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We address different aspects of the problem of uncertainty in image-guided therapies.

This is of great interest, because such uncertainty could have a substantial impact on

public health. Significant uncertainties can occur in image segmentation and estimating

deformations of anatomy. To model the uncertainty in the image segmentation aspect,

we propose a novel stationary Gaussian process (GP)-based generative segmentation

model. This segmentation model allows us to draw many possible image segmentations,

which can be used for estimating and visualizing different aspects of the uncertainty

in image-guided therapies. To enable drawing of many image segmentation samples ef-

ficiently, we propose a fast method for sampling from stationary GPs. To model the

uncertainty in the aspect of estimating deformations of anatomy, we propose a novel

spatiotemporal GP model for uncertainty-aware soft-tissue motion estimation using GP

regression. The spatiotemporal GP formalism enables the estimation of anatomy dis-

placements at any location, and for any time interval from measured motions that are

sparse in space and time. The use of GP regression enables the quantification of uncer-

tainty in the soft-tissue motion estimation result, which allows the amount of uncertainty

in some aspects, e.g., registered planning medical images, of image-guided therapies or

procedures governing the decisions of medical specialists to be conveyed. To convey

the amount of uncertainty in the anatomy motion estimates, we propose novel motion

uncertainty visualization methods. To showcase the use of the devised methods, we

deploy them in the context of radiotherapy and image-guided soft-tissue intervention

navigation. We expect that incorporating estimates of spatial and temporal uncertainty

into the processing pipelines of image-guided therapy will eventually enable improved

treatments, and thus, improved outcomes.
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Chapter 1

Introduction

A therapy or medical procedure may cause unwanted adverse effects. Ideally, one would

like to have means to predict the possibility of such effects. One reason for the afore-

mentioned effects could be errors in the planning that takes place beforehand or due to

changes in the planning factors after the actual planning has taken place. Therefore,

it would be useful to provide information about these errors. For many medical cases,

it is common to use medical imaging to create a visual representation of the interior

of the whole human body or individual organs and use this data for planning. In this

regard, many planning procedures require to partition the medical image into different

meaningful segments (e.g., organs, tumors, etc.), so that the plan can be performed

accordingly. To quantify the errors in the planning, it would therefore be useful to

quantify the errors in the image segmentation result itself. In some cases, the planning

image coupled with the plan is also used during the actual treatment or procedure for

guidance. In the majority of those cases, the image coupled with the plan needs to be

adapted to reflect the possible changes (e.g., deformation) in the anatomy. To make

these adaptations one needs to estimate the motion of the human anatomy. To quantify

the errors in the adapted image coupled with the plan, one needs therefore to quantify

the errors in the human anatomy motion estimate. The overall above-discussed errors

need to be conveyed to the medical specialists in an effective manner, so that they can

make better-informed decisions about the quality of the plans.

Regarding the errors in the image segmentation of a region of interest (ROI), in Chap-

ter 4, we model the uncertainty therein using marginal label probabilities (MLPs) and a

suitable stationary covariance structure. The MLPs can be the output of a probabilistic

image segmentation algorithm or based on (a) (multi-)rater segmentation(s) of the ROI.

For the latter case, we devise different methods for estimating these probabilities. We

engineer the covariance structure ourselves, but its underlying parameters can be trained

1



Chapter 1. Introduction 2

on the input segmentation(s). We then set up a generative segmentation model with

the estimated MLPs and covariance structure. We model the segmentation boundary

as a zero level set of a stochastic level set function. The stochastic level set function is

modeled as a Gaussian process (GP). In this regard, we devise a new method for setting

the mean function of the GP based on the estimated MLPs. To generate an image

segmentation sample (ISS), we then draw a GP sample and threshold it. To be able to

draw a large enough number of ISSs, we devise a novel method for efficient sampling

from stationary GPs.

We deploy the above-described devised generative segmentation model in the context

of radiotherapy. In this realm, it is common to delineate tumors and “organs at risk”

(OARs) in an image and optimize the radiotherapy dose plan accordingly. In case a

tumor is close to an OAR, the radiation field is normally optimized to have a high

spatial gradient between the two structures. However, if there is uncertainty in the

segmentation of the two structures, then there is some risk that the OAR will receive

high dose and/or the tumor will receive low dose. This could lead to unwanted adverse

effects such as destroying healthy tissue or tumor recurrence. We use the proposed

generative segmentation model to draw many possible tumor and/or OAR segmentation

samples and based on them estimate a posterior distribution on relevant dose metrics

(e.g., generalized equivalent uniform dose (gEUD), tumor control probability (TCP),

normal tissue control probability (NTCP), etc.). We believe that the estimated posterior

distributions on relevant dose metrics could help medical specialists in predicting the

possibility of radiotherapy adverse effects.

Regarding the quantification of the errors in the human anatomy motion estimate, in

Chapter 2, we propose to estimate the motion in an uncertainty-aware fashion. For more

accurate motion estimation, we fuse motion measurements (i.e., motion signal samples)

with motion prior (e.g., motion dynamics, shape, etc.). We formulate the fusion prob-

lem as the problem of uncertainty-aware interpolation of motion signal samples that

are randomly, non-uniformly scattered in the spatiotemporal domain. In this regard,

we propose a novel motion field representation which allows us to formally define asyn-

chronous motion measurements. To perform the interpolation in an optimal unbiased

manner, we make use of GP regression. The motion prior is embedded in the GP prior

mean and covariance functions. In this regard, we propose using a non-zero mean func-

tion and a covariance function with anisotropic distance measure. The GP prior is then

conditioned on the motion measurements during the regression, which results in an es-

timate of the (full) posterior distribution over motion signal functions. In summary, the

spatiotemporal GP formalism enables the estimation of anatomy displacements at any

location, and for any time interval from measured motions that are sparse in space and

time.
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To convey the information about the estimated errors in the anatomy motion estimate,

in Chapter 3, we propose to visualize the uncertainty therein. In this regard, we use

the estimate of the (full) posterior distribution over motion signal functions based on

the above-described method for summarizing and conveying the uncertainty. In the

general setting, we devise methods for uncertainty visualization in time-varying, due

to motion (including deformation), scalar fields. We visualize the maximum a poste-

riori (MAP) estimate of the moved scalar field. Furthermore, we propose to perform

a spatially-varying (Gaussian) blur (according to the uncertain motion estimate) to an

image (of the same size as the scalar field) containing a grid to convey the overall motion

uncertainty. In this regard, the amount of blur visually encodes the uncertainty. We

then combine the visual encoding of the scalar field motion uncertainty with the MAP

estimate of the moved scalar field using “alpha blending and thresholding” or “masking

and thresholding” and show 2D cross sections to the end user. Furthermore, we suggest

to also perform a spatially-varying (Gaussian) blur (according to the uncertain motion

estimate) to an input probabilistic segmentation of a ROI to estimate where the ROI

is after the motion. We then propose to show visually mapped 2D cross sections of the

resulting MLPs or MLP isocontours overlayed over the corresponding 2D cross section

of the MAP estimate of the moved scalar field.

We deploy the above-described uncertainty-aware anatomy motion estimation and visu-

alization methods in the context of image-guided soft-tissue (e.g., biopsy) intervention

navigation. A planning (e.g., magnetic resonance imaging (MRI)) image is acquired and

the planning performed prior to the intervention. For example, we segment the relevant

structures (e.g., the tumor that needs to be biopsied). The same planning image cou-

pled with the plan is also used during the actual intervention for guidance. As the soft

tissue deforms, we need to adapt the planning image coupled with the plan to reflect the

possible changes (e.g., deformation) in the anatomy. We compute the MAP estimate of

the adapted planning image based on the GP posterior distribution over motion fields

and visualize the uncertainty therein as described above. Furthermore, we also visualize

in an uncertainty-aware fashion where a ROI (e.g., the tumor that needs to be biopsied)

is after deformation using the above-described methods. We believe that our proposed

uncertainty-aware motion estimation and visualization approaches would be particularly

useful for (e.g., biopsy) intervention specialists when performing navigation in deforming

planning images and may aid in avoiding unwanted adverse effects (e.g., wrong decisions

made because of inaccurate biopsy specimens).

It is our expectation that incorporating estimates of spatial and temporal uncertainty

into the processing pipelines of image-guided therapy will eventually enable improved

treatments, and thus, improved outcomes.
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Uncertainty-aware Asynchronous

Scattered Motion Interpolation

Using Gaussian Process

Regression1

Bojan Kocev1,2,3, Horst Karl Hahn2,3, Lars Linsen4, William M.

Wells5, Ron Kikinis1,2,5

1University of Bremen, Bremen, Germany
2Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany
3Jacobs University, Bremen, Germany
4Westfälische Wilhelms-Universität Münster, Germany

5Harvard Medical School and Brigham and Women’s Hospital, Boston, MA 02115, USA

Abstract

We address the problem of interpolating randomly non-uniformly spatiotemporally scat-

tered uncertain motion measurements, which arises in the context of soft tissue motion

estimation. Soft tissue motion estimation is of great interest in the field of image-guided

soft-tissue intervention and surgery navigation, because it enables the registration of pre-

interventional/pre-operative navigation information on deformable soft-tissue organs.

1This material originally appeared in Kocev et al. (2019).
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To formally define the measurements as spatiotemporally scattered motion signal sam-

ples, we propose a novel motion field representation. To perform the interpolation of

the motion measurements in an uncertainty-aware optimal unbiased fashion, we devise

a novel Gaussian process (GP) regression model with a non-constant-mean prior and an

anisotropic covariance function and show through an extensive evaluation that it out-

performs the state-of-the-art GP models that have been deployed previously for similar

tasks. The employment of GP regression enables the quantification of uncertainty in

the interpolation result, which would allow the amount of uncertainty present in the

registered navigation information governing the decisions of the surgeon or intervention

specialist to be conveyed.

2.1 Introduction

Registration of pre-interventional/pre-operative navigation information on deformable

soft-tissue organs requires estimating the motion that soft-tissue organs undergo during

an intervention or surgery (Baumhauer et al. (2008)). The motion is to be estimated

in an uncertainty-aware fashion, so as to allow conveying the amount of uncertainty

present in the registered navigation information influencing the surgeon’s or intervention

specialist’s decisions (Risholm et al. (2010)).

For accurate motion estimation, one needs to fuse motion measurements (i.e., signal

samples) with motion prior (e.g., motion dynamics, shape, etc.) information. According

to the proposed general data centric taxonomy by Khaleghi et al. (2013), the motion

signal samples may be imperfect, correlated, inconsistent, and/or in disparate form-

s/modalities. The imperfection aspect is manifested through uncertainty (Irani and

Anandan (2000); Kanazawa and Kanatani (2001); Leedan and Meer (2000); Zhou et al.

(2004, 2005)), imprecision, and/or granularity. The inconsistency problem is in terms of

conflict, outlier (spurious data), and/or disorder (out-of-sequence data). Furthermore,

the imprecision is expressed in the form of vagueness, ambiguity, and/or incompleteness.

In soft tissue navigation, the motion measurements information source is, in general,

composed variously of real-time surface (e.g., electromagnetic (EM) (Kocev et al. (2014);

Zhang et al. (2006)), optical (OP) (Meinzer et al. (2008)), point cloud (Cash et al. (2005);

Kocev et al. (2013)), etc.) and volumetric (e.g., ultrasound-ultrasound (US-US) correla-

tion (Kocev et al. (2014); Wang et al. (2013)), etc.) data. In this regard, we believe that

using such various multimodal tracking systems could allow for better sampling of the

motion signal function and therefore could improve the motion estimation accuracy. In

return, this could improve the soft tissue navigation accuracy and the overall outcome of

the surgery or intervention. We assume that the tracked soft-tissue organ is represented
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in a discrete (point-based) fashion (Lim et al. (2015)), while its motion state at any

discrete time point is assumed to be directly defined by the positions of all points that

constitute its discrete representation. In this context, the motion measurements impose

three main challenges: (1) they capture the real-time motion of the tracked soft-tissue

organ at, in general, randomly non-uniformly scattered points that do not necessarily

correspond either in number or physically to the state points (Kocev et al. (2014)), in

this case the information source is incomplete; (2) the temporal resolution of different

measurement mechanisms may vary, i.e., the measurements may arrive at multiple rates,

in which case the source contains out-of-sequence data; (3) the measurements are con-

taminated with noise, i.e., they are uncertain. For an abstract visualization of the nature

of motion measurements and the motion estimation problem itself, please see Figure 2.1.

Figure 2.1: Predicting motion from asynchronous observations. Mi, Mj , Mk, and Ml

are example measurement points, which are updated asynchronously at different points
in time t0, t1, and t2, while Pi is an example state point, which shall be predicted using

uncertainty-aware asynchronous scattered motion interpolation.

To address the challenges imposed by the motion measurements information source in

the context of soft tissue navigation, we propose an algorithm for uncertainty-aware

interpolation of motion signal samples that are randomly, non-uniformly scattered in

the spatiotemporal domain. To formally define out-of-sequence, i.e., asynchronous, mo-

tion signal samples, we propose a novel motion field representation (see Section 2.3).

Our proposed algorithm employs Gaussian process (GP) regression (Rasmussen (2006))

(see Section 2.4) to perform the interpolation in an optimal unbiased fashion. The

GP embeds the motion prior, which is then conditioned on the motion signal sam-

ples when performing the regression. The conditioning leads to an estimate of the

(full) posterior distribution over motion signal functions, which could be directly used
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for summarizing and conveying the uncertainty (Risholm et al. (2010)) in any regis-

tered pre-interventional/pre-operative soft-tissue navigation information. In this re-

gard, we believe that providing information about the uncertainty in the registered

pre-interventional/pre-operative soft-tissue navigation information to the surgeon or in-

tervention specialist could improve their decisions and the overall outcome of the surgery

or intervention. The work of Lüthi et al. (2011) is similar to ours on this point. They

use a zero-mean GP to model the motion prior and perform regression on motion signal

samples that are randomly non-uniformly scattered in the spatial domain. Their motion

signal samples are, in contrast to ours, in-sequence, i.e., synchronous. Hence, they do

not need to use any temporal information. In contrast to their work, we propose using

a non-zero mean function (see Subsection 2.5.1) and enable the interpolation in the spa-

tiotemporal domain. We demonstrate that non-zero-mean GPs outperform zero-mean

ones independent of whether the data are randomly non-uniformly scattered in the spa-

tial or in the spatiotemporal domain. To enable the interpolation in the spatiotemporal

domain, we propose using a squared exponential covariance function with anisotropic

distance measure (ADM) (Rasmussen and Williams (2006)) (see Subsection 2.5.2). The

spatiotemporal GP formalism facilitates the prediction of tissue displacements at any lo-

cation, and for any time interval, from observed deformations that are sparse in space and

time. We evaluated our algorithm by interpolating simulated randomly non-uniformly

spatiotemporally scattered uncertain motion signal samples and comparing the interpo-

lation results with the respective simulated ground truth (see Section 2.6). As in some

applications the randomly non-uniformly spatiotemporally scattered uncertain motion

signal samples may be drawn over some restricted region of space, e.g., on the sur-

face of the soft-tissue organ, we also evaluated our proposed method on such simulated

measurements.

2.2 Related Work

Our proposed GP regression model can be seen as a deformation model (Sotiras et al.

(2013)) because it is intended to be used for interpolation of soft, i.e., deformable, tissue

motion signal samples. Sotiras et al. (2013) classified all deformation models according to

what drives the geometric transformations that are computed by these models. Accord-

ing to their top-level classification, the geometric transformation could be: 1) inspired by

physical models (Wassermann et al. (2014)), 2) inspired by interpolation/approximation

theory (Ledesma-Carbayo et al. (2005); Perperidis et al. (2005); Rohr et al. (2001); Van-

demeulebroucke et al. (2011); Wörz and Rohr (2008)), and/or 3) knowledge-based, i.e.,

embedding prior information regarding the sought deformation, (Glocker et al. (2009);
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Kocev et al. (2014); Lüthi et al. (2011)). For a more detailed classification of all defor-

mation models, we refer the reader to the work of Sotiras et al. (2013). In the following,

we discuss in detail the above classified related work and contrast it against our own

work.

Rohr et al. (2001) employed approximating thin-plate splines (TPS) to account for both

isotropic and anisotropic landmark localization errors, where the corresponding TPS

result from a minimizing functional with respect to the sought transformation. They

weight the quadratic/squared Euclidean distance between the corresponding landmarks

according to the landmarks localization uncertainty and, in this way, control the in-

fluence of the landmarks on the registration result. In follow-up work, Wörz and Rohr

(2008) improved the accuracy of the approximating TPS (Rohr et al. (2001)) by incorpo-

rating Gaussian elastic body splines (GEBS) resulting in a new approximation approach

with an improved underlying physical deformation model. They used an energy func-

tional related to the Navier equation under Gaussian forces, while the landmarks are

still individually weighted in a similar fashion according to their localization uncertain-

ties. The use of Gaussian forces (physically more plausible as they do not diverge, and

decrease with distance) provided them with a free parameter controlling the locality of

the transformation. One problem in the two above approaches is that they treat the

landmark and regularization terms independently, which could be improved because the

landmarks can constrain the regularization term itself as well (Lüthi et al. (2011)). We

incorporate the landmark information (in general, the motion signal samples) during

the training phase as part of the regularization as a priori knowledge on the admissible

deformations. Moreover, in contrast to our approach, they do not handle asynchronous

data and do not estimate the uncertainty in the resulting transformation.

Several groups have investigated the problem of spatiotemporal image registration (Bersvend-

sen et al. (2016); Ledesma-Carbayo et al. (2005); Perperidis et al. (2005); Shi et al. (2013);

Vandemeulebroucke et al. (2011)). Perperidis et al. (2005) addressed the spatiotemporal

iconic, i.e., intensity-based, registration of 3D image sequences by devising 4D affine

and free-form deformation (FFD) (based on a 4D B-Spline model) models that are sepa-

rated into spatial and temporal components. Ledesma-Carbayo et al. (2005) investigated

the spatiotemporal iconic registration of 2D image sequences by using a semi-local spa-

tiotemporal parametric linear model, based on 3D B-splines, that is also separable in

time and space. Both Perperidis et al. (2005) and Ledesma-Carbayo et al. (2005) place

the space- and time-axis basis functions on a uniform rectangular spatial grid and regu-

larly spaced time intervals, respectively. Ledesma-Carbayo et al. (2005) discuss in depth

the choice of time- and space-axis scale parameters, governing the knot spacing, which,

in our case, would be handled by the characteristic length-scales of our covariance func-

tion (see Subsection 2.5.2). Shi et al. (2013) revisited the classic FFD approach and
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devised a novel sparse representation for FFD using the principles of compressed sens-

ing. They reconstruct the deformation from a pair of images (or image sequences) and

apply a sparsity constraint to the parametric space. They extended the sparsity con-

straint to the temporal domain and proposed a temporal sparse free-form deformation

(TSFFD) model which enabled capturing of fine local details, e.g., motion discontinu-

ities in the spatiotemporal domain. They addressed the trade-off between robustness

and accuracy for FFD-based registration by deploying sparsity constraints as an addi-

tional regularization term. Bersvendsen et al. (2016) addressed the temporal alignment

by optimizing the alignment of the normalized cross correlation (NCC)-over-time curves

of the sequences (Perperidis et al. (2005) also employed NCC, in the optimization of their

temporal component), within their proposed fully automatic method for spatiotempo-

ral (spatially rigid) registration between two partially overlapping 3D image sequences.

However, Bersvendsen et al. (2016), Ledesma-Carbayo et al. (2005), Perperidis et al.

(2005), and Shi et al. (2013) do not estimate the transformation in an uncertainty-aware

fashion. Moreover, in contrast to our approach, they do not address the problem of

interpolating randomly non-uniformly scattered spatiotemporal motion signal samples,

one that arises in the context of spatiotemporal geometric, i.e., landmark-based, image

registration.

Our proposed deformation model falls into the group of knowledge-based statistically

constrained geometric transformations. Similar to Glocker et al. (2009), we determine a

probability density function modeling the prior distribution of the sought deformation

field. In contrast to our approach, Glocker et al. (2009) use Gaussian mixture models

(GMMs) to represent their probability density functions and employ a Markov random

field (MRF)-based formulation of the registration problem when computing the maxi-

mum a posteriori (MAP) estimate of the deformation field on a regular grid of control

points (as in FFDs). For any other point in the domain, they employ a B-spline basis

functions-based interpolation between the estimated control point displacements. Re-

garding the MRF graph cost function, they set the edge penalty costs based on the

negative log likelihood, which in return, is defined by their prior probability density

functions. As a result, they compute a single optimal deformation estimate, i.e., the

MAP estimate, while we estimate the full a posteriori deformation field distribution.

Therefore, in addition, we estimate the uncertainty in the deformation estimate at any

point in the domain. We would, in general, be able to incorporate their clustering idea

by training different instances of our proposed GP model for each identified cluster.

To the best of our knowledge, the work of Lüthi et al. (2011) is the most similar to ours.

They model the deformations as a zero-mean vector-valued GP and regard the land-

marks as additional information on the admissible deformations. In the general setting,
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they reduce the vector-valued case to the scalar case by constructing a matrix-valued co-

variance function as the product of a scalar-valued covariance function and a symmetric

positive definite N × N matrix (N is the number of output dimensions), encoding the

a priori knowledge about the correlation between the output dimensions. Our assump-

tion with respect to the independence between the motion signal output dimensions is

equivalent to using an N × N diagonal matrix in this case. They make the same as-

sumption in all of their test examples. Furthermore, in contrast to our approach, they

work with input landmarks that define synchronous motion signal samples that are ran-

domly non-uniformly scattered in the spatial domain. In contrast to their approach, we

propose to use a non-zero mean GP and allow the motion signal samples to be randomly

non-uniformly scattered in the spatiotemporal domain. In a follow-up work, Gerig et al.

(2014) devised a new method for spatially-varying (allowing for different regularization

properties in different regions) iconic registration using GP priors. As a result, they came

up with a non-stationary GP, that allowed to model different amount of smoothness in

different regions. In this way, they were able to differentiate between tissue types or to

make the regularization stronger in regions with noisy data. In theory, their proposed

GP can have any mean function (Lüthi et al. (2013)). However, in practice they use a

zero-mean function in all of their test examples, except for their statistical shape model

for which they estimate the mean function based on example shapes. To present their ap-

proach in the medical setting, they demonstrated a solution for the challenging problem

of atlas-based skull registration of cone-beam CT images. Similar to Gerig et al. (2014),

Zhao et al. (2017) presented an alternative method for spatially-varying registration

which is also anisotropic. Zhao et al. (2017) presented physically realistic deformations

for the task of surface registration, by modeling the surface as an orthotropic elastic thin

shell. They devised a statistical framework (Physical-Energy-Based MRF model) that

can be deployed for estimating spatially varying anisotropic shell elasticity parameters

with the input being only a set of known surface deformations. In parallel to estimating

the elasticity parameters, they estimate the registration as well. They applied their

approach in the context of 3D endoscopy reconstruction, which requires to generate a

3D reconstruction surface from multiple endoscopic movie frames. They managed to

register all single-frame 3D reconstruction surfaces into a single surface. We view the

novelties presented by Gerig et al. (2014) and Zhao et al. (2017) as complementary to

the novelties presented in this paper.

Wassermann et al. (2014) employed a stochastic differential equation (SDE) for modeling

the deformations as the evolution of a time-varying velocity field. The SDE is defined

based on a deterministic ordinary differential equation (ODE) and a covariance function

that is calculated as the matrix Green’s function of the linear differential operator that

regularizes the deterministic velocity field. The linear differential operator restricts the
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deformations to the space of diffeomorphisms. Hence, their framework is suitable for

modeling large deformation diffeomorphisms. In principle, they place a zero-mean GP

prior with the above covariance function on the stochastic velocity field. They focus on

operators that regularize in space but not in time. In contrast to their approach, we

regularize in the spatiotemporal domain and employ a non-zero-mean GP prior.

In other medical imaging contexts, GPs have been used to quantify the uncertainty in

image segmentation of deformable objects by defining a probability distribution of image

segmentation boundaries as a GP and measuring the effect of using various plausible

segmentation samples therefrom (Lê et al. (2015)).

GPs have generally been employed in several areas of visual computing for interpolation

of uncertain data (Schlegel et al. (2012); Stytz and Parrott (1993); Wachinger et al.

(2014)). In all of these cases, the data are given on a uniform spatial grid, which

renders the zero-mean GP prior assumption by Schlegel et al. (2012) and Wachinger

et al. (2014) as not very critical. In other words, if one assumes a constant-mean latent

process function and uniform data contaminated with Gaussian white noise, one could

model a zero-mean process by subtracting the empirical mean from the input data and

adding it back after processing, if necessary (Schlegel et al. (2012)). However, if the

data are given on a structured grid (e.g., if one applies the method of Wachinger et al.

(2014) in the context of non-rigid image registration), or on an unstructured grid, or are

randomly non-uniformly scattered, we believe that the empirical mean of the data is then

less representative of the latent process mean even if the latent process mean is constant

throughout the domain mainly because of the presence of noise. If, in reality, there

is a large deviation from the assumption of a constant-mean latent process function,

then one cannot, by default, model, as described above, a zero-mean GP prior. To

address these aspects, we propose non-constant-mean GP models that can handle data

that are randomly non-uniformly scattered in the spatiotemporal domain. This imposes

the challenges of identifying and training a suitable non-constant mean function as well

as an appropriate covariance function that can handle the aspects of drift (Stytz and

Parrott (1993)) and spatiotemporal distribution. The randomness and non-uniformity

in the distribution of the given data in the spatiotemporal domain are also addressed

during the training phase.

