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Summary

In this thesis, a computational cognitive process model of multi-alternative multi-
attribute preferential choice is proposed, revised, tested for its ability to simulate
three benchmark context effects and interactions between them, and compared
with earlier and more recent theories. The 2N-ary choice tree model assumes
that the decision maker, given a set of N choice alternatives that are described
by the same attributes, repeatedly compares pairs of attribute values and counts
how often each alternative wins and loses a comparison. The number of favorable
and unfavorable comparisons is stored in two separate counters per alternative and
the difference of the counter states forms the preference state for the respective
alternative. If the preference state for an alternative hits a negative threshold, this
alternative is eliminated from the choice set and the comparison process continues
without it. On the other hand, if the preference state for an alternative hits a
positive threshold, this alternative is chosen and the whole process stops.

The simple choice tree model, a revised version of the 2N-ary choice tree model,
introduces an additional parameter for regulating the focus on the winning or losing
alternative in a comparison, which has an effect on the proportion of choices and
eliminations that take place. The 2N-ary choice tree model and the simple choice
tree model are both able to explain similarity, attraction, and compromise effects,
three context effects that have been observed after adding a third option to a
set of two choice alternatives. With its additional parameter, the simple choice
tree model beyond that accounts for the positive correlation between attraction
and compromise effects and the negative correlation between these two and the
similarity effect, that Berkowitsch, Scheibehenne, and Rieskamp (2014) found in
their recent study. The simple choice tree model is the only model that accounts
for the whole range of related findings, including negative similarity, attraction,
and compromise effects.

In chapter 2, the literature on similarity, attraction, and compromise effects and
computational cognitive process models that explain them is reviewed. Addition-
ally, the 2N-ary choice tree model (proposed in chapter 3) and its variant simple
choice tree model (proposed in chapter 4) are interrelated with the other existing
computational cognitive process models of multi-alternative multi-attribute prefer-
ential choice. In chapter 6, the importance of the dynamic aspects of such models
is emphasized and it is discussed how response times could inform the modeling en-
deavor. Matlab code for simulating choice probabilities and choice response times
with the 2N-ary choice tree model and the simple choice tree model is provided
in appendix A, and results from a series of simulations based on the simple choice
tree model are reported in chapter 5. In chapter 7, the impact of this thesis and
possible future applications of the models proposed herein are discussed.
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Chapter 1

Introduction

Preferential choice is something that we all engage in every day, from pressing the
snooze button in the morning to drinking another glass of wine in the evening, from
accepting a dinner invitation to declining a job offer, from buying a specific type
of cereal to purchasing a car. From a broad perspective, such decision problems
include meta-decisions about which alternatives to consider and when to choose
between them. However, in the research reported in this thesis, a slightly more
restricted perspective is taken, assuming that the choice alternatives, as well as
relevant attributes that describe them, are readily available to the decision maker.
This so-called choice from description is a relatively simple and well-defined prob-
lem, yet we are only starting to understand what drives human behavior in such
situations. Open questions remain particularly for choice between three or more al-
ternatives that are described by two or more attributes, that is, for multi-alternative
multi-attribute preferential choice.

When asked to choose from several alternatives with multiple attributes, deci-
sion makers may experience preference uncertainty (March, 1978). That is, they
may be uncertain about their own preferences for one attribute over the other and,
what is more, for a specific combination of attribute values that describes one al-
ternative over another combination that describes another alternative. Preference
uncertainty can be overcome by constructing preferences on the spot (Bettman,
1979; Lichtenstein & Slovic, 2006, for a review). However, this leads to systematic
dependencies on the task, the choice set or context, and on individual differences
(cf. Payne, Bettman, & Johnson, 1992). For example, the same alternative may
be chosen as best alternative and as worst alternative (task dependence), adding
a third alternative to a set of two may alter the preference relation between those
two options (context dependence), or a risk-averse decision maker may choose dif-
ferently than a risk-seeking individual (individual differences). Here the focus is on
effects of the choice set, or more precisely, on three context effects named similar-
ity effect (Tversky, 1972b), attraction effect (Huber, Payne, & Puto, 1982), and
compromise effect (Simonson, 1989). Section 2.2 contains a summary of the orig-
inal findings and descriptions of some early theories that were proposed to explain
them.

Theories of decision making have been traditionally categorized as either nor-
mative, prescriptive or descriptive. Normative decision theories are (economic)
theories of how decisions should be made by an optimal or rational decision maker.
Expected utility theory (von Neumann & Morgenstern, 1953) is a classic example
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CHAPTER 1. INTRODUCTION

from this category. Descriptive theories, on the other hand, try to describe human
behavior as accurately as possible, even if it includes violations of rationality or
optimality. (Cumulative) prospect theory (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1992), for example, belongs to this category. Prescriptive theories try
to bridge the gap between actual and optimal decision behavior by helping decision
makers to improve their decisions. Multi-attribute utility theory (Keeney & Raiffa,
1967/1993), for example, has been used in such decision analyses.

Theories that explain similarity, attraction, and compromise effects are neces-
sarily descriptive since the three context effects violate independence assumptions
made by normative decision theories (see Tversky & Russo, 1969, for a discussion
and comparison of independence assumptions). However, the theories discussed
in this thesis, and particularly the model proposed in chapters 3 and 4, are not
only descriptive models but beyond that computational cognitive process models.
Cognitive process models are based on simple information processing mechanisms
like information sampling, value comparison, or evidence accumulation, and their
parameter-based mathematical formulation based on psychologically interpretable
parameters allows for logically valid and precise quantitative predictions (cf. Buse-
meyer & Diederich, 2010). Multi-alternative decision field theory (Roe, Busemeyer,
& Townsend, 2001) and the leaky competing accumulator model (Usher & Mc-
Clelland, 2001, 2004) were the first computational cognitive process models of
similarity, attraction, and compromise effects. In fact, they established the three
context effects as a benchmark for computational cognitive process models of multi-
alternative multi-attribute preferential choice and to this day serve as prototypes
for such models. In section 2.3, the two theories and their accounts of the three
context effects are described.

Despite their exemplary function, multi-alternative decision field theory and
the leaky competing accumulator model have several shortcomings that we discuss
in section 3.1. In order to overcome some of these shortcomings, the 2N-ary
choice tree model is proposed in chapter 3 (and Wollschlaeger & Diederich, 2012).
It is the first of six recently proposed models of multi-alternative multi-attribute
preferential choice that claim to account for similarity, attraction, and compromise
effects: The 2N-ary choice tree model (Wollschlaeger & Diederich, 2012), the
associative accumulation model (Bhatia, 2013), the multi-attribute linear ballistic
accumulator model (Trueblood, Brown, & Heathcote, 2014), the simple choice
tree model (a variant of the 2N-ary choice tree model; Wollschlaeger & Diederich,
2017, and chapter 4 of this thesis), multi-attribute decision by sampling (Ronayne
& Brown, 2017), and multi-alternative decision by sampling (Noguchi & Stewart,
2018). Except for multi-attribute decision by sampling, these models and their
accounts of the three context effects are described in section 2.5.

The multi-attribute linear ballistic accumulator model and multi-attribute de-
cision by sampling differ from the other four models (and from multi-alternative
decision field theory and the leaky competing accumulator model) in that they do
not make assumptions about the time course of information processing and prefer-
ence construction. They are static models and thus not cognitive process models
in a strict sense. In chapter 6, it is argued that dynamic aspects are a crucial
part of multi-alternative multi-attribute preferential choice models and therefore
response times should be taken into account when comparing model performance.
For that, it is necessary to define optional stopping rules or decision criteria for
the preference construction process, for instance in the form of thresholds for the
accumulated evidence.

2



CHAPTER 1. INTRODUCTION

The 2N-ary choice tree model and its variant simple choice tree model, that are
proposed in this thesis, define two such thresholds. One for eliminating alternatives
from the choice set and one for choosing them. The possibility (but not necessity)
to eliminate unwanted alternatives from the choice set is a unique feature of these
two models and a crucial part of their account for similarity, attraction, and com-
promise effects. In the simple choice tree model, this feature is regulated by an
additional parameter that is called focus weight. More eliminations take place for
higher values of the focus weight, producing positive attraction and compromise
effects but negative similarity effects. Lower values of the focus weight, on the
other hand, produce positive similarity effects and negative attraction and compro-
mise effects. A similar correlational pattern has been found in an experiment by
Berkowitsch et al. (2014). But see 2.4 for an overview of recent experiments that
investigate the three context effects (or variants thereof) and their interactions.

This thesis is organized as follows: In chapter 2, the literature on similarity,
attraction, and compromise effects and computational cognitive process models
that explain them is reviewed. Additionally, the 2N-ary choice tree model (proposed
in chapter 3) and its variant simple choice tree model (proposed in chapter 4)
are interrelated with the other existing computational cognitive process models of
multi-alternative multi-attribute preferential choice. In chapter 6, the importance
of the dynamic aspects of such models is emphasized and it is discussed how
response times could inform the modeling endeavor. Matlab code for simulating
choice probabilities and choice response times with the 2N-ary choice tree model
and the simple choice tree model is provided in appendix A, and results from a
series of simulations based on the simple choice tree model are reported in chapter
5. In chapter 7, the impact of this thesis and possible future applications of the
models proposed herein are discussed.

3





Chapter 2

Context effects and
computational cognitive process
models

Lena M. Wollschlaeger, Adele Diederich

A revised version of this chapter with the title “Similarity, attraction, and compro-
mise effects: Original findings, recent empirical observations, and computational
cognitive process models.” has been accepted for publication in the American
Journal of Psychology on July 15, 2019.

Abstract

If a decision maker prefers A over B in one situation but B over A in another,
psychologists call it a preference reversal. Preference reversals demonstrate that
preferences are subject to change – contingent on the task, the context, or on
individual differences. But what exactly causes preference reversals? The answer
lies in the conception of preferences as constructed on the spot rather than revealed
from some underlying source. However, open questions remain about the models
and methods used to describe, explain and predict preference construction. We
try to answer some of these questions based on the developments in the field
of multi-alternative multi-attribute decision making. Similarity, attraction, and
compromise effects play an important role in this endeavour, since they led to
the proposition of multi-alternative decision field theory, the first computational
cognitive process model of context effects. Multi-alternative decision field theory,
in turn, established the three effects as a benchmark for such models and inspired
several attempts to obtain them within the same experiment. To that end, 13
different variants or versions of the three effects have been introduced over the
years. Besides identifying and describing those variants and versions, we show the
advantages of using computational cognitive process models to explain the three
effects, but also suggest to shift the focus from whole theories to the building blocks
they are constructed from. Additionally, we highlight the importance of process
data like response times or eye-movements for differentiating between models or
mechanisms.
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CHAPTER 2. CONTEXT EFFECTS AND COMP. COGNITIVE PROCESS MODELS

2.1 Introduction

Some call it part of the cognitive revolution (Payne & Bettman, 2008), some
see in it a Kuhnian paradigm change (Oppenheimer & Kelso, 2015): Information
processing has replaced utility theories as dominant paradigm for decision making
research in Psychology. According to Kuhn (1962/2012), paradigm changes result
from scientific revolutions with the following structure: Observations that cannot
be explained by available theories, so-called anomalies, accumulate during periods
of “normal science”. The resulting crisis is resolved by “revolutionary science”, which
eventually leads to a new scientific paradigm.

In the case of decision science, the critical anomalies that could not be ex-
plained by utility theories were preference reversals (cf. Tversky & Thaler, 1990).
For example, Lichtenstein and Slovic (1971, 1973) report that participants chose
one gamble over another one, but assigned less monetary value to the chosen gam-
ble, violating procedure invariance. Another prominent example are the framing
effects reported by Tversky and Kahneman (1981) and Kahneman and Tversky
(1984). Their participants chose one option over the other when consequences
were described as gains, but preferred the other alternative when consequences
were described as losses, violating description invariance. Preference reversals, that
is, task-dependent changes in preference for option A over option B, have been
reported in many different domains over the years, see Lichtenstein and Slovic
(2006) for a review. Preference reversals show that decision makers do not at all
behave rational in the sense of utility theories (e.g., expected utility theory, von
Neumann & Morgenstern, 1953), but violate one of the most basic assumptions
of these theories.

Rationality as a sine qua non for human behavior has been questioned long be-
fore the first preference reversals were observed. In his seminal paper “A behavioral
model of rational choice”, Simon (1955) proposes to replace “global” rationality
with “bounded” or “limited” rationality that takes into account availability of infor-
mation to and computational capacities of the choosing organism. He argues that
the decision maker, due to limited processing capacities and in order to make a
satisfactory rather than optimal choice, employs simple mechanisms instead of ef-
fortful calculations. Early theories of preference reversals (for a review, see Payne,
Bettman, & Johnson, 1993), mostly within the heuristics and biases approach
(Tversky & Kahneman, 1974), try to identify such simple mechanisms that may
have led to the observed behavior. However, even though unifying frameworks have
been developed (Payne et al., 1993; Gigerenzer, Todd, & the ABC Research Group,
1999; Shah & Oppenheimer, 2008; Gigerenzer & Gaissmaier, 2011; Hilbert, 2012),
heuritics are usually domain specific and therefore remain largely disconnected
from each other (Oppenheimer & Kelso, 2015). Moreover, selection of appropriate
mechanisms as well as developing or learning a comprehensive set of such heuris-
tics is actually an intractable problem (Otworowska, Blokpoel, Sweers, Wareham,
& van Rooij, 2017), similar to rational choice in the sense of utility theories.

Later approaches incorporate construction of choice mechanisms on the spot, an
idea originally proposed by Bettman (1979) and, slightly more general, by March
(1978). Tversky, Sattath, and Slovic (1988), for example, claim that attribute
weights are contingent on the task and explain preference reversals between gam-
bles by means of the compatibility principle: Monetary elicitation methods (e.g.,
pricing or matching) highlight payoffs, while choice is more compatible with proba-
bilities. Framing effects on the other hand have been associated with risk attitudes
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CHAPTER 2. CONTEXT EFFECTS AND COMP. COGNITIVE PROCESS MODELS

(Tversky & Kahneman, 1986), and, in riskless choice, with loss-aversion (Tversky
& Kahneman, 1991). Additionally, those theories implement context-dependent
changes of reference points, that is, of baseline values for evaluating the alterna-
tives. In their review of behavioral decision research for the years 1983 to 1991,
Payne et al. (1992) conclude that construction of preferences (and/or choice mech-
anisms) is not only contingent on the task, but also on the context and on individual
differences. In the same vein, Lichtenstein and Slovic (2006) argue that multiple
theories are necessary in order to explain how preferences are constructed by dif-
ferent decision makers in different situations. However, they identify decision field
theory (DFT, Busemeyer & Townsend, 1993; Roe et al., 2001; Busemeyer, John-
son, & Jessup, 2006) as exception to this need for multiple theories, since it is able
to account for several preference reversals simultaneously. DFT’s multialternative
extension (MDFT, Roe et al., 2001), for example, simultaneously accounts for
similarity, attraction, and compromise effects (Tversky, 1972b; Huber et al., 1982;
Simonson, 1989), three so-called context effects.

As Oppenheimer and Kelso (2015) point out, a Kuhnian paradigm change can
only occur if a new paradigm is already available. What does this mean? First of
all, Oppenheimer and Kelso (2015) interpret the term paradigm in a global sense
(cf. Hacking’s introductory essay to the 4th edition of The structure of scientific
revolutions, Kuhn, 1962/2012), as something that Kuhn had called “disciplinary
matrix” in the 1969 postscript to his book. They say that

a paradigm refers to the set of practices that defines a scientific dis-
cipline at any particular period. A paradigm provides the basis for
deciding (a) what phenomena to study, (b) what kinds of questions
meaningfully probe for answers, (c) how these questions should be
structured, (d) how an experiment is to be conducted, and (e) how
the results of the investigations should be interpreted. (Oppenheimer
& Kelso, 2015, pp. 278-279).

In the field of multi-alternative multi-attribute decision making research, MDFT
provided the first answers to these kinds of questions. We will use similarity, attrac-
tion, and compromise effects to demonstrate how those early contributions have
shaped the field and helped define the information processing paradigm, allowing
for the paradigm change to take place.

In short, the three context effects or “anomalies” are changes in (relative) choice
probabilities for two choice alternatives after adding a third “decoy” option to
the set. Similarity, attraction, and compromise effects violate independence as-
sumptions as, for example, the axiom of independence of irrelevant alternatives
in von Neumann and Morgenstern’s (1953) formulation of expected utility theory,
or Luce’s (1959/2012) choice axiom (see Tversky & Russo, 1969, for a discussion
and comparison of independence assumptions). Despite their simplicity, the effects
demonstrate that choice probabilities in multi-alternative decision making are con-
tingent on the local context, that is, on the choice set under consideration. Due to
their simplicity, on the other hand, similarity, attraction, and compromise effects
have been successfully examined in numerous studies to date (e.g. Huber & Puto,
1983; Ratneshwar, Shocker, & Stewart, 1987; Wedell, 1991; Simonson & Tversky,
1992; Pettibone & Wedell, 2007; Trueblood, 2012; Trueblood, Brown, Heathcote,
& Busemeyer, 2013; Berkowitsch et al., 2014; Noguchi & Stewart, 2014; Tset-
sos, Chater, & Usher, 2015; Liew, Howe, & Little, 2016; Mao, 2016). However,
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different conditions, different experimental setups, and even different variants of
the three context effects make it hard to stay on top of things. This review aims
at organizing the vast evidence in literature by identifying prototypical variants of
the three effects. Additionally, we will reconstruct how similarity, attraction, and
compromise effects have shaped modern multi-alternative multi-attribute decision
making models since multi-alternative decision field theory has been proposed to
simultaneously account for the three effects. In order for this review to be self-
contained, the models will be presented in some detail. The goal is to provide a
common ground for this field of research rather than to thoroughly compare the
different theories. Based on this common ground, we will show possible directions
for future research on multi-alternative multi-attribute decision making.

This review is organized as follows: First, we summarize the original findings and
early theories that explain similarity, attraction, and compromise effects separately.
We then describe multi-alternative decision field theory and the leaky competing
accumulator model and their simultaneous accounts of the three context effects.
Afterwards we turn to more recent empirical studies, with a focus on studies that
are concerned with all three effects and their interactions. We then show how
four recently proposed multi-alternative multi-attribute decision making models
account for the original and new findings. And finally, we propose directions for
future research in this field.

2.2 Original findings and early theories

Originally, similarity, attraction, and compromise effects have been observed after
adding a third alternative to a set of two clearly distinguishable options described
by two attributes. Let A1 and A2 be two choice alternatives with two common
attributes, D1 and D2, describing them. For example, think about two desserts
described by attributes tastiness and healthiness or two outfits that differ with
respect to attributes formality and comfortableness. We assume that A1 scores
high on attribute D1 but low on attribute D2, and vice versa for A2. That is, D1 is
the unique strongest attribute for A1, and D2 is the unique strongest attribute for
A2. As for the desserts, A1 could be a mousse au chocolat that is very tasty but
not exactly healthy, and A2 could be a fruit salad that is less tasty but healthier
than the mousse au chocolat. One can think of the alternatives as placed in a
two-dimensional space with dimensions D1 and D2, as in the left panel of figure
2.1.

Similarity effect

The similarity effect was named and first studied systematically by Tversky (1972b),
though Debreu (1960) and Becker, DeGroot, and Marschak (1963) mentioned a
similar effect before. Debreu (1960), in his review of Luce’s (1959/2012) book “In-
dividual choice behavior: A theoretical analysis”, alleged the following example as
violation of Luce’s choice axiom (an independence assumption): A decision maker
who prefers listening to a recording of a Debussy quartet (D) over listening to
a recording of a Beethoven symphony (B1) will still prefer the Debussy quartet
when choosing from a ternary set including two different recordings of the same
Beethoven symphony (B1 and B2). According to Luce’s choice axiom, however,
the probability for choosing Debussy should decrease with addition of the second
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Figure 2.1: Placement of choice alternatives in the attribute space with dimensions
D1 (x-axis) and D2 (y-axis). Left panel: Initial situation for all three context
effects with alternatives A1 and A2. Right panel: Similarity situation with initial
alternatives A1 and A2, and additional alternative A3 that is similar to alternative
A1. The numbers on the axes are arbitrary.

Beethoven recording. Becker et al. (1963) tested and confirmed Debreu’s (1960)
assumption in a gambling situation. Their participants chose between two or three
gambles of which two had dissimilar outcomes and the third gamble is similar to
one of the other two. Tversky (1972b) elaborated on Debreu’s (1960) example
and predicted a similar effect for choice between tours of Europe and the Far East
offered by two travel agencies: When indifferent between destinations and travel
agencies, decision makers should be equally likely to choose each option from a
binary set. Adding a third option, however, should affect only the probability for
choosing the similar alternative, but not that for choosing the dissimilar alternative.
For example, adding a second tour of Europe from a different travel agency to a
choice set consisting of a tour of Europe and a tour of the Far East, should only af-
fect the probability for choosing the first tour of Europe. Formally, Tversky (1972b)
compared the binary choice set {A1, A2} to the ternary choice set {A1, A2, A3}
where A3 is similar to one of the original alternatives. Let A3 be similar to alter-
native A1 in scoring high on attribute D1 and low on attribute D2 (see right panel
of figure 2.1). A similarity effect (Tversky, 1972b) is observed if the probability for
choosing A1 over A2 decreases with addition of alternative A3 to the choice set:

P (A1|A1, A2)

P (A2|A1, A2)
>
P (A1|A1, A2, A3)

P (A2|A1, A2, A3)
. (2.1)

Tversky (1972b) tested for the similarity effect with three different stimulus types:
Dot patterns with different sizes and densities (participants were asked to choose
the pattern which contains most dots), gambles with different probabilities and
outcomes (participants were asked to choose the gamble they prefer), and col-
lege applicant profiles with different intelligence and motivation scores (partici-
pants were asked to choose the most promising applicant). Participants’ pooled
data showed similarity effects for gambles and applicants but not for dot patterns.
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Tversky (1972b) attributed this to possible differences in evaluating stimuli as uni-
tary or composite alternatives. However, the selected attribute values (see Tversky,
1972b, p.292), the experimental setup, and the different tasks might play a role
here as well. As for pooling participants’ data, Tversky (1972b) noted that it would
be desirable to analyze participants’ data individually, but the number of collected
data points did not allow for this in the reported study. Nevertheless, a similarity
effect, and thus a consistent violation of Luce’s (1959/2012) choice axiom or any
equivalent independence assumption was observed for some of the tasks, calling
for an explanation.

In order to account for the similarity effect, Tversky (1972a, 1972b) proposed
the elimination by aspects (EBA) model, a multi-alternative multi-attribute choice
model. According to this model, the decision maker goes through a series of as-
pects of the alternatives under consideration and for each aspect eliminates all
alternatives that do not contain it. An aspect could be a specific manifestation
of an attribute, like a price limit or a limit for the travel time, or it could be a
desired characteristic of the choice alternatives, like a specific place the decision
maker wants to visit or a specific ingredient she wants in her dessert. The elimi-
nation process stops as soon as a single alternative is left, which is then chosen.
Choice probabilities are defined iteratively via probabilities for attending the as-
pects. Instead of focusing on single aspects, aspects are grouped according to the
alternatives that contain them. Here, A1 = {x1, y1, z1, . . .} is the set of all aspects
that are unique to alternative A1, and A2 and A3 are defined accordingly for al-
ternatives A2 and A3. Aspects that are shared by two alternatives are summarized
as A1, A2, A1, A3 and A2, A3 respectively. The group of aspects that are shared
by all three alternatives, that is, A1, A2, A3, is ignored in the analysis since it does
not lead to elimination of any alternative and thus does not bring forward the
choice process. Next, Tversky (1972a, 1972b) defined a scale U on these aspect
groups, assigning a positive number to each group that can be interpreted as utility
or value. The probability for attending a specific group of aspects is obtained by
dividing its utility by the sum of utilities of all the other groups. In the binary case,
the probability for attending the unique aspects of an alternative is equal to the
probability for choosing this alternative. For example, the probability for attending
the unique aspects of alternative A2, and thus for choosing alternative A2 from
the binary set {A1, A2}, is given by

P (A2|A1, A2) =
U(A2)

U(A1) + U(A2)
. (2.2)

The probabilities for choosing alternative A1 from the set {A1, A2}, alternatives
A1 or A3 from the set {A1, A3}, and alternatives A2 or A3 from the set {A2, A3}
are defined accordingly. The choice probabilities for the binary case are used to
iteratively define ternary choice probabilities. These are obtained by summing over
all the ways a choice can be achieved. For example, the dissimilar alternative A2

(cf. figure 2.1) can be chosen in a single step by attending to an aspect that is
unique to A2 and thus leads to elimination of both A1 and A3. Or it can be chosen
in two steps by first attending to an aspect that is contained in both A2 and A1

(or A2 and A3), leading to elimination of alternative A1 (or A3) and then choosing
from the binary choice set {A2, A3} (or {A2, A1}) with the probabilities defined
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according to equation (2.2) above. This yields

P (A2|A1, A2, A3) =

U(A2) + P (A2|A1, A2) · U(A1, A2) + P (A2|A2, A3) · U(A2, A3)

U(A1) + U(A2) + U(A3) + U(A1, A2) + U(A1, A3) + U(A2, A3)
.

Assuming U(A1) = U(A3) = a, U(A1, A3) = b, U(A2) = a+ b and U(A1, A2) =
U(A2, A3) = 0 (since A1, A2 = ∅ = A2, A3), all the binary probabilities are equal
to 0.5, while the ternary probabilities differ for the dissimilar alternative A2 as
compared to the similar alternatives A1 and A3:

P (A2|A1, A2, A3) =
a+ b

3a+ 2b
>
a+ b(a/2a)

3a+ 2b
= P (A1|A1, A2, A3)

= P (A3|A1, A2, A3).

As a approaches 0, that is, as A1 and A3 share more and more of their aspects,
the probability for choosing the dissimilar alternative A2 from the ternary set ap-
proaches 0.5 while the probabilities for choosing alternative A1 and A3 each ap-
proach 0.25. Therefore, the EBA model predicts the similarity effect. However, it
cannot account for the attraction or compromise effect.

Attraction effect

The attraction effect or decoy effect or asymmetric dominance effect was intro-
duced by Huber et al. (1982) as consistent violation of the regularity principle. This
principle, as presumed by the elimination-by-aspects model as well as most earlier
probabilistic choice models (cf. Luce, 1977), states that additional alternatives
cannot increase the choice probabilities of the original options. However, Huber
et al. (1982) suggested that the relative probability for choosing alternative A1

can be increased by adding a third alternative A3 to the choice set that is similar
to but dominated by A1 (see figure 2.2 for possible placements of the dominated
alternative A3). For example (Huber et al., 1982), considered the choice between
two six-packs of beer, of which one is cheap and of low quality (A1) and one is
expensive and of high quality (A2). An asymmetrically dominated alternative (A3)
could be another cheap six-pack for the same price as the first one but with even
lower quality. A3 may then serve as a decoy for alternative A1, drawing attention
to it and therewith improving its evaluation and increasing its choice probability:

P (A1|A1, A2, A3)

P (A2|A1, A2, A3)
>
P (A1|A1, A2)

P (A2|A1, A2)
. (2.3)

Note that the same mechanism applies when a dominated decoy close to alternative
A2 is added to the choice set. This symmetric case is omitted here. Huber et
al. (1982) found attraction effects in (hypothetical) choice between six-packs of
beer with attributes price and quality, cars with attributes ride quality and gas
mileage, restaurants with attributes driving time and food quality, lotteries with
attributes chance of winning and amount to win, photographic films with attributes
developing time and color fidelity, and TV sets with attributes percent distortion
and reliability.

Let mij be the attribute value for alternative Ai with respect to attribute Dj .
Huber et al. (1982) differentiated between three types of decoys: (1) A3 is called

11



CHAPTER 2. CONTEXT EFFECTS AND COMP. COGNITIVE PROCESS MODELS

Figure 2.2: Placement of choice alternatives in the attribute space with dimensions
D1 (x-axis) and D2 (y-axis). Left panel: Attraction situation with initial alterna-
tives A1 and A2, and frequency decoy A3 that is dominated by alternative A1 on
dimension D1. Middle panel: Attraction situation with initial alternatives A1 and
A2, and range decoy A3 that is dominated by alternative A1 on dimension D2.
Right panel: Attraction situation with initial alternatives A1 and A2, and range-
frequency decoy A3 that is dominated by alternative A1 on both dimensions. The
numbers on the axes are arbitrary.

frequency decoy if m31 < m11 and m32 = m12, that is, if A3 is dominated by A1

on their shared strongest dimension D1, but equal to A1 on their weak dimension
D2 (see left panel of figure 2.2). A3 increases the frequency of alternatives along
the first dimension. (2) A3 is called range decoy if m31 = m11 and m32 < m12,
that is, if it is equal to A1 on D1 and dominated by A1 on D2 (see middle panel
of figure 2.2). A3 increases the range of attribute values on dimension D2. (3)
A3 is called range-frequency decoy if m31 < m11 and m32 < m12, that is, if it
is dominated by A1 on both dimensions (see right panel of figure 2.2). Huber et
al. (1982) hypothesized that a frequency decoy increases the weight of dimension
D1 by either drawing attention to it or by spreading the psychological distances
on that dimension. A range decoy, on the other hand, is assumed to decrease
the importance of a fixed difference on dimension D2, therewith diminishing the
advantage of alternative A2 over A1. Both effects favor alternative A1 and since
the range-frequency decoy combines the two aspects, it is presumed to yield the
highest attraction effect. However, the data reported by Huber et al. (1982)
suggested that the effect is weakest for the frequency decoy and strongest for the
range decoy, not showing a significant effect of more or less extreme range decoys
(and thus contradicting the range effect). They concluded that the attraction
effect is contingent upon the ratio of the distances between alternatives A3 and
A1 versus A3 and A2.

Huber and Puto (1983) extended the investigations by including relatively infe-
rior decoys: Alternative A3 is called relatively inferior decoy if it exceeds alternative
A1 on their shared strongest attribute D1, m31 > m11, is inferior to it on their
weaker attribute D2, m32 < m12, and lies below the non-concave indifference
curve through alternatives A1 and A2. Huber and Puto (1983) suggested that
the addition of an asymmetrically dominated or relatively inferior alternative to the
binary choice set yields a global attraction effect, drawing preferences towards the
decoy A3 and its adjacent alternative A1, and a local substitution effect, splitting
choice probabilities between the similar alternatives A1 and A3. Huber and Puto
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(1983) suggested that ordinal relations between the alternatives are more impor-
tant than the actual magnitudes of their differences. This is consistent with the
finding of Huber et al. (1982), that the extremeness of the range decoy did not
influence the magnitude of the attraction effect.

Ratneshwar et al. (1987) tried to link the attraction effect in consumer choice
to characteristics of the choice task, suggesting that low meaningfulness of the
given information about the alternatives and a low degree of familiarity with the
product category increase the attraction effect. Indeed, their studies suggested
that more elaborate (that is, meaningful) information about the alternatives signif-
icantly reduces the attraction effect. The influence of familiarity had the predicted
direction, but was not significant. According to the authors, this might have been
due to their operationalization of familiarity and required further research. Overall,
they concluded that “the interactions of person, product, and situation may be
the critical factors in understanding consumer choice” (Ratneshwar et al., 1987, p.
532).

The first consistent theory for explaining the attraction effect was proposed
by Simonson (1989). He called it “choice based on reasons” and suggested that
consumers choose alternatives that are supported by the best reasons. In case
of the attraction effect, the dominance relationship between alternatives A1 and
A3 could serve as tie-breaker between otherwise equally preferred alternatives A1

and A2, in favor of the dominating option A1. Simonson (1989) assumed the
effect would be stronger when choices were anticipated to be evaluated by others
or have to be justified in front of them later. The rationale behind this was
that the decision maker is uncertain about the other’s preferences and therefore
uses objectively valid reasons like the dominance relationship to justify the choice.
Indeed, Simonson (1989) found a stronger attraction effect under the high need
for justification condition. Think-aloud protocols provided further evidence for
his assumption and indicated that choosing alternative A1 due to the dominance
relationship required more elaboration and thus took more time than choosing
alternative A1 or A2 due to their high value on either dimension D1 or D2.

