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Abstract

The Newton map of an entire map f is defined by Nf (z) := z − f(z)
f ′(z) . For

f(z) = p(z)eq(z), where p and q are polynomials, its Newton map Npeq(z) =

z− p(z)
p′(z)+p(z)q′(z) is a rational function. For a Newton map Npeq the finite fixed

points are superattracting and are roots of p. The point at ∞ is a parabolic
fixed point with deg(q) petals for a Newton map Npeq(z). For fixed integers
d ≥ 3 and n ≥ 1, let the degrees of the polynomials be deg(p) = d − n with
p having only simple roots and deg(q) = n then we have deg(Npeq) = d. The
parameter plane (parametrized by coefficients of p and q) of Newton maps
satisfying properties above is of complex dimension d − 2. Due to existence
of the parabolic fixed point for these Newton maps, we can not have post-
critically finiteness condition in this family. But there exist analogous notion,
that we call “post-critically minimal”, to the notion of post-critically finite.

The properties of post-critically minimal Newton maps are analogous to
those of post-critically finite Newton maps of polynomials. Using surgery tools
developed by Häıssinsky and Cui we give a full classification of post-critically
minimal Newton maps in terms of Newton maps of polynomials. The latter
was recently classified by Y. Mikulich.
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Structure of the thesis

The thesis is organized in six chapters.

• Chapter 1: This is an introduction to the subject of the thesis.

• Chapter 2: In this chapter we give known results on Newton maps of en-
tire functions. We give a description of a Newton map in terms of partial
fraction decomposition of rational functions. We prove that every immediate
basin of a rational Newton map has one or several accesses to ∞ improving
a known result for Newton maps of polynomials. We define the notion of an
“attracting” access, which does not exist in case of Newton maps coming from
polynomials. In Section 2.1 we introduce a notion of a marked channel dia-
gram for postcritically finite Newton maps of polynomials. This is the main
ingredient of the Häıssinsky surgery, which is covered in Chapter 4. We also
give examples of marked channel diagrams for degrees of 2 and 3 of functions.

• Chapter 3: In this chapter we introduce a notion of post-critically minimal
Newton map, which is the main object of the thesis. We give a full description
of a post-critically minimal Newton map on its Fatou components. We define
the spaces of function in the thesis. In the Sections 3.2 and 3.3 we do a case
study of spaces of lower degree Newton maps.

• Chapter 4: This chapter consists of three sections. In the first section, the
preliminaries, we define quasiconformal and David maps. We state a surgery
method developed by McMullen to change any rational function in the Fatou
set to the other function, which we call a general post-critically minimal. As
a corollary of it we obtain that the stable components of the parameter space
of rational Newton maps contain a unique “center”, which is a post-critically
minimal Newton map. In Section 4.2 we formulate a surgery developed by
Cui to turn rational functions with parabolic cycles into rational functions
without parabolic cycles. Section 4.3 is devoted to the Häıssinsky surgery, the
main tool of the surgery method we use in the thesis. We prove that it can be
applied to post-critically finite Newton maps of polynomials. We improve the
result by including the case when a critical point may land at the repelling
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fixed point that is being converted to the parabolic. The other improvement
of the theorem is that we lose the conjugacy in the process of the surgery
only in the immediate basins of the marked fixed points that we are working
with. This makes our life easy when we are dealing with injectivity of the
parabolic surgery. The final remark we give is that the surgery applied to
a post-critically finite Newton map of a polynomial gives us a post-critically
minimal rational Newton map, which defines a natural mapping from the one
space to the other one.

• Chapter 5: This chapter provides the main results of the thesis. We prove
that the Häıssinsky surgery is injective and surgective between corresponding
spaces of Newton maps.

The thesis ends with two appendices.

• Appendix 1: In Appendix 1 we generalize the notion of a Newton map
allowing the multipliers at the fixed points to be any complex numbers. These
type of functions are called Formal Newton maps. In the special cases we
prove that the Julia set is connected obtained by a corollary of Shishikura
theorem. We give a canonical postcritically minimal Newton map associated
to a formal Newton map.
• Appendix 2: In Appendix 2 we propose some open problems in the field
of Newton maps.



Notations

C – The set of complex numbers

Ĉ – The complex Riemann sphere
deg(f, z) – The local degree of f at a point z

K(p) – The filled-in Julia set of a polynomial p
J(f) – The Julia set of a rational function f
F (f) – The Fatou set of a rational function f
Nf – The Newton map of an entire function f ,

i.e. Nf (z) := z − f(z)
f ′(z)

Cf – The set of critical points of a function f
Pf – The post-critical set of a rational function f

N (d− n, n) – The space of degree d normalized Newton maps of peq

, see Definition 3.1
Npcm(d− n, n) – The space of post-critically minimal Newton maps

in N (d− n, n), see Definition 3.2
Npcf(d) – The space of degree d post-critically finite Newton maps

∆(f) – The (unmarked) channel diagram of f , see Definition 2.14
∆∗n(f) – The marked channel diagram of f , see Definition 2.15

N+,n
pcf (d) – The space of post-critically finite Newton maps in Npcf(d)

with markings ∆+
n , see Definition 3.3.



Thesis Summary

1. The Goal: The goal of my thesis is to obtain a classification result
for the next big class of rational Newton maps, which has the form
z − p(z)

p′(z)+p(z)q′(z) , where p and q are polynomials. This class consists of
all Newton maps coming from transcendental entire maps of the form
p(z)eq(z).

2. Description of rational Newton maps: The first task was to give a
simple description of a function in this space. We solve this task using the
partial fractional decomposition of rational functions. We have necessary
and sufficient condition for a rational function to be a Newton map.

3. Understanding of Fatou components: The next target was to have
a basic understanding of Julia set and Fatou components, accesses to
∞ within an immediate basins of attracting and parabolic fixed points.
The difference from Newton maps of polynomials (case of q = const.) is
that for our functions the point at∞ is parabolic and so it has parabolic
basins. We generalize the notion of access for our setting and prove the
result on the number of accesses to ∞.

4. Marked Channel Diagrams: We introduce a notion of a marked
channel diagram. It is a channel diagram of post-critically Newton map
of polynomial (case of q = const.) with marked invariant rays. We mark
at most one invariant ray in every immediate basin that we want it to
be marked.

5. Spaces of Newton maps: The parameter space of degree d Newton
maps of polynomials (parametrized by locations of roots of polynomi-
als) is of complex dimension d − 2. In this space the connected com-
ponents of hyperbolic functions are called hyperbolic components, and
every bounded hyperbolic component contains a unique “center”, which
is known to be a post-critically finite function. Similarly, we define spaces
of rational Newton maps for each degrees of q. In each space we define
stable functions: these are functions for which all the critical points be-
long to the basin of∞ or to the basins of attracting cycles. Since for this
family of functions the point at ∞ is persistently parabolic with multi-
plier +1, these stable functions form an open set in the parameter plane.
The connected and bounded components contain a “center”, which is a
post-critical minimal Newton map.

6. Post-critical minimal Newton maps. We introduce a notion of post-
critical minimal Newton map, for which the critical orbits on the Julia
set and on attracting Fatou domains are finite; for critical points in the
basin of ∞ there exist minimal critical orbit relations: in every immedi-
ate basin of ∞ there exists a unique (possibly with higher multiplicity)



critical point and all other critical points in the basin of ∞ will land to
the critical point in one of the immediate basins of∞ in minimal iterate,
so that there exist no other types of Fatou components.

7. A description of post-critical minimal Newton maps. We ob-
tain the description of a post-critical minimal Newton map in its Fatou
components. We construct a normalized Riemann map for every Fatou
component with the commutative diagram. The dynamics is conjugated
only to the two types model maps.

8. Häıssinsky surgery. P. Häıssinsky developed a surgery tool to turn
attracting domains of a rational function to parabolic domains of other
rational function. This procedure is referred as “Häıssinsky surgery”.
We extend Häıssinsky surgery construction allowing superattracting do-
mains and also obtain a stronger result. For a Newton map of polynomial
the basins of attraction of fixed points have a common boundary point
at∞, the surgery operation changes this point to a parabolic point. The
resulting function is in the class of Newton maps of entire functions.

Häıssinsky surgery is carried out in the immediate basins of attracting
fixed points of a rational function. When a root of a polynomial p
is simple, it is a superattracting fixed point of the Newton map. In
order to be able to successfully apply the surgery we have to change the
multipliers to be non-zero at the given basins.

We define a notion of Häıssinsky surgery equivalence class, which is de-
fined as the class of Newton maps of polynomials with given markings
of accesses to∞ in the immediate basins of superattracting fixed points,
where Häıssinsky surgery applied through. Two Newton maps of poly-
nomials belong to the same class if the results of Häıssinsky surgeries
give affine conjugate rational functions.

9. Main result. We prove that Häıssinsky surgery is an injective and
surjective mapping between the corresponding spaces of Newton maps.
First, we give a classification of Häıssinsky surgery equivalence classes.
Finally, we show shat the surgery induces a natural surjective mapping
between corresponding quotient spaces.

10. Formal Newton maps. We generalize the definition of a Newton map
and obtain a large family of rational functions as: Let ai ∈ C \ {0},
zi ∈ C for 1 ≤ i ≤ d be given. We define f(z) := z − 1∑d

i=1
ai
z−zi

and call

it a formal Newton map. We study connectivity of the Julia set for a
formal Newton map. We obtain the corresponding post-critical minimal
Newton map to the formal Newton map that preserves conjugacy on the
Julia sets.





Chapter 1

Introduction

The iteration theory of rational maps on the Riemann sphere was born a
century ago after extensive work by P. Fatou and G. Julia. The beauty of this
field is that it uses diverse tools coming from topology, geometry, complex
analysis, group theory, combinatorics and many other fields.

One of the open problems in the field is to understand and distinguish
different possible kinds of dynamics. In recent years, there has been very
substantial progress on the understanding of rational functions that arise as
Newton maps of polynomials. Dynamical classifications have been given for
two large families of rational functions: polynomials of all degrees in terms
of “Hubbard trees” (Douady, Hubbard, and Poirier in the 1980’s and 1990’s),
and Newton maps of polynomials in terms of forward invariant connected
finite graphs (Head, Tan, Lou, Schleicher, Rückert, Mikulich, Lodge). The
result in [LMS2] gives a classification of all post-critically finite Newton maps
of polynomials.

An important tool developed by J. Hubbard and D. Schleicher that we
shall refer to as “spider theory” uses binary sequences to encode unicritical
post-critically finite polynomials by means of a finite graph. In contrast to the
rich combinatorial results for polynomials, far less is known about dynamics
of rational maps that are not polynomials.

One way better understand dynamical properties of rational functions is to
work with less rigid topological models. Mating of two polynomials produces
such models [MP12]. In [Tan97] Tan proved that every post-critically finite
cubic Newton map is a mating or a capture. Recently, Aspenberg and Roesch
extended these results to most cubic Newton maps, towards proving Tan’s
conjecture: all (not necessarily post-critically finite) cubic Newton maps of
polynomials are either matings or captures [AR]. A mating is an operation
to obtain a rational function from two polynomials, while capture produces a
rational function from only a single polynomial.

This thesis gives a full classification of the next big class of rational maps
after the class of Newton maps of polynomials (referred to as polynomial

7



8 CHAPTER 1. INTRODUCTION

Newton maps); namely the class of all rational Newton maps coming from
transcendental entire functions (exponential Newton maps) of the form peq,
for polynomials p and q. For the entire function peq one can easily compute
that its Newton map has a form id − p

p′+pq′ , which is a rational function.
We refer to these functions as exponential Newton maps. The finite fixed
points of exponential Newton maps are attracting and these are the roots of
a polynomial p. M. Haruta in [Har99] studied these functions and showed
that the area of every immediate basin of an attracting fixed point is finite if
deg q ≥ 3.

P. Häıssinsky in [Ha98] developed a surgery tool to turn attracting do-
mains of a rational function to parabolic domains of other rational function.
This procedure is referred to as “Häıssinsky surgery”. For a Newton map of
polynomial the basins of attraction of fixed points have a common boundary
point at∞, the surgery operation changes this point to a parabolic point. The
resulting function is in the class of Newton maps of entire functions.

The other tool that we have in our arsenal is turning parabolic basins to
attracting ones. This surgery in full generality was accomplished by G. Cui.
Similarly, this procedure is referred to as “Cui (plumbing) surgery”. Both
tools share similar properties, one of which is a topological conjugacy away
from marked basins, in particular on Julia sets. The main result of this thesis
is proving that the Häıssinsky surgery gives a natural bijection between the
space of polynomial Newton maps and the space of exponential Newton maps.

Häıssinsky surgery is carried out in the immediate basins of attracting
fixed points of a rational function. When a root of a polynomial p is simple,
it is a superattracting fixed point of the Newton map. In order to be able to
successfully apply the surgery we have to change the multipliers to be non-zero
at the given basins. This is a standard surgery and it does not change the map
away from a neighborhood of the fixed points. We carry out this procedure by
choosing the multipliers to be 1

2 , so that we are still in the family of Newton
maps of polynomials.

If the orbits of all critical points are finite then this rational function is
called post-critically finite. Every Fatou critical point of a post-critically finite
rational function eventually terminates at the superattracting periodic points.
Now we define the notion of “post-critical minimality” for rational Newton
maps with the parabolic fixed point at ∞. The critical orbits on the Julia
set and on attracting Fatou domains are finite, for critical points in the basin
of ∞ there exist minimal critical orbit relations: in every immediate basin of
∞ there exists a unique (possibly with higher multiplicity) critical point and
all other critical points in the basin of ∞ will land to the critical point in
one of the immediate basins of ∞ in minimal iterate, so that there exist no
other types of Fatou components. The post-critical minimality condition is
automatically satisfied for post-critically finite Newton maps of polynomials.
For rational functions with parabolic fixed point, if a critical point is captured



9

by the critical point in one of the immediate basins of ∞, then its orbit may
take some positive number of iterates after visiting the immediate basin before
landing at the critical point. The latter behavior is not allowed for post-
critically minimal rational functions. This is the difference in the parameter
spaces as well. The parameter space of degree d Newton maps of polynomials
(parametrized by locations of roots of polynomials) is of complex dimension
d−2. In this space the connected components of hyperbolic functions are called
hyperbolic components, and every bounded hyperbolic component contains a
unique “center”, which is known to be a post-critically finite function.

Similarly, define stable components of a parameter plane of rational New-
ton maps of the form id − p

p′+pq′ , for fixed deg(p) = m and deg(g) = n,
parametrized by coefficients of p and q, to be the connected components con-
sisting of functions where all critical points belong either to attracting basins
or parabolic basin of ∞. Since for this family of functions the point at ∞
is persistently parabolic with multiplier +1, these stable functions form an
open set in the parameter plane. Similar to hyperbolic components, one can
observe that by using a suitable surgery, developed by C. McMullen [McM86]
(see Theorem 4.8), every function within a bounded stable component can be
quasiconformally perturbed to the “center” one, which is a post-critically min-
imal function, while keeping dynamics unchanged on the Julia set. The stable
components also contain other types of “rigid” models, called “half-centers” -
the functions where some free critical points take some iterates after entering
the immediate basin of the parabolic fixed point before landing at the critical
point in there. We do not study these type of functions in this thesis.

Relaxing the condition of post-critically finiteness comes with some cost;
post-critical minimality is much weaker than post-critically finiteness. How-
ever, we can still distinguish post-critically minimal Newton maps by their
combinatorics. We do not want to build a parallel theory to the successful
theory of classification of post-critically finite Newton maps of polynomials,
but we will rather use it to give a full classification of post-critically minimal
rational Newton maps of transcendental entire maps. We shall prove that un-
der a suitable natural equivalence relation Häıssinsky surgery is an injective
and surjective mapping between the corresponding spaces of Newton maps. In
order to illustrate how large the family of degree d ≥ 3 Newton maps we are
dealing with is, let us fix the degree of polynomials p and q to be d − n and
1 ≤ n ≤ d, respectively. Then the parameter space of degree d rational New-
ton maps (Newton maps for the entire maps p(z)eq(z)) has complex dimension
d− 2. The space of degree d Newton maps of polynomials P also has complex
dimension d−2. When we write d as a sum of two non-negative integers d−n
and n ≥ 1 then it is clear that for every d ≥ 3 we have d − 1 distinct spaces
of rational Newton maps “parallel” to the space of degree d Newton maps of
polynomials.

For every n ≥ 1 there is a bijection between the space of surgery equiv-
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alence classes of degree d post-critically finite Newton maps of polynomials
and the space of affine conjugacy classes of degree d post-critically minimal
exponential Newton maps, that are of the form id− p

p′+pq′ with deg p = d− n
and deg q = n fixed. A Häıssinsky surgery equivalence class of degree d post-
critically finite Newton maps is defined as the class of Newton maps of polyno-
mials with given markings of accesses to∞ in the immediate basins of superat-
tracting fixed points, where Häıssinsky surgery applied through. Two Newton
maps of polynomials belong to the same class if the results of Häıssinsky surg-
eries give affine conjugate rational functions. Now it is clear that the space
we are working with is much larger than the space of Newton maps of poly-
nomials because of different ways of marking of accesses to ∞. Häıssinsky
surgery equivalence classes are not exactly a product space, since in order to

Figure 1.1: The Julia set of the Newton map of degree 12. Yellow is the basin
of parabolic fixed point at ∞ with 5 petals, dashed is the unit circle, thick
white dots with black circle boundary are fixed points, white dots are critical
points.
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be able to apply a surgery we need to specify the underlying Newton map of
polynomial and then we specify its marking. When n = d, the maximal al-
lowed limit, there is a unique fixed point for a Newton map, which necessarily
is the parabolic fixed point at ∞. We know that degree d rational function
has 2d− 2 critical points counted with multiplicities. If more than one critical
point falls into the same immediate basin, the critical points create more than
one access to ∞, through each one of them we can apply a parabolic surgery.
If each of fixed points of underlying post-critically finite Newton map has one
access to∞ then, of course, there is only one way to apply Häıssinsky surgery
to change all basins at once, the case of n = d. In all other cases there are at
least two different ways of applying Häıssinsky surgeries.

Figure 1.2: Dynamics of the Newton for f(z) = ze−
1
5
z5 . The immediate basin

of the root 0 is white, the other colors correspond to immediate basins of ∞
and their backward images. The unit circle S1 is marked in grey. Right: The
same situation in ζ = ι(z) = 1/z coordinates: ι ◦ Nf ◦ ι−1(ζ) = ζ − ζ6 is a
polynomial, Image courtesy Mayer, Schleicher.

In general for a given function we can apply m1 · · ·mn distinct Häıssinsky
surgeries to change n basins, where mi ≥ 1 is the number of accesses in a
marked basin and

∑n
1 mi = d. But in some cases a pair of “different surgeries”

result in the same function up to affine conjugation. In special cases this
can happen even we apply Häıssinsky surgery through different accesses of
a single Newton map of polynomial with an extra symmetry. For instance,
we can apply two “different kinds” of Häıssinsky surgeries along two different
accesses of z2+1

2z , the quadratic Newton map, but both will produce functions
that are affine conjugate to each other. The reason for this is that the two
accesses of z2+1

2z are transformed into each other via an affine map of the form
z 7→ −z. We call these kind of surgeries equivalent surgeries. More precisely,
Häıssinsky surgeries are said to be equivalent, denoted by ∼H , if they produce
the same function up to affine conjugation.
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Consider a Newton map Npeq of degree d ≥ 3 and polynomials p and q of
degree d− n, n ≥ 0, respectively. Let us normalize p and q:

case one, q 6≡ const.; we assume that q′ is monic,

case two, q ≡ const.; we assume that p(1) = 0 (i.e. z = 1 is a root of p).

Moreover, in both cases we assume that one of the polynomials p, q (or both)
with degree at least 2 is centered. Furthermore, we assume that p is monic
and has only simple roots.

