed, in which the alternative ML problem via

the `0-norm is tightly approximated by an asymptotically-exact expression. A

recently-proposed FP technique [21] is then utilized to further transform the sum

of fractions into a tractable quadratic problem, resulting in a new generalization

of the conventional ZF detection with adherence to the predetermined discrete

constellation set.

• Taking advantage of this new formulation of discrete symbol detetion problems,

a novel iterative discrete least square detection framework for the massive non-

orthogonal systems is offered, which consists of a simple iteration of a closed-

form linear expression closely resembling that of the classic ZF receiver. This

new detector, referred to as the iterative discrete least square (IDLS) receiver, is

shown to outperform the classic MMSE as well as the recently-proposed SOAV

and SCSR state-of-the-art (SotA) schemes, without need for channel statistics,

unlike belief propagation methods.

• Furthermore, unlike the related literature, in which the parameterization of reg-

ularized optimization problems is separately carried out (e.g., via an exhausive

search [53] or machine learning aided approach [54]), a new mechanism to system-

atically find a sub-optimal regularization parameter of the regularized detection

problem is proposed. Based on this formulation, the proposed IDLS detector is
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described and shown to be given by the largest generalized eigenvalue of a ma-

trix pencil constructed only with knowledge of the received signal, the channel

estimate, and noise variance.

• Several variations of the IDLS receiver for overloaded NOMA systems are also

illustrated, which enable the mitigation of impairment factors such as CSI imper-

fection and hardware impairments. These impairments are seemlessly integrated

with the former IDLS detector by generalizing the closed-form expression at the

core of the IDLS detector, leading to a Robust IDLS scheme.

• As an additonal illustration of wide applicability of the discreteness-aware reg-

ularization approaches in different signal processing domains, we also present a

novel algorithm for the low-rank matrix completion problem whose entries are

limited to a finite discrete alphabet set such as those in recommender systems.

2.2 System Model and Problem Formulation

Consider a possibly overloaded wireless communication system with Nt transmit and

Nr receive wireless resources (i.e. antennas, subcarriers or time slots), such that the

overloading ratio of the system can be defined as γ , Nt/Nr. Assuming perfect channel

knowledge at the receiver, the received signal can then be modeled as

y = Hs+ n, y ∈ CNr×1, (2.1)

where transmit symbols are normalized to a unit average power per symbol, i.e.

E
[
ssH

]
= INt , and such that each element of s is sampled from the same discrete and

regular2 quadrature amplitude modulation (QAM) constellation set C={c1, · · ·, c2b} of

cardinality 2b, where b denotes the number of bits per symbol; while n ∈ CNr×1 is an

independent and identically distributed (i.i.d.) circularly symmetric complex additive

white Gaussian noise (AWGN) vector with zero mean and covariance matrix σ2
nINr ,

and H ∈ CNr×Nt describes the flat fading channel matrix between transmitter and

receiver.

It will prove convenient hereafter to also express the complex-valued quantities in

equation (2.1) in terms of their real and imaginary parts, by defining

y ,

[
<{y}
={y}

]
, H ,

[
<{H} −={H}

={H} <{H}

]
,

s ,

[
<{s}
={s}

]
, n ,

[
<{n}
={n}

]
, (2.2)

2By regularity, it is meant that the sets <{C} and ={C} are identical. The assumption is without
loss of generality and adopted to simplify the exposition in alignment with the constellation sets used
in practical 5G systems.
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such that we may write

y = H s + n, y ∈ R2Nr×1. (2.3)

2.2.1 Problem Formulation

Given the above, the brute-force detection of the complex transmit signal vector s

in equation (2.1) can be expressed as the following constellation-constrained `2-norm

minimization problem

minimize
s∈CNt

‖y −Hs‖22 (2.4a)

subject to s ∈ CNt , (2.4b)

or equivalently

minimize
s∈R2Nt

‖y −Hs‖22 (2.5a)

subject to s ∈ P2Nt , (2.5b)

where P , <{C} = {p1, · · · , p2b/2} is a pulse amplitude modulation (PAM) constella-

tion consisting of the |P| = 2b/2 real/imaginary parts of the symbols in C,
It is evident that due to the disjoint constraints (2.4b) and (2.5b) the optimiza-

tion problems formulated as in equations (2.4) and (2.5) are non-convex, such that

their exact solution require exhaustive searches among all possible combinations of the

elements of C and P, respectively, resulting in a prohibitive complexity of order 2bNt .

In what follows, a continuous-space reformulation of the latter problem is obtained,

which allows for convexification methods to be applied, enabling the posterior design

of efficient algorithms to solve the problem at much lower complexities. To this end,

we seek inspiration in the approach proposed in [48, Prop.1] and replace the constraint

(2.4b) with an equivalent `0-norm expression, such that equations (2.4) and (2.5) can

be respectively rewritten as

minimize
s∈CNt

‖y −Hs‖22 (2.6a)

subject to

2b∑
i=1

‖s− ci1‖0 = Nt · (2b − 1), (2.6b)

and

minimize
s∈R2Nt

‖y −Hs‖22 (2.7a)

subject to
2b/2∑
i=1

‖s− pi1‖0 = 2Nt · (2
b
2 − 1). (2.7b)
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We remark that unlike constraint (2.5b), the constraint in equation (2.7b) is a

continuous function of the symbol vector s. Furthermore, it is clear that in order for

a vector s to satisfy the equality in (2.7b), each and all of its entries must be elements

of the constellation.

In other words, no relaxation penalty results from the substitution of the disjoint

constraint (2.5b) by the continuous constraint (2.7b), such that an exact solution of

equation (2.7) is still an ML solution of equation (2.3). As a consequence of the above,

further reformulations of the problem described by equation (2.7) obtained by convex

relaxations of constraint (2.7b) retain the potential to yield performance close to that

of the ML solution, so long as the corresponding alternative to (2.7b) is sufficiently

tight. Obviously, equivalent statements can be made for equation (2.6) with respect to

constraint (2.6b), such that the ML signal detectors of equations (2.6) and (2.7) can be

respectively modified into the following penalized mixed `0-`2 minimization problems

minimize
s∈CNt

λ
2b∑
i=1

‖s− ci1‖0 + ‖y −Hs‖22, (2.8a)

minimize
s∈R2Nt

λ
2b/2∑
i=1

‖s− pi1‖0 + ‖y −Hs‖22, (2.8b)

where λ ≥ 0 is a weighting parameter to be determined later.

2.2.2 Comparative Discussion of Recent SotA Approaches

The latter formulations elucidate that the SCSR scheme of [45] and the SOAV MIMO

detector proposed in [40] are convexified alternatives to equations (2.8a) and (2.8b),

respectively, with the rather classical replacement of the `0-norm by its convex hull

`1-norm. To elaborate, the SCSR and SOAV machineries essentially aim at addressing

the following mixed-norm convex optimization problems, respectively, [40, 45]:

minimize
s∈CNt

λ
2b∑
i=1

‖s− ci1‖1 + ‖y −Hs‖22, (2.9a)

minimize
s∈R2Nt

λ

2b/2∑
i=1

‖s− pi1‖1 + ‖y −Hs‖22, (2.9b)

from which one may notice that both methods result in the same recovery performance

provided that the balancing parameter λ is properly chosen for each distinct method

and a symmetric QAM modulation is selected.

Therefore, the aforementioned SCSR and SOAV formulation reveals the following

findings. Firstly, the replacement of the `0-norm originally appearing in equations
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(2.6) to (2.8) by the `1-norm employed in equation (2.9) can be further improved by

tightening the relaxation gap [55].

Secondly, the penalization parameter λ introduced in the reformulation of equations

(2.6) and (2.7) into equations (2.8a) and (2.8b) is left to be conquered. And thirdly,

various issues of practical relevance such as the influence of noise, imperfect CSI, and

hardware imperfection are left unaddressed.

In what follows, we present a new framework to address the intractable `0-norm

in equation (2.8), which is based on an asymptotically-tight approximation of the

latter in combination with FP techniques for convexification. This leads to a powerful

framework that is subsequently extended later to incorporate robustness to practical

impairment factors such as CSI imperfection and hardware impairments. Better still,

the resulting framework yields receivers whose algorithms resume to iterations of simple

closed-form expressions, which greatly resemble, and thus in fact generalize, the classic

ZF and LMMSE detectors.

2.3 Proposed IDLS Framework

We seek to improve over the state of the art on large-scale overloaded multidimensional

signal detection schemes. To this end, in this section we propose a new framework for

the symbol detection in overloaded NOMA systems.

2.3.1 Fundamentals and Reformulation

Given the equivalence between the complex- and real-valued formulations of equations

(2.8a) and (2.8b), we shall, for simplicity of exposition, focus hereafter on the complex-

valued variation of equation (2.8a), without loss of generality. Our objective is therefore

to obtain a tight relaxation of the ML-derived detection problem described by equation

(2.8a), which, unlike that of equation (2.9a), does not resort to the convex `1-norm,

while still circumventing the non-convexity of the `0-norm in a manner that allows for

a low-complexity solution in the form of iterations of a simple closed-form expression.

To that end, consider the following asymptotically tight and smooth approximation

of the `0-norm

‖x‖0 ≈
L∑
i=1

|xi|2

|xi|2 + α
= L−

L∑
i=1

α

|xi|2 + α
, (2.10)

where x denotes an arbitrary sparse vector of length L, with 0 < α� 1, such that for

α→ 0 the approximation becomes exact, as illustrated in Figure 2.1.
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Figure 2.1: Illustration of the `0-norm approximation via equation (2.10) for different values of α
with L = 1 for the sake of visualization. It is visible that the smooth approximation asymptotically
approaches the `0-norm as α→ 0.

Substituting equation (2.10) into equation (2.8a) yields

minimize
s∈CNt

−λ
2b∑
i=1

Nt∑
j=1

α

|sj − ci|2 + α
+ ‖y −Hs‖22. (2.11)

Notice that the objective in equation (2.11) is, unlike that of equation (2.8a), a

smooth and differentiable function which, despite non-convexity with respect to s, is

characterized by a sum of concave-over-convex ratios (SCCR). An effective technique

to address this non-convexity, referred to as the QT, has been recently proposed in [21].

As the QT has been described in Section 1, we omit to provide technical background

of the latter to avoid redundancy,

Applying the QT to equation (2.10) yields

‖x‖0 ≈ L−
( L∑
i=1

2βi
√
α− β2

i (|xi|2 + α)
)

(2.12a)

=

L∑
i=1

β2
i |xi|2 + L−

( L∑
i=1

2βi
√
α+ α

)
,︸ ︷︷ ︸

independent of x

(2.12b)
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where we remark that the latter terms independent of x in equation (2.12b) can be

discarded in the context of a minimization problem on the variable x.

Substituting equation (2.12), with the constant terms discarded, into equation

(2.11) yields

minimize
s∈CNt

λ

2b∑
i=1

Nt∑
j=1

β2
i,j |sj − ci|2 + ‖y −Hs‖22, (2.13)

with

βi,j =

√
α

|sj − ci|2 + α
, ∀ i ∈ {1, · · · , 2b}, j ∈ {1, · · · , Nt}. (2.14)

Next, define the quantities

b ,
2b∑
i=1

ci
[
β2
i,1, β

2
i,2, . . . , β

2
i,Nt

]T
, (2.15a)

B ,
2b∑
i=1

diag(β2
i,1, β

2
i,2, . . . , β

2
i,Nt)� 0, (2.15b)

such that equation (2.13) can be written as

minimize
s∈CNt

λ(sHBs− 2<
{
bHs

}
) + ‖y −Hs‖22, (2.16)

which again can be expressed more compactly by expanding the latter quadratic term,

namely

minimize
s∈CNt

sH(λB +HHH)s− 2<
{

(λbH + yHH)s
}
. (2.17)

Remark 2.3.1. A key aspect of this new formulation is that the `0-norm term in equa-

tion (2.8a) is approximated with arbitrary tightness by choosing α sufficiently small,

which therefore differs fundamentally from SotA methods.

2.3.2 Iterative Discrete Least Square Solution

For future convenience, let us define the function

q(s) , sH(λB +HHH)s− 2<
{

(λbH + yHH)s
}
, (2.18)

which is in fact the objective function in the optimization problem described by equa-

tion (2.17).

Given that q(s) is quadratic on s, the latter problem can be readily solved in

closed-form by setting its Wirtinger derivative [56] with respect to s equal to 0, that

is,
∂q(s)

∂s∗
= (λB +HHH)s−

(
λb+HHy

)
= 0, (2.19)
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which readily yields the solution

s =
(
λB +HHH

)−1(
λb+HHy

)
. (2.20a)

Obviously, a real-domain equivalent of equation (2.20) – which will prove convenient

later – can also be obtained following the same steps as above, yielding

s =
(
λB + HTH

)−1(
λb + HTy

)
, (2.20b)

where we remind that y, H and s are as previously defined in equation (2.2), and the

majorization pivot quantities βi,j , b and B are respectively redefined as

βi,j ,

√
α

(sj−pi)2+α
with

i ∈ {1, · · ·, 2b/2}j ∈ {1, · · ·, 2Nt}
, (2.21)

and

b ,
2
b
2∑

i=1

pi
[
β2
i,1, β

2
i,2, . . . , β

2
i,2Nt

]T
, (2.22a)

B ,
2
b
2∑

i=1

diag(β2
i,1, β

2
i,2, . . . , β

2
i,2Nt)� 0, (2.22b)

with pi ∈ P , <{C}.
We emphasize the remarkably simple structure of the receiver described by equation

(2.20), which is characterized by the mere iteration – over which b,B, and consequently

s are updated – of an expression that is linear on the input y, and which relies on the

inversion3 of a matrix guaranteed to be invertible due to the positive definiteness of

the term λB.

Remark 2.3.2. Notice that equation (2.20) is akin to the conventional linear ZF

receiver, except for the penalization factor λ and the dependence on the iteratively-

computed regularization terms b and B, which together enforce the constellation com-

pliance of the solution. In particular, with λ = 0, equation (2.20) reduces to a conven-

tional ZF receiver, with (HHH)−1HH yielding the pseudo-inverse of the channel H.

In other words,

lim
λ→0+

(
λB +HHH

)−1(
λb+HHy

)
= (HHH)−1HHy. (2.23)

Furthermore, the solution given in equation (2.20) converges to a stationary point

of the regularized ML problem relaxed by equation (2.10) due to [21, Th. 1].

3Since the matrix λB + HHH is only updated by the term λB at each iteration, its inverse can
be accelerated employing tracking methods, e.g. [57].
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Unlike the conventional ZF receiver, however, which is known to perform poorly

if the channel matrix H is rank deficient – as is the case of overloaded systems or

spatially-correlated channels – the iterative discrete least square linear detector here

derived and summarized by equation (2.20) is the solution of the optimization problem

described by equation (2.17), which in turn was obtained by a tight relaxation of

the brute-force problem of equation (2.8a). It is thus expected and confirmed via

computer simulations that the iterative linear detector here presented delivers better

performance with improved robustness to overloading. Finally, since (λB+HHH) � 0,

the inversion may be performed.

All in all, it can be said that the receiver given by equation (2.20) is a generalization

of the classical LS receiver, which adheres to the discrete constellation in a continuous,

asymptotically exact and converging manner. Alluding to this fact, we refer to our

scheme as the IDLS framework.

2.3.3 Auto-Parameterization via Generalized Eigen Decomposition

Regularized optimization methods have grown in popularity in recent years [53] due

to their ability to solve complex problems at relatively low computational cost. In

these methods, penalized terms are added to an objective function in order to balance

multiple desired features in the solution. Well-known examples are CS methods [55]

and the classic least absolute shrinkage and selection operator (LASSO) estimator, in

which sparse solutions are desired and ensured by the `0- or the `1-norm, and matrix

completion methods [58] in which low rank solutions are desired and ensured by the

nuclear norm.

An important reason for the performance and robustness of such methods is that

the choice of regularization parameter is not too sensitive, such that it can be dealt

with offline [59] via dedicated techniques. To cite a couple of examples, an approach

to optimize regularization parameters based on deep unfolding was proposed in [54],

and in [60] another method is proposed based on duality theory.

Despite the existence of these and several other techniques to optimize regular-

ization parameters, for the sake of completeness we contribute also to this issue by

proposing a new algorithm to optimize the penalization parameter λ employed in the

IDLS detection framework presented above. To this end, first the real-valued equiva-

lent of the fundamental ML-derived optimization problem described in equation (2.16),

from which our framework has been obtained, which is given by

minimize
s∈R2Nt

sTBs− 2bTs +
1

λ
‖y −Hs‖22, (2.24)

where the penalization parameter has been moved to the `2-norm term of the objective

(only for future convenience and without prejudice to the formulation itself).
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Now, notice that equation (2.24) is merely a regularized mixed norm variation

of the original ML problem described by equation (2.7), and observe that in order

to satisfy the equality constraint of that formulation, the term
∑2b/2

i=1 ‖s − xi1‖0 in

equation (2.7b) – which corresponds to the term sTBs − 2bTs in equation (2.24) –

needs to be globally minimized.

It follows from the above that the regularized `2-norm term in equation (2.24) can

be placed as a constraint, with no penalty to the optimality of the formulation. In

other words, the ML-derived formulation of equation (2.24) – and by extension to the

original ML formulation of equation (2.7) – are equivalent to the following real-valued

quadratically constrained quadratic program with one convex constraint (QCQP-1)

formulation

minimize
s∈R2Nt

sTB s− 2 bTs (2.25a)

subject to sTHTH s− 2 yTH s + yTy − δ ≤ 0, (2.25b)

where the constraint (2.25b) obeys Slater’s condition.

We remark that the bounding parameter δ (a.k.a. “search ball radius”) establishes

the tightness within which the squared distance ‖y − Hs‖22 is made to adhere, and

is typically determined by the noise power [61], since noise variance is standardly

available in practical systems [62].

With that in mind, for the sake of simplicity, the quadratic function in (2.25b) is

defined as

k(s) , sTHTH s− 2 yTH s + yTy − δ. (2.26)

All that is left for us to do then is to obtain an efficient method to solve equation

(2.25), which among many alternatives can be achieved by applying the result pre-

sented in [63, Th.3.3]. Brought to the context hereby, that result states that if there

exists a minimizer s̄ of equation (2.25a) satisfying the constraint (2.25b), then s̄ is the

global solution to equation (2.25) if and only if (iff) there exists a parameter µopt ≥ 0

such that the following Karush Kuhn Tucker (KKT) conditions are satisfied

(B + µoptHTH) s̄ = (b + µoptHTy), (2.27a)

k(s̄) ≤ 0, (2.27b)

µoptk(s̄) = 0. (2.27c)

In recognition to the outstanding work presented in [63], we refer to this formulation

of the QCQP-1 problem of equation (2.25) as Moré’s Theorem, which in fact admits

two distinct cases. The first is when µopt = 0, in which case equation (2.27a) reduces

to equation (2.25a), with unique global minimum at s̄ = B−1b, which is obviously
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a “solution” of no relevance since it is independent of the input. The second and

only relevant case is when µopt > 0, in which case equations (2.27b) and (2.27c) both

coincide and reduce to k(s̄) = 0, such that Moré’s Theorem then yields

s̄ = (B + µoptHTH)−1(b + µoptHTy), (2.28a)

s̄T(HTH s̄−HT y)− yTH s̄ + yTy − δ = 0, (2.28b)

where we have in equation (2.28a) inverted equation (2.27a), and in equation (2.28b)

expressed k(s̄) = 0 explicitly, with the term 2 yTH s̄ expanded and slightly rearranged.

A comparison of equations (2.20) and (2.28a) reveals that, except for the complex

and real domains, respectively, both are identical if µopt = 1/λ. There is, however,

a crucial difference between both equations, namely, that in equation (2.28a), the

parameter µopt results not from a regularization – as indeed the QCQP-1 formulation

of equation (2.25) is not regularized – but rather from the KKT conditions required

to solve equation (2.25), such µopt is an integral part of such solution.

In addition, notice that equation (2.28a) is tied to the accompanying equation

(2.28b), in the sense that both must be simultaneously satisfied in order for the so-

lution to hold. In other words, the solution of the system of equations (2.28) yields

within it the optimum KKT parameter µopt, which in turn determines the optimum

regularization parameter λopt = 1/µopt required in equation (2.20).

To accomplish this task, we first introduce the scaling quantity ρ and the auxiliary

vector s̄ , x1
ρ , such that equations (2.28) can be rewritten as

xT
1 = ρ (b + µoptHTy)T(B + µoptHTH)−1, (2.29a)

(yTy − δ)ρ− yTH x1 +
1

ρ
xT

1 (HTH x1 − ρHTy) = 0, (2.29b)

where, for future convenience, we exploited the symmetry in (B +µoptHTH) to trans-

pose equation (2.28a) into equation (2.29a), and rearranged equation (2.28b) into equa-

tion (2.29b).

Next, using equation (2.29a) in place of xT
1 in the last term of equation (2.29b),

and rearranging the terms yields

(yTy−δ)︸ ︷︷ ︸
,q11

ρ−yTH︸ ︷︷ ︸
,q12

x1 + bT︸︷︷︸
,q13

x2 = µopt (−yTH)︸ ︷︷ ︸
,p13

x2, (2.30)

where again for future convenience we have implicitly defined the quantities q11, q12,

q13, p13, and

x2 , (B + µoptHTH)−1(HTH x1 − ρHTy), (2.31)
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which in turn can be rearranged as

−HTy︸ ︷︷ ︸
=qT

12

ρ+ HTH︸ ︷︷ ︸
,q22

x1 + (−B)︸ ︷︷ ︸
,q23

x2 = µopt HTH︸ ︷︷ ︸
,p23

x2, (2.32)

where we have highlighted the reappearance of the previously defined quantity q12 and

implicitly defined the further quantities q22, q13 and p23 for future convenience.

Finally, notice that equation (2.29a) can also be rewritten as

b︸︷︷︸
=qT

13

ρ+ (−B)︸ ︷︷ ︸
=qT

23

x1 = µopt (−HTy)︸ ︷︷ ︸
=pT

13

ρ+ µopt HTH︸ ︷︷ ︸
=pT

23

x1, (2.33)

where we once more highlighted the reappearance of the quantities q13, q23, p13 and

p23.

Now define the vector x , [ρ,xT
1 ,x

T
2 ]T and notice that the collection of equations

(2.30), (2.32) and (2.33), in that order, can be written compactly as q11 q12 q13

qT
12 q22 q23

qT
13 qT

23 02Nt

·
 ρ

x1

x2

 = µopt

 0 01×2Nt p13

02Nt×1 02Nt p23

pT
13 pT

23 02Nt

·
 ρ

x1

x2

, (2.34)

or simply

Q x = µoptP x, (2.35)

with

Q ,

yTy − δ −yTH bT

−HTy HTH −B

b −B 02Nt

, (2.36a)

P ,

 0 01×2Nt −yTH

02Nt×1 02Nt HTH

−HTy HTH 02Nt

. (2.36b)

One can readily recognize that equation (2.35) defines a generalized eigenvalue

problem [64] over the pencil defined by the pair of matrices (Q,P). In other words,

the solution of the system of equations in (2.28), and therefore of the QCQP-1 problem

described by equation (2.25), is among the generalized eigenvalues of the pencil (Q,P).

Problems described by a quadratic program with a single quadratic constraint, such

that the one dealt with here, were studied thoroughly in [65]. It was shown thereby, in

particular in [65, Lem.3 and Th.4], that in fact the solution of the QCQP-1 extracted

from equation (2.34) is given by its smallest generalized eigenpair.

It was also shown thereby, however, that such a solution is also equivalent to the
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Algorithm 1 IDLS Detector

Inputs: Received signal y, channel matrix H and noise power σ2
n

Outputs: Estimate ŝ

1: Set iteration counter k = 0.

2: Set initial solution to s(k) = (HTH)−1HTy.
3: repeat

4: Increase iteration counter k = k + 1.

5: Update βi,j∀ i, j, as in equation (2.21).

6: Construct b and B from equations (2.22a) and (2.22b).

7: Construct Q and P from equations (2.36a) and (2.36b).

8: Obtain λopt(k) as in equation (2.38).

9: Update s(k) as in equation (2.20b).

10: until convergence or maximum iterations reached

11: ŝ← s(k)

largest finite real generalized eigenvalue of the Möbius-transform equivalent of equation

(2.34), namely

P x = λoptQ x, (2.37)

where λopt = 1/µopt.

We remark that the computation of the dominant generalized eigenvalue of a pencil

of symmetric matrices can be done accurately, stably and at relatively low complexity,

since many classic [64] and modern [66–68] algorithms exist to that end. In fact,

since the matrix P is constant over the iterations of the IDLS detector, while only the

last block column and row of the matrix Q is updated in that process, the recursive

adaptation of λopt from a previous to a next iteration is also possible via Jacobian

techniques such as e.g. [68].

All in all, we have therefore arrived at the conclusion that the regularization pa-

rameter λopt required to evaluate equation (2.20b) can be computed by the largest

finite generalized eigenvalue of the pencil (P,Q), that is

λopt = maxeig(P,Q). (2.38)

With that, for the convenience of the reader, we summarize the overall IDLS scheme

in the form of a pseudo-code in Algorithm 1 adopting the real-valued variation for

mathematical consistency, since the proofs of [63, Th.3.3] and [65, Lem.3 and Th.4]

were offered only for real matrices.
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2.3.4 Performance Assessment

In this subsection we offer a computer simulation-based performance evaluation of the

IDLS scheme described above. In order to focus on the gains achieved by the new

method over SotA, we conduct the assessment here under ideal receiver conditions,

namely, under the assumption that no distortions due to hardware impairments exists,

and that perfect CSI is available at the receiver, leaving those factors to be addressed

later in the subsequent section, when our proposed framework will be also revisited

to yield IDLS variations robust to such distortions. Aside from these receiver-related

limitations, however, system level conditions such as fading, channel correlation and

overloading, which typically contribute to the performance deterioration of multiuser

symbol detection, are considered. In particular, the following system parameters are

considered during the assessments.

• Uncorrelated Rayleigh Fading Model : This is the most commonly used channel

model to evaluate ideal detection performance in the wireless literature. Each

element of the channel matrix H is assumed to be an i.i.d. circularly symmetric

complex Gaussian random variable with zero mean and variance 1, i.e., hm,n ∼
CN (0, 1) where hm,n denotes the element in the m-th row and n-th column of

H. This model captures, among others, the channel conditions of the uplink of a

cell-free MIMO system serving distributed single-antenna users with either OMA

or NOMA protocol [69], in the fully loaded and overloaded cases, respectively.

• Exponentially-correlated Jakes Fading Model : In this case, the spatial correlation

between antenna elements is captured via the classical Jakes correlation model,

in which the block-fading matrix H ∈ CNr×Nt is described via the following

doubly-correlated channel matrix:

H = Φ
1
2
rHi.i.d.Φ

1
2
t , (2.39)

where Hi.i.d. denotes an uncorrelated i.i.d. zero mean, unit variance complex

Gaussian matrix, and with the (k, `)-th element of the spatial correlation signa-

tures Φr and Φt given by J0

(2πfcd|k−`|
c

)
, where fc = 5 [GHz] depicts the carrier

frequency, d is defined as the corresponding half antenna spacing, c denotes the

speed of light, and J0(·) is the zeroth order Bessel function of the first kind [70].

• Other System and Algorithmic Parameters: As for the remaining system con-

figuration, the following is considered. The `0-norm approximation tightness

parameter is set to α = 0.1. Various loading conditions are simulated, ranging

from fully loaded systems with Nt = Nr = 100, to moderately overloaded sys-

tems are subjected to either a 25% of excess load, with Nt/Nr = 1.25, to severely

overloaded systems with a 50% of excess load, with Nt/Nr = 1.5. Results are
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shown as a function of the energy per bit to noise power spectral density ratio

(Eb/N0), such that the corresponding AWGN noise variance σ2
n in a system with

Nt transmit antennas is given by σ2
n = Nt/(b · 10

Eb/N0[dB]
10 ). Finally, it is assumed

that the elements of the symbol vector s are sampled with uniform probability

from a Gray-coded quadrature phase shift keying (QPSK) modulation, such that

b = 2.

Results

The set of simulated results are displayed in Figure 2.2, 2.3, and 2.4, which shows plots

of the BER performance achieved by the IDLS multiuser symbol detection method

described in the preceding subsections, compared against those of the conventional

LMMSE, low-complexity SOAV and SCSR SotA receivers, as well as the single-input

single-output (SISO) AWGN lower bound, under various SNR, loading and channel

correlation conditions.

The results altogether clearly demonstrate not only that the new IDLS detector

offers substantial gains over the SotA and classic alternatives, but also that the pro-

posed method exhibits a remarkable robustness to overloading and channel correlation

conditions, which are known to be a fundamental cause of performance degradation

in multiuser systems. In particular, it is visible that in all cases the inclination of the

BER curves corresponding to the IDLS method is similar to that achieved by in a

SISO with the same spectral efficiency.

We also call attention to the fact that all simulation results displayed are for systems

of relatively large scales, which are therefore not tractable to other types of ML-

approaching receiver architectures based on techniques such as sphere detection [39].

In other words, the results serve the additional purpose of effectively illustrating that

the remarkable performances observed are achieved at a sufficiently low complexity.

In order to further highlight this high-performance-at-low-complexity feature of

the IDLS framework, plots depicting its convergence and asymptotic behaviors, as a

function of the number of iterations and system size, respectively, are shown in Figure

2.5. The results indicate that less than 25 iterations are sufficient for IDLS to converge

in almost all the conditions considered, with 37 iterations sufficing for all the cases.

Interestingly (but non-surprisingly), it is also found that the number of iterations

required until convergence is not strongly affected by the dimension of the system or

loading conditions, as shown in the figure. As for asymptotic behavior, it can be seen

from the figure that indeed the BER performance of the IDLS detector enjoys the

array or dimension gain as expected. This is due to the fact that owing to the `0-norm

formulation embedded into IDLS, a large system condition facilitates the detection

performance of IDLS as is the case with existing compressive sensing algorithms.
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(a) Fully Loaded Uncorrelated.

(b) Fully Loaded Jakes Correlated.

Figure 2.2: BER performance with fully-loaded conditions.
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(a) Moderately Overloaded Uncorrelated.

(b) Moderately Overloaded Jakes Correlated.

Figure 2.3: BER performance with moderately overloaded conditions.

35



2.3. Proposed IDLS Framework

(a) Severely Overloaded Uncorrelated.

(b) Severely Overloaded Jakes Correlated.

Figure 2.4: BER performance with severely overloaded conditions.
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This remarkable resilience of the IDLS detector against inter-symbol interference

(ISI) and multiuser interference (MUI), demonstrated when operating over uncoded

symbols, which shows no signs of error floors even under severe overloading condi-

tions and subjected to the further rank deficiencies resulting from channel correlation,

motivates us to probe the performance of the method when aided by channel cod-

ing. To that end, we evaluate in Figure 2.6 the BER performance achieved by the

IDLS detector, the conventional LMMSE receiver, and the recently-proposed iterative

detection-and-decoding (IDD)-based receiver [46] in a system with overloading ratio

γ = 1.5, this time equipping all receivers with the standardized DVB-S2 LDPC of rate

1/2, decoded with 50 sum-product iterations.