Later, the attraction effect was attributed to loss aversion, the concept that
choice alternatives are evaluated with respect to a reference point and the decision
maker puts more weight on losses, that is, negative deviations from the reference
point, than on gains, that is, positive deviations from the reference point (Tversky
& Kahneman, 1991; Simonson & Tversky, 1992). While Tversky and Kahneman
(1991) endowed their participants with the dominated alternative A3 and then
offered them to either keep this alternative or trade it for alternative A1 or A2,
Simonson and Tversky (1992) compared choices from the binary set {A1, A2} and
the ternary set {A1, A2, A3}. In both ternary choices, the dominating alternative
A1 was chosen significantly more often than the dissimilar alternative A2, suppos-
edly because A1 - in contrast to A2 - did not include a loss with respect to the
reference point A3.

Compromise effect

Based on the investigation of relatively inferior decoys by Huber and Puto (1983),
the theory of reason-based choice (Simonson, 1989) predicted an additional context
effect, the compromise effect. It may occur when a third, extreme, alternative A3

is added to the choice set, which is neither dominated by the original alternatives
A1 and A2 nor dominates them. For example, consider a coffee shop that sells
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Figure 2.3: Placement of choice alternatives in the attribute space with dimen-
sions D1 (x-axis) and D2 (y-axis). Left panel: Compromise situation with initial
alternatives A1 and A2, and extreme alternative A3 that makes A1 a compromise
between A2 and A3 (asymmetric compromise situation). Right panel: Compromise
situation with initial alternatives A1 and A2, and compromise A3 in between A1

and A2 (symmetric compromise situation). The numbers on the axes are arbitrary.

two sizes of coffee drinks, a small and cheap one and a tall and expensive one.
Adding a third, even taller and more expensive one, should increase sales of the
then medium option compared to the small option, according to the compromise
effect. Formally, if A3 is more extreme than alternative A1 (see left panel of figure
2.3), that is, m31 > m11 and m32 < m12 (let mij be the attribute value for
alternative Ai with respect to attribute Dj), a compromise effect is observed if A3

increases the choice share of A1:

P (A1|A1, A2, A3)

P (A2|A1, A2, A3)
>
P (A1|A1, A2)

P (A2|A1, A2)
. (2.4)

(and vice versa if the additional alternative is more extreme than alternative A2,
for example, an even smaller and cheaper coffee drink). In this article, we will refer
to the compromise effect that results from adding a more extreme alternative as
asymmetric compromise effect or asymmetric version of the compromise effect.

According to Simonson (1989), potential reasons for choosing the middle op-
tion from a ternary set were that it combines both attributes and is a compromise
or safe option. Like dominance and relative superiority in the attraction situation,
the compromise argument serves as a tie-breaker when the decision maker is in-
different between the two original choice options. However, in Simonson’s (1989)
experiments, the need to justify one’s choice had no significant influence on the
strength of the compromise effect, but the think-aloud protocols showed a simi-
lar pattern as for the attraction effect: Choosing the compromise option due to
its balance between the two attributes required more elaboration and took more
time than choosing one of the extreme options, e.g. A2, due to its high value
on the subjectively most important dimension, e.g. D2 (cf. left panel of figure
2.3). Note that, the more similar the additional extreme alternative A3 is to its
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adjacent alternative A1, the more share it takes away from A1 via the similarity
effect. The theory of reason-based choice cannot explain the similarity effect and
to avoid confusion of the two effects, Simonson (1989) placed the new extreme
option A3 at some distance from the original choice alternatives in his experiments.

Simonson and Tversky (1992) and Tversky and Simonson (1993) extended
the concept of loss aversion to account also for the compromise effect. They
assumed that, instead of focusing on a single reference point, the decision maker
uses all presented alternatives as reference points for each other and evaluates the
available choice options based on their disadvantages and advantages compared to
the other alternatives. In the compromise setting with two extreme alternatives,
A2 and A3, and a middle option, A1, this leads to extremeness aversion favoring
the compromise A1, if the decision maker tries to avoid large losses (disadvantages
of the extreme options compared to each other) more than to seek large gains.
The compromise option features only small disadvantages (and advantages) and
therefore might seem more attractive to the decision maker.

2.3 The first cognitive process models of context effects

Multi-alternative decision field theory (MDFT, Roe et al., 2001), the multi-alter-
native extension of decision field theory (DFT, Busemeyer & Townsend, 1993) was
the first cognitive process model of context effect. DFT, unlike earlier theories
of preference reversals, dissected the decision making process into microprocesses,
the sequence of which was determined by psychologically interpretable parameters.
More precisely, it proposed parameterized mechanisms for sampling and integrating
pieces of information about the choice alternatives over time and for stopping
this process and making a choice. DFT belongs to the class of computational
cognitive process models (or information processing models), which have several
advantages over simply verbal theories as well as complex neural models: They
produce logically valid and precise quantitative predictions, are generalizable and
at the same time computationally feasible (Busemeyer & Diederich, 2010). The
analysis on the level of microprocesses made DFT particularly generalizable and
applicable to a range of preference reversals (e.g. Roe et al., 2001; Johnson
& Busemeyer, 2005; Busemeyer et al., 2006). MDFT was the first theory to
consider similarity, attraction, and compromise effects simultaneously and explain
them “with a common set of principles” (Roe et al., 2001, p.370), that is, by means
of a specific combination of information processing mechanisms.

Together with the leaky competing accumulator model (LCA, Usher & McClel-
land, 2001), which was applied to the same three “anomalies” shortly afterwards
(Usher & McClelland, 2004) and explained them with slightly different informa-
tion processing mechanisms, MDFT set off development of a number of multi-
alternative multi-attribute decision making models and established similarity, at-
traction, and compromise effects as benchmark for such models. Additionally, con-
sidering the three effects simultaneously inspired a series of experiments studying
all three effects or variants thereof, yielding new insights about their interactions
and thus about multi-alternative multi-attribute decision making in general.

Basic elements of cognitive process models of decision making

In order to describe MDFT and the LCA model, and later the more recent mod-
els, we first identify some basic elements of cognitive process models of decision
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making. Similar to the building blocks (“search rule”, “stopping rule”, and “deci-
sion rule”) that Gigerenzer et al. (1999) propose for heuristics (see also Gigerenzer
& Gaissmaier, 2011), or the (incomplete) taxonomy that Turner, Schley, Muller,
and Tsetsos (2018) use for evaluating some of the models also discussed here, the
basic elements help us, and may help other researchers in the future, to describe
the models in a systematic and comparable way. The basic elements we use in the
following are:

(1) Attention allocation (1.a) between attributes, and (1.b) between
pairs of attribute values: Each model has to define attention probabilities for
the attributes (so-called attribute weights) and – within attributes – for pairs of
attribute values. (2) Evaluation of alternatives by (2.a) selecting a focus
value, and (2.b) comparing it with a reference value: Given a pair of attribute
values, each model has to assign one of the values as focus value and evaluate
the corresponding alternative by comparing the focus value with a reference value
(e.g., with the second value from the pair). (3) Evidence accumulation by (3.a)
setting up accumulators, (3.b) updating accumulators (including mecha-
nisms for competition and noise), and (3.c) defining stopping rules: Each
model has to specify how many accumulators gather evidence or preference (for
each alternative), how these accumulators are updated over time, and when and
why updating stops and a decision is made.

Note that all the theories discussed here model so-called choice from descrip-
tion, that is, they assume that all relevant information about the choice alternatives
is readily available for the decision maker to sample and evaluate. Let na be the
number of alternatives under consideration, {Ai}i=1,...,na , and nd the number of
attributes, {Dj}j=1,...,nd

, that characterize them. The decision maker is provided
with one attribute value per alternative per attribute, that is, na × nd attribute
values in total. Let mij , i ∈ {1, . . . , na}, j ∈ {1, . . . , nd} be the attribute value for
alternative Ai with respect to attribute Dj .

Multi-alternative decision field theory

Before explaining how MDFT (Roe et al., 2001) accounts for the three context
effects, we shortly describe its core mechanisms by means of the basic elements:

(1) Attention allocation: MDFT assumes that attention over time switches
stochastically between attributes. This is reflected in the model by momentary
attribute weights wj(t), j ∈ {1, . . . , nd}, with P (wj(t) = 1, wl(t) = 0∀l 6= j) = ωj
for all t ≥ 0, and 0 ≤

∑nd

j=1 ωj ≤ 1. ωj can be interpreted as attention probability
for attribute Dj . Within attributes, however, MDFT assumes that all possible pairs
of attribute values are attended simultaneously.

(2) Evaluation of alternatives: In fact, MDFT assumes that each of the na
attribute values on the momentarily attended dimension Dj is contrasted with the
average of the remaining na − 1 attribute values on the same dimension, that is,
all attribute values serve as focus value and reference value simultaneously. The
evaluation results in so called valences

vij = mij −
∑
k 6=imkj

na − 1
.
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Note that the valences sum up to 0 for each attribute Dj , j ∈ {1, . . . , nd}:
na∑
i=1

vij = 0.

(3) Evidence accumulation: Over time, the valences are gathered in na
accumulators, {Si}i=1,...,na

, that is, separately for each alternative. The initial
accumulator states Si(0), i ∈ {1, . . . , na}, are set to 0. For each alternative
Ai, i ∈ {1, . . . , na}, the accumulator state Si(t) at time t depends on the cur-
rent accumulator state Si(t− 1), the current accumulator states Sk(t− 1), k 6= i
for the other alternatives, and the momentary valence

vi(t) =

nd∑
j=1

(ωj(t) · vij) + ξi(t)

for alternative Ai at time t, where ξi(t) is a normally distributed error or noise
term. Overall, accumulators are updated according to the following equation:

Si(t) = δ · Si(t− 1) +
∑
k 6=i

bikSk(t− 1) + vi(t),

with decay parameter 0 ≤ δ ≤ 1, and distance-dependent inhibition factor bik ≤ 0.
The negative interconnections between preference states, reflected by the inhibition
factors bik, i, k ∈ {1, . . . , na}, are stronger for similar alternatives (located close to
each other in the attribute space) than for dissimilar ones (located far from each
other in the attribute space). This yields lateral inhibition, a local competitive
influence between alternatives. Evidence accumulation stops either at a fixed (and
usually externally imposed) stopping time T , in which case the alternative with
the highest preference state is chosen. Or accumulation stops as soon as the
preference state for one of the alternatives exceeds a positive threshold θ+. In this
case, the stopping time is set by the decision maker and called optional stopping
time (Busemeyer & Diederich, 2002). Roe et al. (2001, Appendix B) provide
mathematical formulas for the choice probabilities for fixed stopping times. Only
this version of the model has been applied to data so far (e.g., Berkowitsch et al.,
2014).

The following explanations that MDFT provides for the similarity, attraction,
and compromise effects are also based on fixed stopping times, that is, no decision
threshold is required and the choice probability for an alternative Ai at time T is
equal to the probability that Si(T ) > Sk(T ) for all k 6= i (tied alternatives are
chosen with equal probability).

According to MDFT, the similarity effect is caused by a positive correlation
between the valences of the similar alternatives A1 and A3 (cf. right panel of
figure 2.1) and a negative correlation between the valences of those two and the
dissimilar alternative A2. Whenever the decision maker focusses on dimension
D1, the preference states of alternatives A1 and A3 increase and the preference
state of alternative A2 decreases, and vice versa for dimension D2. The positively
correlated alternatives A1 and A3 split their choice probabilities, leading to an
advantage for the dissimilar, negatively correlated option A2. High variance of the
normally distributed error terms ξi, i ∈ {1, . . . , na} strongly diminishes the effect
since it covers the correlation. Lateral inhibition, too, diminishes the similarity
effect but is necessary for explaining the other two effects.
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As for the attraction effect, lateral inhibition in MDFT promotes the dom-
inating option A1 (cf. figure 2.2) by negating the negative preference for the
dominated adjacent alternative A3. There is no such effect for the distant alter-
native A2, which leads to an overall advantage of alternative A1.

Instead of explaining the asymmetric version of the compromise effect de-
scribed above (cf. left panel of figure 2.3), Roe et al. (2001) introduced a sym-
metric compromise effect, where a compromise option A3 is added in between the
two original choice alternatives A1 and A2 (see right panel of figure 2.3). MDFT
explains the symmetric version of the compromise effect by assuming lateral in-
hibition between the compromise and each of the extreme alternatives, but not
between the two extreme options. Since the mean valence input is zero for all
three alternatives, lateral inhibition operates only on momentary fluctuations of
valences. By that, the preference for choosing the compromise is negatively corre-
lated with the preferences for choosing either of the extreme options and thus the
differences between the compromise option and each of the extremes are positively
correlated. Like in the similarity situation, the positively correlated options (that
is, the extremes A1 and A2) split their choice probabilities, leading to an advan-
tage for the negatively correlated compromise alternative A3. Asymmetric versions
of the compromise effect, as observed by Simonson (1989) and described above,
can be explained within MDFT only by assuming different psychological distances
between the compromise and each of the extreme alternatives, leading to differing
strengths of lateral inhibition.

Overall, MDFT predicts the similarity effect for relatively low levels of lateral
inhibition and a low variance in the normally distributed error terms. On the other
hand, the compromise effect is predicted for higher levels of lateral inhibition and
higher variance in the error terms. For the attraction affect, the standard deviation
of the error term plays a minor role, but high lateral inhibition promotes the effect.
On the individual level, the similarity and the compromise effect should thus be
negatively correlated and the attraction effect should be positively correlated with
the compromise effect and negatively correlated with the similarity effect. There
are, however, levels of lateral inhibition and variance in the error terms where all
three effects occur. The individual differences predicted by MDFT were later indeed
observed by Berkowitsch et al. (2014), but see below for a detailed description of
the findings.

Leaky Competing Accumulator Model

The LCA model (Usher & McClelland, 2001, 2004) has been shown to account
for the three context effects shortly after MDFT. Again, we describe the core
mechanisms of the model by means of the basic elements before explaining how it
accounts for the three context effects:

(1) Attention allocation: Like MDFT, the LCA model assumes that attention
over time switches stochastically between attributes. The attribute weights ωj , j ∈
{1, . . . , nd}, with 0 ≤

∑nd

j=1 ωj ≤ 1, determine the momentary attribute weights
wj(t), via the probability equation P (wj(t) = 1, wl(t) = 0∀l 6= j) = ωj for all
t ≥ 0. All possible pairs of attribute values are attended simultaneously, like in
MDFT.

(2) Evaluation of alternatives: In contrast to MDFT, however, the LCA
model assumes that alternatives are evaluated asymmetrically, based on loss aver-
sion. Let i 6= k and mij < mkj . Then the negative difference (mij −mkj) for
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evaluating alternative Ai and the positive difference (mkj − mij) for evaluating
alternative Ak are weighted differently, according to the loss-averse value function

v(x) =

{
log(1 + x), if x ≥ 0

−log(1− x)(log(1− x))2, if x < 0.
(2.5)

With respect to the basic elements, this means that the smaller attribute value in
a pair is more likely to be selected as focus value than the greater attribute value.

(3) Evidence accumulation: Like MDFT, the LCA model defines na leaky
competing choice units Si, i ∈ {1, . . . , na}, with Si(0) = 0, for the na choice
alternatives. For each alternative Ai, i ∈ {1, . . . , na}, the state Si(t) of the choice
unit or accumulator at time t depends on the current state Si(t− 1), the current
accumulator states Sk(t− 1), k 6= i for the other alternatives, and the momentary
input

Ii(t) = I0 +

nd∑
j=1

wj(t) ·∑
k 6=i

v(mij −mkj)


for alternative Ai at time t, where I0 > 0 is a positive constant that prevents
negative input values due to loss aversion. I0 can be interpreted as promoting the
available alternatives into the choice set (Usher & McClelland, 2004). Overall,
accumulators are updated according to the following iterative equation:

Si(t) = δ · Si(t− 1) + (1− δ)

Ii(t)− β∑
k 6=i

Sk(t− 1)− ξi(t)

 ,

with decay parameter 0 ≤ δ ≤ 1, global inhibition factor 0 ≥ β < 1, and nor-
mally distributed noise term ξi(t). The LCA model implements inhibition via a
global factor β, reducing the states of the choice units proportionally to the overall
activation. The leaky competing choice units are restricted to be non-negative,
preventing the promotion of alternatives via negated lateral inhibition. The updat-
ing process stops at a fixed time T and the alternative with the highest preference
state at that time is chosen.

The LCA model offers the following explanations for the three context effects.
The similarity effect is explained by a subtle interplay between the loss-averse
value function (equation 2.5), stochastic attention switching between attributes,
inhibition and leaky integration of activations. The loss-averse value function (to-
gether with the positive constant I0) promotes choice options that have less distant
competitors. The two similar choice options A1 and A3 both have one distant com-
petitor, A2, while the dissimilar alternative A2 has two distant competitors, A1 and
A3 (cf. figure 2.1). Thus, the loss-averse value function leads to a disadvantage
for alternative A2. However, due to stochastic attention switching between at-
tributes, the activations for A1 and A3 covary and the two alternatives share their
choices. This leads to an advantage for the dissimilar option A2. This advantage
is further promoted by inhibition, which, though implemented globally, leads to a
higher degree of competition between the similar alternatives A1 and A3 due to
their covarying activations. Finally, the leaky integration of activations plays a cru-
cial role in explaining the similarity effect since it allows activations to recover from
time intervals where the similar alternatives A1 and A3 dominate the choice set
due to the loss-averse value function. Overall, activations change between patterns
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favoring the similar options (a negative similarity effect) and patterns favoring the
dissimilar option (a positive similarity effect).

The explanation for the attraction effect is based on the loss-averse value
function. The dominating alternative A1, which has only one distant competitor,
A2, is favored over the dissimilar alternative A2, which has two distant competi-
tors, A1 and A3 (cf. figure 2.2). Stochastic attention switching and inhibition play
a minor role for the attraction affect. Since alternative A3 is dominated by alter-
native A1, activation for A3 remains low throughout the process, preventing these
mechanisms from altering the choice probabilities. Leaky integration, however,
slightly diminishes the magnitude of the attraction effect.

The loss-averse value function also accounts for the (symmetric and asymmet-
ric) compromise effect. The compromise alternative, A3 in the symmetric version
of the effect and A1 in the asymmetric version (cf. figure 2.3), has two medium dis-
tant competitors, the two extreme alternatives. It is thus favored over the extreme
options, which have each one medium distant competitor, the compromise option,
and one distant competitor, the other extreme alternative. Leaky integration re-
duces the magnitude of the compromise effect. On the other hand, a medium level
of inhibition can increase the magnitude of the compromise effect. The LCA model
does not make any predictions about individual differences in context effect pat-
terns. However, explanations for the attraction and compromise effect rely on the
loss-averse value function, while the similarity effect is diminished by loss aversion.
Furthermore, the level of inhibition might play a role in explaining such differences
since it has different effects on the occurrence and magnitude of the three effects.

2.4 Recent empirical observations

Until recently, MDFT and the LCA model have not been tested on data. One
reason for this was that, as Tsetsos, Usher, and Chater (2010) pointed out, “the
three effects have not all been obtained in a single experiment” (p.1287). Since
explaining similarity, attraction, and compromise effects simultaneously has become
a benchmark for multi-alternative multi-attribute decision making models, several
attempts have been made to obtain the three effects in a single experiment or at
least within a single experimental paradigm (e.g., Trueblood, 2012; Trueblood et
al., 2013; Berkowitsch et al., 2014; Noguchi & Stewart, 2014; Trueblood, Brown,
& Heathcote, 2015; Liew et al., 2016; Turner et al., 2018). However, only the
studies reported by Berkowitsch et al. (2014), Liew et al. (2016, Experiment 1),
and Turner et al. (2018, Study 2) considered the “original” effects as describe
above, where relative choice shares are compared between choice sets with two
and three alternatives. Trueblood (2012), Trueblood et al. (2013), Noguchi and
Stewart (2014), Trueblood et al. (2015), and Liew et al. (2016, Experiment 2)
instead studied “ternary” variants of the three effects, based on the comparison of
choice shares in situations with three choice alternatives each. Before summarizing
the experimental results, we describe those ternary variants of the three context
effects.

Ternary variants of the three context effects

The first ternary variant of the compromise effect was already proposed by
Simonson (1989), who tested the effect “by moving choice set position” (p.165),
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Figure 2.4: Placement of choice alternatives in the attribute space with dimensions
D1 (x-axis) and D2 (y-axis). Left panel: Situation for testing the compromise
effect by moving choice set position (ternary symmetric compromise effect). The
three ternary choice sets are {A4, A1, A3}, {A1, A3, A2}, and {A3, A2, A5}. Right
panel: Alternative ternary variant of the compromise effect (ternary asymmetric
compromise effect). The two choice sets are {A3, A1, A2} and {A1, A2, A4}. The
numbers on the axes are arbitrary.

constructing three ternary choice sets from five choice alternatives (ternary sym-
metric compromise effect, see left panel of figure 2.4): Starting with the two
original choice alternatives A1 and A2 (with A1 scoring high on attribute D1 but
low on attribute D2, and vice versa for alternative A2, see above), Simonson
(1989) added a third alternative A3 with medium values on both dimensions in
between them. Furthermore, he introduced two extreme alternatives, A4 and A5,
with A4 being more extreme than A1 (i.e., m41 > m11 and m42 < m12) and
A5 being more extreme than A2 (i.e., m52 > m22 and m51 < m21). The three
ternary choice sets are {A4, A1, A3}, {A1, A3, A2}, and {A3, A2, A5}. Alterna-
tive A1 is a compromise option in the first set but an extreme option in the
second set, alternative A2 is a compromise option in the third set but an ex-
treme option in the second set, and alternative A3 is a compromise option in the
second set but an extreme option in the first and third set. Thus, a ternary sym-
metric compromise effect is observed if P (A1|A4, A1, A3) > P (A1|A1, A3, A2) or
P (A2|A3, A2, A5) > P (A2|A1, A3, A2) or P (A3|A1, A3, A2) > P (A3|A4, A1, A3)
or P (A3|A1, A3, A2) > P (A3|A3, A2, A5). Trueblood (2012) and Liew et al.
(2016, Experiment 2) considered this variant of the compromise effect in their
experiments, see table 2.1.

Trueblood et al. (2013), Noguchi and Stewart (2014), and Trueblood et al.
(2015) studied yet another variant of the compromise effect, comparing choice
probabilities in two ternary choice sets based on the original asymmetric version of
the effect (ternary asymmetric compromise effect, see right panel of figure 2.4 and
table 2.1): Starting with the original choice alternativesA1 andA2, Trueblood et al.
(2013) introduced two extreme alternatives A3 and A4 such that A1 became a com-
promise between A2 and A3, and A2 became a compromise between A1 and A4.
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Figure 2.5: Placement of choice alternatives for testing the ternary variants of
the attraction effect in the attribute space with dimensions D1 (x-axis) and D2

(y-axis). The two choice sets are {A1, A2, A3} and {A1, A2, A4}. Left panel:
A3 and A4 are range decoys (ternary range attraction effect). Middle panel: A3

and A4 are frequency decoys (ternary frequency attraction effect). Right panel:
A3 and A4 are range-frequency decoys (ternary range-frequency attraction effect).
The numbers on the axes are arbitrary.

The two ternary choice sets are {A3, A1, A2} and {A1, A2, A4} and a ternary asym-
metric compromise effect is observed if P (A1|A3, A1, A2) > P (A1|A1, A2, A4) or
P (A2|A1, A2, A4) > P (A3|A3, A1, A2).

For testing the attraction effect, Trueblood (2012), Trueblood et al. (2013),
Noguchi and Stewart (2014), Trueblood et al. (2015), and Liew et al. (2016,
Experiment 2) constructed two ternary choice sets from four choice alternatives,
following Wedell (1991, see figure 2.5 and table 2.1): Again starting with the
original alternatives A1 and A2, they introduced two asymmetrically dominated
decoys, A3 and A4, with A3 being similar to but dominated by A1, and A4 be-
ing similar to but dominated by A2. Further differentiation is possible with re-
gard to the dimensions on which the decoys are dominated, that is, whether they
are frequency decoys, range decoys or range-frequency decoys (see above). The
two ternary choice sets are {A1, A2, A3} and {A1, A2, A4} and a ternary variant
of the attraction effect is observed if P (A1|A1, A2, A3) > P (A1|A1, A2, A4) or
P (A2|A1, A2, A4) > P (A2|A1, A2, A3).

For testing the similarity effect, Trueblood (2012), and Liew et al. (2016, Ex-
periment 2) constructed four ternary choice sets from seven alternatives (ternary
symmetric similarity effect, see left panel of figure 2.6 and table 2.1): Starting with
the original alternatives A1 and A2, and the symmetric compromise A3, they intro-
duced four alternatives that are each similar to one of the other alternatives: A4 is
similar to but slightly more extreme than A1, A5 is similar to but slightly more ex-
treme than A2, and A6 and A7 are each similar to the compromise A3, though lying
on different sides of A3. Here, A6 lies between A3 and A2, and A7 lies between
A3 and A1 (but both closer to A3 than to A1 or A2). The four ternary choice
sets are {A1, A3, A6}, {A3, A1, A4}, {A2, A3, A7}, and {A3, A2, A5}. A (variant
of the) similarity effect is observed if P (A1|A3, A1, A4) < P (A1|A1, A3, A6) or
P (A3|A1, A3, A6) < P (A3|A3, A1, A4) or P (A2|A3, A2, A5) < P (A2|A2, A3, A7)
or P (A3|A2, A3, A7) < P (A3|A3, A2, A5).

Trueblood et al. (2013), Noguchi and Stewart (2014), and Trueblood et al.
(2015) constructed only two ternary choice sets from four choice alternatives
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Figure 2.6: Placement of choice alternatives for testing two different ternary vari-
ants of the similarity effect in the attribute space with dimensions D1 (x-axis) and
D2 (y-axis). Left panel: The four choice sets are {A1, A3, A6} and {A3, A1, A4},
and {A2, A3, A7} and {A3, A2, A5} (ternary symmetric similarity effect). Right
panel: The two choice sets are {A1, A2, A3} and {A1, A2, A4} (ternary asymmetric
similarity effect). The numbers on the axes are arbitrary.

for testing another variant of the similarity effect (ternary asymmetric similar-
ity effect, see right panel of figure 2.6 and table 2.1): Starting with the orig-
inal alternatives A1 and A2, the authors introduced two additional alternatives
A3 and A4, with A3 similar to A1 and A4 similar to A2. The two choice
sets are {A1, A2, A3} and {A1, A2, A4} and a (variant of the) similarity effect
is observed if P (A1|A1, A2, A3) < P (A1|A1, A2, A4) or P (A2|A1, A2, A4) <
P (A2|A1, A2, A3). Please refer to table 2.1 for an overview of the 13 variants
and versions of the three context effects and their usage in the seven studies de-
scribed in the next section.

Empirical observations

Trueblood (2012) observed the three context effects in three separate experiments
within the same inference paradigm. Participants had to “infer which suspect out of
a set of three is most likely to have committed a crime, on the basis of two separate
eyewitness testimonies” (p.963). The strengths of the eyewitness testimonies were
given as ratings on a 0-100 scale, so the task was similar to choosing a college ap-
plicant based on intelligence and motivation scores as in Tversky’s (1972b) original
study of the similarity effect. Trueblood (2012) reported that in the ternary sym-
metric similarity experiment all four probability inequalities are significant across
participants. In the ternary attraction experiment, both probability inequalities
were significant across participants for each decoy type, that is for range decoys
and frequency decoys as well as range-frequency decoys. In the ternary symmetric
compromise experiment, three out of four probability inequalities were significant
across participants. Individual choice probabilities were presented only in scatter
plots. However, those plots suggest that a considerable number of participants
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(Tversky, 1972b) +
(Huber et al., 1982) + + +
(Simonson, 1989) + +
(Trueblood, 2012) + + + + +
(Trueblood et al., 2013) + + + + +
(Berkowitsch et al., 2014) + + +
(Noguchi & Stewart, 2014) + + +
(Trueblood et al., 2015) + + + + +
(Liew et al., 2016), Exp 1 + + + + +
(Liew et al., 2016), Exp 2 + + +
(Turner et al., 2018) + + +

Table 2.1: Variants and versions of similarity, attraction, and compromise effects
used in seven studies that tried to obtain the three effects in a single experiment or
within the same experimental paradigm. The original studies by Tversky (1972b),
Huber et al. (1982), and Simonson (1989) are included for reference.

actually showed negative context effects, and reverse probability inequalities hold
for those participants.

Trueblood et al. (2013) demonstrated the three context effects in perceptual
choice. Participants had to choose out of three rectangles with different widths
and heights (the two attributes) the one with the supposedly largest area. A
similar task had been used by Tversky and Russo (1969). Trueblood et al. (2013)
tested similarity, attraction, and compromise effects in three separate experiments.
In the ternary asymmetric similarity experiment, both probability inequalities were
significant across participants and for 69% of individual participants. In the ternary
attraction experiment, all probability inequalities were significant across decoy types
and across participants, though only the range decoy and the range-frequency
decoy produced a significant attraction effect across participants. Individually,
69% of participants showed a significant attraction effect with the range decoy,
61% showed a significant attraction effect with the range-frequency decoy, and
59% showed a significant attraction effect with the frequency decoy. In the ternary
asymmetric compromise experiment, both probability inequalities held, though they
were not significant across participants. Nevertheless, 66% of participants showed
the effect.

Berkowitsch et al. (2014) tested the original (binary vs. ternary set) versions
of the similarity, attraction, and compromise effects in a within-subject consumer
choice paradigm. Several days before the main experiment, participants completed
a matching task, in which they “repeatedly filled in missing attribute values (e.g.,
price) so that two products (e.g., a heavier and a lighter racing bike) became
equally attractive” (p.1336). During the main experiment, participants had to
choose between triplets of products that consisted of the two matched options and
a third option according to the similarity, attraction, and asymmetric compromise
situations described above. Relative choice shares of the “target” and “competitor”
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options in the ternary sets were compared to 0.5, the assumed choice probability
for the previously matched options in a (not tested) binary choice situation. Across
participants, Berkowitsch et al. (2014) observed a strong binary range-frequency
attraction effect, a reliable binary asymmetric compromise effect and a weak binary
similarity effect. For 19% of participants, all three effects reached significance.
However, on the individual level, the authors reported a positive correlation between
the relative choice shares of the target options in the attraction and compromise
conditions as well as a negative correlation between the relative choice shares
in the attraction and similarity conditions, and in the compromise and similarity
conditions. Thus, participants who showed the similarity effect were less likely to
also show the attraction and compromise effect, and vice versa. This confirms the
individual differences predicted by multi-alternative decision field theory (Roe et
al., 2001) and described above.

Noguchi and Stewart (2014) studied ternary variants of the three context ef-
fects in a within-subject consumer choice paradigm while recording eye-movements.
Similar to the study by Berkowitsch et al. (2014), a strong (ternary range-frequency)
attraction effect, a medium (ternary asymmetric) compromise effect and a weak
(ternary asymmetric) similarity effect were observed across participants. Noguchi
and Stewart (2014) divided the participants into two groups according to their per-
formance in 10 “catch trials” which included one option that dominated the other
two on both dimensions. All three context effects were significant for “engaged”
participants who did not make any mistakes in the catch trials. For the remaining
participants, only the attraction and the compromise effect reached significance.
Regarding eye-movements, the authors focused on transitions between pieces of
information. They found that more transitions were made within attributes and
between alternatives, and concluded that “alternatives are repeatedly compared in
pairs on single dimensions” (p.44) during multi-alternative multi-attribute choice.