The set N (d−n, n) denotes the space of normalized Newton maps Npeq of
degree d ≥ 3 with n petals at ∞. For instance, N (d) := N (d, 0) is the space
of degree d ≥ 3 normalized Newton maps for polynomials that are monic,
centered, have a root at z = 1 and all roots are simple. For every natural
number n ≤ d denote Npcm(d − n, n) the space of post-critically minimal
Newton maps in N (d − n, n). In particular, denote Npcf(d) := Npcf(d, 0) the
space of degree d post-critically finite Newton maps for polynomials that are
centered, monic and have a root at z = 1, and with only simple roots. Denote
N+,n

pcf (d) the space of post-critically finite Newton maps from Npcf(d) with

markings ∆+
n .

Theorem 1.1 (Main theorem). For every pair of non-negative integers d ≥ 3
and 1 ≤ n ≤ d, Häıssinsky surgery is a surjective mapping from N+,n

pcf (d)
to N (d − n, n). Two Häıssinsky surgeries applied to Np1 and Np2 belonging
to N+,n

pcf (d) are equivalent if and only if Np1 and Np2 are affine conjugate.
The mapping Fn given by Häıssinsky surgery induces (natural) bijection from
N+,n

pcf (d)/ ∼H to Npcm(d− n, n).



Chapter 2

Background on Dynamics of
Newton maps

In this chapter we summarize known results on Newton maps of entire func-
tions.

Definition 2.1 (Newton map). Let f : C → C be an entire function (poly-
nomial or transcendental entire function). A meromorphic function given by

Nf (z) := z − f(z)
f ′(z) is called the Newton map of f(z).

The following theorem describes a Newton map in terms of its fixed point
multipliers.

Theorem 2.2. [RS07] Let N : C → Ĉ be a meromorphic function. It is
the Newton map of an entire function f : C → C if and only if for each
fixed point ξ, N(ξ) = ξ, there is a natural number m = mξ ∈ N such that
N ′(ξ) = (m − 1)/m. In this case there exists a constant c ∈ C\{0} such that

f = ce
∫ dζ
ζ−N(ζ) . Two entire functions f , g have the same Newton map if and

only if f = c · g for some constant c ∈ C\{0}.

It is a natural question to ask if a Newton map extends to the Riemann
sphere as a holomorphic function.

Theorem 2.3 (Rational Newton map). [RS07] Let f : C → C be an entire
function. Its Newton map Nf is a rational function if and only if there are
polynomials p and q such that f has the form f = peq. More precisely, let
m,n ≥ 0 be the degrees of p and q, respectively. If n = 0 and m ≥ 2, then ∞
is repelling with multiplier m

m−1 . If n = 0 and m = 1, then Nf is constant. If
n > 0, then ∞ is parabolic with multiplier +1 and multiplicity n+ 1 ≥ 2.

How to decide if a given rational function is a Newton map? It follows from
the above theorem that the transcendental entire functions f that give rise to
rational Newton maps are exactly those of the form f(z) = p(z)eq(z), where

13
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p(z) and q(z) are polynomials. Note that every rational function of degree at
least 2 has a fixed point which is either repelling or parabolic with multiplier
+1, we call this type of fixed points weakly repelling. Here is an easy criterion
based on elementary fact on partial fraction decomposition (see Ahlfors [Ahl])
to check whether or not a given rational map is a Newton map.

Theorem 2.4 (Description of rational Newton maps). Let a rational function
N : Ĉ→ Ĉ of degree d ≥ 2 be given. Assume∞ is a weakly repelling fixed point
of N . Let a partial fraction decomposition: 1

z−N(z) =
∑k

i=1 ri(
1

z−zi ) + s(z) be

given for unique polynomials ri for 1 ≤ i ≤ k, and s, normalized as ri(0) = 0
for 1 ≤ i ≤ k, where zi runs over all fixed points of N in C. Then N is a
Newton map of an entire function if and only if there exist natural numbers
mi ≥ 0 such that ri(z) ≡ mi · z. In this case, let p = p(z) =

∏k
i=1(z − zi)mi

(if there is no finite fixed point of N then we let p(z) = 1 and k = 0) and
q = q(z) =

∫
s(w)dw be polynomials, then N = Npeq and d = k + deg(q).

Proof. Let N : Ĉ → Ĉ be a rational function of degree d ≥ 2 with N(∞) =
∞. Let the partial fraction decomposition of 1

z−N(z) be given: 1
z−N(z) =∑k

i=1 ri(
1

z−zi ) + s(z) and assume ri(z) ≡ mi · z. Then we have 1
z−N(z) =∑k

i=1
mi
z−zi + s(z). Elementary algebra shows that N(z) = z − p(z)

p′(z)+p(z)·q′(z) ,

where p(z) :=
∏k
i=1(z − zi)mi and q = q(z) =

∫ z
0 s(w)dw are polynomials. It

follows that N is a Newton map of en entire function peq by the uniqueness
of Newton maps (Theorem 2.3).

Converse is also true; letN be a Newton map of the entire function f = peq.
Let p(z) :=

∏k
i=1(z − zi)mi , where zi runs over all distinct roots of p, then we

obtain 1
z−Nf (z) = f ′

f = p′eq+pq′eq

peq = p′+pq′

p = p′

p + q′ =
∑k

i=1
mi
z−zi + q′(z). The

result follows by uniqueness of a partial fraction decomposition of a rational
function.

Now we relate the degree of a Newton map to the number of distinct

roots of p and the degree of q. If the ratio z(p′(z)+p(z)·q′(z))−p(z)
p′(z)+p(z)·q′(z) has some

cancellation factor in its numerator and denominator then the system of the
following polynomial equations;

z(p′(z) + p(z)q′(z))− p(z) = 0 (2.1)

p′(z) + p(z)q′(z) = 0 (2.2)

has a solution for some z = z0. By plugging (2.2) into the equation (2.1) we
obtain p(z0) = 0. Combining it with the equation (2.2) we derive to p′(z0) = 0,
which means that z = z0 is a multiple root of p. Thus, we have d = k+deg(q),
where k is the number of of distinct roots of p.
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Denote the local degree of a function f at a point z by deg(f, z).

Definition 2.5. Set Cf = {critical points of f} = {z|deg(f, z) > 1} and

Pf =
⋃
n≥1

fn(Cf ).

The set Pf is called the post-critical set of f . The function f is called post-
critically finite (PCF ) if Pf is finite. The function f is called geometrically
finite if the intersection Pf ∩ J(f) is a finite set.

The next notion is the main object to consider first when one studies a
Newton map. Since we are dealing with a general family of rational Newton
maps, which are of the form id − p

p′+pq′ for polynomials p and q, and so we
allow a parabolic fixed point at ∞.

Definition 2.6 (The Basin of Attraction). Let ξ be an attracting or parabolic
fixed point of f . The basin A(ξ) of ξ is

int{z ∈ Ĉ : lim
n→∞

f◦n(z) = ξ},

the interior of the set of starting points z which eventually converge to ξ under
iteration. The immediate basin A◦(ξ) of ξ is the forward invariant connected
component of the basin. For a parabolic fixed point there could be more than
one immediate basin.

If the fixed point is attracting then in the above definition we do not need
to take the interior of the set since it is always an open set, which contains
its attracting point with some neighborhood. We only need the interior in the
definition when we consider a basin of a parabolic point, since the parabolic
point itself does not belong to its basin but is located on the boundary of its
immediate basin, thus its grand orbit is dense in the boundary of its basin.
For a rational Newton map the basin of a parabolic fixed point at ∞ can be
understood as a virtual basin (see [MS06] and [RS07] for the definition of a
virtual basin for meromorphic Newton maps).

A basin of an attracting or a parabolic periodic point is defined similarly.

Theorem 2.7 (Przytycki, Mayer-Schleicher). The immediate basin of a fixed
point of a rational Newton map is simply connected and unbounded.

The above result is a union of two separate works on Newton maps. Przy-
tycki in [Prz89] studies the case of Newton maps of polynomials and Mayer-
Schleicher in [MS06] covers the case of Newton maps of entire functions. In
the latter case the Newton map does not need to be rational.

Shishikura strengthened the above theorem by proving that not only im-
mediate basins are simply connected but all components of the Fatou set
are simply connected for every rational function with a single weakly repelling
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Figure 2.1: The Julia set of the cubic Newton map Npeq , for p(z) = z2 +2 and
q(z) = z. The basins of superattracting fixed points are in green and blue. Its
double critical point at z = −2 belongs to the immediate basin of parabolic
fixed point at ∞ (in yellow).

fixed point. As a corollary of Shishikura’s theorem we obtain that the Julia set
for a rational Newton map is connected. Recently, Barański, Fagella, Jarque,
and Karpińska generalized Shishikura’s theorem to the setting of meromorphic
Newton maps proving that the Julia set is connected for all Newton maps of
entire maps [BFJK].

The following lemma gives the structure of an immediate basin of a post-
critically finite Newton map of polynomial.

Lemma 2.8. [MR09, Lemma 2.2 (Only Critical Point)] Let Np be a post-
critically finite Newton map, ξ ∈ C a fixed point of Np and A◦(ξ) the immediate
basin of ξ. Then ξ is a superattracting fixed point of Np and there is no critical
point in A(ξ) except ξ.

Besides the connectivity we mostly deal with locally connected Julia sets.

Theorem 2.9 (Tan-Yongcheng). [TY96] The Julia set of a geometrically fi-
nite rational function is locally connected if it is connected.

In particular, the Julia set of a geometrically finite rational Newton map
is locally connected.

The following lemma will be used in the proof of surjectivity of Häıssinsky
surgery.

Lemma 2.10 (Most Fatou Components Are Small). [Mil06] Let f be a ratio-
nal function with a connected Julia set. The Julia set of f is locally connected
if and only if for any ε > 0 there are only finitely many Fatou components with
diameter greater than ε and all of these with locally connected boundaries.
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Definition 2.11 (Access to ∞). Let A◦ be the immediate basin of the fixed
point ξ ∈ C or the parabolic fixed point at ∞ for a rational Newton map
f . Consider a curve Γ : [0,∞) → A◦ with limt→∞ Γ(t) = ∞ (for attracting
basins we may further assume that Γ(0) = ξ, so both ends are fixed under the
Newton map f). Its homotopy class within A◦ defines an access to ∞ for A◦,
in other words a curve Γ′ with the same properties lies in the same access as
Γ if the two curves with one endpoint at∞ fixed and the other end point may
vary are homotopic in A◦. For a parabolic immediate basin there always exist
an access, call it an attracting access, through which orbits of points within
the basin converge to the parabolic fixed point at ∞.

Every fixed point of a rational Newton map has one or several accesses to
infinity.

Remark 2.12. For the case of parabolic immediate basins we can always choose
a base point x0 ∈ A◦(∞) so that when we consider a homotopy class of
curves Γ : [0,∞) → A◦(∞) with limt→∞ Γ(t) = ∞ then we can assume that
Γ(0) = x0.

The following is the generalization of the result from [HSS01, Proposition
6] for general rational Newton maps.

Proposition 2.13 (Accesses to ∞). Let Npeq be a (rational) Newton map of
degree d ≥ 3 and A◦ an immediate basin of a fixed point ξ of Npeq (an attracting
or a parabolic fixed point). Assume that A◦ contains k critical points of Npeq

(counting multiplicities), then Npeq |A◦ is a branched covering map of degree
k + 1, and A◦ has exactly k different accesses to ∞.

Proof. Let Npeq a rational Newton map and A◦ its immediate basin be given.
There are two cases; case of basin of attracting fixed point or the next case
basin of a parabolic fixed point. The case of attracting immediate basins
for Newton maps of polynomials is treated in [HSS01, Proposition 6]. Since
arguments in the proof use only local dynamics of the function within the
basin their result is true for attracting immediate basins of rational Newton
maps, too.

It remains to prove the theorem for parabolic immediate basins of Npeq , it
is the case when deg(q) > 0. The proof is essentially the same, for the sake of
completeness we give the full proof.

Following [HSS01], let D denote the unit disk and A◦ be one of the imme-
diate basins of ∞ with its Riemann map ψ : A◦ → D, uniquely determined as
ψ(c) = 0 and ψ′(c) > 0, where c is any point in A◦. Then the composition
map f = ψ ◦Npeq ◦ψ−1 is a proper map of the unit disc D with a degree which
is equal to the degree of Npeq |A◦ . The critical points of Npeq in A◦ are mapped
preserving multiplicities to the critical points of f . By assumption Npeq has
k critical points in A◦, which is simply connected, by the Riemann-Hurwitz
formula the degree of Npeq |A◦ in A◦ is k + 1.
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Every proper self map of D is a Blaschke product, thus has an extension
to Ĉ, denote the extension again by f . Both f and the restriction Npeq |A◦
have the same degree. Then f has k+ 2 fixed points, one of which is a double
parabolic, since we have a parabolic dynamics in D, and the other k− 1 fixed
points are simple and repelling with real multipliers, and all are located on
the unit circle. The unit disk D, the unit circle S1 and Ĉ \ D̄ are invariant
by f , it follows that f can not have a critical point on S1, and is a covering
map S1 → S1 of degree k + 1, and orbit for every z ∈ Ĉ \ S1 converges to
the unique parabolic fixed point on S1. Thus the Julia set is the unit circle
S1. The linearizing coordinates of k − 1 repelling fixed points define k − 1
accesses among k accesses, the other one comes from a Fatou coordinate of
the parabolic fixed point on S1. We call the access associated to the parabolic
fixed point as an “attracting” and all other k− 1 accesses (if there is any) are
called “repelling”.

Assume that the boundary of A◦ is locally connected, which is true e.g.
when a Newton map is geometrically finite. Carathéodory’s Theorem assures
that the inverse map to ψ : A◦ → D extends to the closed unit disk as a
continuous map. By continuity, ψ−1 ◦ f = Npeq ◦ ψ−1. All of the k + 1 fixed
points of f correspond to k + 1 fixed points of Npeq on ∂A◦. A fixed point of
Npeq that is on the boundary of an immediate basin is the only parabolic fixed
point at ∞, so the domain A◦ has accesses to ∞ in k − 1 different directions.

In the case when A◦ is not locally connected, so that the inverse to the
Riemann map does not extend continuously to the closed unit disk, the state-
ment still holds true. Consider a Koenigs coordinate of a repelling fixed point
ξj that conjugates f locally near the point ξj to the linear map z 7→ f ′(ξj)z,
we take a segment of a straight-line through the origin, which is invariant. We
take an invariant curve in the petal associated to the parabolic fixed point
of f . Let γ be the preimage of this curve that lands at ξj in the dynamical
plane of f . Then we have γ ⊂ f(γ). Now we pull the curve γ by the Riemann
map ψ to A◦. The accumulation set of ψ−1(γ) in ∂A◦ is connected [Mil06,
Section 17] and since γ is invariant we conclude that the accumulation set is
pointwise fixed by Npeq . But ∞ is the only fixed point on the Julia set. This
gives us k accesses of A◦ to ∞. We need to show that they are all different
and the only ones.

It is clear that simple curves within D converging to a given fixed point
of f are homotopic so that every fixed point of f defines a unique access in
A◦. Different fixed points of f lead to non-homotopic curves in A◦ and thus
to different accesses. Indeed, let li, lj ⊂ D be the radial lines converging to
ξi 6= ξj respectively, parametrized by the radius. Assume by contrary that
ψ−1(li) and ψ−1(lj) are homotopic curves in A◦ by a homotopy fixing end
points; ψ−1(li(1)) = ψ−1(lj(1)) = ∞, then one of the components bounded
by a simple closed curve ψ−1(li) ∪ ψ−1(lj) must be contained in A◦. Call this
component V ; then ψ(V ) must be one of the sectors bounded by li and lj ; call
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it S. Both V and S are Jordan domains, so ψ−1 extends as a homeomorphism
from S̄ onto V̄ , by Carathéodory theorem; but then the extension sends the
set S1 ∩ S nowhere.

Conversely, we show that every access in A◦ to∞ comes from a fixed point
of f .

Let Γ : [0, 1] → A◦ ∪ ∞ be a curve representing an access. Then ψ(Γ)
lands at a point υ ∈ S1 by [Mil06, Corollary 17.10], define it as the associated
point of Γ. Then for every k ≥ 1, Npeq(Γ) represents an access and thus has
its associated point υk ∈ S1. Since the Newton map Npeq has a parabolic fixed
point at ∞, so it is locally a homeomorphism near ∞ and every fixed point
of f gives rise to an access, all υk must be contained in the same connected
component of S1 with the fixed points removed; this component is an interval,
say I, on which {υk} must be a monotone sequence converging under f to a
fixed point υ of f in Ī, i.e. to one of the endpoints. If υ is a one of the repelling
fixed points of f then it is impossible. Assume υ is a parabolic fixed point of
f then the sequence {υk} ⊂ S1 converges tangentially to the parabolic fixed
point, which is also not possible since S1 is the Julia set of f and every orbit
that converges to a parabolic fixed point must follow the attracting direction,
which is not tangent to S1.

Figure 2.2: The Julia set of the post-critically finite cubic Newton map of the

polynomial p(z) = (z−1)(z− (−1.5+
√

3
2 i))(z− (.5−

√
3

2 i)). Colors correspond
to the basins of three superattracting fixed points. Its unique free critical
point at z = 0 is fixed under second iterate of Np.
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2.1 Marked Channel Diagrams of Newton map

In this section we give a notion of a channel diagram of a post-critically finite
Newton map. But the notion could be defined for a post-critically minimal
Newton map, which is defined in Definition 3.6. The channel diagram tells
us all about the possible applications of Häıssinsky surgeries on a Newton
map. Let the superattracting fixed points of a post-critically finite Newton
map Np be denoted by a1, a2, . . . , ad, and their immediate basins by A◦i . Let
φi : (A◦i , ai) → (D, 0) be a Riemann map (global Böttcher coordinate) with

the property that φi(Np(z)) = φkii for each z ∈ D, where ki − 1 ≥ 1 is the
multiplicity of ai as a critical point of Np. The map z 7→ zki fixes the ki − 1
internal rays in D. Under φ−1

i these rays map to the ki − 1 pairwise disjoint

(except for endpoints) simple curves Γ1
i ,Γ

2
i , . . . ,Γ

ki−1
i ⊂ A◦i that connect ai to

∞, are pairwise non-homotopic in A◦i (with homotopies fixing the endpoints)
and are invariant under Np as sets. They represent all accesses to ∞ of A◦i
(see Proposition 2.13).

Definition 2.14 (Channel Diagram ∆). The union

∆ =
d⋃
i=1

ki−1⋃
j=1

Γji

forms a connected graph in Ĉ that is called the channel diagram.

It follows from the definition that Np(∆) = ∆. The channel diagram
records the mutual locations of the immediate basins of Np. The main goal of
the thesis is to establish a one to one correspondence between post-critically
finite and post-critically minimal families of Newton maps. The correspon-
dence comes from a parabolic surgery, see Theorem 4.15. In order to perform
a parabolic surgery along immediate basins of Np we need to mark/label a
number of accesses, at most one in every immediate basin of fixed points of
Np.

Definition 2.15 (Marked Channel Diagram ∆+
n ). Let a post-critically finite

Newton map Np with superattracting fixed points a1, a2, . . . , ad and the chan-

nel diagram ∆ =
⋃d
i=1

⋃ki−1
j=1 Γji be given. For each i ∈ {1, . . . , d} we mark at

most one fixed ray Γj
∗

i in the immediate basin of ai. If a ray in the immediate
basin of ai is marked then we call the basin of ai as a marked basin. A basin
can be marked or unmarked. The marked channel diagram is a channel dia-
gram ∆ with marking that is an extra information about which fixed rays are
selected/marked. If we have marked n ≤ d rays we denote the marked channel
diagram by ∆+

n .

Remark 2.16. We call a channel diagram as unmarked channel diagram to
distinguish it with the marked channel diagram.
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The marking defines the single unique access among all accesses within the
marked immediate basins through which the parabolic surgery is performed.

As above, we have Np(∆
+
n ) = ∆+

n . Now we illustrate this notion for the
quadratic and cubic Newton maps.

(a) Channel diagram (unmarked)

(b) marked channel diagram

(c) marked channel diagram

Figure 2.3: Unmarked and marked channel diagrams of z2+1
2z , a post-critically

finite quadratic Newton map of a polynomial. Top: an unmarked channel
diagram. Center and Bottom: 2 marked channel diagrams with one marking.

