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Summary

�is PhD thesis makes contributions in the �eld of medical image analysis for assisting CT-based
staging and follow-up examinations of patients under chemotherapy.
In the �rst part, an algorithm for semi-automatic segmentation of liver metastases in CT images

is presented. �e user interaction is a stroke across the lesion. Special care was taken of keeping
the runtime within a clinically acceptable limit of less than 1 s on average. �e method is based
on histogram analysis, region growing, and morphological postprocessing. It is able to deal
with inhomogeneous density distributions and prevents leakage through the liver boundary. A
comprehensive evaluation of accuracy, reproducibility, and e�ciency was performed on 371 test
lesions with manual segmentations. �e method produces results of similar quality as other
state-of-the-art methods but is signi�cantly faster.
In order to accelerate follow-up examinations in the clinic, I implemented a framework for

automatic lesion tracking. For a segmented baseline lesion, it identi�es the corresponding lesion
in the follow-up image, automatically initializes the segmentation, and performs a plausibility
check. �e method is general, but optimized for lung nodules, liver metastases and lymph nodes.
So far, no other framework exists that automatizes follow-up examinations to this degree. �e
second part of the thesis starts with a problem analysis, examining the change of 994 follow-up
lesions under chemotherapy. A simulation of the behavior of di�erent similarity measures on a
lesion phantom motivates the subsequent presentation of a template matching algorithm tailored
to this problem. �e stages of the method are validated from a technical point of view on 207
independent cases before reporting a user study that evaluated possible bene�ts of the method for
the clinical workow.
For validating segmentation algorithms, manual delineations are o�en used, but their high

variability makes it di�cult to achieve reliable statements. �e third part of my thesis collects some
ideas how to quantify this problem and to overcome it in practice. Liver tumor segmentation in CT
is used as a consistent example. First, I present a generalization of the MICCAI Grand Challenge
score that takes the variability of multiple reference segmentations in account for each case. Second,
an analysis of the variability in manual delineations of ten experts is performed, using a novel
methodology for measuring the variability within a set of segmentations. �e part is concluded by
a concept and a validation study for a tool that allows experts to generate probabilistic reference
segmentations.
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Chapter 1

Introduction

1.1 About this thesis

�is PhD thesis is based onmywork as a research scientist at FraunhoferMEVIS between 2006 and
2013. In agreement with the principal orientation of the institute, it is largely application-centered
and a result of close cooperation with clinical and industrial partners. Speci�cally, my work was
part of a joint project with SiemensHealthcare on the one hand and radiologists from the university
hospitals in Berlin, Kiel, Mainz, Marburg, München, and Münster on the other hand. �e project
aims at providing so�ware assistance for CT-based staging and follow-up examinations of patients
under chemotherapy. �is includes the development of quantitative image analysis techniques
such as the semi-automatic segmentation and volumetry of lesions, but also the design of workow
support for detecting lesions and tracking their changes over time. �e entities in focus are lung
nodules, liver metastases and enlarged lymph nodes. Of the three main parts of this thesis, the �rst
two present results that have an immediate clinical application and a clear commercial perspective.
�is is complemented by a more theoretical part that illuminates validation methodology for the
methods developed earlier.

1.2 Clinical motivation

Chemotherapy is a treatment for cancer patients that is associated with severe side e�ects and high
costs. �erefore it is important to estimate the success of a therapy as soon as possible. Typically,
CT examinations are performed in intervals of three to six months. Reading these follow-up
examinations is one of the major tasks of a radiologist. �e most important criterion for standard
therapies is the change in size. Without so�ware support, it is only feasible to measure size in
terms of the diameter. �is procedure has been standardized for clinical studies by an international
consortium in 2000 (�erasse et al. 2000). According to the latest version of RECIST (Response
Evaluation Criteria in Solid Tumors) from 2009 (Eisenhauer et al. 2009), the largest diameter in
an arbitrary but consistent orientation is measured. �e only exception are lymph nodes, where
the diameter perpendicular to the largest diameter is used.
Being a one-dimensional measurement, the diameter can only give a coarse indication of the

actual volume of a lesion. RECIST de�nes 20% growth or 30% shrinkage of the diameter as
signi�cant change. �is corresponds to 73% or 66% volume change, respectively, if spherical
shape and uniform growth are assumed. �ese assumptions, however, are not true in general and
may lead to wrong conclusions in some cases. Furthermore, manual measurements are always
associated with inaccuracies and inconsistencies, as has been investigated in several studies. A
famous example is an experiment by Erasmus et al. (2003) where �ve radiologists examined the
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same lung nodules. In almost 30% of the patients the di�erence between the results of di�erent
readers exceeded the RECIST threshold for progressive disease. �e measurements were repeated
a�er a week, and evenwithin the same reader this number was as high as 10%. �is is not surprising
if we consider that for a lesion with a typical diameter of 20mm and an in-plane resolution of
1mm, the growth required by RECIST corresponds to just four voxels. It can easily be imagined
that the typical error of a manual measurement on an image with noise and partial volume e�ects
is in the same order of magnitude.
�e use of semi-automatic volumetry aims to handle both problems at the same time. While

manual contouring in all slices is much too time-consuming in practice, a computer is able to
perform a three-dimensional measurement in a few seconds. Also, an algorithm can give results
with lower variability, even if it depends on some user initialization. Of course, precision and
e�ciency of an algorithm have to be examined carefully and compared to the current standard
procedures in the clinic; in addition to accuracy, which is necessary to make computer-based
methods usable in the �rst place.
Some recent treatment options do not aim at reducing the size of a tumor, but still a semi-

automatic delineation can be useful for therapy monitoring. If the mean density or the necrosis
fraction of a lesion is the parameter of interest, it can easily be extracted. If, as in ablation procedures,
an apparent growth by a particular safety margin is expected, this can be visually veri�ed once the
extents of the lesion have been determined.
However, providing accurate and reproducible measurements is not the only purpose of medical

image analysis in the context of chemotherapy monitoring. Workow support and thus increasing
e�ciency and avoiding errors is gaining importance. Among our clinical partners, many radiolo-
gists complain about their workload and appreciate so�ware that automatizes tedious procedures
and allows them to focus on tasks that actually require expert knowledge.

1.3 The images

�e images used in this thesis are acquired by computed tomography (CT). CT scans are three-
dimensional and usually consist of a stack of axial slices which show cross-sections of the human
body. �e resolution is about 0.5 to 1mm on each slice and 1 to 5mm orthogonal to the slices. A
slice typically consists of 512 × 512 voxels, whereas the number of slices depends on the imaged
body region and the resolution.
�e image values are standardized and have a range of −1000 to 3072 Houns�eld units (HU).

Low values correspond to low attenuation and are visualized with darker gray values. �erefore,
regions �lled with air, such as the background and the lungs, are dark, and the brightest structures
are typically bones. Since CT is based on X-ray attenuation, the values have a physical meaning and
correspond directly to the tissue density. �is allows using �xed thresholds for simple segmentation
tasks such as lung segmentation or for checking the plausibility of segmentation results of particular
tissues.
Structures can be enhanced by applying contrast agents that have a higher attentuation than so�

tissue. When they are injected into a vein, blood vessels get higher HU values. Depending on the
time between injection and image acquisition, arteries or veins are enhanced.
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Chapter 1 Introduction

(a) Lung nodules (b) Liver metastases (c) Lymph nodes in the pelvis

Figure 1.1: Example CT slices showing the tumor entities relevant for this thesis.

Figure 1.1 shows slices of CT scans to illustrate the appearance of tumors and their surroundings.
Lung nodules are bright spots in the lungs, typically with a high contrast to the lung parenchyma.
Liver metastases can be bright or dark spots in the liver, depending on the contrast agent state and
type (see Section 2.2 for details). Lymph nodes are only visible in CT when they are pathologically
enlarged. �ey have a spherical shape and appear at particular positions in the body, o�en along
the main vessels.

1.4 Software assistant

�eOncology Prototype So�ware is a so�ware assistant that was developed at Fraunhofer MEVIS to
support volumetric follow-up examinations. �e methods described in this thesis were integrated
into the so�ware, which was then delivered to the clinical partners for evaluation. In order to
illuminate the context in which the new methods are used, the workow of the so�ware assistant
is summarized in this section. An earlier version has been described in more detail by Bornemann
et al. (2007). Since it is essentially a prototype for evaluating algorithms, it runs on standalone
computers and the data have to be imported manually.
�e so�ware o�ers semi-automatic segmentation methods for lung nodules, liver metastases

and enlarged lymph nodes (Moltz et al. 2009b). �e user selects a segmentation method, draws a
stroke across the lesion and gets an initial segmentation typically a�er less than 2 s, depending on
the size and complexity of the lesion. �e segmentation algorithm for liver lesions will be described
in detail in Part I. Various tools are available for e�cient manual re�nement of segmentation
results. When the user draws a partial contour to add or remove parts of the segmentation in a
single slice, this correction is automatically propagated to a set of adjacent slices. �e propagation
can be chosen to be either image-based (Heckel et al. 2009) or purely geometrical, based on a
method described by Heckel et al. (2011). In either case, the user has the complete control over the
�nal segmentation result.
For comparing lesions in baseline and follow-up images, both datasets are loaded and the results

of the baseline examination are displayed. An optional synchronization of the viewers aligns
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Figure 1.2: Screenshot of the Oncology Prototype Software in follow-up mode.

anatomically corresponding slices automatically and helps to �nd the segmented lesions in the
follow-up image and to detect changes.
An automatic lesion tracking, presented in Part II, can be run as a preprocessing step before a

radiologist starts reading a case. It identi�es the target lesions in the follow-up image and computes
the segmentations. �e radiologist then checks whether the correct lesion was found and re�nes
the segmentation if necessary. If a wrong lesion was segmented, the user can discard the result
and initialize a new segmentation. �e algorithm contains a mechanism that discards implausible
results automatically in order to account for lesions that vanish under therapy and for di�cult
cases with a large number of lesions or strong anatomical changes. In such cases, no precomputed
results are available.
Figure 1.2 shows a screenshot of the Oncology Prototype So�ware. It contains two viewing areas

with three orthogonal viewers each, displaying the baseline and follow-up images. In this example,
a pair of CT images of a patient with liver metastases has been loaded. �e segmentation results
are overlaid by yellow outlines. �e menu area on the le�hand side contains a list of the �ndings
and several buttons to select segmentation algorithms, start tracking for individual lesions, display
a report and start various other functionalities.

1.5 Measures for comparing segmentations

Since at several points in this thesis segmentation results are compared, an overview of com-
mon measures is given here. Let A be an algorithmic segmentation and M a manual reference
segmentation.
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Volume-based measures interpret the masks as voxel sets. �e volume overlap or Jaccard
coe�cient

∣A∩M∣
∣A∪M∣ (1.1)

and the Dice coe�cient
∣A∩M∣

1
2 (∣A∣ + ∣M∣)

(1.2)

are equivalent measures of agreement. If volumetry is the focus, the relative volume error

∣∣A∣ − ∣M∣∣
∣M∣ (1.3)

is a suitable metric.
Another possibility is to interpret the segmentations as sampled surfaces and compute distances

between them. From the de�nition of a point-to-mask distance

d(a,M) = min
m∈M

∣∣m − a∣∣, (1.4)

we can derive themean surface distance

mean
a∈A

d(a,M) (1.5)

and themaximum surface distance or Hausdor� distance

max
a∈A

d(a,M). (1.6)

1.6 Challenges in commercially oriented research

Large parts of this thesis were written in a product-oriented environment. �e algorithms were
developed speci�cally with a commercial exploitation in mind and in close cooperation with an
industrial partner. �is resulted in a slightly di�erent prioritization than is common in academic
research, which had an e�ect on some of the design decisions.
E�ciency is a paramount criterion. From the start, algorithms were developed in an optimized

environment, usingMeVisLab (Ritter et al. 2011) and C++ implementations of most image pro-
cessing functionalities, and the choice of methods was limited by computation time restrictions.
�erefore, the thesis explores how simple and fast methods can be used to achieve accurate results.
Another important criterion is plausibility of the results. Users typically expect good results

for cases they consider easy. If this is not ful�lled, they might lose their trust in the so�ware and
stop using it although it might work well on di�cult cases. �e more complex an algorithm is
internally, the harder it gets for users to predict its behavior. Optimally, users should be able to get
a good sense for the strengths and weaknesses of an algorithm. �is requirement is not necessarily
equivalent with the highest quality in the sense of accuracy evaluation and is therefore hard to
verify formally.
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A more technical challenge results from the fact that the segmentation algorithm presented in
this thesis was integrated into a commercial so�ware at an early stage. For all further developments,
the requirement was essentially to leave all good results unchanged and at the same time increase
the number of cases having good results. Hardly being possible at all, this means that initial
decisions could not easily be reverted. It also emphasizes the importance of regression testing.
Determining whether a result has become “better” or “worse” requires a sophisticated validation
framework and data. �is was the motivation for the deeper investigation of algorithm validation
techniques in Part III.
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Part I

Segmentation of liver lesions

13



Part I. Segmentation of liver lesions

Contributions An algorithm for semi-automatic segmentation of livermetastases in CT images
with a clinically acceptable runtime of less than 1 s on average.
Special consideration of inhomogeneous and peripheral lesions.
A comprehensive evaluation of accuracy, reproducibility and e�ciency on 371 test lesions with
manual segmentations.

Acknowledgments Some of the work described in this part was done in close cooperation
with my colleague Lars Bornemann, and a clear separation of authorship is not always possible.
Valuable feedback was provided in several workshops at FraunhoferMEVIS by our clinical partners
Hans-Christian Bauknecht, Hendrik Bolte, Michael Fabel, Markus Hittinger, Andreas Kießling,
Stephan Meier, Elena Peitgen, and Michael Püsken. �e manual segmentations for the evaluation
were created by Christiane Engel, Michaela Jesse, Ulrike Kayser, and Susanne Zentis.
�is work was funded in part by Siemens AG,Healthcare Sector, Imaging& ITDivision, Computed
Tomography, Forchheim, Germany.

Publications A preliminary description of the algorithm has been published in a special issue
on Digital Image Processing Techniques for Oncology of the IEEE Journal of Selected Topics in Signal
Processing (Moltz et al. 2009b). �e method participated and was presented in the 3D Liver Tumor
Segmentation Challenge atMedical Image Computing and Computer Assisted Intervention 2008
in New York. An oral presentation at the European Congress of Radiology 2010 in Vienna was
distinguished as a Best Scienti�c Paper Presentation. Parts of the algorithm and the evaluation with
manual segmentations have not been published previously.
Previously published material is reused with permission. ©2009 IEEE.
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Chapter 2

Introduction

2.1 Introduction

Segmentation is the main requirement for automated lesion volumetry. Generally, segmentation
methods can be subdivided into automatic, semi-automatic and interactive ones. While an au-
tomatic method only needs the image itself as an input, the other methods also require some
indication on where the object to be segmented is located. A semi-automaticmethod will then do
the remaining computation autonomously while interactivemethods typically consist of a loop of
user input and processing.
While a higher degree of automation generally seems to be a better choice in terms of user

workload and reproducibility, there is practically no segmentation task that can be solved fully
automatically in all conceivable cases. Furthermore, if an algorithm �rst has to detect an object of
interest, the computation time is inherently higher, if only because it has to process the entire image
and not just a region of interest (ROI) that has been derived from the user input. As a compromise,
methods with minimal user input are o�en used in practice. A single click can de�ne the location
of an object, but not its extents. Possible interactions that indicate size are a line through the object
or a rough outline in one slice which can be free-hand or a parameterized shape like an ellipse. In
the context of lesion segmentation for chemotherapy monitoring, drawing the largest diameter
is a natural initialization since it corresponds to the current standard measurement. �e only
di�erence is that it does not have to be as exact. Both a deviation from the largest diameter of
the object and a deviation from its boundary in the range a few voxels should be tolerated by the
algorithm. Such a coarse approximation of the RECIST diameter will be called a stroke.
�is analogy also allows an estimate of the admissible computation time of a segmentation

algorithm. As a general rule, clinicians would not use semi-automatic volumetry if it takes
signi�cantly longer than a manual diameter measurement. �e visual inspection of a lesion and
the careful adjustment of the largest diameter takes a few seconds, so this is the time an algorithm
may spend since the stroke can be drawn faster. However, since the segmentation result also has to
be veri�ed and possibly corrected by the user, a 3 s limit for the processing time was decided that
must be kept in 90% of the cases. �is is important since virtually all state-of-the-art methods are
quite far away from ful�lling this clinical acceptance criterion.
When I started working in the project, a mature algorithm for lung nodule segmentation

(Kuhnigk et al. 2006) and a preliminary version of a segmentation algorithm for liver and brain
lesions (Bornemann et al. 2007) were already available. �ey formed the basis of the developments
described in this part.
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Part I. Segmentation of liver lesions

2.2 Appearance of liver lesions

�e research in this part focuses on the segmentation of liver metastases because among hepatic
lesions they are most relevant for chemotherapy monitoring. Primary liver tumors like hepatocel-
lular carcinoma (HCC) are much less frequent in most parts of the world and are typically treated
surgically or by interventions such as radiofrequency ablation. Still, from an algorithmic point
of view, the actual diagnosis is less important than the appearance of a lesion. Since some HCCs
look much like metastases, the algorithm might still be able to segment them. In general, however,
HCCs pose problems that would require a di�erent algorithmic approach. In the following, I as-
sume that a lesion is either homogeneous and clearly darker or brighter than the liver parenchyma,
or that it is composed of a core and a rim, each of which is homogeneous in itself.
In native CT scans, most liver lesions are hardly visible, because their density does not di�er

much from that of the healthy parenchyma. �e usage of contrast agent, however, allows not
only the detection of lesions, but results in di�erent enhancement patterns which carry further
information about the lesion type.
Liver metastases are mostly hypovascularized. Since they do not take up contrast agent them-

selves, they are best visible when the parenchyma is enhanced, which is the case in the venous
phase. �ey will then appear hypodense, i.e., darker than their surroundings. Figures 2.1a to 2.1c
show such a metastasis in three di�erent contrast phases.
HCCs and some metastases are hypervascularized. �ese lesions enhance in the arterial phase,

earlier than the parenchyma, and appear hyperdense (Figure 2.1d). In the venous phase, the
parenchyma enhances as well and the lesion is no longer discernible.
Rim-enhancing lesions are a hybrid type, composed of a hypovascularized core surrounded by a

hypervascularized rim (Figure 2.1e). Lesions may also have an irregular density distribution. For
instance, they can have areas of necrosis which are darker than the rest of the lesion (Figure 2.1f),
whereas brighter spots are most o�en caused by calci�cation or transarterial chemoembolization
(TACE). �e latter is a treatment where a drug is injected to block the blood supply of the lesions.
�e deposits of the drug appear as strongly hyperdense spots in the lesion (Figure 2.1g). Large
lesions, mostly HCCs, can have inhomogeneous vascularization, resulting in irregular patterns of
hypodense and hyperdense areas (Figure 2.1h). �is last class will not be targeted by the developed
method.
Depending on the imaging parameters, but also on the general condition of the liver, the contrast-

to-noise ratio can be quite low (Figure 2.1i). �is makes liver lesions more di�cult to segment
than, for example, lung nodules. �is is even a problem for manual segmentation, because the
boundaries are o�en di�use. For threshold-based segmentation algorithms, this means that the
thresholds have to be chosen carefully and that further pre- and postprocessing will be necessary.
Another important issue when using thresholding is the possible vicinity of a lesion to a structure

of similar density. Several anatomical structures around the liver can look similar as a lesion,
most importantly the intercostal musculature (a band of muscles spanned by the ribs) or the
parenchyma of other abdominal organs such as the kidneys or the stomach. Lesions adjacent to
one of these structures o�en have no or very low contrast to them and can visually be delineated
only by extrapolating the liver shape.
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Chapter 2 Introduction

(a) Native (b) Arterial phase (c) Venous phase

(d) Hyperdense (e) Rim-enhancing (f ) Partially necrotic

(g) After TACE (h) Inhomogeneous HCC (i) Low contrast

Figure 2.1: Examples of liver lesions in CT.

2.3 Related work

Regarding lesion segmentation in CT, lung nodules were the �rst entity for which algorithms were
developed and established in the clinic. �e segmentation of liver metastases, in contrast, had not
been an area of intensive research when I started my work in 2006. Since about 2008, however,
especially elicited by the Liver Tumor Segmentation Challenge at MICCAI 2008 (Deng and Du
2008), the number of publications has increased substantially.
In order to structure the available literature, papers can �rst be classi�ed by their level of

automation. Completely automatic methods that include segmentation of the liver and detection
of tumors will not be considered in the following review. Since the task is much more complex
than segmenting a given tumor, these methods are computationally more expensive and mostly
less accurate with respect to the �nal segmentation quality.
On the level of semi-automatic methods, more or less all modern segmentation approaches

have been applied to liver tumors, o�en in di�erent variations.
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Part I. Segmentation of liver lesions

2.3.1 Region growing

A method as simple as region growing can be successfully applied for liver tumor segmentation if
it is combined with adequate threshold selection criteria and some shape constraints or morpho-
logical postprocessing. Zhao et al. (2006) incorporate knowledge about the expected local and
global shape directly into the region growing process. �is is meant to avoid irregularly shaped
segmentation masks and leakage at thin connections to isodense structures. Region growing is
performed separately on each slice. A similar approach was used by Wong et al. (2008) in the
Challenge. However, they only apply a size constraint to the segmentation.
�e in-house method (Bornemann et al. 2007) my work is based upon uses 3D region growing,

but it is purely threshold-based and the morphological re�nement is done a�erwards. In fact, it is
an extension of our lung nodule segmentation (Kuhnigk et al. 2006). �e core of this method, the
“smart opening” procedure, is described in Section 3.1.

2.3.2 Level sets

Two di�erent applications of the level sets concepts were described by Cai et al. (2007) and Smeets
et al. (2010). Cai’s basic idea is to consider a shell whose medial line is the current segmentation
boundary. Under the assumption that ideally the histogram of the shell should have two peaks of
similar height, the optimization of the shell location is driven by a level set speed function. Smeets,
who won the Challenge with his method, uses level sets in a more classical sense with the speed
image based on a fuzzy pixel classi�cation. �e level set is initialized by applying a spiral-scanning
technique.

2.3.3 Watershed transform

Another classical approach, the watershed transform, was tested in di�erent variants by Ray et al.
(2008). �ey use an iterative version on a gradient vector �eld rather than on the gradient image
and apply this technique in 2D and 3D. �e user can inuence the result by setting markers.

2.3.4 Graph cuts and other graph-basedmethods

In the last couple of years, graph cuts and other graph-based methods seemed to be the most
popular solution to the liver tumor segmentation problem. Stawiawski et al. (2008) combine it
with a watershed transform and work on the resulting region adjacency graph rather than the
voxel adjancency graph. Szilágyi et al. (2009) apply graph cuts on voxels, but their boundary prior
relies not only on intensities but also on local phase information. Drechsler et al. (2011) apply
a multi-resolution graph cuts scheme that reduces complexity without demanding the user to
specify a region of interest. A comparison of di�erent graph-based methods including graph cut
and random walker was done by Su et al. (2011) and no signi�cant di�erences in accuracy were
found for �ve of the six methods considered. Another application of the random walker algorithm
was proposed by Jolly and Grady (2008). �eir method is suitable for di�erent kinds of lesions
including liver metastases. �e seeds for the random walker are computed automatically from 2D
presegmentations based on fuzzy connectedness.
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A particularly interesting method was presented by Li and Jolly (2008). �ey search for a path
in a graph that optimizes particular boundary, regional and elasticity constraints. Notably, the
algorithm is able to detect multiple surfaces simultaneously, making it possible to segment tumors
with necroses and calci�cations in one pass. �is is so far the only method that explicitly addressed
such cases.

2.3.5 Machine learning approaches

Some methods based on di�erent machine learning approaches should be mentioned. Li et al.
(2006) train a classi�er to detect the boundary positions on 1d intensity pro�les. Unfortunately,
the paper does not state clearly how the training samples are generated. In the method by Zhou
et al. (2008), which ranked second in the Challenge, a support vector machine is trained to classify
voxels as tumor or background by manually selected samples. �e classi�cation works slice by
slice and propagates its results from the center to the margins. Finally, Taieb et al. (2008) iteratively
apply a smoothed Bayesian classi�er based on a multi-class intensity model and re�ne the result
by geodesic active contours.

2.3.6 Statistical approaches

�e algorithm of Häme and Pollari (2012) is based on non-parametric intensity distribution esti-
mation and a hidden Markov measure �eld model with a spherical shape prior. It was designed to
achieve reliable results in cases with low contrast-to-noise ratio. It can, however, not automatically
separate attached isodense structures from the lesion. �erefore, a post-processing step removes
“handle”-shaped regions at the boundary. �e method was extended to use multiple images from
di�erent contrast phases and perform a combined optimization. While this increases robustness,
it requires a computationally expensive registration.

2.3.7 Discussion

Given this diversity of approaches that have been applied to liver tumor segmentation, it is hard to
tell whether one is more adequate than the other. In the Challenge at MICCAI 2008, methods
as di�erent as level sets, voxel classi�cation and region growing showed almost equal accuracy.
Methods that did not participate in the challenge can only be compared analytically since the
reported results were obtained on di�erent data sets. Also, computation times are o�en marked as
“non-optimized” or not reported at all. None of the cited publications states a runtime even close
to the 3 s limit that is required for my development. �e challenge winners reported times of 20 s
to 2min (Smeets et al. 2010) and 7 to 30min (Zhou et al. 2008).
Only few of the available methods deal explicitly with the possible problems stated in Section 2.2:

inhomogeneous lesions and lesions with contact to similar structures. Algorithms that incorporate
shape constraints may be able to prevent leakage outside the liver in some cases, but probably not
for large lesions or when the connection to an isodense structure is extensive. “Easy” solutions
such as computing a liver segmentation beforehand or allowing the user to set backgroundmarkers
in such structures were not allowed in my project.
As alreadymentioned, only Li and Jolly (2008) have dealt explicitly with severely inhomogeneous

lesions that feature necroses or calci�cations. �ey do not show any examples of rim-enhancing
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Dataset Hospitals Scanners Patients Lesions

Siemens 5 (DE, US) Siemens 15 72
MICCAI Challenge undisclosed undisclosed 4 10
MeVis Distant Services 27 (CH, CN, DE, GE, Philips, 152 371

JP, SE, US) Siemens, Toshiba

Table 2.1: Overview of available data sets with manual segmentations.

Parameter Min Median Max

Slice thickness (mm) 0.5 1.0 5.0
Reconstruction increment (mm) 0.5 1.0 5.0
Tube voltage (kV) 120 120 140
Tube current (mAs) 100 293 849
Number of frames 46 190 505
Pixel spacing (mm) 0.53 0.71 0.98
Reconstruction kernel Siemens: B10s–B60f

Philips: B
Toshiba: FC03–FC13
GE: Soft–Standard

Table 2.2: Overview of acquisition parameters of the available data.

metastases. Since their method is completely di�erent than the one on top of which I am building
my extensions, I cannot apply their methodology.