Trueblood et al. (2015) replicated the three perceptual choice experiments from
Trueblood et al. (2013) in a single experiment, exploring also individual differences
in context effect patterns. Like Berkowitsch et al. (2014), they tested if the relative
choice shares for the “target” options deviated from 0.5, supposedly comparing
binary with ternary choices but without actually assessing binary choice probabilities
(nor matching rectangle sizes to being perceived as equally large). Overall, a
strong (ternary asymmetric) similarity effect, a medium (ternary) attraction effect
and a weak (ternary asymmetric) compromise effect were observed. Even though
this pattern deviates from the study by Berkowitsch et al. (2014), the remaining
results are quite similar: Trueblood et al. (2015) observed that only a relatively
small proportion of participants (23.6%) showed all three context effects and that
attraction and compromise effects were positively correlated with each other and
negatively correlated with the similarity effect.
Liew et al. (2016) criticized previous studies for analyzing grouped data (Trueblood,
2012; Trueblood et al., 2013) or relative choice shares (Berkowitsch et al., 2014;
Trueblood et al., 2015). The former, because averaging over participants does
not take into account individual differences between participants, and the latter,
because relative choice shares ignore decoy choice proportions which may indicate
dimensional biases. Instead, they proposed to cluster data according to choice fre-
quencies before analyzing them. They replicated the three inference experiments
from Trueblood (2012) and the consumer choice experiment from Berkowitsch et
al. (2014). Four clusters were revealed for the ternary symmetric similarity ef-
fect inference experiment, with three of them showing a positive similarity effect

25



CHAPTER 2. CONTEXT EFFECTS AND COMP. COGNITIVE PROCESS MODELS

and one of them showing no similarity effect. Two clusters were revealed for the
ternary attraction effect inference experiment, with the bigger cluster showing no
attraction effect but a strong dimensional bias towards dimension D1, and the
smaller cluster showing a weak attraction effect. Six clusters were revealed for
the ternary symmetric compromise effect inference experiment, with the largest
two clusters showing a strong negative compromise effect (that is, a preference for
one of the extreme alternatives), and the third largest cluster showing a strong
positive compromise effect. The remaining clusters all showed a weak negative
compromise effect. For the consumer choice experiment, three clusters were re-
vealed. Participants in the first cluster showed a positive binary range-frequency
attraction effect, a positive binary asymmetric compromise effect, and a negative
binary similarity effect. Participants in the second cluster showed a positive binary
similarity effect, no binary range-frequency attraction effect and a negative binary
asymmetric compromise effect together with a dimensional bias towards dimension
D2. Participants in the third cluster showed a positive binary similarity effect, no
binary range-frequency attraction effect and a negative binary asymmetric compro-
mise effect together with a dimensional bias towards dimension D1. Overall, the
differences between clusters are remarkable, and some of them even show reversed
effects as compared to the averaged data.

Finally, Turner et al. (2018) tested “binary vs. ternary set” variants of the
similarity, attraction, and symmetric compromise effects within Trueblood et al.’s
(2013) perceptual choice paradigm. The data Turner et al. (2018) reported is
averaged across participants and dimensions, that is, individual differences or di-
mensional biases are not taken into account. Their operationalization yielded a
positive binary range-frequency attraction effect, a negative binary similarity ef-
fect (which they attributed to their placement of the similarity decoy in-between
the original alternatives), and no binary symmetric compromise effect. As for the
compromise effect, Turner et al. (2018) argued that the ternary variants of the
compromise effect found by Trueblood et al. (2013, 2015) could actually be ar-
tifacts. However, another difference between the two studies is that Trueblood
et al. (2013, 2015) used an asymmetric version of the compromise effect, while
Turner et al. (2018) used a symmetric version. Like Berkowitsch et al. (2014) and
Trueblood et al. (2015), Turner et al. (2018) found a negative correlation between
the attraction effect and the similarity effect. Furthermore, they reported a weak
negative correlation between the attraction effect and the compromise effect and
no correlation between the compromise effect and the similarity effect, unlike in
previous studies. Again, this might be due to Turner et al.’s (2018) use of the
symmetric version of the compromise effect.

2.5 Recent cognitive process models of context effects

In parallel to those empirical observations of the three context effect, since 2012,
theoretical advancements in explaining them have been made as well. In fact,
three cognitive process models (and at least two static models) have been proposed
that are able to explain all three effects, with at least partly different information
processing mechanisms than both MDFT and the LCA model. The three cog-
nitive process models are the 2N-ary choice tree model (2NCT, Wollschlaeger &
Diederich, 2012) and its variant simple choice tree model (SCT, Wollschlaeger &
Diederich, 2017), the associative accumulation model (AAM, Bhatia, 2013), and
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multi-alternative decision by sampling (MDbS, Noguchi & Stewart, 2018). The
multi-attribute linear ballistic accumulator model (MLBA, Trueblood et al., 2014)
and multi-attribute decision by sampling (MADS, Ronayne & Brown, 2017) also
account for the three context effects but are static models und thus not cognitive
process models in a strict sense. In the last section of this review, we want to show
possible directions for future research on multi-alternative multi-attribute decision
making based on the insights from recent empirical and theoretical advancements.
Therefore, and in order for this review to be self-contained, we will now describe
the 2NCT/SCT models, AAM, the MLBA model, and MDbS by means of the
basic elements identified above and show how they account for the three con-
text effects. Again, let na be the number of alternatives under consideration,
{Ai}i=1,...,na

, nd the number of attributes that characterize them, {Dj}j=1,...,nd
,

and mij , i ∈ {1, . . . , na}, j ∈ {1, . . . , nd} the attribute value for alternative Ai on
dimension Dj .

(Simple) 2N-ary choice tree model

Since the 2NCT model (Wollschlaeger & Diederich, 2012) and the SCT model
(Wollschlaeger & Diederich, 2017) overlap in large part, we describe them together
and highlight differences where applicable.

(1) Attention allocation: The 2NCT/SCT models assume that attention
over time switches stochastically between attributes and, within attributes, between
pairs of attribute values. This is reflected in the model on the one hand by attribute
weights ωj , j ∈ {1, . . . , na}, with 0 ≤

∑nd

j=1 ωj ≤ 1, like in MDFT and the LCA
model, and on the other hand by comparison weights p{ij,kj}, i 6= k ∈ {1, . . . , na}:

p{ij,kj} = pij,kj + pkj,ij =
dij,kj + dkj,ij∑

l 6=m∈{1,...,na}(dlj,mj + dmj,lj)
,

with dij,kj = |mij−mkj |. The comparison weights serve as attention probabilities
for pairs of attribute values within attributes in the 2NCT/SCT models. Note that
the comparison weights depend on the relative difference of attribute values, such
that pairs that differ more get more attention.

(2) Evaluation of alternatives: In order to evaluate alternatives in the 2NC-
T/SCT models, one attribute value within a pair is selected as focus value and the
other automatically becomes the reference value. Only the alternative associated
with the focus value is evaluated, by an ordinal comparison of the two values. In
the original version of the 2NCT model, both attribute values in a pair are selected
as focus value equally often. However, it is possible to apply LCA’s asymmetric,
loss-averse value function to the differences (mij −mkj), which leads to a focus
shift towards the smaller value in each pair (cf. Wollschlaeger & Diederich, 2012).
In the SCT model (Wollschlaeger & Diederich, 2017), selection of the focus value
depends on a so-called focus weight λ, 0 ≤ λ ≤ 1. Let i 6= k and mij < mkj .
Then mij , the smaller one of the two values, is selected as focus value with prob-
ability λ, and mkj , the larger one, is selected as focus value with probability 1−λ.
By setting λ > 0.5, that is, by shifting the focus towards the smaller value of each
pair, the SCT model is able to mimic loss-aversion as implemented in the LCA
model.

(3) Evidence accumulation: The 2NCT/SCT models, in contrast to MDFT
and the LCA model, define two accumulators or counters per alternative, that is,
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2 × na counters in total. The positive counter S+
i accumulates evidence in favor

of choosing alternative Ai, i ∈ {1, . . . , na}, the negative counter S−i accumulates
evidence against choosing it. The initial counter states are set to zero, S±i (0) = 0,
and for each comparison between two attribute values the state of one counter is
increased by one. For example, let i 6= k and mij < mkj . If mij is the focus
value and mkj is the reference value at time t, the negative counter for alternative
Ai is updated, S−i (t) = S−i (t − 1) + 1, and if mkj is the focus value and mij is
the reference value, the positive counter for alternative Ak is updated, S+

k (t) =
S+
k (t − 1) + 1. For each counter, the updating probability p±i , i ∈ {1, . . . , na} at

each time t is composed of attribute weights, comparison weights, and the focus
weight λ:

p±i =

nd∑
j=0

p±ij · ωj ,

with
p−ij =

∑
k:(mij<mkj)

λ · pij,kj , p+ij =
∑

k:(mij>mkj)

(1− λ) · pij,kj ,

for j ∈ {1, . . . , nd}, p±i0 = 1
2·na

, and ω0 = 1 −
∑nd

j=1 ωj . Note that
∑na

i=1(p
+
i +

p−i ) = 1. On average, only one counter per time step is updated, leading to
competition between the choice alternatives. Furthermore, randomness is intro-
duced to the counter updating process via p±i0, given that ω0 > 0. Wollschlaeger
and Diederich (2012) additionally implement leakage and inhibition into the 2NCT
model, in order to mimic MDFT and the LCA model more closely. However, both
mechanisms are omitted later, thus we do not describe them here. The counter
updating process in the 2NCT/SCT models stops when enough evidence has been
accumulated to make the required choice. For each alternative, the difference of the
states of the positive and the negative counter at time t, Prefi(t) = S+

i (t)−S
−
i (t),

the so-called momentary preference state, is constantly compared to two thresholds,
a positive threshold θ+, and a negative threshold θ− = −θ+. If the momentary
preference state for alternative Ai hits the positive threshold, the process stops
and Ai is chosen. If, on the other hand, the momentary preference state for al-
ternative Ak hits the negative threshold, Ak is eliminated from the choice set and
the process continues with the remaining alternatives until one of them is chosen
or until all but one of them have been eliminated.

Three interacting mechanisms produce similarity, attraction, and compromise
effects in the 2NCT/SCT models: (1) Attention allocation between pairs of at-
tribute values based on normalized differences, (2) the possibility to eliminate
unwanted alternatives from the choice set, and (3) weighting of attributes based
on salience.

The similarity effect is produced as follows: The first mechanism leads to
a higher impact of dissimilar alternatives on the updating probabilities and thus
faster evidence accumulation for alternatives with more distant competitors. In the
similarity setting, evidence for the dissimilar alternative A2 (cf. figure 2.1) with
two distant competitors A1 and A3 is accumulated fastest. In the 2NCT model
without loss-aversion and in the SCT model with medium to low λ ≤ 0.5, this leads
to increased choice probabilities for alternative A2 and thus a similarity effect. On
the other hand, in the 2NCT model with loss aversion and in the SCT model with
λ > 0.5, this leads to a negative similarity effect, since the dissimilar alternative A2

is eliminated from the choice set with a relatively high probability. Both effects, the
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negative and the positive similarity effect, can be either strengthened or reversed
by means of the attribute weights.

The attraction effect is produced as follows: In the attraction setting, like
in the similarity setting, evidence for the dissimilar alternative A2 (cf. figure 2.2)
is accumulated fastest. In the 2NCT model with loss-aversion and in the SCT
model with λ > 0.5, this leads to faster elimination of alternative A2, followed by
elimination of the dominated alternative A3, choice of the dominating alternative
A1, and thus an attraction effect. On the other hand, in the 2NCT model without
loss-aversion and in the SCT model with λ ≤ 0.5, the increased choice probabil-
ity for the dissimilar alternative A2 leads to a negative attraction effect. Again,
the attribute weights are able to strengthen or reverse both the negative and the
positive attraction effect.

The compromise effect is produced as follows: In the compromise setting,
evidence for the two extreme alternatives (cf. figure 2.3) is accumulated fastest
since they have both one distant competitor (the other extreme alternative) and one
medium distant competitor (the compromise alternative), while the compromise
alternative has two medium distant competitors (the two extreme alternatives).
Note that the differences between the alternatives are normalized before being
serving as attention probabilities and therefore only relative distances play a role
here. The following explanations thus apply to symmetric and asymmetric versions
of the compromise effect. In the 2NCT model with loss-aversion and in the SCT
model with λ > 0.5, faster evidence accumulation for the extreme alternatives
leads to their elimination, leaving the decision maker with the compromise option.
On the other hand, in the 2NCT model without loss-aversion and in the SCT model
with λ ≤ 0.5, faster evidence accumulation for the extreme alternatives increases
their choice probability, leading to a negative compromise effect. The interplay
between attribute weighting and the other mechanisms in the 2NCT/SCT models
is quite complex in the compromise setting. In summary it can be said that choice
of an extreme alternative becomes more likely with unbalanced attribute weights.

Associative accumulation model

(1) Attention allocation: Like MDFT and the LCA and 2NCT/SCT models, the
AAM assumes that attention switches stochastically between attributes over time.
However, the attribute weights that drive attention allocation in the AAM depend
on accessibility of the attributes, defined as a weighted sum of attribute values:

aj = α0 +

na∑
i=1

ωi ·mij ,

with salience weights ωi for the alternatives and constant α0 that moderates the
strength of the associative bias. Additional parameters (“exchange rates”) αj , j ∈
{1, . . . , na} might be necessary to obtain comparability of attributes. However,
all αj have been set to one in present applications of the AAM. Accessibility is
higher for attributes with larger attribute values and attributes that are present
in more alternatives or more salient alternatives (that is, alternatives with larger
salience weights, e.g., reference points). In order to obtain attribute weights, the
accessibility values are normalized to sum up to one:

wj =
aj∑

l∈{1,...,nd} al
.
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Within attributes, the AAM assumes that all pairs of attribute values are attended
simultaneously, like MDFT and the LCA model.

(2) Evaluation of alternatives: More precisely, the AAM assumes that all
alternatives are evaluated simultaneously but separately within attributes, that is,
no comparison of attribute values takes place. Instead, a value function v(x) with

v(x) =

{
x1/2 for “good” attributes, and
−x1/2 for “bad” attributes,

that is nonnegative and increasing for positive attributes and nonpositive and de-
creasing for negative attributes, is applied to the attribute values. Again, note that
additional parameters (“exchange rates”) αj , j ∈ {1, . . . , na} might be necessary
to obtain comparability of attributes.

(3) Evidence accumulation: Like MDFT and the LCA model, the AAM
defines na choice units Si, i ∈ {1, . . . , na}, with Si(0) = 0. Over time, the
accumulators are updated according to the following equation:

Si(t) = δ · Si(t− 1) + v(mij) + ξi(t),

with decay parameter δ > 0, and normally distributed noise term ξi(t). Evidence
accumulation stops either at a fixed time T, in which case the alternative with the
highest preference state is chosen, or as soon as the preference state for one of the
alternatives exceeds a positive threshold θ+.

The AAM explains similarity, attraction, and compromise effects by means of
two interacting mechanisms: (1) similarity based covariance of preferences, and
(2) choice-set dependent changes of the associative bias.

Like MDFT and the LCA model, the AAM explains the similarity effect by
means of covarying preferences for similar alternatives. Since all alternatives are
evaluated simultaneously with respect to the momentarily attended attribute, the
counter states or preference states for the similar alternatives, A1 and A3 (cf.
figure 2.1), increase and decrease together. When it comes to making a choice
and the preference states of the similar alternatives are both high, either of them is
equally likely to be chosen. This results in a disadvantage of the similar alternatives
A1 and A3 compared to the dissimilar alternative A2. On the other hand, adding
a third alternative to a choice set of two, increases the attribute weight of the
strongest attribute of the new alternative, biasing choice towards alternatives that
score high on this attribute as well. In the similarity situation, this may lead to an
advantage of the two similar alternatives A1 and A3, reversing the similarity effect.

As for the attraction effect, the added dominated alternative A3 (cf. figure
2.2) biases attention towards the attribute that is high for both the dominated
alternative A3 and the dominating alternative A1, leading to an advantage of the
dominating alternative A1 over the dissimilar alternative A2. However, since the
dominated and dominating alternative are also similar to each other, covarying
preferences are able to cover or even reverse the attraction effect.

As for the (asymmetric) compromise effect, the added extreme alternative A3

(cf. left panel of figure 2.3) biases attention towards its strongest attribute, D1.
This leads to an advantage of the compromise option A1 over the other extreme
option A2. Note that the AAM does not predict that the compromise option is
chosen more often than the newly added extreme option, it just predicts a change
in relative choice shares of the two original choice alternatives. With this, it is
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theoretically able to also explain the symmetric compromise effect (cf. right panel
of figure 2.3). Explaining the symmetric compromise effect is further facilitated
by the concavity of the value function v(x). However, if the newly added extreme
option A3 is positioned close to the compromise option A1 in the attribute space,
the compromise effect transitions into a similarity effect.

Multi-attribute linear ballistic accumulator model

In the MLBA model, comparison and evaluation of alternatives takes place in a
static and deterministic preprocessing stage prior to the proposed (linear) evidence
accumulation. Therefore, the MLBA model is not a cognitive process model of
decision making in a strict sense. We discuss it here regardless, since Trueblood
et al. (2014) place it in this category, and it has been repeatedly mentioned in the
same breath with the other models discussed here.

(1) Attention allocation: The MLBA model does not make any assumptions
about attention allocation.

(2) Evaluation of alternatives: Choice alternatives are evaluated based on
their attribute values in a static and deterministic preprocessing stage. In a first
step, parameterized curvature is added to the attribute space, transforming indif-
ference lines into indifference curves via(x

a

)γ
+
(y
b

)γ
= 1.

For γ > 1, the curves are convex and intermediate options are preferred to ex-
treme options, for γ < 1 they are concave and extreme options are preferred to
intermediate options. Note that the labels “intermediate” and “extreme” here refer
to attribute dispersion, that is, to the attribute space independent of the current
choice set. Let m′ij , i ∈ {1, . . . , na}, j ∈ {1, . . . , nd}, be the transformed attribute
values. In a second step, the difference for each pair of transformed attribute val-
ues within attributes is calculated, dij,kj = (m′ij −m′kj), i 6= k ∈ {1, . . . , na}, and
multiplied with a distance- and direction-dependent weight

wij,kj =

{
exp(−λ1|m′ij −m′kj |), for (m′ij −m′kj) ≥ 0, and
exp(−λ2|m′ij −m′kj |), for (m′ij −m′kj) < 0.

And lastly, the weighted differences are added up per alternative, yielding the input
for the linear evidence accumulation:

mi = I0 +
∑
k 6=i

nd∑
j=1

wij,kj · dij,kj , (2.6)

with constant I0 > 0 to prevent negative values.
(3) Evidence accumulation: The MLBA model, like MDFT, the LCA model

and the AAM, defines na choice units Si, i ∈ {1, . . . , na}. In contrast to the other
models though, the inital accumulator states are drawn from a uniform distribution
with support [0, A]: Si(0) ∈ U(0, A). Starting from the initial accumulator states,
evidence accumulation is linear and deterministic, with slopes drawn from normal
distributions with means mi (defined in equation 2.6) and standard deviation σ.
Evidence accumulation stops as soon as the first counter hits a positive threshold
θ+. Note that, in most applications of the MLBA model so far, only choices but
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no response times were analyzed, and thus the parameters A, σ, and θ+ have been
fixed to A = 1, θ+ = 2, and σ = 1.

The three context effects are so to say hard coded into the MLBA model by
means of three mechanisms in the preprocessing stage.

The similarity effect emerges from the different weights, λ1 and λ2, for evi-
dence in favor of and against choosing each alternative. Compared to the additional
alternative A3 (cf. figure 2.1), the dissimilar alternative A2 has a large advantage
on dimension D2 and a large disadvantage on dimension D1, and the similar alter-
native A1 has a small advantage on one dimension and a small disadvantage on
the other dimension. If advantages loom larger than disadvantages in the MLBA
model, that is, if λ1 > λ2, the dissimilar alternative A2 benefits more than the
similar alternative A1 from the addition of alternative A3.

The attraction effect emerges from the distance dependence of the weights
wij,kj . Since the additional dominated alternative A3 (cf. figure 2.2) is closer to
the dominating alternative A1 than to the dissimilar alternative A2, the comparison
between A3 and A1 receives more weight than the comparison between A3 and A2.
Therefore, alternative A1 benefits more than alternative A2 from the addition of
alternative A3. Note that the two mechanisms producing similarity and attraction
effects in the MLBA model are opposed to each other and each could potentially
cover the other effect (but see Tsetsos et al., 2015; Trueblood et al., 2015, for a
discussion).

The compromise effect emerges from the parameterized curvature that is
added to the attribute space. As mentioned above, intermediate alternatives are
preferred to extreme alternatives for γ > 1. Note that this mechanism mainly
produces symmetric compromise effects (cf. figure 2.3). However, the distance
dependent weights support both symmetric and asymmetric compromise effects,
since comparisons involving the compromise receive more weight than comparisons
between the two extremes.

Multi-alternative decision by sampling

The original theory of decision by sampling (DbS, Stewart, Chater, & Brown, 2006)
assumes that preferences are constructed by means of binary, ordinal comparisons
of the choice alternative’s attribute values with reference values sampled from long-
term memory. Recently, two extensions of DbS have been proposed that both ac-
count for the three context effects, but with different mechanisms: Multi-attribute
decision by sampling (MADS, Ronayne & Brown, 2017), and multi-alternative de-
cision by sampling (MDbS, Noguchi & Stewart, 2018). While MADS assumes
that the available choice alternatives in a trial affect the distribution from which
reference values are sampled, MDbS implements a similarity-based mechanism for
attention allocation between available choice alternatives. However, since MADS
is a static model, we only discuss MDbS here.

(1) Attention allocation: Based on an eye tracking study of the three con-
text effects (Noguchi & Stewart, 2014), MDbS assumes that attention in multi-
alternative multi-attribute decision making switches between attribute values, and
attention probability is higher for attribute values that are similar to other avail-
able attribute values. Let mij and mkj be two attribute values with i 6= k ∈
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{1, . . . , na}, and j ∈ {1, . . . , nd}. MDbS defines the similarity of mij to mkj as

sij,kj = exp

(
−λ |mij −mkj |

|mkj |

)
,

with similarity parameter λ. Note that, in general, sij,kj 6= skj,ij . Let

sij =
∑

k 6=i∈{1,...,na}

sij,kj

be the summed similarity of attribute value mij to the other attribute values on
the same dimension. Then the probability for focusing on attribute value mij is
obtained by dividing its summed similarity value with the summed similarity values
of all attribute values across attributes:

pij =
sij∑

l∈{1,...,na}
∑
m∈{1,...,nd} slm

.

The probability pj for attending attribute Dj , j ∈ {1, . . . , nd} can be easily derived
from this definition, though it is not explicitly used in MDbS:

pj =
∑

i∈{1,...,na}

pij .

(2) Evaluation of alternatives: MDbS assumes that alternatives are evaluated
in pairwise comparisons of attribute values within attributes. Given an alternative
Ai, i ∈ {1, . . . , na}, that is supposed to be evaluated with respect to attribute
Dj , j ∈ {1, . . . , nd}, every other attribute value mkj , k 6= i ∈ {1, . . . , na}, on
the same dimension is equally likely to serve as reference value for the focus value
mij . The probability that mij is favored over mkj is defined by means of a logistic
function:

P (mij favored over mkj) =


1

1+exp
(
δ1·

( |mij−mkj |
|mkj |

−δ0
)) , for mij > mkj

0 for mij ≤ mkj ,

with sensitivity parameters δ0 and δ1. This function allows for “soft” comparisons:
For δ0 = 50 and δ1 = 0.1, for example, a difference of 10% is detected with
probability 0.5 and a difference of 20% is detected with probability > 0.99 (Noguchi
& Stewart, 2018). Like in the original DbS, comparisons in MDbS are ordinal, that
is, it only counts whether an attribute value is favored over an other one but not
how much the two values differ. Overall, the probability that an attribute value
mij wins a comparison is the average over the winning probabilities for all possible
pairwise comparisons with respect to the same attribute:

P (mij wins a comparison) =

∑
k 6=i∈{1,...,na} P (mij favored over mkj)

na − 1
.

(3) Evidence accumulation: In MDbS, the evidence for each alternative is
the number of won comparisons of the associated attribute values. It is gathered in
one accumulator or counter per alternative, Si, i ∈ {1, . . . , na}, with initial counter
state Si(0) = 0. The probability that the state of counter Si is increased is

pi =
∑

j∈{1,...,nd}

(pij · P (mij wins a comparison)).
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Like the 2NCT/SCT models, MDbS does not explicitly implement competition
between accumulators, however, competition naturally emerges from the definition
of attention probabilities for the attribute values as normalized summed similarity.
Furthermore, there is no noise in MDbS’s evidence accumulation. MDbS imple-
ments a relative stopping rule, such that a decision is made when the maximum of
counter states exceeds the average of all counter states by θ. For demonstration
purposes, Noguchi and Stewart (2018) set θ = 0.1. In this case, a decision is
made as soon as one unit of evidence is accumulated, making the model basically
static. For more general cases, the authors provide a closed form solution for choice
probabilities, based on a tutorial by Diederich and Busemeyer (2003).

MDbS explains similarity, attraction, and compromise effects by means of three
interacting mechanisms: (1) “Soft” comparisons that ignore similar alternatives,
(2) changes in attention probabilities due to additional alternatives in the choice
set, and (3) changes in probabilities for winning comparisons due to additional
alternatives in the choice set.

As for the similarity effect, MDbS assumes that the dissimilar alternative A2

(cf. figure 2.1) profits more from addition of A3 than the similar alternative A1,
since A1 and A3 are too similar for passing the sensitivity threshold of the “soft”
comparison mechanism. This explanation lasts even though A1 and A3 overall
receive more attention than alternative A2, due to their similarity. However, the
strength of the similarity effect is moderated by the similarity parameter λ. The
higher λ, the weaker the similarity effect, and even negative similarity effects may
occur.

As for the attraction effect, MDbS assumes that the dominating alternative
A1 (cf. figure 2.2) profits more from addition of the dominated alternative A3

than the dissimilar alternative A2, since A1 and A3 receive more attention due
to their similarity, and the probability for winning a comparison increases signifi-
cantly for the dominating alternative A2. Note that this explanation is valid only
for sufficiently different alternatives A1 and A3, because otherwise the “soft” com-
parison mechanism undermines the effect. On the other hand, the comparison
mechanism allows MDbS to account for differences between range, frequency, and
range-frequency decoys. Like for the similarity effect, the similarity parameter λ
moderates the strength of the attraction effect, but in reversed direction: The
higher λ, the stronger the attraction effect. A negative attraction effect is very
unlikely to occur in MDbS, except for very similar alternatives A1 and A3.

As for the compromise effect, MDbS assumes that the addition of an extreme
alternative A3 (cf. left panel of figure 2.3) increases the attention/evaluation
probability for the compromise option A1 since it has the highest similarity value
with two medium distant competitors compared to the extreme alternatives A2

and A3 with one distant and one medium competitior each. Since similarity is
relative in MDbS, this explanation is valid for both symmetric and asymmetric
compromise effects. Again, the strength of the compromise effect is moderated by
the similarity parameter λ, in the same direction as for the attraction effect: The
higher λ, the stronger the compromise effect. Note that the similarity parameter
allows MDbS to account for correlations between the three context effects, as, for
example, observed by Berkowitsch et al. (2014). However, MDbS is not able to
explain negative compromise effects as reported, for example, by Liew et al. (2016).
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2.6 Summary and outlook

Following Oppenheimer and Kelso (2015), who identified a Kuhninan paradigm
change in the field of decision making research, we described in detail how three
“anomalies” in multi-alternative multi-attribute decision making drove the change
from utility theories to information processing theories in this sub-field. The three
so-called context effects, similarity, attraction, and compromise effects, demon-
strate that preferences are contingent on the choice set under consideration and
thus violate independence assumptions of rational choice theories and early proba-
bilistic choice models. The original findings reported by Tversky (1972b), Huber et
al. (1982), and Simonson (1989) have first been explained simultaneously by multi-
alternative decision field theory (MDFT, Roe et al., 2001), the multi-alternative
extension of decision field theory (DFT, Busemeyer & Townsend, 1993), and shortly
afterwards by the leaky competing accumulator model (LCA, Usher & McClelland,
2001, 2004). These models are so-called computational cognitive process mod-
els that dissect the decision making process into parameterized microprocesses,
describing the construction of preferences over time. Together, MDFT and the
LCA model set off development of a number of multi-alternative multi-attribute
decision making models and established similarity, attraction, and compromise
effects as benchmark for such models. That is, they defined what phenomena
multi-alternative multi-attribute decision making models should account for, and
how such models should be constructed (namely from parameterized micropro-
cesses). In other words, they (partly) defined the information processing paradigm
for multi-alternative multi-attribute decision making research. However, until re-
cently, MDFT and the LCA model have not been tested on data, partly due to a
lack of simultaneous observations of similarity, attraction, and compromise effects
in a single experiment or even within one experimental paradigm.

Since 2012, several such experimental paradigms have been developed, most of
them using ternary variants of the three context effects in order to increase effect
sizes. It turned out that, on an individual level, participants who show the similarity
effect ususally show negative attraction and compromise effects, and participants
who show attraction and compromise effects usually show a negative similarity
effect (e.g. Berkowitsch et al., 2014). This explains the difficulty in obtaining all
three effects simultaneously and at the same time calls for models that are able
to explain similarity, attraction, and compromise effects as well as the opposite or
negative effects and the interactions between them.

Also since 2012, several new computational cognitive process models that ac-
count for the three context effects have been proposed. Each of these models
has some unique features, but they are all constructed from parameterized mi-
croprocesses, like MDFT and the LCA model, and some of them draw additional
inspiration from the early theories of preference reversals presented in section 2
above.

The unique feature of the 2N-ary choice tree model (Wollschlaeger & Diederich,
2012) and its variant simple choice tree model (Wollschlaeger & Diederich, 2017)
is the possibility to eliminate unwanted alternatives from the choice set. While
this feature is reminiscent of the theory of elimination by aspects (Tversky, 1972a,
1972b), and allows the 2NCT/SCT models to mimick EBA for appropriate choices
of reference points (and, in SCT, focus value), it is actually an implementation of
(relative) loss avoidance or loss aversion (cf. Tversky & Kahneman, 1991). In the
SCT model, the elimination mechanism is parameterized by means of the focus
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weight, allowing the decision maker to either avoid losses or to approach gains.
There, avoiding losses is associated with attraction and compromise effects (and
negative similarity effects), while approaching gains is associated with similarity
effects (and negative attraction and compromise effects).

The unique feature of the associative accumulation model (AAM, Bhatia, 2013)
is an associative process between choice alternatives and attributes. Attributes
that are present in many choice alternatives or dimensions on which alternatives
score relatively high receive higher weights, leading to changes in preferences when
adding new alternatives to the choice set. Mechanisms based on changing attribute
weights have been discussed before, for example by Huber et al. (1982), Tversky et
al. (1988), and Wedell (1991), but Bhatia (2013) was the first to implement such
a mechanism in a cognitive process model. The AAM is able to explain positive
and negative similarity and attraction effects and interactions between them, since
the mechanisms that produce the two effects are opposed to each other. However,
the model is not able to produce negative compromise effects and does not explain
the interactions between the compromise effect and the other two context effects.

The multi-attribute linear ballistic accumulator model (MLBA, Trueblood et
al., 2014) neglects dynamic aspects altogether and the three context effects are
hard-wired into the model. While this allows for mathematical tractability, the
declared unique feature of the MLBA model, the resulting response times are
actually meaningless. The mechanisms that explain similarity and attraction effects
in the MLBA model are opposed to each other, that is, the model is in principle
able to produce the negative correlation between the two effects. The mechanism
that produces the compromise effect is able to produce negative compromise effects
as well, but there is no interaction with the other two effects.