There exist a quadratic Newton map unique up to affine conjugacy which
has two superattracting fixed points. Each of its fixed points has only one
access to ∞ in its immediate basin. It is the post-critically finite quadratic
Newton map of polynomial and has a form z2+1

2z . Thus in total there are
2 = 1 + 1 marked ∆+

1 and one ∆+
2 . An illustration of (unmarked) and marked

channel diagrams of the Newton maps are given in Figure 2.3, where −1 and
1 are the only two superattracting points. Labels a and b represent invariant
rays in the immediate basins. The figure is a view in z 7→ 1/z coordinates.
Sub-figure (a) is an unmarked channel diagram, sub-figures (b) and (c) are
the only possible one marked channel diagrams, where dashed red lines rep-
resent the marked rays respectively. The symmetry of the function, which is
the rotation by 180 degrees around the origin, interchanges marked channel
diagrams of (b) and of (c), so we have (b)∼(c), means that the marked
channel diagrams (b) and (c) are equivalent, please, refer to Definition 5.1 for
the exact formulation of the equivalence of surgeries.

Every cubic Newton map coming from polynomials has three superattract-
ing fixed points, but only one of them may have more than one access in its
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a

b
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∞
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∞
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∞
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a
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∞

Figure 2.4: An illustration of unmarked and marked channel diagrams of 2z3

3z2−1
,

the post-critically finite cubic Newton map of polynomial.
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immediate basin since we have one free critical point. Thus there exists a
post-critically finite cubic Newton map, unique up to affine conjugacy, with
two accesses in one of its immediate basins. For n = 2: For this extreme
case we have two invariant rays (accesses to ∞) within the immediate basin
and there is only a single invariant ray (access to ∞) for each of the other
immediate basins. Thus there are 4 = 2 + 1 + 1 marked channel diagrams ∆+

1

(with one marking). For n = 2: there are five marked ∆+
2 with two markings.

Since both marked rays can not be selected from the same immediate basin,
thus in total we have 5 = 1 + 2 + 2 possibilities. For n = 3: there are 2 = 1 + 1
marked channel diagram ∆+

3 with three marking, since only one immediate
basin has two accesses to ∞. In Figure 2.4 an illustration of unmarked and
marked channel diagrams of 2z3

3z2−1
, a cubic Newton map for the polynomial

z3 − z are shown. This figure is in z 7→ 1/z coordinates. Dashed red lines
represent the marked rays/accesses. There are 4 fixed points at −1, 0 and
1, all are superattracting except ∞ which is repelling. The Julia set of the
function is depicted in Figure 2.5. For this function there exist two invariant

Figure 2.5: The Julia set of 2z3

3z2−1
, the cubic Newton map with a double critical

point at 0 with the full invariant basin given in red.
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rays (accesses) in the immediate basin of 0 since it is a double critical point.
We denote these rays by b and d. The other two labels a and c represent fixed
rays of −1 and 1 correspondingly. As above, a, b, c and d together with their
end points (including ∞) define an unmarked channel diagram, this is shown
in A in Figure 2.4. Excluding A, the unmarked channel diagram, there are in
total 11 marked channel diagrams labeled B through L.

For the cubic Newton map f(z) = 2z3

3z2−1
, it is easy to observe that if a

Möbius map M is an automorphism of f i.e. M ◦ f = f ◦M holds, then we
have either M(z) = z or M(z) = −z. The map z 7→ −z interchanges rays
a and c, similarly rays b and d are interchanged. From this fact we have 5
pairs of equivalent marked channel diagrams: B∼D, C∼E, G∼I, H∼J and
finally, K∼L. All other marked channel diagrams are never equivalent to each
other. In total we have 11 − 5 = 6 different marked ones, of which two are
with one marking and three are with two markings and the last one is with
three markings.

For all other post-critically finite cubic Newton maps we have only 3 num-
ber of one marked ∆+

1 and 3 number of two ∆+
2 and the unique three marked

∆+
3 . In general, we are not interested in counting the number of different

possible (non-symmetric) marked channel diagrams that may exist for a given
Newton map, this an interesting question in its own right though.

We have fully covered degree 2 and 3 Newton maps to have some sort of
intuition about different possibilities that can occur in lower degrees. Later
we shall define the equivalence relation on marked channel diagrams (see Def-
inition 5.1), this is one of the reasons why we do not need to count the total
number of all possibilities for markings.



Chapter 3

Rational Newton maps

3.1 The Post-Critically Minimal Newton maps

Consider a Newton map Npeq(z) = z − p(z)
p′(z)+p(z)q′(z) of degree d ≥ 3, and let

n ≤ d be the degree of q, then the number of different roots of p is equal
d− n. It follows from definition of Newton map that the leading coefficient of
p cancels, so we can assume that p is monic, and similarly the constant term of
q is also not relevant, since it gets canceled under taking the derivative. Any
automorphism of Ĉ fixing∞ is an affine transformation of the form z 7→ az+b
(a 6= 0), which is in general a composition of a scaling and a translation, if
a = 1 then it is just the translation by b.

When q(z) 6≡ const. by scaling we can change the leading coefficient of q to
be any given nonzero number, for instance we can make q′ a monic polynomial.
Indeed, a scaling by a gives us

Npeq(az)/a = (az − p(az)

p′(az) + p(az)q′(az)
)/a = z − p(az)

ap′(az) + p(az)aq′(az)
.

Let q′(z) = bn−1z
n−1 + bn−2z

n−2 + · · · be a derivative of the polynomial q,
where bn−1 6= 0 is the leading coefficient of q′(z), then we obtain aq′(az) =
bn−1a

nzn−1 + bn−2a
n−1zn−2 + · · · . By a choice of a, such that bn−1a

n = 1,
we can assume that q′(z) is monic. In other words, we let pa(z) := p(az) and
qz(z) := q(az) then Npeq(az)/a = Npaeqa (z). If we use the translation by b
then the conjugacy is

Npeq(z + b)− b = z − p(z + b)

p′(z + b) + p(z + b)q′(z + b)
.

Now we are only left with one more freedom, essentially a translation. By
translation we may further assume that either p or q is centered; all roots sum
up to zero.

When q(z) ≡ const. by translation we make p centered; and by scaling we
can have p(1) = 0. Indeed, let pa(z) := p(az) then Np(az)/a = Npa(z). If we

25
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let pa(1) = p(a) = 0 then a is one of the d roots of p.

We can change the multiplier at each finite fixed point of a Newton map
by a suitable quasiconformal surgery, therefore, we may further assume that
the roots of p are all simple.

Let us normalize polynomials p and q:

case one; q 6≡ const.: we assume that q′ is monic,

case two; q ≡ const.: we assume that p(1) = 0 (i.e. z = 1 is a root of p).

Moreover, in both cases we assume that either p or q (the one with degree at
least 2) is centered, for this we use translation. Furthermore, we assume that
p is monic (for this we use the scaling degree of freedom) and has only simple
roots.

These lead us to define the following main objects of the thesis.

Definition 3.1. Denote by N (d − n, n) the space of degree d ≥ 3 Newton
maps Npeq normalised as above. For instance, N (d) := N (d, 0) is the space
of degree d ≥ 3 Newton maps for polynomials, which are monic and centered,
have a root at z = 1 and all roots are simple.

Definition 3.2. For every natural number n ≤ d, denote byNpcm(d−n, n) the
space of post-critically minimal Newton maps in N (d − n, n). In particular,
denote by Npcf(d) := Npcf(d, 0) the space of degree d post-critically finite
Newton maps for polynomials that are centered, monic and have a root at
z = 1.

Definition 3.3. Denote by N+,n
pcf (d) the space of post-critically finite Newton

maps in Npcf(d) with markings ∆+
n (the marked channel diagram) at accesses

in the marked immediate basins.

In the above elementary algebra we obtained the following.

Lemma 3.4. Let two functions f , f̃ ∈ N (d− n, n) be conjugate by an affine
map φ. Then

if n = 0, the case of a Newton map of polynomial, φ(z) = az where a is a
fixed point of f ;

if n ≥ 1, φ(z) = az where an = 1.

The affine conjugacy class of a function from N (d − n, n) within its space
consists of d elements if n = 0, and n elements if n ≥ 1.

During normalization process we have a choice for the root at z = 1, and
thus we don’t have a true parameter space: some number of maps are confor-
mally conjugate as in the above lemma. It is now clear that the parameter
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plane of N (d) is of complex dimension d− 2. In this space every bounded hy-
perbolic component contain a “center”: the unique function which is known
to be post-critically finite [Mil12]. Every function within the hyperbolic com-
ponent can be quasiconformally perturbed to the “center” without changing
neither topology nor dynamics on Julia sets.

Definition 3.5 (Stable function). We call a function f ∈ N (m,n) stable if
the set of critical points Cf of f belongs to the basin of ∞ or to the basins of
attracting cycles of f , in particular all critical points belong to the Fatou set.

The stable functions in the parameter plane of N (d− n, n) form an open
set, because the parabolic point at ∞ is “persistent”. Connected components
of this set are called stable components.

It is also clear now that the parameter plane of N (d − n, n) is also of
complex dimension d− 2. We consider Newton maps in N (d− n, n) of degree
d ≥ 3. The following type of functions play a role of “center” in the stable
components in N (d− n, n).

Definition 3.6 (Post-Critically Minimal Newton map). A geometrically finite
Newton map f = Npeq ∈ N (d − n, n) with n ≥ 1 is called post-critically
minimal (PCM ) if

a) all non-repelling periodic points are superattracting, except∞ which is the
parabolic fixed point with the multiplier +1;

b) all critical points in the immediate basin of a superattracting cycle are on
the cycle;

c) every immediate basin of the parabolic fixed point at ∞ contains a single
critical point (possibly with higher multiplicity);

d) if c is a critical point in a strictly pre-periodic Fatou component and mc is
the minimal number for which f◦mc(c) is in a periodic component U , then
only two possibilities could happen;

I if U is a superattracting immediate basin, then f◦mc+kc(c) is a critical
point, where kc is the minimal number for which f◦kc(U) contains a
critical point, equivalently the orbit of c is finite; or

II if U is a parabolic immediate basin of ∞, then f◦mc(c) is the critical
point in U . In this case U is f invariant.

In both cases mc is the pre-period of the Fatou component containing c.

Remark 3.7. The given definition is inspired by the work of McMullen in
[McM86] where he develops a surgery method to replace any function on its
Fatou components with rigid model maps; obtaining a new function which sat-
isfies conditions b)-d) of above definition, see Definition 4.6 and Theorem 4.8.
Condition a) is posed since we are working with Newton maps.
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For the space N (d) by allowing in every immediate attracting basin a
unique critical point we could define the notion of PCM maps as defined in
N (d− n, n), basically item (b) is changed from superattracting to attracting.
But if a function in N (d) is PCF then it is also PCM. The only difference in
the definitions of PCM and PCF lies on the conditions posed to the critical
points in parabolic basin of ∞, whereas for functions in N (d) the point ∞ is
repelling.

Post-critically minimal Newton maps enjoy similar properties as post-
critically finite Newton maps of polynomials do.

Proposition 3.8 (Characterization of post-critically minimal Newton maps).
Let f ∈ N (d − n, n) be a PCM Newton map and U be any Fatou component
of f , let V = f(U). Then U contains the unique “center” ξU which is either
the critical point or it maps to a point in a superattracting cycle or it maps
to the unique critical point in the parabolic immediate basin of ∞ in finite
minimal number of iterations under f . Moreover, there exist Riemann maps
ψU : U → D and ψV : V → D with ψU (ξU ) = 0 and ψV (ξV ) = 0 such that,

(a) if U is an immediate basin of the parabolic fixed point at ∞ then V = U
and

U
f - U

D

ψU
?

Pk - D,

ψU
?

where Pk(z) := zk+a
1+azk

with a = k−1
k+1 the parabolic Blaschke product, and

k − 1 is the multiplicity of the single critical point ξU in U ;

(b) in all other Fatou components we have

U
f - V

D

ψU
?

z 7→zk- D,

ψV
?

where k − 1 is the multiplicity of a single critical point in U .

Remark 3.9. In this thesis by a component we mean a connected component.

Post-critically finite Newton maps can not have a parabolic fixed point,
thus the first diagram is the key difference between post-critically finite and
post-critically minimal Newton maps.

Proof. We first show the existence of “centers” in every Fatou component.
Since the Julia set J(f) is connected, every Fatou component is simply con-
nected. Let U be a Fatou component of f . We want to show that U contains
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the unique “center”, a point that maps to the critical cycle or to the critical
point in a parabolic immediate basin in finite minimal time. If U is an im-
mediate basin of a superattracting cycle (fixed points are also counted) that
contains a critical point (at least one element of the cycle should be a critical
point of f) or U is one of the immediate basins of the parabolic fixed point at
∞, then the existence of the unique “center” follows from Definition 3.6. It
is the critical point, denote it by ξU . Let T be a component of f−1(U) other
than U , if U is fully invariant Fatou component then we are done.

Let CT be the union of the set of critical points of f in T and the set
f−1(ξU ) ∩ T . Then by Definition 3.6 we have f(CT ) = ξU . We want to show
that the set CT consists of the single element. Since π1(U \ ξU ) = Z and the
map f : V \ CV → U \ ξU is a covering, the induced map f∗ : π1(V \ CV ) →
π1(U \ ξU ) is injective, hence CV is a single point. Denote it by ξV and call it
the “center” which is unique with the property that it maps to ξU under the
function f . Induction finishes the argument for all other components of Fatou
set.

Now we continue to prove the existence of Riemann maps with commu-
tative diagrams. We have two cases, attracting or parabolic domains. For
an attracting component of the Fatou set the existence of the Riemann map
satisfying the commutative diagram of the theorem is given in [DH, Proposi-
tion 4.2]. The proof was carried out for post-critically finite polynomials but
it also works for every attracting component of Fatou set of post-critically
minimal Newton maps too, since restricted to these components a rational
Newton map behaves like post-critically finite rational function does.

For parabolic domains we need to adapt the proof in the following, since
a rational function has an infinite critical orbit in a parabolic basin.

In all other cases (periodic or not), let ψV be the Riemann map of a Fatou
component V sending its “center” ξV to the origin (clearly if U is fixed then
we let V = U and ψV = ψU ). Then the composition map F = ψV ◦ f ◦ ψ−1

U is
a proper map of the unit disc with the only fixed point at the origin, which is
also critical. Then F (z) = uzk and |u| = 1. Replace ψV and ψU by µψV and
sψU respectively (we denote them again by ψV and ψU respectively and the
composition map by F ) then F (z) = sµ−kuzk, with the choice of sµ−kUu = 1
we obtain F (z) = zkU , where kU − 1 is the multiplicity of the critical point
ξU (kU = 1 if the center ξU is not a critical point of f). If U = V i.e. U is
the superattracting immediate basin then we have s1−ku = 1, hence u = sk−1

so we have k − 1 choices for ψU . Now consider the case when U is not an
immediate basin (U could be a parabolic component as well) i.e. U 6= V then
for a fixed choice of ψV we have µ−kUu = 1, hence u = µkU so we have kU
choices for ψU .

In the case when U is a parabolic immediate basin of ∞, let ψU be the
Riemann map sending ξU to the origin. Then F = ψU ◦ f ◦ ψ−1

U is the map of
the unit disc, which has an extension to the closure, with the unique critical
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point at the origin. Since the Riemann map ψU is uniquely defined up to
post-composition by a rotation of the circle, let us post-compose ψU by a
rotation such that F (1) = 1 and it is the parabolic fixed point (we post-
compose this rotation to the Riemann map and denote the composition again
by ψU ). Let F (0) = ψU ◦ f ◦ ψ−1

U (0) = ψU (f(ξU )) = v ∈ D. Note also that
under this normalization, the orbit of 0 under the map F converges to 1 and
F ′(1) = 1. Now let M(z) = z−v

1−v̄z be the Möbius map, an automorphism
of the unit disc D, sending v to the origin. The composition M ◦ F fixes the
origin, which is also its unique critical point. Then clearly, M ◦F (z) = u(z)zk,
where u is nonzero conformal function, which is necessarily a constant with
|u| = 1. Note that, M ◦ F (1) = M(1) = 1, thus we obtain u = 1−v

1−v̄ . Finally,

F (z) = M−1(z)◦zk = zk+v
1+v̄zk

. By letting again F (1) = 1 we derive after simple

algebra to u = 1−v
1−v̄ is a real number. Since |u| = 1 it follows that u = ±1.

Assume u = −1 then 1 − v = 1 − v̄, hence 2 = v + v̄ and Re(v) = 1, which
is a contradiction. Thus u = 1, finally v is a positive real number, by letting

F ′(1) = 1 we obtain v = k−1
k+1 , hence F = Pk(z) :=

zk+ k−1
k+1

1+ k−1
k+1

zk
, where k − 1 is a

multiplicity of ξU as a critical point of f .

3.2 The space of quadratic Newton maps

The space of quadratic Newton maps is trivial. We have only three distinct
cases depending on the number of petals at ∞.

N (2) Case of no petals at ∞; q′(z) ≡ 0. The space of quadratic Newton
maps of polynomials. We have p = (z − α)(z + α), by further scaling
we may assume that α = 1, then the unique quadratic Newton map is
z − z2−1

2z = z2+1
2z , which can be further conjugated to z 7→ z2. Thus we

have N (2) = Npcf(2) = { z2+1
2z }.

N (1, 1) Case of one petal at ∞; q′(z) ≡ 1. Since we can assume that the
polynomial p is centered, which means its unique root is at the origin,
then it is p(z) ≡ z, we obtain the quadratic Newton map with one petal

z− z
1+z = z2

z+1 , which can be further conjugated to z 7→ z2 + z. Thus we

have N (1, 1) = Npcm(1, 1) = { z2

z+1}

N (0, 2) Case of two petals at ∞; p(z) ≡ 1 and q′(z) ≡ z. A quadratic

Newton map with two petals at ∞ is z − 1
z = z2−1

z . It follows that

N (0, 2) = Npcm(0, 2) = { z2−1
z }.

We mention again that each of Npcf(2), Npcm(1, 1) and Npcm(0, 2) consists
of a single element.
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3.3 The spaces of cubic Newton maps

We have four distinct one-parameter families of Newton maps; N (3), N (2, 1),
N (1, 2), and N (0, 3) depending on the number of petals at ∞.

Figure 3.1: Left: Parameter plane of cubic Newton maps of polynomials.
Right: Zoom in around a little island in the parameter plane.

The space N (3), the cubic Newton maps of polynomials, is studied in
[Ro08, Tan97], see Figure 3.1 for the parameter plane. Note that the space
N (3) is the space of cubic rational maps with 3 superattracting fixed points.
It follows that ∞ is repelling and we obtain the space of cubic Newton maps
of polynomials.

Figure 3.2: A fragment of the parameter plane of the N (2, 1). Light gray, gray,
and dark gray colors correspond to the functions for which a free critical point
converges to the parabolic fixed point at z = 1, to the superattracting fixed
point at z = 0, and to the superattracting fixed point at z =∞, respectively.

The space N (2, 1) is one-parameter family of Newton maps of the form
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fc(z) = z − z2+c
z2+2z+c

, c 6= 0 (here p(z) = z2 + c and q(z) = z). Note that,
fc and f ′c are affine conjugate if and only if c′ = c. The parameter plane of
this family is depicted in Figure 3.2 with a different parametrization z2 z+c−2

cz−1 .
General family of all cubic rational functions with two superattracting fixed
points is thoroughly studied by Baranski in [Bar01a, Bar01b]. See [PT09] for
the general family of cubic rational maps.

The space N (1, 2) is the family of Newton maps of the form fc(z) = z −
z

z2+cz+1
(here p(z) = z and q(z) = z2

2 + cz). Functions fc and f ′c are Möbius

conjugate if and only if c′2 = c2. The parameter plane of N (1, 2) is depicted
in Figure 3.3.

Figure 3.3: The parameter plane of N (1, 2). Left: Parameter plane of cubic
Newton maps with 2 petals at a parabolic fixed point. Right: Zoom in around
a little island.

