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Abstract

The process of cocoa bean fermentation is the key step in chocolate manufacturing. During its
conduction, aroma and flavor compounds are produced because of a complex series of reactions
which will determine important characteristics of the final product. Historically, this process
has been conducted in a spontaneous manner often dictated by local practices in each of the
cocoa bean producing sites. Hence, there is a wide variety of techniques in its implementation,
e.g., use of heaps, platforms and wooden boxes, that could vary even between locations within
the same country. Added to different techniques employed, microbial diversity and use of several
cocoa cultivars contribute to its complexity.

Regardless of its importance, cocoa bean fermentation has been scarcely studied beyond
qualitative approaches, which currently make up the vast majority of sources for its under-
standing. Thus, what we know about its mechanistic functioning is based on experimental
observations that had led to state several hypotheses of which few have been directly measured
and proven. Among these, the sequential dominance of microbial groups during its conduc-
tion, i.e., yeast, lactic acid bacteria and acetic acid bacteria, represents the backbone of the
process over which other regulatory microbial-metabolite interactions have been proposed and
sometimes accepted indirectly.

In this thesis, a series of mathematical models are presented to bring a quantitative explo-
ration of the mechanistic features of the process with the use of Ordinary Differential Equation
Systems. In this sense, several sources of data have been used in order to fit these mathemati-
cal conceptualizations by a Bayesian framework to solve the parameter estimation problem. A
baseline model is proposed, assessed and discussed in terms of its biological plausibility, and an
interpretation of its got parameter estimates is introduced as an indirect indicative of differences
between trials’ features.

Therefore, I present a deeper analysis of model iterations based on the baseline with the pur-
pose of accomplishing a wider exploration of five hypothesized mechanisms, e.g., over-oxidation
of acetic acid and consumption of fructose by lactic acid bacteria. In that way, their likeliness
of occurrence is determined by their overall success on fitting several data gathered from 23
different fermentation trials. Also, an analysis of obtained parameter estimates as classifying
fermentation features is discussed.

Finally, the effect of temperature on kinetic modeling of cocoa bean fermentation is addressed
by the use of Arrhenius terms and discussed in terms of gains in interpretation and biological
plausibility of the parameter estimates and its effect on model accuracy.

The findings in this thesis provide new insights into the understanding of the complex pro-
cess of cocoa bean fermentation by assessing candidate mechanisms, and interpreting parameter
estimates from a biological point of view towards their use as an addition to chemical finger-
printing methods for classifying features.
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Chapter 1

Introduction1

Beans from Theobroma cacao L. are the main raw material in chocolate production. Among the
distinct steps in the manufacturing process of chocolate, cocoa bean fermentation is recognized
as one of its main sub-processes. Besides facilitating the removal of mucilage, the microbial
activity that occurs during the fermentation handles the death of the embryo. Furthermore,
fermentation triggers a series of biochemical reactions which drives the development of charac-
teristic chocolate aroma and flavor compounds [3, 4]. The typical procedure is a spontaneous
fermentation in which the microorganisms are inoculated during the harvesting and fermenta-
tion itself.

Although the importance of its role in chocolate production, the fermentation procedure is
highly non-standardized and varies across the countries of origin. In this sense, it has been
reported that fermentation is performed in heaps (e.g., Ghana and Ivory Coast), boxes (e.g.,
Brazil, Indonesia and Malaysia), baskets (e.g., Nigeria and Ghana), trays (e.g.,Ghana), sacks
and using platforms (e.g., Ecuador) [5, 6]. Apart from the variety of fermentation methods,
one should consider the fact that different cocoa hybrids and species are used in each of the
producing countries. This directly influences its duration, ranging from 2 to 3 days for Criollo
varieties and 5 to 8 days for Forastero varieties [3].

Surprisingly, the microbial dynamics of cocoa bean fermentation processes under heteroge-
neous practices share some common aspects; such as the succession of dominant microorganisms,
metabolite kinetics, temperature and pH profiles [4, 6]. On these foundations, quantitative ap-
proaches to describe the process beyond its general qualitative characteristics and affects on
the final product could serve for a better understanding of its mechanistic properties towards
improvements on cocoa processing methods.

Thus, in this first Chapter, basic concepts regarding physiology of Theobroma cacao L. are
presented together with a comprehensive description of the fermentation process, mathematical
basis for its modeling and an introduction of Bayesian inference on which parameter estimation
of such models relies on.

1.1 The cocoa fruit

The Theobroma cacao L. is originally from South and Central America and has been cultivated
for over 4000 years [7]. The cocoa fruits or “pods” vary in size and color depending on its
variety and, thus, its origin. Concerning variety, cocoa can be classified as Criollo (from Central
and South America) and Forastero (from the Amazon region). Criollo varieties are known for
being the raw material for fine chocolate production; however, nowadays it is disappearing due

1Section 1.5.3 of this chapter is partially based on Sections 2.4.1 of the publications of Moreno-Zambrano
et al. [1, 2].
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Chapter 1. Introduction

to its low resistance to disease and low productivity. On the other hand, Forastero varieties
have more resistance to diseases and higher productivity than Criollo [3].

For these reasons, several clones are used in each of the producing countries which are some-
times the product of crosses between both varieties in order to keep the quality characteristics of
Criollo and the resistance to disease and rapid production of Forastero. These hybrids between
Criollo and Forastero are known as Trinitario [3].

The cultivation of cocoa is restricted to regions where the temperature is constantly above
16 ◦C, with high humidity as well as even light-dark periods throughout the year [7]. Cocoa
trees flourish seasonally and fertilized flowers bear fruit 170 days after pollination. During this
period the fruit grows to maturity and changes color from green (or dark red-purple) to yellow,
orange or red depending on the variety. Mature fruits have 30 to 40 beans, each of which is
enclosed in a white mucilaginous pulp and attached to a placenta [8].

Only the beans are used in the production of chocolate; however, the pulp in which most
microbial activity takes place during the fermentation process is necessary for developing the
desired characteristics in terms of flavor and aroma of the final product. Both pulp and bean
are rich mixes of compounds that will play important roles during the fermentation process.
The former is mostly composed of water (82-87%), sugars (10-13%), pentosans (2-3%), citric
acid (1-2%) and salts (8-10%). On the contrary, bean composition is more complex where
water is the major constituent (32-39%) followed by fat (30-32%), proteins (8-10%), starch and
pentosans (4-6%), polyphenols (5-6%), sucrose jointly with theobromine and cellulose (2-3%),
and acids together with caffeine (1%) [3].

1.2 Fermentation of cocoa beans

Raw cocoa beans show bitter and astringent flavors. The bitterness is due to methylaxan-
tines (e.g., theobromine and caffeine) in the cotyledons; while the astringency is caused by the
presence of polyphenols and tannins (e.g., flavonoids, leucocyanidins, catechins and anthocyani-
dins) [9]. Consequently, raw beans are not used for manufacturing chocolate as they lack the
compounds needed to develop the characteristics organoleptic properties of chocolate.

carbohydrates

pectins
hemicelluloses
organic acids

fermentable sugars

ethanol

MICROBIAL ACTIVITY

lactic acid

acetic acid

heat

H2O + CO2

amino acids

sugars

leucocyanidin

epicatechin

complex tannins

peptidesproteins

cyanidinanthocyanins sugars+

caffeine

theobromine

DEATH 

OF 

EMBRYO

DIFFUSION OF

ENZYMES & SUBSTRATE

BEAN PULP

Figure 1.1: Overview of the biochemical modifications in the pulp and bean during fermentation of cocoa
(taken from Lopez (1995) [3])

In this sense, a microbial driven fermentation process is needed in order to trigger the reac-
tions that convert inner metabolites of raw cocoa beans in those that accomplish desirable choco-
late characteristics (Figure 1.1). The interior of the pod is supposed to be micro-biologically
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Chapter 1. Introduction

sterile [3]. However, it also has been reported that a few hundred microorganisms per gram
were found within, particularly yeasts [10, 11]. Nevertheless, at latest when the pod is opened,
it gets inoculated with microorganisms coming from the pod surface, workers’ hands and tools
[3].

The fermentation process in cocoa can be understood as an overlapping succession of mi-
crobial activities. In a first stage, microbial activity catabolizes carbohydrates (e.g., sucrose
(Suc)), pectins, hemicelluloses and organic acids into fermentable sugars (e.g., glucose (Glc)
and fructose (Fru)). These fermentable sugars are subsequently converted to ethanol (EtOH).
During the second stage, lactic acid (LA) is produced from the remaining sugars. Finally, acetic
acid (Ac) is produced from ethanol through exothermic reactions that jointly will produce the
death of the embryo within the cotyledon approximately by the third day of the fermentation
[8]. With the embryo’s death, the diffusion of enzymes and substrates involved in ensuing bio-
chemical processes diffuse into the bean. The details of each phase in the cocoa fermentation
are provided in the following section.

1.3 Microbial succession and biochemistry during cocoa fermenta-
tion

The cocoa fermentation is characterized by a succession of microbial activities which refer to
three major groups driving the whole process, being dominated in the early stage by yeast (Y),
subsequently surpassed by lactic acid bacteria (LAB) and after the decline of these first two
groups, acetic acid bacteria (AAB) takes over [12–15].

The diversity of microorganism species in each of these three major groups is large and dif-
fers, as reported in literature [12–15], across the countries of origin and the applied fermentation
methods. However, it has been shown that in overview, for the case of yeast (Y), predominantly
the genera Saccharomyces, Hanseniaspora and Pichia occur. Among the lactic acid bacteria
(LAB) mainly species from the genus Lactobacillus have been reported, in particular L. fermen-
tum and L. plantarum. For the third group of major microorganisms, the acetic acid bacteria
(AAB), the dominating genus is Acetobacter, especially A. pasteurianus in most of the cases [4].

Under optimal conditions, this three-phased process lasts on average between 4 to 5 days
producing brown-colored beans. In case of a short fermentation, the resulting beans are purple
and characterized by its bitterness and astringency. When over-fermentation happens, the
process results in black beans with a putrid or dull smell because of short-chain fatty acids
produced by action of Bacillus spp. and filamentous fungi [4]. From the physico-chemical point
of view, the fermentation process could be divided into two phases called anaerobic hydrolytic
phase and aerobic oxidative phase, which occur concomitantly with the microbial overlapping
phases previously mentioned[6]. For this research, only the phases involving microbial succession
will be described in the following sub-sections.

1.3.1 Phase 1: Anaerobic growth of yeast

The anaerobic growth of yeast usually occurs during the first 24 to 48 hours of cocoa bean
fermentation, where yeasts’ growth ranges from initial 2-7 log colony forming units (CFU) to
a maximum 6-9 log CFU per gram of cocoa. Saccharides (e.g., sucrose, glucose and fructose)
are converted into ethanol and other sub-products (e.g., acetic and succinic acid [16]) under
anaerobic conditions and pH below 4.0, with a preference for glucose. This production of ethanol
induces an increase in temperature from 25-30 ◦C to 35-48 ◦C as producing the collapse of
parenchyma cells that facilitate the entrance of air within the fermenting mass. This determines
the initiation of a micro-aerobic environment that enhances the growth of LAB and AAB,
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where ethanol concentration drops because of oxidization into acetic acid by AAB or other
aerobically growing yeasts, diffusion into the bean cotyledons, and sweating and evaporation.
Once concentrations of lactic acid and acetic acid have increased, and the temperature exceeds
45 ◦C due to the rising activity of LAB and AAB, yeasts communities start to disappear [6].

1.3.2 Phase 2: Microaerobic growth of lactic acid bacteria

The second phase of cocoa bean fermentation takes part between 24 to 42 hours and is dominated
by lactic acid bacteria (LAB), which are present in low concentrations from the beginning and
possibly interacting with yeasts [6]. The growth of LAB ranges from initial 3-5 log CFU to
maximum 7-9 log CFU per gram of cocoa. LAB convert saccharides into lactic acid (mainly),
acetic acid, ethanol and even some organic acids (e.g., citric and malic acid) into lactic acid or
into acetic acid. The preferred monosaccharide by LAB is glucose. However, some LAB are
fructophilic, preferring fructose over glucose [12, 17]. As a consequence of the assimilation of
citric acid by LAB, pH increases in the fermenting mass from 3.5-4.0 to 4.2-5.0 allowing other
bacteria to grow. Finally, towards the end of the fermentation process, the population of LAB
declines slightly because of the depletion of carbon sources, high concentrations of ethanol and
high temperatures [18].

1.3.3 Phase 3: Aerobic growth of acetic acid bacteria

The third phase of cocoa bean fermentation happens between 48 and 112 hours, which is char-
acterized by aerobic AAB’s growth and is when the embryo’s death occurs. During this phase,
AAB persist until the conditions for its growth are more favorable once pulp is metabolized
and drained, leading to an aeration increase in the fermenting mass and the temperature rises
above 37 ◦C. AAB grow from 3-5 log CFU to maximum 5-8 log CFU per gram of cocoa [11, 17].
The principal activity of AAB is the oxidation of ethanol, previously produced by yeasts, to
acetic acid. This oxidation process is an exothermic reaction that produces an increase of the
temperature of the fermenting mass up to 45-50 ◦C [6]. Once ethanol decreases, the concen-
tration of lactic acid decreases as well. This decrease is happening because of a simultaneous
oxidation of ethanol and lactic acid into acetic acid by AAB that occurs when the concentration
of ethanol overpasses a certain threshold where its availability to AAB is reduced[19]. After
acetic acid reaches its maximum peak, a decrease in its concentration is seen often, and can be
due to the effect of evaporation because of the increase of the temperature of the fermenting
mass [12, 17, 20] or even to the over-oxidation of acetic acid into carbon dioxide and water
conducted by some AAB species [21]. Finally, the death of AAB results from the exhaustion of
ethanol and an increase in the temperature of the fermenting mass.

1.4 Modeling cocoa bean fermentation

As I have introduced it in previous sections, the cocoa bean fermentation process comprises a
complex series of interactions between microbial communities and metabolites confined within
a physical environment. All these characteristics depict a glance at the complexity of this
biological system which it has been scarcely subject to mathematical modeling. Before this
current work, they have reported only two approaches in peer-reviewed journals.

On the one hand, Kresnowati et al. [22] proposed two models different between each other
by the considered compartments in which the system takes place (i.e., pulp only and pulp-
inner bean). In both cases, microbial dynamics could not be simulated properly and they fairly
resembled metabolite kinetics. On the other hand, López-Pérez et al. [23] developed a more
complex single compartment model and compared its implementation between either the use of
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genetic algorithms or a Levenberg-Marquardt optimization routine. However, this work focuses
more on comparing methods for accomplishing the solution of the parameter estimation problem
rather than in their biological interpretation.

In this sense, this research represents a first approach where both, modeling and inter-
pretation of obtained parameter estimates is performed focusing majorly on their biological
plausibility (see Chapter 2) and their use in gaining more understanding of the mechanistic
characteristics of the process (see Chapters 3 and 4).

1.5 Underlying concepts and methods in developing cocoa bean fer-
mentation models

For a better understanding of the upcoming chapters, here I present some of the most important
concepts and methods used during the whole conduction of the research: (1) description of the
modeling process, (2) mathematical foundations to consider for conceptualizing cocoa bean
fermentation, (3) formulation of the Bayesian framework used to obtain models’ parameter
estimates, (4) model comparison and evaluation, and (5) an example of fitting a toy model by
Bayesian means. Methods only applied in each of the following chapters are described in their
respective method sections.

1.5.1 The modeling process

A model can be defined as the simplified representation of a specific system by conceptual
or quantitative means. Thus, developing a mathematical model requires an execution of a
workflow fed with as much knowledge of the system is available [24, 25]. In general terms, such
a workflow consists of three main groups of tasks, namely formulation, calibration, and analysis
and evaluation of a candidate model (for a complete description of this workflow, see [25]).
Within formulation of a model, important attention is put over the conceptualization of the
system and the fundamental mathematical concepts behind the construction of its more complex
depiction capable of embracing more interactions between the elements within it. Finally, a
challenging task in any model construction is given by the technique to be used to estimate
(within calibration of the model group of tasks) the parameters that make possible simulations
of all regulatory mechanisms considered in previous steps.

1.5.2 Conceptualization

Sketching a conceptual model (usually as a network diagram [26]) is not a simple one. It requires
special consideration as it represents the basis for the subsequent mathematical assumptions
of the studied system, relying on knowledge about it. Consequently, it allows the modeler to
change it as many times is needed in order to get a plausible mathematical representation.

As it will be described in Chapters 2 and 3, interplay of elements of the cocoa bean fer-
mentation system is firstly conceptualized as network diagrams where microbial growth and
mortality rates, jointly with metabolite kinetics, drive its temporal dynamics. Hence, in the
following paragraphs, the bases used in this work to accomplish the translation of conceptual
models to mathematical expressions are described.

Cocoa bean fermentation is a batch process

Cocoa bean fermentation can be considered a batch process, meaning that there is no continu-
ous feeding of nutrients into the system aiming to keep the microbial populations in either their
exponential or stationary phases. Moreover, as opposed to typical growth of microorganisms,
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as depicted in Figure 1.2, where four phases are easily recognized (i.e., lag, exponential growth,
stationary and mortality phases) experimental conduction of the cocoa bean fermentation pro-
cess have shown a partial lack of lag phase (e.g., only for AAB a lag phase is noticeable) and
an almost complete absence of a stationary phase for all microbial populations involved, or at
least the time between each measurement does not have a sufficient short resolution evidencing
them [1].
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Figure 1.2: Microbial growth phases. The lag phase is a period of time where a microorganism adapts
itself to the growing conditions. During the exponential growth phase, microbial cells start to divide
continuously at a given rate constant. Stationary phase is characterized by a cells’ net growth nearly
equal to zero. Mortality phase describes the decline in the microbial population due to environmental
factors, mainly lack of nutrients.

Thus, for this specific case, microbial growth can be expressed as a combination of their
change on population over time between the exponential growth and mortality phases. In this
sense, an ordinary differential equation (ODE) can describe these changes as

dN

dt
= vg − vm , (1.1)

where N is the population size of a given microbial community and vg and vm are equations
describing the growth and mortality rates of N , respectively.

Specifically, the growth rate equation vg for the exponential phase can be expressed as

vg = µN , (1.2)

where µ represents the specific growth rate of a certain microorganism N . Similarly, for the
mortality phase, the mortality rate equation vm can take the form

vm = kN , (1.3)

where k is the mortality rate constant of population N .

Microbial growth rate equation

An important aspect for modeling a batch process is to constraint microbial growth by the
abundance of nutrients. Among different models that consider this, the Monod [27] equation
is frequently used because it assumes the existence of a growth rate-limiting nutrient that, if
it is present in saturating conditions, will not produce an increase in the maximal growth rate.
In other words, the excess of a growth rate-limiting nutrient does not imply more biomass
production [28]. Therefore, it will serve as a starting point for modeling microbial growth
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in the process of cocoa bean fermentation. From the mathematical perspective, it resembles
the Michaelis-Menten equation, with the difference that Monod equation is based on empirical
observations rather than on theoretical considerations and is given by

µ(s) = µmax
s

s+Ks
, (1.4)

where µ(s) is the specific microbial growth rate, µmax is the maximum specific growth rate, s
is the substrate (rate-limiting nutrient) and Ks is the substrate saturation constant.

This formalization allows Eq. (1.2) to be expressed as

vg = µmax
s

s+Ks
N . (1.5)

Furthermore, the Contois [29] equation is considered here for representing microbial growth
of LA producing AAB species under the assumption that their growth is a function of their
population size (see Chapter 2). Such an approach is implemented under the same scheme
above described.

Microbial mortality rate equation

Contrary to microbial growth, the mortality rate equation does not have to depend on a sub-
strate concentration. In principle, the constant mortality rate in Eq. (1.3) can take several
forms (e.g., logistic, exponential or other algebraic function [30]). In the simplest case, the
mortality rate equation can be given as a linear relationship of the microbial population with a
constant mortality rate.

Such an approximation, within biochemical kinetics, can be got by an application of the law
of mass action which states that the rate of a chemical reaction is proportional to the probability
of a collision of the reactants [31]. Thus, the rate is proportional to the product of the reactants’
concentration to the power of their molecularity. In this sense, consider the following chemical
reaction:

S1 + S2

v+−−⇀↽−−
v−

2 P , (1.6)

where the reaction rate (v) can be expressed as the difference between the rate of the forward
reaction (v+) and the rate of the backward reaction (v−) as

v = v+ − v− . (1.7)

Then, applying the law of mass action, we get that the reaction rate is equal to

v = k+S1 S2 − k−P2 , (1.8)

where k+ and k− are the respective proportionality factors, or so-called kinetic constants.
With this in mind, the application of a mass action kinetics behavior to the mortality rate

in cocoa bean fermentation could be formulated through the kinetics of a simple decay for
microbial population x as

x −−→ (1.9)

where its mortality rate equation, vd, will be described as the product between a microbial
population, N , with a mortality rate constant k for N as

vm = kN N (1.10)
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Under this same logic, further mortality rate equations in this research are planned under
the use of the mass action law as interpreted by Chick-Watson equations [32] used in disinfection
kinetics of microbial populations where non-linear decaying dynamics are produced by second-
and third-order reactions between the former and chemical compounds in the medium (e.g.,
EtOH).

Metabolite kinetics

Another assumption that can be made on the Monod and Contois equations is that the consumed
nutrients are immediately used to increase population. This assumption is helpful to represent
the consumption of a substrate, s, for incrementing the microbial population or biomass, N ,
and is expressed by a linear proportionality of the specific growth rate µ (from Eq. (1.4)) as a
substrate uptake rate, ρ, of the form

ρ (s) = − 1

YN |s
µ (s) , (1.11)

where YN |s is the biomass-to-substrate yield coefficient, and it is understood as the relationship
between the quantities of materials consumed and produced during a particular reaction [33].

In terms of microbial growth, it can be defined as the ratio between the change of biomass
(∆N) and the change of substrate concentration (∆s) as

YN |s = −∆N

∆s
, (1.12)

where its negative sign shows that an increase in biomass leads to a decline in substrate con-
centration.

In a similar fashion, a biomass-to-product yield coefficient, Yp|N , can be defined as the ratio
of the change of product (∆p) with the change of biomass (∆N) as

Yp|N =
∆p

∆N
, (1.13)

where its positive sign indicates that an increase in biomass produces an increase in the product’s
concentration.

With this in mind, a metabolite production rate, γ(s), can be expressed similarly to µ(s)

γ (s) = Yp|N µ (s) . (1.14)

These ratios, as shown in Eqs. (1.12) and (1.13), are commonly known as yield coefficients
and serve as links between microbial dynamics and metabolite kinetics, as it will be briefly
introduced in the following paragraphs.

Assembling a toy model

As an example of integrating above defined growth and mortality rate equations, consider the
minimal model of Y’s growth depicted in Figure 1.3.

In this small scenario, an ODE system of 3 state variables, namely monosaccharides (M),
EtOH and Y, would describe the network. First, an ODE describing Y’s dynamics will be
simply represented similarly to Eq. (1.1) as

d[Y]

dt
= v1 − v2 , (1.15)

where v1 and v2 are growth and mortality rate equations as defined in Eqs. (1.5) and (1.10),
respectively.
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M EtOH

Y

Figure 1.3: Yeast’s growth network diagram. Yeast (Y) is represented as a circle. Metabolites monosac-
charides (M) and ethanol (EtOH) are represented as squares. Yeast’s growth rate equation v1 is repre-
sented as a normal dashed arrow. Yeast’s mortality rate equation v2 is represented as a blunt dashed
arrow. The solid arrow represents the direction in which the conversion of M occurs into EtOH.

Now, to describe the consumption of M by Y, we can make use of Eq. (1.12) expressing it
as

YY|M = −
d[Y]
dt
d[M]
dt

, (1.16)

where by replacing d[Y]
dt , we get

d[M]

dt
= − 1

YY|M
(v1 − v2) . (1.17)

Since death cells cannot convert any substrate into products, v2 in Eq. (1.17) simplifies to
zero. Thus, the ODE describing M consumed by Y becomes

d[M]

dt
= − 1

YY|M
v1 = −YM|Y v1 , (1.18)

where YM|Y is known as the yeast-to-monosaccharides yield coefficient.
In a similar fashion, an ODE for production of EtOH can be assessed using Eq. (1.13)

resulting in

d[EtOH]

dt
= YEtOH|Y v1 . (1.19)

1.5.3 Parameter estimation under a Bayesian framework

Once a conceptual model has been translated into a mathematical system with help of afore-
mentioned concepts, it is necessary to work on solving the estimation problem regarding values
for unknown parameters (e.g., yield coefficients, maximum specific growth rates, mortality rate
constants and substrate saturation constants). There are diverse ways to estimate these parame-
ter values, including fixing them to previously reported ones, conducting controlled experiments
only aimed to determine such values through numerical optimization routines for models fitted
over experimental data.

In the particular case of cocoa bean fermentation, as mentioned before, literature regarding
estimation of kinetic parameters is scarce [22, 23] and few reported works as kinetic studies have
not covered their estimation with mathematical bases comparable to the conceptualization here
presented, but descriptive approaches [14, 34]. Besides, as opposed to controlled experiments,
sampling rates in cocoa bean fermentation trials are low and suffer from considerable variation
within measured time series [2]. Data with these characteristics are commonly found in other
biological research areas too; in which, Bayesian methodologies have gained quite popularity in

9



Chapter 1. Introduction

recent years because of their proven advantages in dealing with short and noisy measurements
[35].

Besides such operational conveniences, another asset of Bayesian inference in biological in-
vestigations is its flexibility in incorporating available information about a phenomenon subject
of study by either previous observations of its conduction, or experts’ knowledge. This is a nat-
ural consequence of the formulation of the Bayes’ rule on the basis of conditional probabilities.
Said this, let us consider the Bayes’ rule:

P (A|B) =
P (B|A)P (A)

P (B)
, (1.20)

where the (posterior) probability of an event A given an event B occurs is equal to the joint
probability2 of A and B divided by the total probability of B (P (B)). The term P (A), also
known as prior probability, provides a way to combine prior beliefs about A into the likelihood
(P (B|A)) in Eq. (1.20) and its further updating in case of arrival of new relevant information.
In cases where no prior information is available, P (A) can represent aforesaid scenarios by using
weakly informative terms as priors.

From its simple formulation, the application of Bayes’ rule in mathematical modeling during
the last two decades has significantly advanced along with further development of computational
power and statistical tools capable of handling solution of ODE systems as here presented.

Bayesian framework formulation

First, let us consider any ODE system (e.g., the toy model depicted in Eqs. (1.15), (1.18) and
(1.19)). Such a model can be represented by the general form:

dxi
dt

= f (x, θ) , (1.21)

where x represents a vector the state variables, xi is its ith component and the function f (x, θ)
summarizes the dependence of the right-hand side of the ODEs on x and all k model parameters
[θ1, θ2, ..., θk] contained in vector θ.

If we assume that parameters θ are selected such that a set of data Y is described, a way to
infer them is to compute the (posterior) probability of θ given Y, P (θ | Y), which by rewriting
Eq. (1.20), it is equal to:

P (θ | Y) =
P (Y | θ) P (θ)

P (Y)
. (1.22)

Here, since P (Y) is a normalizing constant allowing the posterior density to integrate to
one, Eq. (1.22) can be written in terms of the likelihood of observing Y given θ, P (Y | θ), and
the prior distribution of vector θ, P (θ), as:

P (θ | Y) ∝ P (Y | θ) P (θ) . (1.23)

If we consider that each component of Y contains T time steps, with N state variables being
observed, Eq. (1.23) takes the form of a product over all series and each of their measured
points as:

P (θ | Y) ∝
N∏
i=1

T∏
j=1

P (Yi,j | θ)P (θ) . (1.24)

2Note that the joint probability P (A,B) = P (A|B)P (B) = P (B|A)P (A).
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Finally, as our purpose is to identify values of θ that lead to a best agreement between
Yi,j in Eq. (1.24) and xi(j) in Eq. (1.21), we can consider Yi,j to be sampled from a normal
distribution whose mean is equal to the model’s prediction f (x, θ), with a standard deviation
term, σ, (caused by noise of any kind) allowing us to reformulate the total posterior distribution
as:

P (θ | Y) ∝
N∏
i=1

T∏
j=1

N (f (xi,j , θ) , σ) P (θ) . (1.25)

By applying the total posterior distribution in Eq. (1.25), an extra parameter corresponding
to a total standard deviation, σ, is also estimated besides the rest of parameters of a model
as a system of ODEs. Hence, the general framework here presented will serve as the basis for
solving the parameter estimation problem, as it will be stated in following chapters.

Setting prior probabilities

In Eq. (1.25), the definition of a suitable prior probability (or distribution), P (θ), is a crucial
preparation step in determining the posterior probabilities of θ. As briefly mentioned before, an
advantage of Bayes’ rule is to take into consideration prior beliefs regarding the phenomenon
subject of modeling. However, this characteristic has also been the foundation of an ongoing
debate questioning validity of Bayesian methods that turn around prejudices of giving a modeler
the freedom to set seemingly arbitrary prior beliefs after seeing data and thus, biasing estimates
in despite of what could be in reality learned from them [36].

A common practice to avoid such criticisms is the use of either non-informative, or weakly
informative priors. Regarding complete non-informative priors, e.g., uniform distributions, its
implementation has been largely discouraged due to their capability on dominating the likeli-
hood into regions of non-realistic values for the posterior distribution [36–38]. In the contrary,
weakly informative priors are less prone to dominate over the likelihood, reason they have been
more accepted in recent years [37].

With this in mind, a useful technique to define weakly informative priors is to assume the
parameters of interest to be on unit scale [37]. In our context, this approach results beneficial
in three ways: (1) prevents numerical issues when fitting a model by decreasing the impact of
differences between magnitudes of the involved time series, (2) allows the use of independent
priors for each parameter around the unit scale, and (3) imposes soft constraints over the
magnitude of the computed posteriors. In practice, this aim is accomplished by scaling the data
between 0 and 1 (see Section 2.2.4 for more details).

Bayesian computation

Obtention of the posterior distribution, as defined in Eq. (1.25), will involve the solution of the
integrals defined by the likelihood and chosen prior distributions for θ in its right-hand side.
Solving mathematical models expressed with the Bayes’ rule is not always analytically feasible
for high dimensional and multi parametrized scenarios and instead, Markov chain Monte Carlo
(MCMC) algorithms capable of sampling from it are necessary to approximate their solution
[38].

Thus, since the 70s with the formulation of the Metropolis-Hastings algorithm [39], a diverse
group of MCMC algorithms have been developed and used along statistical software specialized
in Bayesian inference. For the specific conduction of this thesis, the computation of posterior
distributions of models’ parameters and predictions is performed by means of the No-U-Turn
sampler (NUTS) [40], which is an adaptive form of the Hamiltonian Monte Carlo (HMC) algo-
rithm [41].

11



Chapter 1. Introduction

In general, MCMC methods create samples from a target distribution through a random
walk in the parameter space where each new step, also called iteration, will depend on the pre-
vious one. Such methods have improved enormously the solution of a wide variety of problems;
however, they are less efficient when facing complicated models with high dimensionality and
many parameters because of inefficiency of the random walk in those circumstances [42]. In
contrast to other MCMC algorithms, HMC replaces random walk behavior by introducing auxil-
iary momentum variables; which transform the problem of sampling from the target distribution
into simulating Hamiltonian dynamics [40, 43]. This improvement allows HMC gradients, from
Hamilton’s equations, to guide the iterations of Markov chains through regions of high proba-
bility admitting an efficient exploration of the parameter space of the target distribution while
reducing problems of correlation among them as found in samplers purely based on the random
walk paradigm [43].

Despite the benefits of HMC over classical MCMC methods, HMC has the drawback of
using two input parameters defined by the user. These are a step size ε and a number of steps
L necessary to run a simulated Hamiltonian system. Setting both these parameters is not a
straightforward procedure. Instead, multiple runs of the system combined with expertise of the
user are often needed to tune them up. In this sense, the recent implementation of the NUTS by
Hoffman & Gelman [40] has facilitated users to take advantage of HMC characteristics without
the need of going through the cumbersome process of hand-tuning parameters. In brief, the way
NUTS accomplish this is by adapting L with each iteration of the Markov chain and ε during
the warm-up phase (see [40] for more detail).

1.5.4 Diagnostics, evaluation and comparison of Bayesian models

As with any other statistical methods, Bayesian models also account with some statistics to
check whether their assumptions are valid as well as ways to determine their predictive power and
accuracy. In a first stage for all models here presented, convergence diagnostics were performed
followed by their evaluation and comparisons when necessary. Hence, brief descriptions of such
statistics are presented in the following paragraphs.

