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Introduction

The study of partial differential equations is a central topic in modern math-
ematics. While Picard’s existence theorem and Peano’s existence theorem
give very satisfying answers to the problem of existence and uniqueness of
ordinary differential equations, such a complete theory does not exist for
partial differential equations. In fact, for typical partial differential equations
one has to deal with unbounded operators on infinite-dimensional spaces
which causes fundamental new mathematical difficulties which are usually
studied with sophisticated functional analytic methods.

In this thesis we consider fundamental problems related to methods that
are suited for the study of non-linear parabolic partial differential equations.
Very prominent examples of this type are among many others the famous
Navier-Stokes equations in fluid dynamics and in differential geometry the
mean curvature flow for a surface given as the graph of a function u: R" — R
which is described by the evolution equation

& aiué?ju
oiu —Au = — Z ———3d;dju in(0,T)xR"

(MCF) L1+l
M|t:0 = Uy in an.

The existence of a unique local strong solution of such a non-linear parabolic
equation can be established as follows. After linearizing the non-linear equa-
tion one obtains an equation of the form

{L’t(t)+A(u(t)):0

u(0) = ug,

i.e. the abstract first order Cauchy problem for an (unbounded) closed opera-
tor A on some function space X. For example, for (MCF) a natural choice is
the realization of A = —A on L,(IR") for some p € (1,00). Such abstract Cauchy
problems which are fundamental for the understanding of the behaviour
of linear parabolic problems are naturally studied in the theory of strongly
continuous one-parameter semigroups of linear operators on Banach spaces,
or more shortly Cy-semigroups. This theory is by now very well-understood.
Hence, it is very natural to take this theory as a starting point for the under-
standing of non-linear problems. Indeed, if one sees the right hand side of
(MCEF) in the abstract setting as a function u — G(u) the non-linear equation
becomes

1+ Au = G(u)
M(O) = Ugp.
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Suppose that the solution operator L: u +— (1 + Au,uy) is invertible on an
appropriate X-valued function space Z. Then one can take its inverse in order
to rewrite the equation into a fixed point problem which one may hope to
solve with one of the well-known fixed point theorems, e.g. the Banach fixed
point theorem or a variant of the Schauder fixed point theorem. One sees that
for this at least the linear problem should be well-posed which is equivalent
for —A to be the generator of strongly continuous semigroup.

It is then most convenient to see the first component of the solution
operator u as the sum of two closed operators B + A. Here B is the derivation
operator on X-valued functions and A is the pointwise application of A. For
L to be invertible one then needs that for each f € Z there exists a unique
u € D(A)N D(B) with

Bu+Au=1+Au=f.

In applications, this property together with some regularity of the given
non-linearity G then guarantees the self-mapping property of the respective
maps needed for the fixed point theorems. We are now interested in the
case where Z = L,([0; T]; X) is some vector-valued L,-space which is a natural
choice in view of Sobolev methods. In this case the above requirement then
translates to the fact that for a given f € L,([0,T];X) and for the unique
solution u of 1 + Au = f together with the initial condition both # and Au
lie in L, ([0, T]; X). In other words, this means that both summands have the
same regularity as the right hand side f. Since this is the best regularity one
can hope for, one therefore speaks of maximal regularity or more precisely
of maximal L,-regularity. One can show that for this property to hold for
the most general initial values u, possible, namely the traces of functions in
Wpl([O, T];X)NLy([0,T]; D(A)) it suffices to verify it for the initial condition
uy = 0. We are therefore interested in the following property which we now
formulate precisely.

Let X be a Banach space and —A the generator of a Cy-semigroup on X.
We say that A has maximal L,-regularity for p € (1,00) and T > 0 if for all
f € L,([0,T]; X) the unique (mild) solution u of the abstract inhomogeneous
Cauchy problem

u+Au=f
u(0)=0

satisfies u € Wpl([O, T];X)NLy([0,T];D(A)), where D(A) is the domain of the
closed operator A endowed with its graph norm. In fact, as a working example,
one can show maximal regularity for the realization of —A on L,(IR") for all
n € N and all p € (1,0). Together with some routine applications of the
Sobolev embedding theorems and a routine application of the Banach fixed
point theorem this yields the existence of a unique local strong solution of



(MCF) and many other important non-linear parabolic partial differential
equations.

In this thesis we answer some fundamental structural questions concern-
ing maximal regularity and other closely related regularity properties, thereby
making use of the geometric theory of Banach spaces and operator space the-
ory. We now motivate the considered problems in more detail.

The Maximal Regularity Problem Now that we have seen the importance
of maximal regularity for non-linear equations, the most natural question
to ask is which (negative) semigroup generators have maximal regularity.
In fact, maximal regularity can be verified for a broad class of realizations
of various differential operators. Moreover, it is a classical result that a
necessary condition for A to have maximal regularity is that —A generates an
analytic semigroup, i.e. the semigroup mapping t — T(t) can be extended to
an analytic mapping on some sector around the positive real line. Moreover,
by an old result of L. de Simon the converse holds on Hilbert spaces. More
shortly, one says that Hilbert spaces have the maximal regularity property.
However, it has been a long open problem whether L,-spaces for p € (1,00)
— or more generally UMD-spaces — have the maximal regularity property
as well. In particular, for L,-spaces this question is of central importance
for applications as the Sobolev methods in conjunction with the fixed point
theorems may only work for sufficiently large p > 2, so the Hilbert space
case is not sufficient for many important applications. Here one technical
restriction is the validity of various Sobolev embeddings, for example in the
example (MCF) one has to work with p > n+ 2.

The maximal regularity problem goes back to H. Brézis and remained
open for a long time until it was solved in the seminal work of N.J. Kalton
and G. Lancien [KL0O]. They showed that the maximal regularity property
characterizes Hilbert spaces in the class of all Banach spaces that admit
an unconditional Schauder basis and in the class of all separable Banach
lattices. In particular, it follows that an L,-space for p € (1,00) \ {2} does not
have the maximal regularity property. Their approach makes heavy use of
abstract methods from the geometric theory of Banach spaces and curiously
enough, up to now, no explicit example of a negative generator of a bounded
analytic semigroup on L, for p € (1,00) is known. In fact, the authors of the
monograph [DHP03] on maximal regularity write in their introduction:

So far no specific example of an operator —A in X = L,(G) is
known which generates a bounded analytic Cy-semigroup but

Ae My(X).
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The first central goal of this thesis is to develop a general method to
construct such explicit counterexamples to the maximal regularity problem.
In fact, we will show how one can do this in an arbitrary Banach space
not isomorphic to a Hilbert space that admits an unconditional Schauder
basis, thereby giving a new more explicit proof of the Kalton-Lancien result
(Theorem 2.1.42). In particular, we construct explicit examples on L,-spaces.

Furthermore, our methods allow us to construct negative generators
of positive analytic Cy-semigroups on UMD-Banach lattices, e.g. £,,({;) for
p #q € (1,00), without maximal regularity. Such counterexamples with addi-
tional regularity properties have been out of reach with the old methods. In
particular, as there exist positive results for contractive positive semigroups on
L,-spaces (Theorem 4.2.21), this is a first step to close the large gap between
positive and negative results.

Furthermore, we apply our new techniques and results to the theory
of Schauder bases and to the closedness of the sum problem for sectorial
operators.

The Maximal Regularity Extrapolation Problem Although the negative
solution of the maximal regularity problem shows that not every negative
generator of an analytic Cy-semigroup on L, for p € (1,00) \ {2} has maximal
regularity, the following important question for applications has remained
open.

Suppose one has given a consistent family of Cy-semigroups
(Ty(t))i=0 on L, for p € (1,00); that is, one has T, (t)f = Ty, (t)f for
all py,py €(1,00),all f €L, NL,, and all £ > 0. Further suppose
that (T,(t));>o is analytic and therefore has maximal regularity.
Does it follow that (T,(t))»o have maximal regularity for all p €
(1,00)?

A positive answer to this question would be of fundamental importance
for concrete applications as maximal regularity on L,-spaces can be difficult
to verify in practice, whereas analyticity on Hilbert spaces can be established
rather easily, for example by form methods. In the positive direction it is
known that under the above assumptions the semigroups (T,(t));»o are an-
alytic for all p € (1,00). This is classically shown using Stein’s interpolation
theorem, whereas we will give a new proof that generalizes this extrapola-
tion result to a very broad class of interpolation spaces (Theorem 3.1.10). In
fact, the same methods allow us to prove an extrapolation result for maximal
regularity for rather general interpolation functors (Theorem 3.2.5), however
only under some additional assumption that is for example satisfied when the
semigroups satisfy Gaussian or Poisson estimates.



We then show that the general maximal regularity extrapolation problem
has a negative answer. In fact, the extrapolation problem behaves in the worst
possible way (Theorem 3.2.22): for every interval I C (1,00) with 2 € I there
exists a family of consistent (analytic) Cy-semigroups (Tp(z))zez% such that

(Tp

we obtain an example where maximal regularity is satisfied on L, if and only
if p=2.

(2))zex . has maximal regularity if and only if p € I. If we take I = {2}, then
2

Generic H*-Calculus An important problem is to give a structural descrip-
tion of those semigroups that have maximal regularity on L,-spaces or even
more general Banach spaces as it was done in the Hilbert space case. For
example, N.J. Kalton writes in his overview article [Kal01]:

There are many problems left to resolve. Let us mention just
two intriguing questions. [...] The second question is more vague.
The maximal regularity conjecture was made because all natu-
ral examples on say the spaces L, have maximal regularity. The
problem is to explain why this phenomenon occurs. This would
require isolating the properties of a sectorial operator induced by
some differential operator which force it to be R-sectorial.

At the moment such a characterization seems to be out of reach even
for L,-spaces. However, there is a powerful positive result on L,-spaces for
p € (1,00) which goes back to L. Weis: the negative generator of a bounded
analytic semigroup that is positive and contractive on the real line has max-
imal regularity. In this thesis we will show the strongest possible variant
of this result which is possible to prove using the known techniques (The-
orem 4.2.21). This class cannot characterize maximal regularity as one can
actually show that they satisfy a strictly stronger property, namely that of a
bounded holomorphic functional calculus for the negative semigroup genera-
tor. However, we show in our third main result (Corollary 5.5.16) that this
class completely characterizes the boundedness of holomorphic functional
calculus on L,-spaces for p € (1, 00) modulo the operations of passing through
invariant subspace-quotients and applying similarity transforms. So far, there
has not been any characterization whatsoever of the boundedness of the holo-
morphic functional calculus on L,-spaces. Moreover, our approach seems
to be the first application of Pisier’s factorization theory for p-completely
bounded maps outside the natural habitat of operator space theory and its
close connections with abstract harmonic analysis.

Organization of the Thesis The thesis is organized as follows.
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Chapter 1 In the first chapter we introduce the necessary mathemat-
ical background. It is most convenient to describe maximal regularity as
a regularity property of sectorial operators. We start by recalling the defi-
nition of sectorial operators and then introduce R-sectorial operators and
describe their equivalence with maximal regularity. Furthermore, we intro-
duce other regularity properties of sectorial operators: bounded imaginary
powers, bounded H®-calculus and the dilation property. Next, we present
the various implications between these regularity properties.

Chapter 2 The main goal of this chapter is to give the first explicit coun-
terexamples to the maximal regularity problem on UMD-spaces and to give a
new proof of the Kalton-Lancien result (Theorem 2.1.42). In order to motivate
our approach, before, we give various other counterexamples between the dif-
ferent regularity properties that are easier to establish. We then construct step
by step more general counterexamples to the maximal regularity problem.
Each step needs more sophisticated tools from the geometric theory of Banach
spaces — of which some are not covered in the literature — and we will develop
all results needed along the way. At the end of the chapter we construct
positive bounded analytic semigroups on UMD-Banach lattices, for example
on £, (¢,) for p = q € (1, 00), without maximal regularity (Theorem 2.1.46). Fur-
thermore, we present in Section 2.1.6 explicit counterexamples to all possible
variants of the closedness of the sum problem for sectorial operators, among
them one which could now be constructed for the first time explicitly thanks
to our new methods. Furthermore, we obtain the new result that on L,([0,1])
there exist Schauder bases that are not R-bases (Theorem 2.1.59).

Chapter 3 In this chapter we give a detailed study of the extrapolation
problem for maximal regularity. We first show an extrapolation result for the
analyticity of Cy-semigroups (Theorem 3.1.10) for rather general interpola-
tion spaces which is not restricted to the complex interpolation method as
the approach using Stein’s interpolation theorem. The proof uses a charac-
terization of analytic semigroups which goes back to T. Kato and A. Beurling
(Theorem 3.1.6) and for which we give a very elementary proof. Along the
way we also obtain a zero-two law for strongly continuous cosine families
on UMD-spaces (Theorem 3.1.15), answering positively a conjecture of my
supervisor W. Arendt. The used techniques then naturally generalize to the
setting of maximal regularity and we obtain an extrapolation theorem for
rather general interpolation functors (Theorem 3.2.5).

After that we extend the techniques of Chapter 2 to give counterexamples
to the extrapolation problem for maximal regularity in the form described in
the first part of the introduction (Theorem 3.2.22).



Chapter 4 In this chapter we give a detailed proof of Weis’ result for
the boundedness of the H*-calculus for the negative generators of bounded
analytic Cy-semigroups on L,-spaces that are positive and contractive on the
real line (Theorem 4.2.21). The main tool in the proof is Fendler’s dilation
theorem (Theorem 4.2.11) for semigroups on L,-spaces. We extend this
theorem to r-contractive Cy-semigroups on closed subspaces of L,-spaces and
show that the r-contractive semigroups are exactly those semigroups that
have such a dilation (Theorem 4.2.13). This allows us to prove Weis’ result for
r-contractive Cyp-semigroups on L,-spaces, a result which is known to experts
(see for example [LMX12, Proposition 2.2]). Furthermore, with the extension
of Fendler’s dilation theorem we obtain a new pointwise ergodic theorem for
r-contractive semigroups on closed subspaces of L,-spaces (Theorem 4.2.20).

Chapter 5 The last chapter is devoted to the proof of the result that the
positive contractive analytic Cy-semigroups are generic for the boundedness
of the H*-calculus which holds for all UMD-Banach lattices (Theorem 5.5.11).
In particular, this gives a complete characterization of those sectorial operators
on L, for p € (1,00) that have a bounded H*-calculus of angle smaller than 7
(Corollary 5.5.16). The proof uses the not broadly known theory of p-matrix
normed spaces and p-completely bounded maps which we present along the
way in the depth needed for our results. Furthermore, as an application we
obtain a renorming result for semigroups on UMD-spaces with a bounded
H®%-calculus (Theorem 5.5.14).

Further Comments At the end of the chapters the reader can find a
supplementary section which contains further historical information on the
topics covered in the main body of the thesis, further related results with ref-
erences to the literature and the discussion of some open questions. Moreover,
we assume that the reader has some basic knowledge in functional analysis
and the theory of partial differential equations, in particular in the theory of
Co-semigroups. Further used concepts and results which are beyond these
prerequisites are summarized in the appendices.

This thesis contains material from the published articles [Fac13a], [Fac13Db]
and [Fac14] and the accepted manuscripts [Faca] and [Facb]. Moreover, the
author had the pleasure to work on the article [FN14] in collaboration with
T. Nau and on a not yet finished manuscript in collaboration with C. Arhancet
and C. Le Merdy. Both works are not part of this thesis.
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Regularity Properties of
Sectorial Operators






Sectorial Operators and Their
Regularity Properties

In this chapter we introduce sectorial operators as the main objects of our
studies. The main interest for us lies in their strong connection with strongly
continuous (analytic) semigroups and maximal regularity. We also introduce
and present the main known results concerning the regularity properties of
being R-sectorial, having a bounded H-calculus, having bounded imagi-
nary powers (BIP) and having a dilation whose structural properties we will
investigate in much more detail in the following chapters.

Most of the topics covered in this chapter can be found in more detail in
the references [KWO04], [DHP03] and [Haa06].

1.1 Sectorial Operators

We make the convention that all Banach spaces considered here and in the rest
of the thesis are assumed to be complex unless stated otherwise. For w € (0, 7t)
we denote with

Y, ={ze C\{0}:|arg(z)| < w}
an open sector in the complex plane with opening angle w, where our conven-

tion is that argz € (-, 7).

Definition 1.1.1 (Sectorial Operator). A closed densely defined operator A
on a Banach space X is called sectorial if there exists an w € (0, 7t) such that

o(A)cY, and sup |[AR(A,A)|<co Ve>0. (Se)
’\e):w-v-z'

One defines the sectorial angle of A as w(A) := inf{w : (S,) holds}.

Remark 1.1.2. The definition of sectorial operators is not universal in the
literature. Some authors require a sectorial operator to be injective and to
have dense range as well. We will omit these condition from our definition
and add explicitly one or both to our assumptions when necessary. Notice that
for a sectorial operator A on a Banach space one always has N(A) N R(A) = 0.
In particular, if A has dense range, A is injective as well.

Let A be a densely defined operator on some Banach space X. Then it is
well-known that —A generates an analytic Cy-semigroup if and only if A is
sectorial with w(A) < 5. Moreover, if —A is the generator of a Cy-semigroup,
then A is sectorial with w(A) < Z. However, there exist sectorial operators
with sectorial angle equal to 7 that do not generate C-semigroups.

3



1. SecTroriAL OPERATORS — REGULARITY PROPERTIES

1.2 7R-Sectorial Operators and Maximal Regularity

In the study of maximal L,-regularity a stronger condition for sectorial opera-
tors plays a central role. This condition is nowadays called R-sectoriality. We
now give the necessary definitions and shortly explain the connection with
maximal L,-regularity. We start with R-boundedness. This notion can already
be implicitly found in the work [Bou83] and is for the first time explicitly
defined in [BG94, Definition 2.4].

Let r(t) := signsin(ant) be the k-th Rademacher function. Then on the
probability space ([0,1],B([0,1]), 1), where B([0, 1]) is the Borel o-algebra on
[0,1] and A denotes the Lebesgue measure, the Rademacher functions form
an independent identically distributed family of random variables satisfying
IP(Tk ==+1)= %

Definition 1.2.1 (R-Boundedness). A family of operators 7 C B(X) on a
Banach space X is called R-bounded if there exists p € [1,00) and a finite
constant C, > 0 such that for each finite subset {T},..., T,;} of 7 and arbitrary
X1,...,X%, € X one has

n

Zrkaxk

Py L,([0,1]:X)

n

)

<C .
P L,([0,1]:X)

, (1.1)

The best constant C,, such that (1.1) holds is denoted by R, (7).

The property of being R-bounded (but not the constant C,) is independent
of p by the Kahane—Khintchine inequality (Theorem A.3.2). The R-bound
behaves in many ways similar to a classical norm. For example, if S is a second
family of operators, one sees that (if the operations make sense)

Rp(T +S)<RYT)+R(S),  Ry(TS) <R,H(T)R,(S).

Note that by the orthogonality of the Rademacher functions a family 7 c B(H)
for some Hilbert space H is R-bounded if and only if 7 is bounded in operator
norm. In fact, an R-bounded subset 7 C B(X) for a Banach space X is always
clearly norm-bounded and one can show that the converse holds if and only
if X is isomorphic to a Hilbert space [AB02, Proposition 1.13].

Kahane’s contraction principle is a basic tool for R-boundedness [KW04,
Proposition 2.5].

Proposition 1.2.2 (Kahane’s Contraction Principle). Let X be a Banach space
and xq,...,x, € X for n € IN. Then for arbitrary complex numbers ay,...,a, one

has
n

Zrkakxk <2 sup |xgl
k:1 k=1,..., n

n

)

k=1




1.2. R-Sectorial Operators and Maximal Regularity

We now list some basic criteria for R-boundedness. For their proofs
see [KW04, Example 2.16] and [KKWO06, Proposition 3.5].

Proposition 1.2.3. Let X,Y be two Banach spaces. Then the following hold.

(a) Let N: X9 — B(X,Y) be analytic and {N(A) : A € dXg, A = 0} be R-
bounded for some 6 € (0,0’). Then for every 6; € (0,0) the sets

{(N(A): AeXg) and {/\N’(/\):)\e)igl}
are R-bounded.

(b) Let T C B(X,Y) be R-bounded. If X has non-trivial type, then T* = {T":
TeT}cB(Y",X")is R-bounded.

Now, if one replaces norm-boundedness by R-boundedness, one obtains
the definition of an R-sectorial operator.

Definition 1.2.4 (R-Sectorial Operator). A sectorial operator A on a Banach
space X is called R-sectorial if for some w > w(A) one has

R{AR(A,A): A eX,) < co. (Ry)

One defines the R-sectorial angle as wg(A) := inf{w : (R,) holds}. If A is not
R-sectorial, we set wg(A) = oco.

By definition, one has w(A) < wr(A). However, there are examples of
sectorial operators A on closed subspaces of L, for p € (1,2) for which the
strict inequality w(A) < wr(A) < oo holds (such an example was found by
N.J. Kalton and is apparently contained in the unpublished manuscript [KWa]).
In Hilbert spaces an operator is sectorial if and only if it is R-sectorial and the
equality w(A) = wg(A) does always hold. In general Banach spaces R-sectorial
operators clearly are sectorial, the converse question whether every sectorial
operator is R-sectorial will be addressed in the following.

One can show with the usual techniques that a sectorial operator A on
some Banach space is R-sectorial with wg(A) < 7 if and only if —A generates
an analytic Cy-semigroup which is R-bounded on some sector X5 (6 > 0). We
therefore use the following terminology in analogy to analytic semigroups.

Definition 1.2.5 (R-Analytic Semigroup). An analytic semigroup (T(2)).cy;
on a Banach space X is called R-analytic of angle 6 for some 6 € (0,9) if

RA{T(z):z€ Xs,|2z| £ 1} < o0.

More precisely, one has the following equivalence between R-analytic
semigroups and R-sectorial operators. For proofs we refer to [KW04, Theo-
rem 1.11 and Remarks 1.12] and [KW04, Remark 2.22a)].
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Proposition 1.2.6. Let A be a linear operator on some Banach space X. Then the
following assertions are equivalent.

(i) For some w > 0 the operator A+ w is R-sectorial with wg(A) < 7.
(ii) There exists an ag > 0 such that R{aR(ia): |a| > ag} < oo.
(iii) —A is the generator of an R-analytic semigroup.

In this case the supremum of those 6 for which (T (z)),cx, is R-analytic is given by
s
7= a)R(A)

In order to give a first impression, we now give a first very elementary
example of a contractive Cy-semigroup which is not R-bounded on the real
line. Notice, however, that the example is not analytic.

Example 1.2.7. Let (U(t));cr be the shift U(t)f = f(-+t) on L,(R) for p € [1, 00).
Then (U(t))ser is a Co-group of positive isometries. Observe that on the one
hand for the functions f = 1 k41 for k € N one has for all n € IN

n 1
Zrk Ljo,1)|| = J
k=1 0

by the Khintchine inequality (Theorem A.3.1). On the other hand, one has for
allmeN

n

) nutkig -

k=1

n

Zrk(t)‘dt ~pl/?

k=1

n
Y | =il g = .
1

k=

This shows that {U(t) : t € IR} is not R-bounded for p > 2. Analogous cal-
culations for f, = 1j,1) show that {U(¢t) : t € R} is not R-bounded for p <2
either.

Maximal L,-Regularity The main interest for R-sectorial operators comes
from their close connection with the concept of maximal regularity.

Definition 1.2.8 (Maximal Regularity). The generator —A of a Cy-semigroup
(T(t));>o on a Banach space X has (p, T)-maximal regularity (for T > 0 and
p € (1,00)) if for all f € L,([0, T]; X) the mild solution u(t) = fot T(t—s)f(s)ds
of the inhomogeneous abstract Cauchy problem

{mw+Awu»=fm

satisfies u € Wp1 ([0, T|;X)NL,([0,T];D(A)). As a shorthand we will sometimes
also say that the semigroup (T(t));>o has maximal regularity.
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One can show that this property is independent of p € (1,c0) and T €
(0,00) (see [Dor93, Theorem 4.2]). Therefore one simply speaks of maximal
regularity. As explained in the introduction maximal regularity has become an
important tool in the study of non-linear partial differential equations in the
past decade. The study of maximal regularity can at least be traced back to
the fundamental work of G. Da Prato and P. Grisvard [DPG75]. Both from the
point of view of applications and the abstract theory the following equivalent
characterization by L. Weis [Wei0O1b, Theorem 4.2] which was independently
also found by N.J. Kalton [WeiO1b, p. 737] (and is based on the preliminary
works [CAPSWO00] and [CPO01]) is extremely useful. Its proof relies on an
operator-valued variant of the Mikhlin multiplier theorem. For the definition
and main results on UMD-spaces we refer to Appendix A.3.4.

