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Abstract

Photosynthesis is the main energy source in plants, algae and different types of

bacteria, such as purple and green sulphur bacteria. The primary step in pho-

tosynthesis is represented by the photo excitation of the light harvesting (LH)

pigment present in the organism. Subsequently, the excitation delocalizes among

the pigments due to the electronic couplings between them. The excitation energy

is then transferred to neighboring LH systems and finally to the reaction center

(RC) where charge separation occurs. During the last decades many studies have

been carried out in order to understand the optical and the exciton transfer prop-

erties of the LH complexes. Nevertheless, a full understanding has not yet been

achieved. In particular, the experimentally-observed long-lived coherences as well

as dephasing processes have attracted the attention of the scientific community in

recent years.

The present thesis aims at contributing to the understanding of these processes.

To this end,, different methods have been employed, such as molecular dynamics

simulations, quantum-chemistry methods and wave packet dynamics calculations.

The combination of these methods allows a more detailed theoretical description

of the studied LH systems. The dephasing phenomenon is discussed in the first

half of the thesis. In this work, an analytic and a numerical methodology has been

developed to relate it to the energy gap fluctuation. This formalism has been ap-

plied to the case of both single pigments and whole complexes. It can be concluded

that a universal relation exists between these two entities, independently from the

system and from the method used to obtain such quantities.

The second half of this thesis consists of combined molecular dynamics and quan-

tum approaches applied to different systems. In the first application, three differ-

ent LH systems are discussed and compared in detail. The role of the environment

in determining the excitation-energy transfer properties of such complexes is dis-

cussed as well. In the second application, the photo-active part of a bio-inspired

solar cell is studied. Diffusion properties have been analyzed, resulting in a clear

importance of quantum effects in enhancing the diffusion of the excitation energy

within the system.
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Chapter 1

Light-Harvesting Systems

Solar energy is the main energy source on our planet. Photosynthesis is a light

induced process wherein plants, algae and bacteria convert light into chemical

energy [1]. This energy is then stored in carbohydrates, obtained from carbon

dioxide and water. Photosynthesis consists of three important steps [2]. The

light is first harvested from sunlight and then used to produce energy in the form

of ATP. This energy is used for the conversion of CO2 into cabohydrates. The

general equation for such conversion is reported in Eq. 1.1, in which H2X denotes

the reducing agent and CH2O the carbohydrate

CO2 + 2H2X + photons→ [CH2O] + 2X +H2O. (1.1)

In oxygenic photosynthesis, the oxidation of water provides electrons and even-

tually oxygen is produced [3]. This type of photosynthesis takes place in plants,

algae and cyanobacteria. In bacteria (except cyanobacteria), anoxygenic photo-

synthesis takes place. In this case, other compounds as arsenites are used instead

of water as electrons source, and oxygen is not produced [4]. Many geochemi-

cal evidences show how oxygenic photosynthesis has evolved from the anoxygenic

one, due to the anoxic atmosphere on our planet up until 2.4 billion years ago [5].

The first experiments on photosynthesis were performed in 1932 by Emerson and

Arnold [6]. They suggested that about 2500 chlorophyll molecules are required for

the production of a single oxygen. Two years later, the existence of such molecules

called “chlorophyll units” was confirmed by Arnold and Kohn [7]. The discussion

on the minimum number of chlorophylls and photons required for the reaction was

open for a long time: a single chlorophyll molecule takes 1 hour to capture 4-12

photons, the number required for the evolution of an oxygen molecule [8] (for a

review on the topic, see Ref. [9]). The idea of a quantum transfer of energy was

firstly proposed by Wohl [8]. In his work, the “pigment molecule” absorbs and

transfers the energy very efficiently to the “center” , where the charge separation
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occurs. Nowadays, these two components are known as “photosynthetic unit” and

“reaction center” respectively. However, despite the quantum nature of the en-

ergy transfer is clear since 60 years, the debate on the reason behind its efficiency

is still open. The energy transfer in LH systems is, in fact, an highly efficient

process [10], and many theoretical and experimental studies have been carried

out [11, 12] to better understand it. It has recently been shown that the energy

transfer shows a quantum wave-like mechanism at cryogenic temperature [13–16],

even if the coherence phenomenon in vivo is still under study [17]. In particu-

lar, theoretical investigations show how coherence and dephasing effects at room

temperature are essential to maintain the strength of the transfer process [18–21].

These two phenomena need to be understood. The so-called “long lived coher-

ence” of the quantum energy transfer was revealed for the first time by Brixner

and co-workers in 2005 for the FMO complex [22] at 77K and 5 years later, at

room temperature, by the Engel research group for the same complex [23]. A

similar feature has been found for other complexes and for the PE545 system in

particular in 2010 [24]. It has been supposed that the long-lived coherence is due

to the correlation of site energy fluctuations [25] and various works reported the

possibility of correlated motions [20,26–30]. However, it has been shown [31] that

those correlations are improbable in the FMO complex and other reasons for such

long coherence have to be found. Moreover, dephasing processes must be taken

into account in the analysis of the efficiency of the energy transfer, and the first

part of the present thesis aims of contributing the acquaintance of the dephasing

phenomenon. These recent investigations show how the wave-like energy transfer

mechanism can contribute to the near-perfect quantum efficiency of photosynthe-

sis only if coherences survive long enough in these systems during energy transfer

at physiological temperatures [23]. However as the temperature increases, a sec-

ond phenomenon, the dephasing, plays an important role: the thermally excited

vibrational modes of the bath, in fact, accelerate decoherence, resulting in the lost

of the quantum nature of the energy transfer. Therefore, the interplay between

quantum cohernce and dephasing is responsible for the high efficient energy trans-

fer. If such equilibrium is guaranteed, a fast and unidirectional transfer within the

photosynthetic complexes is present [20] and the near-unity efficiency is reached.

However, the debate on the near-perfect quantum efficiency is still open and

many questions need to be addressed to exploit the mechanism of the photosyn-

thesis to build artificial photosynthetic devices [32].

In this chapter, the light harvesting complexes studied in this thesis work will

be presented. These include the light-harvesting complexes 2 and 3 (LH2 and

LH3) (Sec. 1.1), the Fenna-Matthews-Olson (FMO) complex (Sec. 1.2), the Phy-
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1.1. THE LH2 AND LH3 COMPLEXES

coerythrin (PE) complexes (Sec. 1.3) and the Metal Organic Framework (MOF)

complexes (Sec. 1.4).

1.1 The LH2 and LH3 Complexes

The light harvesting complex 2 (LH2 complex) is an antenna complex of purple

bacteria [33], prokaryotes widely spread in lakes and ponds. In these bacteria,

anoxigenic photosynthesis takes place [4]. LH2 complexes absorb light and subse-

quently transfer the excitation energy to the reaction centers. They are one of the

most well investigated light-harvesting complexes [34–40]. As can be seen in Fig.

1.1, the LH2 complex shows a symmetric structure: it is arranged in two rings, the

B800 and the B850 ring, which absorb at 800 nm and 850 nm respectively. The two

rings are composed of α−β subunits, each of them formed by one trans-membrane

protein, three bacterioclorophylls a (BChls a) and one carotenoid. Carotenoids are

chromophores and their role is multifold: they act as antioxidant agents, they con-

tribute to the light harvesting process absorbing in the blue-green region and they

transfer the excitation energy [41]. Purple bacteria living in low-light conditions

show a modified version of the LH2 complex, called LH3 complex, in which the

B850 band presents a blue shift with a peak at 820 nm. Some bacteria present

both LH2 and LH3 complexes to increase the spectrum range [42]. The first crys-

tal structures have been solved in 1995 by McDermott and co-workers [44] for

the bacterium Rhodoblastus acidophila and in 1996 by Koepke et. al. [45] for the

bacterium Rhodospirillum molischianum. The structures represented the starting

point for the comprehension and the molecular-level study of the light harvesting

mechanism [44]. The structure is well conserved in all bacteria, while the number

of composing pigments, varies with the bacteria species (27 BChls are present

in Rhodopseudomonas acidophila, while 24 are found in Rhodospirillum molischi-

anum). The carotenoids (Car) increment the spectral width [33]. As shown in Fig.

1.1, the two rings are differently arranged: on the one hand, the 8 (or 9) BChls of

the B800 ring are arranged in a plane parallel to the membrane plane and they are

21 Å apart from their neighboring BChls, which makes the coupling between them

weak and therefore the excited states are well localized on the BChls. The exci-

tation energy transfer (EET) takes place on a 400 fs time scale [33]. On the other

hand, the B850 plane is perpendicular to the membrane plane and the 16 (18)

BChls are closely spaced with an inter-BChl distance of about ∼ 9Å: the coupling

between them is strong, and, in turn, an high delocalization of the excited states

(excitonic states) for this ring has been observed [46,47]. Another consequence of

the delocalization is the different excitation energy transfer (∼ 100 fs) [33]. This

3



1.1. THE LH2 AND LH3 COMPLEXES

(a) (b)

(c) (d)

Figure 1.1: Structure of LH2 of Rhodoblastus acidophila. Top view of the whole

pigment-protein complex (a) and of BChls and carotenoids (b). Side view of

the whole pigment-protein complex (c) and of BChls and carotenoids (d). For

clearness, the BChls tails are not displayed. The B850 and B800 are displayed in

red and blue respectively, carotenoids in green and the apoprotein in gray. The

figures were obtained using the VMD program [43].

structural difference is reflected in the different absorption bands of the two rings.

A recent study [48], based on simulations of the 2D spectra, has shown that delo-

calized states shared by the two rings are responsible for the energy transfer from

the B850 to the B800 ring. This step takes place in about 1 ps [33]. The excitation

is then transferred to another LH2 complex, or to the light harvesting complex 1

(LH1) (in 2-5 ps, depending on the species [33]), and from there to the reaction

center (RC), where the charge separation occurs. The whole EET process takes

20-50 ps to occur [49].
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1.2. THE FMO COMPLEX

1.2 The FMO Complex

The Fenna-Matthews-Olson (FMO) complex is a water-soluble complex of green

sulfur bacteria [50] and has the biological role of transferring the excitation energy

from the chlorosome, the main LH antenna of green sulfur bacteria and the largest

LH antenna system identified in nature [51], to the reaction center. Its location

in the photosynthetic apparatus is depicted in Fig. 1.2 (c). The FMO complex

(a)

BChl a 2

BChl a 3

BChl a 4

BChl a 5

BChl a 6

BChl a 7

BChl a 8

BChl a 1

(b)

Reaction centers

FMO complexes

Chlorosome

(c)

Figure 1.2: (a) Structure of the FMO trimer from the bacterium Prosthecochloris

aestuarii. Protein and BChls are drawn in blue and gray respectively. (b) Ar-

rangement of the 8 BChls in the FMO monomer. For the sake of clarity, tails are

omitted. The figures were obtained using the VMD program [43]. (c) Location of

the FMO complex in the light-harvesting apparatus.

was the first pigment-protein complex to be analyzed at atomic level. It was
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1.3. THE PHYCOERYTHRIN COMPLEXES

crystallized for the first time in 1974 by Fenna, Matthwes and Olson. resulting

in the name of the system [52]. In their work, the authors showed the presence

and the spatial distribution of three monomers, each of them containing seven

BChls a. Two other structures of the FMO complex were solved over the years

[53,54], but the presence of an eighth BChl a was revealed only in 2009 [55]. This

BChl a 8 is believed to serve as a linker between the chlorosome and the other

BChls of the monomer [33]. The BChls are bound to the protein scaffold via

the central magnesium atom [52]. The structure is shown in Fig. 1.2. Differently

from the LH2 case described in Sec. 1.1, the spectral properties of the FMO are

mostly determined by the electrostatic protein-pigment interaction, which results

in localized site energies, tuned by the protein environment. The prediction of the

site energies has been a challenging task since the structure was solved, and an

agreement between theoretical studies and experimental evidences was achieved

in 2009 only [56]. In 2011, the Kleinekathöfer and Aspuru-Guzik groups [31,

57] performed QM/MM calculations able to compute the spectral densities of

the BChls. In addition to that, the authors gave an important contribution on

the understanding of the role of thermal fluctuations in the long-lived coherence

phenomenon observed in light harvesting systems. Engel and co-workers observed

the phenomenon of the long-lived quantum coherence for the FMO complex in

in 2007 [13]. After almost a decade of debate on the role of quantum coherence,

Wilkins and Dattani showed the quantum coherences are probably not important

in maintaining the efficiency of the transfer process in the case of the FMO complex

[58]. Nevertheless, the debate is still open and the reason for such high efficiency

is still not clear.

1.3 The Phycoerythrin Complexes

Phycoerythrin (PE) 545 and 555 are the antenna components of the cryptophytes,

photosynthetic algae present in marine and fresh water environments. The light-

absorbing pigments in cryptophytes are BChls a, BChls c2 and bilins, located in

the PE complexes. Phycoerythrins, are part of the phycobilin protein family: the

chromophores (called phycobilins) are, in fact, covalently bound to a protein part

[59]. They capture light and transfer the energy to the reaction center [60]. The

crystal structure of the PE545 complex from the marine cryptophyte Rhodomonas

CS24 has been solved in 1999 for the first time [61,62], while the one of the PE555

system only in 2014 for the Hemiselmis andersenii specie [63]. The phycoerythrin

systems are water soluble and are located in the lumen of the thylakoid membrane

[64]. As shown in Fig. 1.3, they are composed by a quaternary structure, with

6



1.3. THE PHYCOERYTHRIN COMPLEXES

(a) (b)

Figure 1.3: (a) Structure of PE545 complex from the marine cryptophyte

Rhodomonas sp. CS24. (b) Structure of PE555 complex from the cryptophyte

Hemiselmis andersenii. DBVs, PEBs and protein are displayed in blue, red and

gray respectively. The figures were obtained using the VMD program [43].

two αβ subunits, in which eight light-absorbing bilins are covalently bounded to

the protein scaffold [64] via single or double bonds. The bilins are linear chains of

four pyrrole rings (tetrapyrroles) and they are formed as a metabolic products of

porphyrins in many organisms. Porphyrins are organic compounds, formed by four

modified tetrapyrroles interconnected via methine bridges (=CH-). Two different

types of bilins are present in the PE complexes: dihydrobiliverdin (DBV) and

phycoerythrobilin (PEB), which differ in the absorption spectrum. The presence

of bilins as a composing pigments (instead of BChls as it is for LH2 and FMO

complexes), is due to the less amount of accessible light in marine environments:

such organisms, in fact, have evolved to absorb light in the 450-640 nm spectrum,

a range in which the chlorophyll absorption is negligible [64]. As it can be seen in

Fig. 1.3, the difference between PE545 and PE555 complexes is the presence, in

the latter complex, of a water-filled channel as a consequence of a ∼ 73° rotation

of the two monomers caused by steric effects due to the presence of a single amino

acid [63]. The first evidence of quantum coherence in PE complexes was observed

in 2010 by Collini and co-workers [24] and the site correlation among pigments

was then studied via MD QM/MM simulations [65]. The same scheme was then

used by Aghtar et. al. in 2014 [66] to study the individual spectral densities and

in particular how, in contrast to the case of the FMO complex, the low frequency

features of the spectrum are due to internal modes and not to the environment.

The energy transfer in the PE systems takes place on a time-scale of 20-50 ps [67].
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1.4. THE BIO-INSPIRED MOF COMPLEX

1.4 The Bio-Inspired MOF Complex

In the last decades, the need of artificial photovoltaic devices has received enor-

mous attention. Even if such devices are usually made of inorganic semiconduc-

tors, organic based solar cells have recently been proposed. Organic solar cells

are photovoltaic devices that uses conductive organic polymers or small organic

molecules for converting the absorbed light into electricity via the photovoltaic

effect [68]. On the one hand, compared to the standard silicon-based devices, or-

ganic solar cells are cheaper [69], more flexible and they have less environmental

impact [70]. On the other hand, organic solar cells are less efficient [71] and they

experience severe photochemical degradation [72]. Due to these two aspects, how-

ever, the field of organic solar cells became very popular and many researchers are

currently working on improvements. In 2015, a 10% efficiency was obtained [73].

In this thesis, a photovoltaic organic system has been studied [74]. It consists of

ordered arrays of porphyrins which make a particular class of hybrid compounds

called metal organic framework (MOF). The device has been constructed and an-

alyzed by Liu and co-workers [74], and its schematic representation is reported

in Fig. 1.4. As reported in their work, the SURMOFs (surface grafted MOFs)

Porphyrn SURMOF 

Glass 
Pt (cathode) 

I-/I3
- 

FTO (anode) 
Glass 

(a) (b) (c)

Figure 1.4: Schematic representation (a) of a porphyrin SURMOF based solar

cell. Front (b) and side (c) view of the porphyrin layers. The figures in panels (b)

and (c) were obtained using the VMD program [43].

are grown in a layer-by-layer way on a FTO (fluorine-doped tin oxide) substrate,

which serves as anode. The cathode is made of iodine/triiodine electrolyte. In this

way, a photovoltaic cell has been constructed (See Fig. 1.4), as explained in detail

in Ref. [74]. Here, the porphyrin layers have been computationally generated and

characterized, starting from a unitary box configuration. In fact, similarly to the

studies already mentioned in the previous sections 1.1, 1.2, 1.3, a combined ap-

8



1.4. THE BIO-INSPIRED MOF COMPLEX

proach has been used to determine thermal fluctuations, excitation energies and

couplings, and diffusion coefficient. The configuration used in this work is reported

in Fig. 1.4. The diffusion coefficient is a key quantity to measure the exciton dif-

fusion among the systems, giving a measure of the exciton lifetime. In Chapter 7

it will be shown that the quantum diffusion coefficient is higher than its classical

limit, confirming how the quantum effects contribute to the high efficiency of the

excitation energy transfer processes in photosynthetic systems.

9
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Chapter 2

Summary of Results

In this Chapter, a brief overview of the thesis is reported. The rest of the thesis

will be organized in five Chapters: the first one provides the theoretical and com-

putational background, to better understand the results obtained in the present

work, reported in the other four Chapters. The study of dephasing processes is

the focus of the first half of the thesis, as it will be described later. In the sec-

ond part of the present work, a comparison between LH2 and LH3 complexes of

two different bacteria will be presented, as well as a study on the exciton transfer

dynamics in a MOF system.

2.1 Theoretical Background

Chapter 3 provides the theoretical background needed to understand the dephasing

and dynamic properties of LH complexes and the simulations methods adopted to

study these phenomena. It starts with a detailed description of the Hamiltonian

of the system, the core of the information used to describe the properties of the

analyzed systems. This part is divided in three Sections, one for each part of

the Hamiltonian: the System (Sec. 3.1), the Bath (Sec. 3.2) and the System-

Bath interaction (Sec. 3.3) Hamiltonians. Simulations techniques used to obtain

each term are reported as well. Next, Sec. 3.4 focuses on the equations used to

derive the exciton transfer properties and the population dynamics of the system

under study. The Section 3.5 describes the simulation technique called “Molecular

Dynamics (MD)” used to compute the dynamics of the ground states of the system

under study. The Chapter ends with a Section (3.6) dedicated to the dephasing

phenomenon, which has been studied in the next 4 and 5 Chapters.