Convergence diagnostics

Two important questions that arise when fitting Bayesian models that rely on MCMC methods
are (1) did Markov chains mix well to convergence onto the target distribution?, and (2) is the
sample size large enough to get a stable estimate of uncertainty?. Since these methods get a
sample from the posterior, convergence improves as the number of draws approaches infinite.
Nevertheless, in reality there is no guarantee on how convergence would behave beyond the finite
number of iterations chosen by a user [44]. Among methods to check whether the algorithm as
reached convergence, visual representations of Markov chains have been widely used to inspect
it (e.g., trace plots, scatter plots and posterior draws plots). However, this approach reflects
a qualitative nature that depends on judgment of the user rather than on specific metrics
developed for such a purpose. Within the latter, there are two important statistics to look at
when examining convergence.

On the one hand, potential scale reduction factor R̂ [38, 45, 46] stands out for its use in
controlling for chain mixing. R̂ is defined as the division between the standard deviation of each
scalar quantity of interest from all chains together, and the root mean square of the separate
within-chain standard deviations [44].

In this way, R̂ measures whether a set of simulations for any scalar in the model has mixed
properly. The logic behind it is that when the variance of all chains together is lower than the
variance of them individually, R̂ takes values near to 1. As a rule of thumb, R̂ values lower than
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1.1 are considered a sign of good mixing of chains, while values greater than 1.1 are considered
otherwise.

On the other hand, as a result of performing MCMC methods, iterations over each chain
tend to be correlated (even thought HMC reduces this effect). This determines that if the sample
size used for running chains is not large enough, there is no way to be sure if the uncertainty
(measured as the Monte Carlo standard error (MCSE)) of an estimated parameter is stable
towards infinite.

A manner to measure this effect is through the effective sample size (ESS). ESS can be
roughly defined as the number of independent draws from a Markov chain that contains the
same amount of information as the dependent sample got by the used MCMC method [38, 44].
Hence, the closest the ESS is to the number of iterations used after warm-up, the better. As a
rule of thumb, regardless of the total number of transitions set for Markov chains, ESS greater
than 400 are considered as sufficient to get stable MCSE values.

Recently, Vehtari et al. [44] have proposed improved versions for R̂ and ESS based on
overcoming their limitations when facing posterior distributions with heavy tails or varying
variance across Markov chains. They suggest the use of new rules of thumbs for R̂ and ESS
as less than 1.05 and greater than 100, respectively. In this thesis, in Chapter 2 convergence
diagnostics are employed as originally proposed in [38, 45, 46]; while in Chapter 3, these are
performed as lately proposed by Vehtari et al. [44].

Evaluation and comparison of models

After successfully fitting a model in terms of convergence, one remaining task is to investigate its
predictive accuracy, which could be for the sake of model selection, comparison or averaging. In
Bayesian inference, there is a manifold of procedures to accomplish these. In the particular case
of this thesis, model evaluation and comparison have been done using mainly two approaches:
(1) widely applicable information criterion (WAIC) [47] (see Appendix A), and (2) Pareto-
smoothed importance sampling leave-one-out cross validation (PSIS-LOO) [48] (see Appendix
A and Chapter 2).

These methodologies are similar between each other in the sense that both estimate out-of-
sample predictive accuracy using within-sample fits. For this purpose, a measure of predictive
accuracy is defined over the likelihood of a model. This measure, known as expected log point-
wise predictive density (ELPD), will then be approximated with either WAIC or PSIS-LOO
allowing to assess predictive accuracy of future observations of stand-alone models, or their
comparison between them (for a detailed description of these methodologies, see [48]).

1.5.5 Fitting a toy model under a Bayesian framework

The toy model defined in Eqs. (1.15), (1.17) and (1.19) represents a simple mathematical
formulation using the Monod equation in modeling microbial dynamics. As an example of its
application, let us consider data reported by Petrov [49] regarding growth of Saccharomyces
cerevisiae in batch culture; where they recorded 12 observations along 12 hours of cultivation
for biomass of yeast (Y), glucose (Glc) and ethanol (EtOH) (all in g L−1). Given the conditions
under which they carried the experiment out, mortality of S. cerevisiae cannot be entirely
distinguishable (measuring biomass combines dead and living cells). This allows to simplify the
model even more as:

d[Y]

dt
=
µmax [Glc]

[Glc] +Ks
[Y]
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d[Glc]

dt
= −YGlc|Y

µmax [Glc]

[Glc] +Ks
[Y]

d[EtOH]

dt
= YEtOH|Y

µmax [Glc]

[Glc] +Ks
[Y]

where µmax, Ks, YGlc|Y and YEtOH|Y are the maximum specific growth rate of Y, substrate
saturation constant, Y-to-Glc yield coefficient and Y-to-EtOH yield coefficient, respectively.

From here, the model can be formulated under a Bayesian framework as defined in Eq.
(1.25). Consequently, definition of prior distributions to use for the vector of parameters θ and
total standard deviation σ is highly important.

Priors’ choice

As mentioned in Section 1.5.3, using a set of weakly informative priors on unit scale is a helpful
choice. The most natural option to plan such priors is to scale the original data by dividing
each time series per their corresponding maximum value. Hence, we can define a set of normal
prior distributions for each kth element of θ around the unit of positive values only as

θk ∼ N (0.5, 0.3), θk > 0 .

Regarding total standard deviation, the same logic can be applied even by using another
normal distribution3 with same scale parameters as for θ:

σ ∼ N (0.5, 0.3), σ > 0 .

Implementation

Once the model has been defined, its Bayesian computation is done with Stan [50], a prob-
abilistic language that offers the MCMC-NUTS [40] method for sampling from the posterior
distribution. As any other usual MCMC method, NUTS can ran in multiple chains to bet-
ter assess convergence on the target distribution. In this example, posterior distributions of
parameters and predictions were got by running four Markov chains with 3000 iterations and
1000 of them as warm-up. Solution of the ODE system was performed by means of fourth- and
fifth-order Runge-Kutta methods available in the solver rk45 [51, 52], built-in Stan.

Diagnostics

Regarding diagnostics, here are shown firstly visual representations that help to qualitatively
check whether convergence of the MCMC-NUTS method succeeded.

In Figure 1.4, trace plots of the 5 parameters of the toy model are depicted with the usual
so-called caterpillar form that is an indicative of convergence. Other visualizations include
representation of the posterior distributions (i.e., as density functions or histograms) and scatter
plots between involved parameters. Such a representation is shown in Figure 1.5, where signs
that convergence has been reached are noticeable. Regarding the diagonal of the plot, unimodal
histograms of the parameters’ posterior densities shown that independent chains have mixed
well.

The off-diagonal scatter plots provide hints regarding identifiability of the parameters. Given
that samples from the Markov chains are concentrated around well noticeable regions, leads to
conclude that unique solutions for the parameters of interest exist. Furthermore, scatter plots

3For estimating standard deviation, prior distributions with heavier tails can cover for more variation on
experimental data. See Section 2.2.4.
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Figure 1.4: Trace plots for the 5 parameters of the toy model. Markov chains without warm-up are
shown. Different colors represent independent chains.

also reflect the amount of correlation between the posteriors. Ideally, all parameters should
be uncorrelated but, this is not the case for µmax vs. Ks as previously reported for specific
maximum growth rates and substrate saturation constants by Rosenbaum et al. [53]. Ways
to solve this issue are to assign more informative priors to either of these parameters or re-
parameterize the model [38]. However, as it is seen in their corresponding scatter plot, high
concentration of samples between both parameters is concentrated in a centered region of their
parameter space reducing the likeliness of high variance that could be interpreted as evidence
of practical non-identifiability.

As a final take away message, this kind of visual aids to check convergence are worth to
deploy when the number of parameters in the model is relatively low. For this reason, where
a model accounts with too many parameters, it makes more sense to check at the convergence
statistics R̂ and ESS.

Hence, in Table 1.1 diagnostics and posterior moments and quantiles of parameter posteriors
are shown for the toy model fitted on data reported by Petrov [49]. As mentioned in Section
1.5.3, convergence statistics accomplish their respective rules of thumbs with values less than
1.05, greater than 400 and greater than 100 for R̂, ESS, and bulk-/tail-ESS respectively.

Table 1.1: Diagnostics and scaled posterior moments and quantiles of parameter estimates for the toy
model with data reported by Petrov [49]. R̂, bulk-ESS and tail-ESS are computed as reported in [48].
Mean, standard deviation (sd), Monte Carlo standard error (MCSE) and quantiles at 2.5%, 50%, 97.5%
are also shown.

Parameter R̂ ESS bulk-ESS tail-ESS Mean sd MCSE 2.5% 50% 97.5%

µmax 1.00 2785 2866 3098 0.39 0.01 0.00 0.36 0.39 0.41

Ks 1.00 2808 2891 3124 0.24 0.03 0.00 0.19 0.24 0.31

YGlc|Y 1.00 3507 3535 4229 1.02 0.01 0.00 0.99 1.02 1.04

YEtOH|Y 1.00 3969 3976 4125 1.03 0.01 0.00 1.01 1.03 1.05

σ 1.00 3804 3840 4372 0.01 0.00 0.00 0.01 0.01 0.02
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Figure 1.5: Markov chain Monte Carlo scatter matrix for the toy model. Panels in the diagonal show the
histogram of the posterior distribution of each parameter. Off-diagonal panels show pair-wise parameters’
posterior samples hex scatter plots. Note unimodality of the diagonal panels and highly concentrated
regions in the scatter plots.

Posterior predictions and model evaluation

Once convergence of MCMC-NUTS has been accomplished, posterior predictions and model
evaluation statistics can be presented. In Figure 1.6, posterior predictions of the toy model for
data reported by Petrov [49] are shown.

After scaling the original data to values between 0 and 1 it is necessary to re-scale obtained
parameters to their real units. This task can be summarized to a simple use of the maximum
values within each time series as conversion factors of the obtained posterior samples (see
Appendix B for further details). Hence, summarized parameter values for the model are depicted
in Table 1.2.
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Figure 1.6: Posterior predictions for toy model fitted to data reported by Petrov [49]. (a) Biomass
(yeasts), (b) glucose and (c) ethanol. Solid red lines represent posterior medians of the posterior predic-
tions, solid black points denote experimental data and orange ribbon describe the 95% credible interval
of posterior predictions.

Finally, WAIC and PSIS-LOO values computed using loo package developed in [48] are equal
to -195.2 and -194.1, respectively. No further analysis based on these quantities is presented
due to their primary use in models’ comparison (see Appendix A and Chapter 3).

Table 1.2: Summary of re-scaled posterior parameter estimates for the toy model with data reported
by Petrov [49]. Mean, standard deviation (sd), Monte Carlo standard error (MCSE) and 95% credible
interval (CI) are shown.

Parameter Units Mean sd MCSE 95% CI

µmax h−1 0.39 0.01 0.00 [0.36, 0.41]

Ks g L−1 7.54 0.95 0.00 [6.00, 9.80]

YGlc|Y g L−1 0.182 0.001 0.00 [0.175, 0.184]

YEtOH|Y g L−1 0.534 0.005 0.00 [0.528, 0.549]

σ – 0.01 0.00 0.00 [0.01, 0.02]

1.6 Organization of the thesis

The focus of this thesis is to implement kinetic modeling for the process of cocoa bean fermenta-
tion as primary steps in its quantitative mechanistic understanding, and to reveal how analyzes
of got parameter estimates can address biological questions. In the following chapters, these
questions are assessed through fitting a series of mathematical models over a rich set of data
regarding cocoa bean fermentation trials previously reported in literature.

In Chapter 2, the first steps towards probing adequacy of basic regulatory mechanisms is
introduced by developing a kinetic model of the process which will serve two main purposes:
(1) work as a baseline model for the subsequent exploratory iterations of prevailing hypoth-
esized interactions between microbial populations and metabolites, and (2) establish the use
of obtained parameter estimation values as tools for inferring differences with respect to the
conditions in which parallel trials were conducted.

In Chapter 3, a deeper exploration of hypothesized mechanisms previously backed up by
qualitative descriptions is assessed by constructing a series of 31 candidates model fitted over 23
different datasets of fermentation trials. Because of this scheme, most plausible model variants
are determined by including or discarding candidate mechanisms. Besides, resulting vectors
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of parameters estimates are employed as classifiers for fermentation features, determining their
conceivable use as an alternative to standard chemical fingerprinting in interpreting fermentation
data.

As complement to Chapter 3, Chapter 4 explores the impact of introducing temperature as
a dynamical variable over the baseline model used across previous chapters and how it does not
show remarkable improvements in terms of biological interpretability of parameter estimates,
nor predictive accuracy of the models.

Finally, Chapter 5 covers the discussion and conclusion of this research, as well as sug-
gestions of a possible outline for further developments in modeling the process of cocoa bean
fermentation.
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Chapter 2

A mathematical model of cocoa bean
fermentation4

Abstract

Cocoa bean fermentation relies on the sequential activation of several microbial populations,
triggering a temporal pattern of biochemical transformations. Understanding this complex
process is of tremendous importance, as it forms the precursors of the resulting chocolate’s
flavor and taste. At the same time, cocoa bean fermentation is one of the least controlled
processes in the food industry. Here, a quantitative model of cocoa bean fermentation is
constructed based on available microbiological and biochemical knowledge. The model is
formulated as a system of coupled ordinary differential equations with two distinct types of
state variables: (1) Metabolite concentrations of glucose, fructose, ethanol, lactic acid and
acetic acid, and (2) Population sizes of yeast, lactic acid bacteria and acetic acid bacteria.
We demonstrate the model can quantitatively describe existing fermentation time series and
that the estimated parameters, obtained by a Bayesian framework, can be used to extract
and interpret differences in environmental conditions. The proposed model is a valuable tool
towards a mechanistic understanding of this complex biochemical process, and can serve
as a starting point for hypothesis testing of new systemic adjustments. Besides providing
the first quantitative mathematical model of cocoa bean fermentation, the purpose of our
investigation is to show how differences in estimated parameter values for two experiments
allow us to deduce differences in experimental conditions.

2.1 Introduction

The fermentation of cocoa beans is recognized as a key step in cocoa processing in terms of the
development of chocolate’s flavor and aroma [3, 4]. It occurs mainly in the pulp, i.e., a white
mucilaginous mass that surrounds the bean where three major microbial groups drive mostly
the whole process, whose main activity occurs in a consecutively way (Figure 2.1 (a)), being
metabolically dominated in earlier stages by yeast (Y) and subsequently surpassed by lactic
acid bacteria (LAB) and after the decline of these two first groups, acetic acid bacteria (AAB)
take over [12–15]. This so-called three-phase process, depending on the region and local farm
practices, is expected to happen within a time frame of 2 to 10 days [4, 6, 18, 54, 55].

Because of the fermentation, a series of biochemical reactions is triggered upon the raw
material, the qualitative characteristics of which have been exhaustively described in terms of
the microbial groups involved and the associated metabolic alterations [54, 56, 57].

4This chapter is based on the publication of Moreno-Zambrano et al. [1], published by the Royal Society under
the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, provided the original
author and source are credited.
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Figure 2.1: Typical time series for community dynamics and metabolite kinetics during cocoa bean
fermentation. (a) Community dynamics; yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria
(AAB). (b) Metabolite kinetics; glucose (Glc), fructose (Fru), ethanol (EtOH), lactic acid (LA) and acetic
acid (Ac). Both, counts and concentration are shown in arbitrary units. (After De Vuyst & Weckx [18];
use permitted under the Creative Commons Attribution License CC-BY 4.0 number 4354810766457).

Although this process is of high industrial relevance, there are hardly any attempts of
constructing a mathematical model of cocoa bean fermentation. So far, the existing modeling
attempts are focussing on specific post-fermentation steps such as drying kinetics [58, 59],
restricted to the sequential interaction of microbial communities using metabolic flux analysis
[19, 60] or kinetic approaches that “cannot explain the dynamics in microbial population” [22].

The reasons for this are manifold, among them, the lacking of control over the fermentation
process itself as well as the systemic complexity in terms of involved microbial communities. On
the one hand, cocoa bean fermentation is conducted in a spontaneous way unlike most other food
fermentation processes [5] with a huge diversity of techniques and devices, e.g., heaps, boxes,
baskets, trays, sacks and platforms [3, 5, 6]. Because of the lack of control, it is difficult to
identify the crucial parameters and key variables required for the formulation of an appropriate
model.

On the other hand, in contrast to other relevant industrial fermentation processes such as
those of beer and wine, the fermentation in cocoa involves microbial community dynamics of
three major microbial groups, i.e., Y, LAB and AAB, which are in turn represented by several
strains [12, 14, 15, 18]. Hence, the complexity is precisely one of the biggest challenges to
overcome since growth modeling of microorganisms has been classically applied under much
more controlled conditions that involve single strain cultures where mortality phenomena have
been scarcely considered [30]. Consequently, this needs to be considered for an approximation
of the cocoa bean fermentation process.

Cocoa bean fermentation is a prototypical situation for the application of modeling using
coupled non-linear ordinary differential equations: The initial situation displays a rich diversity
with a multitude of influencing factors and the result of the dynamic process, the fermented
cocoa bean, is of high relevance for the subsequent industrial processing steps and for the quality
of the final product, chocolate.

Here we present a one-compartment model for the cocoa bean fermentation process using
the mathematical concepts of the Monod [27] and Contois [29] equations, assuming that single
strain kinetic modeling techniques can describe the growth of mixtures of microbial species
belonging to different microbial groups in the same environment. Moreover, microbial death
processes are handled by the use of the Chick-Watson mortality law [32].

While conceptionally the modeling approach presented here is rather in the tradition of
theoretical biology, the way to analyze and apply the model differs from, e.g., a traditional
linear stability analysis, as the purpose of the model is predominantly to describe transients in
a batch culture [61], rather than asymptotic states as would be expected in continuous cultures.
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With the model constructed along these lines, we could describe three datasets corresponding
to two different cocoa-producing countries where two different fermentation methodologies were
implemented. In that way; our model also can interpret differences in the experimental set-up
of the two trials conducted under the same methodology, in terms of significant changes in the
estimated parameters. This approach serves as a source of elucidation of plausible hypotheses
on how these parameters are affected by slight changes within a particular region where the
fermentation took place.

2.2 Material and Methods

2.2.1 Experimental data

The experimental data used in this study were reported in Camu et al. [12] and Papalexandra-
tou et al. [62]. In both instances, the predominant cocoa hybrids harnessed by the chocolate
industry, Criollo and Forastero, were used as the source of raw material. In the study of Camu
et al. [12], the beans were fermented by the heaps method, while for Papalexandratou et al.
[62], wooden boxes were used as fermenting devices. The data of Camu et al. [12] were collected
in Ghana from seven trials in two field experiments and data of one representative trial were
published. The data include measurements of microbial counts of Y, LAB, AAB and total
aerobic bacteria. Metabolite time series measured both in pulp and bean are available for glu-
cose (Glc), fructose (Fru), sucrose (Suc), lactic acid (LA), acetic acid (Ac), ethanol (EtOH),
mannitol, citric acid and succinic acid.

The data reported by Papalexandratou et al. [62] were collected in Brazil from two trials in
two field experiments, of which both trials were published as ‘box 1’ and ‘box 2’. The conditions,
in which both trials were conducted, differed slightly. On the one hand, the fermenting mass
of box 1 was placed under a metal roof to protect it from weather. On the other hand, the
fermentation for box 2 was carried out in a fermentary room. The data include measurements of
microbial counts of Y, LAB, AAB and total aerobic bacteria. Metabolite time series measured
both in pulp and bean are available for Glc, Fru, Suc, LA, Ac, EtOH, mannitol and gluconic
acid.

In both collections, the fermentation trials took place in a time frame of 6 days with mea-
surements performed at 17 time points for Camu et al. [12] and 14 time points for Papalexan-
dratou et al. [62]. Abiotic factors, i.e., temperature and pH, were measured as well. Cell counts
were done by means of malt extract agar, Man-Rogosa-Sharpe agar and deoxycholate-mannitol-
sorbitol agar for Y, LAB and AAB, respectively, from both data sources. As metabolite time
series we considered Glc, Fru, EtOH, LA and Ac.

2.2.2 Microbial count units transformation

One of the most common forms of quantifying microbial growth is the count of colony forming
units (CFU), specially when dealing with mixtures of microorganisms as the microbial succes-
sions are reported in the original works of Camu et al. [12] and Papalexandratou et al. [62]. In
this sense, the vast majority of studies involving single strained microbial growth are reported
in terms of dry biomass as well as their dependent constants, i.e., maximum growth rates,
mortality rates and yield coefficients.

In order to get comparable estimates to those available for species of these microbial groups
in the literature, a conversion from CFU to dry biomass units was conducted based on available
knowledge as well as geometric deductions for the microbial group involved in the process.

For species within the microbial group of Y, we used the conversion factor that one CFU of
S. cerevisiae is equivalent to 15 picograms (pg), as assumed by Schwabe & Bruggeman [63]. For
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LAB and AAB, since such conversion factors have not been reported yet, values were inferred
by considering a geometric approximation based on the usual dimensions of the cells belonging
to the genus of Acetobacter and to the species of Lactobacillus plantarum respectively, according
to the Bergey’s Manual of Systematic Bacteriology [64, 65] and assuming their shape given by
a spherocylinder. Thus, using as reference a density value derived from the dry weight of a cell
of E. coli of 0.28 pg [66] per micro cubic meter (µm3) [67] the conversion factor between CFU
to dry biomass of LAB and AAB were determined as 1.25 and 0.28 pg CFU−1 respectively (see
Appendix A.1).

2.2.3 Model development

Biochemical background

The fermentation of cocoa beans has been described in detail regarding its microbial dynamics
and metabolite kinetics in both pulp and bean [6, 12, 14, 15, 18]. From such descriptions,
the fermentation process in cocoa can be understood as an overlapping succession of microbial
activities that mostly occur in the pulp, where three core processes are easily identifiable. These
are the conversion of Glc and Fru into EtOH by Y, Glc into LA by LAB and EtOH into Ac
by AAB (Figure 2.1). Further processes such as the conversions of Glc into Ac by LAB and
LA into Ac by AAB, have also been described [68]. The interpretation of these processes in a
network diagram covering the pulp only, is shown in Figure 2.2, where microbial growth rate is
taken into account represented as the uptake of the respective substrates as well as the mortality
rates for Y, LAB and AAB.

LA

Figure 2.2: Network diagram of the cocoa bean fermentation model. Microbial groups: yeast (Y), lactic
acid bacteria (LAB) and acetic acid bacteria (AAB) are represented as circles. Metabolites: Glucose
(Glc), fructose (Fru), ethanol (EtOH), lactic acid (LA) and acetic acid (Ac) are represented as squares.
The growth rates of yeast on glucose (v1) and fructose (v2), of lactic acid bacteria (v3), and of acetic acid
bacteria on ethanol (v4) and lactic acid (v5) are represented as straight dashed arrows. The mortality
rates of yeast (v6), lactic acid bacteria (v7) and acetic acid bacteria (v8) are represented as zigzag dashed
arrows. Straight dashed arrows pointing from products to mortality rates represent product influence on
mortality rates. Solid straight arrows show the direction in which the conversion of metabolites occur.

In our model, we consider a simultaneous growth of the three major microbial groups. The
sequential dominance in the process is then emerging from the availability pattern of their
respective substrates without taking into account abiotic factors.
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Mathematical representation

The process of cocoa bean fermentation can be seen as a batch process that can involve the
usual phases of microbial growth, i.e., lag, exponential, stationary and death phase. However, it
is known that microbial growth occurring in natural environments might show different patterns
[69]. In this sense, the two collections of experimental data on microbial successions expressed as
the log CFU showed basically phases that resembled the exponential and death phases without
noticeable stationary or lag phases. From the mathematical perspective, such phenomena can
be expressed as an ordinary differential equation (ODE) for each of the state variables involved
in such a way that the growth of microorganisms depends on the availability of their respective
substrates, together with mortality equations to capture the inherent decay of the populations
along time.

The two major effects on population size considered here, exponential growth and death
phase, were modeled by different approaches. On the one hand, we use the classical Monod
[27] and Contois [29] equations to describe the growth of groups of microorganisms belonging
to a same microbial group (namely, Y, LAB and AAB), instead of the common use of these
terms for single strain cultures. Accordingly, the growth rates of Y, v1 on Glc and v2 on Fru, of
LAB, v3, and of AAB on EtOH, v4, (shown in Figure 2.2) have the form of Monod equations,
while the growth of AAB on LA, v5, is a Contois equation. The use of a Contois term for
v5 was considered under the assumption that given that few specdies of AAB are capable of
catabolize lactic acid [21, 60], the growth rate of these species is a function of their population
size (see Appendix A.2). On the other hand, the mortality rates of all microbes, v6, v7 and
v8, are modeled as Chick-Watson equations [32] considering a non-linear decay of microbial
populations produced by second and third order reactions of their corresponding metabolite
products upon themselves as shown in Table 2.1. Together, all equations in Table 2.1 comprise
13 parameters: (1) five maximum specific growth rates, (2) five substrate saturation constants
and (3) three mortality rate constants.

From the set of growth and mortality rate equations defined in Table 2.1, a system of ODEs
can be established in order to mathematically express the network considering the eleven yield
coefficients to take into account the amounts of biomass that can be obtained from substrate
as well as the amounts of produced metabolites, as shown in the system of ODEs in Eqs. (2.1)
to (2.8) that represent Glc, Fru, EtOH, LA, Ac, Y, LAB and AAB respectively. A complete
interpretation of the 24 estimated parameters is given in Table 2.2.

d [Glc]

dt
= −YGlc|Y v1 − YGlc|LAB v3 (2.1)

d [Fru]

dt
= −YFru|Y v2 (2.2)

d [EtOH]

dt
= Y Glc

EtOH|Y v1 + Y Fru
EtOH|Y v2 − YEtOH|AAB v4 (2.3)

d [LA]

dt
= Y Glc

LA|LAB v3 − YLA|AAB v5 (2.4)

d [Ac]

dt
= Y Glc

Ac|LAB v3 + Y EtOH
Ac|AAB v4 + Y LA

Ac|AAB v5 (2.5)

d [Y]

dt
= v1 + v2 − v6 (2.6)

d [LAB]

dt
= v3 − v7 (2.7)
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d [AAB]

dt
= v4 + v5 − v8 (2.8)

The proposed model (as described in Eqs. (2.1) to (2.8)) relies on three simple general
assumptions: (1) Relationships between Y and AAB, as well as of LAB and AAB, are of a pure
commensalistic nature since there is no competition between them for any substrate, i.e., Glc
and Fru, and there is no direct effect upon the growth either of Y or LAB by the uptake of
its main products, LA and EtOH, by AAB respectively [70], (2) Relationship between Y and
LAB is a resource-type competition because both microbial groups share Glc as a main limiting
substrate and they do not excrete metabolites affecting each other’s growth [71, 72], and (3)
No impact of chemical and physical effects such as temperature and pH on the set of kinetic
parameters.

Table 2.1: Growth and mortality rate equations for the cocoa bean fermentation process. Microbial
groups are represented as yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Metabo-
lites are represented as glucose (Glc), fructose (Fru), ethanol (EtOH), lactic acid (LA) and acetic acid
(Ac). Biomass and concentration of metabolites, both are shown within square brackets [ ]. Maximum
specific growth rates µmax are shown of the form µin

max, where i can be either Y, LAB and AAB, and
n refers whether µ corresponds to the maximum specific growth of Y on either Glc or Fru, or AAB on
either EtOH or LA. Substrate saturation constants for the growth of Y, LAB and AAB are shown of
the form Kj

m, where j can be either Y or LAB and m can be either Glc, Fru, EtOH and LA. Constant
mortality rates are shown of the form ki, where i can be either Y, LAB or AAB.

Growth rate equation Mortality rate equation

v1 =
µYGlc

max [Glc]

[Glc] +KY
Glc

[Y]

v2 =
µYFru

max [Fru]

[Fru] +KY
Fru

[Y]

v6 = kY [Y] [EtOH]

v3 =
µLAB

max [Glc]

[Glc] +KLAB
Glc

[LAB] v7 = kLAB [LAB] [LA]

v4 =
µAABEtOH

max [EtOH]

[EtOH] +KAAB
EtOH

[AAB]

v5 =
µAABLA

max [LA]

[LA] +KAAB
LA [AAB]

[AAB]

v8 = kAAB [AAB] [Ac]2

2.2.4 Parameter estimation

Bayesian framework

The parameter estimation was conducted using a Bayesian framework as described in Chapter
1, Section 1.5.3

Variable scaling

For both collections of experimental data, the concentrations of microorganisms and metabolites
differ by several orders of magnitude. As an example, after the transformation of CFU to
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biomass units in the experimental data of Camu et al. [12], the maximum concentration of AAB
is approximately 0.0019 mg g(pulp)−1, while the maximum concentration of the main substrate
of AAB, EtOH, is approximately 22.4920 mg g(pulp)−1.

These different orders of magnitude between the state variables can lead to numerical issues
during optimization. In order to reduce such issues, all state variables were scaled by dividing
each of the time series in the experimental data by its own maximum value. Consequently, possi-
ble large differences between the parameters to be estimated are avoided and, most importantly,
the search space can be constrained.

Hence, in a first step, the parameters were estimated using time series with a maximum
value of 1 and, in a second step, re-scaled to their original physical units through conversion
factors derived from Eqs. (2.1) to (2.8) (see Appendix A.3).

Priors

By scaling the system to allow maximum values for each time series equal to unity, the large
differences in orders of magnitude between the parameter estimates, e.g., maximum specific
growth rates in the boundaries of fractions of milligrams with respect to yield coefficients that
might take values of hundreds, are regularized; here, by introducing a scale that needs a prior
distribution to be sampled within values between 0 to 1. In that way, an independent normal
distribution with mean 0.5 and a standard deviation of 0.3 as prior choice for each k element
of θ represents a weakly informative prior by introducing scale information of the original units
in which the parameters of the model are originally measured. For the standard deviation σ,
a Cauchy distribution C with location and scale parameters of 0 and 1, respectively, was used
as prior distribution. This choice follows the same reasoning as depicted for the k independent
priors for θ, with the addition that the heavy tails of C allow for the sampling of extreme values
which would account for outlying observations in the original data. To avoid the estimation
of negative parameters, both priors are constrained to take values in the positive set of real
numbers and are mathematically expressed as

θk ∼ N (0.5, 0.3), θk > 0

σ ∼ C(0, 1), σ > 0.
(2.9)

Implementation

The Bayesian parameter estimation framework was performed with Stan [50], using the RStan
interface package for R [73, 74]. The model was solved as an initial value problem, where
the onset concentrations for the eight state variables in Eqs. (2.1) to (2.8) were provided as
they were reported in the original works of Camu et al. [12] and Papalexandratou et al. [62].
Sampling for obtaining the posterior distributions of the unknown parameters as well as the
model predictions, were conducted using full Bayesian inference through the Markov chain
Monte Carlo (MCMC) No-U-Turn sampler (NUTS) [40]. The ODEs were specified and solved
by the built-in mechanism of Stan rk45, which provides a fourth- and fifth-order Runge-Kutta
method for solving non-stiff systems [51, 52]. All data sets were fitted by running four parallel
Markov Chains of 3000 iterations each, 1000 of which were used as warm-up. Convergence of
the sampling was determined by examining the R̂ statistics computed by Stan.

2.2.5 Statistical analyses

Once the parameters of Eqs. (2.1) to (2.8) were estimated, their posterior distributions obtained
from fitting the model to each of the two trials, i.e., box 1 and box 2, reported by Papalexan-
dratou et al. [62] were compared between each other. For doing so, an effect size statistic was
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Table 2.2: Parameters of the cocoa bean fermentation model and their interpretation. Microbial groups:
yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Metabolites: glucose (Glc), fructose
(Fru), ethanol (EtOH), lactic acid (LA) and acetic acid (Ac).