Theorem 1.2.9. Let X be a Banach space and —A the generator of an analytic
Co-semigroup (T(z)),ey on X. Then the following hold:

(a) If —A has maximal regularity, then A is R-sectorial with wg(A) < 3.

(b) Conversely, on a UMD-space X, —A has maximal regularity if A is an R-
sectorial operator with wg(A) < .

Later we will need the following weaker condition.

Remark 1.2.10. It is shown in the original proof of Weis that condition (b)
of Theorem 1.2.9 can be replaced by the following weaker condition: There
exists a C > 0 such that for all a € R with |4| € [1, 2] one has

R{ia2"R(ia2",A):neZ} < C.

More generally, suppose that for a sectorial operator A there existsa C >0
and a 0 € (0, 7) such that for all a € R with |a| € [1, 2] one has

R{ae'92"R(ae'®2",A):nezZ} < C.

Then A is already R-sectorial with wg(A) < 6. This follows from the proofs
of [Wei0O1b, Theorem 4.2] and [Wei0O1b, Corollary 3.7].

Note that in particular R-analyticity is always necessary for maximal
regularity and that on a Hilbert space a sectorial operator A has maximal
regularity if and only if w(A) < 7. The last point gives a very satisfying
L,-theory. From the point of view of concrete applications the L,-theory is
not always sufficient as non-linearties may only be treated for sufficiently
large p > 2, e.g. for the equation governing the mean curvature flow (MCF)
from the introduction one needs p > n + 2. It is therefore very desirable to
develop a general L,-theory. A question attributed to H. Brézis and presented
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in [CL86] asks whether the Hilbert space result generalizes to the L,-case.
This is the so-called maximal regularity problem. We formalize this problem by
introducing the following terminology.

Definition 1.2.11. A Banach space X has the maximal regularity property or
shortly (MRP) if every negative generator of an analytic Cy-semigroup on X
has maximal regularity.

Using this terminology, we have just seen the following positive result.
Theorem 1.2.12. Every Hilbert space has the maximal regularity property (MRP).
Now, the general maximal regularity problem reads as follows.

Problem 1.2.13. Which Banach spaces do have the maximal regularity prop-
erty (MRP)? In particular, do the reflexive L,-spaces have (MRP)?

So the maximal regularity problem asks on UMD-spaces whether there
exists a sectorial operator A with w(A) < T which is not R-sectorial or which
is R-sectorial with wg(A) > 7. In [KLOO], N.J. Kalton and G. Lancien give a
very satisfying answer to the maximal regularity problem. Namely, in the
class of all Banach spaces admitting an unconditional Schauder basis only
Hilbert spaces have the maximal regularity property (MRP). In particular, a
reflexive L,-space has (MRP) if and only if p = 2. Therefore for p € (1,00) \ {2}
there exists a sectorial operator on L, which does not have maximal regularity.
However, Kalton and Lancien’s approach only shows the pure existence of
such an operator without giving an explicit example. Later, we will present a
new approach to Kalton and Lancien’s result which is explicit enough to give
concrete counterexamples.

Notice, however, that the maximal regularity property (MRP) does not
characterize Hilbert spaces as one has the following result.

Theorem 1.2.14. The spaces €., and L,[0,1] have the maximal regularity prop-
erty (MRP).

Proof. By a celebrated result of H.P. Lotz [Lot85, Theorem 3] the generator of
every Cy-semigroup on these spaces is bounded. In particular, every strongly
continuous analytic semigroup on these spaces has maximal regularity.  [J

1.3 Bounded H*-Calculus for Sectorial Operators

One can use the integral representation of analytic functions to associate,
given a sectorial operator, bounded operators to certain bounded analytic
functions. This gives a basic functional calculus which for some sectorial
operators can be extended to the space of all bounded analytic functions on
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some sector. The boundedness of this functional calculus has become an
important tool in the study of sectorial operators and its study was initiated
by the pioneering works [McI86] and [CDMY96]. We now give the definitions
and present its main properties.

Definition 1.3.1. For 6 € (0, r) we define

RIN
(1 +A])%
H®(Xg) :={f: X9 — C analytic and bounded},

Hy (Xg) = {f Yy — Canalytic: |f(1)|<C on Xg for C,e > 0},

Moreover, we set H*(Xg.) := Ugre(9,r)H*(X¢). Then endowed with the norm
Ifllgo(s,y) = SUPLex, If (2)] the algebras Hy"(Xg) and H*(Xg) are normed re-
spectively Banach algebras.

Now, let A be a sectorial operator on some Banach space X and let 6 > w(A).
Then for f € H;°(Xg) one defines

1 ,
fla)=5— aza,f(/\)R(/\,A) dl (w(A)<6’'<0).

This is well-defined by the growth estimate on f and by the invariance of the
contour integral and induces an algebra homomorphism H*(Xg) — B(X).

Let us now additionally assume for the rest of the paragraph that A is
injective and has dense range. For n > 2 let p,,(1) := ﬁ—ﬁ € H°(Xp). Then
one has p,,(A) = n(n+A)~! —%(%+A)‘1 for n € N, which is a uniformly bounded
family because of the sectoriality of A. Moreover, one has (fp,)(A) — f(A) for
all A € ¥y and p,(A)x — x for all x € X. Then one can extend the functional
calculus by letting

f(A)x = lim (fp,)(A)x,

n—oo

provided the above limit exists for all x € X. A particular interesting case is
given when the above procedure works for all f € H*(Xg). One can show that
this is exactly the case when the homomorphism H°(Xg) — B(X) is bounded.
This leads to the next definition which can be made independently of any
additional assumptions on A.

Definition 1.3.2 (Bounded H>-Calculus). A sectorial operator A is said to
have a bounded H*(Xg)-calculus for some 0 € (w(A), r) if the homomorphism
f = f(A) from Hi°(Xg) to B(X) is bounded. The infimum of the 6 for which
these homomorphisms are bounded is denoted by wy~(A). We say that A has
a bounded H*®-calculus if A has a bounded H*(Xg)-calculus for some 0 € (0, 7).
If A does not have a bounded H*-calculus, we let wg~(A) := oo.
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Let A be a sectorial operator with a bounded H*(Xy)-calculus which has
dense range. We have just explained that then the holomorphic functional
calculus defined above can be extended to a Banach algebra homomorphism
u: H*(Xg) — B(X). Although H°(Xg) is not dense in H*(Xg), one can show
that the above extension u: H*®(Xgy) — B(X) is unique under the following
mild assumptions.

(a) u: H*®(Xg) — B(X) is linear and multiplicative.
(b) One has u((A—-)"1)=R(),A) forall A ¢ Ty.

(c) For functions f,, f € H®(Xy) that satisfy f,,(A) — f(A) for all A € £y and
supen | full e (x,) < 00 one has f,(A)x — f(A)x for all x € X.

If w(A) < %, onecan plug f,: A~ e *?-1/(1+A) into the functional calculus
for z € ¥;/5_,(a)- For such z one has f,(A) = T(z) - (1 + A)!, which means
that the functional calculus reproduces the bounded analytic Cy-semigroup
generated by —A. Although the extension of the functional calculus is only
defined if A has dense range, one can reduce to this case if X is reflexive.
Indeed, in this case one can always decompose a sectorial operator as

A=
(5 o)

with respect to the decomposition X = R(A) ® N(A) such that Ay is an
injective sectorial operator with dense range on R(A). In this case x —
lim, —%R(—%,A)x is the projection onto the null space N(A).

Note that it follows directly from the definition of the functional calcu-
lus that one always has w(A) < wy~(A) for a sectorial operator A. Moreover,
Kalton’s example for the inequality w(A) < wg(A) on subspaces of L, in its orig-
inal formulation even shows that there exist sectorial operators A for which
the strict inequalities w(A) < wy~(A) < 0o hold. For a published example of
this strict inequality see also [Kal03].

There is a close connection to R-boundedness and R-sectorial operators
as well. For the geometric properties of Banach spaces used in the following

theorems we refer to Appendix A.3. A proof of the following theorem can be
found in [KW04, Theorem 12.8].

Theorem 1.3.3. Let X be a Banach space with Pisier’s property (a) and A a
sectorial operator on X with a bounded H*(Xg)-calculus for some 0 € (0,1). Then
forall 0’ € (0, 1) and all C > 0 the set

{F(A) 1 o (z) < C)
is R-bounded.
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Note that this also implies under the above assumptions that a sectorial
operator with a bounded H*-calculus is R-sectorial. More generally, the
following holds [KWO01, Theorem 5.3].

Theorem 1.3.4. Let X be a Banach space with property (A). Let A be a sectorial
operator on X with a bounded H*®-calculus. Then A is R-sectorial and one has
Wr(A) = wy=(A).

In particular it follows that a sectorial operator on a Hilbert space with a
bounded H*-calculus satisfies w(A) = wy~(A).

We now give an elementary example of sectorial operators with a bounded
H*®-calculus and an important criterion for the boundedness of the functional
calculus.

Example 1.3.5. Let A be a bounded invertible sectorial operator. Then A
has a bounded H*-calculus with wy«(A) = w(A). Indeed, let 6 > w(A) and
f € Hy?(Xg). Since the spectrum of A is bounded and A is invertible, there
exist 6 > 0 and R > 0 such that o(A) € Q := Xy N B(0,R) N B(0,6)°. Then, by
Cauchy’s integral theorem we have

f(A) LJ FOORM A dA = —— [ FIR(M, 4) da.
Xy

" 2mi 27 Y0
Now, the norm of the resolvent ||R(A, A)|| is bounded by a constant M > 0 on
the compact set Q). Therefore one has

I (Al < M€(9Q)flg% |f (DI < MO If NIz s,) -

For angles bigger than 7 one can rewrite the functional calculus with

the help of the Laplace transform (denoted by £) in terms of the semigroup.
This alternative representation is useful for the transference techniques to be
applied later in this section. We follow the presentation in [LM99Db].

Lemma 1.3.6. Let —A be the generator of a bounded Cy-semigroup (T(t));>o on
some Banach space X. Let 0 € (5, 1) and f € Hi°(Xg). Then there exists a unique
b e L{(R,) such that

f=Lb and f(A)x:joob(t)T(t)x dt VxeX.
0

Proof. Let 0" € (%,0). We define b(t) = _Iazg, f(A)er dA, which converges for

all t > 0. Moreover, one has by Tonelli’s theorem and the fact that |W/\,\| is
bounded by some constant M > 0 on d¥y that

Jm|b(t)|dtsfwf |f()\)e”||dA|dt:f |f(A)|JooeReMdt|dA|
0 0 Joxy MY 0

11
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f

f(/\)H /\'
|l —=—|ldA <M
Re/ll Al=

ngf

From this it follow&lirectly that b is measurable and that b € L1 (IR, ). More-
over, for any z € ¥z we have by Cauchy’s integral formula and Fubini’s

926/

theorem

f(z)= L S 4a 2 L fA) | e darda
27‘(1 826’ /\ —Z 27_(1 a):e, 0

- —Jme-ﬂi F(N)eM drdt = fmb(t)e-zf dt = (Lb)(z2).
0

27 829, 0

This shows that f is the Laplace transform of b. In a similar fashion one
obtains for all x € X by the resolvent formula

f(A)x_—zm, a%f(/\)R(/\,A)xd/\_——zm g%f(A)jO eMT(t)x dtd)
o [e) 1 At B e
= L T(t)x—zniJ;zg,e f(A)dAdt_L b(t)T(t)x dt. O

With the above description of the functional calculus we obtain the fol-
lowing useful criterion.

Proposition 1.3.7. Let —A be the generator of a Cy-semigroup (T (t));>o on some
Banach space X. Then for 6 € (5, ) the following are equivalent:

(i) A has a bounded H®(Xg)-calculus.

(ii) There is a constant C > 0 such that for any b € Li(IR,) whose Laplace
transform is in Hy° (L) one has

L b(t)T(t)dt‘ < CINLbll (s, -

B(X)

Proof. This follows directly from Lemma 1.3.6. O

As a first application of the criterion we obtain the boundedness of the
H-calculus for the negative generators of (vector)-valued shift semigroups.

Example 1.3.8. Let X be a UMD-space and p € (1, 00). We consider the shift
group (V(t))rer on L,(IR; X) defined by (V(t)f)(s) = f(s—t). Now, for 0 € (5, )
choose b € L (IR;) such that its Laplace transform Lb lies in H;°(Xg). Then
one has for f € L,(IR; X)

me(t)V(t)f dt = fw b(H)f(-—t)dt=b=f,
0 0
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the convolution of b with f. It follows that the left hand side is a Fourier
multiplier operator for the multiplier

1
V21

We now verify that m is indeed a bounded multiplier, i.e. the Fourier multiplier
operator can be extended to a bounded operator on L,(IR; X). Observe that
one clearly has sup, g |m(t)| < (2n)‘1/2||£b||Hm(26). Further, it follows from
Cauchy’s integral formula that for 6’ € (5,6) one has for t # 0

m(t) = (Fb)(t) = \/% fo b(x)e ¥ dx = ——(Lb)(it).

T (LB))
tm'(t)| = —[it(Lb) (it)| £ ———= - d|A
o8] = D 0] < s ng, (- |
t o
< ||z:b||Hoo<ze)Lze/ -t 2d ]

Let t, = 2tsin"!(0’). Note that the last integral can be roughly estimated as

to )
J =it 2d)A| < zf (sin(6’ — Z)t) 2 ds + 2J (cos(6” = Z)s — 1) 2 ds
9%y 0 2 t 2
0 0

=4t 'sin™1(0")cos2(0) + ZSin_l(G’)j (s—t)"2ds
2t
=4t~ sin™(0")cos2(0”) + 2sin~1(6")t 1,

where the integrand in the first sum is estimated by the minimal distance to
the point it and the integrand in the second sum by the imaginary part.
Altogether we have shown that there exists a constant Cy > 0 such that

sup [m(t)| + [tm’(t)] < Cl|Lb]| oo sy -
telR

Hence, it follows from Zimmermann’s extension of the classical Mikhlin
multiplier theorem to UMD-spaces [Zim89, Proposition 3] that m is a bounded
Fourier multiplier and that for some constant Dy > 0 one has

By Proposition 1.3.7 and by the fact wy~(C) > w(C), the negative generator
C= % ®Idx of (V(t));er has a bounded H*-calculus with wge(C) = 7.

< Dy |1Lb] o5y -

Lw b(t)V(t)dtl

B(X)

The criterion can also be used to show the boundedness of the functional
calculus for bounded Cy-groups on UMD-spaces. The proof uses the following
transference result, a technique which goes back to R.R. Coifman and G. Weiss
[CW76]. We do not prove this result for the moment as we will obtain a more
general transference result later on in Theorem 5.3.1. Again, (V(t));cR is the
vector-valued shift group defined by (V (¢)f)(s) = f(s—t).

13
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Theorem 1.3.9 (Transference Principle). Let (U(t));er be a Cy-group on a
Banach space X such that M = sup, g ||U(t)|| < 0. Then for all p € [1,c0) and all

b € Li(R) one has
‘J;Rb(t)U(t)dt’ Lb(t)V(t)dt’

Now, the boundedness of the functional calculus is a direct consequence.
This application of the transference principle to the boundedness of the
H®-calculus goes back to [Cow83] in the scalar case and to [HP98] in the
vector-valued case.

<M?
B(X)

B(L,(R;X))

Corollary 1.3.10. Let (U(t));cr be a bounded Cy-group on a UMD-space. Then its
negative infinitesimal generator A has a bounded H*-calculus with wp-(A) < 5.

Proof. By the transference principle (Theorem 1.3.9), the problem can be
reduced to the case of the vector-valued shift group on L,(RR; X) which has
been treated in Example 1.3.8. O

Extended Functional Calculus and Fractional Powers We now shortly ex-
plain how the functional calculus can be extended from bounded analytic
functions to polynomially bounded analytic functions. This extension is nec-
essary if one wants to work with fractional powers of logarithms of sectorial
operators. Of course one can not expect to obtain bounded operators.

Let p(A) = iE /\)
estimated by multlples of |A|* and |A|* respectively.

We consider functions whose growth at 0 and oo can be

Definition 1.3.11. Let @« > 0 and 6 € (0, ). Denote by H,(X¢) the space of all
analytic functions f : ¥y — C for which

sup{lp(A)I*|f(A)]: A € Tg} <

Note that if f € H,(Xg) and k € IN with k > a, one can write f(1) =
p()\)’k(pkf)(/\), where the second factor lies in Hj°(Xg). For such functions
we can extend the functional calculus for sectorial operators in the following
way.

Definition 1.3.12. Let A be a sectorial operator with dense range and 6 €
(w(A), ). For f € Hy(Xg) choose k € N with k > a and let

F(A) = p(A) (" (A
D(f(A)) ={xe X : (p*f)(A xer(A) 5.
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One then shows that A is a well-defined operator. For this and further
details see [KW04, Appendix B].

In particular, one can define fractional powers of sectorial operators with
dense range. These have the following natural properties. Proofs of the
first two assertions can be found in [KW04, Theorem 15.16] and [KKWO06,
Proposition 3.4], whereas the third follows from the composition formula
proved in [KW04, Proposition 15.11].

Proposition 1.3.13. Let A be a sectorial operator with dense range on a Banach
space X. Then the following hold.

(a) For a € (0, %) the operator A% is sectorial with w(A%) = aw(A). Further,
one has (A%)? = A% for all z e C.

(b) If A is R-sectorial, for a € (O,ﬁ) the operator A% is R-sectorial with
wR(AY) = awg(A).

(c) If A has a bounded H*-calculus, for a € (0, ﬁ) the operator A has a

bounded H®-calculus with wy«~(A) = awy~(A).

1.4 Sectorial Operators which Have a Dilation

A further regularity property which is not so inherent to sectorial operators
but nevertheless very important for their study is the existence of group
dilations. The introduction of this powerful concept goes back to B. Sz.-
Nagy [SN53]. Although the concept of dilations is intuitively clear once one
has seen some basic examples, it is important for the treatment in this thesis
to give precise definitions of semigroup dilations on general Banach spaces.
We follow the terminology used in [AM14].

Definition 1.4.1. Let (T(t));>0 be a Cy-semigroup on some Banach space X.
Further let X denote a class of Banach spaces. We say that

(i) (T(t))t0 has a strict dilation in & if for some Y in X there are contractive
linear operators J: X — Y and Q: Y — X and a Cy-group (U(t))ser of
isometries on Y such that

T(t)=QU(t)] forall t > 0.

(ii) (T(t));>0 has a loose dilation in X if for some Y in X there are bounded
linear operators J: X — Y and Q: Y — X and a bounded Cj-group
(U(t))ter on Y such that

T(t)=QU(t)] forall t > 0.

15
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Later in Chapter 4, we will obtain complete characterizations of those
semigroups on (subspaces) of Hilbert and L,-spaces which admit a strict
dilation in the class of Hilbert spaces and in the class of L,-spaces for fixed p €
(1,00) respectively. The main connection with the other regularity properties
is the following observation.

Proposition 1.4.2. Let A be a sectorial operator on a Banach space X such that —A
generates a Cy-semigroup which has a loose dilation in the class of all UMD-Banach
spaces. Then A has a bounded H®-calculus with wye~(A) < .

Proof. The boundedness of the H*-calculus clearly passes through dilations.
Hence, it suffices to consider the case of a bounded Cy-group on a UMD-space
for which the assertion was shown in Corollary 1.3.10. O]

The following theorem by A. Frohlich and L. Weis [FW06, Corollary 5.4]
is a partial converse to Proposition 1.4.2. Its proof uses square function
techniques which we do not cover here, for an overview on this topic we refer
to [LMO7].

Theorem 1.4.3. Let A be a sectorial operator on some UMD-space with wpy~(A) <
2. Then the semigroup (T (t)).» generated by —A has a loose dilation to the space
Lz([o, 1],X)

Together with Theorem 1.3.4 this shows that on UMD-spaces the existence
of loose dilations and of a bounded H*-calculus are equivalent under the
restriction wr(A) < 5. However, we will see in Section 2.2 that this characteri-

zation does not extend to the case wr(A) = w(A) = 7.

1.5 Bounded Imaginary Powers (BIP)

A third regularity property of sectorial operators which is also of historical
importance is that of having bounded imaginary powers. Although we are
mainly interested in H*-calculus and maximal regularity, bounded imaginary
powers can be seen as somewhere between the stronger property of having a
bounded H*-calculus and the weaker property of having maximal regularity
(at least for sufficiently nice Banach spaces). This intermediate role will be
useful in our later studies. Since we are not interested in bounded imaginary
powers for its own sake, we only give the definition and present the connec-
tions with the other regularity properties. In particular, we do not present the
fundamental applications to the study of evolution equations, which has been
the key motivation for the development of this subject in the first place. Let
us start with the definition of bounded imaginary powers.
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Definition 1.5.1 (Bounded Imaginary Powers (BIP)). A sectorial operator
with dense range on a Banach space X is said to have bounded imaginary powers
(BIP) if for all t € IR the operator A" associated to the functions A — A" via
the holomorphic functional calculus is bounded.

In this case (A™),c is already a Cy-group on X. This follows from the
following useful characterization (see for example [Haa06, Corollary 3.5.7].

Proposition 1.5.2. Let A be a sectorial operator with dense range on a Banach
space X. The following assertions are equivalent.

(i) A™ isa bounded operator for all t € R, i.e. A has bounded imaginary powers.
(ii) The operators A™ for t € R form a Cy-group of bounded operators on X.

(iii) The operator ilog A generates a Cy-group (U (t));er of bounded operators on
X.

In this case we have U(t) = A™ for all t € R.

The growth of the Cy-group (A™*),cR is used to define the BIP-angle.

Definition 1.5.3. For a sectorial operator A with dense range and bounded
imaginary powers on some Banach space one defines

wpip(A) = inf{w > 0 : JA"|| < Me®" for all € R and some M > 0}.
If A does not have bounded imaginary powers, we set wgp(A) := co.

Notice that if a sectorial operator A with dense range has a bounded
H>(Xg)-calculus for some 0 € (0, ), then it follows from the estimate

|\ < exp(Re(itlog ) < exp(|t|6)

for all A € ¥y that A has bounded imaginary powers with wgp(A) < wy=(A).

A less obvious fact is that BIP implies R-sectoriality on UMD-spaces [DHP03,
Theorem 4.5].

Theorem 1.5.4. Let A be a sectorial operator with dense range and bounded
imaginary powers on a UMD-space. Then A is R-sectorial with wg(A) < wpp(A).
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Counterexamples

In the previous chapter we have introduced the regularity properties having a
dilation, having a bounded H*-calculus, having bounded imaginary powers
and being R-sectorial. We have seen that on L, for p € (1,00) and even on
more general Banach spaces the following implications hold:

dilation = H® = BIP = ‘R-sectorial = sectorial.

The goal of this chapter is to give explicit counterexamples which show that
none of the converse implications < holds. We present two different ap-
proaches to construct such counterexamples. The first one uses Schauder
multipliers. We develop this approach further to give the first explicit exam-
ple of a sectorial operator on L, for p € (1,00)\{2} (even on UMD-spaces) which
is not R-sectorial. As the main result of this chapter we then give a fundamen-
tally new proof of the Kalton—Lancien Theorem (Theorem 2.1.42). Further,
we construct positive analytic bounded semigroups on €, (£,) for p = q € (1,00)
without maximal regularity. This is the first example of a positive analytic
semigroup on a UMD-Banach lattice which does not have maximal regularity.
Furthermore we give explicit counterexamples to the closedness of the sum
problem for two sectorial operators (Corollary 2.1.63), results which until
now have been out of reach with the known methods.

The second approach uses a theorem of S. Monniaux to give examples
of sectorial operators with bounded imaginary powers which do not have
a bounded H*-calculus. Although the approach is rather straightforward,
this method seems to be conceptually new. We conclude this chapter by
constructing an example of a generator —A of a Cy-semigroup on a Hilbert
space without any loose dilation in the class of Hilbert spaces such that A has
a bounded H*-calculus with wpe~(A) = 7. Further, we show how some of the
regularity properties behave in exotic Banach spaces.