The space N (0, 3) is the family of Newton maps of the form fc(z) = z −
1

z2+c
, here p(z) = 1 and q(z) = z3

3 + cz. Functions fc and f ′c in this family are

Möbius conjugate if and only if c′3 = c3.



Chapter 4

Surgery

In this chapter we shall build basis for Main Theorem 5.5. We formulate
Cui plumbing surgery (Theorem 4.10) and Häıssinsky surgery (Theorem 4.15)
which will enable us to change parabolic points into repelling points, and vice
versa, respectively. More precisely, by Cui plumbing surgery for a given post-
critically minimal Newton map with a parabolic fixed point at ∞ we change
the parabolic domains into attracting, thus producing a Newton map of poly-
nomial. By Häıssinsky surgery we do the reverse of that process, namely for a
given post-critically finite Newton map of polynomial we change its repelling
fixed point at ∞ into a parabolic fixed point, thus obtaining a rational map,
which turns out to be a Newton map in N (d − n, n) with n the number of
marked accesses to ∞, where we are doing surgery. In the next chapter, using
the properties of these processes we shall prove in Theorems 5.2–5.3 that the
Häıssinsky surgery is well defined and is an injective and a surjective mapping
from the marked space of post-critically finite Newton maps of polynomials to
the space of post-critically minimal Newton maps.

4.1 Parabolic dynamics and preliminaries

Turning hyperbolics (attracting and repelling fixed points) into parabolic fixed
points, or perturbing parabolic fixed points into hyperbolics, is a big issue in
complex dynamics. In [GM93, page 16], Goldberg and Milnor formulated
the following conjecture: for a polynomial f which has a parabolic cycle,
there exists a small perturbation of f such that the immediate basin of the
parabolic cycle of f is converted to the basins of some attracting cycles; and
the perturbed polynomial on its Julia set is topologically conjugate to f , when
restricted to the Julia set. Affirmative answer to the conjecture for geomet-
rically finite functions were given by many, including Häıssinsky, Cui, Tan
and Kawahira. We must remark that the local dynamics near repelling and
parabolic fixed points are never conjugate to each other. Any quasiconfor-
mal conjugacy to a repelling germ is again a repelling germ. Any topological

33
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conjugacy to a parabolic germ of the form

z 7→ z + an+1z
n+1 + · · · (4.1)

where n ≥ 1 is an integer and an+1 6= 0 a complex number, is a parabolic germ
of the same form. In local conformal coordinates the parabolic germ (4.1) can
be written as z 7→ z + zn+1 + βz2n+1 + · · · , where the fixed point index β is
a conformal invariant. In fact, β is the unique formal invariant together with
n. There is a formal, not necessarily convergent, power series that formally
conjugates (4.1) to z 7→ z + zn+1 + βz2n+1. It is easy to see that the fixed
point index does not depend on the choice of complex coordinates, and is a
conformal invariant (see [Mil06, Section 12]).

Now we define quasiconformal and David homeomorphisms and their prop-
erties. We state the quasiconformal and David integrability theorems, as well.

Definition 4.1 (K-quasiconformal homeomorphism). Let U and V be do-
mains in C, and let K ≥ 1 be given. Set k := K−1

K+1 . Then φ : U → V is
K-quasiconformal if and only if:

(i) φ is a homeomorphism;

(ii) the partial derivatives ∂φ and ∂̄φ exist in the sense of distributions and
belong to L2

loc(U) (i.e. are locally square integrable);

(iii) and satisfy |∂̄φ| ≤ k|∂φ| in L2
loc(U).

The following properties of quasiconformal homeomorphisms are of great
importance for our purposes:

1. If φ is a K-quasiconformal homeomorphism then the inverse is also K-
quasiconformal homeomorphism;

2. Absolute continuity: If φ is quasiconformal, then it maps sets of measure
zero to sets of measure zero.

3. Quasiconformal removability of quasiarcs: If Γ is a quasiarc (the image of
a straight line under a quasiconformal homeomorphism) and φ : U → V
a homeomorphism that is K-quasiconformal on U \ Γ, then φ is K-
quasiconformal on U , and hence Γ is quasiconformally removable. In
particular, points, lines and smooth arcs are quasiconformally removable.

4. Compactness: The set of K-quasiconformal homeomorphisms φ : Ĉ→ Ĉ
fixing three points is compact in the topology of uniform convergence on
compact subsets.

5. Weyl’s Lemma: If φ is 1-quasiconformal, then φ is conformal. In other
words, if φ is a quasiconformal homeomorphism and ∂z̄φ = 0 almost
everywhere, then φ is conformal.
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Theorem 4.2. [BF14, Theorem 1.28 (Integrability Theorem–global version)]
Let S be a simply connected Riemann surface and µ = µ(z)∂z̄∂z : S → D be a

measurable Beltrami form on S. Suppose Kµ(z) := 1+|µ(z)|
1−|µ(z)| , the dilatation of µ,

is uniformly bounded, i.e. Kµ < ∞ or, equivalently, the essential supremum
of µ on S satisfies

||µ||∞ < 1.

Then µ is integrable, i.e. there exists a quasiconformal homeomorphism φ :
S → D (respectively onto C or Ĉ) which solves the Beltrami equation, i.e.
such that

µ(z) =
∂z̄φ(z)

∂zφ(z)

for a.e. z ∈ S.
If S is isomorphic to D (respectively to C or Ĉ) then φ : S → D (respec-

tively onto C or Ĉ) is unique up to post-composition with automorphisms of
D (respectively of C or Ĉ).

Definition 4.3 (David homeomorphism and David–Beltrami differential). An
orientation preserving homeomorphism φ : U → V for domains U and V in
Ĉ is called David homeomorphism (David map or David) if it belongs to
the Sobolev class W 1,1

loc (U), i.e. has locally integrable distributional partial
derivatives in U , and its induced David–Beltrami differential

µφ :=
∂z̄φ

∂zφ

dz̄

dz

satisfies the following condition; there exist constants M > 0, α > 0 and ε0 > 0
such that

Area({z ∈ U : |µφ(z)| > 1− ε}) < Me−
α
ε for ε < ε0,

or, equivalently, if there exist constants M > 0, α > 0 and K0 > 1 such that

Area({z ∈ U : Kφ(z) > K}) < Me−αK for K > K0,

where Kφ(z) :=
1+|µφ(z)|
1−|µφ(z)| , the real dilatation of φ.

The condition in the definition is referred to as the area condition. The
area in the definition is a spherical area, for domains that are bounded we use
the Euclidean area instead.

Definition 4.4 (ACL, absolute continuity on lines). A continuous function
f : U → C is said to be absolutely continuous on lines if for any family of
parallel lines in any disc D compactly contained in U (that is, D ⊂ U), f
is absolutely continuous on almost all of them, i.e. for every ε > 0 there
exists δ > 0 such that

∑
j |f(bj)− f(aj)| < ε for every finite sequence of non–

intersecting intervals (aj , bj) whose closure are contained in a horizontal line
I and have a total length

∑
j |bj − aj | < δ for almost all I in D.
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We remark that in the definition of David homeomorphism the condition
of φ being in W 1,1

loc (U) can be replaced by the a priori weaker requirement of
φ being absolutely continuous on lines.

David homeomorphisms are different from quasiconformal homeomorphisms
in many respects:

• The inverse of David homeomorphism may not be David.

• Let {φn}n≥1 be a sequence of David homeomorphisms with the same
constants (M , α, K0) in a domain U ⊂ C which fix two given points of
U . Then {φn}n≥1 has a subsequence which converges locally uniformly
to David homeomorphism in U . The constants of the limit map a priori
may be different from (M , α, K0), [Tuk91].

The similar properties of David homeomorphisms to those of quasiconfor-
mal homeomorphisms are;

1. David removability of quasiarcs;

2. Absolute continuity: Every David homeomorphism φ and its inverse are
absolutely continuous, i.e. Area(A) = 0 if and only if Area(φ(A)) = 0
for a measurable set A ⊂ U .

Moreover, David–Beltrami differentials are always integrated by David
homeomorphisms.

Theorem 4.5. [BF14, David Integrability Theorem] Let µ be David–Beltrami
differential on a domain U ⊂ Ĉ. Then there exists David homeomorphism
φ : U → V , whose complex dilatation µφ coincides with µ almost everywhere.

The integrating map is unique up to post-composition by a conformal map,
i.e. if φ̃ : U → Ṽ is another David homeomorphism such that µ

φ̃
= µ almost

everywhere, then φ̃ ◦ φ−1 : V → Ṽ is conformal.

Definition 4.6 (Rigid models). We define the three rigid models for proper
self-maps of the unit disk D as:

(a) the elliptic model z 7→ e2πiθz, for θ ∈ R \Q;

(b) the hyperbolic model z 7→ zd for some d > 1; and

(c) the parabolic model z 7→ Pd(z) for d > 1, where

Pd(z) :=
zk + a

1 + azk
, for a =

k − 1

k + 1
,

is the degree d parabolic Blaschke product with a single critical point at
z = 0 and a parabolic fixed point of multiplicity three at z = 1.
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Remark 4.7.

1. It is easy to observe that if B is any of the above models, and φ is a
quasisymmetric automorphism of B (i.e. B = φ−1 ◦ B ◦ φ) on D, then
φ must be a rigid rotation z 7→ αz. For the elliptic model, α can be
arbitrary; for the hyperbolic model, αd = 1, and in the parabolic model,
α = 1. This is the reason for calling the models rigid. Note that different
types of rigid models are not quasisymmetrically conjugate on S1.

2. However, if we relax the conjugacy but only ask equivalence then they
are no longer rigid. For instance, the hyperbolic and parabolic models
are conformally equivalent on D. Set φ1 = id and φ2(z) = z+a

1+az , then

φ2(zd) = Pd(φ1). Analogously, set φ1 = id and φ2(z) = e−2πiθz, then
for B(z) = e2πiθz we have φ2 ◦ B = id ◦ φ1, so the rigid rotation B is
conformally equivalent to id.

We end this section with the following theorem of McMullen [McM86,
BF14], and its corollary, the proof for which is given in Section 5.3.

Theorem 4.8. Let f be a rational function and Γ ⊂ J(f) a forward invari-
ant connected component different from a single point. Then there exists a
rational function g and a quasiconformal homeomorphism φ : Ĉ → Ĉ such
that φ conjugates g|J(g) to f |Γ, in particular, φ(Γ) = Jg. Moreover, g has the
following properties. The Julia set J(g) is connected and the periodic Fatou
components of g are Siegel discs, superattracting basins or parabolic basins.
On each periodic Fatou component, the first return map is conjugate to one
of the three rigid models. Moreover, if c is a critical point in a strictly pre-
periodic Fatou component, and n is the smallest number for which g◦n(c) is in
a periodic component U , then:

(a) if U is a Siegel disc, g◦n(c) is the indifferent periodic point in U , i.e. the
center of the Siegel disc;

(b) if U is a superattracting basin, g◦n(c) is the superattracting periodic point;

(c) if U is a parabolic basin, g◦n+k(c) is a critical point, where k is the smallest
number for which g◦k(U) contains a critical point.

Recall from Definition 3.5 that a function f ∈ N (d− n, n) is stable if Cf ,
the set of critical points of f , belongs to the basin of ∞ or to the basins of
attracting or superattracting cycles of f .

Corollary 4.9 (Case of rational Newton maps). If f ∈ N (d− n, n) is stable,
then there exists a post-critically minimal Newton map, unique up to affine
conjugacy, satisfying the conclusions of the Theorem 4.8 if we take Γ = J(f).
In this case only items (b) and (c) of the theorem are possible. Moreover,
every bounded stable component in N (d− n, n) has a unique “center”, which
is a post-critically minimal Newton map.
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4.2 Cui plumbing surgery

For a geometrically finite rational function g with a parabolic cycle, G. Cui
developed a surgery method to turn parabolic domains of g into attracting do-
mains while still maintaining a global semi-conjugacy. As a result he obtained
the following as an affirmative answer to the Goldberg-Milnor conjecture in
the case of geometrically finite rational functions.

Theorem 4.10. [CT] Suppose that g is a geometrically finite rational func-
tion and X is a parabolic cycle of g. Then there exist a continuous family of
geometrically finite rational functions {ft} (1 ≤ t <∞) and a continuous fam-
ily of quasiconformal conjugacies {φt} from f1 to {ft}, such that the following
conditions hold:

(1) {ft} uniformly converges to g as t→∞.

(2) {φt} uniformly converges to a quotient map φ of Ĉ as t→∞ and φ◦f1 =
g ◦ φ, i.e. the following diagram is commutative;

Ĉ f1 - Ĉ

Ĉ

φ
?

g - Ĉ.

φ
?

Moreover, φ is a homeomorphism from J(f1) onto J(g).

(3) For every periodic Fatou domain D of g, if D is a parabolic component
associated with X, then φ−1(D) is contained in an attracting domain of
f1 and φ is quasiconformal homeomorphism on any domain compactly
contained in φ−1(D). Otherwise, φ−1(D) is a Fatou domain of f1 and φ
is conformal on φ−1(D).

Remark 4.11. Note that f1 in the above theorem is sub-hyperbolic geomet-
rically finite function; that is, all of its non-repelling cycles are attracting.
For such rational function g, the theorem converts all parabolic domains into
attracting domains. Since the semi-conjugacy φ is conformal in other Fatou
components, the multipliers of attracting cycles of g are preserved. For a
post-critically minimal Newton map g, item (3) of the theorem allows us to
conclude that f1 could be further changed by quasiconformal surgery to a
post-critically finite Newton map.

The theorem uses the following notion.

Definition 4.12 (Quotient map). Let h be a continuous surjective map on
Ĉ. The map h is called a quotient map if h−1(y) is either a singleton or a full
continuum for every point y ∈ Ĉ, i.e. Ĉ\h−1(y) is a simply connected domain.
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4.3 Häıssinsky surgery for Newton maps

Häıssinsky in [Ha98, BF14] developed a parabolic surgery that changes a re-
pelling fixed point of a polynomial into a parabolic fixed point of some other
polynomial q while preserving the topology and dynamics of the Julia set.
This surgery construction is the basis for this thesis.

We write
a(t) � b(t)

for two positive valued functions a(t) and b(t) if there exists a constant C > 0
such that C−1b(t) ≤ a(t) ≤ Cb(t). In this case, we say that a and b are
comparable.

Let p be a polynomial of degree deg(p) ≥ 2 and let K(p) and J(p) be its
filled Julia set and Julia set, respectively. Recall that Pf denotes the post-
critical set of f , that is the closure of the critical orbits of f . If α is an
attracting or parabolic fixed point, we set A(α) to be its basin of attraction
and A◦(α) its immediate basin.

Theorem 4.13 (P. Häıssinsky). [Ha98] Let p be a polynomial of degree at
least 2 with a (non-super)attracting fixed point α and a repelling fixed point β ∈
∂A◦(α), β 6∈ Pp. Suppose also that β is accessible from the basin A◦(α). Then
there exist a polynomial q of the same degree and a David homeomorphism
φ : Ĉ→ Ĉ, such that:

1. φ(K(p)) = K(q), φ(β) is a parabolic fixed point with q′(φ(β)) = 1, and
φ(A◦(α)) = A◦(φ(β));

2. for all z 6∈ A(α), φ ◦ p = q ◦ φ; in particular, φ : J(p) → J(q) is a
homeomorphism which conjugates f to g on the Julia sets.

3. φ is conformal on Ĉ \ A(α).

Remark 4.14. Note that the construction of surgery is local (along the given
access) and can be performed on rational functions that are not necessarily
polynomials. By a slight and sensible change of the proof, this theorem can be
stated replacing the attracting fixed point by several cycles and the repelling
point by cycles such that their periods divide those of the attracting points
related to them, provided the repelling points that are to become parabolic
are not accumulated by the recurrent critical orbits of p.

Proof is involved, refer to [BF14, Ha98] for the details. We give a sketch of
the proof in Theorem 4.15 that is modified for Newton maps. In some places
of the proof we give more details and also include the case when the repelling
fixed point that is going to become the parabolic is a landing point of a critical
orbit.

The following is the special case of the theorem for Newton maps of poly-
nomials, where we have a degree d ≥ 3 Newton map of polynomial, we select
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n ≤ d roots ξi, select one access for each, then we make the function parabolic
where each of these (accesses) immediate basins become attracting parabolic
petals.

Theorem 4.15 (Häıssinsky surgery for polynomial Newton map). Let a post-
critically finite Newton map Np ∈ N+,n

pcf (d) with ∆+
n its marked channel dia-

gram be given. Let A(ξj) be the marked basins of superattracting fixed points
ξj, for given 1 ≤ j ≤ n. Then there exist a David homeomorphism φ and
Np̃eq̃ ∈ Npcm(d− n, n), such that

(i) φ(∞) =∞ and φ(
⋃

1≤j≤nA(ξj)) is the basin of the parabolic fixed point
at ∞ of Np̃eq̃ ;

(ii) φ ◦Np = Np̃eq̃ ◦ φ for all z 6∈ ⋃1≤j≤nA◦(ξj); in particular, φ : J(Np)→
J(Np̃eq̃) is a homeomorphism which conjugates Np to Np̃eq̃ ;

(iii) φ is conformal on the interior of Ĉ \⋃1≤j≤nA(ξj);

(iv) Np̃eq̃ is post-critically minimal and the marked accesses of the marked
channel diagram ∆+

n correspond to the attracting accesses of the parabolic
basin of ∞ for Np̃eq̃ .

Remark 4.16. Note that in this version of the theorem the conjugacy breaks
down only in the marked immediate basins.

Proof. We shall sketch the proof of Theorem 4.13 here as well. The proof is
involved, so we divide it into many independent parts.

Preliminaries. We need several results on extensions of maps, lifting
property, and Blaschke products that we intensively use in many places of our
theorems. We use the following lemma when we construct a local topological
conjugacy between Newton maps at their parabolic point at ∞, for the proof
of the lemma refer to [CT, Lemma 3.4.]

Lemma 4.17. [CT] Suppose rational maps f and g with parabolic fixed points
z0 and z1 respectively are given. Let φ0 be a K-quasiconformal conjugacy
between their attracting flowers. Then for any ε > 0, there is a local (K + ε)-
quasiconformal conjugacy φ between f and g such that φ = φ0 on a smaller
attracting flower.

We extensively use the following theorem on extension of quasisymmetric
maps between boundaries of quasidiscs, and quasiannuli. For its proof, please,
kindly refer to [BF14, Proposition 2.30].

Theorem 4.18 (Quasiconformal interpolation).

(a) Suppose G1 and G2 are quasidiscs bounded by γ1 and γ2 and let f : γ1 → γ2

be quasisymmetric. Then f extends to a quasiconformal map f̂ : G1 → G2.
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(b) For j = 1, 2, suppose Aj are open quasiannuli bounded by the quasicircles
γij , γ

o
j . Let f i : γi1 → γi2 and fo : γo1 → γo2 be quasisymmetric maps

between the inner and outer boundaries respectively. Then there exists a
quasiconformal map f : A1 → A2 extending the boundary maps f i and fo.

We shall use the following classical result on lifting property of covering
maps.

Lemma 4.19. Let Y, Z and W be path-connected and locally path-connected
Hausdorff spaces with base points y ∈ Y, z ∈ Z and w ∈W . Suppose p : W →
Y is an unbranched covering and f : Z → Y is a continuous map such that
f(z) = y = p(w).

Z, z
f̃ - W,w

Y, y

p

?f -

There exists a continuous lift f̃ of f to p with f̃(z) = w if and only if

f∗(π1(Z, z)) ⊂ p∗(π1(W,w)),

where π1 denotes the fundamental group. This lift is unique if it exists.

We must mention that Häıssinsky surgery is not directly applicable to the
superattracting domains. In order to overcome the problem we need to change
these domains to (non-super)attracting ones. The next lemma resolves this
issue.

Lemma 4.20. Let Np be a post-critically finite Newton map of degree d > 1
with ξ a superattracting fixed point with its basin A(ξ) and with a marked
access ∆+

1 to ∞ in the immediate basin A◦(ξ). There exist a Newton map Np̃

of the same degree d and a quasiconformal homeomorphism φ : Ĉ → Ĉ such
that

(a) φ is conformal except on A(ξ);

(b) φ◦Np = Np̃◦φ except on a compact set in A◦(ξ), in particular, φ(F (Np)) =
F (Np̃) and φ(J(N)) = J(Np̃).