11



2.2. DEPHASING TIME VS ENERGY GAP FLUCTUATION

2.2 Dephasing Time Vs Energy Gap Fluctuation

In Chapter 4, the method developed to study a relation between dephasing time

and energy gap fluctuation will be presented. Such a relation was found by Aki-

mov and Prezhdo [75] by fitting the data from the excitonic gaps of an artificial

system. In the present work, the relation has been analytically derived and tested

to numerical data of single pigments of different systems. In this case, only the gap

between ground and first excited state has been considered. The data set includes

systems in which exciton transfer occurs (LH2, FMO and PE545 complexes) as

well as systems in which charge transfer occurs (DNA, DNA Photolyase and Cryp-

tochrome). Such a relation has been found to be independent from the system

analyzed and from the method used in the simulations. The Chapter starts with

an introductory Section 4.1 on the state-of-art of the computational study of LH

systems and on the important quantities analyzed in the work. Sec. 4.2 describes

in detail Kubo’s generalized theory and the approximations used to derive the

relation between dephasing time and energy gap fluctuation. The results based on

this theoretical background are reported in Sec. 4.3. The procedure used to obtain

such a relation can be followed step by step through the study of the functions

reported in the graphs in this Section. The Chapter ends with Conclusions and

Acknowledgments (Sec. 4.4). The present study was published in the Journal of

Physical Chemistry Letters.

2.3 Vibrational Dephasing Time

In Chapter 5, an extension of the method presented in Chapter 4 will be presented.

The method, in fact, has been applied to the study of the whole complexes. In this

study, site energies of single pigments as well as the couplings between them have

been evaluated and the system Hamiltonians have been built and diagonalized. In

this way, excitonic states of the whole complex have been obtained and the relation

between each excitonic gap and dephasing time has been analyzed. Neighboring

gaps, as suggested by Akimov and Prezhdo [75], have been considered as well.

The data set includes different light harvesting complexes such as FMO, LH2,

PE545 and PE555 complexes. Again, it can be concluded that a universal relation

between the two quantities exists, although the proportionality constant varies

among complexes, even if composed by the same pigments. The initial decay

of the autocorrelation functions, again, determines the constant. The Chapter

starts with an Introduction (Sec. 5.1) on dephasing processes in LH complexes,

followed by a Section (Sec. 5.2) in which the details of the molecular simulations

12



2.4. LH2 AND LH3 THEORETICAL STUDY

are reported. The Hamiltonian used to obtain the excitonic states is presented in

the next Sec. 5.2.2 together with the “avoided crossings” approximation adopted

in this work. Since the Hamiltonian of the whole system has been diagonalized

at each time step, the problem of the site contribution among the trajectory

is discussed in Sec. 5.5.2. The next Sec. 5.3 contains results obtained in this

work. The actual discussion of the results is given in Sections 5.3.1, 5.3.2 and

5.3.3, where the results for autocorrelation functions, dephasing functions and

times, and neighboring energies are discussed, respectively. The Chapter ends

with Conclusions and Acknowledgments (Sec. 5.4). These findings were published

in the Journal of Physical Chemistry B.

2.4 LH2 and LH3 Theoretical Study

In Chapter,6 a comparison of the properties of three different light-harvesting sys-

tems will be presented. The systems are the LH2 complex of Rsp. molischianum,

the LH2 complex of Rbl. acidophilus and the LH3 complex of Rbl. acidophilus. In

this work, different methods have been applied: MD simulations have been per-

formed to compute the thermal fluctuations of the ground states of the pigments,

on top of which quantum chemical calculations have been performed to determine

site energies and their distributions, autocorrelations functions and spectral den-

sities. Coupling between pigments has been determined as well, together with the

population dynamics for the three systems. The Chapter starts with an Intro-

duction (Sec. 6.1) and with a description of the systems under study, in Sec. 6.2.

The results are presented in Sec. 6.3. Here, a full comparison between systems

is presented and environmental effects are discussed as well. It can be concluded

that the pigments of the three systems behave quite similar, as expected, although

different environments play different roles, as it will be shown in the coupling and

population dynamics discussions. Conclusions are given in the last Sec. 6.4.

2.5 The Porphyrin-MOF Complex

In Chapter 7, the analysis of the exciton transfer properties of the porphyrin-based

Surface-grafted Metal Organic Framework (SURMOF) system will be presented.

The system was built by Liu et. al. [74] to create an organic solar cells by using

ordered arrays of porphyrins as the organic light-absorption molecules. The focus

of the present contribution is the study of the exciton transfer properties of such

a lattice. The Chapter starts with an Introduction 7.1 on the system, followed

by Sec. 7.2, in which theoretical background and methods are described in detail.

13
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This Section is divided in two sub-sections: the first one focuses on the single-

pigment analysis (Sec.7.2.1), while the second one (Sec. 7.2.2) on the inter-pigment

analysis. The Results Section (Sec. 7.3) firstly describe the system setup in Sec.

7.3.1. The discussion continues with the single-pigment analysis, where density of

states, autocorrelation functions and spectral densities are reported (Sec. 7.3.2).

Here it will be shown how internal modes determine the behavior of the single

porphyrin. The next Sec. 7.3.3 focuses on the analysis of the coupling between

porphyrins and on the exciton transfer properties of the systems. The diffusion

coefficient is computed and compared to its classical limits, comparison that shows

the importance of the quantum effects on the exciton transport. Conclusions are

given in the last Sec. 7.4, together with future plans.

14



Chapter 3

Theoretical Background and

Methods

In recent years, novel quantum chemical methods have been proposed to inves-

tigate the properties of LH complexes [76, 77]. These methods are based on the

approximated solution of the Schrödinger equation (Eq. 3.1). Due to the big

size of the LH systems, their fully quantum mechanical description can not be

performed yet, because of the enormous computational cost associated to these

calculations [77]. For this reason, two different approaches are, in general, used to

study the time evolution and the properties of these systems. The first one is based

on the so-called “reduced density matrix methods” [78, 79]. In this scenario, the

spectral densities are obtained by different methods such as, for example, the so-

lution of the hierarchy equations of motion (HEOM) [80,81], set of equations that

describes the time evolution of a system coupled to a bath [81]. The second ap-

proach is a mixed classical-quantum study, based on classical dynamic simulations

(a technique presented in Sec. 3.5) on top of which quantum chemical calculations

are performed to study phenomena like exciton transfer. Several approaches of this

kind exist, but the most widely used are based on the surface hopping method [82]

and on the mean-field Ehrenfest dynamics [83, 84], known as “ensemble-averaged

wave packet dynamics”. This second approached is used in the present work to

evaluate the population dynamics and it is presented in Sec. 3.4. Aghtar et. al.

recently presented a nice comparison between such two approaches [85]. In their

work, the authors showed how in the weak system-bath coupling limit, the two

approaches yield very similar results. The theoretical background is presented in

Sections 3.1, 3.2, 3.3, as well as a method used to determine key quantities like

the dephasing time is presented in Sec. 3.6.

The information on the system is contained in the Hamiltonian of the time-
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3.1. SYSTEM HAMILTONIAN: HS

dependent Schrödinger equation (Eq. 3.1) [86,87]

i~
∂ΨT (t)

∂t
= HT (t)ΨT (t). (3.1)

Here, HT denotes the total Hamiltonian of the system HT and it can be split into

three terms,

HT = HS +HB +HSB. (3.2)

HS, HB andHSB in this equation are the system, bath and system-bath interaction

Hamiltonians, respectively. This architecture is represented in Fig. 3.1. The total

Bath (HB) 

System-bath 
Interaction (HSB) 

System 
(HS) 

Figure 3.1: Schematic representation of the system-bath classification.

Hamiltonian is constructed for each time step of the trajectory that describes the

time evolution of the system. A more precise discussion concerning the calculation

of these quantities is given in the next 3.1, 3.2 and 3.3 Sections.

3.1 System Hamiltonian: HS

HS is the electronic Hamiltonian that describes the LH systems. It can be repre-

sented by a N × N matrix for a system composed by N pigments, see Eq. 3.3,

where the diagonal elements are the gaps between the ground and the first ex-

cited states εi of the single chromophores and the off-diagonal elements are the

couplings Vij between them,

HS =
N∑
i

εi|i〉〈i|+
N∑
i 6=j

Vij|i〉〈j|. (3.3)

The methods used to calculate the site energies and the couplings of HS are

described in the next Sections 3.1.1 and 3.1.2, respectively.
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3.1. SYSTEM HAMILTONIAN: HS

3.1.1 Site Energies

To calculate the site energies in Eq. 3.3, the Schrödinger equation must be solved

and several approximations must be adopted to do so. The first is the Born-

Oppenheimer (B-O) approximation [88]. The B-O approximation is based on the

assumption that electrons are much faster and lighter than nuclei, so the electronic

and nuclear degrees of freedom can be separated. The electronic Hamiltonian is

defined in Eq. 3.4, whereme denotes the electron mass, Ne the number of electrons,

Nn the number of nuclei, ~r and ~R the electron and nuclei coordinates, Z the atomic

number and e the electron charge [89].

He = − ~2

2me

Ne∑
i

∇2
i +

Ne∑
i

Nn∑
α

Zαe

|~Rα − ~ri|
+

Ne∑
i,k>i

e2

|~ri − ~rk|
+

Nn∑
α,β>α

ZαZβe
2

|~Rα − ~Rβ|
(3.4)

Eq. 3.4 contains the kinetic term for electrons, electron-nuclei, electron-electron

and nuclei-nuclei Coulomb interactions respectively. It can be re-written as 3.5,

where Hi groups the first two terms of Eq. 3.4 and represents the one-electron

Hamiltonian, while Vee and Vnn correspond to the last two terms of Eq 3.4.

He =
Ne∑
i

Hi +
Ne∑
i,k>i

Vee +
Nn∑

α,β>α

Vnn = H∗e +
Nn∑

α,β>α

Vnn (3.5)

The electronic wave function Φi is called “molecular orbital” and each orbital can

be occupied according to the Pauli principle. Molecular orbitals are obtained by

the LCAO (Linear Combination of Atomic Orbitals) approximation [90], as shown

in Eq. 3.6, where Cki is the coefficient matrix.

Φi =
∑
k

Ckiφk (3.6)

Eq. 3.7 must be solved and electron wave functions Φi and orbital energies must

be obtained.

H∗eΦi = εiΦi (3.7)

The Hartree-Fock method, used to solve Eq. 3.7 will be presented in the next

Section, as well as the semi-empirical method used in the present thesis.

Hartree-Fock Method

The Hartree Fock (HF) or self-consistent field (SCF) method it is a method used

to approximate the Schrödinger equation in order to determine the electronic

wave functions and the site energies [91]. The HF method makes use of several

approximations:
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3.1. SYSTEM HAMILTONIAN: HS

• the B-O approximation, discussed above;

• the relativistic effects are not taken into account;

• the Slater determinant [92] is used as a solution of the Schrödinger equation,

and it satisfies the antisymmetric property of the wave function and the

variational principle;

• the mean field approximation is introduced to solve each electronic equation;

each electron in fact, feels the mean field generated by the presence of the

other electrons of the system via an effective Hamiltonian.

Following these approximations, the Fock equation can be written as Eq. 3.8

where Hi is the one-electron Hamiltonian (first two terms of Eq. 3.4), and J and

K are the Coulomb and the exchange integrals respectively[
Hi(~r1) +

∑
i 6=j

Jj(~r1)−
∑
i 6=j

Kj(~r1)

]
Φi(~r1) = εiΦi(~r1) (3.8)

J and K integrals are reported in Eq. 3.9. J defines the electron-electron re-

pulsion of the two electrons of the j-th orbital, while K takes into account the

antisymmetry of the wave function.

Jj(~r1) =

∫
d3r2|Φj(~r2)|2 1

|~r2 − ~r1|

Kj(~r1) =

∫
d3r2Φ∗j(~r2)

1

|~r2 − ~r1|
Φi(~r2)

(3.9)

Eq. 3.8 can be solved numerically by following the scheme reported in Fig. 3.2,

i. e. to obtain the eigenfunctions and the eigenstates of Eq. 3.7. The method is

called “self-consistent” because the solution of the Schrödinger equation depends

implicitly on the equation itself. Starting from the coordinates of the nuclei, the

orbitals are built used to form the Fock matrix, which is then diagonalized. If the

calculation converged, the site energies are obtained. If not, the solution is used

as a input for a new calculation and the procedure is repeated iteratively until

convergence is reached (e.g., the Fock matrix does not change within a certain

accuracy). Because the two-electron integrals, the computational cost required to

implement the HF method scales as N4
e [89]. The size of the LH systems makes a

direct usage of the HF method impossible. DFT and semi-empirical based methods

are used instead. In this thesis work the latter ones have been used.
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Input:  
coordinates of 

nuclei 

Fock matrix 
formation 

Fock matrix 
diagonalization 

Mol. orbitals 
initial guess 

SCF 
converged? END Yes No 

Figure 3.2: Scheme of the self-consistent method.

Semi-empirical methods

As discussed above, some approximations must be introduced to study LH com-

plexes and empirical data are used to simplify and validate the calculation. The

combination of these two elements leads to the so-called “semi-empirical” methods.

Semi-empirical methods are an improvement of the so-called “empirical” methods,

where the two-electron integrals are not explicitly included in the Hamiltonian,

since these terms requires the most of the computational cost. Such a scheme was

proposed, e. g., by Hückel [93] for π-electrons and improved for all valence electrons

by Hoffmann [94]. Different semi-empirical methods exist, and the main difference

between them is in the techniques used to approximate the two-electrons integrals.

In the CNDO (Complete Neglect of Differential Overlap) [95] based methods for

example, all two-electron integrals are replaced by parameters, according to exper-

imental data. The INDO (Intermediate Neglect of Differential Overlap) represents

an improvement of the CNDO one: in this method two-center integrals are ne-

glected only for electrons in different atoms. Nevertheless, only organic molecules

and those containing atoms from Boron to Fluorine are implemented. The spec-

troscopic version (INDO/S) is used to calculate excited states, which is, in turn,

the quantity of interest in this work. Michael Zerner [96, 97] has implemented an
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3.1. SYSTEM HAMILTONIAN: HS

improved version of the INDO method, the ZINDO (Zerner Intermediate Neglect

of Differential Overlap). This method extends the calculation to a wider range

of atoms, including even the rare earth elements (and atoms like Mg, fundamen-

tal for the site energies calculated in this thesis). The ZINDO/S-CIS (Zerner

Intermediate Neglect of Differential Overlap with parameters for Spectroscopic

properties together with the configuration interaction scheme using single exci-

tations only [96–98]) version is the semi-empirical method adopted in this work.

The lack of a complete treatment of the Hamiltonian is of course the weakness of

this method, but the parametrization implemented in ZINDO makes this method

quite accurate for the study of LH systems [98]. The ZINDO method is applied

in a quantum mechanical/molecular mechanical QM/MM framework, in which

the actual pigment of interest is treated as a quantum entity and the atoms sur-

rounding it are treated as classical particles (called “point charges”). The effect

of the environmental fluctuations is of key importance in the prediction of the

site energies of the pigments [66]. The main advantage of this approach is its

efficiency: 5 s are needed for computing a calculation of the site energies in a

system composed of a pigment with 50 atoms and an environment with more than

100.000 point charges. This is a common scheme adopted in the field. Two studies

only have adopted a quantum description of the whole LH system. This has been

done for the LH2 complex of Rsp. molischianum [99, 100]. However, due to the

computational cost associated to such a study, the calculations are performed for

a static configuration and for the BChls only. The fully quantum description of

the dynamics of LH systems with environmental effects is still too expensive.

3.1.2 Pigment-Pigment Coupling

To analyze the energy transfer process among pigments, the interaction that causes

the de-excitation of the donor (D) molecule and the immediate excitation of the

acceptor (A) pigment must be studied. The coupling between D and A is the

combination of two terms

Vij = Vio + VCoulomb. (3.10)

At short range (∼5Å), the electron wave functions of the involved pigments over-

lap: therefore the interaction due to the intermolecular orbitals Vio must be con-

sidered. This type of energy transfer process involves the exchange of electrons

among the pigments and it is known as “Dexter” transfer [101]. The Dexter

transfer rate kD has the form:

kD ≈ Je−2R/L (3.11)
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where J denotes the spectral overlap integral, R the distance between D and A

and L the sum of the Van der Waals radii of the involved pigments. Due to its

exponential dependence on the distance, it dominates only at short distances. At

longer distances, the “Förster” transfer [102] dominates: the pigments are well

separated and the coupling is a Coulomb coupling VCoulomb between the transition

densities of the involved sites [103]. The transition densities ρ10 (Eq. 3.12) are the

“virtual” charge distributions that express the way in which the electronic wave

functions jump from one state (Ψ0) to another (Ψ1) due to the interaction with

the electromagnetic field.

ρ10(~r1) = N

∫
Ψ0(x1, x2, ..., xN)Ψ∗1(x′1, x

′
2, ..., x

′
N)dx2, ..., dxNdx

′
2, ..., dx

′
Nds1

(3.12)

The analytic expression of ρ10 is given in Eq. 3.12, where N denotes the number

of electrons of the pigment and the integration goes over all the spatial and spin

coordinates xi of the electrons of the pigment except electron 1 and the spin s1

of the electron 1. A schematic representation of the two mechanisms is given

in Fig. 3.3. The spatial separation between the pigments in the LH systems is

Dexter transfer Förster transfer 

D A D A 

Figure 3.3: Schematic representation of Dexter and Förster transfer processes.

big compared to their size and the Dexter coupling can be neglected. Different

approximations have been adopted to calculate the Coulomb coupling between the

transition densities of the pigments and the next 3.1.2 and 3.1.2 Sections provide

a brief description of these methods.
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Point-Dipole Approximation

The point-dipole approximation (PDA) has been introduced by Förster [104]. He

showed in 1946 that the exciton energy transfer is a cascade of energy transfer

steps from chromophore to chromophore. The process is ruled by Eq. 3.13 where

the interaction between transition dipole moments ~µi and ~µj makes each transfer

possible. Rij in Eq. 3.13 denotes the distance between the center of masses of the

two pigments.

V
(PDA)
ij =

1

4πε0

[
~µi · ~µj
R3
ij

− 3(~µi · ~Rij)(~µj · ~Rij)

R5
ij

]
(3.13)

A schematic representation of the PDA approximation is given in Fig. 3.4. The

transition dipole moment ~µ10 for the transition 0→ 1 is, defined in Eq. 3.14 where

ρ10(r) is defined in Eq. 3.12.

~µ10 =

∫
d~rρ10(r)~r (3.14)

The Förster transfer rate kF is defined as [104]:

kF = α
k2QDJ

τDn4

1

R6
(3.15)

where α = 9ln10
128π5NA

with NA denotes the Avogadro’s number, k the relative ori-

entation of the donor and the acceptor molecules, QD the fluorescence quantum

yield of the donor in the absence of the acceptor, J the spectral overlap, τD the

donor lifetime, n the medium index and R the distance between the pigments (in

cm). This approximation is valid as long as the distance between the pigments

is large enough compared to their size: due to the averaging process, in fact, the

PDA method is not able to take into account the shapes of the molecules. A more

accurate approximation is the TrEsp method, introduced in Sec. 3.1.2.

TrEsp Method

The “Transition charges from Electrostatic potential” (TrEsp) method [105] can

distinguish the shapes of the involved pigments, an aspect that the PDA approx-

imation missed. In this method, the coupling between the pigments i and j is

the Coulomb coupling between the transitions charges qTm and qTn of all the atoms

composing the i and the j pigments, respectively (see Fig. 3.4). It has the form

of Eq. 3.16, where f denotes the screening factor and the sum goes over all the m

transition charges in pigment i and the n transition charges in pigment j, which
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3.2. BATH HAMILTONIAN: HB

can be calculated by different quantum chemical methods [105,106]

V
(TrEsp)
ij =

f

4πε0

∑
m,n

qTmq
T
n

|~rm − ~rn|
. (3.16)

Environmental effects are included in a screening factor f . Several forms of f have

been adopted during the years, but the most widely used is the one developed by

Scholes and co-workers in 2007 [107]:

f = Ae−Brij + f0 (3.17)

where A = 2.68, B = 0.27/Å, f0 = 0.54 and rij denotes the distance between the

pigments (in Å). The TrEsp method is adopted in the calculations present in this

thesis.