Parameter Unit Interpretation

µYGlc
max h−1 Maximum specific growth rate of Y on Glc

µYFru
max h−1 Maximum specific growth rate of Y on Fru

µLABGlc
max h−1 Maximum specific growth rate of LAB on Glc

µAABEtOH
max h−1 Maximum specific growth rate of AAB on EtOH

µAABLA
max h−1 Maximum specific growth rate of AAB on LA

KY
Glc mg(Glc) g(pulp)−1 Substrate saturation constant of Y growth on Glc

KY
Fru mg(Fru) g(pulp)−1 Substrate saturation constant of Y growth on Fru

KLAB
Glc mg(Glc) g(pulp)−1 Substrate saturation constant of LAB growth on Glc

KAAB
EtOH mg(EtOH) g(pulp)−1 Substrate saturation constant of AAB growth on EtOH

KAAB
LA mg(LA) g(pulp)−1 Substrate saturation constant of AAB growth on LA

kY mg(EtOH)−1 h−1 Mortality rate constant of Y

kLAB mg(LA)−1 h−1 Mortality rate constant of LAB

kAAB mg(Ac)−2 h−1 Mortality rate constant of AAB

YGlc|Y mg(Glc) mg(Y)−1 Y-to-Glc yield coefficient

YGlc|LAB mg(Glc) mg(LAB)−1 LAB-to-Glc yield coefficient

YFru|Y mg(Fru) mg(Y)−1 Y-to-Fru yield coefficient

Y Glc
EtOH|Y mg(EtOH) mg(Y)−1 Y-to-EtOH from Glc yield coefficient

Y Fru
EtOH|Y mg(EtOH) mg(Y)−1 Y-to-EtOH from Fru yield coefficient

YEtOH|AAB mg(EtOH) mg(AAB)−1 AAB-to-EtOH yield coefficient

Y Glc
LA|LAB mg(LA) mg(LAB)−1 LAB-to-LA yield coefficient

YLA|AAB mg(LA) mg(AAB)−1 AAB-to-LA yield coefficient

Y Glc
Ac|LAB mg(Ac) mg(LAB)−1 LAB-to-Ac yield coefficient

Y EtOH
Ac|AAB mg(Ac) mg(AAB)−1 AAB-to-Ac from EtOH yield coefficient

Y LA
Ac|AAB mg(Ac) mg(AAB)−1 AAB-to-Ac from LA yield coefficient

used as proposed by Cohen [75], as a measure of the magnitude of either their relationship or
difference. In that way, the effect size expressed as the standardized mean difference (d) of two
independent continuous distributions was computed as

d =
θk,1 − θk,2

Swk

, (2.10)
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where θk,1 and θk,2 are the sampled means corresponding to the parameter k obtained from box
1 and box 2, respectively, and Swk

is the pooled within-groups standard deviation corresponding
to the parameter k, which for the case of groups of equal sample sizes (in this study represented
as the number of iterations of the MCMC sampler) is given by

Swk
=

√
S2
k,1 + S2

k,2

2
, (2.11)

where Sk,1 and Sk,2 are the standard deviations of the posterior distribution of parameter k for
box 1 and box 2, respectively. We used a threshold of |d| > 1.2, in order to identify significant
differences between parameters [76].

2.3 Results

2.3.1 Model’s diagnostics

In all three datasets, the proposed model was fitted without major issues. The calculated R̂
statistic was 1 for all three cases (see Tables A.4, A.5 and A.6), showing that convergence of
the MCMC sampler was accomplished. Such a behavior is also noticeable in the obtained trace
plots (see Figures A.5, A.6 and A.7), that show the typical ‘caterpillar’ shape as probe of a good
mixing of the MCMC sampler along the exploration of the parameter space. Asymptotically,
the ODE system converges to a stable fixed point (see Appendix A.5).

2.3.2 Metabolite and microbial population dynamics

The proposed model, as described in Eqs. (2.1) to (2.8), fits each of the collections of data
reported previously by Camu et al. [12] (Figure 2.3) and Papalexandratou et al. [62] (Figures
2.4 and 2.5) remarkably well.
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Figure 2.3: Simulation results of the cocoa bean fermentation model for the data reported by Camu et al.
[12]. Metabolites: (a) glucose, (b) fructose, (c) ethanol, (d) lactic acid, and (e) acetic acid. Microbial
groups: (f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. Solid red lines show to the
simulations of the model, while black points denote the experimental data of Camu et al. [12]. The red
dashed lines represent the 95% credible interval of the model predictions.
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In each of the data collections, despite the noisy nature of the experimental data and the low
sampling rate, the corresponding simulations show the microbial succession previously reported
by several studies for Y, LAB and AAB that emerges from the interplay of metabolites and
microbial communities.

Thus, most of the experimental observations reported by Camu et al. [12] and Papalexan-
dratou et al. [62] fall within the computed 95% credible intervals of the simulations showing that
the model can predict the dynamics of metabolites in all cases, even in those where theoretical
knowledge is not fully reflected on the data. This is the case for the time-series of LA in the
data reported by Camu et al. [12], where its concentrations seem to stay steady after 48 hours
of fermentation, which would contradict its consumption by AAB as reported by Pereira et al.
[68].

2.3.3 Parameter estimates

It was found that among the 24 parameters of the model, there are similar reported values for
14 of them for single strain cultures. This means that in our parameter estimation framework,
for each dataset 14 parameter estimates can be compared with their counterparts in literature.
In this way, from 42 parameter estimates, 17 (40.48%) of them are in accordance to the refer-
enced ranges, 20 (47.62%) are out of the referenced range by less than the estimate divided or
multiplied by ten and 5 (11.90%) are out of the referenced range by more than the estimate
divided or multiplied by ten (Table 2.3). In the following paragraphs our results will be struc-
tured in accordance to their type as (1) Maximum specific growth rates, (2) substrate saturation
constants, (3) Mortality rates and (4) Yield coefficients.
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Figure 2.4: Simulation results of the cocoa bean fermentation model for the data reported for box 1 by
Papalexandratou et al. [62]. Metabolites: (a) glucose, (b) fructose, (c) ethanol, (d) lactic acid, and (e)
acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. Solid red
lines show to the simulations of the model, while black points denote the experimental data for box 1
of Papalexandratou et al. [62]. The red dashed lines represent the 95% credible interval of the model
predictions.

Maximum specific growth rates

With respect to the maximum specific growth rates, the estimated values mostly fall within
their reported values in literature, with the exception of three estimates belonging to particular
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trials. Specifically, for the maximum specific growth rate of Y on Glc (µYGlc
max ), the obtained

parameter values ranged from 0.06 to 0.37 h−1. These values agree with the reported ones for
species of this microbial group, between 0.0781 and 0.53 h−1 [77–84] for Camu et al. [12] and
Box 2 [62] (green cells in Table 2.3), while the estimate for Box 1 [62] is far from the range in less
than the estimate divided by ten (orange cell in Table 2.3). In a similar fashion, the estimated
parameters for the maximum growth rate of LAB (µLABGlc

max ) varied across the three datasets
between 0.36 and 0.5 h−1, falling within the range of reported values in the literature between
0.0072 and 1.41 h−1[85–90] (all parameters are within green cells in Table 2.3). In contrast,
the maximum specific growth rate of Y on Fru (µYFru

max ) and AAB on EtOH (µAABEtOH
max ), do not

agree completely with reported values in literature. In the first case, only the estimate obtained
from box 1 conducted by Papalexandratou et al. [62] falls within the range of 0.01 to 0.166 h−1

[78, 83, 91, 92] (green cell in Table 2.3). In the latter case, the only estimate that does not fall
within the range of 0.0106 to 0.25 h−1 [93–97] is the one obtained from the data reported by
Camu et al. [12] (orange cell in Table 2.3). For the maximum specific growth rate of AAB on
LA (µAABLA

max ), no values were reported in literature for this microbial group on LA as carbon
source. The estimated values for this parameter were between 0.01 to 0.02 h−1.
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Figure 2.5: Simulation results of the cocoa bean fermentation model for the data reported for box 2 by
Papalexandratou et al. [62]. Metabolites: (a) glucose, (b) fructose, (c) ethanol, (d) lactic acid, and (e)
acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. Solid red
lines show to the simulations of the model, while black points denote the experimental data for box 2
of Papalexandratou et al. [62]. The red dashed lines represent the 95% credible interval of the model
predictions.

Substrate saturation constants

About the substrate saturation constants, here denoted by K, their estimated values for the
three datasets agree with reported ones in literature in one out of three instances. For these com-
parisons, in several occurrences a unit transformation was necessary from their original units in
which they were reported to milligrams of substrate per milliliter of medium (mg(substrate) mL−1),
and assuming that one gram of pulp is equivalent to one milliliter of medium, since our estimates
are given in mg(substrate) mg(pulp)−1.

On the one hand, values reported in literature for these parameters were found for the
substrate saturation constants of Y on Glc (KY

Glc) [82, 84], Y on Fru (KY
Fru) [92] and LAB on
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Glc (KLAB
Glc ) [88–90]. The obtained estimated values ranged from 30.01 to 35.32, 25.02 to 41.39

and 19.27 to 37.97 mg(substrate) g(pulp)−1 respectively. Estimated values for KY
Glc are far from

the reported ranges by less than the estimate multiplied by ten (orange cells in Table 2.3); while
for KY

Fru, the estimates were farer from the referenced range than the estimate multiplied by
ten (red cells in Table 2.3). From these estimates, the ones corresponding to KLAB

Glc were those
which fall within the reported range of 0.79 to 178.0 mg(Glc) mL−1 [88–90] (green cells in Table
2.3).

On the other hand, no values of substrate saturation constants were reported either for AAB
on EtOH (KAAB

EtOH) or AAB on LA (KAAB
LA ). For these parameters, their estimated values ranged

from 3.81 to 16.06 and 81.981 to 2509.62 mg(substrate) g(pulp)−1, respectively. For KAAB
LA , this

considerably higher value for the upper limit of the range was obtained for the Camu et al.
[12] data. This inflation of values was observed for other parameters, i.e., AAB-to-EtOH yield
coefficient (YEtOH|AAB), AAB-to-LA yield coefficient (YLA|AAB) and AAB-to-Ac from LA yield

coefficient (Y LA
Ac|AAB), of this dataset as well.

Mortality rate constants

For the mortality rate constants, k, no values were reported in literature. Here, their esti-
mated values for Y (kY), LAB (kLAB) and AAB (kAAB) were in the ranges of 0.033 to 0.092
mg(EtOH)−1 h−1, 0.0054 to 0.067 mg(LA)−1 h−1 and 0.0004 to 0.0069 mg(Ac)−2 h−1, respec-
tively. These estimates varied considerably between the data of Camu et al. [12] and Papalexan-
dratou et al. [62]. In the latter, the only estimate that differed much between box 1 and box 2
was the one corresponding to kY.

Yield coefficients

Finally, a higher variability among the obtained parameter estimates was found for the yield
coefficients, Y . These differences were notable between the two studies of Camu et al. [12] and
Papalexandratou et al. [62], as well as the two trials (box 1 and 2) of the latter. In more detail,
the estimated yield coefficient of Y-to-EtOH from Glc (Y Glc

EtOH|Y) was the only one that agree in

all three datasets with those reported in literature (green cells in Table 2.3). Their estimated
values ranged between 7.44 to 11.94 mg(EtOH) mg(Y)−1, falling in the referenced range of 1.39
to 21.49 mg(EtOH) mg(Y)−1 [81–83, 98]. For the yield coefficient of LAB-to-Glc (YGlc|LAB),
the fits corresponding to the data of Camu et al. [12] and Box 1 [62] were contained in the
referenced range of 1.56 to 66.67 mg(Glc) mg(LAB)−1 [90, 99] (green cells in Table 2.3) with
values of 29.23 and 20.22 mg(Glc) mg(LAB)−1 respectively. The remaining estimate YGlc|LAB

for Box 2 was far from the reported range in less than the estimate multiplied by ten, with a
estimated mean of 3.32 mg(Glc) mg(LAB)−1 (orange cell in Table 2.3).

In contrast, there are estimated yield coefficients that do not agree completely with previ-
ously reported values. On the one hand, the estimated value of 33.4 mg(Glc) mg(Y)−1 (green cell
in Table 2.3) for the yield coefficient of Y-to-Glc (YGlc|Y), in the dataset of Camu et al. [12] only,
agree with the ranges of 1.56 to 66.67 mg(Glc) mg(Y)−1 [78–82, 100, 101]. Their counterparts
from Boxes 1 and 2 reported by Papalexandratou et al. [62], are away from the reported range
in less than the estimate multiplied by ten (orange cells in Table 2.3) with values of 240.93 and
119.67 mg(Glc) mg(Y)−1 respectively. For the yield coefficient of Y-to-Fru (YFru|Y), all estimated
parameters are far from the referenced range of 43.48 to 200mg(Fru) mg(Y)−1 [78, 91] in less
than the estimate divided by ten (orange cells in Table 2.3) with values between 41.11 to 244.15
mg(Fru) mg(Y)−1. A similar situation is observed for coefficients Y-to-EtOH from Fru (Y Fru

EtOH|Y)

and AAB-to-EtOH (YEtOH|AAB) (orange cells in Table 2.3), with estimated parameters between
5.927 to 11.195 mg(EtOH) mg(Y)−1 and a single referenced value of 5.7878 mg(EtOH) mg(Y)−1
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Chapter 2. A mathematical model of cocoa bean fermentation

[83] for Y Fru
EtOH|Y and estimated parameters between 170.44 to 1298.070 mg(EtOH) mg(AAB)−1

with a referenced range of 8.06 to 166.67 mg(EtOH) mg(AAB)−1[94, 96, 102] for YEtOH|AAB.
Moreover, the estimated yield coefficients for AAB-to-LA (YLA|AAB) do not agree in any

of the data collections with the reference value of 7.94 mg(LA) mg(AAB)−1[96] with values far
from the reference over ten times the parameter for the datasets of Camu et al. [12] and Box
1 of Papalexandratou et al. [62] (red cells in Table 2.3) and one value far from the reference in
less than the estimate divided by ten for Box 2 (orange cell in Table 2.3).

For the rest of yield coefficients: LAB-to-LA (Y Glc
LA|LAB), LAB-to-Ac (Y Glc

Ac|LAB), AAB-to-Ac

from EtOH (Y EtOH
Ac|AAB) and AAB-to-Ac from LA (Y LA

Ac|AAB), no values were reported in liter-

ature. Here their estimated values were in the ranges of 2.14 to 10.62 mg(LA) mg(LAB)−1,
2.89 to 5.61 mg(Ac) mg(LAB)−1, 104.06 to 576.47 mg(Ac) mg(AAB)−1 and 385.17 to 1427.23
mg(Ac) mg(AAB)−1, respectively.

Special attention needs to be given to the values of YEtOH|AAB, YLA|AAB and Y LA
Ac|AAB for the

data of Camu et al. [12], which showed inflated values that are not biologically plausible.
The effect of the measurement errors is discussed in Appendix A.6.

2.3.4 Statistical comparison of fermentation trials

The statistical comparison of the parameter estimates between the two fermentation trials con-
ducted by Papalexandratou et al. [62] showed that significant differences exist among them
(Table 2.3), even though these were done under slightly different conditions in the same region.
In this respect, the parameter estimates that showed such a significantly large difference de-
pending on which trial they were derived from, correspond to µYGlc

max , µYFru
max , KAAB

LA , kY, YGlc|Y,
YGlc|LAB, YEtOH|AAB and YLA|AAB. In the comparison of all these parameters, the computed
absolute value of the standardized mean difference (effect size d) was greater than the threshold
of 1.2 suggested by Sawilowsky [76]. Such a result leads to hypothesize that minor changes in
both, methodologies and regions, affect the parameters of the model as it will be addressed in
the discussion section.

2.4 Discussion

2.4.1 Model fitting

As shown in the aforementioned results, our current model for cocoa bean fermentation can
reproduce each of the datasets with high accuracy. This means that the mechanistic assump-
tions made here are under the available biological knowledge to a considerably good degree,
as it has been reflected in the conducted simulations. In this sense, our model represents a
mechanistic approach which allows for a deep understanding of the transient responses of the
process dynamically, as opposed to current metabolic flux analyses [19, 60] that assume steady-
state metabolic conditions. Moreover, it represents a fully working kinetic model opposed to a
previous attempt which can simulate metabolites and products time-courses only [22].

However, a detailed analysis of the resulting fits provides insight into the validity of some
of the regulatory assumptions underlying the model, the relevance of additional effects not
included in the present version of the model, as well as differences between the experimental
setups behind the datasets.

2.4.2 Regulatory assumptions

By analyzing the parameter estimates obtained here, important features of the model can
be explored for its enhancement in future iterations. A Bayesian framework for parameter
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estimation, as used here, provides a scheme to investigate their uncertainty and determine their
possible uniqueness. Therefore, it serves as a descriptive source for deriving the plausibility of
the regulatory assumptions of the model.

In this sense, one particularity of the fitted model is the presence of strongly elevated
estimates for the data of Camu et al. [12]. Specifically, the parameters showing such values
were: (1) The substrate saturation constant KAAB

LA and (2) The yield coefficients YEtOH|AAB,

YLA|AAB and Y LA
Ac|AAB. Looking at the standard deviations (Table 2.3, Figures A.8, A.9 and

A.10) of their corresponding posterior distributions, it can be noticed that there is a huge
uncertainty in their values (large errors). These uncertainties reveal the parameters cannot be
uniquely estimated from these particular data, suggesting a practical non-identifiability of the
parameters with the data reported by Camu et al. [12]. The reason for this characteristic can
be threefold. Firstly, noise in the experimental data prevents a unique determination of the
model’s parameters because of an insufficient signal-to-noise response [103]. Secondly, the data
may be incongruent particularly with the model mechanisms of growth of AAB on LA and the
interactions AAB – EtOH. Finally, the estimated parameters might be correlated.

In our opinion, all elevated parameters related to the growth of AAB on LA, i.e., KAAB
LA ,

YLA|AAB and Y LA
Ac|AAB, can be a result of noise in experimental data. Thus, as revealed by

visual inspection of Figure 2.3 panel (d) where the real data does not reflect a stressed decrease
in the concentration of LA as opposed to the data reported by Papalexandratou et al. [62]
(Figures 2.4 and 2.5, panel (d)), where such decrease exists after 72 hours of the fermentation
process. For the remaining elevated parameter which is related to the consumption of EtOH
by AAB (YEtOH|AAB), a straight interpretation of its value of ≈ 1300 mg(Glc) mg(Y)−1 would
imply that 1300 mg of EtOH are consumed by 1 mg of AAB; or that for generating 1 mg of
AAB, it is required 1300 mg of EtOH. Obviously, a yield coefficient of this order of magnitude
is biologically implausible and for this reason it could be argued that the proposed model is
not entirely capturing all the inherent mechanisms of the AAB – EtOH interaction in the
fermentation process. A possible explanation of this specific inflated parameter value, is that
YEtOH|AAB is not only capturing the consumption of EtOH by AAB, but also possible physical
processes such as evaporation of this metabolite. Temperature data, so far not implemented in
the model, gave the reason for this hypothesis. More precisely, the data of Camu et al. [12] shows
higher temperatures of the fermentation mass much earlier in the process compared to the data
reported by Papalexandratou et al. [62]. In the first case, a temperature above 35oC was reached
right after 30 hours and its maximum of ≈ 45oC at 70 hours of the fermentation process. In
the latter, similar temperatures were reached at 40 and 80 hours of the process. This disparity
might explain why the estimated parameter values for YEtOH|AAB in the Papalexandratou et al.
[62] data collection are between 3 to 5 times less compared to the value obtained for the data of
Camu et al. [12]. Finally, correlation between the estimated parameters might play an important
role in the non-identifiability of these inflated parameters. In other words, interdependencies
between different sets of parameters limit the MCMC sampler to freely explore the solution
space. In that sense, from a simple correlation analysis (see Appendix A.7), we did not find
remarkable patterns among the posterior probabilities of the parameter estimates, not even in
the inflated ones.

According to these hypotheses, further iterations of the model should include additional
physical effects, especially temperature. Moreover, pH conditions during the conduction of the
fermentation should be also taken into account, as well as a non-dimensionalization of the model
to identify correlated estimates and reduce their number.
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2.4.3 Parameter conformance to values in literature

The parameter ranges indicated as reported values in Table 2.3 are in many cases referring to dif-
ferent experimental conditions and/or a specific microorganismal strain and might therefore not
be directly comparable to the biological situation discussed here. We resorted to these values,
whenever we failed to identify parameter values directly applicable to cocoa bean fermentation,
in order to at least provide an order-of-magnitude estimate.

Hence, among the different estimated parameters, few did not agree with previously reported
values in literature as pointed out in 2.3.3. For the substrate saturation constantsKY

Glc andKY
Fru,

such a difference can be explained because the reported values correspond to the growth of Y
under aerobic conditions, as opposed to the anaerobic earlier stage of cocoa bean fermentation
where Y’s growth takes place. Consequently, higher values for these parameters as reported
here, reflect a slow uptake rate of Glc and Fru by Y under anaerobic conditions. Finally, from
a general point of view, the various discrepancies between the obtained parameter estimates for
the growth rates and yield coefficients with its values reported in literature for single species
confirms the high growth rates and yields coefficients that mixtures of microorganisms might
show in fermentation processes [104].

2.4.4 Comparison of parameter estimates

As mentioned in section 2.2.1, the study performed by Papalexandratou et al. [62], involved
two fermentation trials conducted in two cocoa-producing farms in Brazil belonging to the
same region. These trials, denoted as ‘box 1’ and ‘box 2’, differed between each other in minor
aspects. After we identified eight significantly different estimates between these trials (see Table
2.3), in the following paragraphs, three main differences were taken into account in order to
formulate hypotheses in how the parameter estimates are affected when applying the same
fermentation method, i.e., wooden boxes, under similar environmental conditions in distinct
fermentations. The three main differences between the trials are: (1) Initial concentration of
microorganisms, (2) Concentration ratios of initial substrates, and (3) Evaporation rates.

Initial concentration of microorganisms

The initial concentrations of microorganisms between boxes 1 and 2 differed little, except for Y.
For Y, the initial concentrations in box 1 and 2 were equal to 0.18 and 0.005 mg g−1, respectively.
This difference as well as the microbial diversity that has been seen along different fermentation
trials [4] determined that the estimates of these growth rates differ between each fermentation
trial; with higher values of the growth rates µYGlc

max and µYFru
max for box 2 than for box 1. A

similar effect is evident in the yield coefficient related to the growth of Y on Glc (YGlc|Y), where
box 1 showed a higher value than the one obtained for box 2 as a consequence of the higher
initial amount of Y in box 1. In other words, a higher initial concentration of Y determines
the estimation of lower maximum specific growth rates as well as higher estimates for the yield
coefficient of Y on Glc. This can be explained that given a high initial microbial population, it
needs a lower cell division rate to reach the maximum described by the observed data and an
increased rate of uptake of its substrate.

Concentration ratios of initial substrates

Worthy of attention was the difference in the initial concentrations of the main substrates Glc
and Fru which might play an important role in the growth of Y and LAB. For box 1, the initial
concentrations of Glc and Fru are 55.482 and 49.669 mg g−1 respectively; while for box 2, these
are 42.936 and 67.249 mg g−1 respectively. This ratio would explain the significant difference
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in the yield coefficient of the growth of LAB on Glc (YGlc|LAB) between boxes 1 and 2. In
box 2, this yield coefficient was estimated significantly lower than for box 1 which leads to the
hypothesis that this phenomena might be the result of a growing population of Y restraining the
access to Glc to the LAB microbial group. This final hypothesis coincides with our assumption
of resource-type competition between Y and LAB [71, 72], which determined a less successful
YGlc|LAB for LAB under a lower initial concentration of its main substrate Glc in box 2.

Evaporation rates

Among the subtle differences between box 1 and box 2 reported by Papalexandratou et al. [62],
the final one to be considered is the possible uneven evaporation rates between them. With
this in mind, it is not deceitful to expect a higher evaporation rate of volatile metabolites in a
fermenting mass protected only by a metal roof, as reported for box 1, than in a fermenting mass
held within a fermentary room, as reported for box 2. In this respect, the higher estimated yield
coefficient of growth of AAB on EtOH (YEtOH|AAB) in box 1 than in box 2, might be explained
for a possibly greater evaporation rate of EtOH in box 1, similar to the possible explanation
of its inflated counterpart determined for the Camu et al. [12] dataset. A similarly higher
evaporation rate for LA and Ac in box 1 could explain the differences among the remaining
parameter estimates, i.e., the Contois substrate saturation constant for the growth of AAB
on LA (KAAB

LA ), the yield coefficient of consumption of LA by AAB (YLA|AAB) as well as the
large variances of the yield coefficients of the production of Ac from EtOH and LA by AAB
(Y EtOH

Ac|AAB and Y LA
Ac|AAB respectively). This hypothesis can be also extended to the lower value

in the mortality rate term of Y (kY) observed in box 1 than in box 2, where EtOH losses its
effect on decreasing Y’s population due to a higher evaporation. In other words, the mortality
rate of Y might be lowered in the presence of an increasing evaporation rate of EtOH in the
fermenting mass.

2.5 Conclusion

The model presented here is a first biochemically plausible, ODE-based kinetic model of cocoa
bean fermentation capable of reproducing the known sequential activation of microbial commu-
nities and capable of fitting available experimental data to an acceptable degree. However, it is
necessarily a simplification of the diverse biological processes involved in cocoa bean fermenta-
tion. The remaining discrepancies between model prediction and experimental data, as well as
those parameter values outside the biologically plausible ranges, point to the fact that relevant
aspects of the processes have not been taken into account.

Based on the model features, we can hypothesize that the following regulatory mechanisms
might exist: (1) Resource-type competition between Y and LAB, (2) Microbial death is de-
termined in a good degree by direct action of fermentation products upon their respective
producing microorganisms, (3) Chemical and physical factors intervene in the decrement of
volatile products, i.e., EtOH and LA, rather than microbial activities only.

This mathematical model allows relating observed microbial population sizes and concen-
trations of the five chemical compounds considered here, i.e., Glc, Fru, EtOH, LA and Ac,
during the time course of fermentation with growth rates, mortality rates, substrate saturation
constants and yield coefficients as intrinsic systemic parameters.

Additionally, the capability of the model to ‘reverse-engineer’ differences from the observed
time courses of two trials conducted in the same region under the same methodology showed
how these systemic parameters might be affected by minor changes between one and other
fermentation trial. The cocoa and chocolate markets require a steady flow of high quality raw
material resulting from diverse types of fermentation. Although fermentation practices will
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remain locally determined, model-based recommendations to farmers on practices and use of
specific starter cultures might help to increase the quality of cocoa bean raw material prior to
shipment. This will ultimately increase the sustainability of cocoa bean supply.

Subsequent versions of the model should include additional chemical and physical effects,
such as temperature and pH dependence of kinetic parameters, the spatial heterogeneity of a
fermentation pile, impact of additional (commonly occurring) microorganisms, as well as a fur-
ther compartmentalization including the inner bean and incorporating sucrose as an additional
carbon source, serving also as a (time-delayed) source of glucose and fructose.

Besides the extension by further chemical and physical effects, eventually such a kinetic
model needs to be interfaced with the more microscopic, metabolic perspective put forward
in other studies [19, 60]. Should high-quality genome-scale metabolic models be availabe, flux
balance analysis [105] may provide a suitable theoretical framework for such an approach on
three levels: (1) A metabolic pathway analysis of synergies and competitions (e.g. using the
methodology from Levy & Borenstein [106]) may point to additional modes of interaction among
the species involved. (2) A detailed exploration of the emerging pattern of chemical compounds
as a function of the fermentation time course may become feasible by incorporating the bio-
chemical interactions of the cocoa bean and the microorganisms. (3) The relevance of a larger
diversity in microorganisms (e.g., different yeast strains) can be assessed. With the availability
of genome-scale metabolic models currently developing rapidly [107], we expect this avenue of
research to become feasible in the very near future.

The recent finding [108] about the metabolic interplay of yeast and LAB is an example
of the richness of this metabolic foundation underlying the dynamics leading to the successful
fermentation of a cocoa bean.
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Chapter 3

Exploring cocoa bean fermentation
mechanisms by kinetic modeling5

Abstract

Compared to other fermentation processes in food industry, cocoa bean fermentation is
uncontrolled and not standardized. A detailed mechanistic understanding can therefore be
relevant for cocoa bean quality control. Starting from an existing mathematical model of
cocoa bean fermentation, we analyze five additional biochemical mechanisms derived from
the literature. These mechanisms, when added to the baseline model either in isolation or
in combination, were evaluated in terms of their capacity to describe experimental data.
In total, we evaluated 32 model variants on 23 fermentation datasets. We interpret the
results from two perspectives: (1) success of the potential mechanism, (2) discrimination
of fermentation protocols based on estimated parameters. The former provides insight into
the fermentation process itself. The latter opens an avenue towards reverse-engineering
empirical conditions from model parameters. We find support for two mechanisms debated
in the literature: consumption of fructose by lactic acid bacteria and production of acetic
acid by yeast. Furthermore, we provide evidence that model parameters are sensitive to
differences in the cultivar, temperature control, and usage of steel tanks compared to wooden
boxes. Our results show mathematical modeling can provide an alternative to standard
chemical fingerprinting in interpreting fermentation data.

3.1 Introduction

Cocoa beans from Theobroma cacao L. are the raw material of chocolate. Their fermentation
plays a fundamental role as being responsible for eliminating undesired properties from freshly
harvested beans, e.g., astringency and bitterness, besides of yielding chocolate-related flavor and
aroma precursor compounds [3, 4]. In contrast to the highly controlled fermentation processes
known from other food products, this process is conducted in situ at each of the producing farms
in a spontaneous form varying in both methodology, e.g., wooden boxes, heaps and platforms
[4, 18, 109], and observed microbial diversity [110].

This heterogeneity due to different fermentation methods and indigenous microbiota, leads
to a plethora of studies that have qualitatively described the process, e.g. [109, 110]. Among all
these, sequentiality of microbial populations thriving on the beans’ enclosing pulp constitutes
the process dynamics with greatest acceptance [3, 4, 109].

In further detail, regardless of the wide range of factors that could differentiate fermentation
trials, sequential succession of microbial groups during their execution can be understood as
a three-phased process, where a microbial group dominates each phase during a distinct time

5This chapter is based on the publication of Moreno-Zambrano et al. [2].
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period. In a first stage, anaerobic conditions due to the packed nature of the pulp favor the
growth of yeasts that bloom as a consequence of a carbohydrate-rich environment producing
mainly ethanol. Through their pectinolytic action yeasts drive to a liquefaction of the pulp. As a
consequence, a drainage of pulp permits air to enter into the fermenting mass contributing to the
decline of yeast population. Under these conditions, a second stage is dominated by the growth
of microaerophilic lactic acid bacteria that at the onset of the process were reproducing at a
lower rate than yeasts. Therefore, by depletion of remaining sugars from the first stage, lactic
acid bacteria yield mainly lactic and acetic acids. At this point, after considerable drainage of
pulp, a fully aerobic phase is reached. This third and final stage is characterized by an almost
complete dominance of aerophilic acetic acid bacteria that oxidize lactic acid into acetoin, and
ethanol into acetic acid [3, 18, 54, 109].

As a consequence, microbial sequentiality during the fermentation has served as the basis
for formulating a few mathematical approaches for its quantitative description [1, 22, 23, 111].
Among these, the model proposed in Eqs. (2.1) to (2.8) served us here as baseline. The main
sub-processes implemented in this study focus on the activity of major microbial groups, namely
yeasts (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB). As a result, we developed
a successful model based on well known regulatory assumptions: In a first instance, Y come
into play by converting glucose (Glc) and fructose (Fru) into ethanol (EtOH). Concomitantly,
LAB consumes Glc leaving as products lactic acid (LA) and acetic acid (Ac). Finally, AAB
takes over the last phase of fermentation by oxidizing EtOH and LA into Ac [1].

Beyond these key components, more regulatory mechanisms have been mentioned across
experimental studies that could bring more insight into the dynamics of cocoa bean fermen-
tation. Among these, we here put special emphasis in five phenomena (see detailed references
in Materials and Methods, below): (1) decrease of product metabolites by physical causes, (2)
consumption of Fru by LAB, (3) production of Ac by Y, (4) consumption of LA by Y, and (5)
over-oxidation of Ac by AAB.

Along these lines, we were able to assess the plausibility of stand-alone and simultaneous
occurrence of these mechanisms when added to our baseline model and to identify system-
atic differences of fermentation features by applying classification methods over their resulting
vectors of parameter estimates. Our key questions are: (1) Which model variants describe
the experimental data better than the baseline model? (2) For which model can parameter
differences be related to differences in the fermentation process?

3.2 Materials and Methods

3.2.1 Identification and processing of experimental data

A literature survey concerning cocoa bean fermentation trials was performed with the purpose
of gathering experimental data. Reported trials considered in this study were papers published
between 2000 to 2019. As inclusion criteria, only English-written works with time series of
minimum 5 observations for metabolites Glc, Fru, EtOh, LA and Ac, besides total population
counts of Y, LAB and AAB were included.