For a general overview of traditional/classical and generalized interpolation techniques,

we refer to the work of Thévenaz et al. (2000a,b).
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2.3 Motion Field Representation

We define the motion signal function as

u : RN+2 → R
N , (2.1)

where the first N dimensions in the input domain are used to specify the location

of a given N -dimensional spatial point, and the last two are used to define the time

interval in which the motion of this spatial point took place. Each (N + 2)-dimensional

spatiotemporal point is mapped to an N -dimensional displacement vector specifying

the motion that the given spatial point underwent within the given time interval. The

displacement vector can be seen as the position of the given spatial point at the end of

the time interval tend, where the position is defined in a local coordinate system with

the origin at the position of the spatial point at the beginning of the time interval tbegin.

In contrast to the classical Lagrangian specification of a flow field, our representation of

the motion field allows for specifying the motion between any time interval (tbegin, tend).

This is especially required for specifying asynchronous motion signal samples.

2.4 Gaussian Process Regression

A GP is defined as a collection of random variables, any finite number of which have

(consistent) joint Gaussian distributions (Rasmussen (2006)). A scalar-valued GP is

uniquely defined through its mean m(x) : Ω → R and covariance k(x, x′) : Ω × Ω → R

functions, where Ω is an index set. GPs can be used to define distributions over functions.

We use the following notation:

f ∼ GP(m,k) (2.2)

to denote that the function f is distributed as a GP with mean functionm and covariance

function k. Moreover, GP models can be used to formulate a Bayesian framework for

regression. In that context, a GP is used as a prior for Bayesian inference. In order

to make predictions for unseen test cases x∗, one needs to compute the posterior by

conditioning the prior on a given training data set of n observations

D = {(xi, yi)|i = 1, ..., n} . (2.3)

where xi are the training data locations and yi are the observations (usually noisy, see

Subsection 2.5.3) of the function values f(xi). It is generally assumed that the noise is

additive independent and identically distributed zero-mean Gaussian, i.e.,

y(x) = f(x) + ǫ, ǫ ∼ N (0, σ2
n), y ∼ GP(m,k + σ2

nδii′) (2.4)
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where δii′ is the Kronecker’s delta function, i.e., δii′ = 1 if and only if i = i′. After

conditioning the prior process on the observations, one obtains the posterior process as

follows:

f |D ∼ GP(mD, kD)

mD(x) = m(x) + Σ(X,x)T (Σ + σ2
nI)−1(y − µ)

kD(x, x
′) = k(x, x′)− Σ(X,x)T (Σ + σ2

nI)−1Σ(X,x′) (2.5)

where Σ(X,x) is a vector of covariances between every training case and x (analogous

for Σ(X,x′)), µ is the vector of the function mean values at the training data locations,

i.e., µi = m(xi), i = 1, ..., n, Σ is the covariance between the training data, and I is the

identity matrix.

In the context of motion estimation, we would generally need to use a vector-valued

Gaussian process (Lüthi et al. (2011)). The displacement u(x), at any input location x,

would need to be modeled as an N-dimensional random vector. The mean and covariance

functions would then need to have the following form:

m(x) : Ω→ R
N

k(x, x′) : Ω×Ω→ R
N×N .

(2.6)

However, we assume that the motion signal output dimensions are independent (see

Section 2.2 for a discussion on how our work is related to the work of Lüthi et al. (2011)

on this point). Therefore, we are able to employ a separate scalar-valued GP for each

output dimension (Chan (2013)). For a more general treatment of vector-valued GPs,

see Hein and Bousquet (2004) and Micchelli and Pontil (2005).

2.5 Model Selection

The Gaussian process model we employ is a hierarchical non-parametric (i.e., it needs

access to all training data in the process of making predictions) model with two levels.

At the first level are the free (hyper-) parameters θ of the underlying modeling func-

tions (mean function (see Subsection 2.5.1), covariance function (see Subsection 2.5.2),

and likelihood function (see Subsection 2.5.3)). The (hyper-) parameters control the

distribution of the target values. At the second/top level, we have a (discrete) set of

possible model structures, Hi out of which we should choose. On a side note, one could

consider a zero level with the noise-free latent function values f at the training inputs

as the parameters of the Gaussian process model. We select the model structure Hi at

the second/top level by specifying the function families to which we believe the mean
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(see Subsection 2.5.1), covariance (see Subsection 2.5.2), and likelihood (see Subsec-

tion 2.5.3) functions belong. As we normally have only vague information about the

(hyper-) parameters, we deploy a mechanism for learning them from the training data

(see Subsection 2.5.4).

2.5.1 Mean Function

Generally, the mean function of a scalar-valued GP f(x) is defined as follows

m(x) = E[f(x)], (2.7)

where E is the expectation. In order to keep notations simple, the mean function of

the prior GP is often set to zero (Rasmussen and Williams (2006)). The zero-mean

assumption for the prior GP does not imply that the posterior GP would be zero-

mean, i.e., from this point of view, one could see this assumption as not being critical.

However, several problems may arise with respect to the interpretability of the model,

the expressiveness of prior information, etc. (Rasmussen and Williams (2006)). Schlegel

et al. (2012) model a zero-mean process on their data by subtracting the empirical mean

from the input data and adding it back after processing, if necessary. However, Kuss

(2006) pointed out that, in general, the mean of the data is not necessarily the mean of

the process. Furthermore, we argue that the use of the empirical mean in this way is

even more critical when dealing with non-uniformly scattered training data in contrast to

when the data are uniformly scattered or even on a Cartesian grid. Therefore, we propose

to model the mean function of the prior GP explicitly in order to be able to specify an

appropriate non-zero mean function. One could use a fixed (deterministic) mean function

or alternatively a few fixed basis functions with a set of coefficients/parameters which

would need to be inferred from the training data. Then, one normally optimizes over

the hyperparameters of the covariance function (see Subsection 2.5.2) jointly with the

parameters of the mean function when fitting the model (see Subsection 2.5.4) on the

training data. We build upon the work of O’Hagan and Kingman (1978) and propose to

couple their linear mean function m1(x) = βTx with a constant mean function m2(x) =

c, when modeling the mean function of the GP that embeds the motion prior. The two

functions are simply added, i.e.,

m(x) = m1(x) +m2(x) = βTx+ c (2.8)

which results in a composite mean function (Rasmussen and Nickisch (2010)). Hence,

the prior mean is realized as the sum of a linear and constant function. The parameters

β and c are inferred from the data (see Subsection 2.5.4).
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2.5.2 Covariance Function

In general, the covariance function of a scalar-valued GP f(x) is defined as follows

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (2.9)

As such, the choice of a covariance function induces the properties, e.g., stationarity,

isotropy, smoothness, periodicity, etc., of the functions that are likely under the GP

prior (Barber (2012); Rasmussen and Williams (2006)). If the covariance function is

a function only of x − x′ then it is stationary, while if it is a function only of |x −
x′| then it is isotropic (Rasmussen and Williams (2006)). Suitable properties for the

covariance function generally need to be learned from the training data. Some of these

properties are encoded through the hyperparameters (e.g., characteristic length-scale,

variance, etc.) of the chosen covariance function. In the context of doing regression on

spatiotemporal motion signal samples, we need to use covariance functions whose input

domain Ω is a subset of RD. In this regard, we propose using the Squared Exponential

(SE) covariance function with distance measure with a different characteristic length-

scale (hyper-) parameter per input dimension

k(x, x′) = σ2
f exp(−

1

2
(x− x′)TP−1(x− x′)) (2.10)

where P is a diagonal matrix with length-scale (hyper-) parameters l21, l
2
2, ..., l

2
D as entries

on the diagonal, and σ2
f is the signal variance (Rasmussen and Williams (2006)). As

this covariance function uses different length-scales li on different dimensions, it is an

anisotropic covariance function. In simple words, P encodes how far, along individual

axes in input space, the input locations need to be so that the function values at those

locations become uncorrelated. In our case, this is particularly suited for anisotropically

adjusting the distance measure along the spatial and temporal axes in our input space.

In other words, we can handle the anisotropy between space and time. These (hyper-)

parameters will be learned from the data (see Subsection 2.5.4). In general, the functions

in the SE covariance function family are infinitely differentiable, i.e., a GP process with

a covariance function from this family has mean square derivatives of all orders, i.e., it is

very smooth. Therefore, the use of this covariance function could also be interpreted as a

mechanism for regularization that penalizes non-smooth solutions (Lüthi et al. (2011)).

We therefore believe that the SE covariance function is particularly suitable for modeling

soft-tissue motion prior within our target application because soft-tissue organs undergo

smooth motion.
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2.5.3 Likelihood Function

We employ a Gaussian likelihood function

p(y|f, σn) =
1

σn
√
2π

exp(−(y − f)2

2σ2
n

) (2.11)

for regression, where y is the actual observation/measurement of the true latent value (of

a component of the displacement field) f (see Section 2.4), and σ2
n is the noise variance

(hyper-) parameter. In other words, this function defines how the noisy observation-

s/measurements are assumed to diverge from the noise-free function f . The incorpora-

tion of a Gaussian likelihood function together with the Gaussian process prior allows for

a posterior Gaussian process over functions and keeps things analytically tractable (Ras-

mussen and Williams (2006)). Our Gaussian noise model assumes homoscedasticity, i.e.,

the noise variance σ2
n is assumed to be constant throughout the domain. For modeling

heteroscedastic Gaussian noise, we refer to the work of Goldberg et al. (1997) who uses

the noise variance as a function of x.

2.5.4 (Hyper-) parameters Training

The (hyper-) parameters are optimized by maximizing the probability of the model, given

the training data. The probability of the model, given the training data, is computed

based on the marginal likelihood (ML), also known as model evidence,

log p(y|X, θ,Hi)

= −1

2
(y − µ)TΣ−1

y (y − µ)− 1

2
log|Σy| −

n

2
log2π, (2.12)

where Σy = Σ+σ2
nI. The ML is a probability distribution over the observations y, condi-

tioned on the input locations x, the (hyper-) parameters θ (i.e., θ = (β, c, l1, l2, ..., lD , σf , σn),

see Subsections 2.5.1, 2.5.2, and 2.5.3), and the chosen model structure Hi. The use of

log ML is appropriate because it automatically incorporates a trade-off between data-fit

(first term of Eq. 2.12, i.e., −1
2(y−µ)TΣ−1

y (y−µ)) and model complexity (second term of

Eq. 2.12, i.e., 1
2 log|Σy|), i.e., it does not require an external parameter for controlling this

trade-off (Rasmussen and Williams (2006)). The third term of Eq. 2.12, i.e., n
2 log2π, is a

normalization constant. Generally, the mechanism of using the data to estimate the prior

parameters is known as empirical Bayes (Gelman et al. (2014)). This approximation of

the complete hierarchical Bayesian analysis eliminates the need to put a probability

model over all (hyper-) parameters. In principle, instead of putting prior distributions

over the (hyper-) parameters and marginalizing them out, the (hyper-) parameters are

set with the values that maximize the ML. The use of ML avoids over-fitting, which

is associated with the classical maximum likelihood approach, by marginalizing out the
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model parameters and allows comparison of different models on all training data, i.e.,

it eliminates the need to use cross-validation (Bishop (2006)). However, due to possible

sensitivity of the ML on the prior, it is still recommended to use an independent test

dataset for the comparison of different models in practical applications (Bishop (2006)).

To demonstrate the effect of the characteristic length-scale parameter on the probability

of an example model given example training data, we try to fit only the length-scale pa-

rameter li while the remaining hyperparameters are set in accordance with the process

from which the example training data are drawn. The training data are drawn from a

zero-mean GP with an SE covariance function with ADM defined over a 2D index set,

with (hyper-) parameters (l1, l2, σf , σn) = (0.25, 0.125, 1, 0.1). In Figures 2.2 and 2.3,

one can observe the fitting of the characteristic length-scales l1 and l2 respectively on the

training data. The plots show the corresponding log ML and the decomposition into its

constituents as a function of the respective characteristic length-scale hyperparameter.

In both plots, the negative complexity term increases (i.e., the model loses complexity) as

the respective length-scale hyperparameter li increases. Furthermore, in both plots, the

data-fit term decreases monotonically as the length-scale hyperparameter li increases,

because the model loses flexibility. The marginal likelihood in Figure 2.2 reaches its peak

value for l1 = 0.25, while in Figure 2.3 the peak of the marginal likelihood is reached for

l2 = 0.125. This agrees with the respective characteristic length-scales of the GP from

which the training data are drawn.
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Figure 2.2: Log marginal likelihood decomposition into its constituents: data-fit and
complexity penalty, as a function of the characteristic length-scale l1.
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Figure 2.3: Log marginal likelihood decomposition into its constituents: data-fit and
complexity penalty, as a function of the characteristic length-scale l2.

In the general setting, we use conjugate gradients (Polak and Ribiere (1969)) to optimize

the (hyper-) parameters jointly, while maximizing the probability of the model given the

training data. To circumvent bad local extrema, we perform random restarts and select

the (hyper-) parameters configuration that gives the maximum probability of the model

given the training data.

2.6 Evaluation

In this section, we aim to demonstrate that, when doing regression on randomly non-

uniformly scattered motion signal samples, employing a GP prior with the proposed

non-zero-mean function yields better results than using a GP prior with a zero-mean

function. Furthermore, we will show that, in the case that the observations of the func-

tion are randomly non-uniformly scattered in the spatiotemporal domain, our proposed

covariance function with ADM is more suitable for defining the GP prior of a given mo-

tion signal function than the one of the same family with an isotropic distance measure

(IDM). Therefore, we compare the obtained results when doing regression using each of

the GP priors configurations in Table 2.1.

Each of the GP model configurations in Table 2.1 is used to perform regression on

simulated soft-tissue motion data. We simulated ground-truth soft-tissue motion data

(see Subsection 2.6.1) out of which a relatively small portion (contaminated with noise)
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ID Mean Func. Cov. Func. Lik. Func.

1 zero SE w/ IDM proposed
2 proposed SE w/ IDM proposed
3 proposed proposed proposed

Table 2.1: GP priors configurations.

was used as training data and the rest (noise-free) as ground-truth test data. The (hyper-

) parameters of GP models having each of the above configurations are first trained (see

Subsection 2.6.2) by maximizing the likelihood, as defined in Eq. 2.12, and then the prior

is conditioned on the training dataset according to Eq. 2.5, when making predictions for

unseen test cases. The predictions are then evaluated in terms of accuracy against the

respective ground truth (see Subsection 2.6.3). We train three different scalar-valued GP

models with the same configuration for each motion signal output dimension (assumed to

be independent, see Section 2.4). Hence, predictions are made for each output dimension

separately.

2.6.1 Data Simulation

Figure 2.4: Left: Breast phantom with 4 markers (one on the back side). Right:
FE model composed of tetrahedral elements which are extracted from the MRI scan
data of the breast phantom. The points in red are fixed, i.e., the FE nonlinear motion
prediction model considers these vertices as not moving. (Image courtesy of Kocev

et al. (2014).)

The ground-truth motion data are simulated over time at the points that constitute the

discrete representation of the given deformable object. For this purpose, we employed

a finite element (FE) model (Georgii and Westermann (2008, 2005)) for physics-based

simulation of motion data. For this evaluation, we created an FE model of the CIRS

triple modality breast biopsy training phantom with 1,962 vertices (see Figure 2.4.) and

used it to simulate a physically plausible non-linear motion that a soft-tissue organ is

likely to undergo during a biopsy intervention. The motion that a soft tissue organ is

likely to undergo during a biopsy intervention is basically the motion that takes place
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upon pressing the target organ with a biopsy needle. We have defined a biopsy insertion

point (the point in yellow in Figure 2.5) on the surface of the breast phantom and simu-

lated an external point force acting on this point towards the breast phantom centroid.

The largest simulated deformation is about 16.19 mm. It is important to note that it is

Figure 2.5: Deformed breast phantom FE model with biopsy insertion point visualized
in yellow. The points in red are fixed, while the point in yellow depicts the location

where the external point force is applied.

not necessary for the material properties of the model to match those of the CIRS phan-

tom exactly, i.e., no possible deviations influence the accuracy of our evaluation on the

specific simulated motion data, as long as the defined material properties describe some

realistic (soft-tissue) material. In principle, one could use virtually any deformable FE

model for simulating such non-linear motion data provided that the FE model simulates

the defined (realistic) dynamics accurately. Formally, the simulated ground-truth test

data are in the form of samples from the output of the motion signal function as defined

in Eq. 2.1 with N = 3. We simulated a ground-truth test dataset

Dgt = {((x(1)i , x
(2)
i , x

(3)
i , (k − 1)∆t, k∆t), fi)

|i = 1, ..., n∗; k = 1, ..., s} (2.13)

with cardinality sn∗. Here, n∗ corresponds to the number of vertices of the employed FE

model, ∆t corresponds to the time step size used by the time integration scheme, s is the

total number of discrete time points, and x
(l)
i is the l-th component of the ground-truth

test location xi. It is assumed that the state points and the FE vertices have 1-to-1

correspondence (Kocev et al. (2014)). For evaluating our algorithm on in-sequence (i.e.,

synchronous) uncertain motion signal samples, a training dataset

Dsync = {((x(1)i , x
(2)
i , x

(3)
i , (k − 1)∆t, k∆t), yi)

|i = 1, ..., n} (2.14)
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is created, for a discrete time point k, 1 ≤ k ≤ s, by selecting n (n≪ n∗) randomly non-

uniformly scattered samples out of the sn∗ simulated ground-truth test samples and then

contaminating them with heteroscedastic Gaussian noise. In this regard, yi = fi+ǫi with

ǫi ∼ N (0,Σi) being the Gaussian distributed noise value at xi. For accuracy analysis

of our algorithm on out-of-sequence (i.e., asynchronous) samples, another training data

set

Dasync

= {((x(1)i , x
(2)
i , x

(3)
i , (k − 1)∆t, k∆t), yi)|i = 1, ..., n1}

∪ {((x(1)i , x
(2)
i , x

(3)
i , (k − 2)∆t, k∆t), yi)|i = 1, ..., n2}

∪ {((x(1)i , x
(2)
i , x

(3)
i , (k − 3)∆t, k∆t), yi)|i = 1, ..., n3} (2.15)

is created, for a discrete time point k, 3 ≤ k ≤ s, by taking the union of three different

subsets (with cardinalities n1, n2, and n3 respectively) of the simulated ground-truth test

data (i.e., in total n = n1 + n2 + n3 ≪ n∗ randomly non-uniformly scattered samples)

and then contaminating the samples with heteroscedastic Gaussian noise. Note that

each subset contains samples with different time intervals, i.e., the resulting training

dataset, Dasync, contains asynchronous motion signal samples.

For the purpose of this evaluation, we set n∗ = 1, 962, s = 6, ∆t = 33 ms, n = 26,

n1 = 9, n2 = 9, and n3 = 8. We chose this setting because it is a realistic one for the

medical context that drives our developments.

2.6.2 Training Results

Let us denote each trained GP model with M(c,d)
D

, where D is the dataset on which

the model is trained, c ∈ {1, 2, 3} corresponds to the ID of the employed GP prior con-

figuration (see Table 2.1), and d ∈ {1, 2, 3} is the index of the motion signal output

dimension for which the model is trained. We optimized the (hyper-) parameters of

each model by maximizing its evidence (estimated using Eq. 2.12, given the respective

training dataset) as explained in Subsection 2.5.4. The training has been performed on

example synchronous (see Eq. 2.14) and asynchronous (see Eq. 2.15) training datasets.

The values of the optimized (hyper-) parameters of the proposed GP modelsM(3,1)
Dasync

,

M(3,2)
Dasync

, andM(3,3)
Dasync

are presented in Tables 2.2 and 2.3. The resulting probability

of each model M(c,d)
D

, given the respective training dataset, is presented in Table 2.4.

Please note that we do not train GP models having the third configuration on syn-

chronous datasets as in that case the temporal information is irrelevant. In the case of

training on synchronous data, i.e., D = Dsync, the resulting model probabilities show

that models having the second configuration, i.e., M(2,d)
Dsync

, are able to explain the ex-

ample training data better than models having the first configuration, i.e., M(1,d)
Dsync

. In
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β c

d = 1 [0.000105, 0.001851, -0.001966, 0.003670, -0.008100 ] 0.999858
d = 2 [-0.001354, 0.002312, 0.007315, -0.013983, 0.007166 ] 0.999935
d = 3 [-0.001398, -0.007534, -0.000155, 0.000535, -0.004999 ] 0.999874

Table 2.2: (Hyper-) parameters of the mean function of the proposed modelsM(3,d)
Dasync

.

l1 l2 l3 l4 l5 σf σn

d = 1 30.017140 30.021074 30.008921 600.005046 600.000000 0.005032 0.227006
d = 2 23.156668 23.155694 23.119362 300.062788 300.000000 0.015149 0.238498
d = 3 15.033298 15.028769 15.030861 600.007680 600.000000 0.010139 0.175856

Table 2.3: (Hyper-) parameters of the covariance and likelihood functions of the

proposed modelsM(3,d)
Dasync

.

regard to training on asynchronous data, i.e., D = Dasync, models having the third con-

figuration, i.e.,M(3,d)
Dasync

, accommodate the training data better than models having any

of the other two prior configurations. Therefore, our proposed modeling of the mean (see

Subsection 2.5.1) and covariance (see Subsection 2.5.2) functions allows for GP mod-

els that can be better trained to explain training data given in the form of randomly

non-uniformly scattered motion signal samples.

D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 -27.9233 -31.7146 -8.4969 -1.1611 -9.6756

d = 2 -9.3417 -13.1894 14.8096 13.9991 -8.6495

d = 3 -10.9099 -12.9253 -2.6988 -3.7344 -9.1918

Table 2.4: Negative log marginal likelihoods of modelsM(c,d)
D

, with D being the train-
ing dataset (either synchronous or asynchronous), c the ID of the GP prior configuration

(see Table 2.1), and d the index of the motion signal output dimension.

2.6.3 Accuracy Analysis

Using Eq. 2.5, each trained GP modelM(c,d)
D

is conditioned on the training dataset D in

order to make predictions, at the original n∗ test locations (x
(1)
i , x

(2)
i , x

(3)
i , (k−1)∆t, k∆t),

for the d-th motion signal output dimension using the c-th GP prior configuration. The

resulting predictions for the motion signal function mean values at the n∗ test locations

are represented as an n∗-dimensional vector f̄∗, which is evaluated in terms of accuracy
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against the respective n∗-dimensional vector of ground-truth function mean values f̄∗gt .

The difference between the vectors f̄∗ and f̄∗gt is measured using:

1. Euclidean distance;

2. cosine distance;

3. (Pearson) correlation distance;

4. root-mean-square error (RMSE);

5. mean absolute error (MAE), and

6. Wilcoxon two-sided rank sum test (Wilcoxon (1945)), with the null hypothesis

that data in f̄∗ and in f̄∗gt are samples from continuous distributions with equal

medians.

By combining the predictions (obtained using the c − th GP prior configuration and

training dataset D) f̄∗ for each output dimension into an n∗ × 3 matrix, we obtain the

estimate of the full motion signal function mean values at the given n∗ test locations.

Each such n∗ × 3 matrix of (3D) displacement predictions together with the respective

n∗ test locations define an n∗ × 3 matrix S̄∗ with its rows being the (3D) position

mean values of all displacement vectors’ endpoints, which is then evaluated in terms of

accuracy against the respective ground truth S̄∗gt using:

1. L2,1 norm of (S̄∗ − S̄∗gt)
T , and

2. L2,2, i.e., Frobenius, norm of (S̄∗ − S̄∗gt).

In the following, we present accuracy analysis results on both synchronous and asyn-

chronous training datasets.

2.6.3.1 Accuracy Analysis Results

Synchronous Data In performing regression from space and time to motion signal

function values using a synchronous training dataset, D = Dsync, all predictions f̄∗ by

modelsM(2,d)
Dsync

are closer, in terms of Euclidean distance, cosine distance, and RMSE,

to the ground truth f̄∗gt than those by modelsM(1,d)
Dsync

(see Tables 2.5, 2.6, and 2.8). In

terms of (Pearson) correlation distance and MAE, the predictions for the second output

dimension, d = 2, are closer to the ground truth when using the first GP prior configu-

ration, c = 1. For the other two output dimensions, the second GP prior configuration,
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D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 3.48379 3.28559 3.77276 6.75917 2.83698

d = 2 15.61828 15.52604 17.40310 14.72825 5.36545

d = 3 11.27818 11.04141 4.66890 8.25508 5.92519

Table 2.5: Euclidean distances between f̄∗ and f̄∗gt
.

D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 0.19607 0.17226 0.10324 0.15673 0.89327

d = 2 0.12244 0.12214 0.26239 0.13359 0.32024

d = 3 0.61894 0.57702 0.03873 0.06904 0.00839

Table 2.6: Cosine distances between f̄∗ and f̄∗gt
.

c = 2, allows for better predictions (see Tables 2.7 and 2.9). M(1,2)
Dsync

is better, in terms

of MAE but not in terms of RMSE, thanM(2,2)
Dsync

mainly because in that case the first

configuration gives higher-value outliers in the component-wise absolute differences to

which RMSE gives higher weights (Chai and Draxler (2014)). However, RMSE may be a

more appropriate metric for deciding which algorithm is better suited for safety-critical

applications (Knight (2002)), e.g., navigated surgery (Mezger et al. (2013)) where large

errors are to be avoided. An additional argument supporting that RMSE is more appro-

priate to represent model performance than MAE in this case is that the distribution

of the error f̄∗ − f̄∗gt yielded by both configurations is Gaussian (Chai and Draxler

(2014)). To confirm that the error is Gaussian-distributed, we used a t-test with the

null hypothesis being that the data in f̄∗ − f̄∗gt come from a normal distribution with

unknown variance and mean value equal to the error sample set mean. Moreover, we

visually analyzed the histogram of f̄∗ − f̄∗gt yielded by both configurations (see Fig-

ures 2.6 and 2.7). As the means of the error sample sets yielded by both configurations

are not exactly zero, the error sample sets are slightly biased (Chai and Draxler (2014)).

