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Abstract

A continuing trend of miniaturization and a growing demand for information are two

major responsible drivers of new communication systems, which therefore increasingly

rely on embedded technology, as illustrated by the Internet of Things and Cyber-

Physical Systems. The embedded nature of future wireless networks implies not only

power-limitation of devices, but also a likelihood that a greater share of traffic will

include highly sensitive and personal information, which together call for new wireless

security mechanisms that do not rely on the overhead-heavy and coordination-intense

cryptographic protocols of today. Physical layer security is an upcoming research area

that makes use of properties of the physical layer and seeks the possibility of achieving

perfect secrecy in the wireless channel.

In this thesis, we study the impact of topology and interference onto the physical layer

wireless security of random networks. In particular, we derive closed-form expressions

for the secrecy rate distribution, average secrecy rate, secrecy outage probability, se-

crecy transmission capacity of Poisson Point Process (PPP) based random networks

under various fading channels (Rayleigh, Nakagami-m, Shadowing), and colluding

eavesdroppers with or without considering correlated channels. We also analyze the

impact of interference on the secrecy metrics of corresponding random networks. Specif-

ically, we study the aggregation of interference in random networks and its impact on

secrecy, by utilizing results of PPP.

At the end, we perform an analysis of the secrecy outage of random networks under

the Matérn Hard-core Point Process model, with the objective of shedding light on the

security limitations/capabilities inherently encountered in cellular systems.

iii



Contents

Acknowledgments ii

Abstract iii

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Overview and Contributions . . . . . . . . . . . . . . . . . . . . . 4

2 State of the Art 7

2.1 Need for Security in Wireless Networks . . . . . . . . . . . . . . . . . . . 8

2.1.1 Security Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Essentials of Security Measure . . . . . . . . . . . . . . . . . . . 10

2.2 Need for Physical Layer Security . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Security at Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Stochastic Geometry and Secrecy . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Secrecy and Network Topology . . . . . . . . . . . . . . . . . . . 14

2.4.2 Secrecy and Interference . . . . . . . . . . . . . . . . . . . . . . . 18

3 Single Antenna Systems in Unicast Channels: Single Eavesdropper 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 AWGN Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Nakagami Fading Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Connection Outage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Single Antenna Systems in Unicast Channels: Multiple Eavesdrop-

pers 48

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



CONTENTS v

4.2 Nakagami Fading Case: Approach 1 . . . . . . . . . . . . . . . . . . . . 49

4.3 Nakagami Fading Case: Approach 2 . . . . . . . . . . . . . . . . . . . . 62

4.4 Many Eavesdroppers and Legitimate nodes . . . . . . . . . . . . . . . . 75

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5 Correlation and Collusion 80

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Collusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Aggregate Eavesdroppers’ Path Gain . . . . . . . . . . . . . . . . 88

5.3.2 Asymptotic Expressions . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Interference 103

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Aggregate Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Modeling Is as a Gamma Variate . . . . . . . . . . . . . . . . . . 108

6.2.2 Modeling Is as a Log-Normal Variate . . . . . . . . . . . . . . . . 108

6.3 Secrecy Outage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Nakagami-m Fading Channel Model . . . . . . . . . . . . . . . . 110

6.3.2 Shadowed Fading Channel Model . . . . . . . . . . . . . . . . . . 111

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7 Multiple Antenna Systems 115

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Path Gain Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.1 Path Gain Distribution of the Legitimate Node . . . . . . . . . . 118

7.2.2 Path Gain Distribution of the “Best” Eavesdropper . . . . . . . 119

7.3 Secrecy Outage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3.1 Secrecy Outage Probability . . . . . . . . . . . . . . . . . . . . . 120

7.3.2 Conditional Secrecy Outage Probability . . . . . . . . . . . . . . 120

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Generalizing Topologies 128

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Secrecy Outage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 Secrecy Outage Probability: Nearest BS Case . . . . . . . . . . . 133



vi CONTENTS

8.2.2 Secrecy Outage Probability: Optimal BS Case . . . . . . . . . . 134

8.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

9 Conclusions and Future Directions 140

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Own Publications 142

Bibliography 144



List of Figures

3.1 Random network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 S-Graph in AWGN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Irregular secrecy neighborhoods . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Uncertainty of dominant eavesdropper . . . . . . . . . . . . . . . . . . . 29

3.5 Regularized secrecy neighborhood in S-Graph . . . . . . . . . . . . . . . 32

3.6 Effect of fading onto Pr{Cs:k > 0} in the case of unitary relative intensity

ratio (%=1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 Effect of distance onto Pr{Cs:k > 0} in the case of unitary relative

intensity ratio (%=1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Effect of distance onto Pr{Cs:k > 0} in the case of Rayleigh fading (m = 1). 40

3.9 Effect of relative intensity ratio onto Pr{Cs:k > 0} in the case of Rayleigh

fading (m = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.10 Critical relative intensity ratio as a function of the node index (distance)

in the case of Rayleigh fading. . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 Connection outage probability Pco as a function of node index under

Nakagami-m fading for various m, with Rt = 1, λ` = 2 and α = 4 . . . . 45

4.1 S-Graph in Fading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Average eavesdropper path loss as a function of intensity ratio and m. . 54

4.3 Illustration of the accuracy of the exponential model for the extreme

path loss distribution with various K’s. . . . . . . . . . . . . . . . . . . 56

4.4 Kullback-Leibler divergence between exponential distribution and its

empirical distributions as a function of m and for various K’s. . . . . . . 57

4.5 Kullback-Leibler divergence between exponential distribution and its

empirical distributions as a function of m and for various K’s. . . . . . . 60

4.6 Effect of distance (node index) onto Pr{Cs:k > 0} in the case of unitary

relative intensity ratio (%=1). . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



viii LIST OF FIGURES

4.7 Probability that the furthest K-th eavesdropper has the largest path

gain than all other K − 1 eavesdroppers. . . . . . . . . . . . . . . . . . . 65

4.8 Illustration of the accuracy of the gumbel model for the extreme nakagami-

m distribution for a given K. . . . . . . . . . . . . . . . . . . . . . . . . 68

4.9 Illustration of the accuracy of the GEV model for the extreme path gain

distribution for a given K. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.10 Secrecy outage as a function of node index in the case of Rayleigh fading

(m = 1) and for various rates, with unitary reference SNR (ρ = 1). . . . 73

4.11 Secrecy outage as a function of node index and for various reference

SNR’s (ρ = {0.5, 1, 5, 25}), with unitary rate (Rs = 1). . . . . . . . . . . 74

4.12 Regular secrecy neighborhoods . . . . . . . . . . . . . . . . . . . . . . . 76

4.13 Kullback-Leibler Divergence between k-th best node path loss difference

distribution and its empirical distributions as function of m. . . . . . . . 78

5.1 Secrecy outage probability Pout as a function of node index under Nakagami-

m fading for various secrecy rates, with λ` = λe = 1 and m = 1. . . . . . 84

5.2 Secrecy rate as a function of eavesdroppers’ intensity, with λ` = 2, α = 2,

m = 1, k = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Illustration of a legitimate pair neighborhood with guard zone distance

rmin and a pool of colluding eavesdroppers. . . . . . . . . . . . . . . . . 89

5.4 Edgeworth and Gamma models Vs Empirical (α = 4, m = 1). . . . . . . 92

5.5 Divergence between empirical and Gamma distributions for various path

loss exponents α, eavesdropper density λe and fading figure m. . . . . . 94

5.6 Divergence between empirical and Gamma distributions for various path

loss exponents α, eavesdropper density λe and fading figure m. . . . . . 95

5.7 Truncated evaluation of ζ̂e(K) under different channel conditions. . . . . 96

5.8 Secrecy outage probability as a function of legitimate distance in the

case of Rayleigh fading (m = 1) and for various rates, with λe = 1 and

rmin = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.9 Secrecy transmission capacity as a function of eavesdropper’s density

and for various legitimate distances r`, with Pco = 0.5 and λ` = 1. . . . 100

5.10 Secrecy transmission capacity as a function of guard zone distances in

the case of Rayleigh fading (m = 1) and for various legitimate distances

r`, with Pco = 0.5 and λ` = 1. . . . . . . . . . . . . . . . . . . . . . . . . 101



LIST OF FIGURES ix

6.1 Edgeworth, Gamma and Log-Normal models compared to empirical dis-

tribution (α = 4, m = 1, λs = 1). . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Secrecy outage as a function of eavesdropper’s equivocation rate (β`) for

the case of m = 1 and m = 15, respectively. . . . . . . . . . . . . . . . . 112

6.3 Secrecy outage as a function of eavesdropper’s equivocation rate (β`) for

the case of m = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Secrecy outage probability as a function of legitimate distance for various

fading figure m, with λe = 0.0001, θ = 90 and N = 5. . . . . . . . . . . . 122

7.2 Secrecy outage probability as a function of eavesdropper density for

various fading figure m and different λe, with r` = 50m and θ = 90. . . . 124

7.3 Conditional secrecy outage probability as a function of number of trans-

mit antenna for various Rs, with λe = 0.001, r` = 50m, and θ = 90. . . . 125

7.4 Conditional secrecy outage probability as a function of eavesdropper’s

density for various number of transmit antenna and different r`, with

m = 1 and θ = 90. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1 Probability of achieving a non-zero secrecy capacity, expressed as a

function of the density of eavesdropper’s in the scenario 8.2.1 (Case 1:

Part 1 and 2), with α = 2 and λBS = 1. . . . . . . . . . . . . . . . . . . 135

8.2 Probability of achieving a non-zero secrecy capacity, expressed as a

function of the density of BS’s in the scenario 8.2.1 (Case 1: Part 2),

with α = 2 and λe = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.3 Probability of achieving a non-zero secrecy capacity, expressed as a

function of eavesdropper’s density in the scenario 8.2.2 (Case 2), with

α = 4 and λBS = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138



List of Tables

2.1 Possible security threats . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Security essentials and its implementations . . . . . . . . . . . . . . . . 11

3.1 Polynomial terms in Eq. (3.38) . . . . . . . . . . . . . . . . . . . . . . . 42

x



Chapter 1

Introduction

1.1 Background and Motivation

As the variety and the number of users of the wireless media grows, wireless security

is becoming crucial in communication systems, leading the research community to

investigate information theoretic approaches to achieve secrecy in the wireless channel.

One approach to meet current requirements is physical-layer information-theoretical

security [1–5], which aims at eliminating the need of cryptography altogether. The

foundations of information-theoretic wireless security were laid by Ozarow and Wyner

[6], who coined the term “wire-tap” channel in reference to a communication channel

in which an intruder (hereafter eavesdropper) shares with the receiver full information

on the encoding and randomization procedures introduced by the transmitter. In that

work, the secrecy capacity region of a discrete memoryless channel was characterized.

Also considering a discrete memoryless channel, Csiszár and Kröner arrived indepen-

dently at a result to the same effect, by establishing that a broadcasting source can

simultaneously send secret information to a user [7], which has became known as the

broadcast channel with confidentiality (BCC). This notion of secrecy capacity was

subsequently generalized to the additive white Gaussian noise (AWGN) channel by

Cheong and Hellman [8], who furthermore showed that the maximum rate achievable

in the wire-tap channel is in fact the difference between the capacities of the direct and

the tap channels, respectively.

1



2 1.1. BACKGROUND AND MOTIVATION

These seminal works established the notion that any wireless channel has an intrinsic

secrecy capacity, which is fundamentally determined by how the power of the signal

at a legitimate destination compares against that at an eavesdropper. For two decades

the area of information-thoretic security remained active only in a small circle within

the information and communication theory communities. Recently, however, Cheong

and Hellman’s result from the AWGN channel was generalized to fading channels in

two independent works [9,10], and simultaneously, Csiszár and Kröner’s BCC result [7]

was also generalized to fading channels by Liang et al. [11].

Obviously, early works in the area such as those aforementioned are marked by signifi-

cant abstraction from practical applicability, with various factors of relevance ignored

for the sake of simplicity, to include: a) the fact that wireless channels are often subjected

to fading ; b) the fact that communicating devices compose networks often of unknown

topology (randomly distributed nodes); and c) the possibility that intruders cooperate

in order to eavesdrop on legitimate nodes’ messages; d) interference exists in between

devices in wireless networks.

A few decades later, the increasing prospect of putting information theoretical secrecy

concepts to actual use has motivated the community to deepen its understanding

of the inherent secrecy capabilities of wireless systems by taking into account more

realistic conditions of the wireless medium. Addressing point a, for instance, the secrecy

capacity of wireless fading channels was investigated in [10, 11], with expressions for

the outage probability and average secrecy capacity of quasi-static fading channels also

derived in [9].

Considering point b, and specifically when studying wireless secrecy in random networks

using stochastic-geometric tools [12], the notion of secrecy graphs has emerged [13,14].

Beyond the obvious implications on the likelihood of legitimate and eavesdropping

signal-to-noise ratios (SNRs), an important distinction between secrecy graphs and

the “conventional” point-to-point wiretap channel is that distributions and densities of

nodes (both legitimate and eavesdropping) play a major role not only on how much

secrecy rate is achievable, but also on how to measure it. Indeed, a debate on how

to assess the achievable communication rates in random networks had been initiated

a decade earlier by Gupta and Kumar [15], producing various results ranging from

the capacity of single channels [16] within the network, to their scaling laws [17], to

network-wide metrics such as the transmission capacity [18].
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Work on the secrecy rates of random networks is thus naturally following on the

footsteps of that earlier discussion. For instance, the secrecy rate of unicast sessions

in the presence of multiple eavesdroppers was studied in [19, 20], the scaling laws of

secrecy rates were studied in [21–23] and the secrecy transmission capacity of random

networks for given connection and secrecy outage were studied in [24].

To draw another parallel with the literature on random networks with reference to the

point c, since it has been well demonstrated that cooperation is fundamental to increase

the capacity and reduce the outage of communication systems subjected to the fading

and unknown topologies [25–28], it can be said that ignoring cooperation amongst

eavesdroppers (i.e., collusion) when addressing the question of achievable secrecy outage

and average secrecy capacity of random networks is somewhat contradictory to Wyner’s

original notion of “wire tapping”. In other words, if cooperation is a part of the

communication system used by legitimate nodes, it must be assumed that the same

strategy will be exploited by intruders as well.

Literature on the impact of eavesdroppers’ collusion in random networks is not vast,

but the issue has not entirely escaped the attention of the community. For instance,

the secrecy capacity of a legitimate link in the presence of colluding eavesdroppers in

AWGN was studied in [29], and the MIMO secrecy non-outage in Rayleigh fading and

eavesdroppers’ collusion was studied in [30]. More recently, the scaling laws on secrecy

capacity in large-scale wireless networks by considering eavesdroppers’ collusion were

characterized in [23,31].

With reference to point d, besides topology, interference is another key parameter in

characterising the performance of a random network. To some extent interference is

related to the network topology [32], in the sense that modifications of the latter lead

to variations in the former. In light of the need to modernize topological models –

as already discussed – such relationship in itself again speaks in favor of paying more

attention to the impact of interference onto the secrecy of random networks.

In this thesis, we investigate various parameters of interest such as the node degree

of secrecy graphs, the secrecy outage probability, the unicast secrecy capacity, and the

secrecy transmission capacity of random networks of various topological characteristics,

employing emerging stochastic geometric models, as well as alternative techniques be-

yond stochastic geometry itself. Furthermore, we investigate the impact of interference,

considering the case of interference aggregation.



4 1.2. THESIS OVERVIEW AND CONTRIBUTIONS

1.2 Thesis Overview and Contributions

In this section, we briefly describe the contributions of the thesis.

Chapter 3

In Chapter 3, we consider the single antenna systems of random networks, as modeled

by S-Graphs. We conducted a detailed analysis of the probability of non-zero secrecy

capacity of a unicast channel under Nakagami-m block fading with a single eavesdropper

in its vicinity.

The contributions of this chapter are:

• Obtaining the expression for probability of non-zero secrecy capacity of unicast

channel under AWGN channel.

• Deriving the expression of probability of non-zero secrecy capacity of unicast

channel in presence of single eavesdropper under Nakagami-m fading channel.

• Deriving a new compact expression for connection outage probability under fading

channel.

Chapter 4

In Chapter 4, we investigate the secrecy outage probability of unicast channels in

random networks exposed to unknown numbers of randomly located eavesdroppers,

obtaining original expressions which include uncertainty in terms of the location of

legitimate nodes relative to eavesdroppers, the number of eavesdroppers, and fading.

The contributions of this chapter are:

• Characterizing the best path loss distribution and the best path gain distribution

of eavesdroppers.

• Obtaining best path gain distribution of eavesdroppers and consequently we

compute probability of secrecy outage of unicast channels in presence of multiple

eavesdroppers under Nakagami-m fading channel.
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Chapter 5

Chapter 5 investigates the secrecy outage of random networks under Nakagami-m fading

and mutually correlated legitimate and eavesdropping channels. We derive an integral

formula for the secrecy outage probability incorporating various transmission factors

including node density, correlation coefficient and fading parameter. This chapter also

contains closed-form asymptotic expressions of the secrecy rate (both distribution and

average), the secrecy outage, and the secrecy transmission capacity of random networks

exposed to randomly located colluding eavesdroppers.

The contributions of this chapter are:

• Obtaining the expression for secrecy outage probability of unicast channel under

mutually correlated fading channels.

• Approximate the aggregate path gain distribution of colluding eavesdroppers.

• Computing closed form expressions for secrecy rate and transmission capacity of

a random network.

Chapter 6

Chapter 6 examines the secrecy outage of unicast links in the presence of interference

from other users and model the interference power with suitable approximation tech-

niques. Precisely, we perform a thorough analysis of the secrecy outage under the

impact of Nakagami-m fading and Shadowing.

The contributions of this chapter are:

• Approximate aggregate interference with Gamma and Log-Normal random vari-

ables.

• Deriving the secrecy outage probability under Nakagami fading channel and Log-

Normal fading channels.

Chapter 7

Chapter considers the case of multiple antenna systems, perform an analysis of the

secrecy outage of random networks under Nakagami-m fading with multiple transmit
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antennas. Specifically, using a network model that accounts for uncertainties both in

node locations (distances) and channel coefficients (fading), we derive the distribution

of the best path gain of eavesdroppers using Probability Generating Functional property

of PPP. Using this result, the secrecy outage probability and the conditional secrecy

outage probability of random networks with multiple eavesdroppers are obtained.

The contributions of this chapter are:

• Deriving the distribution of the best path gain of eavesdroppers.

• Deriving the secrecy outage probability under Nakagami fading channel with

basic factors such as the density of eavesdropping nodes, the number of transmit

antennas and the fading figure.

Chapter 8

Chapter 8 investigates the secrecy outage probability of downlink cellular network, em-

ploying emerging stochastic geometric model Matern Hard-Core Point Process Model

(MHCPP).

The contributions of this chapter are:

• Model the downlink cellular network with MHCPP.

• Deriving the secrecy outage probability under nearest BS and optimal BS serving

scenerios.



Chapter 2

State of the Art

Summary:

This chapter provides a brief overview of wireless security techniques and need for

physical layer security in current context of networks. We first introduce the notion of

secrecy capacity of a simple wiretap channel, and then extend our discussion to fading

channels and interference channels. This chapter does not contain new results, and it

is intended to give some brief information necessary for the understanding the rest of

the thesis.

7



8 2.1. NEED FOR SECURITY IN WIRELESS NETWORKS

2.1 Need for Security in Wireless Networks

The open access nature of wireless media makes communication inherently prone to

security threats. Due to huge demand of memory and energy, the cryptographic

algorithms cannot be employed to wireless network which is typically conformed of

many small nodes that are battery and hardware limited. Therefore, wireless networks

are vulnerable to various forms of attacks specific to the requirement of exchanging

confidential information such as available channel frequencies, location, identity and

maximum transmit power, between the sensor nodes. The design of a security scheme to

assure the safety of the network during the nodes deployment and during the lifespan of

the network is essential and must take into account several network characteristics. The

messaging interface between the sensor nodes is designed so as to combat all security

breaches and mitigate malicious perceiving/manipulation in the communication inter-

face. To this end, any security scheme must possess the following key characteristics:

• Authentication should be enforced between the nodes.

• Secure exchanges between nodes should be established.

In the sequel, possible security threats, corresponding security measures and security

implementations inherent to wireless networks are described.

2.1.1 Security Threats

Mainly, security threats in the wireless networks context can be classified into two

categories: threats at the communication interface, and threats against devices. The

possible threats categorized in that fashion are summarized in the Table 2.1, and

described in more detail below.

The communication links can be eavesdropped by malicious users, regardless of its

wired or wireless nature. For instance, an attacker may steal the confidentiality of

data transmitted or could disturb the integrity by modifying the data during message

transfer. The location and identity information of the device could be tracked by the

attacker who may use this information for future attacks.

All the possible attacks directed at the communication interface and on the device can

further be sub-divided into following categories.
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Table 2.1: Possible security threats

Type Description

Interference Unintentional disruption of radio signal by another transmitter.

Jamming Intentional disruption of the radio signal by a powerful

transmitter of the attacker.

Wormhole An attacker could create a bridge between the devices.

Disclosure An attacker reveals sensitive information of devices.

Flooding An attacker opens a large number of half opened

TCP connections.

Impersonation MAC or IP address of an existing legitimate device is falsely

O
n

C
o
m

m
u

n
ic

a
ti

o
n

In
te

rf
a
c
e

used by an attacker .

Repudiation An attacker may mislead the devices by transmitting

invalid information.

Tampering Physical devices could be accessed by an attacker.

Backdoors An installed or modified software/hardware entity to bypass

normal authentication.

O
n

D
e
v
ic

e
s

Masquerade An attacker pretends to be valid legitimate device.

• Man-in-Middle (MitM) Attack: An attacker node, hereafter MitM node [33], is

inserted in between two nodes. This MitM node acts as a bridge between the

source and legitimate device, and can transparently transmit, receive, view, and

modify the traffic between them consequently could launch interference, jamming,

wormhole and repudiation attacks.

• Denial of Service (DoS) Attack: The attacker, which is located between com-

municating peers, may indicate no channel availability at a location resulting in

denial of service to a legitimate device [33]. Flooding and Impersonation attacks

are come under this attack category.
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• Tampering Attack: The device may be found in vulnerable locations, so that the

attacker may have physical access to the node in invasive manner, e.g., access to

the node hardware, or non-invasive manner, e.g., electromagnetic listening. This

is known as physical tampering attack [34].

• Masquerade Attack: An attacker may successfully masquerade any node and

provide malicious responses to a legitimate device resulting in legitimate-device-

generated interference to users of the spectrum. This attack is known as mas-

querade attack otherwise known as spoofing attack [34].

2.1.2 Essentials of Security Measure

To mitigate the above threats, any communication system will incorporate a number of

high level security countermeasures which are summarized in Table 2.2 and described

further in the sequel.