Since the focus of this article is to design a robust detection method for NOMA

systems, we show the result of IDLS without the IDD procedure (i.e., no loop between

the detector and decoder), because iterations over detector and decoder are not target

of our design. In order to illustrate the possible integration of our method with such

IDD approaches, however, the BER of IDLS with multiple IDD iterations is calculated

by taking advantage of outputs of IDLS as the initializer to the IDD approach of [46],

while assuming that the total number of IDD iterations is the same.

Figure 2.6 indicates that, despite the severe overloading conditions, all the methods

aided by LDPC code exhibit the waterfall BER curves typical of receivers free of ISI

or MUI. Comparing the performance in case of no IDD iteration, the proposed IDLS

demonstrates its advantage against the other two methods, while the ones with multiple

IDD iterations are significantly improved as the IDD iterations increase. Please note

that in the figure, “#” indicates the number of IDD iterations. Taking into account

the fact that [46] adopts a variant of the LMMSE detector, this figure directs us to a

possible IDD extension of the IDLS framework. This is due to the fact that as shown

in Remark 2.3.2, the proposed IDLS framework is a generalization of the conventional

ZF detectors for compliance with the prescribed discrete constellation set, which is

however left for future work.

It is this overall combination of high performance and low-complexity offered by

the IDLS scheme that motivates us, in the subsequent section, to further develop its

robustness against various other factors of practical relevance such as noisy conditions,

CSI imperfection and hardware impairments, with great modularity, consequently ex-

tending the IDLS method into a more general framework for the symbol detection of

overloaded systems.
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(a) Convergence of IDLS.

(b) Asymptotic behavior of IDLS.

Figure 2.5: Convergence and asymptotic behaviors of the IDLS detector.
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Figure 2.6: LDPC-coded BER performance with perfect CSI.

2.4 Extension for Robust IDLS Detector

In the preceding section, we constructed a novel ML-derived iterative discrete least

squares detector which, taking advantage of a tight convexified approximation of the `0-

norm, enables an efficient detection of symbol vectors subject to rank-deficient channels

resulting from overloading or correlation. The new scheme, which we refer to as the

IDLS detector, was found to yield BER performances that are significantly superior to

those of the classic LMMSE receiver and of more recent SotA methods.

The IDLS detector was, however, derived and evaluated under the ideal assumption

of perfect CSI knowledge and impairment-free hardware, while in practice CSI errors

and hardware imperfection are possible additional causes of performance degradation.

And although CSI and hardware imperfections can be mitigated by increasing the

transmit power and quantity of pilot symbols, and the quality of radio frequency (RF)

components, respectively, these measures come along with undesirable consequences

such as the increase in energy consumption, communication delay and engineering

costs.

We therefore proceed to show in this section that the IDLS detector can be ex-

tended so as to incorporate robustness to the aforementioned factors. In the process,

it will become visible that, thanks to the flexibility of its formulation and the simplic-
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ity of its solution, the IDLS scheme is indeed very convenient in enabling these and

possibly further extensions, implicating therefore that the method can be seen as a

generic framework for the design of robust, effective and low-complexity detectors for

overloaded systems.

2.4.1 Mitigating Noisy Conditions

In many cases, the effects of imperfections in CSI or hardware are perceived in the form

of an increase in the noise level experienced at the receiver, without the possibility for

the receiver to estimate proportionality parameters that quantify the percentage of

such noise increase relative to thermal and background RF noise.

It makes sense, therefore, to start our effort of extending the IDLS detector by

considering a mechanism to combat a generic and uncategorized noise level, under the

knowledge of only the aggregate noise power σ2
n. To that end, recall the conventional

linear MMSE detector described by the equation

sMMSE = (HHH + σ2
nINr)

−1HHy. (2.40)

Recall also the Woodbury inverse lemma [71, Sec.2.7.3], which applied to the con-

text hereby establishes the equivalence

HH(HHH + σ2
nINr)

−1 = (HHH + σ2
nINr)

−1HH. (2.41)

Next, notice that by force of the Woodbury inverse lemma, equation (2.40) can in

fact be recognized as the solution of the following regularized least square problem

argmin
s∈CNt

‖y −Hs‖22 + σ2
n‖s‖22. (2.42)

In light of the discussions above, as well as the derivations and results in Section

2.3, it can now readily be understood that the well-known vulnerability of the classic

LMMSE to overloading stems from the lack of a constraint that enforces compliance

of the solution to the prescribed symbol constellation C, which can then be corrected

by reformulating the latter as

minimize
s∈CNt

‖y −Hs‖22 + σ2
n‖s‖22, (2.43a)

subject to
2b∑
i=1

‖s− ci1‖0 = Nt · (2b − 1), (2.43b)

which in turn can be transformed into a regularized LS variation, namely

min
s∈CNt

‖y −Hs‖22 + σ2
n‖s‖22 + λ

2b∑
i=1

‖s− ci1‖0. (2.44)
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Succinctly, introducing the `0-norm approximation into equation (2.44) and subse-

quently applying the QT, we readily obtain

min
x∈CNt

‖y −Hs‖22 + σ2
n‖s‖22 + λ

2b∑
i=1

Nt∑
j=1

β2
i,j |sj − ci|2, (2.45)

with βi,j given, as previously, by equation (2.14), and which can be rewritten as

min
s∈CNt

sH
(
HHH + σ2

nINr+ λB
)
s− 2Re

{(
HHy+λb

)H
s
}
, (2.46)

with b and B as defined in equations (2.15a) and (2.15b), respectively, and which in

turn admits the iterative closed-form solution

s =
(
HHH + σ2

nINr + λB
)−1(

HHy+λb
)
, (2.47a)

or equivalent in the real domain

s =
(
HTH + σ2

nI2Nr + λB
)−1(

HTy+λb
)
, (2.47b)

in which case s and H are as in equation (2.2), while b and B are defined in equation

(2.22).

Remark 2.4.1. Note that if the noise variance is not available at the receiver (i.e.,

σ2
n = 0), equation (2.47) reduces to the previously derived IDLS detector described by

equation (2.20), while setting λ = 0 leads to the conventional linear MMSE detector of

equation (2.40), namely,

lim
λ→0+

(
HHH+σ2

nINr+λB
)−1(

HHy+λb
)

=
(
HHH + σ2

nINr

)−1
HHy. (2.48)

In other words, it can be concluded that equation (2.47) is a generalization of both the

IDLS and the conventional linear MMSE receivers in terms of noise- and constellation-

awareness, respectively.

As for the regularization parameter λ, once again the same procedure described

in Subsection 2.3.3 can be reproduced. In particular, the real-valued equivalent of

equation (2.46) can once again be cast into the QCQP-1

minimize
s∈R2Nt

sTB s− 2 bTs (2.49a)

subject to sT(HTH+σ2
nI2Nr) s−2 yTH s+yTy−δ≤0,

(2.49b)
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from which the combination of KKT conditions with Moré’s Theorem [63] yields

s̄ = (B + µopt(HTH+σ2
nI2Nr))

−1(b + µoptHTy), (2.50a)

s̄T((HTH+σ2
nI2Nr)︸ ︷︷ ︸

=q22

s̄−HT y)− yTH s̄ + yTy − δ = 0.

(2.50b)

For brevity, we omit the derivation details which are similar to those of Subsec-

tion 2.3.3, but solving the system of equations (2.50) in the same manner described

in Subsection 2.3.3 and applying the results of [65, Lem.3 and Th.4] and the Möbius-

transform, one finally arrives once again at the regularization parameter given in equa-

tion (2.38), only with the entry identified in equation (2.50b) updated in the matrices

Q and P, which yields

Q ,

yTy − δ −yTH bT

−HTy HTH + σ2
nI2Nr −B

b −B 02Nt

, (2.51a)

P ,

 0 01×2Nt −yTH

02Nt×1 02Nt HTH + σ2
nI2Nr

−HTy HTH + σ2
nI2Nr 02Nt

. (2.51b)

From the above, it is evident that replacing (2.20b) by equation (2.47b), as well as

equations (2.36a) and (2.36b) by equations (2.51a) and (2.51b) yields a noise-robust

extension of the IDLS detector, which maintains the same overall structure and thus

the same complexity, while offering improved BER performance at low SNRs. We also

remark, however, that at high SNRs or if the noise power is unknown and thus set

to zero, the term σ2
nI2Nr in equations (2.47b) and (2.51) disappear, reducing them to

equations (2.20b) and (2.36), respectively, and consequently the detector itself back to

the original IDLS described in Section 2.3.

In case σ2
n is unknown or negligibly small, a value of δ can be chosen in Q, for

instance, based on the minimum Euclidean distance between points in the constellation

P. In other words, taking advantage of lattice reduction approaches e.g., [61], a robust

choice of δ can be made as a function of the dominant eigenvalue of the channel matrix.

With the modularity of the IDLS framework well identified, we proceed to fur-

ther extend it to mitigate imperfect CSI and hardware impairments as previously

announced.
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2.4.2 Mitigating Imperfect CSI and Hardware Impairments

For the sake of brevity, in this subsection we omit repetitive details and succinctly

describe only the necessary modifications in the channel and system models, as well

as in the fundamental equations of the IDLS framework, required to identify how the

latter can be extended to also mitigate imperfect CSI and hardware impairments.

First, consider the well-known Gauss-Markov uncertainty model [72] commonly

used to incorporate the impact of CSI errors in channel estimates, which is described

by

H =
√

1− τ2Ĥ + τE, (2.52)

where Ĥ denotes the estimate of the true channel matrixH (i.e., imperfect observation

of H), E corresponds to the error matrix whose distribution is associated with that of

H, and τ ∈ [0, 1] denotes the Gauss-Markov uncertainty parameter that characterizes

the CSI estimation inaccuracy.

For the sake of completeness, we combine the CSI error model of (2.52) with the

channel correlation model described in equation (2.39) to obtain [72]

H = Φ
1
2
r

(√
1− τ2Hi.i.d. + τEi.i.d.

)
Φ

1
2
t

=
√

1− τ2 Φ
1
2
rHi.i.d.Φ

1
2
t︸ ︷︷ ︸

,Ĥ (known)

+τ Φ
1
2
r Ei.i.d.Φ

1
2
t︸ ︷︷ ︸

,E (unknown)

, (2.53)

where Ei.i.d. follows the circular symmetric complex Gaussian distribution with zero

mean and unit variance while assuming that perfect (or considerably accurate) knowl-

edge of the spatial correlation matrices Φr and Φt is available at the receiver, since

such correlations vary much slower than the instantaneous channel, and therefore can

be estimated accurately even though the channel estimates Ĥ themselves are imper-

fect [72].

Notice that equations (2.52) and (2.53) indeed extend the perfect CSI model em-

ployed in the preceding sections, such that setting τ = 0, one returns simply toH = Ĥ.

Next, we turn our attention to hardware impairments, which typically refer to practical

imperfections in power amplifiers (PAs), digital-to-analog converters (DACs), analog-

to-digital converters (ADCs), I/Q mixers or other RF chain components, and whose

effect is to cause distortions in transmit signals that were shown in e.g. [73] to be

well-modeled by i.i.d additive zero-mean Gaussian random variables, with variance

proportional to the power of the undistorted signal. To elaborate, in the presence of

hardware impairment, an intended transmit symbol vector s ∈ CNt×1 is distorted into

the transmit signal x ∈ CNt×1 described by [74,75]

x = s+w, (2.54)
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wherew denotes an additive hardware distortion vector modeled asw ∼ CN (0, η · diag (Cs))

with η denoting the RF distortion level parameter characterized by the quality of the

RF chain components and Cs , E
[
sHs

]
.

Assuming that the elements of the intended symbol vector s are independent from

each other and have unit power (i.e., Cs = I), the received signal corresponding to

the transmit signal in equation (2.54) is given by

y =Hx+ n

=
√

1−τ2Ĥs︸ ︷︷ ︸
Intended

+

CSI imperfection︷ ︸︸ ︷
τEs+τEw +

√
1−τ2Ĥw︸ ︷︷ ︸

Hardware impairment

+n ∈ CNr×1.

(2.55)

It will prove convenient to normalize the received signal by the scalar
√

1− τ2, and

rearrange the terms so as to yield

ȳ = Ĥs+ Ĥw +
τEs+ τEw + n√

1− τ2︸ ︷︷ ︸
,ñ

, (2.56)

where we have implicitly defined the total effective noise ñ.

At this point it is worth mentioning that in the absence of knowledge of the Gauss-

Markov uncertainty parameter τ and the RF distortion level η, a receiver would simply

perceive the total effective noise ñ as a higher noise level with power σ2
ñ, such that the

robust IDLS scheme of Subsection 2.4.1 could be in fact employed directly, as long as

σ2
ñ could be estimated, under the assumption of whiteness of ñ.

On the other hand, if τ and η can themselves be estimated, and under the knowledge

of the spatial correlation matrices Φr and Φt, a more effective mitigation of the CSI and

hardware imperfection can be achieved under the IDLS framework, by incorporating

the resulting knowledge.

First, as shown in Appendix A, the covariance matrix of the total effective noise ñ

is given by

Σ ñ = ηĤĤH+
τ2

1−τ2
(1+η)Tr (Φt) Φr︸ ︷︷ ︸
,ΣC

ñ

+
σ2
n

1−τ2
INr︸ ︷︷ ︸

,ΣU
ñ

, (2.57)

where, for future convenience, we have decomposed Σ ñ into a sum of the matrices ΣC
ñ

and ΣU
ñ, the first corresponding to quantities that are subjected to correlation, and

the second corresponding to terms that are not.

Next, we observe that the presence of the correlated covariance component ΣC
ñ in

Σ ñ implicates that, in general,

ĤH(ĤĤH + Σ ñ)−1 6= (ĤHĤ + Σ ñ)−1ĤH, (2.58)
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such that the total effective noise ñ due to CSI imperfection and hardware impairment

does not enjoy the homoscedasticity assumed in the previous formulations of IDLS

described in preceding sections.

To circumvent this new challenge, we consider an extension of the IDLS framework

under the prism of the generalized total least square regression problem [76], which we

here modify to include our constellation-aware `0-norm regularizer, yielding

min
s∈CNt

(ȳ − Ĥs)H(ΣC
ñ + INr)

−1(ȳ − Ĥs) (2.59)

+
σ2
n

1− τ2
‖s‖22 + λ

2b∑
i=1

‖s− ci1‖0,

which seeks to minimize the Mahalanobis distance between the output and input vec-

tors while enforcing the constellation-compliance of the solution.

Proceeding succinctly hereafter, introducing the `0-norm approximation of equation

(2.12) and applying the QT into equation (2.59), we obtain

min
s∈CNt

(ȳ − Ĥs)H(ΣC
ñ + INr)

−1(ȳ − Ĥs) (2.60a)

+
σ2
n

1− τ2
‖s‖22 + λ(sHBs− 2<{sHb}),

or alternatively, in the real domain,

min
s∈CNt

(ȳ − Ĥs)T(ΣC
ñ + I2Nr)

−1(ȳ − Ĥs) (2.60b)

+
σ2

n

1− τ2
‖s‖22 + λ(sTBs− 2sTb),

which in turn admit the respective solutions

s =
(
ĤH(ΣC

ñ + INr)
−1Ĥ+ σ2

n
1−τ2 INt+λB

)−1
(2.61a)

×
(
ĤH(ΣC

ñ + INr)
−1ȳ +λb

)
,

and

s =
(
ĤT(ΣC

ñ + I2Nr)
−1Ĥ + σ2

n
1−τ2 I2Nt + λB

)−1
(2.61b)

×
(
ĤT(ΣC

ñ + I2Nr)
−1ȳ +λb

)
,

where, as previously, all the straight up bold letters are the real-domain equivalent of

their bold italic counterparts in the complex domain.

Finally, in order to optimize the regularization parameter, we once again transform

the formulation given in equation (2.60b) into a QCQP-1, build the corresponding KKT

conditions, and apply Moré’s Theorem [63] to obtain
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s̄ =
(
B + µopt

(
ĤT(ΣC

ñ + I2Nr)
−1Ĥ + σ2

n
1−τ2 I2Nt

))−1
(2.62a)

×
(
b + µoptĤT(ΣC

ñ + I2Nr)
−1ȳ

)
,

s̄T
( =q22︷ ︸︸ ︷
(ĤT(ΣC

ñ +I2Nr)
−1Ĥ+ σ2

n
1−τ2 I2Nt)s̄−ĤT(ΣC

ñ +I2Nr)
−1ȳ

)
−ȳT(ΣC

ñ +I2Nr)
−1Ĥ︸ ︷︷ ︸

=q12

s̄ + ȳT(ΣC
ñ + I2Nr)

−1ȳ − δ︸ ︷︷ ︸
=q11

= 0,

(2.62b)

such that the matrices Q and P to be used in equation (2.38) in order to calculate

λopt are updated as follows.

Q ,

 ȳT(ΣC
ñ + I2Nr )

−1ȳ − δ −ȳT(ΣC
ñ +I2Nr )

−1Ĥ bT

−ĤT(ΣC
ñ +I2Nr )

−1ȳ ĤT(ΣC
ñ +I2Nr )

−1Ĥ+
σ2
n

1−τ2 I2Nt −B

b −B 02Nt

, (2.63a)

P ,

 0 01×2Nt −ȳT(ΣC
ñ +I2Nr )

−1Ĥ

02Nt×1 02Nt ĤT(ΣC
ñ +I2Nr )

−1Ĥ+
σ2
n

1−τ2 I2Nt

−ĤT(ΣC
ñ +I2Nr )

−1ȳ ĤT(ΣC
ñ +I2Nr )

−1Ĥ+
σ2
n

1−τ2 I2Nt 02Nt

 .
(2.63b)

Remark 2.4.2. We remark that in case perfect CSI is available at the receiver (i.e.,

when τ = 0), and the transmitter is free of distortions due to hardware impairments

(i.e., when η = 0), equations (2.59) through (2.63) reduce to the corresponding equa-

tions (i.e., equations (2.47) and (2.50)) in Subsection 2.4.1. Likewise, setting the

noise variance to zero further reverts the detector described in this subsection back to

the fundamental IDLS design introduced in Section 2.3, as shown in Remark 2.4.1. In

other words, it is evident that the robust IDLS variation introduced here is in fact an

extension of the original IDLS method presented earlier, with embedded robustness to

noise, CSI imperfection and hardware impairments, for which it shall be referred to as

the Robust IDLS detector.

Also, equation (2.61) converges to a stationarity point similarly to equation (2.20).

For the convenience of the reader, a pseudo-code summarizing the Robust IDLS

detector is offered above in Algorithm 2. It can be readily recognized that indeed

Algorithm 2 is generalization of Algorithm 1.

2.4.3 Performance Assessment: Robust IDLS

In this section, we offer performance evaluation of the Robust IDLS detector for differ-

ent CSI error and hardware impairment setups in order to illustrate the effectiveness
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Algorithm 2 Robust IDLS Detector

Inputs: Received signal y, channel matrix H and noise power σ2
n, Gauss-Markov

uncertainty parameter τ and hardware impairment parameter η.

Outputs: Estimate ŝ

1: Set iteration counter k = 0.

2: Normalize received signal as ȳ , y√
1−τ2

.

3: Set initial solution to s(k)=
(
ĤT(ΣC

ñ + I2Nr)
−1Ĥ+ σ2

n
1−τ2 I2Nt

)−1(
ĤT(ΣC

ñ + I2Nr)
−1ȳ

)
.

4: repeat

5: Increase iteration counter k = k + 1.

6: Update βi,j∀ i, j, as in equation (2.21).

7: Construct b and B from equations (2.22a) and (2.22b).

8: Construct Q and P from equations (2.63a) and (2.63b).

9: Obtain λopt(k) as in equation (2.38).

10: Update s(k) as in equation (2.61b).

11: until convergence or maximum iterations reached

12: ŝ← s(k)

and flexibility of the proposed framework.

Before we proceed to the BER performance assessment of the Robust IDLS detector

compared to the state of the art, let us offer a few comments on the complexity of the

framework in the following subsection.

2.4.4 Complexity Analysis

For starters, we emphasize that although the computation of the regularization pa-

rameter λopt(k) obtained from the robust IDLS was included among the repetitive

steps executed in Algorithms 1 and 2, for the sake of completeness, in practice such

step does not need to be repeated at every iteration of the IDLS detector. Indeed,

notice that only the first row and column of the matrix Q is signal-dependent while

the matrix P is constant for a given channel realization. Consequently, it is both

mathematically justified and empirically observed that the sequences of regularization

parameters {λopt(0), λopt(1), · · · , λopt(kmax)} obtained from Algorithm 1 and 2 do not

vary significantly with channel realizations and signal transmissions, for fixed system

size and SNR.

That, allied with the fact that in SotA methods the optimization of λ is typically

performed via exhaustive search, justifies us not to consider the optimization of λ

as a core contributor to the complexity of the IDLS framework. Consequently, the

most expensive operation in the IDLS framework is the matrix inversion required to
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Table 2.1: Table of Complexity Order.

Method
IDLS and

Robust IDLS
SOAV [40]

(SotA)
SCSR [45]

(SotA)
[46]

(SotA)
Complexity

Order
O(N3

t ) O(N3
t ) O(N3

t ) O(N3
t )

evaluate the closed-form iterative expression in equations (2.20), (2.47) and (2.61),

which requires 2N3
t /3 +O(N2

t ) floating point operations (flops) to complete, if carried

out via a conventional matrix inversion algorithm such as the naive Gauss-Jordan

elimination method [64].

However, since the quadratic coefficient matrices in equations (2.20), (2.47) and

(2.61) are Hermitian positive definite, the latter complexity can be halved by taking

advantage of the Cholesky factorization, which transforms the latter equations into

a linear system involving triangular matrices, resulting in an order of N3
t /3 +O(N2

t )

flops [77].

We have numerically found via Monte-Carlo simulations, for instance, that the

Cholesky factorization approach suffices to efficiently solve the inversions under mod-

erate problem setups (i.e., Nt = Nr ≈ 100) within an average time of hundreds of

microseconds when using 64-bit MATLAB 2019a in a computer with an Intel Core i9

processor with a clock speed of 3.6GHz and 32GB of random-access memory (RAM).

Thus, the operation in practice can be computed in the order of nanoseconds on field

programmable gate arrays (FPGAs), which complies with latency requirements posed

by various global standards including 5G NR. Note that efficient factorization-based

inverse solvers are publicly available as native functions in numerical computing lan-

guages, e.g., mldivide in MATLAB and cho solve in Python.

Remark 2.4.3. The complexity order of all the algorithms, both proposed (i.e., IDLS

and Robust IDLS) and SotA (i.e., SOAV, SCSR and [46]) is proportional to O(N3
t ),

which incidentally is also the worst-case complexity of the MMSE detector that is cur-

rently employed in practice [62].

We remark, however, that further complexity reduction techniques developed for

massive MIMO systems can be employed (e.g., [78]), leading to O(N2
t ) at best. It can be

found via Monte-Carlo simulations, for instance, that the Cholesky-based factorization

can offer a reasonable runtime performance in order to solve equations (2.20), (2.47),

and (2.61) in case of moderately large systems, although this approach might also suffer

when the system dimensions become extremely large.

For such systems of larger size (e.g., Nt � 500), numerous iterative algorithms

including variates of the conjugate gradient methods, accelerated first/second-order

gradient methods, and minimum residual methods exist [64], which can also be uti-
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lized to solve the linear equations (2.19), (2.47), and (2.61). Furthermore, quantum

algorithms for linear equations [79] will be commercially available in the future, which

may further accelerate the speed.

All in all, we summarize in Table 2.1 the complexity order of the proposed IDLS

and its precedents (i.e., SOAV and SCSR).

2.4.5 BER Performance: IDLS versus SotA Alternatives

Next, we turn our attention to the evaluation of the BER performance of Algorithm 2

in comparison to the conventional LMMSE and recent SotA alternatives, in mitigating

the effect of imperfections such as CSI errors and hardware impairments, inevitable in

real-life systems. For the sake of a more effective comparison, in particular in terms

of capturing the gains achieved as a result of the IDLS approach itself rather then the

system model alone, and given that the derivation of the total effective noise covariance

matrix described in Appendix A and summarized in equation (2.57) is adjacent to the

IDLS detector, which therefore can also be utilized outside of the context of the IDLS

framework, we have fed the conventional LMMSE estimator with Σ ñ as described by

equation (2.57).

In other words, in the figures to follow, curves attributed to the “conventional”

LMMSE corresponds to the results obtained with the receiver

sMMSE = ĤH(ĤĤH + Σ ñ)−1ȳ. (2.64)

Following [74] and [75], it is assumed that the CSI imperfection level τ2 varies from

−15 [dB] to −10 [dB], while the hardware imperfection parameter η takes from the

interval [−20,−10] [dB].

Fully loaded scenarios will be set with Nt = Nr = 120, whereas overloaded scenarios

will be set with Nt = 120 and Nr = 96, yielding an overloading ratio of γ = 1.25 so

that the results of Section 2.3 may serve as a reference.

Our comparisons start with Figure 2.7, which shows the gains in BER performance

achieved by the robust IDLS detector over SotA alternatives in a fully-loaded scenario

(i.e., Nt = Nr = 120) with different CSI error and hardware imperfection condition,

respectively.

It is found that the conventional LMMSE estimator is significantly outperformed

not only by the newly-proposed robust IDLS detector, but also by the SOAV and SCSR

schemes, which follows from the constellation-awareness that these techniques have in

common, and which demonstrates its robustness of the approach against non-ideal

conditions such as CSI and hardware imperfections.

It can also be seen, however, that the robust IDLS consistently outperforms all
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(a) Impact of CSI Error with Fixed Hardware Impairment Level.

(b) Impact of Hardware Impairment with Fixed CSI Error Level.

Figure 2.7: Uncoded BER performance of Robust IDLS detector compared to SotA alternatives, under
fully-loaded (γ = 1) conditions in spatially correlated channels and subjected to different CSI error
and hardware impairment levels.
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(a) Impact of CSI Error with Fixed Hardware Impairment Level.

(b) Impact of Hardware Impairment with Fixed CSI Error Level.

Figure 2.8: Uncoded BER performance of Robust IDLS detector compared to SotA alternatives, under
overloaded (γ = 1.25) conditions in spatially correlated channels and subjected to different CSI error
and hardware impairment levels.
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Figure 2.9: Coded BER performance with imperfect CSI.

alternatives including SOAV and SCSR across the entire range of CSI error and hard-

ware imperfection levels, with an especially large gain over the latter over a wide range

of values of τ and η.

Next, we examine the impact of overloading on the aforementioned gains in order

to reveal the performance in a NOMA setup. To this end, Figure 2.8 compares the

uncoded BERs achieved by a system with Nt = 120 and Nr = 96, yielding an over-

loading ratio of γ = 1.25. It can be seen that while the harsher overloading has an

overall impact on the performances of all schemes compared, as a consequence of the

higher levels of ISI, also exacerbated by channel and noise correlation resulting from

the CSI errors and hardware distortions, the rebust IDLS detector continues to provide

superior performance with substantial gains over all alternatives.

These gains are a consequence of the incorporation of imperfection-aware extensions

via the generalized LS method into the IDLS framework. As confirmed by the figures,

it is shown that the proposed framework is generic and compatible with various system

setups in a plug-and-play fashion.

Last but not least, the BER performance of the robust IDLS, [46] and the con-

ventional LMMSE under the assumption that the receiver suffers from imperfect CSI
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errors is shown in Figure 2.9, where the coding setup follows the same as that of Figure

2.6. The figure shows the performance gain obtained by utilizing the Robust IDLS as

an initializer to the IDD method of [46], compared to the technique proposed thereby

as is. It can be seen that the Robust IDLS-initialized IDD results in an acceleration

of the method of [46] towards capacity-achieving performance.

The results are encouraging as they indicate that an optimized integration of the

proposed Robust IDLS detector with decoding is likely to yield further advancement

of the state-of-the-art, which is left for a future work.

2.5 Further Application: Low-Rank Matrix Completion

The proposed discreteness-aware regularizer is shown to be effective in NOMA systems.

In order to illustrate a wide range of its applicability and flexibility to different signal

processing applications, in this section we seek to develop an LRMC algorithm based

on the concept of the discreteness-aware regularization approach with the application

to a matrix completion problem subject to discreteness constraints. Before moving on

to descriptions of the developed algorithm, let us start with the technical background

of the related works.

2.5.1 Background and Prior Works

With fair-winds of big data and IoT, modern signal and information processing ap-

plications such as information filtering systems, networking, machine learning, and

wireless communications often face a structured LRMC problem, which intends to

infer a low-rank matrix X ∈ Rm×n given a partially observed incomplete matrix

O ∈ Rm×n [58, 80, 81]. The matrix completion (MC) optimization problem can be

written as the following rank minimization problem:

argmin
X∈Rm×n

rank (X) (2.65a)

s.t. P
 (X) = P
 (O) , (2.65b)

where rank (·) denotes the rank of a given input matrix and P
 (·) indicates the mask

operator (i.e., projection) defined as

[P
 (A)]ij =

[A]ij if (i, j) ∈ 


0 otherwise
, (2.66)

with [·]ij being the (i, j)-th element of a given matrix and 
 denoting the observed

index set.
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Although the global solution of equation (2.65) corresponds to a matrix that has

the lowest rank and matches observations corresponding to indexes belonging to the

indicator set 
, naively solving the above rank minimization problem is known to be

non-deterministic polynomial-time (NP)-hard due to the non-convexity of the rank

operator rank (·). Similar to the idea that the `0-norm function can be replaced by

its convex surrogate `1-norm in CS-related problems, the above rank minimization

problem can be relaxed by introducing the nuclear norm (NN) ‖A‖∗ (i.e., the sum of

the singular values of A) [58], namely,

argmin
X∈Rm×n

‖X‖∗ (2.67a)

s.t. P
 (X) = P
 (O) , (2.67b)

where NN is known to be the tightest convex surrogate of the rank operator [82].

Although equation (2.67) can be cast as a semidefinite programming (SDP) problem

[83], many different solvers for the latter have been proposed for further complexity

reduction and noisy scenarios, which can be categorized as a solution to either the

problem:

argmin
X∈Rm×n

‖X‖∗ (2.68a)

s.t.
1

2
‖P
 (X−O) ‖2F︸ ︷︷ ︸

,f(X)

≤ ε, (2.68b)

or its regularized form

argmin
X∈Rm×n

f(X) + λ‖X‖∗, (2.69)

or with the rank information

argmin
X∈Rm×n

f(X) (2.70a)

s.t. rank (X) ≤ s, (2.70b)

where f(·) is implicitly defined for notational convenience.

Soft-Impute and its accelerated variates are ones of the state-of-the-art algorithms

for large-scale LRMC problems, which aim at solving an optimization problem similar

to equation (2.69) and therefore to equation (2.68). To elaborate, Soft-Impute consists

of the following recursion

Xt = SVTλ(Xt−1 + P
 (O−Xt−1)), (2.71)

where we utilized the fact that f(X) is a convex function with 1-Lipschitz constant,
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t denotes the iteration index and the singular value thresholding (SVT) function is

given by [84, Theorem 2.1] as

SVTλ(A) , U (Σ− λI)+ VT, (2.72)

with A , UΣVT and (·)+ being the positive part of the input.