The unique feature of multi-alternative decision by sampling (MDbS, Noguchi
& Stewart, 2018) is a similarity-driven attention allocation mechanism which favors
alternatives that are similar to other available choice options. On the other hand,
a “soft” comparison mechanism prevents similar alternatives from boosting each
other. These two mechanisms allow MDbS to account for the interactions between
similarity, attraction, and compromise effects, but negative attraction effects are
very unlikely to occur.

Outlook

We said in the introduction, that Lichtenstein and Slovic (2006) identified deci-
sion field theory as an exception to the need for multiple theories to explain how
preferences are constructed by different decision makers in different situation. Yet,
the different theories described in this review have been compared with each other
mostly on exactly the same level as early theories of preference reversals, that is,
on the level of whole theories.

Only recently, Turner et al. (2018) made a first attempt to compare theories
on the level of the microprocesses they are based on. They identified the in-
formation processing mechanisms used by multi-alternative decision field theory,
the leaky competing accumulator model, the associative accumulation model and
the multi-attribute linear ballistic accumulator model and compared 432 different
combinations of those microprocesses in a so-called switchboard analysis. The
switchboard analysis was based on data from Turner et al.’s (2018) study 2, a
perceptual choice experiment of similarity, attraction, and symmetric compromise
effects. We applaude their ideas and efforts, but also see several shortcomings that
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need to be addressed in the future. First of all, the experiment was restricted to the
symmetric version of the effect (cf. figure 2.3). This restriction favors mechanisms
tailored to explain this version of the effect, as implemented in AAM and the MLBA
model, and consequently also favors those models. Future studies should include
both, symmetric and asymmetric, versions of the compromise effect. A similar
criticism pertains to the attraction effect, since Turner et al.’s (2018) experiment
features only range-frequency decoys, ignoring possible differences between those
and range decoys or frequency decoys (cf. Huber et al., 1982, and figures 2.2 and
2.5). Future studies should include all three kinds of dominated decoys.

More generally, the capability to explain additional effects that have been ob-
served in multi-alternative and/or multi-attribute decision making should be ex-
plored for the models discusses here, and particulary for their mechanisms. Bhatia
(2013), for example, proposes to consider the alignability effect (Markman &
Medin, 1995), the less is more effect (Simonson, Carmon, & O’Curry, 1994),
the endowment effect (Thaler, 1980), the status quo bias (Samuelson & Zeck-
hauser, 1988), and two effects reported by Tversky and Kahneman (1991): The
improvements versus tradeoffs effect, and the advantages and disadvantages effect.
Additionally, Bhatia (2013) discusses phantom decoys, that is, unavailable alter-
natives (cf. Pratkanis & Farquhar, 1992), as a way to study preference oderings
for the whole (ternary) choice set. Highhouse (1996), for example, uses phantom
decoys to study preference orderings for job candidates in an attraction situation,
Pettibone and Wedell (2000, 2007) use phantom decoys with consumer products
in attraction and compromise situations, Usher, Elhalal, and McClelland (2008)
use them to compare decision field theory and the leaky competing accumulator
model in a compromise situation, and Trueblood and Pettibone (2015) use phan-
tom decoys in a perceptual study of attraction and compromise effects.

Another way to study preference orderings for ternary choice sets is so-called
best-worst scaling, where participants are asked to state the most preferred and the
least preferred alternative in a choice set (cf. Louviere, Flynn, & Marley, 2015).
Hawkins et al. (2013) and Hawkins et al. (2014) explore the capability of the
multi-attribute linear ballistic accumulator model to account for this kind of data.
Some of the problems they raise could be solved by implementing an elimination
threshold as proposed by Wollschlaeger and Diederich (2012, 2017) for selecting
worst alternatives. An elimination mechanisms could also help with explaining
choice deferral, that is, delaying or avoiding a decision. So far, choice deferral
has been implemented into decision field theory as additional choice alternative
(Busemeyer et al., 2006) and into the associative accumulation model as time
limit to the deliberation process (Bhatia & Mullett, 2016).

Time limits touch on another important topic (maybe the most important
topic) for cognitive process models of decision making: The temporal development
of preferences. Early preference reversal experiments, including the original context
effects studies (Tversky, 1972b; Huber et al., 1982; Simonson, 1989), relied on
paper-and-pencil measurements, that is, participants had to indicate on a piece
of paper which alternative they preferred. Accordingly, early theories of context
effects only predicted choice probabilities. Computational cognitive process models
like decision field theory, on the other hand, are theoretically able to predict also
choice response times. Practically, however, this ability has been mosty neglected
in the multi-alternative, multi-attribute decision making literature, as also in the
recent comparative study by Turner et al. (2018). One reason for this is the lack
of mathematical tractability in most of these models. While Turner et al. (2018)
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argue that model fit and model complexity are more important than mathematical
tractability, it remains unclear whether their likelihood-free estimation method is
able to deal with response times. Theories like the (simple) 2N-ary choice tree
model (Wollschlaeger & Diederich, 2012, 2017) and multi-alternative decision by
sampling (Noguchi & Stewart, 2018), on the other hand, predict response times
based on the discrete methods promoted by Diederich and Busemeyer (2003), a
quite promising approach. With computer-based measurements as standard in
modern psychological studies, response times can easily be recorded and should be
used to differentiate between models and information processing mechanisms.

Response times can be interpreted as a kind of process data. Other kinds include
think-aloud protocols, mouse-tracing, and eye-tracking (Schulte-Mecklenbeck, Kue-
hberger, & Ranyard, 2011). While think-aloud protocols and mouse-tracing might
interfere with information processing, eye-tracking is relatively unobtrusive and
could provide additional insights about attention allocation and comparative eval-
uation of choice alternatives, two of the basic elements identified above (see Ashby,
Johnson, Krajbich, & Wedel, 2016, for a recent review of eye-movement research
in judgment and decision making). As Cohen, Kang, and Leise (2017) point out,
cognitive process models of decision making could also be extended to explicitly
account for attention allocation and eye movements. Such an approach has been
adopted, for example, by Johnson and Busemeyer (2016). Further inspiration can
be found in models of eye movements in reading, which have been developed and
applied for several decades (Trukenbrod & Engbert, 2014; Clifton Jr et al., 2016).

The main topic of this review have been context effects, that is, changes in
choice probabilities contingent on choice set composition. However, it would be
interesting to explore for the cognitive process models discussed here, whether
they are able to account for other kinds of preference reversals as well. As we
said in the introduction, preference construction is contingent on the task, the
context, and on individual differences (Payne et al., 1992). Of course there are
also interdependencies between the different causes of preference reversals. Chang
and Liu (2008) and Cataldo and Cohen (2018), for example, observe reversed
compromise and similarity effects, respectively, for certain task and presentation
formats. A recent research topic in frontiers in psychology (see Houpt, Yang, &
Townsend, 2016, for the editorial) deals with modeling individual differences in
perceptual decision making. There is a lack of similar studies for multi-alternative
multi-attribute (preferential) decision making.
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The 2N-ary choice tree model
Lena M. Wollschlaeger, Adele Diederich

This chapter has been published in Frontiers of Psychology under the title “The
2N-ary choice tree model of N-alternative preferential choice” on June 20, 2012.

Abstract

The 2N -ary choice tree model accounts for response times and choice probabili-
ties in multi-alternative preferential choice. It implements pairwise comparison of
alternatives on weighted attributes into an information sampling process which, in
turn, results in a preference process. The model provides expected choice probabil-
ities and response time distributions in closed form for optional and fixed stopping
times. The theoretical background of the 2N -ary choice tree model is explained in
detail with focus on the transition probabilities that take into account constituents
of human preferences such as expectations, emotions or socially influenced atten-
tion. Then it is shown how the model accounts for several context-effects observed
in human preferential choice like similarity, attraction and compromise effects and
how long it takes, on average, for the decision. The model is extended to deal with
more than three choice alternatives. A short discussion on how the 2N -ary choice
tree model differs from the Multi-alternative Decision Field Theory and the Leaky
Competing Accumulator model is provided.

3.1 Introduction

Life is full of decisions: Be it the selection of clothing in the morning or of menu
for lunch, the question which car to buy or if taking cold medication is necessary.
This type of decisions is called preferential choice and has been subject of nu-
merous investigations within the field of decision theory (Koehler & Harvey, 2007,
for a review). Several effects have been observed when the decision maker has
more than two choice options (multi-alternative preferential choice). Hick’s Law
(Hick, 1952; Hyman, 1953), originally defined in the context of stimulus detec-
tion paradigms, postulates a dependency of deliberation time on the number of
alternatives. In particular, it states that a linear increase of the number of equally
attractive alternatives to choose from leads to a logarithmic increase of the time
that passes until the decision is made. Furthermore, a decision maker who is in-
different between two choice alternatives from a given choice set may change the
preference for one or the other alternative when the choice set is enlarged, i.e., the
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local context may affect the decision and generate preference reversals. Similarity
effects (Tversky, 1972a), attraction effects (Huber et al., 1982) and compromise
effects (Simonson, 1989), for instance, depend on a third alternative that is added
to a choice set of two equally attractive but dissimilar alternatives. If the third al-
ternative is very similar to one of the others, the two similar alternatives share their
choice frequency and are both chosen less often than the dissimilar one (similarity
effect). If the third alternative is similar to one of the others but slightly inferior,
it promotes the similar one and increases its choice frequency compared to the
dissimilar one (attraction effect). If the third alternative is a compromise between
the other two, the decision maker will prefer the compromise to the other alter-
natives (compromise effect). Besides those preference reversals that emerge from
local context, there might also be influence from background context (Tversky &
Simonson, 1993) like a reference point outside of the choice set which – together
with the loss-aversion principle (Kahneman & Tversky, 1979) – affects evaluation
of the given alternatives.

One challenge for (cognitive) modelers is to think of a model which predicts
decision making behavior for multi-alternative preferential choice tasks in general
but also accounts for all the aforementioned effects. Another challenge is to for-
mulate the model such that (expected) response times and choice probabilities can
be calculated and the model parameters conveniently estimated from the observed
choice times and choice frequencies.

Decision Field Theory (DFT, Busemeyer & Townsend, 1992, 1993) and its
multi-attribute extension (Diederich, 1997) predict choice response times and choice
probabilities for binary choice tasks. Both approaches provide closed form solutions
to calculate these entities. Since then, several attempts have been made to extend
this kind of models to multi-alternative preferential choice tasks: Multi-alternative
Decision Field Theory (Roe et al., 2001) and the Leaky Competing Accumulator
(LCA) model (Usher & McClelland, 2001, 2004) predict choice probabilities for
three alternative choice tasks but cannot account for optional choice times, i.e.,
the time the decision maker needs to come to a decision. Both approaches, how-
ever, do account for fixed stopping times, i.e., for an externally determined time
limit. Furthermore, multi-alternative DFT and the LCA model both account for
the similarity, attraction and compromise effects using computer simulations to
predict the patterns. To do so, Roe et al. (2001) interpret DFT as a connection-
ist network and implement distance-dependent inhibition between the alternatives.
Usher and McClelland (2001, 2004) add insights from perceptual choice and neu-
ropsychology to the multi-alternative DFT and propose for their LCA model direct
implementation of loss-aversion by means of an asymmetric value function and
global inhibition instead of distance-dependent inhibition.

Our 2N -ary choice tree model builds on the previous approaches and tries to
overcome some of their problems. It is a general model for choice probabilities and
response times in choice between N alternatives with D attributes. As such, it
provides a way to calculate expected response times, response time distributions
and choice probabilities in closed form by determining the time course of an infor-
mation sampling process via a random walk on a specific tree. It is able to account
for similarity, attraction and compromise effects which have been most challenging
for previous models. In contrast to previous approaches, the 2N-ary choice tree
model accounts for these effects without additional mechanisms like inhibition or
loss-aversion and is thus more parsimonious. However, it is possible to implement
these mechanisms if the situation requires it.
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First, we describe the structure of the 2N -ary choice tree and the implementa-
tion of the random walk on it in general, including a discussion of initial values and
stopping rules. Then we define expected choice probabilities and reaction times
and state that these exist and can be calculated in finite time. The proof of this
statement is given later in the paper. It is not essential for understanding the
theory; we provide it rather as completing the theoretical derivations. Next, we
show how to derive transition probabilities from the given alternatives in a specific
choice set and therewith define the random walk for that set. A psychological
interpretation of their constituents is given afterwards. Finally, we demonstrate
the predictive power of our model by showing several simulations for choice sit-
uations producing the similarity, attraction and compromise effect and calculate
expected hitting times and choice probabilities. We conclude with a comparison
of the 2N -ary choice tree with its closest competitors, the multi-alternative DFT
and the LCA model.

3.2 The 2N-ary choice tree model

Making an informed decision usually implies sampling of information about the
alternatives under consideration. In Psychology, information sampling processes
(e.g. Townsend & Ashby, 1983; Luce, 1986, for review; LaBerge, 1962; Laming,
1968; Link & Heath, 1975; Townsend & Ashby, 1983; Luce, 1986; Ratcliff &
Smith, 2004) have a long tradition and proven to be an adequate tool for detailed
interpretation of decision making processes, mostly in perception as they provide
insight about accuracy and time course of these processes. Poisson counter mod-
els (e.g. Pike, 1966; Townsend & Ashby, 1983; LaBerge, 1994; Diederich, 1995;
Van Zandt, Colonius, & Proctor, 2000; Smith & Van Zandt, 2000) are a special
class of information sampling models that assume constant amounts of informa-
tion being sampled at Poisson distributed points in time. (Multi-alternative) DFT
(Busemeyer & Townsend, 1993; Roe et al., 2001) and the LCA model (Usher &
McClelland, 2004) make use of information sampling principles in modeling prefer-
ential choice under uncertainty. Both models assume one counter per alternative
and all of these counters are updated once per fixed time interval until one of them
reaches a threshold. The amounts to update the counters depend on comparison
of the alternatives and on already sampled information. In our 2N -ary choice tree
model, only one counter per fixed time interval is updated with a fixed amount,
but the probability for each counter to be updated depends on comparison of the
alternatives and on already sampled information. With regard to its constituents
it is thus based on the same principles as both DFT and the LCA model. As only
one counter is updated per iteration, the next time for a specific counter to be
updated depends on the given probabilities. Hence the technical component of the
2N -ary choice tree model resembles a counter model.

2N-ary choice trees

In contrast to the aforementioned models, the 2N -ary choice tree model assigns
two counters to each of N alternatives in a given choice set. One of them samples
positive information, i.e. information in favor of the respective alternative, the
other one samples negative information, i.e. information against it. Their difference
describes the actual preference state relating to that alternative. As an example,
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r

A+ B+ A- B-

B+ A- B-A+

Figure 3.1: 4-ary tree for choice between two alternatives A and B. The root r
has four outgoing edges directing to four vertices that represent the counters A+,
A−, B+ and B−. Each of these vertices has four outgoing edges and thus four
children itself, and so forth.

consider two alternatives A and B. The four counters are labeled A+, A−, B+

and B− and yield the preference states Pref(A) = A+ − A− for alternative A
and Pref(B) = B+ − B− for alternative B. Beginning at a fixed point in time,
the model chooses one counter and increases its state by one whenever a specific
time interval h (e.g. one millisecond) has passed.The length h of the time interval
can be chosen arbitrarily with a shorter time interval leading to more precision in
the calculation of expected choice probabilities and choice response times. Due to
limitations of recording devices, experimental data will be discrete as well and it is
thus not necessary to aim for a continuous model. Note that increasing only one
counter state at a time with a fixed amount of evidence equal to one is equivalent
to increasing all counter states at the same time with an amount of evidence equal
to the probability with which these counters are chosen and which also sum up to
one (see below). Updating counters at discrete points in time creates a discrete
structure of possible combinations of counter states which can be interpreted as
graph or, more precisely, as (b-ary) tree1.

Definition 1 (b-ary tree). A b-ary tree is a rooted tree T = (V,E, r) with vertices
V , edges E ⊆ V × V and root r ∈ V where all vertices are directed away from r
and each internal vertex has b children.

For N choice alternatives, consider a 2N -ary tree T = (V,E, r). Figure 3.1
depicts the 4-ary tree for the two-alternative example. The topmost vertex is the
root r with outgoing edges directing to four vertices that represent the counters
A+, A−, B+ and B−. Each of these vertices has four outgoing edges and thus
four children itself, and so forth. The information sampling process is mapped to
this tree as a walk, i.e. a sequence of edges and vertices, beginning with the root r
that takes one step, i.e. passes from one vertex through an edge to another vertex,

1Definitions of graph-related terms not defined here can be found in Korte and Vygen (2006).
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Figure 3.2: 4-ary tree for choice between two alternatives A and B with highlighted
sample path r → B+ → A− → B+ → . . .

per time interval h. Whenever the walk reaches a vertex, the counter with the
same label is updated by +1. Figure 3.2 shows an example for a walk on the 4-ary
tree where first counter B+ (information in favor for choice alternative B), then
counter A− (unfavorable information for choosing alternative A) and then again
counter B+ is updated.

Three features of the model are of specific interest: a) when and how the walk
starts after presentation of choice alternatives (in an experimental trial), b) how
the walk chooses the next edge to pass through in each step and c) when and how
the walk stops. Without an a priori bias toward any of the choice alternatives,
we assume that all counter states are set to zero at the outset of the information
sampling process and hence, the process starts with presentation of the choice
alternatives. Biases towards one or several of the alternatives can be implemented
by either defining initial values unequal to zero for these alternatives or by indepen-
dently sampling information for the alternatives from predefined distributions for
some time before the actual information sampling process starts (cf. Diederich &
Busemeyer, 2006; Diederich, 2008). For simplicity, we assume no biases here, i.e.
initial values are set to zero for all alternatives. Note that for the 2N -ary choice
tree, initial values are counter states at the root r. Then the walk moves away from
there step by step, choosing the next edge to pass through by means of so called
transition probabilities pe, e ∈ E. The transition probabilities are built up of the
comparison of the alternatives the decision maker considers and supplemented with
a counter-dependent component and a random component. For each vertex, the
transition probabilities for all outgoing edges sum up to one, so that the walk stays
still at any vertex it reaches throughout the information sampling process. We
show the structure of the model first; a detailed description of the transition prob-
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p(A-)p(B+)p(A+) p(B-)

v

A+ A- B-B+

Figure 3.3: Transition probabilities for the two-alternative choice problem with no
counter-dependent and random component. p(A+), p(B+), p(A−) and p(B−)
sum up to one and are the same for the outgoing edges of each vertex v ∈ V .

abilities is presented in the next section. For simplicity consider a choice situation
with two alternatives A and B; the counter-dependent component and the random
component are set to zero. As shown in figure 3.3, transition probabilities are the
same for the outgoing edges of each vertex v ∈ V , i.e. p(v,v(A+)) = p(A+) for
each edge (v, v(A+)) ∈ E leading to a vertex with label A+, p(v,v(B+)) = p(B+)
for each edge leading to a vertex with label B+ and so on for the other counters
A− and B−. The probability for walking along a specific path is the product of
transition probabilities of all edges on that path. In our example, the probability p
for making the first three steps as shown in figure 3.2 is p = p(B+) ·p(A−) ·p(B+).

The third topic addresses the stopping rule, that is, when the decision maker
stops sampling information and chooses a choice alternative. A specific stopping
rule depends on the preference states associated with the alternatives, i.e. the dif-
ferences of their respective two counters which are compared to certain thresholds
θ. The thresholds can be defined in several ways, their suitability depending on
the definition of transition probabilities and initial values. They are 1) one single
positive threshold θ+ > 0 for all alternatives, 2) one positive and one negative
threshold θ+ > 0 and θ− < 0 for all alternatives, 3) a positive threshold θ+i for
each alternative i ∈ {1, . . . , N} and 4) a positive and a negative threshold θ+i and
θ−i for each alternative i ∈ {1, . . . , N}.

Obviously, the simplest setup is a single positive threshold θ+ > 0 for all alter-
natives, which is hit as soon as the information sampled in favor of any/one of the
alternatives exceeds the information against it by θ+ for the first time, i.e., when
Pref(i) = θ+ for one alternative i ∈ {1, . . . , N}. Sometimes, however, the prob-
ability for collecting negative information may be greater than the probability for
sampling information in favor of these alternatives and reaching a positive threshold
θ+ is very unlikely. For those situations it is useful to introduce a second, nega-
tive threshold, θ− < 0, which is hit when negative information of one alternative
exceeds the positive information of this alternative by −θ−, i.e. Pref(i) = θ−. In
this case the respective alternative is not chosen but withdrawn from the choice
set and the sampling process continues with one alternative less as described in
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Figure 3.4: 6-ary tree for choice between three alternatives A, B and C with
decision thresholds θ+ = 2 and θ− = −2 and three different sample paths that
lead to choice of alternative B.

the next paragraph. Note, that in both cases the thresholds are global in the sense
that the same thresholds apply for all choice alternatives. Finally, θ+ (and θ−)
may vary from alternative to alternative, yielding one (or two) thresholds θ+i (and
θ−i ) for each of N alternatives, i ∈ {1, . . . , N}. Here the thresholds are local in
the sense that each alternative has its own threshold(s). This is an alternative way
to implement biases when the initial values are zero. That is, biases do not affect
transition probabilities through the counter-dependent component and can thus be
interpreted as the decision maker’s stable opinion about the presented alternatives.

Withdrawal of alternatives from a choice set traces back to the model of elim-
ination by aspects (EBA model, Tversky, 1972a). But whereas elimination is the
only means to come to a decision in the EBA model, the 2N -ary choice tree model
like the multi-alternative DFT (Roe et al., 2001) provides several ways to reach a
decision. An alternative i is chosen either if its preference state exceeds θ+i or if
all other alternatives have been withdrawn from the choice set or a combination
of these two. Figure 3.4 shows three examples of walks that lead to the choice of
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alternative B from a set of three alternatives A, B and C with global thresholds
θ+ = 2 and θ− = −2. The leftmost walk represents direct choice of alternative
B, the rightmost withdrawal of alternative C and subsequent choice of option B
and the middle walk illustrates withdrawal of alternative A first and then of option
C. Note that after withdrawal of one alternative, there are two outgoing edges
less from the respective vertex downwards. Transition probabilities change accord-
ingly, i.e. the withdrawn alternative is removed from the comparison procedure
and its counter states no longer contribute to the counter-dependent component
(cf. next section). This corresponds to an anew started information sampling pro-
cess between the remaining alternatives and their previous counter states as initial
values.

For a choice set with N alternatives and given thresholds θ±i this defines the
structure of the 2N -ary choice tree. For each alternative i ∈ {1, 2, . . . , N} we can
thus completely identify the set Vi ⊆ V of vertices where alternative i is chosen.
Defining Pv := P{r,v} to be the unique path from the root r to a vertex v ∈ V and
given transition probabilities pe for all edges e ∈ E we can identify the probability
for walking along a path Pv as the product pv =

∏
e∈Pv

pe and therewith define:

Definition 2 (expected choice probability). The expected probability for choosing
alternative i ∈ {1, 2, . . . , N} is the probability for reaching the set Vi:

pi =
∑
v∈Vi

∏
e∈Pv

pe. (3.1)

The length |Pv| of the path Pv from r to v ∈ V indicates the number of steps
that the random walk has to take to reach v. Multiplied by the length h of the
time interval, this yields the time it takes to cover the distance from r to v. Thus
Tv = h · |Pv|.

Definition 3 (expected hitting time). The expected time for choosing alternative
i ∈ {1, 2, . . . , N} is the sum of expected hitting times for each vertex v ∈ Vi
weighted by the probability for reaching v:

E[Ti] = h ·
∑
v∈Vi

|Pv| · pv = h ·
∑
v∈Vi

|Pv| ·
∏
e∈Pv

pe. (3.2)

The expected choice probabilities and hitting times can be approximated up to
absolute accuracy in finite time. See below for the formal statement and proof of
this property.

Transition probabilities

Having defined the skeletal structure of our theory, we can now proceed to its
heart, the transition probabilities. The main components are a) weighted compar-
ison of alternatives, b) mutual or global inhibition, c) decay of already sampled
information over time and c) a random part. The transition probabilities control
the information sampling process and thus describe the development of human
preferences in specific choice situations. Throughout this section we will consider
such situations with N choice alternatives that are evaluated with respect to the
same D attributes. For each alternative, the decision maker is provided with one
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nonnegative value per attribute, representing an objective evaluation of that alter-
native with respect to the attributes. The N ·D values in total can be stored in a
N ×D matrix L = (lij) with i = 1, . . . , N and j = 1, . . . , D.

The definition of transition probabilities is based on weighted integration of
results of an attribute-wise comparison of alternatives. To ensure equally significant
impact of the weight parameters, preprocessing of the values of the alternatives with
respect to the attributes is necessary and we do so by separately normalizing them
to one for each attribute. This yields a new matrix M = (mij) = (lij/

∑N
k=1 lkj)

with i = 1, . . . , N and j = 1, . . . , D and thus column sum
∑N
i=1mij = 1 for all

j ∈ {1, . . . D}.

Comparison of alternatives

At first we focus on one attribute j only. The easiest way to define transition
probabilities is simply to use the entries from the respective column j of M and
assign them to the edges that affiliate with the counters for positive information.
The counters for negative information get transition probabilities zero. This corre-
sponds to a framework where the alternatives are compared to an inferior external
reference point (for example cars A, B and C are compared to not having a car
at all). Because the values for each attribute sum up to one already, no further
normalization is needed.

We differentiate between external reference points that are not part of the
choice set and internal reference points that are part of the choice set and available
for the decision maker. For instance, if someone moves to a new city and has to
choose between several available apartments, she will probably compare them to
her old apartment which is no longer available in the new city and thus an example
for an external reference point. Or consider a choice of dessert in a restaurant
when the decision maker is told that the chocolate cake she ordered is no longer
available because someone just had the last piece. An internal reference point,
however, is part of the choice set, actually several or even all available alternatives
can be used as internal reference points at the same time, possibly in combination
with an external reference point.

Having decided which reference points to use, the alternatives i ∈ {1, . . . , N}
are compared to them. For each alternative i, favorable and unfavorable compar-
isons are handled separately and the absolute values of their differences are summed
up to obtain measures of evidence for and against alternative i respectively. This
yields two nonnegative values per alternative and thus 2 · N values in total that
are then normalized to one in order to obtain probabilities. In the car example
where three cars are compared to not having a car at all, probabilities associated
with negative counters are set to zero as each car is better than, presumably, no
car. Actually, whenever one single reference point is used, at least half of the
probabilities are zero because each alternative is either favored over the reference
point or not and hence there cannot be evidence for and against one alternative
at the same time. However, our main focus is on situations where each of at least
three alternatives in the choice set is used as internal reference point for all the
other alternatives and thus there are at least two reference points.

47



CHAPTER 3. THE 2N-ARY CHOICE TREE MODEL

In this case we obtain a vector

Pj =



p1j
...

pNj
p(N+1)j

...
p(2N)j


=



p+1j
...

p+Nj
p−1j
...

p−Nj


/

N∑
i=1

(p+ij + p−ij)

with
p+ij =

∑
k 6=i

(mij −mkj) · I(mij > mkj),

p−ij =
∑
k 6=i

(mkj −mij) · I(mij < mkj)

for k = 1, . . . N and

I(x) =

{
1, if x is true
0, else.

Especially with an external reference point at hand, the actual choice may
lead to a loss of some kind. For instance, in the apartment example above a loss
could be a further way to the workplace or a smaller bathroom. People usually
try to avoid losses more than they seek gains while overrating small losses and
gains compared to larger ones (Kahneman & Tversky, 1991; Tversky & Simonson,
1993). The 2N−ary choice tree model can account for the loss aversion principle
(Kahneman & Tversky, 1979) with an asymmetric value function (Kahneman &
Tversky, 1991; Tversky & Simonson, 1993) by increasing probabilities for sampling
negative information compared to probabilities for gathering positive information.

In their LCA model, Usher and McClelland (2004) use an asymmetric value
function

V (x) =

{
log(1 + x), for x > 0

−[log(1 + |x|) + log(1 + |x|)2], for x < 0

and apply it to the relative advantages (x > 0) and disadvantages (x < 0) of alter-
natives compared to each other on one dimension. V (x) is steeper for losses than
for gains but flattens for both advantages and disadvantages when they become
bigger. This favors similar pairs of alternatives over dissimilar ones and allows the
LCA model to account for attraction and compromise effects.

Adopting it to our 2N -ary choice tree model this yields an asymmetric value
function

A(x) =

{
log(1 + x), for favorable comparisons
log(1 + x) + log(1 + x)2, for unfavorable comparisons,

which can be applied to the absolute differences from the comparison process before
normalizing them to one:

p+ij =
∑
k 6=i

A(mij −mkj) · I(mij > mkj),
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p−ij =
∑
k 6=i

A(mkj −mij) · I(mij < mkj).

The asymmetric value function A(x) is not necessary for explanation of similarity,
attraction or compromise effects in the 2N -ary choice tree model but moderates
the strength of the compromise effect (see below). In cases where θ+ and θ−

have the same order of magnitude, application of A(x) leads to faster withdrawal
of alternatives and hence, more decisions are based on withdrawal of all but one
alternative.

In summary, the comparison of alternatives provides us with a set of 2 ·N tran-
sition probabilities for each attribute j ∈ {1, . . . , D} that form a vector Pj . Each
of these vectors can be used to model an information sampling process based on
a single attribute. As the probabilities are derived from comparison of alternatives
only, they remain constant during the whole process.

Weighting of attributes

So far we have only focused on one attribute but choice alternatives in real life are
most often described by several attributes and thus require more elaboration. In
the following, we consider choice sets with N alternatives characterized by D ≥ 2
attributes. Especially situations with three alternatives where similarity, attrac-
tion or compromise effects have been observed, require at least two attributes to
distinguish the different alternatives from each other. Note that it is difficult to
construct a choice set with two equally attractive but different alternatives due
to the decision maker’s individual salience. Diederich (1997) accounts for subjec-
tive salience by defining a Markov process on the attributes giving probabilities for
switching attention from one attribute to the other. This process can be directly
implemented into the transition probabilities by using a stationary distribution on
the attributes. Each attribute j ∈ {1, . . . , D} is assigned a weight wj that cor-
responds to the probability for considering this attribute during the information
sampling process. For each alternative i ∈ {1, . . . , N} weighted positive and nega-
tive evidence is added up and normalized to obtain a proper probability distribution
(the probabilities add up to one), that is,

P =



p1
...
pN

p(N+1)
...

p(2N)


=



p+1
...
p+N
p−1
...
p−N


/

N∑
i=1

(p+i + p−i )

with p+i =
∑D
j=1(p

+
ij · wj) and p

−
i =

∑D
j=1(p

−
ij · wj) for i ∈ {1, . . . , N}.

The weights account for subjective salience that in turn may be influenced by
several internal and external factors such as personal preferences, social influences,
characteristics of the choice set or the experimenter’s instructions. Personal pref-
erences like, for instance, the preference of time over money or of tastiness to
healthiness may be learned from friends, family or other people in our surrounding.
They are generally independent from the choice situation and hence, their impact
on the information sampling is indirect. On the contrary, the choice set itself has a
direct influence on the subjective saliences. For example, the decision maker may
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primarily focus on those attributes where alternatives are very similar to each other,
because this information may be crucial for the choice. Or she concentrates on
attributes with somehow outstanding values. It is therefore important to normalize
the values for each attribute as described before because this guarantees represen-
tation of these effects by the attention weights. People that are present during
the deliberation process like sales people or immediately prior to it like the experi-
menter in a laboratory context can also have a direct influence on the saliences by
drawing the decision maker’s attention to a specific attribute. This can be used
to verify influence of attention weights by instructing decision makers to focus on
certain attributes while choosing between different cars, salad dressings, chocolate
bars or shoes. Corresponding experiments are under way.