Rij 

µj µi 
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Figure 3.4: Schemes of the methods used to estimate the pigment-pigment inter-

actions: PDA (a) and TrEsp (b) approximations.

3.2 Bath Hamiltonian: HB

HB is the Hamiltonian of the bath. It is a common procedure to describe the

bath as a set of k harmonic oscillators of masses mk and frequencies ωk [108]. The

bath Hamiltonian is reported in Eq. 3.18, in which pk and rk are the position and

momentum operators.

HB =
∑
k

(
p2
k

2mk

+
mkω

2
kr

2
k

2

)
(3.18)

These harmonic oscillators are independently coupled to each pigment of the sys-

tem.
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3.3 System-Bath Interaction Hamiltonian: HSB

HSB is the Hamiltonian that describes the interaction between the system and the

bath and it is usually expressed by a linear combination of the system (Φn) and

bath (rk) degrees of freedom, as reported in Eq. 3.19, where cnk are the coupling

coefficients.

HSB =
∑
n,k

Φncnkrk (3.19)

The information on the frequency dependence of the coupling between a chro-

mophore i and the bath is expressed by the spectral density function, Ji(ω) [109]

Ji(ω) =
π

~
∑
k

|ci,k|2δ(ω − ωk). (3.20)

Experimentally, the spectral density can be obtained by a fit of optical spectra

[110]. Theoretically, the spectral density is obtained as the Fourier transform of

the site energy autocorrelation function C(t) [111] as shown in Eq. 3.21.

Ji(ω) =
βω

π

∫ ∞
0

dtC(t)cos(ωt) (3.21)

Previous studies [111, 112] have adopted a different pre-factor ( 2
π~tanh(β~ω/2)),

but the expression given in Eq. 3.21 better fits the experimental data [113] and is

a consistent high-temperature approximation. C(t) is defined in Eq. 3.22, where

N is the number of steps composing the trajectory of the system.

C(tj) =
1

N − j

N−j∑
k=1

∆E(tj + tk)∆E(tk) (3.22)

The most common procedure to simulate the time evolution of the system is based

on molecular dynamic (MD) simulations: the dynamics of the ground state of the

system is, in fact, evaluated through a MD simulation. The trajectory is then

used to obtain the site energies fluctuations through different possible quantum-

chemistry calculations. These two techniques are described in the 3.5 and 3.1.1

Sections, respectively. The trajectories are, in general, computed for 100-300 ps

and the time steps adopted for the MD simulations are in the range of 2-5 fs, in

order to include all the bond stretchings among atoms [114].

3.4 Wave Packet Dynamics

The dynamical properties of the system of interest can be obtained by solving

Eq. 3.1. The following approach has been used in this work to calculate the
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probability Pm(t) to find the exciton wave packet at a certain time t in a particular

pigment m (see Chapters 6 and 7). ΨT (t) in Eq. 3.1 is the total wave function

and it is assumed to be the product of the system (ΨS(t)) and bath (ΨB(t)) wave

functions:

ΨT (t) = ΨS(t)ΨB(t). (3.23)

The combination of Eqs. 3.2 and 3.23, yields

i~
∂|ΨS(t)〉|ΨB(t)〉

∂t
= (HS +HB +HSB) |ΨS(t)〉|ΨB(t)〉. (3.24)

Multiplying Eq. 3.24 by 〈ΨS(t)| and separately by〈ΨB(t)|, and considering that

HS acts only on |ΨS(t)〉 and HB only on |ΨB(t)〉, it is possible to obtain the two

time-dependent Schrödinger equations for the bath (Eq. 3.25) and the system

(Eq. 3.26) parts.

i~
∂|ΨB(t)〉

∂t
= HB|ΨB(t)〉 (3.25)

i~
∂|ΨS(t)〉

∂t
= (HS + 〈ΨB(t)|HSB|ΨB(t)〉) |ΨS(t)〉 (3.26)

This approximation is valid if the effect of the system on the bath is neglected [85].

In this approximation, the bath is kept in static equilibrium. As standard for

perturbative theories, this approximation is valid for weak coupled system-bath

configurations [79]. Using Eqs. 3.3 and 3.19, the effective Hamiltonian Heff
S for the

system can be defined as Eq. 3.27, where ∆Em denotes the energy gap fluctuations.

Heff
S =

∑
m

(Em + ∆Em(t)) |m〉〈m|+
∑
n6=m

Vnm|n〉〈m| (3.27)

This leads to the time-dependent Schrödinger equation (Eq. 3.28) for the system.

i~
∂ΨS(t)

∂t
= Heff

S ΨS(t) (3.28)

ΨS(t) can be expanded in the basis of the excitonic eigenstates µ of the system

Hamiltonian HS, as reported in Eq. 3.29.

|ΨS(t)〉 =
∑
µ

cµ(t)|µ〉 (3.29)

Using Eq. 3.29 into Eq. 3.26, Eq. 3.30 can be obtained.

i~
∂cµ(t)

∂t
= εµ +

∑
µν

Jµν(t)cν(t) (3.30)

In Eq. 3.30 Jµν(t) represents the matrix of the system-bath interaction Hamil-

tonian, and its expression is reported in Eq. 3.31 in which the expansion of the

excitonic states in the basis of the local sites |µ〉 =
∑m

µ c
µ
m|m〉 has been used.

Jµν(t) = 〈µ|〈ΨB(t)|HSB|ΨB(t)〉|ν〉 (3.31)
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Finally, the probability to find the wave packet at site m at time t is given by

Pm(t) = |〈m|ΨS〉|2 = |
∑
µ

cµmcµ(t)|2. (3.32)

Eq. 3.32 is used in Chapters 6 and 7 to obtain important quantities, such as

the population dynamics, the mean squared displacement of the exciton and the

diffusion coefficient.

3.5 Molecular Dynamics

The term ”molecular dynamics” identifies the set of computational techniques

that, through the integration of the equations of motion, allows the study of the

time evolution of a biophysical system at the molecular and atomic level. It can be

used to investigate a wide range of biophysical processes such as DNA unzipping,

RNA hairpin formation, ion and substrate transport through membrane proteins

and protein-complex interaction [115–121]. The time evolution of a generic N

particles system is determined by the solution of the set of N Newton’s equations:

~Fi(t) = mi
~̈xi(t) = −∇iV ({~xi(t)}) i = 1, ..., N (3.33)

where:

• ~Fi(t) denotes the force-field acting on the i-th particle;

• mi denotes the mass of the i-th particle;

• V ({~xi(t)}) denotes the potential energy. It depends on the positions ~xi(t) of

the particles composing the system.

The initial configuration of the system, in most of the cases, is set up starting

from the X-ray configuration of the system. Once the structure is defined, the

potential energy, and, in turn, the force field acting on the system has to be

evaluated. V ({~xi(t)}) is, defined as a superposition of a bonded Vb(~x1, ..., ~xN) and

non-bonded Vnb(~x1, ..., ~xN) potentials:

V (~x1, ..., ~xN) = Vb(~x1, ..., ~xN) + Vnb(~x1, ..., ~xN) (3.34)

These two terms define the interactions among the atoms and the force field is

specified by the set of parameters described later in Eqs. 3.35 and 3.36. The

parametrization of the force field is a very challenging issue and it requires both

the fit of the experimental values and the quantum calculations. The most wide

used force fields for biological systems are the CHARMM [122] and AMBER [123]

force fields. Vb(~x1, ..., ~xN) and Vnb(~x1, ..., ~xN) are respectively defined as:
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3.5. MOLECULAR DYNAMICS

• Vb(~x1, ..., ~xN) describes the interaction of the atoms with their covalent-

bonded neighbor atoms and has the form of Eq. 3.35.

Vb(~x1, ..., ~xN) =
∑
bonds

kr
2

(r − r0)2 +
∑
angles

kϑ
2

(ϑ− ϑ0)2+

+
∑

dihedrals

kω
2

(ω − ω0)2 +
∑

torsions

kϕ
2

(1 + cos(nϕ− δ))
(3.35)

Vb(~x1, ..., ~xN) is responsible for the correct bond length between atoms (r0)

and for the correct structure of the molecules given by variations of ϑ0, ω0, δ.

These are the force constants kα with α = {ϑ0, ω0, δ}.

• Vnb(~x1, ..., ~xN) takes into account electrostatic and Van der Waals interac-

tions and it is expressed by Eq. 3.36, where qi and qj denote the charges

of the i and the j particles, rij the distance between them, ε0 the vacuum

permittivity and σij and εij the Lennard-Jones parameters.

Vnb(~x1, ..., ~xN) =
N∑
j=1

N∑
i<j

(
qiqj

4πε0rij
+ 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
])

(3.36)

The Van der Waals interaction, modeled by the Lennard-Jones potential,

is a balance between two terms: a short-range repulsive force between the

electrons of the molecules and a long-range attractive force arising from the

instantaneous dipoles induced by the fluctuations of the electron clouds.

r 

Bond 

! 

Angle 

" 

Dihedral Torsion 

# 

Electrostatic 

qi qj 

rij rij 

Van der Waals 

Non-bonded interactions  

Bonded interactions  

Figure 3.5: Schematic representation of the bonded and non-bonded potentials.
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3.5. MOLECULAR DYNAMICS

A schematic representation of the bonded and non-bonded interactions is given

in Fig. 3.5. The time scales in biological systems go from femtoseconds (bond

vibrations) to milliseconds and longer for protein folding processes, while usual MD

simulations time scales are in the range of several (10 to 100) nanoseconds for large

systems and up to tens of microseconds for small ones, due to the computational

cost of the simulations [115]. MD modeling has the limitation to be a pure ground-

state method; this means that electronic properties like excited states or energy

and electron transfers can not be modeled. In particular, for what concerns the

study of LH systems, a combination of MD simulations, electronic structure studies

and dynamics methods is needed in order to achieve a complete treatment of

these systems. This is schematic represented in Fig. 3.6, where it is shown that

the use of both MD and quantum chemistry methods is fundamental to derive

dynamic and optical properties of the system under study. Such properties can be

extracted by solving the time-dependent Hamiltonian or by following a density-

matrix propagation approach. The first method has been used in this work.

MD Simulation 
+ 

Quantum Chemistry 

Time-Dependent 
Hamiltonian Spectral Density 

Wave-Packet 
Propagation 

Density-Matrix 
Propagation 

Population Dynamics 
Frequency-res. Spectroscopy 

Time-res. Spectroscopy 

Figure 3.6: Schematic representation of the multi-scale approach used to study

LH systems.
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3.6 Dephasing Function and Time

An important quantity in this thesis work (see Chapters 4 and 5) is the so-called

“dephasing time” τD, which describes the decoherence rate of a system due to the

interaction with the fluctuation of the environment [124]. In this section the the-

oretical background will be presented. The results presented in Chapters 4 and 5

have been analyzed within the framework of the generalized Kubo’s stochastic line

shape theory, firstly developed to analyze the broadening in condensed phase spec-

troscopy [125]. The standard Kubo’s theory assumes that due to a time-dependent

perturbation, a generic property A(t) of a certain system varies according to the

simple equation:
dA(t)

dt
= iω(t)A(t) (3.37)

where ω(t) denotes the frequency of the system. A random process is assumed to

modulate the frequency such that:

ω(t) = ω0 + δω(t) (3.38)

where ω0 = 〈ω(t)〉 = limT→∞
1
T

∫ T
0
ω(s)ds and 〈δω(t)〉 = 0. By integrating Eq.

3.38, one obtains the time evolution of A(t):

A(t) = A(0) exp

[
i

∫ t

0

ω(s)ds

]
= A(0)eiω0t exp

[
i

∫ t

0

δω(s)ds

]
(3.39)

. Now, multiplying Eq. 3.39 by A∗(0) and taking the ensemble average, it is

possible to get the autocorrelation function of the A(t) quantity:

C(t) = 〈A(t)A(0)〉 = |A(0)|2eiω0tD(t) (3.40)

in which D(t) = 〈exp
[
i
∫ t

0
δω(s)ds

]
〉 denotes the so-called Dephasing function.

D(t) represents the Fourier transform of the lineshape function I(ω) and can

be expanded in a cumulant series of averages, as reported below in Eq. 3.45.

The dephasing function is of key importance since it is later used to define the

dephasing time. In this thesis, this theory have been applied to develop an analytic

procedure to relate the energy gap fluctuation of a pigment (or of a whole system)

to its dephasing time [126]. The fluctuation ∆E of the energy gap is the starting

point of this analysis and it is defined in Eq. 3.41 as the standard deviation along

the trajectory:

〈∆E2〉1/2 =
√
〈∆E2〉 − 〈∆E〉2 (3.41)

where ∆E = E(t)−〈E〉. As already mentioned, in Kubo’s theory, ∆E in Eq. 3.41

is described as a Gaussian random process with mean value zero. Furthermore,
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3.6. DEPHASING FUNCTION AND TIME

in the generalized Kubo’s theory, the autocorrelation function C(t) (Eq. 3.22) is

assumed to decay exponentially with two different time scales, τc,1 and τc,2, known

also as correlation times, as it can be seen in Eq. 3.42 where α1 + α2 = 1 are the

normalization coefficients.

C(t) = 〈∆E2〉 (α1 exp(−t/τc,1) + α2 exp(−t/τc,2))) (3.42)

The correlation time τc is in general defined as

τc =
1

〈∆E2〉

∫ ∞
0

C(t)dt. (3.43)

In Kubo’s model the key quantity is the line shape I(ω), defined as

I(ω) =
1

π

∫ ∞
0

dtcos(ωt) exp[−D(t)]. (3.44)

In Eq. 5.6 D(t) ≡ exp[−g(t)] is the pure-dephasing function, in which g(t) denotes

the line shape function [127]. Using the cumulant approximation [78], D(t) can

be written as:

D(t) = exp

[
− 1

~2

∫ ∞
0

dτ(t− τ)C(τ)

]
. (3.45)

Using the definition of C(t) given in Eq. 3.42, Eq. 3.45 becomes

g(t) =
〈∆E2〉
~2

2∑
i=1

αiτ
2
c,i [exp(−t/τc,i) + t/τc,i − 1] . (3.46)

An additional approximation needs to be introduced at this point: the fluctuations

in the systems are the sum of only fast and slow oscillations. Then g(t) can be

approximated as [128]

g(t) =
〈∆E2〉
~2

[
α1τc,1t+ α2t

2/2
]
. (3.47)

The expression in Eq. 3.47 can be used to analytically integrate D(t) to obtain

the dephasing time τD

τD =
2√
π

∫ ∞
0

D(t)dt =

√
2~2

〈∆E2〉α2

e−A〈∆E
2〉erfc

(√
A〈∆E2〉

)
. (3.48)

where A =
τ21α

2
1

2~2α2
. Eq. 3.48 relates the dephasing time to the energy gap fluc-

tuation. This functional behavior is universal and valid independent from the

method used in the simulations [126]. For a detailed discussion of this method

and its application, see Chapters 4 and 5.
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Chapter 4

Relation Between Dephasing

Time and Energy Gap

Fluctuations in Biomolecular

Systems

Excitation energy and charge transfer are fundamental processes in biological sys-

tems. Due to their quantum nature, the effect of dephasing on these processes

is of interest especially when trying to understand their efficiency. Moreover, re-

cent experiments have shown quantum coherences in such systems. As a first step

in a better understanding, we studied the relationship between dephasing time

and energy gap fluctuations of the individual molecular subunits. A larger set of

molecular simulations has been investigated to shed light on this dependence. This

set includes bacterio-chlorophylls in Fenna-Matthews-Olson complexes, the PE545

aggregate, the LH2 complexes, DNA, photolyase, and cryptochromes. For the indi-

vidual molecular subunits of these aggregates it has been confirmed quantitatively

that an inverse proportionality exists between dephasing time and average gap

energy fluctuation. For entire complexes including the respective inter-molecular

couplings such a relation, however, still needs to be verified.

Reprinted under the ACS AuthorChoice license from the article by M. I. Mallus, M. Aghtar,

S. Chandrasekaran, G. Lüdemann, M. Elstner and U. Kleinekathöfer “Relation Between Dephas-

ing Time and Energy Gap Fluctuations in Biomolecular Systems” J. Phys. Chem. Lett., 2016,

7, 1102-1108. DOI: 10.1021/acs.jpclett.6b00134. Copyright ©2016 ACS Publications
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4.1 Introduction

In biomolecular systems, the transfer of excitation energy and charges is ubiqui-

tous. Quantum effects do play a major role in these processes and therefore also

the amount of dephasing present in these system is of quite some interest. It has

been shown that coherence effects are important in charge [129, 130] and excita-

tion energy transfer [131,132]. Even in liquid water vibrational quantum coherence

plays an interesting role [133]. Moreover, even in single pigments dephasing is of

key importance as shown by two-dimensional electronic spectroscopy [134, 135].

In all these systems the environment has two effects on the respective quantum

(sub)system of interest: quantum coherences are washed out and relaxation to the

thermal equilibrium is enforced.

Coherences are usually associated with off-diagonal elements of density matri-

ces and dephasing with the decrease of the coherences [79]. For electronic two-

level systems with nuclear degrees of freedom, this dephasing is proportional to

the so-called nuclear overlap/phase function [136–138]. Its absolute value is usu-

ally termed dephasing or decoherence function. This function is in turn used to

define the pure dephasing time [139, 140]. Up to an oscillatory phase factor, the

dephasing function describes the time-dependent overlap of two initially identical

nuclear wave packets evolving on two separate electronic states. Often these states

are the ground and an excited state of the system of interest but, for example, can

also be a neutral and ionized state. Initially the overlap of the wave packets on

the two surfaces equals unity but due to the different forces acting on the nuclei

on the two electronic surfaces, the overlap decreases with time. The probability

of a revival is negligible due to the large number of atoms usually involved. In

the Fermi Golden rule and the high-temperature approximation, the dephasing

function has a purely Gaussian form [139]. In another approximation, a purely

exponential decay for the dephasing function was obtained [141]. A comparison

of these approximate functional dependencies to numerical results from molecular

simulations is reported below.

The other important function in this study is the energy-energy autocorre-

lation function. By fitting its short time behavior, for example, one can obtain

the respective correlation time. Sometimes a proportionality between correlation

and dephasing times is assumed [142], while in a recent study the independence

between the two time scales for some test systems was shown [75]. Moreover,

these authors reported a surprising finding concerning their simulations of organic

heterodimer molecules in different solvents. Plotting the pure dephasing times

versus the corresponding average energy gap fluctuations resulted in a clear func-
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4.2. BACKGROUND ON DEPHASING FUNCTION AND TIME

tional relationship between the two quantities. Furthermore, the dephasing time

was found to be independent of the energy-energy autocorrelation time. It seems

intuitive to some extent that a larger electron-nuclear correlation time leads to an

enhanced dephasing time. That this assumption is not true, is clear latest since

the study by Akimov and Prezhdo [75].

In the present study we are analyzing the relationship between dephasing time

and the average energy gap fluctuation for a much larger set of simulations. This

data set is based on sequential combinations of MD simulations and quantum

chemistry calculations for the light-harvesting system II (LH2) [112] the Fenna-

Matthews-Olson (FMO) trimer [143, 144], the PE545 system [66], DNA [145],

photolyase [146], and cryptochrome [147]. Due to the size of some of these sys-

tems we do restrict ourselves to the analysis of the dephasing behavior for the

individual subunits of the respective system, e.g., individual BChl a molecules

in light-harvesting systems. As detailed below, the functional form found for

these systems is different from the one found earlier by Akimov and Prezhdo [75].

Nevertheless, a clear functional dependence between the dephasing time and the

electron-nuclear correlation time is found. This common behavior is traced back

to common features of the energy-energy autocorrelation function.