Therefore, we provide, in addition, the respective standard error (SE) information (Chai

and Draxler (2014)) (see Table 2.10). Note that when the error distribution and sample

set are unbiased, the SE is equivalent to the RMSE (Chai and Draxler (2014)). While

the results from the Wilcoxon two-sided rank sum tests show that there is no strong

evidence supporting that there is a significant (at the 5% significance level) difference

between the predictions yielded by M(2,d)
Dsync

and the respective ground truth, however,
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D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 0.63771 0.51480 1.05600 1.30947 0.53873

d = 2 0.58169 0.60213 0.97160 0.15555 0.04888

d = 3 0.90247 0.81330 0.07474 0.15025 0.01750

Table 2.7: (Pearson) correlation distances between f̄∗ and f̄∗gt
.

D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 0.07865 0.07418 0.08517 0.15260 0.06405

d = 2 0.35260 0.35052 0.39290 0.33251 0.12113

d = 3 0.25462 0.24927 0.10541 0.18637 0.13377

Table 2.8: Root-mean-square errors between f̄∗ and f̄∗gt
.

D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 0.03910 0.02879 0.08428 0.14592 0.05122

d = 2 0.07216 0.08021 0.38632 0.32558 0.10092

d = 3 0.05766 0.05222 0.08918 0.15518 0.10830

Table 2.9: Mean absolute errors between f̄∗ and f̄∗gt
.

there is strong evidence supporting that there is significant difference (except for d = 1)

between the predictions made using GP prior configuration 1 (i.e., c = 1) and the re-

spective ground truth. Hence, there is stronger evidence that, in general, the second

GP prior configuration allows for better estimation of the true motion function median

values (see Table 2.11). Furthermore, both the L2,1 norm of (S̄∗ − S̄∗gt)
T and L2,2 (i.e.,

Frobenius) norm of (S̄∗− S̄∗gt) are smaller when using the second GP prior configuration

(see Tables 2.12 and 2.13), i.e., the overall motion estimation error is larger when using

the first GP prior configuration.

Asynchronous Data When mapping from spatiotemporal locations to motion signal

function values using an asynchronous training dataset (i.e., D = Dasync), all predictions

f̄∗ by modelsM(3,1−2)
Dasync

are closer, in terms of Euclidean distance, (Pearson) correlation
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D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 0.07863 0.07407 0.012308 0.044653 0.055790

d = 2 0.35084 0.34961 0.071571 0.067533 0.099143

d = 3 0.25241 0.24850 0.057916 0.131253 0.087739

Table 2.10: Standard error between f̄∗ and f̄∗gt
.
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Figure 2.6: Histogram of f̄∗ − f̄∗gt
yielded byM(1,2)

Dsync
.

distance, RMSE, and MAE, to the ground truth f̄∗gt than those by models M(1,1−2)
Dasync

andM(2,1−2)
Dasync

(see Tables 2.5, 2.7, 2.8, and 2.9). Furthermore, the predictions by model

M(3,3)
Dasync

are better, in terms of cosine and (Pearson) correlation distances, than those

by modelsM(1,3)
Dasync

andM(2,3)
Dasync

(see Tables 2.6 and 2.7). In all cases where the third

GP prior configuration fails to produce better predictions than the other two configu-

rations, the first GP prior configuration is the one that outperforms (except in terms

of cosine distance for the second output dimension) the other configurations (see Ta-

bles 2.5, 2.6, 2.8, and 2.9). The results from the Wilcoxon two-sided rank sum tests

show that there is strong evidence supporting that there is a significant (at the 5%
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Figure 2.7: Histogram of f̄∗ − f̄∗gt
yielded byM(2,2)

Dsync
.

D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

d = 1 (0.110516, 0) (0.360029, 0) (0, 1) (0, 1) (0, 1)

d = 2 (0.000556, 1) (0.077498, 0) (0, 1) (0, 1) (0, 1)

d = 3 (0, 1) (0.326926, 0) (0, 1) (0, 1) (0, 1)

Table 2.11: Wilcoxon two-sided rank sum test null hypothesis (that data in f̄∗ and
in f̄∗gt

are samples from continuous distributions with equal medians) results ((p, h):
“h=1” indicates a rejection of the null hypothesis, while “h=0” indicates a failure to
reject the null hypothesis, at the 5% significance level, based on the estimated p-value

p).

significance level) difference between the predictions yielded by anyM(c,d)
Dasync

and the re-

spective ground truth (see Table 2.11). However, the Wilcoxon two-sided rank sum test

does not provide strong evidence that any of the three different GP prior configuration

allows for better estimation of the true motion function median values when compared to

the others. On the other hand, the L2,1 norm of (S̄∗− S̄∗gt)
T and L2,2 (i.e., Frobenius)

norm of (S̄∗ − S̄∗gt) are clearly in favor of using the third GP prior configuration. They

are smallest when using the third GP prior configuration (see Tables 2.12 and 2.13),
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D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

228.0773 219.4586 803.9132 783.8536 343.4022

Table 2.12: L2,1 norm of (S̄∗ − S̄∗gt
)T .

D = Dsync D = Dasync

c = 1 c = 2 c = 1 c = 2 c = 3

19.5771 19.3330 18.4092 18.1866 8.4820

Table 2.13: L2,2 (i.e., Frobenius) norm of (S̄∗ − S̄∗gt
).
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Figure 2.8: Boxplots of the L2 norms of the rows of (S̄∗ − S̄∗gt
) yielded by different

GP prior configurations trained on Dasync: (i) using modelsM(1,d)
Dasync

, (ii) using models

M(2,d)
Dasync

, (iii) using modelsM(3,d)
Dasync

.

i.e., the overall motion estimation error is smallest when using our proposed GP prior

configuration. In this regard, note that the overall motion estimation error is decreased

by more than 50% in case of using our proposed mean and covariance functions (i.e.,

the third GP prior configuration) when doing regression on asynchronous training data.

This major improvement is achieved mainly by using our proposed covariance function.

For a visual depiction of the overall median errors yielded by different GP prior configu-

rations trained on the same asynchronous dataset, we boxplot the L2 norms of the rows

of (S̄∗− S̄∗gt) yielded by each GP prior configuration. In this regard, the boxplot notches

in Figure 2.8 offer evidence of a statistically significant difference (at the 5% significance

level) between the median L2 norms of the rows of (S̄∗ − S̄∗gt) yielded by the three GP
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D = Dsync D = Dasync

(c = 1, c = 2) (c = 1, c = 2) (c = 1, c = 3) (c = 2, c = 3)

(0.006665, 1) (0, 1) (0, 1) (0, 1)

Table 2.14: Wilcoxon two-sided rank sum test null hypothesis (that the values of the
L2 norms of the rows of (S̄∗− S̄∗gt

) yielded by one GP prior configuration trained on a
given dataset and those yielded by another configuration trained on the same dataset
are samples from continuous distributions with equal medians) results ((p, h): “h=1”
indicates a rejection of the null hypothesis, while “h=0” indicates a failure to reject the

null hypothesis, at the 5% significance level, based on the estimated p-value p).

prior configurations. To formally confirm that there are statistically significant differ-

ences between the median L2 norms of the rows of (S̄∗ − S̄∗gt) yielded by the three GP

prior configurations, we employ a Wilcoxon two-sided rank sum test (Wilcoxon (1945)).

The null hypothesis is that the values of the L2 norms of the rows of (S̄∗− S̄∗gt) yielded

by one GP prior configuration trained on a given dataset and those yielded by another

configuration trained on the same dataset are samples from continuous distributions

with equal medians. Provided that there are statistically significant differences between

the median L2 norms of the rows of (S̄∗ − S̄∗gt) yielded by the three GP prior configu-

rations (see Table 2.14) and the fact that the median L2 norm of the rows of (S̄∗− S̄∗gt)

yielded by the third GP prior configuration is the smallest, we conclude that there is

strong evidence that our proposed modeling significantly decreases the overall motion

estimation error when performing regression using an asynchronous training dataset.

In some applications, the measurements may be restricted to some region, e.g., on the

surface of the soft-tissue organ. To test whether our proposed method also improves the

accuracy even under such constraints, we performed regression on an additional train-

ing dataset DasyncSurf composed of randomly non-uniformly spatiotemporally scattered

uncertain surface motion measurements. In Figure 2.9, similar to Figure 2.8, one can

observe the overall median errors yielded by the different GP prior configurations trained

on DasyncSurf . In this regard, the boxplot notches in Figure 2.9 also offer evidence of

a statistically significant difference (at the 5% significance level) between the median

L2 norms of the rows of (S̄∗ − S̄∗gt) yielded by the three GP prior configurations. To

formally confirm that there are statistically significant differences between the median

L2 norms of the rows of (S̄∗− S̄∗gt) yielded by the three GP prior configurations trained

on DasyncSurf , we again employ a Wilcoxon two-sided rank sum test (Wilcoxon (1945)).

The null hypothesis is again that the values of the L2 norms of the rows of (S̄∗ − S̄∗gt)

yielded by one GP prior configuration trained on DasyncSurf and those yielded by another

configuration trained on the same dataset are samples from continuous distributions with

equal medians. The results from the Wilcoxon two-sided rank sum test are the same
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Figure 2.9: Boxplots of the L2 norms of the rows of (S̄∗ − S̄∗gt
) yielded by different

GP prior configurations trained on DasyncSurf : (i) using modelsM(1,d)
DasyncSurf

, (ii) using

modelsM(2,d)
DasyncSurf

, (iii) using modelsM(3,d)
DasyncSurf

.

as those reported in Table 2.14 for the case D = Dasync, i.e., it is formally confirmed

that there are statistically significant differences between the median L2 norms of the

rows of (S̄∗ − S̄∗gt) yielded by the three GP prior configurations. Provided this and

the fact that the median L2 norm of the rows of (S̄∗ − S̄∗gt) yielded by the third GP

prior configuration is the smallest, we conclude that there is strong evidence that our

proposed modeling significantly decreases the overall motion estimation error also when

performing regression on randomly non-uniformly spatiotemporally scattered uncertain

surface motion measurements.

2.7 Conclusion and Future Work

We presented a novel algorithm for uncertainty-aware interpolation of randomly non-

uniformly spatiotemporally scattered motion signal samples. By employing GP regres-

sion, we were able to perform the interpolation in an optimal unbiased fashion. The

use of a composite (as the sum of a constant and linear function) prior mean function

enabled the learning of global and local drifts, present in the latent process mean func-

tion, from randomly non-uniformly spatiotemporally scattered samples. By means of a

squared exponential covariance function with ADM, we were able to model the nearness

or similarity between pairs of random motion function values over a spatiotemporal do-

main. Through estimating the full a posteriori motion field distribution, we were able

to quantify the uncertainty in the resulting MAP estimate of the soft tissue motion at

any location in the spatiotemporal domain.
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The evaluation of our devised interpolation algorithm on simulated randomly non-

uniformly spatiotemporally scattered uncertain motion signal samples revealed that our

proposed GP model is able to, at the same time, learn more and yield statistically signif-

icantly better predictions than the state-of-the-art GP models that employ a zero-mean

function and do not make use of ADM. We identified strong evidence supporting our

contention that our proposed modeling significantly decreases the overall motion esti-

mation error when performing regression both in the case of using synchronous and

asynchronous motion signal samples as training data.

In future work, we plan to identify appropriate formalisms and, if needed, approximation

approaches to optimize the conditioning (see Eq. 2.5) of the proposed GP model on a

given training dataset, especially required when the training dataset is large. We would

like to apply our proposed model for registering real pre-interventional/pre-operative

navigation data on deformable soft-tissue organs during a real intervention or surgery.

Furthermore, we intend to deploy our proposed GP model for modeling organ(s) defor-

mation in the context of radiotherapy.
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Abstract

We address the problem of propagating the uncertainty from a Gaussian process (GP)-

based soft tissue motion estimation result to a deformed/registered pre-operative/pre-

interventional medical image and visualizing it in an uncertainty-aware fashion there-

after, which arises in the context of image-guided soft-tissue intervention and surgery

navigation. Visualizing the uncertainty in the deformed image is of great interest, be-

cause it conveys the uncertainty in the registered pre-interventional/pre-operative nav-

igation information on deformable soft-tissue organs governing the decisions of the sur-

geon or intervention specialist. To visualize the deformed medical image itself, we show

its maximum a posteriori (MAP) estimate. To convey the overall uncertainty in the

MAP deformed image estimate, we perform a spatially-varying blur (according to the

32
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uncertain motion estimate) to an image containing a grid and combine it with the MAP

deformed image itself and show 2D cross sections of the final image to the end user. To

visualize where a point/region of interest (POI/ROI) (e.g., a tumor) is after deforma-

tion, we estimate marginal (i.e., per voxel) label (e.g., for being a tumor) probabilities

(MLPs) based on an input probabilistic segmentation of the ROI in the non-deformed

pre-interventional/pre-operative image and the input GP posterior distribution over

deformation fields and show 2D cross sections of visually mapped MLPs or MLP isocon-

tours. The proposed visualization of the amount and various forms/types of uncertainty

in the registered pre-interventional/pre-operative navigation information should enable

surgeons and intervention specialists to make better informed safety-critical decisions

and therefore could potentially improve the overall outcome of the surgery or interven-

tion.

3.1 Introduction

Motion describes how objects change their spatial position (or location) over time. In

the case of deformable objects they may also change their shape over time. Capturing

the state of an object, i.e., its position and shape, at some points in time allows for

a reconstruction of the motion. Dynamic imaging is, for example, one widely used

approach to measure the objects’ state by a series of 2D or 3D images taken at different

points in time. Motion reconstruction of an object of interest from such a time-varying

field may, however, suffer from measurement inaccuracies such as imaging artifacts or

insufficient sampling such as low spatial and/or temporal resolutions. These issues make

the motion predictions uncertain. In this paper, we capture the uncertainties in motion

predictions using a Gaussian process regression approach.

Conveying uncertainties in motion predictions during visualization can be of utmost

importance. A prominent example is the visualization of position and shape of organs

or tumors during a medical intervention. Possibly relevant uncertainty visualization

goals for motion predictions address the following questions: Where did a single sample

(of the initial state) move to (after a given period of time) and what are the probabilities

for different locations? How did a given region of interest change its position and shape

over time and what are the uncertainties? How did the entire captured field change over

time and where in the field are uncertainties high/low? We present an approach where

the listed motions and the respective uncertainties are estimated and visualized.

Our individual contributions comprise:
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1. Computation and visualization of a probability map encoding the probability

where a point of interest (sample) moved to.

2. Computation of marginal label probabilities (MLP) of regions of interest (ROIs)

after deformation and their visualization using isocontours.

3. Computation of maximum a posteriori (MAP) estimates of deforming (time-varying)

2D/3D scalar fields and their visualization using grid-based approaches.

3.2 Related Work

Bonneau et al. (2014) pointed out to the work of Deitrick (2007) in which it is identified

that visualizing uncertainty changes the decisions of the end users. In the medical

domain for example, showing visual depiction of the uncertainty in the outcome of

medical interventions to patients is suggested to possibly lead to better satisfaction in

the shared decision process and a lower likelihood of regret about a decision (Politi et al.

(2007); Bonneau et al. (2014)).

Bonneau et al. (2014) divide data uncertainty sources into three broad classes: uncer-

tainty observed in sampled data, uncertainty measures generated by models or simu-

lations, and uncertainty introduced by the data processing or visualization processes.

Our work focuses on motion interpolation data uncertainty visualization, while the un-

certainty in motion measurement data and their uncertainty-aware interpolation are

addressed in a recently published work (Kocev et al. (2019)). In this regard, the output

from the interpolation model (Kocev et al. (2019)) includes information about estimated

error in the form of predicted distributions for values (Bonneau et al. (2014)). In princi-

ple, we propagate the uncertainty from the motion interpolation result to the uncertainty

in the deformed pre-interventional/pre-operative image and visualize it adequately.

Next, we present related work about visual encoding/representation of uncertainty. The

uncertainty can be visually encoded in various ways. A simple and well-known method

is to map the uncertainty to color and overlay this color on top of the underlying vi-

sualization (Botchen et al. (2005)). Bonneau et al. (2014) point out that it is sensible

to visualize uncertainty in a way consistent with our cognitive models of which per-

ceptual elements contain variability or uncertainty. Example uncertainty visualization

approaches that follow this principle represent the uncertainty as blur, flicker, reduced

saturation, sketched outlines, or transparency (Bonneau et al. (2014)). Botchen et al.

(2005) presented texture-based techniques to visualize uncertainty in time-dependent

2D flow fields. They show flow direction by streaklines and convey uncertainty by blur-

ring these streaklines. As a survey over uncertainty visualization approaches that treat
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uncertainty like an unknown or fuzzy quantity, Bonneau et al. (2014) pointed out the

paper by Pang et al. (1997). We also follow this principle by applying a spatially-varying

(Gaussian) blur to a 3D grid image of the same size as the input pre-interventional/pre-

operative image, where the amount of blur visually encodes the uncertainty in the de-

formed image (see Section 3.6). Bonneau et al. (2014) stated that blurring or fuzzing

a visualization accurately indicates the lowered confidence in the data, however they

emphasized that this does not lead to more informed decision making. It is important

to emphasize at this point that we are not blurring the actual data but an artificial grid,

i.e., we do not obfuscate directly the underlying data. Chlan and Rheingans (2005) pre-

sented a distribution glyph that addresses the concept of how multivariate aggregated

data is distributed. On the use of glyphs for visualizing uncertainty in vector fields,

we point to the work of Wittenbrink et al. (1996). Allendes Osorio and Brodlie (2008)

extended the concept of contouring to uncertainty by developing techniques for the vi-

sualization of uncertain contours. Grigoryan and Rheingans (2004) presented a method

for visualization of surfaces with uncertainties using points as display primitives and

applied their method in the context of visualizing tumor formations with uncertainty of

tumor boundaries. Lodha et al. (1996) presented techniques for visualizing geometric

uncertainty of surface interpolants. Torsney-Weir et al. (2011) use uncertainty-aware

visualization methods to explore the response surface (computed using a Gaussian pro-

cess model) of an automatic image segmentation algorithm over the space of parameters

that impact the quality of the segmentation algorithm. Their end user is expected to

navigate through the parameter space with the purpose to identify regions where the

response value (goodness of segmentation) is high.

The method presented in Section 3.6 can be used to visualize uncertain scalar fields in

an uncertainty-aware fashion. Therefore, next we present related work about visualiza-

tion of uncertain scalar fields. Zehner et al. (2010) presented a visualization method

for rendering scalar fields with a probability density function at each data point. They

render isosurfaces and use a color scheme to encode which parts of the surface are more

uncertain than others. In addition, they also augment the isosurfaces with additional

geometry to visualize the envelope that indicates the volume in which the isosurface lies

with a certain confidence. Djurcilov et al. (2001, 2002) presented methods for visualiz-

ing scalar volumetric data with uncertainty by incorporating the uncertainty information

directly into the volume rendering equation and by post-processing (by inserting speck-

les/holes, adding noise, or adding texture) information of volume rendered images and

then also enhanced these methods by showing the depth cues for the uncertainty. Lund-

ström et al. (2007) proposed animation methods to convey uncertainty in direct volume

rendering of medical datasets. They use a probabilistic transfer function model and an-

imate the rendering by sampling the probability domain over time and in this way vary
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the appearance for uncertain regions. I.e., certain image regions are static, while uncer-

tain ones change over time. Sakhaee and Entezari (2016) devised a statistical framework

for uncertainty quantification and uncertainty propagation through the main stages of

the visualization pipeline. They presented a probabilistic transfer function classification

model with which they incorporate probability density functions (modeling the accu-

mulated uncertainties from interpolation and reduction stages) into the (direct) volume

rendering integral. In principle, they estimate expected color and opacity values and

convey uncertainties through fuzziness and transparency. The input data to the direct

volume rendering algorithm is a field of random continuous variables. The probabil-

ity density functions of the random variables are modeled in a non-parametric fashion.

In our case, we could provide our random deformed 3D image as input to their direct

volume rendering algorithm and perform the visualization of the deformed image using

their algorithm. In this regard, we expect to get a blurred deformed image as a result

where the amount of blur will convey the amount of uncertainty. In contrast to their

work, we approximate the integral in discrete space and do not directly obfuscate the

input image data but blur a grid image instead and combine it with the MAP estimate

of the deformed image.

The method presented in Section 3.7 can be used for uncertainty-aware visualization

of probabilistic segmentation results. Therefore, next we present related work about

visualization of probabilistic segmentation results. Kniss et al. (2005) directly visualize

combined “fuzzy” classification results from multiple segmentations. In other words,

their visualization system provides access to the quantitative information computed

during “fuzzy” segmentation. In this regard, they presented different methods for color

mapping multi-class probabilities. Saad et al. (2010b,a) presented an interactive anal-

ysis and visualization tool for probabilistic medical image segmentation results. They

devised different visualization tools, incorporating multidimensional transfer functions,

for analyzing multivariate probabilistic field data with direct volume rendering. They

guide the data exploration by shape and appearance knowledge learned from expert-

segmented training images. In this regard, their multidimensional transfer functions

make use of the output acquired from the deployed probabilistic segmentation algorithm

and the probabilistic prior knowledge learned from previous expert segmentations. In

the practical setting, their tool allows research clinicians to explore the uncertainty in

the segmentation (w.r.t the population).

The method presented in Section 3.8 can be used for uncertainty-aware computation

and visualization of the position of a moving particle. Therefore, we point to the work

of Lodha et al. (2002) in which they compute and visualize the uncertainty associated

with the positions of moving particles. They compute the probability distribution de-

scribing the position of a particle moving in 2D or 3D space, based on the individual
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probability distributions that characterize the initial position, speed and direction of the

particle. Regarding the visualization of the resulting positional probability distribution,

they presented three visualization approaches (spherical glyphs or galaxy, transparency,

and pseudo-color). Their work is, in nature, closely related to our work about uncer-

tainty visualization of point motion (see Section 3.8), however in our case the resulting

positional probability distribution is estimated based on a set of uncertain motion mea-

surements that are interpolated using a GP regression method. Furthermore, the initial

position of the point in our case is described using only MLPs, i.e., we do not define any

covariance structure as when specifying probability distributions. With respect to the

visualization, their transparency visualization approach bears some similarity to our vi-

sualization technique that maps the estimated POI MLPs to grayscale (see Section 3.8).

Similar to their work, we also allow the user to scale the visualization by any factor, so

that areas of low but still significant probability are visible.

The criteria for evaluation of uncertainty visualization methods have been also addressed

in previous work. Bonneau et al. (2014) pointed out to the work of Harrower (2003),

in which a number of evaluations of methods for representing uncertainty in map-based

visualizations are surveyed, and in this regard stated that two principles may be derived

from those evaluations. The first one is the superiority of displays that integrate value

and certainty information over those that show each in a separate display. The second

one is the preference for static displays over those that toggle between certainty and

value. In our work, we integrate value and certainty information and use a static display

with a parameter that controls how much of the blurred grid image is shown overall

which is different from toggling between certainty and value. Furthermore, Sanyal et al.

(2009) presented a user study that evaluates the perception of uncertainty amongst four

of the most commonly used methods for visualizing uncertainty in 1D and 2D data.

3.3 Uncertainty-aware Asynchronous Scattered Motion In-

terpolation

In a recent work (Kocev et al. (2019)), an uncertainty-aware method for interpolating

randomly non-uniformly spatiotemporally scattered uncertain motion measurements has

been presented. They presented a novel Gaussian process (GP) regression model with a

non-constant-mean prior and an anisotropic covariance function. In this regard, the use

of GP regression makes it possible to estimate the uncertainty in the interpolation result.

In principle, they fuse motion measurements with motion prior in an uncertainty-aware

fashion. In terms of modeling the uncertainty in the measurements, a Gaussian likelihood

function is employed. The motion prior is embedded in a GP prior and conditioned on
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the motion measurements during the regression. The output of the regression is a (full)

posterior distribution over motion signal functions, which is normally discretized at

test locations (e.g., the voxels of a pre-operative/pre-interventional image that needs to

be deformed). They view their GP regression model as a deformation model (Sotiras

et al. (2013)), because they developed it for interpolation of soft (i.e., deformable) tissue

motion measurements.

The key equation of a scalar-valued GP regression is:

f |D ∼ GP(mD, kD)

mD(x) = m(x) + Σ(X,x)T (Σ + σ2
nI)−1(y − µ)

kD(x, x
′) = k(x, x′)− Σ(X,x)T (Σ + σ2

nI)−1Σ(X,x′) (3.1)

where f is the function prior that is distributed as a GP with mean function m(x) :

Ω→ R (Ω is an index set with dimension D) and covariance function k(x, x′) : Ω×Ω→
R, i.e., f ∼ GP(m,k), D = {(xi, yi)|i = 1, ..., n} (xi are the training data locations

and yi are the observations of the function values f(xi)) is a training data set of n

(usually noisy) observations, σ2
n is the noise variance, X is D×n matrix of the training

inputs (i.e., the design matrix (Rasmussen and Williams (2006))), Σ(X,x) is a vector of

covariances between every training case and x (analogous for Σ(X,x′)), µ is the vector

of the function mean values at the training data locations, i.e., µi = m(xi), i = 1, ..., n,

Σ is the covariance between the training data, and I is the identity matrix. In the

recently published work (Kocev et al. (2019)), the authors assume that the motion

signal output dimensions are independent and use a separate scalar-valued GP for each

output dimension.

The above mentioned mean function, covariance function, and likelihood function all

have (hyper-) parameters that control the distribution of the target values. These (hyper-

) parameters are optimized by maximizing the probability of the model given the input

training data.