2.4 Data

An overview of the available data sets for development and evaluation is given in Table 2.1. In total,
there are 453 lesions from 171 patients withmanual segmentations drawn by experts (radiologists or
radiology technicians). �ese are from a variety of clinics in Europe, North America and Asia and
scanners by four di�erent manufacturers (Table 2.1). �ey include test data provided by Siemens,
the training data from the MICCAI Liver Tumor Segmentation Challenge, and data submitted to
MeVis Distant Services for liver surgery planning. �e imaging parameters are summarized in
Table 2.2.
�e �rst two data sets as well as a large amount of other data without reference segmentations

were used for development and parameter optimization. �e third data set was used strictly for
evaluation purposes. Together, the data form a representative collection of liver lesions and the
reference segmentations are completely independent of the algorithm.
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Algorithm

3.1 The basic algorithm: “smart opening”

�e smart opening algorithm was developed by Kuhnigk et al. (2006) for segmenting solid lung
nodules. It tackles a problem that is relevant for other tumor types as well: the contact to vessels or
other thin, elongated structures that feature a similar density in CT scans. It is obvious that a mere
threshold-based method is not su�cient for segmentation in such a situation. Since the lesions are
mostly homogeneous it can, however, be used as a �rst step to obtain a superset of voxels that may
be part of the lesion. �is can be implemented e�ciently as a 3D region growing starting from the
center of the ROI. �e thresholds can be �xed for lung nodules or determined adaptively from an
analysis of the density distribution in the ROI.
For a typical lung nodule, the region growing result contains the complete lesion and additionally

parts of the attached vasculature. A morphological opening operation is an obvious choice to
remove the vessels, but the challenge lies in determining the optimal erosion strength. Since
tumors and their supplying vessels can di�er in size signi�cantly, an erosion with a �xed-size
kernel cannot be used since this would either maintain thick vessels that should be removed or
erode the lesion too strongly so that details of its boundary would be lost.
�e idea of smart opening is to choose the erosion strength adaptively. To facilitate the compu-

tations, erosion is implemented by thresholding on a distance map that contains the distance of
each mask voxel to the closest background voxel. �e underlying assumption is that all vessels are
connected to the boundary of the ROI and that the diameter of a vessel decreases monotonically
in its course. In order to disconnect the mask, all paths from the ROI center to the boundary are
considered. �e maximum of all minimum path diameters is the cut-o� value that removes all
vessels.
�e second step of the opening operation is a dilation that reconstructs the lesion in its original

size without regrowing the vessels. �e dilation is again implemented by thresholding on a distance
map, but this time it shows the distances of all background voxels to the erodedmask. �e threshold
is chosen slightly higher than the erosion threshold so that in a �nal re�nement step all boundary
details can be reproduced by intersection with the region growing result.
It should be noted that this procedure alone is not suitable if more extensive connections to

structures of similar density are present. In the liver, this problem occurs in some lesions at the
organ boundary if they have contact to isodense structures outside the liver, most importantly the
intercostal musculature. �is requires a special handling, either before or a�er smart opening.
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(a) Original (b) Region growing (c) Erosion

(d) Slight over-dilation (e) Boundary re�nement

Figure 3.1: Example application of smart opening on a liver metastasis. Note how the connections to
three adjacent structures (muscle, biliary duct and another lesion) are removed.

3.2 Histogram analysis and threshold selection

Although initially developed for lung nodules, smart opening is also a suitable basis for segmenting
liver metastases. While vessels are only a problem for hyperdense lesions, it can handle non-
extensive contact to the biliary duct, other lesions or neighboring organs as well. Also, due to
the low contrast-to-noise ratio, smart opening helps to create results with compact shapes, which
cannot be generated by thresholding alone. Figure 3.1 shows an example where smart opening is
applied to a liver metastasis.
For lung nodules, a �xed threshold range was used for the initial region growing. For liver

metastases, due to the high diversity in their appearance, the thresholds have to be determined
adaptively. �iswill be done based on an analysis of the density distribution in the ROI. Information
given by the user is reected in the size and center of the ROI and in the stroke that is assumed to
be an approximation of the maximum diameter of the lesion. �e density distribution under the
stroke provides information about the “relative density” of the lesion compared to the parenchyma
and can be used to detect inhomogeneous metastases.
Bornemann et al. (2007) described a generic procedure for computing thresholds that has been

applied to liver and brain lesions. It is based on two estimates: ℓ, the typical lesion value, is the
value at the stroke center a�er Gaussian smoothing, and p, the typical parenchyma value, is the
highest peak of the ROI histogram. �en, three cases are considered, using a threshold δ that
describes the minimum expected contrast between lesion and parenchyma.
If ℓ < p−δ, the lesion is hypodense and the threshold range is set to [−∞, 12(ℓ+p)]. Analogously,

if ℓ > p + δ, the lesion is hyperdense and the threshold range is set to [ 12(ℓ + p),∞]. If, however,
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∣ℓ − p∣ < δ, it is assumed that p is not a suitable value for separation and a �xed-width interval
around ℓ is used instead. �is interval may be narrowed down iteratively if it includes too many
voxels.
When this procedure is applied to a particular lesion type with known properties in CT imaging,

the open “outer” thresholds are not optimal. For instance, if a hypodense lesion lies adjacent to
the lung, the latter is included in the threshold range. Similarly, a hyperdense lesion can have
contact to a rib or a contrast-enhanced vessel. �erefore, as a �rst change, the thresholds were
set to 10HU and 180HU, respectively. �ese values were extracted by analyzing the development
data. Fixed thresholds are preferable where possible because they reduce the dependency of the
user interaction.
�e chosen thresholds span the typical range of lesions, but there might be cases where the

stroke clearly covers even darker or brighter regions. So far, however, only the stroke center is
taken into account. Since liver lesions can have low contrast to the parenchyma and have an
inhomogeneous density distribution, the values under the stroke can give additional information
or allow more robust statistics. �erefore, another histogram is computed for the stroke voxels
where the stroke is dilated with a 3 × 3 × 3 kernel without elongating it in order to get a larger
amount of representative lesion values. In order to make the threshold range cover unusually dark
or bright lesions, it is extended to the 10% or 90% quantiles of the stroke histogram. �is choice
of quantiles accounts for noise and strokes that possibly extend into the background. Quantiles
are also more reproducible than the actual extrema.
At this point, the threshold range is

[min(10HU, ℓ̃0.1),
1
2
(ℓ + p)] (3.1)

for hypodense lesions and

[ 1
2
(ℓ + p), max(180HU, ℓ̃0.9)] (3.2)

for hyperdense lesions, where ℓ̃● denotes quantiles of the stroke histogram. �is is already su�cient
for a large amount of liver lesions which can be adequately described by a single typical lesion
and background value, i.e., for cases with homogeneous density within and outside the lesion and
clear contrast.
�e general procedure from Bornemann et al. (2007) invokes a special handling if the di�erence

between ℓ and p is small. �is handling is heuristic and does not take into account that there can
be di�erent reasons which require di�erent reactions. Of course, there can be cases where the
contrast is actually lower than the value of δ that has been determined by parameter optimization.
Most of the time, however, it has to be assumed that either ℓ or p are not representative of the
lesion or background, respectively, or that a single value is not su�cient to describe a distribution
that is more complex due to inhomogeneities.
�erefore, a more detailed analysis of the ROI con�guration is introduced. Such a con�guration

is described by a list of lesion and background values. �e threshold range is then determined
depending on the number and relation of these values. Figure 3.2 shows an overview of nine ROI
con�gurations for hypodense lesions. By inverting the gray value relations, the corresponding
con�gurations for hyperdense lesions can be generated. Together, this set is su�cient to describe
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Figure 3.2:Models for possible ROI con�gurations of hypodense lesions with one or two lesion values
and one or two background values. Stroke and ROI histograms are solid and dotted, respectively.
(a) Simple hypodense lesion. (b) Hypodense lesion with enhanced rim. (c) Hypodense lesion with
necrotic core. (d) Multiple hypodense lesions. (e) Multiple rim-enhanced lesions. (f) Multiple necrotic
lesions. (g) Hypodense lesion with dark adjacent structure. (h) Rim-enhanced lesion with dark adjacent
structure. (i) Necrotic lesion with dark adjacent structure.

almost all cases encountered in practice. Note that the model images in the �gure only serve as
illustrations; the actual analysis relies purely on the histograms.
In fact, only the peaks of the two histograms are considered. Each peak is a candidate for a

typical lesion or background value, respectively. In practice, one or two values of each type are
su�cient, although it is possible to construct cases with three or even more background values.
A single lesion value is used for homogeneous lesions where the density distribution is approx-

imately normal (Figure 3.2a). Here and in the remainder of Figure 3.2, a shorthand notation is
used to describe the con�gurations. For a simple hypodense lesion, LB denotes that there is one
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lesion and one background value and that the lesion value is lower. A simple hyperdense lesion
would be BL.
A pair of lesion values occurs if a lesion consists of two separate parts, a core and a rim, as

shown in the middle and right columns of Figure 3.2. �ese are most o�en hypodense lesions
with a hyperdense rim (LBL, Figure 3.2b) or with a necrotic, i.e. even more hypodense, core (LLB,
Figure 3.2c). Lesions that do not follow this core-rim model may not be segmented properly
by the algorithm, but they are rare among liver metastases. Obviously, it cannot be deduced
from the histogram which of the two peaks belongs to the core and which one to the rim. Since
segmentation has to start in the core, it is assumed that the value closer to the one at the stroke
center represents the core.
A single background value is su�cient if the liver parenchyma is the only dominant structure

in the ROI. However, there are cases where other structures create additional peaks in the ROI
histogram, which might even be higher. Essentially, two situations can be distinguished. If a lesion
is very large compared to the liver or if there are multiple lesions in close vicinity, the typical lesion
value can also be represented by a peak of the ROI histogram. �is means that there is a pair of a
lesion value and a background value which are very close (denoted by L=B). Such a background
value must not be used for threshold determination because it does not represent a structure that
should be separated from the lesion. �erefore, background values are discarded if they do not
keep a safety distance of δ to all lesion values. Figures 3.2d to 3.2f show the possible constellations
and how they are reduced to cases with a single background value.
Unfortunately, a similar situation can occur when the stroke is drawn too long or when the

lesion contains voxels with parenchyma density, o�en caused by partial volume e�ects. �en, the
lesion value would have to be discarded, whereas the background value is correct. �is occurs
most o�en for very small lesions and short strokes, where the dilation will include too many
background and partial volume voxels and the histogram may have spurious peaks. �erefore,
the stroke histogram is only used if the stroke is longer than a threshold which was empirically
optimized and set to 10mm. Otherwise, the value at the stroke center is used as the typical lesion
value.
If the lesion is close to the liver boundary, structures outside the liver can be represented in the

ROI histogram as well and this can be helpful to prevent the segmentation from leaking out of
the liver. �is gives rise to the BLB, BLBL and BLLB types (Figures 3.2g to 3.2i). In these cases,
the �xed lower threshold is replaced by the mean of the lower background value and the (lower)
lesion value.
In theory, it is possible to have even more peaks in the histograms, but not all of them are

relevant. �erefore, the following �ve values are extracted:

• ℓ0: the le�most peak of the stroke histogram,

• ℓ1: the rightmost peak of the stroke histogram,

• b0: the rightmost peak of the ROI histogram below ℓ0 − δ, if any,

• b1: the le�most peak of the ROI histogram between ℓ0 + δ and ℓ1 − δ, if any,

• b2: the le�most peak of the ROI histogram above ℓ1 + δ, if any.
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function AnalyzeStroke
if stroke available and longer than 10mm then

Compute histogram of the ROI masked with the dilated stroke
Smooth histogram using linear di�usion
Compute peak positions from smoothed histogram
ℓ0 ← leftmost peak
ℓ1 ← rightmost peak
s ← value at seed point (smoothed)

else
ℓ0 ← ℓ1 ← value at seed point (smoothed)

return (ℓ0 , ℓ1)

Algorithm 3.1: Stroke analysis

Note that the two ℓ values may be equal and that only one of the b values actually needs to be set.
If no b can be found according to these rules, the highest peak is used regardless of its distance to
the ℓ values. �e histogram analysis is summarized in Algorithms 3.1 and 3.2.
�e thresholds are now computed using these �ve values. If the lesion has both hypodense and

hyperdense components, i.e. if b1 is available, the value at the seed point is used to determine
which ℓ value represents the core. Any available b values are used to separate the lesion from the
background. Otherwise, the algorithm uses �xed thresholds and stroke quantiles as before. �is is
summarized in Algorithm 3.3.
Some examples of di�erent ROI con�gurations in real images are shown for illustration in

Figure 3.3.

3.3 Special ROI con�gurations

So far, the analysis of ROI con�guration relies on the histogram peaks and removes peaks only
if two of them are very close together and probably represent the same structure. In practice, of
course, there are cases which do not �t to any of the models in Figure 3.2 or where so much noise
is present that the histograms look di�erent. �en, it can be reasonable to discard peaks or add
additional values which do not correspond to a peak. �e rules described in this section are driven
by problems observed in practice. Although they annoy users when they occur, they are too rare
to have a signi�cant e�ect in the evaluation and therefore parameters could not be optimized
formally. Furthermore, the extensions make stronger use of the stroke quantiles and may thus
reduce reproducibility. �erefore, the following steps are highlighted in Algorithm 3.2 and may
optionally be disabled.
�ree types of problems that occurred several times in the data base are illustrated in Figure 3.4.

In the �rst type (Figure 3.4a), a structure outside the liver creates a peak in the ROI histogram
between lesion and parenchyma. It should not be used because then the threshold range for the
lesion could get too small. A rule was added not to use a peak between ℓ̃0.1 and ℓ̃0.9 unless one of
two conditions is ful�lled: either it is the maximum peak, i.e., it is probably the parenchyma and
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function AnalyzeROI(ℓ0 , ℓ1 , δ)
Compute histogram of the ROI
Smooth histogram using linear di�usion
Compute peak positions from smoothed histogram
bmax ← position of highest peak
b0 ← NaN; b1 ← NaN; b2 ← NaN
for all peaks b, sorted by position, do

if b < ℓ0 − δ ∧ (b = bmax ∨ b < ℓ̃0.1) then
b0 ← b ▷ b0 is the rightmost peak below ℓ0 − δ

else if b ∈ [ℓ0 + δ, ℓ1 − δ] then
b1 ← b ▷ b1 is the rightmost peak in [ℓ0 + δ, ℓ1 − δ]

else if b > ℓ1 + δ ∧ (b = bmax ∨ b > ℓ̃0.9) then
b2 ← b ▷ b2 is the leftmost peak below ℓ0 − δ
break

if none of b0 , b1 , b2 assigned then
if bmax < ℓ0 then

b0 ← bmax

else if bmax ∈ [ℓ0 , ℓ1] then
b1 ← bmax

else if bmax > ℓ2 then
b2 ← bmax

if ℓ0 = ℓ1 then
h ← ℓ̃−1(b)
if b0 ≠ NaN ∧ b0 > ℓ̃0.2 then

ℓ0 ← ℓ̃ h
2

b1 ← b0 ; b0 ← NaN
else if b2 ≠ NaN ∧ b2 < ℓ̃0.8 then

ℓ1 ← ℓ̃ h+1
2

b1 ← b2 ; b2 ← NaN

if b1 = NaN ∧ ℓ0 ≠ ℓ1 then
if b0 ≠ NaN ∧ ℓ0 < b0 + δ ∧ ∣ℓ0 − s∣ < ∣ℓ1 − s∣ then

ℓ0 = ℓ1
if b2 ≠ NaN ∧ ℓ1 > b2 − δ ∧ ∣ℓ1 − s∣ < ∣ℓ0 − s∣ then

ℓ1 = ℓ0
return (b0 , b1 , b2)

Algorithm 3.2: ROI analysis. The gray overlays indicate the handling for special ROI con�gurations from
Section 3.3.
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function ComputeThresholds(b0 , ℓ0 , b1 , ℓ1 , b2 , s)
if b1 = NaN then ▷ homogeneous lesion, no matter whether it is hypodense or hyperdense

if b0 = NaN then
t− ← min(10 HU, ℓ̃0.1)

else
t− ←

1
2 (ℓ0 + b0)

if b2 = NaN then
t+ ← max(180HU, ℓ̃0.9)

else
t+ ←

1
2 (ℓ1 + b2)

else ▷ inhomogeneous lesion, s decides whether segmentation starts with ℓ0 or ℓ1
if s < b1 then ▷ start with hypodense part

if b0 = NaN then
t− ← min(10 HU, ℓ̃0.1)

else
t− ←

1
2 (ℓ0 + b0)

t+ ←
1
2 (ℓ0 + b1)

else ▷ start with hyperdense part
t− ←

1
2 (ℓ1 + b1)

if b2 = NaN then
t+ ← max(180HU, ℓ̃0.9)

else
t+ ←

1
2 (ℓ1 + b2)

return (t− , t+)

Algorithm 3.3: Threshold determination

the contrast-to-noise ratio is just low; or it lies between ℓ0 + δ and ℓ1 − δ, i.e., the lesion is probably
inhomogeneous.
Figure 3.4b illustrates the opposite situation where a lesion value should be discarded. For

small rim-enhancing lesions, the core is sometimes still slightly brighter than the parenchyma
due to partial volume e�ects. If the lesion value contributed by the core were used, the threshold
range would cover much of the parenchyma. �erefore, in such a case, the lesion value should be
removed. Unfortunately, the histogram con�guration is quite similar to the one in Figure 3.2c if
gray value relations are inverted, so in general it will not be a good idea to discard the lesion value
that is closer to the background value. �e main di�erence here is that this lesion value belongs to
the core. �erefore removing it will not be a problem because the core can be closed during the
smart opening operation.
As a third problem, inhomogeneous lesions do not always have two peaks in the stroke histogram.

Especially if there is a broad partial volume zone between the core and the rim, the stroke histogram
can be very skewed but unimodal (Figure 3.4c). However, it is characteristic of these cases that a b
value is “in the middle” of the stroke histogram. Formally, the ratio of stroke voxels less than b
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Figure 3.3: Examples of di�erent ROI con�gurations, showing the central axial slices of the ROIs, the
stroke histograms (solid) and the ROI histograms (dashed).
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Figure 3.4:Models of some ROI con�gurations for which a special handling was implemented. (a) Hy-
podense lesion with medium dark adjacent structure. (b) Hyperdense lesion with small necrosis and
partial volume e�ect. (c) Hypodense lesion with small enhanced rim and partial volume e�ect.

29



Part I. Segmentation of liver lesions
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Figure 3.5: Step-by-step illustration of the segmentation algorithm for liver metastases with hyperdense
rims. (a) Original ROI with stroke. (b) Histograms of the stroke (solid) and the ROI (dashed). (c) Segmen-
tation of the hypodense core of the lesion. (d) ROI after �lling the dilated core (in yellow) with a typical
value of the hyperdense rim. (e) Final segmentation result.

is computed, giving the amount of hypodense voxels. It can expressed as h = ℓ̃−1(b), using the
CDF of the stroke as the inverse of the quantile function ℓ̃. If h di�ers clearly from both 0 and 1,
the lesion has both hypodense and hyperdense compartments and should be handled as if it had
two lesion values. In practice, the threshold range for h was set [0.2, 0.8]. �e additional lesion
value is then a quantile of ℓ at the average of h and either 0 or 1, depending on whether h is less or
greater than 0.5. A�er adding a lesion value, the background values have to be updated so that the
relation b0 ≤ ℓ0 ≤ b1 ≤ ℓ1 ≤ b2 is still ful�lled for all b values that are set.

3.4 Two-step segmentation of inhomogeneous lesions

For inhomogeneous lesions, only the core has been segmented so far. In order to add the rim,
a second segmentation step is added. It is triggered by the presence of b1, a background value
between the two lesions values. �e procedure is illustrated in Figure 3.5.
�e basic idea is to �ll the core with the typical value of the rim so that a “virtual” hyperdense

lesion is created. �is value is either ℓ0 or ℓ1, depending on which lesion value was used in the
�rst step. Due to the partial volume e�ect, there is a narrow zone of voxels between the originally
hypodense and hyperdense parts of the lesion that have a density similar to the parenchyma.
�erefore the core mask is slightly dilated to bridge this zone, because otherwise the segmentation
might not be able to reach the rim. �e dilation strength depends on the longest diameter dcore of
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function ComputeThresholds2(b0 , ℓ0 , b1 , ℓ1 , b2)
if b1 ≠ NaN then ▷ inhomogeneous lesion

if s < b1 then ▷ add hyperdense rim
Fill mask with ℓ1
t− ←

1
2 (ℓ1 + b1)

if b2 = NaN then
t+ ← max(180HU, ℓ̃0.9 , ℓ1)

else
t+ ←

1
2 (ℓ1 + b2)

t+ ←
1
2 (ℓ0 + b1)

else ▷ add hypodense rim
Fill mask with ℓ2
if b0 = NaN then

t− ← min(10 HU, ℓ̃0.1 , ℓ0)
else

t− ←
1
2 (ℓ2 + b2)

t+ ←
1
2 (ℓ2 + b1)

return (t− , t+)

Algorithm 3.4: Threshold determination for second segmentation step.

the core mask and the length of the stroke, which is the expected lesion diameter dlesion. �e width
of the rim is 1

2(dlesion − dcore). �is value, truncated to whole voxels, is the size of the dilation
kernel, so that about half of the rim will be covered. Note that these voxels are not necessarily
included in the �nal segmentation, because smart opening might still remove them. �e only
purpose of this step is to have them included in the threshold range. �is is important because
rims may have varying width or be incomplete. Also, in order to make sure that only the density
range of the partial volume zone is a�ected, the dilation is only allowed to add voxels between
ℓ0 and ℓ1. �e thresholds for the second smart opening are computed in a similar way as before
(Algorithm 3.4).
�e fact that the special handling for inhomogeneous lesions is triggered by an analysis of the

stroke histogram allows the user to decide whether the hyperdense part should be segmented
without requiring any additional interaction. If the stroke is drawn across the hypodense part only,
the postprocessing step is omitted. I found that o�en radiological expertise is needed to make this
decision and that an automatic detection is not satisfying. �is is also important because follow-up
measurements have to be consistent and this cannot be guaranteed by a fully automatic solution.
It should be noted that this procedure is robust in cases where a rim was detected but is not

actually present. In this case, the dilation strength will be zero, and due to the sophisticated
threshold selection, the second segmentation causes no signi�cant changes to the mask. �erefore
the thresholds for the fraction of hypodense voxels h are not critical.
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As mentioned earlier, there are other forms of inhomogeneous liver metastases that do not have
such a regular core-rim structure. �ese cases are not handled correctly by the algorithm and
demand a completely di�erent approach that is outside the scope of this thesis.

3.5 Segmentation of peripheral liver metastases

�e segmentation of lesions with contact to structures outside the liver constitutes a challenge
because there is o�en no visual contrast. �e algorithm presented so far has a tendency to
either create a too small, roundish segmentation or to leak into the adjacent structure. Although
the results are not necessarily bad in terms of volume overlap, they are visually unpleasing and
sometimes obviously incorrect.
In many cases, this problem could be solved by computing a liver segmentation beforehand and

incorporating the liver mask into the lesion segmentation. A global view on the liver and a shape
model, as used bymanymodern liver segmentation algorithms, could help here. Unfortunately, this
approach would take too much time. Also, there might still be cases where the liver segmentation
fails and excludes a lesion from the liver mask.
�erefore, I developed a method that estimates the liver boundary locally in the ROI. Similar to

what Kuhnigk et al. (2006) do for juxtapleural lung nodules, the method makes use of the fact
that the liver is at least locally convex in most parts. Now, lesions in the periphery of the liver can
essentially be divided into three classes:
No leakage For lesions that lie adjacent to the lung, the heart or some other clearly contrasted

structure, there is no risk of leakage. �ese lesions do not require a special handling, but of course
the results should not be signi�cantly deteriorated by a special handling for other cases. �is refers
to accuracy as well as e�ciency (Figure 3.6a).
Within convex hull of liver If a tumor is not too large and not situated in an area where the

liver contour has a very high curvature, it is possible to reconstruct the liver shape by computing a
convex hull of the parenchyma contained in the ROI. It is crucial to make sure that the convex
hull covers the lesion completely. Otherwise the segmentation will cut right through a lesion. �is
is worse than leakage because it is harder to understand for a user, especially in places where the
lesion is clearly delineated (Figure 3.7a).
Beyond convex hull of liver For large lesions, the convex hull approach does not work, because

it is not able to reconstruct the curvature of the liver boundary. Looking at an example (Figure 3.6b),
it becomes clear that it is very hard or impossible to estimate the liver boundary without using a
global shape model. For these cases, however, slight leakage is less of a problem because it does
not have a large impact on the measured volume. �ey are also perceived as “di�cult” cases by
most users and segmentation problems are more likely to be tolerated.
�ese considerations motivate the following approach. First, a lesion is assigned to one of the

three classes. Second, if the convex hull approach is necessary and feasible, it is applied; otherwise,
no special handling is performed. �e two steps will be described in reverse order, because it is
easier to understand the classi�er once the method with its strengths and weaknesses has been
introduced.
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(a) (b)

Figure 3.6: (a) Peripheral lesion with no risk of leakage. (b) Peripheral lesion that protrudes from the
convex hull of the liver parenchyma.

Similar to what was said in Section 3.3, peripheral liver lesions are not frequent enough to
perform a formal parameter optimization. �erefore the method was mostly designed by visual
inspection of results on cases where no reference segmentation was available.

3.5.1 Local liver boundary estimation

�e liver boundary estimation starts with a coarse segmentation of the liver parenchyma. If a
single b value was set during histogram analysis, this is supposed to be a typical parenchyma value.
Otherwise a heuristics is used: If b1 is given, it is most probably the parenchyma. If both b0 and b2
are given and ℓ0 is less than the ROI median, b2 is used, otherwise b0. Let the chosen value be p.
An initial parenchyma mask is created by thresholding in a range of 20HU around p (Fig-

ure 3.7b). Since this mask can include other structures outside the liver, it is morphologically
opened, the largest connected component is chosen, and it is closed again (Figure 3.7c). Addition-
ally, to exclude the ribs, which o�en have values in the parenchyma range around a very bright
center, a bone mask is subtracted from the parenchyma mask. �e bone mask is computed by
thresholding above 200HU and dilating it.
Now the convex hull of the parenchyma is constructed. Since doing this in 3D is very expensive,

the 2D convex hulls on all axial, sagittal, and coronal slices are computed instead, and the union
of all voxels contained in any of these convex hulls is used as an approximation (Figure 3.7d).
�is is a subset of the actual 3D convex hull and thus not necessarily convex, but it proved to be
su�cient for the purpose at hand. �e result of this procedure is used as a mask for smart opening
(Figure 3.7e).
�e procedure is summarized in the non-overlaid part of Algorithm 3.5.

3.5.2 Classi�cation

�e classi�er that decides whether the boundary estimation should be used consists of several
criteria that are evaluated at di�erent points during the computation. If any of these criteria is
met, the computation is canceled and no liver mask is used. �is approach was chosen to avoid
unnecessary computations.
In summary, these criteria formalize the following observations:
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function EstimateLiverBoundary(t− , t+ , p)
if stroke length > 60mm then

return
Compute lesion mask L by region growing from the stroke center with thresholds [t− , t+]
if result does not touch ROI boundary then

return ▷ No leakage suspected

Compute Euclidean distance transform D of L
tmax ←maximum value of D under dilated stroke
tcon ← connection threshold from position of tmax to ROI boundary on D
if tcon

tmax
< 0.25 then

return ▷ Estimate of necessary erosion strength
Compute bone mask B by thresholding with [max(200, p + 20),∞]
Dilate B with a 5 × 5 × 5 kernel
if 1

2 (t− + t+) < p then
Compute parenchyma mask P by thresholding with [max(p − 20, t−), p + 20]

else
Compute parenchyma mask P by thresholding with [p − 20,min(p + 20, t+)]

Dilate P with a 3 × 3 × 3 kernel, select the largest connected component,
and erode with a 3 × 3 × 3 kernel

Compute convex hull C of P − B
Compute an ellipsoid approximation E of L
if (fraction of rays used for ellipsoid approximation < 0.5) ∨
(maximum curvature of C in E > 15) ∨
(coverage of E by C < 0.6) ∨
(stroke center not covered by C) then
return

return C

Algorithm 3.5: Liver boundary estimation. The gray overlays indicate the classi�cation.