Noise

In order to account for random fluctuations in the decision maker’s attention (cf.
Busemeyer & Townsend, 1993) which are independent of the characteristics of the
choice alternatives, we add a constant to each transition probability. This makes
every outgoing edge of a vertex v ∈ V available for the next (random) step because
it guarantees non-zero transition probabilities for all of them. Let N be a vector
of length 2 ·N with all entries equal to 1

2N . Weighting the transition probabilities
P from the weighted comparison of alternatives by (1 − ξ) with 0 ≤ ξ ≤ 1 and
adding the product ξ · N yields noisy transition probabilities where ξ moderates
the strength of the uniformly distributed noise:

PN = (1− ξ) · P + ξ · N .

The vector PN of noisy transition probabilities integrates comparison of alterna-
tives on all present attributes. Related to the 2N -ary choice tree, this information
is global as it is independent of the local counter states and thus the transition
probabilities are the same for the edges emanating from each vertex.

Leakage

During their development of Decision Field Theory, Busemeyer and Townsend
(1993) introduce a factor s for serial positioning effects, called “growth-decay rate".
It produces recency effects for 0 < s < 1 and primacy effects for s < 0. In their
multi-alternative version of Decision Field Theory (Roe et al., 2001) the reverse
(1−s) of this factor reappears as “self-feedback loop" and accounts for the memory
of previous preference states. (1− s) = 1 denotes perfect memory of the previous
state, (1 − s) = 0 no memory at all. For their simulations, Roe et al. (2001) use
(1 − s) = 0.94 or (1 − s) = 0.95. Usher and McClelland (2001, 2004) adopted
the idea of the self-feedback loop, but call it “leakage" λ and – based on findings
from neuroscience – interpret it as “neural decay".

In order to account for decay of already sampled information over time, we
implement leakage L into our transition probabilities. Leakage obviously depends
on already sampled information and thus we normalize the current states of our
2·N counters to 1−λ and for each alternative i ∈ {1, . . . , N} add the result for the
positive (negative) counter of alternative i to the transition probability associated
with the negative (positive) counter for alternative i weighted by λ. Like this,
the overall sum of the transition probabilities remains 1 and only 100 · λ% of the
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sampled information is actually memorized. The greater λ, the longer it takes until
the process reaches a threshold. Overall, this yields

PNL = (1− λ) · [(1− ξ) · P + ξ · N ] + λ · L.

Inhibition

To account for the similarity, attraction and compromise effect, DFT (Roe et al.,
2001) and the LCA model (Usher & McClelland, 2004) both rely on inhibition.
Whereas distance-dependent inhibition enables DFT to account for the attraction
and compromise effect, global inhibition produces the similarity effect in the LCA
model. We can implement both types of inhibition into the 2N -ary choice tree
model to explore their impact on the aforementioned effects. We define weights
for all pairs of alternatives by either using the same weight for all pairs like Usher
and McClelland (2004) do with their “global inhibition” parameter β or different
weights like Roe et al. (2001) do with their distance-dependent weights (i.e. higher
weights for more similar alternatives). Those weights can be stored in a symmetric
N ×N -matrix with zeros on the diagonal.

Taking into account the basic concept of inhibition, we assume that the state
of the positive counter for each alternative i ∈ {1, . . . , N} reduces sampling of
positive information for all other alternatives j ∈ {1, . . . , N} − {i}. Because this
is equivalent to increasing sampling of negative information for these alternatives
and vice versa for states of negative counters, we implement inhibition I into our
model as follows: Multiplying the symmetric N×N -matrix with both the vector of
states of positive counters and negative counters yields two vectors with weighted
sums of counter states. We concatenate them in inverted order and normalize
the resulting vector of length 2N to µ before adding it to the vector of transition
probabilities now weighted by (1 − λ − µ). This completes the final definition of
transition probabilities

PNLI = (1− λ− µ) · [(1− ξ) · P + ξ · N ] + λ · L+ µ · I.

In a nutshell, the transition probabilities consist of a global part that is inde-
pendent from the current counter states of the random walk and a local part that
depends on already sampled information. The global parts are weighted sums of
comparative values P and noise N that remain constant during the whole process.
They are complemented with leakage L and inhibition I which may change from
step to step and hence, are local in the terminology of the 2N -ary choice tree
model.

3.3 Predictions of the 2N-ary choice tree model

To show the predictions of the 2N -ary choice tree model and how it accounts for
similarity, attraction and compromise effects in choice settings with three alterna-
tives characterized by two attributes, we run several simulations. An extension to
more alternatives is straightforward. We will define values lij that range between
0 and 10. As values of choice alternatives are normalized to one on each dimen-
sion before comparison, only the relative amount of these values is of importance.
Unless stated otherwise, we run 1000 trials per simulation with threshold θ = 20,
noise factor ξ = 0.01 and leakage factor λ = 0.05, but without inhibition (i.e.
µ = 0).
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In order to meet the assumptions of the similarity, attraction and compromise
effect, we constructed two equally attractive but dissimilar alternatives A = (9, 1)
and B = (1, 9) that are both evaluated with respect to two attributes. The choice
probabilities were 0.52, 0.51 and 0.47 for alternative A and 0.48, 0.49 and 0.53 for
option B in three simulations with the above mentioned parameters and attribute
weight 0.5 for both attributes.

To reproduce the similarity effect (Simonson, 1989) we add a third alternative
to the choice set that is equal or similar to either option A or B, i.e. C = (1, 9),
C2 = (0.9, 9.1) or C3 = (1.1, 8.9). To prevent a combination of the similarity
effect with a slight compromise effect (cf. Usher & McClelland, 2004), we will use
only C for demonstration, but the results for options C2 and C3 are very similar
to the ones presented here. The alternatives are put together in a 3× 2-matrix L,
whose columns are normalized to one, resulting in matrix M :

L =

9 1
1 9
1 9

 and M =

0.818 0.053
0.091 0.474
0.091 0.474

 .

M already shows smaller values for alternatives B and C on the second di-
mension than for alternative A on dimension one which characterizes the similarity
effect. In the next step, the values on each dimension are compared to each other,
resulting in a 6 × 2-matrix that is then multiplied by W =

(
0.4
0.6

)
before being

normalized to one again:

P ′ =


1.4545 0

0 0.4211
0 0.4211
0 0.8421

0.7273 0
0.7273 0

 ·
(
0.4
0.6

)
=


0.5818
0.2526
0.2526
0.5053
0.2909
0.2909


and

P =


0.5818
0.2526
0.2526
0.5053
0.2909
0.2909

 /2.1742 =


0.2676
0.1162
0.1162
0.2324
0.1338
0.1338


Finally noise is added to this constant part of the transition probabilities. In con-
trast to leakage that depends on the respective counter states and has to be
computed anew for every step, PN remains constant over time. The only occasion
where it changes is after withdrawal of one alternative from the choice set.

The most interesting parameters in this attempt to model a similarity effect
are the attribute weights as they control the strength of the effect. Figure 3.5
demonstrates this by means of choice probabilities from simulations with different
sets of attribute weights but otherwise unchanged parameters. It starts with W =(
0.6
0.4

)
andW =

(
0.55
0.45

)
on the left side and gradually changes by 0.05 toW =

(
0.25
0.75

)
on the right side. The relative frequency of choices for alternatives A, B, and C
including the mean number of steps leading to these choices can be found in table
3.1.
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Figure 3.5: Choice probabilities for choice between three alternatives A = (9, 1),
B = (1, 9) and C = (1, 9) and different attention weights w1 and w2 for the two
attributes. The abscissa is labeled with increasing values of w2 corresponding to
decreasing values of w1. For w2 < 0.625 a similarity effect can be observed.

w2 0.4 0.45 0.5 0.55
A 1 (92.4) 1 (116.4) 0.984 (163.0) 0.841 (205.5)
B 0 (-) 0 (-) 0.009 (596.4) 0.081 (555.6)
C 0 (-) 0 (-) 0.007 (475.4) 0.078 (524.6)
w2 0.6 0.61 0.62 0.63
A 0.591 (316.5) 0.516 (358.3) 0.394 (401.0) 0.29 (383.7)
B 0.208 (554.7) 0.237 (622.1) 0.292 (602.8) 0.363 (666.6)
C 0.201 (568.9) 0.247 (590.1) 0.314 (634.0) 0.347 (666.9)
w2 0.64 0.65 0.7 0.75
A 0.180 (418.9) 0.111 (430.7) 0.001 (124.0) 0 (-)
B 0.404 (685.3) 0.450 (679.4) 0.510 (631.8) 0.494 (658.5)
C 0.416 (689.4) 0.439 (678.6) 0.489 (664.2) 0.506 (666.1)

Table 3.1: Relative number of choices and mean response times (arbitrary unit,
in parentheses) for alternatives A = (9, 1), B = (1, 9) and C = (1, 9) from 1000
simulations with θ = 20, ξ = 0.01, λ = 0.05, µ = 0 and w2 = 1 − w1 ranging
from 0.4 to 0.75 as indicated in the first row.
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Figure 3.6: Choice probabilities for choice between three alternatives A = (9, 1),
B = (1, 9) and C = (1, 8.5) and different attention weights w1 and w2 for the
two attributes. The abscissa is labeled with increasing values of w2 corresponding
to decreasing values of w1. For 0.61 ≤ w2 < 0.65 an attraction effect can be
observed.

The same mechanisms account for the attraction effect (Huber et al., 1982)
that occurs during choice between two equally attractive but dissimilar alternatives
A and B and a third alternative C that is similar to one of these but slightly less
attractive. For A = (9, 1), B = (1, 9) and C = (1, 8.5) this yields

L =

9 1
1 9
1 8.5

 and M =

0.818 0.054
0.091 0.487
0.091 0.459

 .

As shown in figure 3.6, the attraction effect occurs between W =
(
0.39
0.61

)
and

W =
(
0.35
0.65

)
. Note that the deviation from weights w1 = w2 = 0.5 is due to a

higher salience of attribute two because the values on this attribute differentiate
between the alternatives. The relative frequency of choices for alternatives A, B,
and C including the mean number of steps leading to these choices can be found
in table 3.2.

For the compromise effect (Simonson, 1989), two equally attractive but dissim-
ilar alternatives A = (9, 1) and B = (1, 9) compete against a compromise option
C = (5, 5). Note that the defined values for each alternative sum up to ten and
thus all three alternatives objectively are equally attractive provided the attributes
are equally weighted. We get

L =

9 1
1 9
5 5

 and M =

 0.6 0.067
0.067 0.6
0.333 0.333

 ,
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w2 0.4 0.45 0.5 0.55
A 1 (93.5) 1 (118.4) 0.987 (168.7) 0.81 (204.7)
B 0 (-) 0 (-) 0.012 (593.3) 0.146 (523.4)
C 0 (-) 0 (-) 0.001 (499.0) 0.044 (601.7)
w2 0.6 0.61 0.62 0.63
A 0.557 (313.1) 0.461 (343.6) 0.384 (391.2) 0.248 (396.5)
B 0.357 (466.2) 0.447 (476.1) 0.513 (473.6) 0.655 (487.3)
C 0.086 (558.7) 0.092 (568.1) 0.103 (569.2) 0.097 (605.3)
w2 0.64 0.65 0.7 0.75
A 0.196 (395.5) 0.101 (342.5) 0.002 (155.5) 0 (-)
B 0.699 (448.9) 0.810 (414.6) 0.932 (237.2) 0.953 (159.5)
C 0.105 (483.7) 0.089 (459.0) 0.066 (243.7) 0.047 (174.6)

Table 3.2: Relative number of choices and mean response times (arbitrary unit, in
parentheses) for alternatives A = (9, 1), B = (1, 9) and C = (1, 8.5) from 1000
simulations with θ = 20, ξ = 0.01, λ = 0.05, µ = 0 and w2 = 1 − w1 ranging
from 0.4 to 0.75 as indicated in the first row.

and restricting w1 = w2 = 0.5 to be equal, this yields

P =


0.4
0.4

0.2667
0.4
0.4

0.2667

 .

So far, these transition probabilities do not seem to induce any compromise
effect but as the probabilities for sampling negative information are comparatively
high, withdrawal of one alternative from the choice set frequently occurs in that
setting. After withdrawal of one alternative, comparison of the remaining alterna-
tives is renewed. In the cases where alternative A or B are withdrawn, the new
probabilities clearly favor the compromise option C, yielding an overall preference
for that alternative:

M−A/−B =

(
0.643 0.167
0.357 0.833

)
, P−A/−B =


0.15
0.35
0.35
0.15

 .

In 1000 trials with decision threshold θ = 20, noise factor ξ = 0.01, leakage
factor λ = 0.05 and no inhibition, alternatives A and B were chosen 247 (24.7
%) and 250 (25 %) times respectively and option C won 503 (50.3 %) decisions.
Decreasing θ to 10 yields choice frequencies of 243 (24.3 %) for alternative A,
267 (26.7 %) for option B and 490 (49 %) for alternative C. θ = 5 leads to 253
(36.9 %) choices with an average step number of 36.9 for alternative A, 269 (26.9
%) choices with 38.3 steps on average for option B and 478 (47.8 %) choices
with 43.8 steps on average for alternative C. Figure 3.7 shows the response time
distribution for alternative A for θ = 5, ξ = 0.01, λ = 0.05 and µ = 0. The
expected response time, i.e. the mean of the distribution is 36.6. The magnitude
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Figure 3.7: Response time distribution for alternative A = (9, 1) in the compromise
setup with θ = 5, ξ = 0.01, λ = 0.05 and µ = 0. The expected response time, i.e.
the mean of the distribution is 36.6.

of the compromise effect can be influenced by application of an asymmetric value
function after comparison of alternatives.

3.4 Comparison with other models

Multi-alternative DFT (Roe et al., 2001) and the LCA model (Usher & McClel-
land, 2004) both account for similarity, attraction and compromise effects in three-
alternative preferential choice and thus build the theoretical background for the
2N -ary choice tree model. Nevertheless there are some important differences and
the first one to set the new model apart from the previous approaches is the
attribute-wise normalization of the initially provided evaluations of alternatives.
This preprocessing of input values makes them comparable over attributes. Effects
that originate from differing orders of magnitude of the input values can thus be
controlled by influencing the attention weights for the attributes. The comparison
of alternatives on single attributes is basically the same in all three models but
only the LCA model and the 2N -ary choice tree model allow for external refer-
ence points that are not present in the choice set to influence the resulting values.
Application of an asymmetric value function allows the LCA model to implement
the loss-aversion principle (Kahneman & Tversky, 1979) and addition of a positive
constant avoids negative activations and thus negated inhibition which was crucial
for some of the results of multi-alternative DFT. Both concepts (asymmetric value
function and positive constant) can be implemented into the 2N -ary choice tree
model as well but do not affect its ability to account for the aforementioned effects
(except for the magnitude of the compromise effect). Whereas all three models use
leakage to account for decay of already sampled information over time and have a
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random part that implements noise in human decision making, inhibition is another
crucial difference between them. In multi-alternative DFT, local inhibition explains
the attraction and compromise effect, the LCA model uses global inhibition to
account for the similarity effect. Both types of inhibition can be implemented in
the 2N -ary choice tree model but are not necessary for explanation of the three
effects.

Beside some similarities and dissimilarities between the models, in particular
with respect to some underlying psychological concepts the 2N -ary choice tree
model is the first to provide expected choice probabilities and response times in
closed form and thus allows for convenient estimation of the model parameters from
the observed choice times and frequencies in experimental settings. Furthermore,
it can be extended to more than three choice alternatives in a straightforward way
to account for choice behavior in more complex, and possibly more realistic choice
situations.

3.5 Concluding remarks

The 2N -ary choice tree model provides alternative explanations for the similarity,
attraction and compromise effect that can be experimentally tested as suggested
before. Especially the manipulation of attention weights is of interest, because
it differentiates the model on hand from former approaches and should allow to
experimentally produce similarity and attraction effects which has been proven to
be difficult in the past. One problem, however, we are currently encountering is
limited machine accuracy which leads to accumulation of rounding errors during
calculation of expected choice probabilities and response times.

3.6 Formal statement and proof

We can approximate the expected choice probabilities and hitting times up to
absolute accuracy in finite time. This follows from theorem 1:

Theorem 1. Each random walk Yn on the above defined tree T = (V,E, r) with
transition probabilities pe, ends in finite time with probability one.

Corollary 1. With probability one only finitely many addends in equations (1) and
(2) are unequal zero.

Considering expected values, i.e. limits of infinite sums, it is helpful to make
use of a concept that allows for propositions about asymptotic behavior. For
each alternative, the difference of the two counters that are associated with this
alternative resemble a birth-death chain:

Definition 4 (birth-death chain). A sequence of random variables X1, X2, . . . with
values in a countable state space S ≡ {0, 1, 2, . . .} ⊆ N is called Markov chain, if
it satisfies the Markov property

P[Xn+1 = x|X1 = x1, X2 = x2, . . . , Xn = xn] = P[Xn+1 = x|Xn = xn].

A Markov chain is called time homogeneous, if P[Xn+1 = x|Xn = y] = p(x, y)
for all n, i.e. the probability for going from x to y is independent from n. A
birth-death chain is a time homogeneous Markov chain that does not skip any
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state. Its transition probabilities p(x, y) are equal to zero for all x, y ∈ S with
|y − x| > 1. A non-homogeneous birth-death chain is a birth-death chain that is
not time homogeneous.

Durrett (2010) proves the following theorem for (non-homogeneous) birth-
death chains as special case of Markov chains:

Theorem 2. Let Xn be a Markov chain and suppose

P[∪∞m=n+1{Xm ∈ Bm}|Xn] ≥ δ > 0 on {Xn ∈ An}.

Then P[{Xn ∈ An infinitely often } − {Xn ∈ Bn infinitely often }] = 0.

For each alternative i ∈ {1, 2, . . . , N}, the above mentioned difference of its
two counters can be interpreted as non-homogeneous birth-death chain Xn with
absorbing states θ−i and θ+i and state space S = {θ−i , (θ

−
i +1), (θ−i +2), . . . , (θ+i −

2), (θ+i − 1), θ+i }. Its transition probabilities are

pn(x, x+ 1) = pnx = pni (x),

pn(x, x− 1) = qnx = pnN+i(x),

pn(x, x) = rnx = 1− pnx − qnx ,

 for x ∈ S − {θ−i , θ
+
i }

and

pnx = qnx = 0,

rnx = 1,

}
for x ∈ {θ−i , θ

+
i }.

Due to the noise in the transition probabilities, pnx > 0 and qnx > 0 for all
x ∈ S − {θ−i , θ

+
i }. It follows that the probability for walking the direct way from

x ∈ S − {θ−i , θ
+
i } to either θ−i or θ+i is

δx :=

 x∏
y=θ−i +1

qn+x−yi (y) +

θ+i −1∏
z=x

pn+z−xi (z)

 > 0

and thus
δ := min

θ−i <x<θ
+
i

δx > 0.

Define Tθ−i = inf{n : Xn = θ−i }, Tθ+i = inf{n : Xn = θ+i }, Ti = Tθ−i
∧ Tθ+i ,

An = S and Bn = {θ−i , θ
+
i }. Then {Xm ∈ Bm} is equivalent to Ti ≤ m and

P
[
∪∞m=n+1{Xm ∈ Bm}|Xn

]
= 1 > δ

for Xn ∈ Bn. The probability for walking from any x ∈ S to either θ−i or θ+i on
every possible way is

P
[
∪∞m=n+1{Xm ∈ Bm}|Xn

]
≥ δ > 0

and thus fulfills the assumptions of theorem 2. It follows that

P[{Xn ∈ An infinitely often } − {Xn ∈ Bn infinitely often }] = 0

which is equivalent to

P [{Xn ∈ An −Bn finitely often}] = P [Ti <∞] = 1

and as this is true for every alternative i ∈ {1, 2, . . . , N}, P [T,∞] = 1 holds for
T := minT1, T2, . . . , TN . This proves theorem 1.
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The simple choice tree model
Lena M. Wollschlaeger, Adele Diederich

This chapter has been published in the Proceedings of the 39th annual confer-
ence of the Cognitive Science Society under the title “A computational model for
constructing preferences for multiple choice options” on July 29, 2017.

Abstract

When choosing between multiple alternatives, people usually do not have ready-
made preferences in their mind but rather construct them on the go. The 2N-ary
Choice Tree Model (Wollschlaeger & Diederich, 2012) proposes a preference con-
struction process for N choice options from description, which is based on attribute
weights, differences between attribute values, and noise. It is able to produce sim-
ilarity, attraction, and compromise effects, which have become a benchmark for
multi-alternative choice models, but also several other context and reference point
effects. Here, we present a new and mathematically tractable version of the model
– the Simple Choice Tree Model – which also explains the above mentioned ef-
fects and additionally accounts for the positive correlation between the attraction
and compromise effect, and the negative correlation between these two and the
similarity effect as observed by Berkowitsch et al. (2014).

4.1 Introduction

The decision making process involves various steps such as setting and prioritiz-
ing objectives, identifying choice alternatives, searching for information, developing
preferences, and eventually taking a course of action. Here, we focus on devel-
oping preferences in multi-alternative choice situations and use in the following
decision making from description as basic paradigm. Given a set of at least three
choice alternatives that are described by at least two attributes, which they have
in common, how do people choose one of these options? Simon (1955) argues
that preferences in this kind of situation are dynamically constructed over time due
to limited processing capacities. The decision maker experiences preference uncer-
tainty (cf. Simonson, 1989) and tries to overcome it by gradually integrating the
given information (see Payne et al., 1992, for a review on constructive processing
in decision making). The resulting preferences are stochastic and highly dependent
on the context, i.e., on the alternatives in the choice set and on any external refer-
ence points. Naturally, a model describing multi-alternative decision making from
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description should be a context-sensitive cognitive process model. The recently
proposed 2N-ary Choice Tree Model for preference construction for N choice op-
tions (2NCT; Wollschlaeger & Diederich, 2012) assumes that the decision maker
compares attribute values within attributes and between alternatives in a pairwise
manner. Attributes are selected for examination based on attribute weights that
reflect salience. Within attributes, pairs of attribute values are selected for com-
parison based on so-called comparison values. In the 2NCT Model, the comparison
values have a "global" component that remains constant over time during prefer-
ence construction, a "local" component that depends on the outcomes of previous
comparisons (reflecting leakage and inhibition, cf. Roe et al., 2001; Usher & Mc-
Clelland, 2004), and a random component. Advantageous and disadvantageous
comparison outcomes for each alternative are counted separately and the differ-
ence of these counters is compared to two thresholds: a positive choice criterion
and a negative elimination criterion. Implementation of an asymmetric value func-
tion (emphasizing disadvantageous comparison outcomes, cf. Usher & McClelland,
2004) into the 2NCT Model is possible. Here, we present a revised and simpler
version of the 2N-ary Choice Tree Model, the Simple Choice Tree (SCT) Model.
Therein, the local component is omitted from the definition of comparison values,
making the model mathematically tractable while maintaining its ability to account
for similarity, attraction and compromise effects. Furthermore, a new parameter,
the focus weight λ, is introduced. It replaces the asymmetric value function and
allows the SCT Model to account for correlations between the effects.

Benchmark: Context effects

Three context effects, demonstrating the influence of choice set composition on
preferences, have played a prominent role in the multi-alternative preference con-
struction modeling literature: The similarity effect, the compromise effect, and
the attraction effect. All three effects occur when adding a third alternative to a
set of two equally attractive yet clearly distinguishable options described by two
attributes. Let A1 and A2 be two choice alternatives with two common attributes,
D1 and D2, describing them. We assume that D1 is the unique strongest attribute
for A1 and D2 is the unique strongest attribute for A2, that is, A1 scores high
on D1 but low on D2 and vice versa for A2. One can think of the alternatives as
placed in a two-dimensional space with dimensions D1 and D2. We further assume
that the probability for choosing alternative A1 from the binary choice set is equal
to the probability for choosing alternative A2, P (A1|A1, A2) = P (A2|A1, A2).

Similarity effect

The similarity effect was named and first studied systematically by Tversky (1972b).
He observed the effect when comparing the binary choice set {A1, A2} to the
ternary choice set {A1, A2, A3} where A3 is similar to one of the original alterna-
tives, say A1, in scoring high on attribute D1 and low on attribute D2 while overall
being similarly attractive (i.e. P (A1|A1, A3) = P (A3|A1, A3)). The probability of
choosing A1 over A2 decreases when the decision maker chooses from the ternary
choice set as compared to the binary set:

P (A1|A1, A2)

P (A2|A1, A2)
>
P (A1|A1, A2, A3)

P (A2|A1, A2, A3)
.
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Attraction effect

The attraction effect (or decoy effect or asymmetric dominance effect) was intro-
duced by Huber et al. (1982) as consistent violation of the regularity principle.
This principle, as presumed for example by the theory of Elimination by Aspects
(Tversky, 1972b), states that additional alternatives cannot increase the choice
probabilities of the original options. However, Huber et al. (1982) claim that the
relative probability for choosing alternative, say, A1 can be increased by adding a
third alternative A3 to the choice set that is similar to but dominated by A1 (and
symmetrically for alternative A2). A3 then serves as a decoy for alternative A1,
drawing attention to it and therewith improving its evaluation and increasing its
choice probability.

Compromise effect

Originally intended to explain the attraction effect, the theory of Reason-based
Choice (Simonson, 1989) predicts an additional context effect, the compromise ef-
fect. It occurs when a third alternative A3, equally attractive as the original alter-
natives A1 and A2, but more extreme with respect to the attribute values, is added
to the choice set. If A3 is more extreme than alternative A1, that is, if it scores
higher than A1 on attribute D1 but lower on attribute D2, then it increases the
choice share of A1 as compared to the binary situation (and vice versa for alterna-
tive A2): P (A1|A1, A2, A3)/P (A2|A1, A2, A3) > P (A1|A1, A2)/P (A2|A1, A2).
However, note that the more similar the additional extreme alternative A3 is to its
adjacent alternative A1, the more shares it takes away from A1 via the similarity
effect.

Interrelations of the effects

Recently, several studies have explored similarity, attraction and compromise effects
and their interrelations in different choice scenarios. In a within-subject consumer
choice design, Berkowitsch et al. (2014) find that the similarity effect is negatively
correlated with both the attraction and the compromise effect while the latter two
are positively correlated. In a similar vein, Liew et al. (2016) criticize that most of
the results regarding context effects are based on averages over participants, not
taking into account individual differences. Before analyzing the data from their in-
ference and consumer choice experiments, they cluster it according to the observed
choice patterns. The differences between clusters are remarkable, some even show
negative (reverse) context effects while positive effects are observed in the aver-
aged data. Before explaining how the Simple Choice Tree (SCT) Model accounts
for the similarity, attraction and compromise effects and their interrelations, we
introduce the basic mechanisms of the model.

4.2 The simple choice tree model

Let na be the number of alternatives under consideration, {A1, A2, . . . , Ana
}, and

nd the number of attributes, {D1, . . . , Dnd
}, that characterize them. The decision

maker is provided with one attribute value per alternative per attribute, that is,
na · nd attribute values in total. Let mij be the attribute value for alternative
Ai with respect to attribute Dj . Attribute values within attributes and between
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alternatives are repeatedly compared and the resulting evidence is accumulated in
two counters S+

i and S−i for each alternative Ai, i ∈ {1, . . . , na}. The positive
counter S+

i accumulates evidence for choosing alternative Ai and the negative
counter S−i accumulates evidence for rejecting it. Here, the initial counter states
are set to zero, S+

i (0) = 0 = S−i (0). Definition of non-zero initial counter states
accounting for prior knowledge about the choice alternatives is possible. However,
these additional free parameters make the model less parsimonious and complicate
parameter estimation. The counter states at time t, S+

i (t) and S−i (t), are the
initial counter states increased by the respective evidence accumulated until t.
Their difference defines the momentary preference state for alternative Ai at time
t: Pref(Ai, t) = S+

i (t)−S
−
i (t). We will now answer the following questions: (1)

How is attention allocated between choice alternatives and attribute values? (2)
How are alternatives evaluated and how is evidence accumulated? (3) When does
evidence accumulation stop and which alternative is chosen?

Attention allocation

At the beginning of the process, when information about the alternatives and at-
tributes is made available to the decision maker, each attributeDj , j ∈ {1, . . . , nd},
is assigned a weight ωj , 0 ≤ ωj ≤ 1, reflecting its salience. The attribute weights
determine how much attention the decision maker gives to the respective attributes
during the preference construction process. Attributes with higher weights get more
attention than attributes with lower weights. To allow for at least some of the
attention to be allocated randomly between attributes, we define a random com-
ponent (see below) for which an additional weight ω0, 0 ≤ ω0 ≤ 1 is designated.
Assuming that the weights sum up to one,

∑nd

j=0 ωj = 1, they can be interpreted
as attention probabilities for the attributes: At each points of the preference con-
struction process, the decision maker concentrates on attributeDj , j ∈ {1, . . . , nd}
with probability ωj .

Having selected an attributeDj , the decision maker concentrates on the specific
attribute values of two alternatives and compares them. Pairs of attribute values
are selected for comparison according to their importance for the decision. The
more diagnostic the attribute values are, i.e., the more they discriminate between
the alternatives, the more important they become for the decision. Pair selection
probabilities within attribute Dj are therefore defined to be proportional to the
absolute differences dikj = |mij −mkj |, i 6= k ∈ {1, . . . , na}. In order to obtain
probabilities, we normalize these differences to sum up to one: The probability
for selecting the pair {mij ,mkj} for comparison is pikj = dikj/

∑
{l,m} dlmj ,

l 6= m ∈ {1, . . . , na}. Note that the normalization of absolute differences balances
out inequalities between attributes with – on average – bigger or smaller differences.
Higher salience of an attribute Dj , j ∈ {1, . . . , nd}, with, for example, higher
absolute differences, is thus not hard-wired into the model but is reflected in a
higher attribute weight ωj instead.

Preference sampling

The actual comparison of the two selected attribute values mij and mkj is ordinal
and directional: Let mij > mkj , then the comparison can be either positively
phrased, e.g. "mij is greater thanmkj", or it can be negatively phrased, e.g. "mkj

is smaller than mij". For the positive phrasing, mij is called focus value and mkj
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is called reference value. The focus value determines the counter whose state is
increased by +1, here S+

i , since the comparison is advantageous for the associated
alternative Ai. For the negative phrasing, mkj is the focus value and mij is the
reference value, leading to an increase by +1 of counter S−k , since the comparison
is disadvantageous for alternative Ak. Which phrasing the decision maker uses for
the comparison and therewith which counter is updated might, for example, depend
on the wording of the task or the decision maker’s attitude (cf. Choplin & Hummel,
2002). It is implemented into the model via the focus weight λ, 0 ≤ λ ≤ 1. If
λ = 1 − λ = 0.5, the decision maker uses the positive and negative phrasing
both about equally often. If λ > 0.5, the decision maker has a tendency towards
the negative phrasing and towards updating negative counters. If λ < 0.5, the
decision maker has a tendency towards the positive phrasing and towards updating
positive counters. The focus weight λ replaces the asymmetric value function that
was applied to the absolute differences between attribute values in the original
2NCT Model (Wollschlaeger & Diederich, 2012). While the asymmetric value
function hard-wired a tendency towards updating negative counters into the 2NCT
Model, weighting with λ allows for flexible balancing of attention to positive versus
negative aspects of the alternatives in the SCT Model. It is therefore especially
useful in situations without a loss/gain-framing, e.g., in perceptual or preferential
choice. Note that λ is a global weight and independent from the attributes and
attribute values. However, it allows us to define counter updating probabilities for
the positive and negative counter of alternative Ai, i ∈ {1, . . . , na} with respect
to attribute Dj , j ∈ {1, . . . , nd}: p+ij =

∑
k:(mij>mkj)

(1 − λ) · pikj for updating
S+
i and p−ij =

∑
k:(mij<mkj)

λ · pikj for updating S−i .
Finally, the random component accounts for times where counter states are

updated at random and without any connection to the actual attribute values (for
instance due to inattention or misperception, cf. Busemeyer & Townsend, 1993).
Technically, it is treated as an additional (phantom) attribute D0. The counter
updating probabilities p+i0 = p−i0 = 1/(2 · na), i ∈ {1, . . . , na} with respect to D0

depend on the number of available choice alternatives and therefore sum up to
one:

∑na

i=1(p
+
i0 + p−i0) = 1.