We use the above described recently published method (Kocev et al. (2019)) to com-

pute a GP posterior distribution over deformation fields based on which we register

pre-interventional/pre-operative navigation information (e.g., an MRI) on a given de-

formable soft-tissue organ. We summarize and visually convey the uncertainty in the

registered pre-interventional/pre-operative soft-tissue navigation information based on

the information in the computed GP posterior distribution over deformation fields.
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3.4 Expected Deformed Image

Let A be the input 3D image that needs to be deformed and B be the deformed image. A

can contain any information (e.g., MRI intensities, marginal label probabilities, any 3D

texture information, etc.) about the organ that moves. The expected deformed image,

i.e., B̄ = E [B], is then estimated as follows:

B̄i,j,k ≈
∑

u,v,w

P
i,j,k
u+s,v+s,w+sAi−u,j−v,k−w (3.2)

=
∑

u,v,w

P
i,j,k
u,v,wAi−u+s,j−v+s,k−w+s (3.3)

=
∑

u,v,w

P
i,j,k
u,v,wAi+s−u,j+s−v,k+s−w , (3.4)

where (2s+ 1)× (2s + 1)× (2s+ 1) is the size of the kernel Pi,j,k that defines the local

neighborhood of the voxel (i, j, k), Pi,j,k
u,v,w holds the probability that voxel (i+ s− u, j +

s − v, k + s − w) moves to voxel (i, j, k). The transition from Eq. (3.2) to Eq. (3.3)

is made by applying the substitutions u ← u − s, v ← v − s, and w ← w − s, which

is possible because u, v, and w in the sum on the right-hand side of Eq. (3.2) range

over all legal subscripts for P
i,j,k
u+s,v+s,w+s and Ai−u,j−v,k−w. Note that the probability

P
i,j,k
u,v,w is computed based on the posterior displacement mean and covariance at the voxel

(i + s − u, j + s − v, k + s − w) that are obtained as output from the above-described

recently published GP-based method (Kocev et al. (2019)).

3.5 Maximum a Posteriori Deformed Image Estimate

The estimated mean of the GP posterior distribution over deformation fields is also its

mode, which is also called the maximum a posteriori (MAP) estimate (Rasmussen and

Williams (2006)) of the deformation field. In our case, the estimated GP posterior mean

is discretized at the voxels of the input image A and transformed into voxel space. The

discretized transformed mean is stored in a 3D array Ū, of the same size as A, that holds

the estimate of the posterior mean displacement of every voxel in voxel space. Then,

the MAP estimate of the deformed image is computed as follows:

B̂(i,j,k)+Ū(i,j,k) = Ai,j,k . (3.5)

As we use forward mapping, the MAP estimate B̂ may contain holes in case no voxel

moves to a given location. We consider this as a feature of our visualization as it allows

us to observe the phenomenon of no voxel moving to a given location.
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3.6 MAP Deformed Image Global Uncertainty Visualiza-

tion

In this section, we present a method for visual encoding of the global uncertainty present

in the MAP deformed image estimate B̂. We visually encode the uncertainty using the

algorithm presented in Section 3.4. In this regard, we use an input 3D image A, of the

same size as B̂, that contains a 3D grid (see Figure 3.1 for an example of such a 3D grid

2D cross section) and compute B̄ using Eq. (3.4). In principle, the algorithm presented

Figure 3.1: Example 3D grid 2D cross section.

in Section 3.4 applies a spatially-varying (Gaussian) blur (Chakrabarti et al. (2010)) to

the input image A to compute the output image B̄. In this regard, Eq. (3.4) is analogous

to a 3D array convolution with P
i,j,k
u,v,w being the spatial location-dependent (Gaussian)

convolution kernel. The amount of blur in the output image B̄ visually encodes the

uncertainty in the MAP deformed image estimate B̂. We then propose two methods for

combining B̄ and B̂ into a final uncertainty-aware visualization output image C. The

first method uses alpha blending and thresholding:

Ci,j,k = αB̂i,j,k + (1− α)T (B̄i,j,k, τ) , (3.6)
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where α is the opacity which ranges from 0.0 (fully transparent) to 1.0 (fully opaque),

and T (z, t) is defined as follows:

T (z, t) =




z if z ≥ t

0 otherwise.
(3.7)

The second method uses masking and thresholding:

Ci,j.k =M(B̂i,j,k,T (B̄i,j,k, τ)) , (3.8)

whereM(z, z′) is defined as follows:

M(z, z′) =




z′ if z′ > 0

z otherwise.
(3.9)

Note that it is intended to show 2D cross sections of the final uncertainty-aware visual-

ization output image C to the end user.

3.7 Deformed Region of Interest Uncertainty Visualiza-

tion

In this section, we present a method for uncertainty-aware visualization of where a

region of interest (ROI) (e.g., a tumor, a whole organ, etc.) is after deformation. In

general, the input to this method are a probabilistic 3D binary segmentation of the

ROI in the pre-interventional/pre-operative 3D image (e.g., an MRI) and the estimated

GP posterior distribution over deformation fields. The output from a probabilistic 3D

binary segmentation algorithm is normally a 3D array, here denoted with Θ, which

contains the segmented ROI marginal label probabilities (MLPs) (Ciresan et al. (2012);

Ronneberger et al. (2015)) θ(x) for each voxel with position x, i.e., θ(x) = p(ζ(x) = 1)

where ζ(x) : Ω→ {0, 1} is a function which assigns binary labels to all voxels. In case of

a deterministic input binary segmentation, we treat it as a special case of a probabilistic

segmentation where θ(x) = 1.0 for each voxel with position x that has been labeled

one and θ(x) = 0.0 otherwise. By modeling the input segmentation in a probabilistic

fashion, we already allow for uncertainty in the answer to the question where the ROI is

in the pre-interventional/pre-operative 3D image. In principle, we could visualize in an

uncertainty-aware fashion where the ROI is in the pre-interventional/pre-operative 3D

image by mapping the input probabilities θ(x) to grayscale values and showing 2D cross

sections of the resulting grayscale 3D image. The more bright a pixel is the higher the

probability that it belongs to the ROI and vice versa. To be able to perform such an

uncertainty-aware visualization of where a ROI is after deformation, we would need to
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estimate θ(x) for every voxel with position x in the deformed image. It turns out that

we can estimate the expected ROI MLP for each voxel in the deformed image using the

method presented in Section 3.4. In this regard, we set A = Θ as the input 3D image

of the method presented in Section 3.4 and estimate the expected deformed image B̄

using Eq. (3.4) which then holds the approximate expected ROI MLPs for each voxel

in the deformed image. The uncertainty-aware visualization of where the ROI is after

deformation is then obtained by converting B̄ to a grayscale image. Note again that it

is intended to show 2D cross sections of the resulting grayscale image to the end user.

As an alternative to this visualization, we allow for selecting a 2D cross section of the

MAP deformed image estimate B̂ and overlay it with ROI MLP isocontours extracted

from the corresponding slice in B̄.

3.8 Uncertainty Visualization of Point Motion

In this section, we present a method for uncertainty-aware visualization of where a

point of interest (POI) (e.g., a tumor centroid) is after deformation. The input to this

method is a POI in the pre-interventional/pre-operative 3D image (e.g., an MRI) and

the estimated GP posterior distribution over deformation fields. It turns out that we can

also define the input POI in a probabilistic fashion in the same way as the input ROI is

defined in Section 3.7. This means we can perform the uncertainty-aware visualization

of where the POI is after deformation using the method presented in Section 3.7. In

this regard, we only need to set Θ accordingly. In case the input POI is specified in a

deterministic fashion, we set the entry of Θ that corresponds to the POI equal to 1.0

and all other entries equal to 0.0. The resulting approximate expected POI MLPs for

each voxel in the deformed image are then mapped to grayscale and 2D cross sections of

the resulting grayscale image are shown to the end user as explained in Section 3.7. As

the expected use case scenario for this method is one in which the end user is allowed to

select a POI on a 2D cross section of the pre-interventional/pre-operative 3D image (e.g.,

an MRI), we propose to show the selected 2D cross section of the non-deformed pre-

interventional/pre-operative 3D image (e.g., an MRI) overlayed with the corresponding

2D cross section of the selected POI MLPs (first mapped to grayscale and then to a

distinctive color) and the corresponding 2D cross section of the approximate expected

moved POI MLPs (first mapped to grayscale and then to a distinctive color) as a final

visualization to the end user.
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3.9 Results and Discussion

In this section, we present and discuss the results that have been generated using the

above-proposed visualization methods.

Figure 3.2: Left: Breast phantom with 4 markers (one on the back side). Right:
FE model composed of tetrahedral elements which are extracted from the MRI scan
data of the breast phantom. The points in red are fixed, i.e., the FE nonlinear motion
prediction model considers these vertices as not moving. (Image courtesy of Kocev

et al. (2014).)

The input to our visualization algorithm is a GP posterior distribution over motion

signal functions (Kocev et al. (2019)), which we discretize it at the voxels of a pre-

operative/pre-interventional MRI (see Figure 3.2 left) that needs to be deformed and

the uncertainty therein visualized. The authors of the recently published work (Kocev

et al. (2019)) compute the GP posterior distribution over motion signal functions by con-

ditioning the GP prior on simulated randomly non-uniformly spatiotemporally scattered

uncertain soft-tissue motion measurements during the regression. The measurements are

simulated using a finite element (FE) model (Georgii and Westermann (2008, 2005)),

which is created of the CIRS triple modality breast biopsy training phantom (see Fig-

ure 3.2). The FE model is used to simulate motion measurements that capture physically

plausible non-linear motion that a soft-tissue organ is likely to undergo during a biopsy

intervention.

Given the pre-operative/pre-interventional MRI (see Figure 3.2 left), we first compute

the MAP estimate of the deformed MRI image using Eq. (3.5). In this regard, Figure 3.3

shows a 2D cross section of the MAP estimate of the deformed breast phantom 3D MRI

based on a moderately uncertain deformation field estimate. On the other hand, Fig-

ure 3.4 shows the same 2D cross section of the MAP estimate of the deformed breast

phantom 3D MRI based on a very uncertain (along the second output dimension) defor-

mation field estimate. A possible clue about the amount of uncertainty in Figures 3.3

and 3.4 could be the number of holes within the breast. In this regard, it is extremely
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Figure 3.3: MAP deformed breast phantom 3D MRI cross section estimate based on
a moderately uncertain deformation field estimate.

unlikely that such holes would appear inside the breast in reality. Therefore, as Fig-

ure 3.4 has more holes, one may conclude that it is very likely to be more uncertain

than Figure 3.3. However, one cannot safely conclude that an image is certain if it does

not contain such holes. Hence, in general we cannot judge or convey the amount of

uncertainty in the images based on the number of such holes.

To visualize the amount of uncertainty in Figures 3.3 and 3.4, we deploy the method

presented in section 3.6. The cross section of the blurred (based on the same GP posterior

over deformation fields that was used to compute Figure 3.3) 3D grid image that visually

encodes the uncertainty in Figure 3.3 is shown in Figure 3.5. Furthermore, the cross

section of the blurred (based on the same GP posterior over deformation fields that was

used to compute Figure 3.4) 3D grid image that visually encodes the uncertainty in

Figure 3.4 is shown in Figure 3.6. As the amount of blur in Figure 3.6 is higher than the

amount of blur in Figure 3.5, we can conclude that Figure 3.4 is more uncertain than

Figure 3.3. Note that in Figure 3.6 the amount of blur along the horizontal axis is higher
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Figure 3.4: MAP deformed breast phantom 3D MRI cross section estimate based on
a very uncertain (along the second output dimension) deformation field estimate.

than the amount of blur along the vertical axis in pixel space. This is in agreement with

the fact that the deformation field estimate that has been used to compute Figures 3.4

and 3.6 has higher uncertainty along the second output dimension, because the second

output dimension axis in world space corresponds approximately to the horizontal axis

in pixel space.

The rest of the visualization results focus on the case with higher uncertainty. In this

regard, we first combine Figures 3.4 and 3.6 into a final uncertainty-aware visualization

output using Eq. (3.6) (see Figures 3.7, 3.8, and 3.9). We also combine Figures 3.4

and 3.6 into a final uncertainty-aware visualization output using Eq. (3.8) (see Fig-

ures 3.10, 3.11, and 3.12). In Figures 3.7, 3.8, 3.9, 3.10, 3.11, and 3.12, one can observe

that the parameter τ controls how much of the blurred grid image is shown overall.

Despite the visualization of the global uncertainty present in Figure 3.4, we also vi-

sualize in an uncertainty-aware fashion where a ROI is after deformation using the
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Figure 3.5: Blurred 3D grid image cross section encoding the uncertainty in Fig-
ure 3.3.

methods presented in Section 3.7. An example of segmented (in the non-deformed pre-

operative/pre-interventional MRI) ROI MLPs 2D cross section mapped to grayscale is

shown in Figure 3.13. Furthermore, the corresponding 2D cross section of the non-

deformed pre-operative/pre-interventional MRI overlayed with the example ROI MLPs

2D cross section isocontours is shown in Figure 3.14. As can be observed in Figures 3.13

and 3.14, there is no uncertainty in the segmentation of the example ROI in the non-

deformed pre-operative/pre-interventional MRI. This is the case because in this example

we have a very accurate deterministic segmentation that we treat as a special case of

a probabilistic segmentation as explained in Section 3.7. In simple words, this means

that there is no uncertainty in the answer to question where the example ROI is in the

non-deformed pre-operative/pre-interventional MRI. However, as the input deformation

field estimate that was used to compute Figure 3.4 is uncertain, we expect that there

will be uncertainty in the answer to the question where the example ROI is after de-

formation. In this regard, we can assume that the uncertainty that will be conveyed
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Figure 3.6: Blurred 3D grid image cross section encoding the uncertainty in Fig-
ure 3.4.

in the visualization, of where the example ROI is after deformation, will originate from

the uncertainty in the input deformation field estimate. We proceed with setting Θ

equal to the non-deformed example ROI MLPs and based on the input GP posterior

distribution over deformation fields that was used to compute Figure 3.4, we perform

an uncertainty-aware visualization of where the example ROI is after deformation as ex-

plained in Section 3.7. In this regard, the 2D cross section (corresponding to Figure 3.4)

of the approximate expected deformed example ROI MLPs mapped to grayscale is shown

in Figure 3.15. Furthermore, the isocontours extracted from the approximate expected

deformed example ROI MLPs 2D cross section that is visualized in Figure 3.15 over-

layed over the MAP deformed breast phantom 3D MRI cross section estimate from

Figure 3.4 is shown in Figure 3.16. As can be observed in Figures 3.15 and 3.16, the

uncertainty-aware visualization conveys that there is uncertainty in the answer to the

question where the example ROI is after deformation. Furthermore, it is evident that

there is higher uncertainty along the horizontal axis than along the vertical axis in pixel
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Figure 3.7: Generated by combining Figures 3.4 and 3.6 using alpha blending and
thresholding (τ = 1) according to Eq. (3.6).

space. This is in agreement with the visualization in Figure 3.6. We believe that the

type of uncertainty-aware visualization presented in Figure 3.16 would be particularly

useful for biopsy intervention specialists when performing ROI (e.g., a tumor) biopsy

navigation in deforming pre-interventional images.

Despite the uncertainty-aware visualization of where a ROI is after deformation, we

also visualize in an uncertainty-aware fashion where a POI is after deformation using

the method presented in Section 3.8. An example of selected (in the non-deformed

pre-operative/pre-interventional MRI) POI MLPs 2D cross section (first mapped to

grayscale and then to green color) overlayed over the corresponding 2D cross section of

the non-deformed pre-operative/pre-interventional MRI is shown in Figure 3.17. As can

be observed in Figure 3.17, there is no uncertainty in the position of the example POI

in the non-deformed pre-operative/pre-interventional MRI. This is the case because in

this example we have a very accurate deterministic specification of the position of the

example POI that we treat as a special case of a probabilistic specification as explained
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Figure 3.8: Generated by combining Figures 3.4 and 3.6 using alpha blending and
thresholding (τ = 25) according to Eq. (3.6).

in Section 3.8. However, the corresponding 2D cross section of the approximate expected

moved (according to the input GP posterior distribution over deformation fields that was

used to compute Figure 3.4) example POI MLPs (first mapped to grayscale and then to

magenta color) overlayed over the non-deformed pre-operative/pre-interventional MRI

2D cross section in Figure 3.17 clearly shows that there is uncertainty in the position

of the example POI after deformation. Furthermore, it is evident that there is higher

uncertainty along the horizontal axis than along the vertical axis in pixel space. This is

in agreement with the visualization in Figures 3.6, 3.15, and 3.16.

3.10 Conclusion and Future Work

We presented a novel method for soft tissue motion uncertainty propagation and uncertainty-

aware visualization of deformed/registered pre-operative/pre-interventional medical im-

ages. By performing a spatially-varying blur to an image containing a grid, we were able
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Figure 3.9: Generated by combining Figures 3.4 and 3.6 using alpha blending and
thresholding (τ = 50) according to Eq. (3.6).

to convey the overall uncertainty in the displayed MAP deformed image estimate in way

consistent with our cognitive models of which perceptual elements contain variability or

uncertainty. By estimating POI/ROI (e.g., tumor) MLPs and showing visually mapped

2D cross sections thereof or alternatively visualizing MLP isocontours, we were able to

visualize where a POI/ROI (e.g., a tumor) is after deformation.

In future work, we would like to apply our proposed method for uncertainty-aware

visualization of registered pre-operative/pre-interventional patient images during a real

intervention or surgery.
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Figure 3.10: Generated by combining Figures 3.4 and 3.6 using masking and thresh-
olding (τ = 1) according to Eq. (3.8).
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Figure 3.11: Generated by combining Figures 3.4 and 3.6 using masking and thresh-
olding (τ = 25) according to Eq. (3.8).
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Figure 3.12: Generated by combining Figures 3.4 and 3.6 using masking and thresh-
olding (τ = 50) according to Eq. (3.8).
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Figure 3.13: A segmented (in the non-deformed pre-operative/pre-interventionalMRI
image) ROI MLPs 2D cross section mapped to grayscale.
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Figure 3.14: Isocontour at level/height 1.0 extracted from the segmented ROI MLPs
2D cross section that is visualized in Figure 3.13 overlayed over the corresponding 2D

cross section of the non-deformed pre-operative/pre-interventional MRI.
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Figure 3.15: Approximate expected deformed example ROI MLPs 2D cross section
(corresponding to Figure 3.4) mapped to grayscale.
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Figure 3.16: Isocontours at levels/heights 0.01, 0.1, 0.25, and 0.5 extracted from the
approximate expected deformed example ROI MLPs 2D cross section that is visualized
in Figure 3.15 overlayed over the MAP deformed MRI cross section estimate from

Figure 3.4.
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Figure 3.17: Non-deformed pre-operative/pre-interventional MRI 2D cross section
overlayed with the example POI MLPs corresponding 2D cross section (first mapped to
grayscale and then to green color) and the approximate expected moved example POI
MLPs corresponding 2D cross section (first mapped to grayscale and then to magenta

color).
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Abstract

We address the problem of automatic efficient generation of plausible image segmentation

samples that are similar to a single or multiple rater segmentations or in agreement with

the output class label probabilities of a probabilistic segmentation, which arises in the

field of uncertainty-aware image-guided radiotherapy. This is of great interest because

it allows to quantify the uncertainty in various radiotherapy dose metrics, which can

be used for evaluating the quality of the computed radiotherapy dose plan in terms

of possible adverse effects on the patient. To model the segmentation boundary in an
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uncertainty-aware fashion, we use a zero level set of a stochastic level set function which

itself is modeled as a stationary Gaussian process (GP). In this regard, we devise a

novel GP mean function which is computed based on input marginal label probabilities

(MLPs). For the case of non-probabilistic (e.g., rater) input segmentation(s), we devise

novel methods for estimating the MLPs based on a single or multiple (e.g., rater) input

segmentations. To efficiently draw realizations from a stationary GP with a desired

covariance structure on a 2D/3D image grid, we use process convolution to blur a 2D/3D

white noise image with a 2D/3D image smoothing kernel in Fourier space. To showcase

the devised methods, we apply them on multi-rater segmentation datasets for which

a corresponding radiotherapy dose plan is available and estimate the uncertainty in

computed dose metrics (e.g., generalized equivalent uniform dose (gEUD)) based on a

large number of automatically generated plausible segmentation samples.



Notation

 a 2D/3D array of the (world) positions (in

mm) of the pixels/voxels of the 2D/3D image

that is segmented into background and fore-

ground. In general,  = VEC−1(c)

76, 86

u a matrix or 3D array with n elements whose

values, e.g., in 2D, are set as follows uq,r =

uh(q,r) = ui. In general, u = VEC−1(u)

78

K 2D/3D array (currently of the same size as

the 2D/3D image that is segmented into back-

ground and foreground) whose values, e.g., in

2D, are set as follows Ku,v = k (u,v,m,n),

where (m,n) is the 2D image center in pixel

coordinates

76

S analogous to K, i.e., e.g., in 2D, Su,v =

s(u,v,m,n). Note that we do not identify

s, we only assume that it exists, and compute

S based on K. The relationship with S is:

S = MAT(S).

76

v a matrix or 3D array with n elements whose

values, e.g., in 2D, are set as follows vq,r =

vh(q,r) = vi. In general, v = VEC−1(v)

62, 76,

93

M linear transformation component of the affine

transformation that transforms the pix-

el/voxel coordinates in mm

86

t translation component of the affine transfor-

mation that transforms the pixel/voxel coor-

dinates in mm

86

61
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c 1D array of the (world) positions (in mm) of

the pixels/voxels of the 2D/3D image that is

segmented into background and foreground.

In general, c = VEC().

86

l characteristic length-scale (hyper-) parameter

used for all input dimensions

70

∗ the convolution operator 72, 76

cov(w) covariance matrix of the random vector w 75

D a real-valued random variable which takes as

values the signed distance values of all pix-

els/voxels with respect to all rater segmenta-

tions.

72

Db a real-valued random variable which takes as

values the signed distance values (w.r.t. the

“true” segmentation) of all pixels/voxels on

the boundary of all rater segmentations.

74, 81

u discretized stochastic level set function sam-

ple

74

E [a] expected value of a 75
⊙
√
A element-wise square root of the 2D/3D array

A

76

F (A) multidimensional Fourier transform of the

2D/3D array A. (Implemented using a fast

Fourier transform algorithm)

76

F−1 (A) multidimensional discrete inverse Fourier

transform of the 2D/3D array A. (Imple-

mented using a fast Fourier transform algo-

rithm)

76

GP(m,k) a Gaussian Process (GP) with a mean func-

tion m and a covariance function k

69, 74

H the Heaviside step function 69

h a function which maps from matrix or 3D ar-

ray indices to 1D array (i.e., vector) indices,

e.g., in 2D, [VEC(v)]h(q,r) = vq,r

76



Chapter 4. Gaussian Process-based Generative Segmentation Model for Uncertainty
Quantification in Radiotherapy 63

⊙ the Hadamard product operator 77

I the identity matrix (of size n) 75

Ω input space and also the index set for the GP 69

K n× n covariance (or Gram) matrix 74

k (x, x′) covariance (or kernel) function evaluated at x

and x′

69, 76,

87, 89,

92

MAT(A) an operator that converts (relatively small)

2D/3D arrays into (relatively large) 2D (co-

variannce/standard codeviation?) matrices.

For 2D arrays, it is defined as follows:

[MAT(A)]i,j = Aq−s+m,r−t+n, where h(q, r) =

i and h(s, t) = j. Note that K = MAT(K)

and S = MAT(S).

63, 76,

88

m(x) the mean function of a/the Gaussian process

(GP)

69

θ(x) the probability that the index location x is

assigned the label 1

69

Θ a 3D array that holds the estimated marginal

label probabilities θ(x) for each voxel with

world position x in mm.

72

µ mean vector (of length n) obtained by evalu-

ating the mean function of the GP at the n

index set locations

74

f (y | a,Σ) Multivariate normal probability density func-

tion with a mean vector a and a covariance

matrix Σ.

70

n the number of index set locations of the GP,

which in our case corresponds to the number

of pixels/voxels of the 2D/3D image that gets

segmented into background/foreground

75

Φ the cumulative distribution function (CDF) of

the standard normal distribution

70

nrs∗ the total number of rater segmentations dur-

ing the test phase

71
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P a diagonal matrix whose entries along the di-

agonal are set as follows Pi,i = l2

70

Ra,b (A) 2D array shift operator, which is defined as
[
Ra,b (A)

]
u,v

= Au+a,v+b. Note that Ra,b is a

linear operator.

64, 76,

91, 94

ρi∗ the binary segmentation map by the i-th rater

provided during the test phase.

71

S “matrix square root” ofK, which fulfills SS =

K. Note that K is positive definite symmet-

ric (covariance) matrix. Hence, S is also sym-

metric and therefore it fulfills SST = K

75

σ2
f variance of the (noise free) signal. In our case,

the signal is the level set function φ(x)

70

φ stochastic level set function modeled as a GP 69

T a Bernoulli random variable which takes as

values the “true” binary labels of all pixel-

s/voxels.

72

v standard normal random (column) vector of

n elements, i.e., v ∼ N (0,I)
61, 74

VEC(A) Reshapes/converts the 2D/3D array A into a

1D array (i.e., vector)

76, 91

VEC−1(a) Reshapes/converts the 1D array (i.e., vector)

a into a 2D/3D array

79

z(x) binary segmentation label function, which as-

signs a label to each index location x

69

0 (column) vector of all 0’s (of length n) 75

4.1 Introduction

One of the problems that radiation treatment planners face is the situation where a

tumor is close to an “organ at risk” (OAR). In this case, the goal is to create a radiation

field that has a high spatial gradient between the two structures. The concern with
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respect to uncertainty is that if the shape and position of any region of interest (ROI) is

uncertain, then there is some risk that part of the OAR will receive high dose that leads

to complications while part of the tumor will receive low dose that leads to recurrence.

We believe that estimating this uncertainty and making effective visualizations of this

situation would improve the radiation treatment quality.

The uncertainty in shape and position of the ROI normally originates from uncertainties

in the setup or in the output from the deployed image segmentation algorithm (Lê et al.

(2015, 2016)) or the human rater. To quantify the impact of uncertainty in segmenta-

tion on radiotherapy dose delivered to the patient, one could use Image Segmentation

Sampling (ISS) (Lê et al. (2015, 2016)). During this generative segmentation process,

one draws multiple segmentation samples and estimates the effect on the delivered dose

and accompanying dose metrics. The easy-to-apply sampling from generative models

on segmentation boundaries is particularly attractive because the binary segmentation

output is at the same time the required input to the systems which compute different

dose metrics.