This chapter contains material from the published articles [Fac13a] and
[Fac14] and from the accepted manuscript [Facb].

2.1 The Schauder Multiplier Method

In this section we develop the most fruitful method to construct systematically
counterexamples which is known at the moment: the Schauder multiplier
method. This method goes back to the pioneering works [BC91] and [Ven93].
We will develop this method from scratch starting with the counterexamples
which are already known and which we think are easier to understand. Step
by step we will then use more sophisticated and deep theorems from the
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geometric theory of Banach spaces. Whereas the basic theory of Schauder
bases is summarized in Appendix A.1, the deeper and not so well-known
results are presented in the main body of the text. After dealing with H*-
calculus and bounded imaginary powers, we first present a self-contained
example of a sectorial operator on L, which is not R-sectorial. On the one
hand this is the most interesting case from the point of view of applications
and on the other hand we hope that this makes the proof of the Kalton-Lancien
Theorem in the general case more transparent.

2.1.1 Schauder Multipliers

We start our journey by giving the definition of Schauder multipliers and
by studying its fundamental properties. After that we show how Schauder
multipliers can be used to construct (analytic) semigroups. This technique
goes back to the works of J. Baillon and P. Clément [BC91] and A. Venni
[Ven93]. We follow the presentation in [Ven93].

From now on we need the theory of Schauder bases (and Schauder decom-
positions). All necessary definitions and results can be found in Appendix A.1.
We will almost exclusively work with Schauder bases, however at some places
we will need the results for more general Schauder decompositions. Neverthe-
less, it suffices for our proposes to deal with scalar-valued multipliers through-
out. For the treatment of operator-valued multipliers we refer to [CAPSWO00]
and [Wit00]. The definition of a Schauder multiplier is then — at least for
Schauder bases — very natural.

Definition 2.1.1 (Schauder Multiplier). Let (A,,),,en be a Schauder decom-

position for a Banach space X. For a sequence (y,,),en C C the operator A
defined by

D(A) = {x = iAmx: iymAmx exists}
m=1 m=1
A(ZAmx) = Z)/mAmx

m=1 m=1

is called the Schauder multiplier associated to (¥,,)meN-

2.1.1.1 Basic Properties of Schauder Multipliers

We now discuss some elementary properties of Schauder multipliers.

Proposition 2.1.2. The Schauder multiplier A associated to a sequence (¥,,)meN
is a densely defined closed linear operator.
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Proof. It is clear that A is linear. Note that the domain D(A) contains all finite
sums of the form Y'_, A, x for x € X and N € IN which form a dense subspace
of X. It remains to show that A is closed. For this let (x,,),eny C X with x,, > x
and Ax, — y. Applying the projections A,, for m € IN we obtain that

An(y) & An(Axy) = YinAu(x,) oo VmBm(x).

n—oo
This shows that y =) _; ¥uAn(x). Hence, x € D(A) and Ax = y. O

A central problem in the theory of Schauder multipliers is to determine
for a given Schauder basis (e,,),en (or more generally for a Schauder decom-
position (A,,),en) for a Banach space X the set of all sequences (y,,)en for
which the associated Schauder multiplier is bounded, or equivalently by the
closed graph theorem for which the domain is the whole space. Obviously,
these sequences form a vector space. In general, it is an extremely difficult
problem to determine this space exactly. For example, the trigonometric basis
(€/™7),,cz with respect to the enumeration (0,-1,1,-2,2,...) is a Schauder basis
for L,([0,1]) for p € (1,00). In this particular case the above problem asks for
a characterization of all bounded Fourier multipliers in L, which for p = 2
seems to be intractable at the moment.

However, some elementary general properties of this sequence space can
be obtained easily. In particular, in the case of an unconditional Schauder
decomposition most of the difficulties vanish.

Proposition 2.1.3. Let (A,,)neN be a Schauder decomposition for X.

(a) Let (m)men be the sequence associated to a bounded Schauder multiplier.
Then (Vm)mEIN € goo

(b) The associated multipliers are bounded for all (V,,)meN € Coo if and only if
(A,) men s unconditional.

(c) Let (¥m)men € BV, the space of all sequences with bounded variation. Then
the Schauder multiplier associated to (V,,)menN is bounded.

Proof. (a) Let A be the bounded Schauder multiplier associated to (¥,,)menN-
Then for x € X one has

Vil 1Amx]l = [|AA x| < [JAIIA x|

for all m € IN, which shows (¥,,)menN € €oo With [[(¥,)lleo < Al

(b) If (A})men is unconditional, then the operator associated to a bounded
sequence (¥,,)men is bounded with operator norm smaller than K||(¥,,)llc
where K denotes the unconditional constant of (A,,),,en. Conversely, for an
arbitrary sequence (&,,)uen in {—1,1}N the boundedness of the associated
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Schauder multiplier implies that the series ) ;' €,,A,,x converges for all
x € X. Hence, (A,;)enN 1s unconditional.

(c) Let (¥m)men € BV. For x =Y °_; A,,x we can rewrite the partial sums
of Ax by using summation by parts for N € [N as

m

N N N
ZVmAmx = (ZAmX)VNH + Z(Vm = Vm+1) ZA”X
m=1 m=1 m=1

n=1
N
= 7N+1PNX + Z(ym - 7m+1)me'
m=1

As every sequence in BV converges, the first term converges. The second
series converges absolutely as

Y Py = Vet < K Il )l

m=1

where K denotes the decomposition constant of (A,,),,cn.- Hence, A is a
bounded operator with

ANl < K (I(ym)lleo + 1 (Vm)llBv)- O

Remark 2.1.4. In general, condition (c) of Proposition 2.1.3 is optimal. For if
X = BV, then the sequence (e,,) e, defined by e as the constant sequence 1
and e, = (0,,n)nen is a conditional Schauder basis for BV and the multiplier
associated to a sequence (¥,,)men, is bounded if and only if (y,,)en, € BV .
Let us shortly explain why this is true. Recall that the norm of a sequence
(xy)new € BV is given by

(o]
HGcnllgy = el + ) it = xil.

k=1

So an element (x,),en in BV is a Cauchy sequence and therefore one has
lim,,_,., x,, = x for some x € C. We now claim that

(o)
(xu)ne = xeg + ) (g = X)e.
k=1

Indeed, for N € IN one has

N 0
(o) =xeo— ) (xi—x)er|| =lxnoa—x= ) Ik —x ——0
n—oo
k=1 Bv k=N+1

and it is easy to see that the expansion is unique. This shows that (e,,)eN
is a Schauder basis for BV. Now, let T be a bounded Schauder multiplier
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associated to a sequence (¥,,)men, With respect to this basis. Then for all
N € N one has

N N
“T(Zek) 'Znek
k=1 k=1

Hence, we have shown (,,)ueN, € BV as asserted.

N-1
BV:’ BV:|y1|+|7/N|+;|7/k+1_)/k|éz||T”

2.1.1.2 Schauder Multipliers as Generators of Analytic Semigroups

Given an arbitrary Banach space X, it is difficult to guarantee, roughly spoken,
the existence of non-trivial strongly continuous semigroups on this space.
Of course, every bounded operator generates such a semigroup by means
of exponentiation. Such an argument does in general not work to show
the existence of Cy-semigroups with an unbounded generator. Indeed, on
Lo([0,1]) a result by H.P. Lotz [Lot85, Theorem 3] shows that every generator
of a strongly continuous semigroup is already bounded.

One therefore has to make additional assumptions on the Banach space. A
very convenient and rather general assumption for separable Banach spaces
is to require the existence of a Schauder basis or a Schauder decomposition
for that space. Indeed, all classical separable Banach spaces have a Schauder
basis. Moreover, for a long time it had been an open problem whether all
separable Banach spaces have a Schauder basis. Indeed, the existence of
a Schauder basis for a given Banach space shows that this space has the
approximation property. In a landmarking paper P. Enflo [Enf73] showed
that there indeed exist separable Banach spaces without the approximation
property. The analogous question whether every separable Banach space has
a Schauder decomposition has also a negative answer [AKP99]. The solution
of this problem relies on the existence of separable so-called hereditarily
indecomposable Banach spaces which we will meet in Section 2.3.1.

The next proposition shows that Schauder decompositions allow us to
construct systematically strongly continuous semigroups (with unbounded
generators) on the underlying Banach spaces.

Proposition 2.1.5. Let (A,,;),.eN be a Schauder decomposition for some Banach
space X and (V,,)menN be a positive non-decreasing sequence of real numbers. Then
the Schauder multiplier associated to (V,,)meN 1S an injective sectorial operator
with dense range and w(A) = 0. In particular, —A generates an analytic Cy-

semigroup (T(z))zez%.

Proof. For every t > 0 let T(t) be the Schauder multiplier associated to the
sequence (e ?»"), .. The sequence (e77»?),,cn is decreasing and therefore
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a fortiori of bounded variation. By Proposition 2.1.3(c) the operator T(t) is
bounded. More precisely, one has for y, =lim,,_,., ¥ € (0, 0]

(o)

(e lvar = Ze—ymt e Vmnt — g Vit _ g Vel
m=1

It is clear that the family (T(t));»¢ satisfies the semigroup law. Therefore
(T(t));>0 is a bounded semigroup. Notice that (T(t));> is also strongly con-
tinuous. Indeed, the strong continuity is clear for all elements in the dense
subspace of all x € X which possess a finite expansion with respect to the
decomposition (A,,;),,en- The general case then follows from the local bound-
edness of the semigroup and an approximation argument. Notice that it is
easy to check that [0,c0) C p(—A). In order to show that the generator B of the
semigroup coincides with —A, it therefore suffices to show that B ¢ —A. For
this notice that for x € D(B) one has

A, (Bx) =1lim 7 An) = Alx) ==Y (x).
tl0 t
Hence, x € D(A) and Bx = —Ax.

It is clear that A is injective and has dense range. Notice that for @ > 0
the fractional power A is the Schauder multiplier associated to the sequence
(v )men- Hence, the same reasoning as above shows that —A% generates a
bounded Cj-semigroup for all @« > 0. Hence, by Proposition 1.3.13 one has
aw(A) = w(A%) < 5. As @ can be chosen arbitrarily large, this shows that
w(A) = 0. It is well-known that this implies that the semigroup (T(t));>0
generated by —A extends to a bounded analytic semigroup of angle 7. O

2.1.2 Sectorial Operators without a Bounded H*-Calculus

In this subsection we apply the so far developed methods for Schauder multi-
pliers to give examples of sectorial operators without a bounded H*-calculus.
The elegant approach used in this section is already known and goes back
to [Lan98] and [LM99b]. Nevertheless we give full details for the sake of
completeness and in order to familiarize the reader to the key arguments in
an easier case. Before giving counterexamples, we start with a positive result
in order to show a way we cannot go.

Proposition 2.1.6. For an unconditional basis (e,,),en of a Banach space X
let A be the Schauder multiplier associated to a sequence (V,)meN Such that
0 = sup,,enlarg(ym)| < . Then A has a bounded H®-calculus with wy-(A) = 6.
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Proof. Notice that for A € p(A) one has €, (R(A, A)x) = (A = ¥,,) " Les,(x). There-
fore for f € Hy*(Xy) with i € (6, ) we have

f()
Ty A=Vm

erar = | i) A= f ()63 (3)

This shows that f(A) is the Schauder multiplier associated to the sequence
(f (¥m))men- Since by assumption the basis (e,,),eN is unconditional, Proposi-
tion 2.1.3(b) shows that

1F (AN < KIIf (m)lleo < Kl fll gz, ) -

Hence, A has a bounded H*-calculus with w(A) < 6. As one clearly has
w(A) = 6, we obtain wy«(A) = 6. O

In particular, on sufficiently nice Banach spaces such Schauder multipliers
are R-sectorial.

Corollary 2.1.7. For an unconditional basis (e,,;),,eN 0f a Banach space X with
property (A) let A be the Schauder multiplier associated to a sequence (V) meN
with 0 = sup, .nlarg(ym,)| < . Then A is R-sectorial with wg(A) = 6.

Proof. This follows from Proposition 2.1.6 and Theorem 1.3.4. O

The above result shows that one cannot obtain examples of sectorial op-
erators with dense range without having a bounded H-calculus by using
Schauder multipliers with respect to an unconditional basis. However, one
can produce counterexamples from Schauder multipliers with respect to a con-
ditional basis. The following method goes back to [Lan98] and [LM99b, Theo-
rem 4.1].

Theorem 2.1.8. Let (e,,) e be a conditional Schauder basis for a Banach space X.
Then the Schauder multiplier A associated to the sequence (2™),,cN is a sectorial
operator with dense range and w(A) = 0 which does not have a bounded H®-
calculus.

Proof. By Proposition 2.1.5 everything is already shown except for the fact
that A does not have a bounded H*-calculus. For this notice that for each
f € H®(Xg) for some 6 € (0,7) the operator f(A) is given by the Schauder
multiplier associated to the sequence (f(2")),,en. Now, assume that A has a
bounded H*(Xy)-calculus for some 0 € (0, 7t). By [Haa06, Section 9.1.2] on
the interpolation of sequences by analytic functions, for every element in ¢,
there exists an f € H®(Xy) such that (f(2")),,en is the given sequence. This
means that every element in €, defines a bounded Schauder multiplier. Then
Proposition 2.1.3(b) implies that (e,,),en is unconditional in contradiction to
our assumption. O
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Notice that the following corollary even includes (separable) Hilbert
spaces.

Corollary 2.1.9. Let X be a Banach space that admits a Schauder basis. Then
there exists a sectorial operator A with dense range and w(A) = 0 that does not
have a bounded H*-calculus.

Proof. We will later see in Remark 2.1.41 that every Banach space that admits
a Schauder basis does also admit a conditional Schauder basis. Then the result
follows directly from Theorem 2.1.8. O

Corollary 2.1.10. Let (e;,;),neN be a Schauder basis for a Banach space X. Then
the Schauder multiplier associated to the sequence (2"),,cN is a sectorial opera-
tor with dense range and has a bounded H*®-calculus if and only if (e,,)meN 15
unconditional.

Proof. Apply Proposition 2.1.6 and Theorem 2.1.8. O

Next we give a concrete example of a sectorial operator of the above
form which has bounded imaginary powers but no bounded H*-calculus by
Theorem 2.1.8. This example is due to [LM99b, p. 15] and [Lan98].

Example 2.1.11. We consider the trigonometric system (¢'™?),,cz which is
with respect to the enumeration (0,-1,1,-2,2,...) of Z a conditional basis of
L,([0,27]) for p € (1,00) \ {2}. Let A be the Schauder multiplier associated to
the sequence (2),,cz. As a consequence of the boundedness of the Hilbert
transform on L, for p € (1,0), it suffices to consider separately the operator
on the two complemented parts with respect to the decomposition

L,[0,27] = span{e'™ : m < 0} @span{e™ : m > 0).

Observe that A has a bounded H*-calculus if and only if both parts have a
bounded H*-calculus. It then follows from the proof of Proposition 2.1.5
that A is a sectorial operator with w(A) = 0 which does not have a bounded
H®-calculus. We now show that A has bounded imaginary powers with
wgrp(A) = 0. For this we observe that

Ait( Z ameimz) = Z(Zm)itameimz = Z a,exp(imtlog2)e’™>

meZ meZ w7
= Z a,exp(im(tlog2+z)) = S(tlog 2)( Z ameimz),
meZ =
where (S(t))cr is a periodic shift group on L,([0, 27t]).

We will study examples in the spirit of Example 2.1.11 more systematically
in Section 2.3.
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2.1.3 Sectorial Operators without Bounded Imaginary Powers

Similarly as in the case of the H*-calculus one can use Schauder multipliers
to construct sectorial operators that do not have bounded imaginary powers.
We start with a weighted version of Example 2.1.11 which gives an example of
an R-sectorial operator without bounded imaginary powers. However, before
we need to state some facts from harmonic analysis.

It is a natural question to ask for which weights w the trigonometric
system is a Schauder basis for the space L,([0,27],w). Indeed, a complete
characterization of these weights is known. Moreover, these weights play an
important role in harmonic analysis. We will identify the torus T with the
interval [0, 27) on the real line and functions in some L,-space over [0, 27]
with their periodic extensions or with L,-functions on the torus. The following
class of weights was first introduced in the work [HMW73].

Definition 2.1.12 (A,-weight). Let p € (1,00). A function w: R — [0, co] with
w(t) € (0,00) almost everywhere is called an A,-weight if there exists a constant
K > 0 such that for every compact interval I C R with positive length one has

-1
(ﬁ Lw(t) dt)(é—lﬁw(t)—”(ﬂ-ﬂ dt)p <K.

We denote the set of all A,-weights with A,(RR). The smallest constant such
that the above inequality holds is called the A, (IR)-weight constant. Moreover,
we set in the periodic case

A,(T) = {w e A,(R) : w is 27t-periodic}.

As an example, the 27m-periodic extension of the function t — [¢t|* for
a € R lies in A,(T) if and only if & € (-1,p — 1) [BG03, Example 2.4]. The
characterization below can be found in [Nie09, Proposition 2.3] and essentially
goes back to methods developed by R. Hunt, B. Muckenhoupt and R. Wheeden
in [HMW?73].

Theorem 2.1.13. Let w: R — [0, 00] with w(t) € (0, 00) almost everywhere be a
2m-periodic weight and p € (1,00). Then the trigonometric system is a Schauder
basis for L,([0, 21t], w) with respect to the enumeration (0,-1,1,-2,2,...) of Z if
and only if w € A,(T).

It is also possible to extend the classical multiplier theorems to L,-spaces
weighted with A,-weights. We need the following weighted periodic version
of the Marcinkiewicz multiplier theorem. It is proved in [BG03, Theorem 4.4]
via transference methods from its continuous analogue in [Kur80, Theorem 2].

27



2. COUNTEREXAMPLES

28

Let I = [ny,n,] be an interval in Z. For a function ¢: Z — C we define the
variation of P on I as

1’[2—1

var(,I) = Z |p(m+ 1)~ p(m)].

m=n,

Moreover, we consider the following dyadic decomposition of the integers.

[2+-1,2"]nZ forn>1
ANy, =1[-1,1]nZ forn=0
[-27",-27"INZ forn<-1.

The Marcinkiewicz multiplier theorem then gives the following sufficient
criterion for a multiplier to be bounded on L.

Theorem 2.1.14 (Marcinkiewicz Multiplier Theorem). Let p € (1,00) and
w € A, (T) with A,(RR)-constant C. Further let : Z — C with

19llm, (z) = suplp(n)| + supvar(ih, A,) < co.
nez neZ
Then 1 defines a bounded Fourier multiplier on L,([0, 27c], w) and the norm of the
induced Fourier multiplier operator can be estimated by K, cl|¢|lm, (z), where K, c
is a constant that only depends on p and C.

Notice that this in particular implies that the periodic Hilbert transform is
bounded on L,([0, 27t], w) for every A,-weight w € A,(T). Now we are ready
to give a new example of an R-sectorial operator on some L,-space which does
not have bounded imaginary powers, a discrete variant of the example given
in [KWO04, Example 10.17]. This example is of particular interest because
it shows that the classical Dore—Venni theorem does not cover the complete
spectrum of sectorial operators with maximal regularity. Observe that the use
of weights allows us to construct unbounded imaginary powers. In particular,
in the Hilbert space case we recover an explicit example of a sectorial operator
without bounded imaginary powers.

Example 2.1.15. Let p € (1,00) and w € A,(T) be an A,-weight. Then the
trigonometric system (e'"),,c7z is a Schauder basis for L,([0, 2rt], w) by Theo-
rem 2.1.13. Let A again be the Schauder multiplier associated to the sequence
(2™)uez. One sees as in Example 2.1.11 that A is a sectorial operator. It
remains to show that A is R-sectorial. Notice that for A = a2'e’® € C\ [0, )
with |a| € [1,2] one has

i0

; A ; ae ;
AR“"m(i"me’m) =)™ = ) g g™

mezZ mezZ meZ
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i0
_ ae 2. eim)z
aei® —pm=" '

meZ
Consequently, for Ay = a2e’® with k € {1,...,n} and x4,...,x, € L,([0,27], w)
one has by Kahane’s contraction principle (Proposition 1.2.2)

n n

Zrk/\kR(/\k,A)xk ZrkaeieR(aeie,A)eilkzxk
k=1 k=1

k=
<lal ||R(aei9,A)|| “Zrkeilkzxk
k=1

n
< G, |[R(ae®, )| HZ“""
k=1

for some universal constant C, > 0. Now it is straightforward to check that

for every 6 > 0 the sequence (%)mez satisfies the assumptions of the
Marcinkiewicz multiplier theorem (Theorem 2.1.14) or alternatively of Propo-
sition 2.1.3(c) uniformly in 6 € [0, 27t) and in |a| € [1,2]. By Remark 1.2.10
this shows that A is R-sectorial with wg(A) = 0.

By the same calculation as in Example 2.1.11 on the dense set of trigono-
metric polynomials the operator A’ for t € R is given by S(tlog2), where
(S(t))ier is a periodic shift group. Notice however, that for example for
w(t) = [t|* for a suitable chosen a € R such that w € A,(T) this shift obvi-
ously does not leave L, ([0, 27t], w) invariant. Hence, A does not have bounded
imaginary powers.

2.1.4 Sectorial Operators without Maximal Regularity: The
Maximal Regularity Problem

After the preparatory sections, in this section we use semigroups generated
by Schauder multipliers to give a negative answer to the maximal regularity
problem. Our examples of sectorial operators without maximal regularity
will be explicit, namely Schauder multipliers associated to the sequence
(2™),uen With respect to some Schauder basis. For this we need to develop a
completely new approach to the Kalton-Lancien Theorem (Theorem 2.1.42).
This was done by the author in the articles [Fac13a] and [Fac14] on which this
presentation is based.

The key idea is to associate to a Schauder multiplier operators on Rad(X)
which are again of diagonal form. The R-boundedness will then be equiva-
lent to the boundedness of the introduced diagonal operators which can be
investigated by similar methods as before. As appetizers we give easy and
explicit counterexamples for the spaces ¢; and cj. After that we focus on the
L,-case. Here the arguments are getting more involved. Nevertheless, in order
to stay as concrete as possible we will directly exploit the structure of the Haar
basis of L,[0,1]. After that we extract the key concept which allows us to give
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counterexamples: non-symmetric Schauder bases. The use of non-symmetric
bases lies at the heart of our completely new approach. We then develop
the necessary concepts and tools for symmetric Schauder bases from scratch.
At the end of this study we will prove a deep structure theorem for Banach
spaces with an unconditional basis originally due to J. Lindenstrauss and
M. Zippin (Theorem 2.1.39). After all this preliminary work the general case
of the Kalton-Lancien Theorem (Theorem 2.1.42) will follow rather directly.
Moreover, we construct negative generators of positive bounded analytic
Co-semigroups on some UMD-Banach lattices without maximal regularity
(Theorem 2.1.46).

2.1.4.1 Associated Semigroups on Rad(X)

In this subsection we explain how we can describe the R-analyticity of a
semigroup in terms of the analyticity of an associated semigroup on Rad(X).
The idea to study R-analyticity with the help of associated semigroups on
Rad(X) goes back to W. Arendt and S. Bu [AB03]. In our counterexamples we
will always show that the analyticity of the associated semigroup is violated
instead of working directly with R-analyticity or maximal regularity. Our
object of interest is the following.

Definition 2.1.16 (Associated Semigroup on Rad(X)). Let (T(z)),ey be an
analytic Cy-semigroup on a Banach space X. Given a sequence (¢,),en C (0,1),
one defines the associated semigroup (7 (z)),cy on the finite Rademacher sums

R N N
T(Z)(Zrnxn) = ZrnT(qnz)xn forze Y and N € IN.

n=1 n=1

For x € X one often uses the notation r,, ® x for the function w - r,,(w)x in

Rad(X). If the semigroup is generated by a Schauder multiplier, the associated
semigroup on Rad(X) takes the form of a multiplier as well.