Combining attribute-wise counter updating probabilities p±ij with attribute weights
ωj , we can now define weighted counter updating probabilities for the positive and
negative counter of alternative Ai:

p+i =

nd∑
j=0

p+ij · ωj and p−i =

nd∑
j=0

p−ij · ωj . (4.1)

Choice tree and stopping rules

Starting with the presentation of the choice alternatives and their attribute values,
the preference construction process consists of a sequence of counter updates. In
principle, every possible sequence of counter updates may occur and it is therefore
of interest to have them conveniently summarized. For this purpose, we introduce
the (2 · na)-ary choice tree T = (V,E, r) with vertices V , edges E ⊆ V × V and
root r ∈ V , where all vertices are directed away from r and each internal vertex
v ∈ V has 2 · na children that are associated with the 2 · na counters. Figure 4.1
shows an example with three choice alternatives and six counters. The preference
construction process is represented by a random walk on T , beginning at the root
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Figure 4.1: A random walk on the choice tree for three alternatives. The associated
sequence of counter updates is S+

2 , S
−
1 , S

−
1 , S

+
2 and the probability for walking

along this specific path is p+2 ·p
−
1 ·p
−
1 ·p

+
2 . Supposing that the rejection threshold θ−

is equal to −2 and the choice threshold θ+ is equal to 2, this sequence implicates
first rejection of alternative A1 and then choice of alternative A2. When A1 is
eliminated from the choice set, the vertices associated with its counters no longer
appear in the choice tree, as can be seen in the bottom row of vertices here.

and passing from there through an edge to another vertex, triggering the update
(increase by +1) of the associated counter, moving on through another edge and
so forth. The next edge to pass through is chosen according to the updating
probability of the counter associated with its endpoint. Note that for each vertex
the transition probabilities of all outgoing edges sum up to one. An example path
of this random walk is pictured in bold in Figure 4.1.

The preference construction process stops when enough evidence has been
accumulated to make the required choice. To this end, the preference states
Pref(Ai, t) = S+

i (t) − S−i (t), i ∈ {1, . . . , na} are constantly compared to two
thresholds, a positive threshold θ+ and a negative threshold θ− = −θ+. If the
preference state for alternative Ai hits the positive threshold, the process stops
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and Ai is chosen. If, on the other hand, the preference state for alternative Ak
hits the negative threshold, Ak is eliminated from the choice set and the process
continues with the remaining alternatives until one of them is chosen or until all but
one of them have been eliminated. Consider a simple example with three choice
alternatives {A1, A2, A3} and thresholds θ+ = 2 and θ− = −2. The sample path in
Figure 4.1 with its associated sequence of counter updates S+

2 , S
−
1 , S

−
1 , S

+
2 , leads

to elimination of alternative A1 after three steps and choice of alternative A2 after
four steps. Other possible sequences resulting in choice of alternative A2 include
S+
3 , S

−
1 , S

+
2 , S

+
2 with direct choice of A2 after four steps, and S−1 , S

−
3 , S

−
3 , S

−
1

with elimination of alternatives A3 after three steps and A1 after four steps and
therewith choice of the only remaining alternative A2.

Choice probabilities and expected response times

The probability for walking along a specific path as, for example, shown in Fig-
ure 4.1, is the product of the transition probabilities along the respective edges.
The choice probability for alternative Ai, i ∈ {1, . . . , na} is equal to the sum of
the probabilities for walking along all the specific paths that lead to choice of
alternative Ai. Since it is not feasible to calculate probabilities separately for
each path and sum them up, we will analyze preference states, choice probabili-
ties and response times instead by interpreting them as independent birth-death
Markov chains with absorbing boundaries θ+ and θ−. The state space of these
birth-death chains Pref(Ai, t) = S+

i (t) − S−i (t) =: Si(t), i ∈ {1, . . . , na} is
S := {θ−, . . . ,−1, 0, 1, . . . , θ+}, with |S| = θ+ − θ− + 1. The transition proba-
bilities are

pi(x, x+ 1) = p+i > 0

pi(x, x− 1) = p−i > 0

pi(x, x) = 1− p+i − p
−
i = p0i > 0

 for x ∈ S − {−θ−, θ+},

where p±i is defined in Eq. 4.1 above; pi(x, x+1) = pi(x, x−1) = 0, pi(x, x) = 1,
for x ∈ {−θ−, θ+}; and zero otherwise. They form a |S|×|S| transition probability
matrix P ′i = (p′rs)r,s=1,...,|S|, where p′rs is the probability for the birth-death chain
to transition from state xr to state xs in one step. P ′i can be written in its canonical
form Pi by rearranging the rows and columns (changing the indices of the states
such that the absorbing states −θ− and θ come first). Pi can be decomposed
into a 2× 2 identity matrix I2, a 2× nt matrix 0 of zeros with nt = |S| − 2 (the
number of transient states in S), a nt × 2 matrix Ri, containing the probabilities
for entering the absorbing states θ+ and θ−, that is, for hitting the elimination or
choice threshold, and a nt × nt matrix Qi, containing the transition probabilities

between transient states (cf. Diederich, 1997): Pi =
(
I2 0
Ri Qi

)
.

Given a row vector Zi of length nt which represents the initial preference state
(e.g.,

(
0 0 1 0 0

)
) or the initial distribution of preference over the transient

states (e.g.,
(
0.05 0.10 0.70 0.10 0.05

)
, cf. Diederich & Busemeyer, 2003)

for alternative Ai, the probability that the process is absorbed during the first
step can be obtained by multiplying Zi and Ri, yielding a vector of length 2:
Zi · Ri = [P (Si(1) = θ+), P (Si(1) = −θ−)]. In the case that the process was
not absorbed during the first step, the distribution of preference over the transient
states after the first step is given by Zi · Qi, a vector of length nt. Multiplying
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the result with the matrix Ri yields the probabilities of absorption in the second
step: Zi · Qi · Ri = [P (Si(2) = θ+), P (Si(2) = −θ−)]. The distribution of
preference over the transient states is given by (Zi · Qi) · Qi = Zi · (Qi · Qi) =
Zi ·(Qi)2. The entries of the nt×nt matrix (Qi)2 are 2-step transition probabilities
between the transient states, allowing for calculation of absorption in the third
step: Zi · (Qi)2 · Ri = [P (Si(3) = θ+), P (Si(3) = −θ−)]. Iterating these results
indicates that all the relevant probabilities can be obtained from the vector Zi, the
matrix Ri and powers of the matrix Qi. Since Qi is a tridiagonal Toeplitz matrix
(the entries on the main diagonal are all equal to p0i , the entries on the diagonal
above the main diagonal are equal to p+i and the entries on the diagonal below
the main diagonal are equal to p−i ), its eigenvalues, eigenvectors and its powers
are known and given in closed form (Salkuyeh, 2006), making it easy to compute
all the relevant quantities.

We are interested in the conditional probabilities and expected hitting times
for each alternative Ai, i ∈ {1, . . . , na}, given that Ai is the first alternative
to be chosen/eliminated. Therefore, we have to determine the probability that
alternative Ak, k ∈ {1, . . . , na} with k 6= i, has not been chosen/eliminated until
time t. It is given by

P (−θ− < Sk(T ) < θ) = 1−
T∑
t=1

Zk · (Qk)t−1 ·Rk ·
(
1
1

)

= 1− Zk ·

(
T∑
t=1

(Qk)
t−1

)
·Rk ·

(
1
1

)
.

The choice and elimination probability for alternative Ai at time T is then equal
to

[P (Si(T ) = −θ−), P (Si(T ) = θ)]

=

(
Zi ·

T∑
t=1

(Qi)
t−1 ·Ri

)
·
∏
k 6=i

(
P (−θ− < Sk(T ) < θ)

)
.

Overall, this yields probabilities

[P (chooseAi), P (eliminateAi)]

=

∞∑
T=1

(
[P (Si(T ) = −θ−), P (Si(T ) = θ)]

)
and expected response times

[E(Ti|chooseAi), E(Ti|eliminateAi)]

=

∞∑
T=1

T ·
(
[P (Si(T ) = −θ−), P (Si(T ) = θ)]

)
.

Note that the infinite sums over T have only a finite number of nonzero addends,
since P (Ni < ∞) = 1 for all i ∈ {1, . . . , na}, thus the choice/elimination proba-
bilities and expected response times can be easily computed.
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4.3 Context effects explained

Three interacting mechanisms produce similarity, attraction, and compromise ef-
fects in the Simple Choice Tree Model: (1) selection of pairs of attribute values
for comparison based on normalized differences, (2) the possibility to eliminate un-
wanted alternatives from the choice set, and (3) weighting of attributes based on
salience. The first mechanism leads to a higher impact of dissimilar alternatives on
the updating probabilities and thus faster evidence accumulation for alternatives
with more distant competitors. In the similarity and attraction settings, this applies
to the dissimilar alternative A2, and in the compromise situation to the extreme
alternatives A2 and A3. The second mechanism and the related focus weight λ de-
termine whether choices are more likely to be based on eliminations or to be made
directly. The greater λ, the more likely are the choices based on eliminations. In
the similarity situation, greater λ leads to faster elimination of the dissimilar alter-
native A2 and subsequent choice or elimination of either alternative A1 or A3, that
is, a small or even negative similarity effect. On the other hand, smaller λ leads to
more direct choices of alternative A2 and thus a higher similarity effect. Regarding
the dissimilar alternative A2, the same is true in the attraction situation. Greater
λ leads to faster elimination of A2 while smaller λ leads to more direct choices of
alternative A2. However, the attraction effect is higher for greater λ, since after
elimination of alternative A2, either the dominating option A1 is chosen directly or
the dominated option A3 is eliminated first. In the compromise setting, greater λ
increases the probability for the extreme options to be eliminated from the choice
set, leaving the decision maker with the compromise option. Smaller λ on the
other hand more likely leads to choice of an extreme option and thus a smaller or
even negative compromise effect. Attribute weights further moderate the strengths
of the context effects, but as long as they are more or less balanced, they play a
minor role in the explanation of the similarity, attraction, and compromise effects.
However, a high attribute weight is able to bias choice towards the alternative that
scores highest on that attribute, covering any context effect.

We ran several simulations to illustrate these mechanisms. The available choice
alternatives were A1 = (70, 30), A2 = (30, 70) and A3 = (70, 30) for the similarity
effect, A3 = (65, 25) for the attraction effect, A3 = (90, 10) for the asymmetric
compromise effect, or A3 = (50, 50) for the symmetric compromise effect. The
attribute weights were ω0 = 0.1 and ω1 = ω2 = 0.45, and the focus weight λ varied
between 0 and 1 in steps of 0.1. For each data point we ran 10000 simulations
and the resulting choice probabilities are presented in figure 4.2. According to the
simulations, the similarity effect is opposed to the attraction and the compromise
effect. The similarity effect is strongest for low λ, whereas the attraction and the
compromise effect are strongest for high λ. This prediction is consistent with the
finding that the attraction and the compromise effect are positively correlated with
each other and negatively correlated with the similarity effect (Berkowitsch et al.,
2014). Note that λ is assumed to be a global weight that does not change between
trials but may vary between participants.

4.4 Conclusion

We propose a revised and simpler version of the 2N -ary Choice Tree Model
(Wollschlaeger & Diederich, 2012), the Simple Choice Tree (SCT) Model. It pre-
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Figure 4.2: Simulations of choice probabilities for changing focus weight λ in the
similarity, attraction, and compromise situation. There is a positive similarity effect
for smaller λ and a negative similarity effect for larger λ (upper left) and vice versa
for the attraction effect (upper right). The compromise effect (lower left and right)
shows for larger λ and is reversed for smaller λ.

dicts choice probabilities and response times in multi-alternative multi-attribute
preferential choice from description and accounts for several effects observed in
these situations, including the similarity, attraction, and compromise effect. The
SCT Model shares several aspects with existing models: Like Decision by Sam-
pling (DbS; Stewart et al., 2006), it proposes binary ordinal comparisons and
frequency accumulation as basic mechanisms. In DbS, however, pairs of attribute
values are chosen at random and reference values may be sampled from long-term
memory as well as from the given context. Only advantageous comparisons are
counted and the model is not able to account for the above mentioned context ef-
fects, nor does it provide solutions for choice probabilities or choice response times.
Multi-alternative Decision Field Theory (MDFT; Roe et al., 2001) and the Leaky
Competing Accumulator (LCA) Model (Usher & McClelland, 2001, 2004) provide
such solutions only for fixed stopping times. Both models, like the SCT Model,
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are based on pairwise differences of attribute values. To account for the similarity,
attraction, and compromise effect simultaneously, however, additional non-linear
mechanisms (among others leakage and inhibition, cf. the original 2NCT Model)
are required, preventing the models from providing mathematically tractable solu-
tions for optional stopping times. Elimination by Aspects (EBA; Tversky, 1972b)
proposes "a covert elimination process based on sequential selection of aspects"
(p. 296). As an early example for a cognitive process model, it does not make any
predictions about choice response times and accounts only for the similarity effect.
The SCT model mimics EBA for high values of the focus weight λ, where mostly
disadvantageous comparison outcomes are considered and decisions are based on
the elimination of choice alternatives. The Multi-attribute Linear Ballistic Accu-
mulator Model (MLBA; Trueblood et al., 2014), basically a deterministic version
of MDFT, provides analytic solutions for expected response times and choice prob-
abilities like the SCT Model. However, it is unclear if and how the response times
are related to the actual integration of information. Furthermore, the model has
mostly been applied with fixed stopping times until now. Additional mechanisms
allow the MLBA model to account for the compromise effect (a curved subjective
value function) and the similarity effect (a higher weight on supportive informa-
tion as compared to disconfirmatory evidence). The latter is comparable to low
values of the focus weight λ in the SCT Model. To summarize, the SCT Model
combines aspects of competing models in a new way, yielding qualitatively new
explanations for the context effects and additionally predicting correlation patterns
amongst the effects. It provides mathematically tractable solutions for both choice
probabilities and expected choice response times for optional stopping times, by
that outperforming existing models.
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Chapter 5

The simple choice tree model:
Additional simulations

In order to explore the capabilities of the simple choice tree model and the influence
that the focus weight λ has on the choice probabilities and response times, I ran a
series of simulations in Matlab. The code is given in appendix A. Some of the results
are reported in sections 4.3 and 6.3. There, the attribute weight for dimension D1

is the same as the attribute weight for dimension D2, that is, ω1 = ω2 (and the
weight for the random component is equal to ω0 = 0.1). Here, I report results for
relative attribute weights ranging from 0 to 1 (and 1 to 0) that are scaled to ranges
[0, 0.9] and [0.9, 0] because of the weight for the random component, ω0 = 0.1.
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5.1 Similarity effect

Figures 5.1 and 5.2 show choice probabilities and response times (z-axis) for alterna-
tives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (70, 30)
(dotted mesh). The proportion of direct choices (solid mesh), choiced after one
elimination (dashed mesh) and choices after two eliminations (dotted mesh) is
given in figure 5.3. Parameters ω0 = 0.1 and θ+ = 10 = −θ− are fixed, focus
weight λ varies from 0 to 1 in steps of 0.1 (x-axis), relative attribute weight ω1

varies from 0 to 1 in steps of 0.1 (y-axis), and attribute weight ω2 varies from 1
to 0 in steps of -0.1. For each data point, I ran 10,000 simulations. The upper
left panel of figure 4.2 is the slice of this figure where the weight for dimension 1
is equal to 0.5.

Similarity effect: Choice probabilities

Figure 5.1: Choice probabilities for the similarity effect with alternatives A1 =
(70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (70, 30) (dotted
mesh).
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Similarity effect: Response times

Figure 5.2: Response times for the similarity effect with alternatives A1 = (70, 30)
(dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (70, 30) (dotted mesh).
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Similarity effect: Direct and indirect choices

Figure 5.3: Direct choices (solid mesh), choices after one elimination (dashed
mesh), and choices after two eliminations (dotted mesh) for the similarity effect
with alternatives A1 = (70, 30), A2 = (30, 70), and A3 = (70, 30).
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5.2 Range-frequency attraction effect

Figures 5.4 and 5.5 show choice probabilities and response times (z-axis) for alterna-
tives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (65, 25)
(dotted mesh). The proportion of direct choices (solid mesh), choiced after one
elimination (dashed mesh) and choices after two eliminations (dotted mesh) is
given in figure 5.6. Parameters ω0 = 0.1 and θ+ = 10 = −θ− are fixed, focus
weight λ varies from 0 to 1 in steps of 0.1 (x-axis), relative attribute weight ω1

varies from 0 to 1 in steps of 0.1 (y-axis), and relative attribute weight ω2 varies
from 1 to 0 in steps of -0.1. For each data point, I ran 10,000 simulations. The up-
per right panel of figure 4.2 is the slice of this figure where the weight for dimension
1 is equal to 0.5.

Range-frequency attraction effect: Choice probabilities

Figure 5.4: Choice probabilities for the range-frequency attraction effect with
alternatives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and
A3 = (65, 25) (dotted mesh).
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Range-frequency attraction effect: Response times

Figure 5.5: Response times for the range-frequency attraction effect with alterna-
tives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (65, 25)
(dotted mesh).
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Range-frequency attraction effect: Direct and indirect choices

Figure 5.6: Direct choices (solid mesh), choices after one elimination (dashed
mesh), and choices after two eliminations (dotted mesh) for the range-frequency at-
traction effect with alternatives A1 = (70, 30), A2 = (30, 70), and A3 = (65, 25).
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5.3 Range attraction effect

Figures 5.7 and 5.8 show choice probabilities and response times (z-axis) for alterna-
tives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (70, 25)
(dotted mesh). The proportion of direct choices (solid mesh), choiced after one
elimination (dashed mesh) and choices after two eliminations (dotted mesh) is
given in figure 5.9. Parameters ω0 = 0.1 and θ+ = 10 = −θ− are fixed, focus
weight λ varies from 0 to 1 in steps of 0.1 (x-axis), relative attribute weight ω1

varies from 0 to 1 in steps of 0.1 (y-axis), and relative attribute weight ω2 varies
from 1 to 0 in steps of -0.1. For each data point, I ran 10,000 simulations.

Range attraction effect: Choice probabilities

Figure 5.7: Choice probabilities for the range attraction effect with alternatives
A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (70, 25)
(dotted mesh).
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Range attraction effect: Response times

Figure 5.8: Choice probabilities for the range attraction effect with alternatives
A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (70, 25)
(dotted mesh).
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Range attraction effect: Direct and indirect choices

Figure 5.9: Direct choices (solid mesh), choices after one elimination (dashed
mesh), and choices after two eliminations (dotted mesh) for the range attraction
effect with alternatives A1 = (70, 30), A2 = (30, 70), and A3 = (70, 25).

80



CHAPTER 5. THE SIMPLE CHOICE TREE MODEL: ADDITIONAL SIMULATIONS

5.4 Frequency attraction effect

Figures 5.10 and 5.11 show choice probabilities and response times (z-axis) for
alternatives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 =
65, 30 (dotted mesh). The proportion of direct choices (solid mesh), choiced after
one elimination (dashed mesh) and choices after two eliminations (dotted mesh)
is given in figure 5.12. Parameters ω0 = 0.1 and θ+ = 10 = −θ− are fixed, focus
weight λ varies from 0 to 1 in steps of 0.1 (x-axis), relative attribute weight ω1

varies from 0 to 1 in steps of 0.1 (y-axis), and relative attribute weight ω2 varies
from 1 to 0 in steps of -0.1. For each data point, I ran 10,000 simulations.

Frequency attraction effect: Choice probabilities

Figure 5.10: Choice probabilities for the frequency attraction effect with alterna-
tives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (65, 30)
(dotted mesh).
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Frequency attraction effect: Response times

Figure 5.11: Response times for the frequency attraction effect with alternatives
A1 = (70, 30) (dashed mesh), A2 = (30, 70) (solid mesh), and A3 = (65, 30)
(dotted mesh).
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Frequency attraction effect: Direct and indirect choices

Figure 5.12: Direct choices (solid mesh), choices after one elimination (dashed
mesh), and choices after two eliminations (dotted mesh) for the frequency attrac-
tion effect with alternatives A1 = (70, 30), A2 = (30, 70), and A3 = (65, 30).
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5.5 Asymmetric compromise effect

Figures 5.13 and 5.14 show choice probabilities and response times (z-axis) for
alternatives A1 = (70, 30) (solid mesh), A2 = (30, 70) (dashed mesh), and A3 =
(90, 10) (dotted mesh). The proportion of direct choices (solid mesh), choiced
after one elimination (dashed mesh) and choices after two eliminations (dotted
mesh) is given in figure 5.15. Parameters ω0 = 0.1 and θ+ = 10 = −θ− are fixed,
focus weight λ varies from 0 to 1 in steps of 0.1 (x-axis), relative attribute weight
ω1 varies from 0 to 1 in steps of 0.1 (y-axis), and relative attribute weight ω2

varies from 1 to 0 in steps of -0.1. For each data point, I ran 10,000 simulations.
The lower left panel of figure 4.2 is the slice of this figure where the weight for
dimension 1 is equal to 0.5.

Asymmetric compromise effect: Choice probabilities

Figure 5.13: Choice probabilities for the asymmetric compromise effect with alter-
natives A1 = (70, 30) (compromise option, solid mesh), A2 = (30, 70) (dashed
mesh), and A3 = (90, 10) (dotted mesh).
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Asymmetric compromise effect: Response times

Figure 5.14: Response times for the asymmetric compromise effect with alternatives
A1 = (70, 30) (compromise option, solid mesh), A2 = (30, 70) (dashed mesh), and
A3 = (90, 10) (dotted mesh).
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Asymmetric compromise effect: Direct and indirect choices

Figure 5.15: Direct choices (solid mesh), choices after one elimination (dashed
mesh), and choices after two eliminations (dotted mesh) for the asymmetric com-
promise effect with alternatives A1 = (70, 30), A2 = (30, 70), and A3 = (90, 10).
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5.6 Symmetric compromise effect

Figures 5.16 and 5.17 show choice probabilities and response times (z-axis) for
alternatives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (dotted mesh), and
A3 = (50, 50) (solid mesh). The proportion of direct choices (solid mesh), choiced
after one elimination (dashed mesh) and choices after two eliminations (dotted
mesh) is given in figure 5.18. Parameters ω0 = 0.1 and θ+ = 10 = −θ− are fixed,
focus weight λ varies from 0 to 1 in steps of 0.1 (x-axis), relative attribute weight
ω1 varies from 0 to 1 in steps of 0.1 (y-axis), and relative attribute weight ω2

varies from 1 to 0 in steps of -0.1. For each data point, I ran 10,000 simulations.
The lower right panel of figure 4.2 is the slice of this figure where the weight for
dimension 1 is equal to 0.5.

Symmetric compromise effect: Choice probabilities

Figure 5.16: Choice probabilities for the symmetric compromise effect with al-
ternatives A1 = (70, 30) (dashed mesh), A2 = (30, 70) (dotted mesh), and
A3 = (50, 50) (compromise option, solid mesh).

87



CHAPTER 5. THE SIMPLE CHOICE TREE MODEL: ADDITIONAL SIMULATIONS

Symmetric compromise effect: Response times

Figure 5.17: Response times for the symmetric compromise effect with alternatives
A1 = (70, 30) (dashed mesh), A2 = (30, 70) (dotted mesh), and A3 = (50, 50)
(compromise option, solid mesh).
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Symmetric compromise effect: Direct and indirect choices

Figure 5.18: Direct choices (solid mesh), choices after one elimination (dashed
mesh), and choices after two eliminations (dotted mesh) for the symmetric com-
promise effect with alternatives A1 = (70, 30), A2 = (30, 70), and A3 = (50, 50).
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Chapter 6

A commentary on response times
Lena M. Wollschlaeger, Adele Diederich

This chapter has been submitted to Psychological Review on March 23, 2018 as a
comment on Turner, Schley, Muller, and Tsetsos (2018). It was rejected on June
15, 2018.

Abstract

Turner et al. (2018) developed a taxonomy for theories of multi-alternative, multi-
attribute preferential choice by comparing four such theories: Multi-alternative
decision field theory, the leaky competing accumulator model, the associative ac-
cumulation model, and the multi-attribute linear ballistic accumulator model, and
analyzed their performance in explaining similarity and attraction effects and a
symmetric version of the compromise effect. This approach is highly valuable but
should be extended to include dynamic aspects such as optional stopping times,
and asymmetric compromise effects. Here, we expand the taxonomy accordingly
and add the 2N-ary choice tree model (2NCT, Wollschlaeger & Diederich, 2012,
2017) as an alternative approach. In particular, the 2NCT is the only model that
explains both versions of the compromise effect with the same mechanism.

6.1 Introduction

In his seminal paper “A behavioral model of rational choice”, Simon (1955) laid
the foundation for modern information processing theories of preferential choice,
by stating that “the task is to replace the global rationality of economic man with
a kind of rational behavior that is compatible with the access to information and
the computational capacities that are actually possessed by organisms, including
man, in the kinds of environments in which such organisms exist” (p.99). Simon
argues that the decision maker, due to limited processing capacities and in order to
make a satisfactory rather than optimal choice, employs simple mechanisms instead
of effortful calculations. Among other mechanisms, Simon proposes information-
gathering steps “for gradually improving the mapping of behavior alternatives upon
possible outcomes” (p.108), that is, for overcoming uncertainty about the conse-
quences of the decision.

About 20 years later, March (1978) and Bettman (1979) point towards a second
kind of uncertainty – preference uncertainty – that decision makers may experience
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when faced with a choice problem. They suggest that, in order to overcome prefer-
ence uncertainty, decision makers have to construct their preferences on the spot.
Numerous information processing mechanisms have been proposed ever since to
describe preference construction processes (for reviews, see Payne et al., 1992;
Lichtenstein & Slovic, 2006). Mostly though, those mechanisms are tailored to
a specific, empirically observed anomaly (cf. Tversky & Thaler, 1990). Studied
anomalies range from violations of procedure invariance, that is, preference rever-
sals due to changing elicitation procedures like discrete choice or matching (e.g.
Tversky et al., 1988), and violations of description invariance, that is, framing
effects (e.g. Tversky & Kahneman, 1981), to violations of independence assump-
tions, that is, effects of the context (e.g. Tversky, 1972b; Huber et al., 1982;
Simonson, 1989).

The proposition of decision field theory (DFT, Busemeyer & Townsend, 1993)
marks a turning point for theories of preference construction. Its dynamic and
stochastic nature allows DFT to account for a range of preference reversals as well
as response time phenomena like, e.g., time pressure effects. Furthermore, DFT’s
multi-alternative extension (MDFT, Roe et al., 2001) is the first theory to explain
several context effect, that is, similarity (Tversky, 1972b), attraction (Huber et
al., 1982), and compromise (Simonson, 1989) effects simultaneously, by means of
a specific combination of information processing mechanisms. Three years later,
Usher and McClelland (2004) proposed a modified version of the leaky competing
accumulator model (LCA, Usher & McClelland, 2001) which also accounts for
the three context effect, but with slightly different information processing mech-
anisms, including, most prominently, loss aversion (Tversky & Kahneman, 1991).
More recent multi-alternative preference construction models include the (simple)
2N-ary choice tree model (Wollschlaeger & Diederich, 2012, 2017), the associative
accumulation model (AAM, Bhatia, 2013), the multi-attribute linear ballistic ac-
cumulator model (MLBA, Trueblood et al., 2014), and multi-alternative decision
by sampling (MDbS, Noguchi & Stewart, 2018). All of these models make differ-
ent assumptions about attentional processes, evaluation of alternatives, evidence
accumulation and stopping rules.

Turner et al. (2018) develop a taxonomy of such models by analyzing four of
the above mentioned models, that is, MDFT, LCA, AAM, and MLBA. This tax-
onomy and a related so-called switchboard analysis allow them to evaluate single
information processing mechanisms and their use for explaining the three context
effects. In the first part of this article, we revisit the 2N-ary choice tree model
(2NCT, Wollschlaeger & Diederich, 2012) and its recent version simple choice tree
model (SCT, Wollschlaeger & Diederich, 2017) and class it with the taxonomy
proposed by Turner et al. (2018). Then, we discuss the unique mechanisms that
allow the 2NCT/SCT model to account for the three context effects and inter-
actions between them and argue that they should be included in the taxonomy
and switchboard analysis. Finally, we propose a revised taxonomy based on con-
siderations about the time course of decision making processes, including stopping
rules.
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6.2 The (simple) 2N-ary choice tree model and Turner et
al.’s (2018) taxonomy

The (simple) 2N-ary choice tree model (2NCT/SCT, Wollschlaeger & Diederich,
2012, 2017) assumes that the decision maker compares attribute values within
attributes and between alternatives in a pairwise manner. Attributes are selected
for examination based on attribute weights that reflect salience. Within attributes,
pairs of attribute values are selected for comparison based on so-called compari-
son values. The pairwise comparisons are assumed to be of ordinal nature, that
is, they are either perceived as advantageous for one of the choice alternatives
(the “winning” alternative) or as disadvantageous for the other one (the “losing”
alternative). Differently from the competing models, here the decision maker is
assumed to separately count the instances in which each alternative is perceived
as winning or losing a pairwise comparison. This requires two counters per alter-
native, a feature that distinguishes the current approach from the competing ones.
The difference of the two counter states, that is, the preference state for each
alternative, is constantly compared to two thresholds: A positive choice criterion
and a negative elimination criterion. An alternative is chosen either if its preference
state reaches the choice criterion or if the preference states of all the other alter-
natives have reached the elimination criterion. The individual counter updating
probabilities can be calculated by multiplying attribute values, comparison values,
and the focus weight specified in the following. An additional random component
adds noise and, in the 2NCT model (Wollschlaeger & Diederich, 2012), a “local”
component allows to implement lateral inhibition and leakage (cf. Roe et al., 2001;
Usher & McClelland, 2004). The local component is omitted in the simpler version
of the model (i.e. SCT) in order to make it mathematically tractable. Nevertheless
the SCT model accounts for the three context effects as well.

The taxonomy proposed by Turner et al. (2018) divides the decision process
into three processing stages with six sub-stages: (1) Subjective perception of the
attribute space, with sub-stages (1.a) subjective mapping of attribute values, (1.b)
absolute or relative representation of attributes, and (1.c) nonlinear filtering of
representations, (2) allocation of attention between attributes, and (3) prefer-
ence accumulation, with sub-stages (3.a) attribute integration, (3.b) competition
through lateral inhibition, and (3.c) noise. For each of these (sub-)stages, we will
now discuss the related mechanisms in the 2NCT/SCT model. Furthermore, we
add choice and elimination criteria and stopping rules because they are not part of
their taxonomy. We use the same switchboard analysis as proposed by Turner et
al. (2018, Study 3) to describe the model’s mechanisms. To enhance comparison
with the alternative approaches, this analysis includes three choice alternatives with
two attributes. Note however, that the 2NCT/SCT model is designed to account
for situations with any number of alternatives and attributes (cf. Wollschlaeger &
Diederich, 2012, 2017).

Let x, y, and z be the three choice options and P and Q the two attributes
describing them. The specific values of each alternative with respect to a given
attribute, denoted xP , yP , . . . zQ are presented in a matrix, M :

M =

xP xQ
yP yQ
zP zQ

 .
Like in the other multi-alternative multi-attribute preferential choice models, they
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serve as input to the preference construction process. However, instead of using
the values as such, in the 2NCT/SCT model they are transformed into probabil-
ities for updating the counters by combining normalized differences of attribute
values and the current counter states with appropriately restricted weights. With
that, the components are the same as for MDFT, LCA, AAM, and MLBA: A
“global” component, based on the attribute values and attribute weights, a “local”
component, based on the current counter states, and a random component. Let
p+a [t] and p−a [t] be the probabilities for updating the positive and negative counter
for alternative a, a ∈ {x, y, z} at time t, respectively. Then the preference states
Pa[t], a ∈ {x, y, z} for the three alternatives at time t are described by the following
iterative equations:

Pa[t] =


Pa[t− 1] + 1 with probability p+a [t]
Pa[t− 1]− 1 with probability p−a [t], and
Pa[t− 1] with probability 1− (p+a [t] + p−a [t]).