We automate the generation of plausible image segmentation samples that are similar

to a single or multiple rater segmentations or in agreement with the output label proba-

bilities of a probabilistic segmentation. We model the segmentation boundary as a zero

level set of a stochastic level set function which itself is modeled as a stationary Gaussian

process (GP) (Lê et al. (2015, 2016)). In other words, the segmentation boundary is

modeled as an implicit surface/contour (Gerardo-Castro et al. (2015); Turk and O’brien

(1999); Williams and Fitzgibbon (2007)). This means that image segmentation samples

can be generated by thresholding realizations of the GP, which is reasonably fast in

comparison to more complex Markov Chain Monte Carlo (MCMC) approaches.

The first novelty of our approach stems from a generalization of the current state-of-

the-art GP mean function (Lê et al. (2015, 2016)), by setting it based on input marginal

label probabilities (MLPs). In other words, we identify the relationship between the

GP mean function value at an index location and the MLP (i.e., the probability that

the index location is labeled with a given label) (see Subsection 4.3.2). This means

that if the deployed image segmentation algorithm can output MLPs, we can directly

use them to determine the mean function. In return, this broadens the applicability

of the proposed approach. We also, as a second novelty, propose different methods for

estimating MLPs based on a single or multiple (e.g., rater) input segmentations (see

Section 4.4). This further broadens the applicability of the proposed method to cases

when (a) non-probabilistic (e.g., rater) input segmentation(s) is/are provided. Regarding

the choice of the GP covariance function, we follow up on the idea by Lê et al. (2015,

2016) and set it with a squared exponential covariance function with an isotropic distance
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measure (Rasmussen and Williams (2006)). We use process convolution (Higdon (2002))

to convole/blur 2D/3D white noise images with a 2D/3D image smoothing kernel in

Fourier space and in this way efficiently draw samples/realizations from a stationary GP

on a 2D/3D image grid. The image smoothing kernel is computed based on the deployed

GP covariance function. In regard to the presented method for efficient sampling (see

Section 4.5), we view the detailed derivation of how to apply the process convolution idea

on 2D/3D image grids as our third novelty. We apply the devised methods on multi-rater

segmentation datasets for which a corresponding radiotherapy dose plan is available

and find out that there is significant uncertainty in the computed dose metrics (e.g.,

generalized equivalent uniform dose(gEUD)) based on a large number of automatically

generated plausible image segmentation samples (see Section 4.6). We view this finding

as our fourth novelty, which may be considered of utmost value in clinical practice. In

summary, our contributions to the state of the art comprise:

1. a novel mean function for the GP over level set functions whose zero level sets are

the segmentation boundaries;

2. novel methods for estimating MLPs based on a single or multiple (e.g., rater) input

segmentations;

3. a detailed derivation of how to apply the process convolution idea on 2D/3D image

grids, and

4. application on multi-rater segmentation datasets coupled with radiotherapy dose

plans and identifying that there is a significant uncertainty in the computed dose

metrics.

4.2 Related Work

Warfield et al. (2004) compute a probabilistic estimate of the true segmentation based

on a collection of segmentations generated by human raters or automated segmentation

algorithms. In this regard, they estimate an optimal combination of the segmentations

by weighting each segmentation accordingly and combining it with a prior model and

spatial homogeneity constraints. In more detail, they evaluate the conditional probabil-

ity density of the hidden true segmentation given the segmentations and estimates of the

performance level of the segmentation generators. The probabilistic estimate of the true

segmentation can be given as an input to our image segmentation sampling algorithm,

which then can be used to draw many possible true segmentation samples.
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Warfield et al. (2006, 2008) estimate the performance characteristics of segmentation

generators and the true segmentation from segmentations with labels that may be or-

dered or continuous measures. They support, for example, surface, distance transform

or level set representations of segmentations. In this regard, they generalize their pre-

vious method (Warfield et al. (2004)) to segmentations with ordered labels. We instead

use a Gaussian process to model a level set representation of segmentations based on

input binary segmentations and then draw many possible segmentations, similar to the

input segmentations, for uncertainty quantification.

Pohl et al. (2007) pointed out to different explicit and implicit approaches to shape

presentation. In this regard, they propose a novel implicit shape representation. They

identified the relationship between signed distance maps and the logarithm of the odds

ratio (LogOdds) of probabilistic atlases (analogous to marginal label probabilities in our

context). Their novel implicit shape representation is therefore called LogOdds, which

embeds signed distance maps in a vector space. In more detail, they pointed out that

signed distance maps can always be interpreted as LogOdds maps. Furthermore, they

stated that the reverse is in general not true. The LogOdds, also known as the logit

function, is related to the probit function, which we use for setting the mean function

of our GP model over level set functions whose zero-level sets are the segmentation

boundaries. The logit and the probit functions are both quantile functions, i.e., they are

both the inverse of the cumulative distribution function of a probability distribution.

Sabuncu et al. (2010) fuse multiple expert (training) segmentations to compute the final

segmentation using a generative model. Their model assumes that the final segmentation

is generated from one or more training segmentations, however from which training

segmentations is unknown. In more detail, they define a latent random field which

specifies the index of the training image that is used to generate the label of each voxel

in the test image. However, they assume that the labels at each voxel are conditionally

independent. Furthermore, they do not draw many possible final segmentations, but

compute a single final segmentation estimate.

Fan et al. (2007) define complex probability distributions on the space of curves and

generate samples therefrom using a Markov chain Monte Carlo (MCMC) algorithm.

They use a GP sample to randomly perturb the previous curve sample when generating

a candidate curve sample from the proposal distribution. To generate a zero-mean GP

sample, they circularly convolve a white Gaussian noise sample with a smoothing (e.g.,

Gaussian) kernel. This is related to how we generate GP samples, however their GP is

defined over a 1D domain and they do not discuss how to draw GP samples efficiently.

Furthermore, they do not provide information about how to engineer a desired GP
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covariance structure using the smoothing kernel. In addition, they perform segmentation

sampling on 2D images.

Niethammer et al. (2017) presented an active mean fields (AMF) approach that allowed

an efficient approximation of the posterior distribution on segmentation labels using a

variational mean-field (VMF) approach. In this regard, they approximate the posterior

distribution using a simpler variational distribution, while minimizing the Kullback-

Leibler divergence between the two distributions. In more detail, their mean-field ap-

proximation of the posterior distribution is defined as a field of independent Bernoulli

random variables. Their work, however, does not focus on (efficient) sampling from the

(posterior) distribution on segmentation labels. Instead of representing the segmenta-

tion boundary as a zero level set, they use a dense logit (“log odds”) representation of

label probabilities. They estimate a level-set function in a probabilistic fashion, which

they interpret it as an approximate posterior on the segmentation. In regard to our

work, their estimated level-set function is analogous to the mean function of our GP

model over level-set functions. Their estimated parameters of the Bernoulli posterior

distribution on labels can be used for setting the mean function of our GP. They use a

prior to regularize the length of the segmentation boundary, which in our case is con-

trolled by the characteristic length-scale (hyper-) parameter of the covariance function

of our GP and the GP mean function itself.

The inspiring work of Lê et al. (2015, 2016) is the closest to ours. They presented a

method for an efficient generation of various plausible image segmentation samples of

the same structure based on a single expert segmentation. They also model the segmen-

tation boundary as a zero level set of a stochastic level set function. In this regard, their

stochastic level set function is modeled as a GP with a mean function equal to the signed

geodesic distance from the expert segmentation and with a squared exponential covari-

ance function. We view their mean function as a particular assumption of marginal

label probabilities based on image structure, i.e., our proposed GP mean function is

more general because it can accommodate for any specified marginal label probabilities.

Regarding efficient sampling from a GP, they point out to three different methods. The

first two methods use properties of block circulant with circulant blocks matrices and

depend on the discrete Fourier transform. In this regard, these two methods are closely

related to our method for efficient sampling, however, we use process convolutions to

generate the samples. Their third method uses the property that their chosen covari-

ance function is separable, depends on the Kronecker product, and performs Cholesky

decomposition in an efficient manner but still slower than the other two methods. This

is their method of choice.
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Regarding the presented method for efficient sampling from stationary GPs, we were

inspired by the work of Higdon (2002). They pointed out that a GP can be constructed

by convolving a continuous white noise process with a smoothing kernel. In this regard,

they described the relationship, based on the convolution theorem for Fourier trans-

forms, between the smoothing kernel and the covariance function of the GP. We use this

relationship to compute a 2D/3D image smoothing kernel with which we convolve/blur

a white noise 2D/3D image in order to draw samples/realizations of a zero-mean GP

with a desired covariance structure on a 2D/3D image grid. In principle, we work out

the derivations of how to apply the process convolution idea on 2D/3D image grids.

4.3 Gaussian Process-based Segmentation Contour Sam-

pler

We model the segmentation contour as a zero level set of a stochastic level set function

φ ( Lê et al. (2016, 2015)). Hence, we use an implicit shape representation (Pohl et al.

(2007)). The stochastic level set function is modeled as a GP with a novel mean function

m(x) : Ω→ R and a covariance function k (x, x′) : Ω×Ω→ R, i.e., φ ∼ GP(m,k), where

Ω is an index set. Note that the notation φ ∼ GP(m,k) means that φ is distributed as a

GP with mean and covariance functions m, and k, respectively. We require k (x, x) = 1

(see Subsection 4.3.2). The novel mean function is defined based on pre-computed

marginal label probabilities.

4.3.1 Marginal Label Probabilities

We define a label function z(x) : Ω → {0, 1}, which assigns binary labels to all index

locations. The labels are computed by thresholding the level set function samples using

the Heaviside step function H (with the convention H(0) = 1), i.e.,

z(x)
.
= H(φ(x)). (4.1)

We then define the marginal label probability θ(x) : Ω → [0, 1] as the probability that

the index location x is assigned the label 1, i.e., θ(x) = p(z(x) = 1). We have different

means for pre-computing the desired θ(x) (see Section 4.4).

4.3.2 Mean Function

The GP shall be set such that when drawing φ samples the following condition p(z(x) =

1) = p(φ(x) ≥ 0) = θ(x) is fulfilled. In this regard, the marginal label probability θ(x)
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can be interpreted as an excursion probability (Adler and Taylor (2009)). Note that

this condition is on the marginal distribution on φ(x), which we model it as a univariate

Gaussian with mean m(x) and variance 1, i.e., φ(x) ∼ N (m(x), 1). Hence, this condition

is on the mean function value m(x). Formally, this condition can be expressed as the

following integral equality ∫
∞

0
f (y | m(x), 1) dy = θ(x),

where f (y | a,Σ) in this case is the normal probability density function. The above

integral equality is therefore equivalent to
∫

∞

0

1√
2π

exp(−(y −m(x))2

2
) dy = θ(x).

Let y′ = m(x)− y. This yields dy′ = −dy. Furthermore, the lower and upper limits of

the integral become m(x)− 0 = m(x) and m(x)−∞ = −∞ respectively. Therefore, the

above integral equality becomes

−
∫

−∞

m(x)

1√
2π

exp(−y′2

2
) dy′ = θ(x),

which is equivalent to
∫ m(x)

−∞

1√
2π

exp(−y′2

2
) dy′ = θ(x).

The left-hand side of the above equality is the cumulative distribution function of the

standard normal distribution evaluated at m(x), i.e., we obtain

Φ(m(x)) = θ(x),

where Φ is the cumulative distribution function (CDF) of the standard normal distribu-

tion. As a result, the mean function of the GP evaluated at x shall be set equal to the

inverse of the standard normal CDF evaluated at θ(x), i.e.,

m(x) = Φ−1(θ(x)). (4.2)

The mean functionm(x) defined as such is known in the literature as the probit function.

In summary, given specified marginal label probability θ(x), we can construct the mean

function value m(x) such that the excursion probability p(φ(x) ≥ 0) is equal to θ(x).

4.3.3 Covariance Function

We set the covariance function of the GP with a squared exponential covariance function

with isotropic distance measure, i.e.,

k
(
x, x′

)
= σ2

f exp(−
1

2
(x− x′)TP−1(x− x′)) (4.3)

where P is a diagonal matrix whose entries along the diagonal are set as Pi,i = l2 (l is a

characteristic length-scale (hyper-) parameter), and σ2
f is the signal variance (Rasmussen

and Williams (2006)). To fulfill the requirement k (x, x) = 1, we set σf = 1.
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4.4 Estimation of Marginal Label Probabilities

In this section, we present four different methods for estimating the marginal label

probability θ(x). The first two methods do not require training, however they require

multi-rater segmentations during the testing phase. The other two methods require

some sort of training, however they could be used to estimate θ(x) based on a single test

rater segmentation. In the following, each of these four methods is presented in detail.

4.4.1 α-smoothed Empirical Probabilities

Provided that there is large enough test multi-rater segmentations dataset, the simplest

approach is to compute empirical probabilities as follows:

θ(x) =

∑nrs∗

i=1 ρi∗(x)

nrs∗

, (4.4)

where nrs∗ is the total number of test rater segmentations and ρi∗ is the i-th test rater

segmentation. (Note that, in order to simplify notation, ρi∗(x) is treated as an integer

(either zero or one) instead of a Boolean in Eq. (4.4).) However, especially in case of low-

probability events (i.e., in case of voxels having a low probability of being labeled one by

the raters) and with small test datasets (i.e., for small nrs∗), there is the possibility of a

possible event not occurring. Therefore, the observed frequency
∑nrs∗

i=1 ρi∗(x) would be

zero, which will imply a probability θ(x) equal to zero. This simplification is inadequate.

We therefore artificially adjust the probability of rare (but not impossible) events, so that

the probabilities of these rare events are not exactly zero and in this way circumvent the

zero-frequency problems. To do that, we deploy additive/Laplace/Lidstone smoothing

(Schütze et al. (2008)) and compute α-smoothed empirical probabilities as follows:

θ(x) =

∑nrs∗

i=1 ρi∗(x) + α

nrs∗ + 2α
, (4.5)

where α > 0 is a smoothing parameter that is usually called a “pseudocount”. The

factor 2 in 2α in the denominator corresponds to the number of categories, i.e., a voxel

can be either marked one or zero. The “pseudocount” amount α, not necessarily an

integer, is added to the number of observed cases, so that the expected probability is

not zero. Basically, for each category we have an additional count of α a priori. The

α-smoothed empirical probability is usually called a posterior probability, given rater

data and prior.

4.4.2 Blurred α-smoothed Empirical Probabilities

Let A be a 3D array which holds the marginal label probabilities θ(x), estimated using

Eq. (4.5), for each voxel with world position x in mm. In this subsection, we argue that,
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especially in case of small test datasets (i.e., for small nrs∗), neighboring entries in Amay

not be segmented similarly enough despite the use of α-smoothing. One could argue that

one could use a larger α to increase the smoothing effect, however in that case one would

also increase the probability of zero-frequency events for all voxels/entries which might

not be wanted. To alleviate this problem, we propose to complement the α-smoothing

with a Gaussian blur on the 3D array A. To achieve this, we convolve the 3D array A

with a 3D Gaussian convolution kernel G which then results in another 3D array Θ with

entries:

Θi,j,k = [G ∗ A]i,j,k =
∑

u,v,w

Gu,v,wAi−u,j−v,k−w , (4.6)

where ∗ is the convolution operator, and u, v, and w range over all legal subscripts for

Gu,v,w and Ai−u,j−v,k−w. (See also Eq. (4.C.1).)

4.4.3 Bayesian Probabilities

In this subsection, we present a method that aims at estimating realistic marginal label

probabilities θ(x) based on a single test rater segmentation. The motivation for this

is the assumption that it is more likely in practice to have a single rater segmentation

during testing. The probability θ(x) is formulated as a conditional probability with

the conditioning being performed on the event that a random variable takes the value

D(ρ∗, x), where D(ρ∗, x) is the signed distance transform (SDT) of the single test rater

binary segmentation image ρ∗ evaluated at the voxel with world position x in mm.

Formally, we have

θ(x) = p(T = 1 | D = D(ρ∗, x)), (4.7)

where T is a Bernoulli random variable which takes as values the “true” binary labels

of all voxels and D is a real-valued random variable which takes as values the signed

distance values of all voxels with respect to all rater segmentations. To evaluate the

right-hand side of Eq. (4.7), we use Bayes’ theorem to obtain an expression that contains

probabilities that we can realistically estimate:

p(T = 1 | D = D(ρ∗, x)) =
p(D = D(ρ∗, x) | T = 1)p(T = 1)

p(D = D(ρ∗, x))
, (4.8)

where the denominator in the expression of the right-hand side of Eq. (4.8) will be

estimated by marginalizing out T :

p(D = D(ρ∗, x)) = p(D = D(ρ∗, x) | T = 0)p(T = 0)

+ p(D = D(ρ∗, x) | T = 1)p(T = 1)

(4.9)

As can be observed in Eq. (4.8) and Eq. (4.9), in order to estimate θ(x), we need to

estimate these four probabilities: p(T = 0), p(T = 1), p(D = D(ρ∗, x) | T = 0), and
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p(D = D(ρ∗, x) | T = 1). To estimate the prior probability p(T = 1), we require some

prior knowledge about the ratio of the number of voxels with “true” label “1” to the

total number of voxels in any 3D image that contains the region of interest (ROI) which

is segmented, assuming that all considered 3D images contain more or less the same

portion of the human body and are of similar size. This prior knowledge is acquired

during a training phase. In this regard, we require a “true” segmentation of the ROI

in any image from any patient provided during the training phase. We anticipate two

options for acquiring the “true” segmentation. The first and ideal one is to have a

highly ranked expert rater segment the ROI, while the second less favorable one is to

have multiple less experienced raters segment the ROI and use the mean segmentation as

the “true” segmentation. In both cases, we denote the “true” segmentation with ρt. The

corresponding probability of the initial degree of belief against the event “T = 1”, i.e.,

p(T = 0), is set as p(T = 0) = 1−p(T = 1). The likelihoods p(D = D(ρ∗, x) | T = 1) and

p(D = D(ρ∗, x) | T = 0) are estimated using kernel density estimation (KDE)(Breiman

et al. (1977); Terrell and Scott (1992)) during the testing phase each based on a different

finite data sample acquired during the training phase. In this regard, we require at least

one training rater segmentation ρ of the ROI in the image to which ρt corresponds. Let(
d
(1)
1 , d

(1)
2 , ..., d

(1)
ν1

)
be a univariate independent and identically distributed sample from

the distribution over the signed distances (with respect to rater segmentations of the

ROI) of all voxels that have been labeled “1” in the respective “true” segmentation,

which is generated based on all available above-described training rater segmentations

and ρt. Analogous to this, let
(
d
(0)
1 , d

(0)
2 , ..., d

(0)
ν0

)
be a sample of rater signed distance

of voxels that have been labeled “0” in ρt, which is also generated based on all available

above-described training rater segmentations. Then, the likelihood p(D = D(ρ∗, x) |
T = 1) is estimated as follows:

p(D = D(ρ∗, x) | T = 1) =
1

ν1η

ν1∑

i=1

Γ(
D(ρ∗, x)− d

(1)
i

η
), (4.10)

where Γ is a non-negative kernel smoothing function and η > 0 is a bandwidth that acts

as a smoothing parameter, i.e., controls the smoothness of the resulting density curve.

Analogous to this, the likelihood p(D = D(ρ∗, x) | T = 0) is estimated as follows:

p(D = D(ρ∗, x) | T = 0) =
1

ν0η

ν0∑

i=1

Γ(
D(ρ∗, x)− d

(0)
i

η
). (4.11)

4.4.4 Parametric Model-based Probabilities

In this subsection, we present a method that, similar to the method presented in Sub-

section 4.4.3, aims at estimating realistic marginal label probabilities θ(x) based on a

single test rater segmentation. The probability θ(x) is formulated as the probability
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that a real-valued random variable Db will take a value less than or equal to D(ρ∗, x),.
Formally, we formulate it as

θ(x) = p(Db ≤ D(ρ∗, x))
= FDb

(D(ρ∗, x)), (4.12)

where Db is a real-valued random variable which takes as values the signed distance

values (w.r.t. the “true” segmentation) of all pixels/voxels on the boundary of all rater

segmentations and FDb
is the cumulative distribution function of the random variable

Db. Note that, we assume that the signed distance is positive inside the segmented ROI

and negative outside with zero on the segmentation boundary. Furthermore, we treat

the pixels/voxels on the boundary as being inside the ROI. To learn the probability

distribution of the random variable Db, we require a training step. In this regard, we

use the same training data as the one used for the method presented in Subsection 4.4.3,

i.e., we use the “true” segmentation ρt and at least one training rater segmentation

ρ as defined in Subsection 4.4.3. We use this training data to generate a univariate

independent and identically distributed sample from the probability distribution of the

random variable Db and fit an appropriate parametric probability distribution (e.g.,

Gaussian) model on this data. Note that, we make the assumption that the provided

test rater segmentation ρ∗ is close to the unknown true segmentation. Furthermore,

the estimated marginal label probability θ(x) is in fact the probability that imaginary

raters (with similar level of expertise with those from the training phase) would assign

the label “1” to the pixel/voxel with world position x in mm during the testing phase.

4.5 Efficient Sampling

As mentioned above, the stochastic level set function φ is modeled as a GP, i.e., φ ∼
GP(m,k), with the covariance function being stationary. The general problem we ad-

dress in this section is how to efficiently draw stationary GP samples. In practice, one

can only draw discretized function samples. The GP is therefore discretized at the index

locations. In general and in our case in particular, this is not a limitation as one is

usually interested in the values of the function samples at discrete locations (e.g., in

our case we are interested in the values of the level set function samples at the world

positions (in mm) of the pixels/voxels of the image that is segmented into background/-

foreground). In order to sample from the discretized GP, we need to evaluate the mean

and covariance functions of the GP at the index locations. This results in a mean vector

µ and a covariance matrix K. Then, the task of drawing discretized GP samples boils

down to drawing multivariate normal samples u ∼ N (µ,K). We can easily generate

standard normal random (column) vector samples v ∼ N (0,I), by multiple separate
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calls to a zero-mean unit-variance scalar Gaussian generator (readily available in many

programming environments) (Rasmussen and Williams (2006)). Note that 0 is a (col-

umn) vector of all 0’s (of length n, where n is the number of index set locations), and

I is the identity matrix (of size n). Then, each generated v sample could be affinely

transformed Av + b (see Appendix 4.A) into u with the desired/target multivariate

normal distribution. Therefore, we need to identify A and b, such that the generated

u samples are multivariate normal samples with mean µ and covariance matrix K. In

this regard, the derivation of b is as follows:

E [Av + b] = µ

A0+ b = µ See Eq. (4.A.1.1).

b = µ (4.13)

while for A we have the following:

cov(Av + b) = K

AIAT = K See Eq. (4.A.1.2).

AAT = K (4.14)

where E [a] is the expected value of any a and cov(w) is the covariance matrix of any

random vector w. Hence, we need to identify a matrix A that fulfills Eq. (4.14). The

standard approach in the literature is to deploy Cholesky factorization/decomposition

(known as the “matrix square root”) of the positive definite symmetric covariance ma-

trix K to factor it as K = LLT (Rasmussen and Williams (2006)), where L is a lower

triangular matrix. In principle, we could set A = L . However, the Cholesky factoriza-

tion/decomposition turns out to be ill-conditioned and computationally expensive when

the number of index set locations is large (Lê et al. (2016, 2015)). In regard to the

computational complexity of the Cholesky factorization, it takes n3

6 operations (Ras-

mussen and Williams (2006)). Furthermore, note that Rasmussen and Williams (2006)

suggested to add a small multiple of the identity matrix to the covariance matrix for

numerical reasons and claimed that without this stabilization the Cholesky factorization

fails.

We propose an alternative factorization K = SS . As K is symmetric, S is also sym-

metric and therefore it also fulfills K = SST . Therefore, if we set A = S, A will satisfy

Eq. (4.14) as desired. At the same time, we assume that S is constructable by evaluating

a stationary function s(x, x′) at the index locations, which means that, for example in

2D, S also fulfills the following:

[SSv]i = VEC(Rm,n (Rm,n (S ∗ S ∗ v)))i , (4.15)
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where VEC(A) reshapes/converts the 2D/3D array A into a 1D array, Ra,b (A) is a 2D

array shift operator which is defined as
[
Ra,b (A)

]
u,v

= Au+a,v+b, S is defined, in 2D,

as Su,v
.
= s(u,v,m,n) with  being a 2D array of the (world) positions (in mm) of the

pixels of the 2D image that is segmented and (m,n) being the center in pixel coordinates

of the 2D image that gets segmented (note that we do not identify s, we only assume that

it exists, and compute S based on an analogous discretization of the covariance function

k (x, x′)), v = VEC−1(v), and ∗ is the convolution operator. The proof of Eq. (4.15) is

provided in Appendix 4.C (see Eq. (4.C.3)). As K is also constructed by evaluating a

stationary covariance function at the index locations, it fulfills, for example in 2D, the

following:

[Kv]i = VEC(Rm,n (K ∗ v))i , (4.16)

where K, in 2D, is a 2D array (currently of the same size as the 2D image that is

segmented) with its values defined as follows:

Ku,v
.
= k (u,v,m,n) (4.17)

The proof of Eq. (4.16) is provided in Appendix 4.C (see Eq. (4.C.2)). As S = MAT(S),

where MAT(A) is defined, in 2D, as [MAT(A)]i,j = Aq−s+m,r−t+n with h(q, r) = i,

h(s, t) = j, and h, in 2D, being a function which maps from pixel coordinates to 1D

array indices (see also Eq. (4.B.3)), we proceed with deriving S based on K, in 2D, as

follows:

SS = K ⇐⇒
[SSv]i = [Kv]i ⇐⇒

VEC(Rm,n (Rm,n (S ∗ S ∗ v)))i = VEC(Rm,n (K ∗ v))i ⇐⇒ See (4.15) and (4.16).