Mutual Authentication: To protect from attacks such as MiTM and DoS, a proper

mutual authentication between the legitimate devices should be performed using cer-

tificates or pre-shared keys.

Data Protection: All the communication should ensure maintained integrity, confi-

dentially, and replay protection from unauthorized devices.

Trusted Environment (TrE): The TrE shall be a logical entity which provides a

trustworthy environment for the execution of sensitive functions and the storage of

sensitive data.

In summary, the following security features have been adopted in any current network

framework to achieve TrE secure communications between the legitimate devices. The

identity of the legitimate devices are authenticated by means of either IPSec’s IKE

mechanism or TLS Handshake protocol. The connection between the source and the

legitimate is kept private with the help of IPSec or TLS. The messages transmitted

during connection between the source and the legitimate are confidentiality protected

by the above security implementations.
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Table 2.2: Security essentials and its implementations

Essentials Implementations

Confidentiality Cryptographic techniques such as Advanced

Encryption Standards are provided to achieve this.

Integrity Secure hash functions, message authentication

codes establish data integrity.

Accessibility By incorporating either TLS [35] or IPSec [36], legitimate

is made available all the time to the devices.

Authentication TLS Handshake or Internet Key Exchange ensures

mutual authentication of white space devices.

Non-repudiation Public key cryptography techniques such

as digital signatures fulfills this requirement.

Key Exchange Secure key exchange between devices

is provided by the Diffie-Hellman algorithm [37].

However, the above mentioned counter measures and security techniques use cryp-

tography which require high end device capabilities and therefore mayn’t suit for

wireless networks. One approach to alleviate the need of cryptography is physical-

layer information-theoretical security.

2.2 Need for Physical Layer Security

In one hand, the application layer security protocols involve often nonce and limited

response timing in order to avoid known attacks (as replay attack for example). The key

deployment is another open issue as symmetric cryptography needs the key sharing and

asymmetric cryptography remains costly for small devices or raises privacy problems.

Actually, several works focus on the generation of non-deterministic random number

inside a small device with limited resources. This could enable nodes to generate by

itself true nonce for cryptographic protocols or its own secret key which must not be

revealed to other entities.
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On the other hand, physical layer prepares the sequence of bits containing information

before its transmission on a wireless link. It can realize data encoding, constellation

mapping, scrambling, modulation, CRC computation, · · · etc according to a given

wireless standard specifications. An important characteristic of the wireless link is that

all the messages are broadcasted. This is not convenient to assure the security and the

confidentiality of the communications! Adding security features to the physical layer

is then essential in order to guarantee security principles: Availability, Confidentiality,

Integrity, Authentication and Non-repudiation.

2.3 Security at Physical Layer

Physical layer security provides a set of mechanisms that makes use of the properties of

the physical layer to make eavesdropping harder. It aims at exploiting the randomness

which is inherent in noisy channels to provide an additional level of protection at the

physical layer. It is also an upcoming research area that seeks the possibility of achieving

perfect secrecy in the wireless communications while the presence of eavesdroppers and

leaking minimum possible information to them. The interesting concept is to make

use of physical layer characteristics to improve the security and reliability. Information

theoretic security is a notion of measuring secrecy in communications system which was

based on Shannon’s perfect secrecy. The foundations of information-theoretic security

was laid by the work of Ozarow and Wyner [6], in which the term wire-tap channel was

first coined in reference to the communication problem where an eavesdropper shares

with the receiver full information on the encoding and randomization procedures intro-

duced by the transmitter. After these breakthrough results, security started playing a

role at physical layer along with traditional error correction coding mechanisms.

2.4 Stochastic Geometry and Secrecy

Mostly, the propagation effects of the received signals challenge the wireless networks.

Several mathematical techniques have been proposed in literature in order to model

these effects and to provide communication-theoretic results based on the networks

geometrical configuration. The nodes of the wireless network often treated as random,

and modelled with stochastic geometry and the theory of random geometric graphs.

Stochastic geometry [38] is a one of applied probability technique, related to the theory

of point processes, which allows the study of random phenomena on the plane or
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in higher dimensions. In addition to point process theory, percolation theory, and

probabilistic combinatorics have been considered for analyzing the connectivity, the

capacity, the outage probability, interference and other fundamental limits of wireless

networks.

In general, the network is modelled using point process (PP) which captures the network

properties. The spatial point processes we considered lie in the Euclidean plane Rd.
Informally, a point process is a countable random collection of points in Rd. If it is

simple (there is only one point at each location a.s.), it can be represented as a countable

random set φ = {x1, x2, · · · }, where xi ∈ Rd are the points. Usually, it is characterized

by a random counting measure N ∈ N , where N is the set of counting measures on R2.

N(B) is a random variable that denotes the number of points in set B ∈ Rd for a point

process Φ. A concrete realization of Φ is denoted as ψ. Hence ψ(B) is a deterministic

counting measure that denotes the number of points in B.

We start with the definitions of most popular PPs used in wireless communication

systems, then we analyse the suitability of the PP with respect to network models.

Poisson point process (PPP):

A PP Φ = {xi; i = 1, 2, 3, ...} ∈ Rd is a PPP if and only if the number of points inside

any compact set B ∈ Rd is a Poisson random variable, and the numbers of points in

disjoint sets are independent.

Hard core point process (HCPP):

An HCPP is a repulsive point process where no two points of the process coexist with

a separating distance less than a predefined hard core parameter d. A PP Φ = {xi; i =

1, 2, 3, ...} ∈ Rd is an HCPP if and only if ||xi−xj || ≥ d,∀xi, xj ∈ Φ, i 6= j, where d ≥ 0

is a predefined hard core parameter.

Poisson cluster process (PCP):

The PCP models the random patterns produced by random clusters. The Poisson

cluster process is constructed from a parent PPP Φ = {xi; i = 1, 2, 3, ...} by replacing

each point xi ∈ Φ with a cluster of points Mi,∀xi ∈ Φ, where the points in Mi are

independently and identically distributed in the spatial domain.
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2.4.1 Secrecy and Network Topology

Problem Description

Shannon has defined the capacity of a channel as the maximum rate with which

information can be conveyed without errors over the channel. If a device transmits

with power P to another at a distance r, subjected to a path loss exponent α, noise

and interference with powers respectively given by N0 and PI , and through a channel

with gain h, the Shannon capacity becomes

C = log2

(
1+

|h|2P
rα(N0 + PI)

)
= log2(1+ SINR) , (2.1)

where, we implicitly defined the quantity SINR ,
|h|2P

rα(N0 + PI)
.

Similarly, if the communication occurs in the presence of a single eavesdropper, it has

been shown [8,9] that the rate with which information can be conveyed without errors

and secretly between the “legitimate” pair – i.e. the secrecy capacity associated

with the pair – is given by

Cs=max{log2(1 + SINR`)− log2(1 + SINRe), 0} , (2.2)

where SINR` and SINRe are quantities similar to those implicitly defined in equation

(2.1), but with h, r and PI replaced by corresponding values experienced by the

legitimate node and the eavesdropper, respectively.

Another important secrecy metric is the secrecy outage probability, which is defined

as

Pout(Rs) , Pr{Cs ≤ Rs} = 1− Pr{Cs > Rs}, (2.3)

where Rs is a given secrecy rate threshold.

Yet another metric, more specific to the context of random networks with uniformly

distributed nodes, is the secrecy transmission capacity, defined as

τ , R̄s(1− Pco)λ`, (2.4)

where R̄s is an average secrecy rate, λ` is the density of the legitimate nodes, and Pco
is the connection outage probability, given by Pco(R) , Pr{C ≤ R}.

Embedded in all the aforementioned expressions is the distance between legitimate



2. STATE OF THE ART 15

nodes, and between those and eavesdroppers. The key role played by the relative

location of devices, together with the lack of exact knowledge on the latter, lead to

the widespread utilisation of stochastic-geometric approaches when analysing secrecy

in random networks.

Discussion and Current Literature

• On the Generalization of Topological Models within PPP:

As described earlier, fading is one of the various sources of uncertainty faced

in wireless channel. Another relevant source of uncertainty that emerges when

breaking beyond point-to-point communications towards multipoint networks, is

the stochastic nature of distances between communicating pairs. Therefore, a

further step in better understanding information-theoretical wireless security is

to study its properties in the context or random networks [39, Ch. 2], [12,13,40],

which gives rise to the notion of secrecy graphs [41].

Moving in that direction, Zhou et al. [24] analyzed the secrecy outage probability

similarly to [9], but in the context of random networks modeled as PPP and

subjected to Rayleigh fading. More recently, the effect of interference on the

secrecy capacity of random networks with fading and cognitivity was studied by

Shu et al. [42], and the secrecy capacity scaling law in random networks subjected

to fading was also studied by Koyluoglu et al. [43].

In this direction, take for instance the work in [24], where the Probability Generat-

ing Functional (PGFL) of PPPs is utilised to obtain simple and closed-form upper

and lower bounds for the secrecy outage probability in random networks with

uniform random topologies. Clearly such results do not generalise to networks

where a minimum distance between any pair of nodes must be maintained – as

is the case of WiFi and Cellular Networks [44, 45] – which are known to require

HCPPs models instead [44,45]. In fact, already within the discussion in [24], the

difficulty to handle the case when a secrecy guard zone exists was encountered, and

somewhat avoided by considering a highly artificial assumption that all legitimate

pairs in the network have the same distance. In spite of the limitation of the

model, the same procedure was again followed in [46] when studying the secrecy

rates of cellular networks.

Most of current works focus on systems with single antenna and mainly study

prorogation without fading or with Rayleigh fading [24]. Nakagami-m fading
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matches some empirical fading conditions which are more or less severe than

that of Rayleigh fading and has the advantage of including Rayleigh fading as a

special case [47]. In this thesis, we contribute to this area with an analysis of the

secrecy outage experienced between a pair of legitimate nodes in random networks

subjected to Nakagami fading and exposed to an unknown number of randomly

located eavesdroppers. We derive the outage probability distribution under such

fairly general conditions, characterizing the impact of individual environmental

factors (e.g. fading, noise, and relative node-densities) onto the secrecy outage

probability of unicast links in the network [41]. To put the work into context

our results can be seen, for instance, as a generalization of [40], where secrecy

outage was studied in a random network but subjected only to AWGN; as well as

a more accurate alternative to [24], where the secrecy outage in a Poisson network

subjected to fading was studied, but under the rather strong assumption that all

pairs of communicating legitimate nodes are apart by the same distance, while

in our analysis the network is truly random, such that the distances between

a source and a legitimate node, as well as between a source and eavesdropping

nodes, are random and unknown.

• On the Generalization of Topological Models beyond PPP:

The fact that PPPs are not sufficiently accurate to capture the structure of various

random networks of interest is a modern topic in wireless communications both

within and without the particular question of secrecy. To cite a few recent works

that shed some light on this problem, Nguyen et al. were one of the first to

employ HCPP to model WiFi network, studying a number of parameters of

relevance such as throughput and coverage [44]. In [48] the approach in [44]

was revisited and improved by replacing average quantities for corresponding

distributions, including an approximate distribution of the distance between a

source and the nearest node, under an HCPP, which is of relevance to the secrecy

problem considered in this proposal.

In [49] the HCPP model was combined with fading by replacing the purely

geometric channel model (i.e., dependent only on distances) for one in which

the statistics of the received power is considered instead, similarly to what had

been done for uniformly distributed random networks [12].

Following this trend, in this thesis we will look beyond the PPP model and study

the secrecy of random networks under MHCPP. We should also point out that to
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the best of our knowledge, the analysis of secrecy of random networks outside the

PPP model have not yet been attempted in currently literature. In that regard,

therefore, this thesis bridge a gap between the progress made on the study of

random networks outside and inside the secrecy question.

• On the Flexibilization of Analytical Tools beyond Stochastic Geometry:

Since the seminal work by Gilbert on the application of point processes to model

random networks, Stochastic Geometry has become the tool of choice when

analysing wireless communication systems from a network perspective [38]. De-

spite the elegance and the wide range of results achievable with this tool, many of

which were discussed above, a wave of self-criticism has started to permeate the

communication theory community, due to lack of the accuracy of the underlying

assumptions typically adopted.

Hand in hand with the relationship between point processes and networks, how-

ever, is an equally strong relationship between graphs and networks. Obviously

strong connections between point processes and graphs also exist, but the two

models are not always applicable with equivalency.

To exemplify, consider the recently emerging notion of security via deniability [50],

in which messages are continuously interleaved with noisy signals, such that the

level of secrecy in a communication link becomes dependent on the ratio between

actual messages and intentionally generated noise. In such systems, information

theoretical security is achieved not on the basis of SINR, but on the basis of

the likelihood, in absence of a prior, that a codeword can be extracted amidst

noise by an eavesdropper, such that distances between eavesdropper and

legitimate nodes play no significantly role; instead, in this case the number

of eavesdroppers is the key parameter. If ported to a network scale, the problem

is therefore more strongly connected to unweighted graphs than to point processes.

In other occasions, purely statistical tools can also be invoked which do not have

a strong relationship with point processes either. One example is order statistics,

which for instance was effectively employed in [51] to smooth over the implication

of specific policies and network conditions to characterise the distribution of

the number of hops required by routing algorithms to reach destinations in

random networks. As a result of this approach, hop count distributions have been

obtained, which can be used to model networks of various types, eliminating the

need for point process to be directly invoked. Finally, in [52] it was show that
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random walk models can also be used to describe a number of spatially distributed

processes including random networks.

In this thesis, we use stochastic geometry but also incorporate some of the

aforementioned ideas, including order statistics and graph theory to flexibilize

the analysis of secrecy in random networks.

2.4.2 Secrecy and Interference

Problem Description

Interference is another key parameter in characterizing the network-wide secrecy through-

put of large scale networks. If undesigned, interference is an aggregated sum of un-

desired signals due to concurrent transmissions, that may cause severe throughput

degradation. Such an interference can be modelled as a stochastic process, with the

random location of interferers described by point process I. Then a generalized model

of aggregate interference can be defined as

I =
∑

i∈I
Xi · r−αi , (2.5)

where ri is the distance between the receiver and the i-th interferer, α is a propagation

loss coefficient and Xi , |hi|2 models the channel power.

Stochastic geometry is one of the tools that can be used to characterize the statistical

behaviour of aggregate interference. A convenient way to do so is via the Laplace

Transform (LT) of I, or its characteristic function (CF), namely

LI(w;α) = E[e−wI ], (2.6)

where the expectation is take over the distributions of Xi and ri, and the parameters

of those distributions are omitted from the notation for the sake of simplicity and

generality.

In the case of the PPP model, LI(w;α) can then be relatively easily evaluated via

Campbell’s theorem, which relying on the uniformity of the PPP yields

LI(w;α) = exp


−2πλ

∫

X

∞∫

0

[1−exp(wxr−α)]fX(x)f(r)r drdx


 . (2.7)
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As argued earlier, in the case of real networks such as WiFi and cellular networks,

however, the PPP model is not suitable and must instead be replaced by HCPP, SP or

other models [44,45,53–55]. Unfortunately, in such cases Campbel’s Theorem does not

apply, such that the characterization of aggregate interference in general topologies via

the Laplace Functional and PGFL is a challenging problem.

Discussion and Current Literature

• On the Aggregation of Interference in Random Networks:

To cite a few examples, in [56] the characteristic function of the aggregate in-

terference in a AWGN channel (no fading) was derived, leading to infinite series

expressions for the probability density function of interference. Some time later,

the approach was revisited and the results generalized to the Rayleigh fading

case [57]. At the core of the approach followed in [56] and [57] is the utilisa-

tion of Campbell’s Theorem [58], which can be easily evaluated in the case of

PPP-modeled networks subjected to AWGN or Rayleigh fading. In both these

examples, therefore, closed-form expressions for the aggregate interference were

obtained.

Even when limiting themselves to PPP-modeled networks, the generalization

of the latter results to other types of wireless channels, including alternative

fading models and superposition with shadowing, however, proves a formidable

problem. This is illustrated for instance by the work done in [59], [60] and

[61], all of which considered the interference aggregation problem under various

fading models, ultimately resorting to Log-normal, Truncated-stable and Gamma

approximations for its aggregate interference distribution.

The limitation of the Campbell-Theorem-based approach becomes more evident

when considering non PPP-netoworks. One example of the latter can be found in

[53], where the mean aggregate interference in CSMA networks was considered by

attempting to transform the corresponding HCPP into non-homogeneous PPPs,

which ultimately led to the conclusion that the approach is inaccurate. Another

is given in [62], where the problem encountered in [53] is avoided by attempting

to obtain the desired distribution directly, in the form of a series expansion of

point process functionals.

In this thesis, we continue the modern effort in this area and study the aggregation

of interference in random networks and its impact on secrecy, both by utilizing

results on point processes, and by applying more recently approaches.



Chapter 3

Single Antenna Systems in

Unicast Channels: Single

Eavesdropper

Summary:

In this chapter, we offer a characterization of the impact of noise, path loss, density

and fading onto the secrecy capacity achieved between a pair of legitimate nodes of a

network in the possible presence of randomly located single eavesdropper. We obtained

the expression of probability of non-zero secrecy capacity for the case of a single eaves-

dropper per neighborhood.

Reprinted from Transactions on Information Forensics and Security, Satyanarayana Vuppala,
Giuseppe Abreu, Unicasting on the Secrecy Graph, pp 1469-1481, Vol. 8, No. 9, Sept., Copyright
(2013), with permission IEEE.
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3.1 Introduction

By incorporating more realistic conditions faced in wireless media, the earlier contribu-

tions on secrecy capacity substantially expand the potential reach of the information-

theoretic secrecy concept for wireless communication systems. Indeed, the combination

of these fundamental results on the secrecy capacity of wireless channels [8–11] with

emerging stochastic-geometric models of wireless networks [39, Ch. 2], [12, 13] gave

rise to the notion of secrecy graphs [41]. To mention a few works in this direction,

distributions for the in- and out-degrees of a Poisson S-graph and the corresponding

implication of those distributions on the connectivity of random networks was studied

in [14].

A similar work was also done in [22], where the authors have considered that the location

of eavesdroppers was not entirely random, but known within an amount of uncertainty.

Both of these contributions [14, 22] share with [40, 41, 63] a percolation-theoretical

perspective in approaching the secure connectivity of nodes in a random network subject

to eavesdroppers, what we shall hereafter refer to simply as S-connectivity.

Such a “generic” model of S-connectivity suffices to understand “macro” characteristics

of S-graphs, such as their girth and critical densities, but is insufficient to quantify the

secrecy capacity of specific (possibly multi-hop) links over the S-graph.

In this regard, the work in [29] offers a better approach in which the results of [14]

are extended and applied to the study of the S-connectivity of a source to a specific

neighbor – that is, a unicast link – subject to path-loss and AWGN disturbance.

In addition to addressing unicast links, the analysis in [29] also considers the collusion

of eavesdroppers, yielding again in that regard a more general characterization of S-

connectivity than that found in [14,22,41].

Unlike [41], however, the approach in [14, 29] is far less permitting of generalization

to fading channels. To clarify, firstly, the result achieved in [14, App. B] is that the

distribution of the out-degree – as opposed to the distribution of the probability of non-

zero secrecy capacity – is invariant to fading. Secondly, the latter result is supported

by arguments on the homogenization and mapping of heterogeneous Poisson processes.
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In other words, both the result and the supporting argument given in [29] are adequate

if one is concerned with the number of nodes around the source that are safe from

eavesdropping, number which can be modeled by Poisson statistics. Instead, when

one is concerned with the probability that a unicast link subject to different channel

conditions retains a non-zero secrecy capacity, a more detailed analysis is required.

Such an analysis, specifically, the study of the impact of individual environmental

factors (e.g. fading, noise, and relative node-densities) onto unicast links of an S-graph,

is the contribution of this chapter. Specifically, focusing on a link metric (unicast over

a single hop), we offer a characterization of the impact of noise, path loss, density,

and fading onto the secrecy capacity achieved between a pair of legitimate nodes of a

network in the presence of single eavesdropper.

System Model

First we consider a random network (Fig. 3.1) in a Euclidean space of dimension d,

modeled by a stationary PPP [64, 65] of intensity λ in Rd. Let us select an arbitrary

reference point (Source) defining the origin of the space, and order the remaining points

k ∈ N according to their Euclidean distances rk to this reference. This property is

implicitly used henceforth to support the assumption that each node in the network

can be unequivocally identified by its distance to the origin (source).

Let the aforementioned model be applied to two overlaid networks of legitimate nodes

and eavesdroppers, respectively, with corresponding densities λ` and λe as shown in Fig.

3.2. Consider that a source located at the origin (without lack of generality) wishes to

unicast to the legitimate node, located at the unknown distance rk, in the presence of

an eavesdropper located at the unknown distance re, subject to AWGN1 and path loss

governed by the exponent α.

Then, the secrecy capacity of the unicast channel under AWGN is [8]

Cs:k = log2

(
1+

P

rαkN0

)
− log2

(
1+

P

rαeN0

)
, (3.1)

where, P and N0 are the power densities of the transmit signal and noise, respectively.

1For simplicity, we commit a slight abuse of notation by using the subscript “e” to denote the
eavesdropper, since under AWGN conditions, it is sufficient to consider the nearest eavesdropper.
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3.2 AWGN Case

By treating Cs:k as a random variable and evaluating its cumulative density function

(CDF), in the most significant case of planar networks with α = 2, Pinto et al. have

shown that the probability that the secrecy capacity in the unicast channel of an S-

graph in AWGN is given by [29]

Pr{Cs:k > 0} = pAWGN(%; k) =

(
λ`

λ` + λe

)k
=

(
%

%+ 1

)k
, (3.2)

where the parameter % is defined as

% ,
λ`
λe
, (3.3)

The proof of Eq. (3.2) offered in [29] is elegant and succinct, but unfortunately does not

yield insight on how the result can be extended to account for fading. In the sequel, we

offer a brief alternative direct (laborious) proof that is subsequently extended to study

the unicast problem subject to fading. To this end, let us consider the path loss, which

in the case of a network modeled as a PPP has distribution [12,66]

pξk(x; k, λ) = e−πλx
(πλx)k

xΓ(k)
. (3.4)

Notice that in the AWGN case the nearest eavesdropper is certain to experience the

smallest path loss amongst non-legitimate nodes. From that fact, and from Eq. (3.1) it

follows that the secrecy capacity of the channel between the source and the k-th node

is non-zero if and only if (iff)

∆ , ξk − ξe ≤ 0, (3.5)

where ξk and ξe are governed by pξk(x; k, λ`) and pξe(x; 1, λe), respectively.