4.2 Background on Dephasing Function and Time

For a better interpretation of our numerical results on molecular systems, we will

analyze them within a generalized version of the stochastic line shape theory by

Kubo [125] which was developed to describe homogeneous and inhomogeneous

broadening in condensed phase spectroscopy. The time-dependent fluctuation of

the energy gap is the key quantity in this expression. For the light-harvesting

systems, we are concerned with the gap between ground and (first) excited state

while for charge transfer complexes the ionization energy, i,e., the energy difference

between ionized and neutral state, is of interest. For simplicity we refrain here

from adding a site subscripts to all quantities like energy gap and correlation

function since it should be clear that these always refer to single chromophore.

So, for example, the energy gap will simply be denoted as ∆E = E − 〈E〉. The

average fluctuation along a trajectory can be characterized by

〈∆E2〉1/2 =
√
〈∆E2〉 − 〈∆E〉2 . (4.1)

In Kubo’s lineshape theory the energy gap fluctuation is described by a Gaussian

random process with mean value zero. Moreover, its autocorrelation function C(t)

is assumed to decay exponentially. Here we employ a generalized Kubo model with
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4.2. BACKGROUND ON DEPHASING FUNCTION AND TIME

two different time scales [148]. In this model the unnormalized correlation function

C(t) consists of two parts with normalized prefactors α1 and α2, i.e., α1 +α2 = 1,

as well as correlation times τc,1 and τc,2

C(t) = 〈∆E2〉(α1 exp(−t/τc,1) + α2 exp(−t/τc,2)) . (4.2)

The function C(t) describes the correlation between the different electronic states

which are functions of the time-dependent nuclear coordinates. Therefore, this

function is also called the electron-nuclear correlation function. For the example

of a light-harvesting 2 complex we have shown earlier that the correlation function

can reasonably be described by two exponential functions while the addition of

damped oscillations makes a almost perfect fit possible [112]. Furthermore, from

Eq. (4.2) one can deduce a general definition of the correlation time τc given

by [149]

τc =
1

〈∆E2〉

∫ ∞
0

C(t)dt . (4.3)

For vanishing α1 or α2 in Eq. (4.2), this definition of the correlation time repro-

duces the respective correlation time. In Kubo’s stochastic model, the line shape

is defined as

I(ω) =
1

π

∫ ∞
0

dt cos(ωt) exp[−D(t)] . (4.4)

In this expression D(t) ≡ exp(−g(t)) denotes the pure-dephasing function and

can be expressed through the lineshape function g(t) [127]. Within the cumulant

approximation [78] the dephasing function is given by

D(t) ≡ exp(−g(t)) = exp

[
− 1

~2

∫ t

0

dτ(t− τ)〈∆E(τ)∆E(0)〉
]
. (4.5)

In addition to the simplified structure of the expression, the cumulant version of

the dephasing function converges numerically much better than the original ex-

pression [150]. Moreover, this expression indicates that the dephasing is faster for

larger correlation functions. As already discussed above, the dephasing function

describes the decoherence rate of a system due to the influence of the environmen-

tal fluctuations and is directly connected to the off-diagonal matrix elements of

the respective density matrix [136–138]. The dephasing function is a key quantity

for the present study, e.g., since it is used to define the dephasing time τD below.

Using a sum of two exponentials as correlation function as given in Eq. (4.2), the

lineshape function reads

g(t) =
〈∆E2〉
~2

2∑
i=1

αiτ
2
c,i (exp(−t/τc,i) + t/τc,i − 1) . (4.6)
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Two limits for purely exponential correlation functions with correlation time τc are

usually considered [127]. On the one hand, one can assume short correlation times

τc,1, i.e., t � τc,1 corresponding to the homogeneus case. On the other hand one

obtains the inhomogeneus case in which the absorption lineshape reflects a static

distribution of frequencies in the limit of long correlation times τc,2, i.e., t� τc,2.

Assuming that the fluctuations in the system under consideration includes slow

and fast fluctuations at the same time, the line shape function can be approximated

by [148]

g(t) =
〈∆E2〉
~2

(
α1τc,1t+ α2t

2/2
)
. (4.7)

As defined above, the respective dephasing function is given by D(t) = exp(−g(t))

while the dephasing time τD can now be defined as

τD =
2√
π

∫ ∞
0

D(t)dt . (4.8)

This definition is similar, e.g., to the definition of the correlation time as an integral

over the normalized energy autocorrelation function [138]. The prefactor is chosen

such that the standard definition of a dephasing time for a Gaussian dephasing

function is reproduced [75] (see below). Calculating the dephasing time τD for the

lineshape function given in Eq. (4.7) leads to the following expression

τD =

√
2~2

〈∆E2〉α2

e−A〈∆E
2〉 erfc(

√
A〈∆E2〉) . (4.9)

In this equation erfc(x) denotes the complementary error function and the constant

A is given by

A =
τ2

1

2~2

α2
1

α2

. (4.10)

In the limit of vanishing α1, i.e., a single-exponential correlation function with

large correlation time, the Gaussian limit for the dephasing time is recovered [75]

τD,G =
B√
〈∆E2〉

. (4.11)

According to Kubo’s theory [125] the constant B has the value B =
√

2~. However,

Akimov and Prezhdo [75] argued that this value needs to be slightly enlarged

when not employing the cumulant expansion of the dephasing function leading to

B =
√

12/5~. Moreover, in the same study an even larger value of B = 1.82~
was obtained by fitting to their numerical data. Below we show that this latter

value leads to an excellent agreement with our numerical data for charge transfer

systems as well.
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Number System Sites Force field Energy gap Ref.

1 FMO complex, C. tepidum 24 CHARMM ZINDO 143

2 FMO complex, P. aestuarii 24 CHARMM ZINDO 144

3 FMO complex, P. aestuarii 24 CHARMM TDDFT 144

4 FMO Complex, P. aestuarii 24 AMBER ZINDO 144

5 LH2 complex, R. molischianum 24 CHARMM ZINDO 112

6 LH2 complex, R. acidophila 27 CHARMM ZINDO 151

7 PE545 complex 8 AMBER ZINDO 66

8 DNA 7 AMBER DFTB 145

9 DNA Photolyase, E. coli 3 AMBER DFTB 146

10 Cryptochrome 3 AMBER DFTB 147

Table 4.1: List of the eight different systems investigated in this study together

with some details and the corresponding references. Moreover, the FMO complex

from one bacterium has been calculated with two additional combinations of force

field and quantum chemistry approach.

Moreover, in the limit of vanishing α2, i.e., a purely exponential correlation

function with a short correlation time, the exponential limit for the dephasing

time is obtained

τD,E =
2~2

√
πτc,1〈∆E2〉

. (4.12)

In this exponential case the dephasing time is inversely proportional to the correla-

tion time τc,1 while in the former Gaussian case the dephasing time, Eq. (4.11), is

completely independent of the respective correlation time τc,2. This independence

has been discussed earlier in Ref. 75 for a purely exponential correlation function.

At this point we would like to stress that the independence of τD,G from the long

correlation time τc,2 is also reflected in our generalized results, Eq. (4.9), since the

value of A is independent of this quantity.

4.3 Results Based on Molecular Simulations

The dephasing times of heterodimers in simple fluids were at the focus of the in-

vestigation by Akimov and Prezhdo [75]. In the present study, simulations on a

variety of systems are being analyzed though we focus on the dephasing of the

individual monomers. All results are based on a MD simulation and subsequent

single-point quantum chemistry calculations either for the lowest excitation en-

ergy gap in the case of the exciton transfer systems or for the ionization energy
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4.3. RESULTS BASED ON MOLECULAR SIMULATIONS

in case of charge transfer systems. For the MD simulations either the CHARMM

or AMBER force fields have been employed while the quantum chemistry calcu-

lations were performed using the ZINDO, TDDFT and DFTB approaches. The

quantum chemistry predictions have all been performed as mixed QM/MM calcu-

lations since the effect of the environmental fluctiations on the electronic structure

determinations is of key importance as, for example, shown in Ref. 66. Table 5.1

lists the simulations together with the corresponding references in which all the

details concerning the calculations are reported. Here we refrain from repeating

all these simulation details since the purpose of the present study is to analyze

these data in a way different from that done before.

The FMO and LH2 systems contain BChl a molecules as their functional sub-

units. Though the average energy gap fluctuations
√
〈∆E2〉 of the individual

pigments vary by about a factor of two (see below) the normalized correlation

functions C̃(t) show a large degree of similarity. As shown in Fig. 4.1, these func-

tions start with a sharp drop on a 5 fs time scale followed by a much slower decay

combined with a fast oscillation with a period of around 20 fs. Certainly we can-

not extract this time scale accurately from this plot since the time step in these

simulations was 5 fs, i.e., our analysis of this data is restricted by this time step.

The fast oscillations in case of the BChls are connected to modes involving C=C

and C=O double bond vibrations [114]. The interesting part is to see that the

normalized correlation functions do show very similar forms despite the different

environments into which they are embedded. This finding strongly indicated that

the normalized correlation function is to a large degree determined by the chemical

structure of the investigated entity and not so much by its surroundings.

The PE545 complex contains bilin molecules instead of bacterio-chlorophylls,

i.e., six phycoerythrobilins (PEBs) and two dihydrobiliverdins (DBVs) [66]. As in

the case of the BChl molecules, the normalized autocorrelation functions for the

bilin molecules show a fast intial decay on a 5 fs time scale and fast oscillations

with a period of around 20 fs. This finding is not surprising since the bilins do

have quite some chemical similarity to BChl molecules. At the same time it is

also clearly visible that the correlation functions of the two DBVs show larger

oscillations around a slightly shifted curve compared to the PEBs. Four of the

PEBs behave very similar while two of them show somewhat larger deviations. The

enhanced resolution of the curves for the bilins compared to the BChl molecules

in Fig. 4.1 is due to the shorter time step in the underlying MD simulations of 2 fs

compared to 5 fs.

In a next step we look at the dephasing functions as defined in Eq. (4.5). The

integrals over the correlation functions in this expression need to be performed
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Figure 4.1: Normalized autocorrelation functions for BChls a (top), bilins (middle)

and charge-able subunits (bottom) in different protein environments.
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Figure 4.2: Different behaviour of some example dephasing functions: In the inset

the unscaled dephasing functions are shown while in the main panel the functions

are scaled to have the same short time behavior. The red dashed line represents

a perfect Gaussian from.

numerically. Here we want to note once more that due the integration over the

correlation function its oscillatory features do not play a key role in the results

below. Thus, the approximation of the correlation functions by a sum of two ex-

ponentially decaying functions as described above leads qualitatively to the same

results. For some of the studied subunits the dephasing functions are shown in the

inset of Fig. 4.2. In the main part of the figure, we have rescaled the dephasing

functions of the different systems such that they overlap at short times. Due to

the definition of the dephasing function, Eq. (4.5), all curves show a Gaussian be-

havior at very short times. For larger times, however, the curves for the examples

from photosynthetic complexes, i.e., FMO and PE454, start to deviate from the

Gaussian behavior while the curves corresponding to the charges transfer systems

DNA, cryptochrome and photolyase do behave quite Gaussian. Please note, that

the dephasing functions of these charge transfer systems decay much faster than

those for the light-harvesting systems due to their larger fluctuations, i.e., stronger

coupling to the environment. It is interesting to note, however, that for the ex-

citonic heterodimers in simple fluids, Akimov and Prezhdo [75] found a purely

Gaussian behavior.

Based on Eq. (4.8) the dephasing time can be determined by numerical in-
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Figure 4.3: Dependence of the dephasing times on the electronic energy gap fluc-

tuations for various light-harvesting systems. The green solid line is based on an

almost exponential case with A = 121 and α2 = 0.02 while the black curve depicts

an purely exponential case with A = 225 and α2 = 0.0007.

tegration from the corresponding dephasing function. Figure 4.3 depicts these

dephasing times for individual pigments of light-harvesting complexes as a func-

tion of the fluctuation of the energy gap function, 〈∆E2〉1/2. All pigments of the

respective complex are shown separately. It is very surprising to see that the re-

sults for almost all pigments lie on one curve. To better understand this numerical

data we employed Eq. (4.9) with A and α2 as fitting function for the bulk of the

data, i.e., the data points for FMO and LH2 rings from Rps. acidophila. Thus, al-

though the data from the LH2 rings of Rsp. molischianum were not included their

data points are very close to the fitted curve. The fit resulted in values of A = 121

and α2 = 0.02. In addition, included in this plot is a line for an purely exponential

case with α2 = 0.0007 and an A value of A = 225. This curve is chosen to fit the

data for the two points based on the exponential form which belong to the DBV

bilins from the PE545 complex. These two pigments indeed showed an exponen-

tial behavior of the dephasing function. The values of the parameters A and α2

were obtained by fitting the numerical data points. Alternatively one could fit the

corresponding autocorrelation functions to a sum of two exponentials, Eq. (4.2),

and thus obtain the parameters α1, α2, τc,1, and τc,2. With the help of Eq. (5.10)

the value of A can be determined subsequently. The values of A obtained through
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Figure 4.4: Dependence of the dephasing times on the electronic energy gap fluc-

tuations for charge transfer systems with purely Gaussian dephasing functions .

The relation in Eq. (4.11) is used with the values B =
√

2~ for the dashed line

and B = 1.82~ for the solid curve.

the latter procedure differs from the value obtained through direct fitting roughly

by a factor of four. It is not surprising that one does not obtain exactly the same

value since the correlation functions from the molecular simulations do contain the

strong fast oscillations which are neglected in the sum of two purely exponential

functions. During the integration process to obtain the dephasing function most

of these oscillatory features are averaged out but not completely. Moreover, to

obtain the lineshape function in Eq. (4.7), we did further assume that the energy

gap fluctuations contain very fast and slow components but none in the interme-

diate regime. Keeping these approximations in mind, it is rewarding to see that

the values for A only differ by a factor of about four indicating that the theory

developed in the previous section does capture the main ingredients of the process.

In a next step we look at the dephasing in individual subunits of charge trans-

fer systems. One system consists of a double-stranded DNA heptamer with base

sequence poly(dG)-poly(dC) in water [145]. Therefore, seven subunits of this sys-

tem will be studied. The second system is the DNA photolyase [146]. Hole transfer

events in this aggregate are key steps in the photoactivation process and five tryp-

tophans in this compound have been studied. Moreover, three tryptophans in the
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structurally very similar cryptochrome complex were included in the analysis [146].

The normalized energy gap autocorrelation functions of these systems are shown

in Fig. 4.1 as well. The oscillations in this graph are not as pronounced as those of

the previously discussed light-harvesting systems. Furthermore, the initial decay is

slower. More importantly, however, is the fact that for the charge transfer systems

the energy gap fluctuations are much larger than those for the pigments of the

light-harvesting systems. A change in the charge state of a molecular subunit cou-

ples much stronger to movements of charges in the environment than a rotation of

a dipole moment in case of a chromophore excitation. Therefore, the correspond-

ing points in the diagram of dephasing times versus fluctuation of the energy gap

function, 〈∆E2〉1/2, lie in a rather different part of the parameter space. This part

of the diagram is shown in Fig. 4.4 where all subunits of the respective charge

transfer systems are depicted separately. Again it is surprising that the results for

subunits of the different charge transfer systems lie on one curve. Shown in the

graph is also the expression for the dephasing time in the Gaussian limit since the

dephasing function in Fig. 4.2 proofed to be of Gaussian form. The equation for

the dephasing time in this case, Eq. (4.11), contains the proportionality factor B.

In Fig. 4.4 two values for B are used. The factor resulting from the original Kubo

theory B =
√

2~ already leads to a reasonable agreement with the numerical data

points though an offset can be observed. Employing instead the value B = 1.82~
as obtained by Akimov and Prezhdo [75] from their numerical data, the agreement

between analytic curve and the data points for realistic systems do agree very well

again supporting the overall theory employed in the present study.

One question is now how much the obtained results do depend on the level of

theory which was used to obtain the numerical data points for the realistic sys-

tems in the present study. To this end, we employed two different MD force fields

and two different quantum chemistry approaches. Recently we have performed a

comparison for the FMO complex using the CHARMM or AMBER force fields,

the ZINDO/S-CIS and TDDFT approaches for calculating the energy gaps and

using different bacteria [144]. The results for dephasing time versus energy gap

fluctuation for several of these combinations are shown in Fig. 4.5. It is clearly

visible that there is quite a spread in the results. These results, however, all lie on

or close to the same curve which we already identified in Fig. 4.4. These results

shows that the present finding does not strongly depend on the employed MD

or quantum chemistry method but might, however, be influenced by our sequen-

tial scheme of performing the energy gap calculations on a pre-determined MD

trajectory. The effects of polarization in the QM/MM approach [152, 153] or of

ab initio MD [154] need to be investigated as well. Furthermore, this result sup-
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Figure 4.5: Independence of the relation between dephasing time and energy gap

fluctuaction from methods used in the simulations.

ports the fact that the normalized correlation functions are basically influenced by

the molecular structure of the studied subunit and not so much by its surround-

ings. This “molecular fingerprint” in turn leads to the observed relation between

dephasing time and average gap fluctuations.

4.4 Conclusions

In this study we have shown that for BChl a molecules in different protein envi-

ronments the respective normalized autocorrelation functions show a large degree

of similarity and can be seen as a kind of “molecular fingerprint”. These functions

have a fast initial decay on a 5 fs time scale as well as oscillations on the 20 fs time

scale. Assuming that these correlation functions can be approximated by a sum

of two exponential functions, one with a fast and one with a long decay time, we

were able to derive an expression for the dephasing time as function of the average

energy gap fluctuation. The data from the molecular simulations can be fitted

accurately with this functional form. Moreover, the calculation of the respective

parameters in this function directly from a fit of the autocorrelation functions to

sums of two exponential functions yields similar but not identical values which is

not surprising taking into account the underlying assumptions. Nevertheless, with

this generalized Kubo formalism we can understand that the dephasing times for
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BChl a molecules in various protein systems show a unique functional dependence

as a function of energy gap fluctuation. The PEB bilins from the PE545 com-

plex show autocorrelation functions very similar to those of the BChl a molecules

and actually follow the same behavior. For the DBV bilins from the same com-

plex we can see distinctly larger oscillations in the correlation function leading to

a different functional behavior for the dephasing time. The average energy gap

fluctuations are much larger for the studied charge transfer systems. Based on

the generalized Kubo model we can understand that in this case the dephasing

time becomes much more independent of the details of the normalized correlation

function. It is interesting to note that the analytic formula for the dephasing time

obtained from the generalized Kubo theory does not depend on the long time

scale τc,2 of the autocorrelation function. A finding consistent with earlier results

for simpler systems showing purely Gaussian dephasing functions [75]. This long

time scale τc,2, however, severely influences the low frequency part of the spectral

density which is basically a half-sided Fourier transform of the autocorrelation

function [31, 66, 111, 155]. This low frequency part of the spectral density is ac-

tually very important for the dephasing and exciton transfer dynamics in the full

complex in which small energies between excitonic states of the full complex play

a major role [144, 156, 157]. Therefore, we need to emphasize that the dephasing

times determined in the present study are those for the individual chromophores

and not the complete complexes. Further investigations are needed to unravel

the connection of the present findings and the observed long-lived quantum co-

herences in detail. The present study, however, yields important insight into the

behavior of individual pigments and their similarities in different protein environ-

ments. It needs to be seen in how much the present findings can be applied to

other molecular and nanoscopic objects such as quantum dots [150], clusters [158]

and nanocrystals [159].
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Chapter 5

Relation Between Vibrational

Dephasing Time and Energy Gap

Fluctuations

Dephasing processes are present in basically all applications in which quantum

mechanics plays a role. These applications certainly include excitation energy and

charge transfer in biological systems. The present work extends a previous study

to entire complexes. Electronically coupled pigments within the Fenna-Matthews-

Olson and LH2 complexes as well as bilins in PE545 and PE555 aggregates are

investigated. It can be concluded that a universal and inverse proportionality

exists between dephasing time and variance of the excitonic energy gap fluctu-

ations while the respective proportionality constants can be rationalized using

the excitonic-gap autocorrelation functions. Furthermore, these findings can be

extended to the gaps between higher-lying neighboring excitonic states
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5.1 Introduction

Quantum effects in (bio)molecular complexes have attracted considerable atten-

tion in the last years [129–132, 160]. Environmental ramifications on these quan-

tum mechanical processes are twofold. On the one hand, an energy relaxation sets

in on the so-called T1 time scale while, on the other hand, the quantum mechanical

phases are lost on the usually much shorter T2 time scale. This dephasing time can

be due to vibrational, electronic or mixed vibronic effects. In any case, quantum

phase relations are washed out and the processes lose their quantum nature.

In this study we focus on vibrational dephasing in light-harvesting systems.

In case of electronic two-level systems with nuclear degrees of freedom, the vibra-

tional dephasing can be theoretically determined using the so-called nuclear over-

lap/phase function since its magnitude is termed dephasing function [133,136–138].

The dephasing time is subsequently defined as an integral expression over the de-

phasing function [139,140]. Different approximations have been performed previ-

ously to realize analytic expressions for the dephasing function. A purely Gaussian

form can be obtained in the Fermi Golden rule and the high-temperature approx-

imation [139] while also purely exponentially decaying dephasing functions can be

reached [141]. In the present investigation we will compare numerical data for real

systems to these functional forms. Due to the classical treatment of the bath, the

present study only captures the dephasing and neglects the quantum nature of the

bath degrees of freedom.

Interestingly, some earlier studies assumed a proportionality between correla-

tion and dephasing times [142] while others explicitly showed an independence

between the two time scales [75]. In our previous study on individual pigments,

we found that, in general, a dependence exits between correlation and dephasing

times [126]. Moreover, the latter two studies found a clear dependence between

the dephasing times and the corresponding average energy gap fluctuations. The

details of this dependence between these two quantities, however, seems to be

different for varying systems. With the present study we want to contribute to

clarifying this issue.

Aim of the present study is to analyze the dephasing times for the excitonic

states in light-harvesting systems. The dephasing of the excitonic states of the

whole molecular aggregates is much closer connected to the experiments in which

excitonic states are excited than looking at individual chromophores as done pre-

viously [126]. At this point we want to mention that the related decoherence time

has been determined experimentally for specific systems [161,162]. Moreover, the

dephasing function is, in fact, directly connected to the line shape and can thus
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be estimated indirectly as well. However, a direct comparison between theoreti-

cal and experimental values is out of scope of the present work. Other theoretical

schemes might actually make use of the results from the present study. In the pop-

ular approach of fewest switches surface hopping (FSSH), dephasing effects are not

included properly since the vibrational bath is modeled classically [163,164]. The

present insight into the dephasing times in light-harvesting systems can help to

introduce dephasing effects into surface hopping simulations of these complexes.

In the present study several LH complexes have been analyzed, i.e., the light-

harvesting system 2 (LH2) [112], the Fenna-Matthews-Olson (FMO) trimer [143,

144], the PE545 system [66] as well as the PE555 aggregate [165]. At the same

time, we have to clearly highlight the restriction of the present work to vibrational

dephasing, i.e., electronic dephasing caused by different excitonic states is not

included. Especially in regions with many avoided crossings between the excitonic

states and strong non-adiabatic couplings, this shortcoming leads to artificially

long (vibrational) dephasing times. The full (experimental) dephasing times will

be shorter in these cases due to electronic dephasing effects between the excitonic

surfaces. Nevertheless, an interesting universal dependence between vibrational

dephasing time and average excitonic energy gap fluctuations is visible. As shown

below, the relation between these two quantities is universal and the data points

for the different excitonic states of one system lie on one curve.

5.2 Methods

5.2.1 Molecular Simulations

Before going into details of the dephasing times, we want to briefly describe the

molecular simulations used to obtain the time series of excitonic states. The four

analyzed simulations are listed in Tab. 5.1. These simulations consist of sequen-

tial combinations of classical molecular dynamics (MD) simulations and quantum

mechanics/molecular mechanics (QM/MM) calculations for the excitation energy

gaps of the individual pigments as previously done by our [66,143,144,156,165,166]

and by other groups [77,113,155,167–172]. In addition, the excitonic couplings be-

tween the chromophores have been determined. At each time step, the full Hamil-

tonian can thus be constructed and diagonalized to obtain the excitonic states.

Despite its limitation, e. g., the geometrical mismatch arising from the classical

MD simulations being coupled to a quantum approach, this scheme is quite pop-

ular in the analysis of light-harvesting processes. Treating the dynamics of the

system at least partially quantum mechanically to be more consistent with the
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Number System Sites Force field Energy gap Ref.

1 FMO complex, C. tepidum 24 CHARMM ZINDO 143

2 LH2 complex, R. acidophila 27 CHARMM ZINDO 151

3 PE545 complex, Rhodomonas sp. CS24 8 AMBER ZINDO 66

4 PE555 complex, Hermiselmis andersenii 8 AMBER ZINDO 165

Table 5.1: The four different light-harvesting systems together with some details

and the corresponding references.

computations of the vertical excitation energies is computational much more ex-

pensive and, so far, has only been performed for a relatively small light-harvesting

complex, i.e., the water-soluble chlorophyll-binding protein (WSCP) [154]. Non-

adiabatic excited-state molecular dynamics has been applied to chlorophyll dimer

only very recently [173]. In the present study, the LH2 and the FMO complexes

contain bacteriochlorophylls (BChls) as their pigments while the two cryptophyte

complexes PE545 as well as PE555 contain bilin molecules for capturing the sun

light. The CHARMM as well as the AMBER force field sets have been employed

for the 300 K MD simulations as listed in Tab. 5.1. For details of the simula-

tions we refer the interested reader to the cited references. The site energies have

been determined using the semi-empirical ZINDO/S-CI approach (Zerner Inter-

mediate Neglect of Differential Overlap method with parameters for spectroscopic

properties together with the configuration interaction scheme using single exci-

tations only) [99]. In alternative calculations on the same or related complexes,

Time-dependent Density Functional Theory (TDDFT) approaches have been em-

ployed resulting in similar results. For a comparison on the FMO complex, see

Ref. 144. Moreover, the excitonic couplings have either been determined using

the point-dipole approximation for the PE545 aggregate or the transition charges

from electrostatic potentials (TrEsp) method for the three other systems. In our

previous study for the dephasing time of individual pigments, different approaches

for the site energy and coupling calculations were used and the main findings were

robust with respect to these variations [126].

5.2.2 Theoretical Background

Using the above results from molecular simulations, the system Hamiltonian ĤS(t)

is given by the time-dependent tight-binding model with site energies Ei(t) at site
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i and intersite couplings Vij(t):

ĤS(t) =
N∑
i=1

Ei(t) |i〉 〈i|+
N∑

i,j=1
i 6=j

Vij(t) |i〉 〈j| . (5.1)

Based on this time-dependent Hamiltonian, adiabatic eigenstates |µ(t)〉 can be

defined as the instantaneous eigenstates of this Hamiltonian [174,175] via a time-

dependent orthogonal transformation

Ĥ ′S(t) =
N∑
µ=1

εµ(t) |µ(t)〉 〈µ(t)| . (5.2)

Both the excitonic energies εµ(t) and the eigenstates |µ(t)〉, depend on the ac-

tual time at which the Hamiltonian is diagonalized. Exciton energy levels for

different light harvesting systems along pieces of MD trajectories are shown in

Fig. S1. Moreover, the contribution of the different sites to the excitonic states

are discussed in the supplementary information.

In a previous study the dephasing time as a function of energy gap fluctuation

has been analyzed for the uncoupled pigments [126]. Here, this investigation

is extended to excitonic states which include also the effect of time-dependent

electronic couplings between the pigments. For the sake of completeness, we review

the basics of the dephasing time theory with a focus on the present applications.

Moreover, for the sake of simplicity, we suppress the index for the excitonic states

since it should be evident that each excitonic state has its own dephasing time.

The present theoretical consideration is based on generalized version of Kubo’s

stochastic line shape theory [125]. To this end, one defines the energy gap ∆ε =

ε−〈ε〉 and its fluctuation quantified using the standard deviation 〈∆ε2〉1/2. In the

present case this quantity, of course, refers to the gap between excitonic energies.

〈∆ε2〉1/2 =
√
〈∆ε2〉 − 〈∆ε〉2 . (5.3)

Gaussian random processes with mean value zero are at the heart of Kubo’s line-

shape theory and its generalized version [148]. The unnormalized autocorrelation

function is assumed to be a sum of two exponential functions

C(t) = 〈∆ε2〉 (α1 exp (−t/τc,1) + α2 exp (−t/τc,2)) (5.4)

This function contains two normalized prefactors α1 and α2, i.e., α1 + α2 = 1, as

well as correlation times τc,1 and τc,2. The correlation function of the excitonic

states depends on the time-dependent nuclear coordinates of the system under
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investigation. Using a cumulant approximation [78], the dephasing function D(t)

can be defined as

D(t) ≡ exp(−g(t)) = exp

[
− 1

~2

∫ t

0

dτ(t− τ)〈∆ε(τ)∆ε(0)〉
]
. (5.5)

where g(t) is the line shape function. This function is of crucial importance for

the present study since it is used to define the dephasing time. It is related to the

line shape I(ω) which can be given as

I(ω) =
1

π

∫ ∞
0

dt cos(ωt) exp [−D(t)] . (5.6)

Using the analytic approximation of the correclation function, Eq. (5.4), and as-

suming that one of the two correlation times is very short while the other one is

large, one obtains [149]

D(t) = exp

[
−〈∆ε

2〉
~2

(α1τc,1t+ α2t
2/2)

]
(5.7)

Based on the dephasing function, the dephasing time is defined as

τD =
2√
π

∫ ∞
0

D(t)dt . (5.8)

As already shown in Ref. 126, the relation between the dephasing time and the

energy gap fluctuation can be given in an analytic form

τD =

√
2~2

〈∆ε2〉α2

e−〈∆ε
2〉Aerfc

(√
〈∆ε2〉A

)
(5.9)

with erfc(x) denoting the complementary error function and

A =
τ 2

1

2~2

α2
1

α2

. (5.10)

Two limiting cases can be given for the dephasing time expression. For vanisihing

α1. i.e. in the so-called Gaussian limit, the dephasing time can be written as

τD,G =
B√
〈∆ε2〉

. (5.11)

The constant B has a value of B =
√

2~ according to Kubo’s theory [125] though

alternative values have been discussed as well [75,126]. In the opposite exponential

limit, i.e., with vanishing α2, one gets

τD,E =
2~2

√
πτc,1〈∆ε2〉

. (5.12)

As will be seen below, for the case of excitonic energies, this exponential limit is

of prime interest together with its dependence on the correlation time τc,1.
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Figure 5.1: Normalized autocorrelation functions for different light harvesting

complexes.

5.3 Results and Discussion

5.3.1 Correlation functions and their functional behavior

Starting from the energy eigenvalue for each site i and the respective couplings

between them, exciton energies have been calculated. Subsequently, the excitonic

autocorrelation functions C(t) have been built. More interesting than the unnor-

malized correlation function is its normalized counterpart C̃(t). As can be seen

in Fig. 5.1 these normalized correlation functions do behave very similar for all

excitonic states within one particular system. At the same time, these normal-

ized functions do significantly differ even if they contain the same pigments like

BChl a molecules in the case of LH2 and FMO. In case of the FMO system,

the normalized autocorrelation seems to be dominated by two decays, one very

fast one and one much slower one. The latter decay is superimposed by some

remnants of some oscillation while for the other three systems, a clear oscillatory

pattern is visible. When looking at the normalized correlation functions for the

individual pigments [126], the situation was different. These functions were mostly

determined by the chemical structure of the pigment and not by its surroundings.

Thus, in that case, the normalized autocorrelation functions for pigments in LH2
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Figure 5.2: Examples of some dephasing functions (two per system). In the main

panel the dephasing functions are scaled on top a perfect Gaussian function (red

dashed line), while in the inset the unscaled dephasing functions are depicted.

and FMO were quite similar.

Nevertheless, there is a common feature of the normalized autocorrelation func-

tions of the excitonic systems for the systems shown in Fig. 5.1. This feature is

the fast initial decay which corresponds to a τc,1 time of roughly 5 fs. To un-

derstand this common property of the correlation functions one has to analyze

their functional forms. In addition to the fast initial decay, another important

feature is the fast oscillation with a period length of about 20 fs. For the BChl

and bilins molecules the fast oscillations are caused by modes involving C=C and

C=O double bond vibrations [114]. In the shown autocorrelation functions, these

fast oscillations are overlayed by a relatively fast damping. Despite the different

damping times for the various systems, the fast initial decay is a reminiscent of

the 20 fs oscillation, i.e., it corresponds to the first quarter of these oscillations.

5.3.2 Dephasing times

The dephasing function is defined in Eq. 5.5 and the numerical data for different

excitonic states are shown in Fig. 5.2. Depicted are unscaled dephasing functions

in the inset of the figure but more importantly scaled versions thereof. These scaled

functions have been constructed to have the same initial behavior for short times.

Shown in this figure is a perfect Gaussian function for comparison. Although

all dephasing functions do have a Gaussian behavior for short times due to their

definition, this turns over into an exponential form rather quickly. Apparently the

short time behavior of the correlation function plays a more important role than
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Figure 5.3: Relation between dephasing times and energy gap fluctuations for

various light harvesting systems. The black and green solid lines show exponential

fits of the data according to Eqs. 5.12 and 5.9, respectively, as discussed in the

text.

the oscillating long time appearance. The contribution of these oscillatory parts

of the correlation functions is canceled out to a larger degree due to the integral

form of the dephasing function. Actually, all dephasing functions analyzed in the

present study show a clear exponential behavior. This finding is different from that

in case of dephasing functions for individual sites showing a Gaussian behavior in

most cases.

The dephasing times as function of the exciton energy gap fluctuations are

shown in Fig. 5.3. Plotted are the results of the numerical integration accord-

ing to Eq. 5.8 based on the numerical data of the dephasing functions. A clear

inverse proportionality between dephasing time and average exciton energy gap

fluctuation is visible. Those excitonic states with energies in the middle of the

excitonic spectrum have, in general, the smallest average energy gap fluctuations

due to the avoided crossings (see Fig. S1). The excitonic states with the largest

and smallest energies, however, are subject to less avoided crossings, leading to

larger gap fluctuations which in turn results in shorter dephasing times. Looking

at Fig. 5.3 it also becomes apparent that the results for the FMO system lie on a

different curve than those for the other three systems. This different behavior can

be traced back to the unlike autocorrelation functions. In case of the LH2, PE545

and PE555 complexes, the correlation functions have a sharp initial decay on a

5 fs time scale followed by oscillations which survive much longer than 100 fs. For

the determination of the dephasing functions and subsequently dephasing times,

the contributions of the oscillatory parts do average out to quite some extend.
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Thus we can reasonably well approximate these autocorrelation functions by their

initial exponential decay only. This approximation leads to the exponential limit

for the dephasing time given in Eq. 5.12. Fitting the data for LH2, PE545 and

PE55 in Fig. 5.3 to this exponential limit yields a value for the correlation time

τc,1 of 4.9 fs in excellent agreement with the correlation times visible in Fig. 5.1.

In case of the FMO complex the story is slightly more complicated. As men-

tioned above, these correlation functions are better approximated by a double-

exponential form with a short correlation time of around 5 fs and a long one of

about 100 fs. Thus, the functional form is of the shape given in Eq. 5.4 leading to

the more general form of the dephasing time given by Eq. 5.9. Fitting the numer-

ical data, we obtained τc,1 = 3.6 fs, α1 = 0.98 and thus α2 = 0.02. Thus, this fit

yields a basically exponential behavior which is actually consistent with the form

of the dephasing functions (examples shown in Fig. 5.2). In total and as in case

of the dephasing times for the individual pigments discussed in Ref. 126, one gets

a clearly inverse proportional relation between dephasing time and average gap

fluctuation but the respective proportionality factor can possibly differ between

systems for excitonic states.

5.3.3 Neighbouring Energies

As suggested by Akimov and Prezhdo [75], the energy fluctuations between neigh-

boring exciton energy levels could lie on the same curve as the energy fluctuations

of the first exciton levels relative to the excitonic ground state. Therefore, the

same process as described above was repeated for the same systems comparing

neighboring excitonic energies. This means that the energies used now correspond

to the energies ε2−ε1, ε3−ε2, etc. The number of gaps between neighboring states

is n−1 with n being the number of pigments in the system. We want to point out

that even if these dephasing times have no direct experimental counterparts, the

analysis has been extended to these gaps to further validate the present model. It

turns out that, no matter where the gap fluctuation originates from, the relation

between this quantity and the corresponding dephasing time is still valid.

The corresponding excitonic energy gap autocorrelation functions are shown

in Fig. 5.4. One has to realize that the autocorrelation decays very quickly for

the gaps between neighboring states and therefore only part of the functions are

shown in Fig. 5.4. This finding clearly shows that the oscillations in this case

are much smaller than those for the case of the energy gaps between ground and

the respective excitonic state shown in Fig. 5.1. The form of the oscillations are

partially non-sinusoidal caused by the avoided crossings. Moreover, the oscillations
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Figure 5.4: Normalized autocorrelation functions for neighbouring energy gaps

fluctuations for different light harvesting systems.

do hardly reach values below zero. Nevertheless, the data is clearly dominated by

the very fast initial decay down to almost zero independent of the system. Thus,

for this case of neighboring exciton energy level we expect all data to lie on one

curve as they show the same behavior of the autocorrelation function.

Examples of dephasing functions for the case of neighboring excitonic states

are shown in Fig. 5.5. Since the autocorrelations functions were dominated by the

fast initial decay even more than in the previous case, it is not surprising to see

that the dephasing functions have a clear exponential behavior.

Determining the dephasing times numerically, again led to a picture in which

all results are close to one line. The data was again fitted with the analytical form

for the dephasing time based on the exponential limit, i.e., Eq. 5.12. This time

the numerical value obtained by this fitting procedure was τc,1 = 4.1 fs can being

consistent with the form of the autocorrelation functions.

5.4 Conclusions

The present investigation extends an earlier study on the dephasing times of the

individual pigments in light-harvesting systems [126]. Determining the dephasing
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Figure 5.5: Examples of some dephasing functions for neighbouring energy gap

fluctuations (two per system). In the main panel the dephasing functions are

scaled on top a perfect Gaussian function (red dashed line), while in the inset the

unscaled dephasing functions are depicted.

times for excitonic states rather than excitations of individual pigments offers the

advantage of being closer to experiment since experimentally only excitons of the

whole complex can be excited. Moreover, the dephasing function, for example,

is associated with the line shape function. Thus, even if a direct measure is not

possible, an indirect estimation should be feasible nevertheless. The autocorrela-

tion functions for excitonic and site energies do actually look quite similar. Both

have a fast initial decay on a time scale of a couple of fs followed by a damped

oscillatory behavior. This damping of the oscillation does, however, differ more

between systems for the excitonic than for the site energies. Further differences

between site and excitonic energies are visible for the dephasing function which is

being determined based on the autocorrelation function. In case of the individual

chromophores, most dephasing functions had a clear turnover to an exponential

form after a short Gaussian period which is always present due to the definition of

the dephasing function. In this case, some dephasing functions, however, showed

a Gaussian form over the complete time range. The respective systems included

electron transfer systems which are not at the focus of the present investigation.

For the investigated excitonic states, no such pure Gaussian behavior was ob-

served. Thus, the relation between dephasing time and average excitonic energy

gap fluctuation can nicely be fitted using the expression for exponential limit of

the relation between these two quantities (Eq. 5.12). This finding also results

in the fact that the dephasing times for the present light-harvesting systems de-
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Figure 5.6: Relation between dephasing times and neighbouring energy gap fluc-

tuations for various light harvesting systems. The solid line shows an exponential

fit to the data according to Eq. 5.12 with fitting constant τc,1 = 4.1 fs

pend inversely on the correlation time, i.e., the fast initial decay of the correlation

function (see Eq. 5.12). This dependence of the correlation time is, however, in

contrast to the findings by Akimov and Prezhdo [75] for molecular dimers in dif-

ferent solutions. In that case, the dephasing times were found to be independent

of the correlation time. Certainly, one has to keep in mind that the those systems

and environments are clearly different from the ones in the present study.

In case of an excitation from the ground to the first exciton state, the dephasing

times reach up to 800 fs in the present study. This finding is indeed on the

order of the experimentally observed long-lived quantum coherences [131, 132].

At the same time, one has to keep in mind that the present definition of the

dephasing time does only include vibrational dephasing effects. Dephasing effects

due to the different excitonic surfaces are not included. Especially, when many

similar pigments are involved, the respective excitonic states come pretty close

and avoided crossings are ubiquitous. In the limit of very dense electronic states,

the electronic dephasing would eventually take over in importance. In addition,

the quantum nature of the bath is not taken into account neglecting possible

additional decoherence effects [133]. Thus, the obtained dephasing times should

be seen as upper limits of decoherence times since electronic effects would shorten

these times. Moreover, the calculations have been extended to the analysis of

neighboring energy gaps. Again, it can be concluded that the data do show a clear

inverse proportionality. The dephasing times of the different systems can, however,

be quite different and might be used as input of further theoretical considerations
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such as the surface hopping formalism [163, 164]. In this context it is interesting

to note that recent variants of that formalism [69, 176, 177] include energy-based

decoherence corrections, i.e., dephasing times between two states in the surface

hopping algorithm. The dephasing times between neighboring electronic times

determined in the present study should indeed be closely related to the energy-

based decoherence correction for these variants of the surface hopping approach.

Supporting Information

Details of the excitonic energies and the respective site contributions are discussed

in the supplementary material.
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5.5 Supplementary Information

5.5.1 Exciton Energies and Their Behavior

At this point we need to mention that for the PE545 system, the employed quan-

tum chemistry approach leads to a rather poor approximation of the linear ab-

sorption spectrum. Thus, and as has been introduced earlier already in Ref. [157],

the site energies of the DBV bilins have been shifted towards higher energies by

0.09919 eV while the site energies of the PEB bilins by 0.23557 eV. Actually

for the quantum dynamics and the dephasing discussed in this study, only the

relative shift between the two types of bilins matters. Apparently the employed

ZINDO/S-CIS approach cannot properly distinguish between the two type of bilins

concerning the vertical excitation energies.

Shown in Fig. 5.7 are the excitonic energies for different systems. These plots

are quite crowded though it is clear that the different excitonic energy states do

not cross. The states are energetically ordered at each time step. Please note

that the states in the middle of the spectra do show reduced fluctuations due to

avoided crossings with neighboring states. The levels at the edges of the spectra,

however, show fluctuations closer to those known from the site energies [126] since

these states at the edge of the spectrum do have less avoided crossings.
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Figure 5.7: Exciton energy levels for different light harvesting systems along pieces

of MD trajectories.

Very small coupling values lead to avoided crossing for which the gap can be

very small, however. In dynamical simulations these gaps might be overcome

due to non-adiabatic crossings. In the present theory on vibrational dephasing

times, non-adiabatic crossing are not considered. As an example, we want to

mention the FMO trimer with 24 pigments in total. This trimer can be split into

three monomers which are electronically coupled to each other only very weakly.

Thus, although sets of eight pigments seem to act independently of the other

16 chromophores, the excitonic spectra do differ significantly when analyzing the

three monomers separately or the whole trimer due to the small but non-zero

couplings between pigments of neighboring monomers.

5.5.2 Site Contributions

In time-independent considerations, the contribution of the different sites in the

systems to specific excitonic eigenstates are often analyzed and interpreted. To

show that the excitonic states do behave very differently we have plotted the

absolute value squares of some of the adiabatic expansion coefficients in Fig. 5.8 for

the PE545 system. The figure only shows the first three expansion coefficients for

three eigenstates in the 8-pigment system for which in total 8×8 = 64 coefficients
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Figure 5.8: As an example, three squared adiabatic exciton expansion coefficients

for three eigenstates in the PE545 system along a piece of the respective MD

trajectory.

are present. As, for example, studied earlier for a dendrimer system [174,175], the

expansion coefficients of the excitonic state in the site basis do heavily fluctuate

in time. This finding is a direct consequence of the larger energy fluctuations

of the site energies compared to the energy differences between the average site

energies at different sites. The contribution of individual chromophores to specific

eigenstates can vary between 0 and 1 within femtoseconds. Thus, it is clear that an

interpretation of the results in terms of pigment contributions to specific excitons

is at least problematic when analyzed in a time-dependent fashion.
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Chapter 6

Environmental Effects on the

Light-Harvesting Complexes LH2

and LH3 Based on Molecular

Simulations

A multi-scale approach that combines molecular dynamics simulations and quan-

tum chemistry methods is used to obtain different properties such as correlation

functions, spectral densities and exciton dynamics for three similar systems: the

light-harvesting complex 2 (LH2) of the purple bacterium Rhodospirillum molis-

chianum as well as for the light-harvesting complexes 2 (LH2) and 3 (LH3) of

Rhodoblastus acidophilus. Initially, molecular dynamics simulation are performed

starting from the crystal structures of the three systems. On top of the MD tra-

jectories, the semi-empirical ZINDO/S-CIS approach has been used to calculate

the fluctuations of the energy gaps between ground and first excited states for

individual pigments of each system. Furthermore, the TrEsp method for deter-

mining the couplings between the individual pigments has been used. The total

Hamiltonian of each system has been built and the population dynamics is ana-

lyzed, to estimate the transport properties, resulting in a different behavior of the

two rings.

This work has been done by by M. I. Mallus, Y. Shakya, J. Prajapati and U. Kleinekathöfer.

Task of the author of the present thesis was to perform the complete set of calculations for the

LH2 complexes and to contribute to the analysis of the LH3 complex.
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6.1 Introduction

Among the photosynthetic bacteria, purple bacteria are the oldest photosyn-

thetic organisms. Two types of LH complexes are present in purple bacteria:

the light harvesting complex 1 (LH1) and peripheral LH complexes, also called

antenna complexes. Antenna complexes are composed of light harvesting com-

plex 2 (LH2) and sometimes light harvesting complex 3 (LH3). LH3, which

absorbs at shifted wavelength, is present under low light conditions [42]. Nu-

merous studies on the light-harvesting complexes of purple bacteria have been

performed [33, 77, 111, 178–180]. In recent years the experimentally observed

long-lived coherence in several light-harvesting systems [13,16,24] has raised con-

siderable effort to understand these effects experimentally as well as theoreti-

cally [32, 156, 181, 182]. The importance of these coherence phenomena in vivo

is, however, still debated [17]. Also in case of LH2 complexes in purple bacteria

long-lived quantum coherence have been studied experimentally as well as theoret-

ically [183–186]. Even in vivo coherences in LH2 complexes were observed using

two-dimensional electronic spectroscopy [132, 187]. It is, however, not the aim of

this work to assign the nature of these coherences but to provide an atomistic

description of some of the properties of these systems. The crystal structures of

several LH complexes from different purple bacteria are known, including LH2 of

Rhodospirillum molischianum [45] and Rhodoblastus (Rbl.) acidophilus [44, 188]

(previously known as Rhodopseudomonas acidophila [189]) as well as LH3 of Rbl.

acidophilus [42]. The knowledge of these molecular details has enabled numerous

theoretical studies to investigate these systems at atomic level. Due to the size

of the systems in their natural environment, i.e., in a membrane and surrounded

by water, almost all atomistic studies start with a classical molecular dynamics

simulation which yield the thermal fluctuations of systems of the size of individ-

ual LH systems or even larger [190]. Despite its power, the MD simulation is a

classical technique and can not be used to study excited-state or energy transfer

properties. Therefore, it has be used in combination with some quantum chemistry

approaches. Due to the number and size of the pigments, semi-empirical methods

are often employed. Other studies use density function approaches with small to

medium size basis sets. In the present study we employ the ZINDO/S-CIS ap-

proach (Zerner’s Intermediate Neglect of Differential orbital with parameters for

spectroscopic properties combined with the configuration interaction formalism at

the single configuration level) [96–98] to determine the vertical excitation energies

of the individual pigments, i.e., the bacterio-chlorophyl a (BChl a). This approach

combined with MD trajectories has been applied to quite some LH systems within
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the subsystem-based approach [66,99,112,143,156,172,191–196] and other systems

as well, e.g., Refs. 197–199. The electronic coupling between the individual pig-

ments will be determined via the Transition charges from Electrostatic potential

(TrEsp) [105,200] method.

Aim of the present work is to describe and compare optical and exciton transfer

properties of three different LH systems, the LH2 complexes of Rsp. molischianum

and of Rbl. acidophilus and the LH3 complex of Rbl. acidophilus. The present

contribution starts with a description of the theoretical background to make the

results easier to comprehend. The section starts with a detailed description of the

MD simulations, the technique used to compute the thermal fluctuations of the

ground states of the pigments. On top of these trajectories, the ZINDO/S-CIS

method has been used to compute the vertical transitions energies between ground

and first excited states, also known as site energies. The density of states (DOS) of

the site energies are presented and used as a input to compute the autocorrelation

functions and spectral densities of the individual BChl molecules. These findings

can then be used to discuss the influence of the environment and the differences

between the three systems under investigation. In a further step, the couplings

between the pigments have been calculated. Subsequently, the total Hamiltonian

of each system has been built and the ensemble-averaged wave-packet dynamics

approach is used to evaluate the different exciton transfer properties of the dif-

ferent pigment rings of each system. It will be shown how different the exciton

transfer dynamics is in the rings and that these variations are due to the unequal

environmental properties and arrangements of the BChls in the two rings. Finally,

the results are discussed in the last section.

6.2 Molecular-level Description of the LH Sys-

tems

6.2.1 Molecular Dynamics Simulations

The simulations for the LH2 and LH3 complexes of are based on their crystal

structures. The structures are taken from the Protein Data Bank, with entries

PDB:1LGH [45], PDB:1NKZ [201] and PDB:1IJD [42] for LH2 of Rsp. molishi-

anum, LH2 of Rbl. acidophilus and LH3 of Rbl. acidophilus respectively. The

same setup has been adopted for the two LH2 complexes, while a more compli-

cated setup was required for the LH3 complex. In the first case, water molecules

have been added on both sides to the POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-
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phosphocholine) lipid bilayer membrane into which each complex was embedded.

The two systems were neutralized using Cl− ions. The two final systems consisted

of 114.011 and 154.708 atoms for LH2 of Rsp. molischianum and LH2 of Rbl. aci-

dophilus respectively. Following an energy minimization, a 10 ns equilibration at

room temperature and 1 atm pressure was performed employing the particle mesh

Ewald (PME) method and a 2 fs time step using the SHAKE constraint on all hy-

drogen atoms. In the case of the LH3 complex, the deposited structure consisted

of only three copies of the transmembrane α and β-apoprotein, B820 α, B820

β and B800 and carotenoid pigments. The missing residues were predicted us-

ing the MODELLER version 9.15 [202] with homology modeling based approach

by considering the LH2 structure (PDB ID: 1NKZ) [201] from Rbl. acidophilus

bacterium as template structure. Later on, the remaining six copies for all the

components were built using the VMD version 9.1 [43]. Subsequently, the whole

complex was aligned to the z-axis and inserted into the pre-equilibrated and fully

hydrated POPC lipid bilayer. After elimination of overlapping lipid with complex,

total 353 lipid were left in the inner cavity and surrounding. At next step, system

was solvated with TIP3P water molecules and neutralized with Cl− ions. The

final system was composed of 158.992 atoms. After energy minimization of 50000

steps, the system was equilibrated for 1 ns using a NVT ensemble at 300 K with

a time step of 1 fs. During this step, only the lipid tails can fluctuate. Next, the

system was equilibrated for 4 ns using a NPT ensemble to keep the pressure at 1

bar. The constrains were applied to protein backbone, Bchla, carotenoid and wa-

ter atoms during this step. Furthermore, the constraints from the water molecules

were removed and the equilibration was performed for 10 ns in NPT ensemble

by keeping the constraints of the protein backbone, Bchla and carotenoid atoms.

Finally, the whole system was equilibrated for 4 ns in NPT ensemble without

applying any constraints. As the carotenoid found in LH3 complex, rhodopinal

glucoside, is modified form of the rhodopin glucoside caratenoid found in LH2 com-

plex of the same bacterium, the new parameters were predicted using the CGenFF

database [203–205] For all three MD simulations, the temperature and pressure

were maintained using the Langevin dynamics along with a Langevin piston algo-

rithm. Periodic boundary conditions were used. The cutoff of 12 Å was adopted

for short-range nonbonded interactions. The long-range electrostatic interactions

were treated with particle mesh Ewald (PME) method [206]. All three simulations

were performed using the NAMD version 2.9 [207] and CHARMM27 force fields

for the protein, lipid and waters [122]. the force fields reported in Ref. 111 for the

BChls and caroteinoids were used. The production run is 250 ps long for the three

simulations, with a 1 fs time step. All atomic coordinates were saved every 2 fs.

64



6.2. MOLECULAR-LEVEL DESCRIPTION OF THE LH SYSTEMS

6.2.2 Spectral Densities and Exciton Dynamics

The so-called spectral density J(ω) is a key quatity in the theory of open quantum

systems, used to describe the exciton dynamics of a certain systems. It describes

the frequency-dependent coupling between the excitonic sub-system and its en-

vironment. Starting with a classical autocorrelation function C(t), the spectral

density J(ω) can be determined by [113]

J(ω) =
βω

π

∞∫
0

dtC(t) cos(ωt) (6.1)

where β = 1/(kBT ) denotes the inverse temperature and C(t) the autocorrelation

function. More details on the definition and derivations of J(ω) can be found in

Sec. 3.3. Not only the excitation energies fluctuate along the MD trajectory. Also

the electronic couplings between the pigments do so. Estimations for the couplings

in purple bacteria have been listed for example, in Ref. 208. Various methods exist

to determine the coupling values and here the TrEsp method has been used. In this

approach, the interaction between pigments is modeled as a Coulomb interaction

between the I transition charges qTI located in the two pigments. The coupling

between two pigment molecules is then given by

Vnm =
f

4πε0

∑
I,J

qTI · qTJ
|RI

m −RJ
n|
. (6.2)

where f denotes the screening factor.

For a more detailed description of the coupling term and of its composing

terms, such as the transition partial charges and the screening factor, see Sec.

3.1.2. The gap between the ground and the Qy states Em together with the

electronic couplings Vnm lead to a time-dependent Hamiltonian:

H =
∑
m

(Em + ∆Em(t)) |m〉 〈m|+
∑
n6=m

Vnm |n〉 〈m| (6.3)

This Hamiltonian can be employed in a subsequent step to directly use wave

packet dynamics approach, e. g., in the Ehrenfest approximations. [174,209–211].

If one wants to understand the dynamic properties of the exciton, this Hamil-

tonian must be diagonalized for each time step, by solving:

i~
∂ΨS(t)

∂t
= HΨS(t) (6.4)

where ΨS(t) is the total wave function of the system and it can be expanded in

the exciton basis, |ΨS(t)〉 =
∑

α cα(t) |α〉. Since only the expansion coefficients
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6.3. RESULTS

depend on time, solving Eq. 6.4 is equivalent to solve:

i~
dcα(t)

dt
= εα +

∑
αβ

Jαβ(t)cβ(t)Jαβ(t) =
∑
j

cαj c
β
j ∆Ej(t) (6.5)

where Jαβ(t) represents the system-bath interaction Hamiltonian. The excitonic

states |α〉 have been expanded in the site basis, i.e., |α〉 =
∑α

m c
α
m |m〉. The

probability to find the exciton in a particular pigment m at the time step t can

be calculated by projecting ΨS(t) in that pigment:

Pm(t) = | 〈m|Ψ〉 |2 = |
∑
α

cαmcα(t)|2 (6.6)

By plotting this probability over time, one gets the so-called population dynamics,

to observe the exciton transfer in a particular system. The population dynamics

will be evaluated for the two rings separately, and then compared for the three

systems.

6.3 Results

The multiscale scheme adopted in the present work starts with MD simulations

of the investigated systems. The key property when trying to determine spectral

densities is the vertical excitation energy. The vertical excitation energies have

to be determined for each system,for each BChl along the trajectory composed

of 125000 snapshots. This leads to 24×125.000, 27×125.000 and 27×125.000,

i.e., 3.000.000, 3.375.000 and 3.375.000 excitation energy calculations for the LH2

complexes of Rsp. molischianum and Rbl. acidophilus and for the LH3 complex of

Rbl. acidophilus, respectively.

The vertical excitation energies, also called site energies, along the MD trajec-

tories lead to rather broad distributions which we call densities of states (DOS),

reported in Fig. 6.1 for the three systems. In case of the bacterium Rsp. molis-

chianum the DOS of the α and β BChls of the B850 ring have very similar dis-

tributions with the energies of the α BChls slightly smaller than those of the β

BChls. This is different for the DOS of the Rbl. acidophilus complex. The dif-

ferences of the two B850 pigments within the building block is much larger.This

fact is known as dimerization and its advantages in transport have been discussed

theoretically [212]. as well as experimentally [213]. Even if less evident, a sim-

ilar behavior is found in the B820 ring of the LH3 complex of Rbl. acidophilus.

The DOSs for the B800 BChls behave very similar for both for LH2 and LH3

complexes ofRbl. acidophilus, whereas a different behavior is present in the LH2
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Figure 6.1: Distribution of energy gaps (DOS) between ground and Qy state for

individual BChls for LH2 of Rsp. molischianum (top), for LH2 of Rbl. acidophilus

(center) and for LH3 of Rbl. acidophilus (bottom). The B850 (or B820) α, B50

(or B820) β and B800 BChls are displayed in red, green and blue respectively,
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complex of Rsp. molischianum. The DOSs for the BChls of one kind should be

identical. As can be seen in Fig. 6.1, this is not true for the B800 BChls in Rsp.

molischianum, indicating possible disorder which is not captured by the present

approach. This could, e.g., result from slightly different lipids surrounding the

pigment and would lead to a disorder usually modeled as static. The static disor-

der is often assumed to be Gaussian. This certainly shows that the contribution

of the environment is non-negligible and modeling only based on a static crystal

structure is problematic. Furthermore, the DOSs have an asymmetric shape, vis-

ible especially for the B800 rings. This is in agreement with a recent study that

demonstrated the electrostatic fluctuations of the protein-water interface might

be globally non-Gaussian [214]. The time- and frequency-dependence of the site

energies fluctuations can be observed in the energy gap autocorrelation functions

and in their Fourier transform (spectral densities) below. The averaged spectral

densities are reported in Fig. 6.2. for the B850 (or B820) α BChl, B50 (or B820) β

BChl and one B800 BChl. The spectral densities of BChls in one ring, in fact, do

overlap because of symmetric properties of the rings and of the same environment

around each BChl. Although the general behavior of the spectral densities of

the B800 ring is similar to the one of the B850 (or B820), the spectral densities of

the B800 ring are easily two times larger than the others, and this feature is inde-

pendent of the system, even if less evident in the case of the LH3 complex. This

difference is due to the larger energies gap fluctuations of the BChls of the B800

ring compared to the ones of the B850 (or B820) ring. The role of the environment

is evident in these graphs. We can say that for the case of the BChls of LH2s of

Rsp. molischianum and Rh. acidophila and of LH3 of Rh. acidophila, the BChls

frequency response comes from the interaction with the environment and not from

internal modes. Peaks positions are in fact different for the two rings, with some

exceptions in the high-frequency region. However, only the low-frequency region

is important in understanding relaxation processes studied in the present work.