Rm,n (Rm,n (S ∗ S ∗ v)) = Rm,n (K ∗ v) ⇐⇒
Rm,n (S ∗ S ∗ v) = K ∗ v (4.18)

At this point, inspired by Higdon (2002), we guess S as follows:

S = R−
m
2
,−n

2

(
F−1

(
⊙
√

F (K)
))

, (4.19)

where F (A) is the multidimensional Fourier transform of the 2D/3D array A, ⊙
√
A is the

element-wise square root of the 2D/3D array A, and F−1 (A) is the multidimensional

discrete inverse Fourier transform of the 2D/3D array A. Then, we substitute the guessed

expression for S in Eq. (4.18):

Rm,n
(
R−

m
2
,−n

2

(
F−1

(
⊙
√

F (K)
))
∗R−

m
2
,−n

2

(
F−1

(
⊙
√

F (K)
))
∗ v
)
= K ∗ v

and prove that the equality holds. First, we make use of the interchange property of the

2D array shift operator (see Appendix 4.D for a proof of it):

Ra,b (A) ∗ B = Ra,b (A ∗ B) , (4.20)
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where A and B are two 2D arrays, to turn the above equation into:

Rm,n
(
R−

m
2
,−n

2

(
R−

m
2
,−n

2

(
F−1

(
⊙
√

F (K)
)
∗ F−1

(
⊙
√

F (K)
)
∗ v
)))

= K ∗ v

then we combine the three 2D array shift operations into one 2D array shift operation

as follows:

Rm−
m
2
−

m
2
,n−n

2
−

n
2

(
F−1

(
⊙
√

F (K)
)
∗ F−1

(
⊙
√

F (K)
)
∗ v
)
= K ∗ v

which is equivalent to:

R0,0
(
F−1

(
⊙
√

F (K)
)
∗ F−1

(
⊙
√

F (K)
)
∗ v
)
= K ∗ v

and therefore finally, we prove that the following equality holds:

F−1
(

⊙
√

F (K)
)
∗ F−1

(
⊙
√

F (K)
)
∗ v = K ∗ v ⇐⇒

F−1
(

⊙
√

F (K)
)
∗ F−1

(
⊙
√

F (K)
)
= K ⇐⇒

F−1
(
F
(
F−1

(
⊙
√

F (K)
))
⊙ F

(
F−1

(
⊙
√
F (K)

)))
= K ⇐⇒ (4.21)

F−1
(

⊙
√

F (K)⊙ ⊙
√

F (K)
)
= K ⇐⇒

F−1 (F (K)) = K ⇐⇒
K = K ,

where ⊙ is the Hadamard product operator. This completes the proof that, when the

guessed expression for S from Eq. (4.19) is substituted in Eq. (4.18), the respective

equality holds. Note that in Eq. (4.21), we make use of the discrete version of the

convolution theorem (Bracewell and Bracewell (1986)).
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In addition, we provide an alternative derivation of S, which does not involve guessing.

We start with Eq. (4.18) and algebraically step-by-step derive S, in 2D, as follows:

Rm,n (S ∗ S ∗ v) = K ∗ v ⇐⇒

R
m
2
,n
2

(
R

m
2
,n
2 (S ∗ S ∗ v)

)
= K ∗ v ⇐⇒

R
m
2
,n
2

(
R

m
2
,n
2 (S) ∗ S ∗ v

)
= K ∗ v ⇐⇒ Acc. 2D array shift operator

interchange property.

See Eq. (4.20).

R
m
2
,n
2

(
S ∗Rm

2
,n
2 (S) ∗ v

)
= K ∗ v ⇐⇒ Acc. commutativity property

of convolution.

R
m
2
,n
2 (S) ∗Rm

2
,n
2 (S) ∗ v = K ∗ v ⇐⇒ Acc. 2D array shift operator

interchange property.

See Eq. (4.20).

R
m
2
,n
2 (S) ∗Rm

2
,n
2 (S) = K ⇐⇒

F
(
R

m
2
,n
2 (S)

)
⊙ F

(
R

m
2
,n
2 (S)

)
= F (K) ⇐⇒ Acc. discrete version of

the convolution theorem

(Bracewell and Bracewell (1986)).

F
(
R

m
2
,n
2 (S)

)
= ⊙
√

F (K) ⇐⇒

R
m
2
,n
2 (S) = F−1

(
⊙
√

F (K)
)
⇐⇒

R−
m
2
,−n

2

(
R

m
2
,n
2 (S)

)
= R−

m
2
,−n

2

(
F−1

(
⊙
√

F (K)
))
⇐⇒

S = R−
m
2
,−n

2

(
F−1

(
⊙
√

F (K)
))

(4.22)

This completes the alternative derivation of S. As can be observed, the result in

Eq. (4.22) is the same as our guess in Eq. (4.19).

Having derived S in terms of K, we can now express S in terms of S, as mentioned above,

as follows S = MAT(S) and draw u samples in the following way:

u = Av + b = Sv + µ (4.23)

Then, each (column) vector sample u would need to be converted into a 2D/3D array

sample u = VEC−1(u), that can be thresholded to compute a 2D/3D image segmenta-

tion sample. It turns out that we can directly compute u based on K, v, and VEC−1(µ)
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as follows:

u = VEC−1(u)

= VEC−1(Sv + µ) See Eq. (4.23).

= VEC−1(Sv) + VEC−1(µ) Here, we use the fact

that VEC−1(a) is a

linear map.

= VEC−1(VEC(Rm,n (S ∗ v))) + VEC−1(µ) Acc. Eq. (4.C.2), as S,

as mentioned above,

is constructable by

evaluating a stationary

function.

= Rm,n (S ∗ v) + VEC−1(µ)

= Rm,n
(
R−

m
2
,−n

2

(
F−1

(
⊙
√

F (K)
))
∗ v
)

+VEC−1(µ)

See Eqs. (4.19) and (4.22).

= Rm,n
(
R−

m
2
,−n

2

(
F−1

(
⊙
√

F (K)
)
∗ v
))

+VEC−1(µ)

Acc. 2D array shift

operator interchange

property. See Eq. (4.20).

= Rm−
m
2
,n−n

2

(
F−1

(
⊙
√

F (K)
)
∗ v
)
+VEC−1(µ)

= R
m
2
,n
2

(
F−1

(
⊙
√

F (K)
)
∗ v
)
+VEC−1(µ)

= R
m
2
,n
2

(
F−1

(
F
(
F−1

(
⊙
√

F (K)
))
⊙ F (v)

))

+VEC−1(µ)

Acc. discrete version of

the convolution theorem

(Bracewell and Bracewell (1986)).

= R
m
2
,n
2

(
F−1

(
⊙
√

F (K)⊙ F (v)
))

+VEC−1(µ) (4.24)

Note that, F (v), in Eq. (4.24), is distributed the same as v, i.e., we can replace F (v)

with v. As can be observed in Eq. (4.24), in order to draw a u sample, we only need

access to K, v, and VEC−1(µ). In other words, we do not need to explicitly compute S

or S.

4.6 Results and Discussion

In this section, we apply the proposed methods on multi-rater segmentations datasets

for which a corresponding radiotherapy dose plan is available. The clinical goal is to
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quantify the uncertainty in computed dose metrics (e.g., generalized equivalent uniform

dose (gEUD) (Niemierko (1999))), which originates from the uncertainty in the segmen-

tation(s).

4.6.1 Multi-rater segmentations of an esophagus

In this subsection, we perform experiments on a multi-rater segmentations dataset of

an esophagus composed of 4 different rater 3D segmentations. These segmentations

are shown in Figures 4.1, 4.2, and 4.3. We first estimate MLPs using the proposed

Figure 4.1: Multi-rater segmentations of an esophagus. (This figure has been created
using the Computational Environment for Radiotherapy Research (CERR) (Deasy et al.

(2003)).)

methods in Section 4.4. The α-smoothed empirical MLPs, computed using Eq. (4.5),

are shown in Figure 4.4. In Figure 4.4, we can observe that, because the test dataset

is relatively small (nrs∗ = 4), neighboring voxels are not segmented similarly enough.

To alleviate this problem, we perform a Gaussian blur on the 3D array which holds the

α-smoothed empirical MLPs according to Eq. (4.6). The resulting blurred α-smoothed

empirical MLPs are shown in Figure 4.5. As can be observed in Figure 4.5, neighboring

voxels are segmented much more similarly than in Figure 4.4. As it is more likely in

practice to have a single rater segmentation during testing, we proceed with estimating

MLPs using the Bayes’ theorem-based model (see Subsection 4.4.3) and the parametric

model (see Subsection 4.4.4). The input multi-rater segmentations of the esophagus,

shown in Figures 4.1, 4.2, and 4.3, are used as training data for these two models. In

this regard, the “true” segmentation ρt is set equal to the mean input multi-rater seg-

mentation of the esophagus. The four input multi-rater segmentations of the esophagus
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Figure 4.2: Multi-rater segmentations of an esophagus (zoomed in, transverse/axial
slice 45). (This figure has been created using CERR (Deasy et al. (2003)).)

are used as four different training rater segmentations ρi. To demonstrate the different

parts of the Bayes’ theorem-based model (see Subsection 4.4.3), we proceed with esti-

mating the density functions p(D = d | T = 0) and p(D = d | T = 1) using Eqs. (4.11)

and (4.10) respectively. The corresponding results, for different values of the bandwidth

η, are shown in Figures 4.6, 4.7, 4.8 4.9, 4.10, and 4.11. Having estimated the

functions p(D = d | T = 0) and p(D = d | T = 1), we are able to estimate the den-

sity function p(D = d) using Eq. (4.9). The respective result, for different values of

the bandwidth η, is shown in Figures 4.12, 4.13, and 4.14 Note that p(T = 0) and

p(T = 1) are estimated to be equal to 0.999649 and 0.000351 respectively. We then

plug p(D = d | T = 1), p(T = 1), and p(D = d) in Eq. (4.8) and estimate the desired

function p(T = 1 | D = d). The result, for different values of the bandwidth η, is shown

in Figures (4.15), 4.16, and 4.17. In practice, we estimate θ(x) (according to Eq. (4.7))

by evaluating p(T = 1 | D = d) at D(ρ∗, x). Example results are shown in Figures 4.18

and 4.19. In regard to the parametric model (see Subsection 4.4.4), we start with

learning the probability distribution of the random variable Db, which is required in
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Figure 4.3: Multi-rater segmentations of an esophagus (zoomed in, transverse/axial
slice 65). (This figure has been created using CERR (Deasy et al. (2003)).)

Eq. (4.12). All training rater segmentations ρi are used to generate a univariate inde-

pendent and identically distributed sample from the unknown probability distribution

of the random variable Db. We then fit a normal probability distribution to this data.

The cumulative distribution function of the normal distribution with the fitted mean

and standard deviation and the corresponding empirical cumulative distribution func-

tion are shown in Figure 4.20. We then set the test rater segmentation ρ∗ equal to

ρt and based on the fitted cumulative distribution function of the random variable Db,

we estimate parametric model-based MLPs using Eq. (4.12). The resulting parametric

model-based MLPs are shown in Figure 4.21. The rest of the results in this subsec-

tion are based on the estimated parametric model-based MLPs in Figure 4.21. In this

regard, we first compute the mean function, discretized at the voxel positions in mm,

using Eq. (4.2). The respective result is shown in Figure 4.22. An alternative visual-

ization of the same cross section of the computed discretized mean function is shown in

Figure 4.23. In principle, in Figures 4.22 and 4.23, we can observe a cross section of the

component VEC−1(µ) in Eq. (4.24). The same cross section of an example of the other

component R
m
2
,n
2

(
F−1

(
⊙
√

F (K)⊙ F (v)
))

in Eq. (4.24) is shown in Figure 4.24. The
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Figure 4.4: Esophagus α-smoothed (α = 10−6) empirical MLPs (cropped trans-
verse/axial slice 65).

corresponding cross section of the thresholded, according to Eq. (4.1), sample u (see

Eq. (4.24)), corresponding to Figures 4.23 and 4.24, is shown in Figure 4.25. In simple

words, Figure 4.25 shows a 2D cross section of an esophagus image segmentation sample

that has been generated using our proposed approach. A larger collection of esophagus

image segmentation samples, corresponding to Figure 4.23, are shown in Figures 4.26

and 4.27. We draw many such esophagus 3D image segmentation samples and for each

compute the respective gEUD dose metric. An example boxplot of computed gEUD

dose metrics in this way is shown in Figure 4.28. The boxplot conveys the uncertainty

in the computed dose metric, which originates from the uncertainty in the segmentation.

We believe that providing such information will be useful in clinical practice.

4.7 Conclusion and Future Work

We presented a novel method for automatic and efficient generation of plausible image

segmentation samples that are close to a single or multiple rater segmentations or in

agreement with the output label probabilities of a probabilistic segmentation. By mod-

eling the stochastic level set function as a GP with a suitable covariance function, we

were able to draw plausible zero level sets (i.e., segmentation boundaries). The novel
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Figure 4.5: Esophagus blurred (with a 3D Gaussian smoothing kernel with standard
deviation of 1.0) α-smoothed (α = 10−6) empirical MLPs (cropped transverse/axial

slice 65).

setup of the GP mean function based on MLPs further generalized a current state-of-

the-art method for image segmentation sampling and hence broadened the applicability

of the proposed method. The proposed novel methods for estimating MLPs based on a

single or multiple (e.g., rater) input segmentations allowed to apply the proposed method

also in cases when a probabilistic segmentation output is not available. By deploying

process convolution and performing the blur of 2D/3D white noise images in Fourier

space, we were able to efficiently generate image segmentation samples. The application

of the devised methods on multi-rater segmentation datasets for which a corresponding

radiotherapy dose plan was available revealed that there is significant uncertainty in

the computed dose metrics which we believe may be useful information if considered in

clinical practice.

In future work, we plan to explore more sophisticated algorithms (Warfield et al. (2004))

for estimating the true segmentation based on a collection of segmentations generated

by human raters or automated segmentation algorithms and analyze the impact on our

estimated MLPs. In this regard, we would also like to compare our MLPs with those

estimated by the STAPLE algorithm (Warfield et al. (2004)) for example. Furthermore,

we would like to perform a larger study on multi-rater segmentation datasets of various
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Figure 4.6: The graph of the density function p(D = d | T = 0) with the bandwidth
η in Eq. (4.11) being set to 1.9.

organs and tumors and estimate the uncertainty in numerous dose metrics and ana-

lyze thoroughly how this information may influence the outcome of the radiotherapy in

clinical practice.

Acknowledgments

This work was supported by the DFG Creative Unit “Intra-Operative Information: What

Surgeons Need, When They Need It” under grant number M5 CU IOI, and the NIH

grants P41 EB015902, U24 CA180918, and P41 EB015898.

Appendix 4.A Affine Transformation of a Multivariate Nor-

mal Random Vector

If one applies an affine transformation on a multivariate normal random vector, the

resulting random vector has also a multivariate normal distribution. This is formally

defined in the proposition below:

Proposition 4.A.1. Let y be a p × 1 multivariate normal random vector with mean y

and a covariance matrix Σ, i.e., y ∼ N (y,Σ). Let A be a p′ × p real matrix of rank p′,
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Figure 4.7: The graph of the density function p(D = d | T = 0) with the bandwidth
η in Eq. (4.11) being set to 0.25.

where p′ ≤ p, and b be a p′ × 1 real vector. Then, the affine transformation resultant

p′ × 1 random vector z = Ay + b has a multivariate normal distribution with a mean:

E [z] = Ay+ b (4.A.1.1)

and a covariance matrix:

cov(z) = AΣAT (4.A.1.2)

For more details, we refer the reader to the book by Rencher (2003).

Appendix 4.B Equivalence between K and K

Let c be a 1D array of the (world) positions (in mm) of the pixels/voxels of the 2D/3D

image that is segmented. Note that, c = VEC(), where  is a 2D/3D array of the

(world) positions (in mm) of the pixels/voxels of the 2D/3D image that is segmented.

In 2D, the position in mm of the pixel with coordinates (u, v), i.e., u,v, is defined as

follows:

u,v = M

[
u

v

]
+ t , (4.B.1)

where M is linear transformation and t is a translation/displacement vector. Next, we

present the proof, in 2D, about the equivalence between a matrix that is constructed by
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Figure 4.8: The graph of the density function p(D = d | T = 0) with the bandwidth
η in Eq. (4.11) being set to 0.5.

evaluating a stationary (covariance) function, e.g., k (x, x′), at the index locations, i.e.,

e.g., the matrix K, and a 2D array whose entries hold the values of the same stationary

(covariance) function evaluated at the positions (in mm) of the respective entry and the
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Figure 4.9: The graph of the density function p(D = d | T = 1) with the bandwidth
η in Eq. (4.10) being set to 0.18.

center of the 2D array, e.g., the 2D array K:

Kij = k (ci, cj)

= k
(
h−1(i),h−1(j)

)

Let (q, r) = h−1(i).

Let (s, t) = h−1(j).

= k (q,r,s,t)

= k (q,r − s,t + m,n,s,t

− s,t + m,n)

Here, we use the property

that the deployed covariance

function is stationary.

= k

(
M

[
q

r

]
+ t−M

[
s

t

]

− t+M

[
m

n

]
+ t,m,n

)
See Eq. (4.B.1).

= k

(
M

[
q − s+m

r − t+ n

]
+ t,m,n

)
Use the fact that M is a

linear map.

= k (q−s+m,r−t+n,m,n) See Eq. (4.B.1).

= Kq−s+m,r−t+n By definition of K. See Eq. (4.17). (4.B.2)

= MAT(K)i,j Acc. definition of MAT(A). (4.B.3)
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Figure 4.10: The graph of the density function p(D = d | T = 1) with the bandwidth
η in Eq. (4.10) being set to 0.25.

This completes the proof about the equivalence between K and K. Note that the same

equivalence holds for S and S, i.e., S = MAT(S).

Appendix 4.C Equivalence between Matrix Multiplication

and Convolution

In this section, we first provide the proof, in 2D, about the equivalence between matrix-

vector multiplication with a matrix that is constructed by evaluating a stationary (co-

variance) function, e.g., k (x, x′), at the index locations, i.e., e.g., with the matrix K,

and a 2D array convolution with a 2D array convolution kernel whose entries hold the

values of the same stationary (covariance) function evaluated at the positions (in mm)

of the respective entry and the center of the 2D array, e.g., with the 2D array K as a

convolution kernel. In this regard, the convolution of a 2D array A with another 2D

array B results in another 2D array C = A ∗ B with its entries defined as follows:

Ci,j = [A ∗ B]i,j =
∑

u,v

Au,vBi−u,j−v , (4.C.1)

where u and v range over all legal subscripts for Au,v and Bi−u,j−v. In fact, we provide

the proof of Eq. (4.16). However, the same equivalence holds also between a matrix-

vector multiplication with the matrix S and a 2D array convolution with the 2D array
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Figure 4.11: The graph of the density function p(D = d | T = 1) with the bandwidth
η in Eq. (4.10) being set to 0.5.

S as a convolution kernel. The proof of Eq. (4.16) is then as follows:

[Kv]i =
∑

j

Kijvj

=
∑

j

k (ci, cj) vj

=
∑

h−1(j)

k
(
h−1(i),h−1(j)

)
vh−1(j)

Let (q, r) = h−1(i).

Let (s, t) = h−1(j).

=
∑

s,t

k (q,r,s,t)vs,t

=
∑

s,t

k (q,r − s,t + m,n,s,t

− s,t + m,n)vs,t

Here, we use the property

that the deployed covariance

function is stationary.

=
∑

s,t

k

(
M

[
q

r

]
+ t−M

[
s

t

]

− t+M

[
m

n

]
+ t,m,n

)
vs,t

See Eq. (4.B.1).
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Figure 4.12: The graph of the density function p(D = d) with the bandwidth η in
Eqs. (4.10) and (4.11) being set to 0.18 and 1.9 respectively.

=
∑

s,t

k

(
M

[
q − s+m

r − t+ n

]
+ t,m,n

)
vs,t Use the fact that M is a

linear map.

=
∑

s,t

k (q−s+m,r−t+n,m,n)vs,t See Eq. (4.B.1).

=
∑

s,t

Kq−s+m,r−t+nvs,t By definition of K. See Eq. (4.17).

=
∑

s,t

vs,tKq+m−s,r+n−t Rearranging.

= [v ∗K]q+m,r+n Acc. definition of 2D array

convolution. See Eq. (4.C.1).

= [K ∗ v]q+m,r+n Acc. commutativity property

of convolution.

= [Rm,n (K ∗ v)]q,r Acc. definition of the 2D

array shift operator Ra,b (A).

= VEC(Rm,n (K ∗ v))h(q,r) Acc. definition of the

operator VEC(A).

= VEC(Rm,n (K ∗ v))i (4.C.2)
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Figure 4.13: The graph of the density function p(D = d) with the bandwidth η in
both Eq. (4.10) and Eq. (4.11) being set to 0.25.

This completes the proof of Eq. (4.16). Next, we provide the proof, in 2D, about

the equivalence between matrix-matrix-vector multiplication with a matrix that is con-

structed by evaluating a stationary (covariance) function, e.g., k (x, x′), at the index

locations, i.e., e.g., with the matrix K, and a 2D array double convolution with a 2D

array convolution kernel whose entries hold the values of the same stationary (covari-

ance) function evaluated at the positions (in mm) of the respective entry and the center
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Figure 4.14: The graph of the density function p(D = d) with the bandwidth η in
both Eq. (4.10) and Eq. (4.11) being set to 0.5.

of the 2D array, e.g., with the 2D array K as a convolution kernel:

[KKv]i = [Kw]i Let w = Kv.

= VEC(Rm,n (K ∗w))i Follows directly from Eq. (4.C.2).

Note that, w = VEC−1(w),

analogous to v.

= VEC(Rm,n (K ∗Rm,n (K ∗ v)))i This holds because

w = VEC−1(w) = VEC−1(Kv) =

VEC−1(VEC(Rm,n (K ∗ v))) =
Rm,n (K ∗ v)

= VEC(Rm,n (Rm,n (K ∗K ∗ v)))i This follows from the interchange

property of the 2D array shift

operator. See Eq (4.20).

(4.C.3)

Note that the same equivalence holds also between a matrix-matrix-vector multiplica-

tion with the matrix S and a 2D array double convolution with the 2D array S as a

convolution kernel. I.e., the above proof also serves as a proof of Eq. (4.15).
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Figure 4.15: The graph of the functions p(T = 1 | D = d) and p(T = 0 | D = d) with
the bandwidth η in Eqs. (4.10) and (4.11) being set to 0.18 and 1.9 respectively.

Appendix 4.D 2D Array Shift Operator Interchange Prop-

erty

In this section, we provide a proof of Eq. (4.20), i.e., a proof of the interchange property

of the 2D array shift operator. Let A and B be two 2D arrays. Then, the proof is as

follows:

[
Ra,b (A) ∗ B

]
i,j

?
=
[
Ra,b (A ∗ B)

]
i,j
⇐⇒ (4.D.1)

∑

u,v

[
Ra,b (A)

]
u,v

Bi−u,j−v
?
= [A ∗ B]i+a,j+b ⇐⇒ (4.D.2)

∑

u,v

Au+a,v+bBi−u,j−v
?
=
∑

u,v

Au,vBi+a−u,j+b−v ⇐⇒ (4.D.3)

∑

u,v

Au+a,v+bBi−u,j−v
?
=
∑

u,v

Au+a,v+bBi+a−(u+a),j+b−(v+b) ⇐⇒ (4.D.4)

∑

u,v

Au+a,v+bBi−u,j−v =
∑

u,v

Au+a,v+bBi−u,j−v (4.D.5)

This completes the proof of Eq. (4.20). Note that the left-hand sides of Eqs. (4.D.1)

and (4.D.2) are equal according to Eq. (4.C.1), while their right-hand sides are equal

according to the defintion of the 2D array shift operator Ra,b (A). In an analogous

fashion, we make the transition from Eq. (4.D.2) to Eq. (4.D.3). Furthermore, the
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Figure 4.16: The graph of the functions p(T = 1 | D = d) and p(T = 0 | D = d) with
the bandwidth η in both Eq. (4.10) and Eq. (4.11) being set to 0.25.

substitutions u← u+a and v ← v+ b on the right-hand side of Eq. (4.D.4) are possible

because u and v in the sum on the right-hand side of Eq. (4.D.3) range over all legal

subscripts for Au,v and Bi+a−u,j+b−v. Note that also the following holds:

Ra,b (A) ∗ B = Ra,b (A ∗ B) See Eq. (4.20).

= Ra,b (B ∗A) Acc. commutativity property

of convolution.

= Ra,b (B) ∗ A See Eq. (4.20).

= A ∗Ra,b (B) Acc. commutativity property

of convolution.

(4.D.6)
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Figure 4.17: The graph of the functions p(T = 1 | D = d) and p(T = 0 | D = d) with
the bandwidth η in both Eq. (4.10) and Eq. (4.11) being set to 0.5.

Figure 4.18: Esophagus Bayesian MLPs (cropped transverse/axial slice 65) with the
bandwidth η in Eqs. (4.10) and (4.11) being set to 0.18 and 0.25 respectively.
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Figure 4.19: Esophagus Bayesian MLPs (cropped transverse/axial slice 65) with the
bandwidth η in both Eqs. (4.10) and (4.11) being set to 0.5.

Figure 4.20: Empirical cumulative distribution function and the corresponding fitted
cumulative distribution function of the normal distribution to the sample from the

unknown probability distribution of the random variable Db.
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Figure 4.21: Esophagus parametric model-based MLPs (cropped transverse/axial
slice 65).

Figure 4.22: Esophagus parametric model-basedMLPs-based mean function (cropped
transverse/axial slice 65). Note that for visualization purposes the mean function values
that are equal to ±∞ are replaced with the maximum/minimum finite mean function

value.
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Figure 4.23: Alternative visualization of the esophagus parametric model-based
MLPs-based mean function (transverse/axial slice 65). This is a cross section of the
component VEC−1(µ) in Eq. (4.24). Note that for visualization purposes the mean

function values that are equal to ±∞ are ignored.