It has recently been shown that Soft-Impute can be categorized as a proximal

gradient (PG) algorithm [85], and therefore, the well-known Nesterov-type momentum

acceleration technique can be employed without loss of convergence guarantee [86,87],

leading to

Xt = SVTλ(Yt + P
 (O−Yt)), (2.73)

with Yt , (1 + βt)Xt−1 + βtXt−2 where βt is the momentum weight.

2.5.2 Discreteness-Aware LRMC

As recently pointed out in [81], most of the LRMC techniques including ones men-

tioned above assume that entries of the targeted low-rank matrix are randomly gen-

erated (i.e., continuous random variables) in spite of the fact that many real data

matrices including recommendation systems are composed of a finite set of discrete

numbers (e.g., 1, 2, . . . , 5), indicating potential to improve the recovery performance

of the existing state-of-the-art algorithms. To this end, in this section we bring the

notion of discreteness-awareness by means of regularization to this context, proposing

a novel discrete-aware MC algorithm as a sequence of developments [85,88] stemming

from Soft-Impute [89]. Notice that the proposed regularizer can be employed in vari-

ous other MC optimization frameworks, leaving such further extensions to future open

problems.

It is also worth noting that one may confuse the word “discrete-aware” with the

existing similar research items [90, 91], which exploit binary hashing codes for termi-

nal user devices to reduce the storage volume and time complexity, and therefore are

differentiated from the herein proposed method in the problem setup and optimiza-

tion approach. Also, the proposed method is different from [92–94] in terms of the

optimization approach.

Assuming that entries of the matrix to be recovered belong to a certain finite dis-

crete alphabet set A , {a1, a2, · · · } (e.g., integers in case of recommendation systems),

we intend to tackle a variety of the following regularized minimization problem

argmin
X∈Rm×n

f(X) + λg(X) + ξr(X|p), (2.74)

55



2.5. Further Application: Low-Rank Matrix Completion

where g(X) denotes a non-smooth (possibly non-convex) low-rank regularizer [95],

ξ ≥ 0, and

r(X|p) ,
|A|∑
k=1

‖vec
c(X)− ak1‖p (2.75)

where r(X|p) is the discrete-space regularizer4 with 0 ≤ p, vec
c(X) denotes vec-

torization of entries of X corresponding to a given index set 
c, and 
c being the

complementary set of 
.

Although non-convex scenarios where either g(X), r(X|p) or both are non-convex

regularizer(s) can be considered, we hereafter focus on the convex scenario (i.e., g(X) =

‖X‖∗ and r(X|1) =
∑|A|

k=1 ‖vec
c(X)−ak1‖1) for the sake of simplicity. The accelerated

PG algorithm for a discrete-aware convex variate of Soft-Impute as shown in equation

(2.74), which hold the convergence rate O
(

1
t2

)
, can be summarized as the following

recursion:

Yt = (1 + βt)Xt−1 + βtXt−2 (2.76a)

Zt = proxξr(Yt) (2.76b)

Xt = SVTλ(P
c (Zt) + P
 (O)) (2.76c)

where proxξr(Yt) is the proximal operator given by

proxξr(Yt) , argmin
U

r(U|1) +
1

2ξ
‖vec
c(U−Yt)‖22 . (2.77)

Taking into account the fact that the proximal operator of a sum of convex reg-

ularizers can be computed from a sequence of individual proximal operators [86], we

readily obtain

proxξr(Yt) = proxξr1

(
proxξr2

(
· · · proxξr|A|(Yt)

))
, (2.78)

where rk(Yt) , ‖vec
c(Yt)− ak1‖1 for k ∈ {1, 2, . . . , |A|}.
To this end, each proximal operator can be written as

proxξrk(Yt) , argmin
U

‖u− ak1‖1 +
1

2ξ
‖u− yt‖22 , (2.79)

with u , vec
c(U) and yt , vec
c(Yt), which can be compactly written element-by-

element as

argmin
ū`

|ū`|+
1

2ξ
(ū` − ȳt,`)

2, (2.80)

where ū` , [u]`−ak, ȳt,` , [yt]`−ak, ū , [ū1, ū2, . . . , ū|
c|]
T, ȳt , [ȳt,1, ȳt,2, . . . , ȳt,|
c|]

T

4Although it has been shown that the base of the norm function is set to be p = 0 or p = 1 to
enhance the discreteness of the inputs, the base p can be any positive number in principle.

56



2.5. Further Application: Low-Rank Matrix Completion

and ` ∈ {Z|1 ≤ ` ≤ |
c|}.
One readily notice that equation (2.80) has a closed form solution (i.e., soft-

thresholding function) given by

ū = sign (ȳt)� (|ȳt| − ξ1)+, (2.81)

where � is the Hadamard product and sign (·) denotes the (element-wise) sign function.

Notice that in equation (2.81), |ȳt| performs the element-wise absolute operation.

Finally we recover u by

u = ū + ak1, (2.82)

and U by mapping u onto the unobserved indexes, namely,

U = vec−1

c (u), (2.83)

where vec−1

c (·) denotes the inverse function of vec
c(·).

2.5.3 Numerical Evaluation

In this section, we perform numerical experiments on discrete-valued real-world data

sets to evaluate the proposed discrete-aware MC algorithm. To this end, we adopt

the MovieLens-100k data set5 for recommender systems, one of the popular data sets

utilized in MC literature for performance evaluations, which is composed of integer

ratings (from 1 to 5) associated with many different user-movie pairs and possesses a

low-rank nature due to the inter-user correlation in preferred movies. To evaluate the

robustness jointly with the recovery performance, we vary the observed ratio from 20%

to 60%, while normalized-MSE (NMSE) is utilized as the performance metric, which

is given by

NMSE ,
‖P
c (X−O) ‖2F
‖P
c (O) ‖2F

. (2.84)

Besides the Soft-Impute algorithm [89], we compare our proposed algorithm with

other state-of-the-art methods such as AIS-Impute [85], an accelerated variate of Soft-

Impute, niAPG [88], a non-convex variate of Soft-Impute with the log-sum-penalty

(LSP) non-convex regularizer.

The NMSE performance results comparing our proposed discrete-aware variates of

Soft-Impute and the aforementioned state-of-the-art LRMC algorithms as a function

of ratio of observed ratings are shown in Figure 2.10, where the red lines correspond to

our proposed methods and black or gray lines are associated with the state-of-the-arts.

For the sake of clarity, the NMSE performance gaps due to discreteness-awareness is

5https://grouplens.org/datasets/movielens/
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2.5. Further Application: Low-Rank Matrix Completion

Figure 2.10: NMSE performance evaluations of the proposed discrete-aware MC algorithms (red) and
other state-of-the-art methods (gray and black) with respect to different observation ratios. ©2020
IEEE

highlighted by annotation arrows. It can be observed from the figure that most of

the algorithms are able to successfully achieve less than 0.1 in terms of NMSE for a

wide range of observed ratios, albeit non-convex algorithms with LSP can reduce the

performance degradation in a severe scenario, where only a few number of entries of

the matrix can be observed. More interestingly, even in case of convex algorithms,

the discreteness-awareness considerably decreases increment of the NMSE curve at the

low observed ratio range, which indicates the robustness of the proposed discrete-aware

regularizer.

In Figure 2.11, the NMSE convergence behavior of the algorithms with respect to

the number of algorithmic iterations is presented, where we can perceive that most of

the algorithms converge within 100 iterations in case with the convex NN regularizer

and 180 iterations in case with the non-convex LSP regularizer, respectively. Further-

more, the figure illustrates the accelerated convergence of the proposed algorithm with

the convex NN regularizer. According to this observation, it may be concluded that

the discreteness-awareness can improve the NMSE performance.

Besides the above, we remark that the additional complexity due to the discreteness-

aware regularizer in equation (2.75) with p = 1 is linear with respect to the cardinality
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2.5. Further Application: Low-Rank Matrix Completion

Figure 2.11: NMSE performance behavior on the MovieLens-100k data set as a function of algorithmic
iterations with 20% observation of the total non-zero entries. ©2020 IEEE

of the unknown index set (i.e., |
c|) as one may readily observe from the element-by-

element operation in equations (2.81)–(2.83). Therefore, one may conclude that the

most expensive part of the algorithm in terms of complexity is the same as that of the

state-of-the-art methods, i.e., SVT, indicating that the proposed algorithm maintains

the same complexity order.

In case of p = 0, however, the regularizer may affect the convergence or the complex-

ity of the proposed PG algorithm due to many different reasons such as expansiveness

of r0(X) [96] or successive convex approximation to relax the `0-norm function. Tak-

ing into account the aforementioned issues, it is an open problem to develop a fully

non-convex algorithm (i.e., a non-convex low-rank regularizer and a discrete-aware

regularizer with p < 1) and analyse its convergence property.

In light of all the above, we conclude from the numerical performance evaluations

that our proposed discreteness-aware MC algorithm may further accelerate the conver-

gence and improve the completion performance in case of adopting convex functions

for both regularizers (i.e., g(·) = ‖ · ‖∗ and r1(·)), while enjoying the uniqueness of the

solution due to the convexity of equation (2.74). In case of non-convex low-rank regu-

larizer (i.e., LSP) while maintaining convex discreteness-aware regularizer (i.e., r1(·)),
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it has been shown that at the expense of slower convergence, the NMSE performance

can be enhanced as shown in Figure 2.11.

2.6 Conclusion

In this chapter, we proposed a flexible framework for the symbol detection problem

in overloaded communication systems (e.g., NOMA and overloaded MIMO) without

assuming particular channel statistics. The key concept of the proposed framework is

the compliance of its solution to the prescribed symbol constellation C. Technically

speaking, the proposed detection framework is based on a novel adaptable quadratic

discreteness-aware regularizer, in which the alternative ML detection problem via the

`0-norm is first approximated by an asymptotically-exact non-convex expression and

later convexified by a FP technique. The proposed IDLS detector was then shown

to be a generalization of the well-known ZF and LMMSE methods with adherence

to the predetermined discrete constellation set such as phase shift keying (PSK) and

QAM modulation. Thanks to the flexibility of the proposed framework in dealing with

possible non-ideal conditions, the proposed IDLS detector has been further extended

to Robust IDLS method so as to mitigate the harmful effect of CSI imperfection and

hardware impairments while obeying the discreteness constraint of the symbols.

Also, it is worth-mentioning that since on principle the proposed IDLS receiver

generalizes the classic ZF and LMMSE algorithms for an estimation problem subject

to discrete sets, that part of the contribution is likely to also find applications in

a variety of problems beyond communications. As an illustration of the aforemen-

tioned claim, we further developed an LRMC algorithm leveraging the concept of the

discreteness-aware regulization for a matrix completion problem subject to discrete

entries. The software simulation demonstrates the effectiveness of the incorporation

of the discreteness-awareness concept in MC problems. Note that a further extension

of the developed LRMC algorithm with the non-convex regularizer proposed in this

section is left for future work.

Furthermore, the work on this subject considered in this section can be extended

to other communication systems such as mmWave and full-duplex systems. As men-

tioned earlier, an IDD extension of the IDLS framework may be considered as a future

work. Furthermore, as the proposed method can be seen as an M -estimator, its detec-

tion performance might also be precisely analyzed via the convex Gaussian min- max

theorem (CGMT) under the assumption of i.i.d. Gaussian channels.
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Distributed MIMO Systems

Chapter 3

Grant-Free Schemes for

Low-Latency Massive Access in

Distributed MIMO Systems

In this chapter, we intend to tackle the latency issue in distributed antenna wire-

less systems. In particular, we present two new grant-free access schemes towards

low-latency massive communications in two distinct emerging distributed MIMO ar-

chitectures, i.e., CF-MIMO and XL-MIMO. The first algorithm developed for CF-

MIMO architectures aims to improve the per-user throughout in grant-free systems

while efficiently reducing the length of pilot sequences, which is a bottleneck of most

of the existing related methods. To this end, we tailor the recently-introduced bilin-

ear Bayesian inference framework to conquer this challenging task, leading to a novel

joint estimation algorithm simultaneously addressing active user identification, chan-

nel estimation, and multiuser data detection. While the second algorithm developed

for XL-MIMO also aims at the same overhead reduction task, the latter is designed

to address the peculiarility of XL-MIMO systems rather than the per-user throughput

bottleneck. In other words, the second algorithm addresses a joint detection problem of

active user identification, channel estimation, and active sub-array identification (a.k.a.

spational non-stationarity), which is enabled by properly customizing the bilinear in-

ference framework. The effectiveness of the two algorithms is also demonstrated by

quantitative simulation-based analyses.

Part of this chapter is reprinted and enhanced from the following publication:

• Hiroki Iimori, Takumi Takahashi, Koji Ishibashi, Giuseppe Thadeu Freitas de Abreu, and Wei
Yu: “Grant-Free Access via Bilinear Inference for Cell-Free MIMO with Low-Coherence Pilots,”
IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7694–7710, Nov. 2021.

• Hiroki Iimori, Takumi Takahashi, Koji Ishibashi, Giuseppe Thadeu Freitas de Abreu, David
González G., and Osvaldo Gonsa: “Joint Activity and Channel Estimation for Extra-Large
MIMO Systems,” to appear in IEEE Trans. Wireless Commun., 2022. ©2022 IEEE
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3.1 Background and Contributions

Multiple-antenna architectures, in particular massive MIMO and its extensions, will

continue to be one of essential technologies in 5G and future 6G networks, in order to

satisfy the ever-growing demand for higher data rates and user capacities as well as

the heterogeneous requirements raised by mMTC, eMBB, URLLC and their various

combinations. What makes massive MIMO technology a simultaneous enabler of high

throughput communications and massive connectivity is the significant amount of the

spatial degrees-of-freedoms (DoFs) it provides, which can be exploited to solve inherent

problems such as multi-user detection (MUD), channel estimation (CE), and active

user detection (AUD) in uplink scenarios, among others [97,98].

Compared to conventional coherent MIMO communication mechanism, where AUD

and CE are sequentially performed based on predetermined reference signals (e.g.,

pilot sequences) followed by MUD relying on the estimated CSI, a main challenge

of massive uplink access is the communication overhead required for CSI acquisition,

which scales with the number of potential uplink users in the system due to the need of

orthogonal pilot sequences so as to maintain accurate CSI knowledge. It is also worth

mentioning that utilizing non-orthogonal pilot sequences for channel estimation, while

contributing to reducing the overhead, leads to severe MUD performance deterioration

due to the rank-deficient (i.e., underdetermined) conditions typically faced, even under

the assumption that perfect AUD is available at the receiver. In addition, in massive

MIMO settings, excessive piloting might exceed channel coherence time, particular in

the case of fast fading environments, which makes non-orthogonal pilots necessity.

A promising emerging approach to tackle this issue is joint channel and data estima-

tion (JCDE) which takes advantage of estimated data symbols as soft pilot sequences,

while exploiting their statistical quasi-orthogonality to improve system performance

and efficiency. In particular, the bilinear generalized approximate message passing

(BiGAMP) scheme proposed in [99] has been considered a key ingredient to solve such

a detection problem in wireless systems. In that scheme, Onsager correction is em-

ployed to decouple the self-feedback of messages across iterations as is the case with

the AMP, leading to stable convergence behavior as shown, for instance, in [100,101].

It has, however, been recently shown in [102] that the estimation performance of

BiGAMP severely deteriorates when non-orthogonal pilot sequences are exploited, even

if adaptive damping is employed, because the derivation of BiGAMP relies heavily on

the assumption of very large systems, although shortening the pilot sequence is the

very aim of the method itself.

In order to circumvent this issue, the authors in [103] proposed a novel bilinear mes-

sage passing algorithm, referred to as bilinear Gaussian belief propagation (BiGaBP),

with the aim of generalizing BiGAMP on the basis of belief propagation (BP) [104]
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for robust recovery subject to non-orthogonal piloting. Despite the aforementioned

progresses, many existing works including the ones mentioned above, focus only on

joint CE and MUD while assuming that perfect AUD is available at the receiver.

One of the solutions to the AUD problem is grant-free random access [105, 106],

which has been intensively investigated in the last few years and can be categorized as a

variation of JACE or (if symbol detection is also integrated) of JACDE, with Bayesian

receiver design components. In the context of Bayesian approaches, Bayesian JACE

can be seen as a non-orthogonal pilot-based random access protocol in which active

users simultaneously transmit their unique spreading signatures to their base stations

(BSs), and the BS employs a massage passing algorithm – e.g. multiple measurement

vector approximate message passing (MMV-AMP) – as receiver, with the aim of de-

tecting user activity patterns and their corresponding channel responses, while taking

advantage of the time-sparsity resulting from the activity patterns. As for Bayesian

JACDE schemes, most of the existing works on that approach, e.g. [107–111], are

extensions of the aforementioned Bayesian JACE in which spreading data sequences

generated by multiplying data symbols with their unique spreading signatures are

transmitted1, while leveraging a similar receiver design as that of Bayesian JACE

methods.

There is also another approach to AUD that takes advantage of the sample co-

variance matrix constructed from the large number of antennas at the receiver. This

covariance-based method has also attracted attention due to its applicability to un-

sourced random access (URA), where JACDE can be achieved by letting active users

transmit a codeword sequence selected from a common predetermined codebook over

a given time slot. To elaborate, it has been shown in [112] that the covariance-based

approach is able to accommodate a larger number of active users, while using limited

per-user wireless resources due to the nature of index-type modulation based on spread

codewords, which is therefore suited to super low-rate mMTC scenarios.

Compounding on the above, a fundamental challenge of grant-free approaches from

a system (infrastructure) viewpoint is the spatial correlation of the co-located massive

MIMO channel, which has been argued in [113] to be a limiting factor of centralized

massive MIMO, although most of the existing work in the area, including e.g. [102,

103,107,108,114–116], make use of the assumption that channels are subjected to ideal

(uncorrelated) Rayleigh fading.

Aiming at addressing these challenges, new concepts of distributed massive MIMO

have been recently proposed, among which are CF-MIMO [117] and XL-MIMO systems

[118]. In a cell-free massive MIMO system, which can be seen as an instance of spatially

distributed MIMO concept, a large number of APs geographically scattered over a

certain service area and connected via fronthaul links to a common central processing

1please refer to the system model given in e.g. [107–111] for more technical details
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unit (CPU), simultaneously serve multiple user equipments (UEs). Thanks to its

spatial diversity, CF-MIMO are inherently robust to spatial correlation, but pay to that

end the price of requiring long cabling infrastructure, high-capacity fronthaul links,

compression techniques, or all of them [119]. The original idea of CF-MIMO shown

in [117] has been further investigated and extended in the literature. Comprehensive

analyses of CF-MIMO networks under different degrees of cooperation among the

APs have been studied in [69], while the authors in [120] addressed the scalability

issue of CF-MIMO by proposing the dynamic cooperation clustering (DCC) method,

which provides a reasonable compromise between fully-distributed and fully-centralized

scenarios. In addition to the above, a CF-MIMO network with multiple CPUs has been

considered in the literature, leaving an open research problem with how to distribute

and control signal processing tasks among multiple CPUs under limited backhaul and

fronthaul links.

In contrast, XL-MIMO systems can be said to follow the strategy of forming a

“MIMO continuum”, in which a vastly large number of antennas are directly integrated

into the ambient, by embedding them on the walls and ceilings of buildings, stadiums,

train stations and airports. In this context, several works have been proposed. To

mention a few, a user-grouping based approximated ZF precoding design was proposed

for XL-MIMO beamforming in [121], which was shown to offer reasonable performance-

complexity tradeoff. An EP-based multiuser data detection mechanism for XL-MIMO

systems was proposed in [122], while an array selection method for higher energy

efficient communications in XL-MIMO settings was proposed in [123]. From an access

viewpoint, a grant-based random access strategy for XL-MIMO systems was considered

in [124] assuming perfect knowledge of active user indices. A theoretical interpretation

of achievable throughput in uplink XL-MIMO systems was offered in [125].

Since XL-MIMO systems rely on the use of large-aperture sub-arrays employed

on a wide-ranging surface, XL-MIMO systems have to cope with its peculiarilities

including spatial non-stationarity [126], i.e., the fact that the signal from each user is

apparent only to distributed portions of the XL-MIMO antenna array, referred to as its

visibility region (VR). In other words, only a portion of the total antennas can observe

the signal from each user. Several studies have been presented to address this spatial

non-stationarity in XL-MIMO from different aspects. The CE problem in XL-MIMO

subjected to non-stationarity was considered in [127,128], while implicitly assuming a

grant-based access protocol.

All in all, despite the importance of the antenna distribution, the grant-free access

in a distributed MIMO architecture has less been addressed.
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Contributions

Given the above, the contributions of this chapter are offered to address the latency

issue in the aforementioned distributed MIMO architectures. In particular, they are

summarized as follows.

• We employ a signal model incorporating a frame-theoretic non-orthogonal pilot

design, whose mutual coherence approach Welch’s theoretical coherence lower

bound even for relatively short pilot sequences. This is in contrast to much of

existing literature, which relies on Gaussian pilot designs, exhibiting poor mutual

coherence properties, except in the asymptotic (large-system) regime.

In the Context of CF-MIMO

• We demonstrate the feasibility of grant-free JACDE without spreading data se-

quences drawn from a predetermined constellation as is the case for the conven-

tional coherent MIMO systems. This is in contrast to most of related literature

addressing AUD, CE, and MUD jointly in a grant-free fashion [107–110], in which

the spreading of data sequences by pilot sequences is required, sacrificing spectral

efficiency, limiting data rate per user, and increasing sensitivity to fading.

• We extend previous works such as [114,129,130] such that the proposed algorithm

is directly applicable to a cell-free architecture, without sacrificing suitability also

to centralized MIMO systems. We remark that a potential advantage of the cell-

free architecture is that it helps resolve spatial correlation problems of massive

MIMO. To the best of our knowledge, no grant-free design for cell-free massive

MIMO scheme without pilot-based data spreading has been proposed yet.

• In order to enable the above, a novel JACDE algorithm, dubbed activity-aware

BiGaBP, is presented here, in which bilinear inference, message passing rules,

Gaussian approximation, and a new belief scaling technique that forges resilience

of the derived messages, are combined.

In the Context of XL-MIMO

• Non-stationarity, user activity patterns, and channel fading jointly imposes a new

estimation problem of random variables following a nested Bernoulli-Gaussian

distribution, which is captured in the system model section of the corresponding

section. To the best of our knowledge, this formulation appears for the first time

in the literature.

• Owing to the nested nature of the variables of interest, the JACE problem is

decoupled into a tractable bilinear inference problem.
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• In order to solve the reformulated bilinear estimation problem, a novel message

passing rule has been derived, in which estimates are obtained in closed-form.

Based on the derived message passing rules, an iterative JACE algorithm is

proposed for grant-free XL-MIMO systems subject to non-stationarity.

• In order to capture the cluster-like nature of sub-array activities, unlike the

existing literature, we introduce a Matérn-cluster point process (MCPP)-based

sub-array activity model, based on which the estimation performance of different

approaches is compared.

3.2 Non-Orthogonal Pilot Design via Frame-Theory

In this section we review a frame-theoretic approach to effectively design a structured

pilot matrix for non-orthogonal transmission [44,131–133], aiming at efficiently reduc-

ing the pilot length while preserving the linear independence between vectors in the

pilot matrix as much as possible. To this end, assuming a non-orthogonal representa-

tion of the pilot matrix, let us first define the mutual coherence as a measure of the

similarity between non-orthogonal pilot sequences.

Definition 3.2.1 (Mutual Coherence). Let F , [f1, . . . ,fL] ∈ HJ×L be a frame matrix

over a Hilbert space HJ×L, comprising of frame vectors f` ∈ HJ×1, with ` ∈ {1, . . . , L}
and J < L. The mutual coherence of F is given by

µ(F ) , max
6̀=`′

|〈f`,f`′〉|
‖f`‖2‖f`′‖2

,∀{`, `′} ∈ {1, 2 . . . , L}, (3.1)

which in the case of an equal-norm frame, reduces to

µ(F ) , max
6̀=`′
|〈f`,f`′〉|,∀{`, `′} ∈ {1, 2 . . . , L}. (3.2)

One readily notices from the above that the mutual coherence of a frame matrix

F is equivalent to the maximum absolute value of the non-diagonal elements of the

corresponding gram matrixG , FHF , which for L ≤ J2 is known to be lower-bounded

by the Welch bound2 [134]

µ(F ) ≥

√
L− J
J(L− 1)

. (3.3)

Besides low mutual coherence, for the sake of fairness – not in terms of throughputs

but in terms of resource utilization [44] – that pilot sequences employed by different

2One may consider an extremely severe scenario L > J2, although this is beyond the scope of this
dissertation. In this case, the Welch bound is no longer a proper benchmark, implying that one needs
another alternative that can be drawn from e.g., [135].
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users have the same energy, which in the context of frame designs translates to the

following desired property.

Definition 3.2.2 (Tightness). By means of the Rayleigh-Ritz Theorem, a frame matrix

F possesses the following inequalities.

α‖a‖22 ≤ ‖FHa‖22 ≤ β‖a‖22, ∀a ∈ HJ , (3.4)

where 0 < α ≤ β <∞ and F is called tight if and only if (iff) α = β.

In light of the above, our goal is to design low-coherence tight frames as pilot

sequences, which can be utilized even under severe non-orthogonal scenarios. It has

been recently shown in [136] that a group-theoretic tight frame construction approach

achieves near-Welch-bound performance, but unfortunately such cyclic-group approach

is applicable only to particular cases in which the number of frame vectors (i.e., L) is a

prime number, while in the context hereby frames with arbitrary L and J are required.

We therefore consider instead a convex optimization based construction method re-

cently proposed in [131, 132] and further developed in [44, 133]. Such a low-coherence

unit-norm tight frame with arbitrary dimensions can be obtained by taking advantage

of an iterative method, referred to as sequential iterative decorrelation via convex op-

timization (SIDCO) [131], whose extension to the complex space – dubbed as complex

SIDCO (CSIDCO) [132] – has been studied, where the strategy to minimize the mutual

coherence is to solve iteratively (i.e., for different τ) the following convex optimization

problem:

min
f`∈CJ×1

∀`∈{1,2,...,L}

‖F̃H
` f`‖∞ (3.5a)

s.t. ‖f` − f̃`‖22 ≤ T
(τ)
` , (3.5b)

where F̃` ∈ CJ×L−1 is obtained by prunning the `-th column of F̃ , τ indicates the

iteration index, and the search region is limited to a multidimensional Euclidean ball

of radius

T
(τ)
` = 1− max

`′|`′ 6=`

|〈f (τ−1)
` ,f

(τ−1)
`′ 〉|2

‖f (τ−1)
` ‖22‖f

(τ−1)
`′ ‖22

. (3.6)

Although the CSIDCO reformulation given in equation (3.5) already follows the

disciplined convex programming conventions, such that this problem can be easily

solved via interior point methods through CVX available in high-level numerical com-

puting programming languages such as MATLAB and Python, the abstraction penalty

of such high-level programming languages are too high for real-world communication

systems. Aiming at real-time processing of convex optimization problems, the authors

in [137] have developed an automatic low-level code generator for conic programming
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Figure 3.1: Mutual coherence comparison as a function of OFDM symbols utilized for pilot lengths Kp

with M = 100 uplink users. As benchmarks, we adopt the popular random Gaussian pilot sequence
considered in, e.g., [47,115], and a randomly truncated discrete Fourier transform matrix. The average
performance is shown for the Gaussian and truncated DFT approaches.

problems, which solves convex problems with moderate size on the order of microsec-

onds or milliseconds, although it is limited to quadratic program (QP)-representable

convex problems. In light of the above, for the sake of completeness, equation (3.5)

was transformed in [44,133] into the following quadratic program.

Theorem 3.2.1 (Quadratic CSIDCO). Introducing x` , [<{f`} ;={f`} ; t`,R; t`,I ] ∈
R2J+2×1 with slack variables t`,R ∈ R+ and t`,I ∈ R+ for all `, the CSIDCO formula-

tion given in equation (3.5) for a unit-norm low-coherence frame construction can be

rewritten as

min
x`

∀`∈{1,2,...,L}

xT
` Φx` (3.7a)

s.t. A`,R,1x` ≤ 0, (3.7b)

A`,R,2x` ≤ 0, (3.7c)

A`,I,1x` ≤ 0, (3.7d)

A`,I,2x` ≤ 0 (3.7e)

xT
` Ξx` − 2bT

` x` + 1− T` ≤ 0, (3.7f)
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where Φ ,
[ 02J 02J×2

02×2J I2

]
, Ξ ,

[
I2J 02J×2

02×2J 02×2

]
, b` ,

[
f̃T
` 0 0

]T
, the other coefficient

matrices are listed in Appendix B, and the iteration index τ is omitted for brevity.

Proof See Appendix B �

One may argue that the frame matrix constructed via the quadratic CSIDCO

method described above is not strictly tight due to the fact that tightness is not

enforced during the optimization process. However, the tightening approach proposed

in [138] based on the polar decomposition can be applied to the output of the quadratic

CSIDCO. Consequently, one can obtain an arbitrarily-sized low-coherent equal-norm

tight frame sufficiently close to the ideal equiangular tight frames which are not suited

to practice as they exist only for particular dimensions. Owing to this flexibility and

sufficiently high-performance, this approach is therefore adopted as pilot sequences

considered in this section.

It is also worth-noting that an alternative to design a low-coherence pilot matrix

is to leverage Grassmanian packing techniques [135, 139–141]. For instance, a pilot

matrix design based on a particular structure such as one proposed in [135] may bring

beneficial aspects in practice due to its low-complexity nature. However, optimizing

such a pilot design in terms of performance and/or complexity is beyond the scope

of this thesis, since the focus of this section is not to propose a new pilot design but

to bring to light that such alternative exists and is suitable for pilot matrix design in

grant-free access schemes.

To illustrate the performance of the quadratic CSIDCO method described above

especially in 5G NR setups, mutual coherence comparisons of the method against pop-

ular pilot construction approaches (i.e., the random Gaussian and truncated discrete

Fourier transform matrices) as a function of the number of OFDM symbols leveraged

for pilot lengths are shown in Figure 3.1, which demonstrates that in fact the quadratic

CSIDCO approaches the Welch bound while reducing the correlation between pilot

sequences in comparison with the other two approaches, implying capability of suffi-

ciently mitigating the inter-user interference even in highly non-orthogonal scenarios

and efficiently decreasing the number of pilot lengths simultaneously.

3.3 CF-MIMO

3.3.1 System Model

In this section, we consider a cell-free large MIMO system composed of N spatially

distributed single-antenna APs connected by wired fronthaul links to a common high-

performance CPU, serving M synchronized single-antenna users in a grant-free fashion,

as depicted in Figure 3.2a. Due to the dynamic nature of grant-free systems, it is

assumed that a fraction of the total M single-antenna users become active within a
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(a) A model illustration of cell-free MIMO systems with distributed single-antenna APs serving uplink users
which access the system in a grant-free basis.
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(b) Radio frame structure in 5G NR [142].