Spectral densities, as previously discussed, are obtained from the Fourier trans-

form of the autocorrelation functions. The averaged ones are shown in Fig. 6.3.

As expected, the autocorrelation functions of the BChls in the B800 ring are larger

than their counterparts in the B850 (or B820) ring. Although the fluctuations of

the B800 ring are larger in absolute values, the frequency of the vibrations is the

same for the two rings and for the three systems. This is not surprising, since the

rings are composed by the same BChl a pigment. The 20 fs period of the oscil-

lations is known to be related to the modes of the C=C and C=O double-bond

stretchings [114]. The fast initial decay on a 5 fs time-cale, is also in agreement

with our previous findings [126].
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Figure 6.2: Spectral densities for LH2 of Rsp. molischianum (top panel), for LH2

of Rh.) acidophila (central panel) and for LH3 of Rbl. acidophilus (bottom panel).

The B850 (or B820) α, B50 (or B820) β and B800 BChls are displayed in red,

green and blue respectively.
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Figure 6.3: Autocorrelation functions for LH2 of Rsp. molischianum (top panel),

for LH2 of Rbl. acidophilus (central panel) and for LH3 of Rbl. acidophilus (bottom

panel). The B850 (or B820) α, B50 (or B820) β and B800 BChls are displayed in

red, green and blue respectively,
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Site energies and couplings are combined to build the Hamiltonian in Eq. 6.3,

which has been diagonalized at each time step. In this way, excitonic energies

have been obtained. The probability in Eq. 6.6 has been then calculated for each

pigment of the three systems, for each time step. The results are reported in

Fig. 6.4 and Fig. 6.5 for the B850 (or B820) and B800 respectively. In order to

have a better statistics, the dynamics has been evalueated for 6000 fs, a reasonable

time for the population to decay even in the B800 and it has been averaged over

1000 trajectories per each system. The dynamics in the two rings are completely

different. In Fig. 6.4 the population dynamics in the case of the B850 (or B820)

ring for the three systems are presented. Due to the configuration of these rings,

the pigments are heavily coupled and therefore the exciton is delocalized among

them. The exciton takes about 30 fs to leave the excited site, and to reach the

first neighbors. Then, as soon as these pigments receive the excitations, they

transfer it in a cascade process to their neighbors. Due to different couplings and

environments, small differences in time scales of the process are visible for the

three systems (Fig. 6.4), but the general behavior of the three systems is rather

similar. A different scenario is presented in Fig. 6.5 for the B800 rings of the

three systems. It is clear how the population of the excited site takes about 3 ps

to decay. This reflects the highly localized feature of the excitons located in this

ring: the distance between the BChls is about 21 Å, and the coupling between

the BChls is weaker compared to the coupling between the BChls in the other

ring.This produce an high localization of the excitons. As a result, if one site is

excited, the excitation takes 3 ps to reach the neighboring BChls.

6.4 Conclusions

In this contribution, a theoretical comparison of three different light harvesting

systems is proposed. The systems under investigation are the LH2 complexes of

the bacteria Rsp. molischianum and Rbl. acidophilus and the LH3 coomplex of the

bacterium Rbl. acidophilus. Site energies of individual BChls have been computed

and used as a input for the determination of the spectral densities. Then, they have

been combined to the coupling to determine the population dynamics along a MD

trajectory. The semi-empirical ZINDO/S-CIS method has been used to compute

the vertical transition energies, as well as the TrEsp method has been adopted

to calculate the coupling between pigments. Site energies DOS are evaluated and

compared resulting in a non-perfect Gaussian distributions. Starting from the

individual site energies, the autocorrelation function has been computed for each

BChl, for each complex. The behavior of the BChls in the B850/B820 ring is
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Figure 6.4: Population dynamics for the B850 rings of LH2 of Rsp. molischianum

(top), of LH2 of Rbl. acidophilus (center) and for the B820 ring of LH3 of Rbl.

acidophilus (bottom).
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Figure 6.5: Population dynamics for the B800 rings of LH2 of Rsp. molischianum

(top), of LH2 of Rbl. acidophilus (center) and of LH3 of Rbl. acidophilus (bottom).
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similar for all the systems, and smaller in absolute values respect to their B800

counterparts. Oscillations with a period of about 20 fs are clearly visible and reflect

stretchings of heavy atoms. The Fourier transform of the autocorrelation function

is denoted as spectral density. As well as for the autocorrelation functions. the

B800 ones are larger than the B850 (or B20) ones, even by a factor of two in the

low frequency region. However, an assignment of the peaks present in the spectral

density is a complicated issue. As a second part of this analysis, the dynamic

properties of the three systems have been studied. Starting from the site energies

and the couplings, the time-dependent Hamiltonian has been diagonalized for each

system at each time step. Then, the probabilty to find an exciton in a particular

site has been calculated and populations dynamics for the two rings have been

separately computed. A clear difference between the two rings is visible. The

decaying time for the population dynamics in the B800 rings is much larger than

the one for the B850 (or B820) ring, as a consequence of a weaker couplings

between pigments and an higher localization of the exciton in the excited sites.

Small differences in the time scales are present in the ring of the same kind of three

systems, but the general behavior is similar, as expected due to the presence of the

same pigment in the three systems and to the similar environment surrounding it.
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Chapter 7

Exciton Transfer in

Porphyrin-Metal Organic

Frameworks

Ordered arrays of porphyrins can be constructed using metal organic frameworks

(MOFs), a class of hybrid compounds which have received enormous attention

in the past decades. In this study, the exciton transfer in such porphyrin-MOF

has been studied using a combination of various computational techniques. As a

first step, the thermal fluctuations in the system have been determined using the

ground state DFTB method. Subsequently, the site energies of the porphyrins have

been determined along the DFTB trajectory together with the excitonic couplings

between the pigments. Similarly to studies on biological LH complexes, the auto-

correlation function and the spectral density have been analyzed for each pigment.

Based on the site energies and couplings, a time-dependent model Hamiltonian

of the system can be constructed and the exciton diffusion through the MOF has

been then determined. To this end, the quantum diffusion coefficient (QDC) D

has been computed in all three spatial directions. It has been found to be bigger

in the inter-layer direction. In addition to these calculations, the QDC has been

compared to its classical limit. This comparison shows how strong quantum ef-

fects are in enhancing the transfer efficiency of the exciton. The quantum diffusion

coefficient is, in fact, considerably larger than its classical counterpart.

This work has been done by M. I. Mallus, M. Addicoat, T. Heine and U. Kleinekathöfer. Task

of the author of the present thesis was to perform the ZINDO/S-CIS calculations and to compute

site energies, autocorrelation functions and spectral densities Furthermore, the implementation

of the TrEsp method (except the calculation of the transition charges), as well as the wave packet

dynamic and the D calculations have been part of this thesis work.
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7.1 Introduction

Over the last years, the request of phtovoltaic devices has increased enormously.

The “standard” devices are formed by inorganic-semiconductors, such as silicon,

able to convert the light directly into electricity by the photovoltaic effect. Al-

though silicon-based solar cell are still the most widely used ones, the field of

organic solar cells is growing year by year. In this kind of devices, organic poly-

mers or small organic molecules are used for absorbing light and for the charge

transport to produce electricity [68]. The simplest organic solar cell is made of a

single layer [215], in which the organic active part is embedded between the two

conductors. However, bilayer [216] as well as discrete/bulk-heterojunction [217]

organic solar cells are used nowadays.

Compared to standard solar cells, organic solar cells are more flexible and cheaper

[69]. Nevertheless, the efficiency of such devices have limited their real application.

Nowadays, standard solar cells reach values above 40% [218]. On the contrary, a

10% efficiency was obtained only in 2015 for organic solar cells [73]. Another im-

portant feature, the stability of the devices [72], has driven the search of organic

molecules suitable for such devices. Different organic molecules are used, such as

polyacetylene [215], phthalocyanine [219], polyphenilene [220] and poprhyrin [221]

molecules. Such molecules are repeated to form polymers. The present work fo-

cuses on the latter ones. Porphyrins are organic compounds, composed of four

modified pyrroles interconnected via methine bridges (=CH-). Porphyrins can be

packed to form columns through which the solar energy under exciton form is

transported [221]. These ordered arrays of porphyrins belong to a particular class

of compounds called “metal organic framework” (MOF).

MOFs are one-, two- or three-dimensional structures and they are part of the

coordination-polymers class, in which single entities are repeated and coordinated

to organic ligands [222]. MOFs are essentially composed by a metal ion or a

cluster of them and by an organic atom or molecule called “linker”. The choice

of these two elements determines the properties of the MOF [223]. The MOF

studied in the present work is a SURMOF (Surface-grafted MOF) system and

it is grown layer-by-layer on a particular substrate, the fluorine-doped tin oxide

(FTO), which constitutes the anode of the solar cell. The cathode is composed of

a iodine/triiodine electrolyte. Further technical details on the SURMOF and on

the characterization of the solar cell are given in Ref. [74].

Aim of the present study is to describe the exciton transfer dynamics in the SUR-

MOF porphyrin-based system realized by Liu et. al. [74]. In order to do so, a

multi-scale approach is needed. Differently from the work reported in Chapters
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4, 5 and 6, in which the dynamic of the ground state has been obtained through

MD simulations, here a ground state Density Functional Tight Binding (DFTB)

method is adopted. On top of this trajectory, a quantum-chemical calculation has

been performed to obtain the excited states of the porphyrins. The ZINDO/S-CIS

method has been employed to this purpose [99].

The discussion on the single pigment calculation is reported in Sec. 7.2.1. It

includes site energies, autocorrelation functions and spectral densities for each

pigment. The TrEsp method [105] has been used to calculate the coupling be-

tween the pigments and the results are presented in Sec. 7.3.2. Site energies and

couplings are the building blocks of the system Hamiltonian. Such a Hamiltonian

has been built and the ensemble-averaged wave packet dynamics procedure has

been employed to evaluate the population dynamics, as discussed in Sec. 7.3.3. In

the same Section, the mean squared displacement (MSD) of the exciton and the

diffusion coefficient are presented. Conclusions are given in Sec. 7.4.

7.2 Background and Methods

In this Section a brief discussion on the theoretical background and on the com-

putational methods used in this work will be reported. As previously mentioned,

a multi-scale approach is adopted to study the optical and the exciton dynamic

properties of the porphyrin system.

The standard procedure requires:

• the calculation of the site energies for each pigment;

• the analysis of the autocorrelation function of each pigment, obtained from

the energy gap fluctuation, and its Fourier transform, the spectral density;

• the calculation of the interaction between subsystems, i. e. the Coulomb

coupling;

• the total Hamiltonian to be built to study the dynamics of the wave packet;

• the definition of a diffusion coefficient, D, in order to evaluate the diffusion

properties of the exciton in the lattice made of porphyrins.

The theoretical background needed to understand the single pigment calculation is

reported in the next Sec. 7.2.1. The coupling methods and the ensemble-averagede

wave packet dynamics approach are presented in Sec. 7.2.2. The results obtained

from the simulations are discussed in detail in Sec. 7.3.
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7.2.1 Single-Pigment Analysis

The vertical transition between the ground and the first excited state Ei(t), also

known as “site energies” of each pigment i together with the coupling between

them Vij(t) define the time-dependent Hamiltonian of the system

ĤS(t) =
N∑
i=1

Ei(t) |i〉 〈i|+
N∑

i,j=1
i 6=j

Vij(t) |i〉 〈j| . (7.1)

Both Ei(t) and Vij(t) are time-dependent entities and therefore they have to be

defined for each time step of the trajectory. As a result, in a next step (described

in Sec. 7.2.2), the Hamiltonian will be built and diagonalized at each time. In

this Section, the functions obtained from the site energies will be discussed. In

the present work, the site energies have been calculated using the semiempiri-

cal ZINDO/S-CIS approach (Zerner Intermediate Neglect of Differential Orbital

method with parameters for spectroscopic properties together with the configura-

tion interaction scheme using single excitations only) [99]. This method is often

used for big systems such as light-harvesting systems.

ZINDO/S-CIS has been parametrized for such systems and it is very fast com-

pared to other methods, e. g., some density-functional theory methods (ZINDO

requires 5 s to compute a frame, compared to 45 m of computational time if den-

sity functional based approaches are used). A more detailed discussion on the

site energies was given in Sec. 3.1.1. The properties of the single pigment can be

extracted from the analysis of its autocorrelation function C(t) and more impor-

tantly from its Fourier transform, the spectral density J(ω), which describes the

coupling between the pigment and its environment. C(t) is defined as:

Cij(t) = 〈∆Eij(t)∆Eij(0)〉 (7.2)

where ∆Eij(t) = Eij(t) − 〈Eij〉 denotes the fluctuation of the energy gap Eij(t)

between state i and j with respect to its average value 〈Eij〉. In the present

analysis, i and j are the ground and the first excited states, respectively.

The spectral density J(ω) is defined as:

J(ω) =
βω

π

∫ T

0

dtC(t) cos(ωt) (7.3)

where β = 1/kBT denotes the Boltzmann’s factor. For a more detailed derivation,

see Sec. 3.3. Autocorrelation functions and spectral densities have been computed

for each pigment and the discussion of the results is given in Sec. 7.3.2.

78



7.2. BACKGROUND AND METHODS

7.2.2 Coupling and Wave Packet Dynamics

Another important quantity that must be taken into account is the coupling be-

tween the pigments Vij. In fact, this quantity is needed, together with the site

energies, to build the system Hamiltonian in Eq. 7.1 used to propagate the exciton

wave functions and to define the diffusion coefficient of the system.

The method used in this work to calculate the coupling between pigments is the so-

called TrEsp (Transition charges from Electrostatic Potential) method [105]. This

method calculates the Coulomb coupling between the partial transition charges

qTm in pigment i and qTn in pigment j. Namely:

V TrEsp
ij =

f

4πε0

∑
m,n

qTm · qTn
| Rm −Rn |

(7.4)

where f denotes a screening distance-dependent factor, | Rm −Rn | the distance

between the two partial charges and the sum goes over all the atoms in the two

pigments. A detailed explanation of the TrEsp method, as well as other methods

such as the PDA approximation used to calculate the coupling term of the Hamil-

tonian were given in Sec. 3.1.2. The coupling values for the porphyrins are listed

in Tab. 7.1. The couplings represent the off-diagonal elements of the Hamiltonian

of the system (Eq. 7.1), while the site energies are the diagonal ones. Such a

Hamiltonian can be built and the Schrödinger equation can be solved in order to

propagate the system wave function ΨS(t) to obtain the population dynamics [85]:

i~
∂ΨS(t)

∂t
= HSΨS(t). (7.5)

The wave function ΨS(t) can be expressed as a linear comination of the |µ〉 ex-

citonic states of the system, |ΨS(t)〉 =
∑

µ cµ(t)|µ〉. Furthermore, each excitonic

state can be expanded in the basis of the local m sites:

|µ〉 =
∑
m

cµm|m〉. (7.6)

These steps are needed to obtain the population dynamics, which represents the

probability Pm(t) at each time step to find the exciton wave packet in a particular

pigment m

Pm(t) = |〈m|ΨS〉|2. (7.7)

By calculating this probability, it is possible to observe the evolution of the pop-

ulation of each site on time, i. e. the “population dynamics”. Nevertheless, the

population dynamics itself can not fully describe the excitation energy transfer

properties of a system. In fact, to estimate the transport efficiency, the diffusion
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coefficient D(t) must be computed and analyzed. It is in general defined as the

time derivative of the mean squared displacement 〈x(t)2〉 (MSD) of the diffusing

particle, by solving the diffusion equation. The MSD is defined as:

〈x(t)2〉 =
∑
m

Pm(t)R2
m (7.8)

where Pm(t) denotes the probability (given in Eq. 7.7) and Rm the distance be-

tween pigment m and the excited pigment i. It is assumed that Pi(t = 0) = 1,

i. e., at time t = 0 only pigment i is excited. The diffusion coefficient D(t) is then

obtained as:

D(t) =
d〈x(t)2〉
dt

. (7.9)

As suggested by Dutta and Bagchi [224], the definition of D(t) in Eq. 7.9 can be

compared to its classical limit. For a one-dimensional random walk, D can be in

fact written as [225]:

D =
∑
m

km
2
R2
m (7.10)

where km denotes the rate constant of site m. This comparison is important to

estimate the quantum effects in the exciton transport. The rate constant can be

expressed in terms of the coupling corelation function CV (t) [224]:

km =
2

~2

∫ ∞
0

dtCV (t) =
2

~2

∫ ∞
0

dt〈Vim(t)Vim(0)〉. (7.11)

where i denotes the excited pigment and m a generic pigment of the system. To

compute it, an exponential decay for the coupling autocorrelation function has

been assumed:

〈Vim(t)Vim(0)〉 = V 2
0me

−bmt. (7.12)

By using these approximations, Eq. 7.11 becomes

km =
2V 2

0m

~2bm
. (7.13)

The two definitions of the diffusion coefficient, reported in Eqs. 7.9 and 7.10 have

been computed and then compared. The results are given in Sec. 7.3.3.

7.3 Results

In this Section, the results obtained from the simulations wiill be presented and an-

alyzed. The discussion starts with the description of the system setup in Sec. 7.3.1

and continues with the results on the analysis on the single pigments, which in-

cludes the site energies and their DOSs, the autocorrelation funcions and the

spectral densities, in Sec. 7.3.2. The couplings, the population dynamics, the

MSD and the diffusion coefficient are given in Sec. 7.3.3.
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7.3.1 System Setup

As a starting point for the site energies calculation, the unit cell has been analyzed.

It is composed by four identic pigments as shown in Fig. 7.1. The lattice vectors

(a) (b)

Figure 7.1: Front (a) and side (b) views of the unit cell composed by four por-

phyrins. The figures were obtained using the VMD program [43].

are a = 23.9620 Å, b = 23.9621 Å and c = 13.4922 Å for the x, y and z axes

respectively. The porphyrins in the same z-plane are differently oriented, as it

can be seen in Fig. 7.1. Even if they are chemically identic, the dynamics of the

ground state was performed for the four pigments independently. The site energies

calculations therefore, have been performed for every pigment of the unit cell. The

ZINDO/S-CIS approach described previously in Sec. 3.1.1 has been employed to

calculate the vertical transitions from the ground to the first excited state for each

pigment. The semi-empirical method has been applied in a QM/MM framework

(see Sec. 3.1.1). To perform a good QM/MM calculation, a symmetric and big

enough classic environment is needed in order to avoid boundary effects due to the

small size of the unit cell. Several copies of the unit box are therefore needed. The

configuration used to perform the site energies calculation is shown in Fig. 7.2.