• A special handling is not necessary if the lesion is not connected to the liver boundary. �is
is tested by a preliminary region growing and an estimation of the erosion strength that will
be used by smart opening. Appyling the liver boundary estimation in such a case usually
would not change the result, but increase computation time.

• For large lesions, the liver would mostly be underestimated and the lesion would not be
segmented completely. Also, the increase in computation time is most noticeable here.

• If the approximated boundary of a lesion has too little contact to the liver parenchyma, it
probably protrudes from the liver and will not be included completely in the convex hull.

• If the convex hull does not cover the approximated lesion su�ciently or has a high curvature,
it should not be used.
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(a) (b) (c)

(d) (e)

Figure 3.7: Step-by-step illustration of the segmentation algorithm for peripheral liver metastases.
(a) Original ROI with stroke. (b) Coarse parenchyma mask obtained by thresholding, including some rib
voxels. (c) Largest connected component of opened parenchyma mask. (d) Approximate convex hull of
the parenchyma. (e) Final segmentation result.

Note that some of these criteria can be evaluated before actually computing the liver boundary
estimation, whereas others check the plausibility of the result once it is available.
�e decision tree that was implemented for classi�cation is shown in the overlaid parts of

Algorithm 3.5. �e classi�er was trained by visually comparing results with and without liver
boundary estimation on a special data set of peripheral lesions. �is approach was favored over an
automatic training because for these data no manual segmentations were available and because
the visual impression was supposed to be an important factor.
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Evaluation

4.1 Technical evaluation

4.1.1 Parameter optimization

�e algorithm described in the previous chapter has several parameters. Some of them were
formally optimized on the development datawith respect tomanual segmentations,maximizing the
median volumeoverlap. �eoptimizationwas performed on the development data only (82 lesions),
so the results reported for the test data are independent. An overview of the experiments is shown
in Table 4.1.
It turned out that the algorithm is not very sensitive to changes of any of these parameters. �e

optimal achieved overlap on the development data is 71.2% and for some parameters it hardly
dropped below 70% when values were varied within a reasonable range. Two plots are shown in
Figure 4.1 for illustration. �e �rst example (Figure 4.1a) shows how the dilation of the stroke for
the histogram computation a�ects the results. If the dilation kernel is too small, there may not be
enough values for doing statistics, and if it is too large, it will also cover background values.
For smart opening, the optimal parametrization di�ers fromwhat Kuhnigk et al. (2006) reported

for lung nodules. For example, an erosion strength o�set is not necessary according to my tests
(Figure 4.1b), whereas 25% were proposed in the lungs.
While an experimental optimization makes sense for the parameters of smart opening and some

internal parameters of the threshold selection, other parameters were set manually for several

Parameter Optimal value Tested range

Threshold selection:
ROI smoothing kernel size 5 1, 3, . . . , 15
Stroke histogram smoothing iterations 10, 15 0, 5, . . . , 30
ROI histogram smoothing iterations 10 0, 5, . . . , 30
Stroke dilation kernel size 7 1, 3, . . . , 15
Stroke extension quantile (%) 10 0, 5, . . . , 20

Smart opening (see Kuhnigk et al. (2006)):
Preliminary erosion strength (%) 30 0, 5, . . . , 50
Minimum erosion strength ε (%) 15 0, 5, . . . , 40
Erosion strength o�set µ (%) 0 0, 5, . . . , 40

Table 4.1: Parameter optimization overview.
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Figure 4.1: Two exemplary parameter optimization plots.

Development Test

Volume overlap (%) 71.2 62.8
Volume error (%) 14.1 19.8
Diameter error (%) 6.1 8.3
Average surface distance (mm) 1.11 0.83
Hausdor� distance (mm) 6.15 4.47
MICCAI score 78.8 79.4

Table 4.2:Medians of various metrics for accuracy evaluation on the development and test data sets.

reasons. �e parameters of the special parts of the algorithm for inhomogeneous and peripheral
lesions could not be optimized formally because not enough cases with manual segmentations
were available for training. Instead, they were determined by visual inspection of the results. Some
other parameters are used to balance accuracy and reproducibility and their current values are the
result of long-term observations and user feedback.

4.1.2 Accuracy

For evaluating the accuracy of the algorithm, the test data were segmented and compared to
the reference segmentation using several metrics. �e strokes were generated automatically by
computing the end points of the longest axial diameter of the reference segmentation passing
through its center of gravity. �e results are summarized in Table 4.2, giving the median values
for both the development and test data. It can be seen that the performance is roughly the same
for both data sets. Volume-related metrics are slightly higher for the development data, while the
test data performed better in terms of distance-based metrics. �e median MICCAI score, which
averages both kinds of metrics, is almost equal.
A more detailed discussion about the MICCAI score, including de�nitions of the incorporated

metrics, will be given in Section 9.2. Here, it is su�cient to know that a score of 90 is meant
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to correspond to the quality of a manual segmentation and that the best result achieved by a
semi-automatic method at the Liver Tumor Segmentation Challenge 2008 was 69.4. �is is a mean
score and should thus be related to a mean of 74.7 achieved by the proposed algorithm on the test
data, although results on di�erent data cannot be directly compared. A previous version of the
algorithm participated in the Challenge and got a score of 69.1.
For a deeper analysis, box plots for all six metrics are shown in Figure 4.2. �e whiskers show

the 10% and 90% quantiles, so the quality achieved for the best 90% cases can easily be seen in
the plots. All values outside this range are additionally shown so that the worst-case behavior of
the algorithm is also documented.
In four cases (of totally 453 in both development and test data), the algorithm was not able to

compute a result. �ey are shown in Figure 4.3 alongwith the strokes. In all cases, the problem is the
low contrast-to-noise ratio, either due to strong noise or low contrast. �is causes the thresholding
result to be so fragmented that all voxels are removed by the erosion in smart opening.
Figure 4.4 illustrates some bad segmentation results with a volume overlap below 25%. �e

problems are mainly caused by unsuitable thresholds. �e �rst lesion is too inhomogeneous and its
inner density is too close to that of the parenchyma, although it has a clear boundary (Figure 4.4a).
In the second case, the liver parenchyma value is estimated incorrectly because it covers only a
small portion of the ROI and the contrast to the lesion is relatively low (Figure 4.4b). �e two
other lesions are very small and the images are noisy, which can lead to a segmentation that is
either too small (Figure 4.4c) or too large (Figure 4.4d).
Figure 4.5 is a collage of successful segmentations. It includes cases with inhomogeneities,

enhancing rims or cores, contact to the liver boundary or structures of similar density, low contrast
and very large lesions.
Some cases that are improved by the special ROI con�guration handling can be seen in Figure 4.6.

In the �rst example, a second lesion value is added, since the highest background value is clearly
within the range of the stroke voxels. �e complete lesion can then be segmented in two steps
(Figures 4.6a to 4.6c). In the second case, the lower background value is removed because it is in
the stroke range, thus avoiding a too narrow threshold range (Figures 4.6d to 4.6f).
Figure 4.7 illustrates the bene�t of the local liver boundary estimation. Both cases have contact

to the intercostal muscles, which have similar density as the lesion. In Figure 4.7a, smart opening
tries to avoid leakage to the ROI boundary and therefore sets the erosion strength so high that the
�nal result is too small. In Figure 4.7c, on the other hand, the segmentation leaks into the muscles
because smart opening is not able to make a separation. Both problems are solved by applying an
approximate liver mask (Figures 4.7b and 4.7d).

4.1.3 Reproducibility

�e reproducibility of the algorithm was tested by comparing the volumes of the segmentation
results a�er initialization with various strokes. �e strokes were generated automatically by the
following procedure. First, a random point on the unit sphere is generated, using the method by
Shao and Badler (1996). �e vector from the center of gravity of the reference segmentation to this
random point de�nes the orientation of the stroke, which is then cropped at the boundaries of
the segmentation. For each lesion, ten strokes are generated and the segmentations are computed.
�e reproducibility is measured in terms of the coe�cient of variation (COV) of the volume.
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Figure 4.2: Box plots of six metrics for accuracy evaluation. The whiskers show the 10% and 90%
quantiles, respectively.
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(a) (b) (c) (d)

Figure 4.3: The four cases where the segmentation algorithm did not return a result.

(a) (b) (c) (d)

Figure 4.4: Examples of bad segmentation results (volume overlap < 25%).

Figure 4.8a shows a box plot of the results. �e median COV is 9% on the test data. It is less
than 37.3% in 90% of the cases.
Additionally, it was tested how the reproducibility is a�ected when strokes are slightly too short

or too long or do not pass through the center of the lesion. For this, two stroke o�set factors
and three center o�set factors were randomly generated and multiplied with the diameter of the
reference segmentation. Both o�set factors were drawn from a uniform distribution with varying
limits from ±5% up to ±20%. �e stroke o�sets are used to lengthen or shorten the stroke at
both endpoints independently, so the stroke length may be changed by twice the o�set factor. �e
center o�sets are added to the center point, separately for the x, y and z coordinates. Again, the
COV of the volume for ten strokes is computed.
�e results of this experiment are summarized in Figure 4.8b. It can be seen that a stroke that

does not pass through the center of gravity is typically not a problem. If the stroke, however, is
too long or too short, this has a stronger e�ect. A deviation of up to 5% of the stroke length is
not a problem, and a median COV of 20% for an o�set factor of 15% is still tolerable. Above
this, however, the COV rises quickly, indicating that segmentation fails for some strokes in an
increasing number of cases.
In addition to these quantitative results, Figure 4.9 shows two exemplary cases, each with an

o�set factor of 0 and 20%. A typical case with an average COV can be seen in Figure 4.9a. In the
same case, stroke variations cause leakage and one segmentation failure (Figure 4.9b). �e second
example illustrates a case that is quite sensitive to stroke variations due its internal inhomogeneity
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 4.5: Examples of successful segmentation.
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(a) (b)
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(d) (e)
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Figure 4.6: Examples of improved segmentation by the special ROI con�guration handling.

(a) (b) (c) (d)

Figure 4.7: Examples of improved segmentation by the local liver boundary estimation.

even if there is no o�set. As shown in Figure 4.9c, the dark core is always segmented, but the
slightly brighter areas need to be covered by the stroke. If the stroke is too long, however, this can
result in extensive leakage (Figure 4.9d).

4.1.4 E�ciency

As discussed earlier, e�ciency is a paramount criterion for clinical acceptance and the algorithm
was designed such as to ful�ll these requirements. �e computation times for segmenting the
development and test data are shown as a box plot in Figure 4.10. �ey were measured on a
state-of-the-art PC with a 1.73GHz QuadCore processor and 16GB RAM.�e median is 0.75 s,
the 90% quantile 2.9 s. �e maximum is 13.6 s, but as the boxplot shows, this is exceptional. Cases
with relatively long computation time were typically large or required two segmentation steps.
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Figure 4.8: Evaluation of reproducibility. (a) Box plot of volume COV for stroke variation without o�set.
(b) Median volume COV for stroke variation with varying o�set factors.
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Figure 4.9: Example results of the reproducibility test. (a), (c) No o�set. (b), (d) Stroke o�set 20%.
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Figure 4.10: Box plot for computation time (development and test data).
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Algorithm Reference
vs. reference vs. reference

Volume overlap (%) 64.3 67.7
Volume error (%) 24.5 20.9
Average surface distance (mm) 0.97 0.80
Hausdor� distance (mm) 3.84 3.23

Table 4.3: Pairwise comparison of algorithm results and reference segmentations. The values show the
averages of all pairs and the medians over all 50 cases.

4.2 Evaluation with multiple reference segmentations

So far, the algorithm was evaluated by comparing results to a single reference segmentation on
453 cases. From this data, 50 cases were selected randomly for each of which two additional
reference segmentations were created by experienced radiology technicians. �e lesions originate
from 38 CT scans from several hospitals and CT scanners that were acquired for liver surgery
planning. �ey can be considered as a representative collection of segmentable liver tumors. Very
small, very inhomogeneous, and not clearly delimitable lesions had been excluded in advance.
As an initial experiment, I compared the algorithmic result to each of the three reference

segmentations in terms of volume overlap and Hausdor� distance. �e results for all individual
cases are shown in Figure 4.11. It can be seen that the results may di�er considerably depending
on which reference is used. �e median di�erence between the best and worst value per lesion
is 8 percentage points for the overlap and 0.84mm for the Hausdor� distance, with a maximum
di�erence of 37 percentage points and 14.14mm, respectively. �ese extreme cases are displayed
in Figure 4.12, along with the two cases where the di�erence was lowest. Note how in Figure 4.12b
the segmentations are actually quite di�erent, although the Hausdor� distances are almost equal.
Two further important observations can bemade here. First, the variability itself of the validation

results is di�erent across cases. Although there is always some degree of variability, it seems to
depend on characteristics of the individual cases. �ese can be anatomical factors such as size,
position or the tumor entity and imaging-related factors like noise or resolution. Second, the choice
of the reference segmentation does not have a great e�ect on the overall quality assessment. �e
average volume overlap is between 60.3% and 62.1 % and the average Hausdor� distance between
6.0mm and 6.5mm.
So the bene�t of using multiple reference segmentations can be twofold. It makes the results for

individual cases more reliable, for example when actual problem cases of an algorithm should be
detected, and it can help to interpret the results. It is hard to tell whether a volume overlap of 60%
is good or not, but knowing the overlap between two manual segmentations makes this clearer. So,
the inter-reference variability can be used to calibrate a measure of algorithm quality. �is was
done in Table 4.3, which shows that the results for the algorithm are actually quite close to the
inter-reference variability.
�ese results were the initialmotivation for Part III of this thesis, which investigates the problems

of validating segmentation algorithms in more depth.
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Figure 4.11: Volume overlap and Hausdor� distance of the 50 liver tumors in the study, using each of
the three references as the “ground truth”. It can be seen that results may di�er signi�cantly depending
on which reference is used.

4.3 Clinical evaluation

�e algorithm presented above has been evaluated by our clinical partners in several studies.
An overview of the related publications is given in Table 4.4, showing which manual and semi-
automatic measurements were compared. In some cases, a particular imaging parameter was
varied and the robustness of the results under di�erent imaging conditions was analyzed. �e
agreement between two measurements is o�en determined in terms of the concordance correlation
coe�cient (CCC). It is computed from the means, variances and covariances of two samples x and
y as

2sxy
s2x + s2y + (x̄ − ȳ)2 . (4.1)

�is metric can compare the volumes of two segmentation results, but not their actual shapes. Its
range is [−1, 1], where 1 indicates perfect agreement.
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(a) Volume overlap: 66.1%, 66.7%, 66.8% (b) Hausdor� distance: 2.5mm, 2.4mm, 2.4mm

(c) Volume overlap: 66.3%, 29.2%, 44.8% (d) Hausdor� distance: 9.6mm, 20.8mm, 23.7mm

Figure 4.12: Cases where validation results di�ered (a), (b) least and (c), (d) most depending on the
chosen reference segmentation. Left: three reference segmentations, right: algorithmic segmentation.
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Remarks

Heußel et al. (2007) 2 ⋅ 198 • • •

Keil et al. (2008) 165 • • • •

Keil et al. (2009) 14 • • phantom
Puesken et al. (2009) 94 • • • varying contrast phase
Keil et al. (2010b) 2 ⋅ 50 • • pre and post RFA
Keil et al. (2010a) 79 • • varying dose
Puesken et al. (2011) 106 • • • varying slice thickness, 2 readers
Wul� et al. (2012) 2 ⋅ 77 • • 3 readers

Table 4.4: Summary of clinical publications using the presented liver tumor segmentation algorithm. If
data at two timepoints were used, this is indicated by “2 ⋅ x”.
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�e accuracy of the algorithm was examined using a hardware phantom by Keil et al. (2009).
�e phantom contained 14 lesions in various sizes, densities, and orientations and was scanned
with di�erent tube currents, reconstruction kernels, and slice thicknesses. Under a standard
protocol (165mAse�, Siemens B30f, 3mm), the mean volume error was 6.93%. For almost all
tested imaging settings, the CCC for the volume was 1.00.
In two studies, the agreement between manual and semi-automatic results was determined. Keil

et al. (2008) measured CCCs of 0.94 and 0.95 for RECIST and WHOmeasurements, respectively.
For volume measurements in lesions pre and post RFA, Keil et al. (2010b) determined a CCC of
0.99. �e lesions were actually segmented manually in this study and the concordance seems to be
remarkable. Unfortunately, no other metrics were computed to compare the segmentation results
directly.
�e e�ect of imaging parameters was also examined on clinical data. Puesken et al. (2009) com-

pared measurements in arterial and portal venous phase for hypovascularized, hypervascularized
and liquid lesions. �ey found a high agreement between manual and semi-automatic RECIST
diameters in most groups (CCC 0.75 to 0.99), the only exception being hypervascularized lesions
in the portal venous phase where a signi�cant underestimation was observed (CCC 0.61). �is
result can in part be explained by the fact that segmentation results were not edited and at that
time the algorithm still o�en missed the contrast-enhanced rim of a lesion.
Results on normal-dose and simulated low-dose scans were compared by Keil et al. (2010a).

�ey did not �nd a signi�cant di�erence in either RECIST diameter or volume for any low dose
compared to normal dose (160mAse�), except for volume at the lowest dose (40mAse�). Using
the normal dose measurements as actual reference values, however, stronger results might have
been possible in this study.
Puesken et al. (2011) varied the slice thickness and accepted between 73% (5mm) and 85%

(1.5mm) of the segmentations without editing. But even a�er editing, volumetric results on 5mm
showed limits of agreement of [−58%, 73%], compared to 1.5mm slices, which is used as the
reference. �ese values are so close to the RECIST tresholds converted to volume [−65.7%, 72.8%]
that the authors recommend amaximum slice thickness of 3mm for semi-automaticmeasurements.
�e interobserver di�erence, however, did not increase signi�cantly at higher slice thicknesses.
Another study focusing on reproducibility of measurements was published byWul� et al. (2012).

Here, variation coe�cients (VC) of the diameter changesmeasured by three readers are given. �e
median VC is 12.8% for manual RECIST and 8.2% for semi-automatic e�ective diameters. In this
study, semi-automatic measurements were rated as “good” on a three-point scale for 84% of the
lesions. For only 75%, however, the initial result was accepted without manual editing. �is is
interesting in two respects. First, the authors call it a “remarkable �nding” that their satisfaction
with liver lesion segmentation was almost as high as with lung nodule segmentation and attribute
this to recent algorithm improvements. Second, the fact that some “good” segmentations were still
edited raises the question whether necessity of correction is really an adequate quality measure.
In a study with lymph nodes, Weßling et al. (2012) made a similar observation and suspect an
“overuse bias” due to the “advancing re�nement of correction tools.” �is means that users may
tend to edit segmentation results although it is not strictly necessary in terms of volumetry.
One of the earliest studies concerning the impact of volumetry on response evaluation was

performed by Heußel et al. (2007). �ey do not comment on the segmentation quality, but state
that 13% of the patients were classi�ed di�erently by volume than by RECIST or WHO. �ey
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conclude that diameter and area are not always adequate approximations of the volume, which
should therefore be the parameter of choice.
In summary, the clinical studies showed that the algorithm gives satisfying results in 75 to 85%

of the cases, is robust under variations in dose, kernel and slice thickness (up to 3mm) and has a
better reproducibility than manual measurements.

4.4 Discussion

�e goal of this part was to develop an algorithm for liver lesion segmentation that is fast enough
for clinical use and provides accurate and reproducible results on cases that are relevant in practice.
In order to keep the constraints in computation time, a relatively simple but powerful algorithmic
concept was used, based on region growing andmorphological processing combined with a exible
threshold selection method.
With a median runtime of 0.75 s and a maximum of 13.6 s, the algorithm is much faster than

reported in any other publication. At the same time, it is among the most accurate methods, as
shown in the Liver Tumor Segmentation Challenge in 2008. I evaluated it on a representative set
of 371 lesions and achieved a median volume overlap of 62.5% and a median Hausdor� distance
of 4.5mm, equivalent to a MICCAI score of 79.5. �is score cannot be compared to the results of
the Challenge because di�erent data were used, but it proves that the algorithm is able to produce
results on a large variety of liver lesions which do not lag far behind manual segmentations. �is
was con�rmed by evaluating a subset of 50 lesions with three reference segmentations.
Unlike most other publications, I also evaluated the dependency on the initialization. For ten

optimal strokes that are actual lesion diameters, the median COV of the volume is less than 10%,
which is lower than the COV of ten manual segmentations (see Chapter 10). Even if strokes are
allowed to be lengthened or shortened by up to 15% at both ends, the median COV rises hardly
above 20%. �ese results indicate that a good compromise was achieved between incorporating
information from the user input and not depending too much on it.
Although the special procedures for inhomogeneous and peripheral liver metastases did not

make a measurable impact on the results due to their low frequency, some examples were shown
to illustrate their bene�t.
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Chapter 5

Introduction

5.1 Introduction

Reading follow-up computed tomography (CT) examinations of patients undergoing chemother-
apy constitutes a major part of the workload of a radiologist. In a follow-up situation, the user
has to identify the target lesions in the follow-up image, initialize the segmentation, wait for the
result, and re�ne it if necessary. �is can be a time-consuming process, because it implies visual
comparison of two 3D datasets and the relevant �ndings can be spread over various body regions.
On the other hand, this task has a high potential for automation. In many cases, �nding lesions

that have already been marked in a previous CT examination does not require a radiologist’s
knowledge. It o�en su�ces to be able to detect similar image regions, which can also be done
automatically by an algorithm. �is enables starting the segmentation algorithms without any user
interaction.
�e goal of this part is to develop a comprehensive framework for automatic lesion tracking

(ALT), which can run as a preprocessing step before a radiologists starts reading a case. Given
segmented target lesions in baseline, it identi�es these lesions in follow-up and precomputes the
segmentations. �e radiologist then checks whether the correct lesions were found and corrects
the segmentation result if necessary. �e bene�t in clinical routine may be a reduction in both
reading times and inter-reader variability.
Lesion tracking would be a trivial problem if a pair of images of the same patient always had

exactly the same �eld of view or the same world coordinate system. In general, however, this is not
the case, therefore establishing correspondences between the two images requires an analysis of
the image content.
Two important design decisionsweremadewith clinical acceptance inmind. First, the developed

method should be as general as possible. ALT should be available for all lesion types that can
be segmented in CT scans. However, it was also decided to optimize the algorithm for the most
relevant tumor entities: lung nodules, liver metastases and lymph nodes. Second, the method
should rather output an error message than a wrong result. �is may apply to two classes of cases.
First, an algorithm may have problems if there is a large number of lesions or if the anatomy
changes markedly between the examinations, e.g. due to surgery. Second, lesions may simply
become invisible in CT during therapy. �e algorithm should be able to detect these situations
and suppress implausible results.
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5.2 Related work

Automatic lesion tracking is a relatively new �eld compared to lesion segmentation, and when I
started working on the problem in 2007, no related work was available. �is has changed in the
meantime. In this context, however, I am not referring to “lesion pairing” methods that establish
correspondences between two given sets of lesions from two images. �is is a conceptually di�erent
approach, that requires highly sensitive lesion detection methods, which currently are available
only for lung nodules.
�e literature on lesion tracking can be categorized along two criteria. �e �rst one is the

lesion type in focus. �e majority of papers deal with lung nodules, but interest in lymph node
tracking is growing. Up to now, no other group has presented a generally applicable lesion tracking
framework, although there is potential for generalization in some of the methods.
Secondly, there are di�erent methodological approaches to the tracking problem. All of them,

however, make the basic assumption that the lesions and/or their surroundings look similar in
baseline and follow-up. �e approaches are di�erent in the way similarity is measured and, more
importantly, the way the most similar image position is found.
In order to get an initial estimate of the lesion position in follow-up, a global rigid transformation

between the two images is o�en used. Since we have to deal with elastic deformations of tumors
and organs over time, this is obviously not su�cient for exactly transforming a baseline lesion
into the corresponding follow-up lesion. But de�ning a coarse search region can help to speed up
the computation and avoid implausible results.
A common strategy is to combine a global registration with template matching in a local search

region. �is has been done by Shi et al. (2007) and Wiemker et al. (2008) for lung nodules, by
Opfer et al. (2008) for general lesions in PET/CT, and it is also the basis of my algorithm. �ey
all use cross-correlation as a similarity measure, but di�erent policies are used to further restrict
the search region. Shi et al. (2007) developed a classi�er that detects spherical structures based
on the eigenvalues of the Hessian as lung nodule candidates. �ey also restrict the search region
depending on the distance to the lung surface, which requires a lung segmentation. Wiemker
et al. (2008) use a search scheme that follows increasing similarity, while Opfer et al. (2008)
use information from the PET data and follow increasing standard update values (SUV), which
indicate the presence of a tumor.
Both Shi and Wiemker developed their own lung registration techniques, the former aligning

the centerlines of segmented ribs, the latter using lung volume percentiles.
Template matching transforms only a single point inside the lesion to the follow-up image and

requires an additional step to obtain a segmentation of the lesion. A local non-linear registration,
on the other hand, transforms the image region surrounding the tumor and can therefore directly
give at least an initial estimate of the desired segmentation.
�is idea was implemented by Yan et al. (2007) in a lymph node tracking application. �ey

apply a registration based on optical ow, which computes a displacement �eld that minimizes the
sum of squared di�erences under a smoothness constraint. �e deformed segmentation mask is
then used to set internal and external markers, which are the input to the segmentation algorithm.
Also for lymph nodes, Xu et al. (2011) and Yu et al. (2012) model their deformation using B-splines
on a set of control points. Although all papers use the term “free-form deformation”, the referred
methods are actually quite di�erent. Xu transforms not only the lymph node segmentation to the
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follow-up image, but also a number of neighboring structures which are determined in the baseline
image using mean shi� clustering. �ey are used as a restriction for the subsequent re�nement of
the lymph node segmentation.
A similar strategy has already been adopted for lung nodules by Sun et al. (2007). �ey do,

however, not use a single non-linear transformation, but an individual rigid transformation for the
nodule and each surrounding structure, which is optimized under a global consistency constraint.
�e initial alignment of the two images is based on relative coordinates in the segmented lungs.
Another registration-based approach for lung nodules was presented by So�a and Stewart

(2010). �ey skip the global alignment and replace it by a matching between feature points based
on SIFT-like descriptors. �e position of a lung nodule in follow-up is then determined by the
established correspondences of the surrounding feature points. �is method is so far the only one
that contains a plausibility test and tries to correct itself when a possible error is detected. �is is
decided by a support vector machine that is fed with di�erent measures from the forward and
backward transforms.
For evaluating lesion trackingmethods, twomeasures are common. Registration-basedmethods

typically report the distance between the transformed lesion center and a manually marked
reference point. However, lesions can vary substantially in size, and the distance from the center
does not tell us whether the detected point is inside the lesion. For subsequent segmentation, a
seed point that is slightly o�-center is typically not a problem. �erefore, the hit rate is a more
meaningful criterion for this application. Interestingly, reported hit rates are almost always 90%
or higher for the di�erent methods and lesion types, but readers should always scrutinize the study
setup. In several papers, the number of di�erent lesions used for testing was less than 30, or the
“follow-up” image pairs were acquired within a few minutes. At least for lung nodules, however, hit
rates around 90% have been con�rmed by several clinical studies using commercial tools (Beyer
et al. 2004; Beigelman-Aubry et al. 2007; Lee et al. 2007; Tao et al. 2009).
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Data and problem analysis

Virtually all existing methods are based on what may be called the similarity assumption. �is
means that a lesion in follow-up is not only identi�ed by its position in the body, but also by its
appearance as compared to the baseline lesion. Although this assumption is intuitively reasonable,
it has never been veri�ed on a large data base. Several authors have evaluated the performance of
their speci�c algorithms, but it is also instructive to analyze the data on a more abstract level. �is
can provide a better understanding of the task and potential problems that a method will have to
face. In the context of this thesis, it also serves as a speci�cation of the data used for development
and testing. So far, there is no publication that provides a statistical analysis of how lesions change
their appearance under chemotherapy from an image analysis point of view. Furthermore, I have
access to more than 1200 annotated lesion pairs, which is far more than what previous papers are
based on. However, this should be regarded as a purely technical investigation that does not claim
any medical relevance.