The distribution of the path loss difference ∆ is given by

p∆(x; k, λe, λ`) =

∞∫

−x

pξe(τ; 1, λe) · pξk(x+τ ; k, λ`)dτ, (3.6)

−−−−−−−→
subst. eq. (3.4)

(πλ`)
kπλe

Γ(k)eπλ`x

∞∫

−x

e−π(λ`+λe)τ (x+τ)k−1 dτ,

−−−−−−−→
z,x+τ

(πλ`)
k(πλe)e

πλex

Γ(k)

∞∫

0

e−π(λ`+λe)zzk−1 dz.
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A closed-form solution to the last integral can be found in [67, pp. 336, Eq. (3.351.3)],

from which we obtain

p∆(x; k, %, λe) =

(
%

%+ 1

)k
πλee

πλex. (3.7)

Finally, since the probability that Pr{Cs:k > 0} = Pr{∆ ≤ 0}, we conclude that

pAWGN(%; k) =

(
%

%+ 1

)k
πλe ·

0∫

−∞

eπλex dx

︸ ︷︷ ︸
=1/πλe

=

(
%

%+ 1

)k
. (3.8)

However, the result in Eq. (3.8) is obtained for the case of α = 2. A generalised result

for any α is need to be considered. To this point, let us consider the path loss ξk = rαk ,

which has a probability density function (PDF) [12,66]

fξk(x) = exp(−σxδ)δ(σx
δ)k

xΓ(k)
, (3.9)

where σ = πλ and δ = d
α .

The secrecy outage in the case of AWGN can be directly evaluated from Eq. (3.1). By

denoting ρ , P/N0, the outage probability associated with a secrecy rate Rs at the

k-th legitimate node, subject to AWGN2, is given by

Pout(Rs) = Pr{log2(1 + ρ
ξk

)− log2(1 + ρ
ξe

) < Rs}, (3.10)

(b)
=

∫ ∞

0

∫ ∞

β(y)
fξk(x)fξe(y)dx dy,

(d)
=
δ · σe

Γ(k)

∫ ∞

0
exp(−σey

δ)yδ−1Γ(k, σ`β
δ(y))dy,

(c)
= 1 +

1

Γ(k)

∫ ∞

0
exp(−σey

δ)
[
− (σ`β

δ(y))k−1 exp(−σ`βδ(y))d(σ`β
δ(y))

]
,

(d)
= 1− σk` δ

Γ(k)

∫ ρ

2Rs−1

0
exp

[
−σe

(
2Rsρz

ρ− (2Rs − 1)z

)δ]
exp(−σ`zδ)zδk−1dz,

where (b) follows from β(t) = ρ
2R(1+ ρ

t
)−1

, (c) follows from [67, Eq. (3.3819)], and (d)

2Under AWGN, the strongest eavesdropper is obviously the nearest.
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Pout(Rs) = (3.12)

1− δ2Rσ`ρ
δ+1

(2R − 1)δ+1Γ(k)

∞∑

n=0

(−σe)
n

n!

[
Γ(δn+ k −δ −2)1F1(δ + 1,−δn− k + δ+ 3,

2Rρ

2R − 1
)

+
( 2Rρ

2R−1
)δn+k−δ−2Γ(δn+k −1)Γ(−δn−k + δ+ 2)1F1(δn+ k−1, δn+ k −δ −1, 2Rρ

2R−1
)

Γ(δ + 1)

]

follows from a change of variables. The closed form solution for the Eq. (3.10) is given

in Eq. (3.12).

For Rs = 0, the calculation of secrecy outage is equivalent to calculating secrecy

connectivity [14]. In this case, the secrecy outage over AWGN channel is given by

Pout(0) =

∞∫

0

∞∫

ρy
ρ

fξk(x)fξe(y) dx dy = 1−
(

λ`
λ` +λe

)k
. (3.11)

3.3 Nakagami Fading Case

The presence of fading affects the applicability of the result of Section 3.2 in two

fundamental ways. First, the path losses to legitimate nodes and eavesdroppers are

no longer dependent only on their distances to the source, but also on their fading

gains. Specifically, if |h| denotes the fading envelope to a point at distance r, then the

corresponding path loss is ξ = r2/|h|2. Consequently, different distributions for the

path losses ξk and ξe are required to compute Pr{Cs:k > 0}.

Second, the path loss difference ∆ is no longer governed by the nearest, but by the

best eavesdropper, that is, the eavesdropper with the lowest path loss. This requires

separate consideration for the scenarios when a single or multiple eavesdroppers are

present in the vicinity of the source as depicted in figures 3.3 and 3.4, respectively.

Both figures explain the amount of uncertainty involved while determining the secrecy

capacity regions. In this chapter, we consider the single eavesdropper case.
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Source	
  

rk

⇠e:1 > ⇠k

re:1

Figure 3.3: Irregular secrecy neighborhoods
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Source	
  

min{⇠e:1, · · · , ⇠e:K} > ⇠k

rk

re:2

Figure 3.4: Uncertainty of dominant eavesdropper
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These fundamental distinctions between the AWGN and the fading cases prevent the

straightforward extension of the analysis offered in [29] to arbitrary fading via homog-

enization arguments as done in [14]. Therefore, in order to study the conditions under

which unicasting on the S-Graph is successful, we derive in the sequel the probabilities

Pr{Cs:k > 0} under Nakagami-m fading, motivated by its flexibility.

Then, the secrecy capacity of unicast legitimate link k in the presence of an eavesdropper

located at the unknown distance re, subjected to nakagami-m fading and path loss

governed by the exponent α can be re-written as [8, 9]

Cs:k = log2

(
1+
|hk|2P
rαkN0

)
− log2

(
1+
|he|2P
rαe N0

)
. (3.13)

Consequently, the probability that the secrecy capacity of the channel (s→ k) is below

a given threshold Rs ≥ 0 – here after is referred to as secrecy outage probability – is

defined as [24]

Pout(Rs) , Pr{Cs:k ≤ Rs} = 1− Pr{Cs:k > Rs}. (3.14)

From (3.13), the secrecy non-outage probability Pr{Cs:k > R} can be written as

P̃out(Rs) , Pr{Cs:k > Rs} = Pr

{
log2

(
ρ−1+ξ−1

k

ρ−1+ξ−1
e

)
> Rs

}
. (3.15)

Under Nakagami-m fading, the distribution of the path loss to the k-th closest node is

given by [12, Eq. (7)]

pξk(x; k,m, σ) = A(k;m,σ) · xk−1

(σ + x)m+k
, (3.16)

where

A(k;m,σ) , mσm
(
m+k−1
m

)
, (3.17)

σ ,
m

λπ
. (3.18)

Recall that m captures the intensity of fading, while λπ is the intensity of the point

process, such that σ, which absorbs those two key environmental parameters into a

single quantity, can be adequately referred to as the intensity ratio. The intensity
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ratio of legitimate and eavesdropping nodes will be henceforth denoted by σ` and σe,

respectively. Under the mentioned fading model, the secrecy capacity of unicast channel

is determined as depicted in Fig. 3.5.

Assuming that both eavesdroppers and legitimate nodes are under equal fading statis-

tics, it follows from Eq. (3.16) and Eq. (3.5) that

p∆(x; k,m, σe, σ`) = (3.19)
∞∫

−x

pξe:1(τ ;1,m, σe)·pξk(x+τ ; k,m, σ`) dτ −−−−−−−→
subst. Eq. (3.16)

AeA`

∞∫

−x

(x+ τ)k−1

(σe+τ)m+1(σ`+x+τ)m+k
dτ,

−−−−−→
z,x+τ

AeA`

∞∫

0

zk−1

(σe−x+z)m+1(σ`+z)m+k
dz −−−−−−−−−→

y,1+
z
σ`

AeA`

σ2m+1
`

∞∫

1

(y − 1)k−1

(a+y)m+1ym+k
dy,

where, in the last expression,

a , σe−σ`−x
σ`

= %− 1− x/σ`. (3.20)

In the last equality we used the fact that under the assumption that legitimate nodes

and eavesdroppers are subjected to equal fading, σe
σ`

= λ`
λe

, %. Alluding to the latter,

we will henceforth refer to % as the relative intensity ratio. Furthermore, since under

equal fading σe > σ` =⇒ % > 1 implies that the density of legitimate nodes is larger

than that of eavesdroppers, we shall focus on the case where % > 1.

Returning to the derivation, using the Binomial Theorem

(y − 1)k−1 =

k−1∑

j=0

(−1)j
(
k − 1

j

)
yk−j−1, (3.21)

and substituting Eq. (3.17) for Ae and A` into Eq. (3.19) we obtain

p∆(x; k,m, %, σ`) =
m2

σ`
%m
(
m+k−1

m

) k−1∑

j=0

(−1)j
(
k−1

j

)∞∫

1

dy

((%−1)+y−x/σ`)m+1ym+j+1

︸ ︷︷ ︸
I1(x;m,%,σ`;j)

∣∣∞
1

.

(3.22)
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Source	
  

⇠e:1 > ⇠k

rk

Cs:k = log2

✓
1+

P

⇠kN0

◆
� log2

✓
1+

P

⇠e:1N0

◆

Figure 3.5: Regularized secrecy neighborhood in S-Graph
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The above integral has the solution [68, pp.28, Eq. (1.2.6.3)]

I1(x;m, %, σ`; j)
∣∣∣
∞

1
=

2m+j∑

v=0

(−1)v+1

(
2m+j

v

)
f(x;m,%,σ`; j, v), (3.23)

where

f(x;m, %, σ`; j, v) ,





− ln (%− x/σ`)
((%− 1)− x/σ`)2m+j+1

if v = m+ j,

1−(%− x/σ`)m+j−v

(m+ j − v)((%− 1)− x/σ`)2m+j+1
if v 6= m+ j,

(3.24)

such that the following closed-form expression for the distribution of the pathloss

difference ∆ is obtained:

p∆(x; k,m,%, σ`)=
m2%m

σ`

(
m+k −1

m

)k−1∑

j=0

(
k−1

j

)2m+j∑

v=0

(−1)j+v+1

(
2m+j

v

)
f(x;m,%,σ`;j,v).

(3.25)

From the above, the probability that Cs:k > 0 under the environmental conditions

described by set of parameters {m, %, σ`} becomes

PrNaka(i,m, %) = m2%m
(
m+ k − 1

m

) k−1∑

j=0

(
k − 1

j

)2m+j∑

v=0

(−1)j+v+1

(
2m+ j

v

)
(3.26)

×
∞∫

%

f(σ`(%−y);m, %, σ`; j, v) dy

︸ ︷︷ ︸
I2(%;m;j,v)

∣∣∞
%

.

The latter integral assumes three distinct forms depending on the relationship between

the indexes v and j, and the parameter m, dealt with separately in the sequel.

Case 1: v < m+ j

Here I2(%;m; j, v)
∣∣∞
%

reduces to [68, pp. 27, Eq. (1.2.5.6)]

I2(%;m; j, v)
∣∣∞
%
−−−−−→
v<m+j

1

m+j−v

[
1

(2m+ j)(%−1)2m+j
−
∞∫

%

xm+j−v

(x−1)2m+j+1
dx

︸ ︷︷ ︸
I3(%;m;m+j−v,2m+j)

∣∣∞
%

]
. (3.27)
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The solution of the latter integral is given by

I3(%;m; p, q)

∣∣∣∣
∞

%

,

∞∫

%

xp

(x−1)q+1
dx =

p∑

t=0

(
p

t

)
(%− 1)t−q

q − t , (3.28)

which yields

I2(%;m; j, v)

∣∣∣∣∣

∞

%

−−−→
v<m+j

−1

m+j−v

m+j−v∑

t=1

(
m+j−v

t

)
(%−1)t−2m−j

2m+j−t . (3.29)

Case 2: v = m+ j

In this case I2(%;m; j, v)
∣∣∞
%

evaluates to [67, pp. 235, Eq. (2.727.1.8)]

I2(%;m; j, v)

∣∣∣∣∣

∞

%

−−−−→
v=m+j

−1

2m+j

[
ln %

(%−1)2m+j
+

∞∫

%

dx

x(x−1)2m+j

︸ ︷︷ ︸
I4(%;m;1,2m+j)

∣∣∞
%

]
, (3.30)

where the integral I4(%;m; p, q)
∣∣∞
%

is a particular case of [68, pp. 28, Eq. (1.2.6.3)]

I4(%;m; p, q)
∣∣∞
%

,

∞∫

%

dx

xp(x−1)q
=

p+q−2∑

t=0

(−1)p+q+t
(
p+ q − 2

t

)
g(%; p, t), (3.31)

with

g(%; p, t) ,





− ln

(
%− 1

%

)
if t = p− 1,

(
%

%− 1

)t−p+1

− 1

t− p+ 1
if t 6= p− 1.

(3.32)

In particular, from Eq. (3.31), we obtain

I4(%;m; 1, 2m+ j)
∣∣∞
%

=

2m+j−1∑

t=0

(−1)2m+j+t+1

(
2m+ j − 1

t

)
g(%; 1, 2m+ j). (3.33)
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PrNaka(k,m, %) = m2%m
(
m+ k − 1

m

) k−1∑

j=0

(
k−1

j

)2m+j∑

v=0

(−1)j+v+1

(
2m+j

v

)
× (3.36)

×





−1

m+ j − v

m+j−v∑

t=1

(
m+j−v

t

)

(2m+ j − t)(%− 1)2m+j−t if v < m+ j

− ln %

(2m+j)(%−1)2m+j
+

2m+j−1∑

t=0

(−1)2m+j+t+1

(2m+ j)

(
2m+j−1

t

)
g(%; 1, 2m+ j) if v = m+ j

(2m+j)−1

(m+j−v)(%−1)2m+j
+

m+v−1∑

t=0

(−1)m+v+t+1

m+j−v

(
m+v−1

t

)
g(%; v−m−j, 2m+j+1) if v > m+ j





Case 3: v > m+ j

Finally, in this case I2(%;m; j, v)
∣∣∞
%

can be written as [68, pp. 27, Eq. (1.2.5.6)]

I2(%;m; j, v)
∣∣∞
%
−−−−−→
v>m+j

1

m+j−v

[
1

(2m+ j)(%−1)2m+j
−
∞∫

%

1

xv−m−j(x−1)2m+j+1
dx

︸ ︷︷ ︸
I4(%;m;v−m−j,2m+j+1)

∣∣∞
%

]
.

(3.34)

The integral appearing in Eq. (3.34) is similar to I4(%;m; 1, 2m+ j)
∣∣∞
%

and has the

solution [68, pp. 28, Eq. (1.2.6.3)]

I4(%;m;v−m−j, 2m+j+1)
∣∣∣
∞

%
=
m+v−1∑

t=0

(−1)m+v+t+1

(
m+ v−1

t

)
g(%; v−m− j, 2m+ j+ 1).

(3.35)

The closed-form expression for pNaka(i,m, %, σ`) given in equation (3.36) at the top of

page follows immediately from equations (3.26) through (3.35).

Special Cases of Interest

Before we proceed to the scenario of multiple eavesdroppers, let us consider some

particular cases of interest within the single eavesdropper scenario, extracting from

Eq. (3.36) specified and simplified expressions that allow us to gain insight into unicast

links under the corresponding conditions.
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Low Relative Intensity Ratios

The worst case in terms of the relative intensity ratio that can be analyzed with our

results is % = 1, since Eq. (3.32), and consequently Eq. (3.36), are not defined for

% < 1. Notice, however, that this “limitation” of the analysis is not very substantial.

Indeed, given the assumption that the source finds a single eavesdropper in its vicinity

under the eavesdropper density λe, and that the density of legitimate nodes is smaller

than the latter (i.e., % , λ`
λe

< 1 ⇒ λ` < λe), the likelihood that the source finds a

legitimate node in its vicinity diminishes with %.

Although Eq. (3.36) cannot be directly evaluated for % = 1, its limit at % → 1 does

exist. Omitting the derivation which is laborious and rather mechanical, in this special

case, we have

PrNaka(k,m) =

(
2m− 1

m

)(
k + 2m− 1

k +m− 1

)−1

. (3.37)

Plots of Eq. (3.37) are shown in Fig. 3.6 and Fig. 3.7, which also includes curves

obtained with Eq. (3.2). These figures show that the nearest node experiences no

change in secrecy capacity as a result of fading. However, further nodes benefit from

fading. In other words, AGWN is the worst possible case, as far as the capacity of

unicasts on the S-Graph is concerned!

This counter-intuitive result can be explained as follows. Since the densities of both

networks are identical, and the single eavesdropper is the nearest eavesdropper, the

legitimate node and eavesdropper are in equal footing in terms of which one experiences

the smallest path loss. Therefore, on average, fading affect both these receive equally,

and consequently, the secrecy capacity is not affected by fading.

However, farther nodes (k > 1) are not at equal footing comparing to the single/nearest

eavesdropper. In fact, under AWGN, noise is the only factor that enables a legitimate

node with a statistical disposition to be located further than the eavesdropper to

experience a lower path loss smaller then the latter. Consequently, the secrecy capacity

of unicast channels on the S-Graph decreases rapidly with r in the AWGN case. In

contrast, under fading, the occurrence of a large channel gain may render the path loss

to a further node lower than that to the eavesdropper, improving the secrecy capacity.

We remark that this result, namely, that fading helps increase the probability of non-

zero secrecy capacity of (sufficiently) farther nodes holds also when % > 1. This can be

inferred, for instance, from Eq. (3.38) which is depicted in figures 3.6 and 3.7 and, in

the limit for %→ 1 captures a special case of Eq. (3.37) with m = 1.
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ratio (%=1).
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Rayleigh Fading

Stimulated by the results above, which indicate a positive effect of fading over the

secrecy capacity of S-unicast channels, we turn our attention to the worst (terrestrial)

fading case under the Nakagami-m model, i.e., Rayleigh (m = 1).

While in this case no unified simple expression for Pr{Cs:k > 0} exists, with m = 1, Eq.

(3.36) reduces to the closed-form expression

PrRayleigh(k, %) =
Pk(%)

(%− 1)k
− %k log %k

(%− 1)k+1
, (3.38)

where Pk(%) are polynomials of degree k on %, a few of which are listed in Table 3.1.

Plots of Pr{Cs:k > 0} under Rayleigh fading obtained from Eq. (3.38) are compared

in Fig. 3.8 and Fig. 3.9 to the corresponding probabilities under AWGN, as per

Eq. (3.2). The results show that care must be exercised when attempting to carry

conclusions drawn for networks exposed to low intensity ratio (ρ = 1), over to networks

with larger intensity ratios (ρ > 1).

Specifically, it is found that in the presence of fading, the larger the %, the farther must

a legitimate node be in order to experience an increase in Pr{Cs:k > 0} relative to that

under AWGN conditions. In other words, in networks subject to a low relative intensity

ratio, fading only helps nodes sufficiently far from the source.

Given the above, one can therefore speak of a critical relative intensity ratio, hereafter

denoted by %∗, as the value of % such that pRayleigh(k, %) = pAWGN(k, %), that is

%∗ =

{
%

∣∣∣∣
Pk(%)

(%− 1)k
− %k log %k

(%− 1)k+1
−
(

%

%+ 1

)k
= 0

}
. (3.39)

Unfortunately, due to the presence of the logarithm, simple closed-form solutions of Eq.

(3.39) cannot be found. A plot of the critical density as a function of the node index

k is, however, shown in Fig. 3.10. Curiously, it is found that the relationship between

the critical relative intensity ratio and the node index is very well approximated by the

following linear model

%∗ =
11

9
k − 2

9
. (3.40)



40 3.3. NAKAGAMI FADING CASE

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Probability of Non-Zero Capacity as a Function of Node Index

P
r{

C s
:k
>

0}

Node Index: k

PrNaka(k,m, ̺)

pAWGN(̺; k)

̺ = {1, 2, 5, 10}

Figure 3.8: Effect of distance onto Pr{Cs:k > 0} in the case of Rayleigh fading (m = 1).
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Table 3.1: Polynomial terms in Eq. (3.38)

k Polynomials in %

1 %

2 %+ %2

3 −1
2%+ 5

2%
2 + %3

4 1
3%− 5

3%
2 + 13

3 %
3 + %4

5 −1
4%+ 17

12%
2 − 43

12%
3 + 77

12%
4 + %5

6 1
5%− 13

10%
2 + 37

10%
3 − 63

10%
4 + 87

10%
5 + %6

7 −1
6%+ 37

30%
2 − 241

60 %
3 + 153

20 %
4 − 197

20 %
5 + 223

20 %
6 + %7

8 1
7%− 25

21%
2 + 463

105%
3 − 1007

105 %
4 + 481

35 %
5 − 499

35 %
6 + 481

35 %
7 + %8

9 −1
8%+ 65

56%
2 − 271

56 %
3 + 3349

280 %
4 − 5471

280 %
5 + 6289

280 %
6 − 5471

280 %
7 + 4609

280 %
8 + %9

10 1
9%− 41

36%
2 + 1333

252 %
3 − 3707

252 %
4 + 6877

252 %
5 − 8999

252 %
6 + 8641

252 %
7 − 6479

252 %
8 + 4861

252 %
9 + %10

Note: m = 1, arbitary %
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in the case of Rayleigh fading.
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3.4 Connection Outage

Before we conclude this chapter, let us briefly address another issue. In order to

compute the secrecy transmission capacity [24] of a random network subject to fading,

one would require not only the secrecy outage but also the connection outage, which

measures the probability that a node can communicate with a source in the first place.

This expression is, to the best of our knowledge, still unknown, but can be easily

calculated employing the model here utilised.

Denote the transmission rate as Rt, then the connection outage in AWGN can be

computed using Eq. (3.4) as

Pco(Rt) = Pr{log2

(
1 + ρ

ξk

)
< Rt}

(a)
=

Γ(k, πλ`[
ρ

(2Rt−1)
]δ)

Γ(k)
, (3.41)

where (a) follows from [67, Eq. (3.381)].

The PDF of connection outage as a function of transmission rate can be obtained by

taking derivative of the Eq. (3.41)

f(Rt) =
(πλ`)

kρδk

Γ(k)

δ · log 2 · 2Rt
(2Rt − 1)δk+1

exp

(
−πλ`

(
ρ

2Rt − 1

)δ)
. (3.42)

A similar result is given in [29] by using Erlang distribution. Compared to the latter,

the derivation above is more general, since any path loss coefficient α (embedded in δ)

is admissible.

Next, consider the distribution of the path gains. The PDF of Nakagami-m fading

model is expressed by [12]

f(x) =
mmxm−1exp(−mx)

Γ(m)
. (3.43)

A geometry-inclusive fading model for wireless networks in the case of δ = 1 was studied

in [12], where distance and fading uncertainties are combined in the path loss process

with fading. In contrast, the results to follow here apply for generalized values of δ,

with network dimension d = 2.
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Nakagami-m fading for various m, with Rt = 1, λ` = 2 and α = 4 .
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Pco(Rt) = 1 +
Γ(1

2 + k
2 +m)2F2(k2 + 1

2 ,
1
2 + k

2 +m, 3
2 ,

3
2 + k

2 ,
(πλ`)

2

4mu )

(πλ`)−k−1 · (k + 1)(mu)
k
2 +

3
2 Γ(m)Γ(k)

− (3.45)

Γ(k2 +m)2F2(k2 ,
k
2 +m, 1

2 , 1 + k
2 ,

(πλ`)
2

4mu )

(πλ`)−k · k · (mu)
k
2 Γ(m)Γ(k)

.

The channel gain ζ is the function of independent variables |h|2 and rα. Then, the

distribution of ζ can be expressed by

fζk(x) =

∞∫

0

y
mm(yx)m−1e−mxy

Γ(m)

(πλ`)
ky

2
α

(k−α2 )e−πλ`y
2
α

α
2 Γ(k)

dy, (3.39)

=
B

x
2k
α

+2

[
mxΓ(m+ 2k

α )1F1

(
m+ 2k

α ,
1
2 ,

(πλ`)
2

4mx

)
+

√
mx(−πλ`)Γ

(
m+ 2k

α + 1
2

)
1F1

(
m+ 2k

α + 1
2 ,

3
2 ,

(πλ`)
2

4mx

)]
,

where B = (2πλ`)
k

αΓ(m)Γ(k)m
2k
α +1

.

When the wireless transmission is under Nakagami-m fading, and the path gain which

depends on channel fading and stochastic distances between communicating pairs, the

connection outage for α = 4 can be computed as

Pco(Rt) = Pr {log2 (1 + ρζk) ≤ Rt} , (3.40)

=
2mm(πλ`)

k

α · Γ(k)Γ(m)

∫ ∞

0
x

1
2

(k−2)e−πλ`x
1
2

∫ ux

0
ym−1e−mydy dx,

where u = 2Rt−1
ρ .

The above integral has been evaluated using [69, Eq. (2.10.3.9)], yielding the closed

form expression given in Eq. (3.45) on the top of this page. Notice that Eq. (3.45)

generalizes Eq. (3.41), in the sense that for m→∞ the two expressions should coincide.

This is illustrated in Fig. 3.11.
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3.5 Conclusions

In this chapter, we investigated the secrecy outage of unicast channels in random net-

works exposed to randomly located single eavesdropper, obtaining original expressions

which include uncertainty in terms of the location of legitimate nodes relative to the

eavesdropper, and fading. In particular, we conducted a detailed analysis of the impact

of Nakagami-m block fading and of the density of legitimate nodes relative to that of

eavesdroppers. The results indicate that depending on those conditions, fading may

result in an increase in the probability of a non-zero secrecy capacity of unicast channels,

compared to that available under AWGN. The findings are described in detail in our

articles [19,70,71].

Specifically, we have have added following contributions to this chapter

• Obtained the expression for probability of non-zero secrecy outage of unicast

channel under AWGN channel [19].

• Derived the expression of probability of non-zero secrecy outage of unicast channel

in presence of single eavesdropper under Nakagami-m fading channel [19,70].

• Derived a new compact expression for connection outage probability under fading

channel [71].



Chapter 4

Single Antenna Systems in

Unicast Channels: Multiple

Eavesdroppers

Summary:

In this chapter, we offer a characterization of the impact of noise, path loss, density

and fading onto the secrecy capacity achieved between a pair of legitimate nodes of

a network in the possible presence of randomly located eavesdroppers. We derive the

probability of non-zero capacity for the case of an unknown number of eavesdroppers

per neighborhood.

Reprinted from Proc. IEEE Personal Indoor Mobile Radio Communication, Satyanarayana
Vuppala, Giuseppe Abreu, Secrecy Outage in Random Wireless Networks subjected to Fading, pp
441-445, Copyright (2013), with permission IEEE.
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4.1 Introduction

The results investigated in Chapter 3 only cover a portion of the situations faced by

a unicasting source on the S-Graph. Specifically, the number of eavesdroppers in the

vicinity of the source is not always one, but rather a Poisson random variable with

intensity given by the footprint of the source times the density of eavesdroppers.

In the cases when the number of neighboring eavesdroppers is larger than one, and their

corresponding path losses or path gains are affected by fading, the secrecy capacity of

the unicasting channel is not determined by the nearest eavesdropper, but rather by

the eavesdropper with the minimum path loss or maximum path gain amongst those

present (see Fig. 4.1). In other words, the k-th unicast channel will experience a non-

zero secrecy capacity iff

∆ , ξk −min{ξe:1, · · · , ξe:K} ≤ 0, (4.1)

∆ , max{ζe:1, · · · , ζe:K} − ζk ≥ 0, (4.2)

where K is a Poisson random variable; ξe:k and ζe:k are path losses and path gains of

corresponding k-th eavesdropper respectively.

In following sections, we have derived the best eavesdropper distribution in two different

approaches. In first approach, we used path loss distribution in order to find the best

eavesdropper distribution. With this approach, we derived the closed-form solutions

for the secrecy outage probability. However, in some cases it is easier to work with path

gains instead of path losses. To this point, in second approach, we used path gains to

obtain the best eavesdropper distribution.

4.2 Nakagami Fading Case: Approach 1

For notational convenience1, let us denote the lower extreme order statistics appearing

in Eq. (4.1) simply by ξ̄e, that is ξ̄e , min{ξe:1, · · · , ξe:K}. In order to derive the

probability Pr{Cs:k > 0}, the distribution of ξ̄e is required. Deriving such a distribution

exactly is, however, a formidable task since the number of eavesdroppers K is random

and unknown, and the path losses ξe:k’s are non-identically distributed random variates.

1Adding a “K” to the notation is not consistent since K is random and, more importantly, one finds
that ξ̄e is in fact not strongly dependent on K.
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Fortunately, an accurate approximation2 of such a distribution can nevertheless be

derived as follows. First, ignoring the mild correlation amongst ξe:k’s and for given m

and σe, we obviously have

min{ξe:1, ξe:2, · · · , ξe:K} ≤ min{ξe:1, ξe:2}, ∀ K ≥ 2. (4.3)

Relying on such a bounding approach, the first major problem – namely the randomness

of K – can be avoided. Recalling that ξe:1 ∼ pξe(x; k,m, σe), with pξe(x; k,m, σe) as

given in Eq. (3.16), the exact distribution of min{ξe:1, ξe:2} can be obtained through

the theory of ordered statistics [72, pp. 96, Eq. (5.2.1)] yielding

pξ̄e(x;m,σe) = pξe(x; 1,m, σe) + pξe(x; 2,m, σe)− Pξe(x; 1,m, σe)·pξe(x; 2,m, σe)

−Pξe(x;2,m, σe)·pξe(x; 1,m, σe), (4.4)

where Pξe(x; k,m, σe) denotes the cumulative distribution corresponding to pξe(x; k,m, σe),

whose closed-form is given by [12, Eq. (6)]

Pξe(x; 1,m, σe) = 1−
(

σe
x+ σe

)m
, (4.5)

Pξe(x; 2,m, σe) = m

(
σe

x+ σe

)m+1

− (m+ 1)

(
σe

x+ σe

)m
+ 1. (4.6)

Secondly, we invoke the general result of extreme value theory [73], which determines

that the minimum of a number of random variates is well modeled by one of the

distributions of the Weibull family [72]. Consequently, we may fit a Weibull model to

the exact distribution given in Eq. (4.4), that is

pξ̄e(x;µe) ≈
1

µe
e−x/µe , (4.7)

where the parameter µ is the average least path loss at the eavesdroppers, i.e., µe ,

E[ξ̄e].

2The result (to follow soon) is an approximation because the slight correlation amongst path losses
ξe:k’s will be ignored for mathematical tractability.
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The expectation of ξ̄e can be calculated from the definition and Eq. (4.4), yielding

E[ξ̄e] ,

∞∫

0

x · pξ̄e(x;m,σe) dx =

∞∫

0

x · pξe(x; 1,m, σe) dx

︸ ︷︷ ︸
I5(σe;m)

∣∣∞
0

+

∞∫

0

x · pξe(x; 2,m, σe) dx

︸ ︷︷ ︸
I6(σe;m)

∣∣∞
0

−

∞∫

0

x · Pξe(x;1,m, σe)·pξe(x;2,m, σe) dx

︸ ︷︷ ︸
I7(σe;m)

∣∣∞
0

−
∞∫

0

xPξe(x;2,m, σe)·pξe(x;1,m, σe) dx

︸ ︷︷ ︸
I8(σe;m)

∣∣∞
0

,

(4.8)

where the closed-form solutions of the integrals I5(σe;m)
∣∣∞
0

and I6(σe;m)
∣∣∞
0

exist and

are respectively given by [68, pp. 27, Eq. (1.2.5.9) and Eq. (1.2.5.10)]

I5(σe;m)
∣∣∞
0

= mσme

∞∫

0

x

(σe + x)m+1
dx =

σe
m− 1

, (4.9)

I6(σe;m)
∣∣∞
0

= m (m+1)σme

∞∫

0

x2

(σe+ x)m+2
dx=

2σe
m− 1

. (4.10)

In order to find a solution for integral first rewrite I7(σe;m)
∣∣∞
0

as

I7(σe;m)
∣∣∞
0

=m(m+ 1)σme

∞∫

0

x2

(σe + x)m+2
dx

︸ ︷︷ ︸
I7A(σe;m)

∣∣∞
0

−m(m+ 1)σ2m
e

∞∫

0

x2

(σe + x)2m+2
dx

︸ ︷︷ ︸
I7B(σe;m)

∣∣∞
0

, (4.11)

Identifying that I7A(σe;m)
∣∣∞
0

and I7B(σe;m)
∣∣∞
0

are particular cases of [68, pp. 27, Eq.

(1.2.5.10)]

I7A(σe;m)
∣∣∞
0

=
1

(m− 1)σm−1
e

− 2

mσm−1
e

+
1

(m+ 1)σm−1
e

, (4.12)

I7B(σe;m)
∣∣∞
0

=
1

(2m− 1)σ2m−1
e

− 1

mσ2m−1
e

+
1

(2m+ 1)σ2m−1
e

, (4.13)

we obtain

I7(σe;m)
∣∣∞
0

=
σe(7m

2 − 1)

(m− 1)(2m− 1)(2m+ 1)
. (4.14)
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Likewise, I8(σe;m)
∣∣∞
0

can be rewritten as

I8(σe;m)
∣∣∞
0

=

∞∫

0

m2σ2m+1
e x

(σe+ x)2m+2
dx

︸ ︷︷ ︸
I8A(σe;m)

∣∣∞
0

−
∞∫

0

m(m+ 1)σ2m
e x

(σe+ x)2m+1
dx

︸ ︷︷ ︸
I8B(σe;m)

∣∣∞
0

+ (4.15)

mσme

∞∫

0

x

(σe + x)m+1
dx

︸ ︷︷ ︸
I8C(σe;m)

∣∣∞
0

,

where [68, pp. 27, Eq. (1.2.5.9)]

I8A(σe;m)
∣∣∞
0

=
1

2mσ2m
e

− 1

(2m+ 1)σ2m
e

, (4.16)

I8B(σe;m)
∣∣∞
0

=
1

(2m− 1)σ2m−1
e

− 1

2mσ2m−1
e

, (4.17)

I8C(σe;m)
∣∣∞
0

=
1

m(m− 1)σm−1
e

, (4.18)

which yields

I8(σe;m)
∣∣∞
0

=
σe(4m

2 + 3m− 1)

2(m− 1)(2m− 1)(2m+ 1)
. (4.19)

Finally, combining equations (4.8) to (4.19), we obtain

µe = E[ξ̄e] ≤
3σe

(4m− 2)
, (4.20)

where the inequality sign indicates that, in deriving Eq. (4.20), the correlation between

ξe:1 and ξe:2 was ignored, which implies that the result is a lower bound on the true

value of E[min{ξe:1, ξe:2}].

Recall also the correlation between ξe:1 and ξe:2 originates from the ordination of the two

eavesdroppers according to their distances to the source [12]. While such distances scale

with the density of eavesdroppers, captured by σe, the scaling factor is obviously the

same for the closer and farther eavesdroppers. The same argument holds in supporting

the fact that fading does not affect the looseness of the bound shown in equation (4.20).
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Consequently, it is expected that the error between µe as obtained from Eq. (4.20) and

the true value of E[min{ξe:1, ξe:2}] is independent of σe or m. In other words, we may

write

µe = α
3σe

(4m− 2)
, (4.21)

where α is a scaling factor constant with respect to σe and m.

This fact is indeed corroborated by the results shown in Fig. 4.2, where a plot of Eq.

(4.20) is compared against the empirical evaluations of E[min{ξe:1, ξe:2}] obtained via

simulation, overlaid with a fitted version of Eq. (4.21). From such fitting we obtain

the scaling factor α = 6/5, thus

µe ≈
18σe

5(4m− 2)
. (4.22)

Using Eq. (4.7), we finally obtain the following exponential model for the distribution

of ξ̄e

pξ̄e(x;m,σe) =
5(4m− 2)

18σe
e
−5(4m−2)x

18σe , (4.23)

Figures 4.3 and 4.4 illustrate the accuracy of the above model. In Fig. 4.3, the empirical

distributions obtained with K = 2 and K = 6 are shown to be nearly identical and be

equally well fitted to Eq. (4.23). In turn, Fig. 4.4 which depicts the Kullback-Leibler

divergence between Eq. (4.23) and empirical distributions obtained for various values

of K and m, which we denote D∆(i,m, σe), demonstrates that the accuracy of the

model in fact improves with K and m.

Using the latter model for pξ̄e(x;m,σe), the distribution of the path loss difference ∆

becomes

p∆(x; k,m, σe, σ )̀ =

∞∫

−x

pξ̄e(τ ;m,σe)·pξ(x+τ ; k,m, σ`)dτ, (4.24)

−−−−−−−−−→
Eq.(3.16) into (4.7)

5A`(4m−2)

18σe

∞∫

−x

e
−5(4m−2)τ

18σe (x+ τ)k−1

(σ` + x+ τ)m+i
dτ,

−−−−→
z,x+τ

5A`(4m−2)

18σe

∞∫

0

e
−5(4m−2)(z−x)

18σe
zk−1

(σ` + z)m+k
dz,

−−−−−−→
y,1+

z
σ`

5m(4m−2)

18σe

(
m+ k−1

m

)
e

5(4m−2)(σ`+x)
18σe

∞∫

1

e
−5(4m−2)y

18% (y −1)k−1

ym+i
dy.
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Expanding the term (y − 1)k−1 and invoking the Binomial Theorem, we obtain

p∆(x; k, σ`, σe) =
5m(4m−2)

18σe

(
m+ k − 1

m

)
× (4.25)

k−1∑

j=0

(−1)j
(
k − 1

j

)
e

5(4m−2)(σ`+x)
18σe

∞∫

1

e
−5(4m−2)σ`y

18σe

yj+m+1
dy,

where the last integral is a generalized Exponential Integral Eν(x) [74, pp. 228, Eq.

(5.1.4)].

Integrating p∆(x; k,m, σe, σ`), we obtain the probability that a non-zero secrecy capac-

ity between the source and the k-th node exists (in the presence of a randomly located

multiple eavesdroppers), namely

pNaka:Multi(k,m, %) =

0∫

−∞

p∆(x; k,m, σ`, σe) dx = (4.26)

5m(4m− 2)

18σe

(
m+k−1

m

) k−1∑

j=0

(−1)j
(
k−1

j

)
e

5(4m−2)
18% Em+j+1

(
5(4m−2)

18%

) 0∫

−∞

e
5(4m−2)x

18σe dx

︸ ︷︷ ︸
= 18σe

5(4m−2)

=

m

(
m+k −1

m

)k−1∑

j=0

(−1)j
(
i−1

j

)
e

5(4m−2)
18% Em+j+1

(
5(4m−2)

18%

)
,

where we have slightly extended the notation in order to highlight the fact that the

result is obtained under the assumption that multiple eavesdroppers may be present.

The term e
5(4m−2)

18% Em+j+1

(
5(4m−2)

18%

)
appearing in Eq. (4.26) can be accurately bounded

by very simple rational functions, specifically [74, pp. 229, Eq. (5.1.19)]

1

m+j+ 5(4m−2)
18% +1

≤ e
5(4m−2)

18% Em+j+1

(
5(4m−2)

18%

)
≤ 1

m+j+ 5(4m−2)
18%

. (4.27)
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Replacing the latter bounds into Eq. (4.26), and using the relation [68, pp.498, Eq.

(4.2.2.44)]
n∑

j=0

(−1)j

j + β

(
n

j

)
=

1

β

(
n+ β

n

)−1

, (4.28)

we obtain the bounds

pNaka:Multi(k,m, %) ≤ m
(
m+k−1
m

)

(m+ 5(4m−2)
18% )

(m+
5(4m−2)

18% +k−1

k−1

) , (4.29a)

pNaka:Multi(k,m, %) ≥ m
(
m+k−1
m

)

(m+ 5(4m−2)
18% +1)

(m+
5(4m−2)

18% +k

k−1

) , (4.29b)

which after further simplification reduce to

pNaka:Multi(k,m,%) ≤
k−1∏

k=0

m+k

m+5(4m−2)
18% +k

︸ ︷︷ ︸
pU

Naka:Multi
(k,m,%)

, (4.30a)

pNaka:Multi(k,m,%) ≥
k−1∏

k=0

m+k

m+5(4m−2)
18% +k+1

︸ ︷︷ ︸
pL

Naka:Multi
(k,m,%)

. (4.30b)

The above bounds can also be shown to be accurate by means of their divergence with

respect to the exact solution (4.26). To this end, let us denote the Kullback-Leibler

Divergence [75] between Eq. (4.26) and the bounds offered in (4.30a) and (4.30b),

respectively, by DU
Naka:Multi

(k,m, %) and DL
Naka:Multi

(k,m, %). Plots of these functions are

shown in Fig. 4.5, which clearly shows that the upper bound is generally tighter than

the lower bound, but that for the large values of fading figure m both bounds are

equivalent.

A comparison of the probability of non-zero secrecy capacity under Rayleigh fading

with multiple eavesdroppers as predicted by Eq. (4.26), against the Pr{Cs:k > 0} in

AWGN according to Eq. (3.2) is shown in Fig. 4.6. It is found that, like in the

case of a single eavesdropper, fading favors the unicast channels, since the curves for

Pr{Cs:k > 0} under fading approach that for the AWGN case from below. We omit

further plots, but similar results are found also for % > 1.
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It has be shown [9] that in the wire-tap channel – which can be considered as special

case of Scenario 2 – the probability Pr{Cs:k > 0} can be improved in an average sense

by quasi-static fading. In comparison to that result, the analysis presented above

offers evidence that such an improvement is also theoretically possible under more

relaxed assumptions, specifically, without the quasi-stationarity condition, despite of

knowledge on the location of the eavesdropper, and even if more than one eavesdroppers

are present.

4.3 Nakagami Fading Case: Approach 2

Our interest is to characterize the secrecy outage of the ordered (i.e., uniquely iden-

tified) nodes, the distributions of interest concerning the legitimate network are those

corresponding to the path gains of each k-th node – hereafter denoted ζk.

Path Gain Distributions of the k-th Legitimate Node

A geometry-inclusive fading model for wireless networks, where distance and fading

uncertainties are combined was developed in [12], where for the case of channels with

a path loss exponent α = 2, the distribution of the path loss associated with random

pairs of a Poisson network subjected to Nakagami-m fading, namely ξ , r2/|h|2, was

derived. In light of secrecy capacity formulation, however, it will prove convenient to

work instead with the distribution of the corresponding path gains. To this end, recall

that [12]

ψ ∼ |h|2 ∼ f(x;m) ,
mmxm−1e−mx

Γ(m)
, (4.31)

r2
k ∼ q(x; k, λ) , e−πλx

(πλx)k

xΓ(k)
, (4.32)

which straightforwardly yields

pζk(x; k,m, λ)=

∞∫

0

f(xy;m)·q(y; k, λ) dy =
mm(πλ)k

Γ(m)Γ(k)

∞∫

0

(xy)m−1e−mxyyke−πλy dy,

=
Γ(m+ k)mm(πλ)k(x)m−1

Γ(m)Γ(k)(mx+ πλ)m+k
. (4.33)
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From equation (4.33), the distribution of the path gain to the k-th closest legitimate

node is given by

pζk(x; k,m, η`) = A(k;m, η`) ·
xm−1

(η` x+ 1)m+k
, (4.34)

where the auxiliary function A(k;m, η) is defined as

A(k;m, η) ,
Γ(m+ k)ηm

Γ(m)Γ(k)
, (4.35)

while η` is the intensity ratio of the legitimate network, so denominated in allusion to

its absorbing two the fading intensity m and the intensity of the Poisson point process

λ into a single quantity, namely

η , m/(λπ). (4.36)

In consistence with the above-introduced notation, the intensity ratio of the eavesdrop-

ping network will be henceforth denoted by ηe.

Path Gain Distribution of “Best” Eavesdropper

Fortunately an accurate approximation3 of such a distribution can nevertheless be

derived as follows. First, ignoring the mild correlation amongst ζe:k’s we have

ζ̄e ≤
max{ψ1, ψ2 · · ·ψK}
min{ξ1, ξ2 · · · ξK}

, (4.37)

where, ψk and ξk follow a Nakagami-m fading model and the pathloss model given

in [12], respectively.

One difficulty in evaluating the bound in inequality (4.37) is to determine a reasonable

range for the Poisson variate K. Indeed, since all ψk’s are equivalent and independent,

while ξk’s are statistically increasing, the maximum eavesdropper path gain ζ̄e must

converge. In other words, it is to be expected that a sufficiently large K can be taken

beyond which the likelihood that ζe:K > ζe:k={1,··· ,K−1} vanishes.

In contrast, for a given legitimate path gain ζ`:k what determines the secrecy capacity

of a channel subjected to fading is not any specific eavesdropper, but rather the

3The result to be given soon is an approximation due to the fact that the path gains ζe:k’s are also
correlated (albeit only slightly so), which will be ignored for analytical purposes.
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eavesdropper with the maximum4 (instantaneous) path gain amongst those present.

Consequently, concerning the eavesdropping network and assuming that the communi-

cating pair is exposed to an unknown number K of eavesdroppers, the distribution of

interest is an extreme value distribution, namely, the statistics of the quantity

ζ̄e , max{ζe:1, · · · , ζe:K}. (4.38)

We will henceforth refer to the eavesdropper whose path gain is largest, such that

ζe = ζ̄e, as the “best” eavesdropper. Let us also remark that the subindex K is not

added to the notation of ζ̄e in anticipation to the fact that best eavesdropper path gain

will be found not to depend strongly on K.

Deriving the distribution of ζ̄e directly from equations (4.38) and (4.34) is, however,

a formidable task since the number of eavesdroppers K is random and unknown, and

the path gains ζe:k’s are non-identically distributed variates. Indeed, to the best of our

knowledge, von Mises-like conditions [72] to determine the domain of attraction of an

extreme value distribution of a random set of non-identical variates does not exist.