Remark 2.1.17. Let (T(z)),cy be the analytic Cy-semigroup generated by a
Schauder multiplier —A associated to a sequence (—),;)meN as studied in
Proposition 2.1.5. Then 7 (z) acts on finite Rademacher sums as

N N N
T(z)( Z Aumtn ®em) = ZrnT(qnz)(Zanmem)

m,n=1 n=1 m=1
’ 2.1
N (2.1)
— E e_qnymzanmrn ®ey,.
n,m=1

The following theorem allows us to study the R-analyticity of a semigroup
with the help of the associated analytic semigroup on Rad(X). In some sense
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the R-boundedness is hidden within the associated semigroup. The next
proof goes back to W. Arendt & S. Bu [AB03, Theorem 3.6].

Theorem 2.1.18. Let (T(z)) be an analytic Cy-semigroup on a Banach space X.
Then the following hold:

a) If (T(t))s>o is locally R-bounded, then (T (t));>o extends to a Cy-semigroup
on Rad(X).

Moreover, if (T(z)),eyx is R-analytic, then the associated semigroup extends
to an analytic Cy-semigroup (T (z)),ex on Rad(X).

Further, in both cases there exist M, w > 0 such that
|7 (£)]| < Me¥*  respectively |7 (z)]] < Me®¥!
holds independently of the chosen sequence (g,),en C (0,1).

(b) Conversely, if the associated semigroup (7 (z)),ey is strongly continuous and
analytic for some (q,,),eN being dense in (0,1), then (T(z)) is R-analytic.

Proof. We start by proving (a) in the R-analytic case, the first case is of course
completely analogous. For z in some sector ¥ one has

N N N
HT(z)(Zrnxn) = ZrnT(qnz)xn <R{T(Az): A €(0,1)} HZrnxn .
n=1 n=1 n=1

Since the finite Rademacher sums are dense in Rad(X), 7 (z) extends to a
bounded linear operator on Rad(X). Now let z € ¥ be arbitrary and M be
given by M := R{T(z):z € X, |z| < 1}. There exist unique n € N, s € [0,1) such
thatz=(n+ s)é. Then for w =logM one has

irian ()| ()

The strong continuity can easily be checked for finite Rademacher sums and
can then be extended to arbitrary elements of Rad(X) by the local boundedness
of z+— 7 (z) in operator norm.

We now turn to the proof of (b). Assume that the associated semigroup
(7(2))4ex is an analytic Co-semigroup. Let zy,...,zy € ¥ with argz = 0 for
some 0 € (0, %) with e'® € ¥ and |z| < 1. Then by the density of (g,,)men in

n
< MenlogM < Mew|z|

(0,1) one can choose for all n =1,..., N disjoint subsequences (qfﬁ,))le]N with

qfﬂl — z, for | — co. Now let M := sup{||T( z)||: z€ X, |z| < 1}. Then one has

for all x1,...,xy € X

rn

Mz

—11mHZrn Qm, 19

< ||T i0) ||HZrnxn

n=1
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N
SMHZrnxn
n=1

Here we have used that the norm of the Rademacher average is independent
of the concrete choice of the random variables. This shows that the set
{T(te'%):t € (0,1)} is R-bounded. Of course, by an analogous argument one
obtains that the set {T(te='?): t € (0,1)} is R-bounded. It now follows from the
analyticity of the semigroup and Proposition 1.2.3 together with a rescaling
argument that the semigroup (T (z)) is R-analytic. O

2.1.4.2 Warm-up: Counterexamples on ¢y and £,

Before we consider counterexamples on general Banach spaces admitting an
unconditional basis following [Fac14], we construct counterexamples for the
concrete Banach spaces ¢y and ¢;. They also illustrate our approach. The
following elementary lemma will be useful in the future and throws light on
the special role played by the sequence (2"),,cy when used as a multiplier
sequence. As the proof only involves a direct computation, we omit it.

Lemma 2.1.19. The function d(t) = ™"t — e 2"t (m € IN) possesses a unique

log2 1

maximum in [0,1] at ty = —z-. Moreover, the maximum value d(ty) = 3 is

independent of m.

The Space ¢y Let (e,,),en be the standard unit vector basis of ¢y. Then
the summing basis (s,;)men given by s, := )Y /', e is a conditional basis of
co [AKO06, Example 3.1.2].

Proposition 2.1.20. Let (s,,),,enN be the summing basis of cy. Then —A given by

D(A) = {x = iamsm : if'zamsm exists}
A(iamsm) = iZmamsm

m=1
generates an analytic Co-semigroup (T (z))ex, , that is not R-bounded on [0,1].
Proof. Assume that R{T(t): 0 <t <1} <oo. Then (7 (t));»0 is a Cy-semigroup

on Rad(cg) by Theorem 2.1.18. We now consider xy := Z%:l(SZm —Som_1)® Ty,
for N € IN. Its norm in Rad(cg) is
1
-

N

Z rm(w)eZm

m=1

™=

rm(SZm - 52m—1)

dw =1.
m=1 [eS)
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One has by (2.1)

N
_n2m _n2m-1
T()(xn) = ) (2" M5y, —e2

m=1

qm52m—1 )rm'

In particular for the choice g, = % the first coordinate of the sequence
given by the above expression evaluated in w is —1 YN _ #m(w). Contradictory
to our assumption that 7 (1) is bounded this shows that

N -1

Zrm(w) dw > CT\/N

m=1

1
Tl |

for some constant C > 0 by the Khintchine inequality (Theorem A.3.1). Hence,
(T(t))s>0 is not R-bounded on [0, 1]. O

The Space £; Let (e,,),,eny denote the standard unit vector basis of ;. Then
(fm)men given by f; = ey and f,, =e,, —e,,_1 for m > 2 is a conditional basis for
{1 [Sin70, Example 14.2]. Notice that this can also been seen as follows: ¢;
can be identified with the space BV of all sequences with bounded variation.
Under the natural identification (f,,),en corresponds to the standard basis
on BV which is conditional by Remark 2.1.4. Again this conditional basis can
be used to construct a counterexample.

Proposition 2.1.21. Let (f,,)men be the basis of £y defined above. Then —A given
by

D(A) = {x = iamfm : iZmamfm exists}

m=1 m=1
AYanfu) = Y 2"
m=1 m=1
generates an analytic Cy-semigroup (T (z))sex, , that is not R-bounded on [0,1].
Proof. One proceeds as in the proof of Proposition 2.1.20. This time one looks

at the vector xy = Zﬁ{m:l T ® f = Z;\Izl r,®ey in Rad(¢;) for N € N. By the
Khintchine inequality (Theorem A.3.1), its norm in Rad(¢!) is

N 1, N 1N
rnf; :J ru(w)en da):f r (a))‘deC\/ﬁ
n,mz;l ntJm 0 ; n o 0 ; n

for some constant C > 0. A short calculation using (2.1) shows that 7 (1)xy is

given by
N N N-1 N
_Hm _9N _om _om+l
E e 2 ann®fm: E e 2 ann®eN+ E E (e 2 qn_e 2 er)rn®em
n,m=1 n=1 m=1n=1
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Now, a second application of the Khintchine inequality shows that one has

N-1 A1
Tl ) |
m=1+-0
N-1, N 2 1/2
Zc_l Z(Z|e_2mqn_e_2m+lq”| ) .
m=1‘n=1

log2
2

N
Z(e_zmqn _ e_2m+1 q”)rn(w)‘ da)
n=1

We again choose ¢, = . By estimating the right hand side, we obtain

N-1
I N-1
7(1 >Cc 1ty S =~
IT (D]l = C ;4 i

As in the proof of Proposition 2.1.20 this implies that the semigroup (T (¢));>0
is not R-bounded on [0,1]. O

2.1.4.3 The L,-case

Before we give our proof of the Kalton-Lancien Theorem in full generality,
we give the first self-contained counterexample for the maximal regularity
problem for individual L,-spaces following [Fac13a]. This special case already
contains all the main ideas used in the proof of the general case. Moreover,
it is easier to understand for non-experts in the geometric theory of Banach
spaces because the used tools are of a rather elementary nature, whereas the
general case uses deep sophisticated tools. Additionally, from the point of
view of applications, the case of L,-spaces is surely the most important case
and it is therefore desirable to have a presentation as elementary as possible.

A key role in what follows is played by L,-functions which stay away from
zero in a sufficiently large set. More precisely, for p € [1,00) and € > 0 we
consider

M = {f e L,([0,1])): A({x € [0,1]: [f (x)] > e[| fll,}) > ¢}

Functions belonging to these sets have a very important summability
property which is comparable to the L,-case. For the proofs of the next two
lemmata we follow closely the main ideas in [Sin70, §21].

Lemma 2.1.22. For p € [2,00) and € > 0 let (f,,)men C L,([0,1]) be a sequence
in MY such that Y %°_, f,, converges unconditionally in L,([0,1]). Then one has

2
Yoo [l < 0.

Proof. Since p € [2,00), it follows from Holder’s inequality that for all f €
L,y([0,1]) one has ||f]l, <[Ifll,- This shows that the series } j;_; f,, converges
unconditionally in L,([0,1]) as well. By the unconditionality of the series
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there exists a K > 0 such that ||Z$:1 e,nfm“2 < K for all (&) men € {1, 1}N.
Now, for all N € IN one has

N ) 137 N
n;nfmnfjo n;rmmfm

Hence, } ;7 ||fm||§ < co. Notice that the assumption f,, € M! implies that for
allmeIN

2
dt <K2.
2

UlB> [ P> 1
lzellfull

Together with the summability shown above this yields } 7, ||fm||12, <oco. O

The next lemma shows that unconditional basic sequences formed out of
elements in M? behave like Hilbert space bases.

Lemma 2.1.23. For p € [2,00) let (e,,,) men be an unconditional normalized basic
sequence in Ly([0,1]) for which there exists an € > 0 such that e,, € M? for all
m € IN. Then the expansion

)t

m=1

converges if and only if (a,,)meN € 2.

Proof. Assume that the expansion ) ;’_; a,,¢e,, converges. Since (e,,),,cn 1S an
unconditional basic sequence, the series } ;;_; a,,¢e,, converges unconditionally
in L,([0,1]). By Lemma 2.1.22, one has

o [s]

2 2
D lanl =) llanenl; < co.
m=1 m=1

Conversely, we have to show that the expansion converges for all (a,,),,en € €5-
This can be done by using similar ideas as in the proof of Lemma 2.1.22. In-
deed, one has ||Zln\i:1 amem” <K ”2%:1 emumem” for all (£,)men € {=1,1}N and
all N € N, where K > 0 denotes the unconditional basis constant of (e,;).eN-
Now, since for p > 2 the space L,([0, 1]) has type 2 (see Appendix A.3.1), we
have for all N,M € N

N 1w N N 1/2
HZumem SKJ Zrm(t)amem dtSKC(Z|am|2)
m=M p 0 Wm=m p m=M
for some constant C > 0. From this it is immediate that the sequence of partial
sums (Z%Zl amem)NeN is Cauchy in L,([0,1]). O
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Remark 2.1.24. Of course, the lemma remains true for a semi-normalized un-

conditional basic sequence (e;,;),,cN as in this case the basic sequence (e,,)eN

e

is equivalent to the normalized basic sequence (ﬁ )
m p

For the following counterexample on L,-spaces our starting point is a
particular basis given by the Haar system.

Definition 2.1.25. The Haar system is the sequence (h,,),cn of functions de-
fined by hy = 1 and for n = 2k 4 s (where k = 0,1,2,... and s = 1,2,...,2k)
by

1 ifte [25—2 25—1)

— _ —)_ : 2s=1 _2s
i) = g 2eb) (0~ Tzt e (0= -1 ift €[50 o) -

0  otherwise
We now present some elementary properties of the Haar system.
Proposition 2.1.26. The Haar system has the following properties.
(a) The Haar system is a basis for L,([0,1]) for all 1 < p < co.
(b) The Haar system is an unconditional basis for 1 < p < co.
We therefore also speak of the Haar basis instead of the Haar system.

Remark 2.1.27. Note that the Haar system is not normalized in L,([0, 1]) for
p € [1,00). Of course, we can always work with (hy/|lhyll,) instead which is
a normalized basis. It is however important to note that the normalization
constant ||hn||p =27kp depends on p and we can therefore not simultaneously
normalize (h,),cn on the Ly-scale. In the construction of the following coun-
terexample it is crucial for the argument (more precisely for the application
of the block perturbation result Proposition A.1.11) that the used basis is
normalized. Therefore the construction below yields counterexamples for the
maximal regularity problem on L, for individual p, it is however not possible
to obtain consistent semigroups on the L,-scale along the line of the argu-
ments below. This normalization issue was overlooked in the beginning of the
proof in [Facl3a], nevertheless [Facl3a] still gives a rather easy counterexam-
ple for individual L,-spaces which we present now. Later in Section 3.2.3 we
will use a more involved approach to construct consistent counterexamples to
the maximal regularity extrapolation problem on L.

Now, we are ready to give the first explicit counterexample to the maximal
regularity problem on the spaces L,([0,1]) for p > 2 or even on UMD-spaces
as published in [Facl3a]. It is an interesting point that we start with the Haar
basis as an unconditional basis out of which we construct a conditional one.
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Theorem 2.1.28. For p € (2,00) there exists a bounded analytic Cy-semigroup
(T(2))zex on Ly([0,1]) which is not R-analytic.
2

Proof. Until the rest of the proof let (h,),cn denote the normalized Haar
system. Choose a subsequence (1y)ren C 2IN such that the functions h,, have
pairwise disjoint supports. Then (h,, )ren is an unconditional basic sequence
equivalent to the standard basis in £,. Indeed, for any finite sequence ay,...,ay
we have by the disjointness of the supports

N p N N
3wt = Y Nl =
k=1 P k=1 k=1

Choose a permutation 7t: IN — IN of the even numbers such that n(4k) = n
for all k € IN. We now define a new system (f,),en as

P {hn(n) _ {hn n odd

ho(n) + Pre(n=1) hy(ny+hy—1  neven.

Notice that by the unconditionality of the Haar basis, (/(,))nen is a Schauder
basis of L,([0,1]) as well. As a block perturbation of the normalized basis
(M (n))nen, by Proposition A.1.11, (f,),en is a basis for L,([0,1]) as well. Fur-
ther, let A be the closed linear operator on L,([0, 1]) given by

D(A) = {x = ianfn : iZ”anfn exists}

n=1 n=1

A(Zanfn) = Zznanfn-
n=1 n=1
Since (2"),eN is positive and increasing, Proposition 2.1.5 shows that —A
generates an analytic Cy-semigroup (T(z))cx, , on L,([0,1]) which is given
by the Schauder multipliers associated to the sequences (e72'?),,cn. We now
show that this semigroup is not R-analytic.

Since p € (2,00) the basic sequences (M (4n))nen and (h4,41)nen are not
equivalent. Indeed, assume that this would be the case. Then on the one hand
for (h4,11)nen the block basic sequence

be= ) hame

m:dm+1
€[2k+1,2F+1]

satisfies by the disjointness of the summands for k > 2

1 -
bl = Y Mhawallp= Y 1=g-2b=22

m:4dm+1 m:4m+1
€[2k+1,2k+1] e[2k+1,2k+1]
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Moreover, for k > 2 the function by satisfies |bi(t)| = 2P on its non-vanishing
part . Hence, for the normalized block basic sequence (by)x>2 = (ﬁ)kaz one
P

has |bi(t)| = 2%P. Therefore we have

N

A({t € [0,1]: 1Be(e)] = ellbell,}) = A({t € [0,1]: [Be(t)] 2 ) =

for e < 2%P. In particular, for ¢ < i we have by € M?. By Lemma 2.1.23 this
implies that (by)s, is equivalent to the standard basis of 5.

Since we have assumed that the basic sequence (h(4,))en is equivalent to
(h4k41)ken, the block basic sequence (cg)r>, defined by

e =llly" ) Pagam

m:4m+1
€[2F+1,2F1]

is semi-normalized. Recall that (h;(4,),eN is equivalent to the standard basis
of £,. Therefore by Theorem A.1.6 the semi-normalized block basic sequence
(ck)k>2 is equivalent to the standard basis of £, as well. Altogether we have
shown that the standard basic sequences of ¢, and ¢, are equivalent, which is
obviously wrong.

In particular, the above arguments show that there is a sequence (a,),eN
which converges with respect to (h,(2,))nen but not with respect to (h,,11)nen-
Now, assume that (T'(t));>( is R-bounded on [0, 1]. Then for every sequence
(@m)men C (0,1) we consider the associated semigroup (7 (t));>o defined on
Rad(L,([0,1])). In particular,

N N
T(1): Zrkxk > kaT(CIk)Xk
=1 =1

extends to a bounded operator on Rad(L,([0,1])) by Theorem 2.1.18(a). We
now show that

Zamhn(Zm)rm (2'2)
m=1
converges in Rad(L,([0,1])). Indeed, for fixed w € [0,1] the infinite series
Y =1 4mTm(@)hy(2m) converges by the unconditionality of the basic sequence
(hr(2m))meN as 1y (w) € {~1,1} for every m € IN. Hence, the series (2.2) defines a
measurable function as the pointwise limit of measurable functions. Moreover,

if K denotes the unconditional constant of (hy(2))men, one has for each
w € [0,1]

(o)

Zamhn(Zm)

m=1

<K . (2.3)

Z rm(a))amhn(Zm)
m=1
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This shows that the series (2.2) lies in L;([0,1];L,([0,1])). Using an analogous
estimate as (2.3), one sees that the sequence of partial sums Zzzl A (2m)®Tm
converges to ) ;71 dyhy(2m) ® 1y in Rad(L,([0,1])). Notice that by (o) = fom —
fam—1- By the continuity of 7 (1) we obtain from (2.1) that

8= T(l)(zam(f%n _me—l)rm)

N
. _92m _n2m-1
= lim E Am (e 2 qu2m_e 2 quZm—l)rm
N—oo i
m=

N
. _n2m _92m _n2m-1
:I\}I_Igo E e’ qmamhn(Zm)rm"’am(e 2 _ o2 qm)h2m—lrm
m=1

exists in Rad(L,([0,1])). Now choose g, = 21(2’5,21 as discussed and motivated
in Lemma 2.1.19. Then after choosing a subsequence (Ny) there exists a set
N c [0,1] of measure zero such that

Ny

1

1 Z(amrm(w)hn(zm) - amrm(a))hzm_l) k—> ¢g(w) forallwe N (2.4)
m=1

—00

Applying the coordinate functionals for (h,,),,en to (2.4) we see that for w € N°¢
the unique coefficients (h},(h(w))),,en of the expansion of g(w) with respect to
(hm)men satisty b5, (g(w)) = —%rm(w). Since (h,;)men is unconditional,

[o¢] oo
E Ay Tm(w)hyy,—1  and therefore E a,hy,_1 converge.
m=1 m=1

This contradicts our assumptions on (4,),cn and shows that the semigroup
(T(t))t>0 cannot be R-bounded on [0, 1]. O

Remark 2.1.29. There is nothing special about the restriction p > 2 above.
Indeed, notice that for 1 < p < 2 the dual semigroup (T*(z)),cx, of the above
counterexample is an analytic Cy-semigroup without maximal regularity by
Proposition 1.2.3(b).

2.1.4.4 The Case of a Banach Space with an Unconditional Basis: The
Kalton-Lancien Theorem

Recall that the key argument in the L,-case is the existence of an unconditional
basis for which a certain permutation of the basis has different convergence
properties than the original basis. Such bases are known in the geometric
theory of Banach spaces as symmetric bases and have been studied thoroughly.
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Replacing the Haar basis of L, with a general non-symmetric unconditional
Schauder basis allows us to prove the full Kalton-Lancien Theorem with our
completely new approach as done in [Fac14]. We first present the necessary
results on symmetric Schauder bases. We assume that the reader knows the
basic concepts from the theory of Schauder bases as presented in Appendix A.
Recall that if (e,,),,enN 1S an unconditional basis for a Banach space X, then
(ér(m))meN 18 an unconditional basis for X for all permutations 7t: IN — IN.

Definition 2.1.30 (Symmetric Basis). An unconditional basis (e,;),,en for a
Banach space X is called symmetric if (e,,) e is equivalent to (€ (;m))men for
all permutations 7t of IN.

Easy examples of symmetric Schauder bases are the standard bases of the
classical Banach spaces ¢y and ¢, for p € [1,00). Symmetric bases have the
following well-known fundamental property.

Proposition 2.1.31. Let (e,,)neN be a symmetric basis for a Banach space X. Then
there exists a constant C > 0 such that for all permutations 7t: N — IN, arbitrary
scalars ay,...,an and all N € IN one has

N N
Zamen(m) E Amem
m=1 m=1

Proof. For symmetry reasons it suffices to show the first inequality. More-
over, by the uniform boundedness principle it is sufficient to show that the
inequality holds for every x =) _; a,,e,, with an x-dependent constant.

Therefore from now on let x =) >_, a,,¢,, € X be fixed. We first obverse
that a symmetric basis is norm-bounded from below and from above. Indeed,
assume that (e,;),,en 1S not bounded from above. Then for m € IN there exist
a, € R and a strictly increasing sequence (k,,;),,en such that ||ay,,ep,,]| = 27"
and [|ayex, || > 1. Then choose a permutation 7t: IN — IN such that 7t(2m) = k,,,.
Then } ;7_; ayye),, converges, whereas } 77 ay,ex(2m) clearly does not. This
contradicts the symmetry of the basis. Analogously, one can show that (e,,),eN
is bounded from below as well.

Let My € IN be fixed. For all permutations 7z: IN — IN we have the two
inequalities

c! < . (2.5)

N
< CHZamen(m)

m=1

MO MO
Y amenim)|| < supllewll Y lanl < KiMollxl[sup llenll, — (2.6)
m=1 melN m=1 melN
| Y anewin| < KiMolitisuplenll. (27
m>M0: melN
7t(m)<M,
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where Kj is given by sup,,.n|lej:|l- As a prior step we now show that inequal-
ity (2.5) holds (x-dependent) if and only if it holds for the truncated basis
(em)m>M0-

Assume that (2.5) holds for the truncated sequence (e;,),>n, and let
7: IN — IN be an arbitrary permutation. Notice that the two sets S; = {m >
My : m(m) < My} and S, = {m < M : m(m) > My} have the same cardinality.
This allows us to choose a bijection 7 from S; onto S,. Now let 77 : N — IN be
given by 7t(m) = 1t(m) for m € N\ Sy and 7t(m) = 7(t(m)) for m € S;. Then 7t is
a permutation of the set {m € IN: m > M,}. Moreover, we have

Z Aper(m) = Z AmCit(m)-

m>M,: m>M,:
1(m)>M, 7t(m)>M,

Now, by the unconditionality of the basis (e,,),eny one has for some K, > 0

H Z amen(m)”:” Z Amit(m)

m>M,: m>M,:
nt(m)>M, 7t(m)>M, (2.8)
<K, Z AmCr(m) <CK; Z Amem||
m>M, m>M,

Altogether inequalities (2.6), (2.7) and (2.8) show inequality (2.5) with an
x-dependent constant C.

Now assume that the inequality does not hold. Then by the prior step just
proved there exists a strictly increasing sequence (px)xen Of positive integers
such that for every k € IN there exists a permutation 7ty of [px + 1, prs1 ] NIN
such that

Pk+1 Pk+1
H Z A, (m) <27k and H Z Apen| > 1.
m=py+1 m=p+1

Choose a permutation 7t: N — IN such that 7y, 41,5,,,] = 7k for all k € IN.
Then Y ;_; ayex(m) clearly converges, whereas ) ;' a,e,, does not. This is a
contradiction to the symmetry of the basis (e,,),;cN- O

There is also a slightly weaker notion of symmetry for bases, namely that
of a subsymmetric basis.

Definition 2.1.32 (Subsymmetric Basis). An unconditional basis (e,,;)enN
for a Banach space X is called subsymmetric if for every strictly increasing
sequence (my)reN of positive integers the subbasis (e, )ren is equivalent to

(em)melN-

We now observe that every symmetric basis is subsymmetric.
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Proposition 2.1.33. Every symmetric basis is subsymmetric.

Proof. Let (e,;)men be a symmetric basis for a Banach space and (my)gen @
strictly increasing sequence of positive integers. Let N € N and ay,...,ay € C.
Choose a permutation 7t such that 7(k) = my for all k < N. Then by the
symmetry of the basis (e,;),;eny and Proposition 2.1.31 there exists a constant
C > 0 independent of 7 such that

N N N
-1 -1
C Zakemk =C Zaken(k) < ayex
k=1 k=1 k=1
N N
D
k=1 =1

Hence, the two basic sequences are equivalent, which shows that (e,;),en 1S
subsymmetric. ]

The following proposition takes the role of the explicit calculations done
for the Haar basis in the proof of Theorem 2.1.28. We follow the proof found
in [Sin70, Proposition 23.2].