6.1 Data

�e basis of my analysis is an extensive collection of follow-up data from patients undergoing
chemotherapy. In total, it comprises 1268 lesions. Table 6.1 provides an overview of the data sources
and the number of lesions per type. �e data were collected retrospectively from �ve German
university hospitals. Scans were acquired according to local protocols with imaging parameters as
listed in Table 6.2. �e data from Kiel were not available during development and were only used
as independent test data in the �nal evaluation. �ey are not included in the subsequent statistics
and in the parameter tests.
�e data are relatively heterogeneous, because it was initially collected in the context of various

studies that evaluated di�erent aspects of lesion volumetry. �is way, however, it constitutes a
representative collection of follow-up images that may appear in clinical practice. In particular, it
covers CT scanners from three di�erent manufacturers, images with reconstruction increments
between 0.5 and 3mm, various reconstruction kernels (mostly standard kernels for lungs and
so� tissue) and contrast agent protocols. In some cases, data from a patient population with a
particular diagnosis were assembled: Most of the lymph nodes are in patients with either malignant
melanoma or lymphoma. In many other cases, the exact diagnosis was not disclosed.
An important parameter is the time interval between the two scans. Its distribution is shown as

a histogram in Figure 6.1a. In the great majority of cases, it is approximately three months, but
there are also some six-months and very few nine-months follow-up pairs.
In all the cases, radiologists have segmented the lesions and established the correspondences

between baseline and follow-up. �e identi�cation of the corresponding follow-up lesion is visually
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Lesion type Hospital Scanner Patients Lesions Diagnosis

with FU no FU

Lung Freiburg Siemens 32 174 7 various
Marburg Siemens 11 46 2 lung cancer
Kiel Siemens 19 65 various

Liver Freiburg Siemens 10 49 various
Mainz Phil./Siem. 47 130 12 various
Marburg Siemens 26 79 44 various
Kiel Siemens 23 71 various

Lymph node Freiburg Siemens 12 27 various
DKFZ Toshiba 42 200 melanoma
Münster Siemens 92 289 lymphoma
Kiel Siemens 30 73 various

320 1203 65

Table 6.1:Overview of the available data. Remarks: The Freiburg data contain 44 and the Kiel data 59
patients, some of whom have lesions of two types. In the Mainz data, both Philips and Siemens scanners
were used, sometimes even for the same patient.

Parameter Min Median Max

Slice thickness (mm) 1.0 1.5 3.0
Reconstruction increment (mm) 0.5 0.8 3.0
Tube voltage (kV) 120 120 120
Tube current (mAs) 128 300 500
Number of frames 63 401 743
Pixel spacing (mm) 0.25 0.70 0.98
Reconstruction kernel Siemens: B20s–B60f

Philips: B–C
Toshiba: FC12

Time between scans (d) 15 75 478

Table 6.2: Overview of acquisition parameters of the available data.

unambiguous in most of the cases. Although there may be uncertainty in a few cases, I consider
all given correspondences to be correct. �e segmentations were created by an algorithm and
corrected interactively if necessary. Not all of them would be suitable as reference segmentations,
but they are a su�cient basis for evaluating a lesion tracking method and for analyzing the change
of appearance over time.
�e lesions cover a wide range of sizes with a minimum of 0.002ml and a maximum of 772ml.

�e distribution of lesion volumes is shown in Figure 6.1b. It can be seen that the great majority
of lesions are in the order of a few milliliters, the median volume being 0.35ml (lung), 3.68ml
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Figure 6.1: (a) Histogram of time between scans in available data. (b) Box plot of baseline lesion volumes
in the data base.

(liver), and 1.73ml (lymph node), respectively. �ere are, however, also some lesions which are
considerably larger. Although they are exceptional cases, they are useful for testing. For instance,
it is important to check how the computation time of a method behaves for large lesions.
In addition to the data mentioned so far, I collected 65 lesions that are visible in only one of

the two scans. I detected and segmented these lesions myself in the same data base as the rest
of the lesions. It is probably not a representative collection and does not reect the frequency of
vanishing lesions in clinical practice, but for testing it is important to have at least a small set of
lesions where the method is supposed to return an error message rather than a result. Most of
these lesions are in the liver, and unfortunately no lymph nodes are available.

6.2 Statistical analysis of change

�e subsequent analysis will focus on two aspects of change: size and density. Changes of shape,
texture or other more complex features will not be considered. �e main purpose of this investiga-
tion is to get an idea of how much dissimilarity between baseline and follow-up a lesion tracking
method may have to face.

6.2.1 Change in size

�e change in size is measured by the relative volume di�erence

dv =
v1 − v0
v1 + v0

. (6.1)

�ismeasure e�ectively normalizes the di�erence to themean of the volumes of the two timepoints,
leading to a symmetric measure for growth and shrinkage, which is advantageous for the analysis.
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Figure 6.2: Box plots of volume change for the three lesion types. The whiskers show the 5% and 95%
quantiles, respectively.

dv =
−0.6

dv =
0.0

dv =
0.6

Figure 6.3: Illustration of volume change of ∣dv ∣ = 0.6 compared to the baseline volume (center). Each
image shows a cross section through the center of a sphere with the respective volume.

As an example, we have dv = ± 1
3 for a lesion that has doubled or halved its volume, respectively.

Note that dv = −1 if a lesion vanishes completely and dv → 1 if it becomes in�nitely large.
A box plot of the volume change of the lesions in the data base is shown in Figure 6.2. Lung

and liver lesions follow approximately a normal distribution with zero mean. Lymph nodes, in
contrast, have a tendency to become smaller with a median dv of −0.23, which is equivalent to a
shrinkage by one third. According to RECIST, 19.4% of all lesions classify as response and 17.4%
as progress, while 63.2% are stable. �is means that in most of the cases we have only moderate
changes, which is already a partial con�rmation of the similarity assumption. Still, volume change
of a factor of 4 or more (dv ≥ 0.6) occurs with a frequency of more than 10%. Figure 6.3 illustrates
what this amount of change looks like in a 2D cross-section.
�e box plot also shows a di�erence in overall volume variability between the lesion types. Since

dv is signed, this is reected in dispersion measures such as the inter-quartile range. We observe
increasing change from lung nodules (0.27) over liver metastases (0.44) to lymph nodes (0.71). Of
course, these are speci�c properties of the data base that cannot be generalized. It is even a bit
surprising that lung nodules are the most stable lesion type, since they are smaller on average and
therefore more prone to inaccurate measurements which may feign stronger volume change. For
lymph nodes, on the other hand, it is plausible to observe more change, because they are generally
more variable in size. �is is not only caused by cancer and its treatment, but also by their function
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Figure 6.4: Box plots of density change for the three lesion types. The whiskers show the 5% and 95%
quantiles, respectively.

in the immune system. �e trend towards shrinkage is easily explained by the fact that lymph
nodes are only relevant target lesions if they are enlarged, but o�en shrink again by themselves.

6.2.2 Change in density and contrast

�e second aspect that I analyzed is the change in absolute lesion density and the change in contrast
between a lesion and its surroundings. Image values are normalized in CT and a reasonable follow-
up protocol requires the acquisition parameters, in particular the contrast agent state, to be similar
in baseline and follow-up. �erefore in a �rst approximation, I assume that the appearance of the
healthy tissue is the same in the two images. �e density of tumors, however, may be a�ected by
some therapies and also by progressing disease. A straightforward measure for absolute density
change is the di�erence of the median densities under the lesion masksM0 andM1

dd = (M̃1)0.5 − (M̃0)0.5. (6.2)

�e box plots of dd for the di�erent lesion types are shown in Figure 6.4. It does not come as a
surprise that the distributions are approximately normal with zero mean, i.e., on average lesions
do not change their density. However, the variances seem to be di�erent for the individual lesion
types. As for the volume, the absolute amount of change can again be quanti�ed by computing the
inter-quartile ranges (IQR). We see that there is little change for liver metastases (17HU), while
lung nodules show a much higher variability (46HU) and lymph nodes are in between (33.5HU).
�e variability of the lesion density alone does not give a complete picture of the similarity

between baseline and follow-up. It needs to be related to the contrast between a lesion and the
surrounding healthy tissue. In order to get estimates from the data base, I compared the median
lesion density with the median density of a region around the lesion. �is makes sense for lesions
in the lungs and liver because most of them are surrounded by homogeneous parenchyma. For
lung nodules, the median contrast in the data base is 739HU (IQR 165HU), which makes the
observed density changes negligible in comparison. For liver metastases, on the other hand, we
have a median contrast of −45HU (IQR 29HU). In relation to this, the typical density change
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Figure 6.5: Box plots of contrast change for the two lesion types. The whiskers show the 5% and 95%
quantiles, respectively.

may already pose problems for a similarity-based approach. �is is especially true for lesions near
the liver boundary, which have structures other than liver parenchyma in their neighborhood.
More quantitatively, a measure for relative contrast change can be de�ned in analogy to dv . Let

ci = (M̃i)0.5 − (S̃i −Mi)0.5 and dc =
c1 − c0
c1 + c0

. (6.3)

Again, the range is between −1 and 1 with the interpretation that dc = −1 when there is no visible
contrast le� in follow-up and dc → 1 for a maximally increased contrast.
Box plots of the contrast change for lung and liver lesions are shown in Figure 6.5. It is con�rmed

that the density variations in lung nodules are negligible compared to the high contrast to the lung
parenchyma and will not pose a problem. Liver lesions, on the other hand, may double or halve
their contrast to the healthy tissue in some cases. �is is equivalent to dc = ± 1

3 , which are the 5%
and 95% quantiles in the data base.
For lymph nodes, a similar estimation is not possible because they can be adjoined by multiple

structures of di�erent densities. But it is known that some of these structures, like muscles or
blood vessels, may have very low contrast to the lymph node, which makes the task inherently
more challenging than for lung and liver lesions.

6.3 Measuring similarity

�enext step of the problem analysis is to investigate which degree of change is compatible with the
similarity assumption. So far, I have used the term similarity without specifying how it is actually
measured. Before discussing di�erent ways to do this, some important terms shall be clari�ed.
A similarity measure is invariant against (a particular kind of) change if it gives approximately
the same values under changing conditions. It is robust against change if the position of its
optimum is approximately the same under changing conditions. In the context of lesion tracking,
robustness may be interpreted in a broader sense as the optimum being located inside the lesion,
but not necessarily in its center. Invariance and robustness are closely related, but theoretically
independent.
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In the following formulas, assume that the template block is cubic with b × b × b voxels. Here,
b is odd and the central voxel is the origin of the local coordinate system. �e sums iterate over
all positions within a block, i.e., over all v ∈ Z3 with ∥v∥∞ < b

2 . Furthermore, let Ī(x) denote the
mean of a block in image I centered at x, i.e.,

Ī(x) = 1
b3∑v

I(x + v). (6.4)

Similarity measures typically used for template matching can be divided into two groups. �e
�rst group is based on the assumption that corresponding pixels have similar image values and
therefore compares values directly. An example is the sum of squared di�erences

SSD(x) =∑
v

((I0(x0 + v) − I1(x + v)))2 (6.5)

and several variants that use a median instead of a sum or absolute instead of squared di�erences.
Since these measures are based on direct comparisons, it is obvious that they cannot be invariant
against changes in size or density. However, they may still be robust against moderate changes.
For example, when a lesion grows, only a small number of voxels in a block actually change their
values, so it is likely that the lesion center still has the best similarity.
�e second group of similarity measures is based on the correlation between the values of

corresponding voxels. In theory, this makes them perfectly invariant against uniform intensity
changes. In practice, this means that when the contrast between a lesion and the background
changes, the similarity will remain very high. �e most popular measure with this property is
zero-mean normalized cross-correlation

ZNCC(x) = ∑v (I0(x0 + v) − Ī0(x0)) ⋅ (I1(x + v) − Ī1(x))

∑v (I0(x0 + v) − Ī0(x0))
2 ⋅∑v (I1(x + v) − Ī1(x))

2 . (6.6)

When the subtraction of the mean is omitted in each term, we get normalized cross-correlation.
�e measures of this group are not invariant against volume change either, because the assumption
of correlation is violated for the voxels that are added to or removed from the lesion.

6.4 Simulation of change

In order to better understand the behavior of the two classes of similarity measures under change,
I made some experiments with a simple lesion phantom that can grow or shrink and increase or
decrease its density.

6.4.1 Lesion phantom and experiment setup

�e lesion phantom is an abstraction of the “median liver lesion” in the data base. It is a sphere with
a radius of 9mm (volume approximately 3ml) in baseline and has a density of 52HU, surrounded
by a background of 92HU. In order to approximate some properties of CT imaging, the sphere
is blurred by convolution with a Gaussian kernel (σ = 2mm), and zero-mean Gaussian noise is

63



Part II. Automatic lesion tracking

(a) Template (b) dv = −0.9 (c) dv = 0.9

(d) Contrast = 40HU (e) Contrast = 5HU (dc = −0.78) (f ) Contrast = 80HU (dc = 0.33)

Figure 6.6: Illustration of the lesion change simulation with the purely geometric phantom. Upper row:
Volume change. Lower row: Density change.

added (σ = 5HU). For computational reasons, I chose an image resolution of 1.5 × 1.5 × 1.5mm3,
which is slightly lower than usual. �e baseline phantom is displayed in Figure 6.6a.
In the �rst experiment, I vary dv from −0.9 to 0.9 in steps of 0.1 (Figures 6.6b and 6.6c). �is

is equivalent to follow-up volumes between 0.16ml and 57ml. In the second experiment, the
contrast is varied from 5HU to 80HU in steps of 5HU. �is corresponds to contrast changes
dc between −0.78 and 0.33. (Figures 6.6e and 6.6f). Since the initial contrast between lesion and
background is 40HU, the lesion becomes hardly visible for the highest values of dc , whereas for
negative values the contrast is enhanced.
In both experiments, a template matching is applied using SSD and ZNCC. For each setting I

record

• the similarity at the actual lesion center,

• the optimum similarity in the search region,

• the distance of the position of optimum similarity to the lesion center; by comparing it to
the radius of the lesion, it can be checked whether the optimum is inside the lesion.

6.4.2 Similarity under change in size

�e results of the volume change experiments are shown in Figure 6.7. We see a characteristic
behavior of the two similarity measures under volume change. SSD is not invariant against
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Figure 6.7: Results for volume change (dv ) in the lesion phantom.

shrinkage, but reacts much more strongly to growth, whereas ZNCC has a roughly symmetric
invariance for shrinkage and growth.
Regarding robustness, we canmake the important observation that SSD is not robust for dv ≥ 0.5.

At this point, the similarity measure “ips” and has better values in the background than in the
lesion, because it is not able to match the additional lesion voxels any more. �is means that even
in theory, SSD is not suitable in tasks where moderate growth can occur. It is, however, robust for
shrinking lesions.
In spite of its invariance, ZNCC turns out to be robust (in a broader sense) even for strong

changes in size. For dv ≥ 0.6, the optimum gradually moves away from the lesion center, but it
stays inside the lesion.

6.4.3 Similarity under change in density and contrast

�e results of the density change experiments are shown in Figure 6.8. As predicted in theory, it is
not invariant for the density-based measure SSD and shows a symmetric behavior for increasing
and decreasing contrast. For ZNCC, it is perfectly invariant as long as the contrast is higher than
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Figure 6.8: Results for varying contrast in the lesion phantom.

the noise level. �en, similarity drops quickly. Still, both measures are very robust (in a strict
sense) and always locate the center of the lesion accurately.
An observation that may come as a surprise is that ZNCC does not assume its optimum when

the lesion has the same density as in the template, but that it still increases slightly when the
contrast gets higher. Although this does not a�ect robustness in the phantom experiment, it might
cause problems in real data, because it means that high-contrast structures have a strong attraction
for correlation-based measures, no matter whether or not the absolute image values are similar.
On the other hand, it is also striking that even when the contrast is as low as 5HU (see Fig-

ure 6.6e), both measures are still able to robustly locate the lesion.

6.5 Discussion

Before discussing the results of the experiments, let us summarize the main limitations of these
simulations. While the lesion phantom has been modeled to resemble the lesions found in the data
base, the background was assumed to be homogeneous. In real images, however, the background
contains a lot of structural information that can help a matching procedure. �e vessels in the
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lungs or liver, the boundaries of these organs, and for lymph nodes all kinds of adjacent structures
can serve as landmarks. But on the other hand, the background may also contain structures that
can be confounded with the lesion, such as other lesions or, in the case of lymph nodes, vessels
or muscles that o�en have a similar density. In this sense, the phantom is a model for cases that
would be deemed easy by users. �ey would expect the method to work for a single lesion on a
relatively homogeneous background, even if it shows a strong change in size or density.
In spite of these limitations, there are some things to learn for the design of a lesion tracking

method. Standard di�erence-based measures such as SSD have problems with growth and strongly
increased contrast. �e latter is especially critical since it is an unintuitive behavior if a lesion that
sticks out more than before cannot be tracked.
ZNCC is robust to density changes by construction and it also proved robust to volume changes

in my experiments. However, the simulation also revealed an unfavorable property of correlation-
based measures: �ey have a tendency to be attracted by objects with a high contrast. Since the
density values are not directly compared, this can also lead to unintuitive results from a user
perspective.
�is last aspect is a symptom of a general problem. Invariance and robustness seem to be

desirable properties of a similaritymeasurewhen the objects of interest can change their appearance.
However, they inherently reduce speci�city, i.e., if a similarity measure tolerates a large amount of
change in the “right” object, it is also more likely to assign “wrong” objects a high similarity. �is
may lead to errors which can be hard to understand for users. �ey would primarily expect the
method to work reliably on “easy” cases where the lesion remains visually similar.
It was shown that the majority of the lesions have a more or less stable apperance over time, as

compared to the changes in size and contrast that similarity measures can tolerate. �is justi�es an
approach based on similarity. �e optimal trade-o� between robustness to change and speci�city,
however, cannot be deduced by theoretical reasoning or simulations. Only experiments on real
data can capture all possible scenarios and reveal the best strategy.
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Chapter 7

Algorithm and technical evaluation

7.1 Overview

�e interface of the algorithm is speci�ed as follows:

Input A baseline image I0 and a follow-up image I1 of the same patient. A list of mask images
M0,i for the target lesions in I0 and additional information about the lesion type ti ∈
{lung, liver, lymph, other}.

Output For each target lesion, either the mask imageM1,i or the message not found.

�e basic structure of the method is represented as a owchart in Figure 7.1. As motivated by
the previous section, the core is a template matching that looks out for the image region which is
most similar to the baseline lesion. Since an exhaustive search over the entire follow-up image
would take several minutes, two steps are added to limit the number of voxels to be considered.
First, a global registration of the two images is performed, so that the body region of interest
can be found and the search space can be restricted. �en, candidate voxels within the search
region are identi�ed. When looking for a particular type of lesion, many voxels can be discarded
just by checking their gray values or other local features. �e candidates are then handled by
the more expensive template matching. In the best case, the candidate detection may not only
speed up the algorithm, but also increase the success rate. It is also advantageous when using a
correlation-based similarity measure, which may be attracted to high-contrast structures outside
the expected intensity range.
Besides the actual matching, the method comprises an automatic initialization of the segmen-

tation in follow-up. Since template matching computes only a single point in the lesion and
segmentation algorithms o�en require more information, this is a necessary step for automating
the complete process. Finally, a plausibility check was implemented. For now, it just discards results
that are probably wrong, for example if a lesion has vanished under therapy, but also if a lesion
or its surroundings have changed so much that template matching fails. As a possible extension,
this check might also trigger a reparametrization of the algorithm, which could use a di�erent
similarity measure or weaken some assumptions of the candidate detection.
�e following sections will discuss the individual components of the method in more detail.

�e evaluation of each component is included in the respective section, whereas a discussion of
the framework as a whole will be given in Chapter 8.

69



Part II. Automatic lesion tracking
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Figure 7.1: Flowchart of the proposed method.

7.2 Global registration

�e �rst step is a global registration of the two images, which allows the computation of an initial
seed point for each lesion. I use a general-purpose rigid registration that coarsely aligns two CT
images.
�e seed point is computed by applying the rigid transformation to the center of gravity of the

lesion mask. �en a search region around each seed point is extracted. �e optimal size of the
search region is governed by two contrary e�ects: On the one hand, the risk of missing a lesion
that is too far away from the seed point should be minimized, but on the other hand a large search
region can contain other lesions or similar structures that might distract the algorithm. Of course,
the former aspect depends on the accuracy of the registration.
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Figure 7.2:Quality of global registration. Cumulative histograms of the distance between the seed point
and the lesion center or the lesion mask on the test data base consisting of 994 lesions.

I made experiments with the registration and computed the distance from the seed point to the
lesion center as well as to the lesion mask. It seems to be a reasonable requirement that the lesion
center be included in the search region. For large lesions, however, it is usually su�cient if the
search region covers a part of the lesion. Note that the search region contains all voxels which are
used as block centers for template matching. �e union of all actual blocks will be larger.
Figure 7.2 shows cumulative histograms of the distances on the development data base. �e

maximum norm was used as a distance measure in order to account for the cubic shape of the
search region, which is used for computational simplicity. I found that the lesion center is always
within a distance of 47mm from the seed point, whereas a distance of 42mm is su�cient to cover
at least a part of the lesion in all cases. In practice, however, such a large search region is not
optimal. It will not only slow down the computation considerably, but also increase the risk of
mismatches since in almost all of the cases a smaller search region would su�ce. For example, with
a distance of 20mm, we still cover the lesion center in 89.5% and the lesion mask in 97.3% of the
cases. In the evaluation, a search region size of 20mm will be used.
Investigating the inuence of the chosen registration method to the overall performance was

outside the scope of my work. It can be expected that a more sophisticated registration allows a
smaller search region and thereby reduces the risk of errors.

7.3 Candidate detection and template matching

7.3.1 Template matching

In its next phase, the algorithm tries to �nd the lesion candidate that is most similar to the lesion
that was segmented in the baseline scan. �is section shows how a template matching approach
was optimized for this purpose.
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Reference block

�e size of the reference block from the baseline image is derived from the lesion size, so that
that the block will always contain the complete lesion and a particular fraction of background
voxels. �is can be seen as an adaptation of scale, which is necessary since lesions can vary in
size considerably. If the block size were �xed, two unfavorable situations could arise: For large
lesions, a block would contain no background at all and template matching would pick a more
or less random position. For small lesions, on the other hand, the block would contain so much
background that the lesion itself could hardly have an impact on the matching result.
In my implementation, the reference block is a cube around the center of gravity of the lesion.

Its size is derived from the longest edge of the bounding box of the lesion mask, multiplied by
a constant factor. �e factor was experimentally optimized and set to 1.2. �e results of the
optimization tests for this and other parameters can be found in Section 7.3.3.
Performing template matching in the original image resolution is computationally prohibitive,

even more so since voxels should be isotropic. I decided to employ a resampling strategy that
creates reference blocks with a �xed number of voxels, regardless of their physical size. �is means
that the resolution is adapted to the scale of the object of interest. A large lesion can still be clearly
identi�ed in a coarse resolution, whereas for small lesions all the information from the original
image is needed. Experiments showed that 15 × 15 × 15 voxels o�er a good compromise between
accuracy and e�ciency.

Search region

Asmotivated in Section 7.2, the search region is a cubewith an edge length of 40mm. Since template
matching requires approximately the same resolution for both images and ideally isotropic voxels,
the resolution of the reference block is also applied to the search region. In both cases, trilinear
interpolation is used.

Similarity measure

Zero-mean normalized cross-correlation is used. �is choice has already been discussed in the
context of the phantom experiments (Section 6.4) and was backed up by experiments.

Search strategy

An exhaustive search is conducted. Non-exhaustive search strategies based on increasing similarity
are not applicable because the search region contains too many surrounding structures which
might lead the search into a wrong direction.

7.3.2 Candidate detection

Even with the adaptive resampling strategy, template matching is still a computationally expensive
procedure. In a typical search region, the lesion is surrounded by healthy lung or liver tissue or by
other structures that clearly do not resemble a tumor. �erefore, a majority of the voxels in the
search region can be discarded by criteria much simpler than template matching.
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Since the idea of a candidate detection step is to speed up template matching, the detection
itself must be very fast. On the other hand, the sensitivity has to be very high, i.e., it should be very
unlikely that the correct lesion is discarded completely. However, it is not necessary to preserve all
lesion voxels as candidates.
�ere is an analogy between this step and algorithms for computer-aided detection (CAD)

of lesions for initial staging. But aside from the fact that in the present scenario sensitivity is
much more important than speci�city, there are two further di�erences. First, the baseline image
provides some information to predict the appearance of a lesion in follow-up. As the statistical
analysis in Section 6.2.2 showed, there is little change in size and density for most cases. �e
second di�erence to a typical CAD scenario is the lack of a lung or liver segmentation, which
means that there may be spurious candidates outside the organ in question.
A straightforward choice is to use intensity features which can be implemented by simple

thresholding. I propose to use speci�c thresholds for lung nodules and liver metastases, motivated
by the results of the statistical analysis and inspired by the respective segmentation algorithms
developed at Fraunhofer MEVIS and based on on the density range in baseline. �e procedure for
lymph nodes, however, is generic and can be used for other lesion types as well.

Lung nodule candidates

�e statistical analysis revealed that lung nodules have a relatively high variability in density. Given
the strong contrast to the lung parenchyma, this is not a problem for template matching, but
in order to make sure that all nodules are included as candidates, I use a large threshold range
comprising all voxels over −400HU. �is is the same threshold range that is applied in our lung
nodule segmentation method (Kuhnigk et al. 2006).
�e downside of this large range is that it includesmost structures outside the lungs and therefore

does not speed up the templatematching asmuch as desired. As a solution, I �rst segment the lungs
with an upper threshold of −400HU. To be sure to include the nodule of interest, a rolling ball
closing is applied with a kernel size of twice the diameter of the baseline lesion. �en, candidates
are detected only under this coarse lung mask.

Liver lesion candidates

Unlike lung nodules, liver lesions o�en have a relatively low contrast to the healthy liver tissue
and they cannot be captured with �xed threshold values. In order to ensure a good separation of
lesions and parenchyma, a simple histogram analysis is performed. Estimates for the typical values
of these two structures are obtained in a similar way as in my liver lesion segmentation method
(see Part I).
Let ℓ−, ℓ and ℓ+ be the 10%, 50% and 90% quantiles of the baseline mask, and let p0 and

p1 be the modes in a ROI around the baseline lesion or the follow-up seed point, respectively.
�e threshold for the lesion-parenchyma separation is set to p1 − 1

2(ℓ − p0), assuming a similar
contrast in baseline and follow-up. �e threshold for separating structures outside the liver is
min(ℓ−, 10HU) ormax(ℓ+, 180HU) for hypodense and hyperdense lesions, respectively, to make
sure that the typical range of liver lesions in CT is covered.
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Generic candidates

For lymph nodes, neither �xed thresholds nor a homogeneous background structure can be used.
�e same is true for a “generic” mode that should be usable for arbitrary lesion types. �e only
available information is the gray value distribution in the baseline image and the fact that it is
mostly constant.
In these cases, the range between the 10% and 90% quantiles of the gray values in the baseline

lesion is used. �is allows a robust estimation that is not too susceptible for noise.