Note that a preference state may stay the same as before, that is, there may be
no new evidence for or against choosing the alternative.

(1) Subjective perception of the attribute space

The first processing stage in the Turner et al. (2018) taxonomy addresses how the
decision maker perceives the given choice set, which reference points the decision
maker uses to evaluate the current alternatives, and whether or not the evaluations
are (asymmetrically) transformed before accumulation.

(1.a) Subjective mapping of attribute values

Given the objective attribute values that describe the choice alternatives, each
model has to define if and how these values are transformed into subjective repre-
sentations. The latter are stored in a matrix N . While MDFT and LCA assume
that the subjective representations are equal to the objective values, i.e. N =M ,
MLBA transforms the objective values by adding parameterized curvature to the
attribute space, and AAM applies a parameterized power function to them. Both
transformations make a distinction between intermediate and extreme values, allow-
ing MLBA and AAM to account for (symmetric) compromise effects and extremity
biases. The 2NCT/SCT model, like MDFT and LCA, makes the assumption that
the subjective representations are equal to the objective values, N =M .

(1.b) Absolute or relative representation of attribute values

The pairwise comparison of attribute values or – more generally – the evaluation
of attribute values against one or several reference points is interpreted as part of
the perception process in the Turner et al. (2018) taxonomy. It results in absolute
or relative representations of the attribute values. Absolute representations result
from evaluations against a single neutral reference point, as for example in AAM.
Relative representations result from evaluations of attribute values against each
other, that is, from pairwise comparisons of attribute values. This is assumed in
MDFT, LCA, MLBA and the 2NCT/SCT model but not for AAM. Each alternative
serves as a reference point for the other alternatives in the choice set and differences
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between attribute values are used as relative representations of those values. Let
D′A, A ∈ {P,Q} be the matrix in which these relative representations are stored:

D′A =

(xA − xA) (xA − yA) (xA − zA)
(yA − xA) (yA − yA) (yA − zA)
(zA − xA) (zA − yA) (zA − zA)


Unlike in the other theories, those differences are normalized in the 2NCT/SCT
model such that the sum of their absolute values is equal to one for each attribute.
We store the normalized differences in a matrix DA, A ∈ {P,Q}:

DA =
1

2


(xA−xA)

SA

(xA−yA)
SA

(xA−zA)
SA

(yA−xA)
SA

(yA−yA)
SA

(yA−zA)
SA

(zA−xA)
SA

(zA−yA)
SA

(zA−zA)
SA

 ,
with SA =

∑
{a,b}⊂{x,y,z} |aA−bA|, A ∈ {P,Q}. Note that each difference appears

twice in DA, once with a positive sign and once with a negative sign, but only
once in SA, A ∈ {P,Q} (hence the multiplication with 1

2 ). Negative and positive
differences affect the input to two different counters and are possibly treated dif-
ferently in the next sub-stage. Therefore, we split DA, A ∈ {P,Q} into two parts,
D+
A = h+(DA) and D−A = h−(DA), by means of two functions

h+(x) = x · I(x > 0), and h−(x) = |x| · I(x < 0), with

I(y) =

{
1 if y is true, and
0 otherwise.

Note that all entries in D+
A and D−A are nonnegative and, for each attribute, sum

up to one. Though normalization of the differences was primarily implemented in
order to yield probabilities (for updating the counters), it has some advantages
over simply using the absolute differences. First of all, it balances out inequalities
between attributes with, on average, bigger or smaller differences. Higher salience
for an attribute with, for example, higher absolute differences is thus not hard-
wired into the model but would instead be reflected in a higher attribute weight
for this attribute. Furthermore, normalization makes model parameters comparable
for varying choice situations, and even allows the model to make predictions for
new situations.

(1.c) Nonlinear filtering of representations

Given the absolutely or relatively represented attribute values, that is, the results of
the pairwise comparisons, each model has to determine whether they are accumu-
lated as such or (asymmetrically and/or nonlinearly) transformed before accumula-
tion – “filtered” in the Turner et al. (2018) taxonomy. No filtration is assumed by
MDFT and AAM. The LCA model, on the other hand, applies a loss-averse asym-
metric filtration function (cf. Tversky & Kahneman, 1991; Usher & McClelland,
2004), which is similar to prospect theory’s reference-dependent, asymmetric and
S-shaped value function (Kahneman & Tversky, 1979). MLBA uses a similarity-
based filter mechanism that weights small values (i.e. differences between similar
alternatives) higher than large values (i.e. differences between distant alternatives)
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by means of an exponentially decaying function. Two additional parameters allow
the MLBA model to treat positive and negative values asymmetrically.

The 2NCT/SCT model assumes that decision makers perceive each pairwise
comparison as advantageous for one of the choice alternatives (the “winning” al-
ternative) or as disadvantageous for the other one (the “losing” alternative). In the
2NCT model, both perspectives are taken equally often. This is reflected in the
factor 1

2 in DA, D+
A and D−A , A ∈ {P,Q}. Alternatively, it is possible to imple-

ment LCA’s loss-averse asymmetric value function by applying it to the pairwise
differences before normalizing them (cf. Wollschlaeger & Diederich, 2012). This
would lead to overweighting of “losing” alternatives. In the SCT model, a focus
weight λ, 0 ≤ λ ≤ 1 determines whether the decision maker focuses more on the
“winning” or on the “losing” alternative. The possibly shifted focus is implemented
by replacing the factor 1

2 in D−A by λ and in D+
A by (1 − λ). It follows that, if

λ > 0.5, the decision maker focuses more on the “losing” alternative, similar to
what is achieved with the loss-averse value function. On the other hand, if λ < 0.5,
the decision maker focuses more on the “winning” alternative. For λ = 0.5, the
decision maker is equally likely to focus on the “winning” and “losing” alternative,
just like in the basic version of the 2NCT model. We store the filtered normalized
differences in two matrices V +

A = (1−λ) ·2 ·D+
A and V −A = λ ·2 ·D−A , A ∈ {P,Q}.

Weighting with λ allows the SCT model to flexibly balance focus on positive versus
negative aspects of the alternatives relative to each other. It is therefore especially
useful in situations without an explicit loss/gain-framing, e.g., in perceptual or
preferential choice (cf. Trueblood et al., 2013).

(2) Allocation of attention between attributes

The second processing stage in the Turner et al. (2018) taxonomy addresses how
the decision maker distributes attention between attributes. For that, each at-
tribute is assigned a weight that reflects its salience. The weights are usually
restricted such that their sum is less or equal one. In MDFT, LCA, 2NCT/SCT,
and AAM they determine the proportion of time that the decision maker spends
on evaluating alternatives based on the respective attribute. Technically speaking,
the attribute weights are interpreted as attention probabilities. This goes hand in
hand with the dynamic nature of these models. AAM additionally assumes that
the attribute weights are proportional to the sum of attribute values – summed up
separately for each attribute – in the choice problem at hand. In MLBA, which
is basically a static model, the attribute weights are not related to the allocation
of attention. Instead, they are simply multiplied with the relative representations
resulting from the previous processing stage. The 2NCT/SCT model makes fur-
ther assumptions about times where no specific attribute is attended: Let ωP ,
0 ≤ ωP ≤ 1, and ωQ, 0 ≤ ωQ ≤ 1 be the attribute weights for the two at-
tributes P and Q. The 2NCT/SCT model assumes that

∑
A∈{P,Q} ωA ≤ 1, and

interprets ω0 := 1 −
∑
A∈{P,Q} ωA as weight for the random component, that

is, as probability for not attending any specific attribute but updating counters at
random.

(3) Preference accumulation

The third processing stage of the Turner et al. (2018) taxonomy addresses “how
preferences dynamically evolve over time” (p. 20). For each model, it specifies how
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many counters accumulate evidence or preference, how the counters are updated
over time, how they compete with each other, and how noise distorts the accumula-
tion process. Since MLBA is a static model, it is only mentioned in the description
of the third processing stage where applicable. MDFT, LCA, AAM, and MLBA
all assume that there is one counter per alternative and that all of these counters
are updated in parallel. In the 2NCT/SCT model on the other hand, counters are
updated serially and evidence for and against choosing an alternative is counted in
two separate counters per alternative. The two-counters-assumption is related to
the distinction between “winning” and “losing” alternatives described in step (1.c)
above. It is seized again in step (4) below, where we introduce thresholds for the
preference states as both choice and elimination criteria. Note that the Turner et
al. (2018) taxonomy does not include thresholds as choice or elimination criteria.
In the switchboard analysis, the authors run simulations with a fixed amount of
steps and assume that the accumulator with the highest state wins the race and
the associated alternative is chosen by the decision maker. This corresponds to a
fixed stopping rule rather than an optional stopping rule (Busemeyer & Diederich,
2002). We will argue that response time is an important aspect in modeling deci-
sion making and may even differentiate clearly between the competing models. But
first, we describe the remaining mechanisms of the 2NCT/SCT model by means
of the taxonomy at hand.

(3.a) Attribute integration

Like MDFT, LCA, and AAM, the 2NCT/SCT model assumes a stochastic integra-
tion of attributes in the overall evaluation. The decision maker pays attention to
attribute P with probability ωP , to attribute Q with probability ωQ, and to none
of them with probability ω0, with ωP + ωQ + ω0 = 1. Note that we do not in-
clude MLBA here since it weights attributes deterministically during a preprocessing
stage. In MDFT, LCA, and AAM, the counters for all alternatives are updated in
parallel, and their states are increased by the perceived attribute values (described
in processing stage (1) above) with respect to the currently attended attribute. In
the 2NCT/SCT model, however, the counters are updated serially and thus the
model makes further assumptions about allocation of attention and integration of
information: Within attributes, attention is allocated between pairs of attribute
values proportionally to their absolute differences, that is, attention is fully on a
pair {aA, bA}, {a,b} ⊂ {x,y,z}, A ∈ {P,Q}, with probability ωA · |aA−bA|SA

. Within
pairs of attribute values, however, the decision maker focuses on the “winning” al-
ternative with probability 1−λ, or on the “losing” alternative with probability λ. In
the first case, the counter state of the “positive” counter for the winning alternative
is increased by one, in the second case, the counter state of the “negative” counter
for the losing alternative is increased by one. For example, let aA > bA, then the
probability for focusing on aA and updating the positive counter for alternative a
is (1 − λ) · ωA · |aA−bA|SA

and the probability for focusing on bA and updating the

negative counter for alternative b is λ · ωA · |aA−bA|SA
.

Note that updating counters by increasing their states by one (i.e., simply
counting won and lost comparisons) is related to another mechanism that Simon
(1955) proposes as leading to “substantial computational simplifications in the
making of a choice” (p.104): Simple pay-off functions with two (1, 0) or three (1,
0, -1) output values. Vlaev, Chater, Stewart, and Brown (2011) classify models
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of decision making that implement such a simple pay-off function as “comparison-
based theories without value calculation”. Multi-alternative decision by sampling
theory (Noguchi & Stewart, 2018) is another example from this category. In the
Vlaev et al. (2011) terminology, MDFT, LCA, AAM, and MLBA belong to the
category of “comparison-based theories with value calculation” as opposed to the
category of “value-based theories” like multi-attribute utility theory (Keeney &
Raiffa, 1967/1993).

Overall, the global component of the weighted counter updating probabilities
can be calculated by multiplying the attribute weights with the comparison values
and the focus weight. Together with the random component, this yields two
probabilities p+a and p−a for each alternative a, a ∈ {x, y, z}:

p+a = ωP · V +
P,a + ωQ · V +

Q,a + ω0 · V0, and (6.1)

p−a = ωP · V −P,a + ωQ · V −Q,a + ω0 · V0, (6.2)

with V0 =
[

1
2·3

1
2·3

1
2·3
]T . Note that the sum of all six counter updating

probabilities is equal to 1, such that on average one counter per time step is
updated.

(3.b) Competition through lateral inhibition

Competition between choice alternatives is crucial for explaining violations of in-
dependence principles (e.g. context effects) and all descriptive models of multi-
alternative multi-attribute decision making processes implement it in one or the
other way. MDFT and LCA both implement competition on the counter state
level, that is, through lateral inhibition. In MDFT, lateral inhibition is distance-
dependent, that is, if two alternatives are “close” to each other in the attribute
space, positive activation in one of the counters leads to decreasing activation in
the other and negative activation in one of the counters leads to increasing acti-
vation in the other. These mechanisms explain the attraction effect and - for a
suitable definition of “closeness” (cf. Tsetsos et al., 2010; Hotaling, Busemeyer, &
Li, 2010) - the compromise effect. MLBA also uses distance-dependence to explain
the attraction effect. However, the effect is hard-wired into the model since MLBA
is a static model and it is not possible to implement dynamic mechanisms like
competition. In the LCA model, lateral inhibition is defined globally, promoting
single alternatives (or groups of very similar alternatives) once they gain an ad-
vantage over the other alternatives. Leakage or decay of accumulated information
over time offsets the effects of lateral inhibition to some degree, allowing the mod-
els to produce primacy or recency effects. Turner et al. (2018) implement global
inhibition and leakage also into AAM, where choice alternatives originally compete
by means of context-dependent associations between alternatives and attributes.

In the 2NCT/SCT model, competition stems from serially updating the coun-
ters with updating probabilities based on normalized differences. However, in order
to compare the 2NCT model to MDFT and LCA, lateral inhibition and leakage
are implemented there as well (Wollschlaeger & Diederich, 2012). For that, a
“local” component, that depends on the current counter states, is added to the
counter updating probabilities. Let S+

a and S−a be the two counters for alternative
a, a ∈ {x, y, z}, S+

a [t] and S−a [t] their counter states at time t, and S[t] the sum of
the counter states at time t. Then lateral inhibition is implemented by increasing
the probability for updating the negative counter of alternative a, p−a , with an
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amount proportional to the sum of the counter states of the positive counters of
the other alternatives, S

+
b [t−1]+S+

c [t−1]
2·S[t−1] , b, c ∈ {x, y, z}, and vice versa for the pos-

itive counter of alternative a. Leakage is implemented by increasing the probability
for updating the negative counter of alternative a, with an amount proportionally
to its own positive counter state, S

+
a [t−1]
S[t−1] , and vice versa for the positive counter.

Weights L, 0 ≤ L ≤ 1 for lateral inhibition and k, 0 ≤ k ≤ 1 for leakage, with
L+ k ≤ 1, determine the proportion of the counter updating probabilities that is
defined by the local component. Altogether, this yields

(p+a )
′ = (1− k − L) · p+a + k · S

−
a [t− 1]

S[t− 1]
+ L ·

S−b [t− 1] + S−c [t− 1]

2 · S[t− 1]
, and

(p−a )
′ = (1− k − L) · p−a + k · S

+
a [t− 1]

S[t− 1]
+ L ·

S+
b [t− 1] + S+

c [t− 1]

2 · S[t− 1]
.

Other implementations of lateral inhibition and/or leakage, e.g., based on prefer-
ence states instead of counter states, are conceivable. But since competition based
on serial updating of counters allows the 2NCT model to explain the three context
effects and other reference points effects without lateral inhibition and leakage, we
did not explore them further. As a matter of fact, the simple choice tree model
(Wollschlaeger & Diederich, 2017) completely omits lateral inhibition and leakage
in order to achieve mathematical tractability.

(3.c) Noise

Probabilistic-static models of decision making (Busemeyer & Townsend, 1993),
e.g., random utility models, use noise to account for inconsistent behavior between
trials. Moving from static to dynamic models (Busemeyer & Townsend, 1993), e.g.,
to (discrete) sequential sampling models, each sample resembles a static trial. In
this case, noise can be either kept between trials or between samples, that is, within
trials of the sequential sampling model. MDFT, for example, implements noise
within trials and interprets it as influence of irrelevant attributes on the preference
construction process. Similar assumptions are made for LCA and AAM. MLBA,
as a static model, implements noise between trials. In the 2NCT/SCT model,
noise cannot be added to the counter states as such, since they are restricted to
nonnegative integer values. However, the random component as described above
in sub-stage (3.a) allows for random counter updates from time to time during the
preference construction process. It has a similar effect on the counter states as the
within-trial noise implemented in MDFT, LCA, and AAM.

(4) Choice tree and stopping rules

Here we expand the taxonomy proposed by Turner et al. (2018) because it does
not include decision criteria for accepting or rejecting a choice option. In sequential
sampling models, decision criteria are related to the time it takes to make a decision
and reflect the underlying deliberation process, i.e., the preference construction
over time (Lichtenstein & Slovic, 2006). Note that the time to make a decision
is a random variable. The switchboard analysis, however, uses a simple fixed
stopping rule, that is, the time is fixed. We argue, that including the time to come
to a decision is crucial because it may provide essential information about the
preference construction process. Most of the models considered here are dynamic
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Figure 6.1: One section of the tree T for three choice alternatives. The vertex
v has six outgoing edges leading to its children associated with the six counters.
Each edge is associated with a transition probability p+a or p−a , a ∈ {x, y, z} as
defined in equation 6.2.

and stochastic in nature. If however, the dynamic part is basically neglected, this
information is not available. For the 2NCT/SCT model it naturally follows from its
structure. We illustrate it by referring to the eponymous choice tree T = (V,E, r)
with vertices V , edges E ⊆ V × V and root r ∈ V . All vertices of T are directed
away from r and each internal vertex v ∈ V has six (that is, two times the number
of choice alternatives) children that are associated with the six counters. The edges
leading from v to its children are associated with the probabilities for updating the
respective counters (defined in equation 6.2 above). Figure 6.1 shows one section
of the tree for three choice alternatives. The vertex v has six outgoing edges
leading to its children associated with the six counters.

The preference construction process is represented by a random walk on T ,
beginning at the root and passing from there through an edge to another ver-
tex, triggering the update (increase by +1) of the associated counter, moving on
through another edge and so forth. The next edge to pass through is chosen ac-
cording to the probabilities associated with the edges. Note that for each vertex
the transition probabilities of all outgoing edges sum up to one. An example path
of this random walk is pictured in bold in Figure 6.2.

The preference construction process stops when enough evidence has been
accumulated to make the required choice. To this end, the preference states
Pa[t] = S+

a [t] − S−a [t], a ∈ {x, y, z} are constantly compared to two thresholds,
a positive choice threshold θ+ and a negative elimination threshold θ− = −θ+.
If the preference state for alternative a hits the positive threshold, the process
stops and a is chosen. If, on the other hand, the preference state for alternative
b hits the negative threshold, b is eliminated from the choice set and the process
continues with the remaining alternatives until one of them is chosen or until all but
one of them have been eliminated. Consider a simple example with three choice
alternatives {x, y, z} and thresholds θ+ = 2 and θ− = −2. The sample path in
Figure 6.2 with its associated sequence of counter updates S+

y , S
−
x , S

−
x , S

+
y , leads

to elimination of alternative x after three steps and choice of alternative y after
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Figure 6.2: A random walk on the choice tree for three alternatives. The associated
sequence of counter updates is S+

y , S
−
x , S

−
x , S

+
y and the probability for walking

along this specific path is p+y · p−x · p−x · p+y . Supposing that the rejection threshold
θ− is equal to −2 and the choice threshold θ+ is equal to 2, this sequence implicates
first rejection of alternative x and then choice of alternative y. When x is eliminated
from the choice set, the vertices associated with its counters no longer appear in
the choice tree, as can be seen in the bottom row of vertices here.

four steps. Note that there are only four vertices in the bottom row of Figure 6.2,
since alternative x has been eliminated before. Other possible sequences resulting
in choice of alternative y include S+

z , S
−
x , S

+
y , S

+
y with direct choice of y after four

steps, and S−x , S−z , S−z , S−x with elimination of alternatives z after three steps and
x after four steps and therewith choice of the only remaining alternative y, see
figure 6.3.

6.3 The three (four) context effects

Similarity, attraction, and compromise effects have become a benchmark for multi-
alternative multi-attribute preferential choice models. However, as for the compro-
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Figure 6.3: Two sequences of counter updates, both leading to choice of alternative
y, given choice and rejection thresholds equal to two. The right panel features two
rejections, leaving alternative y as the only available option. The left panel features
a choice of y without any rejections.

mise effect, some studies examine an asymmetric version of the effect and others
a symmetric version. The 2NCT/SCT model is the first theory to explain, in addi-
tion to the similarity and attraction effect, both the asymmetric and the symmetric
version of the compromise effect with the same set of mechanisms. Before we turn
to the SCT model’s explanation of the effects, we shortly summarize the findings.
All three effects have been observed after adding a third alternative to a set of two
equally attractive yet clearly distinguishable options described by two attributes.
Let A1 and A2 be two choice alternatives with two common attributes, D1 and
D2, describing them. We assume that D1 is the unique strongest attribute for A1,
and D2 is the unique strongest attribute for A2, that is, A1 scores high on D1 but
low on D2 and vice versa for A2. One can think of the alternatives as placed in a
two-dimensional space with dimensions D1 and D2. We further assume that the
probability for choosing alternative A1 from the binary choice set is equal to the
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probability for choosing alternative A2:

P (A1|A1, A2) = P (A2|A1, A2).

Note that this last assumption is relatively strict and therefore hard to meet ex-
perimentally (but see Berkowitsch et al., 2014, for an example of how to approach
it by means of a matching task). In order to avoid this problem, some studies use
relative choice shares to define the context effects (e.g., Trueblood et al., 2014,
2015). However, dimensional biases are covered by the relative choice shares and
potentially distort the effects of interest (cf. Liew et al., 2016). Here, we maintain
the equal probability assumptions, since they do not constrain our demonstration
of the 2NCT/SCT model’s ability to explain the three context effects.

The similarity effect was introduced by Tversky (1972b). He claims that the
probability of choosing, say, A1 over A2 decreases after adding a third alternative
A3 that is similar to A1 to the choice set. Let A3 score high on attribute D1 and
low on attribute D2 like alternative A1 while overall being similarly attractive (i.e.,
P (A1|A1, A3) = P (A3|A1, A3)). Then the similarity effect is observed if

P (A1|A1, A2, A3) < P (A2|A1, A2, A3).

The attraction effect or decoy effect or asymmetric dominance effect was in-
troduced by Huber et al. (1982). They claim that the probability for choosing
alternative, say, A1 can be increased by adding a third alternative A3 to the choice
set that is similar to but dominated by A1. A3 then serves as a decoy for alternative
A1, drawing attention to it and therewith improving its evaluation and increasing
its choice probability. That is, the attraction effect is observed if

P (A1|A1, A2, A3) > P (A2|A1, A2, A3).

The (asymmetric) compromise effect was introduced by Simonson (1989). He
claims that adding a third alternative A3 to the choice set can increase the choice
share of alternative, say, A1, if A3 is more extreme than alternative A1 (i.e.,
A3 scores even higher than A1 on attribute D1 and lower than A1 on attribute
D2), but is overall similarly attractive as both A1 and A2 (i.e., P (A1|A1, A3) =
P (A3|A1, A3) and P (A2|A2, A3) = P (A3|A2, A3)). The compromise effect is
observed if

P (A1|A1, A2, A3) > P (A2|A1, A2, A3), and
P (A1|A1, A2, A3) > P (A3|A1, A2, A3).

Note that, the more similar the additional extreme alternative A3 is to its adjacent
alternative A1, the more share it takes away from A1 via the similarity effect.

When Roe et al. (2001) proposed Multi-alternative Decision Field Theory,
they used it to explain similarity, attraction, and compromise effects. However,
when simulating choices, instead of adding an extreme alternative to the origi-
nal choice set {A1, A2}, they add a compromise alternative A3 in between A1

and A2. Again supposing that all binary choice probabilities are equal (i.e.,
P (A1|A1, A3) = P (A3|A1, A3), and P (A2|A2, A3) = P (A3|A2, A3)), a (sym-
metric) compromise effect is observed if

P (A3|A1, A2, A3) > P (A1|A1, A2, A3), and
P (A3|A1, A2, A3) > P (A3|A1, A2, A3).
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The symmetric version of the compromise effect challenges theories that ex-
plain context effects by changing attribute weights like, for example, the associative
accumulation model (Bhatia, 2013). The asymmetric version on the other hand
cannot be explained by introducing symmetric curvature to the attribute space
like, for example, the multi-attribute linear ballistic accumulator model (Trueblood
et al., 2014) does. Loss-averse value functions (e.g., Usher & McClelland, 2004;
Wollschlaeger & Diederich, 2012) seem most promising for explaining both ver-
sions of the compromise effect, but let us now review the 2NCT/SCT model’s
explanations for the three context effects.

The 2NCT/SCT model’s account for the context effects

In the 2NCT/SCT model, mainly two interacting mechanisms produce similarity,
attraction, and compromise effects: (1) selection of pairs of attribute values for
comparison based on normalized differences, and (2) the possibility to eliminate
unwanted alternatives from the choice set. The first mechanism leads to a higher
impact of dissimilar alternatives on the updating probabilities and thus faster evi-
dence accumulation for alternatives with more distant competitors. In the similarity
and attraction settings, this applies to the dissimilar alternative A2, in the asym-
metric compromise situation to the extreme alternatives A2 and A3, and in the
symmetric compromise situation to the extreme alternatives A1 and A2. The sec-
ond mechanism and the related focus weight λ determine whether choices are more
likely to be based on eliminations or to be made directly. The greater λ, the more
likely are the choices based on eliminations. In the similarity situation, greater λ
leads to faster elimination of the dissimilar alternative A2 and subsequent choice or
elimination of either alternative A1 or A3, that is, a small or even negative similar-
ity effect. On the other hand, smaller λ leads to more direct choices of alternative
A2 and thus a higher similarity effect. Regarding the dissimilar alternative A2, the
same is true in the attraction situation. Greater λ leads to faster elimination of
A2 while smaller λ leads to more direct choices of alternative A2. However, the
attraction effect is higher for greater λ, since after elimination of alternative A2,
either the dominating option A1 is chosen directly or the dominated option A3

is eliminated first. In the compromise setting, greater λ increases the probability
for the extreme options to be eliminated from the choice set, leaving the decision
maker with the compromise option. Smaller λ on the other hand more likely leads
to choice of an extreme option and thus a smaller or even negative compromise
effect. Attribute weights further moderate the strengths of the context effects, but
as long as they are more or less balanced, they play a minor role in the explanation
of the similarity, attraction, and compromise effects. However, a high attribute
weight is able to bias choice towards the alternative that scores highest on that
attribute, covering any context effect.

Simulations

We ran several simulations to illustrate these mechanisms. The available choice
alternatives were A1 = (70, 30), A2 = (30, 70) and A3 = (70, 30) for the similarity
effect, A3 = (65, 25) for the attraction effect, A3 = (90, 10) for the asymmetric
compromise effect, or A3 = (50, 50) for the symmetric compromise effect. The
attribute weights were ω0 = 0.1 and ω1 = ω2 = 0.45, and the focus weight λ varied
between 0 and 1 in steps of 0.1. For each data point we ran 10000 simulations
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Figure 6.4: Simulations of choice probabilities for changing focus weight λ in the
similarity, attraction, and (a)symmetric compromise situation. There is a positive
similarity effect for smaller λ and a negative similarity effect for larger λ (upper
left) and vice versa for the attraction effect (upper right). The compromise effect
(lower left and right) shows for larger λ and is reversed for smaller λ.

and the resulting choice probabilities are presented in figure 6.4. According to the
simulations, the similarity effect is opposed to the attraction and the compromise
effect. The similarity effect is strongest for low λ, whereas the attraction and the
compromise effect are strongest for high λ. This prediction is consistent with the
finding that the attraction and the compromise effect are positively correlated with
each other and negatively correlated with the similarity effect (Berkowitsch et al.,
2014). Note that λ is assumed to be a global weight that does not change between
trials but may vary between participants.

As the simulations show, the possibility to eliminate unwanted alternatives from
the choice set during deliberation is crucial for the 2NCT/SCT Model’s explanation
of the three context effects (and their interrelations). However, this mechanism
goes beyond the Turner et al. (2018) taxonomy, which does not include any stop-
ping rules. Therefore, in the following section, we propose a revised taxonomy
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based on considerations about the time course of decision making processes.

6.4 A revised taxonomy

In their motivation for developing a taxonomy for theories of multi-alternative
multi-attribute preferential choice, (Turner et al., 2018) state that “while the three
processing stages do not necessarily define the temporal structure of the decision
process, such a temporal distinction among the processing stages seems psycholog-
ically plausible” (p. 20). Here, we revise the Turner et al. (2018) taxonomy based
on considerations about the time course of decision making processes. Where
applicable, we take into account available process tracing data (e.g. Noguchi &
Stewart, 2014).

(1) Subjective mapping of attribute values. The first processing stage in
our revised taxonomy is equal to sub-stage (1.a) of the (Turner et al., 2018) tax-
onomy. Given the objective attribute values that describe the choice alternatives,
each model has to define if and how these values are transformed into subjective
representations.

(2) Attention allocation. The second processing stage of our revised tax-
onomy addresses how the decision maker distributes attention (2.a) between
attributes, and – within attributes – (2.b) between pairs of attribute values.
Sub-stage (2.a) here is equal to processing stage (2) of the Turner et al. (2018)
taxonomy, that is, each model has to define attribute weights that may serve as at-
tention probabilities. Sub-stage (2.b) is based on an eye-tracking study by Noguchi
and Stewart (2014), who find that in multi-alternative choice, “alternatives are re-
peatedly compared in pairs on single dimensions” (p.44). In order to allow for such
comparisons to take place, each model has to define weights that may serve as at-
tention probabilities for pairs of attribute values. In the 2NCT/SCT model, these
weights are called comparison values. MLBA similarly defines weights for pairs
of attribute values, but uses them only during preprocessing and not as attention
weights. For the other models, uniform attention probabilities may be assumed.

(3) Evaluation of alternatives. The third processing stage of our revised
taxonomy addresses how alternatives are evaluated by the decision maker. In the
Turner et al. (2018) taxonomy this is part of the perception process as described in
sub-stages (1.b) and (1.c). Here, we divide the evaluation of alternatives into (3.a)
selecting a focus value and a reference value and the actual (3.b) comparison.
Given a pair of attribute values, each model has to determine for which alternative
evidence will be accumulated by selecting the associated attribute value as focus
value. Note that this could be interpreted as part of the attention allocation stage.
However, in models with some kind of asymmetry (nonlinear filtering, i.e. sub-stage
(1.c) of the Turner et al. (2018) taxonomy), calculation of pairwise differences may
be required. We therefore interpret it as part of the evaluation stage. In models
that evaluate alternatives against each other (cf. sub-stage (1.b) of the Turner
et al. (2018) taxonomy), like MDFT, LCA, 2NCT/SCT, and MLBA, the second
attribute value of the pair is automatically selected as reference value. Alternatively,
an external value may be selected as reference value, e.g., the neutral reference
point in AAM. Once the focus value and reference value are selected, the resulting
evidence is determined by comparing the two values. MDFT, LCA, AAM, and
MLBA explicitly calculate the difference of the two values while the 2NCT/SCT
model only determines whether it is positive or negative.
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(4) Evidence accumulation. The fourth processing stage of our revised tax-
onomy addresses how evidence is accumulated. It is divided into (4.a) setup of
counters, (4.b) counter updates including competition and noise, and (4.c)
stopping rules. All of these sub-stages have been discussed above in stages (3)
and (4): Sub-stage (4.b) is equal to processing stage (3) of the Turner et al.
(2018) taxonomy and sub-stages (4.a) and (4.c) correspond to the extensions that
we made to the Turner et al. (2018) taxonomy in order to describe the 2NCT/SCT
model. To summarize, each model has to specify how many counters accumulate
evidence or preference (for each alternative), how these counters are updated over
time, i.e., the amounts they are updated with, and when and why updating stops
and a decision is made, i.e., which decision criteria are used.