Figure 3.2: System and Signal Model.

given 5G NR OFDM symbol frame [142], whereas the rest of uplink users remain silent

during that period. As shown in Figure 3.2b, in the 5G NR signaling structure, each

frame consists of 10 subframes and each subframe consists of Q slots. Furthermore,

each slot is composed of 14 symbols. Taking advantage of this signaling design, one

may utilize a part of the radio frame structure as reference signals and the rest as data

streams. We also remark that the number of slots within a certain subframe (i.e., Q)

depends on the subcarrier spacing employed in a system.
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Given the above, let K be the total number of discrete time indices within an

OFDM frame and C , {c1, c2, . . . , c2b} represent a given constellation of symbols with

b denoting the number of bits per symbol. Introducing the user index set M ,

{1, 2, . . . ,M} and a set of active users A, the received signal vector yk ∈ CN×1 at the

k-th time index with k ∈ {1, 2, . . . ,K} can be written as

yk = Hxk +wk, (3.8)

where xk ∈ CM×1 denotes a possibly sparse transmitted signal vector, such that only

its elements of indices a ∈ A are non-zero; wk ∈ CN×1 is a circularly symmetric zero-

mean i.i.d. AWGN, i.e., wk ∼ CNN (0, N0IN ); and H ∈ CN×M denotes a flat block

fading communication channel matrix assumed to be constant during K successive

transmissions.

Assuming that the user activity remains consistent within an OFDM frame, we

can concatenate the K consecutive symbol transmissions into the transmitted signal

matrix X , [x1,x2, . . . ,xK ]. In turn, the row sparse nature of X can be translated

to a column-sparsity in the channel matrix H, such that the m-th column hm of the

channel matrix can be modeled as a multivariate Bernoulli-Gaussian random variable,

that is

hm ∼ (1− λ)δ(hm) + λCNN (0,Γm) , (3.9)

where λ is the activity factor, δ(hm) denotes the Dirac delta function that takes the

value 0 everywhere except at hm = 0 where it takes the value 1, and Γm is the

covariance matrix of the channel.

In light of the above, the received signal matrix Y ∈ CN×K concatenating the

received signal vectors given in equation (3.8) over K successive time indices, can be

readily expressed as
Y = HX +W , (3.10)

where Y , [y1, . . . ,yK ] and W , [w1, . . . ,wK ].

Let us employ the subscripts ·p and ·d to indicate pilot and data signals, respec-

tively, and in order to explicitly express the pilot and data sequences within the trans-

mitted and received signal, let us define, without loss of generality,

Y , [Yp,Yd] and X , [Xp,Xd], (3.11)

where Yp ∈ CN×Kp ,Yd ∈ CN×Kd ,Xp ∈ CM×Kp and Xd ∈ CM×Kd , with Kp +Kd = K

and Kp � Kd < K; and where each element of Xd is assumed to be drawn from the

constellation set C in a similar way to conventional coherent MIMO systems.

At this point, we stress that although cell-free systems are our primary inter-

est in this section, the signal model given in equation (3.10), and consequently the
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proposed JACDE method presented later, are not limited to cell-free architectures.

For instance, a conventional MIMO system model follows directly by setting Γm ,

diag ([γ1m, . . . , γNm]), with γm = γ1m = . . . = γNm, where γm denotes the power of

the channel from the m-th user. In contrast, in order to model a cell-free MIMO system

the receive channel powers γnm are simply allowed to be different for each link between

the n-th AP and m-th user. Having said that, in centralized MIMO systems the spatial

correlation needs to be involved in the channel model, for which the algorithm may

need some technical adjustments to properly handle such correlation, although most

of the message passing rules remain as it is.

We remark that unlike most grant-free systems found in literature, e.g. [107–109,

143–145], where data symbols are transmitted after spreading by pilot sequences, our

approach can be seen, in light of equation (3.10) as a cell-free-implementable activity-

aware variant of conventional MIMO systems, having the potential to enable both

grant-free random access and pilot length reduction by jointly performing user activity,

channel state, and data detection. These features make our approach better suited

to meet the demand of higher spectrum efficiency per user than grant-free methods

previously proposed, including those aforementioned.

3.3.2 Proposed Joint Estimation Method

In this section, we describe a joint activity, channel, and data estimation mechanism

via bilinear Gaussian belief propagation (GaBP) for large cell-free MIMO architectures,

whose belief propagation can be modeled as the graph schematized in Figure 3.3.

In order to further clarify the process of the proposed method, a work flow chart of

the proposed detection mechanism is also illustrated in Figure 3.4, where the detection

procedure is split into two algorithms, the belief consensus and hard decision blocks.

As shown in the figure, the work flow starts with an initialization where a first guess of

the channel estimate is obtained using only the pilot sequences, the result of which is

however limited in accuracy due to the severely non-orthogonal structure of the pilot

matrix as Kp � M . Aiming at improving the channel estimation accuracy by jointly

detecting the data as well as the activity, the initial channel guess obtained by the

initialization process is fed to the belief consensus block, which as illustrated in Figure

3.3, is composed of two different stages; 1) soft interference cancellation (SIC) and

beliefs generation based on tentative soft estimates and 2) combining beliefs and soft

estimates generation, described in the next two subsections, respectively.

Followed by the belief consensus block, we proceed with the subsequent hard deci-

sion block , where the final hard decision of the data and activity is carried out, which

will be described later.
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Figure 3.3: Belief generation and combining model.
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Figure 3.4: Work flow of the proposed detection process.
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Factor nodes

Focusing on the received signal element ynk at the n-th row and k-th column of Y

with the aim of detecting xmk at the m-th row and k-th column of X, the received

signal after SIC using soft estimates is given by

ỹm,nk , ynk −

Inter-user interference cancellation with soft-replicas︷ ︸︸ ︷
M∑
i 6=m

ĥk,nix̂n,ik (3.12a)

= hnmxmk +
M∑
i 6=m

(hnixik − ĥk,nix̂n,ik)︸ ︷︷ ︸
Residual interference

+wnk, (3.12b)

where x̂n,ik and ĥk,ni with i ∈ {1, 2, . . . ,M} are tentative estimates of xik and hni,

respectively, generated at variable nodes in the previous iteration, and wnk is the noise

element at the n-th row and k-th column of W .

Owing to the central limit theorem, the interference-plus-noise component can be

approximated as a complex Gaussian random variable under large-system conditions,

resulting in the fact that the conditional probability density function (PDF) of equation

(3.12) for given xmk and hnm can be respectively expressed as

pỹm,nk|xmk(ỹm,nk|xmk) ∝ e
−
|ỹm,nk−ĥk,nmxmk|

2

vx
m,nk , (3.13a)

pỹm,nk|hnm(ỹm,nk|hnm) ∝ e
−
|ỹm,nk−hnmx̂n,mk|

2

vh
m,nk , (3.13b)

with

vxm,nk ,
M∑
i 6=m

{
|ĥk,ni|2ψxn,ik + (|x̂n,ik|2 + ψxn,ik)ψ

h
k,ni

}
+ ψhk,nm +N0 (3.14a)

vhm,nk ,
M∑
i 6=m

{
|ĥk,ni|2ψxn,ik + (|x̂n,ik|2 + ψxn,ik)ψ

h
k,ni

}
+ γnmψ

x
n,mk +N0, (3.14b)

where ψxn,ik and ψhk,ni denote expected error variances corresponding to x̂n,ik and ĥk,ni,

respectively, and we remark that E
[
|xmk|2

]
= 1.

Variable nodes

Given the SIC and belief generation above, one can combine the Gaussian beliefs given

in equation (3.13a), yielding the PDF of an extrinsic belief lxn,mk for xmk

plxn,mk|xmk(lxn,mk|xmk) =

N∏
i 6=n

pỹm,ik|xmk(ỹm,ik|xmk) ∝ e
−
|xmk−r̂n,mk|

2

ψr
n,mk , (3.15)
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with

ψrn,mk ,

(
N∑
i 6=n

|ĥk,im|2

vxm,ik

)−1

(3.16a)

r̂n,mk , ψ
r
n,mk

N∑
i 6=n

ĥ∗k,imỹm,ik

vxm,ik
. (3.16b)

In turn, since the activity can be expressed as column-sparsity in the channel matrix

H, combining beliefs of the m-th column of the channel matrix (i.e., hm) needs to be

jointly performed over n ∈ {1, 2, . . . , N}. Thus, the PDF of the extrinsic belief lhk,m
for given hm is given by

plhk,m|hm
(lhk,m|hm)=

N∏
n=1

K∏
i 6=n

pỹm,ni|hnm(ỹm,ni|hnm) (3.17a)

∝ e−(hm−µhk,m)
H

Σh
k,m
−1(hm−µhk,m),

∝ e−(hm−µhk,m)
H

Σh
k,m
−1(hm−µhk,m)

πN |Σh
k,m|

. (3.17b)

Notice that the expression in equation (3.17b) is a complex multi-variate Gaussian

PDF, that is
plhk,m|hm

(lhk,m|hm) ∝ CNN

(
µhk,m,Σ

h
k,m

)
︸ ︷︷ ︸

N -multivariate complex Gaussian distribution

, (3.18)

where

µhk,m , [q̂k,1m, . . . , q̂k,Nm]T (3.19a)

Σh
k,m , diag

(
ψqk,1m, . . . , ψ

q
k,Nm

)
, (3.19b)

with

ψqk,nm ,

( K∑
i 6=k

|x̂n,mi|2

vhm,ni

)−1

(3.20a)

q̂k,nm , ψ
q
k,nm

K∑
i 6=k

x̂∗n,miỹm,ni

vhm,ni
. (3.20b)

Following the instruction given in Section 1, soft estimates of xmk and hm can

be obtained by taking the expectation over the PDFs of the extrinsic beliefs given in
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equations (3.15) and (3.18), respectively, as

x̂n,mk =
∑
xq∈C

xq · plxn,mk|xmk(lxn,mk|xq)pxmk(xq)∑
x′q∈C pl

x
n,mk|xmk(lxn,mk|x′q)pxmk(x′q)

, (3.21a)

ĥk,m =

∫
hm

hm
plhk,m|hm

(lhk,m|hm)phm(hm)∫
h′m

plhk,m|h′m
(lhk,m|h′m)phm(h′m)

, (3.21b)

where the denominators are introduced to normalize the integral of the posterior PDFs

to 1.

Although a closed-form expression of equation (3.21a) is not known for arbitrary

discrete constellations, for Gray-coded QPSK3 it can be written as [147]

x̂n,mk=
1√
2

(
tanh

(√2<(r̂n,mk)

ψrn,mk

)
+ j tanh

(√2=(r̂n,mk)

ψrn,mk

))
, (3.22)

with the corresponding error variance estimate given by

ψxn,mk = 1− |x̂n,mk|2. (3.23)

A closed-form of equation (3.21b) can be obtained as follows. First, define the

effective PDF

P hk,m(hm) , plhk,m|hm(lhk,m|hm)phm(hm)

=
1

πN
×

[
λe−µ

h
k,m

H
(
Σh
k,m+Γm

)−1
µhk,mCNN

(
Γm
(
Σh
k,m + Γm

)−1
,Γm
(
Σh
k,m + Γm

)−1
Σh
k,m

)
|Γm + Σh

k,m|

+
(1− λ)δ(hm)e−µ

h
k,m

H
Σh
k,m
−1
µhk,m

|Σh
k,m|

]
. (3.24)

Then, the normalizing factor in the denominator of equation (3.21b) can be cal-

culated by integrating the latter over the entire N -dimensional complex field, which

yields

Chk,m ,
∫
h′m

P hk,m(h′m) =
λ exp

(
− µhk,m

H
(
Σh
k,m + Γm

)−1
µhk,m

)
πN |Γm + Σh

k,m|
τk,m, (3.25)

with the activity detection factor

τk,m , 1 +
1− λ
λ

exp
(
−
(
πhk,m − ψhk,m

))
, (3.26a)

3For higher-order modulations, by running the algorithm on the equivalent PAM real-valued
model [146], the computational cost required to evaluate equations (3.21a) and its MSE grows with
O

(√
QNMK

)
, where Q denotes the modulation order.
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where

πhk,m , µ
h
k,m

H(
Σh
k,m
−1 −

(
Σh
k,m + Γm

)−1 )
µhk,m (3.26b)

ψhk,m , log
(∣∣Σh

k,m
−1

Γm + IN
∣∣) . (3.26c)

With possession of equations (3.24) and (3.25), whose detailed derivations are given

in Appendix C, the soft replica of hm for a given effective distribution P hk,m(hm) can

be obtained as

ĥk,m =
Γm
(
Σh
k,m + Γm

)−1

τk,m
µhk,m, (3.27)

and for the corresponding error variance, introducing Ψh
k,m , diag

(
ψhk,1m, . . . , ψ

h
k,Nm

)
yields

Ψh
k,m=diag

(∫
hm

hmh
H
m

P hk,m(hm)

Ck,m
− ĥk,mĥH

k,m

)
(3.28)

= (τk,m−1)diag(ĥk,mĥ
H
k,m) +

Σh
k,mΓm(Σh

k,m + Γm)−1

τk,m
.

3.3.3 Algorithm Description

In this subsection we summarize the belief propagation and consensus mechanisms

described above and schematized in Figure 3.4, offering also detailed discussion on

the algorithmic flow. For starters, the schemes are concisely described in the form of

pseudo-codes in Algorithm 3 and Algorithm 4, respectively. For the sake of brevity,

we define two sets of integers (i.e., Kp and Kd), which are respectively given by Kp ,
{1, 2 . . . ,Kp} and Kd , {Kp + 1,Kp + 2 . . . ,K}.

As shown in the pseudo-codes, Algorithm 3 requires five different inputs: the re-

ceived signal matrix Y , the pilot sequence Xp, an initial guess of the channel matrix

Ĥ, an initial guess of the estimation error variance Ψ̂h corresponding to Ĥ, and the

maximum number of iterations tmax; while Algorithm 4 is fed with the beliefs obtained

from Algorithm 3. We point out that rough estimates Ĥ and Ψ̂h can be obtained

via state-of-the-art algorithms proposed for grant-free systems [47,114,115], although

such mechanisms suffer from estimation inaccuracy in case of severely non-orthogonal

pilot sequence (Kp � M). We emphasize again that reducing the overhead is how-

ever desired from a system-level perspective in terms of time resource efficiency. The

initialization process adopted in this section will be discussed in detail later.

In turn, the outputs of Algorithm 4 are the following three quantities: an estimated

symbol matrix X̂, an estimated channel matrix Ĥ, and estimates of active-user indexes

Â. As for X̂ and Ĥ, they are obtained by combining all the beliefs (i.e., consensus),

while Â is determined by following a certain activity detection policy based on the
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Algorithm 3 Bilinear GaBP (Part 1: Belief Consensus)

Inputs: Y , Xp, Ĥ, Ψ̂h, λ, tmax

Outputs: ∀k ∈ Kd, ∀m, ∀n: x̂n,mk, ψ
x
n,mk, ∀k, ∀m: ĥk,m, Ψh

k,m, ∀m: Γm

1: ∀k ∈ Kp, ∀m, ∀n: x̂n,mk(1) =
[
Xp

]
mk

, ψxn,mk(1) = 0

2: ∀k ∈ Kd, ∀m, ∀n: x̂n,mk(1) = 0, ψxn,mk(1) = 1

3: ∀k, ∀m, ∀n: ĥk,nm(1) =
[
Ĥ
]
nm

, ψhk,nm(1) =
[
Ψ̂h
]
nm

4: repeat

5: ∀k,∀m,∀n: ỹm,nk(t)=ynk−
∑M

i 6=mĥk,ni(t)x̂n,ik(t)

6: ∀k,∀m,∀n: vym,nk(t)=
∑M

i 6=m |ĥk,ni(t)|2ψxn,ik(t) +(|x̂n,ik(t)|2+ψxn,ik(t))ψhk,ni(t)+N0

7: ∀k ∈ Kd,∀m,∀n: vxm,nk(t) = vym,nk(t) + ψhk,nm(t)

8: ∀k,∀m,∀n: vhm,nk(t)=vym,nk(t)+γnmψ
x
n,mk(t)

9: ∀k ∈ Kd,∀m,∀n: ψrn,mk(t) =
(∑N

i 6=n
|ĥk,im(t)|2
vxm,ik(t)

)−1

10: ∀k ∈ Kd,∀m,∀n: r̂n,mk(t) = ψrn,mk(t)
∑N

i 6=n
ĥ∗k,im(t)ỹm,ik(t)

vxm,ik(t)

11: ∀k,∀m,∀n: ψqk,nm(t) =
(∑K

i 6=k
|x̂n,mi(t)|2
vhm,ni(t)

)−1

12: ∀k,∀m,∀n: q̂k,nm(t) = ψqk,nm(t)
∑K

i 6=k
x̂∗n,mi(t)ỹm,ni(t)

vhm,ni(t)

13: ∀k,∀m: µhk,m(t) = [q̂k,1m(t), . . . , q̂k,Nm(t)]T

14: ∀k,∀m: Σh
k,m(t) = diag(ψqk,1m(t), . . . , ψqk,Nm(t))

15: ∀k,∀m: πhk,m(t)=µhk,m
H

(t)· (Σh
k,m
−1

(t)−(Σh
k,m(t)+Γm)−1)µhk,m(t)

16: ∀k,∀m: ψhk,m(t)=log(|Σh
k,m
−1

(t)Γm + IN |)
17: ∀k,∀m: τk,m(t)=1+ 1−λ

λ exp(−(πhk,m(t)− ψhk,m(t)))

18: ∀k,∀m: h̄k,m(t+ 1)=
Γm
(
Σh
k,m(t)+Γm

)−1

τk,m(t) µhk,m(t)

19: ∀k,∀m: ĥk,m(t+ 1)=ηh̄k,m(t+1)+(1−η)ĥk,m(t)

20: ∀k,∀m: Ψ̄h
k,m(t+1) = (τk,m(t)−1)diag(h̄k,m(t)h̄H

k,m(t))+
Σh
k,m(t)Γm(Σh

k,m(t)+Γm)−1

τk,m(t)

21: ∀k,∀m: Ψh
k,m(t+1)=ηΨ̄h

k,m(t+1)+(1−η)Ψh
k,m(t)

22: ∀k ∈ Kd,∀m,∀n:

x̄n,mk(t+ 1) =
τ−1
k,m(t)
√

2
·
(
tanh

(√2γ(t)<(r̂n,mk(t))
ψrn,mk(t)

)
+ j ·tanh

(√2γ(t)=(r̂n,mk(t))
ψrn,mk(t)

))
23: ∀k ∈ Kd,∀m,∀n: x̂n,mk(t+1)=ηx̄n,mk(t+1)+(1−η)x̂n,mk(t)

24: ∀k ∈ Kd,∀m,∀n: ψxn,mk(t+ 1) = η · τ−1
k,m(1− |x̄n,mk(t)|2) + (1− η)ψxn,mk(t)

25: until t = tmax
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Algorithm 4 Bilinear GaBP (Part 2: Hard Decision)

Inputs: Y , ∀k, ∀m, ∀n: x̂n,mk, ψ
x
n,mk, ∀k, ∀m: ĥk,m, Ψh

k,m, ∀m: Γm

Outputs: X̂, Ĥ, Â

1: ∀k,∀m,∀n: ỹm,nk = ynk−
∑M

i 6=mĥk,nix̂n,ik

2: ∀k,∀m,∀n: vym,nk =
∑
i 6=m
|ĥk,ni|2ψxn,ik+(|x̂n,ik|2+ ψxn,ik)ψ

h
k,ni+N0

3: ∀k ∈ Kd,∀m,∀n: vxm,nk = vym,nk + ψhk,nm

4: ∀k,∀m,∀n: vhm,nk = vym,nk+γnmψ
x
n,mk

5: ∀k ∈ Kd,∀m: ψrmk =
(∑N

i=1
|ĥk,im|2
vxm,ik

)−1

6: ∀k ∈ Kd,∀m: r̂mk = ψrmk
∑N

i=1

ĥ∗k,imỹm,ik
vxm,ik

7: ∀m,∀n: ψqnm =
(∑K

i=1
|x̂n,mi|2
vhm,ni

)−1

8: ∀m,∀n: q̂nm = ψqnm ·
∑K

i=1

x̂∗n,miỹm,ni

vhm,ni

9: ∀k ∈ Kd,∀m: x̄mk= 1√
2

(
tanh

(√2<(r̂mk)
ψrmk

)
+ j ·tanh

(√2=(r̂mk)
ψrmk

))
10: ∀k ∈ Kd,∀m: x̂mk = argmin

xq∈C
|xq − x̄mk|

11: ∀m: µhm = [q̂1m, . . . , q̂Nm]T

12: ∀m: Σh
m = diag(ψq1m, . . . , ψ

q
Nm)

13: ∀m: πhm = µhm
H

(Σh
m
−1 − (Σh

m + Γm)−1)µhm

14: ∀m: ψhm = log(|Σh
m
−1

Γm + IN |)
15: ∀m: τm = 1 + 1−λ

λ exp(−(πhm − ψhm))

16: ∀m: ĥm =
Γm
(
Σh
m+Γm

)−1

τm
µhm

17: Â = ActivityDetectionPolicy(ĥnm)

estimated channel Ĥ. The activity detection scheme considered in this section will be

described in detail later.

The flow of Algorithms 3 and 4 generally follows the belief exchange steps described

in Section 3.3.2, but in Algorithm 3, two belief manipulation techniques, namely, damp-

ing [146] and scaling [147] were introduced, with the objective of further improving the

estimation accuracy and escaping from local minima. This is due to the fact that when

the Gaussian approximation assumed in equation (3.12) does not sufficiently describe

the actual stochastic behavior of the effective noise, the accuracy of soft-replicas is

degraded by resultant belief outliers caused by the aforementioned approximation gap,

leading to non-negligible estimation performance deterioration. Such approximation

gap results from the increase in uncertainty that follows especially when the length of
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pilot sequences decreases, which is the very aim of this section.

Following [99,103], we have applied damping to line 19, 21, 23 and 24 of Algorithm

3 with the damping factor η ∈ [0, 1], which tends to prevent the algorithm from

converging to local minima by forcing a slow update of soft-replicas, whereas belief

scaling is adopted in line 22 of Algorithm 3 with parameter γ(t), which in turn adjust

the reliability of beliefs (i.e., harnessing harmful outliers). The dynamics is designed

to be a linear function of the number of iterations, that is,

γ(t) =
t

tmax
. (3.29)

Besides the above, as shown above, soft estimates of xmk are obtained without

considering the user activity (i.e., row-sparsity) by imposing user activity detection

upon the channel estimation process as described in equation (3.21b), indicating that

such row-sparsity of X needs to be incorporated so as to avoid inconsistency with

column-sparsity of H.

Ironing out this issue, we leverage the sparsity factor τk,m given in equation (3.26)

in line 22 and 24 of Algorithm 3, which tends to be 1 when active and to be ∞ other-

wise, such that rows of X corresponding to non-active columns of H are suppressed,

maintaining the consistency.

Initialization

Due to the fact that bilinear inference problems are strongly affected by the initial

values of the solution variables, a reasonable initialization method is required so that

the algorithm accurately estimates the channel, the informative data and the activity

pattern simultaneously. However, one may also notice that due to the severe non-

orthogonality of the pilot sequence (i.e., Kp � |A| � M) for overhead reduction,

the accuracy of such an initial guess is not reliable enough. In light of the above,

although several approaches developed for grant-free access such as covariance-based

methods [47, 148] can be considered to produce initial Ĥ and Ψ̂h, we have leveraged

MMV-AMP [115] from a computational complexity perspective4, which can be simply

applied to equation (3.10) by regarding the first Kp columns of Y and the pilot matrix

as the effective received signal matrix and its measurement matrix, respectively.

Activity Detection Policy

Below we describe how to identify active users based on the belief consensus performed

in Algorithm 4. Due to the fact that miss-detections (MDs) and false alarms (FAs)

are in a trade-off relationship as shown in the grant-free literature, such an activity

4Please refer to [112] for complexity analyses between existing grant-free schemes for further details.
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detection policy is affected by system and user requirements, indicating that one needs

to adopt a suitable criterion depending on the situation in practical implementations.

With that in mind, we consider the log likelihood ratio method based on esti-

mated channel quantities, which thanks to uncorrelated Gaussianity of the channel

and residual estimation error, can be written as

LLRm , ln

∏N
n=1 CN

(
0, γnm + ψhnm|ĥnm

)
∏N
n=1 CN

(
0, ψhnm|ĥnm

) , (3.30)

where LLRm is the log likelihood ratio corresponding to the m-th column and
∏N
n=1

is introduced to perform consensus over the receive antenna dimension.

After basic manipulations, the log likelihood criterion can then be simplified to

LLRm = pactive(m)− pinactive(m), (3.31)

where

pactive(m) ,
N∑
n=1

−|ĥnm|2

γnm+ψhnm
+ ln

( 1

π(γnm + ψhnm)

)
(3.32a)

pinactive(m) ,
N∑
n=1

−|ĥnm|2

ψhnm
+ ln

( 1

πψhnm

)
. (3.32b)

With basis on the above, the set of active users is then determined as follows

A =
{
m
∣∣ pactive(m) > pinactive(m)

}
. (3.33)

3.3.4 Performance Assessment

Below we evaluate via software simulation the proposed method in terms of BER,

effective throughput, NMSE, and AUD performance.

Simulation Setup

Throughout this performance assessment section, we consider the following simulation

setup unless otherwise specified. The number of receive antennas is set to N = 100,

which are distributed over a square of side of 1000 [m] in a square mesh fashion, where

M = 100 potential users are accommodated in each subcarrier. It is assumed that 50%

of the M users become active during each OFDM frame, i.e., |A| = M/2 = 50, while K

and Kp are considered to be K ∈ {140, 280} and Kp = 14 depending on the employed

subcarrier spacing5. It is further worth-noting that since we accommodate M = 100

5A scenario with K = 140 and K = 280 corresponds to the subcarrier spacing of 15 [kHz] and 30
[kHz], respectively. As shown in Figure 3.2, Kp = 14 indicates that only one OFDM slot is utilized as
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users with overhead length Kp = 14, a significant amount of overhead reduction can

be achieved. Although one might concern about performance degradation due to the

resultant severe non-orthogonality, we dispel such concerns throughout this section by

demonstrating that the bilinear inference method employed here is able to handle the

non-orthogonality.

The covariance matrix employed in the multivariate Bernoulli-Gaussian model of

equation (3.9) is constructed following the 3GPP urban microcell model [69], i.e.,

Γm = diag ([γ1m, . . . , γNm]), with each diagonal element obeying the relation γnm ,

10−
βnm

10 and βnm [dB] = 30.5 + 36.7 log10 (dnm) + N
(
0, 42

)
where dnm denotes the

distance between the n-th AP and m-th user, given by dnm =
√

(ρAP − ρU )2 + ρ2
R,

with ρAP = 10 [m] and ρU = 1.65 [m] corresponding to the heights of the APs and

users, respectively, while ρR is a random quantity.

The transmit power range at each uplink user is determined based on the experi-

mental study presented in [149], where the transmit power of each uplink user is limited

by 16 [dBm]. Furthermore, Gray-coded QPSK modulation is assumed to be employed

at each user, whereas the noise floor N0 at each AP is assumed to be modeled as

σ2
u = 10 log10 (1000κT ) + NF + 10 log10 (W ) [dBm], (3.34)

where κ is the Boltzmann’s constant, T = 293.15 denotes the physical temperature at

each AP in kelvins, the noise figure NF is assumed to be 5 [dB] and W expresses the

subcarrier bandwidth.

The pilot structure is designed via quadratic quadratic CSIDCO (QCSIDCO) in

order to mitigate pilot contamination effects as much as possible even in case of severely

non-orthogonal scenarios such as one considered in this section. Regarding the effective

throughput performance, we adopt the definition proposed in [150, Def. 1], which is

given by

Reff , (1− Pe) ·Kd · b, (3.35)

where Pe denotes the block (packet) error rate and b is the number of bits per symbol.

Finally, the maximum number of iterations in Algorithm 3 is set to tmax = 32 and

the damping factor η is 0.5, while the belief scaling factor γ(t) is defined in equation

(3.29).

Computational Complexity

Before proceeding to the performance evaluation via software simulations, we describe

the computational complexity per iteration of the proposed JACDE algorithm, com-

pilot and the rest as data transmission, indicating that this situation imposes the most severe scenario
as the pilot length is minimum.
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paring it against those of different reference methods considered.

As can be seen from Algorithms 3 and 4, all the calculations required by the pro-

posed method can be carried out in an element-wise manner. Taking into account

the fact that the matrices Σh
k,m and Γm are both diagonal, it follows that Algo-

rithm 3 has complexity of order O(NMK) both for multiplication/division and for

addition/subtraction operators, resulting also in the complexity order per iteration of

O(NMK) in total, including all steps to jointly perform CE, AUD and MUD.

For the sake of comparison, we consider the MMV-AMP algorithm [107–110] as

state-of-the-art for JACE, and either the GaBP algorithm or the conventional ZF

method as state-of-the-art for MUD. The complexity order per iteration for JACE

via MMV-AMP is of O(NMKp), whereas the complexity of O(NKd|ÂMMV|) and

O(|ÂMMV|3 + |ÂMMV|2Kd) is imposed for MUD by the GaBP algorithm and the ZF

method [147], respectively, where |ÂMMV| ≤ M denotes the number of active users

estimated by MMV-AMP.

Assuming that MMV-AMP is capable of estimating active patterns with reason-

able accuracy in the considered setup (i.e., |ÂMMV| ≈ M/2), the complexity of the

MMV-AMP algorithm followed by the GaBP method can be approximated written as

O(NM(Kp+Kd/2)). Therefore, it can be concluded that the proposed JACDE method

is approximately in the same order of complexity of state-of-the-art alternatives.

Multi-user Detection

The MUD performance of the proposed algorithm is studied in terms of uncoded BER

as a function of transmit power. In order to take into account MD effects on data

detection, we count not only bits received in error but also the number of lost bits due

to missing user activity, i.e.,

BER =
P 1
e + P 2

e

Total number of bits
, (3.36)

where P 1
e denotes the number of errors due to failure of symbol detection and P 2

e is

the number of bits that have been lost due to failure of user detection.

Since there are no existing cell-free scheme with grant-free access which do not

rely on spreading data sequences as described in equation (3.10), we consider the

MMV-AMP algorithm as a state-of-the-art method to carry out JACE with basis of

non-orthogonal pilot sequences Xp, remarking that this receiver is widely employed

in related literature [107–110]. For the same reason (of lack of a direct equivalent

competitor), we also compare the performance of our method against an idealized

system in which perfect CE and AUD is assumed, with signal detection performed by

the GaBP algorithm.
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(a) 15 kHz subcarrier spacing.

(b) 30 kHz subcarrier spacing.

Figure 3.5: BER comparisons as a function of transmit power.
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Our assessment starts with Figure 3.5, where the BER performance of the proposed

method is compared not only to the state-of-the-art but also to the ideal performance,

for different subcarrier spacing scenarios (i.e., K ∈ {140, 280}). The state-of-the-art

methods compared are the linear ZF MIMO detector and the GaBP message passing

MIMO detector, followed by MMV-AMP-based CE with the aid of the non-orthogonal

pilot sequence. Results obtained from the GaBP MIMO detector with perfect CE and

AUD provide lower bounds on the evaluated methods.

