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Abstract

MIMO-OFDM is known to be a promising technique for modern high speed communi-
cation networks used for reliable data transmission at a higher rate. However, a major
drawback of OFDM systems is its high Peak-to-Average Ratio (PAR). The signal is clipped
when the peak values are higher than the linear operation range of non-linear devices.
Clipping the signal results in in-band distortion (increases BER) and out-of-band radia-
tion (spectral spreading), leading to a performance degradation. In order to avoid signal
clipping, the non-linear devices are usually operated at higher power back-ups. This re-
sults in inefficient power usage and leads to high power dissipation. The problem of high
PAR becomes even more complex when considering OFDM-based MIMO systems. There-
fore, measure must be taken to limit all peaks crossing a certain threshold value. In this
thesis, we therefore investigate and address the PAR problem of different MIMO-OFDM
scenarios and provide countermeasures to limit the peak excursions in MIMO-OFDM sys-
tems.
First, we extend the Tone-Reservation algorithm to limit the peak excursions in point-
to-point and multi-user MIMO-OFDM systems. For point-to-point MIMO-OFDM, one
or more singular values are usually very weak such that the associated eigenchannels are
hardly suited for data transmission. We thus reserve these eigenchannels to offer redun-
dancy for PAR reduction. A spiky function is generated using these eigenchannels which
is then iteratively added to the transmit signal for PAR reduction. Next, we consider a
multi-user broadcast scenario. For broadcast scenarios, the spiky function is generated
on a small number of tones reserved on all spatial dimensions in the conventional Tone-
Reservation fashion. This spiky function is then iteratively used for PAR reduction of the
multi-user MIMO-OFDM system. Simulation results are provided to show the effective-
ness of the proposed algorithm.
Second, we introduce a novel Least-Squares iterative PAR reduction algorithm for MIMO-
OFDM scenarios. In the case of a point-t-point MIMO-OFDM scenario, we again reserve
the weakest eigenchannels to offer redundancy for PAR reduction. However, this time
the reserved eigenchannels are used to approximate the peak excursions on the remaining
spatial dimensions in a least-squares fashion. This model function is then added to the
transmit signal for PAR reduction. However, there is a possibility that all peaks may not
be well approximated, the algorithm is thus iterated to model the remaining peaks in the
following iterations. By reserving the weakest eigenchannels, there is a loss in channel
capacity. The capacity associated with the weakest eigenchannels is thus analyzed using
random matrix theory. Moreover, addition of the modeled function to the transmit signal
will result in an increase in the mean power of the transmit signal, thus, the algorithm
is investigated with a constraint in the mean transmit power. Furthermore, we extend
the LS-approach to PAR reduction in a multi-user broadcast scenario. For a broadcast
system, we consider that one user is inactive and the channel associated to it is not used.
This inactive channel is then used to approximate and model the peak excursion in the
similar fashion. In both cases, the performance is analyzed using simulation results.
In a further part of this thesis, we consider PAR reduction using Trellis Shaping for single
antenna systems. We concatenate an optimized irregular LDPC code with Trellis Shap-
ing for PAR reduction. For the irregular LDPC code, we present the optimization of
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the variable node degree distribution based on the irregularities in the bit error proba-
bilities of the individual bits inside an M-QAM symbol. Moreover, for the MSBs, the
bit error probability is calculated exploiting the transfer function of the shaping code. A
soft decision decoding on the shaping code sequence is considered to decode the useful
information, using BCJR algorithm.
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Chapter 1

Introduction

We are living in an era where life without data communication seems impossible. Au-
dio/video calling, video downloading, texting, Internet surfing, and Facebook/Twitter are
nowadays counted as basic needs of daily life. There is a growing demand for high data
rate multimedia services, resulting in an increasing interest in high speed communication
technologies. To cope with the public demands, the available resources have to be uti-
lized more efficiently. For wireline applications, the channel is somehow stable and the
effect of impairments on data is less, however, for wireless communication, efficient trans-
mission is challenging. The challenges faced in wireless transmission are inter-symbol
interference (ISI), channel noise, and frequency selective fading. One of the physical
layer techniques which has gained a lot of popularity due to its flexibility and ease of
implementation is multicarrier modulation (Orthogonal Frequency Division Multiplexing
(OFDM)). OFDM optimally utilizes the available bandwidth with orthogonal subcarriers.
Moreover, the system performance can be improved further by deploying multiple anten-
nas at the transmitter and/or at the receiver, known as Multiple-Input Multiple-Output
(MIMO). MIMO systems offer spatial diversity, which helps to cope with signal fading
due to multipath propagation, and / or spatial multiplexing, which increases the chan-
nel capacity. OFDM-based MIMO is thus a choice of recent communication technologies
which efficiently utilizes the available resources and offers high data rates with flexible
data transmission.
Unfortunately, the main disadvantage of multicarrier signals is its large envelope fluc-
tuation, compared to the average power, the peak power of the transmit signal is very
high, i.e., high Peak-to-Average Ratio (PAR). The Quadrature Amplitude Modulated
(QAM) symbol are independent and identically distributed (i.i.d.), which accoding to the
central limit theorem results in Gaussian like distribution in the Time-domain. Thus,
some of the tones may add-up constructively resulting in high amplitude peaks in the
time-domain transmit signal. Since most of the practical transmission systems are peak-
power limited, the signal is thus clipped when its value is higher than the linear operating
range of the non-linear devices. However, clipping of the signal results in in-band dis-
tortion (noise which increases the BER) and out-of-band radiation (spectral widening of
the signal). Therefore, measures must be taken before passing high peak signal through
non-linear devices. In literature, a number of algorithms have been proposed to limit
the peak excursions of an OFDM signal. These techniques, first presented for single-
input single-output (SISO) OFDM systems, have recently been extended to multiple-
input multiple-output (MIMO) systems. An overview of different PAR reduction tech-
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Chapter 1: Introduction

niques can be found in [44–46] and the references therein. The most popular techniques
amongst them are Clipping (clipping and filtering) [47–54], multiple signal representation
(Selected Mapping (SLM), Partial Transmit Sequences (PTS)) [57–59,62,65], Trellis Shap-
ing [64, 67–70, 99, 100], and Tone Reservation (TR) [31, 60]. Recently, some of these well
optimized methods have been extended to MIMO-OFDM. In [74–84], the authors have
presented different variants of SLM and PTS for the PAR reduction of MIMO-OFDM
systems, with a thorough study by Siegel in [33]. Moreover, a similar approach has been
made in [87], where the authors have extended Tone Reservation to MIMO systems.
It is well known from the literature that Tone Reservation is the least complex algorithm
which works in time-domain with promising gains. Herein, we will first extend the TR
algorithm for the PAR reduction of point-to-point and multi-user MIMO-OFDM scenar-
ios followed by introducing a novel Least-Squares iterative PAR reduction approach to
limit the peak excursions in different MIMO-OFDM scenarios. Last but not the least,
we consider a Low-Density Parity-Check code concatenated with Trellis Shaping for PAR
reduction of a single antenna systems. For the LDPC code, we optimize its variable-node
degree distribution for constructing the H matrix. Moreover, for Trellis Shaping, soft-
decision decoding with the BCJR algorithm is used to decode the useful information. The
rest of this dissertation is structured as follows.
Chapter 2 provides an overview of OFDM systems, MIMO systems and the problem state-
ment. We first start with a brief history of the development of OFDM systems followed by
a description of the discrete time OFDM system model and its matrix representation for
a single antenna system. Next, we briefly introduce multiple antenna systems along with
channel diagonalization for different MIMO scenarios. After introducing the MIMO sys-
tems, we next provide a mathematical representation of the OFDM-based multi antenna
system (MIMO-OFDM). A major drawback of multicarrier modulation (OFDM) is its
high PAR, thus, a mathematical as well as analytical analysis of the problem statement is
provided. We define different high power amplifier models and will give a brief description
of the characteristic curves of these power amplifiers. Subsequently, out-of-band radiation
caused by high PAR of an OFDM signal is assessed. A brief overview to some existing
PAR reduction algorithms popular in literature is presented at the end of the chapter.
Chapter 3 gives an extension to the Tone Reservation algorithm for PAR reduction in
MIMO-OFDM. First, we consider a point-to-point MIMO OFDM system, where a joint
signal processing is possible both at the transmitter as well as at the receiver ends. For
a P2P MIMO-OFDM system, the weakest eigenchannel is reserved to offer redundancy
for PAR reduction. This eigenchannel is then used to generate a spiky function, which,
like in the TR algorithm for SISO systems, is iteratively added to the transmit signal for
PAR reduction. However, in doing so, the mean power of the transmit signal increases,
therefore, an analysis of the proposed algorithm under a mean power constraint is also
provided. Next, a multi-user broadcast scenario is considered, where joint signal process-
ing is possible only at the central base station. However, for a broadcast scenario, the
spiky function is generated in the conventional TR fashion on a small number of reserved
tones on all spatial dimensions. The spiky function is then iteratively used to reduce the
peaks which cross a given threshold. Simulation results are provided to show the perfor-
mance of the proposed algorithm in both scenarios.
Chapter 4 presents a novel Least-Squares iterative PAR reduction algorithm for P2P and
multi-user scenarios. For the P2P scenario, we again reserve the weakest eigenchannel and
use it for PAR reduction of the remaining spatial dimensions. However, for the Least-
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Squares approach, this eigenchannel is used to approximate and model the peak excursion
on the remaining dimensions in a least-squares sense. This model function is then added
to the transmit signal for PAR reduction. First, the system model of the proposed algo-
rithm is presented followed by a mathematical modeling. Simulation results are provided
for a performance analysis. The algorithm is thoroughly analyzed under mean power con-
straints. The capacity loss associated with the reserved channel is studied using random
matrix theory. An analysis on the convergence behavior of the algorithm is provided as
well. A comparison to Tone Reservation and Selected Mapping algorithms is presented,
considering the same computational complexity. The idea is then extended to a multi-user
broadcast scenario with an inactive user. The channel associated with the inactive user is
used to approximate the peak excursions on the remaining spatial dimensions in a similar
fashion. Simulation results are provided for the multi-user broadcast scenarios.
Trellis Shaping we concluded to be another promising PAR approach, which, however, still
has some open problems in the optimum link to error correcting codes. Chapter 5 thus
deals with optimization of an irregular LDPC code concatenated with Trellis Shaping for
PAR reduction of single antenna OFDM. We first start with Trellis Shaping, especially
Sign-Bit Shaping. A suitable metric in the Viterbi algorithm for the sign bit shaping is
then presented. In order to decode the useful information of the shaping code sequence
using soft-input soft-output decoding, we will discuss the use of a BCJR algorithm for the
shaping bit sequence. We will next provide an optimization of the variable-node degree
distribution for an irregular LDPC code exploiting the irregularities in the bit error prob-
abilities of the individual bits inside an M-QAM symbol. Based on the transfer function
of the inverse syndrome former (H−1)T , we will also derive the bit error probability for the
input bit sequence. At the end of the chapter, simulation results for regular and irregular
LDPC codes concatenated with Trellis Shaping are provided.
Chapter 6 summarizes this thesis.
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Chapter 2

Orthogonal Frequency Division
Multiplexing

In 1948, Claude Shanon presented in his landmark paper [1] that error-free transmission
over a communication channel is possible when R ≤ C, where R is the transmission
rate, C is the capacity of the channel, and the codeword length goes to infinity. Thus,
achieving data rates that approach capacity over noisy channels require sophisticated
transmission schemes. In order to provide high data rates reliably and flexibly, multicarrier
modulation is nowadays making its way to modern-day communication systems. One
such multicarrier transmission technique is Orthogonal Frequency Division Multiplexing
(OFDM). The performance of an OFDM system can even be enhanced by using multiple
antennas at the transmitter and the receiver. OFDM-based MIMO systems are thus
promising techniques which offer high data rates with reliable transmission. MIMO-
OFDM is making its way into high-speed communication technologies. However, a major
drawback with OFDM is the high peak-to-average ratio (PAR), which, when not limited,
would require a high power supply voltage and hence also high power dissipation.
The rest of the chapter is organized as follows. In Section 2.1, we start with a brief history
of OFDM, followed by the OFDM system model and its matrix representation. Section 2.2
provides an overview of MIMO systems and MIMO channel diagonalization followed by
a description of the MIMO-OFDM system in Section 2.3. In Section 2.4, we will discuss
the PAR problem statement, and will provide a mathematical as well as a statistical
analysis of the problem. Consequences of high PAR are discussed in Section 2.5, whereas
Section 2.6 provides an overview of some already existing PAR reduction approaches.

2.1 Orthogonal frequency division multiplexing

Orthogonal Frequency-Division Multiplexing is a multi-carrier transmission technique
used for robust and reliable data transmission over noisy channels for high data rate
systems. In OFDM a wide-band channel is divided into a set of ideally independent
narrow-band parallel sub-channels orthogonal to each other. As the name indicates, it is
a special form of Frequency Division Multiplexing (FDM) with orthogonal sub-carriers.
Herein, we first provide a brief history of the development of OFDM systems before going
into a detailed description. For a more comprehensive history of the development of
OFDM systems, the readers are referred to [26], [27].
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Chapter 2: Orthogonal Frequency Division Multiplexing

2.1.1 A brief history of OFDM

For the last two decades OFDM has gained quite some popularity in modern day
communication systems. The concept of OFDM is, however, quite old with some early
studies dating back to the mid sixties. The first noted paper on OFDM systems, synthesis
of bandlimited orthogonal signals for multichannel data transmission, was published in
1966 by Chang [16]. Chang presented a principle of transmitting parallel data streams
through linear bandlimited channels using orthogonal multiplexing without interchannel
(ICI) and intersymbol interference (ISI). In 1967, Saltzberg [17] extended Chang’s princi-
ple using Offset Quadrature Amplitude Modulation (OQAM) with multicarrier systems,
i.e., OQAM-OFDM. Kineplex [18], KATHRYN [19], and ANDEFT [20] are few examples
of the earliest modems which deployed OFDM.
A major breakthrough in the development of OFDM systems was the paper presented in
1971 by Weinstein and Ebert [21]. The authors applied the Discrete Fourier Transform
(DFT) for modulation and demodulation of the baseband OFDM signal. Using DFT
for modulation and demodulation reduced the complexity by eliminating the subcarrier
oscillator bank. Another important milestone in the development of OFDM systems was
the paper by Peled and Ruiz in 1980 [22]. The authors filled the empty guard space with
a cyclic extension (cyclic prefix (CP)) of the OFDM signal, thus solving the orthogonality
problem.
In 1980, Hirosaki [23] proposed per-carrier equalization in order to eliminate intersymbol
interference and crosstalk for OQAM-OFDM systems. In 1981, Hirosaki [24] extended
Saltzberg’s work [17] OQAM-OFDM by a DFT implementation. In the late 80’s, Alard
and Lasalle [25] deployed OFDM for digital broadcasting for mobile receivers.
OFDM has seen a sudden increase in implementations in practical systems in the past 20
years. It has been deployed for broadband data communication in different technologies,
e.g., Asymmetric Digital Subscriber Lines (ADSL), Very High-speed Digital Subscriber
Lines (VHDSL). It is also adopted as a standard for Institute of Electrical and Electronic
Engineers (IEEE) 802.11 a/ g/ n Wireless Local Area Networks (WLANs), IEEE 802.16
Wireless Metropolitan Area Networks (WMAN), IEEE 802.15.3a Wireless Personal Area
Networks (WPAN) (MultiBank-OFDM).
Besides point-to-point data communications, OFDM has been implemented in various
broadcast technologies (Coded OFDM (COFDM)) such as Digital Audio Broadcasting
(DAB), Digital Video Broadcasting (DVB), High Definition Television (HDTV), digital
Terrestrial Television broadcasting (dTTb), High Definition DIgital VIdeo Narrowband
Emission (HD-DIVINE), System de Television En Radiodiffusion NumeriquE (STERNE).

2.1.2 Basic principle of OFDM modulation

In multicarrier modulation, a wideband channel is divided into a set of parallel narrow-
band independent subchannels centered at different frequencies [2] [3]. The number of
subchannels N are chosen such that the subchannel bandwidth BN is smaller than the
coherence bandwidth Bc of the channel. This will ensure that the subchannel will expe-
rience minimum Inter Symbol Interference (ISI) [3].
OFDM is an efficient implementation of the multicarrier modulation which allows the
frequency spectra of the individual subcarriers to overlap, thereby, utilizing the available
bandwidth much more efficiently. The transmitter model of an OFDM implementation
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of the multicarrier modulation is shown in Fig. 2.1. The input data stream I is arranged
into N small data chunks. Each data chunk is mapped into an M-ary QAM symbol
Xn, (Xn = XI(n) + jXQ(n), where n = 1, 2, . . . , N) and M is the constellation size.
The sequence of QAM symbols is then passed through a serial-to-parallel converter. The
parallel QAM symbols are modulated by a carrier frequency centered at fn, occupying a
bandwidth BN . For an OFDM symbol of duration T , the spacing between two adjacent
carriers is BN = ∆f = 1/T , thus, the total bandwidth is N∆f .
As shown in Fig. 2.1, the final OFDM signal is obtained by adding the N QAM symbols

Figure 2.1: OFDM system

[X1, X2, . . . , XN ]. With the nth QAM symbol at a carrier frequency fn, i.e., Xne
j2πfnt,

the output OFDM signal can be written as

x(t) =
N∑
n=1

Xne
j2πfnt t ϵ [0, T ] , (2.1)

where x(t) = xI(t)+xQ(t) is the complex OFDM symbol envelope with a symbol duration
T .

Orthogonality in OFDM

Two signals xi(t) and xj(t) are said to be orthogonal over a time period T if∫ T

0

xi(t)x
∗
j(t) dt = 0 i ̸= j , (2.2)

In order to utilize the available bandwidth more efficiently, OFDM allows the individual
subcarriers to overlap in an orthogonal fashion. The subcarriers will be orthogonal if the
frequency spacing between the adjacent subchannels is ∆f = 1/T , where T is the OFDM
symbol duration. The nth orthogonal subcarrier is obtained as [3]

fn = f0 +
n

T
, where n = 0, 1, . . . , N − 1 , (2.3)
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Chapter 2: Orthogonal Frequency Division Multiplexing

with f0 being the reference carrier frequency. During the rectangular time window of
duration T , each of the subcarriers is equivalent to a sinc function (sinx/x) in frequency
domain as shown in Fig. 2.2 [32]. As shown in Fig. 2.2, at orthogonal frequencies, the
individual subcarriers have maxima that line up with the nulls of the other subcarriers.
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Figure 2.2: OFDM symbol

Pros and cons of OFDM

A major advantage of OFDM is that the symbol duration is much greater than the delay
spread of the channel, alternatively the subchannel bandwidth is much smaller than the
coherence bandwidth of the channel, thus making each subchannel less susceptible to
channel-induced dispersions. A disadvantage of multicarrier transmission, which stopped
it to be deployed in practical systems, was the complexity of the system as compared to
the conventional single carrier systems. For the N subchannels, it required a number of
N modulators and transmit filters at the transmitter and N number of demodulators and
receive filters at the receiver. It was till 1971 when Weinstein and Ebert [21] proposed-
DFT based OFDM system. The authors employed DFT for modulation and demodulation
of baseband OFDM signals. This approach considerably reduced the complexity. The
complexity is even further reduced from N2 operations into N/2 logN operations, using
Fast Fourier Transform (FFT) algorithm [11]. The next section provides a brief overview
of DFT (FFT) based OFDM.

2.1.3 Discrete-time OFDM system model

Hereafter, we will consider a discrete-time OFDM system deploying Inverse Discrete
Fourier Transform (IDFT) and Discrete Fourier Transform (DFT) for modulation and
demodulation, respectively. Before going into the system model, we recall the formulas
for DFT/IDFT transformations.
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Chapter 2: Orthogonal Frequency Division Multiplexing

Discrete and Inverse Discrete Fourier Transform

DFT and IDFT are transformation techniques used to transform a signal from time do-
main to frequency domain and vice versa. The IDFT (Inverse Fast Fourier Transform
(IFFT)) of an information sequence X = [Xn], n = 1, 2, . . . , N in frequency domain 1 is
given as

[xk] = IDFT{[Xn]} =
1√
N

N∑
n=1

Xne
j 2πnk

N , 1 ≤ k ≤ N , (2.4)

where xk is the kth sample of the discrete time sequence x = [xk], k = 1, 2, . . . , N , and
N is the frame size. The frequency domain information sequence [Xn] can be recovered
from the discrete time sequence [xk] by taking the DFT (Fast Fourier Transform (FFT))
over [xk] given as,

[Xn] = DFT{[xk]} =
1√
N

N∑
k=1

xke
−j 2πnk

N , 1 ≤ n ≤ N. (2.5)

The DFT modulator is used to correlate the sinusoidal basis functions to the input signal.
The correlation of the input signal with the basis functions results in a peak at a particular
frequency while nullify the energies from other subcarriers at that frequency [2].

System model

A block diagram of a baseband DFT-based OFDM system is shown in Fig. 2.3, the
information bit stream I is mapped to a set of size N M-ary QAM symbols, X = [Xn],
n = 1, 2, . . . , N , sent over each subchannel. The elements Xn are complex numbers, i.e.,
Xn = XI(n)+jXQ(n), which specifies an M-ary QAM constellation with M signal points

Xn ∈ {±XI(n)± jXQ(n)} , where XI/Q(n) ∈

{
1

2
,
3

2
, . . . ,

√
M − 1

2

}
. (2.6)

The selection of the M-ary QAM constellation solely depends on the data rate and the
channel properties. An important feature of OFDM is that it is not necessarily required to
use the same QAM constellation for all data symbols [Xn]. Different modulation schemes
can be used for the subchannels using optimization algorithms known as bit loading and
power loading [30, 36] (and the references therein).
After mapping, the M-ary QAM symbols [Xn] are passed through a serial-to-parallel
(S/P) converter. The S/P converter, converts the serial symbol stream [Xn] (row vector)
into a parallel stream [Xn] (column vector), i.e., [Xn] → [Xn]

T , where T stands for
transpose. The OFDM frame is transformed into time domain using an IDFT (IFFT)
modulator, defined as

[xk] = IDFT {[Xn]} =
1√
N

N∑
n=1

Xne
j 2πnk

N , k = 1, 2, . . . , N , (2.7)

1we will talk about “frequency” domain instead of the formally correct “DFT” domain, since it is very
common.
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where xk is the kth sample and N is the block length of the OFDM frame, x = [xk] =
[x1, x2, . . . , xN ].
After the IDFT (IFFT), the time domain samples are converted into a serial data stream
using a parallel-to-serial (P/S) converter. A Cyclic Prefix (CP) of length µ is then ap-
pended to the front of the serial data stream. The CP is a periodic extension of the
time domain OFDM signal obtained by prepending the last µ ≥ lch − 1, where lch is the
assumed channel length (delay spread), samples of the signal to the front of the symbol
as shown in Fig. 2.4, i.e.,

x̃ = [x̃k] = [xN−µ, xN−µ+1, . . . , xN , x1, x2, . . . , xN ] . (2.8)

The use of the CP is two fold beneficial,

1. helps to mitigate the effect of channel dispersion which results in Inter Symbol
Interference (no ISI),

2. converts the linear convolution of the input signal with the channel impulse response
equivalent to a circular convolution (converts the convolution of the input signal with
the channel impulse response to a multiplication in DFT domain).

After prepending the CP, the OFDM symbol [x̃k] is transmitted over a discrete-time
channel, with a channel impulse response H(z) (discussed in Section 2.1.4). The channel
adds Additive White Gaussian Noise (AWGN) w ∼ CN (0, σ2

n).
As shown in Fig. 2.3, the receiver first removes the cyclic prefix from the received signal
[ỹk], resulting in y = [yk]. After serial-to-parallel conversion, the time domain signal is
demodulated via the DFT (FFT), i.e.,

[Yn] = DFT{[yk]} =
1√
N

N∑
k=1

[yk]e
−j 2πnk

N , n = 1, 2, . . . , N , (2.9)

where [Yn] = Y = [Y1, Y2. . . . , YN ] is the DFT vector of the received symbols. As men-
tioned earlier, with a CP longer than the channel impulse response, the linear convolution
of the input signal with the discrete-time channel having a finite impulse response is con-
verted into a circular convolution (according to the DFT properties, a convolution in
time domain equals to a multiplication in frequency domain). After the DFT (FFT), the
received symbols are demodulated (de-mapped) using a frequency domain equalizer (EQ)
which equalizes the received data by a multiplication with the inverse complex channel
coefficients.

2.1.4 Channel model

Throughout this work, if not otherwise stated, we will consider perfect Channel State
Information (CSI) both at the transmitter and the receiver. We consider a discrete-time
channel, as chosen by the authors in [33], defined by a polynomial in the z domain as

H(z) =

lH−1∑
k=0

hk · z−k , (2.10)

where lH is the channel length and hk is the kth channel tap.

9
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Figure 2.3: Transmitter and receiver structures of an OFDM system

CP

Time

Figure 2.4: Cyclic extension of an OFDM symbol

2.1.5 OFDM matrix representation

A matrix representation will provide a deeper insight into the channel orthogonalization
using a CP. As shown in the Fig. 2.3, the input data sequence X = [Xn] is transformed
into a time domain sequence x using an IDFT (IFFT) modulator, defined as

x = FHX , (2.11)

where (·)H stands for Hermitian, and F is the N × N Vandermonde DFT matrix (nor-
malized),

F = 1/
√
N


1 1 1 1 1

1 ωN ω2
N . . . ωN−1

N

1 ω2
N ω4

N . . . ω
2(N−1)
N

...
. . .

. . . . . . . . .

1 ωN−1
N . . . . . . ω

(N−1)2

N

 , (2.12)

where ω = ej
2π
N , and 1/

√
N is to make F a unitary matrix such that

F · FH = I . (2.13)

After appending a cyclic prefix of length µ ≥ lch − 1 to x, x̃ = [x̃k] is transmitted over
the channel, where it is filtered by the channel with the channel impulse response hn,
n = 1, 2, . . . , µ, and adds additive noise w. The convolutional equation for the received

10
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vector ỹ, in matrix form can be written as

ỹ =



hµ hµ−1 . . . h0 0 . . . 0
0 hµ hµ−1 . . . h0 . . . 0
...