We are therefore interested a sufficiently large K such that

P (1;K) ∩ P (2;K) · · ·P (K − 1;K)≤ε, (4.39)

where the quantity ε is chosen to be � 1 and we have implicitly defined,

P (k;K) , Pr{ζe:K>ζe:k} (4.40)

=

∞∫

0

pζe:k
(x; k,m, ηe)

∞∫

x

pζe:K
(z;K,m, ηe) dz

︸ ︷︷ ︸
I1(z;K,m,ηe)

∣∣∞
x

dx.

The indefinite form of the integral I1(z;K,m, η`) appearing in Eq. (4.40) evaluates

to [68, pp.30, Eq. (1.2.5.5)]

I1(z;K,m, ηe)=
A(K;m, ηe)

ηm+K
e

m−1∑

j=0

(
m−1

j

)
(−1)j

(
x+

1
ηe

)−(K+j)

ηje(K+j)
.

4It is here implicitly assumed that eavesdroppers do not form collusions. The case with collusion
will be discussed in next chapter.
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Figure 4.7: Probability that the furthest K-th eavesdropper has the largest path gain

than all other K − 1 eavesdroppers.
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Therefore,

P (k;K) =
A(K;m, ηe)Γ(m+ k)

Γ(m)Γ(k)

m−1∑

j=0

(
m−1

j

)
(−1)j

(K+j)

∞∫

0

xm−1ηe
−(m+k+K+j)

(x+ 1
ηe

)m+k+K+j
. (4.41)

The last integral finally simplifies to [68, pp.30, Eq. (1.2.5.30)]

P (k;K) =
Γ(m+ k)Γ(m+K)

Γ(m)Γ(k)Γ(m)Γ(K)

m−1∑

j=0

(−1)j

K+j

m−1∑

t=0

(
m− 1

t

)
(−1)t

k+K+j+t . (4.42)

From equations (4.39) and (4.42) the range of values of ε can be determined. Specifi-

cally, recognize that P (K − 1;K) > P (K − 2;K) > · · · and let us define a truncation

of the product on the lefthand side of inequality (4.39)

P̄ (n;K) ,
n∏

k=1

P (K − n;K), n ≤ K − 1. (4.43)

Clearly the function P̄ (n;K) is strictly and fast descending, as illustrated in Fig. 4.7,

such that the largest possible value of ε is given by P̄ (1;K) = P (K − 1;K). But since

P (K − 1;K) is also fast decreasing, it follows that the likelihood that the furthest

amongst K eavesdroppers has the largest path gain becomes negligible even for a

relatively small K. For instance, according to Fig. 4.7 it is found that ε < 0.0001

for K = 10. Hereafter we will therefore take K = 10.

With an adequate truncation of the sets {ψ1, ψ2 · · ·ψK} and {ξ1, ξ2 · · · ξK} well defined,

we may proceed to compute the numerator of the ratio in Eq. (4.37). Assuming that

ψk’s are independently and identically distributed [12] with CDF and PDF is given by

F (x;m) =
γ(m,mx)

Γ(m)
, (4.44)

f(x;m) =
mmxm−1e−mx

Γ(m)
. (4.45)
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The von-Mises condition [76], [72] associated with the quantity ψ̄ , max{ψ1, ψ2 · · ·ψK}
are then

lim
x→∞

d

dx

[
1− F (x;m)

f(x;m)

]
= 0, (4.46)

which indicates that ψ̄ follows a Gumbel Distribution with parametes

µ = F−1(1− 1
K ), (4.47)

σ = F−1(1− 1
Ke)− µ. (4.48)

Explicitly,

ψ̄ ∼ Prψ̄(x;µ, σ) ,
1

σ
e

(
−e−

x−µ
σ −x−µσ

)
. (4.49)

The accuracy of the Gumbel model of equation (4.49) is illustrated in Fig. 4.8 by

comparison with the empirical distribution obtained with K = 10.

Finally, returning to inequality (4.37) and recalling that the path losses ξk are ordered,

it follows that ξ̄ = ξ1, such that the distribution of the denominator is given in Eq.

(4.32), with k = 1.

We now define for our analysis τ , µ/σ, where µ and σ vary from 1 to 2 and from 0.1

to 1 respectively, while m goes from 0.5 to 100 and K = 10.

From the above, the CDF and PDF of ζ̄e can now be computed, yielding respectively

Pζ̄e(x;λ, µ, σ) =

∞∫

0

q(z; 1, λ)Fψ̄(zx;µ, σ)dx = πλ

∞∫

0

e−e
− (zx−µ)

σ

eπλz
dz, (4.50)

−−−−−−−→
t,e−

(zx−µ)
σ

πλσ

x
e−

πλµ
x

eτ∫
0

e
πλσ log(t)−t

x

t
dt =

πλσ

x
e−

πλµ
x γ(πλσx , eτ ),

and

pζ̄e(x;λ, µ, σ) =
(πλµ− x)

x2
Pζ̄e(x;λ, µ, σ) +

πλσ

x
e−

πλµ
x γ′(πλσx , eτ )

︸ ︷︷ ︸
H(x;λ,µ,σ)

. (4.51)
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Simplified Path Gain Distribution of “Best” Eavesdropper

Due to the presence of the lower incomplete gamma and its derivative, the best eaves-

dropper path gain distribution given by Eq. (4.51) is hard to manipulate. It will prove

convenient, therefore, to replace this function by a simpler model. To this end, we invoke

the general result of extreme value theory [73], which determines that the maximum of

a number of random variates can be well approximated one of the distributions of the

generalized extreme value family [72].

We seek therefore to find a two-parameter Generalized Extreme value (GEV) approxi-

mation of pζ̄e(x;λ, µ, σ) in the form

pζ̄e(x; ν, θ) ≈ 1

θ

(
x−ν+θ

θ

)−2
e
−
(
x−ν+θ

θ

)−1

, (4.52)

where the parameters ν and θ are the location and scale parameters, respectively.

The above GEV model can parameterized using the median and mode of our earlier

result given in Eq. (4.51). Specifically, the median is given by

med(ζ̄e) , P−1
ζ̄e

(1/2), (4.53)

while the mode can be calculated from

mod(ζ̄e) ,

{
x
∣∣∣ d

dx
pζ̄e(x;λ, µ, σ) = 0

}
. (4.54)

Differentiating pζ̄e(x;λ, µ, σ) yields

p′ζ̄e(x;λ, µ, σ)=
(πλµ− x)

x2
pζ̄e(x;λ, µ, σ) +H ′(x;λ, µ, σ)− (2πλµ− z)

x3
Pζ̄e(x;λ, µ, σ),

=
(πλµ− x)

x2
pζ̄e(x;λ, µ, σ)− (2πλµ− x)

x3
Pζ̄e(x;λ, µ, σ) + (4.55)

(πλµ− x)

x2
H(x;λ, µ, σ) +

πλσ

x
e−

πλµ
x γ′′(πλσx , eτ ).

Equating to zero and simplifying gives

0 =
(πλµ− x)

x2

(
−γ(πλσx , eτ )

x
+
πλµ

x2
γ(πλσx , eτ ))

)
− (4.56)

(2πλµ− x)

x3
γ(πλσx , eτ ) +

(πλµ− x)

x2
γ′(πλσx , eτ ) +

(πλµ− x)

x2
γ′(πλσx , eτ ) + γ′′(πλσx , eτ ),

=
γ′′(πλσx , eτ )

γ(πλσx , eτ )
x4 − 2γ′(πλσx , eτ )

γ(πλσx , eτ )
x3 +

(
2 +

2πλµγ′(πλσx , eτ )

γ(πλσx , eτ )

)
x2 − (4πλµ)x+ (πλµ)2.
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Solving the above equation numerically, mod(ζ̄e) can be calculated, such that the GEV

model can be parameterized using

θ =
med(ζ̄e)−mod(ζ̄e)

(2− ln 2)
ln 4, (4.57)

ν = med(ζ̄e) + θ
2 . (4.58)

The accuracy of the GEV model is illustrated in Fig. 4.9 via comparison with an

empirical distribution obtained with K = 10.

With possession of accurate models for the distributions of the numerator and denomi-

nator of the ration in inequality (4.37), the secrecy non-outage probability between the

source and k-th node (in the presence of a randomly located multiple eavesdroppers)

can be calculated.

Referring back to Eq. (3.14), defining the function β(κ) , 2Rs(ρ−1 + κ) − ρ−1 and

replacing ζe with ζ̄e we obtain

P̃out(Rs) = Pr
{
ζk > β(ζ̄e)

}
, (4.59)

=

∞∫

0

pζ̄e(x; ν, θ) ·
( ∞∫

β(x)

pζk(z; k,m, η`) dz

︸ ︷︷ ︸
I1(z;k,m,η`)

∣∣∞
β(x)

)
dx,

where, the indefinite form of the integral I1(z; k,m, η`) evaluates to [68, pp.30, Eq.

(1.2.5.5)]

I1(z; k,m, η`) =
A(k;m, η`)

ηm+k
`

m−1∑

j=0

(
m−1

j

)[
β(x)+

1
η`

]−(k+j)

(k+j)(−η`)j . (4.60)

Therefore, by defining $ , (2Rs(ν−θ+ρ−1)−ρ−1+ 1
η`

), the following equation is obtained

by straightforward calculation from (4.59)
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P̃out(Rs) =
A(k;m, η`)

θηm+k
`

m−1∑

j=0

(
m−1

j

)
(− 1

η`
)j

(k+j)

∞∫

0

(
x−ν+θ

θ

)−2
e
−
(
x−ν+θ

θ

)−1

[
β(x) + 1

η`

](k+j)
dx, (4.61)

−−−−−−−→
t, θ
x−ν+θ

A(k;m, η`)

θηm+k
`

m−1∑

j=0

(
m−1

j

)
(− 1

η`
)j

(k+j) ×

θ
θ−ν∫

0

e−t
[
2Rsθ + t (2Rs(ν − θ + ρ−1)− ρ−1 + 1

η`
)

︸ ︷︷ ︸
$

](k+j)
dt,

−−−−−−−→
y,2Rsθ+t$

A(k;m, η`)

θηm+k
`

m−1∑

j=0

(
m−1

j

)
(− 1

η`
)je

2Rsθ
$

$k+j+1(k+j)

2Rsθ+$
θ

θ−ν∫

2Rsθ

e−
y
$ (y − 2Rsθ)k+j

yk+j
dy,

=
A(k;m, η`)

θηm+k
`

m−1∑

j=0

(
m−1

j

)
(− 1

η`
)je

2Rsθ
$

$k+j+1(k+j)

m−1∑

t=0

(
k + j

t

)
(−2Rsθ)t

2Rsθ+$
θ

θ−ν∫

2Rsθ

e−
y
$

yt
dy,

=
A(k;m, η`)

θηm+k
`

e
2Rsθ
$

m−1∑

j=0

(
m−1

j

)
(− 1

η`
)j

$k+j+1(k+j)

k+j∑

t=0

(
k + j

t

)
(−2Rsθ)t ×

[
(2Rsθ)1−tEt(2Rsθ

$ )− (2Rsθ +$ θ
θ−ν )1−tEt(2Rsθ

$ + θ
θ−ν )

]
.

Finally, the secrecy outage probability can be obtained by substituting Eq. (4.61) into

Eq. (3.14). Plots of the secrecy outage obtained with the above expressions are shown

in Figures 4.10 and 4.11. The results in Fig. 4.10 are somewhat intuitive. Namely, Fig.

4.10 indicates that it is hard to ensure a low secrecy outage for nodes further from the

source and for high rates. The results in Fig. 4.11, however, are less intuitive, as the

achievable secrecy non-outage is largely independent on the reference SNR ρ, even for

a fixed rate! Since ρ is fundamentally controlled by the source’s transmit power, the

conclusion is that at least to the closest source, it is possible to communicate secretly

in the presence of a numerous, and unknown number of eavesdroppers, using very low

power (for instance half the power of background noise).
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Figure 4.10: Secrecy outage as a function of node index in the case of Rayleigh fading

(m = 1) and for various rates, with unitary reference SNR (ρ = 1).
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Figure 4.11: Secrecy outage as a function of node index and for various reference SNR’s

(ρ = {0.5, 1, 5, 25}), with unitary rate (Rs = 1).



4. SINGLE ANTENNA SYSTEMS IN UNICAST CHANNELS: MULTIPLE EAVESDROPPERS 75

4.4 Many Eavesdroppers and Legitimate nodes

Let us consider the case where the source is able to identify which of its neighbors has

the best path loss as depicted in Fig. 4.12, subsequently unicasting to that node. This

case relates to the scenario studied in [9,10], in the sense that the selection of the device

with the “best channel” can either occur in terms of the “best node” at a given time

thanks to the quasi-stationarity of the channel – as assumed in [9] – or in terms of the

“best time” – as assumed in [10].

In the context of our analytical framework, this assumption implies that secrecy capac-

ity of unicast channel in question is governed by the statistics of the minimum path

loss amongst the present. In other words, the unicast channel will experience non zero

secrecy capacity iff

∆ , min{ξ1, · · · , ξK} −min{ξe:1, · · · , ξe:K} = ξ̄` − ξ̄e ≤ 0, (4.62)

where we have implicitly defined ξ̄` , min{ξ`:1, · · · , ξ`:K`}.

The distribution of above the path loss difference ∆ then becomes

p∆(x;m,σe, σ`) =

∞∫

−x

pξ̄e(τ ;σe) · pξ̄`(x+ τ ;σ`)dτ,

−−−−−−−−−→
subst. eq. (4.23)

25(4m−2)2

324σeσ`
e
−5x(4m−2)

18σ`

∞∫

−x

e
−5τ(4m−2)(σe+σ`)

18σeσ` dτ,

=
5(4m−2)

18(σe + σ`)
e

5x(4m−2)
18σe , (4.63)

where the ξ̄` is distributed according to the Eq. (4.23), only with σ` replacing σe, as

can be shown via steps identical to those used to derive the distribution of ξ̄e.

Finally, the probability that a non-zero secrecy capacity between the source and the

best node exists (in the presence of a randomly located multiple eavesdroppers) is given

by

pNaka:Multi(%)=

0∫

−∞

p∆(x;m,σe, σ`) dx=
5(4m− 2)

18(σe + σ`)

0∫

−∞

e
5(4m−2)x

18σe dx

︸ ︷︷ ︸
= 18σe

5(4m−2)

=
σe

σe + σ`
=

%

%+ 1
.

(4.64)
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Figure 4.12: Regular secrecy neighborhoods
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Notice that the expression given in Eq. (4.64) is precisely the same as the probability

of non-zero capacity found for the nearest node in the AWGN channel [29], which is

particularly interesting since the result is independent of the fading figure m. The

result that Pr{Cs:k > 0} is independent of the fading figure m is intuitively acceptable

for k = 1 (nearest node), since in the AWGN channel the best node is always the

nearest.

We have, however, also consistently verified empirically that in fact the expression( %
%+1

)k
accurately describes the non-zero secrecy capacity probability to the k-th best

node in the presence of any fading channel5. This results from the fact that the

expression

p∆(x; k,m, σe, σ`) =
5(4m−2)

18(σe + σ`)

(
%

%+ 1

)k−1

· e
5x(4m−2)

18σe , (4.65)

turns out to be a very accurate (if heuristic) generalization of Eq. (4.63) to the case

when the unicast link in question is the one to the k-th best legitimate node. The

accuracy of Eq. (4.65) is illustrated in Fig. 4.13, once again relying on the Kullback-

Leibler divergence between the expression and corresponding empirical distributions,

denoted D∆:Multi(k,m, σe, σ`). In addition to the empirically observed accuracy, this

“conjecture” is strengthened by the fact that it is in line with the previous finding that

the out degree of an S-graph is fading invariant [14].

4.5 Conclusions

In this chapter, we derived the original expressions for the secrecy outage of unicast

channels in random networks in presence of randomly located eavesdroppers under

Nakagami-m fading. In particular, we conducted a detailed analysis of the impact of

Nakagami-m block fading and of the density of legitimate nodes relative to that of

eavesdroppers, including the derivation of expressions for the case when an unknown

number of eavesdroppers are present.

5This can be easily observed empirically, but hard to prove rigorously due to the difficulty in deriving
the distributions of the k-th best path losses.
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The results indicate that depending on those conditions, fading may result in an increase

in the probability of a non-zero secrecy capacity of unicast channels, compared to that

available under AWGN. The results corroborate and extend the findings in related

articles such as [12,14,29].

An interesting outcome of the analysis is that the uncertainty on the number of

eavesdropper does not play a significant role. Another interesting result is that under

the aforementioned conditions, secret communication at a given rate is possible (albeit

subjected to outage), with very low transmit power. Specifically, it is found that the

secrecy outage is not strongly dependent on the source’s transmit power. We recently

accomplished all these results in [19,20].

• Derived the expression of probability of non-zero secrecy outage of unicast channel

in presence of multiple eavesdroppers under Nakagami-m fading channel.

• Obtained the best path gain distribution of eavesdroppers and consequently we

compute probability of non-zero secrecy capacity of unicast channels in presence

of multiple eavesdroppers under Nakagami-m fading channel [19,20].

• Derived the probability that a non-zero secrecy capacity between the source and

the best node exists (in the presence of a randomly located multiple eavesdrop-

pers) [19].



Chapter 5

Correlation and Collusion

Summary:

In this chapter, we derive the asymptotic (high SNR ratio) expressions for the secrecy

outage probability of random networks under correlated Nakagami-m fading channels.

Numerical results show that correlated fading has an important effect on security,

which may be either beneficial or harmful, depending on the secrecy outage constraints.

The aggregate eavesdroppers’ path gain is modeled and consequently secrecy outage

probability under collusion of eavesdroppers is derived.

Reprinted from Proc. Asilomar Conference on Signals, Systems and Computers, Satyanarayana
Vuppala, Giuseppe Abreu, Secrecy transmission capacity of random networks, pp 743-747, Copyright
(2013), with permission IEEE.
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5.1 Introduction

In Chapter 3 and 4, we have investigated the secrecy capacity of unicast channels

under different scenarios of randomly located eavesdroppers. We obtained closed-form

solutions in terms of the location of legitimate nodes relative to eavesdroppers, the

number of eavesdroppers, and the impact of Nakagami-m block fading.

In those and other similar works, however, secrecy metrics (e.g., capacity, transmission

capacity and outage) were calculated under the assumptions that the legitimate and

eavesdropping channels are mutually independent and without considering the collusion

among eavesdroppers. One hand, channel correlation is frequently observed in practical

wireless environments due to the unavailability of line-of-sight paths, poor scattering,

and proximity between legitimate receivers and eavesdroppers. The previous works

where the impact of correlation in the secrecy of random networks is comparatively

small, but the issue has not entirely escaped the attention of the community. For

instance, the secrecy capacity and secrecy outage capacity of point-to-point system

subjected to correlated fading channels were studied in [77] and [78], respectively.

In this chapter, we contribute to this discussion by deriving asymptotic (high signal-to-

noise ratio) expressions for the secrecy outage probability of random networks under

correlated Nakagami-m fading channels. Our findings indicate that correlation acts

non-uniformly, increasing secrecy rate when secrecy outage is larger than 50%, but

reducing secrecy rate when secrecy outage is less than 50%.

On the other hand, cooperation among the legitimate and eavesdropper nodes is certain

to play a role, one of recent works on the role of cooperation in network secrecy is worthy

of mention [79]. We consider the case that if cooperation is an important part of the

system used by legitimate nodes to communicate, it must be assumed that the same

strategy will be exploited by intruders as well. Indeed, it can be said that ignoring

cooperation amongst eavesdroppers when addressing the question of achievable secrecy

outage and average secrecy capacity of random networks is contradictory to Wyner’s

original notion of “wire tapping”.

Optimal cooperation amongst eavesdroppers is referred to as collusion, since that in

light of the secrecy capacity expression given by Eq. (3.1), the optimum outcome

of eavesdropping cooperation is aggregate of the power of all eavesdropping signals.

The number of articles considering the impact of eavesdroppers’ collusion in random
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networks is again comparatively small, but the issue has been occasionally considered.

For instance, the secrecy capacity of a single legitimate link with length r` in the

presence of colluding eavesdroppers under an AWGN channel model was studied in [29],

and the probability of non-zero secrecy capacity with multiple antenna transmission

schemes in Rayleigh fading channels was analyzed in [30].

In this chapter, we derive the closed-form asymptotic expressions for the secrecy rate

distribution, average secrecy rate, secrecy outage probability and secrecy transmission

capacity of random networks with Nakagami-m fading channel and colluding eaves-

droppers.

5.2 Correlation

An indirect way to generalize the assumption of uniformity that is implied by a PPP

is to incorporate spatial correlation into the model. Indeed, clusterization [80] – a

mechanism that is often used to approximate other point processes via PPPs [53] – can

be seen as a particular case of correlation, since it ultimately consists of correlation of

the random distances from a source to group of clusterized nodes, which in turn as per

Eq. (3.1) affects the legitimate and eavesdropping SNRs and thus the secrecy capacity.

However, to the best of our knowledge, no previous work exists on the secrecy capacity

and outage capacity of random wireless networks with channel correlation.

First, let us rewrite the secrecy outage probability of unicast link for correlated fading

channels at high SNR regime as

Pout(Rs) = Pr



log2



ρ−1 + |hk|2

rαk

ρ−1 + |he|2
rαe


 < Rs



 ≤ Pr

{
log2

(
|hk|2
|he|2

rαe
rαk

)
< Rs

}
. (5.1)

Denote xk = |hk|2 and xe = |he|2, where both channels are subjected to Nakagami-m

fading. Then, the joint distribution of xk and xe is a bivariate gamma distribution

given by [81]

fxk,xe(x0, x1)=
mm+1(x0x1)

m−1
2

Γ(m)(1−ρ)ρ
m−1

2

exp

{
−m(x0 + x1)

1−ρ

}
Im−1

(
2
√
ρm

1−ρ
√
x0x1

)
, x0, x1 > 0,

(5.2)
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where ρ is the correlation coefficient and Im−1(x) is the modified Bessel function of

order m− 1.

The ratio of channel fading envelopes can be calculated as a function of their joint

distribution by

fxk
xe

(z) =

∫ ∞

0
yfxk,xe(zy, y)dy,

=
22m−1Γ(m+ 1

2)(1− ρ)m√
πΓ(m)

zm−1(z + 1)

[(z + 1)2 − 4ρz]m+ 1
2

.
(5.3)

As the distances of legitimate nodes and eavesdroppers are mutually independent,

similarly the distribution of their ratio rαe
rαl

can be obtained as

f rαe
rα
l

(z) =

∫ ∞

0
yfre,rl(zy, y)dy

(f)
=

δkAeA
k
` z
δ−1

(Aezδ +A`)k+1
, (5.4)

where, (f) follows from [67, Eq. (3.351.3)].

Denote γ = |hl|2
|he|2

rαe
rαl

, the PDF of γ can be acquired from the product of these two ratios.

Distribution of γ for correlated fading channels can be derived as

fγ(y)=

∞∫

0

f |hk|2
|he|2

,
rαe
rα
l

(
z,
y

z

)1

z
dz=

∞∫

0

f |hk|2
|he|2

(z)·f rαe
rα
l

(y
z

)1

z
dz,

=δ · k ·AeA
k
`

22m−1Γ(m+ 1
2)(1− ρ)m√

πΓ(m)
(5.5)

×
∫ ∞

0

zδk+m−1(z + 1)yδ−1

[(z + 1)2 − 4ρz]m+ 1
2 (A`zδ +Aeyδ)k+1

dz.

Then, secrecy outage probability under correlated fading channels can be calculated by

the following equation

Pout(Rs) = Pr{log2(γ) < Rs} =

∫ 2Rs

0
fγ(y)dy, (5.6)

=
22m−1Γ(m+ 1

2)(1−ρ)m√
πΓ(m)

∞∫

0

zδk+m−1(z+1)

[(z+1)2−4ρz]m+ 1
2

s

[
1

zδk
− 1

(zδ + Ae
Ae
× 2Rs)k

]
dz.
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Figure 5.1: Secrecy outage probability Pout as a function of node index under Nakagami-

m fading for various secrecy rates, with λ` = λe = 1 and m = 1.
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m = 1, k = 1.
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The impact of correlation on the secrecy outage of different nodes under Nakagami-m

fading can be observed in Fig. 5.1, where we show plots of Pout as a function of node

index for a constant channel correlation coefficient ρ = 0.9. The figure displays various

curves for various secrecy rates, with λ` = λe = 1, α = 2 and m = 1. Compared to Fig.

4.10, no particular new insight is gained, as it is found that for any given secrecy rate

Rs, nodes farther away have higher outage than nodes closer to the source, as expected.

Consider however the minimum secrecy rate Rs achieved under a certain outage ε, as

a function of the density of eavesdroppers λe, which can be obtained by numerically

inverting Eq. (5.6). The results are shown in Fig. 5.2. This time it can be seen

that, surprisingly, the secrecy rate increases with the correlation if the secrecy outage

is higher then 50%, but decreases otherwise. Since, as shown in Fig. 5.1, farther nodes

have higher outage, we conclude from both figure together that correlation helps farther

nodes and harms nearer ones.

5.3 Collusion

Before describing collusion, let us briefly summarise the aspects of interference, which

is another key parameter in characterizing the network-wide secrecy throughput of

large scale networks. If undesigned, interference is an aggregated sum of undesired

signals due to concurrent transmissions, that may cause severe throughput degradation.

Interference can affect the secrecy of a random network if it reduces the SINR at

legitimate nodes. For the sake of completeness, in this thesis we will deal the inter-

ference aggregation in next chapter. It is somewhat naive to assume that interference

aggregates randomly.

Instead, a more modern approach is to formulate optimisation problems around the

aggregation of interference [82], which can be in turn seen as a form of cooperation.

But since cooperation is certain to play a role, one of our recent works on the role of

cooperation in network secrecy is worthy of mention [79].

Since the optimal cooperation amongst eavesdroppers is referred to as collusion, there-

fore the secrecy capacity of a unicast link in the presence of colluding eavesdroppers

can be written as [29]

Cs = max

{
log2

(
1+%

|h`|2
rα`

)
− log2

(
1+%

∞∑

k=1

|he:k|2
rαe:k

)
, 0

}
, (5.7)
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where he:k and re:k are the fading envelope and the distance associated with the channel

between the source and the k-th eavesdropper.

It follows that the secrecy rate of a unicast link in the presence of colluding eavesdrop-

pers can be written as [29]

Rs = log2

(
1+%

|h`|2
rα`

)
− log2

(
1+%

∞∑

k=1

|he:k|2
rαe:k

)
= log2

(
%−1+ ζ`

%−1 + ζ̂e

)
, (5.8)

where we have implicitly defined the quantities ζ` ,
|h`|2
rα`

and ζ̂e ,
∑∞

k=1
|he:k|2
rαe:k

, which

denote the channel gains of the legitimate node, and the equivalent channel gain of the

collusion of eavesdroppers, respectively.

Clearly, the difficulty in evaluating Eq. (5.8) is to determine the distribution of the

ratio %−1+ζ`
%−1+ζ̂e

, which in turn requires the evaluation of the distribution of ζE . The

latter is the subject of Section 5.3.1. For now, however, let us just highlight that we

will hereafter follow related literature [46, 77] and consider the particular case of an

asymptotic reference SNR regime, where %→∞, such that

Rs → log2

(
ζ`

ζ̂e

)
. (5.9)

From equations (5.7) through (5.9), it is clear that in the asymptotically large SNR

regime, the secrecy capacity is determined by the channel gain ratio, rather the actual

received power. We may also add that the asymptotic assumption does not detract

value from the analysis, as the proportionality between the legitimate-to-eavesdropper

channel advantage and inherent secrecy is indeed at the core of the information-theoretic

perspective of secrecy capacity first brought to life in the pioneering works on the

topic [6–8].

Returning to our discussion, it will be shown that the distribution of an asymptote of

Rs under eavesdropper collusion can be found, in possession of which other results can

be obtained, including the average secrecy rate R̄s , E[Rs].

Finally, in possession of R̄s, the secrecy transmission capacity [24] of the network can

be determined. This metric is of interest since the characterization of the secrecy

capacity of every individual unicast link in a large random network is impractical.
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Mathematically, the secrecy transmission capacity is defined by

τ , R̄s(1− Pco)λ`, (5.10)

5.3.1 Aggregate Eavesdroppers’ Path Gain

As discussed in the preceding section, the distribution of the equivalent aggregate

eavesdropper path gain ζ̂e is needed in order to characterize the secrecy rate of random

networks with colluding eavesdroppers. For future notation convenience, let us define

the variable Xe:k , |he:k|2, such that we have

ζ̂e =
∞∑

k=1

Xe:k · r−αe:k , (5.11)

where re:k’s are in ascending order, without loss of generality.

Before we proceed, let us briefly analyze Eq. (5.11) qualitatively. First, it must be

pointed out that the path loss model itself – implied by the presence of the terms r−αe:k

– only applies for re:1, since the wireless channel does not amplify transmit power [59].

Secondly, recalling the definition of secrecy capacity as in Eq. (3.1) and given that

one can only speak of a secrecy rate under the condition that the link is not in

secrecy outage, it must be clear that none of the terms Xe:k · r−αe:k can be larger than

|h`|2/rα` . This non-outage condition therefore imposes an even stronger constraint on

the minimum distance that can be held by eavesdroppers for the analysis hereafter to

apply. Specifically, in an AWGN channel the non-outage condition obviously implies

the boundary condition re:1 > r`. As for the fading case, it has been shown [19] that

even without eavesdropping collusion fading reduces the secrecy rate achievable by com-

municating pairs of shorter distances, which in turn implies that the minimum distance

required to satisfy a non-outage condition under fading and colluding eavesdroppers is

larger than r`.

In light of the above, it will be hereafter assumed that re:1 > rmin, which will be further

referred to as the guard zone distance (see Fig. 5.3). Under this model and by force of

Campbell’s theorem, the characteristic function of ζ̂e can be computed by [59,60]

φζ̂e(w)=exp


−2πλe

∫

X

∞∫

rmin

r · [1− ejwxr−α ] · fX(x) drdx


, (5.12)
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Figure 5.3: Illustration of a legitimate pair neighborhood with guard zone distance rmin

and a pool of colluding eavesdroppers.
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Unfortunately neither Eq. (5.12) nor its inverse Laplace transform admit a closed form,

except for the specific case of Rayleigh fading [24]. We can, however, employ Eq. (5.12)

to obtain closed forms of the corresponding cumulants. Specifically, the n-th cumulant

of φ(w) can is given by

κ(n) =
1

jn
dn log φ(w)

dwn
∣∣
w=0

. (5.13)

The n-th cumulant of φζ̂e(w) can be

κζ̂e(n) = 2πλe

∫

X

∞∫

rmin

xnr1−nαfX(x)drdx =
2πλer

2−nα
min

(nα− 2)
· Γ(m+ n)

mnΓ(m)
, (5.14)

where for notational simplicity we omit the dependence of κ on the m and λe.

Based on this exact cumulant expression, various models for the distribution of the

equivalent aggregate eavesdropper gain can be built, some of which are discussed in the

sequel.

5.3.1.1 Modeling ζ̂e via Edgeworth Asymptotic Expansion

The Edgeworth series is the optimum asymptotic expansion to approximate a prob-

ability distribution in terms of its cumulants [83], in the sense that it minimizes the

error between the cumulants of the reconstructed distribution and the original (exact)

cumulants themselves.

Given the complete sequence of cumulants {κζ̂e(n)} = {κζ̂e(1), κζ̂e(2), · · · }, the Edge-

worth expansion is given by

fζ̂e(x; {κζ̂e(n)}) = N (x)



1 +

∞∑

k=1

k
k/2

ζ̂e
(2)
∑

{it}
Hek+2I(x)

k∏

t=1

1
it!

(
St+2

(t+ 2)!

)it


 , (5.15)

where Sn , κζ̂e(n)/kn−1

ζ̂e
(2) are normalized cumulants, N (x) denotes the Standard

Normal distribution, Hen(x) is the n-th order Chebyshev-Hermite polynomial, and the

sum taken over the set {it} means that for each k, the indexes it’s are the non-negative

integer solutions of the k-th order Diophantine equation

i1 + 2 i2 + · · ·+ k, (5.16)
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with

i1 + i2 + · · ·+ ik = I. (5.17)

A comparison between an empirical distribution obtained via simulations with λe = 1

and m = 1 and the Edgeworth model using the first 5 cumulants is shown in Fig.

5.4. It can be seen that the model is relatively accurate but, despite the asymptotic

optimality, does suffer the effect of the truncation of the first unbounded summation in

(5.15), which is unavoidable in practice. This, together with the analytical intractability

of the model, prompts us to consider a simpler (and in fact more accurate) model, as

discussed in the sequel.

5.3.1.2 Modeling ζ̂e as a Gamma Variate

In order to obtain a more tractable and accurate model for the distribution of ζ̂e, start

by noticing that for the specific case of α = 2, the terms Xe:k · r−αe:k in Eq. (5.11) are

given by the square of the ratio of two Nakagami-m variates. But it has been recently

shown [84] that the ratio of Nakagami variates is itself well approximated by a Nakagami

variate, from which it follows that for α = 2 each term Xe:k · r−αe:k is (approximately) a

Gamma variate. And since the sum of Gamma variates is also a Gamma variate, we

conclude the that for specific case of α = 2 the distribution of the equivalent aggregate

eavesdropper path gain ζ̂e can be well approximated by a Gamma distribution.

Motivated by this fact, we consider a gamma model for ζ̂e also for other values of α.

Specifically, we consider the model

f
(Γ)

ζ̂e
(x; ν, θ) =

xν−1e−
x
θ

θνΓ(ν)
, (5.18)

where the parameters ν and θ are given by

ν =
κ2
ζ̂e

(1)

κζ̂e(2)
, and θ =

κζ̂e(2)

κζ̂e(1)
. (5.19)

The accuracy of the Gamma model is illustrated in figures 5.4, 5.5 and 5.6. First, in

Fig. 5.4, the empirical PDF of ζ̂e for α = 4, with m = 1 and λe = 1 is compared against

the Gamma distribution given in equation (5.18).
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The results indicate that in fact the Gamma approximation is very accurate also α = 4,

visibly superior to that provided by the Edgeworth expansion with 5 cumulants.

Next, in figures 5.5 and 5.6, the accuracy of the Gamma model under various pa-

rameterizations is demonstrated by means of their Kullback-Leibler divergences to

corresponding empirical distributions. Altogether, the results again confirm that the

Gamma model is indeed highly accurate across a wide range of channel and network

conditions, as measured by the parameters α, m and λe.

5.3.1.3 On the Convergence of ζ̂e

Before moving to the derivation secrecy performance metrics using the model described

above, let us briefly address the convergence of the infinite sum involved in evaluating

ζ̂e, as per Eq. (5.11). First, it can be stated that by force of Eq. (5.14), the sum

in Eq. (5.11) is absolutely convergent for all α > 2/n, since the cumulants of ζ̂e are

finite under the latter condition. Still, the rate of convergence of the sum required to

calculate ζ̂e is of relevance when validating the models described above.

In particular, it is of interest to know whether ζ̂e can be accurately evaluated by

truncating the sum at a sufficiently large number of terms K, and how large must

K be. Here, we refer to Fig. 5.7, where plots of truncated approximations of ζ̂e as a

function of m and for various value of the parameters α and λe are shown. The plots

5.7 indicate that for the purpose of simulations, the sum can be truncated at K with

negligible sacrifice in accuracy.

5.3.2 Asymptotic Expressions

The distributions obtained above could obviously be used also to model aggregate

interference originating from simultaneous transmissions by multiple legitimate users.

However, under the assumption that legitimate pairs communicate in a completely

uncoordinated fashion, such aggregate interference affects both legitimate nodes and

eavesdroppers alike, as considered for instance in [24].

In that case, equations (5.8) and (5.9) could be revised to

R′s = log2

(
%′−1+ ζ`

%′−1 + ζ̂e

)
−→
%′→∞

log2

(
ζ`

ζ̂e

)
, (5.20)

with %′ , P/(N0 + I`), where I` denotes the aggregate interference of legitimate nodes.
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Comparing equations (5.8) and (5.9) with (5.20), it is evident that no fundamental

distinction between them exits, in the sense that our assumption of an asymptotic

SNR simply translates to an equivalent assumption of an asymptotic SINR.

In related literature, the latter assumption is sometimes also referred to as low-outage

regime [85, 86]. In the sequel, we will therefore follow related literature and focus on

the case of low-outage networks, where aggregate interference is negligible.

Notice also that some form of interference control is required to optimise throughput

(reduce outage) in random networks, which is usually implemented in the form of a self-

managed channel access mechanism [87,88] that improves on the classic ALOHA [89].

But since throughput maximisation mechanisms ultimately lead to significantly lower

densities of active nodes compared to the actual density of the network [90], it can

be said that the analysis to follow is in line with low-outage/high-throughput regime

characterisation, particularly in cases of small λ`.

With an accurate model for the distribution of ζ̂e, we are ready to characterize the

secrecy rate, secrecy outage probabilities and secrecy transmission capacity of random

networks subjected to Nakagami fading and colluding eavesdroppers.

It is convenient to start with the secrecy outage probability. Let Z =ζ`/ζ̂e, denote the

ratio of legitimate versus (colluding) eavesdroppers path gains. From equation (5.18)

and the Nakagami distribution, we have

F (z; r`,m, α, λe) = Pr{Z < z},

=

∞∫

0

xν−1 exp(−x
θ )

θνΓ(ν)

zrα` x∫

0

mmym−1 exp(−my)

Γ(m)
dy dx,

=
1

θνΓ(m)Γ(ν)

∞∫

0

xν−1e−
x
θ [Γ(ν)− Γ(ν,

zmrα` x
θ )] dx,

= 1−
Γ(ν +m)2F1

(
ν, ν +m, 1 + ν;− 1

mθrα` z

)

(mθ rα` z)
νΓ(m)Γ(ν)ν

, (5.21)

where the dependence on λe is implied by the dependence of ν and θ on λe.
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Then, from Eq. (3.14), and using the asymptotic relation of Eq. (5.9), we obtain

straightforwardly

Pout(Rs; r`,m, α, λe)= 1−
Γ(ν +m)2F1

(
ν, ν +m,1 + ν;− 1

mθ rα` 2Rs

)

(mθ rα` 2Rs)νΓ(m)Γ(ν)ν
. (5.22)

The distribution of the secrecy rate Rs is then obtained by derivation of the expression

in Eq. (5.22), yielding [91]

fRs(z; r`,m, α, λe)=
Γ(ν +m)(−1)ν−1 log(2)

Γ(m)Γ(ν)(mθrα2z)ν
3F2

(
ν +1, ν, ν +m, ν, 1+ ν;− 1

mθ rα` 2z

)
.

(5.23)
Likewise, the average secrecy rate R̄s can then be easily derived by averaging the rate

log( ζ`
ζ̂e

) over the distribution of the ratio ζ`/ζ̂e, namely

R̄s =

∞∫

1

log(z)F (z; r`,m, α, λe) dz, (5.24)

= − log(z)F (z; r`,m, α, λe)
∣∣∞
1

+

∞∫

1

F (z; r`,m, α, λe)

z
dz,

=
(mrα)−νΓ(ν+m)

νθνΓ(m)Γ(ν)

∞∫

1

2F1

(
ν, ν +m, 1 + ν;− 1

z mθ rα`

)

zν+1
dz,

=
(mrα)−νΓ(ν +m)

ν2θνΓ(m)Γ(ν)
3F2

(
ν, ν, ν +m, 1 + ν, 1 + ν;− 1

mθ rα`

)
.

With the expressions derived in this section, we can study the availability of secrecy in

random networks in the presence of colluding eavesdroppers, and the effect of fading

thereby. First, consider the secrecy outage probability. Plots of Pout(R; r`,m, α, λe),

shown in Fig. 5.8, indicate fading increases the likelihood of secrecy outage for nodes

closer to the source, but reduces it for nodes further away. This result is similar to that

observed in the case of non-colluding eavesdroppers [19].

Considering both results together, the general impact of fading seems to be one of

“distributing” secrecy outage amongst the nodes in the neighborhood of a source. One

could infer from the latter that a similar behavior is to be found when studying the

secrecy transmission capacity, and that is indeed what Fig. 5.9 illustrates.
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Specifically, the figure shows that albeit the secrecy transmission capacity obviously

increases absolutely as the legitimate pair grows closer, a relatively decrease (compared

to AWGN conditions) is experienced by nearer nodes, while a relative increase in

capacity is experienced by further nodes.

This general “rule-of-thumb” description of the impact of fading is confirmed once

again by the results in Fig. 5.10, which however also indicates that exceptions do

occur. Specifically, it found that if the guard zone does not include the legitimate pair

(i.e., if rmin < r`), then fading can also hurt the secrecy capacity of nodes at further

distances.

Setting aside the impact of fading, all the results combined also indicate that informa-

tion theoretical secrecy (in the Wyner sense) is only significant in random networks with

colluding eavesdroppers, if a guard zone of reasonable size exists, and if the legitimate

pair is within it.

5.4 Conclusions

In Section 5.2, we studied the impact of correlated fading on the secrecy outage of

random networks. By analyzing secrecy outage expression, it is found that the impact

of channel correlation is selective, i.e., it improves secrecy rate when secrecy outage is

larger than 50%, and decreases it when secrecy outage is less than 50%.

In Section 5.3, our expressions are valid for the high SNR regime with negligible

interference, also known as the low-outage regime. An interesting outcome of the

analysis is that the uncertainty on the number of eavesdroppers does not play a

significant role. Another interesting result is that under the worst conditions, such

as fading and colluding eavesdroppers, secret communication at a given rate is possible

(albeit subjected to outage). Specifically, it is shown that the guard zone distance plays

a crucial role in determining the secrecy capacity.

Specifically, we have have added following contributions to this chapter

• Obtained the expression for probability of secrecy outage of unicast channel under

mutually correlated fading channels [71] and colluding eavesdroppers [92].

• Approximated the aggregate path gain distribution of colluding eavesdroppers

and consequently, derived the expressions for secrecy outage probability with

guard zone distance [92].



Chapter 6

Interference

Summary:

In this chapter, we investigate the secrecy outage in wireless networks under various

channel models. To derive the expression of secrecy outage, we model the interference

impact of legitimate users by incorporating two propagation channel models in wireless

networks that influence the secrecy capacity. We offer original and highly accurate

expressions for the aggregate interference with fading and shadowing, which can also be

used to obtain other analytical results.

103
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6.1 Introduction

In Chapter 5, we have investigated the impact of correlation and collusion among

eavesdroppers on the secrecy outage of unicast links in single antenna systems. In

particular, we derived the closed-form asymptotic expressions for the secrecy rate

distribution, average secrecy rate, secrecy outage probability and secrecy transmission

capacity of random networks with correlated Nakagami-m fading channels and colluding

eavesdroppers.

In this direction, Zhou et al. [24] derived the expression of secrecy outage probability,

similar to the results in [9], but from the context of random networks under Rayleigh

fading. More recently, Shu et al. [42] analyzed the effect of interference on the secrecy

capacity of random networks with cognitivity. However, the fading and the interference

protection thresholds as described in [59,60], were not considered in [42].

In this chapter, we investigate secrecy outage in cognitive wireless networks taking

into account interference, fading and shadowing. In particular, we investigate secrecy

outage in wireless networks by considering Gamma and Log-normal approximation for

interference characterization. Two transmission scenarios, i.e. Nakagami-m fading

channel model and shadowed fading channel model are considered to evaluate the

impact of interference, fading and shadowing onto the secrecy.

6.2 Aggregate Interference

Consider that primary user (source) wishes to unicast to a legitimate receiver ` in

the presence of an eavesdropper located at the unknown distance re with interference

from other users, subjected to path loss governed by the exponent α. Then, the

secrecy capacity in bits/sec/Hz of the unicast channel1 under the assumption that

eavesdroppers do not collude, is [8, 9]

Cs = max

{
log2

(
1+
|h`|2P
rα` Is

)
−log2

(
1+
|he|2P
rαe Is

)
, 0

}
,

= max{log2 (1+ Υ`)− log2 (1+ Υe) , 0} , (6.1)

1We assume that interference, Is dominates noise power, i.e when the system is interference limited,
then the thermal noise is negligible.
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where Is denotes the aggregate interference power of all the secondary users; and

we have implicitly defined Υ` , |h`|2P
rα` Is

and Υe , |he|2P
rαe Is

, which denote the signal-to-

interference ratio’s (SIR) of legitimate node and eavesdropper, respectively.

If the capacity of the channel from the primary user to any eavesdroppers is above

the rate R`, i.e., log2(1 + Υe) > R`, the security of the message is compromised. The

probability of this event is known as secrecy outage probability [24] which is denoted

by Pout(R`). To facilitate our analysis, we compute the secrecy outage probability for

the nearest eavesdropper as

Pout(R`) =

∫ ∞

0
Pr{Υe(r) > β`}fre(r)dr, (6.2)

where β` = 2R` − 1.

Each secondary user of cognitive sensor networks must sense the channel before it

starts using the spectrum, in order to not cause harmful interference to the primary

channel. To satisfy this constraint, the secondary users should rely on some of the

sensing techniques as specified in [59] and [60]. The activity of secondary user is thus

conditioned on not receiving a beacon signal from any primary user. For convenience,

we define the auxiliary variable X , |h|2, such that a secondary user is active if

PX

rα
≤ δ → r−αX ≤ ξ̄, (6.3)

where ξ̄ = δ
P is the normalized activating threshold.

Channel Model

We consider path loss and fading of the wireless channel, which are assumed to be

independent over the network. The pathloss is usually modeled as l(r) = r−α, while

the fading under Nakagami-m channel as [12]

X ∼ fX(x;m) ,
mmxm−1e−mx

Γ(m)
, (6.4)

where m is the fading parameter and Γ(m) is the upper incomplete gamma function.

If the received fading envelope at receiver is also affected by shadowing, then the

composition of Nakagami-m fading and Log-Normal (LN) shadowing has a Gamma-LN
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distribution whose PDF is given by

fX(x;m,µp, σp)=

∞∫

0

(m
z

)m
xm−1e−

m
z xΓ(m)

%√
2πµΩpz

exp

(
−(% log z − µΩp)

2

2σ2
Ωp

)
dz,(6.5)

where Ωp is the mean squared-envelope, µΩp and σΩp are mean and standard deviation

of Ωp respectively, and % = log(10)/10.

Since the closed form solution for composite Gamma-LN distribution is hard to obtain,

we use the approximation of equation (6.5) with a single LN distribution2 as given

in [93]

X ∼ fX(x;µdB, σdB)=
1√

2πµdBx
exp

(
−(log x− µdB)2

2σ2
dB

)
, (6.6)

µdB = %[ψ(m)− log(m)] + µΩp , σdB = %2ζ(2,m)σ2
Ωp , (6.7)

where ψ(m) is the Euler psi function and ζ(2,m) is the generalized Riemann zeta

function.

Clearly, the difficulty in evaluating Eq. (6.2) is determining the distribution of Υe,

which in turn requires the evaluation of the distribution of aggregate interference Is.

The latter is the subject of next section, in which we characterized the distribution of

interference using cumulants approach.

The normalized interference generated by all the users at the receiver is

Is =
∞∑

k=1

Xs:k · r−αs:k , (6.8)

where Xs:k and rs:k are the squared fading envelope and the distance from the source

to the k-th secondary user, respectively.

We also assume that no user is located closer than rmin to the primary receiver, which

is a reasonable assumption in practical scenarios. For sake of simplicity, we consider

rmin = 1 throughout our discussion. Similar to the characterisation of aggregate collu-

sion, here also we employ cumulants technique in order to model various distributions

of interest.

2By slight abuse of notation, we reuse X to denote composite distribution of Nakagami-m fading
and LN Shadowing.
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Again, by force of Campbell’s theorem, the characteristic function of Is can be computed

by [59,60] as similar to the Eq. (5.12).

φIs(w)=exp


−2πλs

∫

X

∞∫

rmin

[1−exp(jwxr−α)]fX(x)rdrdx


, (6.9)

where j is the imaginary unit. Due to the constraint on secondary transmissions as

specified in Eq. (6.3), Eq. (6.9) can be re-written as

φIs(w)=exp


−2πλs

∫

X

∞∫

rmin

[1−exp(jwxr−α)]1{r−αx}fX(x)rdrdx


 . (6.10)

Unfortunately neither Eq. (6.10) nor its inverse Laplace transform admit a closed form,

except for the specific case of Rayleigh fading [24]. We can, however, employ Eq. (6.10)

to obtain closed forms of the corresponding cumulants. The n-th cumulant of φ(w) can

be expressed as

κIs(n) =
1

jn
dn log φIs(w)

dwn
∣∣
w=0

(6.11)

Substitute (6.10) into (6.11), the n-th cumulant expressed as

κIs(n) = 2πλs

∞∫

0

∞∫

max{1,(x/ξ̄)1/b}

xnr1−nbfX(x)drdx. (6.12)

After series of integral caluculations (please refer [59,60] for detailed derivations),

κIs(n) =
2πλs

nb− 2

[
ElX(n, ξ̄) + ξ̄n−

2
bEuX(2

b , ξ̄)

]
, (6.13)

where ElX(n, ξ̄) and EuX(2
b , ξ̄) are n-th order lower and upper partial moments of X

respectively. The closed form expressions of κIs(n) under Nakagami-m and Log-Normal

distributions are provided in [59].

Based on the Eq. (6.13) exact cumulant expression, various models for the distribution

of the equivalent aggregate interference can be built, some of which are discussed

in the sequel. Before we proceed, let us recap the Edgeworth series, which is the
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optimum asymptotic expansion to approximate a probability distribution in terms of

its cumulants [83] in the sense that it minimizes the error between the cumulants of

the reconstructed distribution and the original (exact) cumulants themselves. Due to

analytical intractability of this model, prompts us to consider a simpler (and in fact

more accurate) models.

6.2.1 Modeling Is as a Gamma Variate

In order to obtain a more tractable and accurate model for the distribution of Is, start

by noticing that for the specific case of α = 2, the terms Xs:k · r−αs:k in Eq. (6.8) are

given by the square of the ratio of two Nakagami-m variates. But it has been recently

shown [84] that the ratio of Nakagami variates is itself well approximated by a Nakagami

variate, from which it follows that for α = 2 each term Xs:k · r−αs:k is (approximately)

a Gamma variate. And since the sum of Gamma variates is also a Gamma variate,

we conclude that for specific case of α = 2 the distribution of the equivalent aggregate

interference Is can be well approximated by a Gamma distribution.

Motivated by this fact, we consider a gamma model for Is also for other values of α.

Specifically, we consider the model

f
(Γ)
Is

(x; ν, θ) =
xν−1e−

x
θ

θνΓ(ν)
, (6.14)

where the parameters ν and θ are given by

ν =
κ2
Is

(1)

κIs(2)
, θ =

κIs(2)

κIs(1)
. (6.15)

6.2.2 Modeling Is as a Log-Normal Variate

Considering the fact that the Is is heavy-tailed and positively skewed random variable,

we consider another approximation model for interference characterization, that is Log-

Normal distribution approximation. By doing so, we obtain the following expressions

relating cumulants to parameters of LN distribution

f
(L)
Is

(x;µ, σ)=
1√

2πµx
exp

(
−(log x− µ)2

2σ2

)
, (6.16)

where the parameters µ and σ are given by

µ = log


 κ2

Is
(1)√

κ2
Is

1) + κ2
Is

(2)


 , σ2 = log

(
1 +

κIs(2)

κ2
Is

(1)

)
. (6.17)
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Figure 6.1: Edgeworth, Gamma and Log-Normal models compared to empirical

distribution (α = 4, m = 1, λs = 1).
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The accuracy of the Gamma model and LN model is illustrated in Fig. 6.1. The

empirical PDF of Is for α = 4, with m = 1 (Rayleigh fading) and λs = 1 is compared

against the Gamma distribution and LN distribution given in equations (6.14) and

(6.16), respectively. The results indicate that in fact both approximations are very

accurate and superior to that provided by the Edgeworth expansion with 5 cumulants.

6.3 Secrecy Outage

In this section, we aim to characterize the secrecy outage by considering the approxi-

mation models from sections 6.2.1 and 6.2.2. We obtain probability of secrecy outage

under two different channel models, one under Nakagami-m fading and the other under

the combination of Nakagami-m fading and LN shadowing. To derive the secrecy

outage probability, for the first phenomenon, we use gamma approximation model for

interference characterization, while for the latter case we use LN approximation.

6.3.1 Nakagami-m Fading Channel Model

As discussed in the previous section, to derive secrecy outage probability, Pr{Υe(r) >

β`} needs to be computed beforehand. Now, when the received signal Xe at eaves-

dropper is a Gamma random variable with νe(= m) and θe(=
1
m) and interference is

modeled with another gamma random variable with νs and θs as discussed in section

6.2.1, the Pr{Υe(r) > β`} is given as in [61]

Pr{Υe(r) > βe} =
Γ(νe + νs)

Γ(νe)

(
θe

r2βeθs

)νs

× 2F1

(
νs, νe + νs, 1 + νs,−

θe
r2βeθs

)
.(6.18)

Consequently, the secrecy outage probability calculated from Eq. (6.2) is

Pout(β`; r, νe, θe, νs, θs) (6.19)

=
2πλeΓ(νe + νs)

Γ(νe)

(
θe
βeθs

)νs
∞∫

0

re−πλer
2

(r2)νs
2F1

(
νs, νe + νs, 1 + νs,−

θe
r2βeθs

)
dr,

=
πλeΓ(νe + νs)

Γ(νe)

(
θe
βeθs

)νs
{(

θe
βeθs

)1−νs

Γ

(
1 + νs, νs − 1, 1, νe + 1

νs, νe + νs, 2

)
×

2F2

(
1, νe + 1, 2−νs, νs;

λeπθe
βeθs

)
+(πλe)

νs−1Γ(1−νs)2F2

(
νs, νe + νs, 1 + νs, νs;

λeπθe
βeθs

)}
,

where the last integral follows from the table of integrals in [68, pp.268, Eq. (2.21.2.6)].
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6.3.2 Shadowed Fading Channel Model

In the scenario of shadowed fading channel model, the received signal Xe is LN with

µe and σe as discussed in the channel model. Meanwhile, the aggregate interference

is another LN with µs and σs as mentioned in Section 6.2.2. By the multiplicative

reproductive productive property of LN random variables, the secrecy outage is given

as

Pr{Υe(r) > β`} = Q

[
β`r

2 − µ
σ

]
, (6.20)

where µ = µs − µe and σ =
√
σ2

s + σ2
e .

Combining Eq. (6.2), and Eq. (6.20), we obtain secrecy outage probability straightfor-

wardly,

Pout(β`; r, µ, σ) =

∞∫

0

Q

[
β`r

2 − µ
σ

]
fre(r)dr, (6.21)

= πλe

∞∫

0

erfc

[
β`r

2 − µ√
2σ

]
e−πλer

2
rdr,

=
πλeσ√

2re

e
−πλeµre

∞∫

−µ/
√

2σ

erfc[z]e
−πλe

√
2zσ

re dz,

= −e
−πλeµβ`

2
e

(
πλeσ

√
2

2β`

)2

erfc
(
πλeσ√

2β`
− µ√

2σ

)
+
(

1 + erf
(

µ√
2σ

))
/2,

where erf(x) and erfc(x) are error functions.

Plots of secrecy outage probabilities from the expressions (6.19) and (6.21) are shown in

figures 6.2 and 6.3. Fig. 6.2 is drawn under the composite Nakagami-m fading and LN

shadowing channel model with the parameters µe = 0, σe = 6, α = 4 and for various m

and µs, σs are calculated from Eq. (6.17). Fig. 6.2 indicates that probability of secrecy

outage decreases with the increase in eavesdropper’s equivocation rate, and the secrecy

outage decreases with the increase in density of eavesdroppers.
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Figure 6.2: Secrecy outage as a function of eavesdropper’s equivocation rate (β`) for

the case of m = 1 and m = 15, respectively.
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The results in Fig. 6.2, however, are intuitive as the intensity of fading has little impact

on the secrecy outage. Rather, the density of eavesdroppers has the most significant

impact on secrecy outage, followed by the equivocation ratio.

In Fig. 6.3, comparison of the plots of secrecy outage probability under the two

phenomenon - Nakagami-m fading and composite Nakagami-m fading-LN Shadowing

are shown with the parameters µe = 0, α = 4 with various σe and µs, σs calculated

from Eq. (6.17). It is illustrated from the figure that, the secrecy outage probability

increases while the value of σe increases and secrecy outage is lesser in the case of

Nakagami-m fading as compared to the composite case. We can also comprehend from

the figure that the secrecy capacity can still be mainatined at lower equivocation rates.

On the other hand, it is found that the presence of shadowing is an even stronger factor

that can quickly increase the secrecy outage.

6.4 Conclusions

We offered original and accurate expressions for the aggregate interference with fading

and shadowing, which can also be used to obtain other analytical results. In particular,

we conducted a detailed analysis of the secrecy outage under the impact of Nakagami-

m fading, shadowing and density of eavesdroppers. The conclusions attained from

our analysis can be specified as - the secrecy capacity can be maintained at lower

equivocation rates, the impact of shadowing is severe as it increases the secrecy outage

quickly and eavesdropper’s density impacts secrecy outage the most which is closely

followed by the equivocation ratio. Recently, we have submitted these results in [94].

We list our contributions of this chapter as below

• Section 6.1: We approximated the aggregate interference with Gamma and Log-

Normal random variables.

• Section 6.2: We derived the secrecy outage probability under Nakagami fading

channel and Log-Normal fading channels [94].



Chapter 7

Multiple Antenna Systems

Summary:

In this chapter, we derive the closed-form expressions for the secrecy outage probability

of random networks under Nakagami-m fading channel with multiple antennas and in

the presence of randomly located eavesdroppers. We also further analyse the alternative

(conditional) secrecy outage probability [95] which helps to compare the cost incurred to

achieve secrecy by measuring the probability that a transmitted signal fails to achieve

perfect security. In addition, various transmission factors such as number of antennas,

fading coefficient, and node density are analyzed to assess their impact on the secrecy

outage probability of the random network.

115
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7.1 Introduction

Although there is an increasing tendency of research on intrinsic secrecy in random

wireless network, most current works focus on systems with single antenna and mainly

study prorogation without fading or with Rayleigh fading [24]. Nakagami-m fading

matches some empirical fading conditions which are more or less severe than that

of Rayleigh fading and has the advantage of including Rayleigh fading as a special

case [47]. The study of secrecy capacity and secrecy outage under Nakagami-m fading

was investigated in [96] by considering point to point transmission. Recently, in [19], the

authors analyzed the secrecy outage probability of random networks under Nakagami-

m fading channel with PPP distributed eavesdroppers.

Most of the above works [14,19,24,29] considered the single antenna node case. Previous

works on the impact of multiple antennas in random networks with secrecy is not vast,

but there are few works done in this domain. For instance, authors studied secure

connectivity of wireless random networks with multi-antenna transmission in Rayleigh

fading channels with directional antenna and eigen-beamforming schemes in [30]. More

recently, in [97], authors have computed the secrecy rate under a regularized channel

inversion precoding in a Rayleigh fading channel.

In this chapter, we derived closed-form expressions for the secrecy outage probability of

random networks in the presence of randomly located eavesdroppers. The contributions

of this work are two-fold

• Unlike the works of [14,19] and [24], which considered the case with single antenna,

we study the secrecy outage of random networks with multiple antennas; To

generalize the pathloss model, this chapter study Nakagami-m fading by taking

Rayleigh fading as a special case which is commonly analyzed as in [30], [97];

• To analyse the cost incurred to achieve secrecy, we study the alternative (condi-

tional) secrecy outage probability [95] which helps to compare the cost incurred

to achieve secrecy by measuring the probability that a transmitted signal fails to

achieve perfect security.

System Model

Consider a random network in an unbounded Euclidean space of dimension d, modeled

by a stationary PPP [64] of intensity λ in Rd. Let the aforementioned model be
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applied to two overlaid networks of legitimate nodes and eavesdroppers, respectively,

with corresponding densities λ` and λe, and their correspondent PPP are denoted as Φ`

and Φe, respectively. Let the location of a given source define the origin of the space,

without lack of generality. Consider that the source wishes to unicast to a legitimate

node `, located at a distance r`, in the presence of an eavesdropper located at the

unknown distance re, both subjected to Nakagami-m fading and path loss governed by

the exponent α. The source node uses an N antenna uniform linear array (ULA) for

signal transmission. All the legitimate nodes and eavesdroppers are each equipped with

single antenna. The channel coefficients from source node to legitimate receivers and

eavesdropper are denoted as h` and he, respectively. The signals received at legitimate

receiver and eavesdropper can be presented as

Y` =
√
Puv`h`r

−α2
` x+ n`,

Ye =
√
Puveher

−α2
e x+ ne,

(7.1)

where, P is the transmission power; u is the normalized transmit beamforming vec-

tor; x is the information signal with E{|x|2} = 1; n` and ne are the AWGN; vi =

[1, ejπ cos θi , · · · , ejπ(N−1) cos θi ]T is the antenna manifold vector.

We assume that the CSI of legitimate channel is available at the source node by

using feedback. The transmitting beamforming vector to maximize signal-to-noise-

ratio (SNR) at legitimate receiver can be achieved by, u = v`√
N

. The random path

gains of the channels between the source and a given legitimate node and eavesdropper

can be given as ζ` , N |h`|2/rα` and ζe , ω(θ)|he|2/rαe , where ω(θ) = 1
N |vH` ve|2. Then,

the secrecy capacity of the unicast channel, is [8, 9]

Cs = max{0, log2 (1 + ζ`ρ)− log2 (1 + ζeρ)}, (7.2)

Consequently, the probability that the secrecy capacity of the legitimate channel is

above a given threshold Rs ≥ 0 is defined as [24]

P̃out(Rs) , Pr{Cs > Rs} = Pr
{

log2

(
1+ζ`ρ
1+ζeρ

)
> Rs

}
. (7.3)

From (7.2), the secrecy outage probability Pr{Cs > Rs} can be rewritten as

Pout(Rs) , Pr{Cs ≤ Rs} = 1− Pr{Cs > Rs}. (7.4)
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By considering the alternative secrecy outage probability as described in [95], the source

node might be able to choose two rates, i.e. the transmission rate R and the secrecy rate

Rs. For any transmitted signal, the legitimate node will be able to decode if the channel

capacity is greater than the transmission rate, C` > R, to achieve perfect secrecy.

The alternative secrecy outage probability can be expressed in terms of conditional

probability as Pout(Rs) = Pr{Cs < Rs|C` > R}.

Besides the outage probabilities themselves, we shall hereafter also consider as a figure

of merit the conditional secrecy outage probability, which by force of the Bayes rule is

defined as

Pco
out = Pr{Cs < Rs, C` > R}/Pr{C` > R}. (7.5)

The interpretation of Eq. (7.5) is the likelihood that the channel is in outage for secrecy,

although not in outage for communications. Or in other words, what is the chance that

secret communication cannot take place at a desired rate, given that the legitimate

channel can sustain a prescribed rate of communication.

Denote PSout = Pr{Cs < Rs, C` > R} and PTout = Pr{C` > R}, conditional secrecy

outage probability can be written as

Pco
out =

PSout

PTout

. (7.6)

7.2 Path Gain Distributions

7.2.1 Path Gain Distribution of the Legitimate Node

Since our interest is to characterize the secrecy outage of a particular node, the distribu-

tions of interest concerning the legitimate network are those corresponding to the path

gains of each legitimate node ζ`. In this chapter, we consider the path gain distribution

of legitimate nodes ζ` = N |h`|2/rα` . Recall that the probability distribution function

of Nakagami-m fading [12]

h ∼ f(x,m) = 2mm

Γ(m)x
2m−1e−mx

2
. (7.7)
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The cumulative density function for the path gain distribution of legitimate nodes can

be derived as

Fζ`(z;m, r`, α,N) = Pr(N |h`|2r−α` < z), (7.8)

=

√
z
N r

α/2
`∫

0

f(x,m)dx =
Γ(m)− Γ(m,

m·z·rα`
N )

Γ(m)
.

By taking the derivative of Eq. (7.8), the probability density function of the path gain

can be expressed as

fζ`(z;m, r`, α,N) =
mmrm·α` zm−1e−

z·m·rα`
N

NmΓ(m)
. (7.9)

7.2.2 Path Gain Distribution of the “Best” Eavesdropper

In order to obtain an expression for the secrecy outage probability Eq. (7.4) and

conditional secrecy outage probability Eq. (7.5), the distribution of the path gain ζe

need to be derived. Before we proceed to do so, however, some qualitative comments

are in order. In contrast, for a given legitimate path gain ζ` what determines the secrecy

capacity of a channel subjected to fading is not any specific eavesdropper, but rather

the eavesdropper with the maximum(instantaneous) path gain amongst those present.

The distribution of interest, i.e the path gain distribution of the best eavesdropper (ζ̄e)

can be derived using PGFL of PPP as (for α = 2)

Fζ̄e(z) = Pr{ζ̄e < z} = EΦE [Pr{max
e∈φ

(ζe) < z|ΦE}],

= EΦE


 ∏

e∈ΦE

Pr{ζe < z|ΦE}


 = EΦE


 ∏

e∈ΦE


1−

Γ(m, m·z·r
2
e

ω(θ) )

Γ(m)




 ,

= exp


−λe

2π∫

0

∞∫

0

re ·
Γ(m, m·z·r

2
e

ω(θ) )

Γ(m)
dre dθ


 ,

= exp


−λe

2π∫

0

ω(θ)
2z dθ


 = exp

(
−λeΘ

2z

)
, (7.10)

where Θ =
2π∫
0

ω(θ)dθ.
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7.3 Secrecy Outage

7.3.1 Secrecy Outage Probability

With possession of path gain distributions of the legitimate and best eavesdropper

channels, the secrecy outage probability between the source and legitimate node (in

the presence of randomly located multiple eavesdroppers) can be written from Eq.

(7.4) as

Pout(Rs) =

∞∫

0

∞∫

β(y)

fζ̄e(x)fζ`(y)dx dy =

∞∫

0

(1− Fζ̄e(θ(y)))fζ`(y)dy, (7.11)

where θ(y) = 2Rs [(ρ−1 + y)− ρ−1].

Considering the case with α = 2, Rs = 0, that is, the secrecy outage probability can be

derived as

Pout(Rs) =
mmr2m

`

NmΓ(m)

∞∫

0

ym−1e−
y·m·r2

`
N exp

(
−λeΘ

2y

)
dy, (7.12)

= 1− 2(m · r`)m
Γ(m)

(
λeΘ

2N ·m

)m
2

BesselK

[
−m,

√
2mr2

`λeΘ
N

]
,

where BesselK[a,b] is the modified Bessel function of the second kind.

7.3.2 Conditional Secrecy Outage Probability

In order to obtain the closed-form expression for the conditional secrecy outage prob-

ability, we need to evaluate numerator and denominator of Eq. (7.6).

First, Let us consider the denominator. The outage probability between the source node

and legitimate node is calculated with path gain distribution as derived in Section 7.2

by taking R = Rs

PTout =
Γ(m,

β·m·r2
`

N )

Γ(m)
, (7.13)

where β = 2Rs−1
ρ .
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Now, we derive the numerator PSout as

PSout = Pr{log2

(
1+ζ`ρ
1+ζ̄eρ

)
< Rs, log2 (1 + ζ`ρ) > Rs}, (7.14)

= Pr{ζ̄e >
ζ`−β
T , ζ` > β} =

∞∫

β

∞∫

y−β
T

fζ̄e(x)fζ`(y)dx dy,

=

∞∫

β

(1− Fζ̄e(
y−β
T ))fζ`(y)dy.

By substituting Eq. (7.10) into Eq. (7.14)

PSout =
mmr2m

`

NmΓ(m)

∞∫

β

ym−1e−
y·m·r2

`
N (1−exp

(
−2RsλeΘ

2(y−β)

)
)dy, (7.15)

=
Γ(m,

β·m·r2
`

N )

Γ(m)
− mmr2m

`

NmΓ(m)

∞∫

β

ym−1e−
y·m·r2

`
N exp


− λeΘ

2

(
y−β
2Rs

)

dy,

=
Γ(m,

β·m·r2
`

N )

Γ(m)
− mmr2m

` (2Rs)m

NmΓ(m)

∞∫

β

(z + β
2Rs

)m−1e−
(z·2Rs+β)·m·r2

`
N exp

(
−λeΘ

2z

)
dz.