6.5 Summary and Discussion

In this commentary, we discuss the 2N-ary choice tree model (2NCT, Wollschlae-
ger & Diederich, 2012) and its recent version simple choice tree model (SCT,
Wollschlaeger & Diederich, 2017) and classify it by means of a taxonomy for com-
putational models of multi-alternative multi-attribute preferential choice proposed
by Turner et al. (2018). Where necessary, we expand the Turner et al. (2018) tax-
onomy to capture a unique feature of the 2NCT/SCT model: Separate and possibly
asymmetric accumulation of evidence against and in favor of choosing each op-
tion. This affects the setup of counters (only the 2NCT/SCT model assumes two
counters per alternative), the asymmetric weighting of positive and negative infor-
mation (the free parameter λ allows the SCT model to mimic loss aversion as well
as a bias for positive evidence), and stopping rules (the 2NCT/SCT model defines
decision criteria for accepting and rejecting choice options). We then show how the
2NCT/SCT model accounts for the similarity, attraction, and compromise effects
– an ability it shares with multi-alternative decision field theory (MDFT, Roe et
al., 2001), the leaky competing accumulator model (LCA, Usher & McClelland,
2001, 2004), the associative accumulation model (AAM, Bhatia, 2013), the linear
ballistic accumulator model (MLBA Trueblood et al., 2014), and multi-alternative
decision by sampling theory (MDbS Noguchi & Stewart, 2018). All of these models
employ different information processing mechanisms to explain the three context
effect.

Turner et al. (2018) compare several of these mechanisms, that is, the ones em-
ployed in MDFT, LCA, AAM, and MLBA, based on their usefulness for explaining
the three effects in a so-called switchboard analysis. They find that filtering of ev-
idence before accumulation, comparison of attribute values, competition between
counters, and the kind of noise that is added during accumulation of evidence have
the largest effects on model performance. With respect to filtering mechanisms,
the switchboard analysis revealed that no filtration of evidence before accumulation
and loss-aversion both outperform the similarity-based filter mechanism proposed
by MLBA. The 2NCT model allows for either no filtration or loss-aversion, while
the SCT model with its focus weight λ additionally accounts for filtration biased
towards confirmatory evidence. Weighting filtration with a free parameter (the
focus weight λ) was not part of the Turner et al. (2018) switchboard analysis and
will have to be compared to the other filtering mechanisms in the future. With re-
spect to the comparison of attribute values, the switchboard analysis revealed that
pairwise comparison of attribute values outperforms no comparison of attribute
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values, that is, using each alternative as reference point for the other alternatives
as in MDFT, LCA, 2NCT/SCT, and MLBA outperforms evaluation against a sin-
gle neutral reference point as in AAM. In the Turner et al. (2018) taxonomy, the
comparison is part of the first processing stage that addresses subjective perception
of the attribute space. However, we believe that selection of reference points at
least partly depends on the task at hand and a general model of multi-alternative
multi-attribute preferential choice should go beyond similarity, attraction, and com-
promise effects, and be able to also explain other reference point effects, e.g., the
endowment effect (Kahneman, Knetsch, & Thaler, 1991).

We propose a revised taxonomy where the evaluation of alternatives takes
place in a separate processing stage with two sub-stages that require selection of
reference values and comparison of focus and reference values, respectively. With
respect to competition, the switchboard analysis revealed that no competition be-
tween counter states and competition weighted by a free parameter (that is, global
lateral inhibition) outperform the distance-dependent lateral inhibition proposed
by MDFT. The 2NCT/SCT model proposes a different kind of competition, based
on serial updating of counters instead of lateral inhibition between counter states.
Future analysis will have to show whether this kind of competition can compete
with the previously proposed ones. With respect to noise, the switchboard analysis
revealed that between-trial variability in valuation noise outperforms within-trial
variability. In the 2NCT/SCT model, the accumulators count instances in which
the associated alternatives are perceived as winning or losing a comparison of at-
tribute value pairs, that is, the counter states are restricted to positive integer
values. It does therefore not make sense to add noise to the updating amounts.
Instead, we add noise to the updating probabilities, leading to random counter
updates once in a while. Again, this mechanism will have to be compared to the
other implementations of noise into the accumulation process in the future. The
revised taxonomy that we propose takes into account considerations about the
time course of decision making processes. Where applicable, it is based on process
tracing data (e.g. Noguchi & Stewart, 2014), but most importantly, it adds choice
and elimination criteria and thereby optional instead of fixed stopping rules to the
choice process.
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Chapter 7

Discussion

In this thesis, a computational cognitive process model of multi-alternative multi-
attribute preferential choice is proposed, revised, tested for its ability to simulate
three benchmark context effects and interactions between them, and compared with
earlier and more recent theories. The 2N-ary choice tree model assumes that the
decision maker, given a set of N choice alternatives that are described by the same
attributes, repeatedly compares pairs of attribute values and counts how often each
alternative wins and loses a comparison. The number of favorable and unfavorable
comparisons is stored in two separate counters per alternative and the difference
of the counter states forms the preference state for the respective alternative. If
the preference state for an alternative hits a negative threshold, this alternative is
eliminated from the choice set and the comparison process continues without it. On
the other hand, if the preference state for an alternative hits a positive threshold,
this alternative is chosen and the whole process stops. The counter updating
process is modeled as a random walk on a 2N-ary choice tree, a rooted tree with
2N children at each vertex that are associated with the 2N counters. Transition
probabilities, that is, counter updating probabilities, are composed of attribute
weights, comparison values, a local component, and a random component.

The simple choice tree model, a revised version of the 2N-ary choice tree model,
differs from its predecessor in mainly two points. First, it omits the local component
of the counter updating probabilities, which proved to be unnecessary for explaining
the desired effects. This ensures improved mathematical tractability of the model.
And second, it introduces an additional parameter for regulating the focus on the
winning or losing alternative in a comparison, which has an effect on the proportion
of choices and eliminations that take place. The 2N-ary choice tree model and
the simple choice tree model are both able to explain similarity, attraction, and
compromise effects, three context effects that have been observed after adding a
third option to a set of two choice alternatives. With its additional parameter, the
simple choice tree model beyond that accounts for the positive correlation between
attraction and compromise effects and the negative correlation between these two
and the similarity effect, that Berkowitsch et al. (2014) found in their recent study.
To my knowledge, the simple choice tree model is the only model that accounts for
the whole range of related findings, including negative similarity, attraction, and
compromise effects (cf. section 2.6 and see Liew et al., 2016, for a commentary
on averaging across participants and negative context effects).

The next steps will be to further explore the capabilities of the simple (2N-ary)
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choice tree model, both theoretically and in application to data. Its competitor
models have been applied, for example, to phantom decoy effects (Usher et al.,
2008; Bhatia, 2013; Trueblood & Pettibone, 2015), to choice deferral (Busemeyer
et al., 2006; Bhatia & Mullett, 2016), and to best-worst scaling (Hawkins et al.,
2013, 2014). The simple choice tree model includes mechanisms for considering
external reference points like phantom decoys and naturally accounts for choice
deferral and best-worst scaling with its elimination threshold. Parameter estima-
tions could be conducted for data from the context effects experiments discussed
in section 2.4. However, to exploit the simple choice tree model’s full potential,
not only choice frequencies but also response times should be taken into account.
Most applications of computational cognitive process models of context effect so
far ignore response times altogether, neglecting the dynamic nature of these models
(cf. section 2.6).

The simple (2N-ary) choice tree model makes novel predictions with respect
to the focus weight and the related elimination mechanism that require new ex-
periments and/or extensions of current experimental paradigms. For example, the
simple choice tree model predicts different choice probabilities for the extreme al-
ternatives in symmetric and asymmetric compromise situations, dependent on the
focus weight. Symmetric and asymmetric versions of the compromise effect have
never been tested in the same experiment so far. Another interesting prediction
affects the different types of decoys used in attraction effect studies. Huber et al.
(1982) reported descending magnitudes of the effect for range, range-frequency,
and frequency decoys. In the simple choice tree model, the same order is predicted
for higher values of the focus weight, but the reversed order is predicted for lower
values of the focus weight. Furthermore, it would be interesting to examine if the
focus weight is related to the concept of maximizing versus satisficing (Schwartz et
al., 2002). Mao (2016) examined the compromise effect under maximizing tenden-
cies and found that maximizers choose a compromise option more often, indicating
that the focus weight of a maximizer might be higher than that of a satisficer.

Regarding the elimination mechanism, eye tracking possibly provides insights
about ignored alternatives (see, for example, Stewart, Hermens, & Matthews, 2016,
for a discussion of gaze bias in risky choice). Data from the context effects study
by Noguchi and Stewart (2014) could be re-analyzed with respect to predicted
eliminations. Additionally, new experiments should be designed that provide the
possibility to explicitly eliminate alternatives from the choice set. Best-worst scaling
methods could inform the experimental design, however, alternatives marked as the
worst option in this kind of task usually remain on the screen until the best option
is chosen as well.

On a final note, I want to emphasize a remark made in section 2.6. It is argued
there, that computational cognitive process models should be compared on the
level of the microprocesses they are based on instead of on the level of whole
theories. The switchboard analysis conducted by Turner et al. (2018) is a first step
in this direction. Adding optional stopping times and an elimination mechanism,
as proposed in chapter 6, could be the next step, extending the benchmark beyond
context effects the step after next.
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Appendix A

Matlab code for simulations

A.1 The 2N-ary choice tree model

% 2N-ary choice tree model for N-alternative preferential choice
% Simulations

clear all;
%close all;

startTime=clock;

%% choice setting

% number of alternatives
N=3;

% number of dimensions
D=2;

% evaluations
X=[0.7 ,0.3;0.3 ,0.7;0.7 ,0.3]
M=scalingc(X)

% number of walks during simulation
K=100;

%% free parameters

% weight of dimensions
W=[0.5;0.5]
%W=(1/D).* ones(D,1);

% decision criterion
theta =5;

% noise factor
xi =0.01;

% leakage factor
lambda =0.05;

% inhibition factor
mu=0;
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%% model constants

compWIS=cell (2^N,4);

% comparison of alternatives
compWIS {1 ,1}= compdiff(N,M);

% weighted comparison
tempWcomp=compWIS {1,1}*W;

if sum(tempWcomp )==0
compWIS {1 ,2}=0;

else
compWIS {1 ,2}= scaling(tempWcomp );

end

% inhibition matrix
compWIS {1 ,4}= dftdist(N,M);

% counter update matrix
compWIS {1 ,3}=eye (2*N);

% prepare combinations , source:
% https ://www.mathworks.com/matlabcentral/answers/
% uploaded_files /8064/ combn.m
comb=combn ([1,0],N);

for i=2:(2^N)

index0=find(comb(i ,:)==0);
index1=find(comb(i,:));

tempX=X;
tempX(index0 ,:)=0;
tempM=scalingc(tempX);
compWIS{i,1}= compdft2(index1 ,N,D,tempM);

tempWcomp=compWIS{i,1}*W;
if sum(tempWcomp )==0

compWIS{i ,2}=0;
else

compWIS{i,2}= scaling(tempWcomp );
end

tempI=eye(2*N);
tempI(index0+N ,:)=0;
tempI(index0 ,:)=0;
compWIS{i,3}= tempI;

tempS=compWIS {1,4};
tempS(index0 ,:)=0;
tempS(:,index0 )=0;
compWIS{i,4}= tempS;

end

%% main part

data=zeros(K,2);
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for k=1:K

%initializations
% timestep counter
h=0;
% state of random walk
% [A,B,...,-A,-B,hits/rejections ,stop indicator ,probability]
counter =[ zeros (1,2*N),ones(1,N),0,1];

while counter(end -1)==0

%specification of row to pick from compWIS
rowInd = ...

(2^N) - ...
bin2dec(sprintf(’%i’,counter ((2*N+1):(3*N))));

%indices of withdrawn elements
index=find(counter ((2*N+1):(3*N))==0);

%computation of leakage
normdecay=decaydft2(counter (1:(2*N)),N,index);

%computation of inhibition
norminhib=inhibdft(counter (1:(2*N)),N,compWIS{rowInd ,4});

%computation of transition probabilities
% for the current state/position ,
probabilities=transitdft2 (...

index ,sum(counter ((2*N+1):(3*N))),N,...
compWIS{rowInd ,2} ,...
norminhib ,normdecay ,...
xi ,lambda ,mu);

%next step of random walk
counter=stepdft2(probabilities ,counter ,N,theta);

h=h+1;
end

data(k,:)=[ counter(end -1),h];
end

endTime=clock;
usedTime=etime(endTime ,startTime)

%% plot
m=1:N;
for i=1:N

m(2,i)=sum(data (: ,1)==m(1,i));
m(3,i)=sum(data(data (: ,1)==m(1,i),2))/m(2,i);

end
m
bar(m(1,:),m(2 ,:)./K)

function[csm]= scalingc(X)

scale=sum(X,1);

for i=1: size(X,2)
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csm(:,i)=X(:,i)/scale(i);
end

function[val]= compdiff(N,X)

val=repmat(X,2,1);

for i=1:N
for j=1: size(X,2)

val(i,j)=sum((X(i,j)>X(:,j)).*(X(i,j)-X(:,j)));
val(i+N,j)=sum((X(i,j)<X(:,j)).*(X(:,j)-X(i,j)));

end
end

function[sv]= scaling(v)

scale=sum(v);

sv=v/scale;

function[S]= dftdist(N,M)

S=zeros(N);

D=pdist(M);

F = @(x) exp(-x);

for i=1:(N-1)
for j=1:i

S(i+1,j)=F(D(i-1+j));
S(j,i+1)=S(i+1,j);

end
end

function[val]= compdft2(index1 ,N,D,M)

val=repmat(M,2,1);

for i=index1
for j=1:D

val(i,j) = ...
sum((M(i,j)>M(index1 ,j)).*(M(i,j)-M(index1 ,j)));

val(i+N,j) = ...
sum((M(i,j)<M(index1 ,j)).*(M(index1 ,j)-M(i,j)));

end
end

function[normdecay ]= decaydft2(state ,N,index)

counter=zeros (2*N,1);

for i=1:N
counterdiff=state(i)-state(i+N);
counter(i)=max([ counterdiff ,0]);
counter(i+N)=-min([ counterdiff ,0]);

end
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decay =[( counter ((N+1):(2*N)));( counter (1:N))];

decay(index )=0;
decay(index+N)=0;

if sum(decay )==0;
normdecay =0;

else
normdecay=decay/sum(decay);

end

function[norminhib ]= inhibdft(state ,N,S)

counter=zeros (2*N,1);

for i=1:N
counterdiff=state(i)-state(i+N);
counter(i)=max([ counterdiff ,0]);
counter(i+N)=-min([ counterdiff ,0]);

end

inhib =[S*( counter ((N+1):(2*N)));S*( counter (1:N))];

if sum(inhib )==0;
norminhib =0;

else
norminhib=inhib/sum(inhib);

end

function[probabilities ]= transitdft2( ...
index ,m,N,normcomp ,norminhib ,normdecay ,xi,lambda ,mu)

probabilities =...
((1-lambda -mu )*(...
(1-xi)* normcomp +...
xi*(ones (2*N ,1)/(2*m)))+...
lambda*norminhib +...
mu*normdecay );

probabilities(index+N)=0;
probabilities(index )=0;

function[state ]= stepdft2(probabilities ,oldstate ,N,theta)

state=oldstate;

%the vector of cumulative sums of the
% probabilities divides the unit interval
% into intervals with lengths equal to
% the transition probabilities. An uniformly
% distributed random variable x lies within
% each of these intervals with the associated
% probability
cumprobabilities=cumsum(probabilities );

x=rand (1);

%update of counter associated to the
% interval that was hit by x in that step
% state(end) contains the probability
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% for having reached that state , test
% tests , whether a threshold is hit.
% If so, state(end -1) is set to the number
% of the corresponding alternative
if x<= cumprobabilities (1)

state (1)= oldstate (1)+1;
state(end)= oldstate(end)* probabilities (1);
test=state(1)-state(N+1);
state(end -1)=1*( test==theta);

elseif (( cumprobabilities(N)<x)*...
(x<= cumprobabilities(N+1)))==1

state(N+1)= oldstate(N+1)+1;
state(end)= oldstate(end)* probabilities(N+1);
test=state(1)-state(N+1);
state (1+(2*N))= oldstate (1+(2*N))-(test==-theta );

else
for i=2:N

if (( cumprobabilities(i-1)<x)*...
(x<= cumprobabilities(i)))==1

state(i)= oldstate(i)+1;
state(end)= oldstate(end)* probabilities(i);
test=state(i)-state(N+i);
state(end -1)=i*(test==theta);

elseif (( cumprobabilities(N+i-1)<x)*...
(x<= cumprobabilities(N+i)))==1

state(N+i)= oldstate(N+i)+1;
state(end)= oldstate(end)* probabilities(N+i);
test=state(i)-state(N+i);
state(i+(2*N))= oldstate(i+(2*N))-(test==-theta );

end
end

end

if sum(state ((2*N+1):(3*N)))==1
state(end -1)= find(state ((2*N+1):(3*N)));

end

A.2 The simple choice tree model

function [] = Simulations ()
% The Simple (2N-ary) Choice Tree Model
% SIMULATIONS simulates choices and response times
% based on the simple choice tree model

%% define choice alternatives and external reference points
choiceAlternatives = [ 70, 30; ... % Alternative 1

30, 70; ... % Alternative 2
70, 25 ]; % Alternative 3

% extract number of alternatives and attributes
[nAlternatives , nDimensions] = size(choiceAlternatives );
%define external reference points
externalReferencePoints = [ ];

%% define fixed parameters and file names
randomWeight = 0.1;
decisionThreshold = 10; % (theta ^+ = theta^-)
nSimulations = 10000; % number of simulations
dataFile = false;
dataFileName = ’SCT_simulations.dat’;
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summaryFile = true;
summaryFileName = ’SCT_simulations_summary.dat’;

%% write headers
if dataFile

dataFileID = fopen(dataFileName , ’w’); % discard content
headerSpec = [’m11 m12 m21 m22 m31 m32 ’...

’fw w1 w2 rw ’ ...
’a1 a2 a3 t1 t2 t3 ’ ...
’s11 s12 s13 s14 s15 s16 ’... % counter states at time t1
’s21 s22 s23 s24 s25 s26 ’... % counter states at time t2
’s31 s32 s33 s34 s35 s36\n’]; % counter states at time t3

header = [];
fprintf(dataFileID , headerSpec , header );
fclose(dataFileID );

end

if summaryFile
summaryFileID = fopen(summaryFileName , ’w’); % discard content
headerSpec = [’m11 m12 m21 m22 m31 m32 ’...

’fw w1 w2 rw ’ ...
’a1 a2 a3 t1 t2 t3 ’ ...
’a11 a12 a13 t11 t12 t13 ’...
’a21 a22 a23 t21 t22 t23 ’...
’a31 a32 a33 t31 t32 t33\n’];

header = [];
fprintf(summaryFileID , headerSpec , header );
fclose(summaryFileID );

end

%% compute comparison values and random component
% compute internal comparison values
[internalComparisonValues , randomComponent] = ...

computecomparisonvalues(choiceAlternatives );
% check if there are external reference points
if isempty(externalReferencePoints)

% if not , set externalComparisonValues to zero
externalComparisonValues = 0;

else
% extract number of external reference points and attributes
nExternalDimensions = size(externalReferencePoints ,2);

% check if number of attribute match
if nExternalDimensions ~= nDimensions

msg = [’Error. ’...
’Number of attributes ’ ...
’of external reference points ’ ...
’does not match number of attributes ’ ...
’of choice alternatives.’];
error(msg)

end
% compute external comparison values
[externalComparisonValues , ~] = ...

computecomparisonvalues( ...
choiceAlternatives , externalReferencePoints );

end

%% define varying weights and compute probabilities
for focusWeight = 0:0.1:1

for attributeWeight = 0:0.1:1
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attributeWeights = [attributeWeight , (1- attributeWeight )];

% multiply negative comparison values with focusWeight and
% positive comparison values with (1- focusWeight)
focusedComparisonValues = [ ...

(1- focusWeight) .* ...
internalComparisonValues (1: nAlternatives ,: ,:);
focusWeight .* ...
internalComparisonValues (( nAlternatives +1):end ,: ,:)];

% add comparison values
comparisonValues = ...

focusedComparisonValues + ...
externalComparisonValues;

% weight dimensions and add up comparison values
repeatedWeights = permute( ...

repmat(attributeWeights , ...
2* nAlternatives , 1, 2^ nAlternatives), ...
[1 3 2]);

weightedComparisonValues = ...
repeatedWeights .* comparisonValues;

probabilities = (randomWeight * randomComponent) + ...
(1- randomWeight) * sum(weightedComparisonValues , 3);

%% define decision threshold and simulate
% choices and response times.

simulatedData = simulatechoices( ...
nAlternatives , nSimulations , ...
probabilities , decisionThreshold );

summarizedData = summarizedata( ...
nAlternatives , simulatedData );

alternativeInfo = [choiceAlternatives (1,:), ...
choiceAlternatives (2,:), ...
choiceAlternatives (3,:), ...
focusWeight , ...
attributeWeights , ...
randomWeight ];

data = [repmat(alternativeInfo ,nSimulations ,1), ...
simulatedData ];
summary = [ alternativeInfo , summarizedData ];

%% write data and/or summary into files
if dataFile

dataFileID = fopen(dataFileName , ’a’);
formatSpec = [’%3i %3i %3i %3i %3i %3i ’ ...

’%1.2f %1.2f %1.2f %1.2f ’ ...
’%3i %3i %3i %3i %3i %3i ’ ...
’%3i %3i %3i %3i %3i %3i ’ ...
’%3i %3i %3i %3i %3i %3i ’ ...
’%3i %3i %3i %3i %3i %3i\n’];

fprintf(dataFileID , formatSpec , data ’);
fclose(dataFileID );

end

if summaryFile
summaryFileID = fopen(summaryFileName , ’a’);
formatSpec = [’%3i %3i %3i %3i %3i %3i ’ ...
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’%1.2f %1.2f %1.2f %1.2f ’ ...
’%3i %3i %3i %5.0f %5.0f %5.0f ’ ...
’%3i %3i %3i %5.0f %5.0f %5.0f ’ ...
’%3i %3i %3i %5.0f %5.0f %5.0f ’ ...
’%3i %3i %3i %5.0f %5.0f %5.0f\n’];

fprintf(summaryFileID , formatSpec , summary ’);
fclose(summaryFileID );

end
end

end

fprintf(’\nDone .\n’);

function [ comparisonValues , randomComponent ] = ...
computecomparisonvalues( ...
choiceAlternatives , externalReferencePoints )

% COMPUTECOMPARISONVALUES
% compares attribute values of the available
% alternatives with each other and with attribute
% values of the external reference points ,
% if applicable.

% check if number of input arguments is one or two
narginchk (1,2);
% extract number of alternatives and attributes
[nAlternatives , nDimensions] = size(choiceAlternatives );
% preallocate space for the comparison values
comparisonValues = ...

zeros (2* nAlternatives , 2^ nAlternatives , nDimensions );
% prepare combinations , source:
% https ://www.mathworks.com/matlabcentral/answers/
% uploaded_files /8064/ combn.m
combinations = combn ([1 0], nAlternatives );

%% define random component
randomComponent = repmat(combinations ’,2,1);
% sum columns
columnSum = sum(randomComponent );
% replace zeros by ones (to avoid NaNs due to division by zero)
columnSum(columnSum == 0) = 1;
% normalize (divide random component by column sum)
randomComponent = randomComponent ./ columnSum;

%% compute comparison values
% if there is only one input value ,
% only internal comparison values are computed
% if there are two input values ,
% only external comparison values are computed
switch nargin

case 1
nReferencePoints = nAlternatives;
referenceValues = choiceAlternatives;
for iAlternative = 1: nAlternatives

focusValues = ...
repmat(choiceAlternatives(iAlternative ,:), ...
nReferencePoints ,1);

differences = focusValues - referenceValues;
positiveDifferences = max(differences , 0);
negativeDifferences = -min(differences , 0);
for iCombination = (combinations (:, iAlternative) == 1)

comparisonValues( ...
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iAlternative , iCombination , :) ...
= combinations(iCombination , :) * ...
positiveDifferences;

comparisonValues( iAlternative + ...
nAlternatives , iCombination , :) = ...
combinations(iCombination , :) * ...
negativeDifferences;

end
end
for iDimension = 1: nDimensions

% sum columns
columnSum = sum(comparisonValues (:,:, iDimension ));
% find zeros
iZeros = (columnSum == 0);
% replace zeros by ones
columnSum(iZeros) = 1;
% replace zero columns by columns from the
% normalized random component
comparisonValues (:,iZeros ,iDimension) = ...

randomComponent (:,iZeros );
% divide comparison values by 0.5 * column sum
% (or normalize values separately for positive and
% negative comparison values)
comparisonValues (:,:, iDimension) = ...

comparisonValues (:,:, iDimension) ./ ...
(0.5 .* columnSum );

end
case 2

nReferencePoints = size(externalReferencePoints , 1);
referenceValues = externalReferencePoints;
for iAlternative = 1: nAlternatives

focusValues = ...
repmat(choiceAlternatives(iAlternative ,:), ...
nReferencePoints ,1);

differences = focusValues - referenceValues;
positiveDifferences = max(differences , 0);
negativeDifferences = -min(differences , 0);
for iCombination = (combinations (:, iAlternative) == 1)

comparisonValues( ...
iAlternative , iCombination , :) ...
= combinations (1, :) * positiveDifferences;

comparisonValues( ...
iAlternative + nAlternatives , ...
iCombination , :) = ...
combinations (1, :) * negativeDifferences;

end
end
for iDimension = 1: nDimensions

% sum columns
columnSum = sum(comparisonValues (:,:, iDimension ));
% find zeros
iZeros = (columnSum == 0);
% replace zeros by ones
columnSum(iZeros) = 1;
% replace zero columns by columns from the
% normalized random component
comparisonValues (:,iZeros ,iDimension) = ...

randomComponent (:,iZeros );
% divide comparison values by column sum
comparisonValues (:,:, iDimension) = ...

comparisonValues (:,:, iDimension) ./ columnSum;
end
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end

function[ simulatedData ] = simulatechoices( nAlternatives , ...
nSimulations , probabilities , decisionThreshold )

%SIMULATECHOICES simulates choices from a given choice set with
% the defined parameter setting.

% preallocate space for simulated data (one row per simulation ):
% nAlternatives columns for choices/eliminations
% nAlternatives columns for response times
% 2* nAlternatives*nAlternatives columns for
% counter states at response times
simulatedData = ...

zeros(nSimulations , (2 * nAlternatives + 2) * nAlternatives );

% prepare probabilities
cumulatedProbabilities = cumsum(probabilities )’;
% prepare combinations
%
combinations = combn ([1 0], 3);

% define number of steps per simulation
% set to a high value to make sure that most of the choices are
% made before that time
nSteps = 10000;

for iSimulation = 1: nSimulations

% draw random values
% randomValues = repmat(rand(nSteps , 1),1,2* nAlternatives)
randomValues = rand(nSteps , 2* nAlternatives );
% define initial counter states
counterStates = zeros (1,2* nAlternatives );
% and initial combinations/probabilities index
% (start with all alternatives: row 1)
iCombination = 1;
availableAlternatives = combinations(iCombination ,:);
nAvailableAlternatives = nAlternatives;

upperEndpoints = cumulatedProbabilities(iCombination ,:);
lowerEndpoints = [0, upperEndpoints (1:(end -1))];

for iStep = 1: nSteps

% testProbabilities = randomValues(iStep ,1); % dependent
testProbabilities = randomValues(iStep ,:); % independent

counterUpdates = ...
(lowerEndpoints < testProbabilities) .* ...
(testProbabilities <= upperEndpoints );

counterStates = counterStates + counterUpdates;

testPreferences = counterStates (1: nAlternatives) - ...
counterStates (( nAlternatives +1): end);

index = find(availableAlternatives );
permuteIndex = randperm(nAvailableAlternatives );
testIndex = index(permuteIndex );
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for iTest = testIndex
if testPreferences(iTest)>= decisionThreshold

simulatedData( ...
iSimulation , ...
nAlternatives - ...
nAvailableAlternatives + 1) = ...
iTest;

simulatedData( ...
iSimulation , ...
2 * nAlternatives - ...
nAvailableAlternatives + 1) = ...
sum(counterStates );

simulatedData( ...
iSimulation , (2 + 2 * ...
(nAlternatives -nAvailableAlternatives )) * ...
nAlternatives + 1 : (4 + 2 * ...
(nAlternatives -nAvailableAlternatives )) * ...
nAlternatives) = ...
counterStates;

availableAlternatives(iTest) = 0;
iCombination = ...

2^ nAlternatives - ...
availableAlternatives * ...
(2.^(( nAlternatives -1): -1:0)) ’;

nAvailableAlternatives = ...
nAvailableAlternatives -1;

upperEndpoints = ...
cumulatedProbabilities(iCombination ,:);

lowerEndpoints = ...
[0, upperEndpoints (1:(end -1))];

break

elseif testPreferences(iTest)<=(- decisionThreshold)
simulatedData( ...

iSimulation ,...
nAlternatives - ...
nAvailableAlternatives + 1) = ...
-iTest;

simulatedData( ...
iSimulation , ...
2 * nAlternatives - ...
nAvailableAlternatives + 1) = ...
sum(counterStates );

simulatedData( ...
iSimulation , (2 + 2 * ...
(nAlternatives - ...
nAvailableAlternatives )) * ...
nAlternatives + 1:(4 + 2 * ...
(nAlternatives - ...
nAvailableAlternatives )) * ...
nAlternatives) = ...
counterStates;

availableAlternatives(iTest) = 0;
iCombination = ...

2^ nAlternatives - ...
availableAlternatives * ...
(2.^(( nAlternatives -1): -1:0)) ’;

nAvailableAlternatives = nAvailableAlternatives -1;
upperEndpoints = ...
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cumulatedProbabilities(iCombination ,:);
lowerEndpoints = [0, upperEndpoints (1:(end -1))];
break

end
end

if nAvailableAlternatives ==0
break

end
end

end

function[ summarizedData ] = summarizedata( ...
nAlternatives , simulatedData )

% SUMMARIZEDATA counts for each alternative how often it
% has been chosen in simulatedData

% preallocate space
summarizedData = zeros (1,2* nAlternatives *( nAlternatives +1));

for iAlternative = 1: nAlternatives
for iPosition = 1: nAlternatives

if iPosition == 1
choiceData = ...

simulatedData(simulatedData (:,1) == ...
iAlternative ,:);

elseif iPosition == nAlternatives
choiceData = ...

simulatedData( ...
(abs(simulatedData (:, iPosition )) == ...
iAlternative & ...
sum(simulatedData (:,1:( iPosition -1))<0,2) == ...
(iPosition -1)) ,:);

else
choiceData = ...
simulatedData (( simulatedData (:, iPosition) == ...
iAlternative & ...
sum(simulatedData (:,1:( iPosition -1))<0,2) == ...
(iPosition -1)) ,:);

end
nChoices = size(choiceData ,1);
summarizedData( ...

iAlternative * 2 * nAlternatives + iPosition) = ...
nChoices;

summarizedData(iAlternative) = ...
summarizedData(iAlternative) + nChoices;

if sum(choiceData (:, nAlternatives+iPosition )) == 0
meanResponseTime = 0;

else
summedResponseTimes = ...

sum(choiceData (:, nAlternatives+iPosition ));
meanResponseTime = ...

round(summedResponseTimes/nChoices );
summarizedData(iAlternative+nAlternatives) = ...

summarizedData(iAlternative+nAlternatives) + ...
summedResponseTimes;

end
summarizedData( ...

(1+ iAlternative *2)* nAlternatives+iPosition) = ...
meanResponseTime;

end
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if summarizedData(iAlternative + nAlternatives) > 0
summarizedData(iAlternative+nAlternatives) = ...

round(summarizedData(iAlternative+nAlternatives) / ...
summarizedData(iAlternative ));

end
end
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