...
. . .

...
. . . . . .

...
...

. . .
...

. . .
...

. . .
...

...
...

. . .
...

. . . . . .
...

...
. . .

...
. . .

...
. . .

...
0 . . . 0 hµ hµ−1 . . . h0





xN−1−µ
...

xN−2

xN−1

x0
x1
...

xN−1


+



wN−1−µ
...
...

wN−2

wN−1

w0
...

wN−1


, (2.14)

which in more compact form can be written as

ỹ = H x̃+w . (2.15)

Discarding the first µ samples of the received sequence ỹ, i.e., yN−µ, yN−µ+1 . . . yN , which
are corrupted from the previous block, the received symbols y = [yk] in matrix notation
can equivalently be written as

y1
y2
...
...
...
...
yN


=



h0 0 . . . 0 hµ . . . h1

h1 h0 0 . . . hµ−1 . . .
...

...
...

. . . . . . hµ
hµ . . . h0 0 0 . . . 0
...

...
. . . . . .

...
0 0 . . . hµ−1 . . . h0 0
0 0 . . . hµ . . . h1 h0





x1
x2
x3
...
...

xN−1

xN


+



w1

w2

w3
...
...

wN−1

wN


, (2.16)

which in a compact form can be formulated as

y = H̃ x+w , (2.17)

where H̃ is an N × N circulant convolution channel matrix over the N samples. Using
DFT and IDFT, the circulant channel matrix H̃ can be diagonalized as

H̃ = FHΛ F. (2.18)

where Λ is an N ×N diagonal matrix with the complex channel gains. y is then trans-
formed into frequency domain using the DFT to get Y, i.e.,

Y = DFT{y} = F y . (2.19)

Y = F
[
H̃ x+w

]
, (2.20)
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putting the values of x = FHX (from Eq. (2.11)), and H̃ = FHΛ F (from Eq. (2.18)),
Eq. (2.19) can be reformulated as

Y =

I︷ ︸︸ ︷
F · FH ·Λ ·

I︷ ︸︸ ︷
F︸ ︷︷ ︸

H

·FH ·X︸ ︷︷ ︸
x

+F w , (2.21)

Simplifying Eq. (2.21) with FFH = FHF = I, we have

Y = Λ X+ w̃ , (2.22)

whereX is the input sequence andΛ is a diagonal matrix with complex channel coefficients
in DFT domain, which in matrix form can be written as

Y =


λ1 0 0 0

0 λ2 0
...

...
. . . . . . 0

0 0 . . . λN




X1

X2
...
XN

+ w̃ , (2.23)

F is unitary thus w̃ has the same circularly symmetric distribution as w. OFDM thus
decomposes a wide-band channel into a set of N orthogonal independent narrow-band
subchannels with the help of an IDFT/DFT pair and the cyclic prefix.
Besides the available spectrum, modern day communication systems are trying to use
other available resources, e.g., space and time, as well. One of such techniques which
has gained a lot of popularity is Multiple-Input Multiple-Output (MIMO) transmission.
MIMO systems deploy multiple antennas at the transmitter and the receiver. OFDM
together with MIMO is making its way into current communication systems. The next
section will provide a brief overview of MIMO systems, followed by an OFDM based
MIMO system model.

2.2 Multi-antenna systems

Multi-antenna systems mean to provide multiple antennas at the transmitters and/or
at the receivers. Multiple antennas yield spatial diversity, which is used to enhance
the system performance by reliable data transmission with high data rates, increased
diversity, and reduced interference. Subsequently, we will consider multi-antenna systems
equipped withMt transmit andMr receive antennas, respectively. The multiple antennas
are practically deployed in three different scenarios,

1. Multiple-Input Multiple-Output (MIMO) or Point-to-Point (P2P) scenario.

2. Multiple-Input Single-Output (MISO), e.g., in a multi-user uplink scenario.

3. Single-Input Multiple-Output (SIMO), e.g., in a multi-user downlink scenario.
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2.2.1 Point-to-point scenario

A point-to-point P2P MIMO system deploying Mt transmit and Mr receive antennas,
respectively, as shown in Fig. 2.5. For P2P scenarios, signal processing is possible both at
the transmitter and the receiver ends. Subsequently, we will consider a single user P2P
MIMO system equipped with an equal number of antennas at both ends, i.e., Mt = Mr.
With perfect CSI at the transmitter, we will consider transmitter-sided precoding and
receiver-sided post processing of the received data. For precoding and postprocessing,
diagonalization of the channel gain matrix H is discussed subsequently.

Figure 2.5: Point-to-point MIMO system model

Figure 2.6: Signal flow diagram of a P2P MIMO system model

P2P MIMO system model and channel diagonalization

Consider a P2P MIMO system with Mt transmit and Mr receive antennas as shown in
Fig. 2.5. Let x = [xt] = [x1, x2, . . . , xMt ]

T be the input data symbols to the MIMO
system. x is transmitted through the channel with channel impulse response H(z). In
matrix form, the output vector y = [yr] = [y1, y2, . . . , yMr ]

T at the receiver is formulated
as 

y1
y2
...

yMr

 =


h11 h12 . . . h1Mt

h21 h22 . . . h2Mt

...
. . .

...
hMr1 hMr2 . . . hMrMt




x1
x2
...

xMt

+


w1

w2
...

wMr

 (2.24)

In more compact form, we write
y = H x+w , (2.25)

where H is the Mr ×Mt channel gain matrix with coefficients hij from the jth transmit
antenna to the ith receive antenna, x and y are Mt- and Mr-dimensional column vectors,
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respectively, and w ∼ CN (0, σ2
r) is an Mr × 1 complex white Gaussian noise vector with

zero mean and variance σ2
r . Using singular value decomposition (SVD), the channel gain

matrix H can be rephrased as
H = UΛVH , (2.26)

where U and V are unitary matrices such that UHU = VHV = I and Λ is a diagonal ma-
trix with singular values δij = [δ11, δ22, . . . , δRHRH

, 0, . . . , 0] of H where RH ≤ min(MrMt)
is the rank of the H matrix. The singular values are usually sorted in a descending order,
i.e, δ11 ≥ δ22 ≥ . . . ≥ δRHRH

.
For a P2P MIMO system with perfect CSI, to diagonalize the channel, the input data
vector to the transmit antennas is obtained by precoding the input data symbols x̃ using
the preprocessing matrix V, i.e., x = V x̃. The received signal is postprocessed by UH

as shown in Fig. 2.6, i.e.,
ỹ = UHy = UH(H x+w) . (2.27)

Herewith, Eq. (2.27) is reformulated as

ỹ =

I︷ ︸︸ ︷
UH ·U ·Λ ·

I︷ ︸︸ ︷
VH︸ ︷︷ ︸

H

·V · x̃︸ ︷︷ ︸
x

+UHw , (2.28)

which simplifies to
ỹ = Λ · x+ w̃ , (2.29)

where Λ is a diagonal matrix containing the singular values δk of H on the diagonals and
zeros elsewhere and w̃ is the noise vector having the same statistical properties as w [3].
For anM×M channel matrix, omitting w̃, Eq. (2.29) in matrix notation can be expressed
as 

ỹ1
ỹ2
...
ỹM

 =


δ1,1 0 0 0
0 δ2,2 0 0

0 0
. . . 0

0 0 0 δM,M




x̃1
x̃2
...
x̃M

 , (2.30)

where x̃i, and ỹi are the input and the output at the ith antenna, respectively. δi,i are the
gains of the eigenchannels. Equation (2.30) shows a parallel decomposition of the channel
gain matrix H into M independent channels with Λ being the gain matrix.

2.2.2 Multi-user uplink and downlink scenarios

Multi-user uplink and downlink scenarios are shown in figures 2.7 and 2.8, respectively.
As is obvious from these figures, in multi-user scenarios, a central base station (BS),
deploying multiple antennas, communicates with independent mobile users having one
or more antennas. Subsequently, we will consider a central base station equipped with
multiple antennas communicating with U users, each one equipped with a single antenna.
Moreover, we assume that the number of antennas at the central base station equals the
number of mobile terminals U .
In multi-user scenarios, the mobile users are usually distant from each other, thus, there
will typically be no coordination amongst them. The majority of the signal processing
operations are hence performed at the central base station. For the downlink scenario,
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where the central base station transmits data to the mobile users (point-to-multipoint
or broadcast channel (BC)), we will consider transmitter-sided precoding. In the case of
uplink scenarios, where the BS is operating as a receiver of the independent data streams
from the mobile stations (multipoint-to-point or multiple access channel (MAC)), we
consider the receiver-sided postprocessing. Moreover, we assume perfect channel state
information at the transmitter as well as at the receiver.

Figure 2.7: Multipoint-to-point MIMO system model

Figure 2.8: Point-to-multipoint MIMO system model

Precoding and postprocessing for the downlink and the uplink scenarios and
QR decomposition of the channel matrix H

Multi-users Multiple Access Channel (MAC):

Let Mr be the total number of receive antennas deployed at the central base station and
let U be the total number of user supported by the base station, each one equipped with
a single transmit antenna, i.e., Ut = 1. Then, the total number of transmit antennas Mt
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is given as Mt =
∑
Ut = U . For the uplink case, let us suppose x = [x1, x2, . . . , xMt ], is a

1×U vector of the input data symbol. These symbols when transmitted over the channel
are filtered by the channel with a channel gain matrix H and the channel adds additive
noise w. The received signal y = [y1, y2, . . . , yMr ] at the base station can be written as

y = H x+w , (2.31)

where w is complex additive white Gaussian noise with zero mean and σn variance. For
an Mt =Mr =M , Eq. (2.31) in matrix notation can be rephrased as

y1
y2
...
yM

 =


h11 h12 . . . h1M
h21 h22 . . . h2M
...

. . .
...

hM1 hM2 . . . hMM




x1
x2
...
xM

+


w1

w2
...
wM

 , (2.32)

where H is the M ×M channel gain matrix, x is 1×M column input vector, y is 1×M
column output vector and w is a 1×M noise vector.
For the uplink scenario with Mt = Mr = M , the channel gain matrix HM×M can be
rephrased using QR decomposition as

H = Q ·R , (2.33)

where Q is a unitary matrix such that QHQ = I and R is an upper triangular matrix
which can be expressed as 

R11 R12 . . . R1M

0 R22 . . . R2M

0
. . . . . .

...
0 0 . . . RMM

 . (2.34)

Performing a spatial equalization at the base station with a postprocessing matrix QH ,
Eq. (2.31) then leads to

ỹ = QHy = QHH x+QHw (2.35)

ỹ = QHQ︸ ︷︷ ︸
I

R x+QHw , (2.36)

which in simple form can be written as

ỹ = R x+ w̃ , (2.37)

where w̃ is the noise vector after post processing, however, its distribution is the same as
w. Omitting w̃, Eq. (2.37) in matrix form can be expressed as

ỹ1
ỹ2
...
ỹM

 =


R11 R12 . . . R1M

0 R22 . . . R2M

0
. . . . . .

...
0 0 . . . RMM

 ·


x1
x2
...
xM

 . (2.38)
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Using Eq. (2.38), the base station applies a back-substitution approach to get an estimate
of the transmitted symbols.

Multi-users Broadcast Channel (BC):

For multi-users downlink scenarios we will assume transmitter-sided (central base station)
precoding. LetMt be the total number of transmit antennas and let U be the total number
of users with Ur = 1. The total number of receive antennas Mr =

∑
Ur = U . Moreover,

for simplicity, we considerMt =Mr =M . For a downlink scenario with transmitter-sided
precoding, QR decomposition is applied to the transpose of the channel matrix HH , i.e.,

HH = Q R ⇒ H = RHQH . (2.39)

At the base station, the input data vector x̃ are preprocessed using the preprocessing
matrix Q, i.e., x = x̃ Q. The received vector y is given as

y = H x+w . (2.40)

Now replacing x and H, Eq. (2.40) leads to

y = RH QHQ︸ ︷︷ ︸
I

x̃+w , (2.41)

which, in a simple form, can be written as

y = RH x̃+w , (2.42)

where RH is a lower triangular matrix. In order to have interference free reception at
mobile terminals, the input data vector X is first predistorted such that the following
equality holds:

diag(RH)x = RH x̃ . (2.43)

The ith element of x̃, i.e., x̃i is then defined as

x̃i = ΓM

[
x̃i −

i−1∑
j=1

Rj,i

Ri,i

· x̃j

]
, (2.44)

where ΓM is the modulo operation of Tomlinson-Harashima precoding [12] [29].

2.3 OFDM-based MIMO systems

Due to its ease in implementation, robustness against channel impairments, and flexibil-
ity, OFDM is the choice of modern day communication systems. Moreover, the system
performance can further be enhanced when considering OFDM together with MIMO.
MIMO-OFDM is thus a promising technique for current high-speed communication sys-
tems offering high data rates with reliable transmissions. It uses multiple transmitters
and multiple receivers for transmission and reception of OFDM frames, respectively. A
general transceiver structure of a point-to-point MIMO-OFDM is shown in Fig. 2.9.
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We consider a P2P MIMO-OFDM system withMt transmit andMr receive antennas (for

Figure 2.9: Block diagram of MIMO OFDM

convenience, we assume Mt = Mr = M). Let X(n) = [X1(n), X2(n), · · · , XM(n)]T be an
input vector, where Xµ(n) is the input symbol at the µth, µ = 1, 2, · · · ,M , spatial chan-
nel and the nth carrier. With transmitter-sided precoding, X = [X(1) X(2) . . . X(N)]
is pre-processed using preprocessing matrices V = [V(1) V(2) . . .V(N)] and converted
into a parallel data stream using a serial to parallel converter. After the IFFT, the
time-domain signal x = [x(1) x(2) . . . x(N)] is padded with a cyclic prefix (CP) to
mitigate the effect of inter-symbol interference (ISI). This signal is transmitted over a
MIMO channel with a channel matrix H = [H(1) H(2) . . . H(N)]. At the receiver,
reverse operations are performed to obtain an estimate of the transmitted signal. Let
y(n) = [y1(n), y2(n), · · · , yM(n)]T be the output vector, where, yµ(n) is the output sym-
bol of the µth, µ = 1, 2, · · · ,M , spatial channel. At the nth tone, the transmit signal
X(n) is pre-multiplied by V(n), whereas the signal at the receiver after the DFT (FFT)
is post-multiplied by UH(n) to obtain the output Y(n). The received symbol of the nth
tone over the µth receive antenna yµ(n) can be written as [8, 38]

yµ(n) =
M∑
j=1

hµ,j(n)xj(n) + wµ(n), µ = 1, 2, . . . ,M , (2.45)

where xj(n) is the input symbol at the nth tone at the jth antenna, wµ(n) is the additive
white Gaussian noise at the µth receive antenna for the corresponding symbol with zero
mean and σ2 variance, and hµ,j is the channel coefficients from the jth transmit antenna
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to the µth receive antenna. The received data vector at the nth subcarrier, i.e., y(n) is
given as

y(n) = H(n)x(n) +w(n) , (2.46)

where w(n) = [w1(n), w2(n), . . . , wM(n)]T and H(n) is an M ×M channel gain matrix.
The MIMO-OFDM input-output relationship for the whole frame [8, 38] can then be
formulated as

Y = H X +N , (2.47)

where Y = [y(1)Ty(2)T . . .y(N)T ]T isMrN×1 receive vector, X = [x(1)T x(2)T . . . x(N)T ]T

is MtN × 1 transmit vector, H = [H(1) H(2) . . . H(N)] is MrN ×MtN block diagonal
channel gain matrix and N = [w(1) w(2) . . .w(N)] is MrN × 1 additive white Gaussian
noise vector with zero mean and E(N ×N ) = σ2I variance.

2.4 Peak-to-average ratio of an OFDM signal

Previous sections have given a brief overview of the OFDM and MIMO systems. OFDM
has a number of advantages, i.e., reduced/no ISI, ease of implementation using DFT/
IDFT and the optimum usage of the spectrum with overlapping orthogonal subcarrier,
due to which OFDM is making its way into modern communication systems. However,
a major drawback which the OFDM symbol inherit is the high dynamic range of the
transmit signal, expressed by the Peak-to-Average Ratio (PAR). The QAM symbols are
assumed as independent identically distributed (i.i.d.) which according to the Central
Limit Theorem may result in a Gaussian like distribution. This results in a big difference
between the peak power of the time domain signal to its average power. The difference
between the peak power and the average power of an OFDM signal is termed as peak-to-
average ratio and is defined as

PAR(x) =
max

k,1≤k≤N
|xk|2

E{|xk|2}
, (2.48)

where maxk |xk|2 represents the amplitude of the maximum peak power of the envelope
and E{|xk|2} denotes the average power over an interval 1 ≤ k ≤ N of the OFDM symbol
x. In literature often PAR and Crest factor (Cf ) are used interchangeably, though, there
is a difference between the two. Crest factor (Cf ) is usually used for voltages and is the
ratio of the peak amplitude to the root mean square (RMS) value of a waveform, defined
as

Cf =
|x|peak
xrms

. (2.49)

The PAR is obtained by squaring the Crest factor, i.e.,

PAR = C2
f or Cf =

√
PAR . (2.50)

When measured in dB, PAR and Crest factor are, of course, the same. We will use the
term PAR throughout this work, unless otherwise stated. Moreover, with “PAR” we mean
the PAR of N discrete samples of a baseband OFDM (or MIMO-OFDM) symbol.
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2.4.1 Mathematical formulation

Herein, we will provide a mathematical analysis for a discrete time baseband OFDM
signal. Let X = [Xn], 1 ≤ n ≤ N, be the vector of input QAM symbols. Using an IDFT
(IFFT), the time domain signal x = [xk], 1 ≤ k ≤ N , is obtained as

xk =
1√
N

N∑
n=1

Xne
j 2πnk

N , (2.51)

where Xn is the nth QAM symbol. According to the central limit theorem, due to the
statistical independence of the QAM symbols, the time domain samples exhibit an almost
Gaussian distribution. This results in a high difference between the peak power to the
average power of the time domain signal. The PAR for baseband OFDM signal [xk] is
then defined as

PAR(x) =
max

k,1≤k≤N
|xk|2

E{|xk|2}
, (2.52)

where E{·} stands for expectation. For QAM modulation, the peak power P̂QAM of an
M-ary QAM symbol is given as

P̂QAM =
a2

2

(√
M− 1

)2
, (2.53)

where a is the minimum Euclidean distance between two constellation points and M is
the constellation size. The average power P̄QAM of an M-ary QAM constellation point is
defined as

P̄QAM =
a2

6
(M− 1) . (2.54)

The PAR of a single carrier with M-ary QAM modulation is then calculated as

PARQAM =
P̂

P̄
= 3

(√
M− 1√
M+ 1

)
. (2.55)

In case of OFDM with N subcarriers, the instantaneous power |xk|2 of the time domain
transmit signal x is given as

|xk|2 = xkx
∗
k =

1√
N

N∑
n=1

Xne
j 2πnk

N · 1√
N

N∑
m=1

Xme
−j 2πmk

N , (2.56)

which, using Euler formulas, can be simplified as

|xk|2 =
1

N

{
N∑
n=1

|Xn|2 +
N∑
n=1

∑
n̸=m

XnXme
j
2πk(n−m)

N

}
. (2.57)

According to Parseval’s theorem, the relationship between the average power of a signal
in time and DFT domain is given as

E
{
|xk|2

}
= E

{
|Xn|2

}
. (2.58)
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Using Eq. (2.57), the peak power of an OFDM signal can be expressed as [32]

max
k

|xk|2 =
1

N
max
n

{
N∑
n=1

|Xn|2 +
N∑
n=1

∑
n̸=m

XnXme
j
2πk(n−m)

N

}

≤ 1

N

{
max
n

N∑
n=1

|Xn|2 +max
n

N∑
n=1

∑
n̸=m

XnXme
j
2πk(n−m)

N

}

≤ 1

N

{
N max

n
|Xn|2 +N (N − 1)max

n
|Xn|2

}
≤ 1

N

{
N2 max

n
|Xn|2

}
max
k

|xk|2 ≤
{
N max

n
|Xn|2

}
.

(2.59)

Using equations (2.58) and (2.59), the PAR in (2.52) can be computed as

PAR(x) ≤ N
max

1≤n≤N
|Xn|2

E{|Xn|2}
, (2.60)

where the inequality turns into an equality when all the symbols drawn from the M-ary
QAM constellation have the same phase, i.e., arg{x1} = arg{xk} for 1 ≤ k ≤ N [31]. The
PAR in that case is maximal, i.e., PARmax and is expressed as

PARmax(x) = N
max

1≤n≤N
|Xn|2

E{|Xn|2}
. (2.61)

It is clear from Eq. (2.61) that the PAR grows linearly with the number of tones. For an
OFDM system with N subcarriers each one modulated by an M-ary QAM constellation,
using Eq. (2.61), the PARmax can then be expressed as

PARmax(x) = N

(
3

√
M− 1√
M+ 1

)
. (2.62)

Figure 2.10 shows the PAR of OFDM symbols for a different number of tones, which
shows that the PAR for OFDM with a higher number of tones is larger than for a lower
number of tones.
For Binary Phase Shift Keying (BPSK) modulation, the peak power P̂BPSK and the
average power P̄BPSK are the same. Using Eq. (2.61) for OFDM with BPSK modulation,
PARmax is given as PARmax(x) = N .
Equation (2.61) defines an upper bound or the worst case PAR of an OFDM symbol.
However, practically, the probability to really obtain the worst PAR is very low. Thus,
a statistical analysis of the PAR distribution of the OFDM samples is usually used to
evaluate the system performance. We, therefore, next provide a statistical analysis for
the PAR of an OFDM signal.
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Figure 2.10: CCDF(PAR) for OFDM with different number of subcarriers

2.4.2 Statistical analysis

Statistically, the Complementary Cumulative Distribution Function (CCDF) is used to
compare different PAR reduction schemes. The CCDF of the PAR is defined as the
probability that the PAR of an OFDM frame is greater than a given threshold τ , i.e.,
CCDF(PAR) = Pr ( PAR > τ ).
In order to proceed to the statistical analysis, let X = [Xn], n = 1, 2, . . . , N , be the
vector of the input M-ary QAM symbols where each element Xn of X is considered
as statistically independent, identically distributed complex Gaussian with zero mean
and σ2

k = [xkx
∗
k] variance. Let x be the time domain counter part of X obtained as

x = IDFT{X}. As x is a linear combination of the N i.i.d. QAM symbols, therefore, the
time domain samples x = [xk] are also i.i.d. complex Gaussian, i.e., xk ∼ C(0, σ2

x).
For large N , the instantaneous power |xk|2 has a χ2 distribution with two degrees of
freedom. The square root of the power, i.e., the amplitude or the envelope of the OFDM
symbols xk follow a Rayleigh distribution with a probability density function (pdf)

pdf(xk) = 2 xk e
−|xk|2 . (2.63)

Let τk be the PAR of the kth sample, then the probability that the PAR is smaller than
the threshold value τ , given as CDF(PAR) = Pr (τk ≤ τ ), can be expressed as

CDFτk(τ) =

∫ τ

0

pdf(τk)d(τk) =

∫ τ

0

2 τk e
−|τk|2 d(τk) = 1− e−τ . (2.64)

For an OFDM symbol of length N the time domain samples xk are i.i.d.. Thus, the CDF
for an OFDM frame with N i.i.d. samples can then be formulated as

CDFτ (τ) = (CDFτk(τ))
N =

(
1− e−τ

)N
. (2.65)
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Using Eq. (2.65), the Complementary Cumulative Distribution Function, i.e., the proba-
bility that the PAR of the OFDM frame is higher than the given threshold τ , is calculated
as

CCDF(PAR) = Pr (PAR > τ) = 1−
(
1− e−τ

)N
. (2.66)

Equation (2.66) is the CCDF for a single-antenna OFDM system at Nyquist rate.
The extension of the statistical analysis to multi-antenna systems is straight forward. In
a multi-antenna system, Mt transmit antennas are used to transmit Mt OFDM frames
simultaneously. However, the Mt OFDM frames at the input of all antennas are statis-
tically independent of each other. Thus, instead of N i.i.d. samples, as in the case of a
SISO system, we now haveMt N samples. The situation is comparable to a single OFDM
frame of size Mt N . For MIMO-OFDM with Mt transmit antennas, the CDF can then
be expressed as

CDF(PAR) = (CDFτk(τ))
Mt N =

(
1− e−τ

)Mt N
. (2.67)

The CCDF of the PAR for MIMO-OFDM, using Eq. (2.67), can be calculated as

CCDF(PAR) = 1− (1− e−τ )Mt N . (2.68)

2.5 Consequences of high PAR

A major drawback of an OFDM system is its high Peak-to-Average power Ratio (PAR).
The QAM symbols are i.i.d., which according to the Central Limit Theorem (CLT) leads
to a Gaussian-like distribution in the time domain and may occasionally add up construc-
tively. This results in a big difference between the peak power of the time domain signal to
the average power. However, almost all electronic circuitry, e.g., Analog-to-Digital (A/D)
converters, mixers, High Power Amplifiers (HPA), etc., are peak-power limited. The most
important of them is the HPA, which is used to amplify the signal before transmission.
If a signal with high dynamic range is passed through an HPA without any precaution-
ary measures, it will drive the amplifier to operate in its nonlinear (saturation) region,
resulting in the signal distortion. The precautionary measures are either to operate the
HPA with large input power back-off (IBO) or to reduce the peak values of the input
signal. Operating an HPA with high back-offs is not an efficient use of power as it will
lead to high power dissipation. In order to avoid operating amplifiers with extremely large
back-offs, occasional saturation of the power amplifiers or clipping must be allowed [31].
Clipping a signal beyond a certain power value results in signal distortion referred to as in-
band distortion and out-of-band radiation. The in-band distortion results in an increase in
bit-error ratio (BER) at the receiver. To cope with the effects of in-band distortion, error
correcting codes are often used. With the help of strong channel codes like Low-Density
Parity-Codes (LDPC) or Turbo codes, the BER problem may be solved. However, the
out-of-band radiation is of big concern, especially for wireless applications [33,39,40].
We will first start with a brief overview of high power amplifiers.
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2.5.1 Theoretical models of high power amplifiers

Herein, we will give an overview of the transfer characteristic function of different power
amplifier models typically used in literature just to give an impression. Let x(t) be the
input signal to the amplifier, then in polar form, the complex envelope of the input signal
can be expressed as [42]

x(t) = |A(t)|ej arg{x(t)} = |A(t)|ejϕ(t) , (2.69)

where, A(t) is the amplitude and arg{x(t)} = ϕ(t) is the phase of the complex value x
at time instant t. The output signal x̃(t) from the high power amplifier, in polar form, is
written as

x̃(t) = g[A(t)]ejϕ(t)+ψ[A(t)] , (2.70)

where g[A] and ψ[A] are the AM/AM and AM/PM (amplitude modulation/phase mod-
ulation) transfer characteristic of a memoryless nonlinear power amplifier, respectively.
The most common amplifier models available in literature are

• Soft Limiter Amplifier (SLA) model (or ideal amplifier model)

• Traveling Wave Tube Amplifier (TWTA) model

• Solid State Power Amplifier (SSPA) model

Soft limiter amplifier model

The SLA amplifier model is the simplest amplifier model. It ignores the AM/PM conver-
sion. The AM/AM conversion of SLA model is expressed as

g[A] =

{
A, |A| ≤ A0

A0e
j arg{A}, A > A0

, (2.71)

where A0 is the limiting level (saturation value) of the power amplifier and arg{A} is the
phase of the complex value A. The conversion characteristic is shown in Fig. 2.11. As can
be seen, the input-output conversion is linear as long as the value of the input signal is
below the saturation value of the amplifier. However, the input signal is clipped as soon
as its value goes beyond the limiting value of the power amplifier.