Proposition 2.1.34. Let X be a Banach space which admits an unconditional,
non-symmetric semi-normalized Schauder basis (e,,)en. Then there exists a
permutation of the basic sequence (ey,,),eNn which is not equivalent to the basic

sequence (€2,-1)meN-

Proof. Assume that every permutation of (e,,,),en is equivalent to the basic
sequence (€7,,,1)meN- Then (e3,,)men is @ symmetric basic sequence. A fortiori
by Proposition 2.1.33, (e3,;)men is subsymmetric, that is all subsequences of
(e2m)men are equivalent to (e;,,)men. In particular, one has

(e4m) ~ (e4m—2) ~ (e2m) ~ (e2m—1)-

Now, the mapping defined by

€2m-1 " €4m—2

€m > €am

is an equivalence between the two basic sequences (e,,)en and (€2,)meN-
Indeed, by the unconditionality of the basis one has for a sequence (a,,),,eN
that

0 0 0
E a, ey converges < E A2m—-1€2m-1 and E arm€oy CcOnverge.
m=1 m=1 m=1



2.1. The Schauder Multiplier Method

Using the equivalences (e;,,_1) ~ (e4,—2) and (e,,) ~ (e4,) this is equivalent to

[S.¢] (S (5]
E A—1€4m—> and > Ayl CONVerge & E A€, converge.

m=1 m=1 m=1

Altogether we have shown that (e,,),,cn is equivalent to (e;,,),en and there-
fore symmetric. However, this contradicts our assumptions made on (e;)eN-
Therefore there must exist a permutation 7 of the even numbers restricting
to the identity on the odd numbers such that (e (2m))men is not equivalent to

(€2m-1)meN- O

We are now ready to construct explicit counterexamples for general Banach
spaces that admit a non-symmetric normalized unconditional Schauder basis.

Theorem 2.1.35. Let X be a Banach space which admits an unconditional, non-
symmetric normalized Schauder basis (e,,),en. Then there exists a generator —A
of an analytic Co-semigroup (T(z)),ex,,, on X that is not R-bounded on [0,1].
More precisely, there exists a Schauder basis (f,,)men of X such that A is given by

D(A) = {x = iamfm : iZmamfm exists}

m=1 m=1

A( iamfm) = i 2" 4 fon-
m=1

m=1

Proof. Let t: IN — IN be a permutation as given by Proposition 2.1.34. We
now let

m = =
en(m-1) T €x(m) M €VeN

f/ _ {eT((m) m Odd {em m Odd

€m—1t €rm) MeEven

and

m —

£ = {eﬂ(m) +en(m1) modd {em +en(me1) Mmodd

Er(m) m even Er(m) m even

Then both f, and f, are block perturbations of the basis (e, ())men- Hence,
by Proposition A.1.11 both are Schauder bases for X. Since (e5,,_1)men and
(ér(2m))meN are not equivalent, there exists a sequence (a,,),,eN such that the
expansion for the coefficients (a,,),,en converges with respect to (e2,,,-1)meN
or (ex(2m))men but not for both. For the rest of the proof we will assume
without loss of generality that the expansion converges for (e;(2m))men (in
the other case simply replace f,, by f,; in the next steps). Let f,, := f,,. We
now define A as in the statement of the proposition. By Proposition 2.1.5,
—A generates an analytic semigroup (T(2)).ex,,- Assume that (T(t))0 is
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R-bounded on [0,1]. Then for each choice of (g,,),en C (0,1) the associated
semigroup (7 (t));>o — as defined in Definition 2.1.16 —is a Cy-semigroup on
Rad(X) by Theorem 2.1.18(a). We now show that

Zamen&m)@rm (2-9)
m=1
converges in Rad(X). Indeed, for fixed w € [0, 1] the series } ;)1 4,7 (@)es(2m)
converges by the unconditionality of (ex(2m))men as () € {~1,1} for every
m € IN. Hence, the above series defines a measurable function as the pointwise
limit of measurable functions. Moreover, if K denotes the unconditional basis
constant of (e (2m))menN, one has for each w € [0,1]

H Z rm(w)amen(Zm) < KH Zamen(Zm)
m=1 m=1

This shows that the series (2.9) lies in L;([0,1]; X). Using an analogous esti-
mate as (2.10), one sees that the sequence of partial sums Zln\izl AnCr(2m) ® T
converges to ) "1 @y er(2m) ® 'y in Rad(X). Notice that ex(2m) = fom — fom-1-
By the continuity of 7 (1), we obtain from (2.1) that

. (2.10)

(o]
D= T ) anlfon = fon-1) 9
m=1
N
. _n2m _n2m-1
= lim Zam (e 2 quZm_e 2 quZm—1)®rm
N—>oo
m=1
N
. _22mq _22mq _22m—1q
= lim Ze " A€y (2m) ® T + Ay (€ "—e Y€1 ® T
N>
m=1
exists in Rad(X). Now choose g, = ;;,,ili as discussed in Lemma 2.1.19. Then

after choosing a subsequence (Ny) there exists a set N C [0, 1] of measure zero
such that

Ny

1

1 Z(amrm(w)en(z,ﬂ) - amrm(a))ez,n_l) = (w) forallweN°¢ (2.11)
m=1

Applying the coordinate functionals for (e,,)en to (2.11) shows that for
w € N°¢ the unique coefficients ej,(h(w)) of the expansion of h(w) with respect
to (e;)men satisfy 5, (h(w)) = —%rm(w). Since (e;;)menN 18 unconditional,
Zumrm(a})em,l and therefore Zume;_m,l converge.
m=1 m=1
This contradicts our choice of (a,,),,en and therefore the semigroup (T(t));>0
cannot be R-bounded on [0, 1]. O
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Remark 2.1.36. Notice that in the spaces L,([0,1]) for p € (1,00) \ {2} every
unconditional basis is non-symmetric [Sin70, Theorem 21.1]. So the above
construction in particular works for the normalized Haar basis. This was
exactly done a little more explicitly in the proof of Theorem 2.1.28.

Remark 2.1.37. Let X be a Banach space which admits a non-symmetric un-
conditional normalized Schauder basis. Then we can choose two Schauder
bases (f,,)men and (f,/)men as in the proof of Theorem 2.1.35. It is a direct
consequence of Corollary 2.1.7 that if X is a Banach space with property (A),
then at least one of these two bases must be conditional. For if both bases were
unconditional, Proposition 2.1.6 would imply that both the Schauder multipli-
ers associated to the sequence (2),,cn with respect to the bases (f,,),en and
(f))men would have a bounded H*-calculus of angle 0. Moreover, if X has
property (A), Corollary 2.1.7 shows that this implies that both have maximal
regularity. This, however, contradicts the assertion of Theorem 2.1.35.

One can also obtain this result directly without any geometric restrictions
on the Banach space. Indeed, assume that both (f,,),.en and (f,)))nen are
unconditional. By the unconditionality of the two bases there exists a constant
M > 0 such that the projections P4 for the two bases are uniformly bounded
by M for all A € P(IN). In particular, one has

N N N
Amlr2m)|| = H E AmCr(2m-1) _( E Amen(2m) T amen(2m—1)) ‘
m=1 m=1
N N N N
_ ’ ’ -1 ’ /
= Zamf2m—l - E A fom|| = M PZ]N—I(Zamfzm—l - E amme)
m=1 m=1 m=1 m=1
N N
_ -1 ’ _ -1
=M amme—l =M H Zamlen—l .
m=1 m=1

Completely analogously, one has

N N N
H Zame2m—l = H Zamen(Zm) - (Zamen(Zm—l) + amen(Zm))
m=

m=1

N N
17
Hzamf ”mfzm 1 PZIN(Z“mfzm—Z”mfzm 1)
m=1 m=
N N
= AmCr(2m)||-
m=1

Both inequalities together show that the two basic sequences (€3,,-1)meN
and (e(2m))meN are equivalent. This, however, contradicts our choice of the
permutation 7. Therefore we have shown that a Banach space admitting an
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unconditional non-symmetric normalized basis has a conditional basis as
well.

We have almost proved the Kalton-Lancien Theorem. However, at the
moment we do not yet know which Banach spaces admit an unconditional
normalized non-symmetric basis. We will soon give a very satisfying answer
to this question. For this we need the following technical lemma.

Lemma 2.1.38. Let X be a Banach space with a normalized symmetric basis
(em)men and (u,,)men a normalized constant coefficient block basic sequence.
Then the closed subspace spanned by (u,,)eN s complemented.

Proof. For a strictly increasing sequence (p,,,)nenN let the constant block basic
sequence be given by

for some subset A,, of (p,,_1,pm] NIN. For each m € N let IT,,, denote the set
of all permutations 7t: IN — IN such that for each k € {1,...,m} the mapping 7
restricted to Ay is a cyclic permutation of the elements of Ay and n(j) = j for
all j U’ | Ay. For every n € I1,,, for some m € IN we let

T )_sj6) = Y_ajeny
j=1 j=1

It follows from Proposition 2.1.31 that there exists a constant C > 0 such that
IT,, Il < C for all m € N and m € IT,,,. We now define the following operator
which averages over all w € I1,,: for m € IN let

1
T A T

For k € N let IT,, be the set of all cyclic permutations of A;. Notice that for

Xax:Z] | ajej one has
W= Y Y Y aegr Y a
fn |Hm| K
nell,, k=1 jeAy JEULL Ak

m

—#Mzzmwz

- T
— [TL,u| Ak &
k=1 nelly, jeAk JEULL, Ag

g e Tar Y we

]EAk ]GAk ]EU;("ZIA]{
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Moreover, we have the estimate ||T,,|| < C. Now, for m € IN we let

P, (x) = i(d—kl Zaj)zej.

k=1 jEAk jEAk

It is easy to see that P, is a projection onto spanf{uy : k € {1,...,m}}. By the
unconditionality of the basis, we have for all m € IN

1Pl = 1P a, Toull < 1B 4 IIToll < €

for some C’ > 0. From this it follows directly that

=Sl L) o e L

k=1 jEAk jEAk
is a projection onto span{u,, : m € N} with ||P|| < C’. O

The following theorem due to J. Lindenstrauss and M. Zippin [LZ69, Note
(1) at the end] shows that our methods developed so far are applicable to all
Banach spaces with an unconditional basis with the exception of ¢y, ¢; and ¢,.
It is interesting to note that the theorem is not formulated in the main body of
the article and was later added in proof. This may be the reason for this result
to be not mentioned in the standard references on Banach space geometry
and to be not widely known. Nevertheless, the result can be proved using
known arguments. We adapt the proof on the uniqueness of unconditional
bases found in [AK06, Theorem 9.3.1].

Theorem 2.1.39 (Existence of Non-Symmetric Bases). Let X be a Banach
space with an unconditional basis. If X is not isomorphic to cy, €y or €,, then X
has a normalized unconditional, non-symmetric basis.

Proof. Assume that every normalized unconditional Schauder basis for X is
symmetric. Let (e,),en be a normalized unconditional, hence symmetric,
basis for X. We next show that (e,,),,cn is equivalent to all of its normalized
constant coefficient block basic sequences, i.e. (e,,),en is perfectly homoge-
neous (see also Definition A.1.8).

This can be seen as follows. Fix a normalized constant coefficient block
basic sequence (u,,),en With respect to (e,,),en that has infinitely many
blocks of size k for all k € N. That is

ISkl = {n € N : |supp u,| = k}| = o0

for every k € N. The main idea of the proof is that (u,,),,cn can be seen as
a universal constant coefficient block basic sequence that contains copies of
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all constant coefficient block basic sequences. The general case can then be
reduced to the case of this fixed block basic sequence. We now give the details.

Let Y be the closed linear span of the sequence (u,,),,en. Then Y is com-
plemented in X by Lemma 2.1.38. Moreover, the subsequence of (u,,),,en
which consists of all blocks whose supports have size 1 is, since (uy,)eN 1S
normalized, exactly a subsequence of the form (e, )ren of the basis (e,,)en-
Since (e,;)menN is symmetric and therefore a fortiori subsymmetric by Propo-
sition 2.1.33, this subsequence of (u,,),cn is equivalent to (e,;;)uen. This
shows that the closed subspace spanned by this sequence is isometrically
isomorphic to X. Moreover, by the unconditionality of (u,,),,cn this subspace
is complemented in Y. By the subsymmetry of the basis (e,,;),,en One has

XoX =[e,]®[en] = [erm]®[eam_1]=[em] = X.

In a similar spirit, we can split the natural numbers into two subsets S; and S,
such that both contain for every k € IN infinitely many blocks of size k. That is

1Skl :={n € Sy t[suppuy| =k} = |Sox| = {n € Sy : [suppu,| = k}| = 00

for all k € IN. Choosing bijections between S;; and Sy and respectively
between S,  and Sk, we see by the symmetry of the basis (e,,) e that [, ] nen
is isomorphic to [t ]nes, and [ty ]yes,- Then we have

YOV = [ty ] men ® [ty ] men = [um]me81 @ [um]me82 =~ [thy ] pen =Y.

Now by Petczynski’s decomposition technique (Theorem A.2.2) we get X ~ Y.
This shows that (u,,),,en can be identified with an unconditional basis of
X. Hence, by assumption, (#,,),en 1S symmetric. In particular, (u,,),,eN is
subsymmetric by Proposition 2.1.33 and therefore equivalent to all of its sub-
sequences. We have already seen above that (u,,),,cn contains a subsequence
which is equivalent to (e,;)en. This shows that (u,,),,cn is equivalent to
(em)men- On the other hand the fact that |S¢| = oo for all k € IN guarantees
by the symmetry of the basis (e,,),,cn that every normalized constant block
basic sequence is equivalent to a subsequence of (u,,),,cn, which in turn is
equivalent to (u,,),en. Altogether we have shown that every normalized
constant block basic sequence is equivalent to (e;,;),,en- This is exactly the
perfect homogeneity of (e,,)eN-

By Zippin’s characterization of Banach spaces with a perfectly homoge-
neous basis (Theorem A.1.9), X is isomorphic to ¢q or €, for some 1 < p < co.
However, we will see later in the self-contained Proposition 3.2.11 the well-
known result that for p € (1,00) \ {2} the spaces £, have a non-symmetric,
unconditional Schauder basis. O
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Remark 2.1.40. Conversely, all normalized unconditional bases in the spaces
co, {1 and ¢, are symmetric for the simple reason that all normalized un-
conditional bases in these spaces are unique up to equivalence [LT77, Theo-
rem 2.b.10].

Remark 2.1.41. With the so far developed results one can also show that each
Banach space X which admits a Schauder basis even has a conditional basis.
Indeed, if X admits an unconditional basis and is not isomorphic to ¢, ¢; or {5,
then by Theorem 2.1.39 X has a normalized, non-symmetric unconditional ba-
sis. In this case Remark 2.1.37 shows that X has a conditional basis. Moreover,
we have already essentially used in Proposition 2.1.20 and Proposition 2.1.21
that ¢y and ¢; have conditional bases. It therefore remains to show that ¢,
has a conditional basis. Since all separable Hilbert spaces are isomorphic, it
suffices to find a conditional basis for an arbitrary separable Hilbert space.
It follows from Example 2.1.15 that for suitable A,-weights w € A,(T) the
trigonometric basis with respect to the enumeration {0,-1,1,-2,2,...} is a
conditional basis for the Hilbert space L,([0, 27c], w).

Now, the main result of this section (published in [Fac14]) is an easy con-
sequence of our developed methods. The first part of the following theorem
is the famous result by Kalton and Lancien. The advantage of our method
is that we obtain a concrete representation of the counterexamples for the
maximal regularity problem.

Theorem 2.1.42 (Kalton-Lancien Theorem). Let X be a Banach space with an
unconditional basis. Assume that X has (MRP). Then X ~ €,. More precisely, for
X =€, there exists a Schauder basis (f,;)men for X such that —A given by

D(A) = {x = iamfm : iZmamfm exists}

m=1 m=1

(S ot 5 2700

m=1 m=1

generates an analytic Co-semigroup (T(z)),cx, , on X that is not R-bounded on
[0,1] and in particular does not have maximal regularity.

Proof. 1f X is not isomorphic to ¢( or ¢;, Theorem 2.1.39 shows that we can
apply Theorem 2.1.35 which yields the desired counterexample. In the cases
of X ~ ¢y or X ~ ¢; we showed the theorem by hand in Proposition 2.1.20 and
Proposition 2.1.21. t
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2.1.4.5 Non-R-Sectoriality of the Counterexamples

Let X be a Banach space with an unconditional basis which is not isomor-
phic to a Hilbert space. Notice that Theorem 2.1.42 gives us a rather explicit
method to construct a sectorial operator A with w(A) = 0 such that —A gen-
erates a semigroup which is not R-bounded on [0,1]. This shows by Theo-
rem 1.2.9 and the last part of Proposition 1.2.6 that wg(A) > 7. Note that this
does not yet show that A is not R-sectorial. In this subsection we want to
clarify that this is always the case.

For this note that if A is a Schauder multiplier associated to the sequence
(2"™)men, then for a > 0 the fractional powers A% are Schauder multipliers
associated to the sequences (2"'%),,cn. One can now directly verify that all the
above results also work with (2™),,cn replaced by (2"%),,en and the above
assertion is proved. As an alternative approach one can also directly mimic
the construction of the associated semigroup as introduced in Theorem 2.1.18.
We now present the details of this approach. We replace Theorem 2.1.18 by
the following analogue.

Proposition 2.1.43. Let A be an R-sectorial operator. Then there exists a constant
C > 0 such that for all (9,),en C IR_ the associated operator

N N
R: Zrnxn = Zrnan(anA)xn
n=1 n=1

defined on the finite Rademacher sums extends to a bounded operator on Rad(X)
with operator norm at most C.

Proof. Since A is R-sectorial, one has C := R{AR(1,A): A € R_} < co. Hence,
for all finite Rademacher sums we have by the definition of R-boundedness

N N
Zrnan(qn'A)xn S CHZrnxn . D
n=1 n=1

One now again uses the freedom in the choice of the sequence (g,,),en. We
maximize the difference between two entries of the multiplier sequences for
the resolvents. The following result then replaces Lemma 2.1.19. However,
for later use we work this time with a general sequence (y,,),en instead of
the particular sequence (2"),,en. We think that this also helps to understand
the special role played by lacunary sequences as (2"),,en-

Lemma 2.1.44. For y,, > y,,_1 > 0 consider the function d(t) := t[(t + y,_1) "' -

(t+7¥m)"')on R,. Then d has a maximum which is bigger than %%
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Proof. By the mean value theorem we have for some & € (y,,_1,¥,,) and all
t > 0 that

1 1 1 1

> — i
T teon =(Ym=Vm- 1)(”5)2_(7/;% Vm—l)(t+ym)2

One now easily verifies that the function t — (v, — ¥ 1) tﬂ/ > has a unique
maximum for ¢ = y,,. In particular, one has

17/m V-1
> BN S
rgl>a0><d( )= d(ym) = 2 Y T P O

We can now prove the following analogue of Theorem 2.1.35 dealing with
R-sectoriality.

Theorem 2.1.45. Let X be a Banach space which admits a normalized non-
symmetric unconditional basis. Then there exists a sectorial operator A with
w(A) = 0 which is not R-sectorial. More precisely, there exists a Schauder basis
(fm)men of X such that A is given by

D(A) = { iamfm : ZZmamfm ex1sts}

m=1

(Zamfm) Z2mamfm

m=

Proof. Choose the Schauder basis (f,;,),en and the sequence (a,,),cn as in the
proof of Theorem 2.1.35. We again only consider the case where the expansion
for (a,)men converges with respect to (ex(2m))men, but not with respect to
(€2m-1)meN- Let (gm)men C R_ be a sequence to be chosen later. Then it follows
from Proposition 2.1.43 that the operator R: Rad(X) — Rad(X) associated
to the sequence (q,,)nen is bounded. We now apply R to the element x =
Y =1 4mer(2m) ® Iy, of Rad(X). Because of ex(2m) = fom — fam—1 we obtain

R(Zum f2m me 1)rm) Zrmm—quZm_rm I f2m 1

3
I

= Z rmm—qm(erc(Zm) +exuo1)— rmm—qmeZm—l
o1 Am T V2m Am =~ V2m-1
S a 1 1
= Z rmm—qmen(Zm) + Tm“QO( - €2m-1-
= dm~7V2m Qm=V2m  9m — V2m-1

We now want to choose (g,,);en in such a way that the last term in the bracket
is large. Notice that if we set y,, = 2", then by Lemma 2.1.44 for t = y,,, one
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has t[(t+Vom_1) "L = (t+Vom) ] = %. Hence, for the choice g,, = —,,, we obtain

o1 1
R(x) = Zrmzamen(Zm) - rmgameZm—l'
m=1
As in the proof of Theorem 2.1.35 one deduces from the above equality that
Y =1 Ameam—1 converges. This contradicts the choice of (a,,),cn and therefore
A cannot be R-sectorial. O

2.1.4.6 Positive Analytic Semigroups without Maximal Regularity

Let X be a Banach space that admits a non-symmetric normalized uncon-
ditional Schauder basis (e,;),;eny and 7w: IN — IN a permutation of the even
numbers such that (e;(2m))men and (€2,-1)men are not equivalent. Recall
that the existence of such a permutation is guaranteed by Proposition 2.1.34.
We further can assume after equivalent renorming that the basis (e;;) e is
1-unconditional, i.e. the unconditional basis constant of (e,,),,cn is equal to
one. Then one can easily verify that (e,,),,en Via

x:ZamemZO < a, >0 forallmelN

the space X becomes a Banach lattice. For the basis (f,,),en of X given by

e m odd
fm:{ "

em—1+€r(m) M even

we again consider the Schauder multiplier associated to some real sequence
(Ym)men, that is AQY 5 _; @ fm) = Xme1 VmAmfm with its natural domain. We
now want to study the positivity of the formal semigroup (e74),5( generated
by —A with respect to the lattice structure induced by (e,,)uen. For the
positivity it is necessary and sufficient that e7*e,, > 0 for all m € IN and
all t > 0. For odd m this is satisfied because of e*e,, = e7*f,, = e nle,,.

However, if m is even, one has

e_tAem = e_tA(fTrl(m) - erfl(m)—l) = e_tA(fTrl(m) _frfl(m)—l)

— e_tyn’l(m)fnil(m) _ e_t‘)/rc’l(m)—l fﬂfl(m)—l

Y1 —1Y =1 ()1 (2.12)
=e " (m)(en‘l(m)fl +ey)—e T €r-1(m)-1
- (e_tyn’l(m) _ e_tyrf’l(m)—l )en—l (m)—l + e_tyn’l(m)em.

Therefore (e7*4),s¢ is positive if and only if y,, < y,,_1 for all even m € N,
Note that the usual lacunary sequences such as (2"),,cn used until now

do not have this property. However, in Lemma 2.1.44 and in the proof of
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Theorem 2.1.45 only the difference between y,, and y,,_; plays a role. This
allows us to obtain positive semigroups by rather easy modifications of the
original argument. The following result is new and has not been published
yet. Note that also this time the exact structure of the counterexamples to the
maximal regularity problem obtained with our new methods allows us to give
such precise information on the nature of the counterexamples.

Theorem 2.1.46. Let X be a Banach space which admits a normalized non-
symmetric 1-unconditional Schauder basis (e,,) nen. We consider X as a Banach
lattice with the order induced by (e,,;),eN. Then there exists a non-R-sectorial
operator A with w(A) = 0 such that —A generates a positive analytic Cy-semigroup
on X.

Proof. One proceeds as in the proof of Theorem 2.1.35. We again only con-
sider the case where the expansion for (a,,),en converges with respect to
(exe(2m))meN, but not with respect to (€31 )men- The other case can be proved
analogously. We use the following twisted version of the lacunary sequence

(2m)m€IN:

2m=1" 4 even.