(c) φ(ξ) is an attracting fixed point of Np̃ with the multiplier N ′p̃(φ(ξ)) = 1
2 ,

and with the immediate basin A◦(φ(ξ)) = φ(A◦(ξ)), which contains a
single critical point c ∈ A◦(φ(ξ)).

(d) φ(∆+
1 ) becomes a marked access in A◦(φ(ξ)).

(e) Every Fatou component of Np̃ contains at most one critical point; and if
U is a component of A(φ(ξ)) with a critical point cU , then there exists a
minimal mc such that N◦mcp̃ (cU ) is a critical point in N◦mcp̃ (U).
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Remark 4.21. The lemma is still valid if we replace one basin with several
basins, we just need to work one by one with all marked basins. We change
the multiplier to 1 − 1

2 = 1
2 with the goal of obtaining a Newton map of

some other polynomial p̃ by theorem 2.2. But this choice is purely artificial;
actually, it is possible to change the multiplier to any non-zero λ ∈ D∗. The
lemma says that not only is the multiplier changed at the superattracting
fixed point, but we can also keep the marked access “unchanged”. Moreover,
if we let R : A◦(φ(ξ)) → D be a Riemann map such that R(c) = 0 and let
0 < R(φ(ξ)) < 1 (after post-composition by a rotation), then the marked
access in A◦(ξ) transports to the marked access containing R−1([R(φ(ξ)), 1])
in A◦(φ(ξ)) of Np̃, where the following holds: R ◦ Np̃ ◦ R−1 = B(z), where

B(z) = zk+b
1+bzk

for 0 < b < a and a = k−1
k+1 and k = deg(Np, ξ) with exact value

of b = b0, which is specified later in the proof.

Proof of Lemma 4.20. Let Np be a post-critically finite Newton map of degree
d > 1 with ξ a superattracting fixed point with the basinA(ξ) and with a single
marked access ∆+

1 in the immediate basin A◦(ξ). By lemma 2.8, the point ξ
is the only critical point in A◦(ξ). Its local dynamics is conjugate to z 7→ zdξ ,
where dξ > 1 is the multiplicity of the critical point ξ. Let ψ : A◦(ξ) → D
be the Riemann map (Böttcher coordinate) such that ψ(ξ) = 0. It is unique
up to rotation; normalize it so that the fixed ray corresponding to the marked
access ∆+

1 maps to [0, 1], which we call the “zero ray”. We want to change
the multiplier at ξ to be 1− 1

2 = 1
2 so that we obtain a Newton map of some

other polynomial p̃ by Theorem 2.2. The proof of this lemma uses standard
surgery tools of holomorphic dynamics; compare [BF14, Section 4.2].

The Blaschke product B(z) = zk+b
1+bzk

with 0 ≤ b < a and a = k−1
k+1 has a

unique attracting fixed point α ∈ [0, 1), which attracts every point in D. The
multiplier at α depends continuously on b. When b = 0 the Blaschke product
is z 7→ zk; denote it by B0(z) = zk. Then B′0(0) = 0 and when b ↗ a, the
multiplier at α converges to 1; in particular α also converges to 1. It can be
shown that the multiplier map is an increasing function of b in the interval
[0, 1], but this fact is not relevant for our construction. We choose b = b0 such
that the multiplier at α = α0 is equal to 1− 1

2 = 1
2 , i.e B′(α0) = 1

2 .

For a fixed α0 < r < 1 we set Dr = {|z| < r} and S1
r = {|z| = r}.

Note that B−1
0 (Dr) = Dr−k and B−1

0 (S1
r) = S1

r−k
. Define A0 to be the closed

annulus Dr−k \ Dr. We have B(Dr) ⊂ Dr and denote by A1 = Dr \B(Dr) a
closed annulus.

The maps f i = B|B−1(S1r) : B−1(S1
r) → S1

r and fo = B|S1
r−k

: S1
r−k
→

S1
r are covering maps of degree k. These are the inner and the outer maps

between the inner and the outer boundaries of A0 and A1 respectively. We
can extend these maps to all of A0 as a quasiregular covering map of degree
k, where a quasiregular map is a map that is locally uniformly quasiconformal
homeomorphism except at finitely many critical points. To do this we choose
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a fundamental domain, which is a sector

S = {z : r < |z| < r−k, 0 < Arg(z) < 2π/k}. (4.2)

Its boundary consists of two arcs and two line segments at angles 0 and 2π/k.
Note that B(r) = B(re2πin/k) for all n. First, define it on

[
r, r−k

]
to the

interval [B(r), r] as a scaling by the positive real number 0 < B(r)/r < 1, i.e.

z 7→ B(r)
r z. On the other segment

[
re2πi/k, r−ke2πi/k

]
define it as a lift, or as

scaling by B(r)/r and rotation by e2πi/k, i.e. z 7→ B(r)
r e−2πi/kz. If we identify

these two line segments
[
r, r−k

]
and

[
re2πi/k, r−ke2πi/k

]
, then the closure of

the sector 4.2 maps injectively via z 7→ zk to the annulus {rk < |z| < r}.
Then the inverse of this map is an unbranched covering. Now we lift the inner
and the outer maps f i and fo to the annulus {rk < |z| < r}. Now we are in
position to apply part (b) of Theorem 4.18, which produces a quasiconformal
homeomorphism as an extension of lifted inner and outer quasisymmetric maps
to the interior of the annulus. Now transporting the extension to the sector
and extending it to the rest of the annulus A0 by copying the same map to each
of the other fundamental sectors we obtain a degree k quasiregular function
between A0 and A1. Denote it by h0 : A0 → A1. Define a new quasiregular
function g : D→ D as following

g =


B0 on D \ Dr
B on Dr
h on A0

Note that g(α0) = α0 and deg(g, 0) = k and also the interval [α0, 1] is invariant.
Since z = 1 is a repelling fixed point for B the interval [α0, 1] is contained in
the marked access coming from B0. We will define a g-invariant Beltrami form
µ. Let µ0 be a conformal structure, then define µ on Dr as µ = µ0. In the
annulus A0 define it as a pullback by h, i.e. µ = h∗µ0. Finally, we extend µ
to the rest D by the dynamics of g, observing that for every z ∈ D \Dr, there
is a unique n ≥ 0 such that gn(z) belongs to the half open annulus A0 \ S1

r ;
moreover, gn = Bn

0 at the point z. Hence µ is defined recursively as

µ =


µ0 on Dr
h∗µ0 on A0

(Bn
0 )∗µ on Bn

0 (A0)

By our construction µ is g-invariant and the maximum dilatation satisfies
||µ|| = ||h∗µ0|| < 1. Let us transport g to immediate basin A◦(ξ) of Np and

define a topological function F : Ĉ→ Ĉ as

F (z) =

{
ψ−1 ◦ g ◦ ψ(z) z ∈ A◦(ξ)
Np z 6∈ A◦(ξ)



44 CHAPTER 4. SURGERY

Note that F (z) = Np(z) for z ∈ ψ−1(D \ Dr). We will now define an F -

invariant Beltrami form µF in Ĉ. In the immediate basin A◦(ξ), define µF as
the pull back of µ by the Riemann map ψ : A◦(ξ)→ D; for other components
of the basin A(ξ) we spread it by the dynamics of F . We put the standard
complex structure on the complement of the basin A(ξ), thus obtaining an
F -invariant Beltrami form µF . We apply the measurable Riemann mapping
Theorem (Theorem 4.2) to µF deducing a quasiconformal homeomorphism
φ : Ĉ→ Ĉ, unique up to automorphism of Ĉ. The conjugation φ ◦ F ◦ φ−1 is
a rational function on Ĉ. Let us normalize φ as fixing ∞. Then φ ◦ F ◦ φ−1

satisfies conditions of the theorem 2.2 and since ∞ is a repelling fixed point,
it is a Newton map of some polynomial denote the polynomial by p̃. Then
Np̃ is the resulting function (by further normalizing φ we can make sure that
p̃ is centered, but it is not relevant for us now). We have that Np and Np̃

are conjugate in some neighborhoods of their Julia sets. The conjugating map
transforms accesses of Np in A◦(ξ) to that of Np̃, so we obtain a marked access
of Np̃ corresponding to the ∆+

1 . We still use the same notation ∆+
1 for the

resulting access. By the construction all of the conditions of the lemma are
satisfied.

The next lemma is for the Blaschke products that we use throughout the
thesis.

Lemma 4.22. Let E : D → D be a proper map of degree k with a critical
point at z = 0 and a maximum multiplicity k − 1, and whose Julia set is the
unit circle S1. Assume that either E has a parabolic fixed point at z = 1, or
an attracting fixed point in the unit disk D and a repelling fixed point at z = 1.
Then E has the form (4.3) or (4.4) with 0 < b < a; in particular in the latter
case the attracting fixed point belongs to (0, 1).

Proof of Lemma 4.22. Indeed, let E be such a map. Let E(0) = c, and let
Mc(z) = z−c

1−c̄z be an automorphism of D. Then the map Mc ◦ E is a proper
map of D such that Mc ◦ E(0) = 0 and also 0 is the only critical point with
the maximum multiplicity k−1. Then Mc ◦B(z) = uzk with constant |u| = 1,
(compare the proof of the Proposition 3.8). Since 1 is fixed by E, we obtain
1−c
1−c̄ = u. Finally we deduce E = zk+b

1+b̄zk
, where b = c(1−c̄)

1−c . Since E(1) = 1

and E(0) = c, hence c = b = b̄, so b is real. The non-repelling unique fixed
point, if there is one, also belongs the to real line. An easy calculation shows

that E′(z) = kzk−1(1−b2)
(1+bzk)2

, and for odd values of k we have E′(−1) = k(1+b)
1−b > 1

and E(−1) = −1. If k is even then −1 is never fixed by E. Additionally,

E′(1) = k(1−b)
1+b = 1 if b = a = k−1

k+1 > 0, so in this case 1 is a parabolic fixed
point of E and we obtain the parabolic Blaschke product Bpar. Since the
Julia set is the unit circle, in all other cases we obtain that b ≤ a, otherwise
1 becomes attracting and the Julia set becomes a Cantor set. Therefore,
there exist an attracting fixed point at the value, which is less than 1. If z
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is a fixed point of E and b < 0 then from zk + b = z + bzk, it follows that
b(1− zk+1) = z(1− zk−1), hence z < 0. If k is even then |z| < |b|, which is a
contradiction since the orbit of 0 should converge to z, since E as a function
of z in (−1, 0) is decreasing. If k is odd |z| > |b| and E′(z) > 0, and a similar
argument shows that this case is also not possible. Hence b > 0 and the orbit
of 0 increasingly converges to an attracting fixed point α ∈ (0, 1). Lemma is
proved.

Now we start the proof of the theorem. By applying Lemma 4.20 to Np

with its marked basins we obtain a Np̃ such that every marked immediate
basin is now (non-super)attracting with a single critical point in it. The com-
positions φ ◦ ψ and ψ ◦ φ of a quasiconformal homeomorphism ψ with David
homeomorphism φ are again David homeomorphisms, since a quasiconformal
homeomorphism distorts an area in a bounded fashion by Astala theorem
[A94]. It is enough to work with Np̃, but we may still denote it by Np = Np̃.
It is easy to carry out the surgery for the Blaschke products in the unit disk
and then transfer it to the marked immediate basins via Riemann maps. As
it was used in the proof of Lemma 4.20, let b = b0 and

Bpar(z) =
zk + a

1 + azk
, a =

k − 1

k + 1
, and (4.3)

B(z) =
zk + b

1 + bzk
, b = b0 (4.4)

be the parabolic and the attracting Blaschke products of degree k > 1 with
the unique critical point of multiplicity k − 1 located at z = 0 and the Julia
set the unit circle. The map B has an attracting fixed point α = α0 ∈ (0, 1)
with B′(α0) = 1

2 , which attracts every point in D, while z = 1 is a repelling

fixed point with real multiplier λ = 1−b
1+bk. On the other hand, Bpar has the

parabolic fixed point at z = 1, which also attracts every point in D. In both
cases the interval [0, 1] is invariant, which corresponds to attracting invariant
rays, and the critical orbit marches monotonically along this segment towards
z = α, in the case of B, and towards z = 1 in the case of Bpar.

Now we consider the local dynamics around the repelling fixed point. Let
f(z) = λz with λ > 1 be the repelling model map. We define the sector

S := {z ∈ C | θ ≤ arg z ≤ 2π − θ and 0 < |z| < 1/λm} ,

for m > m0 where m0 is large and 0 < θ < π, see Fig. 4.1. We write Qfm for the
quadrilaterals bounded by the segments [(1/λm+1)e±iθ, (1/λm)e±iθ] and arcs of

radii 1/λm+1 and 1/λm contained in S, see Fig. 4.1. Note thatQfm = f−m(Qf0).

It is easy to observe that the map z 7→ ω(z) = Logλ
Logz conjugates f on Dλ−m \ S

to the following parabolic model map

g : ω 7→ ω

ω + 1
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on the cusp C = g(Dλ−m \ S) with vertex at the origin, i.e. ω ◦ f = g ◦ ω on
Dλ−m \ S, see Fig. 4.1.

Figure 4.1: Pictorial illustration of the function χ. The total of the shaded
region on the left picture corresponds to S ∩Dλ−m and rm = |ω(λ−me±iθ)| �
1
m . The initial map z 7→ ω(z) sends the white region (the complement of S)
from the left to the white in the right.

Lemma 4.23. There is David extension χ of z 7→ ω(z) to a neighborhood of

the origin, with Kχ � m on Qfm.

The above lemma is needed to conclude the following lemma. We would
like to mention that the inverse of the map χ constructed in the previous
lemma is not David.

Using the previous lemma we obtain the following result for Blaschke prod-
ucts, which will be used in Häıssinsky surgery. Basically, we cut two sectors
and replace one dynamics with the other and pull back the local dynamics to
all of the attracting basin.

Lemma 4.24. There exist a piecewise C1 homeomorphism φ : D → D and a
sector SB ⊂ D with vertex at 1, which is a neighborhood of α as in Fig 4.2,
such that:

(i) for all z ∈ D \ Sb, φ ◦B(z) = Bpar ◦ φ;

(ii) there is a set S′B which is the intersection of SB with a neighborhood of
1, such that φ : D\⋃k B

−k(S′B)→ φ(D\⋃k B
−k(S′B)) is quasiconformal

homeomorphism;

(iii) on the quadrilaterals QBm in S′B defined as Qfm for Lemma 4.23, we have
Kφ � m, for all m ≥ m0.
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Figure 4.2: An illustration of the construction of φ for the Lemma 4.24, for
the degree n = 2. Left: Quadratic Blaschke product with attracting basin,
Right: Quadratic Blaschke product with parabolic basin (Figure courtesy T.
Kawahira)

Refer for the proofs of the last two lemmas to [BF14, Lemma 9.20 and
Lemma 9.21].

Topological surgery. In order to ease the notations let us do the con-
struction for one basin only and denote by ξ an attracting fixed point andA◦ its
immediate basin with a single critical point cξ of local degree k = deg(Np, cξ).
Consider the Riemann map R = RA◦ : A◦ → D such that R(cξ) = 0; now
we can still post-compose it with a rotation. After the rotation assume that
1 is fixed by the proper map R ◦ Np ◦ R−1 : D → D. Now this choice of the
Riemann map exists and is unique. Since there is a unique Blaschke product
of degree k defined as in (4.4) with the fixed point α ∈ (0, 1) and a critical
point at z = 0, we have R ◦Np ◦R−1 = B, and in particular by Lemma 4.22,
we have R(ξ) = α. Define the map φ : D→ D as a partial conjugacy between
B and Bpar. Let B̂ = φ−1 ◦Bpar ◦φ be the conjugation. Hence, B̂ = B except
on the sector SB.

We transfer this data to the immediate basin; define on A◦ the map F =
R−1 ◦ B̂ ◦R which coincides with Np except on the sector R−1(SB).

Finally set

G(z) =

{
F (z) for z ∈ A◦
Np for z 6∈ A◦

This map G is our topological model: a ramified covering of degree d, piecewise
C1. We have to make sure that G satisfies “post-critical minimality” condition;
we know that Np does by construction. Let cU ∈ U be a critical point in a
component of the basin A and let NmU

p (U) = A◦ for minimal mU > 0. Recall
that by construction NmU

p (cU ) = cξ, with cU a unique critical point of Np in
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A◦. By the definition of the Riemann map R = RA◦ : A◦ → D with R(ξ) = α,
R(cξ) = 0, since we have F = R−1 ◦ B̂ ◦ R = R−1 ◦ φ−1 ◦ Bpar ◦ φ ◦ R.
It is easy to observe that B−1(b) = B−1

par(a) = {0}, and since φ(B(0)) =
φ(b) = a = Bpar(0), it follows that φ(0) = 0. We have F (cξ) = R−1(b)
and F−1(R−1(b)) = {cξ}; hence, cξ is a critical point of F . This is a crucial
property of our model map: after the straightening theorem, we obtain an
actual post-critically minimal Newton map.

Straightening of almost complex structure and conclusion of the
Häıssinsky theorem (Theorem 4.13). Let us emphasize again that the
full strength of David Integrability Theorem is needed: the existence of the
solution in order to straighten the almost complex structure, and its uniqueness
to conclude that the resulting composition map is indeed a rational function
(holomorphic).

We will define a G-invariant almost complex structure µ in Ĉ. Let µ̂ =
∂z̄φ/∂z. By definition this David-Beltrami form is defined in D and invariant
by B̂. We transport it to the immediate basin A◦ by defining the pull back
µ = R∗µ̂. We have the following commutative diagram:

(D,µ0)
Bpar- (D,µ0)

(D, µ̂)

φ
6

B̂ - (D, µ̂)

φ
6

(A◦, µ)

R
6

F - (A◦, µ)

R
6

We extend it recursively by the dynamics of F (which is equal Np outside
the sector R−1(SB)) to the rest of the dynamical plane:

µ =

{
(Nn

p )∗µ on N−np (A◦)
µ0 on C \⋃nN

−n
p (A◦)

By definition the map G leaves µ invariant.

Compare [BF14, Lemma 9.23] to the following lemma, where we include
the case when ∞ ∈ PNp , the post-critical set of Np.

Lemma 4.25. G invariant µ, defined as above, satisfies the hypothesis of
David Integrability Theorem (4.5).

Proof of Lemma 4.25. Let V be a simply connected linearizable neighborhood
of ∞. Let U be a connected component of N−1

p (V ) compactly contained in

V . Let
∑
∞ = R−1(S′B) in U . Set ρ = 1/N ′p(∞) = d

d−1 > 1 and let Kµ be the
dilatation ratio of µ; by Koebe’s Distortion Theorem and Lemma 4.24,

Area {z ∈ Σ∞ | Kµ > n} �
(
1/ρ2n

)
Area {Σ∞}
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If Nk
p (y) =∞ for some y ∈ C, then let

∑
y be the connected component of

N−kp (
∑
∞) with vertex y. Here we need to be cautious: if y is a critical point

then we end up having more than one component with a shared vertex at y.
Note that the local degree deg(Np, y) < d is finite. We need to consider all
the different components separately; in total, we shall have deg(Np, y) number
of components. The map Nk

p : (N−1
p (V ), y) → (V,∞) is a covering, ramified

at y if y is a critical point. Since Np : U → V fixes ∞ we lift it by Nk
p as a

repelling germ of the same multiplier in a punctured neighborhood of y as
the following: after fixing some base point w0 ∈ U \{∞}, its its image Np(wo)
is a base point in V \ {∞}, let y0 ∈ N−kp (w0) be a base point in N−kp (U) \ {y}
and finally, let z0 ∈ N−kp (Np(w0)) be a base point in N−kp (V ) \ {y}. Now

we can apply Lemma 4.19 to Nk
p ◦ Np obtaining a lift F with the following

commutative diagram:

(N−kp (U) \ {y}, y0)
F - (N−kp (V ) \ {y}, z0)

(U \ {∞}, w0)

Nk
p

?
Np- (V \ {∞}, Np(w0))

Nk
p

?