Traveling-wave-tube amplifier model

The TWTA model was first proposed by Saleh [41]. The input/output transfer charac-
teristics of a TWTA amplifier model are defined as

g[A] =
αAA

(1 + βAA2)
(2.72)

and

ψ[A] =
αψA

(1 + βψA2)
(2.73)
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The AM/AM characteristic curve of a TWTA amplifier are as shown in Fig. 2.11, with
βA = 0.25. Some common parameters for the TWTA amplifier model are αA = 1,
βψ = 0.25, and αψ = 0.26 [42].

Solid state power amplifier model (Rapp model)

The third most common power amplifier model is know as the solid state power amplifier
model. It was proposed by Rapp [42]. The AM/PM for the SSPA model is very small and
neglected. The AM/AM conversion characteristics of an SSPA amplifier model is given
as

g[A] =
A

(1 + [( A
A0
)2]p)

1
2p

, (2.74)

where p is the knee factor and is used to control the transition of the amplifier from the
linear region to the saturation region, A0 is the saturation value of the SSPA amplifier.
Figure 2.11 shows the input-output characteristics for an SSPA model with p = 3. The
Rapp model approaches the SLA model for p→ ∞.
The transfer curves can be divided into three different regions. Subsequently, we will give
a brief overview to the different regions of an HPA transfer characteristic curves.
Figure 2.12 shows the transfer characteristic curve of a typical amplifier model (for exam-
ple, Rapp model with p = 3). As shown in Fig. 2.12, the characteristics curve have three
prominent regions:

• Linear Region: In this region the value of the input signal is smaller than the
limiting value of the amplifier. The HPA works as a linear device without any
distortion. The output signal is proportional to the input signal.

• Compression region: Restricting the amplifier to the linear range is inefficient.
For an efficient use of the power amplifiers, the HPA must be driven close to the
saturation (limiting) value. However, the HPA exhibits a nonlinear behavior when
driven close to the saturation level, resulting in a distortion of the input signal. The
output signal is no more proportional to the input signal, the gain becomes smaller.
The distortion increases as the HPA goes further into deep saturation.

• Saturation Region: When the value of the input signal to the amplifier crosses
the amplifier’s limiting power, the output power Pout,sat remains constant after a
certain point. The HPA is said to be operating in the saturation region. The gain
in this region is decreasing. The nonlinearities become more and more evident.

In order to characterize an amplifier, the input back-offs (IOB) and the output back-offs
(OBO) of the HPA, based on the input and output to the amplifier, are considered. Let
Ain be the limiting amplitude of the input signal and A is the limiting amplitude of the
output signal, then the IBO and the OBO of the HPA amplifiers can be defined as

IBO = 10 log10

(
A2
in

E{|x|2}

)
in [dB] , (2.75)

and

OBO = 10 log10

(
A2

E{|g(x)|2}

)
in [dB] , (2.76)
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Soft Limiter (SL)

Solid State Power Amplifier (SSPA)

Travelling Wave Tube Amplifier (TWTA)

Figure 2.11: Characteristic curves of (a) Soft Limiter (SL), (b) Traveling Wave Tube amplifier
(TWTA) with β = 0.25, and (c) Solid State Power amplifier (SSPA) (Rapp
model) with p = 3

Compression
Region

Linear
Region

Saturation
Region

Figure 2.12: Characteristic curve of a typical power amplifier

where E{|x|2} and E{|g(x)|2} are the average powers of the input and the output signals,
respectively.

2.6 Peak-to-average reduction techniques

In the previous sections, we discussed that all electronic circuits, especially the HPAs,
are peak power limited. When an OFDM signal, with a peak value higher than the
amplifiers linear operational range, is passed through the HPA, it drives the amplifier
to operate in its non-linear region. This results in signal distortions which degrade the
system performance. Thus, measures are usually taken to limit the peak values of the
signal below the amplifiers linear operational range. In literature, a number of techniques
have been proposed to lower the peak excursions of an OFDM signal. These techniques
were first presented for single-input single-output (SISO) systems. Some of them have
been extended, recently, for the PAR reduction of multi-antenna systems, as well. Herein,
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we will discuss the most popular techniques for the PAR reduction of SISO and multi-
antenna systems. We will first start with the techniques introduced for SISO systems.

2.6.1 Peak-to-average reduction techniques in SISO systems

Clipping

Clipping is the simplest PAR reduction technique which is widely used. In clipping, the
peak excursions are clipped beyond a predefined threshold value of the HPA linear range,
simply by the D/A converter or the HPA itself. Mathematically, the clipping operation
is expressed as [47–54]

xc =

{
x, |x| ≤ A0

A0e
j arg{x}, |x| > A0

, (2.77)

where A0 is the predefined threshold value (saturation value of the HPA), arg{x} is
the phase of the complex value x and xc is the clipped signal. Clipping is done at the
transmitter. The distribution and occurrence of high peaks are random. Therefore,
clipping the signal results in in-band distortion which increases the BER at the receiver
and in out-of-band radiation, which leads to spectral spreading causing interference into
adjacent bands. In order to solve the problem of in-band distortion and out-of-band
radiation, Amstrong [51], introduced frequency domain filtering of the clipped signal.
The filter proposed by the authors consists of two DFT (FFT) operations. The forward
DFT is used to transform the signal back into the DFT domain. This helps in nullifying
the out-of-band components while the in-band frequency components of the clipped signal
are passed to the input of the second DFT. Then the IDFT (IFFT) transforms the signal
back into time domain. This filter has little affect on the in-band frequency domain
components and greatly attenuates the out-of-band components [51]. However, there
is a peak regrowth, thus, the clipping and filtering operations are usually iterated to
reduce the peak values into the linear region of the HPA. This result in an increase in
the computational complexity of the system. In [54], the authors have optimized clipping
and filtering to reach a target value with a few iterations, thus, considerably reducing the
computational complexity.
An alternative approach is peak windowing, where the large signal peaks are multiplied
with a time domain window function, like Hamming window [55]. This approach reduces
the out-of-band radiation but unfortunately increases the BER. This increase in the BER
can be compensated using error correcting codes at the expense of a reduction in the
effective data rate [31]. One such approach is discussed in [56], where the author make
use of the analog code (Reed solomon code over complex numbers) for clipping noise
correction.
The advantage of clipping is its simple implementation at the transmitter, however, the
major drawback is the added complexity resulting from the iterative clipping and filtering.

Selected Mapping

Selected Mapping (SLM) is another well-known PAR reduction technique. The idea was
first proposed by Bäuml, Fischer, and Huber in 1996 [57]. The core principles of Selected
Mapping is to translate the original OFDM frame into U statistically independent OFDM
frames bearing the same information. The U OFDM frames are obtained by multiplying
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the original data frame with U phasor vectors. These OFDM frames are converted into
time domain and the one with the lowest PAR is selected for transmission.
Let X = [Xn], n = 1, 2, . . . , N , be the original OFDM frame, i.e.,

X = [Xn] = [X1X2 . . . XN ] .

Now, U independent phasor vectors are generated, expressed as

P(u) = [P (u)
n ] = [P

(u)
1 , P

(u)
2 , . . . , P

(u)
N ] ,

where, P
(u)
n = ejϕn

(u)
, such that ϕ

(u)
n ∈ [0, 2π), u = 1, 2, . . . , U . The phasor vectors are

usually generated with four phases separated by π/2, i.e., Pn ∈ (±1,±j) [57]. The uth
translated OFDM frame is then obtained by multiplying the OFDM frame element-wise
with the uth phasor, i.e.,

X(u) = [Xn] · P (u)
n = [Xn] · ejϕn

(u)

. (2.78)

Taking the IDFT (IFFT), the time domain vector is obtained as

x(u) =
1√
N

N∑
n=1

[Xn] · ejϕn
(u)

ej
2πnk
N . (2.79)

After the IFFT, the frame with the lowest PAR is selected for transmission.
At the receiver, the OFDM frame is recovered by sending side information about the
phase vector used, protected by a channel code. At the receiver, after the DFT (FFT)
and decision about the used vector, the original OFDM frame is recovered as

Y(u) = FFT{x} • e−jϕ(u) = X • ejϕ(u) • e−jϕ(u) = X , (2.80)

where • represent an element-wise multiplication. This is also a simple approach, however,
the computational complexity increases with U , the number of translated frames.

Partial Transmit Sequences

Partial Transmit Sequences (PTS) was first proposed by Müller and Huber [58]. The
principle of PTS is the same as SLM, i.e., multiple signal representation bearing the same
information. However in PTS, rather than defining U statistically independent OFDM
frames as in SLM, the input data vector X is subdivided into D disjoint sub-blocks as
shown in Fig. 2.13. The size of each sub-block is N/D. Each sub-block is assigned a set
of tones and the others are set to zero, such that

X =
D∑
i=1

Xi, i = 1, 2, . . . , D . (2.81)

SLM used to rotate the individual tones inside the frame, however, in PTS a rotation
factor is defined for each sub-block Xi, i.e.,

P i = ejϕi , ϕi ∈ [0, 2π) . (2.82)
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The translated input data vector X̃ can then be expressed as

X̃ =
D∑
i=1

P iXi =
D∑
i=1

ejϕiXi (2.83)

Exploiting the linearity property of the IDFT, the time domain vector x̃ is obtained as

x̃ = IDFT(X̃) = IDFT

{
D∑
i=1

P iXi

}

x̃ =
D∑
i=1

ejϕiIDFT(Xi) =
D∑
i=1

ejϕixi , (2.84)

where D partial transmit sequences have been introduced [58]. To get a transmit sequence
with lowest PAR, an optimum combination of the partial sequences has to be found. The

optimal combination of
{
P̃ (1), P̃ (2) . . . , P̃ (D)

}
can be written as

{
P̃ (1), P̃ (2) . . . , P̃ (D)

}
= arg

{
min

P̃ (1),P̃ (2)...,P̃ (D)

}[
max
1≤k≤N

∣∣∣∣∣
D∑
i=1

P ixik

∣∣∣∣∣
]
, (2.85)

where argmin(·) denotes the arguments for which the given expression yields the mini-
mum. The optimum sequence with the lowest PAR is then defined as

x̃ =
D∑
i=1

P i · xi . (2.86)

PTS has a slightly better performance than SLM [58, 59]. However, it has high com-
putational complexity, for searching optimum phase factors for the sub-blocks that will
finally result in an output with low peak signal. In order to retrieve the useful information
correctly at the receiver, the algorithm needs to send side information about the phase
factors used, to the receiver or use differential encoding.

Optimization

Figure 2.13: Block diagram of Partial Transmit Sequences

29



Chapter 2: Orthogonal Frequency Division Multiplexing

Tone Reservation

Tone Reservation is the least complex PAR reduction technique. First proposed by Tellado
[31,60], the TR algorithm adds (subtracts) a data-dependent signal to the original signal
in time domain for peak reduction. This time domain signal is generated by using a
certain number of tones reserved for PAR reduction. The algorithm, thus, divides the
tones in an OFDM frame into two disjoint sets, the tones used for data transmission X̄
and the tones used for PAR reduction R, as shown in Fig. 2.14, such that X = X̄+R. R
is used to generate a Dirac-like function r which is then iteratively added to the original
signal x for PAR reduction in time domain, as shown in Fig. 2.15.

x = IDFT{X} = IDFT{X̄+R} . (2.87)

At the (i+ 1)th iteration, the time domain vector x(i) is updated as [12]

x(i+1) = x(i) − α(xd
(i) − ej arg{x

(i)
d } · τ)(r(N −m) modulo N) , (2.88)

with the parameters:

α - step size
i - ith iteration
d - peak position
arg xk - is the phase of the complex value xk
τ - threshold value
r(N −m) - time-shifted version of r

(xd
(i) − ej arg{x

(i)
d } · τ) - threshold overshoot

- - - -

Figure 2.14: OFDM frame with reserved tones

The TR algorithm can be summarized as follows:

1. Initialize the information vector X with the reserved tones set to zero.

2. Transform X into time domain, i.e., x = IFFT(X).

3. Find the peak value x
(i)
d and the position d for which |x(i)d | = maxk |x(i)k |.

4. If |x(i)d | < τ or if i > imax stop and transmit x(i), else

5. Modify the transmit signal x according to

x(i+1) = x(i) − α(xd
(i) − ej arg{x

(i)
d } · τ)(r(N −m) modulo N) (2.89)

i := i+ 1
goto 3.
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IDFT

IDFT

-

-

-

-

-

Figure 2.15: Block diagram of the Tone-Reservation algorithm

The TR algorithm presented by the authors in [31,60] did not take the filter response into
considerations. In order to account for the filter response, an oversampled version of TR
algorithm was presented in [61].

Trellis Shaping

Forney [63] introduced Trellis Shaping for minimizing the average power of the transmit
signal. However, application of the Trellis Shaping for PAR reduction was first proposed
by Henkel and Wagner [64], and later the same concept has been extended in [67,68,70,99].
In order to give a brief insight to the idea, let us consider a block diagram of a trellis
shaper as shown in Fig. 2.16. In there, Cs is a rate-k/n convolutional code (also referred
to as the shaping code) with a k × n generator matrix G. Moreover, HT and (H−1)T

represent the n× (n− k) parity-check matrix (syndrome former) and its (n− k)× n left
inverse. For sign-bit shaping, Cs is a rate-1/2 convolutional code with a 1 × 2 generator
matrix G. The matrix dimensions of the syndrome former HT and its left inverse (H−1)T

are 2× 1 and 1× 2, respectively.
Let u be the input data sequence prior to the constellation mapping, which will be

transmitted with one N -subcarrier OFDM symbol. This sequence u is comprised of two
sequences m and n. As shown in Fig. 2.16, m is used to address the MSBs (the sign bits)
of the mapping constellation, as this is the bit position with the biggest possible change
in the signal-point location in an M-ary QAM alphabet [64], whereas n are the least
significant bits (LSB). To choose the MSBs, the input sequence m is first preprocessed
by the left inverse of the syndrome former (H−1)T , i.e., z = m · (H−1)T . As we know
that for a valid code sequence y, we obtain y · HT = 0, the information at the receiver
can be retrieved as

z
′ ·HT = (z⊕ y) ·HT = (z ·HT )⊕ (y ·HT︸ ︷︷ ︸

=0

) = z ·HT = m. (2.90)
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Figure 2.16: Block diagram of Trellis Shaping

The ith QAM symbol is then determined by the following mapping rule

Xi = M(zi ⊕ yi;n) (2.91)

For PAR reduction using Trellis Shaping, different metrics have been proposed for the
search in the Viterbi algorithm [64, 67, 68, 70]. The metric proposed by Ochiai [70] is
based on the autocorrelation of the sidelobes of an OFDM signal and is expressed as

µi = µi−1 +
i−2∑
m=1

2ℜe
(
R(i−1)∗
m δi−1

m

)
+

i−1∑
m=1

∣∣δi−1
m

∣∣2 , (2.92)

where Ri
m is the aperiodic autocorrelation function, µi =

∑i
m=1 |Ri

m|2, and δim = XiX
∗
i−m.

A detailed description of Trellis shaping is provided in Chapter 5.
So far, we have discussed some PAR reduction schemes for single antenna systems. In the
next section, these techniques will be extended to multiple antenna systems.

2.6.2 Peak-to-average reduction techniques in MIMO systems

The previous section provided a brief overview of the most popular PAR reduction tech-
niques for SISO systems available in literature. These techniques are well optimized with
good performances. However, modern communication systems deploy multiple antennas
at the transmitter and the receiver, as discussed in Section 2.2. Thus, current research is
extending the existing techniques for PAR reduction of MIMO-OFDM systems. However,
with the deployment of multiple antennas at the transmitter, the complexity of the afore-
mentioned algorithms, of course, increases linearly with the number of transmit antennas.
Besides the number of transmit antennas, the complexity and gain of these algorithms de-
pend on the type of MIMO scenario under considerations. For example, for a single-user
point-to-point MIMO-OFDM system, where joint signal processing is possible at both
ends, these algorithm can directly be extended to each transmit antenna. However, the
complexity of the algorithm is thenMt-fold that of the SISO systems, whereMt is the total
number of transmit antennas. Similarly, for the multi-user MAC scenarios with each user
being equipped with a single transmit antenna, these algorithm is just a direct extension
of the SISO case, hence, it will not be considered any further, unless stated otherwise.
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However, limiting the peak values become challenging when considering the multi-user
point-to-multipoint scenarios (broadcast channel). In the broadcast scenario, beside the
number of transmit antennas, the algorithm has to consider the effect of precoding at the
central base station, which further increases the computational complexity of these algo-
rithms. In the literature, different approaches have been proposed for the PAR reduction
of MIMO-OFDM systems. Herein, we will give an overview of the techniques used for
PAR reduction in MIMO systems.

Selected Mapping / Partial Transmit Sequences

For MIMO systems, SLM (PTS) can be extended in the same way as applied to the SISO
systems, i.e., to generate multiple copies of the same frame at each transmit antenna.
Different variants of SLM (PTS) have been proposed in [74–83]. In [74], the authors
extended SLM for the PAR reduction of Space Time Block Coded (STBC) MIMO-OFDM
systems. Moreover, in [75] Baek et al. proposed two different variants of SLM for P2P
MIMO-OFDM systems, the ordinary SLM (oSLM) and a simplified SLM (sSLM). For the
two variants, the computational complexity was the same, i.e., U ·Mt IFFTs, however,
sSLM uses the same phasor vectors for all transmit antennas as compared to the oSLM
which is a direct extension of the SISO SLM into the MIMO topology. The authors also
presented oPTS and sPTS with the same basic principle as presented for SLM. In [77],
the authors proposed directed SLM (dSLM) for P2P MIMO-OFDM systems. In dSLM,
the focus is on the antenna with the worst PAR. dSLM has better performance than
oSLM and sSLM, as the algorithm concentrates on the antenna with the highest PAR,
whereas, in oSLM and sSLM, all antennas are dealt equally likely. The directed approach
was applied to PTS, i.e., dPTS. In [80], Siegel presented selected sorting (SS) for the PAR
reduction of the multi-user broadcast scenarios. One thing to mention is that the basic
principle in all variants are the same, i.e., to generate multiple copies of the same signal,
thus the complexity in PAR reduction using SLM/PTS is very high.

Tone Reservation

Like SLM and PTS, the Tone Reservation algorithm can also be extended for PAR reduc-
tion of MIMO-OFDM systems. One such approach has been proposed in [87], where the
authors generate the corrective signal on the unused tones with the assumption that they
are below a given power mask. The corrective signal is optimized using a second order
cone programming (SOCP). Simulation results have been presented for a 2 × 2 MIMO-
OFDM system with Alamouti space time block coding (STBC, IEEE 802.16 WiMAX
standard). However, there is a limitation of the scheme used as the relative mean power
increase is very high. With a constraint on the relative mean power in the optimization
algorithm, the results obtained are not very promising.
In the next chapters we present different approaches for the PAR reduction in MIMO-
OFDM systems.
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Chapter 3

PAR Reduction with Tone
Reservation in MIMO and
Multi-user OFDM

In the previous chapter, we showed that Partial Transmit Sequences (PTS), Selected Map-
ping (SLM), and Tone Reservation (TR) algorithms were extended by different authors
for the PAR reduction in MIMO OFDM systems, which are well-optimized techniques for
SISO systems. In case of a point-to-point MIMO-OFDM systems, these algorithms can be
applied in a straight forward manner. However, the situation becomes more challenging
when considering a multi-user broadcast channel (BC). In multi-user BC, the precoding
block at the transmitter additionally affects the performance of PAR reduction schemes.
In [33, 80], Siegel proposed Selected Sorting, a variant of SLM, for the PAR reduction in
multi-user MIMO-OFDM systems, however, the algorithm is much more complex without
prominent results.
Herein, we extend the Tone Reservation algorithm for PAR reduction in point-to-point
and multi-user (broadcast channel) MIMO-OFDM scenarios. In Section 3.1, we first con-
sider a P2P MIMO-OFDM scenario. Here, a joint signal processing is possible both at the
transmitter as well as the receiver ends. Thus, we will use transmitter-sided precoding
and receiver-sided postprocessing. In case of a P2P scenario, we assume that the last
eigenchannel(s) are too weak to be used for data transmission. Not using them for data
transmission will offer redundancy for the PAR reduction of a MIMO-OFDM system. In
Section 3.1.3, we will show how to design an optimum spiky function using the reserved
eigenchannels, which, like the TR algorithm, can be iteratively added to the transmitted
signal for PAR reduction. Section 3.1.5 is devoted to simulation results obtained with the
proposed algorithm.
We next extend the TR algorithm for the PAR reduction of a BC-scenario in Section 3.2.
For the BC scenario, as discussed in Section 2.2.2, we will consider a transmitter-sided
precoding. Herewith, the situation for PAR reduction becomes very challenging. How-
ever, we will show that Tone Reservation is very suited for this situation. For the BC
scenario, we will reserve a small percentage of the total number of tones on all spatial
dimensions. Thus, no implications due to precoding need to be taken into consideration at
the receiver. We start with the system model and precoding performed using Tomlinson
Harashima (TH) precoding in Section 3.2.1. Section 3.2.2 provides the simulation results
for the BC scenarios.
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3.1 PAR reduction with TR in point-to-point MIMO-

OFDM systems

Tone Reservation is the simplest and computationally the least complex technique used
for PAR reduction of the OFDM systems. For brevity, we recall from Section 2.6.1 that,
in tone reservation, the algorithm reserves a certain percentage of the total number of
tones. These tones are used to generate a spiky function, which is then iteratively added
to the transmitted signal to reduce the peak excursion crossing a certain threshold value
τ . The idea first presented for Single-Input Single-Output (SISO) OFDM systems, can
as well be extended to MIMO-OFDM systems. A first approach has been made by the
authors in [87], for a 2 × 2 P2P MIMO-OFDM system using Alamouti coding. The
authors reserved the tones on all spatial dimensions, falling under the spectral mask, for
PAR reduction.
Herein, we extend the Tone Reservation algorithm, however, with an alternative approach
for generating the spiky function. In conventional TR, an optimum spiky function is
generated on the reserved tones over all spatial dimensions. In contrast to the conventional
method, we generate an optimum spiky function on the the weakest eigenchannels not
suitable for data transmission. The motivation and key idea behind our approach is
discussed subsequently.

3.1.1 Key idea

Consider a point-to-point MIMO-OFDM scenario where a joint signal processing is pos-
sible at both the transmitter and the receiver ends. As discussed in Section 2.2.1, we
consider a transmitter-sided precoding and receiver-sided postprocessing. Moreover, we
consider perfect channel state information (CSI) at both ends. For simplicity, we will
assume that the number of transmit antennasMt is equal to the number of receive anten-
nas Mr, i.e., Mt = Mr = M . The channel gain matrix between the ith, i = 1, 2, . . . ,Mt,
transmit and jth, j = 1, 2, . . . ,Mr, receive antenna at the nth, n = 1, 2, . . . , N , frequency
bin can then be defined as

H(n) =


h1,1 h1,2 . . . h1,M
h2,1 h2,2 . . . h2,M
... . . .

. . .
...

hM,1 hM,2 . . . hM,M

 (3.1)

Using singular value decomposition (SVD), the channel gain matrix H(n) in DFT domain
at the nth carrier can be rephrased as

H(n) = U(n) ·Λ(n) ·VH(n) , (3.2)

whereU(n) andV(n) are unitary postprocessing and preprocessing matrices, respectively,
(UH ·U = VH ·V = I) and Λ(n) is a diagonal matrix of the singular values of H(n),
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Figure 3.1: Block diagram of point-to-point MIMO-OFDM system with TR algorithm

i.e.,

Λ(n) =


σ1,1(n) 0 0 0

0 σ2,2(n) 0 0
... . . .

. . .
...

0 0 0 σM,M(n)

 (3.3)

Usual SVD algorithms sort the singular values in a descending order, i.e., σ1,1 ≥ σ2,2 ≥
. . . ≥ σM,M . Typically, the last singular value, i.e., σM,M is so small that the correspond-
ing eigenchannels are hardly suited for data transmission. Not using them would offer
redundancy for peak-to-average ratio (PAR) reduction without a lot of cost in data rate.
Thus, we will reserve the last eigenchannel to generate a spiky function, which will then
be used for PAR reduction of the transmitted signal.