In all cases, population growth of Y, LAB and AAB were transformed from log base 10 of
colony forming units (log10(CFU)) to milligrams of microbial group (MG) per gram of pulp
(mg(MG) g(pulp)−1). Moreover, all time series were scaled by dividing each observation by its
own maximum value. These data preparation steps have been performed, in order to get kinetic
parameter values comparable with previously reported ones and facilitating their estimation by
avoiding numerical issues during model calibration [1].

For this current research, distinct trials were given a code name based on country of origin
and fermentation method. A complete detail of data included in this research where at least
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one model variation successfully fit it (see following sections for their explanation) is shown in
Table 3.1. For a comprehensive list of all data initially considered see Appendix B.1.

Table 3.1: Considered data sources. Only fermentation trials that were successfully described by at least
one model iteration (MI) are listed. Author, year of publication, cocoa country of origin, cocoa cultivar,
used methodology, code name given in the original trial, re-coded given name in this research, turning
of the fermenting mass and controlled temperature are shown.

Reference Year Country Cultivar Method Trial Code Turning Ctrl. Temp.

Camu et al. [12] 2007 Ghana Criollo/Forastero heap heap 5 ghhp1 7 7

Lagunes Gálvez et al. [112] 2007 Dominican Republic Trinitario wooden box NA dowb1 3 7

Camu et al. [17] 2008 Ghana NA* heap

heap 10 ghhp2 3 7

heap 11 ghhp3 7 7

heap 12 ghhp4 3 7

heap 13 ghhp5 7 7

Papalexandratou et al. [62] 2011 Brazil Criollo/Forastero wooden box
box 1 brwb1 3 7

box 2 brwb2 3 7

Papalexandratou et al. [113] 2011 Ecuador Nacional/Trinitario

platform
P1 ecpt1 7 7

P2 ecpt2 7 7

wooden box
B1 ecwb1 3 7

B2 ecwb2 3 7

Pereira et al. [68] 2012 Brazil NA*
plastic box PC brpb1 3 3

stainless tank ST brst1 3 3

Pereira et al. [14] 2013 Brazil Mixed hybrids*
wooden box

WB1 brwb3 3 7

WB2 brwb4 3 7

stainless tank SST brst2 3 7

Moreira et al. [15] 2013 Brazil PH16 wooden box PH16 brwb7 NA 7

Papalexandratou et al. [114] 2013 Malaysia Mixed hybrids wooden box box 2 mywb3 3 7

Romanens et al. [115] 2018 Honduras IMC-67, UF-29, UF-668 wooden box OF-F hnwb1 3 7

�Lee et al. [116] 2019 Ecuador Criollo plastic box NA ecpb1 NA 3

Papalexandratou et al. [117] 2019 Nicaragua Nugu/O’payo wooden box
NUGU niwb1 3 7

O’PAYO niwb2 3 7

* Unidentified cultivars used by Camu et al. [17], Pereira et al. [68] and Pereira et al. [14] were coded as un1, un2 and un3, respectively for further PCA.
� Simulated fermentation.

3.2.2 Formulation of candidate models

Starting from the baseline model, we implemented five regulatory mechanisms that have been
reported or hypothesized in multiple studies. In the following paragraphs, the baseline model
will be described and proposed mechanisms reasoning will be presented conforming what we
considered their likeliness of occurrence as (1) decay of fermentation’s products, (2) consumption
of Fru by LAB, (3) production of Ac by Y, (4) consumption of LA by Y, and (5) over-oxidation
of Ac by AAB.

Baseline model

As baseline, we used the model proposed in Eqs. (2.1) to (2.8) that consist of 8 ODEs describing
the dynamics of metabolites: Glc, Fru, EtOH, LA and Ac, besides microbial groups: Y, LAB
and AAB. Both, metabolites and microbial groups are interdependent in the dynamic process
by means of growth and mortality rates of the latter (Figure 3.1 (a)). Monod [27] and Contois
[29] type equations were employed to describe the growth rates of microbial groups. Growth
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Figure 3.1: Summary of models iterations. (a) Network diagram of mechanisms over baseline model.
Microbial groups: yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB) are represented
as circles. Metabolites: Glucose (Glc), fructose (Fru), ethanol (EtOH), lactic acid (LA) and acetic acid
(Ac) are represented as squares. The growth rates of Y on Glc (v1), Fru (v2) and LA (v10), of LAB on Glc
(v3) and Fru (v9), and of AAB on EtOH (v4), LA (v5) and Ac (v11) are represented as straight dashed
arrows. The mortality rates of Y (v6), LAB (v7) and AAB (v8) are represented as zigzag dashed arrows
as the decay rates of EtOH (d1), LA (d2) and Ac (d3). Straight dashed arrows pointing from products to
mortality rates represent product influence on mortality rates. Solid straight arrows show the direction in
which the conversion of metabolites occur. Baseline model comprehends mechanisms depicted in black
(�). (b) Representation of full model with mechanisms M1, M2, M3, M4 and M5 together. M1 (�),
encompasses loses of EtOH, LA and Ac. M2 (�), involves conversion of Glc into EtOH, and Fru into
EtOH, LA and Ac by LAB. M3 (�), comprises conversion of Glc and Fru into Ac by Y. M4 (�), refers to
conversion of LA into EtOH by Y. M5 (�), represents over-oxidation of Ac by AAB.

rates v1 and v2 of Y on Glc and Fru respectively, as well as growth rates v3 of LAB on Glc
and v4 of AAB on EtOH, correspond to Monod equations, while the growth of AAB on LA, v5,
corresponds to a Contois term. Mortality rates of Y, LAB and AAB were modeled as Chick-
Watson equations [32] by considering second- and third-order death kinetics, as shown in Table
3.2.

The model contains 24 parameters: five maximum specific growth rates, five substrate

40



Chapter 3. Exploring cocoa bean fermentation mechanisms by kinetic modeling

saturation constants, three mortality rate constants and eleven yield coefficients as depicted
in Eqs. (2.1) to (2.8).

Table 3.2: Growth, mortality and decay rates for cocoa bean fermentation models. Microbial groups:
yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Metabolites: glucose (Glc), fruc-
tose (Fru), ethanol (EtOH), lactic acid (LA) and acetic acid (Ac). Microbial groups and metabolites
are expressed as concentrations, both within square brackets [ ]. Maximum specific growth rates µin

max,
correspond to the maximum growth rate of microbial group i, growing on substrate n. Substrate satu-
ration constants Ki

m, correspond to the substrate saturation constant of microbial group i, growing on
substrate m. Constant mortality rates ki, correspond to mortality of microbial group i. Decay rates dj ,
correspond to decay rate of metabolite j. All rates with the exception of d1, d2, d3, v9, v10 and v11, are
part of the baseline model.

Growth rate equation Mortality rate equation Decay rate equation

v1 =
µYGlc

max [Glc]

[Glc] +KY
Glc

[Y]

v2 =
µYFru

max [Fru]

[Fru] +KY
Fru

[Y]

v10 =
µYLA

max [LA]

[LA] +KY
LA

[Y]

v6 = kY [Y] [EtOH] d1 = bEtOH [EtOH]

v3 =
µLABGlc

max [Glc]

[Glc] +KLAB
Glc

[LAB]

v9 =
µLABFru

max [Fru]

[Fru] +KLAB
Fru

[LAB]

v7 = kLAB [LAB] [LA] d2 = bLA [LA]

v4 =
µAABEtOH

max [EtOH]

[EtOH] +KAAB
EtOH

[AAB]

v5 =
µAABLA

max [LA]

[LA] +KAAB
LA [AAB]

[AAB]

v11 =
µAABAc

max [Ac]

[Ac] +KAAB
Ac

[AAB]

v8 = kAAB [AAB] [Ac]2 d3 = bAc [Ac]

In regard to our proposed mechanisms, their inclusion into the baseline model is conducted
by adding extra growth and mortality rates, as well as linear terms when needed (see Table
3.2). For a deeper look into their mathematical formulation see Appendix B.2.

Mechanism 1 (M1): Decay of fermentation products

This mechanism is based on concentration decline of product metabolites at later stages of
fermentation that has been hypothesized as a consequence of both, physical and biological con-
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straints. Here, we will take into account the first group only. Among these, volatile compounds
(e.g., EtOH and Ac) might decrease as a result of evaporation and leakage of fermentation
sweating [12, 17, 18, 54]. Regarding non-volatile compounds (e.g., LA), the widely described
diffusion process of metabolites from the pulp into the cocoa bean, might also play an important
role in their reduction [54, 109, 118].

Mechanism 2 (M2): Consumption of Fru by LAB

Opposed to our original approach of modeling LAB growth exclusively based on Glc uptake [1],
mechanism 2 takes into account obligatory and facultatively heterofermentative species which
are capable of using Glc and Fru as carbon sources (e.g., L. fermentum and L. plantarum,
respectively) with an accompanying production of EtOH besides LA and Ac [18, 34, 109, 112,
117, 119].

Mechanism 3 (M3): Production of Ac by Y

Mechanism 3 is based on the evidence of among fermentation products that Y generate (e.g.,
ethanol, glycerol and carbon dioxide), Ac can be created through pyruvate metabolism and
tricarboxylic acid cycle [18, 68, 109]. Besides, under controlled conditions, production of Ac by
Y could explain concentrations of Ac that do not correspond to AAB’s population sizes [14].

Mechanism 4 (M4): Consumption of LA by Y

During the first stage of fermentation, the Y population prevails due to the anaerobic conditions
in the pulp. However, under an aerobic environment as during the third stage, yeasts such as S.
cerevisiae are capable of oxidize LA to produce pyruvate [21, 120]. Additionally, other species
of yeast (e.g., Pichia fermentans and Candida krusei) can assimilate LA and produce EtOH .

Mechanism 5 (M5): Over-oxidation of Ac by AAB

During the last stage of fermentation, AAB dominates microbial population by taking advantage
of a fully aerobic environment, while consuming EtOH and LA previously produced by Y and
LAB, respectively. Once EtOH has mostly diminished, it has been argued that AAB starts over-
oxidizing Ac into carbon dioxide, which would lead to halt the cocoa fermentation process due
to an increase of temperature that results in the declining of Y, LAB and AAB [11, 18, 54, 109].

A comprehensive graphical representation of all proposed mechanisms is shown in Figure
3.1, panel (a), full model including all mechanisms here proposed is shown in Figure 3.1, panel
(b) and a detailed interpretation of all model parameters is shown in Table 3.3.

3.2.3 Models iterations

To check the plausibility of different mechanisms working together, a series of model variants
with combinations of M1, M2, M3, M4 and M5 were created, starting from the baseline model.
Hence, 31 model iterations (MIs) plus the baseline model were object of being fitted to exper-
imental data under a Bayesian parameter estimation framework. Each model iteration (MI)
is labeled according to the mechanisms involved. For example, the full model containing all 5
proposed regulatory schemes is labeled MI(1,2,3,4,5), while the baseline is labeled MI(0).
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Table 3.3: Parameters of the cocoa bean fermentation baseline model and proposed mechanisms. Micro-
bial groups: yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB). Metabolites: glucose
(Glc), fructose (Fru), ethanol (EtOH), lactic acid (LA) and acetic acid (Ac). B, M1, M2, M3, M4 and
M5 refer to baseline model and mechanisms 1 to 5, respectively.

Parameter Mechanism Units Interpretation

µYGlc
max B h−1 Maximum specific growth rate of Y on Glc

µYFru
max B h−1 Maximum specific growth rate of Y on Fru

µYLA
max M4 h−1 Maximum specific growth rate of Y on LA

µLABGlc
max B h−1 Maximum specific growth rate of LAB on Glc

µLABFru
max M2 h−1 Maximum specific growth rate of LAB on Fru

µAABEtOH
max B h−1 Maximum specific growth rate of AAB on EtOH

µAABLA
max B h−1 Maximum specific growth rate of AAB on LA

µAABAc
max M5 h−1 Maximum specific growth rate of AAB on Ac

KY
Glc B mg(Glc) g(pulp)−1 Substrate saturation constant of Y growth on Glc

KY
Fru B mg(Fru) g(pulp)−1 Substrate saturation constant of Y growth on Fru

KY
LA M4 mg(Fru) g(pulp)−1 Substrate saturation constant of Y growth on LA

KLAB
Glc B mg(Glc) g(pulp)−1 Substrate saturation constant of LAB growth on Glc

KLAB
Fru M2 mg(Fru) g(pulp)−1 Substrate saturation constant of LAB growth on Fru

KAAB
EtOH B mg(EtOH) g(pulp)−1 Substrate saturation constant of AAB growth on EtOH

KAAB
LA B mg(LA) g(pulp)−1 Substrate saturation constant of AAB growth on LA

KAAB
Ac M5 mg(Ac) g(pulp)−1 Substrate saturation constant of AAB growth on Ac

kY B mg(EtOH)−1 h−1 Mortality rate constant of Y

kLAB B mg(LA)−1 h−1 Mortality rate constant of LAB

kAAB B mg(Ac)−2 h−1 Mortality rate constant of AAB

YGlc|Y B mg(Glc) mg(Y)−1 Y-to-Glc yield coefficient

YGlc|LAB B mg(Glc) mg(LAB)−1 LAB-to-Glc yield coefficient

YFru|Y B mg(Fru) mg(Y)−1 Y-to-Fru yield coefficient

YFru|LAB M2 mg(Fru) mg(LAB)−1 LAB-to-Fru yield coefficient

Y Glc
EtOH|Y B mg(EtOH) mg(Y)−1 Y-to-EtOH from Glc yield coefficient

Y Fru
EtOH|Y B mg(EtOH) mg(Y)−1 Y-to-EtOH from Fru yield coefficient

Y LA
EtOH|Y M4 mg(EtOH) mg(Y)−1 Y-to-EtOH from LA yield coefficient

Y Glc
EtOH|LAB M2 mg(EtOH) mg(LAB)−1 LAB-to-EtOH from Glc yield coefficient

Y Fru
EtOH|LAB M2 mg(EtOH) mg(LAB)−1 LAB-to-EtOH from Fru yield coefficient

YEtOH|AAB B mg(EtOH) mg(AAB)−1 AAB-to-EtOH yield coefficient

Y Glc
LA|LAB B mg(LA) mg(LAB)−1 LAB-to-LA from Glc yield coefficient

Y Fru
LA|LAB M2 mg(LA) mg(LAB)−1 LAB-to-LA from Fru yield coefficient

YLA|AAB B mg(LA) mg(AAB)−1 AAB-to-LA yield coefficient

YLA|Y M4 mg(LA) mg(Y)−1 Y-to-LA yield coefficient

Y Glc
Ac|LAB B mg(Ac) mg(LAB)−1 LAB-to-Ac from Glc yield coefficient

Y Fru
Ac|LAB M2 mg(Ac) mg(LAB)−1 LAB-to-Ac from Fru yield coefficient

Y EtOH
Ac|AAB B mg(Ac) mg(AAB)−1 AAB-to-Ac from EtOH yield coefficient

Y LA
Ac|AAB B mg(Ac) mg(AAB)−1 AAB-to-Ac from LA yield coefficient

Y Glc
Ac|Y M3 mg(Ac) mg(Y)−1 Y-to-Ac from Glc yield coefficient

Y Fru
Ac|Y M3 mg(Ac) mg(Y)−1 Y-to-Ac from Fru yield coefficient

YAc|AAB M5 mg(Ac) mg(AAB)−1 AAB-to-Ac yield coefficient

bEtOH M1 h−1 Decay rate of EtOH

bLA M1 h−1 Decay rate of LA

bAc M1 h−1 Decay rate of Ac
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3.2.4 Kinetic parameter estimation

The number of parameters among MIs constructed over combination of mechanisms ranges from
24 in the baseline model, to 43 in the full model, including all mechanisms. In each case, the
same general Bayesian framework as presented in Chapter 1 was used to sample their posterior
distributions, where means were taken as point estimates with their corresponding 95% credible
interval (CI) [1].

Choice of priors

Posterior distributions of θ and σ were computed using weakly informative priors, namely
a normal distribution with mean 0.5 and standard deviation of 0.3 for each element of the
parameter vector θ and a Cauchy distribution with location 0 and scale of 1 for σ. With the
purpose of avoiding estimates with negative values, both priors were truncated to the positive
set of real numbers, as in Eq. (2.9).

The regularization procedure of the data described in Section 3.2.1 allows us to use the same
prior distributions for all parameters. The motivation of this choice of priors is discussed in
more detail in Section 2.2.4. For a detailed description of prior distributions re-scaled to the
parameters’ original units see Table B.2.

Implementation

The fit of MIs to experimental data was performed with Stan [50] via RStan package in R
[121, 122]. Posterior distributions of θ, σ and f (xi,j , θ), were obtained by Markov chain Monte
Carlo (MCMC) No-U-Turn sampler (NUTS) method [40]. Each model was treated as an initial
value problem, where ODEs were solved by the built-in Stan numerical solver rk45 for non-stiff
systems by means of fourth- and fifth-order Runge–Kutta method [51, 52]. All MIs were fitted
to data by running four parallel Markov Chains of 3000 iterations each, with 1000 of them
used for warm-up. Sampling convergence was assessed by examining R̂ statistic, bulk effective
sample size (bulk-ESS) and tail effective sample size (tail-ESS) as described by Vehtari et al.
[44]. In cases where either bulk-ESS or tail-ESS were rejected at first, calibration routine was
re-run doubling iterations (2000 for warm-up, 6000 in total) before reporting non-convergence.

3.2.5 Model assessment

The quality of the models was assessed from two perspectives: (1) success of each MI across all
data, and (2) predictive accuracy comparison of all MIs for each dataset.

In more detail, in the first case, an observed success rate (OSR) and expected success rate
(ESR) were determined on the basis of times where the model was satisfactorily fit to a given
dataset. OSR is then defined by the number of successful fits over the total of datasets that
were fitted at least one time by any MI. In order to properly compare the success rates of
models with only a single additional mechanism with those models containing a combination
of mechanisms, we compute an expected success rate (ESR) as the product of the OSRs of the
elementary MIs. For model variant MI(1,2,5), for example, the expected success rate is then
the product of the observed success rates of the elementary models MI(1), MI(2) and MI(5).

All MIs that were suitably fitted to each dataset were compared by means of Pareto-
smoothed importance sampling leave-one-out cross validation (PSIS-LOO) with the aim of
checking on their predictive accuracy in case a certain MI could perform outstandingly better
than its counterparts [48].
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3.2.6 Principal components analysis

Six main features of fermentation trials were taken into account as groups and analysed via
principal component analysis (PCA) over parameter estimates. Of these, three consist of mul-
tiple classes: (1) country of origin, (2) cacao cultivar, and (3) fermentation method. The other
three features are binary: (4) use of starter culture, (5) turning of fermenting mass, and (6)
controlled temperature during fermentation. Experiments with features reported as unknown or
missing were not considered for any PCA. Only the medians of posterior distributions resulted
from each chain in the MCMC-NUTS runs were taken into account to perform PCA. Hence, 4
parameter vector estimates were considered as representative per successful MI. The assessment
of groups within the PCA results was possible only for features with more than 1 successful fit.

Moreover, PCAs were also performed over subgroups of parameter defined by the type of
parameter and its association with a certain microbial group. Considered subgroups comprised:
(1) all MI parameters, (2) maximum specific growth rates, (3) mortality rates, (4) yield coeffi-
cients, (5) Y-related parameters, (6) LAB-related parameters, and (7) AAB-related parameters.
No PCA was run over substrate saturation constants due to their known correlation with maxi-
mum growth rates [53]. All PCAs used mean-centered data with no scaling given that solutions
of MIs were determined over scaled time series.

Finally, pair-wise squared Malahanobis distances (DM ), [123] were computed between group-
ing classes of each feature to quantify the magnitude of their separation. To achieve this, cen-
troids of PCA scores from principal component 1 (PC1) and principal component 2 (PC2) were
computed for each j grouping class within an i feature and used to determine DM as:

DM (PC1i,j ,PC2i,j) = (x1 − x2)ᵀ S−1 (x1 − x2) , (3.1)

where x1 and x2 are the centroid values of the scores of PC1i,j and PC2i,j respectively; and S−1

is the inverse of the covariance matrix between groups classes [123, 124].
Both, PCA and DM were implemented in R using functions ‘prcomp’ [121] and ‘pair-

wise.mahalanobis’ [125], respectively.

3.3 Results

3.3.1 First assessment of the models

First, we want to understand how well the different models – the baseline model and the MIs
containing one or more of the additional mechanisms – perform. In order to identify differences
in the success rate of the model variants, we apply every MI to every fermentation dataset.
Table 3.4 summarizes the result.

In general terms, MIs summed up to 1024 runs over 32 available datasets; of which, 207
resulted in successful fits with values of R̂ below 1.05, bulk-ESS and tail-ESS higher than 100
indicating that convergence of the MCMC-NUTS was accomplished (see Tables B.3 to B.5).
A number of 9 datasets reported by Lefeber et al. [13], Moreira et al. [15], Lefeber et al.
[126], Bastos et al. [127] and Racine et al. [128] were not possible to fit with any MI at all. The
remaining 23 fermentation datasets constitute the scope of our further investigation (see Table
3.1). As an example, Figure 3.2 shows one MI, MI(2,3) describing the time series of one of the
datasets (mywb3 from Papalexandratou et al. [114]).

A striking observation is that the vast majority of MIs involving M5 were not able to
produce successful fits to experimental data. Among these, exceptions are datasets described
by Papalexandratou et al. [62], brwb1 and brwb2. Both were well fitted by MI(5), MI(1,5) and
MI(1,2,3,5); while MI(2,5) and MI(3,5) fitted brwb1 and MI(1,4,5) fitted brwb2 only. Thus, MIs

45



Chapter 3. Exploring cocoa bean fermentation mechanisms by kinetic modeling

(4,5), (2,3,5), (2,4,5), (3,4,5), (1,2,4,5), (1,3,4,5), (2,3,4,5) and (1,2,3,4,5) could not describe any
dataset at all (see Table 3.4).

Table 3.4: Summary of successful fits across 31 models iterations (MIs) and baseline. Light green-colored
cells indicate successful fits. Light-red colored cells indicate non-successful fits. Columns “MI( )”, “#”,
“OSR” and “ESR” refer to combination of mechanisms deployed in MI, number of parameters, observed
success rate (OSR) and expected success rate (ESR), respectively.
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MI( ) # OSR ESR

0 24 0.78

1 27 0.52

2 31 0.61

3 26 0.83

4 28 0.65

5 27 0.09

1,2 34 0.39 0.32

1,3 29 0.48 0.43

1,4 31 0.39 0.34

1,5 30 0.09 0.05

2,3 33 0.74 0.50

2,4 35 0.43 0.40

2,5 34 0.04 0.05

3,4 30 0.57 0.54

3,5 29 0.04 0.07

4,5 31 0.00 0.06

1,2,3 36 0.30 0.26

1,2,4 38 0.43 0.21

1,2,5 37 0.09 0.03

1,3,4 33 0.39 0.28

1,3,5 32 0.09 0.04

1,4,5 34 0.04 0.03

2,3,4 37 0.52 0.33

2,3,5 36 0.00 0.04

2,4,5 38 0.00 0.03

3,4,5 33 0.00 0.05

1,2,3,4 40 0.39 0.17

1,2,3,5 39 0.09 0.02

1,2,4,5 41 0.00 0.02

1,3,4,5 36 0.00 0.02

2,3,4,5 40 0.00 0.03

1,2,3,4,5 43 0.00 0.01

3.3.2 Model success

Computation of OSR resulted in a value of 0.78 for the baseline model (MI(0)). For MIs
containing single mechanisms, MI(1), MI(2), MI(3), MI(4) and MI(5), OSRs were 0.52, 0.61,
0.83, 0.65 and 0.09, respectively. Among more complex combinations of mechanisms, OSRs
ranged between 0.00 to a maximum of 0.74 reached by the combination of M2 and M3 (MI(2,3)),
as listed in Table 3.4. Note that in general we expect a decrease of OSR with an increasing
number of parameters in the model, due to the higher complexity of the model. Values for the
single-mechanism MIs are therefore not directly comparable to the one of the baseline model.
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For even larger MIs (composite mechanisms) we have the ESR to partially correct for this.
Pertaining ESRs, leaving out non-successful MIs, 2 out of 18 MIs showed higher values

than their corresponding OSRs. These two MIs with higher ESRs correspond to iterations
including M5 (i.e., MI(2,5) and MI(3,5)). Leaving aside MI(2,5) and MI(3,5) due to be the only
exceptions of M5 ending up in successful fits, in overall combinations of mechanisms seems to
lead to increases of their OSR over ESR on describing different datasets despite not over-passing
the OSR of the baseline model (see Table 3.4).

3.3.3 Posterior predictions

Next, we resort to the distributions of posterior probabilities, in order to assess differences in
the fit’s quality for the different MIs. Among the 23 datasets that were fitted by at least one MI,
posterior predictions describe their dynamics remarkably well. In each data collection, despite
highly influential observations and sampling rates ranging from 6 to 17 data points, time courses
are simulated to an acceptable level. Again we refer to the example shown in Figure 3.2, showing
the fit of MI(2,3) to the dataset mywb3 (see Figures B.2 – B.17 for posterior predictions made
by MI(2,3) and Figures B.18 – B.23 for MIs, where M(2,3) was not suitable).
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Figure 3.2: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset mywb3 reported by Papalexandratou et al. [114]. Metabolites: (a) glucose,
(b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic
acid bacteria and (h) acetic acid bacteria. Solid red lines represent posterior medians of the posterior
predictions, solid black points denote experimental data and orange ribbon describe the 95% credible
interval of posterior predictions.

In terms of predictive accuracy among MIs fitted on each dataset, there were no outstanding
differences on basis of obtained PSIS-LOO deviance values that had overlapping standard errors
between each other. Thus, is not surprising that for these cases posterior predictions resulted to
be extremely similar (see Figure B.24 for an example). Nevertheless, slight distinct PSIS-LOO
were observed towards favoring MIs involving M1 in for datasets brpb1, brwb4, brst2, and niwb2
(see Figure B.1).

These subtle differences provided visually better fits by MI(1) with respect to MI(2,3) for
datasets brpb1 (see Figure B.25). However, the same does not seem to be clear for niwb2 where
predictions made by M(1) and M(2,3) overlay each other with no clear improvements for either
both MIs (see Figure B.26).
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3.3.4 Fermentation features

We now turn to the second question raised, namely whether the model parameters obtained
by describing the datasets with all MIs are informative of the fermentation features behind
the datasets. Via principal component analysis performed on the full parameter vectors or
biologically meaningful subsets of the parameters, we want to assess whether distinct clusters
emerge in agreement with differences in fermentation setups.

After dropping the use of a starter culture as a feature (see Appendix B.1), 490 PCAs were
performed from the remaining 5 features and 7 parameters subsets. Note that MI(1,4) did
not converge for datasets representing more than one used fermentation method, and MI(1),
MI(1,2), MI(1,3), MI(1,4), MI(2,4), MI(1,2,3), MI(1,2,4), MI(1,3,4), MI(2,3,4) and MI(1,2,3,4)
were not capable of describing datasets with more than one class of controlled temperature (see
Figure B.27).

In terms of group separation measured by DM for cases with more than one pair-wise
comparison, medians of Malahanobis distances (D̃M ) were computed to visualize the magnitude
of separation as single values. From this analysis, it can be described in general terms that
cultivar, temperature and fermentation method showed the highest D̃M values; while, origin
countries and turning of fermenting mass showed almost no separation between groups (with
the exception of a few cases). Details are provided in the following subsections (see also Figure
B.27).

Grouping of fermentation trials according to cultivar

PCAs with cultivar as the feature of interest showed a consistent pattern of high values for
D̃M with special emphasis on the subgroup of all parameters. With regard to MIs, clearer
separations were the product of mostly complex MIs involving combinations of M2, M3 and M4
(see Figure B.27, panel (b)).

Figure 3.3 shows a PCA plot for MI(2,3). Among the four cultivar varieties three showed
a clear separation, namely Criollo/Forastero, Nacional/Trinitario and un2 with explained vari-
ances of 29.83% by the first PCA component (PC1) and 18.53% by the second component
(PC2). From its loading plot (Figure 3.3, panel (b)), parameters with negative loadings in
PC1, mainly µYGlc

max , µYFru
max , µLABGlc

max , µLABFru
max , µAABLA

max , µAABEtOH
max , Y Glc

LA|LAB, Y Fru
LA|LAB, Y Glc

EtOH|LAB,

Y Fru
EtOH|LAB, Y Glc

EtOH|Y, Y Fru
EtOH|Y, Y Glc

Ac|LAB, Y EtOH
Ac|AAB, Y Glc

Ac|Y, Y Fru
Ac|Y, kY, and kAAB determine the

classes separation.

Grouping of fermentation trials according to temperature control

Temperature control showed its highest D̃M values with MIs involving M2 (see Figure B.27,
panel (e)). The PCA of the set of all parameters for MI(2,3) resulted in a clear separation of
groups determined by the use of controlled and non-controlled temperature with PC1 and PC2
scores explaining 24.97% and 16.14% of variance, respectively (Figure 3.4). Likewise, the same
set of parameters as in Section 3.3.4, showed negative loadings in PC1, indicating that these
are defining the observed separation.
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Figure 3.3: PCA score (a) and loading plot (b) from all parameters of model iteration MI(2,3), feature
cultivar. Criollo/Forastero (cf), Nacional/Trinitario (nt), unknown cultivar used by Camu et al. [17]
(un1) and unknown cultivar used by Pereira et al. [68] (un2) are shown. Parameters located on the left
and right with respect to 0 in PC1 loading plot determine differentiation between cf, nt and un2.

Grouping of fermentation trials according to method

Fermentation method as classification feature resulted in less clear separation patterns. Highest
values of D̃M were observed for MI(2) (see Figure B.27, panel (c)). In this case a clear separa-
tion between fermentations carried in stainless-steels tanks and the rest of fermentation methods
can be seen with total explained variance of 33.79% by PC1 and 17.44% by PC2 (see Supple-
mentary Figure B.28). Furthermore, parameters with negative loadings in PC1, namely µYGlc

max ,
µYFru

max , µLABGlc
max , µLABFru

max , µAABLA
max , µAABEtOH

max , Y Glc
LA|LAB, Y Fru

LA|LAB, Y Glc
EtOH|Y, Y Fru

EtOH|Y, Y Glc
EtOH|LAB,

Y Fru
EtOH|LAB, Y EtOH

Ac|AAB, and kAAB seem to influence the separation between stainless-steel tank

and the rest of methods (see Figure B.28, panel (b)).

Grouping of fermentation trials according to country of origin and turning of fermenting
mass

In contrast to previous features, country of origin and turning of fermenting mass have lower D̃M

values for single mechanisms and less cases of notorious high distances. Instead, combinations
of mechanisms and other subgroups of parameters rather than the whole set, led to better
classes separations. For country of origin, PCAs over LAB-related parameters on MIs involving
combinations of M1, M2 and M4 resulted in higher D̃M . For turning of fermenting mass,
there were no sizeable differences (see Figure B.27, panels (a) and (d)). For this case PCA from
MI(1,3,4) explains a total variance of 60.36% for PC1 and 29.46% for PC2. Furthermore, a clear
separation among countries, namely Brazil, Ecuador and Ghana, is defined over PC1. From
its loadings, parameters on the left with respect to 0 in PC1 (µLABGlc

max , YLA|LAB and kLAB) are
clearly denoting the separation between classes (see Figure B.29). Lastly, turning of fermenting
mass did not show any separation either for MI nor any subset of parameters.
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Figure 3.4: PCA score (a) and loading plot (b) from all parameters of model iteration MI(2,3), feature
temperature. Controlled temperature (ctrl) and non-controlled temperature (nctrl) are shown. Parame-
ters located on the left and right with respect to 0 in PC1 loading plot determine differentiation between
ctrl and nctrl.

3.4 Discussion

3.4.1 Model plausibility and convergence

We have assessed a series of mathematical model variants (or MIs) for cocoa bean fermentation
in terms of two levels of plausibility: convergence of each run of a MI over a given dataset,
and success of each MI to adequately describe the whole range of fermentation datasets. In this
sense, non-convergence might be a consequence of practical non-identifiability of the parameters
caused by weakly informative observations or priors, and mis-specification of the model [129].
While success of a model, quantitatively represented as OSR per MI, highly depends on its
capability to describe as many datasets as possible. Correspondingly, non-convergence becomes
an indirect diagnostic tool that serve us to argue whether hypothesized regulatory interactions
of the cocoa bean fermentation process are actually likely to be an influencing factor in the
observed fermentation time series.