7.3.3 Evaluation

Template matching parameter tests

In order to ensure the optimal parametrization of the method, I conducted tests on the 994 lesions
of the development data base. �e parameters in question are the block size factor, the size of the
template block a�er resampling, the size of the search region, and the similarity measure. I varied
these parameters while leaving the rest of the algorithm unchanged. Since there is o�en a trade-o�
between quality and computation time, the results are presented in plots inspired by ROC curves,
which are used to select the optimal working point (Figures 7.3a to 7.3d).
�e plots reveal that the method is very robust to changes of parameters. �e best overall

matching rate that could be achieved was 80.0% at a computation time of approximately 1 s.
Although a wide range of values and several similarity measures were tested, the matching rate
dropped hardly below 75%. �e computation time varied in a range of about 0.2 s and never
exceeded 1.3 s.
Looking at the individual plots, a clear optimum was apparent for the block size factor (Fig-

ure 7.3a). �is is plausible because it represents a trade-o� between tumor and background being
present in the template block. For the resampled block size, better results were observed for higher
resolutions, but above 15×15×15 voxels the improvement in accuracy becomes marginal in relation
to the increasing computation time (Figure 7.3b). According to Figure 7.3c, the optimal search
radius is 20mm.
In Figure 7.3d, six di�erent similarity measures are compared: sum of squared di�erences

(SSD), sum of absolute di�erences (SAD), median of squared di�erences (MSD), median of
absolute di�erences (MAD), normalized cross-correlation (NCC), and zero-mean normalized
cross-correlation (ZNCC). ZNCC clearly has the highest success rate (80.0%), whereas all other
tested measures showed very similar results around 77%. ZNCC is slightly slower than SSD,
SAD and NCC, but the di�erence is in the order of magnitude of 0.1 s. Measures involving
median computation take signi�cantly more time but are still clearly below 1 s. �ese results
are in agreement with the theoretical considerations of Section 6.4, although the superiority of
correlation-based measures might be less pronounced than expected.

Candidate detection parameter tests

�e �rst parameter to test in candidate detection is the quantile argument that is used for deter-
mining the thresholds for lymph nodes. �e result is shown in Figure 7.4a. Note that the di�erence
in matching rate between the tested values is less than 1 percentage point.
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(b) Resampled block size (mm)
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Figure 7.3: Parameter optimization for templatematching. Working points are denoted by a gray overlay.

Secondly, I tested the impact of using candidate detection at all and of applying the special
handlings for lung and liver lesions as described earlier. In Figure 7.4b, the three possible modes
are denoted by candidate detection o�, default handling, and special handling.
�e most important result for the candidate detection is that it improves the matching rate and

the computation time simultaneously. An increase in matching rate of about 7 percentage points
can be observed for liver lesions and lymph nodes, whereas for lung nodules the performance is
already very good without candidates. Lung nodules, however, show the strongest reduction of
computation time because normal lung tissue voxels can be easily discarded by the thresholding
criterion and the additional lung segmentation removes many further spurious candidates. With
the special thresholding strategy for liver metastases, an even slightly higher matching rate is
achieved, but the histogram analysis evens out the speed-up from evaluating less candidates in
template matching. It is still faster than lymph nodes, though, which typically produce most
candidates.
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Figure 7.4: Optimization of candidate detection.

Matching rate (%)

Development data Test data

Lung 95.0 89.2
Liver 90.0 76.9
Lymph 68.5 84.9

Table 7.1:Matching rate (in %) in the development data set (994 lesions) and the independent test data
set (209 lesions).

Although the overall matching rate increases, it is also important to check how o�en the
candidate detection actually discards the right lesion. �is happens in 11 of the 994 lesions, with
roughly equal frequency for each lesion type.

Matching rate by lesion type and amount of change

It was already mentioned that the overall matching rate on the development data set was 80.0%.
Table 7.1 gives the separate numbers for the three lesion types and compares them with the
independent test data set (the Kiel data in Table 6.1). Although the average matching rate in the test
data (83.3%) is similar, the numbers reveal that the actual performance of the algorithm depend
not only on the lesion type, but can also vary considerably across di�erent data sets.
Looking at the lesion types at �rst, lung nodules always have the best results at approximately

90%. For liver metastases and lymph nodes, results vary quite considerably between the two
data sets, with di�erences of more than 15 percentage points. While the matching rate for liver
metastases is higher in the development data, lymph nodes perform better in the test data.
For lymph nodes, I conducted a further analysis with respect to their location. Lymph nodes

can be spread over large parts of the body, and the performance of a template matching approach
may vary. For example, in the neck, lymph nodes are closely packed with muscles and other
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Development data Test data

Location Number Matching rate (%) Number Matching rate (%)

cervical 47 56.0
axillary 64 68.8 12 75.0
mediastinal 180 80.6 21 95.2
abdominal 109 56.0 16 81.3
– paraaortic 40 60.0
– mesenteric 32 34.4
– other 37 70.3
iliac 62 67.7 12 92.3
inguinal 49 69.4 11 72.7

Table 7.2:Matching rate for lymph nodes grouped by locations.

structures that appear similar in CT, whereas lymph nodes in the inguinal are o�en surrounded
by fat and clearly discernible. Some areas, most notably the abdomen, show a high anatomical
variability over time, while the structure of the mediastinum is relatively constant. Table 7.2 shows
the distribution and matching rate for lymph nodes grouped by locations. Mediastinal lymph
nodes, which form the most frequent group in the data base, clearly showed the best results. �e
most severe problems occurred for cervical and mesenteric nodes.
As motivated in Chapter 6, the amount of change over time is a critical aspect for template

matching. Although it was shown that theoretically matching is robust against a certain amount
of change, in practice degrading performance has to be expected with increasing change. �is
assumption is veri�ed by Figure 7.5a, which correlates volume change and matching rate. �e plot
shows that the overall matching rate is around 90% or higher if there is little change (dv between
−0.3 and 0.5). �e curve drops quickly for shrinkage, but clearly more slowly for growth, allowing
a matching rate of 75% even for dv = 0.8, which corresponds to a volume change by a factor of 9.
�is tendency towards better results for growth might be caused by the fact that shrinking lesions
get a (relatively) larger partial volume zone, which can be a problem for the candidate detection or
the template matching itself, especially due to downsampling.
Similar plots have been created for density change and contrast change (Figures 7.5b and 7.5c).

�ese plots have to be read with care, because the frequency of extreme changes is very low (see box
plots in Figures 6.4 and 6.5) and therefore these values may not be representative. �e impression
one gets from the plots is that more change typically reduces the matching rate, but the correlation
is not as clear as for change in volume.

Example results and problem classes

In addition to the quantitative results presented so far, this section will provide some examples
showing typical successful applications of the methods, but also problem classes that could be
identi�ed. Starting with some positive examples, Figure 7.6 shows some non-trivial cases where
lesion tracking succeeds. In reference to Section 6.2, the corresponding volume change (dv) and
contrast change (dc) are given. Note the combination of two unusually high values in Figure 7.6c.
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Figure 7.5:Matching rate grouped by change of volume, density, and contrast. Only groups containing
at least ten cases are shown.

An additional aspect of change that is hard to analyze quantitatively is change in the anatomical
relations. For instance, in Figure 7.6a, the two images were taken in di�ering breathing states so
that the lung nodule is closer to the heart in the follow-up image. Another typical problem is the
presence of structures that can easily be confounded with the target lesions such as other lesions
(Figure 7.6b) or, for lymph nodes, muscles or vessels (Figure 7.6d).
I analyzed the cases where matching failed and identi�ed the most common reasons with

approximate frequencies with respect to all cases.
Inaccurate registration (3.5%): As discussed in Section 7.2, depending on the quality of the

registration, there are some cases where the lesion is not contained in the search region. In these
cases, the result is typically a random candidate voxel, sometimes belonging to another lesion
(Figure 7.7a), or there might even be no candidates at all, in which case an error is raised. Although
this can be easily detected by a plausibility check, users cannot understand the problem unless
there is a marked anatomical change which prevents registration, e.g. a�er surgery.
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(a) Growing lung nodule with a changing position relative to the heart (dv = 0.48, dc = 0.00).

(b) Growing liver metastasis in a highly metastasized liver (dv = 0.32, dc = −0.13).

(c) Shrinking liver metastasis with increasing contrast (dv = −0.85, dc = 0.47).

(d) Stable lymph node surrounded by several similar structures (dv = −0.10).

Figure 7.6: Examples of successful lesion tracking. User segmentations are shown in cyan, the matching
result is indicated by the yellow crosshairs. Left: baseline, right: follow-up.
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Insu�cient structural information (5%): Template matching works only if there is some reliable
structural information to locate the lesion. �is is almost never a problem for lung nodules and
liver metastases because the pattern “bright spot on dark background” or vice versa is su�cient.
For lymph nodes, however, the patterns are much more complex and also more variable. �is is
especially true for lymph nodes in the cervical and mesenteric regions. In the former, individual
lymph nodes are hard to delineate even visually in “packages” of similar-looking structures in the
neck (Figure 7.7b). In the latter, due to the high mobility in the intestines, no reliable anatomical
landmarks can be used (Figures 7.7c and 7.7d). �ese two lymph node regions were con�rmed as
being the most di�cult ones by radiologists.
Strong change in size (8%): �e statistics visualized in Figure 7.5a indicated already that strong

change in size, in particular strong shrinkage, is a major reason for template matching failures.
�e result is sometimes another lesion in the neighborhood whose size in follow-up is similar to
the size of the target lesion in baseline (Figure 7.8a). �is can be hard to spot both for a human
and for an automatic error detector. Most of the time, however, template matching returns a point
in a di�erent structure, such as a muscle instead of a lymph node (Figure 7.8b), which should not
mislead the user.
Strong change in density (2%): While correlation is robust to changes in density, candidate

detection may fail in some cases. Examples are liver lesions turning from hypodense to hyperdense
(Figure 7.8c). Another frequent problem is that shrinking lesions get a relatively larger partial
volume zone which leaves few or no candidate voxels in the threshold range (Figure 7.8d).

Computation time

�e median computation time of the template matching over all lesions was 1.07 s. A box plot
grouped by lesion types is shown in Figure 7.9. �e main factor is the number of candidate voxels,
which is higher for lymph nodes because they are o�en surrounded by other structures in the same
density range. �e lesion size also has an impact. Since the resolution is adapted to the lesion size
and the physical size of the search region is constant, there are more voxels to check for smaller
lesions. �is e�ect, however, is partially compensated by the higher cost for resampling for larger
lesions, so that no clear correlation is visible.
While for 95% of the cases computation time is less than 3.5 s, there are some outliers with a

maximum of 23 s for one case. �is is a huge lymph node, which is also the largest lesion in the
data base (772ml).

7.3.4 Discussion

�is section presented the setup of a template matching procedure for lesion tracking. �e optimal
parametrization was derived on a data base of almost 1000 lesions, and it was shown that an
additional candidate detection step based on thresholding increases the matching rate and reduces
the computation time simultaneously. �e method achieved a total matching rate of 80.0% on the
development data set and 83.3% on an independent test data set at a median computation time of
approximately 1 s.
Originally, I planned to incorporate shape features into the candidate detection as well. �ey

were meant to detect structures that have a compact, ellipsoidal shape and approximately the size
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(a) Liver metastasis where registration is inaccurate due to anatomical change and the wrong lesion is found.

(b) Cervical lymph node where matching fails due to insu�cient structural information.

(c) Abdominal lymph node where matching fails due to insu�cient structural information.

(d) Abdominal lymph node where matching fails due to insu�cient structural information.

Figure 7.7: Examples of failed lesion tracking. User segmentations are shown in cyan, the matching
result is indicated by the yellow crosshairs. Left: baseline, middle: algorithm result in follow-up, right:
correct position in follow-up.
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(a) Liver metastasis where matching fails due to strong growth (dv = 0.87).

(b) Lymph node where matching fails due to strong shrinkage (dv = −0.97).

(c) Liver metastasis where matching fails due to contrast inversion (chemoembolization) (dc = 1.75, dd = 121).

(d) Lymph node where matching fails due to shrinkage and enlarged partial volume zone (dd = −116).

Figure 7.8: Examples of failed lesion tracking. User segmentations are shown in cyan, the matching
result is indicated by the yellow crosshairs. Left: baseline, middle: algorithm result in follow-up, right:
correct position in follow-up.
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Figure 7.9: Box plot of computation times. The whiskers show the 5% and 95% quantiles, respectively.

of the baseline lesion. I expected this to be useful in cases where structures are present that have
similar gray values as a lesion, but other geometric properties, such as blood vessels or muscles as
compared to lymph nodes. I applied a Hough transform and Hessian-based blobness measures for
detecting ellipses as well as local object scale for �ltering by size. None of these features, however,
improved the performance of the template matching signi�cantly, whereas overall computation
time increased, in some cases dramatically. Since the purely threshold-based candidate detection
performed well, I did not investigate these additional features in more depth.
Another idea that I discarded during my experiments was a re�nement step for the match

point. Although the procedure described so far computes a point inside the lesion most of the
time, this point is not always located in its center. Reasons for this include the reduced resolution
which is used for template matching, the fact that the candidate detection might miss some voxels
within the lesion due to noise, or changes in appearance that prevent the similarity measure from
exactly detecting the lesion center. For small lesions, the match point is sometimes just outside
the lesion. �is can, but does not necessarily cause problems in the subsequent segmentation.
In my re�nement step, I started a region growing from the match point, computed a Euclidean
distance map, and moved the match point to its maximum in a limited neighborhood, assuming
this to be the center of the structure of interest. Unfortunately, this procedure seemed to be too
simple for the cases that actually cause problems, so on average neither the matching rate nor the
segmentation quality were improved.

7.4 Stroke propagation and segmentation initialization

7.4.1 Method

Template matching returns a single point inside the follow-up lesion. Since the overall goal is
to automatize volumetry in follow-up, the next step is to start a segmentation algorithm. �e
initialization, which is normally done by the user, has to be performed automatically.
Here, I describe a procedure that has been tailored to our own segmentation methods as the

one presented in Part I. �ey are given a stroke that should be an approximation of the longest
diameter of the lesion. Once again, I rely on the similarity assumption and take the baseline
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Figure 7.10: Illustration of the stroke propagation method. (a) Baseline: The stroke is extracted from the
segmentation, lengthened slightly (beyond the “x” markers) and its pro�le is computed. (b) Follow-up:
Along the lenghtened projected stroke (dashed), the part with highest correlation to the baseline stroke
is found (solid). Note that in this example the resulting follow-up stroke is shorter than the baseline
stroke.

stroke as a starting point. However, I do not use the original stroke by the user because it is o�en
o�-center and slightly too short or too long. Instead, I compute the longest line that �ts inside the
segmentation mask and passes through its center of gravity. �is stroke is then projected to the
follow-up image such that the old center of gravity is transformed to the result of the template
matching. From this initial stroke candidate, new candidates are generated by lengthening and
shortening the stroke by up to 40% at both ends independently.
�e quality of these stroke candidates is measured by computing their gray value pro�les and

comparing them to the pro�le under the baseline stroke. Again, normalized cross-correlation
is the metric of choice, because it tolerates density variations. In order for these pro�les to be
useful, they need to include the edge at the lesion boundary, which is the main landmark for the
correlation. �erefore the input stroke is lengthened by 20% at both ends. �e resulting stroke
then has to be shortened by 20

100+20 = 14.3% to remove the overhanging part. �is procedure is
illustrated in Figure 7.10.
In practice, this stroke o�en di�ers from what a person would have drawn. Some further

modi�cations to the initialization of the segmentation methods turned out to be useful. First, if
the stroke is too short and the lesion is not completely contained in the ROI, segmentation will
fail and even manual re�nement will not be possible. In order to avoid this frustrating situation,
the ROI is always at least as large as in baseline. Furthermore, if the segmentation result touches
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the ROI boundary or if the erosion strength in smart opening (Section 3.1) is 100%, which also
indicates that the ROI is too small, the edge length of the ROI is doubled and segmentation is
repeated.
Second, since the stroke is lengthened at both ends independently, the center of the resulting

stroke may di�er from the match point. �is can have two e�ects. On the one hand, if the match
point was o�-center, this procedure can help to correct it and move the stroke center to the actual
lesion center. But on the other hand, there are also cases where the stroke protrudes from the lesion
and the stroke center is moved out of the lesion. Since this second e�ect would cause segmentation
to fail although matching was successful, I decided to always use the match point as the seed point
for segmentation rather than the stroke center.

7.4.2 Evaluation

�e purpose of the evaluation is to compare the results of the segmentation algorithms using the
automatically propagated stroke with those using a reference stroke. �is stroke is de�ned as the
longest diameter of the reference segmentation that passes through its center of gravity. It should
be noted that this stroke does not necessarily yield the optimal segmentation, it is just the stroke
that a user with the given reference segmentation in mind would most likely draw.
For all cases where matching was successful, segmentations with both strokes are computed

and the volume overlaps with the reference segmentation are compared. Results are illustrated
by the scatter plots in Figure 7.11. At �rst glance, it becomes apparent that there is little di�erence
in segmentation quality for lung nodules, whereas the other lesion types show a clear tendency
towardsworse results. �is can be easily explained by the properties of the segmentation algorithms.
�e lung nodule segmentation uses only the center of the stroke and, using �xed thresholds, does
not depend on it very much. For liver metastases and lymph nodes, on the other hand, the stroke
is directly used for threshold computation and marker positioning. �erefore, a moderate decrease
in segmentation quality will be unavoidable.
In spite of the visual impression, a statistical analysis of the volume overlap di�erences reveals

that themedian is very close to zero for all three lesion types (Figure 7.12). Although there is a wider
spread for liver metastases and lymph nodes, this means that in half of the cases the segmentation
is at least as good as with a manual stroke.
One may argue that the di�erence in volume overlap is not always a suitable measure, because a

drop from 80% to 70% may be a signi�cant degradation, while two segmentations with overlaps
of 30% and 20% may be considered equally bad by a user. �erefore, Table 7.3 takes a di�erent
approach to evaluating the results. Here a comparison is made of how many segmentations exceed
a particular overlap threshold. When the automatic stroke is used, there is a notable decrease, e.g.
from 78% to 70% if an overlap of more than 60% is required, i.e., there will be slightly more cases
where the segmentation result has to be re�ned manually.
Ideally, the matching point is close to the lesion center and the resulting stroke could have

been drawn by a user. Figure 7.13 shows two typical cases where the stroke propagation does not
work that well and causes a segmentation that is much worse than with the reference stroke. In
Figure 7.13a, the matching point is perfect, but since the two lesions grow closer to each other,
the stroke gets too long and protrudes into the neighboring lesion, which is then included in the
segmentation. In contrast, the reason for the problem in Figure 7.13b is the matching point being
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Figure 7.11: Comparison of volume overlap with automatically propagated stroke and reference stroke.
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Figure 7.12: Box plot for distribution of volume overlap di�erences (auto - ref). The whiskers show the
10% and 90% quantiles, respectively.
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Frequency

Overlap automatic (%) reference (%)

≥ 60% 70.0 78.3
≥ 70% 58.4 65.5
≥ 80% 41.4 46.2
≥ 90% 16.9 20.2

Table 7.3: Frequency of segmentations above a given overlap with automatic and reference stroke.

(a) Propagated stroke is too long and causes segmentation to be too large.

(b) Stroke is too short and does not pass through the actual lesion center.

Figure 7.13: Examples of bad segmentation results due to a poorly propagated stroke. Left: baseline
with user segmentation, middle: follow-up with propagated stroke and segmentation, right: follow-up
with reference stroke and segmentation.

too far away from the actual lesion center. In this case, the stroke is too short and the resulting
segmentation covers only a part of the lymph node.

7.4.3 Discussion

In this section, a method for automatic segmentation initialization in follow-up was presented.
�e approach chosen here can also be regarded as a template matching, where the “template” is the
intensity pro�le under the baseline stroke and the search region is a line in the follow-up image
that is parallel to the template stroke. Experimentally, I also created stroke candidates by rotation
around the matching point, but that did not improve the results. �is can be explained by the fact
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that stroke pro�les are not rotationally invariant. While most lesions are homogeneous inside,
they have various neighboring structures which make rotated pro�les look di�erent.
In this method, a decision was made to directly simulate the initialization that the segmentation

algorithms typically require from a user. �e advantage is that our segmentation methods are ap-
plicable without any changes. If, however, other segmentation methods with di�erent initialization
mechanisms were used instead, the propagation procedure would have to be changed as well.
�is combination of identifying a single point in the lesion, simulating a user interaction

based on this point, and starting a segmentation algorithm is in contrast to some procedures in
the literature where the baseline segmentation is directly transferred by a registration. Such a
procedure typically takes more time and we would also risk to lose the qualities of our specialized
segmentation methods. On the other hand, such an approach enables a more direct transfer of
information from the baseline segmentation, which is useful if lesions do not change too much. So
far, this available information is reduced to the pro�le along the longest diameter. Improvement
might possibly be achieved by propagating more than one stroke, e.g. three orthogonal ones,
or by applying template matching to several points in the lesion. While this is certainly worth
investigating, it should also be said that all approaches based on the similarity assumption have
their limitations when lesions change strongly.

7.5 Plausibility check

Since template matching is just a maximization of a similarity function, it always gives a result,
even if the lesion has vanished under therapy, is outside the search region, or there has been so
much change that the similarity assumption is violated.
In these cases, the result will be wrong and can be so implausible that users may lose their

con�dence in the algorithm altogether. �erefore it is better to discard such results automatically
rather than show them to the user. In some of these situations, it might be possible to �nd the
correct lesion a�er all if some parameters of the algorithm are changed.
Since the ultimate goal is to compute a segmentation of a lesion in follow-up, we discard all

tracking results where segmentation is not possible. For this, we rely on the error detection of our
segmentation algorithms which will detect cases where there is no lesion at the detected position.
Since this is only a subgroup of potential errors, I decided to leave the remaining task to a

classi�er that is trained with my development data. I use the REPTree learner from the machine
learning so�ware WEKA (Hall et al. 2009). �e resulting classi�er is a pruned decision tree.
�e advantage of such a simple classi�er is that it can be inspected by a human and checked for
plausibility, for example to avoid over�tting. I also tried other classi�ers to make sure that the
performance of the decision tree is not signi�cantly worse.
�e features that are computed for the classi�er can be divided into two groups: Some of them

refer to a single pair of lesions and some to all target lesion pairs of an image pair. �e latter
evaluate the geometric relations between the lesions.

7.5.1 Features for lesion pairs

�e following features are computed for each lesion pair individually.
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• MatchSim: Similarity as computed by the template matching. �is mostly helps to detect
cases where a lesion has vanished or is outside the search region. If there is nothing in the
search region that resembles a lesion, the similarity will be very low. Since similarity is
related to change in appearance, however, a low value does not necessarily imply a mismatch.

• NbhSim: Median similarity of the 26 neighbors of the match point. If the match point is
correct, it can be assumed that its neighbors also have a high similarity. Otherwise, it might
just have been caused by noise. Here, neighbors which were not candidates are assigned a
similarity of 0, which is the worst value in terms of correlation.

• NbhSimRank: Median similarity rank of the 26 neighbors of the match point. �e rank is 0
for the match point, 1 for the second best similarity in the search region and so on. �e rank
transform makes the feature less dependent of the optimum similarity which varies over
cases. Since the number of voxels in the search region is constant, the results for di�erent
cases are better comparable. Non-candidate neighbors are assigend a rank of∞.

• StrokeSim: Similarity as computed by the stroke propagation. �is complements the template
matching well as it compares the pro�le across the detected structure which should also
have a characteristic pattern for a lesion.

• InvMatch*: A family of features derived from inverse lesion tracking, using the result of the
initial lesion tracking as the reference point. �e assumption is that a correct tracking process
should be revertible because the lesion does not change a lot or there are no other suitable
candidates in the search region. On the other hand, if tracking failed, the correspondence is
weaker and inverse tracking will probably �nd some other “random” point rather than the
original lesion.

�ree variants of this feature were used:

– InvMatch: Is the inverse match point contained in the baseline lesion mask?

– InvMatchDist: Distance of the inverse match point to the baseline lesion center.

– InvMatchMaskDist: Distance of the inverse match point to the baseline lesion mask.

• VolDi�: Volume di�erence between the baseline and follow-up masks. An exceptionally
high volume di�erence is less likely caused by an actual change than by a mismatch, which
might cause the segmentation to either return just a few voxels or leak all over the ROI. �e
classi�er will learn from the training data which volume changes are still plausible.

7.5.2 Features for image pairs

�emain idea of the features for image pairs is to detect geometric inconsistencies between the
lesion positions. As a simple example, Figure 7.14 shows a con�guration with three lesions where
q1 is incorrect.
We would expect the translation vector between corresponding points to be approximately the

same for all pairs. �is is based on the assumption that the di�erence between the two images is
essentially described by a translation and there are no signi�cant local deformations. Any major
deviation from this model will be regarded as a geometric inconsistency.
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Figure 7.14: Illustration of geometric consistency criteria for several lesions in an image pair. The gray
circle symbolizes an incorrect tracking result. The arrows indicate the predicted lesion positions based
on the average translation.

So a family of features GeoCon* can be informally described as follows: If the position of a
particular lesion is predicted by the average translation of all (other) lesions, what is the error? In
the �gure, the predicted position of q1 (white) deviates from its actual position (gray), while for p1
and r1 the prediction is correct. Here, the prediction is based on the median of all translations.
Di�erent variations of this feature are possible and can be combined:

• GeoConMedian: �e mean is replaced by a median.

• GeoConExcl: �e lesion pair that is being tested is excluded from the averaging.

• GeoCon3NN: Averaging is restricted to the three lesions which are closest to the lesion under
test.

• GeoConNorm: �e computed distance is divided by the baseline lesion radius. �is nor-
malization accounts for the fact that the tolerable deviation from the predicted position
depends on the lesion size.

7.5.3 Training

When training the classi�er, it �rst has to be decided which feature should be used to mark samples
as positive or negative. Possible criteria include:

1. Is the match point contained in the reference segmentation?

2. Is the center of the automatic segmentation contained in the reference segmentation?

3. Is the automatic segmentation of su�cient quality as compared to the reference segmenta-
tion?

For a user, a segmentation result is only useful if it is correct or can be corrected quickly. �is
would be best reected by criterion 3. However, since a discrepancy measure has to be chosen and
a binary threshold has to be de�ned, this leaves too many degrees of freedom as to be objective.
Criterion 2 is much simpler, but also more clearly de�ned, and it captures quite well whether the
segmentation is roughly correct. For instance, if the segmentation leaks strongly, such a case would
be labeled as negative. �is would not be covered by criterion 1, therefore 2 is used.
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Since the geometric consistency features require at least three lesions, training was done twice:
once for all cases without GeoCon*, resulting in classi�er C2, and once for the cases with at least
three lesions and all features, yielding a classi�er C3.
�e classi�er training uses all lesions listed in Table 6.1 except the data from Kiel, using 10-fold

cross-validation. An independent validation was performed on the Kiel data. Since I suspected
over�tting in some of the decision trees during my experiments, I set the maximum depth to 3.
�is did not deteriorate the performance in cross-validation.
�e classi�er C2 uses only the feature InvMatchMaskDist and achieved an F1 score of 0.864 in

cross-validation. �e classi�er C3 selected InvMatchMaskDist, NbhSimRank, and VolDi�, resulting in
an F1 score of 0.882.
In my �nal implementation, I use C2 for all cases. �ere are three reasons for this decision. First,

it performs almost as well as C3 in cross-validation. Second, it is easier to implement because it
can be computed for each lesion individually without having to accumlate the results for all lesions
of an image. And �nally, it is preferable for the classi�er output to be independent of the number
of lesions segmented.