3.1.2 System model and pre-coding

We consider a point-to-point MIMO-OFDM system with Mt transmit and Mr receive
antennas, as shown in Fig. 3.1. Let X(n) = (X1,n, X2,n, · · · , XM,n)

T be the nth input
data vector, where Xµ,n is the input symbol on the µth (µ = 1, 2, · · · ,M) spatial channel
and the nth tone. At the transmitter, X(n) is preprocessed using preprocessing matrices
V(n) and converted into a parallel data stream using a serial to parallel converter. The
time-domain signal is obtained taking IFFTs. Then, the time-domain TR method follows.
The time-domain signal is then padded with a cyclic prefix (CP) to mitigate the effect of
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inter-symbol interference (ISI). This signal is transmitted over a MIMO channel with a
channel gain matrix H. At the receiver, reverse processes are used to obtain an estimate
of the transmitted signal. For a better understanding, we write the input-output relation
in DFT domain. Let Y(n) = (Y1,n, Y2,n, · · · , YM,n)

T be the output vector, where, Yµ,n is
the nth output symbol of the µth (µ = 1, 2, · · · ,M) spatial channel. The transmit signal
X(n) is pre-multiplied by V(n), whereas the signal at the receiver is post-multiplied by
UH(n) to obtain the output Y(n) as shown in Fig. 3.2. At the nth bin, input and output
of the MIMO system can be related as

Figure 3.2: MIMO channel diagonalization using SVD

Ỹ(n) = H(n) · X̃(n) +w(n) , (3.4)

where w(n) is additive white Gaussian noise. After postprocessing with UH(n), Eq. (3.4)
can be written as

Y(n) = UH(n) · Ỹ(n) = UH(n) ·H(n) · X̃(n) + w̃(n) , (3.5)

with w̃(n) = UH(n) ·w(n), since UH(n) is unitary thus the statistical properties of w̃(n)
are the same as that of w(n). With X̃(n) = V(n) ·X(n), also applying the SVD to the
channel matrix H(n), i.e., H(n) = U(n) ·Λ(n) ·VH(n) and omitting w̃(n), Eq. (3.5) can
be rephrased as

Y(n) =

I︷ ︸︸ ︷
U(n)H ·U(n) ·Λ(n) ·

I︷ ︸︸ ︷
VH(n)︸ ︷︷ ︸

H(n)

·V(n) ·X(n)︸ ︷︷ ︸
X̃(n)

, (3.6)

With the identities UH(n) ·U(n) = VH(n) ·V(n) = I(n), where I(n) is an identity matrix
of size M ×M , Eq. (3.6) simplifies to

Y(n) = Λ(n) ·X(n) . (3.7)

For an M ×M (with Mt =Mr =M) case, Eq. (3.7) can be rephrased in matrix notation
as

Y(n) =


σ1,1(n) 0 0 0

0 σ2,2(n) 0 0

0 0
. . . 0

0 0 0 σM,M(n)




X1,n

X2,n
...

XM,n

 . (3.8)

It is assumed that only the last spatial dimension is reserved for PAR reduction while the
other dimensions are used for data transmission. Let S(n) denote the first dimensions
used for data transmission, i.e.,

S(n) =
(
X1,n X2,n . . . XM−1,n 0

)T
,
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where Xµ,n is the QAM symbol at the µth spatial dimension and the nth frequency bin.
We also define R(n), for the last/reserved eigenchannels, i.e.,

R(n) =
(
0 0 . . . 0 Rn

)T
.

In conventional TR algorithms, a spiky function is generated on a small number of reserved
tones. Likewise, we will use R(n), the last eigenchannel, to generate a spiky function. As
shown in Fig. 3.1, the input data vector S(n) and the spiky functionR(n) are preprocessed
as

S̃(n) = V(n) · S(n) = V(n) ·
(
X1,n . . . XM−1,n 0

)T
(3.9)

and
R̃(n) = V(n) ·R(n) = V(n) ·

(
0 . . . 0 Rn

)T
. (3.10)

Transforming both into time domain by applying the block diagonal IFFT modulator,
i.e., s̃T = F−1S̃T and r̃T = F−1R̃T , where F−1 is a block-IDFT matrix with blocks of
diagonal submatrices with M identical diagonal elements wn,k. This spiky function r̃T is
then iteratively added to the original signal s̃T in time domain for PAR reduction. The
two sum up to

x̃ = s̃+ r̃ = F−1VX = F−1V(S+R) . (3.11)

Now, the goal is to design an optimum spiky function using the reserved eigenchannels
R, such that it will reduce the peak excursions crossing a predefined threshold τ .

3.1.3 Designing an optimum spiky function

Designing a spiky function using Rn = 1/Vµ,M(n)

An optimum prototype spiky function would mean a spike at time zero resulting from a
constant in frequency domain at the corresponding antenna µ. Herein, we will generate
M spiky functions, one at each antenna (since an M ×M P2P system is considered).
First let us assume that we like to produce a spiky function at one antenna only, not
caring about the others for now.
In Eq. (3.10), every component (column) of the M spatial dimensions is multiplied by
V(n), where n is the frequency index. Essentially, Eq. (3.10) cuts out the last column of
V(n).
A spiky function at time zero would mean a constant in frequency domain at the corre-
sponding antenna µ, i.e., all ones for example. Now, we can easily compute the necessary
Rn, since we know the weighting factor out of the last column of V(n) that corresponds
to the selected antenna, i.e., one chooses

Rn = 1/Vµ,M(n) . (3.12)

We do not know, of course, how the other antennas are affected at the same time, however,
we will select antenna µ with the highest peak. Using (3.12) in Eq. (3.10), and applying
an IFFT, we obtain the modification matrix in time domain for all antennas and all times
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1, 2, . . . , N by

r̃µ = F−1 ·V ·


0 . . . 0
0 . . . 0
0 . . . 0
Rµ

1 . . . Rµ
N

 , (3.13)

A spiky function corresponding to R1(n) = 1/V1,4(n), i.e., a spike at the first antenna of
a 4× 4 system is as shown in Fig. 3.3.
Figure 3.3 shows a spike on first antenna while having some very low peaks on the
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Figure 3.3: Absolute values of the spiky time domain vectors, with a highest peak at the 1st
antenna using R1(n) = 1/V1,4(n)

remaining dimensions, where we have considered a 4× 4 P2P MIMO-OFDM system. In
case of anM×M MIMO-OFDM system, we will generateM such spiky function, one for
each dimension, with each optimum spiky function having a perfect spike at a particular
antenna/dimension while not taking into account other dimensions in the choice of the
reserved components. However, it might then occur that besides the optimum spike at a
specific antenna, there are higher peaks on the remaining dimensions as well, as shown
in Fig. 3.4. We will call such a spiky function bad further on, where there are high peaks
on the remaining dimensions besides the optimum spike on the intended dimension. Such
spiky functions are challenging to the performance of the proposed algorithm due to
overshoots on the remaining dimensions resulting in a peak regrowth. Herein, we propose
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an alternative approach for generating a spiky function on the reserved eigenchannels R.
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Figure 3.4: Bad spiky function with highest peak on the remaining dimensions beside a peak
at the 1st antenna, R1(n) = 1/V1,4(n)

Designing a spiky function using Rn = V ∗
µ,M(n)

In the previous section, we used the weighting factor based on the last column of V(n) to
have a spiky function at the intended dimension. However, because of the occurrence of
possibly bad spiky functions, there might be a peak regrowth on the remaining dimensions.
The occurrence of the bad spiky function might be due to very small components Vµ,M
of the preprocessing matrix V, which when used as 1/Vµ,M , results in big values. These
big values when multiplied with big components of the V matrix associated with the
remaining spatial dimensions results in even larger values. This may cause higher peaks
on remaining dimensions than the intended dimension when such high values pops up on
them. This is, however, not a formal proof. The occurrence of the bad spiky function is
still not completely investigated.
Subsequently, we present an alternative approach for designing an optimum spiky function
on the reserved eigenchannels. As stated earlier, we know the weighting factors from the
last column of V(n). Now, for computing Rn, we choose V ∗

µ,M(n) instead of 1/Vµ,M(n).
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Equation (3.12) can then be rephrased as

Rn = V ∗
µ,M(n) , (3.14)

where (·)∗ stands for complex conjugate. Multiplying a particular dimension with its
conjugate will result in real values at that dimension, which will yield a spiky function
at time zero at the corresponding dimension. The optimum spiky function generated
with this approach has a lower peak at time zero on the intended dimension, however, an
advantage of this approach is that the peaks on the remaining dimensions never exceed
the intended peak on the specific dimension for which the spiky function is generated.
Replacing Eq. (3.14) in Eq. (3.10), and applying an IFFT, the time domain signal can be
obtained as

r̃µ = F−1 ·V ·


0 . . . 0
0 . . . 0
0 . . . 0
Rµ

1 . . . Rµ
N

 , (3.15)

which is of course the same as Eq. (3.13) with Rµ
n = V ∗

µ,M(n). A normalized spiky function
with R1(n) = V ∗

1,4(n), i.e., a spike at the first antenna of a 4×4 system is shown in Fig. 3.5.
This spiky function r̃ is then iteratively added to the transmit signal s̃ in time domain
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Figure 3.5: Absolute values of the spiky time domain vectors, with a highest peak at first
antenna using R1(n) = V ∗

1,4(n)
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for PAR reduction. The algorithm used for the PAR reduction is presented next.

3.1.4 Tone Reservation algorithm

The necessary steps required to reduce the peak values crossing a predefined threshold τ
are

1. Initialize S to be the DFT-domain information matrix, with the reserved dimensions
set to zero, likewise, initialize R to be the DFT-domain spiky matrix with the
dimensions used for information set to zero.

2. Preprocess S and R using the preprocessing matrix V, i.e., S̃ = VS and R̃ = VR

3. Transform S̃ and R̃ into time domain using the block-diagonal IFFT modulator
F−1, i.e., s̃ = F−1S̃ and r̃ = F−1R̃. Set the iteration counter i to zero, i.e., i = 0

4. For the time-domain signal s̃, find the value sim,µ and position m for which
|sim,µ| = maxk |sik|.

5. If sim,µ < τ or i > imax then stop and transmit s̃i, otherwise

6. Update the time-domain vector

s̃i+1 = s̃i − α ·
(
siµ,m − ej arg(s

i
µ,m) · τ

)
· (r̃µ → m) , (3.16)

i = i+ 1 and go to Step 4.

The last step is the time-domain Tone Reservation processing for a peak at transmit
antenna µ, where µ = 1, 2, . . . ,Mt, and location m using the µth spiky function r̃µ. The
iteration counter is i and s̃ denotes theMt×N time-domain matrix, whereMt is the total
number of transmit antennas and N is the IFFT length.

3.1.5 Results and discussion

For a P2P MIMO-OFDM system with transmitter-sided precoding, the average power is
distributed over all spatial dimensions. Moreover, we add a time-domain signal r̃ to the
original signal s̃ for PAR reduction, thus, the average power is slightly increased with
every iteration. The PAR after applying the TR algorithm is defined in here as

PAR =
max∀µ,∀k |sµ,k + rµ,k|2

σ2
, (3.17)

where k is the sample index, and σ2 = E∀µ,∀k{|xµ,k|2} is chosen to be the average power
(averaged over all spatial dimensions) without any PAR reduction measures, i.e., with
an unused spatial dimension and without an increase in the average power after the
algorithm.
The channel matrix is chosen as in [80], however, with a channel length of lh = 20.
Moreover, it is assumed that the transmitter has perfect channel state information. For
simulation, we chose a 4 × 4 MIMO-OFDM system with 128 carriers and a 16-QAM
modulation. To check and evaluate the performance, the complementary cumulative
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distribution function (CCDF) is considered, which is the probability that the current
PAR exceeds a certain threshold τ , i.e., Pr{PAR > τ} [80], determined as,

Pr{PAR > τ} = 1− (1− e−τ )N M , (3.18)

assuming a complex Gaussian distribution. N is the total number of sub-carriers, M is
the number of transmit antennas used, and τ is the PAR target value (threshold value).
For PAR reduction of the MIMO-OFDM transmit signal, the algorithm searches for the
peak excursion on all spatial dimensions crossing a given target value τ in time domain.
The algorithm then cyclically shifts the corresponding µth spiky function to the appropri-
ate location and is added to the transmitted signal s̃ according to Eq. (3.16). However, as
the algorithm processes one peak at a time, the procedure is thus iterated to process the
leftover peaks exceeding the threshold value τ . Given a maximum number of iterations
imax, the algorithm searches for the highest peak in two ways,

1. Individual search on each spatial dimension by diving the maximum iteration equally
amongst all antennas, i.e., imax/M . The algorithm thus processes one antenna at a
time for the given number of iterations, without considering any peak regrowth on
the remaining antennas. For the µth antenna it then uses the corresponding spiky
function for PAR reduction.

2. A joint search on all spatial dimension, the algorithm thus searches for the highest
peak on all spatial dimension. It thus finds the antenna µ, the position k and the
value s, i.e., siµ,k at the ith iteration and adds the corresponding µth spiky function
to the transmitted signal for PAR reduction.
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Figure 3.6: CCDF (PAR) of the proposed Tone Reservation algorithm for a 4×4 P2P MIMO-
OFDM, PAR target value τ = 7.5 dB, Rµ

n = 1/Vµ,4(n), with a joint search algo-
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Figure 3.6 shows the simulation results for the first approach, i.e., designing the spiky
function using Eq. (3.12), which for a 4 × 4 MIMO-OFDM systems can be rephrased as
Rµ
n = 1/Vµ,4(n), µ = 1, . . . 4. We have considered a joint search with a target PAR value

τ of 7.5 dB. Here, additionally one should be aware of a possible peak regrowth at the
other dimensions during the reduction of peaks at one of them due to the occurrence of
the bad spiky functions, as obvious from from Fig. 3.3. Due to a possible peak regrowth,
the target value is chosen high, i.e., 7.5 dB as compared to 5.5 dB. Figure 3.6 shows that
a gain of approximately 2.8 dB is obtained at 10−6 with 40 iterations. However, this
method is more sensitive to the choice of the number of iterations, the step size α, and
the PAR target value τ . Easily, a non-converging situation can result with a flooring of
the CCDF.
Figures 3.7 and 3.8 shows the simulation results for a 4× 4 P2P MIMO-OFDM system
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Figure 3.7: CCDF (PAR) of the proposed Tone Reservation algorithm for a 4×4 P2P MIMO-
OFDM, PAR target value τ = 5.5 dB, Rµ

n = V ∗
µ,4(n), with a joint search algorithm

using the second approach, i.e., using Eq. (3.14), which for a 4× 4 MIMO-OFDM system
can be written as Rµ

n = V ∗
µ,4(n). Figure 3.7 shows the results for a joint processing, search-

ing for the highest peak among all transmit antennas, and Fig. 3.8 shows the simulation
results for individual search, i.e., searching for a peak on a particular antenna for a given
number of iterations. In both cases, the PAR target value τ is 5.5 dB. Figure 3.7 shows
that a gain of approximately 5.8 dB can be obtained with 48 iterations at a CCDF of 10−6

with a joint search. With as few as 16 iterations, already a gain of 4.6 dB can be obtained.
In the case of an individual search, a gain of approximately 3.8 dB can be obtained with
a total of 10 iterations per antenna at a CCDF of 10−6 as shown in Fig. 3.8. The joint
search is, of course, more efficient than the individual search.
As stated earlier, we add a time domain signal to the transmit signal for PAR reduction.
In doing so, the mean transmit power of the signal is increased. It is thus necessary to
consider the effect of the increase in the mean power and analyze the performance gain
of the given algorithm under a mean power constraint.
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Figure 3.8: CCDF (PAR) of the proposed Tone Reservation algorithm for a 4×4 PtP MIMO-
OFDM, PAR target value τ = 5.5 dB, Rµ

n = V ∗
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algorithm

Relative mean power increase ∆E

In order to reduce the clipping probability of the signal s̃, a time-domain signal r̃ is added
to s̃ for PAR reduction. However, in doing so, the mean transmit power is increased.
Thus, the relative mean transmit power increase ∆E for the transmit signal s̃ can be
defined as

∆E = 10 log10
E{||s̃i + r̃i||22}

E{||s̃||22}
, (3.19)

where E{||s̃||22} = σ2 is the nominal average power and E{||s̃i + r̃i||22} is the average power
at the ith iteration.
The simulation results are obtained with a small change in the TR algorithm presented
in Sec. 3.1.4. In order to put a constraint on the mean power of the transmit signal, i.e.,
∆E, Step 5 of the TR algorithm stated in Sec. 3.1.4 can be re-written as

• If siµ,m < τ or i > imax or ∆E > ∆ETh then stop and transmit s̃i,

where ∆ETh is the threshold value, i.e., the maximum relative mean power increase in
the nominal average power of the transmit signal. Besides checking for the maximum
number of iterations imax and the PAR target value τ , the algorithm now also checks an
increase in the mean transmit power ∆E. Using Eq. (3.19), the algorithm thus calculates
the relative mean power increase ∆E in each iteration.
Figure 3.9 presents the simulation results of the transmitted signal s̃ with limited ∆E.
The results are obtained for a P2P MIMO-OFDM with a joint search and PAR target
value τ = 5.5 dB. It can be seen from Fig. 3.9 that a gain of approximately 4.2 dB can
be obtained at 10−6 for a slight increase in the mean power of ∆E = 0.25 dB.

For a point-to-point MIMO OFDM system, we applied the TR algorithm for PAR reduc-
tion. We next extend this TR approach for the PAR reduction of a point-to-multipoint
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Figure 3.9: CCDF(PAR) of the TR algorithm with different mean power constraints ∆E, τ =
5.5 dB, Rµ

n = V ∗
µ,4(n), and a joint search algorithm with 40 iterations.

(broadcast channel) scenario. For a BC scenario, we will use the conventional approach of
reserving a certain number of tones on all spatial dimensions. These tones are then used
to generate a spiky function which is iteratively added to the transmit signal for PAR
reduction. The PAR reduction of a multi-user broadcast scenario using the TR algorithm
is presented in the following section.

3.2 PAR reduction in multi-user MIMO-OFDM sys-

tems

Next, we consider PAR reduction of a multi-user MIMO-OFDM, i.e., multipoint to point
(Uplink or MAC) and point-to-multipoint (Downlink or BC) scenario. In the uplink sce-
nario, let us consider the case of U users, each equipped with a single transmit antenna,
communicating with a central base station having Mr antennas, where Mr is the total
number of receive antennas. As the users are far apart and are considered to commu-
nicate independently, no joint signal processing nor any joint PAR reduction algorithms
are possible at the transmitter sides, i.e., the mobile terminals. For a MAC scenario,
where each user deploys a single antenna, the SISO PAR reduction schemes (as discussed
in Section 2.6.1) can be applied. Tone reservation might be the best option, as it is the
simplest and computationally the least complex PAR reduction technique. An alternative
approach for the MAC scenario might also be Trellis shaping, where promising results can
be obtained with a marginal loss in the channel capacity.
Secondly, we consider PAR reduction in a multi-user broadcast scenarios (BC, Downlink
or point-to-multipoint scenario). In BC, a central base station, equipped withMt transmit
antennas, communicates with U users equipped with Ur receive antennas. For simplicity,
we will consider Ur = 1, i.e., each user is equipped with a single antenna, only. Let Mr

represent the total number of receive antennas deployed for all users, i.e., Mr =
∑
Ur.
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Moreover, for convenience we assume Mt =Mr =M . Again, as stated earlier, the mobile
stations (users) are independent and usually lie far apart. Thus, a joint signal processing
is performed at the transmitter, for, e.g., spatial interference cancelation using prepro-
cessing of the transmit data. It is thus possible to reduce the peak excursions of the
transmit signals for each user at the central base station. However, the complexity of the
PAR reduction schemes increases with the number of antennas. Besides the number of
transmit antennas, precoding of the input data additionally influences the performance
and complexity of the PAR reduction algorithms. A first approach for the PAR reduction
of multi-user broadcast scenarios was made in [33,80]. The authors proposed a variant of
Selected Mapping (Selected Sorting). However, the algorithm is complex, requiring many
FFTs.
Herein, we will try to extend TR for PAR reduction in a multi-user broadcast scenario.
The reason to extend TR is two-fold. First, it is the least complex PAR reduction algo-
rithm. Secondly, it reserves tones on all spatial dimensions so no additional implication
has to be considered at the transmitter/receiver. In the previous section, we used the
weakest eigenchannels to design an optimum spiky function, however, for the multi-user
broadcast system, we will extend the conventional technique of the TR algorithm to gen-
erate the spiky function on a number of reserved tones. In the next section we will discuss
the system model along with Tomlinson-Harashima (TH) precoding.

3.2.1 System model and TH precoding for multi-user broadcast

Figure 3.10 shows the system model for the MU MIMO-OFDM broadcast scenario. The
base station (BS) has Mt transmit antennas and is transmitting µ spatially multiplexed
streams to U users. Each user has Ur = 1 receive antenna. The number of transmit
antennas is Mt, whereas Mr is used for the total number of receive antennas, and not for
the number of antennas per user.
The signal flow diagram for our proposed algorithm is shown in Fig. 3.11. The in-

Figure 3.10: System model for multi-user broadcast scenarios
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formation symbols are first encoded using Tomlinson-Harashima precoding as shown in
Fig. 3.12.
Using TH precoding for the BC downlink, one first considers the conjugate transpose1

Figure 3.11: Multi-user broadcast scenario deploying TR algorithm

of the channel matrix [29]. Using QR decomposition, the channel matrix at the nth tone
can then be rephrased as

HH(n) = Q(n)R(n) . (3.20)

Let X(n) be the input information vector at the nth tone. Using the preprocessing Q(n),
X(n) is preprocessed to get X̃ = Q(n)X′(n). After preprocessing, X̃(n) is transmitted
over the channel with a channel gain matrix H(n). After being filtered by the channel,
the received vector Y can be written as

Y(n) = H(n)X̃(n) +w(n) , (3.21)

where w(n) is additive white Gaussian noise. With Eq. (3.20), replacing X̃ and omitting
the frequency index n, Eq. (3.21) can then be rephrased as

Y = RHQHQ︸ ︷︷ ︸
I

X′ +w , (3.22)

whereQHQ = I, I being an identity matrix. Omittingw, Eq. (3.22) can thus be simplified
as

Y = RHX′ . (3.23)

In order to have interference-free reception at the receiver, the data for each user at the
central base station is pre-distorted such that the following equation holds:

diag
(
RH

)
X = RHX′ , (3.24)

which in a matrix form can be written as
r11x1
r22x2
...

rUUxU

 =


r11 0 · · · 0
r21 r22 · · · 0
...

...
. . .

...
rU1 rU2 · · · rUU

 ·


x′1
x′2
...
x′U

 . (3.25)

1H denotes Hermitian, i.e., conjugate transpose

48



Chapter 3: PAR Reduction with Tone Reservation in MIMO and Multi-user OFDM

As shown in Eq. (3.25), RH is a lower triangular matrix, the input data vector X can
thus be precoded as

x′1 = x1

x′2 = x2 −
r21
r22

x′1

...

x′U = xU − rUU−1

rUU
x′U−1 − · · · rU1

rUU
x′1 .

The typical modulo operation of Tomlinson-Harashima precoding is used to limit the peak
power, leading to the following solution

x′1 = x1

x′2 = ΓM2

[
x2 −

r21
r22

x′1

]
...

x′U = ΓMU

[
xU − rUU−1

rUU
x′U−1 − · · · rU1

rUU
x′1

]
,

(3.26)

where ΓMi
[x] is a two-dimensional modulo operation which can be rephrased with one-

dimensional modulo operations as,

Γ√
Mi
[x] = Γ1D√

Mi
[Re(x)] + jΓ1D√

Mi
[Im(x)] (3.27)

with

Γ1D√
Mi
[x] = x−

√
Mid

⌊
x+

√
Mid
2√

Mid

⌋
, (3.28)

where
√
Mi is the PAM constellation size corresponding to an Mi-QAM of user i, d is the

constellation point spacing, and x is the complex value.

Figure 3.12: Block diagram of a TH precoder

3.2.2 Results and discussion for the multi-user BC

For BC scenarios, as in the conventional way, we reserve a certain percentage of the
total number of tones on all spatial dimensions. These tones are used to generate a spiky
function r, which is then iteratively used in time domain to lower peak excursions crossing
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a certain threshold value τ . The algorithm used for PAR reduction of the BC systems is
the same as the one presented for the point-to-point MIMO-OFDM system in Sec. 3.1.4,
however with a slight modification in the first step of the algorithm, which is

• Initialize X to be the DFT domain input data symbol, with the reserved bins set
to zero. Pre-distort X using TH precoding (Eq. (3.26)) to obtain X′

After TH precoding, X′ is preprocessed using Q to obtain X̃. The rest of the steps are
the same as presented in Sec. 3.1.4.
For simulations, we considered a BC system with a central base station equipped with
Mt = 4 transmit antennas communicating with U = 4 users, each one equipped with a
single receive antenna Ur = 1. The total number of receive antennas thus equals 4, i.e.,
Mr =

∑
Ur = 4. Again, the channel matrix H is adopted from [80] with a channel length

lch = 5, where the channel coefficients are i.i.d. complex Gaussian distributed with zero
mean and variance = 1/lch. We consider a 16-QAM constellation with Grey mapping and
the number of subcarriers to be 128.
As stated earlier, the proposed algorithm searches for a peak excursion on all spatial
dimensions. The spiky function is then cyclically shifted to that location and is added
to the transmit signal for PAR reduction. However, the hunt for the peak excursion on
all spatial dimensions is carried out in two ways, 1) individually, where the algorithm
considers one antenna at a time and processes it for the defined number of iterations or
2) a joint search, where the algorithm searches for the highest peak among all spatial
dimensions for a given maximum number of iterations. In the joint search, the M -fold
iterations are applied to all dimensions and is thus more efficient than the individual
search.
The algorithm adds a time-domain spiky function r to the transmit signal x for PAR
reduction, thus, the average power increases slightly at each iteration. However, in the
calculation of the PAR of the transmit signal after the algorithm, we consider a nominal
average power. The PAR after the maximum number of iterations imax is thus defined as

PAR =
max∀µ,∀k |xµ,k + rµ,k|2

σ2
, (3.29)

where k is the sample index, and σ2 = E∀µ,∀k{|xµ,k|2} is chosen to be the average power
(averaged over all spatial dimensions) without any PAR reduction measures. To check
and evaluate the performance, the CCDF is used, again.
For simulation results, we consider 5 % and 10 % redundancy of the total subcarriers.
The tones are used to generate a spiky function, which is then iteratively used for PAR
reduction. The selection of the tones to be reserved is random. A spiky function gener-
ated on 5 % reserved tones is as shown in Fig. 3.13.
Figure 3.14 and 3.15 show the simulation results for MU broadcast using the TR algo-

rithm with 5 % and 10 % redundancy, respectively, with separate and joint search for a
PAR target value τ = 7.0 dB. For 5 % redundancy, a gain of 4 dB and 4.6 dB is obtained
with individual and joint search at a CCDF (PAR) 10−6, respectively. The number of
iterations for the individual search are 12 iterations per antenna while a total of 48 iter-
ations are used in case of the joint search. In the joint search, the four-fold iterations are
applied to all antennas. With 10 % redundancy, a gain of as much as 5.2 dB and 6 dB can
be obtained at a CCDF of 10−6 with an individual search with 8 iteration per antenna
and a joint search with 32 iterations in total, respectively. If the latency of the system
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Figure 3.13: Absolute values of an exemplary time-domain spiky function for 5 % redundant
tones

has to be taken into considerations, then a gain of 4 dB and 5.6 dB can obtained with as
few as 4 iteration per antenna and 16 iterations in total using individual and joint search
algorithms, respectively.
Next, we consider the relative mean power increase ∆E due to the addition of the time
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Figure 3.14: CCDF(PAR) of the TR algorithm for multi-user broadcast with 5 % redundancy,
for separate and joint processing

domain signal r for PAR reduction using Eq. (3.19). Figures 3.16 and 3.17 show the
simulation results for 5 % and 10 % redundant tones for different ∆E with a joint search
algorithm, τ = 7.0 dB, and 32 iterations. A gain of approximately 3.2 dB can be obtained
for 5 % redundancy with a marginal increase in the relative mean power ∆E = 0.5 dB
as shown in Fig. 3.16. However, with 10 % redundancy the gain is as high as 5.4 dB at
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Figure 3.15: CCDF(PAR) of the TR algorithm for multi-user broadcast with 10 % redundancy,
for separate and joint processing

a CCDF of 10−6 for ∆E = 0.3 dB with τ = 7.0 dB, and 32 iterations. The simulation
results show that the mean power increase is almost negligible for 10 % redundancy, with
a high gain.
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Figure 3.16: CCDF(PAR) of the TR algorithm for multi-user broadcast with 5 % redundancy
depending on ∆E with a joint processing
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Figure 3.17: CCDF(PAR) of the TR algorithm for multi-user broadcast with 10 % redundancy
depending on ∆E with a joint processing
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Chapter 4

Least-Squares Iterative PAR
Reduction for MIMO and Multi-user
OFDM Systems

In the previous chapter, we extended the Tone Reservation algorithm for point-to-point
and multi-user MIMO-OFDM systems. Herein, we propose a novel Least-Squares iterative
approach for the PAR reduction of point-to-point and multi-user MIMO-OFDM systems.
For the P2P MIMO case, we will again consider that the last singular values of the channel
are weak, such that the associated eigenchannels are hardly suited for data transmission.
Thus, reserving them would offer redundancy for the PAR reduction on the remaining
dimensions. These eigenchannels are then used to approximate the peak excursions on the
remaining spatial dimensions in a least-squares fashion in DFT domain. The estimated
function is transformed into time domain using an IDFT modulator and is added to the
transmit signal for PAR reduction. The procedure can be iterated in order to reach a
certain target value τ .
Furthermore, we extend the Least-Squares approach for PAR reduction for multi-users
broadcast scenarios. However, for a BC scenario, we will consider medium to large scale
multi-user MIMO systems. For large scale MIMO systems, there is a high probability that
one of the users is inactive. Subsequently, we will assume that one user is inactive and
the channel associated with that user at the central base station is used to approximate
the peak excursion of the remaining dimensions in DFT domain. Using an IDFT, the
modeled function is transformed into time domain and added to the transmit signal
for PAR reduction. The rest of the chapter is structured as follows. First, we start
with P2P MIMO-OFDM systems. For the P2P scenario, in Section 4.1.1, we recall the
key idea as already presented in Chapter 3 for a P2P MIMO systems followed by the
system model in Section 4.1.2. Section 4.1.3 presents the idea of approximating the
peak excursions by the reserved spatial dimension. The Least-Squares algorithm itself is
also discussed in Section 4.1.3. The simulation results for the proposed algorithm along
with comparison to some existing PAR reduction techniques are outlined in Section 4.1.4.
Section 4.2 is devoted to the extension of the Least-Squares approach for multi-user broad-
cast scenarios.
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Figure 4.1: MIMO-OFDM system model with LS algorithm

4.1 Least-Squares iterative PAR reduction for P2P

MIMO-OFDM systems

4.1.1 Key idea

Let us recall from Sec. 3.1.1 that the channel matrix in DFT domain at the nth car-
rier H(n), of a P2P MIMO-OFDM system, can be rephrased using the singular value
decomposition (SVD) as

H(n) = U(n) ·Λ(n) ·VH(n) , (4.1)

where U(n) and V(n) are unitary postprocessing and preprocessing matrices, respectively
and Λ(n) is a diagonal matrix of the singular values of H(n). For Mt = Mr = M , in
matrix form, Λ(n) can be expressed as

Λ(n) =


σ1,1(n) 0 0 0

0 σ2,2(n) 0 0
... . . .

. . .
...

0 0 0 σM,M(n)

 (4.2)

Herein, we will again consider that the last singular value to be very weak such that the
associated eigenchannels are hardly suitable for data transmission and are thus reserved
to be utilized to approximate the peak excursions on the remaining dimensions.

4.1.2 System model and pre coding

Figure 4.1 shows a block diagram of the point-to-point MIMO-OFDM system using our
Least-Squares algorithm. We will again consider transmitter side precoding and re-
ceiver side post-processing. Let X(n) be the input data vector at the nth tone, which
is precoded using the preprocessing matrix V(n) as X̃ = V(n) · X(n), with X(n) =
[X1,n, X2,n, · · · , XM,n]

T where Xµ,n is the input data symbol at the µth, µ = 1, 2, · · · ,M ,
spatial channel and the nth carrier. After the IFFT modulator, the input data vector
is padded with a cyclic prefix (CP) and is transmitted over a channel with channel gain
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matrix H. At the receiver, the CP is stripped off from the received data and is followed
by the DFT. Let Ỹ(n) be the nth received vector in the DFT domain given as

Ỹ(n) = H(n)X̃(n) +w(n) , (4.3)

where w(n) is additive white Gaussian noise. After the DFT, the received data vector
Ỹ(n) at the nth frequency bin is postprocessed by UH(n) to obtain the output Y(n) as
shown in Fig. 4.2. Mathematically, we write

Y(n) = UHỸ(n) = UHH(n)X̃(n) + w̃(n) , (4.4)

where, w̃(n) = UH ·w(n) has the same statistical distribution as w(n).
Expanding Eq. (4.4) and omitting w̃(n), we get

Y(n) =

I︷ ︸︸ ︷
U(n)H ·U(n) ·Λ(n) ·

I︷ ︸︸ ︷
VH(n)︸ ︷︷ ︸

H(n)

·V(n) ·X(n)︸ ︷︷ ︸
X̃(n)

, (4.5)

which simplifies to
Y(n) = Λ(n) ·X(n) , (4.6)

where Y(n) = [Y1,n, Y2,n, · · · , YM,n]
T is the output vector, with Yµ,n being the nth output

symbol at the µth, µ = 1, 2, · · · ,M , spatial channel. Equation (4.6) in matrix notations
can be written as

Y1,n
Y2,n
...

YM,n

 =


σ1,1(n) 0 0 0

0 σ2,2(n) 0 0

0 0
. . . 0

0 0 0 σM,M(n)




X1,n

X2,n
...

XM,n

 . (4.7)

We again represent X(n) by two disjoint sets, S(n) and R(n), such that X(n) = S(n) +
R(n). Let S(n) denote the first dimensions used for data transmission, i.e.,

S(n) =
(
X1,n X2,n . . . XM−1,n 0

)T
.

where Xµ,n is the signal at the µth spatial dimension and the nth frequency. Likewise, let
us define R(n), which will be used for modeling the excursions above a chosen threshold,
i.e.,

R(n) =
(
0 0 . . . 0 XM,n

)T
,

whereas XM,n should not be confused with the input data, it contains the modeled cor-
rective signal that is used for PAR reduction. As shown in Fig. 4.1, the input data vector
S(n) and corrective signal R(n) are preprocessed as

S̃(n) = V(n) · S(n) = V(n) ·
(
X1,n . . . XM−1,n 0

)T
(4.8)

and
R̃(n) = V(n) ·R(n) = V(n) ·

(
0 . . . 0 XM,n

)T
. (4.9)
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We combine both components and move them into time domain,

x̃ = s̃+ r̃ = F−1VX = F−1V(S+R) , (4.10)

using a block-IDFT matrix F−1 with blocks of diagonal submatrices of M identical di-
agonal elements wn,k. All vectors X, X̃, ... are obtained by concatenating the vectors
X(n), X̃(n), .... Now, the goal is to estimate and model the exceedence values by R in
DFT domain to finally subtract that model from the signal.

Figure 4.2: SVD MIMO diagonalization

4.1.3 Exceedence spike representation

Let s̃ be the transmitted signal in time domain with no data transmission on the reserved
eigenchannels. The proposed algorithm searches for peak values that exceed a PAR target
value. These exceedence excursions are then represented and modeled by the last spatial
dimension in frequency domain. As illustrated in Fig. 4.3, let e be a vector representing
the exceeding excursions in time domain on all spatial dimensions of a MIMO-OFDM
transmitted signal, i.e.,

e = ((e1,1e2,1 · · · eM,1), · · · , (e1,ne2,n · · · eM,n))
T , (4.11)

where

eµ,k =

{
0 for xµ,k ≤ xtarget ,

xµ,k − ej∠(xµ,k) · xtarget for xµ,k > xtarget .
(4.12)

Let E be the DFT-domain counterpart of e, i.e., E = F · e, where F is a block DFT
matrix. Now, we use the Least-Squares approach for estimating the exceedence values
above the chosen threshold by the last (weakest) spatial dimension.

Least-Squares approach

In order to estimate the exceedence excursions by the reserved spatial dimension, Eq. (4.9)
can be reformulated as


V(1) 0 . . . 0
0 V(2) . . . 0
... · · · . . .

...
0 · · · · · · V(N)





0
...

XM,1
...
0
...

XM,N


= φ , (4.13)
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Figure 4.3: Representation of exceedence values

for all frequency bins 1, ..., N . As shown, Eq. (4.13) essentially only addresses the last
columns of the blocks V(n) inside the V matrix. Thus, Eq. (4.13) can be rephrased as

V:M (1) 0 . . . 0
0 V:M (2) . . . 0
... · · · . . .

...
0 0 · · · V:M (N)




XM,1

XM,2
...

XM,N

 = φ , (4.14)

where V:M(n) represents the Mth column ( : stands for all rows) of the nth V matrix,
which can be represented in a compact form as

φ = V:M ·RM , (4.15)

where V:M is a block diagonal matrix with the Mth column of V(n) at the nth diagonal,
and RM contains only the last spatial components. In a least-squares sense, the column
vector φ shall approximate E according to

min
RM

||φ− E||22 . (4.16)

In Eq. (4.16), the number of equations is higher than the number of unknowns. Thus,
this leads to a pseudo-inverse solution. Eq. (4.16) is rewritten as

||φ− E||22 = (V:MRM − E)H(V:MRM − E) , (4.17)

where H stands for Hermitian (conjugate transpose). Equation (4.17) can further be
simplified as

||φ− E||22 = RH
MVH

:MV:MRM − 2RH
MVH

:ME+ EHE . (4.18)
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Now computing the gradient with respect to RM and equating to zero, we obtain

∂

∂RM

(
RH
MVH

:MV:MRM − 2RH
MVH

:ME+ EHE
)
= 0 , (4.19)

with the identities, ∂
∂RM

(RH
MΘΛ) = ΘΛ and ∂

∂RM
(RH

MθRM) = 2 θ RM , Eq. (4.19) can
be simplified as

2
(
VH

:MV:MRM −VH
:ME

)
= 0 , (4.20)

which for RM can be solved as

RM = (VH
:M ·V:M)−1 ·VH

:M · E . (4.21)

The procedure is iterated, as the peaks exceeding the target value are not estimated
exactly by the Least-Squares approach in one iteration, as shown in Fig. 4.4.
The least squares algorithm is described as follows.

Least Squares algorithm

1. Initialize S to be the DFT-domain information vector, with the reserved dimension
set to zero. Precode it using the pre-processing matrix as shown in Eq. (4.8).

2. Initialize the time-domain solution s̃, i.e., s̃ = IFFT(S̃). Set i = 0.

3. If i > imax, stop and transmit s̃i, otherwise

4. Initialize e to represent the exceedence excursion according to Eq. (4.12) and trans-
form it into DFT domain, i.e., E = FFT(e).

5. Approximate E by the last spatial dimension using Eq. 4.21. Precode it using
the preprocessing matrix V and transform it into time domain applying the IFFT
modulator, i.e., r̃ = F−1R̃.

6. Update the time-domain vector

s̃(i+1) = s̃(i) − r̃ , (4.22)

i = i+ 1 and go to Step 3.

i is the iteration counter and s̃ denotes theM ·N long time-domain vector, whereM is the
number of transmit antennas and N is the IFFT length. The structure follows Eq. (4.11).
After having presented the least-squares procedure, we will right away modify it by in-
troducing a weight factor which equals the number of antennas. One should note that
it is very unlikely for reasonable antenna numbers (no massive MIMO) that more than
one antenna channel will see a value exceeding the threshold at the same time. Hence,
the least-squares approach will not approximate the peak, but yield a result reduced by
a factor of M , since it tries, at the same time, to approximate the zeros (no exceedences)
in the other antenna channels.1 This is the drawback of an l2 norm instead of l∞. We
introduce a weighting factor γ in the algorithm, which leads to optimum performance for

1Illustration: Assume e and M − 1 zeros to be approximated in least-squares sense. This means
d
dx [(x− e)2 + (M − 1)(x− 0)2] = 0 =⇒ x = e/M .
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γ = M . The weighting can be realized by modifying steps 3 or 5 of the presented LS
algorithm. Modifying Step 4 means weighting the peak excursions before mapping them
onto the last spatial dimension. Equation (4.12) becomes

eµ,k =

{
0 for xµ,k ≤ xtarget ,

γ (xµ,k − ej∠(xµ,k) · xtarget) for xµ,k > xtarget .
(4.23)

Alternatively, one could instead write Step 6, Eq. (4.22) as

s̃(i+1) = s̃(i) − γ r̃ . (4.24)
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Figure 4.4: Exemplary PAR reduction with increasing number of iterations using our LS al-
gorithm with different target values

4.1.4 Results and discussion

For simulation results, we consider a 4×4 MIMO-OFDM system with 128 sub-carriers each
modulated by a 16-QAM constellation. We have considered transmitter-sided precoding,
thus, the average power is distributed over all spatial dimensions. Moreover, it is also
necessary to point out that in our LS algorithm we add a time-domain signal r̃ to the
transmit signal s̃ for PAR reduction, thus, the average power is slightly increased with
every iteration. However, in the PAR calculation of the transmit signal after the LS
algorithm, we consider the initial mean power without any increase due to the corrective
signal. The PAR of the transmit signal after applying the LS algorithm is defined in here
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as

PAR =
max∀µ,∀k |xµ,k + γ rµ,k|2

σ2
, (4.25)

where k is the sample index, and σ2 = E∀µ,∀k{|xµ,k|2} is chosen to be the average power
without any PAR measures, i.e., with an unused spatial dimension and without any in-
crease in the average power after the algorithm. We first consider no additional weighting,
i.e., γ = 1.
Figure 4.5 shows the simulation results for a target PAR value (τ) of 5.0 dB. A gain of
approximately 6.4 dB is obtained already at 10−5 with 25 iterations. It is also clear from
Fig. 4.5 that a sufficient gain is already obtained with 5-10 iterations (approx. 3.8 - 4.8
dB, respectively).
Figure 4.6 shows simulation results for weighted LS with a weighting factor γ = 4 and a
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Figure 4.5: CCDF(PAR) of the LS algorithm for a PAR target value of 5.0 dB without mean
power constraints (γ = 1)

target PAR of 5.0 dB. A gain of 6.4 dB is obtained at 10−5 with as few as 5 iterations.
As can be seen from the figure, a gain of approximately 4 dB is already obtained with the
first iteration and as much as 5 dB with only two iterations.
Figure 4.7 shows simulation results for different weighting factors after the first iteration
at a target PAR value of 5.0 dB. It is obvious that indeed γ = M = 4 leads to the
optimum performance.
Figure 4.8 shows simulation results for different target values after 15 iterations with a
weighting factor of γ = 1. The results demonstrate a performance gain for lower target
values, however, at the expense of a slight increase in the average power. As mentioned
earlier, for modeling the exceedence excursions, our algorithm searches for the peak values
that exceed a given target value on all spatial dimensions in time domain. These values
are transformed into DFT domain, and are estimated by the last spatial dimension. The
estimated model is re-transformed into time domain and subtracted from the original sig-
nal for PAR reduction. However, in doing so, two facts need to be taken into consideration
for the LS algorithm:
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Figure 4.6: CCDF(PAR) of the weighted LS algorithm with a weighting factor γ = 4.0 and a
PAR target value of 5.0 dB without mean power constraints
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after the first iteration for a PAR target of 5.0 dB

1. Capacity loss: Loss in channel capacity due to the reserved eigenchannels.

2. Relative mean power increase ∆E: Increase in the average power per iteration due
to adding the corrective signal. One should hence investigate the performance of
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Figure 4.8: CCDF(PAR) of the LS algorithm for for different target values after 15 iterations
(γ = 1)

the algorithm under a mean power constraint.

1. Capacity analysis of the proposed algorithm

The proposed algorithm reserves the weakest eigenchannel (spatial dimension) to
model the peak excursion due to the other spatial dimensions. Thus, there is a
slight loss in the channel capacity. The capacity of a MIMO channel is equal to the
sum of the capacities of the independent parallel channels,

CMIMO =

min(Mr,Mt)∑
i=1

log2(1 + αiσ
2
i ) , (4.26)

where σ2
i is the ith singular value of the channel matrix H, min(Mr,Mt) is the

minimum of the number of receive or transmit antennas, and αi = Φi/ζ
2 denotes

signal-to-noise ratio (SNR) of the ith parallel subchannel. For a point-to-point
MIMO-OFDM channel, with Mr =Mt =M , Eq. (4.26) is extended as

CT =
N∑
n=1

M∑
i=1

log2(1 + αi(n)σ
2
i (n)) , (4.27)

where σ2
i (n) and αi(n) = Φi/ζ

2(n) are the singular value and the SNR at the nth
subcarrier, respectively.
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For our LS algorithm, Eq. (4.27) becomes

CLS =
N∑
n=1

M−1∑
i=1

log2(1 + αi(n)σ
2
i (n)) , (4.28)

omitting the weakest (reserved) eigenchannel. The capacity curves for a 4 × 4
MIMO-OFDM channel with and without reserved eigenchannels (using equations
(4.27) and (4.28), respectively) are shown in Fig. 4.9. We observe that the capacity
loss is almost negligible at low SNR and very little at high SNR.
Now, it is assumed that the transmitter has a perfect channel state information,
thus, the power can be optimally allocated to the parallel subchannels. The channel
capacity in terms of the power allocation Φi(n) to the ith parallel channel at the
nth subcarrier is given as [3]

CT = max
Φi:

∑
i Φi≤Φ

N∑
n=1

M∑
i=1

log2

(
1 +

Φi(n)σ
2
i (n)

ζ2

)
. (4.29)

For the LS algorithm, omitting the last spatial dimension leads to

CLS = max
Φi:

∑
i Φi≤Φ

N∑
n=1

M−1∑
i=1

log2

(
1 +

Φi(n)σ
2
i (n)

ζ2

)
. (4.30)

Using an SVD [115], the MIMO channel is decomposed into parallel single input
single output (SISO) channels. The optimization solution then leads to a water-
filling power allocation for the MIMO-OFDM channel as,

Φi(n) =

(
ω − ζ2

σ2
i (n)

)+

, (4.31)

where ω is the water level chosen such that

N∑
n=1

M∑
i=1

Φi(n) = Φ ,

Φi(n) is the power at the ith eigenmode and nth bin of the channel, and (x)+ is
defined as max(x, 0).
Figure 4.10 shows the capacity curves for a 4× 4 MIMO-OFDM channel with and
without reserved eigenchannels using water filling. The capacity curves are similar
to the ones in Fig. 4.10, with a negligible capacity loss at low SNR values and a
still small capacity loss at high SNR values, however, the capacity gap is somewhat
widened for water filling at higher SNR values.

2. Mean power effect of the proposed algorithm

In order to reduce the clipping probability of the transmit signal s̃, a time-domain
signal r̃ is added to s̃ for PAR reduction. However, in doing so, the mean transmit
power is increased. Thus, the relative mean transmit power increase ∆E of the
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Figure 4.9: Capacity curve of 4 × 4 MIMO-OFDM with and without reserved eigenchannels,
128 carriers, averaged over 100,000 channel models
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Figure 4.10: Capacity curve of 4× 4 MIMO-OFDM system with and without reserved eigen-
channels, 128 carriers, averaged over 100,000 channel models

transmit signal s̃, is defined as

∆E = 10 log10
E{||s̃i + γ r̃i||22}

E{||s̃||22}
, (4.32)
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where E{||s̃||22} = σ2 is the nominal average power, E{||s̃i + r̃i||22} is the average
power at the ith iteration, and γ is the weighting factor.
In order to check the system performance using our LS algorithm (Section 4.1.3)
under a mean power constraint, we modify Step No. 3 as

• if i > imax or ∆E > ∆ETh, stop and transmit s̃i.

The algorithm thus also checks for an increase in the mean power of the transmit
signal. If ∆E of the transmit signal increases beyond a threshold ∆ ETh, the algo-
rithm breaks the loop and transmits the signal.
Figure 4.11 shows the simulation results for limiting ∆E. It can be recognized that
approximately a 6 dB gain can be obtained at 10−5 for a slight increase in the mean
power of only ∆E = 0.25 dB.
Figure 4.12 shows the relative mean power increase per iteration in dB. The curves
show that ∆E is, of course, higher for lower target values, as more peaks have to be
approximated. Still, the results show that the average power increase is marginal.

Mean power effects of weighted LS :
Figure 4.13 shows the simulation results for weighted LS (γ = 4) with different mean
power constraints. A gain of approximately 4 dB is obtained with a 0.1 dB increase
in the average power which is almost negligible and almost 6.4 dB are reached for a
marginal increase in the mean power of ∆E = 0.35 dB.
Figure 4.14 shows the relative mean power increase per iteration in dB for weighted
LS with a weighting factor γ = 4 and different target values. It is obvious that the
increase in the average power of weighted LS is approximately the same as with the
unweighted algorithm. In both cases, the average power increase is only marginal.
In Fig. 4.15 we provide an analysis of ∆E per iteration for different weighting fac-
tors at a target value = 5 dB. It is clear from the figure that ∆E per iteration is
higher for larger weighting factors γ, however, the algorithm converges faster to the
target values with a higher weighting factor. Thus, there is a compromise between
weighting factor γ and mean power increase ∆E.

Comparison to the tone-reservation algorithm

The Tone Reservation (TR) algorithm reserves a set of tones to generate a corrective
function, which is iteratively subtracted from the transmitted signal for PAR reduction.
Similarly, the LS algorithm proposed herein reserves the weakest eigenchannels to model
the peak excursion for PAR reduction. Nevertheless, the proposed algorithm is different
from the TR. The TR algorithm operates completely in time domain, but in the LS
algorithm, the peak values crossing a target value in time domain are transformed into
DFT domain and are mapped onto the reserved spatial dimension. This model function
is re-transformed into time domain and is subtracted from the transmitted signal to limit
its peak values. The algorithm thus alternates between time and DFT domain in each
iteration.
We compare our approach to the tone reservation algorithm regarding the following facts:

1. PAR reduction capability,

2. capacity loss due to the reserved tones (TR algorithm) / weakest eigenchannels (LS
algorithm),
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Figure 4.11: CCDF(PAR) of the LS algorithm for a PAR target value of 5.0 dB with different
mean power constraints ∆E and a weighting factor of γ = 1.0
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3. increase in the average power due to adding corrective signals for peak power limi-
tation.
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1. PAR reduction capability of LS algorithm vs. TR algorithm

The TR algorithm completely operates in time domain and is the least complex
algorithm. In our LS algorithm, many IFFTs are required to reach the target value,
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thus, increasing the complexity. In order to provide a fair comparison of the TR
algorithm to the LS algorithm, we consider a higher number of iterations for the
TR algorithm as compared to the LS algorithm such that both algorithms have a
comparable complexity.
Figure 4.16 shows the performance curves of the TR algorithm vs. the LS algorithm
for a PAR target value of 5.0 dB. For the TR algorithm, we have considered a point-
to-point, 4× 4 MIMO-OFDM system with 10 % reserved tones. Figure 4.16 shows
that for the TR algorithm the gain is 1.8 dB with 5 iterations and 4.4 dB with as
many as 45 iterations as compared to 4 dB and 6.4 dB with 1 and 5 iterations,
respectively, using the weighted LS algorithm. The LS algorithm with 5 iterations
outperforms TR with 45 iterations by 2 dB as shown in Fig. 4.16.

