Universal transduction scheme for nanomechanical systems based on dielectric forces

Lade...
Vorschaubild
Dateien
Unterreithmeier_234764.pdf
Unterreithmeier_234764.pdfGröße: 2.37 MBDownloads: 771
Datum
2009
Autor:innen
Unterreithmeier, Quirin P.
Kotthaus, Jörg P.
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Nature. 2009, 458(7241), pp. 1001-1004. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/nature07932
Zusammenfassung

Any polarizable body placed in an inhomogeneous electric field experiences a dielectric force. This phenomenon is well known from the macroscopic world: a water jet is deflected when approached by a charged object. This fundamental mechanism is exploited in a variety of contexts—for example, trapping microscopic particles in an optical tweezer1, where the trapping force is controlled via the intensity of a laser beam, or dielectrophoresis2, where electric fields are used to manipulate particles in liquids. Here we extend the underlying concept to the rapidly evolving field of nanoelectromechanical systems3, 4 (NEMS). A broad range of possible applications are anticipated for these systems5, 6, 7, but drive and detection schemes for nanomechanical motion still need to be optimized8, 9. Our approach is based on the application of dielectric gradient forces for the controlled and local transduction of NEMS. Using a set of on-chip electrodes to create an electric field gradient, we polarize a dielectric resonator and subject it to an attractive force that can be modulated at high frequencies. This universal actuation scheme is efficient, broadband and scalable. It also separates the driving scheme from the driven mechanical element, allowing for arbitrary polarizable materials and thus potentially ultralow dissipation NEMS10. In addition, it enables simple voltage tuning of the mechanical resonance over a wide frequency range, because the dielectric force depends strongly on the resonator–electrode separation. We use the modulation of the resonance frequency to demonstrate parametric actuation11, 12. Moreover, we reverse the actuation principle to realize dielectric detection, thus allowing universal transduction of NEMS. We expect this combination to be useful both in the study of fundamental principles and in applications such as signal processing and sensing.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690UNTERREITHMEIER, Quirin P., Eva M. WEIG, Jörg P. KOTTHAUS, 2009. Universal transduction scheme for nanomechanical systems based on dielectric forces. In: Nature. 2009, 458(7241), pp. 1001-1004. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/nature07932
BibTex
@article{Unterreithmeier2009-04-23Unive-23476,
  year={2009},
  doi={10.1038/nature07932},
  title={Universal transduction scheme for nanomechanical systems based on dielectric forces},
  number={7241},
  volume={458},
  issn={0028-0836},
  journal={Nature},
  pages={1001--1004},
  author={Unterreithmeier, Quirin P. and Weig, Eva M. and Kotthaus, Jörg P.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/23476">
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23476/1/Unterreithmeier_234764.pdf"/>
    <dcterms:bibliographicCitation>Nature ; 458 (2009), 7241. - S. 1001-1004</dcterms:bibliographicCitation>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:abstract xml:lang="eng">Any polarizable body placed in an inhomogeneous electric field experiences a dielectric force. This phenomenon is well known from the macroscopic world: a water jet is deflected when approached by a charged object. This fundamental mechanism is exploited in a variety of contexts—for example, trapping microscopic particles in an optical tweezer1, where the trapping force is controlled via the intensity of a laser beam, or dielectrophoresis2, where electric fields are used to manipulate particles in liquids. Here we extend the underlying concept to the rapidly evolving field of nanoelectromechanical systems3, 4 (NEMS). A broad range of possible applications are anticipated for these systems5, 6, 7, but drive and detection schemes for nanomechanical motion still need to be optimized8, 9. Our approach is based on the application of dielectric gradient forces for the controlled and local transduction of NEMS. Using a set of on-chip electrodes to create an electric field gradient, we polarize a dielectric resonator and subject it to an attractive force that can be modulated at high frequencies. This universal actuation scheme is efficient, broadband and scalable. It also separates the driving scheme from the driven mechanical element, allowing for arbitrary polarizable materials and thus potentially ultralow dissipation NEMS10. In addition, it enables simple voltage tuning of the mechanical resonance over a wide frequency range, because the dielectric force depends strongly on the resonator–electrode separation. We use the modulation of the resonance frequency to demonstrate parametric actuation11, 12. Moreover, we reverse the actuation principle to realize dielectric detection, thus allowing universal transduction of NEMS. We expect this combination to be useful both in the study of fundamental principles and in applications such as signal processing and sensing.</dcterms:abstract>
    <dc:contributor>Weig, Eva M.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:title>Universal transduction scheme for nanomechanical systems based on dielectric forces</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T07:54:05Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:issued>2009-04-23</dcterms:issued>
    <dc:creator>Unterreithmeier, Quirin P.</dc:creator>
    <dc:contributor>Kotthaus, Jörg P.</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Kotthaus, Jörg P.</dc:creator>
    <dc:contributor>Unterreithmeier, Quirin P.</dc:contributor>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/23476"/>
    <dc:creator>Weig, Eva M.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-06-06T07:54:05Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/23476/1/Unterreithmeier_234764.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen