Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-38741
Volltext verfügbar? / Dokumentlieferung
Titel: Uncertainty Quantification and Calibration of Imitation Learning Policy in Autonomous Driving
VerfasserIn: Nozarian, Farzad
Müller, Christian
Slusallek, Philipp
HerausgeberIn: Heintz, Fredrik
Milano, Michela
O'Sullivan, Barry
Sprache: Englisch
Titel: Trustworthy AI - integrating learning, optimization and reasoning : first international workshop, TAILOR 2020, virtual event, September 4-5, 2020 : revised selected papers
Bandnummer: 12641
Seiten: 146-162
Verlag/Plattform: Springer Nature
Erscheinungsjahr: 2021
Freie Schlagwörter: Uncertainty quantification
Bayesian deep learning
Autonomous driving
Imitation learning
DDC-Sachgruppe: 004 Informatik
Dokumenttyp: Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag)
Abstract: Current state-of-the-art imitation learning policies in autonomous driving, despite having good driving performance, do not consider the uncertainty in their predicted action. Using such an unleashed action without considering the degree of confidence in a blackbox machine learning system can compromise safety and reliability in safety-critical applications such as autonomous driving. In this paper, we propose three different uncertainty-aware policies, to capture epistemic and aleatoric uncertainty over the continuous control commands. More specifically, we extend a state-of-the-art policy with three common uncertainty estimation methods: heteroscedastic aleatoric, MC-Dropout and Deep Ensembles. To provide accurate and calibrated uncertainty, we further combine our agents with isotonic regression, an existing calibration method in regression task. We benchmark and compare the driving performance of our uncertainty-aware agents in complex urban driving environments. Moreover, we evaluate the quality of predicted uncertainty before and after recalibration. The experimental results show that our Ensemble agent combined with isotonic regression not only provides accurate uncertainty for its predictions but also significantly outperforms the state-of-the-art baseline in driving performance.
DOI der Erstveröffentlichung: 10.1007/978-3-030-73959-1_14
URL der Erstveröffentlichung: https://doi.org/10.1007/978-3-030-73959-1_14
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-387417
hdl:20.500.11880/34903
http://dx.doi.org/10.22028/D291-38741
ISBN: 978-3-030-73958-4
978-3-030-73959-1
ISSN: 1611-3349
0302-9743
Datum des Eintrags: 18-Jan-2023
Fakultät: MI - Fakultät für Mathematik und Informatik
Fachrichtung: MI - Informatik
Professur: MI - Prof. Dr. Philipp Slusallek
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.