2. Capacity analysis of the LS algorithm vs. TR

In the TR algorithm, no data is transmitted on θ reserved tones, thus, using
Eq. (4.27), the channel capacity of a MIMO-OFDM system using TR is given by

CT =
∑
N − θ
carriers

M∑
i=1

log2(1 + αi(n)σ
2
i (n)) . (4.33)

With the power allocation Φi(n) to the ith channel at the nth subcarrier, the channel
capacity results in

CT = max
Φi:

∑
i Φi≤Φ

∑
N − θ
carriers

M∑
i=1

log2

(
1 +

Φi(n)σ
2
i (n)

ζ2

)
. (4.34)
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Figure 4.16: CCDF(PAR) of the LS algorithm and the TR algorithm with different numbers
of iterations

For our LS algorithm, we use equations (4.28) and (4.30) to plot the capacity curves.
Figures 4.17 and 4.18 show the capacity plots of MIMO-OFDM systems using the
TR. The PAR reduction capability of the TR algorithm with 10 % reserved tones is
better than with 5 % [110]. Thus, for our simulation results of the channel capacity
for the TR algorithm, we considered a 4 × 4 MIMO-OFDM channel with 10 %
reserved tones and 128 carriers. Figure 4.17 shows the capacity curves of a MIMO-
OFDM system without water-filling for the TR and LS algorithms. The figure shows
that the capacity loss of the TR algorithm with 10 % reserved tones is higher than
with the LS algorithm.
Figure 4.18 shows the capacity curves of a MIMO-OFDM system with water-filling.
In case of water-filling, the capacity loss for the LS algorithm is almost the same as
for the TR algorithm.

3. Comparison of LS and TR algorithms under mean power constraint ∆E

The LS and TR algorithms use time domain corrective signals to limit the peak
values of the transmitted signal. In doing so, the mean power of the transmitted
signal is increased. Thus, we compare our proposed algorithm to the TR algorithm
under a mean power constraint. The relative mean transmit power increase for both
algorithms is as given by Eq. (4.32).
Figure 4.19 shows the CCDF of the PAR under the mean power constraint ∆E for
the LS and TR algorithms (with 10 % reserved tones). As shown in Fig. 4.19, our
LS algorithm outperforms the TR algorithm by approximately 3.6 dB at ∆E = 0.3
dB and a CCDF of 10−5.
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Figure 4.17: Capacity curve of 4× 4 MIMO-OFDM system using TR (Tone Reservation) and
LS (Least Squares) algorithms without water-filling, 128 carriers, 10 % reserved
tones, averaged over 100,000 channel models

Comparison to the Selected Mapping algorithm

In Selected Mapping (SLM), the original data symbols in DFT domain is multiplied with
U different phasor vectors. After taking IFFTs over all such modified symbols, the one
with the lowest PAR is selected for transmission. Thus, SLM requires U IFFTs to select
the best symbol for transmission. Likewise, in our LS approach the algorithm switches
between time and DFT domains to limit the peak values. Thus, i (where i is the total
number of iterations) FFT-IFFTs pairs are required to reach the final target value. Both
algorithms, thus, require some FFTs for PAR reduction. We compare our algorithm to
the SLM algorithm based on the same complexity, considering the total number of FFT-
IFFTs.
For comparison, we have considered a 4 × 4 point-to-point MIMO-OFDM system using
ordinary SLM (oSLM), which is a direct extension of SISO SLM to MIMO. The CCDF
for oSLM [33] is given as

Pr{PARoSLM > τ} = 1− (1− (1− (1− e−τ )N)U)M , (4.35)

assuming a complex Gaussian again. U is the total number of frames, N is the number
of sub-carriers and τ is the PAR target value (threshold value).
Figure 4.20 shows the performance curves for oSLM vs. our LS algorithm. It is clear
from the figure that our algorithm with i = 5 outperforms oSLM with U = 10 (i.e.,
approximately the same complexity) by almost 2.8 dB. However, this gain is obtained
at the expense of a negligible increase in the mean power and a slight loss in channel
capacity.
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Figure 4.18: Capacity curve of 4× 4 MIMO-OFDM system using TR (Tone Reservation) and
LS (Least Squares) algorithms with water-filling, 128 carriers, 10 % reserved
tones, averaged over 100,000 channel models
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Figure 4.20: CCDF(PAR) of the LS algorithm vs. SLM

Extension to large-scale MIMO-OFDM systems

With the advent of new applications, the demand for high data rates is increasing steadily.
New concepts and new technologies have been introduced to meet the public demands.
Massive or large-scale Multiple-Input Multiple-Output (MIMO) is a concept for future
wireless communication systems, first proposed in [113] for multiuser MIMO (MU-MIMO)
systems. The transmitter at the base station (BS) is equipped with a large number of
antennas serving single antenna terminal units (TU). However, we adopt the term large-
scale MIMO and extend it to a point-to-point MIMO system, where the transmitter and
the receiver are supposed to be equipped with a large number of antennas in the range
of hundred (e.g. communication between two BSs). We thus extend our algorithm to
large-scale MIMO-OFDM systems (we have considered 40× 40 MIMO-OFDM system for
our simulation) to check and evaluate the PAR reduction capability, capacity loss, and
performance under mean power constraints of the proposed algorithm.
Figure 4.21 shows performance curves of a 40 × 40 MIMO-OFDM system using our LS
algorithm for a target PAR value of 6.5 dB. As shown in the figure, a gain of approximately
3.2 dB is obtained with the first iteration and as much as 5 dB gain is obtained at 10−5

with as few as 8 iterations.

Capacity analysis of large-scale MIMO systems

Figures 4.22 and 4.23 show the capacity curves for a 40× 40 MIMO-OFDM system with
and without water filling respectively. For a 40× 40 MIMO-OFDM system, at low SNR
values, the capacity curve of the LS-algorithm overlaps the capacity curve of the system,
with a negligible loss at higher SNR values. Figure 4.22 and 4.23 also shows that the
capacity loss for a 40 × 40 MIMO-OFDM system using our LS algorithm is even lower
than a system using TR with only 2 % reserved tones.
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Figure 4.21: CCDF(PAR) of the LS algorithm for a 40×40 MIMO-OFDM system, PAR target
value = 6.5 dB, γ = 30

Performance under mean power constraint of large-scale MIMO systems

Figure 4.24 shows the mean power increase ∆E per iteration for different PAR target
values in dB. ∆E is higher for lower target values as more peaks are approximated,
however, the increase is still marginal in the range of one to two tenths of a decibel for
10 iterations.
Figure 4.25 shows the CCDF of the proposed algorithm, limiting ∆E to different values.
A gain of approximately 3.2 dB and 5.2 dB is obtained for ∆E = 0.1 dB and 0.5 dB,
respectively.

Capacity analysis from a random matrix theory perspective

We assumed that the last singular value is very weak and not suitable for data transmis-
sion. We make use of random matrix theory to analyze the last singular value and the
capacity associated with it.
Let us consider a very large scale MIMO-OFDM system withMt transmit andMr receive
antennas. For simplicity, let us again assume Mt = Mr = M . The channel matrix from
the jth transmit to the ith receive antenna is then defined as H = [hi,j]. The channel
matrix can be diagonalized using the SVD as H = UΛVH , where Λ is a diagonal matrix
with the of the singular values of H, sorted out in a descending order. Now the question
arises how small the smallest singular value σmin of the H is when the dimensionality of
the system grows, i.e., M → ∞?
In order to answer this question, we make use of random matrix theory for M ×M Gaus-
sian matrices (since HM×M is considered to be a Gaussian matrix). For Gaussian matrices
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Figure 4.22: Capacity curves for a 40× 40 MIMO-OFDM channel with and without reserved
eigenchannels / reserved tones, 128 carriers, averaged over 100,000 channel mod-
els

of very large dimension, the Complimentary Cumulative Distribution Function (CCDF)
of M times the smallest singular value, σmin, according to [117] and [119], is given as

lim
M→∞

P (Mσmin ≥ x) = e−x−x
2/2 , x ≥ 0 . (4.36)

In terms of the Cumulative Distribution Function (CDF), Eq. (4.36) can be expressed as

lim
M→∞

P (Mσmin < x) = 1− e−x−x
2/2 . (4.37)

Substituting x/M = x′, to move the factor of M from the left side of the argument to the
right side, leading to

lim
M→∞

P (σmin < x′) = 1− e−x
′M−(x′M)2/2 . (4.38)

From the CDF, the probability density function is then obtained by differentiating (4.38)
with respect to x (and omitting ′), i.e.,

f(σmin) = lim
M→∞

d

dx

{
1− e−xM−(xM)2/2

}
= lim

M→∞
e−xM−x2M2/2 · (M + 2xM2/2).
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Figure 4.23: Capacity curves for a 40× 40 MIMO-OFDM channel with and without reserved
eigenchannels / reserved tones using water filling, 128 carriers, averaged over
100,000 channel models
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Using l’Hospital’s rule with respect to M , this leads to

f(σmin) = lim
M→∞

[−x(1 + xM) · e−xM−x2M2/2] · [1 + 2xM ]. (4.39)
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Which goes to zero for M → ∞ and x ̸= 0. Requiring the integral over the density
f(σmin) to be one, f(σmin) tends to a Dirac impulse shape for M → ∞. Thus, according
to Eq. (4.27), the capacity associated with the reserved dimension goes to zero for higher
dimensional MIMO-OFDM systems.
Figure 4.26 shows the capacity curves associated with the reserved dimension for different
MIMO-OFDM systems, using Eq. (4.27) with σmin. It is clear from the figure that as the
dimensionality of MIMO-OFDM system increases, the capacity loss due to the reserved
eigenchannels goes to zero, as Eq. (4.39) suggests.
The capacity loss due to reserving the weakest eigenchannel can be seen in Fig. 4.27,
obtained at an SNR of 15 dB. The capacity loss due to the reserved dimension, for a
40 × 40 MIMO-OFDM system, is only 7 bits and as low as 4 bits for 80 × 80 MIMO-
OFDM systems.

Some considerations regarding the convergence of the least-squares PAR re-
duction algorithm

Let us consider a 2-dimensional Gaussian-distributed time-domain signal. The amplitude
is Rayleigh distributed according to

pr(a) =
a

σ2
a

e
− a2

2σ2
a ,
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Figure 4.27: Capacity associated with the reserved dimension at SNR = 15 dB

where σ2
a is the variance of the 1D Gaussian. Hence, the average power is 2σ2

a.
In the LS algorithm, we approximate the peak values exceeding a given threshold value
and model them by the last spatial dimension. This model function is then subtracted
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from the transmitted signal in time-domain for PAR reduction, resulting in a modification
in the mean power of the signal. Let τ be the threshold value which separates the outer
and inner regions as shown in Fig. 4.28. The outer region (tail of the distribution) above
the threshold appears with a probability Po given by (see App. A)

Po = e−
τ2

2 . (4.40)

When considering the tail of the distribution (exceeding the threshold τ), this leads to an
average tail power Ptail, i.e.,

Ptail = 2e−
τ2

2 − τ
√
2π erfc

(
τ√
2

)
. (4.41)

We look into the change of the average power per iteration, which gives an indication of
the possible change in the least-squares sense, hence also limits of possible peak regrowth
in the algorithm.
Without weighting, the effective correction amplitude is too small by a factor of 1/M ,
hence, in a quadratic sense, this means 1/M2 and hence the modification of the average
power per iteration is given by

Im

Re

f

Re

Figure 4.28: Probability of tail, the threshold value E

σ2
a(t+ 1) = σ2

a(t) +
1

2
· 1

M2
· Po(t) · Ptail(t) . (4.42)

Inserting the values for Po(t) and Ptail(t), (4.42) is rephrased as

σ2
a(t+ 1) = σ2

a(t) +
1

2
· 1

M2
· e−

τ2

2 ·
(
2e−

τ2

2 − τ
√
2π erfc

(
τ√
2

))
. (4.43)

The factor 1/2 comes from the fact that σ2
a relates to a single dimension. Only when

the signal is in the outer region, the influence of the algorithm is to be considered. Then
(under this condition), a power change relates to Ptail(t).
An amplitude weighting by M means another factor of M2 regarding the average power,
making the M -related factor disappear, hence,

σ2
a(t+ 1) = σ2

a(t) +
1

2
· e−

τ2

2 ·
(
2e−

τ2

2 − τ
√
2π erfc

(
τ√
2

))
. (4.44)
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Table 4.1 shows a comparison of ∆E obtained by simulation and calculated using (4.43)

Table 4.1: Theoretical vs. simulated mean power in-
crease ∆E (in dB) for weighted and non
weighted LS algorithms at the first iteration.

weighting τ = 4.0 dB 4.5 dB 5.0 dB 5.5 dB 6.0 dB
γ = 1 Theor. 0.0093 0.0064 0.0042 0.0027 0.0016

Sim. 0.0093 0.0066 0.0045 0.0029 0.0018
γ =M Theor. 0.1468 0.1012 0.0670 0.0424 0.0255

Sim. 0.1461 0.1043 0.0710 0.0458 0.0278

and (4.44), for a 4×4 MIMO-OFDM system. It is clear from the table that the calculated
values match the simulated values for the first iteration.
If the approximation and the subtraction of the model function were perfect, there would
have been no left-over peaks, however, the subtraction and approximation is not perfect
and there are still some peaks above the threshold value. Thus, we iterate the algorithm
to deal with the left-over peaks. However, after first iteration, the distribution is no longer
Gaussian and we cannot still apply equations (4.43) and (4.44) to later iterations. Thus,
we base our assumption on the simulated results that the LS algorithm converges to the
target value.
First, we consider the relative mean power increase ∆E of the transmit signal per iteration
due to LS algorithm. In order to check for a possible peak regrowth, we consider the
relative mean power increase per iteration as shown in the Fig. 4.14 obtained for a 4× 4
MIMO-OFDM system with different PAR target values and a weighting factor γ = 4.
It is clear from the figure that for a given target value τ , the relative mean power ∆E
decreases monotonically with the number of iterations, i.e.,

∆Ei+1 ≤ ∆Ei.

A monotonic decrease in ∆E shows that the algorithm reduces the peak values closer to
the threshold in each iteration.
Table 4.2 shows the added energy ∆E per iteration for the 4× 4 MIMO-OFDM system

Table 4.2: Mean power increase ∆E (in dB) per itera-
tion.

No. Iter. 1 2 3 4 5
∆E 0.0710 0.0163 0.0132 0.0051 0.0036

No. Iter. 6 7 8 9 10
∆E 0.0017 0.0012 0.0006 0.0004 0.0002

with a PAR target of 5.0 dB and a weighting factor γ = 4.
Secondly, we consider the performance curves (CCDF (PAR)) of the LS algorithm. In
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order to check for the convergence of the LS algorithm, we set a very low PAR target
value with a high number of iterations. Let us again consider a 4 × 4 MIMO-OFDM
system with a PAR target value of 4.0 dB. Figure 4.29 shows performance curves for a
4× 4 MIMO-OFDM system with a threshold value of 4.0 dB weighted with γ = 4. It is
clear from that figure that even for this low target values, there is still no peak regrowth
with as many as 25 iterations and the peaks being reduced to as close as 0.4 dB off the
target value, which indicates that the proposed algorithm converges to the target value.
It is also necessary to point out (the same trends has also been found by the authors
in [120] and [122] for their algorithms) that the above statements do, of course, not mean
that the error signal completely decreases to zero with a high number of iterations. The
error signal remains constant after some iterations and a 100 % limitation to τ is not
guaranteed. However, the simulation results show that for reasonable threshold values
τ , the relative mean power increase is minor, which indicates that the chance of adding
more peaks is also small, which in turn means that the designed least-squares algorithm
is indeed effectively reducing peaks.
This is not a formal proof of the convergence, however, with an only minor change in the
average power, essentially, the peaks are treated well, without compromising the rest of
the function too much in a least-squares sense.

Iteration

number

Figure 4.29: CCDF curves the LS-algorithm at a high number of iterations

4.2 Extension of the LS-algorithm to multi-user broad-

cast (BC) scenarios

In the previous section, we applied least squares approximation technique for the PAR
reduction of P2P MIMO-OFDM systems, where we tried to approximate the peak excur-
sions on the reserved spatial dimension. The idea is straight forward and can be extended
to multi-user broadcast scenarios as well. However, for MU-MIMO systems, we will con-
sider the channel associated with an inactive user for approximating the peak excursion.
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Let us consider a multi-user broadcast system with a central base station equipped with
Mt transmit antennas communicating with U users. For simplicity, let us assume that
each user is equipped with a single receive antenna Ur = 1, such that the total number
of receive antennas Mr =

∑
Ur = U . For a medium to large scale multi-user broadcast

system, where the base station can support a few tenths to hundreds of users, there is
a high probability that one user may be inactive. This probability even increases as the
system’s dimensionality grows. Herein, we will thus consider that for MU BC systems,
one user is inactive and not communicating with the central base station. The single inac-
tive user, like in the case of P2P MIMO systems, will offer redundancy and the available
spatial channel can thus be used for the PAR reduction of the peaks on the remaining
dimensions.

4.2.1 System model and precoding

For a downlink multi-user scenario, we consider a central base station equipped with Mt

transmit antennas communicating with U user such that Mt = Mr = U . Again, we con-
sider perfect channel state information (perfect CSI) at the transmitter with Tomlinson-
Harashima precoding for the downlink scenario. For TH precoding, using QR decompo-
sition, the channel matrix H can be rephrased as

HH = QR

H = RHQH , (4.45)

where {·}H stands for Hermitian or complex conjugate. Let S(n) be the input data vector
at the nth frequency bin with the inactive user set to zero, i.e.,

S(n) = [X1,n, X2,n, . . . , XU−1,n, 0] , (4.46)

where Xµ,n is the input data symbol for the µth user at the nth carrier. Moreover, let
R(n) represent the vector for the inactive user, which will be used to approximate the
peak excursion on the remaining dimensions, and is defined as

R(n) = [0, 0, . . . , 0︸ ︷︷ ︸
U−1

, Rn] . (4.47)

For the downlink multi-user broadcast scenario, we consider transmitter-sided precoding
with Q. At the nth carrier, S(n) and R(n) are hence preprocessed as

S̃(n) = Q(n)S(n) , (4.48)

and similarly
R̃(n) = Q(n)R(n) . (4.49)

The two are then transformed into time domain using a block diagonal IDFT modulator
F−1 and are combined as

x̃ = s̃− r̃ = F−1(QS−QR) . (4.50)
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Now, the goal is to approximate the peak excursions. We will follow the procedure as had
been presented for the P2P MIMO scenario. Let e represents the peak excursions in time
domain and let E be the DFT counterpart of e, i.e., E = DFT{e}. In the Least-Squares
sense, R will approximate E as

min
RM

||QR− E||22 , (4.51)

which can be solved for R in the same manner as shown in Section 4.1.3, and is given as

R:M = (QH
:MQ:M)−1QH

:ME . (4.52)

where Q:M is a block-diagonal matrix with the Mth column of the Q matrix on the
diagonals. The necessary steps in the Least-Squares approximations algorithm are the
same as the one presented earlier in Section 4.1.3 for the PAR reduction of P2P MIMO
systems.

4.2.2 Results and discussion

For the simulation results, we have considered a multi-user broadcast system with a central
base station equipped with 10 transmit antennas, i.e.,Mt = 10. The BS is communicating
with U = 10 users, each equipped with a single receive antenna. The total number of
receive antennas is hence Mr = 10. Moreover, we consider 128 subcarriers with 16-QAM
constellations. We assume that one out the 10 users is inactive. We will use the channel
of the inactive user to approximated the peak excursion on the remaining dimensions.
Figure 4.30 shows the CCDF curves for a 10 × 10 multi-users BC scenario. As can be
seen from the figure, a gain of approximately 3 dB is obtained with the first iteration and
as much 5.8 dB with only 5 iterations. Figure 4.31 shows the CCDF (PAR) curves for
a multi-user broadcast scenario, using Eq. 4.32, under different mean power constraints,
with a maximum of 10 iterations. It is clear from the figure that the proposed algorithm
has the least impact on the mean power. As can be seen, a gain of approximately 2.6 dB
is obtained for ∆E = 0.1 dB and as much 5.0 dB for ∆E = 0.3 dB.
Figures 4.32 and 4.33 show the simulation results for a large scale multi-user BC scenario.
We consider a central base station equipped with 40 transmit antennas communicating
with 40 users. Again, we assume that one out of the 40 users is not active, thus, we use
the respective channel for modeling the peak excursions on the remaining dimensions.
The figure shows that for a PAR target value τ = 7.5 dB, a gain of approximately 4.6 dB
can be obtained with as few as 8 iterations.
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Figure 4.30: CCDF(PAR) of 10× 10 multi-user MIMO-OFDM for a PAR target value of 5.8
dB, γ = 8.5
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Figure 4.31: CCDF(PAR) 10× 10 multi-user MIMO-OFDM under different mean power con-
straints for a PAR target value of 5.8 dB, γ = 8.5
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Figure 4.32: CCDF(PAR) of 40× 40 multi-user MIMO-OFDM for a PAR target value of 7.5
dB, γ = 25
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Figure 4.33: CCDF(PAR) 40× 40 multi-user MIMO-OFDM under different mean power con-
straints for a PAR target value of 7.5 dB, γ = 25
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Chapter 5

Optimized LDPC Code
Concatenated with Trellis Shaping
for PAR Reduction

In Chapters 3 and 4, we proposed PAR reduction techniques for P2P and multi-user
MIMO-OFDM systems. First we extended the TR algorithm for MIMO-OFDM systems
followed by our novel Least-Squares iterative algorithm. Herein, we go back and consider
PAR reduction of single antenna OFDM systems. In Chapter 2, we gave a brief overview
of different PAR reduction techniques most popular in literature. However, an also very
promising technique amongst them is Trellis-Shaping, which results in high gains, in
terms of PAR reduction, with a moderate complexity. The idea of Trellis-Shaping for
PAR reduction was first proposed by Henkel and Wagner in [64]. The authors presented
branch metrics for a search in the Viterbi algorithm in the time and the DFT domain. The
same idea was later extended by Ochiai [69, 70], where the author devised a new branch
metric based on the autocorrelation of the side-lobes in the DFT domain. Conventionally,
hard decision decoding was used to extract the input bit stream from the shaping code
sequence. However, to improve the system performance, the authors in [99,100] suggested
soft decision decoding using the BCJR [90] algorithm based on the compound trellis of
the inverse syndrome former (H−1)T and the shaping code Cs. To enhance the system
performance further in terms of BER, the authors concatenated a regular LDPC code with
Trellis Shaping for PAR reduction of a BICM-OFDM system. They used higher order
M-ary QAM modulation (256-QAM constellation) as modulated symbols at each tone
of the OFDM system. However, as it is well known from literature, an irregular LDPC
code has a better performance than a regular LDPC code. Moreover, in higher order
constellations (M-ary QAM), the bits constituting the QAM-symbol have different error
probabilities. Thus, there is a possibility to design an LDPC code taking into account the
irregularities in the bit error probabilities of the individual bits inside an M-ary QAM
symbol. This motivated us to design an irregular LDPC code concatenated with Trellis
Shaping, based on the irregularities and the differences in the error probabilities of the
individual bits inside the QAM constellation.
The rest of the chapter follows as, we start with our motivation to design an irregular
LDPC code. First, in Section 5.2, we will give brief introduction to Trellis Shaping
followed by the metric design for the Viterbi algorithm and the calculation of the soft
output using a BCJR algorithm. Section 5.3 briefly discusses some basics of LDPC codes

86



Chapter 5: Optimized LDPC Code Concatenated with Trellis Shaping for PAR
Reduction

followed by the optimization of an irregular LDPC code. In Section 5.4, we will describe
the system model followed by the simulation results where we will compare and discuss
the results obtained with both codes, i.e., with regular and irregular LDPC codes.

5.1 Equivalent binary channels of an M-ary QAM

modulation

Let us consider that the trellis shaping selects a symbol from an M-ary QAM constella-
tion, with M constellation points, each one carrying B = log2(M) bits. Let these bits
inside a QAM symbol be labeled as b = {b1, b2, . . . bB}. For a square M-ary QAM con-
stellation with Gray labeling (subsequently we will consider square QAM constellations
with Gray mapping, else otherwise stated) the first two bits {b1, b2} are used to address
one out of the four quadrants (outer QPSK) of the constellation, and are called the most
significant bits (MSBs). The other bits, i.e., {b3, b4, . . . , bB} specify a particular point
inside a quadrant of the square QAM-constellation and are known as the least significant
bits (LSBs).
Moreover, as we know that inside each higher-order QAM constellation, the error prob-
abilities for the individual bits are different, depending on the type, size, and labeling of
the constellation used. Let Pbi be the error probability of the ith bit. Based on the error
probabilities of the individual bits, the bit vector inside the QAM symbol can thus be
separated into Nm = B/2 subgroups, which we will subsequently call modulation classes,
i.e., M = {M1,M2, . . . ,MNm}. The bits with the same error probability are thus assigned
to the same modulation class. For example, the bit error probabilities of the bits which
constitute the MSBs, {b1, b2}, have the same error probability, i.e., Pb1 = Pb2 , and are
hence assigned to the same modulation class, M1 = {b1, b2}. The error probability of
each modulation classMi is then defined as {PMi

}Nm
i=1. Using an equivalent BPSK channel

description as shown in Fig. 5.1, the individual channel variance for different modula-
tion classes, i.e., σ = {σ1, σ2, . . . , σNm}, can be computed from the bit error probabilities
Pb,Mi

[92], and is given as

σ2
i =

1

2{erfc(2Pb,Mi
)}2

, (5.1)

where “erfc” is the complementary error function and σ is a vector for the equivalent
noise of the individual channels.