Note that F is a one-to-one conformal map from N−kp (U)\{y} to N−kp (V )\{y}
given by F = N−kp ◦Nk+1

p with F (y0) = z0. We extend it using the Riemann
removability theorem to y as a repelling germ. Easy calculation shows that
the derivative is F ′(y) = N ′p(∞) = ρ. By bounded distortion theorem, there
exists a constant C > 0 such that

Area {z ∈ Σy | Kµ > n} ≤
(
C/ρ2n

)
AreaΣy

for all preimages of y of ∞. We deduce that for n large enough,

Area
{
z ∈ Ĉ | Kµ > n

}
=

∑
k≥0

∑
Nk
p (y)=∞

Area {z ∈ Σy, Kµ > n}

≤ ∑
k≥0

∑
Nk
p (y)=∞

(
C/ρ2n

)
Area Σy,

In the above summands with Nk
p (y) = ∞, if y is a critical point then we

include all deg(Np, y) number of different Σy. Hence,

Area
{
z ∈ Ĉ | Kµ > n

}
≤
(
C/ρ2n

)
Area X = C ′e−2n ln ρ,

where X =
⋃
k≥0,Nk

p (y)=∞Σy. Since the area of X depends on which metric

we are using, if we want to use the Euclidean metric then we have to make
sure that ∞ belongs to the interior of a complement of X in Ĉ. This can be
done by conjugating Np by a Mobius map in the beginning of the construction
so that ∞ belongs to an immediate basin; otherwise, we can use a spherical
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metric in Ĉ then area of X is bounded anyway. This proves the estimate on
Kµ and finishes the proof of the lemma.

David Integrability Theorem (Theorem 4.5) asserts the existence of a map
φ which integrates µ. However, to obtain a holomorphic function there is still
some work to be done.

Lemma 4.26 (Straightening, Lemma 9.25 [BF14]). If there is David homeo-
morphism φ : Ĉ→ Ĉ, such that the equation ∂z̄ψ = µφ∂zψ has a local solution,
unique up to post-composition by a conformal map, and such that G∗µφ = µφ
a.e., then Q = φ ◦G ◦ φ−1 is a rational function..

Proof of Lemma 4.26. Indeed, on every disk where G is injective, φ ◦ G has
the same Beltrami coefficient as φ; hence, there exists a conformal map, say
Q, such that φ ◦ G = Q ◦ φ, which follows from uniqueness of the solution.
There is a discrete set of points, which is the set of critical points of G, where
G is not locally injective; hence by the Riemann Removability Theorem Q is
a holomorphic rational function.

Here we complete the proof of Theorem 4.15. By construction ∞ is a
parabolic fixed point of Q with multiplicity +1 and all unmarked fixed points
in C are superattracting, since φ is conformal away from marked basins; hence,
Q is a Newton map by Theorem 2.3. Since G satisfies “post-critical minimal-
ity” condition, hence Q is a post-critically minimal Newton map. Let φ0 be
the quasiconformal homeomorphism coming from Lemma 4.20, and let φ1 be
David homeomorphism and G = Np̃eq̃ coming from Lemma 4.26. Both φ0 and
φ1 are conformal except on the corresponding marked basins. Set φ = φ1 ◦φ0.
Finally, we have φ ◦Np = Np̃eq̃ ◦ φ in the domain away from marked immedi-
ate basins of Np, thus for φ and Np̃eq̃ all the conditions of Theorem 4.15 are
automatically fulfilled by the construction.



Chapter 5

Main Results

This chapter has three sections. In the first two of the sections we prove
results of Häıssinsky surgery applied to post-critically finite Newton maps. In
the last section we prove the existence of a natural bijection between the space
of post-critically finite Newton maps and the space of post-critically minimal
Newton maps.

5.1 Injectivity of Häıssinsky surgery

In this section we prove injectivity of Häıssinsky surgery, the Theorem 4.15
for the space of Newton maps. Häıssinsky surgery defines a map from the
space of n marked post-critically finite Newton maps of polynomials (denoted
N+,n

pcf (d)) to the space of post-critically minimal Newton maps for peq with
deg(q) = n (denoted Npcm(d− n, n)). We consider all possible applications of
a Häıssinsky surgery to Newton maps of polynomials of given degree d ≥ 3 as
one object of study. Different surgeries applied to the same Newton map of
a polynomial with different accesses may produce the same rational function
up to affine conjugacy. For instance, for n = 1 we have two ways to apply
Häıssinsky surgery to 2z3

3z2−1
∈ Npcf(3) to the two immediate basins, each

with one access to ∞, which is also studied at the end of Chapter 2, where
we counted different possible applications of surgery. The third immediate
basin has 2 accesses, see Fig. 2.5 for its Julia set. The resulting Newton
map is z − z2+c

z2+2z+c
for c = −1

4 and belongs to Npcm(2, 1). There exists a
single Newton map with this property in Npcm(2, 1). Thus the two results
of Häıssinsky surgery produce the same map. Similarly, consider applications
of Häıssinsky surgery to the above function 2z3

3z2−1
∈ Npcf(3), this time, to its

third immediate basin, which has 2 accesses to ∞. We can perform surgery
in two ways. But the results of the two surgeries are the same function in
Npcm(2, 1). It is z − z2+c

z2+2z+c
for a concrete value c = 2. It is the unique

Newton map with two accesses in the parabolic immediate basin of ∞. Since
we identify functions that are Möbius conjugate, so we do not distinguish these

51
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“different” surgeries, which produce the same result up to affine conjugation.
The definition is as following.

Definition 5.1 (∼H Häıssinsky equivalence on surgeries). Let F and G be
results of application of Häıssinsky surgery to Np1 with marking ∆+

n (Np1) and
Np2 with marking ∆′+n (Np2), both belonging to N+,n

pcf (d), respectively. The
two surgeries are said to be equivalent if there exists an affine map M such
that M ◦ F = G ◦M . Notation ∼H is used for equivalent surgeries.

The following theorem characterizes equivalent surgeries, which states that
distinct surgeries produce non-conjugate (distinct) functions unless underlying
functions are conjugate themselves.

Theorem 5.2 (Injectivity of Häıssinsky surgery). Häıssinsky surgeries applied
to Np1 with marking ∆+

n (Np1) and Np2 with marking ∆′+n (Np2), both belonging
to N+,n

pcf (d), are equivalent if and only if there exists an affine map L such that

• L ◦Np1 = Np2 ◦ L

• L(∆+
n (Np1)) = ∆′+n (Np2)

Proof. For one direction: if for an affine map L we have

• L ◦Np1 = Np2 ◦ L

• L(∆+
n (Np1)) = ∆′+n (Np2),

and we are applying Häıssinsky surgery to Np1 and Np2 through marked chan-
nel diagrams ∆+

n (Np1) and ∆′+n (Np2) respectively, then the result trivially
follows by the construction of Häıssinsky surgery. The converse is the main
part of the theorem, which we deal with it now.

For the other direction: Let us use simpler notation for the functions
involved in the theorem: f = Np1 , g = Np2 , and let F and G be the resulting
functions of application of Häıssinsky surgery to f with marking ∆+

n (f) and
g with marking ∆′+n (g), respectively. Let A(ξj) for 1 ≤ j ≤ n denote the

marked basins of f . There exists a homeomorphism φf : Ĉ→ Ĉ such that the
following diagram commutes:

Ĉ \ ∪1≤j≤nA◦(ξj)
f - Ĉ \ ∪1≤j≤nA◦(ξj)

Ĉ \ φf
(
∪1≤j≤nA◦(ξj)

)φf
?

F - Ĉ \ φf
(
∪1≤j≤nA◦(ξj)

)
,

φf
?

D1

where Ĉ \ ∪1≤j≤nA◦(ξj) is the complement of the union of marked immediate
basins of f . Moreover, AF (∞) = φf (∪1≤j≤nA(ξj)) is the parabolic basin of
∞ for F . As above, for 1 ≤ j ≤ n let A(χj) denote the marked basins of
superattracting fixed points χj of g.
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Similarly, there exists a homeomorphism φg such that the following dia-
gram commutes:

Ĉ \ ∪1≤j≤nA◦(χj)
g - Ĉ \ ∪1≤j≤nA◦(χj)

Ĉ \ φg
(
∪1≤j≤nA◦(χj)

)φg
?

G - Ĉ \ φg
(
∪1≤j≤nA◦(χj)

)
,

φg
?

D2

where Ĉ \∪1≤j≤nA◦(χj) is the complement of the union of marked immediate
basins of g. Moreover, AG(∞) = φg(∪1≤j≤nA(χj)) is the parabolic basin of
∞ for G.

Assume the two surgeries are equivalent; F ∼H G, i.e. there exists an
affine map M such that the following diagram commutes

Ĉ F - Ĉ

Ĉ

M
?

G - Ĉ.

M
?

D3

It is easy to observe that from diagram D3 we obtain M(AF (∞)) = AG(∞)
and M(Ĉ\AF (∞)) = Ĉ\AG(∞), moreover the attracting accesses of AF (∞)
for F transform via M to the attracting accesses of AG(∞) for G. From
diagrams D1, D2 and D3 it follows that

φ−1
g ◦M ◦ φf ◦ f = g ◦ φ−1

g ◦M ◦ φf

on Ĉ \ ∪1≤j≤nA(ξj). The homeomorphism

ψ1 = φ−1
g ◦M ◦ φf : Ĉ \ ∪1≤j≤nA◦(ξj)→ Ĉ \ ∪1≤j≤nA◦(χj)

conjugates f to g in the complement of the union of marked immediate basins
Ĉ \ ∪1≤j≤nA◦(ξj) of f .

We want to extend ψ1 to Ĉ as a global conjugacy between f and g, and
what is missing are the marked immediate basins ∪1≤j≤nA◦(ξj) of f . To ac-
complish this we use normalized Riemann maps (Böttcher coordinates) com-
ing from Proposition 3.8. Let us sort the indices such that A◦(ξj) and their
counterparts A◦(χj) are cyclically ordered at ∞ for 1 ≤ j ≤ n. Let us pick
A◦(ξj) an immediate basin for f . By Proposition 3.8 there exists a Riemann
map ψjf : (A◦(ξj), ξj) → (D, 0) such that ψjf ◦ f ◦ ψ−1

jf
(z) = zkj , where

kj = deg(f, ξj). We have kj − 1 choices for ψjf .
Let R(t) = {re2πit, 0 ≤ r ≤ 1} be a radial line at angle t in D. We fix

some choice of a Riemann map ψjf and define Rj(t) = ψ−1
jf

(R(t)), a ray of

angle t in A(ξj). The radial lines R(t) at angles t ∈ {0, 1
k−1 , . . . ,

k−2
k−1} are fixed

by z 7→ zkj . Hence, the rays in A◦(ξj) at those angles are fixed by f define
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all accesses to ∞ within the immediate basin. Once we label each access, the
different choices of ψjf does nothing but cyclically permute (a shift) the labels
of accesses. Note that accesses do not depend on a choice of a Riemann map.
Let us choose the Riemann map ψjf such that the rays at angles 0, 1

k−1 , . . . ,
k−2
k−1

in A◦(ξj) are ordered in anti-clockwise direction, 0 ray being the one that was
marked. By Theorem 2.9, the Julia set of f is locally connected and the
boundary of every Fatou component is locally connected, hence, every ray
lands by Carathéodory’s theorem. Also note that every f -invariant ray lands
at ∞ ∈ ∂A◦(ξj).

We have the same construction for g: the Riemann maps

φjg(A◦(χj), χj)→ (D, 0)

such that ψjg ◦ g ◦ ψ−1
jg

(z) = zkj , where kj = deg(f, ξj) = deg(g, χj). We
normalize these Riemann maps of marked immediate basins of g as well, in
the same ordering used for f . We define rays in A◦(χj); and every ray for g
also lands.

We construct conjugating maps between corresponding marked immediate
basins of f and g. Consider the map

ψ2
j := φ−1

jg
◦ φjf : A◦(ξj)→ A◦(χj)

which is conformal. The following diagrams commute;

A◦(ξj)
f - A◦(ξj)

D

ψjf
?

z 7→zkj - D

ψjf
?

A◦(χj)

ψjg

6

g - A◦(χj).

ψjg

6

It is now natural to check if both ψ1 and ψ2
j match up on ∂A◦(ξj). For

this we define an equivalence relation on S1 for ψjf (and ψjg) classes of rays
(identified by angles) that land at a common point. Alternatively, since the
inverse to ψjf (correspondingly the inverse to ψjg) has the continuous extension
to the closed unit disk by Carathéodory’s Theorem, every equivalence class
consists of points of S1 that are mapped to the same point under the continuous
extension of the inverse of ψjf (correspondingly the continuous extension of
the inverse of ψjg).

All f -invariant rays land at ∞, and thus these belong to the same class.
All iterated pre-fixed (the image is an invariant ray) rays split into distinct
equivalent classes. It is clear that our equivalence relation is generated by
the closure of the equivalence relation defined by f -invariant rays and their
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iterated preimages. By the normalized Riemann maps, ψjf for f , and ψjg
for g, we obtain the same equivalence relation for both f and g. Indeed, the
map ψ1 sends bijectively the iterated preimages of ∞ in the f plane to the
corresponding iterated preimages of ∞ in the g plane. Thus ψ2

j extends con-

tinuously to the closure A◦(ξj). Since ∞ ∈ J(f) therefore iterated preimages
of ∞ are dense in ∂A◦(ξj), hence for every point z ∈ ∂A◦(ξj) the equivalent
class of rays landing at z is a limit of classes of rays landing at iterated preim-
ages of ∞ in ∂A◦(ξj). Moreover, the extension (denote again ψ2

j ) coincides

with ψ1 on the iterated preimages of ∞. By construction the maps ψ1 and
ψ2
j agree on a dense subset of their common domains of definition; namely,

on the point at ∞ and its iterated preimages in ∂A◦(ξj). It follows that ψ1

and ψ2
j coincide everywhere on their common domains of definition. Hence

the orientation preserving homeomorphism

ψ =

{
ψ1(z), z ∈ Ĉ \ ∪1≤j≤nA◦(ξj)
ψ2
j (z), z ∈ A◦(ξj), for 1 ≤ j ≤ n,

conjugates f to g in Ĉ.
Finally, we invoke the rigidity part of Thurston’s theorem on characteri-

zation of branched coverings [DH93] (actually, we need to apply a result from
[BCT14], where we include a point at ∞ as an extra marked point to the
postcritical set) to degree d ≥ 3 functions f and g deducing the existence of
L, a conformal conjugacy L◦f = g ◦L. 1 Moreover, L sends the marked fixed
critical points of ∆+

n (f) to those of ∆′+n (g), hence all of the marked channel
diagram: L(∆+

n (f)) = ∆′+n (g).

1Alternatively, by the proof structure of Chapter 6 of [DH], we can construct the con-
formal conjugacy by hand by keeping the conformal conjugacy at small disc neighborhoods
of superattracting periodic points of f compactly contained in their immediate basins and
interpolating this conformal map to a quasiconformal map φ0 of the sphere. Next, we keep
taking lifts and obtain a sequence of quasiconformal maps with the same complex dilatation.
We only need to require for all m > 0, φm ◦ f = g ◦ φm+1 and φm = φ0 in a small disc
neighborhood of some superattracting fixed point of f so that we fix a base point from this
domain to define the lifts. The sequence {φm}m≥0 has a convergent subsequence. Let φ
be its limit. It is clear that φ is a conformal map of Ĉ since the domain where φm are
not conformal shrinks to the Julia set of f . The claim follows since the Julia set of f has
measure zero. In the domain we have φ = φ0. We have constructed the initial map to satisfy
φ0 ◦ f = g ◦ φ0 in the domain, hence φ ◦ f = g ◦ φ by the identity principle of holomorphic
functions. More details of this procedure are given in the next chapter, where we construct
such a sequence for a pair of post-critically minimal Newton maps.
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5.2 Surjectivity of Häıssinsky surgery

In this section we prove surjectivity of Häıssinsky surgery in the space of
Newton maps. For a given post-critically minimal Newton map we use Cui
plumbing surgery to change its parabolic fixed point at∞ to repelling one. The
result is later quasiconformally changed to the post-critically finite Newton
map. Moreover, Cui plumbing surgery preserves attracting accesses to ∞ in
its parabolic immediate basins of attraction. This gives us for the resulting
post-critically finite Newton map a marking, to which we apply Häıssinsky
surgery. We shall show that the resulting map of Häıssinsky surgery is affine
conjugate to the given post-critically minimal Newton map.

We recall from Definitions 3.1–3.3: N (d − n, n) denotes the space of nor-
malized Newton maps Npeq of degree d ≥ 3 with n petals at ∞. For instance,
N (d) := N (d, 0) is the space of degree d ≥ 3 normalized Newton maps for
polynomials that are monic, centered, have a root at z = 1 and all roots are
simple. For every natural number n ≤ d denote Npcm(d − n, n) the space of
post-critically minimal Newton maps in N (d − n, n). In particular, denote
Npcf(d) := Npcf(d, 0) the space of degree d post-critically finite Newton maps
for polynomials that are centered, monic and have a root at z = 1, and with
only simple roots. Denote N+,n

pcf (d) the space of post-critically finite Newton

maps from Npcf(d) with markings ∆+
n .

Theorem 5.3 (Surjectivity of Häıssinsky surgery). For every pair of non-
negative integers d ≥ 3 and 1 ≤ n ≤ d, the mapping Fn given by Häıssinsky
surgery induces a (natural) surjective mapping between the quotient space
N+,n

pcf (d)/ ∼H and the space of affine conjugacy classes of Newton maps in
Npcm(d− n, n).

Proof. The proof is involved. For a given function from Npcm(d − n, n) we
obtain a new rational function by perturbing the parabolic point at ∞, then
we apply Häıssinsky surgery to the perturbed function, which is actually a
Newton map from N+,n

pcf (d). We show that the function which we took from
Npcm(d − n, n) and the result of Häıssinsky surgery are affine conjugate to
each other. Thus, proving that Häıssinsky surgery induces a surjective map-
ping from the space N+,n

pcf (d)/ ∼H to the space of affine conjugacy classes of
functions in Npcm(d − n, n). The surgery does not differ distinct elements
within the conjugacy class, therefore we must work with the quotient spaces.
We split the whole proof into four parts, Part A-Part D, as following.

Part A We apply Cui plumbing surgery (Theorem 4.10) to a given PCM
Newton map Np1eq1 ∈ Npcm(d − n, n) of degree d ≥ 3. We study prop-
erties of the resulting rational function f1 and the quotient map φ such
that φ ◦ f1 = Np1eq1 ◦ φ and φ is not injective only in the Fatou compo-
nents of f1 that map to parabolic domains of Np1eq1 , in particular, it is
a homeomorphism from J(f1) onto J(Np1eq1 ). Next, we change f1 in its
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attracting immediate basins to the one with superattracting cycles such
that the result of this intermediate surgery produces a post-critically
finite Newton map, denote it by Np.

Part B We apply Häıssinsky surgery to Np of Part A, with a correspond-
ing marked channel diagram, which is uniquely obtained from Np1eq1 .
Denote by Np2eq2 the result of the surgery.

Part C We construct a topological conjugacy Ψ between the given function
Np1eq1 and Np2eq2 , the resulting map of Part B. We accomplish this by
gluing local conjugacy, composing the Riemann maps, at the parabolic
basin with the topological conjugacy, which is not changed during the
process of three surgeries of Part A and Part B, on the Julia set and
superattracting cycles.

Part D Using the topological conjugacy of Part C, which is a conformal map
at the petals and superattracting cycles of Np1eq1 , by applying inter-
polation technique several times we construct a set of quasiconformal
homeomorphisms of Ĉ, which is denoted by {Ψ1, . . .Ψk}, where k is a
total number of superattracting periodic points of Np1eq1 . Next we work
with Ψk, from the previous step, and construct, by taking lifts of a local
conjugation, {ψm}m≥0 a sequence of quasiconformal homeomorphisms
of Ĉ with bounded complex dilatation. Finally, by extracting a converg-
ing sub-sequence of the latter we obtain a conformal conjugacy between
Np1eq1 and Np2eq2 , finishing the proof of the theorem.