7.5.4 Evaluation

Results for the classi�er performance are given by true positives (TP), false negatives (FN) and so
on, where positive denotes a match. For the interpretation of the results, note that TP + FN equals
the matching rate as reported previously, while TP + FP is the fraction of lesions for which a result
will be displayed to the user. �ree measures are derived which focus on di�erent aspects in the
evaluation of the classi�er and the overall performance of the lesion tracking method:

Output rate For how many lesions is a result available? (TP + FP)

Output matching rate Howmany results that are displayed to the user are correct? (TP/(TP+FP),
precision, positive predictive value)

E�ciency How many correct results are displayed? (TP/(TP + FN), recall, sensitivity)

As Table 7.4 shows, the measure that varies most across di�erent lesion types – and is thus most
strongly a�ected by the matching rate – is the output rate. In comparison, the output matching rate
and the e�ciency are relatively constant. �is is the desired behavior according to the speci�cation:
�e output matching rate is relatively high, i.e., cases that have to be corrected by the user are
rare. Results for lung nodules and liver metastases are very reliable with a precision above 96%,
but also for lymph nodes the output matching rate is much higher than the total matching rate.
�e output rate, on the other hand, is more variable and decreases for di�cult classes such as
lymph nodes. �e e�ciency is not directly relevant for users, because they cannot measure it, but
interesting from a developer’s perspective. A low e�ciency would mean that many correct results
are “wasted” because they are not shown to the user. In Table 7.4, these numbers do not drop as
low as the output rate, but “wasting” more than 10% of the correct results for lymph nodes might
still be considered unsatisfying.
Since the classi�er is so simple – a threshold on a single feature –, it is possible to investigate the

trade-o� between the three criteria more closely. �e curve shown in Figure 7.15a is known as a
precision-recall curve in information retrieval. Here, it is important to note that the precision cannot
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Lung Liver Lymph

Development data Test data Vanishing

TP 90.5 83.3 61.2 76.6 0.0
FP 1.4 1.6 8.3 4.8 4.5
TN 3.6 8.5 23.1 13.9 95.5
FN 4.5 6.6 7.4 4.8 0.0

Output rate 91.9 84.9 69.5 81.4 4.5
Output matching rate 98.5 98.1 88.1 94.1 0.0
E�ciency 95.3 92.7 88.1 94.2 NaN

Table 7.4: Evaluation of the classi�er. All values are given in %.

reach 100%, but has, in this data set, its maximum at 94.7%. �is is because InvMatchMaskDist is
0mm if inverse matching is successful and thus the feature cannot discriminate cases where this
happens. On the other end of the curve, a recall of 100% reduces the precision to 80.8%, which is
very close to the total matching rate and thus hardly better than without the plausibility check.
It also becomes clear that the working point chosen by the classi�er is very close to the optimal
precision. Figures 7.15b and 7.15c show how the output rate depends on precision and recall.
In order to convey a better understanding of classi�cation failures, Figure 7.16 shows some

examples. �e main scenario where false positives occur is when a lesion changes strongly and
another lesion in the neighborhood becomes more similar to it than the lesion itself. In these cases,
the inverse matching is likely to make the inverse error than the initial matching and lead back to
the correct baseline lesion (Figure 7.16a).
Concerning false negatives, the main problem seems to be matching points that are close to

the lesion margin. Segmentation works �ne in many of these cases, but for the inverse matching
errors are more likely. Figure 7.16b shows an example where the inverse matching seems to be
guided more by the fat and the kidney than by the actual lesion, which has also changed its size
signi�cantly.

Vanishing lesions

�e last column of Table 7.4 shows the results for the test set of 65 vanishing lesions. �ey have
to be evaluated separately because they are negative by de�nition and the goal is to have as many
true negatives as possible. Overall, three lesions are classi�ed as correct, but the great majority of
lesions are discarded. For the three false positives, which are all liver metastases, the corresponding
anatomical location is identi�ed correctly and one might argue that the lesion is still faintly visible.
Examples are shown in Figure 7.17.

7.5.5 Discussion

In this section, I developed a classi�er to detect and discard implausible results automatically. �e
classi�er was trained on the 994 lesions of the development data base with a total number of 24
features (including 16 geometric consistency features which are only applied in cases where at
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Figure 7.15: Relation of precision, recall, and positive rate for a classi�er using InvMatchMaskDist. The
gray overlay indicates the working point selected by the classi�er.

least three lesions are considered). In the end, a single feature proved to be su�cient for achieving
an F1 score of more than 0.86. Adding more features did not improve the classi�er performance
signi�cantly. Also, InvMatchMaskDist was consistently selected as the �rst feature during my
experiments with di�erent versions of the matching algorithm and the performance was always
similarly good, although the other selected features varied considerably.
�e fact that the selected feature is based on inverse matching is interesting because it means

that the developed algorithm has an inherent capability of checking itself. If it works correctly, it is
(approximately) invertible. If the invertibility is not given, the result should not be trusted.
A limitation of the training process is the lack of knowledge about the prevalence of vanishing

lesions. Since only a small set of such cases was included, the classi�ers might estimate the a priori
probability of positive cases too high. A more realistic training can only be conducted with data
that were acquired in clinical practice.
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(a) False positive: Matching point is in a similar lesion and inverse matching leads back to the original lesion.

(b) False negative: Matching point close to the boundary of the lesion and inverse matching fails.

Figure 7.16: Examples of classi�cation failures. Left: baseline, middle/right: follow-up.
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(a) True negative: Matching detects a structure outside the liver.

(b) True negative: Matching detects a random noise voxel in the liver.

(c) False positive: The lesion is still faintly visible.

Figure 7.17: Example results for the test data with vanishing lesions. Left: baseline, right: follow-up.
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Chapter 8

Workow-centered evaluation

8.1 Goals

In the previous chapter, I focused on technical aspects of the performance of my algorithm. But
at this point, it is still unclear whether automatizating lesion tracking has an actual bene�t in
clinical practice. �erefore I organized a study with four radiologists to compare the workow of
reading follow-up examinations with and without automatic lesion tracking (ALT). �e study was
designed such as to verify three hypotheses: With ALT,

(H1) examination time is reduced;

(H2) the inter-reader variability of the results is reduced;

(H3) the quality of the precomputed segmentations is at least as good as if they were initialized
manually.

8.2 Materials andmethods

8.2.1 Workow integration

�e study was performed using the Oncology Prototype So�ware (see Section 1.4). It is assumed
that with a combination of the semi-automatic segmentation and the manual re�nement tools it is
always possible to achieve an accurate volumetric measurement.
For comparing lesions in baseline and follow-up images, two workows are possible. When ALT

is not used, the results of the baseline examination are displayed and an optional synchronization
of the viewers aligns anatomically corresponding slices automatically. �e user initializes the
segmentation of the target lesion by drawing a stroke.
When ALT is used, it runs as a preprocessing step before a radiologist starts reading a case. �e

segmentation results for baseline and follow-up are immediately displayed and can be checked by
the user. If a wrong lesion has been segmented, the user can discard the result and initialize a new
segmentation. �e algorithm contains a mechanism that discards implausible results automatically
in order to account for lesions that vanish under therapy and for di�cult cases with a large number
of lesions or marked anatomical changes. In such cases, no pre-computed results are available.
�e owchart in Figure 8.1 illustrates the two workows that were compared in the study.

Although the level of automation is di�erent, the user has complete control over the result in both
cases.
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Figure 8.1: Flowchart illustrating the two workowmodes of the study.

8.2.2 Design of the study

Four radiologists participated in the study. �ey work at four di�erent university hospitals with 3,
6.5, 1.5, and 6 years of experience respectively. All of them had worked with previous versions of
the so�ware, but not with the fully integrated ALT.�eir task was to perform volumetric follow-up
examinations for a set of patients where 1 to 5 (mean 2.7) target lesions had been segmented in
the baseline scan, i.e., they had to measure the volumes of the same lesions in the follow-up CT
examinations. Checking for new lesions was not required.
�e data were collected retrospectively from four di�erent sites and CT systems from three

di�erent manufacturers. CT examinations were acquired according to the local protocols, with
slice thickness ranging from 1 to 3 mm. �e median interval between the two CT examinations
was 91.5 days. �e two studies were acquired with similar CT parameters. In total, 52 follow-up
pairs from 52 di�erent patients under chemotherapy were used. In this data, 139 target lesions were
selected: 47 lung lesions, 49 liver lesions and 43 lymph nodes. �ese lesions spanned a wide range
of volumes (0.03ml to 907.3ml in baseline, median 1.15ml) and volume changes (98% shrinkage
to 7900% growth, median 6% shrinkage). I only selected lesions which were still visually traceable
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Figure 8.2: Overview of the study setup. The di�erent gray levels indicate the four parts into which the
data were divided.

in follow-up. �e data for the study consisted mostly of new cases that had not been used during
development.
Each case was read by two radiologists twice, once with and once without ALT. In both instances,

the users had the option to re�ne the segmentation result with their method of choice until they
deemed the segmentation quality su�cient for volumetric analysis. When ALT was enabled, the
users could choose to simply accept the result, re�ne the contours, or delete them and start a new
segmentation by drawing a stroke.
Reading times were measured by technicians sitting next to the radiologists using stopwatches.

Measurement was started when the images and the available segmentation results were displayed
and stopped when the radiologist had �nished analyzing the examination. �e �nal segmentation
results as well as all re�nement steps were saved for further analysis.
�e study was performed on two consecutive days. Since I reckoned that the users would be

faster on the second day, half of the cases were read without ALT and the other half with ALT on
the �rst day and vice versa on the second day. �e four readers were divided into two groups, each
of which worked on half the cases. �e complete study setup is visualized in Figure 8.2.

8.3 Results

8.3.1 Availability of precomputations with ALT

For 122 of the 139 target lesions (88%), a precomputed segmentation in the follow-up CT exam
was available. �is included 89% (42/47) of lung nodules, 82% (40/49) of liver metastases and
93% (40/43) of lymph nodes. Some examples are shown in Figure 8.3. In the remaining 17 of 139
cases (12%), the algorithm did not compute a result, most o�en because there was a strong change
in size or in the surrounding anatomy.
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Reader All cases “With ALT �rst”

Reading time (s) Time saved (%) Reading time (s) Time saved (%)

without ALT with ALT without ALT with ALT

1 211 119 43.6 246 155 37.0
2 170 105 38.2 135 110 18.5
3 121 86 28.9 115 116 0.0
4 140 90 36.2 109 86 21.1

Average 159 99 38.0 151 117 22.5

Table 8.1: Statistics of reading times per patient, mean per reader.

Note that the availability of a precomputed result does not imply that the correct lesion was
segmented. �is will be examined in the following subsections.

8.3.2 Reading time

A graphical representation of all measured reading times for the four readers can be found in
Figure 8.4. It can be seen that for all readers in the majority of the cases (82 of 104 = 79%) lesion
tracking led to faster assessment. In order to show that lesion tracking has a stronger e�ect on
reading time than remembering the case, let us consider only those cases that were �rst examined
with ALT. Even in this set, which has an unfavorable bias for the new method, there is a speed-up
in 35 of 53 cases (66%).
For a better quanti�cation of the overall improvement in time taken for assessment during

a reading session, I compared the average reading times per patient with and without ALT in
Table 8.1. On average over all readers, the mean reading time per patient decreased from 159 s to
99 s. �is means that more than one third (38%) of the time is saved. For the individual readers,
relative speed-up varied between 29% and 44%. Even if we once again consider the “with ALT
�rst” subset only, there is still a speed-up per patient from 151 s to 117 s (23%), averaged over the
readers.
Here, I always give reading times per patient because we did not measure the time for the

individual lesions. On average, however, times per lesion can be computed using the fact that
there were 2.7 lesions per patient. �is means that on average 22 s were saved per lesion. Since
more than one lesion type can occur in a patient, separate reading time statistics for the lesion
types cannot be reconstructed.

8.3.3 Inter-reader variability

In this study, inter-reader variability can be measured on two di�erent levels: the choice of the
corresponding lesion in follow-up and the measured volume of a particular lesion.
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Figure 8.3: Examples of succesfully detected and segmented lesions. Left: baseline, right: follow-up.
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(d) Reader 4

Figure 8.4: Comparison of reading times per patient. For all data points below the gray line, reading
with lesion tracking was faster.

Identi�cation of corresponding lesions

For each of the 139 baseline lesions, we had four measurements in follow-up by two readers and
in two modes. Since the readers had full control over the result in both modes, we would expect
that the same lesion was measured four times. For eight lesions (6%), however, not all of the four
measurements referred to the same lesion. For two of these lesions, no tracking result was available
and the readers selected di�erent lesions manually. For four lesions, the readers chose di�erent
lesions in manual mode, but both accepted the tracking result. An example of such a case is shown
in Figure 8.5. On the other hand, there was one lesion where manual results agreed but one of
the readers accepted a di�ering tracking result. Finally, there was a lesion where both readers
discarded the tracking result, but one of them chose a di�erent lesion than in manual mode.
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Figure 8.5: Example of a case where the readers chose di�erent follow-up lesions without ALT, but both
accepted the correct ALT result (left baseline, right follow-up).

Reader Number of lesions Mean variability (%) Median variability (%)

total variability decr. without ALT with ALT without ALT with ALT

1/2 55 44 18.6 5.6 6.0 0.0
3/4 62 36 15.8 13.9 8.5 2.5

Average 68.4% 17.1 10.0 7.8 0.0

Table 8.2: Volume di�erences with and without ALT in the two reader groups.

Lesion volumes

�e analysis of lesion volumes is restricted to those 117 lesions where an ALT result was available
and accepted by at least one user and where four consistent measurements are available. �e
inter-reader variability of the measured volumes v1 and v2 was computed as the relative absolute
di�erence

∣v1 − v2∣
1
2(v1 + v2)

. (8.1)

Figure 8.6 shows the variability per lesion with and without ALT. �e variability is 0 when both
readers accepted the precomputed segmentation or if their volumes were exactly equal by chance.
We can see that variabilities close to 0 appear much more o�en when ALT is used. Still, especially
for Readers 3 and 4 there is also a number of lesions where variability is increased. Overall, the
mean variability decreased from 17.1 % to 10%. Further statistical results can be found in Table 8.2.
Here, it can be seen that with ALT the median variability goes down to 0, which means that in
more than half of the cases the measured volumes of two readers are exactly equal.
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Figure 8.6: Relative absolute volume di�erence between the two pairs of readers with and without
lesion tracking. Data points below the gray line indicate that variability was decreased with ALT. Note
that the highest concentration of points is close to (0,0), i.e., in both cases the volumes had a very good
agreement.

Reader Lesions Re�ned cases Re�nement steps Volume overlap (%)

without ALT with ALT without ALT with ALT without ALT with ALT

1 55 11 5 38 20 92.5 92.1
2 55 19 9 117 102 89.0 88.3

3 62 24 16 85 78 87.6 89.6
4 62 31 35 145 189 84.7 86.4

Average 36.3% 27.8% 97.4 99.4 88.1 89.0

Table 8.3: Usage of manual re�nement of the segmentation result with and without ALT. The table
shows the number of re�ned cases, the number of re�nement steps as well as the volume overlap as a
measure of howmuch the initial segmentation was changed by the re�nement.

Segmentation quality

In order to compare the quality of the manually initialized segmentations and the precomputed
segmentations, I analyze the number of lesions where interactive re�nement of the result was
necessary and the number of re�nement steps that were performed. �e results are summarized
in Table 8.3.
First, we can observe that the number of lesions where the segmentation result was re�ned was

slightly lower with ALT (65 of 234 = 27.8%) than without (85 of 234 = 36.3%). �e reduction
was particularly strong for the �rst two readers, while Reader 4 even had a slight increase. It is
also interesting that the number of cases where re�nement was done di�ered substantially within
the pairs of readers that worked on the same cases. When using ALT, both readers saw the same
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Figure 8.7: Comparison of volume overlap (agreement between automatic and corrected segmentation)
with and without lesion tracking. The di�erent symbols represent the four readers. Data points along
the gray line indicate that the segmentation quality is similar. Note that the highest concentration of
points is close to (100, 100), i.e., in both cases no or only minor corrections were necessary.

precomputed segmentations, but for 25 of 117 lesions (21%) one of them decided that manual
re�nement was necessary and the other one did not.
Table 8.3 also shows the absolute numbers of re�nement steps that were performed. Although

these numbers di�er among readers depending on their quality requirements and experience, the
e�ort for achieving an acceptable result was very similar with and without ALT (1.65 and 1.66 steps
per lesion, respectively). Since with ALT re�nement was used in fewer cases, this means that the
cases that actually were re�ned also needed a higher amount of change.
While the number of re�nement steps is most relevant for a user, a more technical measure of

segmentation quality is given by the volume overlap between the original and the re�ned mask.
In particular, a volume overlap of 100% indicates that no re�nement was performed, while it is
0 when not a single voxel of the initial segmentation was le� a�er re�nement. �e latter means
that ALT chose a wrong lesion. �is happened for one of the 117 lesions. I did not use volume
di�erences here because re�nement does not necessarily change the volume when some parts are
added and some removed.
Figure 8.7 compares the volume overlap with and without ALT. �ere are some signi�cant

changes in individual cases, but on average the segmentation quality is very similar. �is is also
reected in the average volume overlap, which is 88.1 % without ALT and 89.0% with ALT.

8.3.4 Matching rate

In order to compare my method with others evaluated in the literature, I also computed the
number of lesions that were correctly identi�ed in follow-up. �is is the case when a precomputed
segmentation is available and was not discarded by any of the readers. As already noted, for 122
of 139 lesions a precomputation was available. �ere was only one lesion for which both readers
discarded the ALT result. Another lesion was discarded by only one reader, but since both chose a
di�erent lesion in manual mode, we assume that the ALT result was incorrect. �is means that

105



Part II. Automatic lesion tracking

Statement −− − 0 + ++

The hit rate (identi�cation of the correct lesion) is su�cient for clinical use.
– Lung 1 3
– Liver 1 1 2
– Lymph 1 3

The ratio of lesions for which no FU lesion was found is acceptable for
clinical use.
– Lung 1 3
– Liver/Lymph 2 2

The ratio of lesions for which awrong FU lesion was found is acceptable for
clinical use. 3 1

The quality of the precomputed segmentation is suitable for clinical use.
– Lung/Liver 2 2
– Lymph 1 3

Using automatic lesion tracking accelerates reading on average.
– Lung 1 3
– Liver/Lymph 4

Using automatic lesion tracking makes me more certain to choose the
correct lesion in FU.
– Lung/Liver 1 1 2
– Lymph 2 2

The reduced inter-reader variability is a clinically relevant advantage. 2 2

I prefer having fewer lesions presegmented to having to delete wrong
lesions. 1 1 2

I would like to use the automatic lesion tracking in clinical routine. 4

Table 8.4: Results of the questionnaire. Answers could be di�erentiated between the lesion types for all
statements. −−: I do not agree at all, ++: I agree completely.

the total matching rate is 86% (120 of 139). �e matching rate is 85% (40 of 47) for lung nodules,
82% (40 of 49) for liver metastases, and 93% (40 of 43) for lymph nodes.

8.3.5 Subjective assessment

In addition to the quantitative measurements presented so far, the readers �lled out a questionnaire
a�er the study. �ey were asked how much they agreed to certain statements on a �ve-point scale.
Asmentioned earlier, this was their �rst opportunity to experience the workowwith precomputed
results for follow-up. �e results are shown in Table 8.4.
In summary, all readers said they would like to use the automatic lesion tracking in routine

clinical practice, that it accelerates reading and that it makes them more con�dent of having
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chosen the correct lesion for follow-up. While overall assessment was very positive, it was also
pointed out that there is still some potential for improvement of the method, especially with
regard to the matching rate and the detection of mismatched lesions. An aspect that was discussed
controversially was the algorithm’s error detection mechanism, which suppresses results that seem
implausible. Some of the users did not want to see any wrong results and said they did not expect
the lesion tracking to work on di�cult cases. Others preferred having as many precomputed
segmentations as possible, even if they have to discard them.

8.4 Discussion

�e goal of the study was to evaluate the clinical bene�t of ALT in terms of the three hypotheses
stated in Section 8.1. �e results show that I could actually verify all three of them.
(H1) Reading time was reduced in most of the cases, with an average reduction of 22 s per lesion.

Taking into account that the time needed tomeasure a lesion with semiautomatic volumetry is only
about 2 s, the time saving of 22 s can be relevant in clinical workow. Typically, up to �ve lesions
per patient are evaluated in oncological baseline and follow-up exams, resulting in a potential
average time saving of 110 s (almost 2min).
Since semiautomatic segmentation does not take long in the �rst place and the time needed

for manual re�nement is about the same with and without ALT, it seems that time can mostly be
saved in navigating through the 3D dataset in order to �nd the correct lesion. �is is especially
true in cases where it can be clearly seen that the correct lesion has been presegmented.
(H2) Inter-reader variability of volume measurements is reduced. In more than 70% of the

lesions, the precomputed segmentation was accepted by both readers and there was no variability
at all. Additionally, there were �ve lesions where a reader accepted the ALT result but segmented a
di�erent lesion manually. If we assume the other reader to be correct, ALT has avoided a mistake
in four cases and created one in the ��h case. �ese numbers are too low to draw any statistical
conclusions, but they show that even sophisticated so�ware support cannot always avoid that two
di�erent lesions are compared to each other in follow-up.
(H3) Average segmentation quality is comparable with and without lesion tracking, although

there are also some signi�cant di�erences. As expected, speci�c user knowledge is needed in
some cases to draw an accurate stroke to initialize the segmentation. However, there were also
cases where a better result was achieved with a stroke that was propagated automatically from the
baseline segmentation.
Previous publications on automatic lesion tracking methods mostly evaluated a particular

algorithm on a technical level, without considering workow aspects. �ey showed that lung
nodules can be tracked successfully by an algorithm on various kinds of images. In oncological
data, matching rates of 86.3% (Beyer et al. 2004) and 66.7% (Lee et al. 2007) were reported. An
evaluation on screening data gave a matching rate of 92.7% (Tao et al. 2009). A detailed analysis
showed that errors are mostly caused by di�ering inspiration levels and pathological changes in
the lungs. �erefore the selected data can have a strong inuence on the result of a study. �is
is con�rmed by the fact that the three mentioned publications achieved such di�erent results
although they are based on the same so�ware. Screening data are typically easier to handle by an
algorithm because there is less change than in patients undergoing chemotherapy. Our algorithm
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showed a similar performance to previous approaches with an overall matching rate of 86%, with
the di�erence that the same method was applied on three di�erent lesion types.
A high matching rate alone, however, does not guarantee an actual practical bene�t. It is not

obvious whether a partial automation of a task can really reduce the overall time. �erefore it is
important to evaluate a so�ware tool in the workow context where it is used. One such study has
been performed in the context of lung cancer screening (Beigelman-Aubry et al. 2007). In this
study, the impact of a computer-aided diagnosis tool on the detection of growing lung nodules
was analyzed. �e so�ware o�ered automatic detection and tracking of nodules and proved to
increase sensitivity signi�cantly without compromising reading time. Koo et al. (2012) compared
the time needed for matching lung nodules in both screening and diagnostic scans with and
without so�ware support. �ey found that automatic lesion tracking was faster in 94% of the
cases and saved an average 2.3min per patient for matching up to ten nodules.
A�er these promising results for screening, to my knowledge, I conducted the �rst study to

demonstrate that automatic lesion tracking may also show a bene�t in chemotherapy monitoring.
�is should be further investigated with a larger group of radiologists in a real clinical setting.
Checking the exams for new lesions and other relevant �ndings should additionally be taken into
account. Another aspect is hard to evaluate in a study but may be important in practice: In a
clinical setting, radiologists are o�en distracted or interrupted during work and have to regain
orientation in the image several times. In this situation, the advantages of a so�ware support for
lesion tracking may be even more signi�cant.
So far, I used only chemotherapy data and did not investigate the capabilites of my method in

the context of other therapies or screening. Also, I only used data with a relatively high resolution,
although a slice thickness of 5mm is still common. �ese are tasks for future studies.
In spite of these limitations, I can conclude that the results are promising. I was able to show that

automatic lesion tracking has the potential to save examination time, reduce inter-reader variability
and increase user satisfaction. �is justi�es further e�orts to automatize tedious procedures in the
radiological workow.
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Chapter 9

Validation using multiple reference segmentations

9.1 Introduction

�e development of segmentation algorithms for di�erent anatomical structures and imaging
protocols is one of the central tasks in medical image analysis. In the previous parts, I have shown
examples from my own research and from the literature. �e validation of these algorithms,
however, is o�en treated as a subordinate task, and the community has just started to establish
standard methodologies.
In so�ware engineering, the term validation is used for “the process of evaluating so�ware at

the end of the so�ware development process to ensure compliance with so�ware requirements”
(IEEE 1990) and “determining the �tness or worth of a so�ware product for its operational mission”
(Boehm 1984). In the �eld of medical image analysis, however, the requirements are o�en not well
de�ned. In contrast to other so�ware development tasks, it is not possible to specify exactly which
output is expected for a given input. Di�erent users may expect di�erent results, and di�erent
results may be accepted by the same user. So the desired behavior of an image analysis so�ware
could be described as generating an output that is acceptable for as many users as possible, but it
is not clear how this should be measured. �ese issues make validation a particular challenge in
this �eld.
Still, validation should be regarded as an integral part of all phases of medical image analysis

research. During development, di�erent approaches are compared, parameters are optimized,
and sometimes algorithms are automatically trained on example data. All of this requires some
means of assessing the quality of a segmentation result. Once a promising method has been found,
developers need tomake sure that further changes do not degrade the performance that has already
been achieved. �is is known as regression testing and especially important when algorithms have
already been shipped as a part of a commercial so�ware and are further developed. Finally, making
a statement about the quality of a method is an essential part of sound scienti�c work. In all the
phases mentioned so far, quality assessment is mostly relevant for researchers and programmers.
On the next level, it is important to be able to compare di�erent algorithms and decide which

one is most suitable for a particular problem. �is is of interest for clinicians, who decide whether
to use a particular so�ware, and for product managers, who may want to include an algorithm
into a commercial so�ware package. Still, it is o�en up to the developers to conduct the required
experiments to convince potential customers of the quality of their algorithms. Of course, compar-
ing di�erent approaches to a problem is also interesting in itself from a scienti�c point of view. In
the last couple of years, many researchers have participated in challenges and let their algorithms
compete with others.
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�is part will focus on the validation of segmentation algorithms such as the one introduced
in Part I. �is means that segmentation denotes the delineation of a speci�ed object rather than
partitioning an image into several segments. Also, I will only deal with algorithms that produce a
binary segmentation, where each voxel is classi�ed as either object or background, as opposed to
fuzzy segmentation, which assigns each voxel a probability of being part of the object.
Following the terminology by Zhang (1996), I will focus on empirical validation methods that

look at results on test data rather than analyze theoretical properties of an algorithm. In my studies
I use clinical data because in my experience the behavior of an algorithm on arti�cial data allows
only very limited conclusions about the applicability in the clinic where a huge diversity of cases
can occur.
Although validation methodology in segmentation is far from being standardized, there is

a general consensus about the aspects that should be considered. As summarized by Udupa
et al. (2006), three criteria should be taken into account. Accuracy measures the agreement
between the segmentation and the true extent of the object. Precision or reproducibility denotes
the agreement between repeated segmentations. E�ciency captures the time or resources needed
for the segmentation.
�ese criteria apply not only to segmentation algorithms, but also to manual segmentation.