Figure 5.1: Binary channel assumption (a) physical channel (b) equivalent binary channels
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Example 1 Consider a square a 16-QAM constellation with Gray mapping as shown
in Fig. 5.2. For a 16-QAM constellation, the total number of bits carried by a single
QAM symbol is B = log2(16) = 4. These 4 bits can be labeled as [b1, b2, b3, b4]. In a
square 16-QAM constellation with Gray mapping, the first two bits, i.e., [b1, b2] are used
to address one out of the four quadrants (the MSBs), while the last two bits [b3, b4] are
used to specify a particular point in a specific quadrant (the LSBs). As shown in [93], the
bit error probability of b1 and b2, is the same, i.e., Pb1 = Pb2, and can be expressed as

Pb1,2 = 1/4

(
erfc

(√
2γ

10

)
+ erfc

(
3

√
2γ

10

))
, (5.2)

where “erfc” is the complimentary error function and γ is the signal-to-noise ratio with
noise power spectral density N0. Likewise for b3 and b4, Pb3 = Pb4 and is written as

Pb3,4 = 1/4

(
2erfc

(√
2γ

10

)
+ erfc

(
3

√
2γ

10

)
− erfc

(
5

√
2γ

10

))
. (5.3)

Based on the bit error probabilities, the bits inside a 16-QAM constellation can thus be
divided into two modulation classes, M = [M1,M2], (as we have two different error prob-
abilities Pb1,2 and Pb3,4). The equivalent noise variances σ = [σ1, σ2], for each modulation
class can be obtained using Eq. (5.1).

Figure 5.2: Square 16-QAM constellation with Gray mapping

This irregularity of the individual bits inside a QAM symbols can be exploited to optimize
an LDPC code, as the individual bits have different error probabilities and thus can be
protected differently inside the same QAM symbol.

5.2 Trellis Shaping

The basic principle of Trellis Shaping (TS) was first proposed by G. D. Forney [63].
Forney used Trellis Shaping to minimize the average power of a transmit sequence by
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adding (modulo 2) a valid code sequence of the shaping code Cs to the data sequence u
using a Viterbi algorithm, based on a branch metric (e.g. the mean power in Forney’s
case). However, application of the Trellis Shaping for PAR reduction of the multicarrier
(OFDM) systems was first proposed by Henkel and Wagner [64], and later the idea has
been extended by Ochiai [69, 70]. Forney used the mean power as a branch metric for
the Viterbi algorithm. However, for PAR reduction, Henkel et al. used different metrics
(e.g. the peak value) for PAR reduction. Herein, we will consider sign-bit shaping with a
binary convolutional code as has been presented in [63].
A simplified block diagram of a trellis shaper is shown in Fig. 5.3. In there, Cs is a binary

Figure 5.3: Block diagram of Trellis Shaping

rate-k/n convolutional code (also referred to as the shaping code) with a k× n generator
matrixG, where k and n stands for the number of input and output bits, respectively. HT

and (H−1)T are the n× (n−k) parity-check matrix (syndrome former) and its (n−k)×n
left inverse (inverse syndrome former), respectively. u is the input data sequence of length
1 × (B − 1) · N (B = log2(M), where M is the size of the M-ary QAM constellation)
prior to constellation mapping, which will be transmitted with an OFDM frame of size
N . The 1× (B− 1) ·N input bit sequence u is first divided into N small chunks each one
of size M = B − 1 bits, i.e., u = {u1,u2, . . . ,uN}, where un = {u1,n, u2,n, . . . , uB−1,n}.
The input bit stream u is then passed through a demultiplexer which separates u into
two sets of sequences m and n. m are used to choose the MSBs (the sign bits) of the
mapping constellation, i.e., m is used to select one out of the four quadrants, while n is
used to choose the least significant bits. m is first preprocessed using the left inverse of
the syndrome former (H−1)T , i.e.,

z = m(H−1)T . (5.4)

The sequence z obtained is then module-2 added to a valid code sequence y in Cs, where
Cs is the binary convolutional shaping code, i.e.,

z
′
= z⊕ y , (5.5)

where ⊕ denotes modulo-2 addition. z
′
is hence an element of Cs ⊕ z. The sequence of

data z
′
represents the most significant bits of an M-ary QAM constellation. Along with
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the sequence of LSBs n, the MSBs z
′
determine the nth QAM constellation point as

Xn = M(z
′

n;nn) = M(zn ⊕ yn;nn) . (5.6)

After mapping, in case of OFDM, the QAM symbols X = X[n], n = 1, 2, . . . , N are
transformed into time domain using an IFFT modulator, i.e., x = IDFT{X}. This
time-domain signal x is then transmitted through a noisy channel. At the receiver, the
estimated x̂ is converted into DFT domain using an FFT demodulator, i.e., X̂ = DFT{x̂}.
An estimate of the uncoded transmitted QAM-symbols X can be obtained from X̂ by the
conventional symbol-by-symbol hard decisions detection. After hard decision decoding
of the received symbols X̂, the main objective of the receiver is to decode the data bit
sequence for the MSBs and the LSBs. In case of the LSBs, since no processing was
performed at the transmitter, the estimates for the LSBs are directly mapped into the
corresponding input bit estimates. In order to get an estimate of the MSBs z

′
, we first

recall some basic definitions from channel coding theory for the convolutional codes. For a
convolutional code Cs with a generator matrix G, a valid code sequence y ∈ Cs is obtained
as

y = iG , (5.7)

where i is an arbitrary input bit sequence and G is the Forney generator matrix such
that GHT = 0, 0 is a zero vector of size 1× (n− k). Moreover, y is said be a valid code
sequence in Cs if

yHT = 0, (5.8)

where HT is the syndrome former for Cs. In order to retrieve the input data sequence m,
the received sequence for the MSBs ẑ

′
is processed with HT , the syndrome former of the

shaping code Cs, i.e.,
z

′
HT = (z⊕ y)HT = zHT ⊕ yHT︸︷︷︸

=0

(5.9)

z
′
HT = zHT ⊕ 0 = m (H−1)THT︸ ︷︷ ︸

=I

z
′
HT = mI = m , (5.10)

where I is an (n− k)× (n− k) identity matrix.

5.2.1 Sign-bit shaping with binary convolutional codes

Consider a convolutional shaping code Cs of rate k/n = 1/2. The generator matrix G
for this code is 1 × 2 and the syndrome former HT and its left inverse (H−1)T are 2 × 1
and 1 × 2 matrices, respectively. In the sign-bit shaping, the input bit stream m, which
is used to define the MSBs, is first encoded using the 1 × 2 left inverse of the syndrome
former (H−1)T according to Eq. (5.4). (H−1)T thus adds 1 redundant bit to each bit of the
binary input sequence m, resulting in a binary 2-tuple bit sequence z = [zn] = [z1,n, z2,n],
n = 1, 2, . . . , N . Similarly, the binary 2-tuple valid code sequence y of the shaping
convolutional code Cs can be defined as y = [yn] = (y1,n, y2,n). In the sign-bit shaping,
the binary 2-tuple valid code sequence y is modulo-2 added to the shaping bit sequence
z according to Eq. (5.5). In our PAR applications, a suitable metric needs to be chosen,
which is discussed in the following section.
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5.2.2 Metric selection for sign-bit shaping

For PAR reduction using trellis shaping, different branch metrics have been proposed for
the Viterbi algorithm search by different authors [64,67,68,70]. As a first approach, Henkel
and Wagner [64] proposed metrics in time as well as in DFT domain. The time-domain
branch metric for searching a valid code sequence in the shaping code Cs, was based on the
peak power of the transmit signal, however, since the peak power is not additive, it does
not fulfill the requirement to be a valid branch metric for the Viterbi algorithm (namely,
the metric needs to be positive and additive). Thus, the time-domain peak power is
determined at each path and the time domain vector is then updated accordingly as [64]

xkν = xkν−1 +
νl∑

n=(ν−1)l+1

Xne
j(2π/N)kn (5.11)

The results obtained with this branch metric are very promising. However, these results
come with a cost, an increase in the computational complexity of the system as more
IFFT/FFTs are required in case of only one IFFT/FFT. The authors also proposed
an alternative branch metric in DFT domain based on the phases of the symbol and
tabulation of the block transition matrix in DFT domain (for block sizes of small length).
However, the DFT domain metrics were impractical for large block sizes.
In [70], Ochiai proposed a new branch metric for the Viterbi algorithm based on the
minimization of the aperiodic autocorrelation of the sidelobes of an OFDM signal. Herein,
else otherwise stated, we will consider the branch metric proposed by Ochiai, to search
for a valid code sequence y ∈ Cs which minimizes the PAR of the transmit sequence.
Subsequently, we will briefly describe essential steps in calculating the branch metric as
proposed by Ochiai.
Let X = [Xn], n = 1, 2, . . . N , be an input data sequence, where Xn is chosen from an M-
ary QAM constellation. Applying the IFFT modulator, the time domain vector x = [xk],
k = 1, 2, . . . N , is obtained as

x = IDFT{X}

xk =
1√
N

N∑
n=1

Xne
j 2πnk

N , k = 1, 2, . . . , N , (5.12)

where N is the frame size. The instantaneous power |xk|2 of the time-domain OFDM
signal x is given as (Eq. (2.56))

|xk|2 = xkx
∗
k =

1√
N

N∑
n=1

Xne
j 2πnk

N · 1√
N

N∑
m=1

Xme
−j 2πmk

N

|xk|2 =
1

N

N∑
n=1

N∑
m=1

XnX
∗
me

j
2πk(n−m)

N . (5.13)
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Splitting into n = m and n ̸= m and using Euler’s formula, this is simplified as

|xk|2 =
1

N

N∑
n=1

|Xn|2︸ ︷︷ ︸
n=m

+
2

N

N∑
n=1

∑
n̸=m

XnX
∗
m cos

(
2πk

N
(n−m) + θn − θm

)
︸ ︷︷ ︸

n̸=m

(5.14)

|xk|2 =
R0

N︸︷︷︸
I

+
2

N

N∑
n=1

|Rm| cos
(
2πk

N
ν + argRm

)
︸ ︷︷ ︸

II

. (5.15)

The first term, i.e., R0/N , where R0 =
∑N

n=1 |Xn|2, is the DC component and is constant
representing the average power of the transmit signal. The second term describes the
signal envelope fluctuation, where ν = n−m, argRm = θn− θm and |Rm| is the aperiodic
autocorrelation of the QAM symbols, which can be expressed as [70],

|Rm| =
N−m∑
n=1

Xn+mX
∗
m . (5.16)

It is the second term in Eq. (5.15), which influences the PAR of an OFDM signal, hence,
in order to minimize the PAR of the transmit signal, the fluctuation in the signal enve-
lope must be minimized. A possible branch metric for the Viterbi algorithm will, thus,
minimize the aperiodic autocorrelation of the sidelobes of an OFDM signal, i.e.,

y = argmin
y∈Cs

N∑
m=1

|Rm| . (5.17)

As we know that, for a function to work as a branch metric in the Viterbi algorithm,
it must be positive and additive. In order to meet these criteria, a minimization of the
squares of the absolute values of the aperiodic autocorrelation is considered as a branch
metric [70]. Equation (5.17) then takes the form

y = argmin
y∈Cs

N∑
m=1

|Rm|2 . (5.18)

To make the branch metric (Eq. 5.18) additive, i.e., to define the nth QAM symbol by
modification of the sign bit sequence zn by the binary 2-tuple code sequence yn (zn⊕yn),
Eq. (5.18) is rephrased as

yn = arg min
yn∈Cn

s

µi , (5.19)

with µi =
∑i

m=1 |Ri
m|2, where Ri

m is the aperiodic autocorrelation of the input QAM
symbols at length i. For sign-bit shaping with a rate-1/2 shaping code Cs, Ri

m is defined
as

Ri
m = Ri−1

m + δi−1
m , i = 2, 3, . . . , N, and m = 1, 2, . . . , i− 1 , (5.20)
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where δim = XiX
∗
i−m. Together with Eq. (5.18), the accumulated branch metric µi, for

the sign bit shaping is formulated as

µi = µi−1 +
i−2∑
m=1

2R
(
R(i−1)∗
m δi−1

m

)
+

i−1∑
m=1

∣∣δi−1
m

∣∣2 , (5.21)

where the third term, i.e.,
∑i−1

m=1 |δi−1
m |2 is a constant, does not contribute to the PAR of

the transmit signal, and can be omitted in the calculation of µi [70]. For PAR reduction
with Trellis Shaping, we will use the metric defined by Eq. (5.21) to select a sequence of
symbols with the lowest PAR.

5.2.3 Soft-input soft-output decoding for the shaping bits, using
the BCJR algorithm

Conventionally, in order to decode the information bit sequence at the receiver, hard
decision decoding on the estimates of the shaping bit sequence was performed on the
channel outputs in Trellis Shaping [63, 64, 69, 70]. However, using soft decision decoding
with the BCJR algorithm, the system performance can further be improved [99,100]. We
will hence consider soft decision decoding with the BCJR algorithm [90], to obtain the
Log-Likelihood Ratios (LLRs) for the shaping bit sequence.
Let X = [Xn], n = 1, 2, . . . , N , be the sequence of QAM-symbol selected using Trel-
lis Shaping. The time-domain signal is obtained using an IFFT modulator, i.e., x =
IDFT{X}. x is then transmitted over the channel. At the receiver, an estimate of the
nth data symbol filtered by the channel, in DFT domain, can be expressed as

Yn = Xn + wn (5.22)

where Yn is the nth tone of the OFDM frame and wn is the additive white Gaussian noise
with single-sided power spectral density N0.
Since no preprocessing is performed on the LSBs at the transmitter, thus, the LLRs for
the LSBs are obtained directly from the channel outputs in the conventional way, i.e.,

LnLSBs = ln
p(cn,i = 0|X)

p(cn,i = 1|X)
, (5.23)

where p(cn,i = b|Xn) is the probability density function of the ith received bit belonging
to the LSBs conditioned on the nth transmitted symbol [100] and is defined as

p(cn,i = b|Xn) =
∑
X∈X b

i

Ce
−
(

|X̂n−X|2

2σ2
M

)
, (5.24)

where C is a constant which can be omitted in the actual calculations and σ2
M is the

variance of the noise with power spectral density N0 of an AWGN channel.
For the MSBs, the LLRs cannot be obtained in this straight-forward manner. To obtain
the soft outputs for single MSB information bits, we consider a combined trellis design
based on the left inverse of the syndrome former (H−1)T , and the generator matrix of
the shaping code Cs. Based on this compound trellis, a BCJR algorithm is then used to
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determine the LLRs.
Let NsCs

be the number of states of the shaping code Cs and let NsH be the number
of states of the left inverse syndrome former. Then, the total number of states of the
compound trellis is Nsct = NsCs

· NsH . Besides the number of states, the number of
branches emanating from a state of the compound trellis equals 2n (which in our case
equals 22 = 4, See Fig. 5.9), where n is the number of output bits of the shaping code
Cs [100].

BCJR algorithm

Now, to employ the BCJR algorithm for soft output calculation, let us consider t and
t́ representing the current and the previous states of a trellis, respectively. Let mn be
the nth bit of the input sequence which was modified to the nth binary 2-tuple MSBs
{ź0n, ź1n}, along with LSBs, defining the nth QAM symbol. In order to get soft output out
of the BCJR algorithm, we first compute the state transition probabilities γn(t́, t), the
forward recursion αn(t), and the backward recursion βn(t́). The forward recursion, αn(t),
is computed as

αn(t) =

Nsct∑
i=1

αn−1(t́i)γn−1(t́i, t), n = 1, 2, . . . , N . (5.25)

Similarly, the backward recursions, βn(t́), is calculated using

βn(t́) =

Nsct∑
i=1

βn+1(ti)γn(t́, ti), n = N,N − 1, . . . , 1 . (5.26)

The initial conditions for the forward and backward recursions are predefined as

α0(t) =

{
1, when t = 0,
0, otherwise,

βN(t́) = 1/Nsct , for t́ = 1, 2, . . . , Nsct .

The state transition probabilities γn(t́, t) are calculated as

γn(t́, t) =
2−1∏
j=1

pn,j(t́, t|Xn) , (5.27)

where

pn,j(t́, t|Xn) =
∑
X∈X b

j

Ce
− |X̂n−Xn|2

2σ2
M , for j = 1, 2 . (5.28)

γn(t́, t) = 0 if there is no branch connection between t́ and t. The likelihood for the jth
received bit belonging to the MSBs can then be computed as

p(źjn = b,X) =
∑
ζt∈Γ(b)

αn(t́)γn(t́, t)βn+1(t) , (5.29)
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where źjn is the jth received bit of the nth symbol which belongs to the MSBs, ζt is the
state transition, and Γ(b) is the set of state transition with value b. The LLRs for the
MSBs are then calculated as

LnMSB = ln
p(źjn = 0|X)

p(źjn = 1|X)
= ln

p(źjn = 0,X)

p(źjn = 1,X)
. (5.30)

The LLRs obtained from the BCJR algorithms for the MSBs are fed into an LDPC
decoder along with the LLRs for the LSBs to obtain the received intrinsic information for
the complete bit sequence u. Subsequently, we will give a brief introduction to some basics
of LDPC codes followed by the optimization of the variable-node degree distribution and
the code construction.

5.3 Irregular LDPC codes

In [99, 100], the authors used a regular LDPC code concatenated with Trellis Shaping
for PAR reduction. However, we know that irregular LDPC codes usually have a better
performance than regular LDPC codes. This motivated us to design an irregular LDPC
code and concatenate it with Trellis Shaping for a better performance of the system
as compared to the regular LDPC code solutions, in terms of bit error ratios (BER).
Henceforth, we will consider an irregular LDPC code concatenated with Trellis Shaping
as shown in Fig. 5.4. The input bit stream u is first encoded using an irregular LDPC
code. The encoded bits are then assigned to different modulation classes based on the
error probabilities of the individual bits inside the QAM symbol. Now, the goal is to
design an optimized irregular LDPC code. We thus exploit the irregularities inside the
QAM symbol and design an irregular LDPC code based on the error probabilities of
the individual bits. Herein, we first start with basics of LDPC codes followed by the
optimization of the variable-node degree distribution for constructing an irregular LDPC
code.

Demultiplexer

Figure 5.4: Block diagram of LDPC code concatenated with Trellis Shaping

General Description

Low-Density Parity-Check (LDPC) codes are linear block codes, first invented by Gallager
in 1962 [88]. LDPC codes are characterized by a parity-check matrix Hn−k×n, where n is
the codeword length and k is the length of the input bit vector. As the name suggests,

95



Chapter 5: Optimized LDPC Code Concatenated with Trellis Shaping for PAR
Reduction

the parity check matrix H has a very low density, i.e., H is a sparse matrix with only a
few non-zero entries. Let ωr be the row weight, the number of ones in each row. Similarly,
let ωc be the column weight representing the number of non-zero entries in each column.
For the matrix to be called “low-density” the two conditions, i.e., ωr << k and ωc << n
must be satisfied. The density of the code ξldpc is then defined as

ξldpc = ωr/n = ωc/k.

Graphically, like all linear block codes, the parity check matrix H of an LDPC code
can be represented by a bipartite graph known as Tanner graph (after Tanner, [89]). A
Tanner graph consists of two types of vertices or nodes, V and C. V = {Vi} represents
the code bits and are called the code-bit vertices or the variable nodes. The second set,
i.e., C = {Cj} represents the parity-check sum and are called the parity-check vertices or
the check nodes. A variable node Vi is connected to a check node Cj through an edge
et. A code bit vertex Vi is said to be checked by a parity-check vertex Cj, if and only
if the Hi,j element of the parity check matrix is a non-zero element, i.e., 1 in the binary
case. The degree of a node is defined by the total number of edges connected to it. For
an LDPC code, a bipartite graph is said to be regular if all variable nodes have the same
degree and all check nodes have another common degree. In other words, an LDPC code
is said to be regular if all rows of the parity check matrix have the same weight, i.e.,
ωr1 = ωr2 = . . . = ωrk , where k is the total number of rows, and all columns are also of
the same weight. A regular LDPC code with a parity check matrix H is thus completely
specified by the ordered pair (dv, dc), where dv is the variable-node degree and dc is the
check-node degree.

Example 2 Consider a rate-1/2 code with an (8,4) parity-check matrix, given as
0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0

 , (5.31)

with ωr = 4 and ωc = 2. The Tanner graph for this matrix is shown in Fig. 5.5. In there,
the circles represent the variable nodes which correspond to the columns of the parity-check
matrix and the squares are the check nodes which correspond to the rows of the parity-
check matrix. A variable node Vi is connected to the check node Cj through an edge et,
which represents the non-zero element of H, i.e., Hi,j = 1. Moreover, in Fig. 5.5, each
check node is connected to four variable nodes, i.e., the total number of edges at each check
node is 4, thus, the check-node degree is dc = 4. Likewise, each variable node is connected
to two check nodes, thus, dv = 2.

In contrast to regular LDPC codes, if the degree of the check nodes/variable nodes varies,
then, this type of codes are known as irregular LDPC codes. The code cannot be specified
by an ordered pair as in the case of regular LDPC code. The degree distribution of an
irregular LDPC code is therefore represented by a polynomial. The variable-node and
check-node degree distributions of an irregular LDPC code, written as polynomials, can
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Figure 5.5: Tanner graph of an LDPC code

be expressed as

λ(x) =

dvmax∑
i=2

λix
i−1 and ρ(x) =

dcmax∑
i=2

ρix
i−1 , (5.32)

where λi and ρi are the fractions of edges connected to variable and check nodes of degree
i, respectively. Based on the polynomial representation, the rate of an irregular LDPC
code is then defined as

R = 1−
∑dcmax

j=2 ρj/j∑dvmax

i=2 λi/i
. (5.33)

5.3.1 Notations

Consider a UEP LDPC code with a codeword length N . In order to optimize the vari-
able degree distribution for the LDPC code, we will make use of the irregularities, i.e.,
the different bit error probabilities, of the individual bits inside a QAM symbol. Let
Nm be the total number of modulation classes based on the constellation used, i.e.,
{M1,M2, . . .MNm}. The proportion of bits in each modulation class βi is given by a
vector β = {β1, β2, . . . βNm}, where βi is the proportion of bits assigned to the ith mod-
ulation class, with, βj = Nj/Nc, Nj is the total number of bits in modulation class j
and Nc is the codeword length. Let λ be the vector of the overall variable node degree
distribution for all modulation classes. For a modulation class Mj, λMj

can be written
as λMj

= [λMj,2
, λMj,3

, . . . , λMj,dvmax
]T , where λMj,i

is the sub-degree distribution and rep-
resents the proportion of edges connected to a variable node of degree i belonging to the
modulation classMj. The overall variable node degree distribution for the Nm modulation
classes is given as

λ =
[
λTM1

,λTM2
, . . . ,λTMNm

]T
, (5.34)
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where {·}T stands for transpose. Moreover, to construct an irregular LDPC code, we also
need the check-node degree distribution. The check-node degree distribution is given by
the vector ρ = [ρ2, ρ3, . . . , ρdcmax

]T . With E as the total number of edges, Nj and Nc in
terms of λMj

can be obtained as

dvmax∑
i=2

λMi,j

i
= Nj/E and

Nm∑
j=1

dvmax∑
i=2

λMi,j

i
= Nc/E , (5.35)

where Nj is the number of bit in modulation class j and Nc is the codeword length of the
LDPC code.

5.3.2 Optimization of the variable-node degree distribution

In order to optimize the variable-node degree distribution for an irregular LDPC code,
we will follow the approach of [37,92,94–96,98], i.e., to optimize the variable node degree
distribution for an irregular LDPC code, we will investigate the decoding behavior of the
LDPC codes. LDPC codes are usually decoded by a message-passing algorithm known
as sum-product or Belief Propagation (BP) algorithm. In BP, messages representing
reliability (log-likelihood ratios (LLRs)), considered as Gaussian random variables, are
exchanged along the edges between variable and check nodes in an iterative fashion. Let
Vi be a variable node of degree i connected by an edge to a check node of degree j, i.e.,
Cj. Let LVi,Cj

be the message from a variable node of degree i to a degree j check node,
then, the variable node update rule in belief propagation algorithm is written as

LVi,Cj
= L0 +

∑
k ̸=j

LCk,Vi , (5.36)

where L0 is the channel output and the summation is over all the neighboring check nodes
excluding Cj. Similarly, for a check node messages LCj ,Vi , i.e., the message from a check
node of degree j to a variable node of degree i, the check node update can be expressed
as

LCj ,Vi = 2 tanh−1

(∏
k ̸=i

tanh(LVk,Cj
)

)
, (5.37)

where the product is over all variable nodes excluding Vi. The messages at the variable
nodes and the check nodes are updated by summation (variable-node update) and a prod-
uct (check-node update), the algorithm is, thus, also known as sum-product algorithm.
The messages along the edges are considered as independent random variables. With
a Gaussian approximation, for the independent random variables, exploiting the Den-
sity Evolution (DE) algorithm, the evolution of these messages (LLRs) can be com-
puted [37, 95]. Thus, at the lth iteration, the mutual information from a check node
to the variable node xcv and from a variable node to a check node xvc computed for a
standard LDPC code using density evolution (DE) with Gaussian approximation can be
expressed as

x(l−1)
cv = 1−

dcmax∑
j=2

ρjJ

(√
(j − 1)J−1(1− x

(l−1)
vc )

)
, (5.38)
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x(l)vc =

dvmax∑
i=2

λiJ

(
2

σ2
+ (i− 1)J−1(x(l−1)

cv )

)
, (5.39)

where J(.) computes the mutual information, i.e., x = J(m) given as

J(m) = 1− 1√
4πm

∫
R
log2(1 + e−z) · e−

(z−m)2

4m dz , (5.40)

where z ∼ N(m, 2m) is a consistent Gaussian random variable. In our analysis, the check-
node degree distribution is not subdivided , however, the variable node degree distribution
is split into sub-groups based on the modulation classes Nm. Thus, the update rule for
the messages from the check node to the variable node (xcv) is not affected. However, we
adapt and modify Eq. (5.39) as

x(l)vc =
Nm∑
j=1

dvmax∑
i=2

λMj,i
J

(
2

σ2
j

+ (i− 1)J−1(x(l−1)
cv )

)
. (5.41)

With equations (5.38) and (5.41), the density evolution for the mutual information of the
LDPC code, with Nm sub-class variable-node degrees is summarized as

x(l)vc = F (λ,ρ,σ2, x(l−1)
vc ) . (5.42)

We need to ensure the convergence, i.e., the mutual information must increase per itera-
tion, meaning

F (λ,ρ,σ2, x(l−1)
vc ) > x(l−1)

vc . (5.43)

Another important constraint to be fulfilled by the ensemble LDPC code is the stability
constraint which ensures convergence of the mutual information close to one. The stabil-
ity condition gives an upper limit for degree-2 variable nodes [95],

1

λ′(0)ρ′(1)
> e−r =

∫
R
P0(x)e

−x
2 dx = e−

1
2σ2 , (5.44)

with P0(x) being the message density for the received values and λ′(x) and ρ′(x) being
the derivatives of the degree polynomials. The bits in our schemes experience different
channel noise with different equivalent noise variances σ2

j , thus, we exploit the average
density, given by utilizing the modulation class proportions β,

e−r =

∫
R

Nm∑
j=1

βj · P0,j(x)e
−x

2 dx =
Nm∑
j=1

βj · e
− 1

2σ2
j . (5.45)

We optimized the degree distribution for different modulation classes, given a fixed check-
node degree distribution. Splitting the variable-node degree distribution into subclasses
results in a sum constraint. For the algorithm to converge, the sum constraint is formu-
lated as [37]

Nm∑
j=1

dvmax∑
i=2

λMj,i
= 1 . (5.46)
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5.3.3 Optimization algorithm

With all the constraints and characterization for the density evolution algorithm, we opti-
mized the variable-node degree distribution with a maximum degree dvmax . Our strategy
was to optimize the variable-node degree distribution which maximizes the code rate.
Herein, we modify the optimization algorithm proposed in [37, 92, 98]. Table 5.1 shows
the important steps of the optimization algorithm. The linear programming routine re-
quires the check-node degree distribution ρ, the maximum variable node degree dvmax ,
proportion of the bits in various modulation classes β, the required code rate R and σ2

derived from the signal-to-noise ratio Es/N0.