Part A. Let a post-critically minimal Newton map Np1eq1 ∈ Npcm(d − n, n)
of degree d ≥ 3 be given. We invoke Cui plumbing surgery (Theorem 4.10)
to deduce the existence of a geometrically finite rational function f1 and a
quotient map φ such that φ ◦ f1 = Np1eq1 ◦ φ and φ is a homeomorphism from
J(f1) onto J(Np1eq1 ). The following diagram is commutative

Ĉ f1 - Ĉ

Ĉ

φ
?

Np1e
q1- Ĉ.

φ
?

Now we study properties of the functions f1 and φ. Without loss of gen-
erality we can assume that ∞ is a fixed point of f1, after Möbius conjugation
if necessary. We obtain φ(∞) = ∞ since φ(∞) = Np1eq1 (φ(∞)), and note
that ∞ is the only fixed point of Np1eq1 on its Julia set. For the Newton
map Np1eq1 the parabolic cycle consists of only a point at ∞. For every
immediate basin U of ∞ the map φ is quasiconformal on any domain com-
pactly contained in φ−1(U), in particular φ−1 sends the unique critical point
of Np1eq1 in U to the critical point of f1 in φ−1(U). Let c ∈ U be the critical
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point of Np1eq1 in U . Since φ is a homeomorphism on the Julia set we have
deg(f1, φ

−1(c)) = deg(Np1eq1 , c), thus there is no other critical point of f1 in
U . Indeed, let K be a neighborhood of φ−1(c) compactly contained in φ−1(U),
by the theorem we know that φ is quasiconformal on K, thus φ−1(c) is a single
point, moreover it is a critical point of f1. The following diagram commutes

f−1
1 (K)

f1 - K

φ(f−1
1 (K))

φ
?

Np1e
q1- φ(K),

φ
?

hence φ is quasiconformal on f−1
1 (K). Induction shows that φ is quasicon-

formal in all of iterated preimages of K. Now assume c1 is a critical point
of Np1eq1 such that N l

p1eq1
(c1) = c ∈ U for a minimal l > 0. Since φ is

homeomorphism where the above diagram commutes, it follows that after it-
eratively applying the conjugacy for iterative preimages of K we obtain that
φ−1(c1) is a critical point of f1 and f l1(φ−1(c1)) = φ−1(c) for the same min-
imal l > 0, moreover since φ is a homeomorphism on the Julia set we have
deg(f1, φ

−1(c1)) = deg(Np1eq1 , c1). Furthermore, there are no other critical
points of f1 in the Fatou component containing φ−1(c1) than φ−1(c1).

Similarly, by induction we shall show that φ is conformal in every φ−1(U),
where U is a Fatou component of Np1eq1 that is not a parabolic domain. These
types of components could only be basin components of the superattracting
periodic points of Np1eq1 . If U is a superattracting immediate basin of Np1eq1

then by Cui plumbing theorem (Theorem 4.10) φ−1(U) is an immediate basin
of the superattracting periodic point of f1 and φ is conformal on φ−1(U),
therefore φ−1 sends the superattracting periodic points of Np1eq1 to those of
f1. Let V be a component of N−1

p1eq1
(U) other than U . The following diagram

commutes

φ−1(V )
f1- φ−1(U)

V

φ

? Np1e
q1 - U,

φ

?

hence φ is conformal in φ−1(V ). By induction, φ is conformal in φ−1◦N−lp1eq1 (U)
for all l ≥ 1. What we have is that for every component of F (f1), that is
preserved by the conjugacy φ, the critical orbits terminate in finite time.

We have to mention that in all immediate basins of f1 that are counter-
parts to the parabolic domains of Np1eq1 we can change the multipliers to zero,
see [BF14, Chapter 4.2] and [CG93, Theorem 5.1], compare with Lemma 4.20.
Then the resulting function is a post-critically finite Newton map since it sat-
isfies all the conditions of Theorem 2.2, denote it by Np. What we have in this
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process is that the new rational function Np and the old f1 are conjugate ex-
cept in small neighborhoods of attracting fixed points of f1. This intermediate
surgery produces a quasiconformal homeomorphism φ1 such that the following
diagram is commutative

Ĉ \ φ−1
1 (A)

Np- Ĉ \ φ−1
1 (A)

Ĉ \A

φ1
?

f1 - Ĉ \A,

φ1
?

where A is the union of all basins that are affected by the intermediate surgery,
moreover φ1 is conformal in the interior of Ĉ \ φ−1

1 (A). A priori some of the
attracting fixed points of f1, that are newly created by perturbing a parabolic
fixed point of Np1eq1 , could actually be superattracting, then we could use
Häıssinsky surgery to f1 right away to avoid intermediate surgery at that at-
tracting fixed point, since we need to do the reverse of this process again in
Lemma 4.20 during process of Häıssinsky surgery. We only change the multi-
pliers of attracting fixed point into 0 in order to make sure that the resulting
rational function is a post-critically finite Newton map. Let us summarize
what we have.

• The quotient map φ restricted to the Julia set of f1 is a topological
conjugacy between the Julia sets of f1 and Np1eq1 and it is a conformal
conjugacy on the Fatou components of f1 that are mapped to the non-
parabolic domains of Np1eq1 via φ.

• The quasiconformal homeomorphism φ1 is a conjugacy between f1 and
Np on the complement of disk neighborhoods of attracting fixed points
of f1 and it is conformal in all basins of superattracting periodic points
of f1. Thus, a quotient map φ ◦ φ1 is a topological conjugacy between
the Julia sets of Np and Np1eq1 , and it is a conformal map where φ is
conformal.

We mark the basins of Np that are created by Cui plumbing surgery. We also
need marked accesses in every marked basin. We know that (Proposition 2.13)
every parabolic immediate basin of Np1eq1 has a unique attracting access along
which the orbits starting at the points from its basin converge to its limit, a
parabolic fixed point at ∞. Note that, since φ is a homeomorphism between
the boundary of one basin with some other basin, the accesses of former trans-
form to the accesses of the latter via φ. Thus, we have the marked accesses of
Np.

Part B. Now for every 1 ≤ j ≤ n all the marked basins A(ξj) and the
marked access in each are given. We apply Häıssinsky surgery (Theorem 4.15)
to Np to those basins with accesses deducing the existence of a David homeo-
morphism φ2 and a post-critically minimal Newton map Np2eq2 such that
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• φ2 is conformal in every Fatou component of Np that is not marked,

• φ2◦Np = Np2eq2 ◦φ2 for all z /∈ ⋃1≤j≤nA◦(ξj). i.e. the following diagram
commutes

Ĉ \ ∪1≤j≤nA◦(ξj)
Np - Ĉ \ ∪1≤j≤nA◦(ξj)

Ĉ \ φ2(∪1≤j≤nA◦(ξj))

φ2
?

Np2e
q2- Ĉ \ φ2(∪1≤j≤nA◦(ξj)).

φ2
?

Part C. We shall construct a topological conjugacy between Np1eq1 and
Np2eq2 that is conformal in the Fatou set of Np1eq1 .

By construction of φ, φ1 and φ2 it follows that the map Ψ = φ2◦φ−1
1 ◦φ−1 is

a conjugacy between Np1eq1 and Np2eq2 in the complement of parabolic basins
of Np1eq1 . Moreover Ψ is conformal in the basins of superattracting periodic
points of Np1eq1 . We want to extend this conjugacy to the parabolic basin
A1(∞) as well. We shall use the full power of Proposition 3.8 to construct the
topological conjugacy via gluing the Riemann maps of corresponding parabolic
components. Let A◦1j be an immediate basin of parabolic fixed point of Np1eq1

and let c1
j be the unique critical point inA◦1j , for 1 ≤ j ≤ n. Note that Ψ(∂A◦1j )

is the boundary of exactly one parabolic component of Np2eq2 for 1 ≤ j ≤ n,
denote it by A◦2j , since it could only be an immediate basin. Let c2

j be the

unique critical point in A◦2j . Let ψ◦1j : A◦1j → D and ψ2
j : A◦2j → D be the

corresponding uniquely defined Riemann maps sending the critical points c1
j

and c2
j to the origin, moreover we have kj = deg(Np1eq1 , c

1
j ) = deg(Np2eq2 , c

2
j )

such that the following diagrams commute;

A◦1j
Np1e

q1- A◦1j

D

ψ1
j

? Pkj - D

ψ1
j

?

A◦2j

ψ2
j

6

Np2e
q2- A◦2j ,

ψ2
j

6

where Pkj (z) =
zkj+aj

1+ajz
kj

for aj =
kj−1
kj+1 , is the parabolic Blaschke product of D.

Note that under these normalizations the marked access for both immediate
basins are mapped via the Riemann maps to the same access associated to the
invariant ray (0, 1) for Pkj . For every 1 ≤ j ≤ n, the composition ψ2

j ◦ (ψ1
j )
−1 :

A◦1j → A◦2j is a conformal conjugacy between Np1eq1 and Np2eq2 on A◦1j .

By Carathéodory’s theorem the inverses to both maps ψ1
j and ψ2

j extend
to the boundary of the unite disk. We define the equivalence relation on the
unit circle S1 induced by the extension; x ∼ y ∈ S1 if and only if both are
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mapped to the same point on the boundary by the inverse of ψ1
j . Similarly we

define the equivalence relation for the inverse map of ψ2
j . We shall show that

these two maps define the same equivalence relation on S1. Indeed, we have
kj + 1 fixed points of Pkj , of which k − 2 are distinct repelling fixed points,
and a triple fixed point at 1. In total there are k − 1 invariant accesses, all
of them correspond to the accesses to ∞ in each of the immediate basins A◦1j
and A◦2j . We identify all fixed points Pkj since they all map to ∞ under the
inverse map. Now we take preimages of a given fixed point. There are kj − 1
preimages on S1 of every fixed point other than the fixed point itself. Similarly,
in A◦1j the preimages of∞ by Np1eq1 , since the Newton map is locally injective
away from its critical points, the invariant rays/accesses to ∞ have preimages
which land at the poles in ∂A◦1j , one for each non-homotopic rays/accesses

to ∞. This is transported by the Riemann map ψ1
j to the unit disk and we

identify preimages of fixed points according to the rules as in A◦1j . This gives

us kj − 1 different classes of identifications on S1, one for each corresponding
pole other than ∞ of Np1eq1 in ∂A◦1j . Continuing this process we identify

iterated preimages of all fixed points of Pkj in S1 into the equivalence classes
corresponding to the iterated preimages of ∞ on ∂A◦1j . Take the closure of
this equivalence relation. Since the above diagram commutes we have the
same closed equivalent relation on S1 for ψ1

j and ψ2
j .

Thus, the map ψ2
j ◦ (ψ1

j )
−1 : A◦1j → A◦2j extends to the boundary as a

continuous map and equals to Ψ on the dense set of points in the common
domain of the definition, namely on∞ and its iterated preimages. Denote the
continuous extension by Ψ2

j , hence Ψ2
j = Ψ on ∂A◦1j . The conjugacy is now

extended to all of immediate basins of the parabolic fixed point.
Now we extend it to all other components of the parabolic basin A1(∞).

Let U be the component of N−1
p1eq1

(A◦1j ) (iterated preimage of the immedi-

ate basin) other than A◦1j , for a fixed 1 ≤ j ≤ n. Let cu be the unique cen-

ter of U , that is the point which maps to the critical point in A◦1j , and let
k = deg(Np1eq1 , cu). Then Ψ(∂U) is the boundary of a unique component of
Np2eq2 (A◦2j ), denote it by V , and let cu denote its unique center. There exist
Riemann maps ψU : U → D and ψV : V → D such that ψU (cu) = ψV (cv) = 0
and the diagrams commute

U
Np1e

q1- A◦1j

D

ψU
?

z 7→zk - D

ψ1
j

?

V

ψV

6

Np2e
q2- A◦2j ,

ψ2
j

6

Riemann maps are unique up to post-composing by a rotation of kth root
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of unity. Since we are interested in the composition ψV
−1 ◦ ψU , the choice of

Riemann maps for both can be restricted to one. Let us fix any choice for ψU .
Now we choose the map ψV to be compatible with the dynamics of the Newton
maps. Observe that preimages of the invariant rays/accesses (e.g. a marked
access, which is associated to the interval (0, 1), the zero ray) by Np1eq1 in ∂U
are mapped by ψU to the preimages under z 7→ zk of the invariant rays landing
at fixed points for Pkj (e.g. (0, 1)), since the above diagram is commutative.

Note that the map z 7→ zk can not differentiate between different preimages.
The map Ψ that is a homeomorphism from ∂U onto ∂V comes in handy. Once
ψU is chosen we fix ψV in such a way that those preimages of (0, 1) by z 7→ zk

are pulled back to U such that they land at the corresponding points dictated
by Ψ. There is only one choice of ψV for doing this. This is compatible with
the dynamics of both Np1eq1 and Np2eq2 on corresponding boundaries of their
Fatou components.

We define equivalence relation on S1 for both ψU and ψV as we did above.
These equivalence relations are the same since both agree on a dense set of
common points. Hence ψV

−1 ◦ ψU extends to the closure of U and coincides
with Ψ on a dense set of points, thus both are equal on the common domain of
definition. This way we extend Ψ to all (first level) components of preimages
of immediate parabolic basins.

We can continue in the same way to extend it to all (iterated preimages) of
the parabolic components, since the diagrams are commutative with the same
type of model maps z 7→ zk, where k is a common local degree of the Newton
maps at the centers of components.

Let us summarize what we have proved so far and give (remind) the defi-
nition of Ψ, which we spent the whole Part C.

Ψ =

{
φ2 ◦ φ−1

1 ◦ φ−1, z ∈ Ĉ \ A1(∞)
ψV
−1 ◦ ψU , z ∈ U,

where, U and V are component of A1(∞) and A2(∞), correspondingly and
all the involved maps in the definition of Ψ are defined in this and previous
parts. Thus, Ψ is a conjugacy on Ĉ between Newton maps Np1eq1 and Np2eq2 ,
it is conformal in every component of Fatou set of Np1eq1 . We still have to
show that Ψ is globally continuous.

Claim 5.4. The map Ψ, defined in Part C, is a homeomorphism of Ĉ.

Proof of the Claim. It suffices to prove continuity of Ψ on J(Np1eq1 ). Let us
fix ε > 0, and a sequence of positive numbers εk → 0 as k → ∞. Consider a
sequence of points {ws}s≥1 ⊂ Ĉ such that ws → w ∈ J(Np1eq1 ) as s→∞. We
shall prove that

Ψ(ws)→ Ψ(w) as s→∞. (5.1)

If for some subsequence of ws we have an inclusion {wsk}k≥1 ⊂ J(Np1eq1 ), then
{Ψ(wsk)}k≥1 ⊂ J(Np1eq1 ); hence, the limit (5.1) holds over the subsequence
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{wsk}k≥1, since Ψ is a homeomorphism on the Julia set of Np1eq1 . Moreover,
if some subsequence {wnk}k≥1 is contained in one of the Fatou components
(marked or unmarked) of Np1eq1 (i.e. {wnk}k≥1 ⊂ UNp1eq1

) then along this

subsequence the limit (5.1) holds true since the restriction Ψ|U is continuous.
Therefore, without loss of generality we assume that {ws}s≥1 ⊂ F (Np1eq1 )
and no subsequence of {ws}s≥1 is contained completely in only one of the
components of F (Np1eq1 ). As a result of this assumption the sequence {ws}s≥1

leaves any given component of F (Np1eq1 ) in finite time. By Lemma 2.9 there
are only finitely many components of F (Np1eq1 ) with spherical diameter less
than the given ε > 0. Now we fix any k. Sooner or later the points of {ws}s≥1

leave any Fatou component of Np1eq1 with spherical diameter ≥ εk. Note that
the spherical distance between ψ(ws) and ψ(w′s) is less then εk for all large
enough s, where w′s is any point on the boundary of the component where
ws is located, in particular, w′s is located on the Julia set, J(Np1eq1 ). Clearly
along the same ideas, w′s → w as s→∞. Note that w′s converges to the same
w, since Ψ is continuous on J(Np1eq1 ). The claim is now proved.

Part D. 2 Using the topological conjugacy of Part C, which is, in par-
ticular, a conformal map at the petals and superattracting cycles of Np1eq1 ,
by applying interpolation technique several times we construct a set of quasi-
conformal homeomorphisms of Ĉ, which is denoted by {Ψ1, . . .Ψk}, where k
is a total number of superattracting periodic points of Np1eq1 . Next we work
with Ψk, from the previous step, and construct, by taking lifts of a local con-
jugation, {ψm}m≥0 a sequence of quasiconformal homeomorphisms of Ĉ with
bounded complex dilatation. Finally, by extracting a converging sub-sequence
of the latter we obtain a conformal conjugacy between Np1eq1 and Np2eq2 ,
finishing the proof of the theorem.

We divide the dynamical plane of Np1eq1 into two parts: some Jordan
neighborhood of infinity and the complement of it, which is bounded. We
use Ψ as an initial partial conjugacy between petals of Np1eq1 and Np2eq2 at
infinity. Note that Ψ is a conformal conjugacy restricted on the immediate
basins of ∞. Let us fix an ε = 1 (the exact value of ε is not relevant). Since Ψ
is conformal in petal, thus 1-quasiconformal homeomorphism, by Lemma 4.17
we obtain a 1 + ε = 2-quasiconformal homeomorphism φ defined locally at ∞,
that is a conjugacy between Np1eq1 and Np2eq2 such that φ = Ψ on a smaller
attracting flower bounded by curves l1, . . . , ln, see Figure 5.1. In the figure,
l1, . . . , ln denote the boundaries of small petals of ∞. We fix some quasicircle
L1 in the domain of definition of φ such that L1 separates all superattracting
periodic points of Np1eq1 from the smaller attracting flower where we had the
equality φ = Ψ. Denote by L+

1 the unbounded component of the complement

2Note that the topological conjugacy Ψ of Part C is not a c-equivalence between Np1eq1
and Np2eq2 according to the generalization of Thurston’s topological characterization of
post-critically finite covering maps to the setting of geometrically finite covering maps with
parabolic cycles (refer to [CT]).
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Figure 5.1: A schematic picture of a neighborhood of ∞ with a flower in
yellow, for n = 4.

of L1, and by L−1 the bounded component. Consider L2 = φ(L1) the corre-
sponding quasicircle in the dynamical plane of Np2eq2 . Moreover, L2 separates
the attracting flower from all superattracting periodic points of Np2eq2 . Simi-
larly, denote by L+

2 the unbounded component of the complement of L2, and
by L−2 the bounded component.

We shall extend φ to the bounded domain L−1 as a quasiconformal home-
omorphism that is conformal on disk neighborhoods of superattracting cycles
of Np1eq1 .

We want to construct a quasiconformal homeomorphism that is equal to
the map Ψ defined above on neighborhoods of superattracting periodic points,
where it is a local conformal conjugacy between Np1eq1 and Np2eq2 .

In case when there exist no superattracting periodic points of Np1eq1 we
extend φ using Theorem 4.18 part (a) to L−1 . In case when there exist one
or more superattracting periodic points of Np1eq1 , we extend φ using Theo-
rem 4.18 part (b) to L−1 sequentially in small disk about every periodic point
as following. Let C1, C2, . . . , Ck be a list of disjoint simple closed analytic
curves contained in L−1 , one for each element of superattracting cycles (the
critical points and their orbits) that bound the element in its immediate basin
for Np1eq1 . For every i ≤ k let Ω1

i be the closed disk bounded by Ci, i.e.
Ω1
i b L−1 .
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Figure 5.2: A schematic illustration of the construction of the interpolation.
Left: The analytic disks in cyan are Ω1

i in the Np1eq1 plane. Right: The
corresponding image for the Np2eq2 plane.

Note that, the images Ψ(Ω1
1),Ψ(Ω1

2), . . . ,Ψ(Ω1
k) are closed disks in L−2

bounded by analytic curves Ψ(C1),Ψ(C2), . . . ,Ψ(Ck), each of which surrounds
the corresponding superattracting periodic point of Np2eq2 in its immediate
basin.