�us, they motivate why segmentation algorithms are used in the �rst place. Typically, computers
o�er a higher precision and e�ciency than humans can achieve when it comes to data processing.
�is can be veri�ed for a particular task by simple experiments. Accuracy, on the other hand, is a
much more complicated issue.
Measuring accuracy requires knowledge of the truth, but a true segmentation is only available

for phantoms. In clinical data, the correct result is unknown. It is common sense to use manual
segmentations by experts as a surrogate of truth and require an algorithm to compute a similar
result. �e problem with this approach is that experts are neither e�cient nor precise. Outlining a
liver lesion on all slices of a CT image can take several minutes, and when it is done twice, either
by the same or two di�erent persons, the results will virtually never be exactly equal. �ere is
always uncertainty about the true segmentation.
�is uncertainty is o�en ignored and a single expert segmentation is considered to be the

“ground truth”. O�en this is the only feasible approach due to limited expert resources, but one
should realize that this will have an e�ect on the validation outcome. In recent years, awareness
of this uncertainty has risen and it has become a much-discussed problem. Multiple reference
delineations are acquired in order to increase the reliability of the results. �ere are di�erent
ways to deal with the additional information that they provide. An obvious approach is to fuse
the masks into a single one, which should then give a better estimate of the true segmentation.
Techniques for mask fusion range from simple voxel-wise majority voting to more sophisticated
methods like STAPLE (War�eld et al. 2004) or shape-based averaging (Rohl�ng and Maurer Jr.
2007).
Currently, a new point of view is emerging: to abandon the idea of a “ground truth” altogether,

to accept the uncertainty and even regard it as a source of information. �e variability between
expert segmentations can be used to calibrate the expected quality of a segmentation algorithm.
�is does not only make validation fairer, it also allows an easier interpretation of the results and
should be a better reection of the way experts would perceive the quality of the method.
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�e remainder of this part is guided by a number of questions that arose during my e�orts to
make reliable statements about the accuracy of the algorithm presented in Part I:

• What is the e�ect of using a single reference segmentation on validation results?

• What is a suitable validation measure that incorporates the uncertainty of the true result?

• How many expert segmentations should be acquired?

• How can the necessary number of experts be reduced?

�ese questions are investigated using the problem of liver tumor segmentation in CT as an
example. For this purpose, additional manual delineations have been acquired. Although the
analysis was performed on a single problem class, the results should generalize well.

9.2 Related work: A critical review

In order to get an overview of how validation is usually done in the literature, I reviewed publi-
cations on liver tumor segmentation in CT from the last ten years with regard to the validation
techniques that were applied to assess the quality of the algorithms. A total number of 17 papers
was found to provide a substantial evaluation, including the editorial of the 3D Liver Tumor Seg-
mentation Challenge at MICCAI 2008 which provided an evaluation framework for all participants.
Table 9.1 gives an overview of these works, including the number of liver lesions segmented, the
number of manual reference segmentations, and the evaluation measures. For the de�nitions of
these measures, refer to Heimann et al. (2009) and the publications mentioned in Table 9.1.
O�en, a single reference segmentation is used for accuracy analysis. In papers that incorporate

multiple references, many develop their own validation scheme because for a long time no standard
had been established. Only recently, owing to several segmentation challenges at MICCAI confer-
ences since 2007, a methodology has been more widely adopted. �ese challenges contributed to
spread the awareness of the importance of validation and the problems associated with it. �e
framework they provided is a good step towards objective and meaningful evaluation, but it still
has some drawbacks which will be discussed in the next section.
Let us �rst have a look at those papers that did not use the MICCAI framework. Yim and Foran

(2003) compared the reproducibility of manual and semi-automatic area measurements from
repeated reading by the same expert. Popa et al. (2006) obtained four reference segmentations
by di�erent readers and estimated a ground truth using the STAPLE algorithm. �eir principal
approach is stated as follows: “We de�ned an accurate result as where the semi-automated segmen-
tation measurements and comparison values are similar with the measurements and comparison
values of one radiologist.” To evaluate this, comparison metrics were computed for one of the ref-
erences and the algorithmic result versus the estimated ground truth. Zhao et al. (2006) computed
concordance correlation coe�cients (CCC) for volume measurements of three readers and their
algorithm as well as an overall CCC to assess the accuracy of their results. �ey also analyzed
the concordance in the three measurements of one reader. Ray et al. (2008) used references of
four readers from three reading sessions each. �ey analyzed the development of the volume
measurements between the sessions and compared the measured volumes with those from the
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Yim and Foran (2003) 10 2 ⋅ 1 • 2D
Popa et al. (2006) 4 4 • • • STAPLE
Zhao et al. (2006) 59 3 ⋅ 1 + 2 •

Cai et al. (2007) 63 1 •

Li and Jolly (2008) 15 1 • •

Jolly and Grady (2008) 159 1 • •

Massoptier and Casciaro (2008) 38 1 • •

Deng and Du (2008) 30 2 • • • MICCAI framework
Ray et al. (2008) 13 3 ⋅ 4 •

Szilágyi et al. (2009) 3? 1 • •

Behnaz et al. (2010) 10 1 •

Smeets et al. (2010) 61 2 • • • MICCAI framework
Zhou et al. (2010) 37 2 • • • MICCAI framework
Drechsler et al. (2011) 7 1 • •

Su et al. (2011) 29 4 NPRI, multiple methods
Häme and Pollari (2012) 31 2 • • • MICCAI framework

Table 9.1: Summary of validation methods in recent publications on liver tumor segmentation in CT. For
the number of reference segmentations used, “x ⋅ y” denotes x sessions and y readers, where x = 1 if
not stated otherwise.

algorithm in a qualitative way: �ey checked whether the algorithmic volume was within the
range of the manual volumes. A comparison of multiple segmentation methods was performed
by Su et al. (2011). �e normalized probabilistic rand index (NPRI) was used in order to take the
variability of four reference segmentations into account. It measures the pixel-wise agreement of
labels and is mostly used for multi-label segmentation.

9.2.1 MICCAI Grand Challenge framework

�eMICCAI Grand Challenge frameworkwas developed for the Segmentation of the Liver challenge
in 2007 and described in this context by Heimann et al. (2009). Deng and Du (2008) adapted it for
the 3D Liver Tumor Segmentation Challenge in 2008. Its main contribution is the fact that it melts
several comparison metrics into a single score with a prede�ned range of 0 to 100. �e �ve metrics
used are volume overlap error (1− volume overlap), relative volume di�erence, average symmetric
surface distance, root mean square symmetric surface distance, and maximum symmetric surface
distance (Hausdor� distance). In order to allow averaging of these metrics, they are calibrated
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with regard to typical values that a human observer could achieve. For this purpose, two reference
masks are acquired for each case. One maskM1 is con�rmed by both readers as correct and is then
used as the “ground truth” to compare the algorithmic segmentations with. �e other maskM2 is
used to compute a reference value for each of the metrics. �is reference value is the deviation of
M2 fromM1, averaged over all cases. For an algorithmic segmentation A, a score of 100 is given
if A completely agrees withM1. If A has the same discrepancy fromM1 asM2 has fromM1, the
score will be 100 − α. �e value of α was initially 25, but changed to 10 for liver tumors.
Formally, let ε(A,M1) be the discrepancy between masks A andM1 according to a particular

metric and ε̄ the constant reference value. �en the score is de�ned as

ϕMICCAI(A,M1) = max(100 − α ⋅
ε(A,M1)

ε̄
, 0) . (9.1)

�e essential part is the quotient, while the rest of the equation is just a normalization. �e choice
of α is only signi�cant for clamping at zero, i.e. errors that are more than 100/α times as large as
the reference value will all be given a score of zero. �e total score is the mean of the �ve scores
obtained from the di�erent metrics. Note that this is in e�ect a comparison with a single reference
mask. M2 is only incorporated into the global reference value ε̄ for each metric. In the remainder
of this part, I will refer to ϕMICCAI as theMICCAI score.
�e advantage of this framework is that it combines di�erent metrics into a single score that is

easy to interpret because it relates the actual accuracy of an algorithm to the accuracy that “can be
expected”. �ereby, it is an important step towards a more objective validation of segmentation
results. Furthermore, the fact that it was used in several challenges spread the awareness of
validation problems in the community. Still, theMICCAI score does not account for the uncertainty
of human measurements completely.
One problem is that it can only be used for lesions where the readers are able to agree on a

“perfect” segmentation. �e other cases were discarded for the MICCAI challenges, so the problem
of validating segmentations where expert opinions di�er and no actual ground truth is available
was le� aside. In practice, however, such cases are not rare, so the validation result may sometimes
depend strongly on which reference mask is chosen.
Figure 9.1 shows a graphical example where one reference mask is just a dilation of the other, i.e.,

one reader produced a mask that is systematically larger. Although this scenario is simpli�ed for
illustration, results like this can easily occur when the two readers use di�erent window settings or
when the contrast between the object and the background is low. In the �gure, the gray area covers
all masks that would get a score above 100 − α if the segmentation drawn in red was used as the
“ground truth”. �e areas with high scores are signi�cantly di�erent depending on the choice of the
“ground truth” as is shown in Figures 9.1a and 9.1b. Given the information from both reference
masks, a symmetric distribution as in Figure 9.1c would be more desirable. If both segmentations
were drawn by independent experts, there is no reason to prefer one of them.
But even if the readers are able to agree on a “ground truth”, there is still a degree of uncertainty

about the true segmentation which is reected in the independent segmentation of the other
reader. �is information, however, is e�ectively discarded by the MICCAI scoring system since the
direction of the deviation is not taken into account. Since the two segmentations are not treated
equally, the �rst one is more likely to be accepted or only slightly modi�ed even if the second
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M1
M2

(a)

M1
M2

(b)

M1
M2

(c)

Figure 9.1: Graphical illustration of some problems with the MICCAI scoring system. Contours denote
manual segmentations, red ones are used as the “ground truth”. The gray area covers the segmentations
that would get a score above 100 − α. (a) M1 is used as the ground truth. (b) M2 is used as the ground
truth. (c) M1 and M2 are treated equally.

reader produced a di�erent result initially. �is e�ect has been investigated by Sensakovic et al.
(2010) and o�en observed by myself.
Furthermore, while the framework aims at taking inter-expert variability into account, it does

so on a global level only. �e reference values for transforming the comparison metrics into scores
have been determined empirically from a set of test data of the particular segmentation problem.
�is implicitly assumes that the degree of variation between di�erent experts is independent of the
speci�c objects that are segmented. While this assumptionmay be justi�ed for organ segmentation,
in tumor segmentation factors such as size, contrast, noise and the anatomical position have an
impact on the variability and also on the segmentation quality that a clinician would expect. In
particular, the interpretation of surface distance measures depends on the size of the object, which
varies considerably for tumors. Using global reference values here will produce misleading results.

9.2.2 Williams’ index

If more than two reference segmentations are available and all of them should be treated equally, a
possible approach is to think ofWilliams’ index. It was introduced by Williams (1976) as a general
statistical tool to compare the agreement of a single rater with a group and the agreement within
that group. Agreement denotes an equal classi�cation of a particular item. Let Pi , j be the agreement
between raters i and j and rater 0 be the one to be evaluated. �enWilliams’ index is de�ned as

I0 =
1
n ∑

n
j=1 P0, j

2
n(n−1) ∑

n
j=1∑n

k= j+1 Pj,k
. (9.2)

Let p be the probability that two random raters (excluding 0) give the same classi�cation. �en
the probability that rater 0 agrees as well is I0 ⋅ p.
It is not immediately clear how this method can be applied to the problem of segmentation

validation while keeping up the statistical reasoning behind it. Chalana and Kim (1997) de�ned a
modi�cation of the index where they replaced the proportion of agreement by the inverse of the
Hausdor� distance between the two segmentations. �is way, however, the probabilistic meaning
of the index is lost and the inverted distances do not have an intuitive interpretation.
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9.3 A score for uncertainty-aware validation

�e previous section discussed existing approaches for validation using multiple reference seg-
mentations and highlighted their shortcomings. Based on the observations made there, I propose
the following three criteria for a consistent validation framework:

1. all reference masks are treated equally a priori and no consensus between the experts is
demanded, because it is not always possible or would distort the results;

2. the algorithmic performance is evaluated in relation to the inter-reference variability per
case, i.e., more tolerantly in cases where the experts disagree about the true segmentation
and more restrictively where they concur;

3. the results are comparable for di�erent test data, possibly even for di�erent segmentation
problems.

In this section, I will introduce a new validation concept that was constructed such as to ful�ll
these criteria as far as possible. It is based on the MICCAI score, which should make it easy to
understand and help to spread it in the community. It is independent of the segmentation problem,
but liver tumor segmentation in CT will serve as an example.
�e MICCAI score and Williams’ index, de�ned in Section 9.2, are two concepts that com-

plement each other well. �ere is already a structural similarity in the de�nitions, which allows
to interpret both approaches as special cases of a general validation paradigm. Rewriting Equa-
tion (9.2) in the notation of Equation (9.1), it becomes

1
n ∑

n
j=1 ε(A,M j)

2
n(n−1) ∑

n
j=1∑n

k= j+1 ε(M j ,Mk)
= ε̂(A;M1, . . . ,Mn)

ε̄(M1, . . . ,Mn)
= discrepancy value
reference value

. (9.3)

�e resulting formula has two major di�erences compared to the MICCAI score. Starting from
Equation (9.1), a single comparison of A andM1 was replaced by an average discrepancy between
A and {M1, . . . ,Mn} which is denoted by ε̂. Furthermore, the reference value is now a function of
the reference masks. So the de�nition of a new adaptive score becomes

ϕadaptive(A;M1, . . . ,Mn) = max(100 − α ⋅
ε̂(A;M1, . . . ,Mn)
ε̄(M1, . . . ,Mn)

, 0) . (9.4)

For the subsequent experiments, the same �ve metrics as in the MICCAI score are used and
averaged to compute the �nal score. In concordance with the MICCAI liver tumor segmentation
challenge, α is set to 10. �is means that a score of 90 is given to a segmentation result that is
considered as good as a manual delineation.
Equation (9.4) is a general formulation that requires computing discrepancy measures between

sets of masks. Since there is no standard way to do this, di�erent implementations are possible.
I tested two variations which are illustrated in Figure 9.2. �e �rst variation averages pairwise
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comparisons between masks:

ε̂pair(A;M1, . . . ,Mn) =
1
n

n
∑
j=1
ε(A,M j); (9.5)

ε̄pair(M1, . . . ,Mn) =
2

n(n − 1)
n−1
∑
j=1

n
∑
k= j+1

ε(M j ,Mk). (9.6)

�is is similar to the approach proposed by Chalana and Kim (1997), but it is more general and
has a clearer interpretation.
�e second implementation uses comparisons with a ground truth estimate GT from the

reference masks:

ε̂GT(A;M1, . . . ,Mn) = ε(A,GT(M1, . . . ,Mn)); (9.7)

ε̄GT(M1, . . . ,Mn) =
1
n

n
∑
j=1
ε(M j ,GT(M1, . . . ,Mn)). (9.8)

�e ground truth estimates can again be computed with di�erent methods like majority voting,
STAPLE, and shape-based averaging. I used majority voting in the experiments, because it is the
simplest method and does not introduce any arti�cial e�ects. �e two respective scores will be
denoted by ϕpair and ϕGT.

9.4 Experiments

In order to examine the results of this newmethodology in practice, I used the data from Section 4.2.
I calculated the scores according to the MICCAI criteria three times, using one of the manual
segmentations as the ground truth at a time. �is is not exactly in accordance with the MICCAI
framework since no consensus about the “perfect segmentation” was achieved, but it gives an
impression about the variability of the scores that are possible within this framework, depending
on what data are available. �en, I computed the adaptive scores and compared the results with
pairwise comparison and with comparison to a ground truth estimate.

9.5 Results

All computed scores for all cases are shown in Figure 9.3. �e distribution of the three MICCAI
scores corresponds roughly to that of the individual metrics as shown in Figure 4.11, again with
signi�cant di�erences in some cases, depending on the chosen reference segmentation. �e
adaptive scores are o�en, but not always, higher than the MICCAI scores, which means that
the required quality for being regarded “as good as an expert” has been lowered on average.
Furthermore, ϕpair is always higher than ϕGT. To understand these relations better, it is helpful to
have a look at the reference values ε̄ that are used by the di�erent scores.
�emean values and standard deviations of ε̄ are shown inTable 9.2. Two important observations

can be made. First, in agreement with the previous observations, the pairwise reference values
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A

M1 M2

M3

42.2 32.9

33.7
23.6

26.9 18.1

ε̂ = 36.6

ε̄ = 22.9

(a) Pairwise comparison

A

M1

M2

M3

GT

34.7 = ε̂

17.7

7.8

10.9

ε̄ = 12.1

(b) Comparison with a ground truth estimate

Figure 9.2: Illustration of the two implementation variants of the adaptive score, exempli�ed by the
volume overlap error.
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Figure 9.3:MICCAI scores for each reference segmentation (o, x, +) and adaptive scores using pairwise
comparison (�lled circle) and comparison with a ground truth estimate (�lled square).

ε̄pair ε̄GT ε̄MICCAI

Volume overlap error (%) 31.4 ± 12.5 17.3 ± 7.4 12.94
Volume di�erence (%) 24.6 ± 16.8 14.0 ± 9.1 9.64
Average surface distance (mm) 0.76 ± 0.51 0.38 ± 0.25 0.40
RMS surface distance (mm) 1.10 ± 0.74 0.69 ± 0.41 0.72
Max surface distance (mm) 4.64 ± 4.27 3.46 ± 3.09 4.00

Table 9.2: Comparison of adaptive reference values for the 50 cases of the study (mean ± standard
deviation) and global MICCAI reference values for liver tumors.

seem to be systematically higher than those from the ground-truth-based computation and from
the MICCAI criteria. �is is due to the fact that the estimated ground truth is a kind of average of
the masks, so the mean di�erence to the ground truth is lower than the average di�erence between
the original masks. In the MICCAI framework, the reference mask is also an approximation of a
“ground truth” because it required con�rmation by both experts. �eMICCAI reference values are
slightly lower for volumetric measures and slightly higher for surface distances. �is might be
explained by the fact that surface distances are a�ected by the lesion size, so their average value
may di�er strongly depending on the data.
As a second observation, the standard deviations indicate a great variation in the reference

values across the di�erent cases. �is con�rms once more that the variability between experts
depends on the individual cases and cannot be captured by global comparison values, especially
when objects of various sizes are considered.
A di�erent perspective on the results is taken in Figure 9.4, showing scatter plots of the average

of the three MICCAI scores and both variants of the adaptive score. Additionally, the uncertainty
about the true segmentation is encoded. From the plots, it can be seen that a high adaptive score
is more likely if either the average MICCAI score or the uncertainty is high. Cases with a medium
or low MICCAI score and high certainty are rather dragged down. �ese properties are true for
both ϕpair and ϕGT.
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Figure 9.4: Relation between the average MICCAI score and the variants of the adaptive score. The
�lling of each point indicates the di�erence between minimum andmaximumMICCAI score (the darker,
the more certain the “ground truth”).
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Figure 9.5: Correlation between φpair and φGT . Note that 90 points are approximately equivalent for
both scores.

�e values of ϕGT are consistently lower than those of ϕpair, but there is a strong correlation of
0.99 (Figure 9.5). �ismeans that the two variants are essentially equivalent, which is not surprising
given that one computes the average discrepancy to all masks and the other the discrepancy to
the average mask. Interestingly, 90 points are approximately equivalent for both scores, so the
interpretation of being “as good as an expert” is roughly the same. �e extrapolations of the curves,
however, di�er.
I will now present some cases from the study that exemplify the principles of the new approach

and its bene�t. In Figure 9.6, a liver tumor with three highly di�erent manual segmentations is
depicted. Due to the low signal-to-noise ratio the delineation of this lesion is not clear. �e table
in Figure 9.6e shows that the global reference values (ε̄) from the MICCAI validation framework
are not suitable here to get an assessment of the algorithmic result in relation to the quality of the
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(a) M1 : 25.04 ml (b) M2 : 34.59 ml (c) M3 : 18.22 ml (d) A: 34.98 ml

ε̂pair ε̄pair φpair ε̂GT ε̄GT φGT

Volume overlap error (%) 39.4 38.4 89.7 37.3 21.2 82.2
Volume di�erence (%) 32.4 41.9 92.3 34.5 21.7 84.1
Average surface distance (mm) 2.93 2.38 87.7 2.53 1.16 78.2
RMS surface distance (mm) 3.30 3.59 90.8 3.11 1.91 83.8
Max surface distance (mm) 17.60 15.56 89.0 17.01 9.83 82.7

(e) Discrepancy values, reference values and according scores

M1 M2 M3

φMICCAI φpair φGT

53.2 76.5 21.2 89.9 82.2

(f ) Total scores

Figure 9.6: Example from the study where M1 , M2 and M3 di�er signi�cantly and A provides a visually
satisfying compromise.

manual segmentations. �e adaptive reference values aremuch higher, for the pairwise comparison
even higher than the discrepancy values for the algorithm (ε̂) which results in scores above 90
points. �is is con�rmed by the visual impression of Figure 9.6d which shows that A is a good
compromise between the di�ering manual segmentations.
�e second example in Figure 9.7 shows the opposite e�ect. Here the inter-reference metrics

are lower than the MICCAI reference values (except for the volume overlap error) due to the high
agreement betweenM1,M2 andM3, but also due to the small size of the tumor. In comparison, A
is too small, which results in lower scores according to the new method. �is is again con�rmed
by visual inspection and comparison of the computed lesion volumes in Figures 9.7a to 9.7d.

9.6 Discussion

�e validation of a validation methodology is very di�cult or even impossible. Since the goal of
this work is to increase the objectivity compared to a validation based on the opinion of a single
expert, it does not make sense to correlate the adaptive scores with an expert rating or with scores
computed by other methods. Instead an axiomatic approach was chosen: by specifying criteria that
a validation framework should ful�ll and constructing a methodology accordingly. I motivated

122



Chapter 9 Validation using multiple reference segmentations

(a) M1 : 1.32 ml (b) M2 : 1.23 ml (c) M3 : 1.34 ml (d) A: 0.96 ml

ε̂pair ε̄pair φpair ε̂GT ε̄GT φGT

Volume overlap error (%) 28.2 16.8 83.2 27.4 8.8 68.0
Volume di�erence (%) 29.6 5.6 47.3 29.4 3.5 14.9
Average surface distance (mm) 0.77 0.32 84.2 0.76 0.16 63.8
RMS surface distance (mm) 0.92 0.51 85.4 0.89 0.35 78.3
Max surface distance (mm) 2.40 1.73 86.1 2.32 1.38 82.6

(e) Discrepancy values, reference values and according scores

M1 M2 M3

φMICCAI φpair φGT

82.2 84.6 81.8 77.2 63.7

(f ) Total scores

Figure 9.7: Example from the study where M1 , M2 and M3 have a very good agreement whereas A is too
small.

the criteria and veri�ed the assumptions by theoretical considerations and practical results. In
particular, I showed that reference segmentations by di�erent experts may exhibit a high variability
and that the degree of variability depends on several properties of the image and the object to be
segmented. �erefore comparison with a single expert segmentation and global reference values
for dissimilarity metrics can convey a wrong impression of the quality of an algorithm or – if used
during development – carry the risk of overly adapting an algorithm to a speci�c expert.
Looking back at the criteria one by one, I can clearly state that the �rst requirement is ful�lled.

All reference masks are treated equally and independently. Even if STAPLE is used for ground
truth estimation, the masks may be given di�erent weights during the computation, but not a
priori. �e method also complies with the second criterion. By determining the reference values
individually for each case, the tolerance of the score is adapted to the level of variability within the
set of reference segmentations. At this point, however, a further improvement may be possible. �e
variability is estimated for each case, but typically the variability is restricted to certain parts of an
object. �is could be captured by using a fuzzy ground truth that assigns each voxel a probability
of being part of the object.
�e third criterion is quite di�cult to ful�ll. Validation results from di�erent test images can

never be directly comparable and a fair comparison of methods should be based on a common
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data set. But at least the adaptive score tries to compensate for di�erent levels of “di�culty” of the
segmentation tasks. If a test comprises only clearly delimitable objects on high-contrast data, it
can be expected that the inter-expert variability is low and even slight deviations will be penalized
by the score.
With regard to the di�erent variants of the score, it was shown that they are essentially equivalent

and have the same interpretation for 90 points, but ϕGT decreases faster. At this point, it is not
clear whether any of the variants should be preferred. Maybe this question can be answered by
further experiments.
In the experiments I used the same combination of comparison metrics as proposed by the

MICCAI framework. I think, however, that this should also be examinedmore closely. In particular,
the three surface distancemeasures seem to have a high correlation and the fact that they contribute
60% of the �nal score is also debatable.
So far, I only applied the newmethod to liver tumor segmentation and used only three reference

segmentations. A thorough investigation is only possible if the community can be encouraged
to perform further tests for other segmentation problems. Studies should also be extended to a
higher number of expert segmentations and analyze the e�ects of using di�erent ground truth
estimation methods.

124



Chapter 10

Variability of manual segmentations

10.1 Introduction

In the previous chapter, it was illustrated how the variability between reference segmentations af-
fects validation results, but also how incorporating this variability into the validation methodology
can help to make more meaningful statements about the quality of an algorithm.
A question that remains open is how many expert segmentations should be acquired for a

validation study. �is is important because creating reference segmentations requires a lot of e�ort
from the experts, which is not always feasible. �erefore it is necessary to have an idea of the
typical variability in manual delineations and of the number of references that provides a good
compromise between completeness and viability. �is may be a step towards giving concrete
recommendations on how evaluation studies should be performed.
For this chapter, ten expert segmentations were acquired for a set of liver tumors. �e goal

of the analysis was to �nd out whether each of the ten experts actually contributed additional
information or whether a subset of a particular size is su�cient.

10.2 Related work

�e variability of manual segmentations has been an important �eld of research in radiation
oncology for about ten years. In radiotherapy planning, the segmentation of the target structure,
o�en called target volume delineation or contouring, is an essential prerequisite and is donemanually
in clinical practice. A good overview of variability studies has been assembled by Jameson et
al. (2010). In particular, they investigated which methods have been applied to measure the
di�erences between contours. �e main organs of interest are prostate, lung, brain, and breast,
and no studies with focus on liver tumors are mentioned. �e methods for measuring variability
are not standardized and therefore the results of di�erent studies are hardly comparable. Metrics
used include the coe�cient of variation of the volume or the concordance index, which is the
same as the volume overlap, but is sometimes also applied to the union and intersection of a set
of segmentations. A new measure of contour deviation was introduced by Deurloo et al. (2005).
A mean contour is de�ned by the set of voxels that have been segmented by at least 50% of the
readers. At each point of the mean contour, the perpendicular distance to the original contours is
measured. It was found that these distances at each point roughly follow a Gaussian distribution
and can thus be represented by their standard deviation. �e local standard deviations at all surface
points can be visualized and the overall variation can be measured by their mean, which is just
called SD in the paper. �e interpretation of this value is that about two thirds of the contours lie
within this distance around the mean contour.
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A review of the cited papers reveals that the intra- and inter-observer variability in target volume
delineation in CT is generally regarded to be a critical issue among radiation oncologists. Looking
at non-small-cell lung cancer (NSCLC) as an example, Bowden et al. (2002) report an average
coe�cient of variation of 20% for the volume of six tumors delineated by six readers, ranging
from 5% to 42%. A larger study with 22 tumors and 11 readers was performed by Steenbakkers
et al. (2006). �ey measured an average concordance index of 0.17. In fact, it was zero in four
cases where the intersection of all contours was empty. �e SD value as de�ned above was 1.02 cm.
�e �gures in this paper give a visual impression of signi�cant variation.
For liver tumors, which will be the focus of my following investigations, Bellon et al. (1997) ex-

amined di�erences in manual and semi-automatic delineation. �ey used six manual delineations
by three experts on 14 images, but only one slice was considered per image. �e coe�cient of
variation of the area amounted to 10.2%. A visual example is shown, but no interpretation of this
result is given.
Interestingly, there seems to have been little interaction between the radiological and image

analysis communities so far. �is may be due to the fact that the underlying questions are di�erent.
For a clinician it is most important to investigate the e�ects of variability on treatment success,
although it is not feasible to have several physicians delineate the same lesion in order to enhance
accuracy. In image analysis, on the other hand, we are more interested in how to measure the
quality of our algorithms given this variability, but so far this has not been examined systematically.
One of the few papers that analyzed variability with validation of algorithms in mind was

published by Tingelho� et al. (2008). �ey analyzed 20 manual delineations of the maxillary sinus
and the ethmoid sinuses in a single CT scan. Coe�cients of variation for the volumemeasurements
are given as 5.1 % and 35.3% for the two respective structures. �e authors conclude that “manual
segmentation is not adequate as gold standard” and suggest that the combination of multiple
expert segmentations might be a solution.