Figure 4.24: Cross section (transverse/axial slice 65) of an example of the component

R
m
2
,n
2

(
F−1

(
⊙
√
F (K)⊙ F (v)

))
in Eq. (4.24). In this example, the characteristic

length-scale (hyper-) parameter l is set equal to 15.
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Figure 4.25: Cross section (transverse/axial slice 65) of the thresholded sample u
(see Eq. (4.24)), corresponding to Figures 4.23 and 4.24.
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Figure 4.26: Esophagus image segmentation samples with their (transverse/axial slice
65) 2D cross section being shown, corresponding to Figure 4.23.
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Figure 4.27: Esophagus image segmentation samples with their (transverse/axial slice
65) 2D cross section being shown, corresponding to Figure 4.23.
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Figure 4.28: Boxplot of computed gEUD dose metrics for example drawn esophagus
image segmentation samples. The parameter a of the gEUD dose metric has been set

to 1.45 (Fogliata et al. (2018); Luxton et al. (2007); Belderbos et al. (2005)).
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Abstract

A real-time delivery of accurate soft-tissue intervention navigation information is one

of the most crucial aspects for accepting the soft-tissue navigation systems for intra-

operative use. Currently, soft-tissue navigation systems face some obstacles in terms of

registration of the virtual navigation information on the deformable soft-tissue organ.

Most of them perform a rigid registration between the virtual data and the organ, and

then provide the surgeon with all navigation information. However, they suffer from the

disadvantage that the virtual information is not correctly registered to the deformable

organ. In order to enable a real-time non-linear registration between the virtual naviga-

tion information and the deformable organ, we incorporate different means for tracking

1This material originally appeared in Kocev et al. (2014). c©Eurographics Association 2014. Repro-
duced by kind permission of the Eurographics Association.
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the soft-tissue internal and on-surface local motion. Furthermore, we introduce an in-

telligent information fusion engine for combining the various soft-tissue local motion

tracking information into a global motion information channel. The fusion engine is the

interface to the motion measurements, a motion dynamics model, and static shape in-

formation, which are combined to compute the a posteriori estimate of the current state

of the deformed shape. The dynamics model is realized as a finite-element deformation

simulation. In order to test the feasibility of our devised information fusion engine, we

have employed it for capturing the global motion of a breast phantom during an image-

guided biopsy. The biopsy planning navigation data, in the form of a prior diagnostic

MRI, is continuously updated over time according to the a posteriori estimate of the

global motion. As a result, the real-time changes in the shape of the breast are always

reflected in the biopsy navigation information.

5.1 Introduction

Smart information processing and interactive visualization systems have advanced sig-

nificantly over the past years, while fascinating us in many different ways. One of the

most prominent fields in which the incorporation of such systems is very beneficial, is

the field of modern medical technology for computer-assisted intervention planning and

navigation. Currently, modern medical technologies employing such systems are widely

accepted for pre-operative planning and diagnosis. However, their intra-operative use is

still facing some obstacles in terms of intervention navigation and surgeon’s interaction

with the virtual information system. The problem in terms of intervention navigation

is twofold:

1. there are inaccuracies in the registration of the navigation information on the

deformable soft-tissue organ (Meinzer et al. (2008)), and

2. there is an increase in the cognitive load of the intervention specialist during the

transfer of the navigation information from the system to the intervention situs.

The inaccuracies in the registration of the navigation information on the deformable

soft-tissue organ are, in general, due to the rigid registration between the virtual data

and the soft-tissue organ or due to incomplete and erroneous soft-tissue motion tracking.

In other words, the deformation component of the motion, which the soft-tissue organ

undergoes over time, is not properly taken into account.

The obstacles in terms of surgeon’s interaction with the virtual information are related

to the fact that the navigation system is usually placed far away from the surgeon which
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inhibits direct interaction.

Projector-based soft-tissue navigation and surgeon-computer natural interaction mech-

anisms (Kocev et al. (2011, 2013)) are very promising in circumventing the obstacles

concerning the transfer of the virtual navigation information and the difficulties in the

interaction therewith. However, the overall acceptance of the navigation systems as ben-

eficial for the intra-operative medical interventions is still confronting big challenges,

mainly due to the inaccuracies in the registration of the navigation information on the

deformable soft-tissue organ.

5.1.1 Information Fusion System

In order to increase the accuracy of the above-described registration task, we devised

an intelligent information fusion engine for real-time estimation of the motion that a

tracked instance undergoes over time. The engine fuses, in real time, three information

sources: motion dynamics, motion measurements, and shape information of the tracked

instance whose motion is being estimated.

The tracked instance is represented in a discrete fashion (see Section 5.3), and its mo-

tion state at any discrete time k is directly defined by the positions of all points which

constitute its discrete representation. The information fusion is performed at the points

which constitute the discrete representation of the tracked instance. In accordance with

this, the information sources are estimated on a per-point basis, at the points which

constitute the state of the tracked instance. Our navigation information visualization

engine is then able to update the virtual navigation information, in real time, according

to the output of our intelligent information fusion engine, such that the changes in the

pose and shape of the tracked instance are reflected in the displayed virtual information.

The general concept for the above-described information fusion, with an accompanying

navigation information visualization engine, is depicted in Figure 5.1. In this regard, the

work of Comaniciu et al. (2004) was influential to us in our formulation of the general

information fusion problem in this manner.

In this work, we actually present the solution of a specific information fusion problem

instance, depicted in Figure 5.2.

The motion dynamics modeling is embedded in a finite element model (see Section 5.5),

which is set with parameters specific to the instance whose motion is being estimated.

The finite element model is then used to simulate in real time the motion dynamics of the

tracked instance, which serves as a prediction of the motion which the tracked instance

undergoes over a specified time period. Furthermore, the finite element-based model

is actually extracted from a segmented volumetric scan of the instance whose motion
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Figure 5.1: General Information Fusion Concept. (This figure originally appeared in
Kocev et al. (2014). c©Eurographics Association 2014. Reproduced by kind permission

of the Eurographics Association.)

is being estimated. In other words, the shape information is also embedded into the

finite element-based model. Therefore, the prediction Ek (see Figure 5.2) by our finite

element-based nonlinear motion prediction model is actually the fusion of the motion

system dynamics and the shape information sources.

The motion measurements information source is composed of real-time surface (electromagnetic-

based) and volumetric (ultrasound-based) tracking data (see Section 5.4), which cap-

tures the motion of the tracked instance at points which do not necessarily correspond

in number as well as physically to the points constituting the state of the tracked in-

stance. Therefore, the displacement vectors, which describe the change in the position

of all tracked points from time k − 1 to k, are interpolated at the discrete points which

constitute the state of the tracked instance. In that way, we obtain the approximation

Ik (see Figure 5.2) of the measurement displacement vectors information source at the
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Figure 5.2: Information fusion problem instance in the context of breast biopsy navi-
gation. Ek is the a priori displacement estimate (taking into account the set of boundary
conditions Bk) and Ik is the approximation of the measurement displacement vectors

information source at a specific state point, at a discrete time index k. P̂i(tk) is the a
posteriori estimate of the position of state point Pi, at time tk. (This figure originally
appeared in Kocev et al. (2014). c©Eurographics Association 2014. Reproduced by

kind permission of the Eurographics Association.)

state points.

The overall information fusion and estimation of the a posteriori state P̂ (see Figure 5.2)

are described in Section 5.6. The virtual navigation information, in the form of a prior

diagnostic MRI, is updated in real time according to the output of our intelligent infor-

mation fusion engine (see Section 5.7), such that it always reflects the estimated current

shape and internal structure of the tracked instance. Since the overall information fusion

and navigation information update is performed in real time, we need to exploit concur-

rency and parallelism efficiently and correctly (see Section 5.8). Results are presented

and discussed in Section 5.9.

5.1.2 Contribution

Our main contribution to the state of the art can be summarized as follows:



Chapter 5. Information Fusion for Real-time Motion Estimation in Image-guided
Breast Biopsy Navigation 109

1. real-time information fusion engine for motion measurements, motion dynamics,

and shape information to estimate the a posteriori motion state and visualize the

deformed shape;

2. computation and integration of displacements from measurements and models;

3. application to real-time image-guided breast-biopsy navigation.

5.2 Related Work

Baumhauer et al. (2008) pointed out that probably the greatest challenge, in the field

of computer assisted navigation for endoscopic soft tissue interventions, relates to the

intraoperative measurement and modeling of organ shift and tissue deformation of “un-

constrained” organs in thoracic and abdominal cavities. Furthermore, they noted that

as navigation is performed over certain period of time, a continuous correction of tissue

motion and deformation would be required for constant and reliable navigation accuracy.

In this section, we will discuss a list of selected related work of others about: measure-

ment of the organ shift and tissue deformations, soft tissue deformation modeling, and

information fusion of these and related information sources.

Zhang et al. (2006) employed magnetically tracked needles and biomechanical models,

while compensating the liver respiratory motion. They have implemented and extended

the so-called paired-point, sensor orientation-based, and needle-based (needles are im-

planted in the soft-tissue organ and sampled both in the electromagnetic space as well

as in the CT image space) registration methods. Furthermore, they rely on the affine

transform proposed by Horn (1987) for simulating the small-range deformation.

Kocev et al. (2013) incorporated an algorithm for creating, in real time, a virtual point-

based representation of the deformable surface of a tracked instance lying on a surgical

table. They first create a virtual point-based model of the whole scene (viewed by a

Kinect camera), and then segment the surface of the tracked instance in the acquired

point cloud. In this way, they are able to sample the global motion signal of the de-

formable tracked instance over time on the surface spatial domain. However, they do not

sample on the tracked instance’s interior spatial domain and their method may suffer

from occlusion problems whenever parts of the tracked region are not seen by the Kinect

camera.

Cash et al. (2005) employed a range scan point cloud acquired from the exposed soft-

tissue organ surface, which is then rigidly aligned to a preoperative (predeformed) com-

plete three-dimensional surface of the organ. They account for the deformation by using

a linearly elastic FEM, which is implemented by using an incremental framework to
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resolve geometric nonlinearities. The boundary conditions for the incremental formula-

tion are generated from the intraoperatively acquired range scan surfaces of the exposed

soft-tissue organ surface. However, they do not measure the organ interior local defor-

mation, but rely solely on the FEM constrained with the surface boundary conditions.

Several research groups have developed methods for brain shift compensation. vSkrinjar

et al. (2002) proposed a biomechanical-model-based approach for brain shift comensa-

tion, which is guided by limited intraoperative (exposed brain) surface data. Dumpuri

et al. (2007, 2010) computed an atlas of model deformations based on different load-

ing conditions preoperatively, and used it with a constrained linear inverse model to

predict the intra- and post-operative distributed brain shift. Miller et al. (2012) em-

ployed the so-called Meshless Total Lagrangian Explicit Dynamics Method (MTLED),

for computing brain deformations during surgery. The problem geometry is based on

patient-specific MRI data, while the nodes are distributed automatically through the

domain. They reported a Hausdorff distance difference between previously validated

Finite Element results and their meshless results of less than 0.2 mm. However, in the

context of real-time breast motion estimation, handling the motion deformation compo-

nent might be more challenging and result in higher Hausdorff distance differences.

A relatively recent overview over ongoing research in the field of physically based defor-

mation modeling is given by Nealen et al. (2005). For an overview over ongoing research

in the field of breast biomechanics modeling, in the context of information fusion from

different imaging modalities, we refer to the article by Rajagopal et al. (2010).

The Kalman filter, in its information filter form (Anderson and Moore (1979)), is the

simplest and most well-known example of fusion. It performs the fusion of the mea-

surements and the system dynamics information sources. The measurements and the

system dynamics predictions have independent uncertainty distributions which are ex-

pressed with mean vectors and covariance matrices. Most of the other information fusion

algorithms employ the original idea of Kalman for fusing the two above-mentioned in-

formation sources. However, it is often necessary to adapt or extend the Kalman fusion

framework to handle additional information sources, such that more complicated mo-

tions can be estimated in an optimal and rigorous fashion.

Zhou et al. (2005) continued the work of Comaniciu et al. (2004), and thoroughly pre-

sented their complete information fusion framework for robust shape tracking, in a

rigorous fashion. They follow the basic idea in treating the measurement, the shape

model, and the prediction as noisy measurements with covariance matrices and fuse all

the information in an optimal way. More specifically, they apply the subspace fusion on

the Kalman fusion (measurement + prediction based on system dynamics) result and a

subspace source (shape model), and in this way they combine all the available knowledge

in the information space. They employ a strongly adapted-PCA (SA-PCA) model (Co-

maniciu et al. (2004)) to augment the statistical generic shape model with information
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specific to the currently tracked shape (e.g., the initial contour of the tracked heart of a

specific patient), and in this way obtain a deformation model of the current case. The

SA-PCA model is then actually fused with the above-specified Kalman fusion result,

such that in the end they actually fuse four information sources: the system dynamics,

measurement, subspace model, and the tracked instance-specific information. In our

solution, we can interpret the finite element-based model, extracted from the segmented

volumetric scan of tracked instance, as the above-described deformation model of the

current case. By setting the finite element-based model with tracked instance-specific

material properties (density and elastic modulus), we actually incorporate the system

dynamics in the finite element-based model. Therefore, the prediction of our finite

element-based nonlinear motion prediction model is actually the fusion of the system

dynamics and the deformation model of the current case.

5.3 Tracked Instance I
n State Representation

The tracked instance which undergoes some form of motion is denoted as In, where n is

the number of points which constitute its discrete representation. The overall state of

the tracked instance In, at time t, is represented by the state vector function:

S(t) =
[
P0(t) P1(t) ... Pn−1(t)

]
(5.1)

where Pi(t) is a vector variable function defined as

Pi(t) =




xi(t)

yi(t)

zi(t)


 ,

where xi(t), yi(t), and zi(t) are three scalar variables which define the 3D position, in

a Cartesian coordinate system in Euclidean space, of the i-th point at time t. The n

points Pi constitute the discrete representation of the tracked instance In, as shown in

Figure 5.3.

The global motion of the tracked instance, from any discrete time point k − 1 to k, is

described by the displacement function:

u : Ω→ R
3 (5.2)

where Ω ⊂ R
3 spans the 3D subspace of all possible 3D position values for the points

which constitute the state representation (5.1) of the tracked instance In.
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Figure 5.3: Discrete representation of the breast phantom. (This figure originally
appeared in Kocev et al. (2014). c©Eurographics Association 2014. Reproduced by

kind permission of the Eurographics Association.)

5.4 Motion Measurements Information Source

In general, all tracking data captures some form of motion. The measured tracking data

at a discrete time point k, for an instance In which undergoes some form of motion, is

a discrete set of points:

Mk =




Mi(tk) : Mi(tk) is the measurement of

the i− th point at time tk





(5.3)

whose cardinality theoretically may range from 1 to an arbitrarily large number. Mi(tk)

is a vector variable measurement function which gives the vector value of the observable

or tracked i-th point at time tk. In practical examples, the arbitrarily large number is

sufficiently big, while the expected minimum cardinality of the set Mk is imposed by the

minimum amount of information necessary for updating the overall state S(tk) of the

tracked instance correctly.

If |Mk| = n and ∀M ∈Mk ∃Pi such that in reality they both correspond to the same
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Figure 5.4: Breast skin surface and interior tracking data. In this example, the
discrete set of points {M1,M2,M3,M4,M5,M6} constitute the set Mk from Eq. 5.3.
The four dark gray rectangular bodies, among which three are attached directly on
the skin surface and one on the utlrasound probe, are the tracked electromagnetic
bodies/sensors. (This figure originally appeared in Kocev et al. (2014). c©Eurographics
Association 2014. Reproduced by kind permission of the Eurographics Association.)

physical point, then the state S(tk) of the tracked instance In, at time tk, is completely

defined directly by the measurements. However, in real scenarios we have |Mk| < n.

Furthermore, the cardinality of the set Mk, in general, varies and not always the same

physical points are tracked over time, such that the overall spatial sampling density and

coverage of the global motion signal varies from one time point to another.

Furthermore, the sets of measurements Mk and Mk−1 define the set of samples, denoted

by Sk, from the output of the function ( 5.2) at any discrete time point k. The spatial

domain Ω (defined in Eq. (5.2)) of the displacement function which captures the motion

of the breast (treated as an In instance), is then the 3D subspace encompassing the

breast interior and bounded by the breast skin surface. Therefore, the location of each

sample s ∈ Sk could be either somewhere on the breast skin surface or in the breast

interior.

In order to sample the output of the displacement function on the breast surface spatial

domain, we attached small electromagnetic bodies/sensors to the breast skin surface, as

illustrated in Figure 5.4. The 3D position of each attached electromagnetic body/sensor

defines the location of a different sample from the output of the above-described dis-

placement function, on the breast skin surface spatial domain. Furthermore, the sample

values at these locations, at a discrete time k, are based on the electromagnetic tracking

data, for the corresponding bodies/sensors, at the discrete time points k − 1 and k.

In order to sample the output of the displacement function on the breast interior spatial

domain, we incorporated a real-time ultrasound imaging device which is localized in

the electromagnetic tracking space. This is achieved by attaching an electromagnetic
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body/sensor on the ultrasound probe, as illustrated in Figure 5.4, which enables us to

localize the probe in the electromagnetic tracking space. Furthermore, we compute the

position (at a discrete time k) of the contact point between the ultrasound probe and

the breast skin surface, based on the tracking data (at a discrete time k) for the sensor

attached on the probe and on a prior calibration of the displacement vector from the

sensor location to the bottom mid point on the ultrasound probe. Moreover, we are able

to use the position of this contact point as an additional sample location on the breast

skin surface. Having this in hand and using a prior information about the definition of

the ultrasound image space with respect to a 3D local frame positioned at the above-

described contact point, we obtain the transformation between the ultrasound image

space and the electromagnetic tracking space. The real-time ultrasound imaging device

then captures the interior of the breast by acquiring 2D images over time, as illustrated

in Figure 5.4. The 2D ultrasound images reveal distinctive breast soft-tissue structures,

which are identified and tracked over time by a digital image correlation (DIC) variant

of the real-time capable algorithms by Isard and Blake (1998) and Zhang et al. (2010).

The position of every tracked point in the ultrasound image space, within the identified

and tracked breast soft-tissue structures, is localized in the electromagnetic tracking

3D space, as described above. The 3D position of every tracked point, localized in the

electromagnetic tracking space, then defines the location of a different sample from the

output of the above-described displacement function on the breast interior spatial do-

main. The sample values at these locations, at a discrete time k, are then based on the

DIC tracking data, for the corresponding tracked soft-tissue points, at the discrete time

points k − 1 and k.

5.5 Motion Dynamics and Shape Information Sources

The motion, which the tracked instance In undergoes between two discrete time points

k − 1 and k, in general, contains two components: a rigid-body displacement and a

deformation. The rigid-body displacement is composed of a rotation and a translation

component and it preserves the shape and size of the tracked instance In, where the

change in shape and size is measured against the initial or undeformed state S(t0). On

the other hand, the change in the deformation component of the motion is responsi-

ble for any change in shape and size which the tracked instance In undergoes between

the two discrete time points. The deformation component of the motion at time k has

changed with respect to the one at time k-1, if there is a nonzero relative displacement

between all or some of the points which constitute the discrete representation of the

tracked instance In.
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In our case, we need to model the dynamics of the motion which the breast undergoes

over time. Soft-tissue deformation modeling is a challenging task, because it involves a

major deformation component which is difficult to model when the material properties

of the tracked instance In are not well known. Furthermore, we need an appropriate

nonlinear motion model, which shall be able to predict, in real time, the change in

the motion deformation component from time k-1 to k. This kind of nonlinear models

in addition impose the challenge of extracting appropriate motion heuristics from the

global motion signal sampling data Sk, which are then used as boundary conditions by

the nonlinear motion fitting model. In other words, the nonlinear model depends both

on the time tk and on a number of carefully selected boundary conditions to which the

model is fitted, when predicting the motion deformation component.

In order to achieve a realistic soft-tissue deformation modeling, one needs to employ

a physical model of the tracked instance In. As pointed by Georgii and Dick (2012),

physics-based modeling is preferred over simplified models, because in a physics-based

prediction model the accuracy is much higher, at least, from a theoretical point of view,

which is especially important for our target medical applications. Furthermore, finite

elements are a well-known mathematical tool for accurate modeling of the behavior of

deformable objects based on the theory of elasticity. When compared to finite difference

methods, which consider only the values at discrete samples, the finite element methods

take the continuum within an element into account by providing a well defined interpo-

lation function. In this manner, a higher accuracy is guaranteed. The degree of freedom

of an element is defined by the number of “free” vertices which constitute the element,

and the data values are only given at these vertices. Without any loss in the generality

of our state formulation (5.1), we assume that the points which constitute the state

representation of the tracked instance In and all the finite element vertices have 1-to-1

correspondence, and each pair of corresponding points contain information for the same

physical point. In other words, the data values at all the finite elements’ vertices will

contain the predicted complete motion state information at time k.

Having these arguments in hand for the suitability of this nonlinear model for our par-

ticular problem, we decided to incorporate the framework by Georgii and Westermann

(2008, 2005) for physical simulation of deformable volumetric bodies in real time, which

is built upon the physical laws of continuum mechanics. Their framework is based on

an implicit finite element method and it employs a multigrid approach for the efficient

numerical simulation of elastic materials. Their proposed approach enabled us to do

efficient realistic and numerically stable simulation of heterogeneous bodies (described

by tetrahedral or hexahedral grids).

Regarding the set of boundary conditions at time k, denoted as Bk, we check if the

influence measure of the nearest-neighbor sample s ∈ Sk of every state point Pi is above

some threshold, and only then compute Ik(Pi) and add the pair (Pi, Ik(Pi)) to the
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set Bk. The influence measure is a function of the Euclidean distance between the

nearest-neighbor sample s ∈ Sk and the respective state point Pi. Ik is the identified

best interpolant on Sk, which currently employs a simple nearest-neighbor interpolation

strategy.

An example of a finite element model of the CIRS triple modality (X-ray Mammography,

MRI, Ultrasound) breast biopsy training phantom, is shown in Figure 5.5 right.

Figure 5.5: Breast phantom. Left to right: MRI scan with 4 markers (one on the
back side); the finite element-based model composed of tetrahedra elements which are
extracted from the MRI scan data on the left. The points in red are fixated, i.e., the
FEM-based nonlinear motion prediction model considers these vertices as not moving.
(This figure originally appeared in Kocev et al. (2014). c©Eurographics Association

2014. Reproduced by kind permission of the Eurographics Association.)

The fixation points are chosen such that they reflect the expected realistic behavior of

the motion which the breast phantom, shown in Figure 5.9, can undergo. The points

Pi, which constitute the state representation of the breast, have 1-to-1 correspondence

with the tetrahedral finite element vertices, as depicted in Figure 5.6. Furthermore, the

set of boundary conditions Bk are applied on the tetrahedral finite element model on

a per-vertex basis. We then compute the a priori displacement estimate Ek(Pi) for all

state points Pi for which a boundary condition is not provided, while taking into account

the provided boundary conditions Bk. In this regard, we employ a geometric multigrid

solver on the tetrahedral grid to efficiently solve the resulting system of linear equations

(Georgii et al. (2010)). As the finite element-based model is extracted from the MRI

scan data, shown in Figure 5.5 left, and its material properties are set to match those of

the CIRS phantom, the a priori displacement estimate Ek(Pi) is actually the fusion of

the motion dynamics and shape information sources at the state point Pi. Furthermore,

the a priori displacement estimate Ek(Pi) serves as a prediction of the global motion

signal at the state point Pi, at time k.
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Figure 5.6: 1-to-1 correspondence between the points which constitute the state rep-
resentation of the breast on one hand, and the tetrahedral finite element vertices on
the other. (This figure originally appeared in Kocev et al. (2014). c©Eurographics
Association 2014. Reproduced by kind permission of the Eurographics Association.)

5.6 A Posteriori State Estimation

While computing the a posteriori position estimate of each point Pi, part of the state

representation (5.1) of the tracked instance In (e.g., the breast phantom), we consider

whether a boundary condition is provided for that state point or not. For all state points

for which a boundary condition is provided in Bk, we compute the a posteriori estimate

as follows:

P̂i(tk) = P̂i(tk−1) + Ik(P̂i(tk−1)) (5.4)

while for those for which it is not provided as:

P̂i(tk) = P̂i(tk−1) + Ek(P̂i(tk−1)) (5.5)

where P̂i(tk−1) is the previous a posteriori position estimate of the state point Pi. In

other words, there are state points, on one hand, whose nearest-neighbor motion signal

sampling point has a strong enough influence on them, while on the other hand there are
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state points whose nearest-neighbor motion signal sampling point does not have such a

strong influence on them. Therefore the a posteriori position estimates of the former are

computed using (5.4), while of the latter using (5.5).

5.7 Real-time Virtual Navigation Information Update

The virtual navigation information, e.g., a prior diagnostic MRI, shall be updated in

real time according to the output of our intelligent information fusion engine, such that

it reflects the estimated current shape and internal structure of the tracked breast in-

stance. In our case, we decided to always display the MRI slice which corresponds to

the current US 2D image. Therefore, the output of our information fusion engine at a

discrete time k, i.e., the estimated state S(tk), shall be used to update the prior MRI

scan such that the corresponding MRI slice can be correctly sampled.

The prior MRI scan is taken at time t0, i.e., when the motion state of the tracked breast

is S(t0). On the other hand, we have the displacement field which describes the motion

of each state point Pi during the transition from state S(t0) to state S(tk). We could first

move the MRI voxels, such that the 3D MRI scan reflects the estimated current shape

of the tracked instance, and then sample the MRI volume at the plane corresponding to

the US image plane. Alternatively, we could sample the above-described displacement

field on the plane defined by the 2D US acquisition image, and then compute the MR

image value for each plane pixel by sampling the MRI volume at the voxel which actually

moved to the same plane point (based on the previously sampled displacement vector at

the same pixel). We choose the latter approach for computing the corresponding MRI

slice, because it avoids unnecessary computations. However, the sampling plane and

the displacement field are both defined in the EM world coordinate system. Meaning,

we also need to transform their descriptions to the MRI world coordinate system, in

which the positions of the MRI voxel are described. Therefore, we need to compute the

transformation between the EM and the MRI world coordinate systems.