It consists of 3 × 3 × 4 unit cells. The configuration shown in Fig. 7.2 has been

created for each pigment in the unit cell, in order to place each of them at the

center of the final structure, to create a fully symmetric environment around that
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(a) (b)

Figure 7.2: Front (a) and side (b) views of the final configuration adopted for the

site energies calculation. One of the pigment of the unit cell is placed in the center

of the structure. The figures were obtained using the VMD program [43].

pigment. Differently from the case of the other LH systems studied in Chapters

4, 5 and 6 the classic environment in this case is made of other pigments instead

of water, protein or lipids. Therefore, we expect a different frequency response to

the thermal vibrations of the environment.

A different configuration with respect to the one presented above in Fig. 7.2, has

been adopted for the coupling calculations and for building the Hamiltonian to

evaluate population dynamics and diffusion coefficient. As it will be explained

in the next Sec. 7.3.3, the diffusion coefficient was found to be significant along

the z-axis only. Due to this reason, to save computational time, the unit box was

copied only in the z direction. It resulted in 1 × 1 × 2 boxes, i. e., a four-layers

structure, with two porphyrins per z-layer. This final configuration is shown in

Fig. 7.3.

7.3.2 DOS, Autocorrelations and Spectral Densities

The energy gaps between ground and first excited states have been computed

for each pigment independently and their fluctuations over time as well as their

density of states are depicted in Fig. 7.4. Site energies have been calculated on top

of a DFTB+ trajectory [226], performed at 300K and for 300 ps, with a 1 fs time
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(a)

1 2 5 7 

4 3 6 8 

(b)

Figure 7.3: Front (a) and side (b) views of the final configuration adopted for

the coupling calculations. Numbering of porphyrins is showed in panel (b). The

figures were obtained using the VMD program [43].

step, for a total of 300.000 snapshots. The structure setup has been previously

shown in Fig. 7.2. As can be seen in Fig. 7.4, the four sites behave quite similarly,
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Figure 7.4: Energy gaps fluctuations over time for the four pigments, for the first

400 fs of the trajectory. The densities of states are depicted in the inset.
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Figure 7.5: Autocorrelation functions for the four poprhyrins present in the unit

box.
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Figure 7.6: Spectral densities for the four poprhyrins present in the unit box.

as expected, since they have the same chemical structure and are surrounded by

the same environment. The distributions of the density of states (DOS), reported

in the inset of Fig. 7.4, are symmetric and Gaussian for the four pigments, with

some exceptions represented by the peaks in the inset of Fig. 7.4. In general (e. g.

see Chapter 6) these distributions show a non-Gaussian tail, which is absent here.
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This can be due to the different nature of the classical environment with respect

to the “standard” present in the systems previously studied. The force-field, as

showed by Chandrasekaran et. al., for the case of the FMO complex [144], can also

play a role in determining the shape of the DOS and in turn, the behavior of the

spectral densities. Having computed the site energies, the four autocorrelation

functions and spectral densities can be built by using Eqs. 7.2 and 7.3. They

are reported in Fig. 7.5 and Fig. 7.6, respectively. A similar behavior of the

four DOS is reflected in a similar form for both autocorrelation functions and

spectral densities for the pigments in the unit box (Fig. 7.5 and Fig. 7.6) The first

initial decay of the autocorrrelation functions is in agreement with the 5 fs time-

scale obtained for the similar pigment BChl a of other LH complexes previously

analyzed (see Chapter 4). On the contrary, the absolute value of the oscillations

is one order of magnitude bigger than the one of the case of LH2, for example,

as showed in Chapter 4. Again, this can be due to the environment, composed in

this case, by “copies” of the pigment under study. The spectral density describes

the frequency-dependent coupling between the pigment and its environment (see

Sec. 3.3). Since in this special case the environment is composed by copies of the

pigments, a calculation without point charges (pc) has been performed to see if

internal or external modes determines the behavior of the single pigment. As an

example, the case of porphyrin 1 is shown in Fig. 7.7. The system response does

not depend on the bath fluctuations: the frequency response is due to the internal

modes. A similar behavior was found for the PE545 complex by Aghtar et. al. [66].
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Figure 7.7: Autocorrelation function (top) and spectral density (bottom) in the

case of presence and absence of point charges in the MM region. Reported, as

example, is the case of Porphyrin 1 of the unit cell.

7.3.3 Coupling, Population Dynamics and Diffusion Coef-

ficient

As the second part of this work, the coupling between pigments has been com-

puted by means of Eq. 7.4. In order to do so, the unit cell has been copied different

times, similarly to the case of site energies, but with the configuration shown in

Fig. 7.3. This structure has been adopted to save computational cost, since the
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diffusion coefficient in the x-y plane was found to be negligible with respect to the

one in the z-direction, where the different layers have been placed. The poprhyrins

are numbered according tothe porphyrins ID (P. ID) reported in Fig. 7.3. The

layers are enumerated in the z-increasing direction.

P. ID 1 2 3 4 5 6 7 8

1 62.9 -1.4 -7.7 8.4 3.0 3.0 1.5

2 62.9 -5.0 -6.3 54.1 -0.7 13.3 1.2

3 -1.4 -5.0 44.4 -4.5 55.3 -2.2 11.4

4 -7.7 -6.3 44.4 -3.3 5.4 -1.5 1.1

5 8.4 54.1 -4.5 -3.3 -7.7 62.9 -1.4

6 3.0 -0.7 55.3 5.4 -7.7 -6.3 44.4

7 3.0 13.3 -2.2 -1.5 62.9 -6.3 -5.0

8 1.5 1.2 11.4 1.1 -1.4 44.4 -5.0

Table 7.1: Average coupling values for the four-layers system [10−4 eV].

The transition charges in Eq. 7.4 were computed by using the Multi-Wave Func-

tion (MultiWFN) tool [106]. The porphyrin structure was optimised using PBE/6-

311++g(2d,p) in Gaussian09. Then the lowest 5 excited states (either singlets or

triplets) were calculated using TD-DFT (same functional and basis set). All exci-

tations with coefficients larger than 0.00001 were counted. The transition charges

corresponding to the excitations with the highest oscillator strength were calcu-

lated using MultiWFN 3.3.7. The coupling between the pigments composing the

four-layer structure have been calculated for each time step of the trajectory. The

couplings averaged over time and reported in Tab. 7.1. As can be seen in Tab. 7.1,

the couplings between porphyrins with same x-y coordinates are stronger than

the others. This is a first indication of the diffusion coefficient to be bigger in the

z-direction than in the other two directions.

In order to compute the population dynamics and the diffusion coefficient, the

Hamiltonian has been built and diagonalized for each time step. The ensemble-

averaged wave-packet dynamics method is employed (see 3.4) to this end. The

population dynamics has been computed for 10 ps, and averaged over 300 trajec-

tories. As initial configuration, the probabilty to find the exciton at time t = 0

is assumed to be 1 in pigment 1. Starting from this initial condition, the time

evolution operator is applied to the wave function and Eq. 7.7 is computed. In the

rest of the discussion, the diffusion is analyzed in terms of z-layers, as it should

be clear by looking at Tab. 7.1 that the couplings in the x-y plane are too small
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Figure 7.8: Population dynamics in the four layers poprphyrin-based MOF system.

to allow the diffusion in the x-y plane. It is interesting to see how the population,

initially located in the first layer, is spread into the lattice. This can be seen in

Fig. 7.8. The exciton arrives at layer 2 first, because it is the closest one and

therefore the most higly coupled to the excited layer 1. However, as soon as the

layer 2 gets excited, the excitation is transmitted to the layers 3 and 4 due to the

strong coupling between these layers. In fact, as it can be seen in Tab. 7.1, the

layer 3 receives contributions both from layers 1 and 2, which explains why the

population in this layer reaches the big value reported in Fig. 7.8 The lower pop-

ulations in Fig. 7.8 correspond to the populations in porphyrins in layers shifted

in the x and y directions. These layers, as expected, never get populated. The

non-zero values of the population in these layers can be explained as a drawback

of the ensemble-averaged wave-packet dynamics method, which can not reach ap-

propriate thermal equilibrium distributions at long-time scales [85]. For the same

reason, at time t = 4 ps the four layers are equally populated. Starting from

these considerations, the MSD and the diffusion coefficent have been computed

and reported in Fig. 7.9. The result show how important quantum effects are in

enhancing the diffusion of the exciton. As it can be seen in Fig. 7.9, at short time-

scale, the quantum diffusion coefficient is much higher than its classical value of

D=0.012Å2/fs. The long-time values of the diffusion coefficient are not taken into

account in this consideration since after 4 ps there is no diffusion, as can be seen

also in the population dynamics reported in Fig. 7.8. A similar study on diffusion

coefficient has been performed by Fujita and co-workers [227] for the chlorosome
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Figure 7.9: Diffusion coefficient obtained by the derivative of the MSD (blue line)

and its classical limit (red-dashed line). The inset shows the MSD.

system. Similarly to the case of the present work, the authors computed the

diffusion coeffcient and found a privileged direction for the exciton transport.

7.4 Conclusions

The SURMOF-porphyrin based system has been studied in the present work and

the exciton diffusion has been analyzed. Starting from a DFTB trajectory, the

ZINDO/S-CIS method has been employed within a QM/MM framework to com-

pute the site energies and their distribution, DOSs. These DOSs result in a very

symmetric Gaussian-like distributions, and they behave quite similar for the four

pigments under study.

Autocorrelation functions and spectral densities have been analyzed as well for

each pigment of the unit cell. Again, it can be concluded, as expected, that the

pigments behave similarly. In addition to that, it has been shown how the internal

modes are responsible for the single-pigment behavior, by comparing autocorre-

lation functions and spectral densities in case of presence and absence of point

charges in the MM region.

In a second step, couplings have been evaluated and the total Hamiltonian of the

system has been built to study the exciton transfer. From the joint analysis of

coupling values and population dynamics, it can be concluded that the exciton

89



7.4. CONCLUSIONS

moves in the z-axis only, the inter-layer direction. These findings have been used

as a input for the calculation of the diffusion coefficient, which has been compared

to its classical limit. As a result, it has been found that quantum effects are im-

portant in enhancing the diffusion of the exciton in the porphyrin lattice.

However, it must be mentioned that this analysis is not complete yet. In fact, only

the exciton Hamiltonian has been considered to analyze the diffusion properties

among the porphyrin lattice. Due to the small inter-layer distance (about 6 Å),

charge transfer effects could have an important role and a mixed exciton-charge

Hamiltonian should be considered to take into account all the possible physical pro-

cesses. A similar work was proposed for the organic semiconductor Dinaphtho[2,3-

b:2’3’-f]thieno[3,2-b]-thiophene (DNTT) by Fujita and co-workers [228], and we

are currently working in this direction to improve the results already obtained.
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Chapter 8

Conclusions

Light-harvesting (LH) processes occurring in plants, algae and bacteria have at-

tracted the attention of the scientists for many years. Photosynthesis is a cascade-

process, in which the energy captured by the harvesting pigment is transferred to

different compounds until charge separation is reached [2]. Although the process

is now well understood at molecular and atomic details, from both experimental

and theoretical point of views, we cannot recreate the light-harvesting process with

same efficiency and stability in artificial systems yet [1]. This is mainly due to

the different time-scales involved and to the fact that both quantum and classical

phenomena seem to play a role contemporaneously [77].

Aim of the present thesis was to contribute to clarify the role of one of the

timescales involved in the energy-transfer process, the dephasing time (Chapters 4

and 5), to study the excitation energy transfer phenomena in different LH systems

(Chapter 6) and to describe the exciton-diffusion process in a bio-inspired artificial

system (Chapter 7).

To this end, computer simulations have been performed and a combined quantum-

classical approach has been employed. Molecular dynamics simulations have been

performed for each system under study, to obtain thermal fluctuations of the

ground states of each pigment composing the complex. The semi-empirical method

ZINDO/S-CIS [99] has been employed in a QM/MM framework to calculate site

energies fluctuations and their distributions, the density of states. These distri-

butions have been analyzed and in a second step used to build autocorrelation

functions and spectral densities for each site. In this way, information on the

influence of the environment have been studied [109]. Coulomb coupling among

pigments has been evaluated as well by employing the TrEsp method [105] and

used, together with the site energies, to build the time-dependent Hamiltonian

of the system. Such Hamiltonian has been used to apply the ensemble-averaged

wave-packet dynamics approach to quantitatively estimate the exciton transfer
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properties of the LH systems [85].

In the first part of the thesis, the dephasing phenomenon has been studied

in detail. Such phenomenon must be analyzed in order to understand the quan-

tum nature of the excitation-energy transfer process, and its efficiency in particu-

lar. Starting from the site energies fluctuations, an analytic method has been

developed to relate such fluctuations to the dephasing time of each pigment.

Such method is based on the relation firstly found by Akimov and Prezhdo in

2013 [75]. The method has been applied to a large set of data, which includes

LH2 [151], FMO [143, 144], PE545 [66], DNA [145], DNA Photolyase [146] and

Cryptochrome [147] complexes. It has been shown how the relation between the

two quantities was universal and independent from system and method used in

the simulations [126]. Moreover, it was shown how the autocorrelation function of

the single pigment can be seen as its “molecular fingerprint”: in fact, it determines

the dephasing properties of the pigment itself. Subsequently, the method was ex-

tended to the study of the whole LH complexes. The study was applied to the case

of the LH2 [151] complex, the FMO trimer [143, 144], the PE545 system [66] as

well as the PE555 aggregate [165]. In this case, the relation refers to the excitonic

gaps and even to the neighboring gaps. Again, it was possible to conclude that

the relation between dephasing time and excitonic gap fluctuation was still valid,

with the same universality feature. The autocorrelation functions play a role in

determining the proportionality constant of such relation.

This work on dephasing processes can be seen as a starting point in understand-

ing dephasing-relate phenomena, and it can serve as a input of further theoretical

studies, such as the surface hopping method [163,164].

The second part of the present thesis was focused on the study of the environ-

mental effects on three similar LH complexes, the LH2 complexes of the purple

bacteria Rhodospirillum molischianum [45] and Rhodoblastus acidophilus [201].

and the LH3 complex of Rhodoblastus acidophilus [42]. These three systems are

composed of the same kind of pigment, the bacteriochlorophyll a (BChl a). How-

ever, the number of pigments, as well as absorption bands and environments are

slightly different. These variations make the comparison between them an inter-

esting analysis. The results show how these effects can lead to differences in the

coupling between pigments, in the interaction with the environment and in the

exciton transfer dynamics.

As the final part of the present work, the porphyrin-based MOF system was
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studied. This system was created and used to build an organic solar cell by Liu

and co-workers in 2015 [74]. In the present thesis, simulations have been per-

formed to understand the exciton diffusion in the porphyrin lattice. Similar to

what has been done for the other LH complexes, site energies have been com-

puted for each pigment by using the ZINDO/S-CIS method on top of a DFTB

trajectory. Autocorrelation functions and spectral densities have been analyzed,

resulting in the primary role of internal modes in determining the frequency-

response of the system. The site energies were subsequently combined to coupling

studies (again, by employing the TrEsp method) to compute the time-dependent

Hamiltonian of the system, used as a input of the ensemble-averaged wave-packet

dynamics method. The diffusion coefficient was finally analyzed. In particular,

thanks to the comparison between classical and quantum definitions of the dif-

fusion coefficient, it was possible to show the importance of quantum effects in

the exciton transport. However, we plan to extend this last study in order to

consider charge-transfer (CT) effects, which might occur in the system due to its

configuration. A similar work has been proposed by Fujita et. al. [228] for the case

of the Dinaphtho[2,3-b:2’3’-f]thieno[3,2-b]-thiophene (DNTT) thin films, a type of

organic semiconductor recently introduced [229]. To this end, a mixed exciton-

charge transfer Hamiltonian must be built to include the two physical phenomena

occurring in the system, relate to the presence of mixed CT states and Frenkel

excitons [227].

Due to the computational cost associated to the theoretical study of the LH

systems, many approximations are, in general, adopted and possible future ad-

vancements strongly depend on their accuracy and consistency. Rosnick and Cu-

rutchet, for example, recently proposed a study to overcome the so-called “geom-

etry mismatch” problem due to the use of low-quality structures obtained via MD

simulations [154]. A full-quantum description of the LH systems is not possible

in a dynamic picture yet, but it has been already proposed for a static configu-

ration [100]. These drawbacks, however, hardly concern the actual computational

resources and algorithms. Future applications and improvements will necessarly

pass through the implementation of the quantum-chemistry methods in a more

sophisticated fashion, in order to design artificial LH complexes able to mimic the

nature.

As an extension of this work, we are currently working on a chromatophore

system [230]. Chromatophores are cells, or group of cells, containing the LH com-

plexes. They are composed of about 200 protein complexes, where the number de-
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pends on the organism: 60-100 LH2 complexes, 10-20 LH1-RC complexes, 1 ATP-

synthase, and 5-10 Cytochrome b-Cytochrome c1 complexes. The specific system

under study is the chromatophore of the bacterium Rhodobacter sphaeroides . The

simulation box is composed of 70.462.162 atoms, and it is the largest simulation

of a LH complex. The aim of the work will be to perform the quantum-chemistry

calculations on top of a MD trajectory already performed, to evaluate the exci-

ton transfer properties of the system. The site energies calculations for the 1701

pigments of the 63 LH2 systems have already been performed by the author of

the present thesis, and we plan to analyze differences in the site energies distribu-

tions as well as in the autocorrelation functions and spectral densities. In future,

the LH1-RC complexes will be studied as well, aiming to evaluate the transfer

properties among the different LH complexes of the chromatophore.
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standing ion conductance on a molecular level: An all-atom modeling of the bacterial porin

OmpF. Biophys. J., 97:1898–1906, 2009.

[121] R. Schulz, A. V. Vargiu, F. Collu, U. Kleinekathöfer, and P. Ruggerone. Functional
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fluence of force fields and quantum chemistry approach on spectral densities of bchl a in

solution and in fmo proteins. J. Phys. Chem. B, 119:9995–10004, 2015.
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There Elliptic Distortion in the Light Harvesting Complex 2 of Purple Bacteria? J. Phys.

Chem. B, 115(44):12947–12953, September 2011.

[214] Daniel R. Martin and Dmitry V. Matyushov. Non-Gaussian Statistics and Nanosecond

Dynamics of Electrostatic Fluctuations Affecting Optical Transitions in Proteins. J. Phys.

Chem. B, 116(34):10294–10300, August 2012.

[215] B.R. Weinberger, M. Akhtar, and S. C. Gau. Polyacetylene photovoltaic devices. Synth.

Met., 4:187–197, 1982.

[216] H. Hoppe and N. S. Sariciftci. Organic solar cells: An overview. J. Mat. Res., 19:1924–

1945, 2004.

[217] W. Cao and J. Xue. Recent progress in organic photovoltaics: device architecture and

optical design. Energy & Environ. Science, 7:2123, 2014.

[218] R. King, D. Bhusari, D. Larrabee, X.-Q. Liu, E. Rehder, K. Edmondson, H. Cotal, R. K.

Jones, J. H. Ermer, C. M. Fetzer, D. C. Law, and N. H. Karam. Solar cell generations

over 40% efficiency. Progress in Photovoltaics, 20:801–815, 2012.

[219] D. Kearns and M. Calvin. Photovoltaic effect and photoconductivity in laminated organic

systems. J. Chem. Phys., 29:950, 1958.

[220] J. M. Halls, K. Pichler, and R. H. Friend. Exciton diffusion and dissociation in a poly(p-

phenylenevinylene)/c60 heterojunction photovoltaic cell. Appl. Phys. Lett., 68:3120–22,

1996.

[221] H. Zhou, X. Li, T. Fan, F. E. Osterloh, J. Ding, E. M. Sabio, D. Zhang, and Q. Guo.

Light harvesting: Artificial inorganic leafs for efficient photochemical hydrogen production

inspired by natural photosynthesis. Adv. Mater., 22:951–956, 2010.

[222] S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S Kitagawa, L Öhrström,
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