Consequently, conditional secrecy outage probability is computed as

Pco
out = 1− mmr2m

` (2Rs)m

NmΓ(m)
e−

β·m·r2
`

N

m−1∑

j=0

(
m−1

j

)(
β

2Rs

)j
(7.16)

×
∞∫

β

zm−1−je−
z·2Rs ·m·r2

`
N exp

(
−λeΘ

2z

)
dz,

= 1− e−
β·m·r2

`
N

m−1∑

j=0

(
m−1

j

)
21+

j−m
2 · βj · 2Rs·

m−j
2 ·m

m+j
2

×rm+j
` (λeΘ)

m−j
2 BesselK

[
j−m,

√
2Rs+1mr2

`λeΘ
N

]
.

With the expressions derived in the previous section we can study the availability of

secrecy in random wireless networks in the presence of randomly distributed eavesdrop-

pers, and the effect of fading thereby.
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Figure 7.1: Secrecy outage probability as a function of legitimate distance for various

fading figure m, with λe = 0.0001, θ = 90 and N = 5.
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First, we consider the secrecy outage probability Pout(Rs) as a function of legitimate

distance as shown in Fig. 7.1. In this figure, we consider the impact of fading on the

secrecy outage probability. On one hand, comparing with Rayleigh fading, m = 1,

Nakagami-m fading contribute to enhance the secrecy of the network and the multiple

antenna at the source node can better explore the channel diversity using beamforming.

Also as the value of m increases (fading decreases), the secrecy outage probability is

relatively improved and approaches a lower bound similar to the channel with Gaussian

fading. On the other hand, legitimate nodes far from transmitter will have higher

secrecy outage probability.

In order to assess the effect of legitimate density on secrecy outage probability in

comparison with eavesdropper density, we defined a new parameter λmin
` (= 1/πr2)

which is the density at which no other legitimate node exists around the source node.

In Fig. 7.2, we studied the secrecy outage probability as a function of fading parameter,

number of antennas and density ratio between legitimate nodes and eavesdroppers.

Similar to previous results in Fig. 7.1, Fig. 7.2 suggests that as fading figure increases

and the number of transmit antennas increases, the secrecy outage decreases. Besides,

Fig. 7.2 shows that density ratio of legitimate and eavesdroppers has impact on the

secrecy outage. For the case with higher density of eavesdropper, there is higher

probability of secrecy outage, since the eavesdropper is more likely to exist in a smaller

region around the source node and consequently have smaller path loss compared to

legitimate nodes.

Fig. 7.3 displays various curves for different secrecy rates. As expected, the increase of

required secrecy rate leads to higher probability of secrecy outage. The interesting point

is that, the use of multiple antenna can significantly increase the security of the wireless

network. As with more antennas, the transmitter can explore the transmission diversity

and focus more signal power on the legitimate receiver by adopting beamforming.

It is illustrated from the Fig. 7.4 that, the conditional secrecy outage probability

increases while the value of λe increases. No particular insight is gained from this

figure, as it is found that for any given λe, nodes further away have higher outage

than nodes closer to the source, as expected. Setting aside the impact of fading, all

the results combined also indicate that information theoretical secrecy is significant in

random wireless networks with multiple transmit antennas at the source node, if the

legitimate node is closer to source node with lesser eavesdropper density.
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Figure 7.2: Secrecy outage probability as a function of eavesdropper density for various

fading figure m and different λe, with r` = 50m and θ = 90.
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Figure 7.3: Conditional secrecy outage probability as a function of number of transmit

antenna for various Rs, with λe = 0.001, r` = 50m, and θ = 90.
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7.4 Conclusions

In this chapter, we studied the secrecy metrics of random wireless networks under

Nakagami-m fading with multiple antennas. The path gain distributions of the le-

gitimate nodes and that of the best eavesdropper are derived. Using these results,

the secrecy outage probability Pout is derived. The secrecy outage probability and

transmission outage are further combined to analyse the conditional secrecy outage of

the random network. The impact of transmission factors, including number of transmit

antennas, fading figure, legitimate node distance and node density are studied and

analyzed in numerical results. We recently submitted our findings to [98]. Our results

show that the increase in the number of antennas at the source node and increase in the

fading figure can both lead to decrease in secrecy outage probability, while the increase

of eavesdropper’s density degrades the secrecy communication.

In particular, we list our contributions of this chapter as below

• We derived the path gain distribution of the legitimate node.

• Using the above result, we derived the best path gain distribution of eavesdroppers

using PGFL of PPP.

• We computed the secrecy outage probability and the conditional secrecy outage

probability under Nakagami fading channel [98].



Chapter 8

Generalizing Topologies

Summary:

The study of the inherent secrecy capacity of wireless networks of random topologies is

currently of great interest to the communication and information theory communities.

Indeed, a good amount of work exists on the secrecy analysis of random networks,

the majority of which relies on PPPs to model the spatial distribution of devices. It

has been recently demonstrated, however, that MHCPPs are also suited to characterize

the random location of users and base-stations of cellular systems. In this chapter,

we therefore offer an analysis of the secrecy outage probability of random networks

under the MHCPP model, with the objective of shedding some light on the security

limitations/capabilities inherent encountered in cellular systems.
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8.1 Introduction

Although there is an increasing tendency of research on intrinsic secrecy in random

wireless networks, most of current works focus on systems with PPP based deployments.

Literature on the impact of realistic topologies, described by more alternative point

process models that generalize the PPP in the analysis of random networks is not vast,

but the issue has not entirely escaped the attention of the community. Recently [45,49,

55,99], focus has started to shift so as to address the somewhat “naive” assumption of

uniformity, found in all aforementioned works. To clarify, it has been shown that the

PPPs cannot accurately model the majority of wireless systems of interest, including

cellular [45, 99] and WiFi [49] networks. More recently [100, 101], the inaccuracy of

PPP as a model of BS locations on different tiers of heterogeneous cellular systems was

again demonstrated. All in all, it is now established fact that as far the the topological

models for random networks is concerned, the PPP alone is not sufficient, such that

alternative models need be considered. Following this recent trend, specifically, we will

study the inherent secrecy in random networks, with the particular aim of quantifying

the impact of generalized topological models.

In order to illustrate the importance of network topology on the conditions determining

the secrecy capacity of corresponding network, consider the example of typical residen-

tial WiFi networks. From a security standpoint, these networks are characterised by

the clusterization on a home-by-home basis, i.e., devices within the house are typically

considered legitimate users, while devices outside premises play the role of possible

eavesdroppers. As a result, the assumption of a random but statistically uniform

spatial distribution of BS’s and users (as implied by a PPP model) is clearly unrealistic,

motivating studies conducted under a more general model such as done in [44] and [48].

Likewise, in cellular networks, the distribution of BSs follow terrain, as well as regula-

tory (city-plan), demand and space availability conditions, and therefore are far from

(statistically) uniform. Furthermore, devices in urban areas served by pico and femto

cells may be clustered together, for instance in and around shopping malls and train-

stations), while devices in less populated areas served by macro cells are more sparsely

located.

Such conditions are clearly distinct from the random and uniformly distributed network

assumptions that lead to a Poison number of nodes per unit area – i.e., the PPP model –

commonly adopted in current literature [9,46]. In response to the limitations of the PPP
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model, recent work has appeared which focuses on the impact of topological models

onto the accuracy of analytical results obtained for random networks [45,49,55,99–101].

To elaborate, in [49], HCPPs were proposed to model networks with carrier-sensing

multiple access (CSMA), and in [45] the coverage probability of cellular systems anal-

ysed under the PPP, HCPP and Strauss Process (SP) models were compared against

field data, which demonstrated that indeed HCPP Type I and SP lead to significantly

more accurate results then the PPP model commonly used earlier. Motivated by such

recent results, we consider the MHCPP Type I model in order to model the distribution

of BSs in the analysis to follow.

Before proceeding to the system model, let us mention some properties of point process

(PP). For stationary PP (Φp), the average sum of a function can be expressed in terms

of second order product densities. Without loss of generality, we take the node to lie

at the origin o (but excluding that point), the average sum of any integrable function

f(x) using Campbell’s theorem can be expressed as [99]

E!
o

[∑

x∈Φ

f(x)

]
=

1

λp

∫

R2

%
(2)

(x)f(x) dx, (8.1)

where the notation E!
o signifies that the expectation is taken around the origin but

excluding it; λp denotes the density of the stationary PP; %
(2)

(x) is the second order

density of the PP; and R2 is the two-dimensional Euclidean space.

Since we model the distribution of BS’s in our network with a MHCPP, it is worthwhile

to mention here some properties of this PP. In the MHCPP, all the points obtained

from a stationary PPP of intensity λp are retained only if they are at distance at least

d from all other points. The intensity of the resulting MHCPP is λ = λp exp(−λpπd2).

Consequently, the second order product of the resulting PP is [53]

%
(2)

(x) = 2πλ2 exp(2πλpd
2) · x · exp(−λpVd(x)), (8.2)

where Vd(x) is the area of the union of two disks of radius d whose centres are separated

by x, which is given by

Vd(x) =





2πd2−2d2acos
(
x
2d

)
+ x
√
d2 − x2

4 if x < 2d,

2πd2 if x ≥ 2d.
(8.3)
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8.2 Secrecy Outage

Consider the downlink cellular network in an unbounded Euclidean space of dimension

two, where the mobile stations (MSs) occupy random locations with uniform probabil-

ity, such that their spatial distribution can be modelled by an independent homogenous

PPP ΦMS [64].

On the other hand, BSs are assumed to be randomly distributed also with uniform

probability, except for the fact that a minimum distance (hard-core distance) d between

BSs is observed, such that BSs are spatially distributed according to a two-dimensional

MHCPP ΦBS of intensity λBS.

Let a fraction of the MSs randomly chosen from ΦMS be eavesdroppers, which define a

PPP of density λe embedded within ΦMS. All the legitimate nodes and eavesdroppers

are equipped with single antenna each, and without loss of generality, we add a typical

(target) MS at the origin of the coordinate system (Palm’s point). It is also assumed

that the target MS is interference-free.

The downlink cellular network model described above is consistent with the one in [46].

Under this model, the secrecy capacity of the downlink AWGN channel to the target

in this cellular system is given by [8, 9]

Cs = max

{
0, log2

(
1+

ρ

rαBS

)
− log2

(
1+

ρ

rαe

)}
, (8.4)

where, rBS is the distance between the target MS and the serving BS; re is the distance

between target MS and the nearest eavesdropper; and α is the path loss exponent,

which is hereafter treated as a general parameter as it may assume different values

depending on propagation conditions.

Notice that in the AWGN case, the nearest eavesdropper is certain to experience the

smallest path loss amongst non-legitimate nodes.

For now, let us just highlight that we will hereafter follow related literature [46] and

consider the particular case of an asymptotic reference SNR regime, where ρ → ∞,
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such that

P̃out(Rs) = Pr

{
log2

(
1+

ρ

rα`

)
−log2

(
1+

ρ

rαe

)
>Rs

}
,

= Pr
{

log2

(
ρ−1+r−α`
ρ−1+r−αe

)
> Rs

}
, (8.5)

= Pr
{

log2

(
rαe
rα`

)
> Rs

}
= Pr

{
re > 2Rs/α · r`

}
.

For comparison purposes, we shall also follow [46] and analyse the secrecy non-outage

probability under the assumption that the serving BS has perfect knowledge of the

location of the nearest eavesdropper, and for two different scenarios, namely:

Nearest BS: The BS nearest to the target MS is selected to serve it;

Optimal BS: The BS that yields the best secrecy performance at the target MS

is selected.

Distance Distributions

In order to characterize the secrecy outage probability of cellular networks, one needs

to compute the distributions of the distances between the nearest eavesdropper and

both the BS, and the target MS. Since the MSs follow a homogenous PPP, we obtain

the distribution of the distances between the nearest eavesdropper and the target MS

as [99]

fre(r) = 2πrλee
−πλer2

. (8.6)

In order to calculate the secrecy outage probability of a channel between the target node

and the nearest BS, however, we also need to derive the distribution of the distances

rBS. But since BSs are distributed according to an MHCPP, the distribution of the

distance between the target and the nearest BS – hereafter referred to as the nearest BS

distribution and denoted r∗BS– is not known in closed form. Fortunately, an approximate

method to derive the distribution of r∗BS was proposed in [48], yielding

fr∗BS
(r) =

2r

d2
(1− e−πd2λBS)×





1 if 2r < d,

e−λ̂M(r,d) if 2r ≥ d,
(8.7)
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where λ̂ is the virtual density of the area M(r, d), which is defined by [48]

M(r, d) , πr2−r2acos
(

2r2−d2

2r2

)
−d2acos

(
d
2r

)
+ d

2

√
4r2 − d2. (8.8)

We conclude this Section by remarking that under the conventional PPP model, the

standard approach to finding the secrecy outage probability for the case when the BS

is optimally selected would be to first obtain the distribution of the distance between

the target node and an arbitrary k-th nearest BS. As can be inferred from Eq. (8.7),

however, deriving the corresponding distribution under an MHCPP is an intractable

problem. Fortunately, as shall be shown in Section 8.2.2, an elegant alternative to the

latter approach exists, which circumvents that problem.

We therefore do not require any further distance distribution besides the ones offered

above.

8.2.1 Secrecy Outage Probability: Nearest BS Case

As a consequence of Eq. (8.7), the secrecy outage probability for the case when the

nearest BS is selected depends on whether the target MS is inside or outside the region

around a BS defined by the hard core distance d

Part 1 - MS inside Hard Core Region: r < d/2

P̃out(Rs) =

∞∫

0

2Rs/αx∫

0

fre(y)·fr∗BS
(x) dy dx,

=
2(1− e−πλBSd

2
)

d2

∞∫

0

x · e−πλe22Rs/αx2
dx =

1− e−πλBSd
2

π · λe · 22Rs/α · d2
.(8.9)

Part 2 - MS inside Hard Core Region: r ≥ d/2

P̃out(Rs) =

∞∫

0

2Rs/αx∫

0

fre(y)·fr∗BS
(x) dy dx, (8.10)

=
2(1− e−πλBSd

2
)

d2

∞∫

0

x · e−πλe22Rs/αx2 · e−λ̂M(x,d)dx.
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Unfortunately the above integral doesn’t have closed form solution, however, we can

compute the required secrecy outage probability numerically.

8.2.2 Secrecy Outage Probability: Optimal BS Case

In this scenario, initially we consider that all BS can act as a potential candidate to

serve as a typical MS. However, the BS with the maximum secrecy rate will be selected.

Based on these assumption, the secrecy capacity Eq. in (8.4) can be re-written as (high

SNR regime)

Rs = max

{
max

BS∈ΦBS

{
log2

(
1

rαBS

)
− log2

(
1

rαe

)}
, 0

}
. (8.11)

The secrecy outage probability can be derived as

Pout(Rs) = Pr{Cs ≤ Rs}, (8.12)

= Pr[All BS can not provide secrecy rate larger than Rs],

= EΦe


EΦBS


 ∏

x∈ΦBS

1{Φe ∩B(x, 2Rs/αx) 6= 0}




 ,

= EΦe


EΦBS


 ∏

x∈ΦBS

[
1−1{Φe ∩B(x, 2Rs/αx) = 0}

]



 ,

= EΦe

[
EΦBS

[
e
− ∑
x∈ΦBS

1{Φe∩B(x,2Rs/αx)=0}
]]

,

a
≥ EΦe


e

EΦBS

[
− ∑
x∈ΦBS

1{Φe∩B(x,2Rs/αx)=0}
]
 ,

b
= EΦe


exp


−λBS

∞∫

d

%
(2)

(x)1{Φe ∩B(x, 2Rs/αx)=0}dx




,

c
≥ exp


−λBS

∞∫

d

%
(2)

(x)Pr{Φe(B(x, 2Rs/αx)) = 0}dx


 ,

where step (a) follows from [99, Conjecture 1], and step (b) is obtained using the Eq.

(8.1), and step (c) follows from Jensen’s inequality.
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Probability of Non-Zero Secrecy Capacity as a Function of Eavesdropper’s Density
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Figure 8.1: Probability of achieving a non-zero secrecy capacity, expressed as a function

of the density of eavesdropper’s in the scenario 8.2.1 (Case 1: Part 1 and 2), with α = 2

and λBS = 1.
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Now, the secrecy outage probability can be written as

Pout(Rs) = Pr{Cs ≤ Rs}, (8.13)

= exp


−λBS



∞∫

d

%
(2)

(x)e−πλe22Rs/αx2
dx




 ,

= exp


−λBS




2d∫

d

%
(2)

(x)e−πλe22Rs/αx2
dx+

∞∫

2d

%
(2)

(x)e−πλe22Rs/αx2
dx




 .

However, it can be obtained straightforwardly by substituting the Eq. (8.2) in the last

expression.

Fig. 8.1 illustrate the two cases of selecting nearest BS on the secrecy non-outage

probability. A comparison of the probability of non-zero secrecy capacity with nearest

eavesdropper under the two cases, which are determined by Eq. (8.9) and Eq. (8.10),

against the P̃out(0) = Pr{Cs > 0} is shown. It is found that the secrecy non-outage

probability decreases with the increase of λe.

Next, we evaluate the effect of BS placements on the secrecy non-outage probability.

Fig. 8.2 shows the P̃out(0) as a function of BS density. For a given λBS, we notice

that the secrecy non-outage probability decreases with d. It can be explained by the

fact that as the resulting topologies become more and more regular and the serving BS

nodes are moving away from the intended MSs.

Another interesting point to note is that the secrecy non-outage probability is almost

constant for higher values of d. Again, this can be addressed by the fact that MHCPP

becomes more regular by increasing λBS, for higher values of d.

Fig. 8.3 shows the plots of the secrecy non-outage probability as a function of λe for

the case of optimal serving BS. Similar to Fig. 8.1, it is observed that the secrecy

non-outage probability decreases with an increase in λe. It is also depicted that the

secrecy non-outage probability decreases for higher values of d.

In summary, from all the figures, it is noticed that for sufficiently large d the achievable

secrecy capacity is very low. This counter-intuitive result can be explained as follows.

Since BS nodes are sparsely placed for higher values of d, distance between BS and

intended MS increases, consequently decreasing secrecy capacity.



8. GENERALIZING TOPOLOGIES 137

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

 

 
Probability of Non-Zero Secrecy Capacity as as a Function of BS Density

P
r{

C s
>

0}

BS Density: λBS

d = {0, 0.5, 0.75, 1}

Matern
Poisson

Figure 8.2: Probability of achieving a non-zero secrecy capacity, expressed as a function

of the density of BS’s in the scenario 8.2.1 (Case 1: Part 2), with α = 2 and λe = 1.
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Figure 8.3: Probability of achieving a non-zero secrecy capacity, expressed as a function

of eavesdropper’s density in the scenario 8.2.2 (Case 2), with α = 4 and λBS = 1.
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8.3 Conclusions

In this chapter, we studied the secrecy characteristics of cellular wireless networks by

employing MHCPP. Using the distance distributions of the BS nodes and that of the

nearest eavesdropper, the secrecy outage probability Pout is derived. Our results, which

are submitted in [102], show that the increase in the matern hard-core distance d and

decrease in the BS density can both lead to decrease in secrecy outage probability.

In particular, we list our contributions of this chapter as below

• We modelled the downlink cellular network with MHCPP.

• We derived expressions for the secrecy outage probability of nearest BS serving

scenario in downlink communications [102].

• We also derived the secrecy outage probability of downlink optimal BS serving

scenario [102].



Chapter 9

Conclusions and Future

Directions

9.1 Conclusions

In this thesis, we studied the secrecy metrics of random wireless networks under Nakagami-

m fading in single and multiple antennas systems. The path loss and path gain

distributions of the legitimate nodes and that of the best eavesdropper are derived.

Using these results, the secrecy outage probability Pout is derived under different

scenarios. Namely, we have obtained the secrecy outage probability when the legitimate

and eavesdropper channels are correlated and for the case of colluding eavesdroppers.

We also characterized the secrecy outage probability by taking interference into account.

Later on, we have extended our results to cellular networks by employing MCHPP.

Our results are intuitive, namely they indicate that it is hard to ensure a low secrecy

outage for nodes farther from the source and for high rates. It is also shown that the

achievable secrecy non-outage is largely independent on the reference SNR ρ, even for

a fixed rate! Since ρ is fundamentally controlled by the source’s transmit power, the

conclusion is that at least to the closest source, it is possible to communicate secretly

in the presence of a numerous, and unknown number of eavesdroppers, using very low

power (for instance half the power of background noise).

The impact of other transmission factors, including number of transmit antennas,

fading figure, legitimate node distance and node density are studied and analyzed. We

140



9. CONCLUSIONS AND FUTURE DIRECTIONS 141

published and recently submitted our findings to [19, 20, 70, 71, 79, 92, 94, 98, 102, 103].

Our results show that the increase in the number of antennas at the source node and

increase in the fading figure can both lead to decrease in secrecy outage probability,

while the increase of eavesdropper’s density degrades the secrecy communication.

9.2 Future Directions

We will investigate various figures of merit to measure the secrecy in random networks

– such as the node degree of secrecy graphs, the secrecy outage probability, the unicast

secrecy capacity and the secrecy transmission capacity – employing stochastic geometric

models that have recently emerging to enable the study of point processes beyond the

Poissonian case.

Two specific approaches that can be envisioned at this state is to consider the such

HCPP and SP models, which have been already studied in the context of communi-

cation throughput [44, 45, 54, 99] but not yet in the context of wireless secrecy. To go

further into details, to the best of our knowledge the distance distributions of pairs of

nodes under the HCPP or SP have not yet been derived. Such distributions are of vital

importance to characterise the secrecy of random networks.

The derivation of such distributions for the HCPP and SP models and their application

to the evaluation of secrecy metrics will therefore be an outcome of our future work.

Despite the successful application of Stochastic Geometry in the analysis of wireless

systems from a network perspective, demonstrated by recent literature [38], a wave

of self-criticism has started to permeate the communication theory community in

recognition to the lack of accuracy of the underlying assumptions that are typically

adopted. In order to be able to handle networks of truly general topologies, the

supplementation of Stochastic Geometric models is therefore crucial.

In our future works, we will attempt to develop alternatives to stochastic geometry in

the study of secrecy in random networks, by incorporating other ideas such as order

statistics, random walks and graph theory. To offer a concrete example, in one of our

results [20] we employed order statistics to obtain an expression of the secrecy outage

and the secrecy capacity of unicast links in random networks with PPP models. Since

order statistics are only weakly dependent on distributions – in the sense that they are

typically determined mostly by the tails rather then the modes – it is foreseeable that

those results can be extended to non-PPP as well.
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