2m+l 4 0dd
Vm =

The first elements of this sequence are given by y; =4, y, =2, 3 =16 and
y4 = 8. By definition, one has y,, < y,,_; for all even m € IN. By the above
observation this implies that the formal semigroup generated by the Schauder
multiplier associated to (—y,,)nen With respect to (f,,)men is positive. It
therefore remains to show that the multiplier A associated to (¥,,)men 1S
a sectorial operator which is not R-sectorial. For this let us consider the
sequence (e~ '7m),, o for t > 0. For its total variation one obtains

[o¢]
_$92m-1 _$92m _$92m-1 _$92(m+1)
2 o122 _ 22 122 2

m=1

<t i(zm 22m—1)e—t22m-1 n (22m+2 _ 22m—1)e—t22""1
m=1
fo%) 92m p2m
— 8t 92m=1 ,—t22"! StZJ 12" gs < StZJ e 152 4s
=1 2m-1 =1 22m 1

(o)

= 8t e 2 ds = 16e".

S

Of course, an analogous estimate can be made if one replaces (¥,,);en by
(75 )men for some a > 0. From these observations it follows as in the proof
of Proposition 2.1.5 that A is sectorial with w(A) = 0. Moreover, with our
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choice of (y,,,)men We can repeat the proof of Proposition 2.1.45 for the non-
R-analyticity of A involving only minor changes. Indeed using the same
notation, one sees that

N Al 1 1
Z "Tm————€x(2m) + 'mAmqm - €2m-1
Am = V2m Am =V2m  9m ~V2m-1

m=1

exists in Rad(X) for all (¢,)men € R_. Now choose g,, = —22""!. Then we
obtain that

o 1 1
Z Ermameﬁ(Zm) + grmamEZm—l-

exists in Rad(X). Now, one obtains a contradiction as in the proof of Proposi-
tion 2.1.5. This shows that A is not R-sectorial. O

We now give some concrete examples of spaces for which the above theo-
rem can be applied directly.

Example 2.1.47. For p,q € (1, 00) consider the UMD-spaces ¢,,(,) with their
natural lattice structure. Its ordering is induced by the standard unit vec-
tor basis (e;,)men Of £,(€;) for some enumeration of IN x IN. Clearly, £,({;)
contains both copies of £, and £, and therefore for p # g the basis (e,,;) e is
1-unconditional and non-symmetric. Hence for p # g, Theorem 2.1.46 yields
a sectorial operator A on ¢,({,;) with w(A) = 0 and wg(A) = co such that —A
generates a positive analytic Cy-semigroup.

Example 2.1.48. We will later see in Proposition 3.2.11 that for p € (1, 00) the
space {, admits after equivalent renorming a non-symmetric 1-unconditional
basis. If one uses the ordering induced by this basis, one sees with the help
of Theorem 2.1.46 that one can give {, after equivalent renorming a non-
standard lattice structure for which there exists a generator —A of a positive
analytic Cy-semigroup satisfying w(A) = 0 and wg(A) = oo. Further, these
arguments apply to every normalized unconditional basis of L,([0,1]) for
p € (1,00) as such bases are automatically non-symmetric [Sin70, Ch. II, Theo-
rem 21.1], a result whose proof partially relies on the methods used for the
counterexample on L,([0, 1]) presented before the proof of Theorem 2.1.28.
Furthermore note that the proof of this theorem implicitly contains a proof of
the special case that for p € (1, 00) the normalized Haar basis is non-symmetric.

2.1.4.7 Consequences of the Kalton-Lancien Theorem

The Kalton-Lancien Theorem (Theorem 2.1.42) for which we have given a
new proof implies that among further classes of Banach spaces, namely sepa-
rable Banach lattices and vector-valued L,-spaces for p € [1,00), the Hilbert
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spaces are the only spaces having the maximal regularity property (MRP).
This observation goes back to the original work [KL00] by N.J. Kalton and
G. Lancien. We can also deduce their results rather directly from our new
techniques developed so far.

As a first step we prove a partial extension of the Kalton-Lancien Theorem
for spaces with an unconditional Schauder decomposition. Before, however,
we need some preparatory results. The following observation will be useful at
several places.

Proposition 2.1.49. Let X be a Banach space with (MRP). Then every comple-
mented subspace of X has (MRP).

Proof. Let Y be a complemented subspace of X and let —A be the infinitesimal
generator of an analytic Cy-semigroup on Y. Then it is easy to see that
—B =-A®0 is the infinitesimal generator of an analytic Cy-semigroup on X.
Let f € L,([0,T];Y) C Ly([0, T]; X). Since X has (MRP), there exists a unique
ue Wpl([O;T];X) such that

1u(t)+ Bu(t) = f(1).

It follows from the equation that u only takes values in Y. Hence, we obtain
ue Wpl([O;T];Y) which implies that Y has (MRP). O

Remark 2.1.50. It follows from the Kalton-Lancien Theorem (see Theo-
rem 2.1.42) and Proposition 2.1.49 that no Banach space with an unconditional
basis which is not isomorphic to a Hilbert space can be complemented in a
space with (MRP). In the particular case of €, this is a special case of the fact
that €, is prime, i.e. every infinite-dimensional complemented subspace of £,
is isomorphic to £,.

A variant of the following lemma can be found in [KL00, Theorem 3.1]. We
give a proof based on the concept of associated semigroups, for a comparison
with the original statement see Section 2.4. In this step our approach is
conceptually different from the one of Kalton and Lancien.

Lemma 2.1.51. Let X be a Banach space with (MRP). Further let (A,,)meN be a
Schauder decomposition for X. Then for all sequences (x,,),eNn with ) 51 t,X, €
Rad(X) and x, €e RgA,,_1 ®RgA,, one has

(o) o0
HZrnAZn"" < CHZrnxn
n=1 ) n=1

Proof. For a positive non-decreasing sequence ()N let A be the Schauder

multiplier
A= Z VimlAm
m=1

Rad(X Rad(X)
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with its natural domain. By Proposition 2.1.5, A generates a bounded analytic
Co-semigroup (T(z)),cx,,, on X. Since X has the maximal regularity property
(MRP), it follows from Theorem 1.2.9 and Proposition 1.2.6 that (T(2)).cy, , is
R-analytic. It then follows from Proposition 2.1.18 that for all (g,,),en € (0,1)
the associated semigroup (7 (t));>o on Rad(X)

T(t)(irnxn) = irnT(qnt)xn
n=1 n=1

is well-defined and strongly continuous. In particular, for (x,),cn as in the
assumptions we obtain

T )= Yl Yo
n=1 bl (2.13)
Zrn —V2n- lanz 1 + e_)/Zn%Azn)xn_

n=1

In particular, on the one hand, choosing y,,, = 2" and ¢q,, = ;2%, the right hand
side of (2.13) becomes

irn( A+ AQH) (2.14)

=1

=

On the other hand, choosing ¥»,, = ¥2pu—1 = 2°™ and gq,, = %, the right hand

side of (2.13) becomes

irn( ~Ag + AM) (2.15)

=1

=

Subtracting (2.14) from (2.15) and using the boundedness of both associated
semigroups, we see that for some C > 0 one obtains the desired estimate

(o] (o8]
E 1oy X,|| < C” > 7% ||-
n=1 n=1

We can now prove the announced variant of the Kalton-Lancien Theorem
for unconditional Schauder decompositions [KL0O, Theorem 3.5]. Here our
new approach makes the proof very natural as it only involves Rademacher
averages.

O]

Proposition 2.1.52. Let X be a Banach space with an unconditional Schauder
decomposition (A,,)men. Further assume that X has (MRP). Then X is isomorphic
to & RgA,,.
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Proof. Let (e,;)men be a normalized sequence such that e,, € RgA,, for all
m € IN. Let Y be the closed linear span of {e,, : m € IN}. Then (e,;)en is @
normalized unconditional Schauder basis for the Banach space Y. By the
Hahn-Banach theorem, for each m € IN, there exists a norm-one projection
ey, onto the one-dimensional subspace spanned by e,. We now show that
that the series ), e, converges in the strong operator topology towards a
projection onto Y. For this let D;,, { = (1 —¢},)A,, and D,,, = e}, A, for m € IN.
Then (D,;,) e is a family of projections satisfying D,,D,,, = 0 for all m # n and
x =) 1 Dpyx for all x € X. Hence, (D,,)men is @ Schauder decomposition
for X. We now apply Lemma 2.1.51 to the decomposition (D,,),en and
obtain a constant C > 0 such that for all (x,),en With ) 7, 7,,x,, € Rad(X) and
x, € RgD;, 1 ®D;, =RgA, one has

(o] (o] o
H E rnen x| = H E TuDoyx,|| < CH E Xy
n=1 n=1 n=1

Now, as in the proof of Theorem 2.1.35, one sees that for all x € X the series
Y o1 TaAyx converges in Rad(X) by the unconditionality of the Schauder
decomposition (A,,),,en. Hence, it follows from inequality (2.16) and the
unconditionality of the Schauder decomposition (A,,).en that

. (2.16)

ALl -l o], <[
— ex|| == e, A x| < rnen,x
K ; x K ; X ,; Rad(X)
<oy ran| <cx|y aw| =kl
n=1 Rad(X) n=1 X

where K denotes the unconditional basis constant of the decomposition
(Ay)men- This shows that ) 7 e, = ) 2 e,A, defines a bounded projec-
tion onto Y. Hence, Y is a complemented subspace of X and therefore has
(MRP) by Proposition 2.1.49. Since Y has an unconditional basis, it follows
from the Kalton-Lancien Theorem (Theorem 2.1.42) that Y ~ ¢,. In particular,
(em)men is equivalent to the standard Hilbert space basis of ¢,. Since this
argument holds for arbitrary normalized sequences (e,,),eny With e, € RgA,,,
we obtain a bijection between X and EBZ RgA,, via x — (A,,x),,eny Which is an
isomorphism of Banach spaces by the open mapping theorem. O]

Now the following characterizations of spaces with (MRP) follow exactly
as in [KL0O]. We need the following characterization of UMD-spaces due to
T. Coulhon & D. Lamberton [CL86].

Proposition 2.1.53. Let X be a Banach space and (T (t));>o the vector-valued
extension of the Poisson semigroup on L,(IR; X), i.e.

(T()f)(x) = %J_ ﬁf@)d}’-
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Then the negative generator of (T(t));>o has maximal regularity if and only if X is
a UMD-space.

This allows us to prove the following characterization of spaces with
(MRP) in the class of vector-valued Lebesgue spaces [KL00, Theorem 3.6]. It
is remarkable that for this result no assumptions on the Banach space X are
needed.

Theorem 2.1.54. Let X be a Banach space and p € [1,00). Then L,([0,1]; X) has
(MRP) if and only if p = 2 and X is isomorphic to a Hilbert space.

Proof. It follows from the result of D. Simon (Theorem 1.2.12) that L,([0,1]; H)
has (MRP) for every Hilbert space H. For the converse note that L,([0,1]) is
complemented in L, ([0, 1]; X). Hence, by Proposition 2.1.49 the space L,([0,1])
has (MRP) as well, which can only hold for p = 2 (for p # 1 this follows from
the Kalton-Lancien Theorem (Theorem 2.1.42) or the explicit counterexam-
ples constructed in Section 2.1.4.3, for p = 1 one can use the fact that {;
which does not have (MRP) by the counterexample given in Section 2.1.4.2 is
complemented in L ([0, 1])). Further, it follows from Proposition 2.1.53 that X
is a UMD-space. A fortiori, by Theorem A.3.10, the space X is K-convex which
means that Rad(X) is a complemented subspace of L, ([0, 1]; X). Hence, Rad(X)
has (MRP) by Proposition 2.1.49. For m € IN let A,,: Rad(X) — Rad(X) be
given by

1
A, (x) = rmfo 1 (£)x(t)dt,

the projection onto the m-th component. Then (A,,),,en clearly is an uncondi-
tional Schauder decomposition of Rad(X). Hence, by Proposition 2.1.52, one
has Rad(X) =~ ¢,(X). This means that X has both type and cotype equal to 2.
By Kwapiet’s characterization A.3.5, X is isomorphic to a Hilbert space. [

Further, (MRP) characterizes Hilbert spaces in a broad class of Banach
lattices [KL0O, Theorem 3.7]. For a very short overview of the theory of Banach
lattices we refer to Appendix A.4.

Theorem 2.1.55. An order continuous Banach lattice has (MRP) if and only if it
is isomorphic to a Hilbert space.

Proof. Let X be an order continuous Banach lattice. By [LT79, Lemma 1.b.13]
it suffices to show that every normalized sequence of disjoint elements in
X is equivalent to the standard unit vector basis of ¢,. Let (x,),en C X be
such a sequence. By taking the disjoint ideals generated by the elements
(X,)nen, one obtains an unconditional Schauder decomposition (A,,;),,en of
X such that x,, € RgA,, for all n € IN (for an analogous argument see [LT79,
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Proposition 1.a.9]). Now, Proposition 2.1.52 shows that X ~ EBZ?2 RgA,,. Hence,
(x)nen is equivalent to the standard unit vector basis of ;. O

In particular, for separable Banach lattices one obtains a complete charac-
terization [KLO0O, Corollary 3.8].

Corollary 2.1.56. A separable Banach lattice has (MRP) if and only if it is iso-
morphic to a Hilbert space.

Proof. Let X be a separable Banach lattice. If X is order continuous, the
assertion follows from Theorem 2.1.55. If X is not order continuous, it follows
that X is not o-order continuous, as otherwise the separability of X would
imply the order continuity of X. Moreover, X cannot be o-complete either,
as otherwise X must contain a copy of €., [LT79, Proposition 1.a.7], which is
impossible. By a result of P. Meyer-Nieberg [LT79, Theorem 1.a.5], the space
cp is contained in X. Since X is separable, it follows from Sobczyk’s Theorem
[LT77, Theorem 2.f.5] that c( is complemented in X. Now, Proposition 2.1.49
implies that ¢y has (MRP), which contradicts the counterexample given in
Section 2.1.4.2. O

2.1.5 A First Application: Existence of Schauder Bases which are
not R-Bases

In this and the following section we give further applications of the techniques
developed to give explicit counterexamples to the maximal regularity problem.
The first application deals with the existence of Schauder bases (on classical
function spaces) that are not R-bases. We will see that our methods directly
apply to this open problem.

We start by introducing the necessary terminology. Consider a Schauder
basis (e,;,)men for some Banach space X. Then for N € IN one has the partial
sum projections Py: X — X with respect to the expansion given by

00 N
PN( Zumem) = Zamem.

m=1 m=1

It follows from the uniform boundedness principle that the family (Py)yen
is uniformly bounded in operator norm [AKO06, Proposition 1.1.4]. One can
now consider Schauder bases for which the associated family (Py)nyen is even
R-bounded.

Definition 2.1.57. A Schauder basis (e,,),en of a Banach space X is called an
R-basis if the set {Py : N € N} C B(X) of projections is R-bounded.
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On sufficiently regular Banach spaces unconditional Schauder bases are
always R-bases. Indeed, the following result holds which is a special case
of [KWO01, Theorem 3.3 (4)].

Theorem 2.1.58. Let (e,,)nen be an unconditional Schauder basis for a Banach
space with property (A). Then (e,,)meN is an R-basis.

In particular, the above theorem holds for all L,-spaces with p € (1,00)
or more generally for all UMD-spaces. We now use our techniques to give
explicit examples of Schauder bases that are not R-bases. This goes back
to [Fac14]. In particular, the theorem below applies for the spaces L,([0,1])
for p € (1,00) \ {2} and answers an open problem stated at the end of [KLM10].

It is remarkable that most of the examples of Schauder bases (as the Fourier
basis) which appear in analysis are R-bases. However, the result shows that
one can always construct a basis which is not an R-basis.

Theorem 2.1.59. Let X be a Banach space that admits an unconditional, non-
symmetric normalized Schauder basis (e,,)meN. Then X has a Schauder basis that
is not an R-basis.

Proof. As in the proof of Theorem 2.1.35 we choose the Schauder bases
f.n respectively f,/. Again, we only consider the case of f,,. Suppose that
(fi)men is an R-basis and let (Py)nen be the associated projections. Then
Z%Zl T Xy > Z%Zl TuPom—1%, extends to a bounded operator P € B(Rad(X)).
In particular, we have

N N N
- Zrmamem_l =- Zrmamfz,m—l = ZrmamPZm—l (fz,m _fz,m—l)
m=1 m=1 m=1
N

N
= Tmlm Pom—1 en(2m) = p(zrmamenﬁm))-

m=1 m=1

The boundedness of P implies that the left hand side converges in Rad(X)
whenever er\iﬂ "'m@mer(2m) converges for N — oo, which exactly as in the
proof of Theorem 2.1.35 yields a contradiction. O

2.1.6 A Second Application: Sectorial Operators whose Sum is
not Closed

The aim of this section is to present a connection between the maximal regu-
larity problem and the problem of the closedness of the sum of two sectorial
operators. We will show that the explicit counterexamples to the maximal
regularity problem constructed so far directly yield explicit counterexamples
for a variant of the closedness of the sum problem for which until now no
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explicit counterexamples have been known on UMD-spaces. Before discussing
the counterexample, we start with some fundamental results.

Given two (densely defined) closed operators A and B on a Banach space X,
one can define their sum A + B as the linear operator with domain D(A + B) =
D(A) N D(B). In general, the sum A + B may not even be closable. How-
ever, for sectorial operators one has the following partial positive result
[DPG75, Théoreme 3.7] (see [Pri93, Theorem 8.5] for the spectral inclu-
sion). In the following we say that two sectorial operators A and B commute if
R(A,A)R(A,B) = R(A, B)R(A, A) for one (equivalently all) A € p(A) N p(B).

Theorem 2.1.60. Let A and B be two commuting sectorial operators on a Banach
space with
w(A)+ w(B) < .

Then the sum A+ B is closable and for its closure A + B one has the spectral inclusion

o(A+B)Ca(A)+0o(B).

It is, however, far less clear whether the above sum is closed. There are
two celebrated sufficient conditions for the closedness of the sum of two
commuting sectorial operators.

Theorem 2.1.61. Let A and B be two commuting sectorial operators on a UMD-
space. Suppose further that one of the two following conditions holds.

(a) wpip(A)+ wprp(B) <.
(b) wy~(A)+ wgr(B) <™.
Then the sum A+ B is closed.

The closedness under the first assumption is the statement of the Dore—
Veni Theorem [DV87, Theorem 2.1], whereas the second assumption is suf-
ficient by a theorem of L. Weis and N.J. Kalton [KWO01, Theorem 6.3]. It is
now a natural question whether one of the above conditions on the sectorial
operators can be weakened. There are several possibilities, among them are:

(a) wgr(A)+wgr(B)<m,
(b) wpip(A)+wgr(B) <,
(c) wy~(A)+ w(B) <.

We will see that in general one cannot obtain the closedness of the sum under
one of the three above assumptions. This gives a complete description of all
possible cases that can be obtained by combining the angles w(:), wg(-), wgp(-)
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and wy«(-) for the operators A and B as each combination is a special case
either of the positive results or the counterexamples.

We start with (a). In the Hilbert space case this assumption reduces to
w(A)+ w(B) < 1. A classical counterexample by J.-B. Baillon and P. Clément
[BCI1, Example B] shows, however, that this assumption is not sufficient for
the sum to be closed.

For (b) observe that in the Hilbert space case the assumption is equivalent
to wy~(A) + w(B) < 00 or wy~(A)+ wgr(B) < 0o, which implies the closedness
by Theorem 2.1.61(b). This Hilbert space result is also a part of the Dore—Veni
Theorem [DV87, Remark 2.11]. On L,-spaces, for p € (1,00) \ {2}, condition (b)
is, however, not sufficient as shown by a counterexample of G. Lancien [Lan98,
Theorem 2.1 1)]. Let (ey,)uen be the trigonometric basis of L, ([0, 27t]) and let A
be the Schauder multiplier associated to the sequence (2),,cz. We have seen
in Example 2.1.11 that A is a sectorial operator with wgp(A) = 0 that does not
have a bounded H*-calculus. Since the (partial) trigonometric basis (e,;)eN
is conditional, there exists a sequence (&,,)men € {0, 1} such that the Schauder
multiplier with respect to (&,,),en is not bounded. Lancien then considers
the Schauder multiplier associated to the sequence (b,,),,cn, where b,, = 1 for
m <0,and b, = 2" if ¢(m) = 1 and b,, = 2"~! if £(m) = —1. By Proposition 2.1.5
the operator B is sectorial with w(B) = 0. He then shows that the sum of the
two operators A and B is not closed. To obtain a counterexample to the
closedness of the sum under assertion (b), it therefore suffices to additionally
verify that B is R-sectorial with wg(B) = 0. By the boundedness of the Hilbert
transform and an analogous calculation as in Example 2.1.15, this reduces
to the fact that the sequence (%)meﬂ\l satisfies the assumptions of the
Marcinkiewicz multiplier theorem (Trfleorem 2.1.14) uniformly in 6 € [0, 27)
and in |a] € [1, 2], which can be checked directly.

It remains to find a counterexample to the closedness of the sum under
the assumption (c). We can directly obtain an explicit counterexample as
a consequence of the constructed explicit counterexamples to the maximal
regularity problem. For this we now explain the connection between maximal
regularity and the problem of the closedness of the sum of two sectorial
operators as already indicated in the introduction of this thesis. Let X be
a Banach space, T > 0 and -B = % the infinitesimal generator of the shift
semigroup (S(t));»0 on L,([0, T]) with domain D(B) = {u € Wpl([(),T]) :u(0) =
0}. Then for all p € (1,00) the sectorial operator B has a bounded H*(Xy)-
calculus for all 6 € (5, 7) because (S(t))¢»o clearly has a strict dilation to a
shift group on L,(IR). One can now consider the vector-valued extension of
the shift semigroup (S(f) ®Idx)»0 on L,([0, T]; X). Its negative infinitesimal
generator is given by B = B®Idy and if X is a UMD-space, it has a bounded
H*(Xg)-calculus for all 6 € (5, ) by the same dilation argument. Now, let



2.1. The Schauder Multiplier Method

further A be a sectorial operator with domain D(A) which is a Banach space
when endowed with its graph norm. We can now lift A to a multiplication
operator A by letting

D(A) = L,([0,T]; D(A))
(Au)(s) :== A(u(s)).

Then —A generates the Cy-semigroup (e7*u)(s) = e (u(s)) for s € [0, T] and
one has w(A) = w(A). One directly sees that the Cy-semigroups (e‘tA)tZO
and (e7'5);5o commute, which implies that the sectorial operators A and B
commute. Since the intersection of the domains D(.A) N D(B) is dense in
L,([0,T];X) and is left invariant by the product semigroup, it follows that
D(A)N D(B) is a core of the generator of the product semigroup. Hence, the
negative generator of the product semigroup is given by the closure of A+ B.
We are now interested in the following equivalent characterization of maximal
regularity.

Theorem 2.1.62. Let X be a Banach space and —A the infinitesimal generator of a
Co-semigroup on X. Then the following are equivalent.

(i) —A has maximal regularity, i.e. for all f € L,([0, T]; X) there exists a unique
u € Ly([0, T]; D(A)) N W, ([0, T]; X) with

{u<t>+A<u<t>> = f(t)

(ii) The operator A+ B is closed.

Proof. Note that the intersection of the domains D(.A) N D(B) consists of those
ue Wpl([O, T];X)NLy([0;T]; D(A)) that satisfy u(0) = 0. Since one has 0 € p(B),
it follows from the spectral inclusion of Theorem 2.1.60 that 0 ¢ o(A + B),
i.e. the closure of A + B is invertible. Now, if A has maximal regularity, it
follows that D(A) N D(B) is mapped bijectively onto L, ([0, T]; X). This shows
that D(A + B) = D(A + B), i.e. the sum A + B is closed. Conversely, if A+ B is
closed, it is invertible and maximal regularity follows immediately. O]

Now, the constructed explicit counterexamples to the maximal regularity
problem yield directly the first explicit counterexamples to the problem of the
closedness of the sum of two sectorial operators on UMD-spaces, for example
on L,-spaces.
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Corollary 2.1.63. On L,([0,1];L,([0, 1]) ~ L,([0, 11?) let A be the multiplication
operator obtained from the counterexample to the maximal regularity problem
given in Theorem 2.1.28 and let B = % ®1d be as before. Then one has

wi(A) + @(B) = 5

and the sum A+ B is not closed.