In general, the mechanisms discussed here have shown in most of cases that their stand-
alone and concomitant inclusion in the baseline model lead to convincing OSRs values, in
particular for M2, M3 and M4. We can consider a lack of success in some runs involving these
mechanisms is the product of numerically conflicting combinations of mechanisms rather than
possible misspecification of the whole MI itself.

On the other hand, wide non-convergence patterns in runs involving M5 (see Table 3.4) and
to a lesser extent also for M1, leads to the conclusion that these two mechanisms are not such
significant influencing factors in the fermentation data studied here.

In the following, we will elaborate on the implications of non-convergence and plausibility
of each mechanism considered in descending order relative to their OSR of the stand-alone
inclusion in the baseline model.

Starting with M3, production of Ac by Y’s metabolism has not been hypothesized from
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direct experimental measurements as is the case for other mechanisms. Instead, indirect kinetic
studies of isolated strains have shown such an ability of some species of Y [68]. This property has
also been argued to be a possible explanation of high Ac production yields where populations
of AAB seemed incapable of producing such amounts, as proposed by Pereira et al. [14]. Hence,
given the OSRs obtained from its inclusion in the series of MIs presented here, M3 can be
considered as quantitative evidence backing up this role of Y during fermentation. We strongly
believe that cases where these MIs failed to converge, are the consequence of weakly informative
priors incapable of being sampled properly.

With respect to M2, in light of the recent characterization of fructophilic lactic acid bacte-
ria (FLAB) in cocoa bean fermentation processes [119], the level of OSR achievement of MIs
involving M2 is not surprising. The existence of this bacterial group can then explain an appar-
ently discrepancy in the amounts of Glc and Fru consumed during the process. Despite both
substrates being depleted in parallel, Glc is usually consumed first as Y populations reach their
end. Thus, uptake of remaining Fru might be consequence of FLAB activity. In contrast to M3,
non-convergence of M2 might be a result of weakly informative observations in some datasets
with no time lag between Glc and Fru consumption.

Similarly to M3, the reasoning behind M4 relies on indirect characterization of Y strains
capable of metabolizing LA into EtOH [112] via their known metabolic pathways producing
pyruvate from LA [21, 120] for further production of EtOH [109]. However, in contrast to M3,
M4 obtained an appreciable OSR for its stand-alone iteration rather than for its occurrence
jointly with either M2 and M3. As an example, consider MI(2,3) compared to MI(2,4) and
MI(3,4). While MI(2,3) stands out as the MI with more than one mechanism with largest
OSR (equal to 0.74), its counterparts involving M4 perform poorly with OSRs equal to 0.43 for
MI(2,4) and 0.57 for MI(3,4). In our opinion, this counter-intuitive performance of M4 when
combined with M2 and M3 can be the result of numerical issues due to conflicting interactions
of these mechanisms preventing the Bayesian optimization to converge, rather than biological
causes against M4.

MIs employing M1 and M5 resulted in the lowest OSRs among all, both stand-alone and
combined with other mechanisms. However, important distinctions need to be made between
these two. First, M1 is formulated on the basis of several experimental studies that have brought
evidence of metabolites diffusing into the bean [12, 14, 17, 62, 68], e.g., EtOH, LA and Ac,
besides evaporation and degradation processes not directly measured, but highly likely. In this
sense, low success of MIs accounting M1 can be due to a lack of the models to describe dynamics
of metabolites diffusing into the inner bean. In particular, the pure degradation mechanism
included in our MI does not fully account for all possible sinks (e.g., due to diffusion and
evaporation) of these substances. Cases in which M1 and its iterations resulted in convergence,
are those where clear decreases of EtOH, LA and Ac are visible in the time series (see Figures
B.18, B.19 and B.25).

Second, regardless of the widely accepted mechanism of AAB consuming Ac once EtOH
concentration has reached minimum levels in the fermenting mass [11, 18, 54, 109], we have
found solid quantitative evidence through assessing M5 that such a phenomenon has a tiny
impact on the process dynamics and thus is unlikely. By the end of fermentation, the AAB
populations have been highly diminished and, in most of the datasets considered here, drops
in Ac concentration were seldom reported. In other words, if M5 actually has an impact on
the whole process, it would be necessary that AAB counts remain viable up to its completion
in order to deplete Ac. This observation can also explain the few exceptions, in which M5 led
to successful fits. In total, the vast majority of datasets showed minimal counts of AAB even
before the penultimate day of fermentation, with the exception of brwb1 and brwb2 reported
by Papalexandratou et al. [62], where drops of AAB counts are quite abrupt by its last day,
limiting the capability of these MIs to simulate a complete diminution of its population (see
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Figures B.8 and B.9).
Finally, after reviewing all above-mentioned causes of non-convergence and how they could

have affected success ratios of each MI, it is plausible to assume that harsher combinations of
such causes are responsible for failing to fit any model to 9 datasets (see Section 3.3.1) as well
for some others that were scarcely described, e.g., dowb1 and niwb2.

3.4.2 Interpretation of the posterior distributions of model parameters

Here we would like to discuss general aspects of the posterior distributions and how they allow
us to further assess the different MIs. We will focus on the agreement of the obtained posteriors
with values in the literature as well as practical non-identifiability of parameters.

For parameter agreement, let us consider the set of posterior distributions for MI(2,3) fitted
over several datasets (see Table B.6). As stated in [1], among all estimated posteriors, few
did not agree with reported estimates in the literature. Those which culminated in values far
away from reported ranges (more than ten-fold) as well as others, whose biological plausibility
is unlikely suggest evidence of practical non-identifiability, as evidenced by posteriors with wide
credible intervals. This might be due to weakly informative observations that do not capture
entirely the dynamics of the included mechanisms [1, 129].

This assumption seems to be supported by parameters posteriors under the scope of different
MIs. By the inclusion of extra terms acting upon the dynamics, in which non-identifiable
parameters are suspected to exist, their wide ranges should be visibly reduced. In fact, focussing
on examples already mentioned in [1] (particularly YLA|AAB, YEtOH|AAB, and Y LA

Ac|AAB), we can

see this reduction across different MIs describing datasets ghhp1, ecwb1, ecwb2 and brpb1 (see
Figure B.30).

Nevertheless, inclusion of extra parameters does not entirely eliminate non-identifiability,
which suggests the need of more informative priors for further developments of cocoa bean
fermentation modeling.

3.4.3 Grouping of fermentation features

We have seen that fermentation features can be distinguishable with respect of all parameter
estimates derived from their posterior distributions, especially those from MI(2) and MI(2,3).
From our perspective, this is a clear illustration, how ODE-based modeling, rather than the
usual methods of chemical fingerprinting [130–132], can show differences in features of the
process.

An example is the clear differences in fermentation features identified through kinetic param-
eter estimates of MI(2,3) for cultivar, controlled temperature, and fermentation methodology.
Regarding cultivar, similar findings have been reported for biochemical characterization studies
where same cultivars used in different countries have shown to be part of similar classes within
PCA [130]. This would then explain why country of origin used as a feature, did not result
in clear separation patterns. Instead, only few subsets of parameters for certain MIs ended
up in clear group separations in that case, as it happens for the LAB-related parameters in
MI(1,3,4) (see Section 3.3.4). This could be an indicator that indeed dynamics of different LAB
populations are linked to the location where fermentation took place [110].

In a similar fashion, grouping of fermentation trials dependent on whether they were per-
formed under controlled temperature settings, reflects how kinetic parameters of MI(2,3) might
be influenced by this feature. In this regard, explicit inclusion of temperature in these models
would be a natural option. From our point of view, we firmly consider that incorporation of
temperature in this modeling scheme would be beneficial in case remarkable improvements on
the assessing statistics presented here were seen. However, explicitly incorporating temperature

52



Chapter 3. Exploring cocoa bean fermentation mechanisms by kinetic modeling

as a dynamical variable did not dramatically change either PSIS-LOO, posterior predictions or
parameter ranges towards more biological plausibility (see Chapter 5).

Lastly, classification of trials with respect to methodology also tends to lead to a clear
separation with a special emphasis on trials performed in stainless-steel tanks fitted with MI(2).
This finding suggests that the use of stainless-steel tanks affects kinetic parameters, making them
distinct from other methods. Besides, it becomes an indication that inclusion of M2 seems to
drive this difference, as well as other feature discriminations. The latter observation is based
on the loading plots that for all these PCAs are determined by parameters related to M2, such
as µLABFru

max , Y Fru
EtOH|LAB and Y Fru

LA|LAB.

3.5 Conclusion

The series of MIs presented here constitute a first kinetic exploration of the plausibility of
regulatory dynamics of cocoa bean fermentation not considered in our previous modeling [1], but
long reported and hypothesized in the literature. Thus, it allows us to evaluate the plausibility
of various mechanisms in a stand-alone and concomitant manner. Among the five mechanisms
discussed here, M2 (consumption of fructose by lactic acid bacteria) and M3 (production of
acetic acid by yeast) have gathered the strongest support in our investigation.

Our scheme also allows us to conclude that loss of metabolites by physical phenomena (M1) is
quite minimal, relative to their consumption and formation rates emphasizing the importance of
microbial biochemical processes. Furthermore, it also offers quantitative evidence that a widely
hypothesized mechanism, M5 (over-oxidation of acetic acid by acetic acid bacteria), does not
agree with experimental data.

With reference to fermentation features, the rich set of parameter estimation results grants
for interpretation on three levels: (1) We find that the parametrised time courses separate
different fermentation features with different quality. Across all models, origin countries seem
to only have a small influence on systematic time course differences. In contrast, temperature
and cultivar seem to have a strong effect on fermentation dynamics (and hence on systematic
differences in the resulting parameter vectors). (2) Orthogonal to this view, we can assess,
which model versions lead to better discrimination fermentation features, compared to the
basic baseline model. This complements our assessment of parameter estimation convergences,
which is summarized in Table 3.4. (3) By splitting parameters into groups we can assess
the involvement of certain microorganisms in the systematic differences between fermentation
features.

Lastly, this work commends that in a pure sense of describing fermentation dynamics in
the pulp, inclusion of temperature as a dynamical variable does not add improvements to fits
obtained under the proposed scheme. However, future advancements in cocoa bean fermen-
tation modeling might find necessary to take it into account for a more refined description of
more detailed experimental data and to capture its reported importance in mediating important
dynamics, for instance its role in diffusion processes of acids into the bean [133].
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Chapter 4

Temperature in cocoa bean
fermentation kinetic modeling6

4.1 Introduction

From a bibliographical point of view, several authors have widely discussed the effect of temper-
ature upon fermentation of cocoa beans. It is well known that increase in temperature within
the fermenting mass results from microbial activities, mainly yeast (Y) and acetic acid bac-
teria (AAB) by the production of ethanol (EtOH) and acetic acid (Ac), respectively [18]. Its
importance lies in several aspects, such as its role in the seed embryo death process [109], its
possible involvement in AAB inhibition at final stages of the fermentation [54], and evaporation
of volatile metabolites (i.e., EtOH and Ac) [17].

In regard to include temperature in a quantitative approach, López-Pérez et al. [23] stands
as the only attempt among the few mathematical models of cocoa bean fermentation that has
implemented it as another state variable using the cardinal temperature model as proposed by
Rosso et al. [134]. Opposed to this approach, here we present the use of the Arrhenius equa-
tion applied to maximum specific growth and mortality rates coupled with the mathematical
expression accounting for temperature produced by microbial dynamics as stated by Boulton
[135].

4.2 Formulation

4.2.1 Heat transfer

According to Boulton [135], the temperature rate change in a fermentation process can be
considered as an energy balance between the rates of heat generation of the fermenting mass
and its surroundings. Thus, this rate is:

dT

dt
=

∆Q

ρCp V

dS

dt
− UA

ρCp V
(T − Te) , (4.1)

where, for our case, ∆Q is the heat released during the fermentation per mg of substrate
( kJ

mgsubstrate
), ρ is the density of cocoa beans (kgbean

m3 ), Cp is the cocoa beans heat capacity

( kJ
mgbeanK

), V is the volume of the fermenting mass (m3), Te is the environmental temperature

(K), U is the overall heat transfer coefficient ( kJ
m2K

), A is the contact area of the fermenting

mass with the environment (m2), and dS
dt is the substrate rate change. With the purpose of

6This chapter is based on the Supplementary material of Moreno-Zambrano et al. [2], Section 4.
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facilitating any optimization routine, ∆Q
ρCp V

and UA
ρCp V

can be comprised into single parameters

each. Then, let’s define a substrate-to-heat yield coefficient (YQ|substrate) such as:

YQ|substrate =
∆Q

ρCp V
, (4.2)

and a heat-loss (QL) parameter as:

QL =
UA

ρCp V
; (4.3)

hence, Eq. (4.1) can be re-written as:

dT

dt
= YQ|substrate

dS

dt
−QL (T − Te) . (4.4)

The inclusion of Eq. (4.4) into the baseline model proposed in Eqs. (2.1) to (2.8) is then
reduced to appropriately replace dS

dt . For this, we account the total release of heat product of
the growth of all microbial groups involved. With this in mind, Eq. (4.4) can take the form:

dT

dt
= YQ|Glc

(
YGlc|Y v1 + YGlc|LAB v3

)
+ YQ|Fru

(
YFru|Y v2

)
+ YQ|EtOH

(
YEtOH|AAB v4

)
+ YQ|LA

(
YLA|AAB v5

)
−QL (T − Te) ,

(4.5)

where dS
dt is replaced by the necessary growth rates and yield coefficients explained in Tables 2.1

and 2.2, YQ|Glc, YQ|Fru, YQ|EtOH and YQ|LA, are the glucose-to-heat, fructose-to-heat, ethanol-
to-heat and lactic acid-to-heat yield coefficients, respectively.

4.2.2 Temperature effect on kinetic parameters

Among several ways to include temperature in bacterial growth models, the Arrhenius equation
is one of the most widely utilized. Regardless its limitations in interpretation and recommended
application only in sub-optimal growth conditions [136], here we introduce its use as a first
approximation to look at how temperature might affect kinetic parameters of our baseline
model.

Thereby, considering that Eq. (4.5) adds 6 parameters to baseline model, a simple manner
to relate kinetic parameters to temperature would be by besetting Arrhenius terms to as few
as possible and thus reducing risks of over-parametrization.

Then, original Arrhenius equation is expressed as:

k(T ) = Ae−
Ea
RT (4.6)

as in Eqs. (4.2) and (4.3), energy of activation (Ea) and gas constant (R) can be comprised
into a single term:

k(T ) = Ae−
E
T (4.7)

assuming that all growth and mortality rates share common energies of activation E1 and E2,
respectively, these can be then rewritten in function of temperature as:

µYGlc
max = µ1 e

−E1
T

µYFru
max = µ2 e

−E1
T
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µLABGlc
max = µ3 e

−E1
T

µAABEtOH
max = µ4 e

−E1
T

µAABLA
max = µ5 e

−E1
T

kY = k1 e
−E2

T

kLAB = k2 e
−E2

T

kAAB = k3 e
−E2

T ,

where µi and ki represent the growth rates of corresponding microorganisms and mortality rates
at exponential phases.

Finally, above expressions are incorporated into baseline model, Eqs. (2.1) to (2.8).

4.3 Model’s simulations

Parameters’ posterior distributions for a model as described above can be computed using the
same Bayesian framework and priors as proposed in Sections 1.5.3 and 2.2.4, respectively. The
only addition to this scheme is the need of using an extra parameter not considered before.
We refer to term Te in Eqs. (4.1) and (4.5), which represents environmental temperature. For
this, we treated Te as another free parameter with a more informative prior. Assuming that
temperature during the fermentation process had a mean value of 26oC, we can add random
noise by assigning a prior of the form:

Te ∼ N (26, 0.01) (4.8)

which, after time series scaling by their maximum value becomes:

Te ∼ N
(

26

Tmax
,

0.01

Tmax

)
, (4.9)

where Tmax is the maximum value observed in each temperature time series.

4.4 Results

As mentioned in the main manuscript, addition of temperature to the model does not improve
fits in terms of their PSIS-LOO, posterior predictions and adjustment of problematic parameters’
ranges to more plausible values. Here, we present each of these claims on basis of calibrating
aforementioned model to datasets ghhp1 [12] (know for accounting non-identifiable parameters),
brwb1 and brwb2 [62].

4.4.1 PSIS-LOO deviance values

As depicted in figure 4.1, PSIS-LOO deviance values between baseline model (MI(0)) and base-
line model added temperature as state variable (MI(0+t)), there are no significant improvements
in prediction adequacy between them both over datasets ghhp1 [12], brwb1 and brwb2 [62].

4.4.2 Posterior predictions

Besides MI(0+t) being capable of fitting remarkably well temperature, no outstanding enhance-
ment of posterior predictions for rest of state variable is perceptible with its counterparts with
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ghhp1 brwb1 brwb2
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−60
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Figure 4.1: PSIS-LOO deviance values of baseline model (MI(0)) and baseline model added temperature
(MI(0+t)) over datasets ghhp1 [12], brwb1 and brwb2 [62].

no temperature interactions. See figures 4.2, 4.3 and 4.4 for posterior predictions of ghhp1,
brwb1 and brwb2, respectively.

4.4.3 Parameters’ ranges

Finally, regarding ranges for parameters’ likely affected by non-identifiability, as it can be seen
in Table 4.1, do not change in a great extend nor fall within reported ranges in literature.

4.5 Conclusion

From this rather simple approach of including temperature in our baseline model, no significant
improvements are clearly seen on the basis of statistics used for assessing the models used in
this work.
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Figure 4.2: Posterior predictions of MI(0+t) over dataset ghhp1 reported by Camu et al. [12]. Metabo-
lites: (a) glucose, (b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f)
yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. (i) Temperature. Solid red lines represent
medians of the posterior predictions, solid black points denote experimental data and orange ribbons
describe 95% credible intervals of posterior predictions.
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Figure 4.3: Posterior predictions of MI(0+t) over dataset brwb1 reported by Papalexandratou et al. [62].
Metabolites: (a) glucose, (b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups:
(f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. (i) Temperature. Solid red lines represent
medians of the posterior predictions, solid black points denote experimental data and orange ribbons
describe 95% credible intervals of posterior predictions.
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Figure 4.4: Posterior predictions of MI(0+t) over dataset brwb2 reported by Papalexandratou et al. [62].
Metabolites: (a) glucose, (b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups:
(f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. (i) Temperature. Solid red lines represent
medians of the posterior predictions, solid black points denote experimental data and orange ribbons
describe 95% credible intervals of posterior predictions.
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Chapter 5

Conclusions and outlook

As I have described it in previous chapters, cocoa bean fermentation represents a biological sys-
tem more complicated than other typical fermentation processes in the food industry. Besides
variation given by methodologies in its conduction, the major difference with simpler fermenta-
tions lies on the sequential growth of three dominating microbial groups which interact between
each other as well with their environment in a bundle of ways that are still not entirely known.
This imposes a varied group of obstacles for its quantitative representation due to, among others,
heterogeneity of the fermenting mass, difficulty in measuring microbial populations separately,
and little control over environmental conditions; which combined, result in complicated trial
setups with low sampling rates and considerable experimental errors.

For such reasons, mathematical modeling of the process becomes a complicated task that,
before this work, has been rarely performed [22, 23]. Instead, a considerable bibliography
regarding modeling of post-processing steps of cocoa beans is available, e.g., drying kinetics
[58, 59, 139, 140] and moisture adsorption [141], along with elucidation of microbial interactions
by metabolic flux balance analysis over simulated conditions [19, 60, 142].

As a result, improvement in cocoa bean fermentation direct control and optimization has
been appraised by qualitative descriptions only, opposed to other food fermentation processes
where their understanding by modeling techniques have significantly enhanced their performance
in industrial settings, as it is the case for wine [54, 143]. In this sense, this thesis has described
a novel way in modeling the process by the use of Bayesian methods that could I will discuss
from two broad perspectives: (1) their implications in modeling cocoa bean fermentation, and
(2) challenges of their use towards refinement of further model iterations.

5.1 Implications of a Bayesian framework in modelling cocoa bean
fermentation

In recent years, application of Bayesian inference in solving biological problems has gained
acceptance in disciplines such as ecology, epidemiology [35], and lately, food science [144]. This
rise in its popularity is thanks to the increment in machine’s computational power and their
proven efficiency in handling short and noisy time series usually found in such disciplines [35,
103].

Contrary to commonly used estimation methods, e.g., maximum-likelihood, ordinary least
squares and non-linear least squares, Bayesian algorithms, e.g., MCMC-NUTS and Gibbs sam-
pler, are less prone to suffer from non-identifiability issues in solving parameter estimation
problems. On the one hand, classical methods sometimes lead to unrealistic parameter val-
ues ranging from estimates collapsed in zero to highly inflated because of their poor capacity
of dealing with large experimental noise forcing them to stop at local minima regions in the
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parameter space [103, 145].
On the other hand, a consequence of the formulation of the Bayes’ rule, where the assumption

of a vector of parameters, θ, giving rise to observational data, Y, permits the determination
of a region in the parameter space where these agree with Y. This distinctive trait explains
the growing use in Biology of Bayesian over frequentist approaches in three main aspects:
(1) chances of parameters’ non-identifiability because of convergence over local minima of the
parameter space are reduced to some extent by a more thoughtfully exploration thanks to their
sampling algorithms, (2) the uncertainty got around the parameters’ posterior distributions can
be interpreted in a more natural way as probabilities, and (3) the possibility of incorporate and
update parameters of a model with prior information [146].

With this in mind, obtained parameter posterior distributions can serve to understand bio-
logical aspects of the system subject of modeling. In this precise case, the posterior distributions
of parameters have served for discussing, besides their biological plausibility, about the likeli-
ness of occurrence of certain mechanisms and how physical features between fermentation trials
could have affected them (see Chapter 2).

In addition, under the assumption that practical non-identifiable parameters do not play
an extremely important role in models’ convergence, assessing candidate models using a simple
statistic of their success (ESR) describing several datasets from distinct trials, constitutes a
unique contribution of this thesis in extending the Bayesian paradigm into a systematic ex-
ploration scheme of hypotheses previously reported in literature. Hence, I present the novel
possibility of using posterior estimates of models fitted over fermentation trials’ data as an
alternative to chemical fingerprinting of cocoa beans (see Chapter 3).

Furthermore, the Bayesian framework here employed, demonstrates its suitable use for as-
sessing the influence of temperature over the prediction accuracy and improvement of biological
interpretability of the parameters (see Chapter 4) concluding that for at least these two aspects,
its inclusion in the modeling does not bring advantage in neither of both.

All together, this work shows the worthiness of using Bayesian methods for parameter es-
timation, fermentation dynamics simulations and interpretability from a biological perspective
that has allowed a deeper understanding of the system. Specifically, methodologies such as
convergence statistics (i.e., R̂ and ESS), and model comparison measures (i.e., PSIS-LOO and
WAIC) that allowed to define first, a fully functional baseline model, and second, a scheme of
candidate mechanisms’ exploration for elucidating the likeliness of occurrence and co-occurrence
of long-time hypothesized interactions. However, one should know a plethora of challenges re-
main still open to be solved, as I will discuss in the following section.

5.2 Outlook

From findings of this work, it is noticeable that further research in the mechanistic understanding
of cocoa bean fermentation should turn around the improvement of both experimental conditions
in which trials take place, and mathematical tools for its modeling.

On one side, as thoroughly discussed in this thesis, the spontaneous way in which the fermen-
tation of cocoa beans takes place is undoubtedly the major source of experimental impediments
in its further comprehension. This is clear in several ways, such as presence of weakly informa-
tive observations and outliers which reflect a highly heterogeneity of the system, combined in
most cases with low sample rates. Thus, reducing variation (i.e., outliers and weakly informative
observations) is a task that would be hardly solved in situ for spontaneous trials, considering
that within a solid state fermentation matrix, homogenous samples are seldom workable. How-
ever, less separated measurements along the fermentation could bring richer information about
its dynamics in a better time resolution that would lower the impact of outlying observations.
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In the same regard, separate characterizations of individual components in the process would
also bring light to its better understanding. Taking as an example the network representation
of the baseline model (Figure 2.2), the entire system turns around of three major components,
namely Y, LAB and AAB. For each of them, independent kinetic studies could be performed
under controlled conditions in order to determine in better detail more interactions and equally
important, parameter estimates of the system. Fortunately, initial steps in this direction have
started. For instance, Kouamé et al. [147] have developed a first model for alcoholic fermenta-
tion of cocoa beans under laboratory conditions, where kinetic parameter estimates have been
obtained from better quality data by using a liquid simulated fermentation matrix.

From the perspective of improving mathematical approaches, we can consider two main
courses of further action. First, optimization of experimental conditions in fermentation tri-
als and conduction of modeling by separate components of the system would bring sufficient
information to in fact take advantage of one primary goal of Bayesian inference, which is the
possibility to feed the model with prior knowledge. As previously discussed in Chapters 2 and
Chapter 3, parameters suspect of suffering from practical non-identifiability are likely the result
of both weakly informative priors, and observations. Thus, by constraining the parameter space
with more informed priors and less noisy measurements will improve a Bayesian framework not
only from a computational point of view (e.g., reduction of simulation times), but as an exten-
sion to plan further hypotheses in cases whether here proposed mechanisms agree no more with
new collected evidence.

Second, the rest of challenges to consider are more in hand with possible different formula-
tions of the Bayesian framework and current software and computational limitations. Regarding
a possibility of different formulations of the problem, how Bayes’ rule works, leaves the door
open to a diverse number of combinations of likelihood and prior distributions to test with the
aim to obtain better posterior distributions for the parameters and predictions. For instance,
using a Beta likelihood function in Eq. (1.25) instead of a normal one would increase predic-
tive accuracy by allowing MCMC to sample from the posterior nearer to outlying observations
thanks to the heavier tails of the former. However, these experiments with distinct likelihood
and prior distributions needs special attention into the aspect of its implementation that might
require different parametrizations of the model.

Finally, regarding software and computational matters, Bayesian inference is still a field in
continuous development where certain aspects have not yet been solved. In the specific case
of ODE systems, their implementation used to be cumbersome in the few available Bayesian
software before the release of Stan [50] which introduced built-in ODE solvers along with its
previously described sampling algorithms (see Section 1.5.3). In general, MCMC sampling
methods can take considerable amounts of time until their convergence depending on the model’s
complexity (e.g., models implemented in this work took between ≈2 to ≈72 hours of running
time).

Consequently, parallel computation routines of MCMC have been developed in Stan to over-
come this obstacle. Nevertheless, until the conduction of this work, their application was quite
hard to accomplish and currently, even with the last release of Stan with new and easier-to-
implement parallel computation functions, it still relies on accessibility of the user to powerful
computational machinery such as multi-core cluster facilities [148]. In terms of cocoa bean fer-
mentation, the aforesaid leads to expect larger computational times whether more complexity is
added to the model (e.g., compartmentalization would easily need two-fold number of parame-
ters) leading to an even slower process in testing new mechanisms, unless proper parallelization
is achieved.
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5.3 Final conclusion

In summary, this thesis has introduced a novel mathematical modeling approach in cocoa bean
fermentation showing besides its implementation, their potential use in exploring regulatory
mechanisms with an important emphasis on biological plausibility, and development of further
fingerprinting methods. Also, it makes up a basis over which future iterations improving mod-
eling are possible based on using prior information from new findings regarding experimentally
obtained parameter estimates.
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Appendix A

A mathematical model of coca bean
fermentation – Supplementary material7

A.1 Geometric derivation of conversion factors between CFU to
mass

According to the Bergey’s Manual of Systematic Bacteriology [64, 65], the diameter of Lacto-
bacillus plantarum (representative species of lactic acid bacteria in cocoa bean fermentation) is
between 0.9 to 1.2 µm and its length between 3 to 8 µm. For the case of the Acetobacter genus,
its usual diameter is between 0.6 to 0.9 µm and its length is between 1.0 to 4.0 µm.

Given the volume of a spherocylinder as

V = π r2

(
4

3
r + a

)
,

a midpoint from the above ranges can be computed in order to determine a theoretical volume
for a single cell, where a is equal to the length minus two times the radius (r). Thus, for lactic
acid bacteria (LAB) the volume is equal to 4.46 µm3 and for acetic acid bacteria (AAB) it is
≈ 1 µm3. Therefore; using as reference the dry weight of a single cell of E. coli reported by
Neidhardt & Curtiss [66] of 2.8× 10−10 mg and its volume of 1 µm3 [67], the conversion factor
between CFU to dry biomass of LAB and AAB were determined as 1.25 and 0.28 pg CFU−1

respectively.

A.2 Pre-modeling

The modeling choices of using a Contois [29] equation as growth rate of AAB on LA, and non-
linear mortality rates, are the result of a pre-modeling stage where several pre-model versions
were assessed for different mechanisms. Here, 3 pre-models from this stage are presented and
compared with the final model version discussed in Chapter 2.

Pre-model 1 (PM1)

In a first instance, pre-model 1 (PM1) is proposed in an oversimplified manner. For PM1, the
main substrates (Glc and Fru) were combined in a single state variable named ‘monosaccharides’
(M). Furthermore, it comprehends simple coupled interactions among the state variables reduced
to single uptake of substrates and production of metabolites. A network diagram of PM1 is
shown in Figure A.1.

7This chapter is based on the Supplementary material of Moreno-Zambrano et al. [1]
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LA

Figure A.1: Network diagram of the cocoa bean fermentation pre-model 1 (PM1). Microbial groups:
yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB) are represented as circles. Metabo-
lites: monosaccharides (M), ethanol (EtOH), lactic acid (LA) and acetic acid (Ac) are represented as
squares. The growth rates of yeast on monosaccharides (v1), of lactic acid bacteria on monosaccharides
(v3), and of acetic acid bacteria on ethanol (v5) are represented as straight dashed arrows. The mortality
rates of yeast (v2), lactic acid bacteria (v4), and acetic acid bacteria (v6) are represented as zigzag dashed
arrows. Solid straight arrows show the direction in which the conversion of metabolites occurs.

The system of ODE’s for PM1 comprises Monod [27] equations for the growth rates and
first-order reaction kinetics for the mortality rates, as shown in Table A.1.

Table A.1: Growth and mortality rate equations for the cocoa bean fermentation pre-model (PM1).
Microbial groups are represented as yeast (Y), lactic acid bacteria (LAB) and acetic acid bacteria (AAB).
Substrates are represented as monosaccharides (M) and ethanol (EtOH). Biomass and concentration of
substrates, both are shown within square brackets [ ]. Maximum specific growth rates µmax are shown
of the form µi

max, where i can be either Y, LAB and AAB. Substrate saturation constants for the growth
of Y, LAB and AAB are shown of the form Kj

m, where j can be either Y or LAB and m can be either
M or EtOH. Constant mortality rates are shown of the form ki, where i can be either Y, LAB or AAB.

Growth rate equation Mortality rate equation

v1 =
µY

max [M]

[M] +KY
M

[Y] v2 = kY [Y]

v3 =
µLAB

max [M]

[M] +KLAB
M

[LAB] v4 = kLAB [LAB]

v5 =
µAAB

max [EtOH]

[EtOH] +KAAB
EtOH

[AAB] v6 = kAAB [AAB]

In this way, PM1 is constructed as a system of ODE’s with seven state variables with six
yield coefficients, as expressed in Eqs. (A.1) to (A.7).

d [M]

dt
= −YM|Y v1 − YM|LAB v3 (A.1)

d [EtOH]

dt
= YEtOH|Y v1 − YEtOH|AAB v5 (A.2)

68



Appendix A. A mathematical model of coca bean fermentation – Suppl. Material

d [LA]

dt
= Y Glc

LA|LAB v3 (A.3)

d [Ac]

dt
= YAc|AAB v5 (A.4)

d [Y]

dt
= v1 − v2 (A.5)

d [LAB]

dt
= v3 − v4 (A.6)

d [AAB]

dt
= v5 − v6 (A.7)

Pre-models 2 and 3 (PM2 and PM3)

For the formulation of pre-model 2 (PM2) and pre-model 3 (PM3), the ‘monosaccharides’ state
variable in PM1 was considered by their separate components (Glc and Fru) and the addition
of a growth rate of AAB on LA. In this manner, pre-models PM2 and PM3 are similar to the
final model stated in Eqs. (2.1) to (2.8) by having 8 state variables. However, PM2 and PM3
differ with the latter regarding possible mechanisms of growth as well as mortality rates used.