We are in position to apply Theorem 4.18 part (b). First, we pick C1 as the
internal boundary and L1 as the external boundary of a quasiannulus. The-
orem 4.18 part (b) produces a quasiconformal homeomorphism of Ĉ, denote
it by Ψ1, that interpolates inner and outer maps Ψ|C1 and Ψ|L1 . Second, we
continue the application of Theorem 4.18 part (b) with the next analytic curve
C2 and the map Ψ1, which is obtained in the first step. We need to specify the
boundary maps, too. One way to define the boundaries is shrinking the curve
C2, while keeping the center unchanged, which is a superattracting periodic
point of Np1eq1 . By shrinking we mean that we take an analytic curve C̃2

within Ω1
2. Another way is taking some quasicircle located within L−1 , denote

it by M2, which bounds the curve C2 and separates it with C1. In the latter
case, we have Ψ1|M2 and Ψ1|C2 as external and internal maps, respectively.
Interpolation gives us a quasiconformal homeomorphism of Ĉ, denote this map
by Ψ2. Note that, Ψ2 is conformal on the union of Ω1

1 and Ω1
2. Finally, we take

some quasicircle located within L−1 , denote it by Mk, that bounds the curve Ck
and separates it from all other curves C1, C2, . . . , Ck−1. We consider Ψk−1|Mk

and Ψk−1|Ck as external and internal maps respectively for the interpolation.
We obtain a quasiconformal homeomorphism of Ĉ, denote it by Ψk. Note that
Ψk is conformal on all of Ω1

i for i ≤ k.

To ease the notation let us denote the last interpolating map by ψ0 i.e.
ψ0 = Ψk and denote by Ω1 the union of Ω1

i for 1 ≤ i ≤ k and the open
parabolic flower bounded by l1, . . . , ln and let ψ0(Ω1) = Ω2. By definition



66 CHAPTER 5. MAIN RESULTS

ψ0 = Ψ and ψ0 ◦Np1eq1 = Np2eq2 ◦ψ0 on Ω1. The following diagram commutes

Ω1
Np1e

q1- Np1eq1 (Ω1)

Ω2

φ0
?

Np2e
q2- Np2eq2 (Ω2).

φ0
?

Lifting. Recall that Cf denotes the set of critical points of f . Let us
define sets: V i = Npieqi (CNpieqi

) the set of critical values of Npieqi , and for

i ∈ {1, 2} let T i = N−1
pieqi

(V i) be the full preimage of CNpieqi
under Npieqi .

We have Np1eq1 : Ĉ \T i → Ĉ \V i unbranched covering maps for i ∈ {1, 2}.
Note that if φ0(V 1) 6= V 2 then we include to V 1 and V 2 the sets φ−1

0 (V 2) and
φ−1

0 (V 1), correspondingly. We define T i’s accordingly. The maps ψ0 ◦Np1eq1 :

Ĉ \ T 1 → Ĉ \ V 2 and ψ−1
0 ◦Np2eq2 : Ĉ \ T 2 → Ĉ \ V 1 are unbranched covering

maps. We fix any component of Ω1 and denote it by Ω0. Newton map has
at least one petal, it is better to take a petal as Ω0. Let us fix a base point
x0 ∈ Ω0\O(CNp2eq2

) for the domain Ĉ\V 2, whereO(CNp2eq2
) denotes the union

of grand orbits of critical points of Np2eq2 , note that V 2 ∪ T 2 ⊂ O(CNp2eq2
).

Actually more is true; the grand total orbit of critical points O(CNpieqi
) is

generated by V i and also by T i for i ∈ {1, 2}. Note that N−1
p2eq2

(Ω0) has

many components in the immediate basin associated to the petal Ω0, since
Ω0 ⊂ N−1

p2eq2
(Ω0) we fix a preimage N−1

p2eq2
(x0) in N−1

p2eq2
(Ω0) denoted by y0

as a base point for the domain Ĉ \ T 2. Since ψ0 is bijection, the preimages
ψ−1

0 (x0) and ψ−1
0 (y0) are base points for the domains associated to Np1eq1 . We

can invoke Lemma 4.19 since the map ψ is a homeomorphism, therefore the
induced maps on fundamental groups of involved domains are isomorphisms.
The unique lift ψ1 of ψ0 ◦Np1eq1 is a map from Ĉ \ T 1 onto Ĉ \ V 2 such that

ψ1(ψ−1
0 (y0)) = y0 and ψ0 ◦Np1eq1 = Np2eq2 ◦ ψ1 on Ĉ \ T 1;

Ĉ \ T 1 ψ1 - Ĉ \ T 2

Ĉ \ V 2.

Np2e
q2

?
ψ0◦Np1eq1

-

We extend ψ1 to the finite set T 1 as a continuous map. Observe that
ψ1 = ψ0 = Ψ on Ω0. The unique lift ψ̃1 of ψ−1

0 ◦Np2eq2 is a map from Ĉ \ T 2

onto Ĉ \ V 1 such that ψ̃1(y0) = ψ−1
0 (y0) and ψ−1

0 ◦ Np2eq2 = Np1eq1 ◦ ψ̃0 on

Ĉ \ T 2;

Ĉ \ T 1 � ψ1 Ĉ \ T 2

Ĉ \ V 1.

Np1e
q1

?
ψ−1
0 ◦Np2eq2

�
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Similarly, we extend ψ̃1 to the finite set T 2 as a continuous map. It is
easy to observe that ψ1 and ψ̃1 are inverses to each other on Ĉ. Moreover
ψ1 is a quasiconformal homeomorphism with the same complex dilatation
as ψ0. By continuing this lifting process we obtain a sequence of quasicon-
formal maps {ψm}m≥0, with the same bound on complex dilatation, such
that ψm+1 = ψ0 = Ψ on Ω0 and ψm ◦ Np1eq1 = Np2eq2 ◦ ψm+1 on Ĉ. Note
that ψm = ψ0 and is conformal on N−mp1eq1 (Ω1). The sequence {ψm}m≥0 is a
normal family, so it has a converging subsequence {ψmk}k≥0; let ψ∞ be the
limiting map. Because the space of quasiconformal homeomorphisms with
uniformly bounded dilatations is compact the homeomorphism ψ∞ is quasi-
conformal. Note that, as constructed by lifts the map ψ∞ is conformal on
∪∞m=0N

−m
p1eq1

(Ω1), the complement of which is the Julia set of Np1eq1 , which

has a measure zero. Therefore, the map ψ∞ is conformal on Ĉ and we have
ψ∞ ◦Np1eq1 = Np2eq2 ◦ ψ∞ on Ω0.

Consider a rational function R = ψ−1
∞ ◦ Np2eq2 ◦ ψ∞ and note that R =

Np1eq1 on Ω0. By the identity principle of holomorphic functions we obtain

R = Np1eq1 on Ĉ, i.e. ψ∞ ◦ Np1eq1 = Np2eq2 ◦ ψ∞ on Ĉ. The proof of the
surjectivity is finished here.
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5.3 Proof of the Main Theorem

In this section we shall prove the Main Theorem. We recall from Defini-
tions 3.1–3.3: N (d−n, n) denotes the space of normalized Newton maps Npeq

of degree d ≥ 3 with n petals at∞. For instance, N (d) := N (d, 0) is the space
of degree d ≥ 3 normalized Newton maps for polynomials that are monic, cen-
tered, have a root at z = 1 and all roots are simple. For every natural number
n ≤ d denote Npcm(d−n, n) the space of post-critically minimal Newton maps
in N (d− n, n). In particular, denote Npcf(d) := Npcf(d, 0) the space of degree
d post-critically finite Newton maps for polynomials that are centered, monic
and have a root at z = 1, and with only simple roots. Denote N+,n

pcf (d) the

space of post-critically finite Newton maps from Npcf(d) with markings ∆+
n .

Theorem 5.5 (Main theorem). Two Häıssinsky surgeries applied to Np1 and
Np2 belonging to N+,n

pcf (d) are equivalent if and only if Np1 and Np2 are affine
conjugate. The mapping Fn given by Häıssinsky surgery induces (natural)
bijection between the quotient space N+,n

pcf (d)/ ∼H and the space of affine con-
jugacy classes of Newton maps in Npcm(d− n, n).

Proof. Fix a pair of non-negative integers d ≥ 3 and 1 ≤ n ≤ d. Define
a map Fn : N+,n

pcf (d) → Npcm(d − n, n) given by Häıssinsky surgery. From
Theorems 5.2 and 5.3 it follows that Häıssinsky surgeries applied to f with
its marking ∆+

n (f)) and g with its marking ∆+
n (g)) are affine conjugate if and

only if f and g are affine conjugate, that is the two Häıssinsky surgeries are
Häıssinsky equivalent, i.e. f ∼H g (definition 5.1). Going to the quotient by
Häıssinsky equivalence ∼H for N+,n

pcf (d) and affine conjugation for N (d−n, n)
the mapping Fn induces bijection.

Proof of Corollary 4.9. We shall sketch the proof. Let a stable Newton map
f ∈ N (d − n, n) be given. An application of the Theorem 4.8 to f with
Γ = J(f) produces a rational function g. It excluded the item (a), because f
can not have any Siegel discs, therefore g also can not have any Siegel disc.
The resulting function g satisfies all the conditions of the Definition 3.6. The
uniqueness of g, which we call a “center” of the stable component of f in
N (d− n, n), follows from the main theorem of the thesis (Theorem 5.5).



Appendix A

Formal Newton maps

One can generalize the definition of a Newton map and obtain a large family of
rational functions in the following way: Let ai ∈ C \ {0}, zi ∈ C, for 1 ≤ i ≤ d
be given. Consider a formal Newton map as follows

f(z) := z − 1∑d
i=1

ai
z−zi

. (A.1)

If zi are all different from each other, then the degree of the rational func-
tion f of the form (A.1) is equal to d, and the number of “free” complex
parameters is 2d. In this way we obtain all rational functions of degree d with
d+ 1 distinct fixed points. The points zi are fixed with multipliers 1− 1

ai
and

are attracting if |1− 1
ai
| < 1 for 1 ≤ i ≤ d. By changing the multipliers at the

finite fixed points through quasiconformal surgery [CG93, Theorem 5.1], we
can convert all of them to superattracting. The resulting rational function is
clearly a Newton map of a polynomial, implying that in this special case the
Formal Newton map has a simple fixed point, which is necessarily repelling,
other than zi for 1 ≤ i ≤ d, and its Julia set is connected. If all of ai = 1, we
are in the case of Newton maps of polynomials.
We have the following:

Theorem A.1 (Connectivity of the Julia set of a formal Newton map). Let
complex numbers ai and zi be given and satisfy |1 − 1

ai
| < 1 for 1 ≤ i ≤ d,

and zi 6= zj for i 6= j, with d ≥ 2. Then the Julia set of a formal Newton
map f(z) = z − 1∑d

i=1
ai
z−zi

is connected. There is a canonical post-critically

finite Newton map of a polynomial Np corresponding to f , provided the Ju-
lia critical points of f have finite orbits, i.e. when f is geometrically finite.
This correspondence is quasiconformal and conjugates the dynamics on some
neighborhood of the Julia set of f .

Proof. Assume that |1 − 1
ai
| < 1 for 1 ≤ i ≤ d, and zi 6= zj for i 6= j. Then

f has attracting fixed points at z = zi for 1 ≤ i ≤ d, the multipliers of which
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can be changed to zero by quasiconformal surgery [CG93, Theorem 5.1]. The
resulting function has the same degree and is the Newton map of polynomial
since its all but one fixed points are superattracting, hence J(f) is connected
by Shishikura’s theorem [Shi09]. Let z ∈ C be given, if z 6= zi the ratio ai

z−zi
is never zero or infinite, thus | 1∑d

i=1
ai
z−zi

| is never zero, hence z is not a fixed

point of f . Since every rational function has a weakly repelling fixed point
then ∞ is the one for f , which necessarily is repelling. Since the Newton map
with d superattracting fixed points has degree d so does the function f .

When f is geometrically finite and satisfies conditions of the theorem then
quasiconformal surgery, which makes attracting fixed points superattracting,
produces the post-critically finite Newton map. In particular, the dynamics
on some neighborhood of J(f) is conjugate to that of the the post-critically
finite Newton map.

Theorem A.2 (Rational function with a single fixed point is a rational New-
ton map). If there is a single fixed point, let it be at ∞, of a rational function
F of degree at least 2 then it has a normal form F (z) = z − 1

q(z) for some
polynomial q. Moreover, F = Nf the Newton map of an exponential function
exp

(∫
q(w)dw

)
. In particular, the fixed point at ∞ is necessarily parabolic

with the multiplier +1.

Proof. Assume a rational function F of degree ≥ 2 is given. Let its single
fixed point be at ∞, otherwise we conjugate by a Möbius map and send its
fixed point to ∞. Then the rational function 1

z−F (z) has a single pole at ∞.

Thus, it is a polynomial, denote by q, then F (z) = z − 1
q(z) . Observe that

F is a Newton map of an entire function e
∫
q(w)dw. Then ∞ is necessarily a

parabolic fixed point with deg(
∫
q(w)dw) = deg(q) + 1 equal to the number of

petals followed by Theorem 2.3.

Formal Newton maps form a reasonably large family of rational functions.
Moreover, all rational function of degree d with d+1 different fixed points (all
those where all fixed points are simple) can be obtained as a formal Newton
map. The value of ai is uniquely defined by the desired multiplier at the fixed
point z = zi.

We can further generalize the formula for the Formal Newton maps by
taking the Newton map of formal transformation of the form: For an integer
d ≥ 3 consider

d−n∏
i=1

(z − zi)aieQ(z),

where ai ∈ C \ {0}, zi ∈ C for 1 ≤ i ≤ d − n and Q a polynomial of degree
n ≥ 1. Its formal “Newton map” has the following form:

F (z) := z − 1∑d−n
i=1

ai
z−zi +Q′(z)

(A.2)
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Figure 1.1: The Julia set of a cubic Formal Newton map with attracting fixed
points at z = −1, z = 0, and z = 1. Moreover, at the attracting fixed points
the multipliers are complex numbers.

which is well defined rational function of degree d ≥ 3. In the case when
|1 − 1

ai
| < 1 for 1 ≤ i ≤ d − n, as above by changing the multipliers at the

fixed points z = zi we can derive that the function A.2 has a fixed point at
∞, which is necessarily parabolic with the multiplier +1, and its Julia set is
connected. In this general case we summarize the result as following:

Theorem A.3 (Connectivity of the Julia set, general case). Let for a pair of
integers d ≥ 2 and 1 ≤ n ≤ d, complex numbers ai and zi for 1 ≤ i ≤ d − n,
and a polynomial Q of degree n be given. Assume |1− 1

ai
| < 1 for all 1 ≤ i ≤

d − n, and zi 6= zj for i 6= j. Then the Julia set of the formal Newton maps
F (z) := z− 1∑d−n

i=1
ai
z−zi

+Q′(z)
is connected. There exist a post-critically minimal

Newton map Npeq and a quasiconformal map φ such that φ ◦ F = Npeq ◦ φ on
J(f) provided the Julia critical points of F have finite orbits, i.e. when F is
geometrically finite.

Proof. A similar argument as in the proof of Theorem A.1 shows that the
point ∞ is a weakly repelling fixed point of F , which necessarily is parabolic
with the multiplier +1. Since∞ is the only fixed point with this property J(f)
is connected by Shishikura’s theorem [Shi09]. To construct a rational Newton
map we apply a surgery tool [CG93, Theorem 5.1]; for 1 ≤ i ≤ n, we convert
the attracting fixed points z = zi to superattracting. The resulting rational
function is a rational Newton map with a parabolic fixed point by Theorem 2.2.
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Both rational functions are quasiconformally conjugate to each other away
from the compact sets containing attracting fixed points, in particular the
conjugacy holds in the neighborhood of the Julia set. In order to obtain a
post-critically minimal Newton map we can use the theorem of McMullen
(Theorem 4.8) provided all critical points on J(F ) have finite orbits.

Figure 1.2: A degree 4 formal Newton map with superattracting fixed points
at z = 0 and z = 1, and repelling fixed points with real multipliers at z = .5,
z = −1, and z =∞. It has a two cycle with the basin in black. The basin of
z = 0 is in blue and the basin of z = 1 is in green.
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Open Problems

A Dictionary.

There are similarities between the parameter planes of cubic Newton maps
with parabolic fixed point at infinity with different number of petals and also
with Newton maps of polynomials, see Section 3.3. Every hyperbolic compo-
nent in N (3), the space of Newton maps of polynomials, contains a unique
“center”. The same is true for the spaces N (2, 1), N (1, 2), and N (0, 3). It is
interesting to obtain a complete “dictionary” between these spaces. It is also
not known if all stable components are simply connected in in the parameter
planes of N (2, 1), N (1, 2), and N (0, 3). But in N (3), the hyperbolic compo-
nents are simply connected [Tan97].

Local connectivity.

The understanding of local connectivity of Julia sets of Newton maps Npeq

is of great importance. In case of post-critically minimal Newton maps Npeq ,
when we are able to apply Häıssinsky surgery the local connectivity property
is preserved. It remains to investigate local connectivity in the case when
there is a Julia critical point with infinite orbit i.e for geometrically infinite
rational functions.

Regarding local connectivity it is expected that the results corresponding
to those for cubic Newton maps of polynomials hold for Newton maps Npeq of
any degrees.

Newton maps as matings of polynomials.

Häıssinsky used techniques from his parabolic surgery to show that a pair
of geometrically finite quadratic polynomials z2 + c1 and z2 + c2 are matable
if and only if c1 and c2 do not belong to the same limb of the Mandelbrot
set, generalizing Tan’s result for post-critically finite quadratic polynomials
[BF14]. It is still open whether or not the Newton maps Np for polynomials
p with degree bigger than 3 are matable. For case of the family N (3), it is a
result of Tan, see [Tan97]
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Formal Newton maps.
Not much is known for connectivity of the Julia sets of rational functions

with at least 2 weakly repelling fixed points. We would like to have a frame-
work which enables us to study this question within the space of formal Newton
maps. One way is approaching to some of these rational functions as a limiting
function of formal Newton maps by letting absolute values of multipliers go to
1 from below, in this case the Julia sets are connected by Theorems A.1-A.3.
It is plausible that the Julia set in this process depends continuously to the
multipliers and is connected.

Post-critically minimal functions in any spaces of rational functions.
There are four one-parameter families of cubic Newton mapsN (3),N (2, 1),

N (1, 2), and N (0, 3), see Section 3.3. It would be interesting to construct a
dynamics-preserving projection from one to another. The results of the thesis
give a partial answer to this question. We have a correspondence between the
“centers” of “hyperbolic” components of these families, see Main Theorem
(Theorem 5.5) and Corollary 4.9. In this regard we would like to mention
that Barańsky in his thesis [Bar01a, Bar01b] investigated the existence of
Mandelbrot-like sets and the bifurcations of those from a parameter plane
of cubic Newton maps of polynomials. Post-critically minimal functions are
models in the space of Newton maps. One can make use of the definition in
general family of rational functions. To obtain model functions an appropriate
“surgery” in the basins needs to be done.

“Tuning” of basins of Newton maps.
Post-critically finite Newton maps of polynomials are conformally conju-

gate to the map z 7→ zd, in the immediate basins of superattracting fixed
points, where d − 1 is the multiplicity of a critical fixed point. There is a
way, similar to matings of polynomials, to glue a new filled-in Julia set of a
post-critically finite polynomial in the immediate basins and then pull it back
to other components in the basins. Intuitively we are pinching the basins
through rational laminations. The possible obstructions are topological, that
is a Moore type, or Thurston type. To overcome Thurston type obstruction in
most cases we will be able to use the same tool, arcs intersecting obstructions
from [PT09] that is used in the classification of post-critically finite Newton
maps of polynomials in [LMS2]. The conjecture is that one can “tune” “star
like” filled in Julia sets, these are the unicritical polynomials in the hyperbolic
components attached to the main cardioid in the Mandelbrot set or in the
Multibrot sets. The resulting post-critically finite rational function still has
a connected Julia set and the set of these functions could be classified using
post-critically finite Newton maps, obtaining a huge space of post-critically
finite rational functions.
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