As can be seen from both figures, state-of-the-art methods suffer from high error

floors, which stem from the poor CE and AUD performances by MMV-AMP, caused

by the severely overloaded condition. In fact the aspect ratio (number of users over

number of pilot symbols) of the pilot matrix is M
Kp

= 100
14 ≈ 7.1428, indicating a highly

non-orthogonal condition. Although only m = 50 users out of M = 100 are assumed

to be active in each coherent frame, the overloading ratio is still sufficiently high to

hinder CE and AUD.

In contrast, the proposed method enjoys a water-falling curve in terms of BER

for the both situations, which can be achieved by taking advantage of the pseudo-

orthogonality of the data structure. This advantage can be confirmed from the fact

that increasing the total symbol length from K = 140 to K = 280 while fixing the

pilot length to be Kp = 14 can indeed enhance the detection performance as shown in

Figure 3.5a and 3.5b. One may readily notice from the above that the corresponding

CE performance can be also improved due to the same logic, which is offered below.

Effective Throughput

In light of the definition given in equation (3.35), we next investigate the effective

throughput performance per each OFDM frame of the proposed method.

Simulation results showing the effective throughput achieved with the proposed

scheme and compared alternatives are offered in Figure 3.6 for different subcarrier

spacing setups. Note that the unit of the vertical axis is set to kilobits per frame for

the sake of readability. Furthermore, we also implicitly measure the packet (block)

error performance of the methods as shown in equation (3.35), which is often used for

practical performance assessment. Finally, in addition to the three counterparts con-

sidered in the previous section, we also offer in both figures the system-level achievable

maximum data rate as reference, which is determined by

Maximum Capacity , Kd · |A| · b [bits/frame], (3.37)

where b denotes the number of bits per symbol.

As expected from the discussion of the previous section, it is found that the two

state-of-the-art alternatives are incapable of successfully delivering bits transmitted by
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(a) 15 kHz subcarrier spacing.

(b) 30 kHz subcarrier spacing.

Figure 3.6: Effective throughput comparisons as a function of transmit power.

86



3.3. CF-MIMO

the active users even with sufficiently high transmit power.

In contrast, the proposed method dynamically follows the same improvement in

performance with transmit power as the idealized receiver, approaching the achievable

capacity as the transmit power increases. It is furthermore seen that the throughput

gap from the idealized scheme narrows as the subcarrier spacing increases, which is

again due to the pseudo-orthogonality of the data sequence.

Channel Estimation

In addition to the above, the CE performance of the proposed method is assessed in

this section as a function of transmit power for different data lengths, so that one

may observe that the performance improvement described above is, at least in part,

induced by the resultant CE. To this end, the NMSE performance of the proposed

method for K = 140 and K = 280 is offered in Figure 3.7a and 3.7b, respectively,

where the NMSE is defined as

NMSE ,
‖H − Ĥ‖2F
‖H‖2F

, (3.38)

assuming a fixed pilot length Kp = 14.

As for methods to compare, we have adopted not only MMV-AMP but also mini-

mum norm solution (MNS) that is known to be a method to seek a closed-form unique

CE solution in case of a non-orthogonal pilot sequence [103], while employing the

MMSE performance with perfect knowledge of AUD and MUD at the receiver as ref-

erence. Please note that since the non-Bayesian approach, which takes advantage of

the sample covariance of the received signals in order to detect user activity patterns,

aims at only AUD, the resultant performance in terms of CE can be lower-bounded

by MNS with perfect AUD.

With that in mind, it can be observed from Figure 3.7a and 3.7b that the proposed

method can indeed improve the CE performance and approach the unachievable MMSE

performance with perfect AUD and MUD, maintaining a similar gradient with that of

the MMSE, whereas MMV-AMP and MNS suffer from a relatively high error floor due

to the non-orthogonality of the pilot, although MMV-AMP appears to offer moderate

performance in comparison with MNS.

Thanks to the pseudo-orthogonality of the data structure, the proposed method

with 30 kHz subcarrier spacing again outperforms its own NMSE with 15 kHz sub-

carrier spacing. Furthermore, it can be mentioned that due to the sufficiently high

CE accuracy of the proposed method (i.e., NMSE ∈ [10−3, 10−4]), the considered

non-coherent transmission architecture is comparable to the CE performance of the

conventional grant-based MIMO systems (please refer to, for instance, [151]) to verify

this claim.
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(a) 15 kHz subcarrier spacing.

(b) 30 kHz subcarrier spacing.

Figure 3.7: NMSE comparisons as a function of transmit power.
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(a) 15 kHz subcarrier spacing.

(b) 30 kHz subcarrier spacing.

Figure 3.8: MD comparisons as a function of transmit power.
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(a) MSE error of X̂.

(b) MSE error of Ĥ.

Figure 3.9: MSE performance prediction via the state evolution of Algorithm 3 in comparison with
the actual numerical evaluation as a function of transmit power.90
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Active User Detection

In this section, we evaluate the AUD performance of the proposed BiGaBP method.

Although the AUD performance may be examined in terms of either FA, MD, or both,

FA can be removed at higher layers by leveraging cyclic redundancy check codes [108],

which are widely employed in practice. In light of the above, we adopt the occurrence

of MDs as an AUD performance index.

In Figure 3.8, the MD probabilities of the proposed BiGaBP and MMV-AMP

algorithms are illustrated for different symbol lengths K as a function of transmit

power at each uplink user, while assuming Kp = 14 for both scenarios. It is perceived

from Figure 3.8 that the proposed method can exponentially reduce the occurrence

of MDs as transmit power increases, the reason of which can be explained from the

discussions given in the preceding sections as follows.

As observed in Figures 3.5-3.7, the proposed BiGaBP algorithm starts to gradually

recover the data and the channel from the observations Y as transmit power increases,

which stems from the fact that the residual noise variances given in equation (3.23)

and (3.28) are also accordingly reduced. Consequently, the resultant LLR given in

(3.30) intends to be positive when |ĥnm| is not sufficiently close to 0 and negative

when
∏N
n=1 CN

(
0, γnm + ψhnm|ĥnm

)
≈ 0 in comparison with

∏N
n=1 CN

(
0, ψhnm|ĥnm

)
for a small ψhnm. Furthermore, the reason why the MD performance of MMV-AMP

deteriorates in high transmit power regions can be explained as follows.

Besides the insufficient observations due to a non-orthogonal pilot structure, MMV-

AMP suffers from the fact that in such a high SNR region, its estimation error noise

variance becomes indistinguishable from the AWGN noise level at the receiver, leading

to a tendency to regard inactive users as active and vice versa. In contrast, the proposed

method mitigates this bottleneck by taking advantage of DoFs in the time domain.

MSE Performance Prediction and Its Accuracy

Finally, we evaluate the accuracy of MSE tracking via the state evolution of the pro-

posed BiGaBP algorithm6, where the predicted MSE performances of the data and

channel are obtained by equation (3.23) and (3.28), respectively. In particular, the

predicted MSE for X̂ and Ĥ is compared with the corresponding simulated counter-

part in Figures 3.9a and 3.9b, respectively, with K = 280 and Kp = 14 and where the

solid line and the dashed line with markers correspond to the simulated and predicted

performance, respectively.

It can be observed from the figures that the state evolution can track the error

6Note that since the GaBP algorithm is a generalization of AMP, the resultant error level can be
predicted in a similar fashion to the state evolution in AMP. For the sake of consistency, we call the
corresponding error predicting quantities as BiGaBP’s state evolution for the MSE performances.

91



3.4. XL-MIMO

performance of the proposed BiGaBP for both data and channel estimates, since the

predicted MSEs follow approximately the same trajectory of its simulated counterpart.

As a final remark, it has been observed throughout the experiments that the pro-

posed algorithm shows its operating-stability; thus, no unstable numerical calculation

such as negative variance calculations and inversion of a singular matrix, which is often

the case with algorithms based on expectation propagation, is needed.

3.4 XL-MIMO

3.4.1 System Model

In this section, we in turn consider another type of recently-emerging distributed

MIMO architectures (i.e., XL-MIMO) with the aim of reducing the overhead while

addressing spatial non-stationarity, which consists of S sub-arrays, each equipped with

Ns antenna elements, such that the total number of antenna array elements is given

by N =
∑S

s=1Ns, and let G ∈ CN×M be the effective channel matrix between the

XL-MIMO array and M single-antenna users, which jointly depicts user activities,

sub-array VRs, and the fading gains. Then, the corresponding system model as shown

in Figure 3.10 is given by

Y = GX +W ∈ CN×L, (3.39)

where X ∈ CM×L is a pilot matrix collecting the L signals transmitted by each user,

while W ∈ CN×L denotes zero-mean unit-variance i.i.d. AWGN such that vec(W ) ∼
CN (0, σ2I).

In equation (3.39), it is assumed that only a small fraction of the M users is active,

while the rest remains silent during the time interval of L transmissions. Letting K be

a random variable that denotes the number of active users at a given time interval, the

average user-activity probability can be expressed as λ , E[K/M ]. Furthermore, owing

to non-stationarities observed in the XL-MIMO setting [118], the channel matrix G

possesses block-sparsity that captures both user activity and the sub-arrays in their

VRs (i.e. active sub-arrays), such that the m-th column of G, relative to the m-th

user, can be modeled as

gm = am · g̃m � pm, (3.40)

where � denotes the Hadamard (element-wise) product, am ∈ {0, 1} is the user activity

indicator, g̃m is the channel response vector, and pm , [pT
1m, . . . ,p

T
Sm]T ∈ CN×1

denotes a sub-array activity indicator defined by
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Figure 3.10: Illustration of the uplink of a multiuser XL-MIMO system with spatial non-stationarity,
whereby each user independently activates different subarrays of the XL-MIMO array depending prop-
agation conditions. ©2022 IEEE

psm ,

1Ns×1 if the s-th sub-array is in the VR of the m-th user,

0Ns×1 if the s-th sub-array is outside the VR of the m-th user.
(3.41)

Assuming that g̃m is Gaussian, the distribution of gm can be written as

gm ∼ pgm(gm) ,

captures user activity︷ ︸︸ ︷
(1− λ)δ(gm) +λ

jointing all sub-arrays︷ ︸︸ ︷∏S
s=1 f(gΦ(s)m|φsm,0,Γsm)︸ ︷︷ ︸

captures fading and sub-array activity

, (3.42)

where δ(·) denotes the Dirac delta function, Γsm is the covariance matrix of the m-

th user’s channel to the s-th sub-array, φsm depicts the mean activity of the s-th

sub-array, with respect to the m-th user and

f(z|φ,µ,Σ) , (1− φ)δ(z) + φ · CN (µ,Σ), (3.43)

where φ is an active probability, µ denotes a certain mean, and Σ is a given covariance

matrix.
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3.4.2 Proposed Non-Stationarity Aware Detection Method

In this subsection, we propose a novel bilinear message passing algorithm for joint activ-

ity and channel estimation in XL-MIMO systems subjected to spatial non-stationarity.

To this end, a decomposition of the system model given in equation (3.39) is carried

out, followed by detailed derivations of message passing rules.

We remark that for the sake of generality, throughout the section it is assumed

that the elements of the channel vectors g̃m are independently but not identically

distributed, which is equivalent to saying that the covariance matrices Γsm are all

diagonal, but have different norms. This is motivated by the fact that the VRs of

each user at the XL-MIMO array in general result from the impinging of signals from

different propagation paths [126], as illustrated in Figure 3.10.

Reformulation

For the sake of future convenience, let us first reformulate equation (3.42) as

Y = HAX +W ∈ CN×L, (3.44)

with G , HA ∈ CN×M , where H ∈ CN×M is the block fading channel matrix and

the M ×M diagonal matrix A, with diag (A) = [a1, a2, . . . , aM ] ∈ {0, 1}M , captures

user activity indicators.

For notation simplicity, we hereafter introduce the quantity ν(s) ,
∑s

i=1Ni, with

ν(0) , 0, to denote the cumulative collection of sub-array antenna indices at the s-th

sub-array. In order to gain a closer insight into the effect of non-stationarity onto the

column vectors of the channel matrix H, consider the anatomized m-th column of H,

which is given by

hm = [

1st sub-array︷ ︸︸ ︷
p1mh̄

T
Φ(1)m,

2nd sub-array︷ ︸︸ ︷
p2mh̄

T
Φ(2)m , . . . ,

S-th sub-array︷ ︸︸ ︷
pSmh̄

T
Φ(S)m ]T, (3.45)

where pms ∈ {0, 1}, with s ∈ {1, 2, . . . , S}, denotes the sub-array activity indicator,

the vectors h̄Φ(s)m ∼ CN (0,Γsm), and Φ(s) , {ν(s− 1) + 1, ν(s− 1) + 2, . . . , ν(s)} is

a set of antenna indices corresponding to the s-th sub-array.

More conveniently, the m-th column and s-th sub-array of the channel matrix can

be modeled as a Bernoulli-Gaussian random variable, that is,

hΦ(s)m ∼ phΦ(s)m
(hΦ(s)m) , (1− φsm)δ(hΦ(s)m) + φsm · CN (0,Γsm), (3.46)

where φsm denotes the mean of pms.

From the above, one can readily notice that the problem of jointly estimating users

and sub-arrays activity indicators, as well as channel coefficients, belongs to the class of
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bilinear inference problems. More precisely, given the received signal matrix Y and the

predetermined reference signal matrix X, our goal is to jointly estimate am, pms and

hΦ(s)m for all m ∈ {1, 2, . . . ,M} and s ∈ {1, 2, . . . , S}, which are linearly multiplied

by one another. In the next subsections we proceed to derive message passing rules

designed to tackle this challenging problem, proposing a new joint activity and channel

estimation for XL-MIMO subject to non-stationarity.

Factor Node

Focusing on the received signal element yn` at the n-th row and `-th column of Y , the

received signal after SIC using tentative estimates can be written as

ỹm,n` = yn` −

SIC︷ ︸︸ ︷
M∑
i 6=m

ĥ`,niân`,ixi` = hnmamxm` +

Residual interference plus noise︷ ︸︸ ︷
M∑
i 6=m

(hniai − ĥ`,niân`,i)xi` + wn`, (3.47)

where the soft estimates ĥ`,nm and ân`,i are generated in variable nodes at the previous

iteration, while wn` denotes the noise element at the n-th row and `-th column of the

AWGN matrix W .

Assuming that the residual interference plus noise component of equation (3.47)

can be approximated as a complex Gaussian random variable in conformity to the

central limit theorem, the conditional PDF of equation (3.47) for given hnm can be

written as

pỹm,n`|hnm(ỹm,n`|hnm) ∝ exp

(
−
|ỹm,n` − hnmân`,mxm`|2

vhm,n`

)
, (3.48)

where the error variance is given by

vhm,n` = E

[∣∣∣(am − ân`,m)hnmxm` +
M∑
i 6=m

(hniai − ĥ`,niân`,i)xi` + wn`

∣∣∣2] (3.49)

= ψan`,mγnm|xm`|2 +
M∑
i 6=m

(
|ĥ`,ni|2ψan`,i + (|ân`,i|2 + ψan`,i)ψ

h
`,ni

)
|xi`|2 + σ2

︸ ︷︷ ︸
,vym,n`

,

with γnm denoting the variance of the n-th row and m-th column of H, and where we

implicitly defined the residual error variance vym,n` for future convenience.

Similarly, the conditional PDF of ỹm,n` given am can be approximated as

pỹm,n`|am(ỹm,n`|am) ∝ exp
(
−
|ỹm,n` − ĥ`,nmamxm`|2

vam,n`

)
, (3.50)

95



3.4. XL-MIMO

with variance given by

vam,n` = E

[∣∣∣(hnm − ĥ`,nm)amxm` +
M∑
i 6=m

(hniai − ĥ`,niân`,i)xi` + wn`

∣∣∣2]
= ψh`,nmλ|xm`|2 + vym,n`, (3.51)

where we utilized the fact that E
[
a2
m

]
= E[am] = λ, since am ∈ {0, 1}.

Variable Node

Taking advantage of the SIC mechanism and its resultant statistics shown above, the

beliefs corresponding to the s-th sub-array combined over all available time resources

except the `-th time index, yields the PDF of the extrinsic belief ξh`,Φ(s)m given hΦ(s)m,

which is given by

pξ`,Φ(s)m|hΦ(s)m
(ξ`,Φ(s)m|hΦ(s)m)

=

ν(s)∏
n=ν(s−1)+1

L∏
i 6=`

pỹm,ni|hnm(ỹm,ni|hnm) (3.52)

∝
ν(s)∏

n=ν(s−1)+1

exp

(
−
|hnm − µh`,nm|2

θh`,nm

)
∝ CN (µh`,Φ(s)m,Θ

h
`,Φ(s)m),

with

µh`,Φ(s)m , [µh`,(ν(s−1)+1)m, . . . , µ
h
`,ν(s)m]T ∈ CNs×1, (3.53a)

Θh
`,Φ(s)m , diag

(
[θh`,(ν(s−1)+1)m, . . . , θ

h
`,ν(s)m]

)
∈ RNs×Ns , (3.53b)

where

θh`,nm ,

 L∑
i 6=`

|âni,mxmi|2

vhm,ni

−1

, (3.54a)

µh`,nm , θ
h
`,nm

L∑
i 6=`

ỹm,niâ
∗
ni,mx

∗
mi

vhm,ni
. (3.54b)

In turn, the PDF of the extrinsic belief ξan`,m given am can be similarly obtained as

pξn`,m|am(ξn`,m|am) =

N∏
j 6=n

L∏
i 6=`

pỹm,ji|am(ỹm,ji|am)

∝ exp

(
−
|am − µan`,m|2

θan`,m

)
∝ CN (µan`,m, θ

a
n`,m), (3.55)
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where

θan`,m ,
(∑N

j 6=n
∑L

i 6=`
|ĥi,jmxmi|2

vam,ji

)−1

, (3.56a)

µan`,m , θ
a
n`,m

∑N
j 6=n

∑L
i 6=`

ỹm,jiĥ
∗
i,jmx

∗
mi

vam,ji
. (3.56b)

Combining the PDF in equation (3.52) with the prior channel PDF in equation

(3.46) yields the posterior distribution of the channel. Therefore, taking the expec-

tation of hΦ(s)m over the latter yields the corresponding soft estimate ĥ`,Φ(s)m at the

`-th variable node, which is given by

ĥ`,Φ(s)m =

∫
hΦ(s)m

hΦ(s)m

pξ`,Φ(s)m|hΦ(s)m
(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m

(hΦ(s)m)∫
h′

Φ(s)m

pξ`,Φ(s)m|h′Φ(s)m
(ξ`,Φ(s)m|h′Φ(s)m)ph′

Φ(s)m
(h′Φ(s)m)

, (3.57)

where the denominator in the integrand is introduced for normalization purposes.

The error covariance associated with ĥ`,Φ(s)m is given by

Ψh
`,Φ(s)m , diag

(∫
hΦ(s)m

hΦ(s)mh
H
Φ(s)m

pξ`,Φ(s)m|hΦ(s)m
(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m

(hΦ(s)m)∫
h′

Φ(s)m

pξ`,Φ(s)m|h′Φ(s)m
(ξ`,Φ(s)m|h′Φ(s)m)ph′

Φ(s)m
(h′Φ(s)m)

)

− diag
(
ĥ`,Φ(s)mĥ

H
`,Φ(s)m

)
, (3.58)

such that Ψh
`,Φ(s)m = diag(ψh`,(ν(s−1)+1)m, ψ

h
`,(ν(s−1)+2)m, . . . , ψ

h
`,ν(s)m).

In turn, the soft replica ân`,m of the user activity indicator can be similarly obtained

as

ân`,m =
∑

α∈{0,1}

α ·
pξn`,m|am(ξn`,m|α)pam(α)∑

α′∈{0,1} pξn`,m|am(ξn`,m|α′)pam(α′)
, (3.59)

with pam(·) denoting the Bernoulli probability mass function (PMF) with intensity λ,

which is accompanied by its MSE given by

ψan`,m =
∑

α∈{0,1}

α2 ·
pξn`,m|am(ξn`,m|α)pam(α)∑

α′∈{0,1} pξn`,m|am(ξn`,m|α′)pam(α′)
− â2

n`,m. (3.60)

In order to compute equations (3.57) - (3.60) above, it is essential to analyze the

effective distributions, namely,

pξ`,Φ(s)m|hΦ(s)m
(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m

(hΦ(s)m) and pξn`,m|am(ξn`,m|α)pam(α) (3.61)

and such that the resultant calculations become tractable. To that end, plugging

equations (3.46) and (3.52) into the effective distribution of hΦ(s)m yields
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pξ`,Φ(s)m|hΦ(s)m
(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m

(hΦ(s)m)

=
(
(1− φsm)δ(hΦ(s)m) + φsm · CN (0,Γsm)

)
× CN (µh`,Φ(s)m,Θ

h
`,Φ(s)m)

= (1− φsm)δ(hΦ(s)m)
exp

(
−µhH

`,Φ(s)mΘh−1
`,Φ(s)mµ

h
`,Φ(s)m

)
πNs |Θh

`,Φ(s)m|

+ φsm
exp

(
− µhH

`,Φ(s)m(Γsm + Θh
`,Φ(s)m)−1µh`,Φ(s)m

)
πNs |Γsm + Θh

`,Φ(s)m|

× CN
(
Γsm(Γsm + Θh

`,Φ(s)m)−1µh`,Φ(s)m,Γsm(Γsm + Θh
`,Φ(s)m)−1Θh

`,Φ(s)m

)
︸ ︷︷ ︸

,f(hΦ(s)m|µh`,Φ(s)m
,Θh

`,Φ(s)m
,Γsm)

. (3.62)

Thus, the corresponding normalization factor can be written as∫
hΦ(s)m

pξ`,Φ(s)m|hΦ(s)m
(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m

(hΦ(s)m)

=

∫
hΦ(s)m

(1− φsm)δ(hΦ(s)m)
exp

(
−µhH

`,Φ(s)mΘh−1
`,Φ(s)mµ

h
`,Φ(s)m

)
πNs |Θh

`,Φ(s)m|

+ φsm
exp
(
−µhH

`,Φ(s)m(Γsm+Θh
`,Φ(s)m

)−1µh
`,Φ(s)m

)
πNs |Γsm+Θh

`,Φ(s)m
|

=1︷ ︸︸ ︷∫
hΦ(s)m

f(hΦ(s)m|µh`,Φ(s)m,Θ
h
`,Φ(s)m,Γsm)

= φsm
exp

(
− µhH

`,Φ(s)m(Γsm + Θh
`,Φ(s)m)−1µh`,Φ(s)m

)
πNs |Γsm + Θh

`,Φ(s)m|
τ`,ms, (3.63)

where the activity detection factor τ`,ms is given by

τ`,ms ,1+
1−φsm
φsm

exp

(
−µhH

`,Φ(s)m

(
Θh−1
`,Φ(s)m−(Γsm+Θh

`,Φ(s)m)−1
)
µh`,Φ(s)m (3.64)

+ log
(
|Θh−1

`,Φ(s)mΓsm+INs |
))
.

Taking advantage of equations (3.62) and (3.63), the soft replica of hΦ(s)m at the

`-th node can be re-written as

h̄`,Φ(s)m =
Γsm(Γsm + Θh

`,Φ(s)m)−1

τ`,ms
µh`,Φ(s)m, (3.65)

while its MSE Ψ̄h
`,Φ(s)m , diag

(
ψh`,(ν(s−1)+1)m, . . . , ψ

h
`,ν(s)m

)
can be expressed as

Ψ̄h
`,Φ(s)m = (τ`,ms − 1)diag

(
ĥ`,Φ(s)mĥ

H
`,Φ(s)m

)
+

Θh
`,Φ(s)mΓsm(Γsm + Θh

`,Φ(s)m)−1

τ`,ms
.

(3.66)
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In turn, the effective distribution pξn`,m|am(ξn`,m|α)pam(α) can be simplified to

pξn`,m|am(ξn`,m|α)pam(α) = exp

(
−
|α− µan`,m|2

θan`,m

)
×

Bernoulli PDF with intensity λ︷ ︸︸ ︷
(λα+ (1− λ)(1− α)) , (3.67)

where α ∈ {0, 1} and the associated normalization factor can then be written as

∑
α∈{0,1}

pξn`,m|am(ξn`,m|α)pam(α) = λ exp

(
−
|1− µan`,m|2

θan`,m

)
+(1− λ) exp

(
−
|µan`,m|2

θan`,m

)
.

(3.68)

Thus, the soft replica of αm can be obtained as

ân`,m =
∑

α∈{0,1}

α ·
pξn`,m|am(ξn`,m|α)pam(α)∑

α′∈{0,1} pξn`,m|am(ξn`,m|α′)pam(α′)
(3.69)

=
1

1 + 1−λ
λ exp

(
−
( |µan`,m|2

θan`,m
− |1−µ

a
n`,m|2

θan`,m

))
︸ ︷︷ ︸

Weighted Sigmoid Function

,

and its error variance can be written as

ψan`,m =
∑

α∈{0,1}

α2 ·
pξn`,m|am(ξn`,m|α)pam(α)∑

α′∈{0,1} pξn`,m|am(ξn`,m|α′)pam(α′)
− â2

n`,m

=

1−λ
λ exp

(
−
(
|µan`,m|

2

θan`,m
− |1−µ

a
n`,m|

2

θan`,m

))
(

1 + 1−λ
λ exp

(
−
( |µan`,m|2

θan`,m
− |1−µ

a
n`,m|2

θan`,m

)))2 , (3.70)

from which it is readily found7 that 0 ≤ ψan`,m ≤ 1/4.

Learning Array Activity via Expectation Maximization

In this subsection, we consider an auto-parameterization approach aided by expectation-

maximization to learn sub-array activity indicators. Sub-array activity indicators φsm

are dependent upon instantaneous propagation environments, which may be difficult to

obtain in practice and may not be compensated by the long-term statistical knowledge.

7The error variance can be upper-bounded by 1/4 under the Gaussian approximation.
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We therefore propose to find an estimate of φsm via

φ̂sm = argmax
φsm

L∑
`=1

∫
hΦ(s)m

log(phΦ(s)m
(hΦ(s)m;φsm))pξ`,Φ(s)m|hΦ(s)m

(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m
(hΦ(s)m)∫

h′
Φ(s)m

pξ`,Φ(s)m|h
′
Φ(s)m

(ξ`,Φ(s)m|h′Φ(s)m
)ph′

Φ(s)m
(h′

Φ(s)m
)

,

(3.71)

with the maximization constrained to satisfying the first-order necessary condition

L∑
`=1

∫
hΦ(s)m

d log(phΦ(s)m
(hΦ(s)m;φsm))

dφsm

pξ`,Φ(s)m|hΦ(s)m
(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m

(hΦ(s)m)∫
h′

Φ(s)m
pξ`,Φ(s)m|h

′
Φ(s)m

(ξ`,Φ(s)m|h′Φ(s)m
)ph′

Φ(s)m
(h′

Φ(s)m
)

= 0,

(3.72)

where the derivative can be written as

d log(phΦ(s)m
(hΦ(s)m;φsm))

dφsm
=

 1
φsm

if hΦ(s)m 6= 0,

−1
1−φsm if hΦ(s)m = 0.

(3.73)

Treating the neighborhood around hΦ(s)m = 0 and the rest separately, equation

(3.72) boils down to the following equality condition

L∑
`=1

1

φsmτ`,ms
=

L∑
`=1

1

1− φsm
τ`,ms − 1

τ`,ms
, (3.74)

which readily yields

φ̂ms =
1

L

L∑
`=1

1

τ`,ms
. (3.75)

Assuming uniformity among sub-array activity indicators (i.e., φ = φsm for all

m and s), the above derivation can be further generalized to combine all available

information over the spatial and user domains, namely,

φ̂ = argmax
φ

L∑
`=1

M∑
m=1

S∑
s=1

∫
hΦ(s)m

log(phΦ(s)m
(hΦ(s)m;φ))pξ`,Φ(s)m|hΦ(s)m

(ξ`,Φ(s)m|hΦ(s)m)phΦ(s)m
(hΦ(s)m)∫

h′
Φ(s)m

pξ`,Φ(s)m|h
′
Φ(s)m

(ξ`,Φ(s)m|h′Φ(s)m
)ph′

Φ(s)m
(h′

Φ(s)m
)

,

(3.76)
which finally yields

φ̂ =
1

MSL

L∑
`=1

M∑
m=1

S∑
s=1

1

τ`,ms
. (3.77)

Activity Detection Policy

Finally, in this subsection we discuss the last step, corresponding to the refinement of

the user activity estimates according to a pre-defined user activity policy. Different

approaches to perform this step can be considered, such as those proposed in [47,108,

114]. Here, we adopt the new log-likelihood ratio (LLR)-based approach taking both

Ĥ and Â into consideration.
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To that end, first recognize that the user activity pattern captured by the binary

quantities on the diagonal elements of Â can equivalently be expressed as column-

sparsity of Ĥ, which implies that an activity detection policy must jointly consider

Ĥ and Â for AUD. Denoting the estimated effective channel matrix Ĝ , ĤÂ, the

element-wise LLR can be written as

Λnm = log
CN (0, γnm + ψhnm|ĝnm)

CN (0, ψhnm|ĝnm)
. (3.78)

From the above, the user activity can be detected by combining the LLRs Λnm for

all the receive antenna dimensions N . However, such a detection policy ignores the

presence of the block-wise sparsity due to spatial non-stationarity, leading to detection

performance degradation. To address this issue, we consider the following sub-array

activity aware AUD policy.

âm =

1 if max
s

(
∑

n∈Φ(s) Λnm) ≥ 0,

0 otherwise.
(3.79)

Algorithm Description and Discussion

In this subsection we offer several remarks on the message passing and consensus

mechanisms for JACE proposed above, which for convenience is concisely summarized

in Algorithm 5. Referring to Algorithm 5, first notice that the procedure requires

two initialization quantities, namely, initial values of the channel matrix Ĥ and error

covariance matrix Ψ̂h, which can be obtained via a number of state-of-the art methods,

such as the AUD-aware approximate BP algorithm proposed in [115], adopted here due

to its complexity-performance tradeoff advantages. Besides that, the proposed JACE

algorithm takes as inputs the received signal matrix Y and the pilot matrix X; to

which it outputs estimates of the channel matrix Ĥ and of the user activity matrix Â.