In the case of PM2, all comprehended growth rates were expressed as Monod [27] terms
and maintaining simple first-order reaction kinetics for mortality rates (a mortality rate con-
stant affecting the concentration of a certain microbial group). With respect to PM3, the only
difference with PM2 lies on the use of second- and third-order reaction kinetics with the corre-
spondent products that each microbial group produces in the process [32]. A representation in
the form of network diagrams of these two pre-models can be depicted in Figure A.2 in panel (a)
for PM2 and panel (b) for PM3. Notice how the graphical representation of PM3 corresponds
to the one of the final model stated in Chapter 2.

time (days)

LA

Figure A.2: Network diagram of the cocoa bean fermentation model. (a) Considering linear mortality
rates. (b) Considering non-linear mortality rates (red dashed arrows). Microbial groups: yeast (Y), lactic
acid bacteria (LAB) and acetic acid bacteria (AAB) are represented as circles. Metabolites: Glucose
(Glc), fructose (Fru), ethanol (EtOH), lactic acid (LA) and acetic acid (Ac) are represented as squares.
The growth rates of yeast on glucose (v1) and fructose (v2), of lactic acid bacteria (v3), and of acetic acid
bacteria on ethanol (v4) and lactic acid (v5) are represented as straight dashed arrows. The mortality
rates of yeast (v6), lactic acid bacteria (v7) and acetic acid bacteria (v8) are represented as zigzag dashed
arrows. Solid straight arrows show the direction in which the conversion of metabolites occur.
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Final model (FM)

The main difference between pre-models PM2, PM3 and the model discussed in Chapter 2,
from her called final model (FM), is given by the use of another growth rate term for AAB on
LA. Specifically for FM, the Contois [29] equation was taken into account as candidate for this
growth rate (equation v5, in Table 2.1). This assumption relies on the following premise: given
that few species of AAB are capable of catabolize LA [21, 60], it can be argued that the growth
rate of these species is a function of their population size. In that manner, the cell growth
of AAB on LA is reduced along the population size of these particular AAB species increases
during the fermentation process.

The characteristics of each the previous model versions, including FM, is shown in Table
A.2.

Table A.2: Summary of pre-models (PM) including final model (FM). Check-marks and cross-marks
indicates whether the model includes use of multiple substrates (Glc and Fru), product toxicity interac-
tions (non-linear mortality rates) and population size effect for the consumption of lactic acid (LA) in
the form of a Contois term for the growth of acetic acid bacteria (AAB) on LA.

Model Multiple substrate Product toxicity
Population size effect

for LA consumption

PM1 7 7 7

PM2 3 7 7

PM3 3 3 7

FM 3 3 3

Models’ comparison

Pre-models as defined previously were assessed with the FM by fitting them to experimental data
reported by Camu et al. [12] and Papalexandratou et al. [62]. Such a comparison was performed
by deviance values obtained for PSIS-LOO and widely applicable information criterion (WAIC),
as described by Vehtari et al. [48] and Watanabe [47], respectively.

(a) (b) (c)

PM1 PM2 PM3 FM PM1 PM2 PM3 FM PM1 PM2 PM3 FM

−100

−50

0

Model

E
st
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at

e

method PSIS−LOO WAIC

Figure A.3: Pareto-smoothed importance sampling leave-one-out cross validation (PSIS-LOO) and widely
applicable information criterion (WAIC) for pre-models PM1, PM2, PM3 and final model FM. Dots
represents the estimates for PSIS-LOO and WAIC, lines represent their standard error. (a) Camu et al.
[12] dataset, (b) Box 1 of Papalexandratou et al. [62] and (c) Box 2 of Papalexandratou et al. [62].

In this fashion, the estimated values of PSIS-LOO and WAIC (Figure A.3) for PM1 have
worse performances than for the rest of models. PM3 and FM showed better results for all
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datasets, with the exception of data corresponding to Box 1 (Figure A.3, panel (b)) where PM2
showed a better performance.

However, FM seems to be the most plausible model among the three datasets because PM3
showed a bimodal posterior distribution for the maximum specific growth rate of AAB on EtOH
(µAABEtOH

max ) with the data from Camu et al. [12] as shown in Figure A.4.
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Figure A.4: Posterior distribution of the maximum specific growth rate of AAB on EtOH (µAABEtOH
max ) of

pre-model PM3 with the data from Camu et al. [12].

A.3 Analytical determination of conversion factors for parameter es-
timates

Consider the kinetics of any x state variable in Eqs. (2.1) to (2.8), its concentration [x] in a
certain time and the maximum concentration [x]max within the given time interval in which the
fermentation process took place.

Let’s x′ represent a transformation of the estate variable x expressed as

x′ =
[x]

[x]max
, (A.8)

then, the time derivative of x′ will be given by

dx′

dt
=

1

[x]max

d [x]

dt
, (A.9)

where [x]max is either the maximum concentration of glucose, fructose, ethanol, lactic acid,
acetic acid, yeast, lactic acid bacteria or acetic acid bacteria, depending on which ODE of the
proposed model is expressed in the form of Eq. (A.9).
Generalizing, by expressing all ODEs of the model in the form of Eq. (A.9), one gets a system
of equations as
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1

[Glc]max

d [Glc]

dt
= −Y1

µ1
[Glc]

[Glc]max

[Glc]
[Glc]max

+Ks1

[Y]

[Y]max
− Y2

µ3
[Glc]

[Glc]max

[Glc]
[Glc]max

+Ks3

[LAB]

[LAB]max
, (A.10)

1

[Fru]max

d [Fru]

dt
= −Y3

µ2
[Fru]

[Fru]max

[Fru]
[Fru]max

+Ks2

[Y]

[Y]max
, (A.11)

1

[EtOH]max

d [EtOH]

dt
= Y4

µ1
[Glc]

[Glc]max

[Glc]
[Glc]max

+Ks1

[Y]

[Y]max
+ Y5

µ2
[Fru]

[Fru]max

[Fru]
[Fru]max

+Ks2

[Y]

[Y]max
(A.12)

− Y6

µ4
[EtOH]

[EtOH]max

[EtOH]
[EtOH]max

+Ks4

[AAB]

[AAB]max
,

1

[LA]max

d [LA]

dt
= Y7

µ3
[Glc]

[Glc]max

[Glc]
[Glc]max

+Ks3

[LAB]

[LAB]max
− Y8

µ5
[LA]

[LA]max

[LA]
[LA]max

+Ks5
[AAB]

[AAB]max

[AAB]

[AAB]max
,

(A.13)

1

[Ac]max

d [Ac]

dt
= Y9

µ3
[Glc]

[Glc]max

[Glc]
[Glc]max

+Ks3

[LAB]

[LAB]max
+ Y10

µ4
[EtOH]

[EtOH]max

[EtOH]
[EtOH]max

+Ks4

[AAB]

[AAB]max

(A.14)

+ Y11

µ5
[LA]

[LA]max

[LA]
[LA]max

+Ks5
[AAB]

[AAB]max

[AAB]

[AAB]max
,

1

[Y]max

d [Y]

dt
=

µ1
[Glc]

[Glc]max

[Glc]
[Glc]max

+Ks1

[Y]

[Y]max
+

µ2
[Fru]

[Fru]max

[Fru]
[Fru]max

+Ks2

[Y]

[Y]max
− k1

[Y]

[Y]max

[EtOH]

[EtOH]max
,

(A.15)

1

[LAB]max

d [LAB]

dt
=

µ3
[Glc]

[Glc]max

[Glc]
[Glc]max

+Ks3

[LAB]

[LAB]max
− k2

[LAB]

[LAB]max

[LA]

[LA]max
, (A.16)

1

[AAB]max

d [AAB]

dt
=

µ4
[EtOH]

[EtOH]max

[EtOH]
[EtOH]max

+Ks4

[AAB]

[AAB]max
+

µ5
[LA]

[LA]max

[LA]
[LA]max

+Ks5
[AAB]

[AAB]max

[AAB]

[AAB]max

(A.17)

− k3
[AAB]

[AAB]max

[Ac]2

[Ac]2max
,

which constitutes a scaled version of the proposed model, where µi, Ksi, Yi and ki are the
solutions of the ODEs upon their correspondent scaled time series (according to Eq. (A.8))
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for specific maximum growth rates, saturation constants, yield coefficients and mortality rates,
respectively.

Once the parameters of Eqs. (A.10) to (A.17) are estimated as a result of the Bayesian opti-
mization routine, obtaining conversion factors to their actual units is accomplished by properly
working out the equations in such a way that the maximum values of each time series are
multiplied by the parameters’ scaled solutions.

For instance, Eq. (A.10) can be simplified to:

d [Glc]

dt
= −Y1

[Glc]max
[Y]max

µ1 [Glc]

[Glc] +Ks1 [Glc]max
[Y]− Y2

[Glc]max
[LAB]max

µ3 [Glc]

[Glc] +Ks3 [Glc]max
[LAB] ,

(A.18)

where the terms µ1, µ3, Ks1 [Glc]max, Ks2 [Glc]max, Y1
[Glc]max
[Y]max

and Y2
[Glc]max

[LAB]max
are equivalent

to µYGlc
max , µLABGlc

max , KY
Glc, K

LAB
Glc , YGlc|Y and YGlc|LAB respectively and the left hand side of the

equation corresponds to the state variable with no scaling.
Thus, similarly to Eq. (A.18), conversion factors between the scaled parameters to its actual

units can be determined as

µYGlc
max = µ1

µYFru
max = µ2

µLABGlc
max = µ3

µAABEtOH
max = µ4

µAABLA
max = µ5

KY
Glc = Ks1 [Glc]max

KY
Fru = Ks2 [Fru]max

KLAB
Glc = Ks3 [Glc]max

KAAB
EtOH = Ks4 [EtOH]max

KAAB
LA = Ks5

[LA]max

[AAB]max

kY =
k1

[EtOH]max

kLAB =
k2

[LA]max

kAAB =
k3

[Ac]2max

YGlc|Y = Y1
[Glc]max

[Y]max

YGlc|LAB = Y2
[Glc]max

[LAB]max

YFru|Y = Y3
[Fru]max

[Y]max

Y Glc
EtOH|Y = Y4

[EtOH]max

[Y]max

Y Fru
EtOH|Y = Y5

[EtOH]max

[Y]max

YEtOH|AAB = Y6
[EtOH]max

[AAB]max

Y Glc
LA|LAB = Y7

[LA]max

[LAB]max

YLA|AAB = Y8
[LA]max

[AAB]max

Y Glc
Ac|LAB = Y9

[Ac]max

[LAB]max

Y EtOH
Ac|AAB = Y10

[Ac]max

[AAB]max

Y LA
Ac|AAB = Y11

[Ac]max

[AAB]max

In this way, the prior θ in Eq. (2.9) is equivalent to sample from an unscaled prior distribu-
tion determined by the conversion factors above derived. For each of the k parameters we then
have

θku ∼ N (ck 0.5, ck 0.3), θku > 0, (A.19)
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where θku represents the unscaled prior distribution for parameter k in θ and c is the conversion
factor for each k parameter.

In other words, Eq. (A.19) defines the original unscaled ranges of the parameters in which
the scaled priors for θ in Eq. (2.9) are equivalently sampled. A summary of the original ranges,
from which the parameters are sampled, is given as unscaled prior distributions in Table A.3.

Table A.3: Prior distributions in the range of the original units of the parameters of the cocoa bean fer-
mentation model for the data of Camu et al. [12] and the fermentation boxes 1 and 2 of Papalexandratou
et al. [62]. All priors are constrained in the positive set of real numbers.

Parameter Camu Box 1 Box 2

µYGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABEtOH
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

KY
Glc N (25.9, 15.6) N (27.7, 16.6) N (21.5, 12.9)

KY
Fru N (28.9, 17.3) N (24.8, 14.9) N (33.6, 20.2)

KLAB
Glc N (25.9, 15.6) N (27.7, 16.6) N (21.5, 12.9)

KAAB
EtOH N (11.2, 6.8) N (3.0, 1.8) N (3.5, 2.1)

KAAB
LA N (2243.7, 1346.2) N (286.2, 171.7) N (76.4, 45.8)

kY N (0.02, 0.01) N (0.08, 0.05) N (0.07, 0.04)

kLAB N (0.06, 0.03) N (0.10, 0.06) N (0.12, 0.07)

kAAB N (0.01, 0.008) N (0.003, 0.002) N (0.001, 0.0009)

YGlc|Y N (27.2, 16.3) N (130.6, 78.4) N (88.2, 52.9)

YGlc|LAB N (45.9, 27.5) N (74.2, 44.5) N (30.7, 18.4)

YFru|Y N (30.2, 18.1) N (116.9, 70.2) N (138.2, 82.9)

Y Glc
EtOH|Y N (11.8, 7.1) N (14.2, 8.5) N (14.5, 8.7)

Y Fru
EtOH|Y N (11.8, 7.1) N (14.2, 8.5) N (14.5, 8.7)

YEtOH|AAB N (5872.7, 3523.6) N (354.3, 212.6) N (130.7, 78.4)

Y Glc
LA|LAB N (7.6, 4.6) N (6.5, 3.9) N (2.9, 1.8)

YLA|AAB N (2243.7, 1346.2) N (286.2, 171.7) N (76.4, 45.8)

Y Glc
Ac|LAB N (5.4, 3.3) N (15.9, 9.6) N (13.3, 7.9)

Y EtOH
Ac|AAB N (1602.9, 961.7) N (700.9, 420.5) N (345.1, 207.0)

Y LA
Ac|AAB N (1602.9, 961.7) N (700.9, 420.5) N (345.1, 207.0)
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A.4 Model’s diagnostics

Table A.4: Scaled posterior moments and quantiles of parameter estimates for the Camu et al. [12]

dataset. Number of effective sample size and R̂ statistic are also shown.

Parameter Mean SE mean sd 2.5% 25% 50% 75% 97.5% n-eff R̂

µYGlc
max 0.253 0.002 0.094 0.098 0.184 0.242 0.314 0.465 3369 1.00

µYFru
max 0.358 0.002 0.106 0.173 0.282 0.352 0.429 0.584 4280 1.00

µLABGlc
max 0.358 0.001 0.067 0.237 0.311 0.354 0.402 0.500 5427 1.00

µAABEtOH
max 0.380 0.001 0.092 0.214 0.317 0.376 0.437 0.577 4194 1.00

µAABLA
max 0.008 0.000 0.012 0.000 0.002 0.005 0.009 0.038 1597 1.00

KY
Glc 0.680 0.003 0.266 0.181 0.493 0.669 0.858 1.215 8000 1.00

KY
Fru 0.615 0.003 0.264 0.125 0.424 0.607 0.791 1.157 6066 1.00

KLAB
Glc 0.731 0.003 0.238 0.294 0.560 0.718 0.887 1.220 5931 1.00

KAAB
EtOH 0.714 0.003 0.251 0.252 0.539 0.705 0.879 1.236 6190 1.00

KAAB
LA 0.559 0.003 0.275 0.076 0.358 0.544 0.748 1.132 8000 1.00

kY 0.748 0.002 0.114 0.544 0.669 0.741 0.820 0.989 5105 1.00

kLAB 0.047 0.000 0.012 0.028 0.038 0.045 0.053 0.076 3816 1.00

kAAB 0.259 0.001 0.053 0.167 0.223 0.255 0.292 0.377 5838 1.00

YGlc|Y 0.614 0.003 0.207 0.275 0.461 0.592 0.745 1.057 4527 1.00

YGlc|LAB 0.319 0.002 0.118 0.128 0.235 0.304 0.390 0.588 4277 1.00

YFru|Y 0.680 0.002 0.185 0.382 0.544 0.658 0.796 1.085 5325 1.00

Y Glc
EtOH|Y 0.316 0.003 0.192 0.025 0.169 0.295 0.438 0.747 5586 1.00

Y Fru
EtOH|Y 0.252 0.002 0.142 0.024 0.145 0.238 0.342 0.569 5744 1.00

YEtOH|AAB 0.110 0.001 0.054 0.039 0.076 0.101 0.133 0.236 2407 1.00

Y Glc
LA|LAB 0.700 0.002 0.102 0.517 0.628 0.695 0.763 0.919 4186 1.00

YLA|AAB 0.430 0.003 0.271 0.022 0.215 0.402 0.614 1.010 8000 1.00

Y Glc
Ac|LAB 0.517 0.001 0.085 0.363 0.458 0.513 0.573 0.698 4553 1.00

Y EtOH
Ac|AAB 0.032 0.001 0.031 0.001 0.013 0.026 0.044 0.097 2640 1.00

Y LA
Ac|AAB 0.445 0.004 0.270 0.026 0.233 0.423 0.625 1.030 5728 1.00

σ 0.149 0.000 0.010 0.131 0.142 0.148 0.156 0.171 8000 1.00
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Table A.5: Scaled posterior moments and quantiles of parameter estimates for the Papalexandratou et al.
[62] dataset of Box 1. Number of effective sample size and R̂ statistic are also shown.

Parameter Mean SE mean sd 2.5% 25% 50% 75% 97.5% n-eff R̂

µYGlc
max 0.063 0.000 0.025 0.024 0.046 0.060 0.077 0.122 5307 1.00

µYFru
max 0.083 0.000 0.030 0.038 0.062 0.079 0.100 0.154 5569 1.00

µLABGlc
max 0.414 0.001 0.096 0.246 0.346 0.408 0.477 0.617 4494 1.00

µAABEtOH
max 0.150 0.001 0.051 0.061 0.113 0.148 0.184 0.258 4873 1.00

µAABLA
max 0.025 0.000 0.017 0.002 0.012 0.021 0.034 0.065 4384 1.00

KY
Glc 0.619 0.003 0.270 0.123 0.425 0.615 0.800 1.170 8000 1.00

KY
Fru 0.504 0.004 0.286 0.040 0.281 0.483 0.697 1.101 5535 1.00

KLAB
Glc 0.571 0.004 0.250 0.123 0.390 0.558 0.737 1.093 4238 1.00

KAAB
EtOH 0.633 0.003 0.271 0.125 0.440 0.628 0.823 1.170 8000 1.00

KAAB
LA 0.545 0.003 0.267 0.074 0.350 0.531 0.721 1.104 8000 1.00

kY 0.312 0.001 0.072 0.203 0.261 0.302 0.352 0.479 5425 1.00

kLAB 0.310 0.002 0.089 0.159 0.250 0.304 0.362 0.509 3086 1.00

kAAB 0.061 0.000 0.027 0.022 0.042 0.056 0.076 0.130 4145 1.00

YGlc|Y 0.922 0.003 0.229 0.495 0.765 0.911 1.072 1.390 8000 1.00

YGlc|LAB 0.136 0.002 0.089 0.017 0.073 0.118 0.177 0.362 3166 1.00

YFru|Y 1.044 0.002 0.198 0.689 0.904 1.034 1.172 1.456 8000 1.00

Y Glc
EtOH|Y 0.420 0.003 0.213 0.052 0.261 0.406 0.562 0.865 5429 1.00

Y Fru
EtOH|Y 0.394 0.003 0.176 0.063 0.267 0.393 0.515 0.745 4619 1.00

YEtOH|AAB 0.534 0.003 0.215 0.169 0.380 0.517 0.671 0.996 5536 1.00

Y Glc
LA|LAB 0.214 0.001 0.051 0.137 0.179 0.207 0.241 0.333 3420 1.00

YLA|AAB 0.502 0.003 0.247 0.078 0.321 0.483 0.662 1.024 8000 1.00

Y Glc
Ac|LAB 0.103 0.000 0.035 0.044 0.079 0.098 0.123 0.182 4363 1.00

Y EtOH
Ac|AAB 0.411 0.003 0.194 0.075 0.270 0.399 0.536 0.820 4561 1.00

Y LA
Ac|AAB 0.476 0.003 0.255 0.040 0.287 0.458 0.644 1.014 8000 1.00

σ 0.168 0.000 0.014 0.143 0.158 0.167 0.176 0.198 8000 1.00
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Table A.6: Scaled posterior moments and quantiles of parameter estimates for the Papalexandratou et al.
[62] dataset of Box 2. Number of effective sample size and R̂ statistic are also shown.

Parameter Mean SE mean sd 2.5% 25% 50% 75% 97.5% n-eff R̂

µYGlc
max 0.368 0.002 0.131 0.162 0.269 0.354 0.447 0.664 3979 1.00

µYFru
max 0.572 0.002 0.151 0.301 0.465 0.562 0.671 0.887 4323 1.00

µLABGlc
max 0.499 0.002 0.152 0.227 0.388 0.492 0.600 0.815 4436 1.00

µAABEtOH
max 0.168 0.001 0.052 0.079 0.130 0.165 0.202 0.280 4578 1.00

µAABLA
max 0.022 0.000 0.016 0.001 0.009 0.019 0.031 0.060 4019 1.00

KY
Glc 0.699 0.003 0.254 0.231 0.519 0.688 0.867 1.213 8000 1.00

KY
Fru 0.615 0.003 0.257 0.132 0.434 0.609 0.788 1.142 6094 1.00

KLAB
Glc 0.449 0.004 0.247 0.046 0.263 0.430 0.615 0.972 4583 1.00

KAAB
EtOH 0.575 0.004 0.281 0.073 0.369 0.567 0.767 1.143 5840 1.00

KAAB
LA 0.537 0.003 0.271 0.064 0.334 0.528 0.715 1.101 8000 1.00

kY 0.649 0.003 0.175 0.343 0.519 0.644 0.772 0.994 3747 1.00

kLAB 0.283 0.002 0.103 0.106 0.210 0.275 0.347 0.510 3237 1.00

kAAB 0.128 0.001 0.053 0.053 0.091 0.119 0.155 0.255 5813 1.00

YGlc|Y 0.678 0.003 0.199 0.350 0.532 0.660 0.804 1.109 5925 1.00

YGlc|LAB 0.054 0.001 0.056 0.002 0.016 0.037 0.073 0.209 4101 1.00

YFru|Y 0.841 0.003 0.228 0.448 0.676 0.828 0.989 1.322 6484 1.00

Y Glc
EtOH|Y 0.283 0.002 0.155 0.025 0.168 0.271 0.384 0.621 4052 1.00

Y Fru
EtOH|Y 0.207 0.002 0.134 0.011 0.104 0.190 0.292 0.507 4731 1.00

YEtOH|AAB 0.652 0.003 0.215 0.296 0.496 0.630 0.787 1.132 6241 1.00

Y Glc
LA|LAB 0.363 0.002 0.136 0.185 0.268 0.333 0.424 0.717 3402 1.00

YLA|AAB 0.412 0.003 0.252 0.027 0.215 0.386 0.575 0.968 5647 1.00

Y Glc
Ac|LAB 0.109 0.001 0.071 0.011 0.060 0.095 0.142 0.286 4521 1.00

Y EtOH
Ac|AAB 0.466 0.003 0.192 0.096 0.337 0.462 0.589 0.866 4820 1.00

Y LA
Ac|AAB 0.558 0.003 0.257 0.083 0.377 0.551 0.730 1.080 8000 1.00

σ 0.168 0.000 0.013 0.144 0.158 0.167 0.176 0.195 8000 1.00
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Figure A.8: Unscaled posterior density distributions for the estimated parameters of the proposed models
for the data reported by Camu et al. [12]. A different color represents a single Markov Chain. The vertical
solid vertical lines represent the means of the distributions. The vertical dashed lines denote the 95%
credible intervals.
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Figure A.9: Unscaled posterior density distributions for the estimated parameters of the proposed models
for the data reported for box 1 by Papalexandratou et al. [62]. A different color represents a single Markov
Chain. The vertical solid vertical lines represent the means of the distributions. The vertical dashed
lines denote the 95% credible intervals.
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Figure A.10: Unscaled posterior density distributions for the estimated parameters of the proposed
models for the data reported for box 2 by Papalexandratou et al. [62]. A different color represents a
single Markov Chain. The vertical solid vertical lines represent the means of the distributions. The
vertical dashed lines denote the 95% credible intervals.
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A.5 Asymptotic behavior

The biologically relevant aspect of the dynamics of this fermentation model is the transient,
with its sequential activation of different populations. It is, however, also instructive to analyze
the asymptotic behavior of the model.

Figure A.11 shows a longer time series for each of the parameter vectors derived from the
three data sets.
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Figure A.11: Long time behaviour of the model. Values scaled to one are used for visualization purposes.
Metabolite kinetics for the data reported by (a) Camu et al. [12], (b) Box 1, Papalexandratou et al. [62]
and (c) Box 2, Papalexandratou et al. [62]. Microbial community dynamics for the data reported by (d)
Camu et al. [12], (e) Box 1, Papalexandratou et al. [62] and (f) Box 2, Papalexandratou et al. [62].

Analytically, one can see that the fixed point of the model has the following form: For
some dynamical variables the fixed point value is zero, while others are undetermined or fulfill
algebraic relationships, e.g.:

[Glc] = [Glc], [Fru] = 0, [EtOH] =
kLAB[Glc]

Y Glc
Ac|LAB(Y Glc

EtOH|Y + [Glc])
, [LA] =

YGlc|Y[Glc]

Y EtOH
Ac|AAB(YEtOH|AAB + [Glc])

,

[Ac] =

√
YFru|YY

Glc
EtOH|YY

Glc
LA|LABY

Glc
Ac|LAB + YFru|YY

Glc
LA|LAB[Glc]Y Glc

Ac|LAB + kLABYGlc|LAB[Glc] + kLABYFru|Y[Glc]√
Y Glc

EtOH|YY
Glc

LA|LABY
Glc

Ac|LABY
LA

Ac|AAB + kLAB[Glc]Y LA
Ac|AAB + Y Glc

LA|LABY
Glc

Ac|LAB[Glc]Y LA
Ac|AAB

,

[Y] = 0, [LAB] = 0, [AAB] = 0

(A.20)

as dxi
dt = 0 is an under-determined system.
As several combinations of variables being zero can lead to a fixed point, in total 28 such

fixed points exist, all following the pattern described above. In Table A.7 they are listed.
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Table A.7: Analytical solution for the fixed points of the model.

[Glc] [Fru] [EtOH] [LA] [Ac] [Y] [LAB] [AAB]

[Glc] [Fru] [EtOH] [LA] [Ac] 0 0 0

0 [Fru] [EtOH] [LA] [Ac] 0 0 0

[Glc] [Fru] [EtOH]
YGlc|Y[Glc]

Y EtOH
Ac|AAB

(YEtOH|AAB+[Glc])
[Ac] 0 0 0

[Glc] [Fru] [EtOH] [LA] −
√
YFru|YY

Glc
LA|LAB

+YGlc|LAB[EtOH]+YFru|Y[EtOH]√
Y Glc
LA|LAB

Y LA
Ac|AAB

+[EtOH]Y LA
Ac|AAB

0 0 0

[Glc] [Fru] [EtOH] [LA]

√
YFru|YY

Glc
LA|LAB

+YGlc|LAB[EtOH]+YFru|Y[EtOH]√
Y Glc
LA|LAB

Y LA
Ac|AAB

+[EtOH]Y LA
Ac|AAB

0 0 0

0 0 0 0 0 [Y] [LAB] [AAB]

0 [Fru] 0 0 0 0 [LAB] [AAB]

0 0 0 [LA] [Ac] [Y] 0 0

[Glc] [Fru] 0 0 0 0 0 [AAB]

0 [Fru] [EtOH] [LA] −
√
YFru|YY

Glc
LA|LAB

+YGlc|LAB[EtOH]+YFru|Y[EtOH]√
Y Glc
LA|LAB

Y LA
Ac|AAB

+[EtOH]Y LA
Ac|AAB

0 0 0

0 [Fru] [EtOH] [LA]

√
YFru|YY

Glc
LA|LAB

+YGlc|LAB[EtOH]+YFru|Y[EtOH]√
Y Glc
LA|LAB

Y LA
Ac|AAB

+[EtOH]Y LA
Ac|AAB

0 0 0

[Glc] 0 kLAB[Glc]

Y Glc
Ac|LAB

(Y Glc
EtOH|Y+[Glc])

[LA] [Ac] 0 0 0

[Glc] [Fru] [EtOH]
YGlc|Y[Glc]

Y EtOH
Ac|AAB

(YEtOH|AAB+[Glc])
−

√
YFru|YY

Glc
LA|LAB

+YGlc|LAB[EtOH]+YFru|Y[EtOH]√
Y Glc
LA|LAB

Y LA
Ac|AAB

+[EtOH]Y LA
Ac|AAB

0 0 0

[Glc] [Fru] [EtOH]
YGlc|Y[Glc]

Y EtOH
Ac|AAB

(YEtOH|AAB+[Glc])

√
YFru|YY

Glc
LA|LAB

+YGlc|LAB[EtOH]+YFru|Y[EtOH]√
Y Glc
LA|LAB

Y LA
Ac|AAB

+[EtOH]Y LA
Ac|AAB

0 0 0

0 0 0 0 0 [Y] −µ
YGlc
max kLABYEtOH|AAB[Y]

YGlc|YY
Glc
EtOH|Yc2

[AAB]

0 [Fru] 0 0 0 0 0 [AAB]

0 0 0 0 0 [Y] 0 [AAB]

0 [Fru] 0 0 0 0 0 [AAB]

0 0 0 [LA] −
√
YFru|Y√
Y LA
Ac|AAB

[Y] 0 0

0 0 0 [LA]

√
YFru|Y√
Y LA
Ac|AAB

[Y] 0 0

[Glc] 0 kLAB[Glc]

Y Glc
Ac|LAB

(Y Glc
EtOH|Y+[Glc])

[LA] −
√
YFru|YY

Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

+YFru|YY
Glc
LA|LAB

[Glc]Y Glc
Ac|LAB

+kLABYGlc|LAB[Glc]+kLABYFru|Y[Glc]√
Y Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

Y LA
Ac|AAB

+kLAB[Glc]Y LA
Ac|AAB

+Y Glc
LA|LAB

Y Glc
Ac|LAB

[Glc]Y LA
Ac|AAB

0 0 0

[Glc] 0 kLAB[Glc]

Y Glc
Ac|LAB

(Y Glc
EtOH|Y+[Glc])

[LA]

√
YFru|YY

Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

+YFru|YY
Glc
LA|LAB

[Glc]Y Glc
Ac|LAB

+kLABYGlc|LAB[Glc]+kLABYFru|Y[Glc]√
Y Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

Y LA
Ac|AAB

+kLAB[Glc]Y LA
Ac|AAB

+Y Glc
LA|LAB

Y Glc
Ac|LAB

[Glc]Y LA
Ac|AAB

0 0 0

[Glc] 0 kLAB[Glc]

Y Glc
Ac|LAB

(Y Glc
EtOH|Y+[Glc])

YGlc|Y[Glc]

Y EtOH
Ac|AAB

(YEtOH|AAB+[Glc])
[Ac] 0 0 0

0 0 0 0 0 0 0 [AAB]

0 0 0 [LA] −
√
YFru|Y√
Y LA
Ac|AAB

0 0 0

0 0 0 [LA]

√
YFru|Y√
Y LA
Ac|AAB

0 0 0

[Glc] 0 kLAB[Glc]

Y Glc
Ac|LAB

(Y Glc
EtOH|Y+[Glc])

YGlc|Y[Glc]

Y EtOH
Ac|AAB

(YEtOH|AAB+[Glc])
−

√
YFru|YY

Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

+YFru|YY
Glc
LA|LAB

[Glc]Y Glc
Ac|LAB

+kLABYGlc|LAB[Glc]+kLABYFru|Y[Glc]√
Y Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

Y LA
Ac|AAB

+kLAB[Glc]Y LA
Ac|AAB

+Y Glc
LA|LAB

Y Glc
Ac|LAB

[Glc]Y LA
Ac|AAB

0 0 0

[Glc] 0 kLAB[Glc]

Y Glc
Ac|LAB

(Y Glc
EtOH|Y+[Glc])

YGlc|Y[Glc]

Y EtOH
Ac|AAB

(YEtOH|AAB+[Glc])

√
YFru|YY

Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

+YFru|YY
Glc
LA|LAB

[Glc]Y Glc
Ac|LAB

+kLABYGlc|LAB[Glc]+kLABYFru|Y[Glc]√
Y Glc
EtOH|YY

Glc
LA|LAB

Y Glc
Ac|LAB

Y LA
Ac|AAB

+kLAB[Glc]Y LA
Ac|AAB

+Y Glc
LA|LAB

Y Glc
Ac|LAB

[Glc]Y LA
Ac|AAB

0 0 0

For those cases, where positive values of all dynamical variables are compatible with the
‘template’ shown in Table A.7, computation of the eigenvalues of the Jacobian matrix in these
fixed points yields zeroes and negative values, consistent with an under-determined system with
stable fixed points.