The relationship between the EM and the MRI Cartesian coordinate systems, is found

by using pair of measurements of the coordinates of four points in both systems. The

measurements of the coordinates in the MRI world coordinate system are given by the

3D positions of the four MR markers (see Figure 5.5) in the MRI world, while their

coordinates in the EM world coordiante system are acquired by pointing each of them

with an EM-tracked sensor/pointer. The transformation parameters (rotation, transla-

tion, and scaling) are then found by employing the closed-form solution, by Umeyama

(1991), of the general absolute orientation problem.

Figure 5.7 provides an example of a 2D US image together with its corresponding 2D
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MR slice, where the 2D MR slice is sampled, as described above, from the prior MRI

scan of the breast phantom.

Figure 5.7: US-MRI correspondence example. (Left to right) current US 2D image;
corresponding MRI slice with the same extents as the current US 2D image; overlay of
the current US 2D image on the full corresponding MRI slice. (This figure originally
appeared in Kocev et al. (2014). c©Eurographics Association 2014. Reproduced by

kind permission of the Eurographics Association.)

5.8 Concurrency and Parallelism Aspects

In order to make the estimation of the motion, a tracked instance In undergoes over

time, possible in real time, we had to extensively parallelize each information source gen-

eration component as well as the overall information fusion engine. When striving for

performance, programming in terms of threads (using low-level APIs) can be an incon-

venient way to do multi-threaded programming. Logical tasks are a more appropriate

choice, because they match better parallelism to available resources, have a faster start-

up and shut-down, have a more efficient evaluation order, improved load balancing, and

they provide higher-level thinking. Therefore, we have employed the IntelrThreading

Building Blocks (IntelrTBB) library (Intel), which supports scalable parallel program-

ming using standard ISO C++ code. We define three different IntelrTBB-based logical

tasks which can be described as follows:
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Figure 5.8: Depiction of the communication flow in our intelligent information fu-
sion system. (This figure originally appeared in Kocev et al. (2014). c©Eurographics
Association 2014. Reproduced by kind permission of the Eurographics Association.)

1. a task which generates 2D ultrasound (US) images and electromagnetic tracking

data in real time;

2. a task which performs the US-US image correlation in real time, and

3. a task which performs the fusion of the motion dynamics and the shape information

sources (finite element-based simulation), i.e., the a priori motion estimation, in

real time.

The communication and the synchronization between the different logical tasks is han-

dled by a so called Manager unit (depicted in Figure 5.8), which we have implemented

in addition. Furthermore, we had to devise a smart data management system to handle

all data generated by the different tasks in a thread-safe manner.

The sampling of the displacement field (described in section 5.7) on the plane defined

by the 2D US acquisition image, is extensively parallelized using OpenMP (OpenMP

Architecture Review Board). Furthermore, the 2D sampling of the prior MR image,

based on the above-described sampled displacement field, is performed on the graphics

processing unit (GPU).
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5.9 Results and Discussion

Figure 5.9: Hybrid Image-guided Breast Biopsy Navigator. (Please see the ac-
companying video material.) (This figure originally appeared in Kocev et al. (2014).
c©Eurographics Association 2014. Reproduced by kind permission of the Eurographics

Association.)

The presented information fusion algorithm has been tested within our devised breast

biopsy navigation system, depicted in Figure 5.9. This figure demonstrates the function-

ality of our information fusion engine, when estimating the global motion of the CIRS

triple modality breast biopsy training phantom in real time.

The resolution of the input ultrasound (US) image, as shown in the top-left image viewer

on the computer screen in Figure 5.9, is set to 512×512. Furthermore, the ultrasound

acquisition depth is set to 120 mm.

The bottom-right image viewer, as depicted on the computer screen in Figure 5.9, shows

an overlay of the two displacement vectors (capturing the local motion of the tracked

breast lesions in the ultrasound image space) on the input US image. In this example,

the global motion signal sampling data set Sk contains two samples from the output of

the displacement function 5.2 on the breast interior spatial domain. Their sample values

are set with the values of the overlaying displacement vectors, shown in the bottom-right

image viewer on the computer screen in Figure 5.9, transformed to the EM world coor-

dinate system. The set of boundary conditions Bk, at time k, are then extracted from

the set Sk and used as Dirichlet conditions (Georgii et al. (2010)) in the finite element

model of the breast phantom.

The breast phantom is fixated with five pins. Two of them can be observed in front,

while the remaining three cannot be seen because one is below (in the middle), and

the other two behind the breast phantom (see Figure 5.9). One could also observe the

virtual representation of these fixation points, rendered as red spheres, in the virtual
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scene containing the finite element model of the breast shown in the bottom-left image

viewer on the computer screen in Figure 5.9, or more clearly in Figure 5.5.

For the performed tests, we used the following parameter configuration of the breast

phantom finite element model:

Parameter Value/Type

Integration Type Dynamic Euler

Strain Type Corotated Cauchy Strain

Stiffness 1000

Poisson Ratio 0.48

Density 1000

Damping 2.5

Time Step 0.033

Number of VCycles 1

Having set the finite element model with the above information, we are able to compute

the a priori displacement estimate Ek(Pi) for all state points Pi for which a boundary

condition is not given.

Then, we are able to compute the a posteriori position estimate for all state points Pi,

as described in Section 5.6.

Furthermore, we are able to continuously update the prior diagnostic image (in this

example an MRI image), based on the real-time output of our fusion algorithm, as

described in 5.7. In the top-right image viewer on the computer screen in Figure 5.9,

one could observe that the updated diagnostic MRI image map reflects the true shape

and internal structure of the examined breast (see also Figure 5.7). In this way, we can

actually claim that we are also able to provide a hybrid image-guided (in this example

US-MRI-guided) biopsy navigation.

We analyzed the real-time performance of our information fusion system on a desktop PC

(Intel(R) Core(TM) 2 Quad CPU Q9000 @ 2.00 GHz 2.00 GHz, 4 GB RAM, Windows

7 Professional 64 bit) and obtained that on average we achieve 20-30 updates of the

current state per second. The non-constant update rate is mainly due to the concurrent

nature of the different components in the information fusion engine.

However, the accuracy of our information fusion system has only been visually inspected

in our laboratory setting using the CIRS phantom and not yet for estimating the motion

of deformable human organs in an intervention room. In future work, we plan on first

validating the results of our information fusion algorithm against simulated ground-truth

global motion signal values. One could simulate the ground-truth global motion signal

using the finite element model of the soft-tissue tracked instance. Then one would need

to sample the ground-truth global motion signal at locations which do not necessarily
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correspond to the state points Pi, and use these samples as ground-truth global motion

signal samples. These samples would constitute the motion measurements information

source which will be fused with the dynamics and the shape information sources by our

fusion engine. The result will be then compared against the above-specified ground-

truth global motion signal. For an overall system validation, we plan on generating

the ground-truth navigation information for a certain number of time points (e.g., by

acquiring MRI scans of the deformed soft-tissue tracked instance at the respective time

points) and comparing it against the updated virtual navigation information (e.g., the

deformed prior MRI scans) based on the output of our information fusion algorithm at

the respective time points.

5.10 Conclusion and Future Work

We devised an intelligent information fusion engine for real-time estimation of the mo-

tion that a tracked instance undergoes over time. The engine fuses the tracked instance’s

motion dynamics, motion measurements, and shape information sources. As a result,

all available knowledge in the information space is combined.

We incorporated electromagnetic bodies/sensors for sampling the global motion signal

on the deformable organ’s surface spatial domain. For sampling the global motion sig-

nal on the deformable organ’s interior spatial domain, we used an appropriate real-time

US-US image correlation algorithm which identifies distinctive soft-tissue structures and

tracks them over time.

By employing a finite element model, we were able to best model, based on the theory

of elasticity, the dynamics of the motion which a deformable organ undergoes over time.

Using this nonlinear motion model, we were able to predict, in real time, the change in

the motion deformation component from time k − 1 to k.

We showcased the feasibility of our devised information fusion engine by employing it for

capturing the global motion of a breast phantom during an image-guided biopsy. In this

way, we enabled the real-time update of the biopsy planning navigation data according

to the posteriori estimate of the global motion. In return, the real-time changes in the

shape of the breast are always reflected in the navigation information.

As we assumed error-free measurements and modeling, our a posteriori position es-

timates depend either only on the interpolated displacement or only on the a priori

displacement estimate. In other words, currently we do not model the uncertainties

neither in the electromagnetic tracking nor in the US-US image correlation data. In

future work, we plan on quantifying these uncertainties and including this knowledge in

the information space. This will enable us to incorporate the uncertainty information

source in the a posteriori state estimation, such that a proper (always assuring consistent
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and conservative a posteriori position estimates) uncertainty-aware information fusion

is possible.
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Chapter 6

Conclusion and Future Work

We addressed different aspects of the problem of uncertainty in image-guided therapies.

In Chapter 4, we proposed a solution to the problem of automatic and efficient genera-

tion of plausible image segmentation samples that are similar to a single or multiple rater

segmentations or in agreement with the output class label probabilities of a probabilistic

segmentation. By devising a novel stationary GP-based generative segmentation model,

we were able to model the uncertainty in image segmentation. The stationary GP served

as a model of a stochastic level set function whose zero level sets were used to model

the segmentation boundaries, which in return allowed us to treat the boundaries in an

uncertainty-aware fashion. By computing our novel GP mean function based on input

marginal label probabilities (MLPs), we further generalized a current state-of-the-art

method for image segmentation sampling and hence broadened the applicability of the

proposed method. That and the setup of the GP with a squared exponential covariance

function allowed us to draw plausible zero level sets (i.e., segmentation boundaries).

The proposed novel methods for estimating MLPs based on a non-probabilistic single or

multiple (e.g., rater) input segmentations allowed us to also apply the proposed method

in cases when a probabilistic segmentation output is not available. By devising a fast

method for sampling from stationary GPs, we were able to draw the image segmentation

samples efficiently. In this regard, we employed convolution to blur 2D/3D white noise

images with a 2D/3D image smoothing kernel in Fourier space and in this way we were

able to efficiently draw realizations from the stationary GP on a 2D/3D image grid. We

also found as secondary results of this research component a computationally more effi-

cient “matrix square root” factorization than the standard Cholesky factorization as well

as an efficient matrix-vector multiplication, though they both depend on the assumption

of stationarity. The generative segmentation model allowed us to automatically generate

many plausible image segmentation samples by simply drawing GP samples and thresh-

olding them, which we then used for estimating and visualizing different aspects of the
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uncertainty in image-guided therapies (e.g., the uncertainty in various radiotherapy dose

metrics). By inspecting the visualized uncertainties (e.g., conveyed in the boxplot, in

Figure 4.28, of computed radiotherapy gEUD dose metrics for example esophagus image

segmentation samples), we could conclude that there might be a significant uncertainty

in some image-guided therapies and thus the knowledge about this uncertainty may be

useful information if considered in clinical practice (e.g., for evaluating the quality of the

computed radiotherapy dose plan in terms of possible adverse effects on the patient).

The devised generative segmentation model may be potentially further improved in dif-

ferent ways. For example, instead of using a constant characteristic length-scale (hyper-)

parameter over the spatial domain for the GP covariance function, in some cases, it may

be better to use a spatial location-dependent length-scale. To achieve that, we could, for

example, employ the Gibbs’ covariance function (Gibbs (1998)), which may potentially

allow us to better control the variability of the stochastic level set function samples

over the spatial domain. However, the Gibbs’ covariance function is non-stationary,

i.e., our devised fast method for sampling from stationary GPs would not be applicable

in this case. Furthermore, instead of setting the “true” segmentation to a single non-

probabilistic segmentation (e.g., performed by a highly ranked expert rater) or to the

average of multiple non-probabilistic segmentations (e.g., performed by less experienced

raters), we could estimate it in a more sophisticated fashion, for example by employing

the STAPLE algorithm (Warfield et al. (2004)), which may potentially enable us to

estimate more accurate MLPs.

In Chapter 2, we proposed a solution to the problem of interpolating in an uncertainty-

aware fashion randomly non-uniformly spatiotemporally scattered uncertain soft tissue

motion measurements and after that, in Chapter 3, we devised a method about propagat-

ing the uncertainty from the motion estimation result to a corresponding registered pre-

operative/pre-interventional medical image and visualizing it in an uncertainty-aware

fashion thereafter. By devising a novel spatiotemporal GP regression model, we were

able to perform the interpolation of the motion measurements in an uncertainty-aware

optimal unbiased fashion. In principle, the spatiotemporal GP formalism enabled the

uncertainty-aware estimation of anatomy displacements at any location, and for any

time interval from measured uncertain motions that are sparse in space and time. By

estimating the full a posteriori motion field distribution, we also obtained the uncer-

tainty in the resulting MAP estimate of the soft tissue motion at any spatiotemporal

location quantified. By using a composite prior GP mean function, we were able to

learn the global and local drifts present in the latent process mean function. This and

the use of a squared exponential covariance function with an anisotropic distance mea-

sure (ADM) enabled our proposed GP model to, at the same time, learn more and

yield statistically significantly better predictions than the similar state-of-the-art GP
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models. By performing a spatially-varying blur to an image containing a grid, we were

able to convey the overall uncertainty in the displayed MAP deformed image estimate

in a way consistent with our cognitive models of which perceptual elements contain

variability or uncertainty. By estimating POI/ROI (e.g., tumor) MLPs and showing

visually mapped 2D cross sections thereof or alternatively visualizing MLP isocontours,

we were able to visualize where a POI/ROI (e.g., a tumor) is after deformation. By

visually conveying the amount and various forms/types of uncertainty in the registered

pre-interventional/pre-operative navigation information, we hope to enable surgeons and

intervention specialists to make better informed safety-critical decisions and thus poten-

tially improve the overall outcome of surgeries or interventions. However, the deployed

GP regression framework has some limitations. For example, when the number of mea-

surements/observations is considerably large then both storing the covariance (or Gram)

matrix and solving the resulting linear systems may become unfeasible on standard mod-

ern workstations (Rasmussen and Williams (2006)). Major research has been performed

by different groups with the aim to address or deal with this problem (Rasmussen and

Williams (2006)), however we believe that there is still space for further improvement.

Furthermore, our model might be potentially improved by using a heteroscedastic noise

(see the work of Goldberg et al. (1997)) instead of a homoscedastic one. Another po-

tential improvement of our model might be achieved by removing the assumption of

independence between the motion signal output dimensions, which would require to use

a vector-valued GP instead of a separate scalar-valued GP for each output dimension

(see Hein and Bousquet (2004) and Micchelli and Pontil (2005)). In addition, our model

might be potentially enhanced by using varying characteristic length-scale (hyper-) pa-

rameters over the spatiotemporal domain for the GP covariance function, which can be

achieved, for example, by deploying the Gibbs’ covariance function (Gibbs (1998)).

In future work, we plan to extend/adapt our proposed sampling method to address the

problem of how to efficiently draw samples from non-stationary GPs, which would allow

us to use non-stationary covariance functions (e.g., the above-mentioned Gibbs’ covari-

ance function). In this regard, Lê et al. (2016) already did some work in this direction

that is based on the idea of using supervoxels. Furthermore, we plan to explore more

sophisticated algorithms (Warfield et al. (2004)) for estimating the true segmentation

based on a collection of non-probabilistic (e.g., rater) segmentations and analyze the

impact on our estimated MLPs. In general, we also intend to thoroughly evaluate our

estimated MLPs, e.g., by comparing them against those estimated by the STAPLE al-

gorithm (Warfield et al. (2004)). In addition, we would like to perform a larger study on

various organs and tumors segmentation datasets and estimate and visualize different

aspects of the uncertainty in the respective image-guided therapies and analyze thor-

oughly how this information may influence the outcome of these therapies in clinical
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practice. Regarding our work on human anatomy motion estimation, we plan to iden-

tify appropriate formalisms and, if needed, approximation approaches to optimize the

conditioning of the proposed GP model on large training datasets. We would also like to

apply our proposed motion estimation model for registering real pre-interventional/pre-

operative navigation data on deformable soft-tissue organs during a real intervention or

surgery. Furthermore, we intend to deploy our proposed GP model for modeling organ

deformation in the context of radiotherapy. With respect to the visualization thrust

of our research, we would like to apply our proposed method for uncertainty-aware vi-

sualization of registered pre-operative/pre-interventional patient images (coupled with

planning/navigation data) during a real intervention or surgery.
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Saad, A., Möller, T., Hamarneh, G., 2010b. Probexplorer: Uncertainty-guided explo-

ration and editing of probabilistic medical image segmentation, in: Computer Graph-

ics Forum, Wiley Online Library. pp. 1113–1122.

Sabuncu, M.R., Yeo, B.T., Van Leemput, K., Fischl, B., Golland, P., 2010. A generative

model for image segmentation based on label fusion. IEEE transactions on medical

imaging 29, 1714–1729.

Sakhaee, E., Entezari, A., 2016. A statistical direct volume rendering framework for

visualization of uncertain data. IEEE transactions on visualization and computer

graphics 23, 2509–2520.

Sanyal, J., Zhang, S., Bhattacharya, G., Amburn, P., Moorhead, R., 2009. A user study

to compare four uncertainty visualization methods for 1d and 2d datasets. IEEE

transactions on visualization and computer graphics 15, 1209–1218.

Schlegel, S., Korn, N., Scheuermann, G., 2012. On the interpolation of data with nor-

mally distributed uncertainty for visualization. Visualization and Computer Graphics,

IEEE Transactions on 18, 2305–2314.

Schütze, H., Manning, C.D., Raghavan, P., 2008. Introduction to information retrieval.

volume 39. Cambridge University Press Cambridge.

Shi, W., Jantsch, M., Aljabar, P., Pizarro, L., Bai, W., Wang, H., ORegan, D., Zhuang,

X., Rueckert, D., 2013. Temporal sparse free-form deformations. Medical image

analysis 17, 779–789.

vSkrinjar, O., Nabavi, A., Duncan, J., 2002. Model-driven brain shift compensation.

Medical Image Analysis 6, 361–373.

Sotiras, A., Davatzikos, C., Paragios, N., 2013. Deformable medical image registration:

A survey. IEEE transactions on medical imaging 32, 1153–1190.

Stytz, M.R., Parrott, R.W., 1993. Using kriging for 3d medical imaging. Computerized

Medical Imaging and Graphics 17, 421–442.

Terrell, G.R., Scott, D.W., 1992. Variable kernel density estimation. The Annals of

Statistics , 1236–1265.
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Thévenaz, P., Blu, T., Unser, M., 2000b. Interpolation revisited [medical images appli-

cation]. IEEE Transactions on medical imaging 19, 739–758.



Bibliography 138

Torsney-Weir, T., Saad, A., Moller, T., Hege, H.C., Weber, B., Verbavatz, J.M., Bergner,

S., 2011. Tuner: Principled parameter finding for image segmentation algorithms

using visual response surface exploration. IEEE Transactions on Visualization and

Computer Graphics 17, 1892–1901.

Turk, G., O’brien, J.F., 1999. Variational implicit surfaces. Technical Report. Georgia

Institute of Technology.

Umeyama, S., 1991. Least-squares estimation of transformation parameters between two

point patterns. IEEE Transactions on pattern analysis and machine intelligence 13,

376–380.

Vandemeulebroucke, J., Rit, S., Kybic, J., Clarysse, P., Sarrut, D., 2011. Spatiotemporal

motion estimation for respiratory-correlated imaging of the lungs. Medical physics 38,

166–178.

Wachinger, C., Golland, P., Reuter, M., Wells, W., 2014. Gaussian Process Interpolation

for Uncertainty Estimation in Image Registration. Springer International Publishing,

Cham. pp. 267–274. doi:10.1007/978-3-319-10404-1_34.

Wang, Y., Georgescu, B., Chen, T., Wu, W., Wang, P., Lu, X., Ionasec, R., Zheng, Y.,

Comaniciu, D., 2013. Learning-based detection and tracking in medical imaging: a

probabilistic approach, in: Deformation Models. Springer, pp. 209–235.

Warfield, S.K., Zou, K.H., Wells, W.M., 2004. Simultaneous truth and performance level

estimation (staple): an algorithm for the validation of image segmentation. IEEE

transactions on medical imaging 23, 903–921.

Warfield, S.K., Zou, K.H., Wells, W.M., 2006. Validation of image segmentation by

estimating rater bias and variance, in: International Conference on Medical Image

Computing and Computer-Assisted Intervention, Springer. pp. 839–847.

Warfield, S.K., Zou, K.H., Wells, W.M., 2008. Validation of image segmentation by

estimating rater bias and variance. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences 366, 2361–2375.

Wassermann, D., Toews, M., Niethammer, M., Wells III, W., 2014. Probabilistic dif-

feomorphic registration: Representing uncertainty, in: International Workshop on

Biomedical Image Registration, Springer. pp. 72–82.

Wilcoxon, F., 1945. Individual comparisons by ranking methods. Biometrics bulletin 1,

80–83.

Williams, O., Fitzgibbon, A., 2007. Gaussian process implicit surfaces. Gaussian Proc.

in Practice , 1–4.

http://dx.doi.org/10.1007/978-3-319-10404-1_34


Bibliography 139

Wittenbrink, C.M., Pang, A.T., Lodha, S.K., 1996. Glyphs for visualizing uncertainty in

vector fields. IEEE transactions on Visualization and Computer Graphics 2, 266–279.

Wörz, S., Rohr, K., 2008. Physics-based elastic registration using non-radial basis func-

tions and including landmark localization uncertainties. Computer Vision and Image

Understanding 111, 263–274.

Zehner, B., Watanabe, N., Kolditz, O., 2010. Visualization of gridded scalar data with

uncertainty in geosciences. Computers & Geosciences 36, 1268–1275.

Zhang, H., Banovac, F., Lin, R., Glossop, N., Wood, B.J., Lindisch, D., Levy, E.,

Cleary, K., 2006. Electromagnetic tracking for abdominal interventions in computer

aided surgery. Computer Aided Surgery 11, 127–136.

Zhang, X., Günther, M., Bongers, A., 2010. Real-time organ tracking in ultrasound

imaging using active contours and conditional density propagation, in: Medical Imag-

ing and Augmented Reality. Springer, pp. 286–294.

Zhao, Q., Pizer, S., Alterovitz, R., Niethammer, M., Rosenman, J., 2017. Orthotropic

thin shell elasticity estimation for surface registration, in: International Conference

on Information Processing in Medical Imaging, Springer. pp. 493–504.

Zhou, X.S., Comaniciu, D., Xie, B., Cruceanu, R., Gupta, A., 2004. A unified framework

for uncertainty propagation in automatic shape tracking, in: Computer Vision and

Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer

Society Conference on, IEEE. pp. I–872.

Zhou, X.S., Gupta, A., Comaniciu, D., 2005. An information fusion framework for robust

shape tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on 27,

115–129.


	Statutory Declaration
	Abstract
	1 Introduction
	2 Uncertainty-aware Asynchronous Scattered Motion Interpolation Using Gaussian Process Regression
	Abstract
	2.1 Introduction
	2.2 Related Work
	2.3 Motion Field Representation
	2.4 Gaussian Process Regression
	2.5 Model Selection
	2.5.1 Mean Function
	2.5.2 Covariance Function
	2.5.3 Likelihood Function
	2.5.4 (Hyper-) parameters Training

	2.6 Evaluation
	2.6.1 Data Simulation
	2.6.2 Training Results
	2.6.3 Accuracy Analysis
	2.6.3.1 Accuracy Analysis Results
	Synchronous Data
	Asynchronous Data



	2.7 Conclusion and Future Work

	3 Motion Uncertainty Visualization Based on Gaussian Process Regression
	Abstract
	3.1 Introduction
	3.2 Related Work
	3.3 Uncertainty-aware Asynchronous Scattered Motion Interpolation
	3.4 Expected Deformed Image
	3.5 Maximum a Posteriori Deformed Image Estimate
	3.6 MAP Deformed Image Global Uncertainty Visualization
	3.7 Deformed Region of Interest Uncertainty Visualization
	3.8 Uncertainty Visualization of Point Motion
	3.9 Results and Discussion
	3.10 Conclusion and Future Work

	4 Gaussian Process-based Generative Segmentation Model for Uncertainty Quantification in Radiotherapy
	Abstract
	4.1 Introduction
	4.2 Related Work
	4.3 Gaussian Process-based Segmentation Contour Sampler
	4.3.1 Marginal Label Probabilities
	4.3.2 Mean Function
	4.3.3 Covariance Function

	4.4 Estimation of Marginal Label Probabilities
	4.4.1 -smoothed Empirical Probabilities
	4.4.2 Blurred -smoothed Empirical Probabilities
	4.4.3 Bayesian Probabilities
	4.4.4 Parametric Model-based Probabilities

	4.5 Efficient Sampling
	4.6 Results and Discussion
	4.6.1 Multi-rater segmentations of an esophagus

	4.7 Conclusion and Future Work
	4.A Affine Transformation of a Multivariate Normal Random Vector
	4.B Equivalence between K and K
	4.C Equivalence between Matrix Multiplication and Convolution
	4.D 2D Array Shift Operator Interchange Property

	5 Information Fusion for Real-time Motion Estimation in Image-guided Breast Biopsy Navigation
	Abstract
	5.1 Introduction
	5.1.1 Information Fusion System
	5.1.2 Contribution

	5.2 Related Work
	5.3 Tracked Instance In State Representation
	5.4 Motion Measurements Information Source
	5.5 Motion Dynamics and Shape Information Sources
	5.6 A Posteriori State Estimation
	5.7 Real-time Virtual Navigation Information Update
	5.8 Concurrency and Parallelism Aspects
	5.9 Results and Discussion
	5.10 Conclusion and Future Work

	6 Conclusion and Future Work
	Acknowledgements
	Bibliography