10.3 Data

For my experiments, I used a collection of 13 CT images from 13 di�erent patients, seven hospitals,
and scanners by four vendors. Slice thickness varies between 0.8 and 1.5mm. In each image, a
liver tumor was selected and a region of interest was cut out. Ten manual segmentations were
obtained by radiologists and experienced radiology technicians. �ey drew the outlines of the
tumors in all axial slices in the original image resolution. �e experts were allowed to adjust the
window settings individually in order to include this typical source of variation into the analysis.
�e image data and three expert segmentations were taken from the data set speci�ed in

Section 4.2. I tried to choose a representative set of tumors with respect to size, anatomical
location, contrast to parenchyma, resolution, noise etc. However, I selected mostly smaller tumors
in order to reduce the workload of the experts. Figure 10.1 shows all tumors used in the study.

10.4 Methodology

�e analysis of themanual segmentations will be divided into two parts. First, a descriptive analysis
of the variability is performed, based on an established metric, the coe�cient of variation (COV)
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13)

Figure 10.1: Tumors that were used for the study. The tumors are in the center of the slices shown here.
All ROIs have the same physical size and are shown with the same window settings.
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of the volume. Although variations in the volume do not necessarily reect all possible variations
in the outlines themselves, this simple metric has some advantages. Since there is no standard
methodology to measure the variability within a set of segmentations, any choice of a metric would
bear the risk of introducing arti�cial e�ects. Di�erent metrics might generate di�erent results, and
it would be di�cult to interpret these di�erences. �erefore I decided to keep this study as simple
as possible and restricted my examinations to the volumes of the masks de�ned by the manual
delineations.
From a purely descriptive analysis, however, it cannot be concluded how many manual de-

lineations are necessary to cover the typical variability and allow a meaningful validation of a
segmentation algorithm. Inductive statistics try to make general statements from a limited amount
of data. In my study, ten segmentations are available for 13 cases. �is is a large number for this
particular problem, but a very low number for making inductive statistics. It is impossible to
derive a reliable estimate of the distribution of manual delineations by experts from such a small
sample.
Rather than trying to make statements about the complete “population” of manual delineations

on liver tumors from the available data, I decided to simulate this process one level lower. I set
up an urn model where the ten delineations for the 13 tumors are the complete population. �en,
subsets of this population can be investigated by drawing from the urn. If the simulated population
is representative of the real population, the conclusions can be generalized and give an idea of how
much information is lost when a subset of a certain size is used.
For the urn experiment, the average volume of all ten experts is considered as the true volume

vtrue. For a subset, the average volume vsub of all contained segmentations is computed. �e
volume error is then de�ned by

ε = ∣vsub − vtrue∣
vtrue

. (10.1)

Now consider the set of volumes measured by the ten experts for a particular tumor. Each subset
of size k = 1, . . . , 9 represents a random choice of k experts and de�nes a volume estimate and
an error according to the formula given above. If k segmentations are drawn from an urn, all
(10k) combinations have the same probability. �erefore the expected value of the error made by
a selection of k experts is just the mean of the errors of all subsets containing k elements. �is
expected error can be plotted against k. A di�erent point of view on the data can be taken by
computing the probability of exceeding a particular error depending on k.

10.5 Results

�emanual segmentations are displayed as overlaid contours (Figure 10.2) and summarized in
probability maps (Figure 10.3), along with the average volume of the segmentations and the corre-
sponding coe�cients of variation. Figure 10.4 visualizes the absolute volumes of the segmentations
as well as the relative di�erences to the mean volumes.
�eCOVhas amean of 21.83% and ranges from 3.56% to 48.46%. �e extreme values occurred

for the largest and the smallest lesion, respectively. �e data set is too small to prove a correlation
between size and variability, but it is plausible since di�erences between segmentations occur
mostly at the boundary, and for smaller objects the relative amount of boundary voxels is higher.
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(1) 55.80ml 3.56% (2) 5.33ml 13.13% (3) 3.71ml 17.22% (4) 0.46ml 18.49%

(5) 4.28ml 8.21% (6) 0.24ml 41.61% (7) 1.71ml 21.69% (8) 23.51ml 25.86%

(9) 0.55ml 21.20% (10) 1.15ml 24.27% (11) 1.70ml 17.82% (12) 1.32ml 22.30%

(13) 0.06ml 48.46%

Figure 10.2: Tumors from Figure 10.1 with tenmanual segmentations, shown as colored contours. Images
are zoomed for better visibility of the contours. For each tumor, the mean volume and the coe�cient of
variation of the volume are given.
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13)

Figure 10.3: Probability maps for the segmentations in Figure 10.2.
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Figure 10.4:Volumes and volume errors (compared to themean volumes) of the tenmanual delineations
for 13 tumors.

Tumor 13 has the highest COV. Since it is very small, the di�erences are likely to be caused by
di�ering inclusion of the partial volume zone and drawing inaccuracies. In tumor 1, on the other
hand, the di�erences between the segmentations are only minor drawing inaccuries which hardly
inuence the volume. In both cases, it seems that in principle all experts agree about the shape of
the tumor and its rough extents and that the di�erences can be explained by statistical deviation.
Tumors 7 and 8 are examples of an average COV. Visually, however, there are more signi�cant

di�erences between the delineations than in the previous cases, which cannot be explained by
drawing inaccuracy alone. �e readers actually seem to disagree about the extent of the tumors. In
tumor 8, this can be explained by the weak contrast to the liver tissue and the heterogeneity of the
tumor. Although in tumor 7 the contrast is stronger, there are some regions which are not clearly
hypodense but, probably inferred by expert knowledge, are still regarded tumor by some readers.
�e results of the urn model experiment are displayed in Figure 10.5a where the expected errors

for a random sample of k segmentations are shown. �e errors for k = 1 correspond roughly to
the COVs. �e curves for all tumors decrease monotonically as expected and for higher k show a
tendency to converge to each other. If a single segmentation is drawn randomly, the error is 16.6%
on average and up to 35.3% for tumors with a high variability. �e average error is already reduced
signi�cantly for k = 2 (11.2%) and almost halved for k = 3 (8.7%). �en it decreases more slowly
until being halved again at k = 6 (4.7%). �ese relations are approximately true for the curves of
all individual tumors as well, so the relative error reduction does not depend on the COV.
Figure 10.5b presents summarized results for all tumors. It shows the mean expected error,

i.e., the mean of all curves in Figure 10.5a, along with the minimum and maximum errors, again
averaged over all tumors. �e minimum error is a best-case estimate, i.e., it results from selecting
those segmentations that are closest to the true segmentation. It can be seen that if the two “best”
experts are selected, the error is already zero. Analogously, the maximum error represents the
worst choice of segmentations and is more than twice the mean error for any number of experts.
�e curves in Figure 10.6 show which k should be chosen if a certain error ε should not

be exceeded or should only have a low probability of being exceeded. For instance, for being
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Figure 10.5: Expected value of the volume error if k = 1, . . . , 9 segmentations are randomly selected. (a)
Curves for all 13 tumors. (b) Expected, maximum and minimum error, averaged over all tumors.
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Figure 10.6: Probability ofmaking a volume error> ε if k = 1, . . . , 9 segmentations are randomly selected,
for ε = 10, 20, 30%, averaged over all tumors.

sure to have an error of less than 30% in average over all tumors, at least six of the ten manual
segmentations are necessary. While for k = 3 the probability of ε > 30% is still only 2.7%, reducing
the error bound to ε > 10% increases the probability to 34.9%. An average error of less than 10%
cannot even be guaranteed for k = 9.

10.6 Discussion

�e analysis of the manual delineations of ten experts shows that there is a considerable variability
with a mean volume COV of 21.83%. �is variability di�ers strongly between tumors and reaches
a maximum of 48.46% for a very small tumor.
Visual inspection of the delineations revealed that two kinds of uncertainty should be distin-

guished. Statistical uncertainty can be modeled by a mean contour and an uncertainty margin
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of a particular width. It can be caused by di�ering perception of the tumor size depending on
the window settings. If the contrast is low, some readers may tend to draw the outline around
everything that might be tumor, while others mark only the region that certainly belongs to the
tumor. Semantic uncertainty, on the other hand, cannot be modeled by deviation around a mean
contour. Instead, larger regions, not just narrow bands of voxels, have been included by some
experts and excluded by others, resulting in a fuzzy segmentation with distinct areas of a particular
probability.
In an urn experiment, I simulated the e�ects of using samples of the ten segmentations for

volume estimation. Assuming that the available set of tumors is representative of practical cases,
one can say that if a single manual segmentation is used to estimate the volume of a tumor, the
expected error is around 17%, but might get as high as 35%. For comparison, a volume increase
of 73% or a decrease of 66% are used to classify the response of a tumor to treatment according
to the RECIST criteria (Eisenhauer et al. 2009). �is means that the error of volume estimation is
already a quarter of a clinically signi�cant threshold for volume change on average and up to a
half in some cases.
�is uncertainty also has an impact on the validation of segmentation algorithms. When

comparing the result of an algorithm to a single reference segmentation and computing volume
errors, the expected volume error of the reference needs to be taken into account. Since mostly
absolute values of errors are used, it cannot be determined whether the two errors accumulate or
cancel each other out. Again for comparison, the evaluation of a state-of-the-art algorithm for
liver tumors by Smeets et al. (2010) reports a volume error by comparison with a single reference
segmentation of 17.9%, which is just the expected volume error that I found for the reference.
�erefore it is questionable if this kind of validation is reliable.
However, the error decreases with increasing numbers of segmentations. When three are used

instead of one, the average error is almost halved. Taking the e�orts required for obtaining manual
delineations into account, a number of three could be a reasonable compromise in practice. But
since my study was limited, this is only a �rst impression and it is important to gather a larger
collection of data for drawing more general conclusions.
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Chapter 11

A tool for creating probabilistic expert segmentations

11.1 Introduction

In the previous chapter, the variability of manual tumor delineations was analyzed. It turned out
that in some cases the variability cannot be explained by drawing inaccuracy alone. �is variability
captures the uncertainty of a set of experts about the true segmentation. My observations show
that it does not make sense to insist on having a hard “ground truth”. Instead, the uncertainty of
the experts should be incorporated into the validation methodology. �is requires a quanti�cation
of the uncertainty and a distinction between two di�erent aspects. O�en it can be assumed that
several expertsmean the same contour but draw it slightly di�erently. Any of their segmentations
and anything in between can be considered correct. In these cases, it makes sense to compute an
average contour and a standard deviation which models the statistical uncertainty. However, there
are also cases where the experts actually seem to have di�erent ideas of the correct segmentation.
�en, an average contour does not make sense and a good algorithm should be close to at least
one of the expert delineations. �is may be called semantic uncertainty.
�e main problem in taking the uncertainty of the true segmentation into account is the e�ort

that is required from experts. Even large validation initiatives such as LIDC (Armato III et al. 2011)
collected “only” four segmentations per case. Most individual researchers do not have access to
more than one or two experts. A common restriction, however, is that experts are usually asked to
draw a single contour as their best estimate of the true segmentation. Variability is then measured
in terms of the di�erences between the best estimates of multiple experts. An aspect that is mostly
disregarded is the uncertainty of each individual expert. Before drawing a contour, each reader has
to make two decisions: where to draw the most probable boundary within an o�en blurred margin
and whether or not to include ambiguous regions which may or may not be part of the tumor.
�e hypothesis of this chapter is that the variability between multiple contours can in part be

reproduced by a lower number of experts, if they are given a tool to express their uncertainty.
Such a tool will be presented and evaluated in the following sections. �e evaluation uses the
same tumors as the variability study in Chapter 10 and compares the results of three users with
the new tool to those of ten users drawing conventional contours. As in that study, liver tumor
segmentation in CT is used as an example, but the methodology is easily generalised.

11.2 Related work

A related approach was presented by Restif (2007). He introduced a framework called Comets that
allows a single user to create a probabilistic reference segmentation. It was speci�cally developed
for 2D cytometry images where blurred boundaries and connected objects are common problems.
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�e user draws the most probable outline and adds inner and outer limit pixels which are de�nitely
inside or outside the object, but as close to the border as possible. From this input a con�dence
map is computed by setting 0 on the drawn outline, ±1 on the limit pixels and interpolating on all
other pixels.
As compared to Restif’s work, this article presents three additional contributions. First, the

focus will be on 3D images. While transferring the concept to 3D is straightforward in principle,
e�ciency becomes an issue when contours have to be drawn in each slice. �e concept of limit
pixels may not be intuitive for all users and it might take some time to de�ne them on all slices.
�erefore, I opted for a simpler and more e�cient interaction based on contours.
Second, Comets does not distinguish statistical and semantic uncertainty but covers both by a

single method and blends them together in the con�dence map. For validation purposes, however,
it is advantageous to separate these two aspects. �is is done explicitly in the new tool.
Finally, Restif does not compare Comets to other ways of generating reference segmentations.

Since my work was motivated by the goal to reduce the number of necessary experts without
losing information, I conducted a user study to evaluate this.

11.3 Workow

With the new tool, segmentation is done in two phases. In the �rst phase, the most probable
contour is drawn. �e statistical uncertainty is modeled by a rim around this contour. �e inner
boundary of the rim delineates all voxels which are de�nitely part of the tumor. Analogously,
all voxels outside the outer boundary de�nitely belong to the background. �e width of the
uncertainty rim is set by the user before drawing the contour. For simplicity, this setting is applied
globally on each slice, but can be adapted locally a�erwards. �e current width is visualized as the
diameter of a circle displayed at the cursor position and can be changed by turning the mouse
wheel (Figure 11.1a).
Once the user has �nished drawing, the inner and outer contours are generated by applying a

distance transform to the user-de�ned contours and adding or subtracting the uncertainty radius.
�ese contours are displayed and can be edited. Although in many cases a global uncertainty
radius is reasonable, there are cases where a di�erent value should be set locally. For example,
a tumor may have a blurred boundary to the liver parenchyma, but a clearly de�ned one to a
structure outside the liver. Editing is achieved by drawing new partial contours which are inserted
into the existing ones.
Now the contours are transformed into a probability map (Figure 11.1b). Voxels are assigned 1 if

they are inside the inner contour and 0 if they are outside the outer contour. Between the contours,
probabilites are linearly interpolated. Note that, unlike Restif (2007), the values are limited to
[0, 1] and do not decrease further outside the outer contour.
In the optional second phase, additional regions can be outlined and assigned a con�dence of

belonging to the tumor (Figure 11.1c). For these regions, no uncertainty margin is de�ned because
that seemed to be too confusing for users, although technically it would not be a problem. Regions
are included in the probability map by using the maximum of the value assigned earlier and the
con�dence set by the user (Figure 11.1d). Alternatively, the results of the two phases can be stored
separately for further analysis.
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(a) (b)

(c) (d)

Figure 11.1: Illustration of the workow of the new tool and the results it produces. (a) User-drawn
contour (yellow) and inner and outer contours (green and red) constructed from the radius of the circle.
(b) Probability map. (c) Additional region with con�dence 0.5 (blue). (d) Probability map.

11.4 Evaluation

�e newly developed tool was evaluated in a study with three experts (one radiologist and two
radiology technicians) and the same 13 liver tumors that were used in Chapter 10. �e created
probability maps, averaged over the readers, are shown in Figure 11.2.
�e usage of the features o�ered by the tool varied across the participants. Readers 1 and 2

adapted the uncertainty width in each case, whereas Reader 3 always used the same value (in
voxels). Reader 3 also did not draw any additional regions. �e two others added three and eight
regions, respectively, in total a�ecting eight of the 13 tumors. I compared the new results to the
earlier ones (Figure 10.2) and found a high visual similarity for many of the tumors. �e chosen
uncertainty widths correspond well to the statistical uncertainty among ten experts as illustrated
by tumors 12 and 13. Still, some interesting e�ects can be seen. In tumor 1, for instance, a region
was le� out by one of the three readers although it had been included by all ten readers in the
earlier study. For tumor 8, on the other hand, there was slightly more variability among ten readers
than could be reproduced by three.
For a more quantitative analysis, we de�ne a metric that captures the variability encoded in

a probabilistic segmentation. It is based on the fuzzy volume overlap, where the volume of a
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(1) (2) (3) (4)

(5) (6) (7) (8)

(9) (10) (11) (12)

(13)

Figure 11.2: Averaged probability maps created by the three study participants.
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100% 81% 90%

69% 82%

Figure 11.3: Illustration of properties of the fuzzy self-overlap on academic examples. The binarization is
shown in yellow. The value is 100% for a binary segmentation and drops with increasing uncertainty
about the boundary and about additional regions.

segmentation is the sum of the probabilities of all voxels, with intersection and union being
de�ned by the voxel-wise minimum and maximum (Crum et al. 2006). �e fuzzy overlap of two
segmentations compares two aspects, the mean segmentations and the spread of probabilities
around them. Applying the fuzzy overlap to a probabilistic segmentation and its own mean
segmentation, de�ned by thresholding at 0.5, measures the variability. We call this the fuzzy
self-overlap. It is 100% for a binary segmentation and gets lower the more the probabilities are
spread. Figure 11.3 illustrates the properties of this metric.
Figure 11.4 compares the variability in averaged segmentations created from the ten conventional

segmentations of my earlier study and from the three probabilistic ones of the present study. In
the plot, it is clearly visible that with the new tool more information can be acquired using fewer
experts. One expert using the new tool could replace three experts drawing conventional contours.
Together, the three experts in this study generated more variability than ten in the previous study.
A�er the study, the participants were interviewed. �ey said that they felt unfamiliar with

expressing their uncertainty because usually they have to make a crisp decision. While, however,
the uncertainty width was adopted easily, the readers had di�culties de�ning additional regions
and quantifying their con�dence. �is shows that users need some training to get used to the new
way of thinking the tool requires. �e reader who achieved the best results was already interviewed
in the development phase and probably had the best understanding of the concepts at the time of
the study.

11.5 Discussion

�emotivation for this work was to be able to reduce the number of experts needed for a validation
study without losing information and without increasing the workload per expert too much. A
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Figure 11.4: Variability in combined segmentations by di�erent numbers of experts, using conventional
and probabilistic expert segmentations. The lower the fuzzy self-overlap, the higher the variability.

basic decision was made to separate statistical and semantic uncertainties explicitly, both for
reducing the e�ort and for making it available for further analysis. In the study, the statistical
uncertainties were captured well at virtually no additional cost because the uncertainty width
was set very quickly. A possible disadvantage of the conceptual separation, however, is the fact
that users typically decide to add a uncertainty region in the �rst phase, but have to wait for the
second phase before they can actually draw it. �is requires a high concentration and memory
capacity and might be a reason why not many uncertainty regions were added. A workow that
allows alternating the two phases on each slice might improve this. As a further improvement,
one might think about not just adding, but also subtracting uncertainty regions from the initial
segmentation. �is might be more intuitive than leaving out regions with a very high con�dence
in the �rst phase and adding them later.
�e results of the study show that using the new tool expert uncertainty can be recovered with a

lower number of experts as compared to conventional contours. �is was con�rmed both visually
and quantitatively. It is interesting to see that in some cases uncertainty regions were used that
have no correspondence among ten experts. �is shows that the explicit capturing of uncertainty
can actually gather additional information compared to just averaging over a large number of
segmentations. But on the other hand, there are also some cases where the complete variation
cannot be reproduced with a lower number of readers. In Figure 11.2, tumors 1 and 8 illustrate this
duality.
�e processing time was not measured, but from our observations during the study it can be said

that the new method allows a considerable reduction of e�orts. Assuming that segmentation took
25% longer than pure outlining, which is a very conservative estimation since uncertainty regions
are typically small and cover only a couple of slices, the overall person time was still reduced by
almost two thirds.
Future work is necessary to investigate how these probability maps can be used for algorithm

validation. Since they are not inherently binary, many common approaches are not directly appli-
cable. Some widely used metrics like the volume overlap can be easily generalized for probabilistic
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segmentations, whereas for surface distances there is no obvious solution and di�erent proposals
have been made. Crum et al. (2006) discuss their application in medical image analysis. �ey
focus, however, on the case where the algorithm result is probabilistic rather than the reference
segmentation. Further experiments should provide insight into how suitable these methods are
for validation. Also, common methods are not able to make use of the explicit distinction between
statistical and semantic uncertainty. �e additional information that is becoming available calls for
a completely new validation paradigm that works not only on (a set of) random expert delineations,
but builds up knowledge about plausible and implausible segmentations.
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Conclusion

�is �nal chapter summarizes the contributions of the thesis and discusses directions for future
research.
In Part I, a method for segmenting liver lesions in CT was presented. It aims primarily at

metastases, but is also able to handle primary tumors as long as they are homogeneous or consist of
a core and a rim. During development, special attention was paid to the computation time because
that is a paramount criterion for clinical acceptance. In the end, a median runtime of less than
1 s could be achieved, which is considerably faster than all previously published methods. �is
was achieved by a combination of computationally modest methods such as region growing and
morphological processing with a sophisticated threshold selection based on appearance models
for di�erent lesion types and the corresponding histograms.
�e method was evaluated on 371 lesions not available during development with one reference

segmentation per case. �is is the most substantial validation of a liver tumor segmentation
algorithm published so far. A median volume overlap of 62.8% and a median Hausdor� distance
of 4.5mmwere achieved. �ese values, however, are hard to interpret because the expected quality
is unclear and a comparison with other methods is not possible if di�erent data are used.
On a subset of 50 lesions, three reference segmentations were compared to each other, yielding

a median pairwise volume overlap of 67.7% and a median pairwise Hausdor� distance of 3.2mm.
On the same subset the algorithm achieved a volume overlap of 64.3% and a Hausdor� distance
of 3.8mm, averaging over the three reference segmentations. �is indicates that the results are
quite close to the optimum when taking the uncertainty about the true result into account.
�e segmentation algorithm has been integrated into a commercial so�ware, which also includes

an e�cient editing tool, and is available to a large number of radiologists. Unfortunately, it is not
o�en used in practice because it still takes longer than just measuring the longest diameter and the
additional bene�t of tumor volumetry has not been proved yet. So, while signi�cant improvements
of the algorithm itself are probably no longer possible, the next challenge is to �nd ways to establish
it in the clinic.
One possibility to increase the acceptance of segmentation is to provide not only the lesion

volume, but further parameters. �ese might include the fractions of vital and necrotic tissue in
the tumor or textural parameters such as homogeneity. �ese measures are expected to become
more important with the advent of new therapies which do not primarily reduce the tumor size,
but change its internal structure.
A di�erent approach is to try to further speed up the measurements. For example, this could

be done by using the segmentation result only for computing the longest diameter. �is would
still improve the reproducibility of the measurements, but reduce the e�ort for manual editing
signi�cantly.
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�e process could also be accelerated by combining a fully automatic lesion detection and
segmentation which precomputes the results and minimizes the waiting time. If no previous
results are available, a possible workow would be to detect lesion candidates with a highly
sensitive, but not necessarily very speci�c detection algorithm, precompute the segmentations
and display them as soon as the user clicks on a lesion. A solution for follow-up cases has been
proposed in Part II of this thesis.

�is part presented a comprehensive framework for automatic lesion trackingwhich automatizes
the complete process and only requires the user to check the results and correct them if necessary.
�e algorithm consists of three steps. First, a template matching is used to detect a point in the
lesion of interest. �en, the segmentation algorithm is initialized automatically, simulating the user
input. Finally, a classi�er detects implausible results and discards them. In contrast to previous
approaches, it has been designed to work without incorporating any organ-speci�c assumptions.
It was, however, speci�cally optimized for lung nodules, liver metastases, and lymph nodes.
A database of 994 lesion pairs was used to motivate the adequacy of the template matching

approach in theory and to optimize the parametrization in practice. An independent set of 209
lesion pairs was used for evaluation. On average, a matching rate of 81.4% was achieved, with lung
nodules showing the best and lymph nodes the worst results. �e median segmentation quality
was the same as with manual initialization, and the classi�er had an F1 score of 0.88.
In addition to the technical evaluation of the individual components, I conducted a workow-

oriented evaluation of the framework as a whole with four radiologists. �at study showed that
automatic lesion tracking may actually have a bene�t in clinical routine. Both reading time and
intra-reader variability of the measured volumes were reduced.
While these results are very promising and, according to the study participants, the tool would

already be helpful in the clinic, it would be desirable to further increase the matching rate. �is
would come at a higher computational cost, but that is tolerable since the computations are meant
to be performed in preprocessing. An idea that should be investigated in the future is how the
plausibility check can be used not only to detect failures, but also to �x them. �is could be done
by changing parameters, relaxing assumptions or triggering more expensive procedures. Humans
o�en use landmark structures such as vessels in the neighborhood of a lesion for orientation. Such
an approach could be mimicked by an algorithm.

While the �rst two parts presentedmethods to solve a particular image analysis problem, Part III
focused on the validation of those methods from a more theoretical point of view. Starting from
the observation that the variability of manual reference segmentations has an impact on the quality
assessment of algorithms, the concept of uncertainty-aware validation was introduced. �e main
paradigm is to skip the idea of a “ground truth” and use the uncertainty about the true segmentation
to calibrate validation metrics.
A new adaptive score was introduced as a generalization of the MICCAI Grand Challenge

framework. It quanti�es the individual uncertainty of each case and assesses the algorithm more
strictly if experts agree andmore tolerantly if they disagree. Some examples were shown to illustrate
properties of the new score, but it is hard to verify that it is actually a good measure of algorithm
quality. I am planning a case study where at least two algorithms are compared using at least three
reference segmentations and ideally experts rate the results and discuss their uncertainty. With
such a setup, it might become possible to prove the adequacy of the new score.
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An important factor in this context is the number of expert segmentations that should be used. It
might be assumed that above a particular number no additional information is acquired. However,
experiments with ten experts showed that this is not the case. On the other hand, it was also shown
that moving from one to two or three experts makes the results clearly more robust.
Given this result, I tried to �nd a way to acquire the same amount of information from fewer

experts. A tool was developed that allows experts to express their individual uncertainty during
segmentation, making an explicit distinction between statistical and semantic uncertainty. A study
revealed that three experts using this tool capturedmore uncertainty than ten users drawing simple
contours. So this new way of generating reference segmentations might have two advantages: It
allows a reduction of expert e�ort and a better understanding of which segmentations are plausible.
I think these are also the main goals of future research in this �eld. Expert resources are limited,

so it is necessary to capture as much knowledge as possible while they are available. Ideally, a
validation method should be able to predict how an expert would rate a particular segmentation,
which deviations from their own manual segmentation would be tolerated and which would be
corrected. �is thesis pointed out some ideas to make validation more objective and e�cient, but
it is up to the medical image analysis community to join this kind of research and share their data
so that large-scale studies can be performed and algorithms developed at di�erent institutions can
be compared.
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Häme, Y. and Pollari, M. (2012). Semi-automatic liver tumor segmentation with hidden Markov
measure �eld model and non-parametric distribution estimation. In: Medical Image Analysis
16(1), pp. 140–149.

Heckel, F., Moltz, J. H., Bornemann, L., Dicken, V., Bauknecht, H.-C., Fabel, M., Hittinger, M.,
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Moltz, J. H., Rühaak, J., Hahn, H. K., and Peitgen, H.-O. (2011a). A novel adaptive scoring system
for segmentation validation with multiple reference masks. In: SPIE Medical Imaging, pp. 796214–
1–10.
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