Table 5.1: Optimization algorithm for irregular LDPC codes.

Optimize

max
λ

Nm∑
j=1

dvmax∑
i=2

λMj,i

i
(5.47)

subject to

[1] Proportion distribution constraints
Nm∑
j=1

dvmax∑
i=2

λMj,i
= 1 (5.48)

[2] Convergence constraint, according to (5.43)

F (λ,ρ,σ2, x) > x (5.49)

[3] Stability condition, according to (5.44) and (5.45)

Nm∑
j=1

λMj,2
<

Nm∑
j=1

βje
−1/2σ2

j ·
dcmax∑
m=2

ρm(m− 1)

−1

(5.50)

5.3.4 Code construction

After obtaining an optimized variable-node degree distribution, the parity-check matrix
H is constructed using the Progressive-Edge-Growth (PEG) algorithm [10,37]. PEG is a
sophisticated algorithm which tries to maximize the length of the local girth. The graph
is constructed with one edge at a time and each edge is placed in such a manner that it
has the lowest impact on the local girth. The algorithm is initialized with the variable-
node profile, which shows the degrees of the n variable nodes. The algorithm starts with
the lowest degree variable node and progresses to the higher degree nodes, processing one
variable node at a time (for all the edges connected to it). The edge selection criteria
is to maximize the length of the local girth, thus, the variable node is connected to a
check node which has not yet been reached. If all the check nodes have been connected
with the current variable node, then the one with the maximum cycle is selected. If there
is more than one option, the check node with the lowest degree is chosen. For a deep
understanding, interested readers are referred to [10] and the references therein.
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5.4 System model, results, and discussion

For the simulation results, we have considered a single-input single-output (SISO) OFDM
system concatenated with LDPC code as shown in Fig. 5.6. As discussed earlier, we chose
a square 256-QAM constellation with Gray mapping (Type-I in [70]). In order to have a
high spectral efficiency we use a rate-6/7 LDPC codes (both regular and irregular codes)
concatenated with Trellis Shaping. The length of each code is chosen such that it matches
the size of one OFDM frame. We have considered an OFDM frame comprised of 128 sub-
carriers modulated by 256-QAM. Each QAM symbol of the 256-QAM constellation carries
B = log2(256) = 8 bits. The total number of bits thus required to match one OFDM
frame = 128× 8 = 1024. Moreover, the LDPC code is concatenated with Trellis Shaping
which adds 1 bit redundancy per QAM symbol, which in our case equals 128 bits. In order
to match the size of one OFDM frame to the length of the LDPC code is, thus, chosen
as 896 (896 + 128 = 1024). The overall code rate of the system with trellis shaping then
equals 3/4. In order to decode the LDPC codeword, we use belief propagation with the
maximum number of iterations set to 50 for both regular and irregular LDPC codes. We
will also compare our results to a system without Trellis Shaping. The codeword length
and the code rate for such codes are chosen to be 1024 and 3/4, respectively.
As shown in the Fig. 5.6, the input bit stream u is first encoded with an optimized

Figure 5.6: Irregular LDPC code concatenated with Trellis Shaping

irregular LDPC code. In order to optimize the LDPC code, we exploit the bit error
probabilities of the individual bits inside the M -ary QAM symbol. For the 256-QAM
constellation with Gray mapping, B = 8 bits are used to represent a single symbol,
labeled as B = {b1, b2, . . . , b8}. The exact bit error probabilities for the individual
bits {Pb1 , Pb2 , . . . , Pb8} computed as in [93], are given in App. B.1 As shown in [93],
Pb1 = Pb2 = Pb1,2 , . . . , Pb7 = Pb8 = Pb7,8 , which in more compact form can be writ-
ten as Pb = {Pb1,2 , Pb3,4 , . . . , Pb7,8}. For 256-QAM, we have four different error prob-
abilities for the individual bits, thus, based on these error probabilities, we have four
modulation classes, M = {M1,M2,M3,M4}. The error probability of each modula-
tion class is then given as the error probability of the bits constituting that class, i.e.,
Pb = {Pb,M1 , Pb,M2 , Pb,M3 , Pb,M4}. From the bit-error probabilities of the individual bits,
we will compute the individual noise variances for the different modulation classes, i.e.,
σ = {σ1, σ2, σ3, σ4}.

1The authors in [93] gives the expression for a noise withN0/2 power spectral density, however, we have
modified the expressions for a noise with N0 power spectral density, i.e., we use a two-sided definition.

101



Chapter 5: Optimized LDPC Code Concatenated with Trellis Shaping for PAR
Reduction

For the least significant bits {b3, b4, . . . , b8}, with bit error probabilities {Pb3,4 , Pb5,6 , Pb7,8} =
{Pb,M2 , Pb,M3 , Pb,M4}, no preprocessing is performed and they are mapped directly into the
256-QAM subconstellation. The noise variance of the individual modulation classes which
consist of these bits are directly obtained from the error probabilities of the individual
modulation classes using Eq. (5.1), i.e.,

σ2
i =

1

2{erfc(2Pb,Mi
)}2

, i = 2, 3, 4 , (5.51)

where “erfc” is the complementary error function and Pb,Mi
is the error probability of the

bits belonging to the ith modulation class.
However, in Trellis Shaping, the first two bits, b1, b2, are defined by the shaper. For sign-
bit shaping with rate-1/2 inverse syndrome former (H−1)T , we must take the bit-error
probability of the inverse syndrome former into consideration as well. Subsequently we
show calculation of the bit error probability for the MSBs, i.e., the first modulation class
M1 in the next section.

5.4.1 Bit error probability for the MSBs

For trellis shaping, we considered the (5 , 7) convolutional code as the shaping code Cs,
with a generator matrix G, defined as (1 + D2, 1 + D + D2). The syndrome former,
i.e., the parity check matrix H for the shaping code is chosen as (1 + D + D2, 1 + D2).
The left inverse of the syndrome former (H−1)T is not unique, thus, we choose (2 , 3),
i.e., (D, 1 + D) as the left inverse syndrome former of the shaping code Cs as shown in
Fig. (5.7) [63]. In Trellis Shaping, the input bit stream used to determine the MSBs
are first encoded by (H−1)T . We approximate the bit-error probability using the Union
Bound. Based on the weight distribution of the code, the bit-error probability of the input
bits encoded by the (H−1)T can be calculated by exploiting the Union bound defined as

P (b) ≤
∞∑

d=dfree

Ad Pd , (5.52)

where, dfree is the free distance or the minimum Hamming distance of the code, Ad is
the weight distribution of the code and Pd is the probability to choose a wrong path at
distance d.
The transfer function of a code is calculated from the state diagram of the code. Let

+

Figure 5.7: Inverse syndrome former (H−1)T

us consider the state diagram of the (2,3) inverse syndrome former (H−1)T as shown in
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a)

b)

Figure 5.8: State diagram of (2 , 3) for the inverse syndrome former (H−1)T , (a) original, (b)
dissected at S0 for determining T (D)

Fig. 5.8(a). In order to find T (D) from the state diagram, state 0 (S0) is split into an
initial state and a final state as shown in Fig. 5.8 (b). Now, each connecting branch in
the modified state diagram is labeled by a branch “gain”, Dd, where d is the weight of
the output encoded bits. The transfer function in then calculated from the transition
equations of the modified state diagram, expressed as

S1 = D +DS1 , (5.53)

which, for S1 can be solved as

S1 =
D

1−D
. (5.54)

Likewise, the transition equation for the final state can be written as

T (D) = D2S1 . (5.55)

Inserting S1 from Eq. (5.54) into Eq. (5.55), we obtain

T (D) =
D3

1−D
, (5.56)

which can be extended using power series as

T (D) = D3 +D4 +D5 + . . .+Dl+3 + . . . .

In a more compact form, this can be expressed as

T (D) =
∞∑
d=3

Ad D
d . (5.57)

From the union bound, the event error probability of the input bit sequence is given by
the summation of the error probabilities of all the paths at distance d, i.e.,

P (E) <
∞∑
d

AdPd , (5.58)
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For an AWGN channel, with single sided noise power spectral density N0, the probability
to choose a wrong path at a distance d is expressed as [12]

Pd =
1

2
erfc

(√
Es
N0

d

)
, (5.59)

where “erfc” is the complementary error function and Es/N0 is the signal-to-noise ratio
for an AWGN channel. Inserting the value of Pd in Eq. (5.58), the event error probability
for an AWGN channel is obtained as

P (E) ≤ 1

2

∞∑
d=dfree

Ad erfc

(√
Es
N0

d

)
. (5.60)

From the Chernoff bound, we know that erfc
(√

Es

N0
d
)
≈
(
e
−Es

N0

)d
. Equation (5.60), thus,

takes the form

P (E) ≤ 1

2

∞∑
d=dfree

Ad

(
e
−Es

N0

)d
. (5.61)

In order to find the bit-error probability P (b) from the event error probability P (E), we
divide P (E) by the total number of input bits to the encoder, i.e., k. Moreover, as we
know that Es/N0 = REb/N0, where Eb/N0 is the signal-to-noise ratio per information bit
and R is the code rate. Exploiting the transfer function T (D), Eq. (5.61) for the bit-error
probability can be modified as

P (b) <
1

k

∂T (D, I)

∂I

∣∣∣∣
[D=e

−Es
N0 ,I=1]

≤ 1

k

1

2

∞∑
d=dfree

Bd

(
e
−Es

N0

)d
, (5.62)

where I represents the number of input ones to the encoder and Bd is the total number of
erroneous bits at distance d. At low error probabilities, the first term at the free distance
dfree of the code contributes the most. Thus, Eq. (5.62) can be approximated as

P (b) ≈ 1

k

1

2
Bdfree

(
e
−Es

N0

)dfree
. (5.63)

For the sign-bit shaping, the inverse syndrome former (H−1)T is a rate-1/2 code with
k = 1. Moreover, from the transfer function T (D), Bdfree = 1, and dfree = 3 for the
inverse syndrome former (H−1)T . However, the variance σP1 for the bits encoded by
(H−1)T is calculated from P1, the bit-error probability of the most significant bits of the
256-QAM symbol (as given in App. B). Using Eq. (5.1), σP1 can be written as

σ2
P1

=
1

2{erfc(2P1)}2
. (5.64)

With these values, the bit-error probability Pbsf for the input bit sequence encoded by
the inverse syndrome former is formulated as

Pbsf ≈ 1

2

(
e−

S
N

)3
, (5.65)
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Table 5.2: Variable-node degree distributions for irregular LDPC
with/without concatenated with Trellis shaping, for a 256-QAM
constellation with Gray mapping, Nm = 4 modulation classes.

M1 M2 M3 M4

with TS λ3 = 0.08583 λ3 = 0.0243 λ2 = 0.05175 λ2 = 0.08975
λ6 = 0.29473 λ6 = 0.10605 λ7 = 0.03603

λ7 = 0.09568 λ30 = 0.21588
Without TS λ6 = 0.03682 λ12 = 0.17234 λ2 = 0.04595 λ2 = 0.04207

λ7 = 0.02237 λ6 = 0.03446 λ6 = 0.04159
λ30 = 0.58173 λ30 = 0.02266

where S/N = Es/N0 with N = σ2
P1
. Using Eq. (5.1), the noise variance σ2

1 for the bits in
modulation class M1, can then be calculated as

σ2
1 =

1

2{erfc(2Pbsf )}2
. (5.66)

The variance vector σ for all individual modulation classes is then given as

σ = [σ1, σ2, σ3, σ4] . (5.67)

σi is the variance of the ith modulation class of the 256-QAM constellation.
Based on σ, we optimize the variable-node degree distribution λ for a given check-node
degree distribution ρ. The check-node degree distribution ρ(x) considered herein is ρ(x) =
0.8266 x34 + 0.1345 x35 + 0.0087 x70 + 0.0302 x71 [95]. Other parameters required for the
optimization of the degree distribution are, R = 6/7, dvmax = 30 and the proportion
of bits in each modulation class β = [128/896, 256/896, 256/896, 256/896]. Table 5.2
shows the optimized variable-node degree distribution using the procedure as explained
in Section 5.3.2 and the Linear Program in Section 5.3.3 with the given parameters.
Table 5.2 also shows the variable-node degree distribution for an irregular LDPC code
without trellis shaping, with parameters, R = 3/4, Nc = 1024, dvmax = 30, and β =
[0.25, 0.25, 0.25, 0.25].
After obtaining the optimized variable node degree distribution, we next construct

the H matrix using the PEG algorithm. For a 256-QAM constellation, we have four
modulation classes, the variable-node degree distribution is thus divided into four sub-
degree distributions. In order to ensure that each bit node is protected with the proper
noise level, the bit nodes are flagged from 1 - 4, depending on the modulation class they
belong to, using the information from the H matrix. We have considered the equivalent
binary channels, i.e., transmitted the encoded data over the binary channels with noise
variances σ.
At the receiver, for the LDPC decoder, the log-likelihood ratios (LLRs) for the LSBs
(modulation classesM2,M3,M4) are obtained directly from the channel output. However,
for the MSBs, the output bit sequence was selected on the combined output of the (2,3)
inverse syndrome former (H−1)T and the (5,7) shaping code Cs as shown in Fig. 5.9. To
decode the sequence selected by a trellis shaper, we use the BCJR algorithm based on the
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compound trellis diagram of the inverse syndrome former and the convolutional shaping
code as shown in Fig. 5.10. The number of states of the (2,3) (H−1)T , NsH = 2, and
that of the (5,7) Cs, NsCs

= 4. Thus, the total number of states of the compound trellis
Nsct = NsH · NsCs

= 8. Moreover, each state extends 4 branches to the following states.
The soft output, i.e., the LLRs obtained from the BCJR algorithm along with the LLRs
for the LSBs are then used as inputs to the LDPC decoder.

Figure 5.9: Trellis shaping with the (2 , 3) inverse syndrome former (H−1)T and the (5 , 7)
shaping code Cs

Figure 5.10: Compound trellis diagram for the Trellis Shaper of Fig. 5.9
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Performance at the transmitter, PAR reduction

Figure. 5.11 shows the CCDF of the PAR for an OFDM system with and without Trellis
Shaping. A gain of approximately 4.1 dB at 10−5 can be obtained using Trellis Shaping.
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Figure 5.11: CCDF(PAR) of Trellis Shaping for OFDM system, N = 128

FER of irregular vs. regular LDPC codes

As we stated earlier, irregular LDPC codes usually have better performances than regular
ones for long codes. Herein, we provide a comparison of the irregular and the regular
LDPC code, with and without Trellis Shaping. In order to compare our result, we consider
a (3,21) regular LDPC code with the same code rate as irregular LDPC codes. The H
matrix for the regular LDPC code is constructed using a random method.
Figure 5.12 shows the performance curves for irregular and regular LDPC codes. In case of
Trellis Shaping, the system performance can be improved by 0.6 dB when using irregular
LDPC codes as compared to regular LDPC codes. The figure also shows the FER curves
for a system using LDPC codes concatenated with OFDM without Trellis Shaping. Even
for the systems without Trellis Shaping the irregular LDPC codes outperforms the regular
codes. However, the frame-error ratio gap between the LDPC code concatenated with
Trellis Shaping and without Trellis Shaping is primarily due to the different code rates
used, i.e., 6/7 in case of Trellis Shaping and 3/4 without Trellis Shaping.
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Figure 5.12: FER curves for irregular vs. regular LDPC codes with and without Trellis Shaping
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Summary

Herein, we proposed PAR reduction algorithms to limit the peak excursions in point-to-
point and multi-user MIMO-OFDM systems. We also investigated Trellis Shaping and
improved the system performance in terms of BER by concatenating an optimized irreg-
ular LDPC code with Trellis Shaping for PAR of single antenna systems.
In the first part, we presented the OFDM system and different MIMO scenarios. We ad-
dressed the PAR problem statement along with consequences of high PAR caused by an
OFDM system. A mathematical as well as a statistical analysis of the PAR was provided
for an in-depth understanding of the PAR problem statement. From the brief overviews
of the different approaches made so far, to limit the peak excursions, Tone Reservation
(TR) is the least complex approach with higher gains. Besides TR, Trellis Shaping is also
a promising technique with very promising results.
Since Tone Reservation is the least complex algorithm for single antenna systems, with
this motivation, we first extended TR algorithm for PAR reduction of multi-antenna
MIMO-OFDM system. For a P2P MIMO-OFDM system, the weakest eigenchannel(s)
were reserved to generate a spiky function for PAR reduction. Based on the last column
of the preprocessing matrix, two approaches were proposed to obtain an optimum spiky
function. We showed that using the complex conjugate of the respective component of
the last column of the preprocessing matrix results in an almost optimum spiky function.
For a multi-user broadcast scenario, TR is the best choice for PAR reduction. For the
broadcast scenario, the spiky function is generated on a small number of tones reserved on
all spatial dimensions. Therefore, no implication needs to be considered at the transmitter
as well as the receiver ends which makes TR the most suitable candidate. We justified
the effectiveness of the proposed algorithm by extensive simulation results both with and
without mean power constraint.
We also proposed an alternative Least-Squares iterative algorithm for the PAR reduction
of multi-antenna systems. We showed that the weakest eigenchannels can also be used to
approximate and model the peak excursions in a Least-Squares sense. However, besides
the peak excursions, the algorithm approximates zeros in the remaining dimensions as
well, a drawback of using an l2 norm instead of an l∞ norm, which reduces the result
by a factor equal to M . We then showed that by weighting the modeled function, the
algorithm converges faster to the target values and leads to optimum performance. Sim-
ulation results shows that higher gains in the range of 6-7 dB can be obtained with the
proposed algorithm. However, the gain obtained, of course, depends on the complexity
(number of iterations), target value, and the weighting factor, with cost paid in the form
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of capacity loss and mean power increase. In order to investigate the capacity loss as-
sociated with the weakest eigenchannel, we made use of the random matrix theory. We
showed that the capacity loss associated with the weakest eigenchannels is very small,
which for low-dimensional MIMO is approximately the same as the capacity associated
with 10 % reserved tones in case of TR algorithm and goes to zero for high dimensional
Massive MIMO systems. We also computed the increase in the mean power of the trans-
mit signal due to the proposed algorithm. It has been found that the increase is very low,
only a few tenths of a dB. We next extended our Least-Squares algorithm to multi-user
broadcast scenarios. We considered medium to massive multi-user MIMO, with one in-
active user. We showed that the channel associated with the inactive user can be used in
the similar fashion to approximate the peak excursion for the BC channel. We compared
our LS algorithm to TR and SLM algorithms and found that our algorithm outperform
these algorithm in terms of their PAR reduction capability. Moreover, the capacity loss
and increase in the mean transmit power is very low in comparison to the TR algorithm.
Form the simulation results we can conclude that our LS algorithm is the best choice as
an alternative to the existing TR and SLM algorithms for MIMO-OFDM.
Trellis shaping is a promising technique for PAR reduction, however, with some open
problem in the optimum link to error correcting codes. In the last part, we thus con-
catenated an optimized irregular LDPC code with Trellis Shaping for PAR reduction in
single antenna OFDM. For the irregular LDPC code, we optimized the variable-node de-
gree distribution based on the irregularities of the individual bits inside a higher order
M-ary QAM constellation. For the input bit sequence encoded by the inverse syndrome
former, which are used to define the MSBs along with the valid code sequence from the
shaping code, the bit error probability were calculated exploiting the transfer function of
the inverse syndrome former. We also presented soft decision decoding of the input bit
sequence encoded by the inverse syndrom former. The soft decision decoding is carried
out using a BCJR algorithm based on the compound trellis of the shaping code and the
inverse syndrome former. We showed through simulation results that the system perfor-
mance can be improved by concatenating an irregular LDPC code with Trellis Shaping
as compared to using a regular LDPC code as in earlier works.
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Appendix A

Convergence of the Least-Squares
algorithm

The probability density function of a two-dimensional Gaussian, in Cartesian coordinates,
is given as

P (x, y) =
1

2π

∫ ∫
e−

(x2+y2)
2 dxdy . (A.1)

Converting Cartesian coordinates into polar coordinates, substituting r2 = x2 + y2 and
dx dy = r dr dθ, (A.1) is rephrased as

P (r, θ) =
1

2π

∫ ∫
e−

r2

2 r dr dθ . (A.2)

However, we need to integrate from some radius onward to infinity. Let τ be the threshold
value, then, the probability Po, that any value falls outside this radius (probability that
the peak value of a time domain sample is exceeding the given threshold value in Fig. 4.28),
is

Po =
1

2π

∫ 2π

0

∫ ∞

τ

e−
r2

2 r dr dθ

=
1

2π

∫ 2π

0

dθ

∫ ∞

τ

e−
r2

2 r dr

= −e−
r2

2 |∞τ
Po = e−

τ2

2 . (A.3)
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The average tail power Ptail of the two-dimensional Gaussian distribution is then derived
as

Ptail =
1

2π

∫ 2π

0

∫ ∞

τ

e−
r2

2 r (r − τ)2 dr dθ

=
1

2π

∫ 2π

0

dθ

∫ ∞

τ

e−
r2

2 r (r − τ)2 dr

=
1

2π
2π

∫ ∞

τ

e−
r2

2 r (r − τ)2 dr

=

∫ ∞

τ

e−
r2

2 r (r − τ)2 dr

=

∫ ∞

τ

e−
r2

2 r (r2 + τ 2 − 2τr) dr

Ptail =

∫ ∞

τ

e−
r2

2 (r3 + rτ 2 − 2τr2) dr (A.4)

Equation (A.4) can be rephrased as

Ptail =

∫ ∞

τ

r3e−
r2

2 dr︸ ︷︷ ︸
I

− 2τ

∫ ∞

τ

r2e−
r2

2 dr︸ ︷︷ ︸
II

+ τ 2
∫ ∞

τ

re−
r2

2 dr︸ ︷︷ ︸
III

. (A.5)

For convenience, we will solve each integral separately and then insert the individual
results into Eq. (A.5) to obtain the final result. However, before going to the solution, we
recall that

d

dr
e−

r2

2 = −r e−
r2

2 ,

or conversely, ∫
re−

r2

2 dr = −e−
r2

2 .

We will use this to solve the above integrals.

Integral I

∫ ∞

τ

r3e−
r2

2 dr
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By partial integration, the solution follows as∫ ∞

τ
r3e−

r2

2 dr =

∫ ∞

τ
r2 r e−

r2

2 dr

= r2
∫ ∞

τ
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r2

2 dr −
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[
d

dr
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r e−
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2 dr

]
dr

= −r2e−
r2

2 |∞τ +2
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r e−

r2

2 dr

= −r2e−
r2

2 |∞τ −2e−
r2
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τ
r3e−

r2

2 dr = τ2e−
τ2

2 + 2e−
τ2

2 . (A.6)

Integral II

2τ
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r2

2 dr
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2 dr =
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2 dr

= r

∫ ∞

τ
re−

r2

2 dr −
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dr
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2 dr
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Integral III

τ 2
∫ ∞

τ

re−
r2

2 dr

∫ ∞

τ

re−
r2

2 dr = −e−
r2

2 |∞τ

= e−
τ2

2

τ 2
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r2

2 dr = τ 2e−
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2 . (A.8)

Now inserting the results of the integrals I, II, and III into (A.5), we obtain

Ptail = τ 2e−
τ2

2 + 2e−
τ2

2 + τ 2e−
τ2

2

−2τ 2e−
τ2

2 − τ
√
8πQ(τ)

= 2e−
τ2

2 − τ
√
8πQ(τ) . (A.9)

In case of using erfc, we might rephrase Eq. (A.9) as

Ptail = 2e−
τ2

2 − τ
√
2π erfc

(
τ√
2

)
. (A.10)
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Bit error probabilities of a 256-QAM
symbol

As given in [93], the bit error probabilities of the individual bits inside 256-QAM constel-
lation, with Gray mapping, are given as
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Pb7,8 = 1/16
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