2.2 Using Pisier’s Counterexample to the Halmos
Problem

We now present a counterexample to the last implication from the intro-
duction of this chapter which has been left open, namely that there exists
a Cy-semigroup with generator —A and wy~(A) = 7 which does not have
a loose dilation. The key ingredient here is G. Pisier’s counterexample to
the Halmos problem [Pis97] (for a more elementary approach towards the
counterexample see [DP97]). We now shortly explain the content of this
counterexample. Pisier showed that there exists a Hilbert space H and an
operator T € B(H) that is polynomially bounded, that is for some K > 0 one has
lp(T)ll < K'supy, <, |p(2)| for all polynomials p € P, but that is not similar to a
contraction, i.e. there does not exist any invertible S € B(H) such that S7!TS
is a contraction.

Using an observation of C. Le Merdy made in [LM98] and the theory of
operator spaces (for a short overview see Appendix B), Pisier’s counterexample
gives the following example concerning dilations. This seems to be new, but
I have learned from a personal communication that this was also known to
C. Arhancet. The following proof can also be found in [Facb].

Theorem 2.2.1. There exists a generator —A of a Cy-semigroup (T (t));>o on some
Hilbert space with wpe~(A) = 5 such that (T(t));»( does not have a loose dilation
in the class of all Hilbert spaces.

Proof. Let T and H be as above from Pisier’s counterexample to the Halmos
problem. It is explained in [LM98, Proposition 4.8] that the concrete struc-
ture of T allows one to define A = (I + T)(I - T)~! which turns out to be a
sectorial operator with w(A) = 7. Moreover, it is shown that —A generates
a bounded Cy-semigroup (T(t));>o on H. Further, it follows from the poly-
nomial boundedness of T with a conformal mapping argument that A has a
bounded H*-calculus with wy«~(A) = 7 [LM98, Remark 4.4]. Now assume
that (T(t));>o has a loose dilation in the class of all Hilbert spaces. Then
it follows from Dixmier’s unitarization theorem [Pau02, Theorem 9.3] that
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(T(t))t>0 has a loose dilation to a unitary Cy-group (U(t));cr on some Hilbert
space K, i.e. there exist bounded operators J: H — K and Q: K — H such that

T(t)=QU(t)] forall t > 0.

Now let A be the unital subalgebra of L,,([0, o)) generated by the functions
x > e~ for t > 0, where we identify elements in L.,([0, c0)) with multiplica-
tion operators on the Hilbert space L,([0,0)). This gives A the structure of an
operator space. We now show that the algebra homomorphism

u: A— B(H), et T(t)

is completely bounded with respect to this operator space structure for A.
Indeed, observe that by Stone’s theorem on unitary groups and the spectral
theorem for self-adjoint operators there exists a measure space () and a mea-
surable function m: () — IR such that after unitary equivalence U(t) is the
multiplication operator with respect to the function e for all t € R. Now

for n € N let [f;;] € M,(A) with f;; = Yy la )e=i_ Then one has

N o N

”u"([ﬂj])”M"(B‘X)) B H[Zag‘l]):r(t")]HMmﬂx)) ) H[Q;ai‘])U(tk”]HMﬂw(x»
N

<||Q||||]|I“[Zak iten] (3" ]
k=1

=W, 20,00

< |l IIQIISUP

M, (B(L>(€0)))

M,

Here we have used the (isometric) identification of the two C*-algebras
M, (Loo(Q)) = L=(Q;M,,) for all n € IN. We deduce from Theorem B.0.11
that (T(t));>o is similar to a semigroup of contractions. However, since by
construction T is the cogenerator of (T(t));»o, this holds if and only if T is
similar to a contraction [SNFBK10, III,8]. This is a contradiction to our choice
of T. O

2.3 Using Monniaux’s Theorem

In this section we present a new alternative method to construct counterex-
amples to certain questions concerning the introduced regularity properties
of sectorial operators. The method is based on a theorem of S. Monniaux.
Recall that if A is a sectorial operator with dense range and bounded imagi-
nary powers, then t > A is a strongly continuous group (Proposition 1.5.2).
Conversely, one may ask which Cy-groups can be written in this form. The
next theorem of S. Monniaux [Mon99, Theorem 4.3] (for an alternative proof
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see [Haa07, Section 4]) in its generalized version proved by M. Haase [Haa03,
Theorem 5.2] gives a very satisfying answer to this question.

For its formulation we need to consider the following straightforward
analogue of sectorial operators on strips. For details see [Haa06, Chapter 4].

Definition 2.3.1. For w > 0let H,, := {z € C: |Imz| < w} be the horizontal strip
of height 2w. A closed densely defined operator B on some Banach space X is
called a strip type operator of height @ > 0 if o(B) C H,, and

sup{||R(A,B)||: Im A| > w+ €} < o0 for all € > 0. (Hy)
Further, we define the spectral height of B as wg(B) := inf{w > 0: (H,,) holds}.

On UMD-spaces one then obtains the following correspondence. Recall
that the group type of a Cy-group (U(t));cg on some Banach space is the
infimum of those w > 0 for which t > e~@I!l||U(t)|| is bounded on the real line.

Theorem 2.3.2. Let X be a UMD-space. Then there is an one-to-one correspon-
dence

range, BIP and wgp(A) <™ iB ~ Cy-group of type <7

eB

{ A sectorial operator with dense } log A { B strip type operator with }

Proof. For the surjectivity let B be a strip type operator such that i B generates
a Cyp-group (U(t))ier of type < . Then by Monniaux’s theorem [Mon99,
Theorem 4.3] there exists a sectorial operator A with dense range and bounded
imaginary powers such that A = U(t) for all t € R. Moreover, (U(t));eR is
generated by ilogA. It then follows from the uniqueness of the generator that
B=1logA.

For the injectivity assume that log A = logB for two sectorial operators
from the left-hand side. Then by [Haa06, Corollary 4.2.5] one has A = ¢l°84 =
elosB = B, O

Remark 2.3.3. In [Haa03] M. Haase shows that for every strip type operator
B with wg(B) < 7 such that iB generates a Cy-group (U(t));cr there exists a
sectorial operator A with A’ = U(t) for all t € R. If one chooses B as above
such that (U(t));cr has group type bigger than 7 (which is possible on some
UMD-spaces) one sees that there exists a sectorial operator A with wgp(A) > 7.
By taking suitable fractional powers of A one then obtains a sectorial operator
A with a)(A) < a)BH)(A) < Tt.

Because of the above results, for a moment, we restrict our attention to
a UMD-space X. A particular class of sectorial operators with dense range
which have bounded imaginary powers are those with a bounded H-calculus.
Recall that a sectorial operator A on X with dense range and a bounded H*-
calculus satisfies wg(A) = wpp(A) = wy~(A) by Theorem 1.3.4. In particular
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one has wgrp(A) < 7. For sectorial operators with a bounded H*-calculus one
can formulate an analogous correspondence which essentially follows from
Monniaux’s theorem and an unpublished result of N.J. Kalton & L. Weis.

In the following we call for a Cy-group (U(t));cg on some Banach space
the infimum of those w > 0 for which R{e‘“"t| U(t):te IR} < co the R-group

type of (U(t))ter-

Theorem 2.3.4. Let X be a Banach space with Pisier’s property (). Then there is
an one-to-one correspondence

A sectorial operator with dense | logA | B strip type operator with iB ~
> .
range and bounded H*™-calculus Co-group of R-type <1

eB

Proof. Let A be a sectorial operator with dense range and a bounded H-
calculus. Then it follows from Theorem 1.3.3 and the fact that the norm of
A At in H®(Xg) is bounded by exp(|t|0) for t € R that {e10A! : t € R} is
R-bounded for all 6 € (wp«(A), 7). In particular (A’),cg is of R-type < .
Conversely, let B be from the right hand side. It then follows from an
unpublished result in [KWb] (see [Haall, Theorem 6.5] for a proof, here one
has to additionally use the equivalence of R- and y-boundedness for Banach
spaces with finite cotype) that the R-type assumption implies that B has a
bounded H*®-calculus on some strip of height smaller than 7. By [Haa06,
Proposition 5.3.3], the operator e? is sectorial and has a bounded H*-calculus.
The one-to-one correspondence then follows as in the proof of Theo-
rem 2.3.2. O

From the above theorems it follows immediately that on L, for p € (1,00) \
{2} there exist sectorial operators with bounded imaginary powers which do
not have a bounded H*-calculus.

Corollary 2.3.5. Let p € (1,00) \ {2}. Then there exists a sectorial operator A on
L,(R) with dense range and w(A) = wprp(A) = 0 that does not have a bounded
H*-calculus.

Proof. Let (U(t))ter be the shift group on L,(R). One sees with the same
argument as in Example 1.2.7 that the set {U(t) : t € [0, 1]} is not R-bounded.
By Theorem 2.3.2 there exists a sectorial operator A with dense range and
bounded imaginary powers such that A = U(t) for all t € R. Then one has
w(A) < wgp(A) = 0. However, by construction, A’ is not R-bounded on
[0,1] and therefore Theorem 2.3.4 implies that A cannot have a bounded
H®*-calculus. O

Note that the constructed counterexample is exactly the same as Exam-
ple 2.1.11 which was obtained by different methods except for the fact that
we worked in Example 2.1.11 with the periodic shift. Of course, we could
have started with the same periodic shift in Corollary 2.3.5.
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2.3.1 Some Results on Exotic Banach Spaces

Although from the point of view of applications, the main interest lies in the
properties of sectorial operators defined on spaces built from L,-spaces, there
are good reasons to study these operators in more general Banach spaces. On
the one hand such studies can help to extract the essential ingredients in the
proofs of results which are important in the L,-case and therefore can be a
guide for streamlined proofs and presentations of the core theory. On the
other hand, even counterexamples on rather exotic Banach spaces may lead to
the insight that certain approaches are doomed for failure. In this spirit we
want to study shortly sectorial operators in exotic Banach spaces. In the past
twenty years Banach spaces have been constructed whose algebra of operators
have an extremely different structure compared to those of the well-known
classical Banach spaces. The most prominent examples are probably the
indecomposable Banach spaces.

Definition 2.3.6 (Hereditarily Indecomposable Banach Space (H.I.)). A Ba-
nach space X is called indecomposable if it cannot be written as the sum of
two closed infinite-dimensional subspaces. Further, X is is called hereditarily
indecomposable (H.I.) if every infinite dimensional closed subspace of X is
indecomposable.

It is a deep result of B. Maurey and T. Gowers that such (separable)
spaces do actually exist [GM93]. We are now interested in the properties
of Cy-semigroups on such spaces. We will use the following theorem proved
in [RR96, Theorem 2.3].

Theorem 2.3.7. Let X be a H.I. Banach space. Then every Cy-group on X has a
bounded generator.

The above result can be directly used to show the following result on
sectorial operators with bounded imaginary powers.

Corollary 2.3.8. Let A be a sectorial operator with dense range and bounded
imaginary powers on an H.I. Banach space. Then A is bounded.

Proof. Let A be as in the assertion. Note that (A'f),cg is a Cy-group with
generator ilog A. By Theorem 2.3.7 log A is a bounded operator. This implies
that ¢!°84 = A is bounded. O]

In particular, on H.I. Banach spaces the structure of sectorial operators
with a bounded H*-calculus is rather trivial. The following observation
seems to be new. In a certain sense it contrasts the meta-mathematical obser-
vation that on most spaces all common examples of sectorial operators have
a bounded H*-calculus or at least bounded imaginary powers. Notice that



2.4. Notes & Open Problems

there exist H.I. Banach spaces with a conditional basis. In this case there exist
unbounded generators of analytic semigroups.

Corollary 2.3.9. Let A be an invertible operator on a H.I. Banach space. Then the
following assertions are equivalent.

(i) Ais a bounded operator.
(ii) A has bounded imaginary powers.

(iii) A has a bounded H*®-calculus.

Proof. The implication (i) = (iii) follows from Example 1.3.5, (iii) = (ii)
always holds as discussed in Section 1.5 and the implication (ii) = (i) follows
from Corollary 2.3.8. O]

2.4 Notes & Open Problems

We start with some comments on Kalton and Lancien’s original approach to
the maximal regularity problem. The key result obtained by the authors from
which all the other results are deduced is the following [KL00, Theorem 3.1].

Proposition 2.4.1. Let X be a Banach space with (MRP). Further let (A,,)men be
a Schauder decomposition for X. Then there exists a constant C > 0 such that for
all N e N and all xq,...,x5 € RgAy,_ 1 ®RgA,,, one has

1 1/2 1 & 1/2
— Appxpe®t|ldt]  <Cl=— 2|
(m f Z <5 Z

Notice that it follows from an inequality going back to G. Pisier [Pis78a,
Théoreme 2.1] that this statement is actually equivalent to the statement
of Lemma 2.1.51. Our approach is however totally different in the way
one deduces the existence of counterexamples to the maximal regularity
problem. In fact, Kalton and Lancien use Proposition 2.4.1 to show that
the closed subspace spanned by an arbitrary block basic sequence of an
arbitrary permutation of an arbitrary unconditional basis of a Banach space
with (MRP) is complemented. It then follows from a result of J. Lindenstrauss
and L. Tzafriri that such an unconditional basis is equivalent to the standard
unit vector basis of ¢ or £, for some p € [1,00). The fact that there exist two
non-equivalent unconditional bases on ¢, for p € (1, c0) (Proposition 3.2.11)
and explicit computations excluding the spaces ¢y and ¢; then finish the
original proof of Theorem 2.1.42.

The use of the abstract result of Lindenstrauss and Tzafriri makes it almost
impossible to construct explicit counterexamples to the maximal regularity
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problem. This was our main motivation to find a new approach to the maximal
regularity problem which at least at the level of the constructed semigroup
uses explicit calculations. Furthermore, notice that if a Banach space X admits
an unconditional (in a certain sense) non-symmetric Schauder decomposi-
tion, then one can also construct explicit counterexamples to the maximal
regularity problem if one uses the perturbation result Proposition A.1.13 as a
replacement in the proof of Theorem 2.1.35.

Further Results In the follow-up article [KL02] Kalton and Lancien proved
the following refinement of Proposition 2.1.52. For the formulation of the
result note that a Schauder decomposition (A,,),,en of a Banach space is called
finite dimensional if RgA,, < oo for all m € IN.

Theorem 2.4.2. Let X be a UMD-space with (MRP). If X has a finite dimensional
Schauder decomposition, then there exist finite-dimensional spaces (X,,),eNn with
X ~ GB?ZXn.

The proof of this result is also based on Proposition 2.4.1, however it
makes further use of sophisticated results from the geometric theory of Banach
spaces. If there exists a uniform bound on the dimensions of the spaces X,, for
n € N, the above theorem of course implies that X is isomorphic to a Hilbert
space. Nevertheless the following problems are still open.

Problem 2.4.3. Let X be a separable Banach space with (MRP). Is then X
isomorphic to a Hilbert space?

If this is not true, one may ask whether the following weaker version does
hold.

Problem 2.4.4. Let X be a (separable) UMD-space with (MRP). Is then X
isomorphic to a Hilbert space?

An interesting class of Banach spaces to study for this question (compare
with the results obtained in Section 2.3.1 for the H*-calculus and bounded
imaginary powers) are the hereditarily indecomposable Banach spaces. This
has not been done yet by the author of the thesis so far.

There are many possible scenarios. It may be possible that every generator
of an analytic Cy-semigroup already has maximal regularity. On the other
hand, it could also be possible that on some of these spaces every generator of
an R-sectorial semigroup is already bounded as it was the case for bounded
imaginary powers.

Here the following interesting question arises: do there exist hereditarily
indecomposable Banach spaces for which every generator of a Cy-semigroup
is already bounded? Notice that this is not true for every H.I. Banach space as
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there exist H.I. Banach spaces with a conditional Schauder basis. Answers to
these problems may provide counterexamples to the two problems above.

The Maximal Regularity Problem and the Complemented Subspace Prob-
lem At the very end of this chapter we want to mention to the reader the
close connection between the maximal regularity problem and the comple-
mented subspace problem, one of the most famous problems in the theory of
Banach spaces. It asks whether a Banach space in which every closed subspace
is complemented is isomorphic to a Hilbert space. This problem indeed has
a positive solution given in the celebrated article [LT71] by J. Lindenstrauss
and L. Tzafriri. Now, notice that the short description of Kalton and Lancien’s
original proof we have just given is an (almost) complete proof of the fact
that every Banach space that admits an unconditional basis and satisfies the
complemented subspace property is isomorphic to a Hilbert space. In fact, in
E. Albiac and N.J. Kalton’s student text on Banach space theory exactly this
proof is given [AK06, Theorem 9.4.4].

However, one must be careful with this connection as the complemented
subspace problem has a positive solution on ¢, whereas ¢, is a Banach space
with (MRP) that is not isomorphic to a Hilbert space. The crucial point that
makes it more difficult to obtain positive results for the maximal regularity
problem is that for the maximal regularity problem one can only rely on the
information obtained from the Cj-semigroups living on a given space.
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Extrapolation of Regularity
Properties

We now change the focus of our studies. After we have studied the connections
between the different regularity properties of sectorial operators on a single
space in the previous chapter, we now ask how such properties extrapolate if
considered on scales of Banach spaces. The main new result of this chapter
gives a complete negative answer to the extrapolation problem for maximal
regularity. In simplified terms it says that maximal regularity does not extrap-
olate from L; to L,. We now give a detailed motivation for the extrapolation
problems studied in the following.

The most prominent and important example for applications is the follow-
ing. Suppose one has given a consistent family of Cy-semigroups (T,(t))>0
on L,(Q) for some measure space ((2,%, u) and for p € I, where I C [1,00] is an
interval. This means that one has T, (t)f = T,,(t)f forall f € L, (QQ)NL,,(Q),
all t > 0 and all pairs py,p, € I. Further suppose that for some py € I the
semigroup (T (t));»0 satisfies some additional regularity property, for ex-
ample is analytic or R-analytic. Then one can ask under which conditions
this regularity property extrapolates to all (or some) p € I, which means that
(Ty(t))i=0 automatically has the same regularity property for all p € I. This
is of particular relevance for applications in the case p = 2. As L,(Q)) is a
Hilbert space, one can rely on the well-established Hilbert space theory which
is both powerful and often relatively easily to apply. Extrapolation results
then give us for free the same regularity properties on L,-spaces which are
more difficult to study individually. After this abstract treatment we now
discuss two concrete problems which are studied in the following sections.

First of all we study the extrapolation properties of analytic semigroups.
In concrete examples one often obtains the analyticity of a semigroup on
Hilbert spaces, for example by using form methods or Fourier analysis. It is
then a classical well-known result that analyticity always extrapolates from
L,(Q) or some different L, (Q2) to L,(Q) for all p € (1,00). This is usually
proved by invoking the Stein interpolation theorem. Using generalizations of
the classical Stein interpolation theorem, we present this method for complex
interpolation spaces. Because of the use of classical results from complex anal-
ysis this approach is naturally limited to the complex interpolation functor.
Therefore, afterwards, we develop a new approach to the extrapolation prob-
lem which is based on a characterization of analytic semigroups by T. Kato
and A. Beurling. We give a generalization of Kato’s sufficient criterion for the
analyticity of a Cy-semigroup which then gives a complete characterization of

73



3. EXTRAPOLATION OF REGULARITY PROPERTIES

74

analyticity in terms of the semigroup. We then use this characterization to
prove a generalization of the classical extrapolation result for a rather general
class of interpolation spaces. In particular, this includes all interpolation
spaces obtained by the real interpolation method except for some endpoint
cases.

Afterwards, we study the extrapolation properties of R-analyticity or
maximal regularity. Recall that in the Hilbert space case maximal regularity
holds automatically if the semigroup is analytic. In this case one can ask
whether maximal regularity automatically extrapolates to the L,-scale for
consistent semigroups as it is the case for analyticity. We refer to this problem
as the maximal regularity extrapolation problem. Note that although the Kalton—
Lancien Theorem shows the existence of analytic semigroups that are not
R-analytic on a fixed L,-space, it is not clear whether a consistent family of
analytic semigroups on the L,-scale can lose maximal regularity for some
p # 2. This problem is open since the early beginnings of the theory [Are04,
7.2.2]. In the following we will answer this question negatively by giving
a counterexample to the maximal regularity problem. In fact, we show in
Theorem 3.2.22 that for every interval I C (1,00) with 2 € I there exists a
family of consistent (analytic) Cy-semigroups (Tp(z))zez% for p € (1,00) such
that (T,(z)) has maximal regularity if and only if p € I. In particular, the
interval may be I = {2}.

As these examples show that one does not get maximal regularity for free
from the Hilbert space case as it is the case for analyticity, it is important
to give sufficient general criteria for the extrapolation of maximal regularity.
Here we profit from the study of the extrapolation properties of analyticity
from the first part. Indeed, both the approaches using the generalized Stein
interpolation theorem and Kato-Beurling type characterizations have natural
analogues in the R-analytic case. Whereas the first uses a reduction to the
analytic case via the use of associated semigroups as introduced in Defini-
tion 2.1.16, the second develops a new characterization of maximal regularity
from scratch.

Throughout the presentation we make use of interpolation theory. The
used results and references to the literature can be found in Appendix A.5.
This chapter contains material from the published articles [Fac13b] and
[Fac14] and new unpublished results.

3.1 Extrapolation of Analyticity

We begin with the study of the extrapolation properties of analytic semigroups.
The central result in this section is that one essentially gets the extrapolation
of analyticity for free. This result is well-known at least in the case of L,-
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spaces and is usually proved with the help of Stein’s interpolation theorem.
We start by giving a proof of this result in the general context of complex
interpolation spaces. Since this approach makes heavy use of methods from
complex analysis, it is naturally limited to spaces obtained from the complex
interpolation method. We therefore give a new approach to the extrapolation
result which is completely free from such limitations. This will finally allow
us to generalize the extrapolation result to a rather general class of interpo-
lation spaces. In particular, we can deal with spaces obtained from the real
interpolation method. Moreover, from a conceptual point of view this shows
that the extrapolation of analyticity is a general phenomenon which is almost
independent of the concrete technique used for interpolation.

Our new approach is based on a complete characterization of the analyt-
icity of a Cy-semigroup (T(t));>o in terms of the behaviour of the mapping
t — T(t) in zero developed in [Fac13b]. In particular, the characterization
does not involve the generator of (T(t));>(. Our characterization essentially is
a reformulation of a theorem obtained by A. Beurling. However, for the main
part we do not follow Beurling’s original argument. Instead, we follow ideas
of T. Kato which allow us to give an extremely simplified proof of Beurling’s
result for strongly continuous semigroups. Along the way we also prove a
zero-two law for cosine families with our developed techniques.

3.1.1 Viathe Abstract Stein Interpolation Theorem

In this preliminary subsection we give the short classical proof of the fact that
the analyticity of semigroups extrapolates. The most important application
of this theorem arises in the following setting: Suppose that one has given
two consistent Co-semigroups (Ty(t));»o on some L,-space L,((2) for p # 2 and
(T5(t))¢=0 on L,(Q)) over the same measure space. Moreover, we assume that
(T>(t))s>0 is analytic. In applications this can often be obtained rather easily
by using Hilbert space methods, e.g. by applying form methods or Fourier
transforms. The result below then guarantees that (T,(t));>¢ can be continued
to a semigroup on L,(Q) for all g between 2 and p which is automatically
analytic as well.

This result is usually proved as a direct consequence of the Stein interpola-
tion theorem. We prove it in a generalized version for complex interpolation
spaces. For the proof we rely on a generalized version of the classical Stein
interpolation theorem for complex interpolation couples. We have decided
to present the result in this generality as this allows us to formulate it more
closely in the spirit of the extrapolation result for general interpolation spaces
presented in the next subsections. For the special case of L,-spaces the proof
below is well-known in the literature, for example see [Lun09, 6.2].
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Theorem 3.1.1. Let (X4, X;) be an interpolation couple of Banach spaces. Assume
that (T (t));>0 is a semigroup on X; + X, which leaves both Xy and X, invariant
and is bounded analytic of angle 6 on X, and bounded and immediately norm-
continuous on Xy. If (T(t))s>o is strongly continuous on Xy or X,, then for all
a € (0,1) the semigroup (T (t));>q induces an analytic Cy-semigroup on the complex
interpolation space X, = (X1, X3), of angle at least ad.