A.6 Measurement errors

As mentioned in Chapter 1, a standard deviation σ was necessary for fitting the model on each
data set. Thus, the standard deviation in all three datasets showed lower values at decreased
values of the negative log-likelihood conditioned on the posterior distribution (see Figure A.12).
At first glance, this result might contradict the general tendency to favor the negative log-
likelihood by adding variance to the posterior probabilities of the parameter estimates. However,
that kind of behavior would have been present if instead of estimating a total standard deviation
for the whole model, separate standard deviations for each state variable were computed.

To show that effect, consider the following total posterior probability:

P (θ | Y) ∝
T∏
i=1

N∏
j=1

N (f (xi,j , θ) , σi) P (θ) . (A.21)

Eq. (A.21) differs from Eq. (1.24) by σi, which is representing a standard deviation for each
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Figure A.12: Scatter plots of the negative log-likelihood conditioned on the posterior distribution vs.
scaled estimated standard deviation σ for each of the data sets. (a) Data reported by Camu et al. [12],
(b) Data reported for Box 1 Papalexandratou et al. [62] and (c) Data reported for Box 2 Papalexandratou
et al. [62].

i state variable of the model. Applying Eq. (A.21) into our proposed model, would mean to
estimate 8 standard deviations that in practice are likely to inflate the log-likelihood. As an
example, by fitting a model according to Eq. (A.21) with the data reported by Camu et al. [12]
the log-likelihood is increased from a mean of 62.48 obtained by FM reported in Chapter 2, to
a mean of 72.91 (Figure A.13).
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Figure A.13: Log-likelihood conditioned on the posterior distribution with data from Camu et al. [12].
Solid vertical red line represents the mean of the distribution. (a) Model with one σ (b) Model with one
σ per state variable

This increment of the log-likelihood is likely related to an inflation of certain parameters,
namely µAABLA

max , YEtOH|AAB and Y LA
Ac|AAB (Figure A.14).
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Figure A.14: Posterior distributions for scaled parameters (a) µAABLA
max , (b) YEtOH|AAB and (c) Y LA

Ac|AAB

with data from Camu et al. [12]. The x axis is representing whether the model was fitted with either one
or eight σ

.
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Figure A.15: Heatmap based on Pearson’s correlation derived from the data reported by Camu et al.
[12].
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Figure A.16: Heatmap based on Pearson’s correlation derived from the data reported by Papalexandratou
et al. [62] for Box 1.
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Figure A.17: Heatmap based on Pearson’s correlation derived from the data reported by Papalexandratou
et al. [62] for Box 2.
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Exploring cocoa bean fermentation
mechanisms by kinetic modeling –
Supplementary material8

B.1 Fermentation data

From bibliographical review, 15 published research papers met the inclusion criteria described in
Section 3.2.1 [12–15, 62, 68, 112–117, 126–128]. We also considered an additional study lacking
time series for LA due to the limited number of works where heap method was used [17]. For
this paper, LA’s time series were simulated during models calibrations. Overall, data from 32
fermentation trials were gathered. After the calibration of models, 9 out of 32 datasets did not
result in successful fits for any MI (see Table B.1).

Fermentation trials that resulted in successful fits, according to features mentioned in Section
3.2.6, were grouped by country in 8 experiments from Brazil [14, 15, 62, 68], 5 from Ghana [12,
17], 5 from Ecuador [113, 116], 2 from Nicaragua [117], 1 from Dominican Republic [112], 1 from
Malaysia [114] and 1 from Honduras [115]. Regarding the cocoa cultivar, 4 experiments were
performed using Nacional/Trinitario [113], 3 using Criollo/Forastero [12, 62], 1 using Trinitario
[112], 1 using PH16 [15], 1 using a mix of IMC-67, UF-29 and UF-668 [115], 1 using Criollo
[116], 1 using Nugu [117], 1 using O’payo [117] and 1 using unspecified mixed hybrids [114].
Furthermore, 2 studies with 6 trials in total did not mention any identification about used
cultivar [17, 68] and 1 remaining study reported 3 trials with the use of unspecified mixed
hybrids [14]. With the aim of not losing information from such studies, cultivars were here
categorized as different unknowns based on their authorship. Hence, 4 trials with unidentified
cultivars performed by Camu et al. [17] and 2 conducted by Pereira et al. [68] were coded as un1
and un2, respectively. Finally, 3 trials using unspecified mixed hybrids performed by Pereira
et al. [14] were coded as un3.

Regarding the fermentation method, trials were grouped in 11 from wooden boxes [14, 15,
62, 112–115, 117], 5 from heaps [12, 17], 2 from platforms [117], 2 from stainless steel tanks
[14, 68] and 2 from plastic boxes [68, 116]. About turning of fermenting mass, 16 experiments
reported to have turned cocoa beans during fermentation [14, 17, 62, 68, 112–115, 117], 5 did not
conduct turning [12, 17, 113] and 2 did not report whether turning of fermenting cocoa beans
was done [15, 116]. Regarding temperature control, only 3 trials reported to have controlled
it [68, 116]. Finally, with respect to the use of a starter culture, data gathered from the only
study that suited inclusion criteria and reported its use [126], could not be fitted to any MI. A

8This chapter is based on the supplementary material of Moreno-Zambrano et al. [2]
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summary of fermentation experiments that could be fitted to at least one MI is shown in Table
3.1.

B.2 Mathematical formulation of candidate mechanisms

M1: Decay of fermentation products

M1 can be formulated by considering a linear term of the form

di = bX [X], (B.1)

where d represents the decay i at a rate b of metabolite X, can be added to Eqs. (2.3), (2.4)
and (2.5) to account for decrease of EtOH, LA and Ac, respectively:

d [EtOH]

dt
= Y Glc

EtOH|Y v1 + Y Fru
EtOH|Y v2 − YEtOH|AAB v4 − d1, (B.2)

d [LA]

dt
= Y Glc

LA|LAB v3 − YLA|AAB v5 − d2 (B.3)

d [Ac]

dt
= Y Glc

Ac|LAB v3 + Y EtOH
Ac|AAB v4 + Y LA

Ac|AAB v5 − d3. (B.4)

Therefore, the addition of these terms provides three extra parameters to the baseline model.

M2: Consumption of fructose (Fru) by lactic acid bacteria (LAB)

M2 can be easily implemented into the baseline model in three steps. First, an extra growth
rate for LAB is needed to describe uptake of Fru as carbon source. Such a growth rate can be
defined by a Monod type equation of the form

v9 =
µLABFru

max [Fru]

[Fru] +KLAB
Fru

[LAB] , (B.5)

where, µLABFru
max represents the maximum specific growth rate of LAB on Fru and KLAB

Fru is the
substrate saturation constant of LAB growth on Fru. Then, v9 must be included in Eq. (2.2)
with aid of a LAB-to-Fru yield coefficient (YFru|LAB), giving

d [Fru]

dt
= −YFru|Y v2 − YFru|LAB v9 . (B.6)

Second, contributions of LAB in producing EtOH, LA and Ac from growth rates v3 and v9

are included in Eqs. (2.3), (2.4) and (2.5) with help of four extra parameters, namely LAB-
to-EtOH from Glc (Y Glc

EtOH|LAB), LAB-to-EtOH from Fru (Y Fru
EtOH|LAB), LAB-to-LA from Fru

(Y Fru
LA|LAB), and LAB-to-Ac from Fru (Y Fru

Ac|LAB) yield coefficients:

d [EtOH]

dt
= Y Glc

EtOH|Y v1 + Y Fru
EtOH|Y v2 + Y Glc

EtOH|LAB v3 + Y Fru
EtOH|LAB v9 − YEtOH|AAB v4 (B.7)

d [LA]

dt
= Y Glc

LA|LAB v3 + Y Fru
LA|LAB v9 − YLA|AAB v5 (B.8)

d [Ac]

dt
= Y Glc

Ac|LAB v3 + Y Fru
Ac|LAB v9 + Y EtOH

Ac|AAB v4. (B.9)
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Finally, increase on microbial population by growth rate v9 can be added to Eq. (2.7) as

d [LAB]

dt
= v3 + v9 − v7. (B.10)

In total, implementation of Eqs. (B.6) to (B.10) in the baseline model adds seven extra
parameters.

M3: Production of acetic acid (Ac) by yeasts (Y)

Given that the baseline model already accounts for growth rates of Y on Glc (v1) and Fru (v2),
deployment of this new mechanism in Eq. (2.5) needs Y-to-Ac from Glc (Y Glc

Ac|Y) and Y-to-Ac

from Fru (Y Fru
Ac|Y) yield coefficients:

d [Ac]

dt
= Y Glc

Ac|LAB v3 + Y EtOH
Ac|AAB v4 + Y LA

Ac|AAB v5 + Y Glc
Ac|Y v1 + Y Fru

Ac|Y v2, (B.11)

adding two more parameters to the baseline model.

M4: Production of lactic acid (LA) by yeasts (Y)

Similar to M2, M4 can be incorporated to the baseline model in three steps. First, a new growth
rate for Y on LA is defined by a Monod type equation of the form

v10 =
µYLA

max [LA]

[LA] +KY
LA

[Y] , (B.12)

where, µYLA
max is the maximum specific growth rate of Y on LA and KY

LA represents the substrate
saturation constant of Y growth on LA. v10 is then added to Eq. (2.4) with a Y-to-LA yield
coefficient (YLA|Y):

d [LA]

dt
= Y Glc

LA|LAB v3 − YLA|AAB v5 − YLA|Y v10. (B.13)

Second, to account the production of EtOH via consumption of LA by Y, v10 must be part
of Eq. (2.3) with companion of a Y-to-EtOH from LA yield coefficient (Y LA

EtOH|Y):

d [EtOH]

dt
= Y Glc

EtOH|Y v1 + Y Fru
EtOH|Y v2 + Y LA

EtOH|Y v10 − YEtOH|AAB v4. (B.14)

Finally, the population size Y (Eq. (2.6)) is also affected by v10:

d [Y]

dt
= v1 + v2 + v10 − v6. (B.15)

In total, M4 contributes 4 parameters to the baseline model.

M5: Over-oxidation of acetic acid (Ac) by acetic acid bacteria (AAB)

Similar to M2 and M4, an extra growth rate is required to describe AAB growth on its own
main product, Ac:

v11 =
µAABAc

max [Ac]

[Ac] +KAAB
Ac

[AAB] , (B.16)

where µAABAc
max depicts the maximum specific growth rate of AAB on Ac and KAAB

Ac is the
substrate saturation constant of AAB growth on Ac. Then, v11 enters in Eq. (2.5) with an
AAB-to-Ac yield coefficient (YAc|AAB):
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d [Ac]

dt
= Y Glc

Ac|LAB v3 + Y EtOH
Ac|AAB v4 + Y LA

Ac|AAB v5 − YAc|AAB v11. (B.17)

Lastly, population of AAB described in Eq. (2.8) is complemented with v11:

d [AAB]

dt
= v4 + v5 + v11 − v8 . (B.18)

Since we are not interested in simulating carbon dioxide production, no extra equation is
needed and M5 ends up adding three extra parameters to the baseline model.

B.3 Supplementary tables and figures

Table B.1: Detailed description of the considered data. Author, year of publication, cocoa country of
origin, cocoa cultivar, used methodology, code name given in the original paper, re-coded name given
in this research, use of starter culture, turning of the fermenting mass and controlled temperature are
shown.

Reference Year Country Cultivar Method Trial Code Starter Turning Ctrl. Temp.

Camu et al. [12] 2007 Ghana Criollo/Forastero heap heap 5 ghhp1 7 7 7

Lagunes Gálvez et al. [112] 2007 Dominican Republic Trinitario wooden box NA dowb1 7 3 7

Camu et al. [17] 2008 Ghana NA heap

heap 10 ghhp2 7 3 7

heap 11 ghhp3 7 7 7

heap 12 ghhp4 7 3 7

heap 13 ghhp5 7 7 7

Lefeber et al. [13] 2011 Ivory Coast NA plastic box NA cipb1 7 7 7

Papalexandratou et al. [62] 2011 Brazil Criollo/Forastero wooden box
box 1 brwb1 7 3 7

box 2 brwb2 7 3 7

Papalexandratou et al. [113] 2011 Ecuador Nacional/Trinitario

platform
P1 ecpt1 7 7 7

P2 ecpt2 7 7 7

wooden box
B1 ecwb1 7 3 7

B2 ecwb2 7 3 7

Pereira et al. [68] 2012 Brazil NA
plastic box PC brpb1 7 3 3

stainless tank ST brst1 7 3 3

Lefeber et al. [126] 2012

Malaysia NA wooden box
NA mywb1 3 3 NA

NA mywb2 3 3 NA

Ghana NA heap
NA ghhp6 7 NA NA

NA ghhp7 3 3 NA

Pereira et al. [14] 2013 Brazil Mixed hybrids
wooden box

WB1 brwb3 7 3 7

WB2 brwb4 7 3 7

stainless tank SST brst2 7 3 7

Moreira et al. [15] 2013 Brazil PH9, PH15, PH16 wooden box

PH9 brwb5 7 NA 7

PH15 brwb6 7 NA 7

PH16 brwb7 7 NA 7

Papalexandratou et al. [114] 2013 Malaysia Mixed hybrids wooden box box 2 mywb3 7 3 7

Bastos et al. [127] 2018 Brazil TSH565 wooden box NA brwb8 7 3 7

Romanens et al. [115] 2018 Honduras IMC-67, UF-29, UF-668 wooden box OF-F hnwb1 7 3 7

�Lee et al. [116] 2019 Ecuador Criollo plastic box NA ecpb1 7 NA 3

Papalexandratou et al. [117] 2019 Nicaragua Nugu/O’payo wooden box
NUGU niwb1 7 3 7

O’PAYO niwb2 7 3 7

�Racine et al. [128] 2019 Ecuador Criollo plastic box NA ecpb2 7 3 3

� Simulated fermentation.
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Table B.2: Prior distributions in the range of original units for parameters of all model iterations per
dataset. All priors are truncated to the positive set of real numbers.

Parameter ghhp1 dowb1 ghhp2 ghhp3 ghhp4 ghhp5 cipb1 brwb1

µYGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABEtOH
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABAc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

KY
Glc N (25.98, 15.59) N (28.45, 17.07) N (23.98, 14.39) N (20.12, 12.07) N (20.79, 12.47) N (24.65, 14.79) N (47.8, 28.68) N (27.74, 16.64)

KY
Fru N (28.87, 17.32) N (44.4, 26.64) N (25.69, 15.42) N (25.43, 15.26) N (22.11, 13.26) N (25.7, 15.42) N (91, 54.6) N (24.83, 14.9)

KY
LA N (28.87, 17.32) N (44.4, 26.64) N (25.69, 15.42) N (25.43, 15.26) N (22.11, 13.26) N (25.7, 15.42) N (91, 54.6) N (24.83, 14.9)

KLAB
Glc N (25.98, 15.59) N (28.45, 17.07) N (23.98, 14.39) N (20.12, 12.07) N (20.79, 12.47) N (24.65, 14.79) N (47.8, 28.68) N (27.74, 16.64)

KLAB
Fru N (28.87, 17.32) N (44.4, 26.64) N (25.69, 15.42) N (25.43, 15.26) N (22.11, 13.26) N (25.7, 15.42) N (91, 54.6) N (24.83, 14.9)

KAAB
EtOH N (11.25, 6.75) N (4.85, 2.91) N (5.25, 3.15) N (6.71, 4.03) N (9.14, 5.48) N (10.13, 6.08) N (8.3, 4.98) N (3.02, 1.81)

KAAB
LA N (2243.66, 2.58) N (24.95, 0.67) - - - - N (55.21, 4.89) N (286.16, 1.46)

KAAB
Ac N (3.07, 1.84) N (11.24, 6.74) N (7.9, 4.74) N (2.15, 1.29) N (6.04, 3.62) N (5.88, 3.53) N (19.25, 11.55) N (5.97, 3.58)

kY N (0.0222, 0.0133) N (0.0515, 0.0309) N (0.0477, 0.0286) N (0.0373, 0.0224) N (0.0274, 0.0164) N (0.0247, 0.0148) N (0.0301, 0.0181) N (0.0829, 0.0497)

kLAB N (0.0582, 0.0349) N (0.2222, 0.1333) - - - - N (0.0307, 0.0184) N (0.1026, 0.0616)

kAAB N (0.0133, 0.008) N
(
0.001, 6× 10−4

)
N (0.002, 0.0012) N (0.027, 0.0162) N (0.0034, 0.0021) N (0.0036, 0.0022) N

(
3× 10−4, 2× 10−4

)
N (0.0035, 0.0021)

YGlc|Y N (27.2, 16.32) N (29.72, 17.83) N (47.18, 28.31) N (56.05, 33.63) N (32.41, 19.45) N (73.93, 44.36) N (316.47, 189.88) N (130.63, 78.38)

YGlc|LAB N (45.89, 27.54) N (306.37, 183.82) N (59.55, 35.73) N (25.28, 15.17) N (25, 15) N (14.55, 8.73) N (57.08, 34.25) N (74.17, 44.5)

YFru|Y N (30.22, 18.13) N (46.37, 27.82) N (50.55, 30.33) N (70.82, 42.49) N (34.47, 20.68) N (77.05, 46.23) N (602.49, 361.49) N (116.94, 70.16)

YFru|LAB N (51, 30.6) N (478.02, 286.81) N (63.81, 38.29) N (31.94, 19.17) N (26.58, 15.95) N (15.17, 9.1) N (108.68, 65.21) N (66.4, 39.84)

Y Glc
EtOH|Y N (11.77, 7.06) N (5.07, 3.04) N (10.32, 6.19) N (18.69, 11.21) N (14.24, 8.55) N (30.37, 18.22) N (54.95, 32.97) N (14.2, 8.52)

Y Fru
EtOH|Y N (11.77, 7.06) N (5.07, 3.04) N (10.32, 6.19) N (18.69, 11.21) N (14.24, 8.55) N (30.37, 18.22) N (54.95, 32.97) N (14.2, 8.52)

Y LA
EtOH|Y N (11.77, 7.06) N (5.07, 3.04) N (10.32, 6.19) N (18.69, 11.21) N (14.24, 8.55) N (30.37, 18.22) N (54.95, 32.97) N (14.2, 8.52)

Y Glc
EtOH|LAB N (19.86, 11.92) N (52.23, 31.34) N (13.03, 7.82) N (8.43, 5.06) N (10.99, 6.59) N (5.98, 3.59) N (9.91, 5.95) N (8.06, 4.84)

Y Fru
EtOH|LAB N (19.86, 11.92) N (52.23, 31.34) N (13.03, 7.82) N (8.43, 5.06) N (10.99, 6.59) N (5.98, 3.59) N (9.91, 5.95) N (8.06, 4.84)

YEtOH|AAB N (5872.73, 3523.64) N (107.57, 64.54) N (712.24, 427.35) N (481.43, 288.86) N (795.38, 477.23) N (1036.07, 621.64) N (56.22, 33.73) N (354.28, 212.57)

Y Glc
LA|LAB N (7.59, 4.55) N (12.11, 7.27) - - - - N (9.73, 5.84) N (6.51, 3.91)

Y Fru
LA|LAB N (7.59, 4.55) N (12.11, 7.27) - - - - N (9.73, 5.84) N (6.51, 3.91)

YLA|AAB N (2243.66, 1346.19) N (24.95, 14.97) - - - - N (55.21, 33.12) N (286.16, 171.7)

YLA|Y N (4.5, 2.7) N (1.18, 0.71) - - - - N (53.96, 32.38) N (11.47, 6.88)

Y Glc
Ac|LAB N (5.42, 3.25) N (120.98, 72.59) N (19.62, 11.77) N (2.7, 1.62) N (7.26, 4.36) N (3.47, 2.08) N (22.99, 13.79) N (15.95, 9.57)

Y Fru
Ac|LAB N (5.42, 3.25) N (120.98, 72.59) N (19.62, 11.77) N (2.7, 1.62) N (7.26, 4.36) N (3.47, 2.08) N (22.99, 13.79) N (15.95, 9.57)

Y EtOH
Ac|AAB N (1602.91, 961.75) N (249.15, 149.49) N (1072.81, 643.69) N (154.45, 92.67) N (525.57, 315.34) N (601.38, 360.83) N (130.4, 78.24) N (700.87, 420.52)

Y LA
Ac|AAB N (1602.91, 961.75) N (249.15, 149.49) N (1072.81, 643.69) N (154.45, 92.67) N (525.57, 315.34) N (601.38, 360.83) N (130.4, 78.24) N (700.87, 420.52)

Y Glc
Ac|Y N (3.21, 1.93) N (11.74, 7.04) N (15.55, 9.33) N (6, 3.6) N (9.41, 5.65) N (17.63, 10.58) N (127.45, 76.47) N (28.1, 16.86)

Y Fru
Ac|Y N (3.21, 1.93) N (11.74, 7.04) N (15.55, 9.33) N (6, 3.6) N (9.41, 5.65) N (17.63, 10.58) N (127.45, 76.47) N (28.1, 16.86)

YAc|AAB N (1602.91, 961.75) N (249.15, 149.49) N (1072.81, 643.69) N (154.45, 92.67) N (525.57, 315.34) N (601.38, 360.83) N (130.4, 78.24) N (700.87, 420.52)

bEtOH N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bLA N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bAc N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

95



Appendix B. Exploring cocoa bean fermentation mechanisms by kinetic modeling – Suppl. Material

Table B.2 (cont.): Prior distributions in the range of original units for parameters of all model iterations
per dataset. All priors are truncated to the positive set of real numbers.

Parameter brwb2 ecpt1 ecpt2 ecwb1 ecwb2 brpb1 brst1 mywb1

µYGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABEtOH
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABAc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

KY
Glc N (21.47, 12.88) N (24.56, 14.74) N (21.33, 12.8) N (21.04, 12.62) N (18.34, 11) N (51.17, 30.7) N (66.24, 39.74) N (23.09, 13.85)

KY
Fru N (33.62, 20.17) N (26.97, 16.18) N (19.46, 11.68) N (26.95, 16.17) N (16.44, 9.87) N (47.53, 28.52) N (61.27, 36.76) N (27.89, 16.73)

KY
LA N (33.62, 20.17) N (26.97, 16.18) N (19.46, 11.68) N (26.95, 16.17) N (16.44, 9.87) N (47.53, 28.52) N (61.27, 36.76) N (27.89, 16.73)

KLAB
Glc N (21.47, 12.88) N (24.56, 14.74) N (21.33, 12.8) N (21.04, 12.62) N (18.34, 11) N (51.17, 30.7) N (66.24, 39.74) N (23.09, 13.85)

KLAB
Fru N (33.62, 20.17) N (26.97, 16.18) N (19.46, 11.68) N (26.95, 16.17) N (16.44, 9.87) N (47.53, 28.52) N (61.27, 36.76) N (27.89, 16.73)

KAAB
EtOH N (3.53, 2.12) N (6.27, 3.76) N (4.81, 2.89) N (8.92, 5.35) N (6.26, 3.76) N (32.66, 19.6) N (39.08, 23.45) N (8.61, 5.16)

KAAB
LA N (76.39, 1.24) N (173.95, 1.81) N (41.5, 0.49) N (929.25, 1.52) N (471.83, 1.55) N (26006.84, 9.43) N (58000.95, 7.04) N (1844.4, 1.7)

KAAB
Ac N (9.31, 5.59) N (1.96, 1.18) N (8.67, 5.2) N (3.92, 2.35) N (12.05, 7.23) N (34.36, 20.62) N (9.36, 5.61) N (3.07, 1.84)

kY N (0.0709, 0.0425) N (0.0399, 0.0239) N (0.052, 0.0312) N (0.028, 0.0168) N (0.0399, 0.024) N (0.0077, 0.0046) N (0.0064, 0.0038) N (0.0291, 0.0174)

kLAB N (0.1213, 0.0728) N (0.0829, 0.0497) N (0.306, 0.1836) N (0.0988, 0.0593) N (0.097, 0.0582) N (0.0159, 0.0095) N (0.0213, 0.0128) N (0.0881, 0.0529)

kAAB N
(
0.0014, 9× 10−4

)
N (0.0325, 0.0195) N (0.0017, 0.001) N (0.0081, 0.0049) N

(
9× 10−4, 5× 10−4

)
N
(
1× 10−4, 1× 10−4

)
N
(
0.0014, 9× 10−4

)
N (0.0133, 0.008)

YGlc|Y N (88.25, 52.95) N (22.45, 13.47) N (24.48, 14.69) N (25, 15) N (27.68, 16.61) N (93.31, 55.99) N (90.37, 54.22) N (52.51, 31.51)

YGlc|LAB N (30.68, 18.41) N (44.09, 26.45) N (71.12, 42.67) N (32.52, 19.51) N (28.6, 17.16) N (152.45, 91.47) N (594.54, 356.73) N (28.41, 17.04)

YFru|Y N (138.22, 82.93) N (24.65, 14.79) N (22.34, 13.4) N (32.02, 19.21) N (24.82, 14.89) N (86.67, 52) N (83.59, 50.15) N (63.44, 38.07)

YFru|LAB N (48.06, 28.83) N (48.41, 29.04) N (64.9, 38.94) N (41.65, 24.99) N (25.65, 15.39) N (141.6, 84.96) N (549.96, 329.98) N (34.32, 20.59)

Y Glc
EtOH|Y N (14.5, 8.7) N (5.73, 3.44) N (5.52, 3.31) N (10.6, 6.36) N (9.45, 5.67) N (59.56, 35.74) N (53.31, 31.99) N (19.57, 11.74)

Y Fru
EtOH|Y N (14.5, 8.7) N (5.73, 3.44) N (5.52, 3.31) N (10.6, 6.36) N (9.45, 5.67) N (59.56, 35.74) N (53.31, 31.99) N (19.57, 11.74)

Y LA
EtOH|Y N (14.5, 8.7) N (5.73, 3.44) N (5.52, 3.31) N (10.6, 6.36) N (9.45, 5.67) N (59.56, 35.74) N (53.31, 31.99) N (19.57, 11.74)

Y Glc
EtOH|LAB N (5.04, 3.03) N (11.25, 6.75) N (16.04, 9.62) N (13.79, 8.28) N (9.76, 5.86) N (97.31, 58.38) N (350.75, 210.45) N (10.59, 6.35)

Y Fru
EtOH|LAB N (5.04, 3.03) N (11.25, 6.75) N (16.04, 9.62) N (13.79, 8.28) N (9.76, 5.86) N (97.31, 58.38) N (350.75, 210.45) N (10.59, 6.35)

YEtOH|AAB N (130.75, 78.45) N (361.41, 216.85) N (244.26, 146.56) N (3276.25, 1965.75) N (1146.34, 687.8) N (54062.78, 32437.67) N (193086.14, 115851.68) N (5592.66, 3355.59)

Y Glc
LA|LAB N (2.95, 1.77) N (5.42, 3.25) N (2.72, 1.63) N (3.91, 2.35) N (4.02, 2.41) N (46.81, 28.09) N (105.36, 63.22) N (3.49, 2.1)

Y Fru
LA|LAB N (2.95, 1.77) N (5.42, 3.25) N (2.72, 1.63) N (3.91, 2.35) N (4.02, 2.41) N (46.81, 28.09) N (105.36, 63.22) N (3.49, 2.1)

YLA|AAB N (76.39, 45.83) N (173.95, 104.37) N (41.5, 24.9) N (929.25, 557.55) N (471.83, 283.1) N (26006.84, 15604.1) N (58000.95, 34800.57) N (1844.4, 1106.64)

YLA|Y N (8.47, 5.08) N (2.76, 1.65) N (0.94, 0.56) N (3.01, 1.8) N (3.89, 2.33) N (28.65, 17.19) N (16.01, 9.61) N (6.46, 3.87)

Y Glc
Ac|LAB N (13.31, 7.99) N (3.52, 2.11) N (28.91, 17.35) N (6.06, 3.64) N (18.79, 11.28) N (102.37, 61.42) N (83.97, 50.38) N (3.77, 2.26)

Y Fru
Ac|LAB N (13.31, 7.99) N (3.52, 2.11) N (28.91, 17.35) N (6.06, 3.64) N (18.79, 11.28) N (102.37, 61.42) N (83.97, 50.38) N (3.77, 2.26)

Y EtOH
Ac|AAB N (345.07, 207.04) N (113.06, 67.84) N (440.34, 264.2) N (1439.59, 863.75) N (2206.86, 1324.12) N (56876.56, 34125.94) N (46225.84, 27735.5) N (1993.55, 1196.13)

Y LA
Ac|AAB N (345.07, 207.04) N (113.06, 67.84) N (440.34, 264.2) N (1439.59, 863.75) N (2206.86, 1324.12) N (56876.56, 34125.94) N (46225.84, 27735.5) N (1993.55, 1196.13)

Y Glc
Ac|Y N (38.28, 22.97) N (1.79, 1.08) N (9.95, 5.97) N (4.66, 2.8) N (18.19, 10.91) N (62.66, 37.6) N (12.76, 7.66) N (6.98, 4.19)

Y Fru
Ac|Y N (38.28, 22.97) N (1.79, 1.08) N (9.95, 5.97) N (4.66, 2.8) N (18.19, 10.91) N (62.66, 37.6) N (12.76, 7.66) N (6.98, 4.19)

YAc|AAB N (345.07, 207.04) N (113.06, 67.84) N (440.34, 264.2) N (1439.59, 863.75) N (2206.86, 1324.12) N (56876.56, 34125.94) N (46225.84, 27735.5) N (1993.55, 1196.13)

bEtOH N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bLA N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bAc N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)
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Table B.2 (cont.): Prior distributions in the range of original units for parameters of all model iterations
per dataset. All priors are truncated to the positive set of real numbers.

Parameter mywb2 ghhp6 ghhp7 brwb3 brwb4 brst2 brwb5 brwb6

µYGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABEtOH
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABAc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

KY
Glc N (14.2, 8.52) N (21.27, 12.76) N (25.54, 15.32) N (73.29, 43.98) N (66.49, 39.89) N (61.44, 36.87) N (5.02, 3.01) N (6.71, 4.03)

KY
Fru N (14.74, 8.84) N (39.14, 23.49) N (29.67, 17.8) N (81.08, 48.65) N (74.5, 44.7) N (68.28, 40.97) N (6.31, 3.78) N (8.04, 4.82)

KY
LA N (14.74, 8.84) N (39.14, 23.49) N (29.67, 17.8) N (81.08, 48.65) N (74.5, 44.7) N (68.28, 40.97) N (6.31, 3.78) N (8.04, 4.82)

KLAB
Glc N (14.2, 8.52) N (21.27, 12.76) N (25.54, 15.32) N (73.29, 43.98) N (66.49, 39.89) N (61.44, 36.87) N (5.02, 3.01) N (6.71, 4.03)

KLAB
Fru N (14.74, 8.84) N (39.14, 23.49) N (29.67, 17.8) N (81.08, 48.65) N (74.5, 44.7) N (68.28, 40.97) N (6.31, 3.78) N (8.04, 4.82)

KAAB
EtOH N (6.69, 4.02) N (4.59, 2.75) N (9.06, 5.44) N (31.81, 19.09) N (23.92, 14.35) N (35.5, 21.3) N (1.54, 0.92) N (1.99, 1.19)

KAAB
LA N (1126.25, 3.27) N (33.82, 1.04) N (108.9, 0.85) N (9973.04, 5.08) N (17956.46, 6.62) N (444524.64, 7.13) N (2072.3, 0.25) N (6615.52, 0.27)

KAAB
Ac N (3.84, 2.31) N (3.4, 2.04) N (4.14, 2.49) N (18.09, 10.85) N (13.46, 8.08) N (28.71, 17.23) N (0.8, 0.48) N (0.85, 0.51)

kY N (0.0374, 0.0224) N (0.0545, 0.0327) N (0.0276, 0.0166) N (0.0079, 0.0047) N (0.0105, 0.0063) N (0.007, 0.0042) N (0.1627, 0.0976) N (0.1258, 0.0755)

kLAB N (0.0458, 0.0275) N (0.1444, 0.0867) N (0.1757, 0.1054) N (0.0295, 0.0177) N (0.0227, 0.0136) N (0.021, 0.0126) N (0.5903, 0.3542) N (0.5482, 0.3289)

kAAB N (0.0085, 0.0051) N (0.0108, 0.0065) N (0.0073, 0.0044) N
(
4× 10−4, 2× 10−4

)
N
(
7× 10−4, 4× 10−4

)
N
(
2× 10−4, 1× 10−4

)
N (0.197, 0.1182) N (0.1742, 0.1045)

YGlc|Y N (72.33, 43.4) N (154.4, 92.64) N (21.14, 12.69) N (38.72, 23.23) N (122.92, 73.75) N (199.25, 119.55) N (833.73, 500.24) N (556.73, 334.04)

YGlc|LAB N (351.94, 211.16) N (26.29, 15.78) N (14.01, 8.4) N (587.71, 352.62) N (195.35, 117.21) N (1070.46, 642.27) N (2119.36, 1271.62) N (10588.37, 6353.02)

YFru|Y N (75.05, 45.03) N (284.17, 170.5) N (24.56, 14.74) N (42.84, 25.7) N (137.74, 82.65) N (221.42, 132.85) N (1048.14, 628.89) N (666.52, 399.91)

YFru|LAB N (365.19, 219.11) N (48.39, 29.03) N (16.27, 9.76) N (650.11, 390.06) N (218.9, 131.34) N (1189.6, 713.76) N (2664.41, 1598.65) N (12676.39, 7605.84)

Y Glc
EtOH|Y N (34.08, 20.45) N (33.32, 19.99) N (7.5, 4.5) N (16.81, 10.08) N (44.22, 26.53) N (115.12, 69.07) N (255.47, 153.28) N (164.85, 98.91)

Y Fru
EtOH|Y N (34.08, 20.45) N (33.32, 19.99) N (7.5, 4.5) N (16.81, 10.08) N (44.22, 26.53) N (115.12, 69.07) N (255.47, 153.28) N (164.85, 98.91)

Y LA
EtOH|Y N (34.08, 20.45) N (33.32, 19.99) N (7.5, 4.5) N (16.81, 10.08) N (44.22, 26.53) N (115.12, 69.07) N (255.47, 153.28) N (164.85, 98.91)

Y Glc
EtOH|LAB N (165.82, 99.49) N (5.67, 3.4) N (4.97, 2.98) N (255.09, 153.06) N (70.28, 42.17) N (618.5, 371.1) N (649.41, 389.65) N (3135.19, 1881.12)

Y Fru
EtOH|LAB N (165.82, 99.49) N (5.67, 3.4) N (4.97, 2.98) N (255.09, 153.06) N (70.28, 42.17) N (618.5, 371.1) N (649.41, 389.65) N (3135.19, 1881.12)

YEtOH|AAB N (1381.65, 828.99) N (89.68, 53.81) N (693.53, 416.12) N (37450.12, 22470.07) N (38957.79, 23374.68) N (1327683.83, 796610.3) N (7520.97, 4512.58) N (28841.36, 17304.81)

Y Glc
LA|LAB N (135.17, 81.1) N (2.14, 1.28) N (0.78, 0.47) N (67.93, 40.76) N (32.39, 19.44) N (207.08, 124.25) N (178.94, 107.36) N (719.14, 431.48)

Y Fru
LA|LAB N (135.17, 81.1) N (2.14, 1.28) N (0.78, 0.47) N (67.93, 40.76) N (32.39, 19.44) N (207.08, 124.25) N (178.94, 107.36) N (719.14, 431.48)

YLA|AAB N (1126.25, 675.75) N (33.82, 20.29) N (108.9, 65.34) N (9973.04, 5983.83) N (17956.46, 10773.88) N (444524.64, 266714.78) N (2072.3, 1243.38) N (6615.52, 3969.31)

YLA|Y N (27.78, 16.67) N (12.57, 7.54) N (1.18, 0.71) N (4.48, 2.69) N (20.38, 12.23) N (38.54, 23.13) N (70.39, 42.23) N (37.81, 22.69)

Y Glc
Ac|LAB N (95.23, 57.14) N (4.2, 2.52) N (2.27, 1.36) N (145.04, 87.02) N (39.55, 23.73) N (500.19, 300.11) N (336.54, 201.92) N (1335.77, 801.46)

Y Fru
Ac|LAB N (95.23, 57.14) N (4.2, 2.52) N (2.27, 1.36) N (145.04, 87.02) N (39.55, 23.73) N (500.19, 300.11) N (336.54, 201.92) N (1335.77, 801.46)

Y EtOH
Ac|AAB N (793.44, 476.06) N (66.39, 39.84) N (317.11, 190.27) N (21293.36, 12776.02) N (21923.17, 13153.9) N (1073699.13, 644219.48) N (3897.5, 2338.5) N (12288.04, 7372.83)

Y LA
Ac|AAB N (793.44, 476.06) N (66.39, 39.84) N (317.11, 190.27) N (21293.36, 12776.02) N (21923.17, 13153.9) N (1073699.13, 644219.48) N (3897.5, 2338.5) N (12288.04, 7372.83)

Y Glc
Ac|Y N (19.57, 11.74) N (24.67, 14.8) N (3.43, 2.06) N (9.56, 5.73) N (24.89, 14.93) N (93.1, 55.86) N (132.39, 79.43) N (70.23, 42.14)

Y Fru
Ac|Y N (19.57, 11.74) N (24.67, 14.8) N (3.43, 2.06) N (9.56, 5.73) N (24.89, 14.93) N (93.1, 55.86) N (132.39, 79.43) N (70.23, 42.14)

YAc|AAB N (793.44, 476.06) N (66.39, 39.84) N (317.11, 190.27) N (21293.36, 12776.02) N (21923.17, 13153.9) N (1073699.13, 644219.48) N (3897.5, 2338.5) N (12288.04, 7372.83)

bEtOH N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bLA N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bAc N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)
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Table B.2 (cont.): Prior distributions in the range of original units for parameters of all model iterations
per dataset. All priors are truncated to the positive set of real numbers.

Parameter brwb7 mywb3 brwb8 hnwb1 ecpb1 niwb1 niwb2 ecpb2

µYGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µYLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABGlc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µLABFru
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABEtOH
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABLA
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

µAABAc
max N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

KY
Glc N (7.85, 4.71) N (19.96, 11.98) N (40.87, 24.52) N (21.78, 13.07) N (14.95, 8.97) N (12.18, 7.31) N (10.71, 6.43) N (14.89, 8.94)

KY
Fru N (9.29, 5.57) N (25.92, 15.55) N (43.24, 25.95) N (26.8, 16.08) N (18.32, 10.99) N (15.62, 9.38) N (12.77, 7.66) N (17.64, 10.59)

KY
LA N (9.29, 5.57) N (25.92, 15.55) N (43.24, 25.95) N (26.8, 16.08) N (18.32, 10.99) N (15.62, 9.38) N (12.77, 7.66) N (17.64, 10.59)

KLAB
Glc N (7.85, 4.71) N (19.96, 11.98) N (40.87, 24.52) N (21.78, 13.07) N (14.95, 8.97) N (12.18, 7.31) N (10.71, 6.43) N (14.89, 8.94)

KLAB
Fru N (9.29, 5.57) N (25.92, 15.55) N (43.24, 25.95) N (26.8, 16.08) N (18.32, 10.99) N (15.62, 9.38) N (12.77, 7.66) N (17.64, 10.59)

KAAB
EtOH N (4.89, 2.93) N (8.61, 5.17) N (5.41, 3.25) N (10.93, 6.56) N (9.95, 5.97) N (8.71, 5.22) N (9.37, 5.62) N (19.3, 11.58)

KAAB
LA N (1648.18, 0.3) N (453.45, 3.58) N (125.38, 3.35) N (242.02, 1.47) N (0.98, 3.55) N (596.41, 1.7) N (141.89, 2.33) N (13.6, 1.58)

KAAB
Ac N (1.72, 1.03) N (4.96, 2.98) N (0.6, 0.36) N (7.15, 4.29) N (12.35, 7.41) N (7.92, 4.75) N (4.22, 2.53) N (4.01, 2.41)

kY N (0.0512, 0.0307) N (0.029, 0.0174) N (0.0462, 0.0277) N (0.0229, 0.0137) N (0.0251, 0.0151) N (0.0287, 0.0172) N (0.0267, 0.016) N (0.013, 0.0078)

kLAB N (0.4995, 0.2997) N (0.0419, 0.0251) N (0.0448, 0.0269) N (0.1023, 0.0614) N (0.0423, 0.0254) N (0.0882, 0.0529) N (0.0644, 0.0386) N (0.0951, 0.0571)

kAAB N (0.0423, 0.0254) N (0.0051, 0.003) N (0.3478, 0.2087) N (0.0024, 0.0015) N
(
8× 10−4, 5× 10−4

)
N (0.002, 0.0012) N (0.007, 0.0042) N (0.0078, 0.0047)

YGlc|Y N (771.56, 462.94) N (77.29, 46.38) N (2.85, 1.71) N (84.12, 50.47) N (0.2, 0.12) N (13.47, 8.08) N (9.2, 5.52) N (4.82, 2.89)

YGlc|LAB N (5566.1, 3339.66) N (14.8, 8.88) N (191.21, 114.72) N (64.14, 38.48) N (0.55, 0.33) N (756.1, 453.66) N (52.82, 31.69) N (12.39, 7.43)

YFru|Y N (913.39, 548.04) N (100.35, 60.21) N (3.02, 1.81) N (103.53, 62.12) N (0.25, 0.15) N (17.29, 10.37) N (10.96, 6.58) N (5.71, 3.43)

YFru|LAB N (6589.31, 3953.58) N (19.22, 11.53) N (202.3, 121.38) N (78.93, 47.36) N (0.68, 0.41) N (970.31, 582.19) N (62.97, 37.78) N (14.68, 8.81)

Y Glc
EtOH|Y N (480.52, 288.31) N (33.35, 20.01) N (0.38, 0.23) N (42.23, 25.34) N (0.14, 0.08) N (9.63, 5.78) N (8.05, 4.83) N (6.24, 3.75)

Y Fru
EtOH|Y N (480.52, 288.31) N (33.35, 20.01) N (0.38, 0.23) N (42.23, 25.34) N (0.14, 0.08) N (9.63, 5.78) N (8.05, 4.83) N (6.24, 3.75)

Y LA
EtOH|Y N (480.52, 288.31) N (33.35, 20.01) N (0.38, 0.23) N (42.23, 25.34) N (0.14, 0.08) N (9.63, 5.78) N (8.05, 4.83) N (6.24, 3.75)

Y Glc
EtOH|LAB N (3466.49, 2079.89) N (6.39, 3.83) N (25.33, 15.2) N (32.19, 19.32) N (0.37, 0.22) N (540.64, 324.38) N (46.23, 27.74) N (16.06, 9.63)

Y Fru
EtOH|LAB N (3466.49, 2079.89) N (6.39, 3.83) N (25.33, 15.2) N (32.19, 19.32) N (0.37, 0.22) N (540.64, 324.38) N (46.23, 27.74) N (16.06, 9.63)

YEtOH|AAB N (16093.18, 9655.91) N (654.59, 392.76) N (121.73, 73.04) N (1082.73, 649.64) N (1.64, 0.99) N (1830.88, 1098.53) N (342.53, 205.52) N (99.86, 59.92)

Y Glc
LA|LAB N (355.02, 213.01) N (4.42, 2.65) N (26.09, 15.65) N (7.2, 4.32) N (0.22, 0.13) N (176.11, 105.67) N (19.15, 11.49) N (2.19, 1.31)

Y Fru
LA|LAB N (355.02, 213.01) N (4.42, 2.65) N (26.09, 15.65) N (7.2, 4.32) N (0.22, 0.13) N (176.11, 105.67) N (19.15, 11.49) N (2.19, 1.31)

YLA|AAB N (1648.18, 988.91) N (453.45, 272.07) N (125.38, 75.23) N (242.02, 145.21) N (0.98, 0.59) N (596.41, 357.85) N (141.89, 85.13) N (13.6, 8.16)

YLA|Y N (49.21, 29.53) N (23.1, 13.86) N (0.39, 0.23) N (9.44, 5.66) N (0.08, 0.05) N (3.14, 1.88) N (3.33, 2) N (0.85, 0.51)

Y Glc
Ac|LAB N (1219.34, 731.6) N (3.68, 2.21) N (2.8, 1.68) N (21.06, 12.64) N (0.46, 0.27) N (492.02, 295.21) N (20.82, 12.49) N (3.34, 2)

Y Fru
Ac|LAB N (1219.34, 731.6) N (3.68, 2.21) N (2.8, 1.68) N (21.06, 12.64) N (0.46, 0.27) N (492.02, 295.21) N (20.82, 12.49) N (3.34, 2)

Y EtOH
Ac|AAB N (5660.77, 3396.46) N (377.21, 226.33) N (13.48, 8.09) N (708.29, 424.97) N (2.04, 1.22) N (1666.22, 999.73) N (154.28, 92.57) N (20.76, 12.46)

Y LA
Ac|AAB N (5660.77, 3396.46) N (377.21, 226.33) N (13.48, 8.09) N (708.29, 424.97) N (2.04, 1.22) N (1666.22, 999.73) N (154.28, 92.57) N (20.76, 12.46)

Y Glc
Ac|Y N (169.02, 101.41) N (19.22, 11.53) N (0.04, 0.03) N (27.62, 16.57) N (0.17, 0.1) N (8.77, 5.26) N (3.63, 2.18) N (1.3, 0.78)

Y Fru
Ac|Y N (169.02, 101.41) N (19.22, 11.53) N (0.04, 0.03) N (27.62, 16.57) N (0.17, 0.1) N (8.77, 5.26) N (3.63, 2.18) N (1.3, 0.78)

YAc|AAB N (5660.77, 3396.46) N (377.21, 226.33) N (13.48, 8.09) N (708.29, 424.97) N (2.04, 1.22) N (1666.22, 999.73) N (154.28, 92.57) N (20.76, 12.46)

bEtOH N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bLA N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)

bAc N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3) N (0.5, 0.3)
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Table B.3: Summary of R̂ among successful fittings across 31 model iterations (MI). Maximum R̂ in the
referred MI is reported. Column “MI( )” indicates combination of mechanisms deployed in MI.

MI( ) ghhp1 dowb1 ghhp2 ghhp3 ghhp4 ghhp5 brwb1 brwb2 ecpt1 ecpt2 ecwb1 ecwb2 brpb1 brst1 brwb3 brwb4 brst2 brwb7 mywb3 hnwb1 ecpb1 niwb1 niwb2

0 1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 - 1.00

1 1.00 - - - 1.00 1.00 1.00 1.00 - 1.00 1.00 1.01 1.01 - - 1.00 1.00 - - - - - 1.00

2 1.00 - - 1.00 1.00 - 1.00 1.01 1.00 1.00 - 1.01 1.00 1.00 - - 1.00 1.00 1.00 - - - 1.00

3 1.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00

4 1.00 - - - 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00 - 1.00 1.01 - 1.00 1.00 - - 1.00

5 - - - - - - 1.00 1.00 - - - - - - - - - - - - - - -

1,2 1.00 - 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 - 1.00 - - - - - - - - - -

1,3 1.00 - - - - 1.01 1.00 1.00 1.00 1.00 1.00 1.02 1.00 - - 1.00 1.00 - - - - - -

1,4 - - - - - 1.00 1.00 1.00 1.00 - 1.01 - 1.00 - - - 1.00 - 1.00 - - - 1.01

1,5 - - - - - - 1.00 1.00 - - - - - - - - - - - - - - -

2,3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.01 1.00 1.00 - - - - 1.00 - - 1.00 1.00

2,4 1.00 - 1.00 1.00 1.00 - - 1.00 - 1.00 1.00 - 1.00 - - - - - 1.00 - - - 1.00

2,5 - - - - - - - - - - - - - - - - - - - - - - -

3,4 1.00 - - - 1.00 1.00 1.00 1.00 - 1.00 1.00 - 1.00 1.01 - - - - 1.00 1.00 1.00 - 1.00

3,5 - - - - - - 1.00 - - - - - - - - - - - - - - - -

4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3 1.00 - 1.00 1.00 - - 1.00 1.00 - - 1.00 - 1.00 - - - - - - - - - -

1,2,4 1.00 - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 - 1.00 - 1.00 - - - - - - - - - -

1,2,5 - - - - - - 1.00 1.00 - - - - - - - - - - - - - - -

1,3,4 - - - - 1.01 1.00 1.00 1.00 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - - - - - -

1,3,5 - - - - - - 1.00 1.00 - - - - - - - - - - - - - - -

1,4,5 - - - - - - - 1.00 - - - - - - - - - - - - - - -

2,3,4 1.00 - - 1.00 1.00 1.00 1.00 - 1.00 1.00 1.00 - 1.00 - - - 1.00 - 1.00 - - - 1.00

2,3,5 - - - - - - - - - - - - - - - - - - - - - - -

2,4,5 - - - - - - - - - - - - - - - - - - - - - - -

3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3,4 1.00 - 1.00 1.00 - 1.00 1.00 1.00 1.00 - 1.00 - 1.00 - - - - - - - - - -

1,2,3,5 - - - - - - 1.00 1.00 - - - - - - - - - - - - - - -

1,2,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

2,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

Table B.4: Summary of bulk effective sample size (Bulk-ESS) among successful fittings across 31 model
iterations (MI). Minimum bulk-ESS in the referred MI is reported. Column “MI( )” indicates combination
of mechanisms deployed in MI.

MI( ) ghhp1 dowb1 ghhp2 ghhp3 ghhp4 ghhp5 brwb1 brwb2 ecpt1 ecpt2 ecwb1 ecwb2 brpb1 brst1 brwb3 brwb4 brst2 brwb7 mywb3 hnwb1 ecpb1 niwb1 niwb2

0 3385 - - - 2515 1159 3241 2975 3399 2475 3297 775 - 1908 1174 654 596 1415 1501 442 253 - 2548

1 636 - - - 407 992 2796 2006 - 848 1160 152 1311 - - 721 328 - - - - - 2340

2 2140 - - 2866 2269 - 1468 509 1297 1247 - 505 1734 1490 - - 477 1026 1192 - - - 1443

3 3009 - - - 2429 1025 2594 2878 3087 2859 2794 1639 3040 2078 997 974 504 - 1785 498 1044 726 2260

4 2816 - - - 2382 837 3022 3203 - 2791 2966 1012 1263 2119 - 1330 420 - 1399 890 - - 2437

5 - - - - - - 2557 2745 - - - - - - - - - - - - - - -

1,2 1819 - 2791 728 1370 - 1861 592 940 - 891 - 704 - - - - - - - - - -

1,3 1200 - - - - 112 2569 2296 3396 719 522 245 1062 - - 1315 352 - - - - - -

1,4 - - - - - 485 1610 2924 3108 - 1235 - 942 - - - 3023 - 1774 - - - 252

1,5 - - - - - - 3349 2294 - - - - - - - - - - - - - - -

2,3 2723 1654 1748 2638 1940 1176 1306 737 1307 921 509 404 2106 1297 - - - - 1172 - - 1024 768

2,4 1636 - 2377 2255 3000 - - 528 - 1275 1015 - 1770 - - - - - 1416 - - - 2273

2,5 - - - - - - - - - - - - - - - - - - - - - - -

3,4 1377 - - - 2018 1060 2773 2949 - 2534 3312 - 1747 359 - - - - 1520 1457 1984 - 2377

3,5 - - - - - - 2131 - - - - - - - - - - - - - - - -

4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3 1167 - 2427 622 - - 1395 494 - - 857 - 571 - - - - - - - - - -

1,2,4 2606 - 2571 1046 1566 1053 1795 775 3073 - 724 - 631 - - - - - - - - - -

1,2,5 - - - - - - 1403 624 - - - - - - - - - - - - - - -

1,3,4 - - - - 316 197 1674 1945 3131 - 708 - 542 - 824 - 2645 - - - - - -

1,3,5 - - - - - - 2609 2288 - - - - - - - - - - - - - - -

1,4,5 - - - - - - - 2350 - - - - - - - - - - - - - - -

2,3,4 2360 - - 2384 4336 1203 1619 - 1681 800 1158 - 1723 - - - 600 - 1114 - - - 910

2,3,5 - - - - - - - - - - - - - - - - - - - - - - -

2,4,5 - - - - - - - - - - - - - - - - - - - - - - -

3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3,4 1624 - 2060 898 - 560 1722 571 2483 - 1097 - 633 - - - - - - - - - -

1,2,3,5 - - - - - - 1779 472 - - - - - - - - - - - - - - -

1,2,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

2,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -
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Table B.5: Summary of tail effective sample size (Tail-ESS) among successful fittings across 31 model
iterations (MI). Minimum tail-ESS in the referred MI is reported. Column “MI( )” indicates combination
of mechanisms deployed in MI.

MI( ) ghhp1 dowb1 ghhp2 ghhp3 ghhp4 ghhp5 brwb1 brwb2 ecpt1 ecpt2 ecwb1 ecwb2 brpb1 brst1 brwb3 brwb4 brst2 brwb7 mywb3 hnwb1 ecpb1 niwb1 niwb2

0 1851 - - - 1361 553 2540 2206 1574 2000 2208 1746 - 1185 1746 288 1386 1444 2109 1738 703 - 2290

1 756 - - - 103 554 2336 1954 - 313 1017 1130 1423 - - 199 919 - - - - - 1536

2 2091 - - 1334 1695 - 1876 1703 686 1087 - 1154 1312 1217 - - 1407 1450 1120 - - - 1836

3 1687 - - - 1532 336 1505 2210 2203 1597 1475 1001 1885 702 1752 710 470 - 1570 1492 1261 828 1944

4 1174 - - - 1882 661 1709 1777 - 1529 2013 365 1325 660 - 568 281 - 1775 565 - - 1930

5 - - - - - - 2203 2132 - - - - - - - - - - - - - - -

1,2 1042 - 1708 810 775 - 1921 1146 1185 - 522 - 1069 - - - - - - - - - -

1,3 853 - - - - 167 1724 2108 1691 214 334 1153 1170 - - 589 244 - - - - - -

1,4 - - - - - 529 1613 2230 1384 - 1063 - 487 - - - 1698 - 1655 - - - 234

1,5 - - - - - - 2543 1712 - - - - - - - - - - - - - - -

2,3 2158 1421 1287 1596 800 464 1057 1642 1890 1538 1408 820 1188 865 - - - - 644 - - 897 1242

2,4 1692 - 1682 1457 1484 - - 1679 - 1315 1046 - 1353 - - - - - 1158 - - - 2297

2,5 - - - - - - - - - - - - - - - - - - - - - - -

3,4 557 - - - 1192 662 1980 1927 - 1257 1709 - 1673 132 - - - - 1501 866 1699 - 1712

3,5 - - - - - - 1385 - - - - - - - - - - - - - - - -

4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3 634 - 1706 623 - - 1613 1394 - - 1027 - 762 - - - - - - - - - -

1,2,4 1008 - 1295 689 1177 828 1299 1606 1773 - 909 - 777 - - - - - - - - - -

1,2,5 - - - - - - 1604 1122 - - - - - - - - - - - - - - -

1,3,4 - - - - 1087 414 1776 1182 1836 - 547 - 527 - 687 - 1183 - - - - - -

1,3,5 - - - - - - 1707 2107 - - - - - - - - - - - - - - -

1,4,5 - - - - - - - 1984 - - - - - - - - - - - - - - -

2,3,4 2194 - - 1768 2518 631 1578 - 473 1116 1656 - 1331 - - - 1049 - 467 - - - 1042

2,3,5 - - - - - - - - - - - - - - - - - - - - - - -

2,4,5 - - - - - - - - - - - - - - - - - - - - - - -

3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3,4 782 - 1317 1314 - 715 1127 997 1944 - 1084 - 1004 - - - - - - - - - -

1,2,3,5 - - - - - - 1703 1198 - - - - - - - - - - - - - - -

1,2,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

2,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -

1,2,3,4,5 - - - - - - - - - - - - - - - - - - - - - - -
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Appendix B. Exploring cocoa bean fermentation mechanisms by kinetic modeling – Suppl. Material
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Figure B.1: Pareto-smoothed importance sampling leave-one out cross validation (PSIS-LOO) values for
model iterations (MIs) over considered datasets. Error bars correspond to standard error of PSIS-LOO.
“MI( )” indicates combination of mechanisms deployed in MI.
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Figure B.2: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ghhp1 reported by Camu et al. [12]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and
(h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points
denote experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.3: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset dowb1 reported by Lagunes Gálvez et al. [112]. Metabolites: (a) glucose, (b)
fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.4: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ghhp2 reported by Camu et al. [17]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid (simulated time series scaled to 1) and (e) acetic acid. Microbial groups:
(f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. Solid red lines represent medians of
the posterior predictions, solid black points denote experimental data and orange ribbons describe 95%
credible intervals of posterior predictions.
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Figure B.5: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ghhp3 reported by Camu et al. [17]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid (simulated time series scaled to 1) and (e) acetic acid. Microbial groups:
(f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. Solid red lines represent medians of
the posterior predictions, solid black points denote experimental data and orange ribbons describe 95%
credible intervals of posterior predictions.
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Figure B.6: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ghhp4 reported by Camu et al. [17]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid (simulated time series scaled to 1) and (e) acetic acid. Microbial groups:
(f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. Solid red lines represent medians of
the posterior predictions, solid black points denote experimental data and orange ribbons describe 95%
credible intervals of posterior predictions.
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Figure B.7: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ghhp5 reported by Camu et al. [17]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid (simulated time series scaled to 1) and (e) acetic acid. Microbial groups:
(f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria. Solid red lines represent medians of
the posterior predictions, solid black points denote experimental data and orange ribbons describe 95%
credible intervals of posterior predictions.
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Figure B.8: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset brwb1 reported by Papalexandratou et al. [62]. Metabolites: (a) glucose, (b)
fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.9: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset brwb2 reported by Papalexandratou et al. [62]. Metabolites: (a) glucose, (b)
fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.10: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ecpt1 reported by Papalexandratou et al. [113]. Metabolites: (a) glucose, (b)
fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.11: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ecpt2 reported by Papalexandratou et al. [113]. Metabolites: (a) glucose, (b)
fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.12: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ecwb1 reported by Papalexandratou et al. [113]. Metabolites: (a) glucose,
(b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.13: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset ecwb2 reported by Papalexandratou et al. [113]. Metabolites: (a) glucose,
(b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.14: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset brpb1 reported by Pereira et al. [68]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and
(h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points
denote experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.15: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset brst1 reported by Pereira et al. [68]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and
(h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points
denote experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.16: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset niwb1 reported by Papalexandratou et al. [117]. Metabolites: (a) glucose,
(b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.17: Posterior predictions of model iteration (MI) corresponding to mechanisms M2 and M3,
MI(2,3), fitted to dataset niwb2 reported by Papalexandratou et al. [117]. Metabolites: (a) glucose,
(b) fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.18: Posterior predictions of model iteration (MI) corresponding to mechanisms M1, M3 and
M4, MI(1,3,4), fitted to dataset brwb3 reported by Pereira et al. [14]. Metabolites: (a) glucose, (b)
fructose, (c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid
bacteria and (h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid
black points denote experimental data and orange ribbons describe 95% credible intervals of posterior
predictions.
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Figure B.19: Posterior predictions of model iteration (MI) corresponding to mechanisms M1 and M3,
MI(1,3), fitted to dataset brwb4 reported by Pereira et al. [14]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and
(h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points
denote experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.20: Posterior predictions of model iteration (MI) corresponding to mechanisms M1 and M4,
MI(1,4), fitted to dataset brst2 reported by Pereira et al. [14]. Metabolites: (a) glucose, (b) fructose,
(c) ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and
(h) acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points
denote experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.21: Posterior predictions of model iteration (MI) corresponding to baseline model, MI(0), fitted
to dataset brwb7 reported by Moreira et al. [15]. Metabolites: (a) glucose, (b) fructose, (c) ethanol, (d)
lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and (h) acetic
acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points denote
experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.22: Posterior predictions of model iteration (MI) corresponding to baseline model, MI(0), fitted
to dataset hnwb1 reported by Romanens et al. [115]. Metabolites: (a) glucose, (b) fructose, (c) ethanol,
(d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and (h) acetic
acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points denote
experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.23: Posterior predictions of model iteration (MI) corresponding to mechanisms M3 and M4,
MI(3,4), fitted to dataset ecpb1 reported by Lee et al. [116]. Metabolites: (a) glucose, (b) fructose, (c)
ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and (h)
acetic acid bacteria. Solid red lines represent medians of the posterior predictions, solid black points
denote experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.24: Posterior predictions across model iterations (MIs) fitted on dataset ecwb1 reported by
Papalexandratou et al. [113]. Columns names refer to mechanisms involved in each model iteration (MI).
Row names refer to metabolites and microbial groups: glucose (Glc), fructose (Fru), ethanol (EtOH),
lactic acid (LA), acetic acid (Ac), yeasts (Y), lactic acid bacteria (LAB), and acetic acid bacteria (AAB).
Solid red lines represent medians of the posterior predictions, solid black points denote experimental data
and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.24 (cont.): Posterior predictions across model iterations (MIs) fitted on dataset ecwb1 reported
by Papalexandratou et al. [113]. Columns names refer to mechanisms involved in each model iteration
(MI). Row names refer to metabolites and microbial groups: glucose (Glc), fructose (Fru), ethanol
(EtOH), lactic acid (LA), acetic acid (Ac), yeasts (Y), lactic acid bacteria (LAB), and acetic acid
bacteria (AAB). Solid red lines represent medians of the posterior predictions, solid black points denote
experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.24 (cont.): Posterior predictions across model iterations (MIs) fitted on dataset ecwb1 reported
by Papalexandratou et al. [113]. Columns names refer to mechanisms involved in each model iteration
(MI). Row names refer to metabolites and microbial groups: glucose (Glc), fructose (Fru), ethanol
(EtOH), lactic acid (LA), acetic acid (Ac), yeasts (Y), lactic acid bacteria (LAB), and acetic acid
bacteria (AAB). Solid red lines represent medians of the posterior predictions, solid black points denote
experimental data and orange ribbons describe 95% credible intervals of posterior predictions.
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Figure B.25: Comparison of posterior predictions for model iterations (MIs) MI(1) and MI(2,3), fitted to
dataset brpb1 reported by Pereira et al. [68]. Metabolites: (a) glucose, (b) fructose, (c) ethanol, (d) lactic
acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and (h) acetic acid bacteria.
For MI(1), solid blue lines represent medians of the posterior predictions and sky-blue ribbons describe
their 95% credible intervals. For MI(2,3), solid red lines represent medians of the posterior predictions
and orange ribbons describe their 95% credible intervals. Solid black points denote experimental data.
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Figure B.26: Comparison of posterior predictions for model iterations (MIs) MI(1) and MI(2,3), fitted
to dataset niwb2 reported by Papalexandratou et al. [117]. Metabolites: (a) glucose, (b) fructose, (c)
ethanol, (d) lactic acid and (e) acetic acid. Microbial groups: (f) yeast, (g) lactic acid bacteria and
(h) acetic acid bacteria. For MI(1), solid blue lines represent medians of the posterior predictions and
sky-blue ribbons describe their 95% credible intervals. For MI(2,3), solid red lines represent medians of
the posterior predictions and orange ribbons describe their 95% credible intervals. Solid black points
denote experimental data.
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Figure B.27: Heat map of medians of pairwise squared Malahanobis distances (D̃M ) between centroids
of grouping classes scores from Principal Component Analysis (PCA) per model iteration (MI) and sub-
groups of parameter estimates. (a) Country, (b) cocoa cultivar, (c) fermentation method, (d) turning
of fermenting mass, and (e) use of controlled temperature. White rows in (b), (c) and (e) correspond
to model iterations (MIs) where only one group class was available and PCA groupings could not be
performed. Subgroups ALL, MSGR, MR, YC, Y-related, LAB-related and AAB-related correspond to
all common MIs parameter estimates, maximum specific growth rates, yield coefficients, yeast-related
parameters, lactic acid bacteria-related parameters, and acetic acid bacteria-related paremeters, respec-
tively.
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Figure B.28: PCA score (a) and loading plot (b) from all parameters of model iteration (MI) MI(2).
Heap (hp), platform (pt), stainless-steel tank (st) and wooden box (wb) fermentation methods are
shown. Parameters located on the left and right with respect to 0 in the horizontal axis in the loading
plot determine differentiation between stainless-steel tank and rest of fermentation methods, respectively.
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Figure B.29: PCA score (a) and loading plot (b) from lactic acid bacteria-related parameters of model
iteration (MI) MI(1,3,4). Brazil (BR), Ecuador (EC) and Ghana (GH) are clearly separated. Parameters
located on the left and right with respect to 0 in the horizontal axis in the loading plot determine
differentiation between all classes.
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Figure B.30: Heat map of posterior distributions means of YLA|AAB, YEtOH|AAB, and Y LA
Ac|AAB. Dataset

: (a) ghhp1, (b) ecwb1, (c) ecwb2 and (d) brpb1.
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