The algorithm has two essential stages, the iterative stage described by lines 3 to

19 within which the beliefs are propagated and exchanged between factor and variable

nodes, and the consensus stage in line 20 where the output quantities are finally de-

termined based on the obtained beliefs. Notice that lines 17 and 18 correspond to a

well-known damping procedure (see e.g. [147]), which aims to avoid estimates being

trapped at a local optimum, especially at the early stage of the iterations by allowing

a slow update of the quantities ĥ`,Φ(s)m, Ψ̂h
`,Φ(s)m, ân`,m, and ψan`,m. This is due to

the fact that at the early stage of the iterative process, the Gaussian approximation

assumed in equation (3.47) may not capture the actual statistics of the effective noise,

which might lead to convergence to a local optimum point.
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Algorithm 5 Proposed JACE in XL-MIMO with Non-Stationarity

Inputs: Y and X, and initializers Ĥ and Ψ̂h

Outputs: Ĥ and Â

For all (n,m, `)

1: ân`,m(1)← 0, ψan`,m(1)← 0

2: ĥ`,nm(1)←
[
Ĥ
]
nm

, ψh`,nm(1)←
[
Ψ̂h
]
nm

3: repeat
For all (n,m, `)

4: Eq. (3.47): ỹm,n` ← yn` −
∑M

i 6=m ĥ`,niân`,ixi`

5: Eq. (??): vym,n` ←
∑M

i 6=m

(
|ĥ`,ni|2ψan`,i + (|ân`,i|2 + ψan`,i)ψ

h
`,ni

)
|xi`|2 + σ2

vhm,n` ← ψan`,mγnm|xm`|2 + vym,n`

6: Eq. (3.51): vam,n` ← ψh`,nmλ|xm`|2 + vym,n`

7: Eq. (3.54): θh`,nm ←
(∑L

i 6=`
|âni,mxmi|2

vhm,ni

)−1

and µh`,nm ← θh`,nm
∑L

i 6=`
ỹm,niâ

∗
ni,mx

∗
mi

vhm,ni

8: Eq. (3.56): θan`,m ←
(∑N

j 6=n
∑L

i 6=`
|ĥi,jmxmi|2

vam,ji

)−1

µan`,m ← θan`,m
∑N

j 6=n
∑L

i 6=`
ỹm,jiĥ

∗
i,jmx

∗
mi

vam,ji

9: Eq. (3.59): ân`,m ←
(

1 + 1−λ
λ exp

(
−
(
|µan`,m|

2

θan`,m
− |1−µ

a
n`,m|

2

θan`,m

)))
10: Eq. (3.60): ψan`,m ←

1−λ
λ exp

(
−
(
|µan`,m|

2

θa
n`,m

−
|1−µan`,m|

2

θa
n`,m

))
(
1+ 1−λ

λ exp

(
−
(
|µa
n`,m

|2

θa
n`,m

−
|1−µa

n`,m
|2

θa
n`,m

)))2

For all (m, s, `)

11: Eq. (3.53): µh`,Φ(s)m ← [µh`,(ν(s−1)+1)m, . . . , µ
h
`,ν(s)m]T

12: Θh
`,Φ(s)m ← diag

(
[θh`,(ν(s−1)+1)m, . . . , θ

h
`,ν(s)m]

)
13: Eq. (3.64): τ`,ms ← 1+

(1−φ̂sm)|Γsm+Θh
`,Φ(s)m|

φ̂sm|Θh
`,Φ(s)m|

e

(
−µh

H
`,Φ(s)m(Θh

−1
`,Φ(s)m−(Γsm+Θh

`,Φ(s)m
)−1)µh

`,Φ(s)m

)
14: Eq. (3.71): φ̂ms = φ̂← 1

MSL

∑L
`=1

∑M
m=1

∑S
s=1

1
τ`,ms

15: Eq. (3.65): h̄`,Φ(s)m ←
Γsm(Γsm+Θh

`,Φ(s)m
)−1

τ`,ms
µh`,Φ(s)m

16: Eq. (3.66): Ψ̄h
`,Φ(s)m ← (τ`,ms − 1)diag

(
h̄`,Φ(s)mh̄

H
`,Φ(s)m

)
+

Θh
`,Φ(s)m

Γsm(Γsm+Θh
`,Φ(s)m

)−1

τ`,ms

17: Damping [147]: ĥ`,Φ(s)m ← ηh̄`,Φ(s)m + (1− η)ĥ`,Φ(s)m

18: Ψ̂h
`,Φ(s)m ← ηΨ̄h

`,Φ(s)m+(1− η)Ψ̂h
`,Φ(s)m

19: until t = tmax

20: Make hard decision
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It is also worth-noting that the number of iterations is fixed here to tmax only for

the sake of the complexity analysis to be offered later. In practice, the process can

be terminated at a fewer (also adaptively-determined) number of iterations, resulting

in lower total complexity. The possibility of reducing the number of iterations is

studied later via the convergence behavior of the algorithm, where it is shown that

approximately 9 iterations are sufficient for convergence, regardless of SNR levels.

3.4.3 Performance Assessment

In this section, we assess the estimation performance of the proposed bilinear inference

method under various system setups. In particular, we consider the NMSE and activity

error rate (AER) as key performance metrics to measure, respectively, the estimation

accuracy of channel coefficients, as well as user activity indicators.

The NMSE and AER are respectively defined as

NMSE ,
‖HA− ĤÂ‖2F
‖HA‖2F

, (3.80)

AER ,
|A \ Â|
M

≤ 1, (3.81)

where Ĥ and Â denoting estimated channel and user activity matrices, respectively,

A denotes the true activity index set, | · | denotes the cardinality of a given set, and

the operator \ denotes the relative complement, such that |A| ≤ M , |Â| ≤ M , and

|A \ Â| ≤M .

Throughout the section, the following parameters are utilized, unless specified oth-

erwise. The number of total antenna elements and sub-arrays are respectively assumed

to be N = 400 and S = 100, indicating that each sub-array possesses Ns = 4 antenna

elements. This setup can be interpreted as an XL-MIMO system consisting of multi-

ple sub-arrays with each being a 2 × 2 patch antenna array, for instance. The total

number of time indices and potential users is set to L = {50, 70} and M = 200, respec-

tively. The user activity ratio is assumed to be λ = 0.1, while the number of active

users at each channel realization is modeled as a binomial random variable with mean

λM . The variance of channel coefficients is assumed to be identical and modeled as

φ = φsm = 1/M for all m and s, whereas different models for the non-stationarity

phenomena are considered.

As for the algorithmic parameters, the maximum number of iterations is assumed to

be tmax = 32, while the damping factor η is set to 0.5. The sub-array activity indicator

φ is automatically learned over iterations via the EM framework presented above. It

is assumed that initial estimates (i.e., Ĥ, Ψ̂h) are obtained via the low-complexity

multiple measurement approximate belief propagation (MMVABP) algorithm.
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Remarks on Complexity

Before presenting results on the actual performance of the proposed bilinear inference

method for JACE, we analyze its computational complexity in terms of the number of

flops required at each iteration of the algorithm. Since all the calculations in Algorithm

5 are scalar-by-scalar and the required inverse operation is performed with a diagonal

matrix, the number of multiplication, division, subtraction, and addition operations is

of order O(NML), which is linear with respect to each of available resource dimen-

sions. In Algorithm 5, the number of iterations is set to tmax, implying that the total

complexity is of order O(tmaxNML).

Similarly, the computational complexity of existing linear inference algorithms such

as those proposed in [114, 115, 152] is also of order O(tSotA
maxNML), where tSotA

max is the

total number of iterations of existing linear inference algorithms. And since both the

proposed and existing JACE algorithms are based on the Bayesian message passing

approach, the total number of iterations until convergence required by our method

is comparable to those of existing alternatives (i.e.tmax ≈ tSotA
max ), such that we can

conclude that the proposed algorithm has the same order of complexity of existing

JACE methods.

It will be shown in the sequel, however, that the proposed method outperform

existing alternatives in terms of estimation accuracy, measured by NMSE and AER as

defined in equations (3.80) and (3.81).

Uniformly Random Non-Stationarity

Aiming at evaluating the fundamental performance improvement attained by the pro-

posed JACE algorithm, we first consider in this subsection an XL-MIMO system sub-

jected to uniformly random sub-array activity pattern. In other words, the sub-array

activity indicators pms for all m and s are independently generated as a Bernoulli

random variable, with the corresponding mean φsm set to be φsm = 0.2, such that the

number of the total active sub-arrays at each channel realization follows the Binomial

distribution, and 20% of the total subarrays are active at each channel realization in

an average sense.

For the sake of comparison, we consider two state-of-the-art methods, namely the

conventional linear MMSE estimator, and an MMVABP scheme, which is a gener-

alization of the MMV-AMP algorithm of [115]. Comparing these three algorithms

highlights performance gains due to awareness both to column-wise sparsity in the

channel matrix resulting from grant free access, and to block-wise sparsity of active

columns of the channel matrix, resulting from spatial non-stationarity.

For instance, consider the comparison of NMSE performances of the three distinct

algorithms as a function of SNR in decibels as shown in Figure 3.11, for different
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pilot lengths (i.e., L ∈ {50, 70}), with pilot sequences designed via the QCSIDCO

algorithm [131, 133, 153] in order to mitigate pilot contamination due to the non-

orthogonal structure of X ∈ CM×L with M � L. For the sake of a further reference,

we also include curves (in solid line without markers) corresponding to lower-bounding

NMSE performances obtained by the LS estimator aided by a genie, i.e with perfect

knowledge of active user and sub-array activity indicators.

The figure clearly illustrates the impact of the two distinct factors which impose

structured sparsity upon the channel matrix. In particular, it is found that regardless of

the length of the pilot sequence, the MMSE estimator suffers from a high error floor in

terms of its NMSE performance, while the MMVABP algorithm improves as the SNR

increases. The gains of MMVABP over the MMSE method is due to the awareness to

column-wise sparsity in the channel matrix – i.e., awareness to user activity – which

the MMVABP method incorporates, while the MMSE method does not. It is also

found, however, that a large gap exists between the performance of MMVABP and

the lower-bound. In comparison to the latter two methods, the proposed algorithm

exhibits a substantial gain over the MMVABP approach, thanks to the fact that the

proposed technique incorporates awareness not only to user activity, but also to the

sub-array activity caused by spatial non-stationarity. As a result, the proposed method

is found to actually reach the lower bound over a wide SNR range and starting from

relatively low SNRs.

From these observations, one may conclude that the gain between the MMSE and

the MMVABP methods results from awareness to user activity, while the gain between

MMVABP and the proposed method is due to awareness to sub-array activity. It is

also worth-mentioning that the sub-array activity indicators φsm are automatically

learned for each channel realization via the EM framework presented above, such

that estimating such parameters before transmission is not necessary, contributing to

improving the efficiency of the XL-MIMO system.

Next, we consider the AER performances of the proposed and the best state-of-

the-art methods (namely, the MMVABP), omitting results for the MMSE scheme as

it was found to be inferior to the latter. In addition, notice that showing Genie-aided

lower bounding results is not useful, since the the Genie-aided LS estimator has perfect

knowledge of user and sub-array activities, such that AER performance is always 0.

The results are shown in Figure 3.12 for different pilot lengths as done in Figure

3.11. As expected, but interestingly, it is found that the proposed algorithm signifi-

cantly outperforms MMVABP also in terms of the AER performance. For instance,

it can be seen that the relative AER gain of the proposed method over MMVABP is

approximately 4 [dB] in SNR at 10−5 of AER for both short and long pilot scenarios.

In addition, it is interesting to see that the gradient of the AER curve of the proposed

algorithm is steeper than that of the MMVABP approach.
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(a) L = 50.

(b) L = 70

Figure 3.11: NMSE performance with respect to SNR with N = 400 and M = 200 for different pilot
lengths. ©2022 IEEE
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(a) L = 50.

(b) L = 70.

Figure 3.12: AER performance with respect to SNR with N = 400 and M = 200 for different pilot
lengths. ©2022 IEEE
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(a) Resilience of the proposed algorithm against different sub-array activity indicators in per-
centage.

(b) Convergence behavior of the proposed algorithm with respect to the number of algorithmic
iterations.

Figure 3.13: Convergence and scalability of the proposed method. ©2022 IEEE
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Having clarified the NMSE and AER gains of the proposed algorithm, we turn our

attention to resilience and convergence aspects of the proposed algorithm. To that

end, we first compare in Figure 3.13a the NMSE performance of the MMVABP, the

Genie-aided LS, and the proposed estimators as a function of the sub-array activity

indicators. We remark that the channel is stationary at 100% sub-array intensity

(i.e., at the right edge of the figure), while non-stationarity effects becomes severer as

the sub-array intensity decreases. The results suggest that the proposed algorithm is

a generalization of the MMVABP method, capturing effects not only from the user

activity but also from the sub-array activity. Thus, the performance of the proposed

algorithm approaches that of MMVABP in case of a stationary channel (i.e., φsm = 1),

while offering significant gains over the latter as the non-stationarity increases.

Finally, in Figure 3.13b, we show the convergence behavior of the proposed al-

gorithm as a function of the number of the algorithmic iterations for different pilot

lengths. It is shown in the figure that although we assume a relatively large value for

the maximum number of iterations (tmax = 32), the algorithm converges within 10

iterations under both pilot lengths considered. This implies that the total complex-

ity of the method can be further reduced (by more than a half) by setting a certain

convergence criterion.

Matérn-Cluster Point Process Based Non-Stationarity

The comparison results shown in the previous subsections serve the purpose of quan-

tifying the gains achievable by the proposed method over state-of-the-art alternatives,

which stem in particular from the ability of the contributed scheme to detect both user

and sub-array activity.

It can be argued, however, that the uniformly random sub-array activity pattern

is somewhat artificial, since in realistic scenarios, such patterns are characterized by

VRs. Indeed, in practice the likelihood of activation of a certain sub-array is highly

correlated with that of neighboring sub-arrays, such that VRs tend to occur in clusters.

In this subsection, we therefore repeat the experiments reported above, utilizing

this time a stochastic geometry approach to model the aforementioned geometrical

correlation among the activity indicators of sub-arrays, so as to mimic the cluster-like

nature of VRs, as illustrated in [118, Fig. 2]. To this end, we consider the Matérn-

cluster point process (MCPP) – not to be confused with Matérn hardcore point process

– to model the non-stationarity effects in XL-MIMO systems [154,155].

In order to bring MCPP into the simulation setup, we consider a rectangular area in

which sub-arrays are placed following an equispaced grid. Within this area, MCPP is

leveraged to generate random clusters with a constant radius r and centers following a

homogeneous Poisson point process (PPP) with an intensity µ. Each cluster generated
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by MCPP is regarded as a VR, and therefore, sub-arrays located in the clusters are

considered active, whereas sub-arrays located outside the clusters are assumed to be

inactive.

To visualize the difference between MCPP-based and uniformly random non sta-

tionarity models, we offer in Figure 3.14a and 3.14b a comparison of sub-array activity

patterns for the two different models for a given realization, with the number of active

antennas set to be identical in both cases. In the figures, white and black squares

indicate inactive and active antennas, respectively, where we assumed a 2 × 2 square

sub-array, Height = 30 [m], Width = 30 [m], µ = 4 and r = 5. One can observe from

the figures that the MCPP-based approach clearly illustrates clustered VRs, capturing

more realistically the behavior of the non-stationarity, while the uniformly random

counterpart shows a more scattered distribution of VRs.

With the stochastic-geometric VR generation model described, we proceed to

the performance assessment of the JACE algorithms under this MCPP-based non-

stationarity model. In this section, we evaluate the estimation performance of the

proposed method in comparison with the two state-of-the-art estimators as well as

the Genie-aided ideal performance for different cluster setups, by considering different

cluster intensities µ and the radius r and studying the impact of both parameters on

the detection performance.

First, we compare in Figure 3.15 the NMSE performances of the three distinct

detection algorithms for different cluster intensities µ and a fixed radius size r = 5 [m],

with the Genie-aided ideal performance also included for reference. As expected based

on the previous results of Figures 3.11 and 3.13a, the proposed method outperforms

both the MMVABP and the conventional linear MMSE methods, although the per-

formance gain diminishes slightly as the cluster intensity increases, which is expected

since with for larger cluster intensities the number of active sub-arrays itself grows. It

is also observed that once again the proposed algorithm reaches the Genie-aided ideal

performance for a wide range of SNR regardless of the cluster intensity level.

Next, we compare in Figure 3.16 the AER performance of the proposed algorithm

against that of the MMVABP scheme, again for different cluster intensity levels and

as a function of SNR. The figure confirms that the proposed method is effective also

in terms of the AER performance.

Having shown the effectiveness of the proposed algorithm even in case of clustered

sub-array activity, we finally assess in Figures 3.17a and 3.17b the NMSE performance

of the proposed algorithm as a function of cluster intensity µ and radius r, respectively,

for two different SNR levels.
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(a) MCPP-based subarray activity.

(b) Uniformly random subarray activity.

Figure 3.14: Comparison between MCPP and PPP based sub-array activity models. ©2022 IEEE
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(a) µ = 3.

(b) µ = 6.
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(c) µ = 9.

Figure 3.15: NMSE Performance with respect to SNR with N = 400, M = 200, and L = 70 with
MCPP for different µ. ©2022 IEEE

(a) µ = 3.
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(b) µ = 6.

(c) µ = 9.

Figure 3.16: AER Performance with respect to SNR with N = 400, M = 200, and L = 70 with MCPP
for different µ. ©2022 IEEE
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(a) NMSE performance of the proposed method for different cluster intensities. The actual
array activity ratios for µ = 3, 6 and 9 are annotated by allows.

(b) NMSE performance of the proposed method for different cluster radius sizes. The actual
array activity ratios for µ = 3, 6 and 9 are annotated by allows.

Figure 3.17: NMSE performance of the proposed algorithm for different cluster-related parameters.
©2022 IEEE
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For ease of interpretation of the results, the actual sub-array activity ratios, defined

as the ratio between the number of active sub-arrays and the total number of sub-

arrays, are annotated by arrows for µ = 3, 6 and 9. The figures illustrate the fact that

the performance of the proposed JACE algorithm is mostly dependent on the actual

activity indicator, rather than the shape of clusters, implying an inherent robustness

against the nature of the spatial non-stationarity.

3.5 Conclusion

In this chapter, we proposed two joint estimation algorithms for the overhead reduction

problem in distributed MIMO architectures. The first algorithm developed for CF-

MIMO systems aims at the per-user throughput bottleneck issue raised in the related

literature, while reducing the latency of massive uplink channels by jointly estimating

AUD, CE, and MUD. In contrast, the second algorithm intends to tackle the spatial

non-stationarity in XL-MIMO systems, while jointly addressing the same overhead

reduction problem, leading to a joint estimation problem of AUD, CE, and active sub-

arrays (i.e., VRs). Two distinct bilinear Bayesian inference algorithms are proposed

as the key enabler for each problem, which are designed by tailoring the BiGaBP

framework. Also, new active user identification policies are proposed for each problem

so as to capture their spacial features.

The performance of the proposed algorithms is evaluated and compared via quanti-

tative computer simulations against state-of-the-art methods proposed in the grant-free

literature. A set of the results shown in this chapter demonstrated the efficacy of the

proposed methods in terms of its CE, AUD, and/or MUD detection performance.

As for possible future works, the proposed JACDE algorithm for CF-MIMO sys-

tems can be integrated with channel coding schemes. For such an extension, the soft

outputs to the subsequent decoder can be directly computed based on the messgae

passing mechanism proposed in this chapter. An open and debatable question is, how-

ever, whether active detection should be performed before or after the channel decoder.

In addition, the design of the detector output with the active detection information is

worth considering for coded grant-free systems.

Regarding that of the second algorithm, an interesting extension is to incorporate

the data detection part, which is difficult to tackle with the present bilinear frame-

work as such a problem results in a multilinear estimation problem. To address this

difficulty, one can consider to extend the bilinear framework to a multilinear alterna-

tive by tailoring the message passing rules. Another alternative is to leverage a more

flexible distribution instead of the Gaussian approximation such that the spatial non-

stationarity and CSI acquisition are jointly treated as a single variable, which can be

addressed by a bilinear inference algorithm.
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Chapter 4

Blockage-Robust Beamforming

for Reliable Millimeter Wave

Communications

In this chapter, we turn our attention to the reliability issue in mmWave systems

suffering from random path blockage due to the susceptibility of mmWave channels,

proposing a new framework to minimize the total QoS violation among downlink users.

To elaborate, we propose a stochastic optimization based approach to design a robust

waveform to combat the susceptibility of mmWave channels to random path blockage.

To begin with, we first formulate the outage minimization problem that can be seen as

an empirical risk minimization (ERM) problem, which is then tackled via a stochas-

tic gradient descent method so as to optimize the fully-digital transmit beamforming

vectors. Then, we generalize the latter to a partially-connected hybrid beamform-

ing architecture with the aim of reducing the implementation and hardware costs.

The simulation results demonstrate that the proposed framework possesses robustness

against such blockages for a wide range of blockage probabilities. Furthermore, the

proposed hybrid mechanism is also shown to be close to its fully-digital counterpart in

terms of the outage probability, while significantly reducing the number of RF chains.

Part of this chapter is reprinted and enhanced from the following publication:

• Hiroki Iimori, Giuseppe Thadeu Freitas de Abreu, Omid Taghizadeh, Razvan-Andrei Sto-
ica, Takanori Hara, and Koji Ishibashi: “A Stochastic Gradient Descent Approach for Hy-
brid MmWave Beamforming with Blockage and CSI-Error Robustness,” IEEE Access, vol. 9,
pp. 74471–74487, May 2021.

• Hiroki Iimori, Giuseppe Thadeu Freitas de Abreu, Omid Taghizadeh, Razvan-Andrei Stoica,
Takanori Hara and Koji Ishibashi,: “Stochastic Learning Robust Beamforming for Millimeter-
Wave Systems with Path Blockage,” IEEE Wireless Commun. Lett., vol. 9, no. 9, pp. 1557–
1561, Sept. 2020.

117



4.1. Background and Contributions

4.1 Background and Contributions

The ever-growing demands for data-rate and massive wireless connectivity have driven

the 5G standard to incorporate technologies that exploit the mmWave spectrum avail-

able in the 24–300 [GHz] bands [156–158]. This trend is expected to continue, with

5G New Radio (NR) aiming to support spectrum bands up to 71 [GHz] in Release

17. Higher frequencies in the sub-Terahertz (i.e. > 100 GHz) bands are planned to be

added [159].

MmWave systems have much wider bandwidths than sub-6GHz, and they enable

highly directional communications owing to the dense packing of antenna elements,

which yields numerically large arrays of small physical dimensions, such that MIMO

and beamforming techniques play key roles in mmWave technology [160]. Despite the

advantages of higher achievable throughputs (data rates) and improved radio access

(user capacity), mmWave systems suffer from communications-impairing effects such

as increased path loss, higher atmospheric absorption, higher sensitivity to phase noise,

and random path blockage [161–165]. These phenomena pose challenges to the prac-

tical implementation of mmWave, which over the years has attracted the attention of

the research community, leading to several important advancements.

Early contributions concentrated on mitigating the path loss issue by exploiting the

high directivity of mmWave antenna arrays [166, 167] and therefore aimed at taking

advantage of the sparsity of the mmWave channel. To this end, novel sparse signal

processing methods were developed, albeit under the assumption of perfect CSI and

for a single-user single-carrier setup. These designs were then extended to multi-user

and multi-carrier systems by incorporating fully-connected hybrid architectures, where

the RF threads are connected to all the phase shifters equipped, e.g., [168]. It was

shown that beamforming can take advantage of the homoscedasticity and variance

correlations of channel covariance across subcarriers.

Under the argument that accurate RF components at mmWave bands are expen-

sive, cost reduction via the design of partially connected hybrid beamformers such as

those in [169, 170] has been motivated. The same argument that lower-cost RF com-

ponents lead to various imperfections, which in turn can be counterweighted by robust

hybrid designs, motivated works such as [171] in which the authors proposed that

the alternating maximization of a smooth SNR-driven optimization problem can be

solved via orthogonal matching pursuit (OMP), for the realization of transceivers and

amplify-and-forward (AF) relays with CSI uncertainty; in [75], a transmit beamform-

ing scheme was designed via a fractional programming approach and was matched with

a MMSE receive beamformer to mitigate hardware and CSI imperfection; and [172]

aimed to maximize the sum-rate under imperfect CSI feedback, employing a robust

convolutional neural-network approach.
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Despite the contributions that helped solidify robust hybrid beamforming as the

prevailing approach that ensures the feasibility of mmWave systems, the random path

blockage problem inherent to the mmWave channel has not been addressed sufficiently

compared to the other issues discussed previously. The fundamental challenge remain-

ing is that mmWave signals are susceptible to random blockage of propagation paths

with probabilities ranging between 20% and 60%, which if not counteracted can signif-

icantly detract from the high-throughputs that mmWave communication systems can

potentially deliver [162,163,165].

An early proposal to combat such effects is the coordinated multipoint (CoMP)

scheme described in [173], in which QoS was maintained despite path blockages by

synchronizing transmissions from multiple BSs and APs. The CoMP approach is not

only attractive in the context of mmWave systems owing to the reduced radio cover-

age, but it is also shown analytically to offer strong theoretical guarantees to achieve

capacity in the presence of a path blockage [174], which, however, is unfortunately not

accompanied by procedures for practical implementation.

This chapter intends to fill in the latter gap, which presents an extensive robust

stochastic learning approach to minimize outage probability in mmWave CoMP sys-

tems subjected to random path blockage, thus effectively maintaining high-throughput

service guarantees. To this end, it may be emphasized that the present work is com-

patible with some existing side-information-aided approaches such as the sub-6 [GHz]

side-signaling assumed in [175, 176] or the visual (camera-based) information used

in [177–179]. In addition, our contributions are also aligned with recent works on

robust mmWave beamforming in which path blockage is assumed to be random and

dealt-with dynamically, a few examples of which are discussed below.

In [180] a high-speed railway communications environment was considered, where

it can be assumed that path blockages, detected during a first probing stage, remain

constant during a subsequent transmission stage (i.e., coherent blockage assumption).

The article then proposed a corresponding two-stage (detect-and-avoid) mmWave hy-

brid beamforming mechanism based on greedy matching pursuit optimization, aimed

at minimizing MMSE and maximizing sum-rate maximization (SRM) under the as-

sumption of perfect CSI.

Besides the coherent blockage assumption, the latter contribution did not consider

the benefit of CoMP transmission, which was previously shown in [173,174] to be cru-

cial for high-performing mmWave systems. In turn, [181] considered a robust CoMP

setup under the assumption that blockage affects line-of-sight (LoS) paths in an inco-

herent manner. Subsequently, a greedy digital beamforming problem was formulated

aimed at maximizing the system’s minimum sum-rate, which was solved iteratively via

convex approximations.
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Contributions

In this chapter we contribute to this trending topic by proposing a stochastic frame-

work for the design of outage-minimum robust mmWave CoMP systems, which has

two main differences over the previous works. First, unlike the latter, which requires

all conceivable QoS constraints to be considered thus leading to combinatorics1, our

proposed method is based on a stochastic optimization framework that enables us to

avoid dealing with such combinatorial operations and yields decent solutions even in

ill-conditioned scenarios. Secondly, unlike the sum-rate maximization problem con-

sidered in the previous works, the fundamental goal of robust beamforming design for

mmWave systems subject to uncertain blockage is rather to minimize the required QoS

violation (i.e., outage probability).

In summary, the contributins offered in this chapter are as follows.

• We introduce a new stochastic-learning-based robust beamforming design frame-

work for CoMP systems to combat unpredictable random blockages in mmWave

channels. The complexity of our contributed methods does not scale with the

number of active clusters, avoiding combinatorial computations in the optimiza-

tion.

• Based on this framework, we first propose a novel full-digital beamforming design

for CoMP mmWave systems subject to random blockages, showing its advantage

over the conventinal SRM and maximum ratio transmission (MRT) methods.

• In realistic scenarios, the mmWave systems suffer not only from random path

blockages but also CSI imperfection due to unavoidable channel estimation errors.

In this context, we incorporate into a Bernoulli-Gaussian PDF the statistical

features of both path blockages [161–163, 165, 166] and CSI errors [75, 171, 172],

resulting in an integrated stochastic mmWave channel model that enables both

challenges to be addressed simultaneously.

• Incorporating practical considerations into the preceding full-digital beamform-

ing method, we then propose a robust virtually-configured partially-connected

cooperative hybrid beamforming algorithm suitable to mitigate both path block-

ages and imperfect CSI in mmWave systems.

1In addition, the worst-case method requires that the target QoS be satisfied even in ill-conditioned
scenarios, which may not admit a feasible solution in some realistic circumstances.
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Figure 4.1: Illustration of the considered mmWave CoMP system subject to blockage.

4.2 Full Digital Beamforming

4.2.1 System Model

Consider the downlink of a single carrier CoMP narrowband mmWave system in which

multiple synchronized BSs cooperatively serve single-antenna downlink users subject

to unpredictable blockages, as shown in Figure 4.1. For such a scenario, let b ∈ B ,
{1, 2, . . . , B} and u ∈ U , {1, 2, . . . , U} denote the BS and downlink user indices,

respectively, with B and U denoting the total number of BSs and downlink users.
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It has been shown that unpredictable blockages occur with 20%− 60% probability,

leading to significant loss in the achievable throughput. In order to abstract such non-

ideal effects, we consider a probabilistic model, in which each path undergoes random

and independent blockage, whose frequency of occurrence can however be obtained as

side-information for the system optimization, as shown in [177]. In other words, the

blockage probability of each component channel path can be assumed to be known at

the BSs and employed in robust beamforming designs.

Following [160], it is assumed that the channel contains a random number Kb,u

of clusters, which is modeled as [161] Kb,u ∼ max (1,Possion (λ)) with the intensity

parameter λ, where one of the number of clusters Kb,u corresponds to LoS and the

rest of them are regarded as non-line-of-sight (NLoS). It is furthermore assumed that

CSI is acquired and tracked continuously exploiting the reciprocity between uplink and

downlink of standard time division duplex (TDD) systems, such that channel estimates

can be modeled as2

ĥb,u =

√
1

Kb,u

Kb,u∑
m=1

gmb,uaT (φmb,u), (4.1)

where φmb,u denotes the angles of departure (AoD) of the m-th cluster from the b-th BS

towards the u-th downlink user and aT (φmb,u) is an array response vector at the trans-

mitter, while gmb,u is the associated channel gain modeled as gmb,u ∼ CN
(

0, 10
−PLmb,u

10

)
with PLmb,u = α + 10β log10 (db,u) + ξ [dB] in which db,u is the distance (in meters)

between the b-th BS and the u-th user and the parameters α, β and ξ are determined

according to [161, Table I].

In spite of the knowledge of ĥb,u, during actual downlink the system might be

subjected to partial outage if and when any or some of the LoS and NLoS clusters

become temporarily blocked, such that the actual channel between the b-th BS and

the u-th user can then be modeled as

hb,u =

√
1

Kb,u

Kb,u∑
k=1

ωkb,ug
k
b,uaT (φkb,u), (4.2)

where ωkb,u ∈ {0, 1} ∀k ∈ {1, . . . ,Kb,u} denotes a Bernoulli random variable with mean

pkb,u depicting the corresponding blockage probability3.

Assuming that each BS is equipped with a uniform linear array (ULA) with Nt

transmit antenna elements and half-wavelength spacing, let fb,u ∈ CNt×1 denote the

transmit beamforming vector from the b-th BS towards the u-th user subject to a

2For the sake of simplicity, in this section we first consider a perfect CSI scenario, which is later
extended to an imperfect CSI counterpart.

3Although one may consider the case that some paths are blocked at the channel estimation and
unblocked for the data transmission, we assumed that such scenarios are negligible as the channel
would not simply be considered for data transmission due to the few number of mmWave paths [161].
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maximum transmit power constraint
∑

u∈U ‖fb,u‖22 ≤ Pmax,b, such that the received

signal yu at the u-th downlink user can be written as

yu =
∑
b∈B

hH
b,ufb,uxu +

∑
u′∈U\u

∑
b∈B

hH
b,ufb,u′xu′ + nu

= hH
u fuxu +

∑
u′∈U\u

hH
u fu′xu′ + nu, (4.3)

where xu is the unit-power transmit signal intended to the u-th user, nu denotes

i.i.d. circularly symmetric AWGN at the u-th user, i.e. nu ∼ CN (0, σ2
u), and the

vectors hu and fu are respectively defined for all u ∈ U as hu ,
[
hT

1,u, . . . ,h
T
B,u

]T
and

fu ,
[
fT

1,u, . . . ,f
T
B,u

]T
.

4.2.2 Problem Formulation

Given the system model described above, in this subsection we offer an optimization

problem formulation corresponding to the mmWave robust CoMP downlink beamform-

ing design subject to unpredictable path blockage, which does not rely on a standard

deterministic robust optimization framework that imposes combinatorial operations.

In particular, our formulation consists of the following stochastic sum-outage-

probability minimization problem:

minimize
f

∑
u∈U

Pr {Γu (hu,f) < γu} (4.4a)

subject to
∑
u∈U
‖fb,u‖22 ≤ Pmax,b ∀ b, (4.4b)

where γu denotes the target SINR for the u-th user and the corresponding effective

SINR Γu can be written as

Γu (hu,f) =
|hH
u fu|2∑

u′∈U\u |hH
u fu′ |2 + σ2

u

, (4.5)

where f ,
[
fT

1 , . . . ,f
T
U

]T ∈ CBUNt×1.

Notice that equation (4.4) is stochastic and has only as many constraints as the

number of BSs due to the power constraints. In addition, the objective of the mmWave

optimization problem formulated in equation (4.4) is to preserve the system’s continu-

ity subject to QoS guarantees and under maximum transmit power constraints, which

we argue is a more direct robust solution to the problem posed by random blockage.
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4.2.3 Full Digital OutMin

In this section, we propose a novel robust beamforming algorithm based on stochastic

learning, aiming at solving the intended nondeterministic optimization problem given

in equation (4.4). To that end, we first introduce an indicator function 1Γu(hu,f)<γu

defined as

1Γu(hu,f)<γu =

1 if Γu (hu,f) < γu

0 otherwise
, (4.6)

which yields

minimize
f

∑
u∈U

Eωmb,u
[
1Γu(hu,f)<γu

]
(4.7a)

subject to
∑
u∈U
‖fb,u‖22 ≤ Pmax,b ∀b. (4.7b)

One may notice that equation (4.7) can be seen as an ERM problem [182], studied

thoroughly in the machine learning and stochastic optimization literature and known to

be solved efficiently via stochastic optimization approaches, which are widely adopted

due to their complexity and memory requirements, as well as their easy-to-implement

nature [183].

In light of the fact that the channel gains and corresponding AoDs are assumed

to be known at BSs, as described in equations (4.1) and (4.2), we furthermore remark

that possible combinations of blockage patterns due to ωmb,u can be randomly generated

under the assumption that path blockage probabilities are somehow predictable [177]

and can be utilized during stochastic optimization as part of the training set design.

Let h̃mu be the m-th data batch for hu and m ∈ {1, 2, . . . ,M} with M denoting

the size of training data. Then, equation (4.7) can be further rewritten in an ERM

fashion as

minimize
f

1

M

M∑
m=1

∑
u∈U

[
1Γu(h̃mu ,f)<γu

]
(4.8a)

subject to
∑
u∈U
‖fb,u‖22 ≤ Pmax,b ∀b. (4.8b)

A universal technique to deal with variety of ERM problems such as that described

by equation (4.8) is the gradient descent (GD) approach. This approach requires,

however, the successive evaluation of sum-gradients which imposes high complexity

especially in setups with large data sizes. In order to circumvent this issue, an efficient

alternative to GD is stochastic gradient descent (SGD) [184], in which the solution at
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each m-th iteration is updated based on the recursion

f (m) = f (m−1) − αm
∑
u∈U
∇1Γu(h̃mu ,f)<γu , (4.9)

where αm is a suitable stepsize at the m-th iteration.

Notice that it is difficult to directly compute the gradient direction in equation (4.9)

due to the non-smoothness of the indicator function given by equation (4.6). Hence,

we further introduce the generalized smooth hinge surrogate function [185], which is

given by

ν
(
h̃mu ,f

)
=


0 if 1− Γu(h̃mu ,f)

γu
< 0

1
2ε

(
1− Γu(h̃mu ,f)

γu

)2
otherwise

1− Γu(h̃mu ,f)
γu

− ε
2 if 1− Γu(h̃mu ,f)

γu
> ε,

(4.10)

where 0 < ε� 1 and its gradient with respect to f is

∇ν
(
h̃mu ,f

)
=


0 if 1− Γu(h̃mu ,f)

γu
< 0

Γu(h̃mu ,f)
γu

−1

ε

∇Γu(h̃mu ,f)
γu

otherwise

−∇Γu(h̃mu ,f)
γu

if 1− Γu(h̃mu ,f)
γu

> ε.

(4.11)

From the above, equation (4.8) can be rewritten as

minimize
f

1

M

M∑
m=1

∑
u∈U

ν
(
h̃mu ,f

)
(4.12a)

subject to
∑
u∈U
‖fb,u‖22 ≤ Pmax,b ∀b, (4.12b)

which can be solved by the projected SGD algorithm with the following update

f (m) = f (m−1) − αm
∑
u∈U
∇ν
(
h̃mu ,f

(m−1)
)
, (4.13)

where f (m−1) indicates the solution at (m− 1)-th iteration.

Note that in equation (4.13), we omit the normalizing factor 1/M as it is indepen-

dent from the optimal condition. In order to compute the gradient ∇Γu with respect

to the stacked beamforming vector f , it is necessary to equivalently reformulate the

SINR formula given in equation (4.5) as

Γu

(
h̃mu ,f

)
=

fHH̃m
u f

fHH̃m
ū f + σ2

u

, (4.14)
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Algorithm 6 Full Digital OutMin

Inputs: Initial estimate: f (0), Data set: H
Outputs: Optimized beamforming vector: f

1: Set m = 1.
2: repeat

3: Sample data batch h̃mu ∀u from H.

4: Compute
∑

u∈U ∇ν
(
h̃mu ,f

(m−1)
)

from eq. (4.11).

5: Update f (m) according to eq. (4.13).

6: Project f (m) onto the feasible set (4.12b)

7: until m = M

with

H̃m
u = diag (eu)⊗ h̃mu h̃m

H
u , (4.15a)

H̃m
ū = diag (ēu)⊗ h̃mu h̃m

H
u , (4.15b)

where eu ∈ {0, 1}U×1 is the standard basis of length U in which only its u-th element

is 1, ēu denotes the ones’ complement of eu (i.e., negation of eu) and ⊗ expresses the

Kronecker product operator.

In light of all the above, the gradient ∇Γu
(
h̃mu ,f

)
with respect to f can be finally

written in closed-form as

∇Γu
(
h̃mu ,f

)
=

H̃m
u f

fHH̃m
ū f+σ2

u

− fHH̃m
u f(

fHH̃m
ū f+σ2

u

)2 H̃m
ū f . (4.16)

A summary of the here-proposed SGD-based outage-minimum robust beamforming

design for mmWave CoMP systems with unpredictable blockages, dubbed the SGD-

OutMin for short, is offered as a pseudo code in Algorithm 6.

4.2.4 Performance Assessment

In this section we evaluate the proposed method via software simulations both in terms

of achieved outage probability and of the corresponding effective throughput defined

as Reff,u ,WE[log2 (1 + x)], where x = Γu (hu,f) if Γu (hu,f) ≥ γu, x = 0 otherwise,

and W is the sub-carrier bandwidth. Also we define Pout,u being the outage probability

of the u-th user.

As already remarked earlier, state-of-the-art SRM methods rely on a worst case

optimization framework where all conceivable blockage patterns are taken into account

as constraints so that the minimum throughput among such combinations can be
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maximized. As a consequence, probabilistic blockage was considered thereby only at

LoS for a fixed number of clusters, because the complexity of the approach makes it

prohibitive to apply to a more general and stochastic model such as the one considered

here.

In light of the above, we compare the performance of our proposed beamforming de-

sign with the well-known MRT beamforming (also known as conjugate beamforming),

SRM beamforming without CoMP, and SRM beamforming with CoMP as a special

case of the state-of-the-art. In order to maintain comparisons in line with the latter

references, it is assumed that B = 4 BSs are respectively placed at each corner of a

square cell with inter-cell spacing 100 [m], with each BS subject to a transmit power

cap of Pmax,b ≤ 30 [dbm], where the blockage probability can be accurately predictable.

Downlink users are assumed to be randomly placed within a square region and the

noise floor σ2
u at each downlink user is assumed to be modeled as

σ2
u = 10 log10 (1000κT ) + NF + 10 log10 (W ) [dBm], (4.17)

where κ is the Boltzmann’s constant, T = 293.15 denotes the physical temperature at

each user in kelvins, the noise figure at the downlink users NF is assumed to be 5 [dB]

and the subcarrier bandwidth W is 20 [MHz].

For the comparisons, we consider a mmWave system operating at a carrier fre-

quency of 28 [GHz], with the associated channel parameters according to [161, Table

I]. For the sake of simplicity, it is assumed that blockage events occur with equal prob-

ability (pmb,u = pblock ∀u, b,m), and that the target SINR is uniformly set to γu = γ.

Finally, we define Rtarg , log2(1 + γ) for the sake of brevity.

Figure 4.2 compares the outage probability and effective throughput performance

of the proposed and SotA schemes as a function of blockage probability pblock, with

B = 4 BSs each equipped with Nt = 32 antennas transmitting simultaneously to U = 3

single-antenna downlink users while targeting Rtarg = 9, respectively4.

It is found non-surprisingly that the SRM scheme without CoMP transmission

yields the worst performance, being easily beaten by the relatively simple MRT method.

In comparison, the SRM scheme implemented in a CoMP setting improves on the lat-

ter by demonstrating the ability to handle inter-user interference. Besides that, it is

also found that the proposed beamforming algorithm outperforms all the aforemen-

tioned SotA methods in terms of both outage probability and effective throughput

over a wide range of blockage probability. Furthermore, we remark that the proposed

algorithm can maintain a high data rate even under severe blockage conditions (i.e.,

pblock ∈ [50, 60]%).

4Rather than arbitrary, this setup is motivated by the conditions of a real-life implementation of
the proposed method, currently under pursuit in a collaborative research project in Japan.
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(a) Outage probability as a function of blockage probability pblock.

(b) Effective throughput as a function of blockage probability pblock.

Figure 4.2: Outage probability and effective throughput comparisons with transmit antennas Nt = 32,
number of users U = 3, the target throughput Rtarg = 9, and the subcarrier bandwidth W = 20
[MHz].
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4.3 Partially-Connected Hybrid Beamforming

Although the OutMin method proposed above shows its robustness against random

path blockages in mmWave systems, it fails to take into consideration possible practi-

cal limitations such as a hybrid array structure of the CoMP and/or unavoidable CSI

imperfection. To fill in this gap, we propose in this section a hybrid beamforming coun-

terpart suitable to mitigate harmful effects caused by both random path blockages and

CSI imperfection while taking into account the virtually-configured partially-connected

array structure of the CoMP systems.

4.3.1 System Model: Further Generalization

Despite the similarity of the system model with that of the previous section, we further

generalize the latter as follows. First, we consider uniform planar array (UPA) instead

of ULA such that the channel model in equatin (4.1) is now rewritten as

ĥb,u =

√
1

Kb,u

Kb,u∑
k=1

gkb,uaNt(θ
k
b,u, φ

k
b,u), (4.18)

where θkb,u and φkb,u are the elevation and azimuth AoD of the m-th cluster from the

b-th AP towards the u-th downlink user, respectively, and aT (θkb,u, φ
k
b,u) represents the

array response vector5

Assuming that the UPAs equipping the APs have a regular square shape with
√
Nt

antenna elements on each axis, the array response vector aT (θkb,u, φ
k
b,u) can be written

as

aNt(θ
k
b,u, φ

k
b,u) = c√Nt

(
1
2 sin(θkb,u) cos(φkb,u)

)
⊗ c√Nt

(
1
2 cos(θkb,u)

)
, (4.19)

where ⊗ denotes the Kronecker product, and cN represents the array response vector

of a ULA with M antenna elements, which can be expressed as

cN (x) ,
1√
N

[
1, ej2πx, · · · , ej2π(N−1)x

]T
∈ CN×1. (4.20)

Similar to the previous section, despite the knowledge of ĥb,u, during the subsequent

actual downlink, the system might be subjected to partial blockage if and when any or

some of the LoS and NLoS clusters become temporarily blocked, such that the actual

5Although we consider a frequency-independent outdoor urban mmWave channel model, one can
consider other mmWave channel models such as indoor scenarios [186], rural macrocell scenarios [187],
and frequency-dependent wideband scenarios [188]. In any case, since the proposed algorithm presented
later does not assume any particular channel model, the proposed algorithm can be easily extended
to such different scenarios.
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channel between the b-th AP and the u-th user can be modeled as

hb,u =

√
1

Kb,u

Kb,u∑
k=1

ωkb,u(gkb,u)aNt(θ
k
b,u, φ

k
b,u), (4.21)

with now ωkb,u ∼ f(pkb,u; gkb,u, ζ
2
b,u,k), where f(pkb,u; gkb,u, ζ

2
b,u,k) denotes the Bernoulli-

Gaussian distribution given by

f(pkb,u; gkb,u, ζ
2
b,u,k) = pkb,uδ(ω

k
b,u) + (1− pkb,u)CN (gkb,u; ζ2

b,u,k), (4.22)

with pkb,u, δ(·), and ζ2
b,u,k denoting the corresponding blockage probability, Dirac delta

function, and channel gain estimation uncertainty variance, respectively.

It should be noted that the random variable model ωkb,u adopted here is a gener-

alization of that of the previous section. In particular, while the blockage model used

earlier is simple Bernoulli, the model in equation (4.22) is Bernoulli-Gaussian [152],

with the first term modeling the mean random blockage that occurs with probability

pkb,u, while the second term captures variations of the small-scale fading coefficients,

which occur due to a summation of effects including CSI imperfection, channel aging,

and partial blockage. Setting ζ2
b,u,k = 0, the Bernoulli-Gaussian model of equation

(4.22) reduces to the usual Bernoulli blockage model considered in the previus section,

and the path of the m-th cluster from the b-th AP to the u-th user gets completely

blocked when ωkb,u = 0.

Under the assumption that the number of RF chains at each AP is limited to

NRF � Nt, and considering the channel model detailed above, let fb,u ∈ CNRF×1

denote the transmit digital baseband beamforming vector from the b-th AP towards

the u-th user, and Vb ∈ CNt×NRF be the transmit analog beamforming matrix employed

by the b-th AP when transmitting to all users, subject to the unit modulus constraint

(i.e., |[Vb]i,j | = 1) [167].

Then, introducing the aggregate digital baseband beamforming matrix

Fb , [fb,1, · · · ,fb,u], (4.23)

employed by the b-th AP, the received signal yu at the u-th user can be written as

yu=
∑
b∈B

hH
b,uVbFbx+ nu =

∑
b∈B

hH
b,uVbfb,uxu +

∑
u′∈U\u

∑
b∈B

hH
b,ufb,u′xu′ + nu

= hH
uV fuxu︸ ︷︷ ︸

intended signal

+
∑

u′∈U\u

hH
uV fu′xu′︸ ︷︷ ︸

interuser interference

+ nu, (4.24)

where x , [x1, · · · , xU ]T is the symbol vector transmitted cooperatively from all APs
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to all users, with xu denoting a symbol targeting at the u-th user; nu denotes i.i.d. cir-

cularly symmetric zero-mean AWGN at the u-th user6, i.e. nu ∼ CN (0, ξ2
u); and finally

the cooperative analog beamforming matrix, V , blkdiag(V1, · · · ,VB) ∈ CBNt×BNRF ,

the aggregate channel vector, hu ,
[
hT

1,u, · · · ,hT
B,u

]T
∈ CBNt×1, and digital baseband

beamformer, fu ,
[
fT

1,u, · · · ,fT
B,u

]T
∈ CBNRF×1 from all APs to the u-th user are

implicitly defined and introduced in the last equation, for notational simplicity.

We emphasize that the block-diagonal structure of the analog beamforming matrix

V implies that the cooperative downlink transmission scheme yielding the received

signal described by equation (4.24) is a virtually-configured partially-connected hybrid

beamforming architecture, unlike the fully-connected counterpart considered in related

works.

4.3.2 Problem Formulation

The task of performing mmWave robust CoMP downlink hybrid beamforming subject

to random path blockage can be formulated as a constrained stochastic optimization

problem, just as the reformulation given in the previous section shows. To elaborate

further, our strategy is to build resilience against random blockages by minimizing

the stochastic sum-outage-probability subjected to this phenomenon, which can be

formulated as

minimize
f ,V

∑
u∈U

Pr {Γu (f ,V |hu) < γu} (4.25a)

subject to ‖VbFb‖2F ≤ Pmax,b, ∀ b, (4.25b)

Vb ∈MNRF×Nt
cc , ∀ b, (4.25c)

where γu denotes the target SINR for the u-th user, and the effective SINR Γu can be

given by

Γu (f ,V |hu) =
|hH
uV fu|2∑

u′∈U\u |hH
uV fu′ |2 + ξ2

u

, (4.26)

with f ,
[
fT

1 , · · · ,fT
U

]T ∈ CBUNRF×1.

In equation (4.25), MNRF×Nt
cc denotes an NRF-by-Nt sub-Riemannian circle mani-

fold in CNRF×Nt , defined as

MNRF×Nt
cc ,

{
z∈CNRF×Nt

∣∣∣|zi|=1, i={1, · · ·, NRF×Nt}
}
. (4.27)

It should be noted that the problem formulated in equation (4.25) differs funda-

mentally from related robust beamforming methods. The objective of the problem

6It should be noted that this method will be proposed later for different types of noise. For the
sake of simplicity, the common AWGN model is assumed here.
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formulated in equation (4.25) is to enable reliable communication even under harmful

random blockages and CSI errors, by minimizing sum-outage, which is more practical

from a system point-of-view. In addition, unlike deterministic formulations, which

are often based on a max-min sum rate maximization framework followed by convex

approximations with complexity that grows rapidly, equation (4.25) is stochastic and

has only as many constraints as the number of APs owing to the power constraints on

top of the unit modular constraint for analog beamforming.

4.3.3 Hybrid OutMin

Reformulation as Empirical Risk Minimization Problem

In this section, we determine the update rules for the digital and analog beamformers,

f and V , required to solve equation (4.25). To that end, we employ the Gauss-Seidel-

type block-coordinate stochastic gradient technique [189] in conjunction with manifold

optimization to decouple the variables f and V , so that the intractability imposed

jointly by the stochastic objective and the non-convex constraint can be mitigated,

providing an iterative alternate solution for the problem formulated in equation (4.25).

To this end, owing to the ambiguity of the objective function, we first introduce

the following indicator function 1Γu(f ,V |hu)<γu given by

1Γu(f ,V |hu)<γu =

1 if Γu (f ,V |hu) < γu

0 otherwise
, (4.28)

such that equation (4.25) can be written as a type of expectation minimization problem,

namely

minimize
f ,V

∑
u∈U

Eωkb,u
[
1Γu(f ,V |hu)<γu

]
(4.29a)

subject to ‖VbFb‖2F ≤ Pmax,b, ∀ b, (4.29b)

Vb ∈MNRFNt
cc , ∀ b. (4.29c)

Under the assumption that the channel gains and AoDs are obtained from the

preceding channel estimation process, while also considering that some of those paths

might be under random blockage during the actual data transmission, one may notice

that possible combinations of blockage patterns due to ωkb,u can be randomly generated

and utilized as a training dataset for problem (4.29). This is based on the established

fact that the path blockage probabilities of mmWave channels as well as the CSI error

variance can be (at least roughly) estimated, as demonstrated in [176–178].

Considering the above, we define hmu as the m-th training data batch for the channel
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hu of the u-th user, such that the ERM problem formulation of equation (4.29) can

be further rewritten in terms of the summation, i.e.

minimize
f ,V

1

M

M∑
m=1

∑
u∈U

1Γu(f ,V |hmu )<γu (4.30a)

subject to ‖VbFb‖2F ≤ Pmax,b ∀ b, (4.30b)

Vb ∈MNRFNt
cc ∀ b, (4.30c)

where M denotes the size of the training dataset.

To address the intractable non-smoothness of the ERM problem given in equation

(4.30), we further introduce a smooth surrogate function νu (f ,V |hmu ) so that a gradi-

ent expression of (4.30a) can be efficiently computed. To this end, we exploit the fact

that equation (4.30) can be seen as a classification problem; therefore, the indicator

function (4.30a) can be replaced by the hinge surrogate function [185,190]

νu (f ,V |hmu ) =

0 if 1− Γu(f ,V |hmu )
γu

< 0,

1− Γu(f ,V |hmu )
γu

otherwise,
(4.31)

which in turn enables equation (4.30) to be rewritten as

minimize
f ,V

1

M

M∑
m=1

∑
u∈U

νu (f ,V |hmu ) (4.32a)

subject to ‖VbFb‖2F ≤ Pmax,b ∀ b, (4.32b)

Vb ∈MNRFNt
cc ∀ b. (4.32c)

The latter formulation of the proposed robust cooperative hybrid mmWave beam-

forming problem can be recognized as a type of differentiable non-convex stochastic

optimization problem with manifold constraints, whose solution can be found via a

block-coordinate descent algorithm such as that proposed in [189]. To this end, how-

ever, the gradients of the objective (4.32a) with respect to the digital baseband matrix

f and the analog RF beamforming matrix V must be derived, which is the subject of

the following.

Following a standard stochastic coordinate-descent framework [191], this task will

be pursued under a hybrid and alternate approach in which the gradients of the ob-

jective function (4.32a) with respect to the digital baseband component f with V

constant, and with respect to the analog RF component V with f constant will be

considered. In addition, we consider a minimization algorithm for variance reduction

in terms of gradient direction at each iteration [183] by means of mini-batchs.
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Digital Baseband Component

For notation simplicity, we hereafter define the mini-batch size employed at the i-th

algorithmic iteration as Mi, with 1�Mi �M .

For a fixed V , and over a mini batch of size Mi, the optimization problem (4.32)

reduces to the subproblem

minimize
f

1

Mi

Mi∑
m=1

∑
u∈U

νu (f |V ,hmu ) (4.33a)

subject to ‖VbFb‖2F ≤ Pmax,b ∀ b. (4.33b)

Since the entries of the digital baseband beamforming vector f can be any complex

value that satisfies the power constraint (4.33b), the gradient of νu (f |V ,hmu ) with

respect to f can be computed by taking its derivative for a fixed V , which yields

∇νu (f |V ,hmu )=

0 if 1− Γu(f |V ,hmu )
γu

< 0

−∇Γu(f |V ,hmu )
γu

otherwise,
(4.34)

where the gradient of the SINR expression Γu can be computed by introducing its

alternative formula for the stacked baseband beamforming vector f

∇Γu(f |V ,hmu )=∇
fHΦm

f f

fHΨm
f f + ξ2

u

, (4.35)

=
Φm
f f

fHΨm
f f+ξ2

u

−
fHΦm

f f

(fHΨm
f f+ξ2

u)2
Ψm
f f,

where the second equality follows from the Wirtinger derivative and the auxiliary

matrices Φm
f and Ψm

f are respectively defined as

Φm
f , diag (eu)⊗ V Hhmu h

mH
u V , (4.36a)

Ψm
f , diag (ēu)⊗ V Hhmu h

mH
u V , (4.36b)

where eu ∈ {0, 1}U×1 denotes the u-th vector of the standard orthonormal basis of

dimension U and ēu denotes the logical negation of eu (i.e., ēu = 1− eu).

From the above, the update of f for a fixed analog RF beamforming matrix V can

be written as

f (i) =P‖VbFb‖2F≤Pmax,b

(
f (i−1)−

αfi
Mi

Mi∑
m=1

∑
u∈U
∇νu

(
f |V ,hmu

))
, (4.37)

where f (i−1) indicates the solution obtained at the (i − 1)-th iteration, αfi is the
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corresponding step-size to be tuned later, and P‖VbFb‖2F≤Pmax,b
(·) denotes the projection

onto the feasible convex set defined by the power constraint per-AP given by inequality

(4.33b).

Analog RF Component

Analogous to the above, for a fixed f , and over a mini batch of sizeMi, the optimization

problem (4.32) with respect to V reduces to the subproblem

minimize
V

1

Mi

Mi∑
m=1

∑
u∈U

νu (V |f ,hmu ) (4.38a)

subject to Vb ∈MNRFNt
cc ∀ b. (4.38b)

Unlike digital baseband beamforming f , however, calculating the gradient direction

with respect to V is challenging. This is because of the unit modular constraint defined

by the complex circle manifold MNRFNt
cc ; thus, manifold optimization techniques [192]

must be employed. To that end, we first define the tangent space at a given z ∈
MNRFNt

cc , which can be written as

TzMNRFNt
cc , {τ ∈ CNRFNt |<{τ ◦ z∗} = 0}, (4.39)

which contains all tangent vectors to MNRFNt
cc at a certain point z.

Since the complex circle manifold MNRFNt
cc is a smooth Riemannian manifold, a

positive-definite inner product can be defined on the tangent space given by equation

(4.39), such that the Riemannian gradient ∇Mνu (V |fu,hmu ) at z on MNRFNt
cc can be

expressed as the orthogonal projection of the Euclidean gradient ∇νu (V |fu,hmu ) onto

its tangent space. In other words, we may define

∇Mνu (V |f ,hmu ) , PTzMNRFNt
cc

(∑Mi
m=1∇νu(V |f ,hmu )

Mi

)
=

1

Mi

Mi∑
m=1

∇νu (V |f ,hmu )−<
{

1

Mi

Mi∑
m=1

∇νu (V |f ,hmu ) ◦ V ∗
}
◦ V . (4.40)

To facilitate the derivation of the Euclidean gradient ∇νu (V |fu,hmu ) with respect

to V , we reformulate the received signal and the SINR expressions so as to form a

tractable optimization variable. In particular, we rewrite the received signal originally

given in equation (4.24) as

yu = hH
uV fuxu +

∑
u′∈U\u

hH
uV fu′xu′ + nu (4.41a)

= ((xufu)T⊗ hH
u )vec(V ) +

∑
u′∈U\u

((xu′fu′)
T⊗ hH

u )

,v︷ ︸︸ ︷
vec(V ) +nu, (4.41b)
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where vec(·) denotes the vectorized (column stacked) representation of a matrix, such

that the implicitly defined vectorized representation v , vec(V ) is a sparse vector

owing to the partially connected structure of V .

It will prove convenient, therefore, to further define the auxiliary matrix

Ṽ ,
[
V1, · · · ,VB

]
, (4.41c)

such that its vectorized representation ṽ , vec(Ṽ ) is a dense vector, and we may write

yu = ((xufu)T ⊗ hH
u )Wṽ +

∑
u′∈U\u

((xu′fu′)
T ⊗ hH

u )Wṽ + nu, (4.41d)

where W denotes the transform matrix mapping the dense vector ṽ onto its sparse

representation v.

In light of equation (4.41), the SINR originally expressed as in equation (4.26) can

be rewritten for a given channel hmu as

Γu (ṽ|f ,hmu ) =
ṽHΦm

ṽ ṽ

ṽHΨm
ṽ ṽ + ξ2

u

, (4.42)

where

Φm
ṽ ,W

H
(
fT
u ⊗ hmu

H
)H(

fT
u ⊗ hmu

H
)
W , (4.43a)

Ψm
ṽ ,W

H
∑

u′∈U\u

(
fT
u′ ⊗ hmu

H
)H(

fT
u′ ⊗ hmu

H
)
W . (4.43b)

Given the above, the Euclidean gradient ∇νu (ṽ|f ,hmu ) can be represented as

∇νu (ṽ|f ,hmu )=

0 if 1− Γu(ṽ|f ,hmu )
γu

< 0

−∇Γu(ṽ|f ,hmu )
γu

otherwise,
(4.44)

where, based on the SINR reformulation given in equation (4.42), the Euclidean gra-

dient of the SINR can be expressed similarly to equation (4.35), i.e.

∇Γu (ṽ|f ,hmu ) =
Φm
ṽ ṽ

ṽHΨm
ṽ ṽ+ξ2

u

−
ṽHΦm

ṽ ṽ(
ṽHΨm

ṽ ṽ+ξ2
u

)2 Ψm
ṽ ṽ. (4.45)
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In light of the above, the Riemannian gradient can be finally rewritten as

∇Mνu (ṽ|f ,hmu ) =
1

Mi

Mi∑
m=1

∇νu (ṽ|f ,hmu ) (4.46)

−<
{

1

Mi

Mi∑
m=1

∇νu (ṽ|f ,hmu ) ◦ ṽ∗
}
◦ṽ,

which can be recognized as a variation of equation (4.40) over the vectorized dense

representation ṽ of V .

Based on the Riemannian gradient of equation (4.46), the updated vector ṽ ob-

tained over the tangent space and mapped onto the complex circle manifold MNRFNt
cc

can be written as

ṽ(i) =Retr
(
ṽ(i−1)− αvi

∑
u∈U
∇Mνu

(
ṽ(i−1)|f ,hmu

))
, (4.47a)

where Retr(·) denotes the retraction operator that rescales a given vector to element-

wise unit modular entries [192] and αvi is a step size to be given later.

After obtaining ṽ(i), the update of V for a fixed digital baseband beamforming

matrix f can finally be obtained by unvectorizing its associated sparse version, i.e.

V (i) =unvec(Wṽ(i)). (4.47b)

Choice of Stepsize Parameters

Having derived gradient updates corresponding to both the digital baseband beam-

forming f and the virtually configured partially connected analog RF beamforming V

constrained by the unit modular manifoldMcc, we proceed to propose a new blockage-

robust hybrid beamforming algorithm via the block-coordinate stochastic gradient de-

scent (BSGD) framework for CoMP systems operating at mmWave bands. To that

end, we first need to determine the learning rates αfi and αvi employed in equations

(4.37) and (4.47a), respectively.

There are two well-known approaches to setup the stepsize for SGD algorithms,

namely, the shrinkage criterion [193], which entails a shrinking learning rate α1 >

· · · > αi > · · · satisfying
∑∞

i=1 αi → ∞ and
∑∞

i=1 α
2
i < ∞; and the Lipschitz-based

criterion [189], according to which the learning rate is set to be αi ≤ 1/L, ∀i, where L

is the Lipschitz constant.

Since it is highly challenging to determine the exact Lipschitz constant for the

problem at hand, setting αi = ρ/(
√
i · L∗), where L∗ is a lower bound of the Lipschitz

constant L and ρ is a scaling coefficient, has been considered in the literature [189,194].

With that in mind, one can leverage the well-known Taylor theorem to obtain a lower
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bound of the Lipschitz constant. In particular, upon momentarily altering our notation

and using νu to denote the u-th term of either of the surrogate objective functions in

equations (4.33a) and (4.38a), the Taylor Theorem yields Lu · I � ∇2νu =⇒ Lu ≥
λmax(∇2νu), where λmax(·) is the largest eigenvalue (spectral norm) of a given matrix,

such that the lower bound on the Lipschitz constant is given by

L∗ =
U∑
u=1

λmax(∇2νu), (4.48)

which is also leveraged in [194].

In light of the above, we offer below the derivation of the Lipschitz constant lower

bounds L∗f and L∗v corresponding to the stochastic-gradient-based solutions of the

subproblems described by equations (4.33) and (4.38), respectively.

The Hessian of νu (f |V ,hmu ) is given by

Hf (νu (f |V ,hmu )) , ∇2νu (f |V ,hmu ) (4.49)

=

0 if 1− Γu(f |V ,hmu )
γu

< 0

−Hf (Γu(f |V ,hmu ))
γu

otherwise,

where Hf (Γu (f |V ,hmu )) is the Hessian of the SINR with respect to f , which in turn

is given by

Hf (Γu(f |V ,hmu )) , ∇2Γu (f |V ,hmu )

∂2Γu(f |V ,hmu )

∂f∗∂fT
∂2Γu(f |V ,hmu )

∂f∗∂fH

∂2Γu(f |V ,hmu )

∂f∂fT
∂2Γu(f |V ,hmu )

∂f∂fH

 (4.50)

=

,q1︷ ︸︸ ︷
1

fHΨm
f f+ξ2

u

[
Φm
f 0

0 Φm
f

T

]
−

,q2︷ ︸︸ ︷
fHΦm

f f

(fHΨm
f f+ξ2

u)2

[
Ψm
f 0

0 Ψm
f

T

]

−

,q3︷ ︸︸ ︷
2

[
Φm
f ff

HΨm
f Φm

f ff
TΨm

f
T

Φm
f

Tf∗fHΨm
f Φm

f
Tf∗fTΨm

f
T

]
(fHΨm

f f+ξ2
u)2

+
2fHΦm

f f

(fHΨm
f f+ξ2

u)3

[
Ψm
f ff

HΨm
f Ψm

f ff
TΨm

f
T

Ψm
f

Tf∗fHΨm
f Ψm

f
Tf∗fTΨm

f
T

]
︸ ︷︷ ︸

,q4

.

Given the relation between∇2νu (f |V ,hmu ) and Hf (Γu (f |V ,hmu )), as per equation
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(4.49), it follows from equations (4.48) and (4.50) that, for a given user, we have

L∗fu =
1

γu
λmax(−Hf (Γu(f |V ,hmu ))) (4.51)

≤ 1

γu

(
λmax(−q1)+λmax(q2)+λmax(q3)+λmax(−q4)

)
,

where the latter inequality follows straightforwardly from the triangular inequality.

Note that q1 and q4 are both rank-1 positive semi-definite matrices, which implies

that λmax(−q1) = 0 and λmax(−q4) = 0. In addition, for q3, we have

λmax(q3) =
2(fHΦm

f Ψm
f f + fTΦm

f
TΨm

f
Tf∗)

(fHΨm
f f+ξ2

u)2

=
4fHΦm

f Ψm
f f

(fHΨm
f f+ξ2

u)2
= 0, (4.52)

where we employed the fact that Φm
f Ψm

f = 0.

Using these results in equation (4.51), we obtain

L∗fu ≤
1

γu
λmax(q2), (4.53)

with

λmax(q2) =
fHΦm

f f

(fHΨm
f f+ξ2

u)2
λmax(Ψm

f )

≤
fHΦm

f f

ξ4
u

λmax(Ψm
f )

=
Tr
(
V fuf

H
u V

Hhmu h
m
u

H
)
‖hmu HV ‖22

ξ4
u

≤ BNtNRF
‖ĥu‖42
ξ4
u

B∑
b=1

Pmax,b, (4.54)

where the identity λmax

([
A 0
0 AT

])
= λmax(A) and the bound Tr (AB) ≤ λmax(A)Tr (B)

combined with the trivial result Tr
(
V V H

)
= BNtNRF were used in the first equation

and the last inequality, respectively.

Combining equations (4.48), (4.53), and (4.54), we finally have

L∗f ≤ BNtNRF

B∑
b=1

Pmax,b ·
U∑
u=1

‖ĥu‖42
γuξ4

u

, (4.55)

from which it follows that the learning rates αfi to be employed at each iteration

of equation (4.37) in order to solve problem (4.33) and obtain the optimal digital
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baseband beamformer f is given by

αfi = ρ

(
√
iBNtNRF

B∑
b=1

Pmax,b ·
U∑
u=1

‖ĥu‖42
γuξ4

u

)−1

. (4.56)

Following steps similar to the above, the Hessian matrix with respect to ṽ is given

by

Hv (νu(ṽ|f ,hmu )) , ∇2Γu(ṽ|f ,hmu ) =

[
∂2Γu(ṽ|f ,hmu )

∂ṽ∗∂ṽT
∂2Γu(ṽ|f ,hmu )

∂ṽ∗∂ṽH
∂2Γu(ṽ|f ,hmu )

∂ṽ∂ṽT
∂2Γu(ṽ|f ,hmu )

∂ṽ∂ṽH

]
(4.57)

=

,`1︷ ︸︸ ︷
1

ṽHΨm
ṽ ṽ+ξ2

u

[
Φm
ṽ 0

0 Φm
ṽ

T

]
−

,`2︷ ︸︸ ︷
ṽHΦm

ṽ ṽ

(ṽHΨm
ṽ ṽ+ξ2

u)2

[
Ψm
ṽ 0

0 Ψm
ṽ

T

]

−

,`3︷ ︸︸ ︷
2

[
Φm
ṽ ṽṽ

HΨm
ṽ Φm

ṽ ṽṽ
TΨm

ṽ
T

Φm
ṽ

Tṽ∗ṽHΨm
ṽ Φm

ṽ
Tṽ∗ṽTΨm

ṽ
T

]
(ṽHΨm

ṽ ṽ+ξ2
u)2

+
2ṽHΦm

ṽ ṽ

(ṽHΨm
ṽ ṽ+ξ2

u)3

[
Ψm
ṽ ṽṽ

HΨm
ṽ Ψm

ṽ ṽṽ
TΨm

ṽ
T

Ψm
ṽ

Tṽ∗ṽHΨm
ṽ Ψm

ṽ
Tṽ∗ṽTΨm

ṽ
T

]
︸ ︷︷ ︸

,`4

,

with λmax(−`1) = λmax(−`4) = 0, such that

L∗vu=
1

γu
λmax(−Hv(Γu(ṽ|f ,hmu )) ≤ λmax(`2)+λmax(`3)

γu
, (4.58)

where

λmax(`2) =
ṽHΦm

ṽ ṽ

(ṽHΨm
ṽ ṽ+ξ2

u)2
λmax(Ψm

ṽ ), (4.59a)

λmax(`3) =
4ṽHΦm

ṽ Ψm
ṽ ṽ

(ṽHΨm
ṽ ṽ+ξ2

u)2
. (4.59b)

For the sake of future convenience, we introduce the following equalities:

WH
(
fT
u ⊗ hmu

H
)H(

fT
u ⊗ hmu

H
)
W = WH

(
f∗uf

T
u ⊗ hmu hmu

H
)
W (4.60a)

WH
∑

u′∈U\u

(
fT
u′ ⊗ hmu

H
)H(

fT
u′ ⊗ hmu

H
)
W = WH

∑
u′∈U\u

(
f∗u′f

T
u′ ⊗ hmu hmu

H
)
W , (4.60b)

where we utilized (A⊗B)(C ⊗D) = (AC ⊗BD).
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Then, we obtain

λmax(Ψm
ṽ ) = Tr

(
WH

(
f∗uf

T
u ⊗ hmu hmu

H
)
W
)
,

≤
B∑
b=1

Pmax,b‖ĥu‖22, (4.61)

and

ṽHΦm
ṽ ṽ

(ṽHΨm
ṽ ṽ+ξ2

u)2
≤
BNtNRF

∑B
b=1 Pmax,b

ξ4
u

‖ĥu‖22, (4.62a)

4ṽHΦm
ṽ Ψm

ṽ ṽ

(ṽHΨm
ṽ ṽ+ξ2

u)2
≤

4BNtNRF(
∑B

b=1 Pmax,b)
2

ξ4
u

‖ĥu‖42, (4.62b)

which, when combined with equations (4.58) and (4.59) and ultimately substituted

into equation (4.48), yield

L∗v ≤ 5BNtNRF

(
B∑
b=1

Pmax,b

)2

·
∑
u

‖ĥu‖42
γuξ4

u

. (4.63)

Consequently, the learning rates αvi to be employed at each iteration of equation

(4.47a) in order to solve problem (4.38) and obtain the optimal digital baseband beam-

former V according to equation (4.47b) are given by

αvi = ρ

√i5BNtNRF

(
B∑
b=1

Pmax,b

)2

·
∑
u

‖ĥu‖42
γuξ4

u

−1

. (4.64)

Algorithm Description

Combining the results above, a complete scheme to solve the stochastic formulation

of the mmWave cooperative hybrid blockage-robust beamforming design described

originally in equation (4.4) is achieved, which is summarized in Algorithm 7.

Note that in order to reduce the variance of the gradient direction, we adopt an

mini-batch stochastic gradient descent (MSGD)-type variance reduction technique,

which updates the solution by taking the sample mean over a small fraction of the

training dataset at each algorithmic iteration. With regards to generating the training

dataset, we remark that the CSI error level ζ2
b,u,k is typically several orders of magnitude

smaller than its corresponding mean quantity gkb,u, which can also be systematically

incorporated into the robust beamforming design in Algorithm 7.

In summary, the proposed algorithm exhibits robustness not only against random

blockages but also against CSI errors, which to the best of our knowledge is a novel

contribution that has not been presented before. Finally, the efficacy of the method is

elucidated in the next section.
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Algorithm 7 Partially-Connected Hybrid OutMin

Inputs: Channel gain and angle estimates gkb,u, θkb,u and φkb,u; corresponding un-

certainty variance ζ2
b,u,k; received signals yu; maximum transmit power Pmax,b and

target SINR γu ∀u, b, k
Outputs: Digital and analog beamformers V and f

1: Initialize V (0) by phase matching to ĥb,u.

2: Initialize f (0) by phase matching to ĥb,u.

3: repeat

4: Generate training batchs.

5: Update f (i) via equation (4.37) with learning rate αfi as in equation (4.56).

6: UpdateV (i) via equations (4.47) with learning rate αvi as in equation (4.64).
7: until t = tmax

8: Retain last V = V (i) as the final analog beamformer.

9: Obtain final digital beamformer f via equation (4.37) with the last beamformer

V and learning rate αfi as in equation (4.56).

4.4 Performance Assessment

In this section, we evaluate the sum-outage-minimizing hybrid robust mmWave beam-

forming method proposed above, comparing its performance against three fully digital

schemes, namely, the full digital OutMin technique, the SRM method [195], and the

classic MRT.

Since fully digital approaches assume that transmit beams are optimized without

restrictions (employing a BNt×U fully digital beamforming matrix to serve U users),

the performances of fully digital methods serve as bounds on those of their hybrid

counterparts.

In our simulations, a setup similar to that employed in the measurement campaign

carried out for the 28 [GHz] band reported in [196] is considered, unless mentioned

otherwise. In particular, a mmWave square microcell model, with sides 100 meters

wide and with B = 4 APs each located at a corner of the square, is assumed, while

U = 2 UEs are randomly placed within the square being served by the system. We set

the heights of the APs and UEs to 15 [m] and 1.6 [m], respectively, and it is assumed

that each AP is equipped with Nt = 16 transmit antennas but only NRF = 2 digital

RF chains, with the maximum transmit power constrained to Pmax,b = 30 [dBm].

The mmWave channel propagation model proposed in [161, Table I] is utilized to

characterize the path loss and the number of clusters, and the AWGN variance ξ2
u of

each UE is set such that

10 log10

(
ξ2
u

)
= 10 log10 (1000κT ) + 10 log10 (W ) + NF, (4.65)
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where κ ≈ 1.38 × 10−23 is the Boltzmann constant, T = 293.15 [K] is the physical

temperature at each user location in Kelvins (i.e., 20 degrees Celsius), W = 100 [MHz]

is the subcarrier bandwidth, and NF = 5 [dB] is the standard noise figure corresponding

to each UE, ultimately yielding ξ2
u ≈ −89 [dBm].

Finally, we set the target data rate to be either 3 or 5 [bits/s/Hz] depending on

the user requirements, where γu is the desired SINR as defined in equation (4.4), while

the mini-batch size Mi = 16.

4.4.1 Convergence Behavior

We start our assessment by evaluating the convergence behavior of the proposed hy-

brid beamforming method in terms of outage probability, which is the objective cost

function of interest in this study. For the sake of simplicity and illustration, we assume

that the blockage probabilities (pkb,u ∀ m, b, u) are identical, regardless of the super-

scripts and subscripts, i.e., pkb,u = p ∀ m, b, u, and p is assumed to vary from 20%

to 60% as suggested by the findings in [163, 165]. With that in mind, three blockage

scenarios are investigated in the simulations, namely, 20%, 40%, and 60%, which are

referred to as moderate, severe, and critical blockage conditions, respectively. In turn,

the CSI uncertainty ζ2
b,u,k is considered to be proportional to the corresponding average

small-scale fading coefficient, that is, ζ2
b,u,k = ζ2 · gkb,u, where ζ2 is a parameter that

controls the CSI accuracy level.

The first set of results is presented in Figure 4.3, which depicts the convergence of

the proposed iterative hybrid beamforming design for blockage-robust CoMP mmWave

systems, as a function of the number of algorithmic iterations, for the three distinct

blockage scenarios described above. It is found that regardless of the severity of the

scenario in terms of blockage probability, the proposed method quickly learns the

crucial blockage patterns and converges to a convergence point, not only under the ideal

assumption of perfect CSI typically adopted in related literature, as shown in Figure

4.3a, but also under the more realistic assumption that fluctuation of the small-scale

fading coefficients takes place (i.e., imperfect CSI), as shown in Figure 4.3b. In fact,

in both cases (perfect or imperfect CSI), and under all blockage scenarios (moderate,

severe, and critical), the number of iterations required for the proposed beamformer

to converge is approximately the same, which demonstrates the remarkable robustness

of the method.

Finally, it is also observed (interestingly but as expected) that the outage perfor-

mance of the proposed method is dominated by probabilities of random path blockages

themselves, rather than by the CSI error variaces. This fact will be elucidated further

in the next subsection.
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(a) Without CSI Error.

(b) With CSI Error.

Figure 4.3: Convergence behavior of the proposed method for different channel conditions.
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4.4.2 Statistical Analysis of Throughput

Next, we numerically analyze, via Monte Carlo simulations, the statistical behavior

of the four beamforming methods considered herein—the proposed design, MRT, dig-

ital OutMin method, and SRM method—in terms of their achievable throughput and

outage probability under different channel conditions.

We again emphasize that the fully digital versions of the MRT, OutMin, and SRM

schemes are simulated such that the corresponding performances should be considered

performance upper-bounds for their hybrid counterparts. Finally, to demonstrate that

the advantage of the proposed method extends beyond average performance, all results

are offered in the form of throughput cumulative density functions (CDFs).

In Figures 4.4 and 4.5, the CDFs of the achievable throughput obtained by the

four beamforming methods, with target rates of 3 and 5 [bps/Hz], respectively, are

shown for different blockage scenarios and under perfect CSI, while Figures 4.6 and

4.7 display equivalent results obtained under CSI uncertainty. Since the bandwidth of

the system is W = 100 [MHz], these target rates imply that in the cases corresponding

to Figures 4.4 and 4.6, the system is set to ideally serve each user with at least 300

[Mbps], while in Figures 4.5 and 4.7, the system aims to serve each user with at least

500 [Mbps], respectively.

In all figures, lines without markers are used for the SotA methods, while a solid

line with a white circular marker indicates the proposed method. For readability,

the target throughput is highlighted in the figures by a black vertical line annotated

with the text “Target Rate”. In addition, the outage probability achieved by each

beamforming method — as defined in equation (4.66) — is marked by an arrow also

annotated with the corresponding numerical value.

Pr {log2(1 + Γu (f ,V |hu)) < log2(1 + γu)} . (4.66)

In all the figures, the proposed hybrid method achieves a lower outage probability

than the fully digital MRT and SRM beamformers, regardless of CSI quality and

blockage conditions. Furthermore, the new technique is found to consistently approach

the performance of the also-fully-digital OutMin method. Taking into account that the

proposed hybrid scheme makes use of only NRF = 2 RF chains per AP, as opposed to

fully digital methods which require all NRF = Nt = 16 RF chains per AP, the results

demonstrate the remarkable effectiveness of the proposed hybrid method in combatting

path blockage with significant potential to reduce hardware costs (by alleviating RF

chain requirements) with reasonable outage performance deterioration.
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(a) 20% of Blockage Probability

(b) 40% of Blockage Probability
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4.4. Performance Assessment

(c) 60% of Blockage Probability

Figure 4.4: CDF of achieved data rates for different blockage probabilities with target rate of 3 [bps/Hz]
and perfect CSI.

(a) 20% of Blockage Probability
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4.4. Performance Assessment

(b) 40% of Blockage Probability

(c) 60% of Blockage Probability

Figure 4.5: CDF of achieved data rates for different blockage probabilities with target rate of 5 [bps/Hz]
and perfect CSI.
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As for the impact of CSI errors, a comparison of Figures 4.4 and 4.5 against Figures

4.6 and 4.7 indicates that the overall impact of CSI errors is to retract some sharp-

ness from the outage minimization approaches in enforcing the prescribed target rate.

Even under such an effect, however, both the relative gain over the MRT and SRM

beamformers, as well as the proximity in performance of the proposed scheme to the

ideal OutMin method, remain mostly unchanged.

To cite a few examples, both under perfect and imperfect CSI, the proposed hybrid

CoMP beamformer, under 20% path blockage probability and a target throughput of

3 [bps/Hz], achieves an outage reduction of approximately 30% and 10% over the

MRT and SRM beamformers, respectively (see Figures 4.4a and 4.6a). Similarly, at

60% blockage probability and a target rate of 5 [bps/Hz], the new hybrid scheme

outperforms the MRT and SRM methods by approximately 30% and 25% in terms

of the reduction of outage probability, respectively, both under perfect and imperfect

CSI conditions (see Figures 4.5c and 4.7c).

Thus, the results demonstrate that the proposed SGD approach for cooperative

hybrid beamforming aimed at minimizing outage in mmWave systems subjected to

path blockage and CSI imperfections is highly effective.

An interesting and final conclusion that can be drawn from the comparison of the

results shown in Figures 4.4 through 4.7 is that among the considered methods, the

MRT, OutMin, and new hybrid techniques are in fact all somewhat robust to CSI

imperfections, whereas the SRM schemes seems to be the most sensitive to the quality

of channel estimates. This is somewhat unsurprising, since the SRM method is not

designed to minimize outage, but rather to maximize the achievable rate, such that one

could argue that the aforenoted comparison is “unfair” to that particular approach.

Scrutinizing this conclusion is a worthy exercise, nevertheless, as it provides insight

on the conceptual question of whether rate maximization is the most suitable figure of

merit in the optimization of mmWave systems, which in practice needs to be carefully

chosen depending on the system objectives and requirements, as implied by Figures

4.4 through 4.7.

To that end, we compare in Figure 4.8 the effective throughput (i.e., the average

throughput at and above the target rate) achieved by each of the considered beam-

forming schemes, as a function of the path blockage probability and for both evaluated

channel estimation conditions, namely, perfect CSI (ζ = 0) and imperfect CSI with

ζ = 10−1. Following the related literature, the effective throughput is defined as

E[log2(1 + x)], where x = Γu (f ,V |hu) if Γu (f ,V |hu) ≥ γu and x = 0 otherwise.
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(a) 20% of Blockage Probability

(b) 40% of Blockage Probability
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4.4. Performance Assessment

(c) 60% of Blockage Probability

Figure 4.6: CDF of achieved data rates for different blockage probabilities with target rate of 3 [bps/Hz]
and CSI errors.

(a) 20% of Blockage Probability
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4.4. Performance Assessment

(b) 40% of Blockage Probability

(c) 60% of Blockage Probability

Figure 4.7: CDF of achieved data rates for different blockage probabilities with target rate of 5 [bps/Hz]
and CSI errors.
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4.4. Performance Assessment

(a) Without CSI Error.

(b) With CSI Error.

Figure 4.8: Effective throughput as a function of the blockage probabilities, with and without CSI
uncertainty.
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4.5. Conclusion

It is found, once again, that the proposed hybrid beamforming scheme performs

only slightly worse than its fully digital couterpart, outperforming the other SotA

methods, regardless of the CSI conditions and blockage probabilities. The only excep-

tion is the case of perfect CSI for blockage probabilities below 25%, where it is found

that the SRM scheme outperforms the proposed method. It must be emphasized, how-

ever, that: a) the SRM scheme is fully digital, employing a total of Nt×B=16×4=64

RF chains to serve U = 2 users, in contrast to the proposed hybrid scheme, which

requires only NRF×B=2×4=8 RF chains; and b) that the SRM scheme is designed

to maximize effective throughput, paying to that end the price of sacrificing overall

QoS by allowing higher outage probabilities (see e.g., Figure 4.5a where it is shown

that the SRM beamformer with perfect CSI under 20% blockage probability leads to

outages above 35%).

By contrast, when subjected to CSI errors, even that eventual localized “advantage”

of the SRM approach is lost. In fact, as shown in Figure 4.8b, the SRM approach proves

the most sensitive to both path blockages and CSI errors, exhibiting a significantly

higher degree of degradation in performance than all other methods.

In summary, the results demonstrate collectively that the proposed method offers

a competitive approach to mitigate the path blockage challenge in mmWave systems;

notably, it also possesses robustness against CSI imperfections and exhibits little sacri-

fice in performance, compared to the fully digital OutMin approach, for the significant

potential reduction in hardware cost due to its hybrid architecture.

4.5 Conclusion

In this chapter, we contributed to the reliability problem in mmWave systems sub-

ject to path blockage by proposing a stochastic optimization framework to design a

robust beamforming mechanism against such uncertainties. To elaborate, the pro-

posed algorithm aims to minimize the total outage probability characterized by the

sum of probabilities that a user SINR quantity is below a certain requirement, unlike

the well-studied rate maximization alternatives such as SRM and max-min methods.

The motivation behind was that the fundamental goal of robust beamforming design

for mmWave systems subject to such path blockages is rather to minimize the QoS

violation (i.e., outage probability) in order to run a certain application at each user

without any interruption.

Based on this framework, we first proposed a fully-digital beamforming design

in order to clarify that the proposed outage minimization approach via stochastic

optimization posseses potential to mitigate such random blockage, which is then shown

via simulation to be effective for a wide range of blockage probabilities. In order to

incorporate practical considerations such as infrastructural limitations and unavoidable
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CSI uncertainties, we then proposed a partially-connected hybrid robust beamforming

design in conjunction with the Bernoulli-Gaussian blockage model that enables both

challenges to be jointly tackled.

The simulation results confirm the robustness of the proposed algorithms in terms of

the QoS violation reduction. Also, it is shown via numerical performance assessments

that the hybrid robust beamforming method is capable of approaching the full-digital

counterpart in terms of outage probability.

Regarding potential future works, one can consider a fast-converging low-complexity

alternative of the proposed algorithms by introducing the momentum method and

adaptive learning rate tuning as shown in the adaptive moment estimation (ADAM)

optimizer well-studied in machine learning literature [197]. In addition to that, a re-

lated open problem is to further incorporate other practical aspects such as limited

fronthaul links, phase errors at the phase shifters, and frequency-selective beam squint

effects in wideband transmissions. Furthermore, since the proposed stochastic opti-

mization framework is generic, one can consider a similar approach to tackle nonlinear

effects in hardware. For instance, although most of the hardware impairment aware

beamforming designs in full duplex literature (e.g., [74,198,199]) assume a linearlized

approximation model to capture such nonlinearity caused by nonideal hardware, a sim-

ilar stochastic approach can directly learn the nonlinearity without resorting to a linear

approximation, which is interesting and worthy of further quantitative investigation.
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Chapter 5

Final Remarks

In this chapter, we offer in the sequel conclusions and key points of the dissertation.

Furthermore, potential future works are listed as derivatives of this research, which are

worth pursuing in the future.

5.1 Conclusion

Key potential QoS requirements in modern and future wireless communication systems,

that is, Massive Connetivity, Latency, and Reliability, have been addressed by the thesis

by means of optimization and Bayesian techniques, proposing several novel algorithms

that are shown via simulation to be effective in terms of satisfying the aforementioned

key requirements. In summary, main findings offered in each section of the thesis are

listed below:

Chapter 2

In this chapter, we developed an efficient and robust receiver framework in non-

orthogonal systems with the aim of satisfying the Massive Connetivity requirements

in future wireless systems. The main findings of this chapter are the following:

• The discreteness-aware regularization approach inspired by CS can be exploited

for an inverse problem with discrete inputs, such that the solution is efficiently

enforced to be a member of the prescribed discrete constellation set (e.g., QAMs).

Note that this constraint of the inputs to be discrete has been ignored by the

conventional linear receivers.

• The proposed regularization approach composed of a combination of a newly-

introduced asymptotically-tight non-convex `0-norm approximation and an FP

technique leads to a generalization of the conventional ZF and LMMSE estima-

tors with adherence to the prescribed discrete constellation set.
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• The proposed framework can then be extended to seemlessly incorporate robust-

ness against practical limitations (i.e., CSI and hardware imperfection), showing

its compatibility and flexibility for different system setups.

• A wide range of its applicability is also illustrated by introduing the concept of

discreteness-awareness in LRMC problems with discrete entries as is the case

with recommnder systems.

Chapter 3

In this chapter, we tackle the overhead reduction in uplink distributed MIMO systems

with the aim of reducing the overall latency. We then proposed two Bayesian inference

based algorithms with different objectives. The main findings of this chapter are the

following:

• In the context of CF-MIMO systems, the goal is to efficiently reduce the overhead

due to the use of resource-consuming piloting by a large number of uplink users

without sacrificing the per-user throughput. To this end, it is shown that this

challenging task can be efficiently addressed by jointly leveraging bilinear infer-

ence and the pseudo-orthogonality of the independently-generated data symbols.

• In contrast, in the context of XL-MIMO systems, we turn our attention to one

of the peculiarities of XL-MIMO systems (i.e., spatial non-stationarity), which is

the fact that the signal from each user is apparent only to distributed portions of

the XL-MIMO antenna array, while obeying the low-latency demand in massive

uplink channels. This is enabled by exploiting bilinear inference and expectation

maximization approaches.

• Notice that although the proposed algorithms are designed for distributed MIMO

scenarios, both are also compatible with centralized MIMO systems without any

further technical modifications.

Chapter 4

In this chapter, we developed a stochastic optimization framework to design outage-

minimum robust beamforming in downlink mmWave systems subject to random path

blockage. We start with formulating the outage minimization problem for a full-digital

beamforming architecture, extending the latter so as to incorporate practical limita-

tions such as the limited number of RF chains and CSI imperfection. The main findings

of this chapter are the following:

• The outage minimization approach is prefered in order to satisfy the motivation

that the fundamental goal of robust beamforming in mmWave systems suffering
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from random path blockage is to minimize the QoS violation for the users to

maintain their running applications.

• A stochastic optimization framework is effective to capture a non-closed-form

expression of the objective outage probability.

5.2 Potential Extensions

The results offered in this thesis can be further extended in many different directions.

Summarizing the thesis, some possible direct extensions of the work are compactly

listed below

• Due to the flexibility of the proposed IDLS framework shown in Chapter 2, the

latter can be further extended and applied to a wide range of interference-limited

communication scenarios including multi-user multi-cell MIMO, mmWave sys-

tems with phase noise, and full-duplex communications. As mentioned earlier,

an IDD extension of the IDLS framework is also left for future work.

• Another interesting extension of IDLS is to leverage the deep-unfolding frame-

work [54,200–202] to dynamically control the regularization and tightness param-

eter by learning, which may lead to better performance and/or faster convergence

speed

• As for possible extensions of Chapter 3, one can consider a coded extension of the

proposed JACDE framework. An open and debatable question is whether AUD

should be performed before or after the channel decoder and how to incorporate

such information in the message passing rules. In addition, the design of the

detector output is worth considering for coded grant-free systems.

• Another interesting extension of Chapter 3 is to incorporate the data detection

capability into Algorithm 5, which is challenging due to the fact that adding the

data part introduces a new variable dimension to be jointly estimated; therefore,

the resultant estimation problem is no longer bilinear but rather multilinear.

A direct approach to this task is to consider generalizing the bilinear inference

framework.

• Both Algorithm 3 and 5 assume ideal hardware and channel conditions, providing

an upperbound of achievable system performance. To bring robustness against

realistic limitations such as carrier frequency offset (CFO) and imperfect clock

synchronization, one needs to tailor the message passing rules.

• Regarging extensions of Chapter 4, a low-complexity fast-converging alternative

to the proposed robust beamforming designs is essential for real-world implemen-
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tations. To that end, the momentum method and adaptive stepsize optimization

may be incorporated.

• Thanks to the flexibility of the considered stochastic optimization framework, a

similar idea can be taken advantage of to address nonlinearity effects in other

communication systems such as full-duplex systems.
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Appendix A

Derivations of the Covariance of

ñ

Recall from equation (2.56) that the total effective noise, including the contributions

due to CSI imperfection and hardware impairment is given by

ñ , Ĥw +
τEs+ τEw + n√

1− τ2
. (A.1)

By definition we then have
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[
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]
(A.2)
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)(
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Distributing the terms in parenthesis and expanding yields
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where, in the second-to-last equation we have substituted the expectations E
[
wwH

]
,

E
[
EssHEH

]
, E
[
EwwHEH

]
and E

[
nnH

]
, taken over noise realizations and utilizing

the identity E
[
XAXH

]
= σ2Tr (A) I, valid when the elements of X are zero-mean

complex Gaussian variables with variance σ2.

For the terms E
[
EssHEH

]
and E

[
EwwHEH

]
in particular, which are subjected

to correlation due to the relation E = Φ
1
2
r Ei.i.d.Φ

1
2
t , we have used
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]
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where we assume that the correlation matrices are Hermitian and that Cs = INt .

We also remark that in case of Φt = Φr = I, the covariance matrix of the effective

noise becomes a function of the dimensionality of the transmit symbols, thus directly

affected by the overloading factor γ.
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Appendix B

Derivations of QCSIDCO

Leveraging the slack variables t`,R and t`,I , the real and imaginary parts of F̃H
` f` can

be respectively bounded as∣∣∣<{F̃H
` f`

}∣∣∣ ≤ t`,R · 1L−1 and
∣∣∣={F̃H

` f`

}∣∣∣ ≤ t`,I · 1L−1, (B.1)

where the inequality is applied in an element-by-element manner.

From equation (B.1), one can readily obtain ‖F̃H
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leading to [
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where x` is defined in Theorem 1, equation (3.7f) can be readily obtained from equation

(3.5b), and this completes the proof.
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Appendix C

Derivation of equation (3.24) and

(3.25)

Given equation (3.18) and (3.21b), the effective PDF can be readily expressed as
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where by the Woodbury inverse lemma we obtained
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. Recalling that
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= B (A+B)−1A for inversible A

and B, one may readily obtain equation (3.24) from (C.1). This completes the deriva-

tion of (3.24).

Similarly, the normalizing factor Ck,m is given by
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which completes the derivation of equation (3.25).
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