Proof. Let S denote the strip S := {z € C: 0 < Rez < 1} in the complex
plane. Further let 6 € (0,0) and t > 0. By assumption, one has the esti-
mate ||T(sei9)||,3(x2) < M for all s > 0 and some constant M > 0. Moreover,
since (T(s))s»o defines a bounded semigroup on X;, by possibly enlarging M
one has [|T(s)l|x,) <M for all s > 0. Now let

N:S— Xl +X2
A T(te'f?).

Clearly, for all x in the dense set X; N X, the function N(:)x: S — X; + X, is
continuous, bounded and analytic on the interior of S. Moreover, for j = 1,2
one has

sup{|I[N(j -1+ is)x||X]_ 1S € IR,||x||Xj <1} <M.

Hence, the abstract Stein interpolation theorem (Theorem A.5.8) shows that
for all « € (0,1) one has N(a)(X; N X;) C X, and that N(a) extends to a
bounded operator on X, with

IT('%%)llx, = IIN(a)xllx, <M lxllx,

for all + > 0. Since an analogous estimate holds for 0 replaced by -0, it
follows from a well-known characterization of analytic semigroups [ENO0O,
Theorem 4.6(b)] that for all @ € (0,1) the semigroup (T(t));>o extrapolates to
an analytic semigroup on X, of angle at least a9. O

3.1.2 Via a Kato-Beurling Type Characterization

We now present a new approach for the extrapolation of analyticity of Cy-
semigroups that does not make use of a variant of Stein’s interpolation theo-
rem. Instead, we use a complete characterization of analyticity of semigroups
proved in [Fac13b] and originally going back to T. Kato and A. Beurling in
terms of the behaviour of the operator-norm of polynomials of the semigroup
at zero. The key step done in [Fac13b] is here to obtain a new proof of Beurl-
ing’s results for Cy-semigroups that is based on the simple ideas of Kato. In
particular, a key feature of the used arguments is the fact that they can be
easily adapted to the case of R-analytic semigroups. Moreover, the extrapola-
tion results can then be deduced for arbitrary interpolation spaces of order
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0 € (0,1) by the mere definition of those interpolation spaces. In particular,
we see that the extrapolation property does not only hold for the complex
interpolation method, a restriction previously imposed by the usage of Stein’s
interpolation theorem.

3.1.2.1 Kato-Beurling Type Characterizations of Analytic Semigroups

In this subsection we prove a characterization of the analyticity of a strongly
continuous semigroup (T(#));o in terms of a zero-two law which is purely
based on the behaviour of the semigroup at zero. It is notable that the charac-
terization is valid without any restrictions on the underlying Banach space
or on the structure of the semigroup. Zero-two laws for semigroups have
a very rich history, which we present shortly in Section 3.3. In particular,
notable similar characterizations were also found by A. Beurling [Beu70] and
T. Kato [Kat70]. We therefore speak of Kato-Beurling type theorems. In the
following we will prove a variant of the result in [Beu70] whose proof relies
on the far more easy techniques used in [Kat70].
In particular, the following result is due to T. Kato [Kat70, p. 495].

Lemma 3.1.2. Let X be a Banach space and (T (t));>o a Co-semigroup on X. Then
(T(t))s>0 extends to an analytic Cy-semigroup if and only if there exist constants
IC| =1, tg >0 and K > 0 such that

Cep(T(t) and |(C-T@) <K forall 0 <t <ty. (3.1)

>

In this case, (3.1) holds for all |C| > 1 with C # 1.

Proof. Let A be the infinitesimal generator of (T(#));»o. Assume that (3.1)
holds for some || = 1. Choose 6 > 0 such that ¢’ = ¢ and for t > 0 the unique
a such that ta = 6. Then for a > % we have t < ty. Further

t t

e_iS“T(s)x ds = J e_isaT(S)(A - iOC)x ds,
0

e T (t)x—x = (A— ia)f

0
where the first equality holds for all x € X and the second for all x € D(A).
Hence, A —ia is invertible and

t
(A-ia)™ =—€"*(C-T(1)" j e T(s) ds.
0
Choose M > 0 such that t > [|T(t)|| is bounded by M on [0, t]. Then ||(A -
ia)™'|| < KMt = KM6a~!. The same argument works for negative values
of a if one replaces 6 by 0 < 0 with ¢/ = . Hence, there exist ay > 0 and
C > 0 such that {ia : |a| > ay} C p(A) and |la(A —ia)~!|| < C for all |a| > ay.
By [ABHNI11, Corollary 3.7.18], this implies the analyticity of the semigroup.
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Conversely, let (T(t));>o be analytic. Then for some a > 0 the negative
infinitesimal generator —A + & of (e7*'T(t));»0 is sectorial with w(-A+a) < 5.
Using the holomorphic functional calculus and a deformation argument, one
has the representation

T(t) = 1 f e AR, A+ a)dA
2t J,,

for a curve y that surrounds X, _a+q) and agrees with d¥q for some 6 €
(w(-A+ ), 5) except in a small neighbourhood of the origin of the complex
plane, where dY¢ is deformed in such a way that it surrounds the singularity
at the origin. Moreover, for a given C = 0 the equality e™*" = C holds if and
only if z = 7l°glcl+i(?rg(’+2k") for some k € Z. We deduce that for |C| > 1 with
C # 1 there exists a 6 > 0 such that for t € (0,9) the singularity of the function
A — (eA=9* )71 lies outside the region to the right of the curve y. Hence,
for t € (0,0) we can define via the holomorphic functional calculus

1
B(t) =5 J et (A=)t _ry-1R(), A + @) dA.
v

By the change of variables z = (1 — a)t, we obtain

B(t) = i. j e e -0 R(z/t+ a,-A+ a)dz
2ni J,,
for a t-dependent curve y;. Cauchy’s integral formula now allows us to replace
the family y, by a fixed curve ;. Let d = infzeyto le* —C| > 0. Estimating the
operator norm of the above integral, we see that for sufficiently small ¢ € (0, )
and some constants M, M’ > 0 one has

M _ _ 1 1]z -1
i< 5 [ ettt o eal s
Y

to

Ml
e Rz ta| d |z < df e ReZ |zl d|z] < co.
Y

= 2nd
2n Yt to

Notice that one has e7?-e?(e7? - ()™} = e#(1 + (e’ - {)7!). Applying the
holomorphic functional calculus, we therefore obtain for t € (0,9) that

T(t)B(t) = B(t)T(t) = T(t) + CB(t).
Hence, for t € (0,0) we have
(Id-B(#))(C—T(t)) = (C—T(t))(Id-B(t)) = C.

Altogether, we have R(C, T(t)) = C!(Id -B(t)), which is uniformly bounded in
operator norm for t € (0,0). O
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Remark 3.1.3. Consider the unitary multiplication group U (t)f (x) := e!** f (x)
on Ly(R). Then for every || # 1 the norm of the inverses ||(C — T(t))7!|| is
uniformly bounded in t. Since (U(t));>o clearly not extend to an analytic
semigroup, this example shows that one cannot weaken the assumption |C| = 1
in the above theorem.

We can directly apply Lemma 3.1.2 to prove one implication of a Kato—
Beurling type theorem for Cy-semigroups. The proof of the converse implica-
tion goes back to A. Beurling [Beu70, p. 398] and uses a variant of Bernstein’s
inequality for trigonometric polynomials.

Theorem 3.1.4 (Bernstein’s Inequality). Let f(x) =Y /_, cre’®™ be a trigono-
metric polynomial of degree n. Then

sup|f’(x)| < nsup|f(x)|.
x€R xeR

Proof. Calculating the coefficients of the Fourier series for f’ one obtains
f'(m) = imf (m).

For k > 0 let Fr(x) = ler_lzgzo Zp:_p ¢!7* be the k-th Féjer-kernel. One sees
k+1—|m]|
o k+1 )
nkE,_1(m—-n)=mfor m=0,...,n. Since multiplying with the phase e'* shifts

the Fourier coefficients one to the right, we have

that Fy is given by Fp(m) = for |/m| < k+ 1. In particular, one has

nei™F, (m)=m  form=0,...,n.

A

Since f is a trigonometric polynomial of degree n, f(m) = 0 only holds for
m=0,...,n. Hence, we obtain for all m € Z that

—

f'(m) =in-e"F,  (m)- f(m).

Thus we can write f’ as the convolution f’ = in(e'™F,_;)+ f for which we have
the estimate

suplf’(x)] < nsup|f (x)|lle" F,_1ll
x€R xeR

Using the well-known fact that the Féjer-kernel is normalized, i.e.

1 27
Filly = — F dx=1,
IFlh = 5 | (ol

we obtain the desired inequality. O]

Inductively, we now obtain a variant of Bernstein’s inequality for higher
derivatives.
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Lemma 3.1.5. Let f(x) = Y }_, cxe'™ be a trigonometric polynomial of degree n
with |f (x)| < 1 for all x € R. Then for N € N and x € R one has for all | € N the
following estimate for the I-th derivative of the N-th power of f:

d\ n (Nn)' |f ()N ifI<N,
(dx)f (X)IS{(Nn)l if1> N,

Proof. Since fN and all of its derivatives are trigonometric polynomials of
degree Nn, the case | > N follows directly from Bernstein’s inequality (The-

)
orem 3.1.4). For the case | < N we write (%) fN = fN-ly;. Here r; is a
trigonometric polynomial of degree Nn — (N —I)n = In. Bernstein’s inequality
(Theorem 3.1.4) yields

I7lloo < Inllrlles »

where |||, denotes the supremum norm on Cy(RR). Further, we have for
I<N-1
d

I+1
(5] 7= ov-npg s

This shows that 7,1 = (N =1)f’r; + fr|. Hence, we have

I7141ll0 < (N = DILf Moo lI71lleo + 11f lloo 17 1leo
< (N =Dl Moo + Inllflleo) rilloo < (N =D+ In) | flloo lIrilloo
=Nnllfllollrlle

where we have again used Bernstein’s inequality in the last inequality. In-
ductively, we obtain ||r||,, < (Nn)!. This finishes the proof of the second
case. O

In the following P, denotes the space of all polynomials p € P with
lp(1)| < |Ipllp, where ||p|lp = SUP|y<1 |p(z)| is the norm of p in the disc alge-
bra A(ID). We can now give a new and easy proof of the following Kato—
Beurling type characterization presented in [Fac13b]. We are grateful to
S. Krél who informed us that part (a) of the following theorem is also con-
tained in [vC85, Theorem 5.1] using the same line of proof.

Theorem 3.1.6 (Kato-Beurling). Let (T(t));>o be a Cy-semigroup on a Banach
space X. Then

(@) (T(t))¢>0 extends to an analytic Cy-semigroup if there is p € P such that

limsup ||p(T())Il < llpllp-
tl0
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(b) Conversely, if (T (z)),ey is analytic, then for each p € Py there exists Ny € IN
such that for every N > Ny there exists Ky € R, with

hmsup”p T(Kt || < ||pN||]D for all K > K.
tlo

Proof. We start with (a). Notice that by the assumptions p cannot be constant.
Further, as a consequence of the maximum principle we may assume that
Iplip = p(C) = 1 for some C € dID (replace p by p(z) = e**87)|]p|i p(2) if
necessary). By assumption, there exist constants t; > 0 and 0 < p <1 such
that ||p(T(t))|| < p for all 0 <t < t;. By the expansion of the Neumann series,
Id-p(T(t)) is invertible with

1
I[Id—p(T(t))]” < E for all 0 <t < t,. (3.2)
Factorization of 1 —p yields Id—p(T(t)) = (C — T(t))q(T(t)) for some q € P.
Observe that ¢ — T( ) is invertible for 0 < t < t; and that its inverse is given by
t))[Id—p(T())]"". The boundedness of t — ||T(t)|| on [0,1] together with
(3.2) shows that there exists a K > 0 such that

IC-T#) <K  forall0<t<t.

Now, Kato’s result (Lemma 3.1.2) shows that (T(t));»>o extends to an analytic
semigroup. This proves (a).

Conversely for part (b), let (T(z)).ex; be an analytic Co-semigroup and
let 0 < 6 < 6. Note that this implies that for all ¢ > 0 the ball around t with
radius tsino is contained in Xs5. Let M := sup{||T(z)|| : z € Xs,|z| < 2}. For
a polynomial p(z) = Y |, azk in P we obtain for s > 0 that p(T(t))T(s) =
Y i—oakT(s + kt). Since z + T(z) is holomorphic in ¥;, we can write for
0 <nt <ssind

ZukT (s+kt)= i ZJ

zs|rz

T<7;3+1 dzt! Zakkl (r <ssind).

For N € IN we now replace p by pN = ZZI:]:”O ay nz¥, where we assume p € P.
After scaling we may assume that ||p||p = 1. Further, we choose s = Kt for
K € R,. Then, for K > Nn(sind)~! and r, = Ktsin  we obtain for t < K~!

oo [Nn
IpN(TENTROI<M Y | Y a k! |#

1=0 | k=0

thm6) (3.3)

Now, using equation (3.3) together with Lemma 3.1.5 (for the trigonometric
polynomial f(x) = p(e'¥) and x = 0) in the second inequality below, we obtain
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for t < K~! the estimate

PN (T TR <M )

1=0

SM[|p(l)|Ni(|p( |Ksm5) i([{smé)]

(Ksin )™

Nn
)ik

k=0

IRevac T
=MW T+ |
(p 1-Cix  1-Cog
where Cy g = Mﬁ and Cy g = % (of course for p(1) = 0 the first
term vanishes). Now, since |p(1)| < 1, the right hand side is arbitrarily small
provided first N and then K are chosen large enough. O

Notice that by the maximum principle ||p||p equals ||z +— p(z)z™||, for
every m € IN. This gives us the following characterization of analyticity.

Corollary 3.1.7 (A Characterization of Analyticity on the Real Line). A Cy-
semigroup (T (t));>o on a Banach space X is analytic if and only if there is p € P
such that

limsup [[p(T(O)I <lpllp-
t10

Moreover, taking p(z) = (z—1)N for some N € N we obtain a variant of
Kato’s original result which is invariant under equivalent renorming of the
underlying Banach space.

Corollary 3.1.8. Let (T(t));>o be a Cy-semigroup on a Banach space X.

(@) (T(t))¢>0 extends to an analytic semigroup if for some N € IN

1/N

11msup|| -1d N” (3.4)

t10

(b) Conversely, if (T(t));>q is analytic, there exists Ny € IN such that for every
N > N there exists Ky € R, such that

limsup ||( || ~1d)NT K”l/N

tl0

<2 forall N >K > K,.

We remark that rescaling the semigroup does not affect both the analyticity
of a semigroup and the validity of inequality (3.4). Therefore we can assume
in the following remark that all semigroups are bounded.
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Remark 3.1.9. It is a natural question whether already the condition (3.4)

limsupl|(T(t)- 1)V <2

tl0

for some N € IN is equivalent for a Cy-semigroup (T(t));>o to be analytic.
In fact, by an observation of A. Pazy [Paz83, Corollary 5.8] an analytic Cy-
semigroup (T (t));>0 on a uniformly convex space X which is contractive on
the real line satisfies limsup, |, [|T(f) - Id|| < 2. This can be seen as follows:
Assume that limsup, |, ||T () —Id|| = 2. Then there exist sequences (x;),en C X
and (t,,),en C IR, such that ¢, — 0 for n — oo and

1
”T(tn)xn _xn” >2- E

Since ||T(t,)x,|| < 1 by the contractivity of the semigroup, it follows from the
uniform convexity of X that

| T (t,)x, +x,]| =0 for n — 0.

By Kato’s criterion (Lemma 3.1.2) this contradicts the fact that (T(t));»¢ is an-
alytic. Further notice that the Gaussian semigroup on L;(IR) shows that Pazy’s
converse does not hold on general Banach spaces (for details see [Fac11]). Even
more, it does not even hold on reflexive spaces. For this let (Gp(z))zez% denote
the Gaussian semigroup on L, (IR) for p € [1, c0) (for details see [ABHN11, Ex-
ample 3.7.6]). Choose a sequence (p,),en C (1,00) with p,, —» 1 for n — oo.
Then on the reflexive space given by the direct £,-sum EBZZLpn(IR) (see Defini-
tion A.2.1) we define the diagonal semigroup

G(Z)((fn)ne]N) = (Gp,, (z)(fn))ne]N'

It follows from interpolation that ||G, (z)|| is uniformly bounded in n € N
and in z € ¥; for all 6 € (0, 7). Hence, (G(z))ze% defines a bounded analytic
Coy-semigroup on GBZZ L, (R) which is contractive on the real line. We now show
that one has limsup, ,||G(¢) —I|| = 2. Since limsup,,||G;(¢) _Id”B(Ll(IR)) =2,
there exists a sequence (t,),en With £, | 0 and a sequence of simple functions
(fu)nen With ||f,ll; =1 and ||Gy(t,)f, — full; — 2. Because of the continuity of
pH ||f||p for f € L1(IR) N L (R), for every ¢ > 0 there exists an Ny € N such
that for every n > N there exists an m, € IN such that ”f””pm,, <1+e¢€and

”Gan (tu)fu _fn”pmn > 2 —¢. This shows that for all n > Nj one has
- 2—¢
1G(t) =1l = (1 + ) MGy, (En)fo— il 2 T

Since € > 0 is arbitrary, this shows limsup, |, [|G(¢) - Id|| = 2.
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In some situations it is possible to reduce the general problem to the case
of a contractive Cy-semigroup on a uniformly convex space after an equivalent
renorming. Assume that (T(z)) is an analytic Cy-semigroup (not necessarily
contractive on the real line) on a Banach space X for which there exists an
equivalent uniformly convex norm ||-||, such that ||T(¢)|l, <1 for all t > 0. We
will see in Theorem 5.5.14 and in the remarks given in Section 5.6 that this is
possible if X is super-reflexive and the negative generator A of (T(t));>o has a
bounded H*-calculus with wg«(A) < 7 5.5.14. Now the above considerations
show limsup, | [|T(t) - 1d||, < 2. Hence, for the original norm we obtain

limsupl||(T(t) - 1d)N||'N < 2
tl0

if N € N is chosen sufficiently large. However, in the above case of a bounded
H®-calculus a direct proof is possible. Let e; be the analytic function z > ™2,
Then one has for all N e N

ICT () =I)N N = ll(e, = DN (ANl < Mlle = Uleo(s,
for some 6 € (0, %) and some M > 0 by the boundedness of the H*-functional
calculus. Further, one has

e 17 = e—tReze—itImz'
Note that the image of Xy under e;, which is independent of ¢ > 0, has positive
distance 6 > 0 from the point —1 in the complex plane because of the restriction
[Im z| < tan O Rez. Since |e™*?| < 1 for all t > 0 and z € Xy, one has

2 2 |les + Ulpeo(sy) = llee = (=Dl ooz, 2 0.
Altogether, for all N € IN we obtain the estimate
T () -1 < MY (2-5)

for all t > 0, whose right hand side is strictly smaller than 2 for sufficiently
large N € IN.

To summarize, we have seen in rather general cases that we can omit
the additional factor of zK in Corollary 3.1.8(b). However, we do not know
whether this is true for all analytic semigroups.

3.1.2.2 Extrapolation of Analytic Semigroups

We now apply the Kato-Beurling Theorem (Theorem 3.1.6) to show extrapola-
tion results for analytic semigroups. The advantage of this new approach over
the classical approach via Stein’s interpolation theorem is that the argument
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is valid for arbitrary interpolation spaces of exponent 6 € (0,1). In this section
we make again use of the theory of interpolation spaces whose basic properties
are summarized in Appendix A.5. The general extrapolation theorem proved
in [Fac13b] then reads as follows.

Theorem 3.1.10. Let (Ty(t));>0 and (T5(t));>0 be consistent semigroups on an
interpolation couple (X1, X,) and let X be a regular interpolation space of exponent
0 € (0,1) with respect to (Xy,X;). Assume further that one of the semigroups
is strongly continuous and that the other is locally bounded. If one of the two
semigroups is analytic, then there exists a unique analytic Cy-semigroup (T (z)) on
X which is consistent with (Ty(t));>o and (T5(t))>0-

Proof. Of course, the semigroup (T(t));»0 is obtained by interpolation. More-
over, since X is a regular interpolation space, the semigroup (T (t));>o agrees
with (T;(t))s>0 and (T»(t));>0 on a dense subset and is therefore uniquely de-
termined. Moreover, by the exactness of the interpolation space X one has for
some constant C > 0

IT(£)x = x|l < CIITy(8)x - xll. 1 Ta()x - 213,

for all t > 0 and all x in the dense subset X; N X, of X. Since, by assumption
one of the factors tends to zero as t | 0 and the other is locally bounded, the
semigroup (T (t))>o is strongly continuous. It remains to show that (T(t))>¢
extends to an analytic semigroup on X. For this we assume without loss
of generality that (T;(t));>o is analytic. By Corollary 3.1.7 there exists a
polynomial p € P with ||p||p = 1 of degree n =degp, p € (0,1) and ¢y, > 0 such
that for all t € (0,ty) one has

(T2 ()] < p-

Notice that for this implication no strong continuity at zero is needed in the
proof of Theorem 3.1.6(b). Since (T5())s0 is locally bounded, there exists a
constant M > 0 such that ||T2(t)||,3(X2) < M for all t € (0,t5). Let N € IN. We

write pN(z) = ZkN:"O arn2z¥. Then we have for sufficiently small t > 0

PN (Tl < ClE™ (T IV (TG,

Nn 0 Nn 0
SCP(I—G)N Z|ak,N|||Tp2(kt)“] 5CM6P(1_6)N(Z|“’<,N|]
k=0 k=0
Nn 1 d k 0
:CMQp(l_Q)N[ZF (E) pN(O)) <CMO(Nn+1)2p1-0N,
k=0
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where we have used the standard estimate obtained from Cauchy’s integral
formula in the last inequality. In particular, we see that for sufficiently large
N one has

lim sup ||pN(T(t))||B(X) <1.
tl0

By Corollary 3.1.7, the semigroup (T (t));>¢ is analytic. O]

Remark 3.1.11. The idea to use the Kato-Beurling Theorem to show extrapo-
lation results for analytic semigroups goes back to W. Arendt (see [FGG'10,
Remark 2.7] or [Are04, 7.2.3]).

3.1.3 An Application: A Zero-Two Law for Cosine Families

In this subsection we present as an application of the Kato-Beurling Theorem
(Theorem 3.1.6) a zero-two law for strongly continuous cosine families on
UMBD-spaces. In the following we need some results from the theory of cosine
families. As this theory does not touch the main themes of this thesis, we
depart here from our aim to be self-contained and simply refer to the literature
in the proofs whenever necessary.

However, before we turn our attention to cosine families we start with the
easier case of strongly continuous groups.

Proposition 3.1.12 (Zero-Two Law For Groups). Let (U(t));cr be a Cy-group
on a Banach space X. Then

limsup||U(t)-1d|| < 2 (3.5)
tl0

implies that (U(t));ecr has a bounded generator. In particular, the left hand side of
(3.5) equals 0.

Proof. It follows from the Kato-Beurling Theorem (Theorem 3.1.6) applied
to the polynomial p(z) = z—1 that the Cy-semigroup (U(t));>( is analytic. In
particular, (U(t));so is immediately norm-continuous. This implies that

U(t)-1d = U(-1)(U(t+1)-U(1)) >0  fortl0

in operator norm. This shows that (U(t));>( is norm-continuous which implies
that its generator is a bounded operator. O

Notice that the shift group on various function spaces shows that the above
assumption cannot be improved. The zero-two law for groups does in fact
hold for arbitrary groups (U(t));cg on Banach spaces without any assumptions
on the mapping t +— U(t). This result goes to back to J. Esterle [Est03] (see also
the comments in [Dub06]) and its proof is of course far more less elementary.
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For semigroups similar zero-one or zero-two laws have been investigated
in the literature: for an arbitrary semigroup (T(t));>o of bounded linear op-
erators limsup, |, ||T(t) - I|| < 1 implies the uniform continuity of (T(t))i»o
and the left hand side to be equal to zero. The proof of this theorem only
involves elementary algebraic manipulations and therefore holds without any
regularity assumptions on the semigroup whatsoever. Similar laws were also
investigated in the more general context of Banach algebras. For this as well
as the stated results see [Est04].

We now want to prove an analogous statement for cosine families. Cosine
families play an important role in the study of abstract second order Cauchy
problems (see for example [ABHN11, Sec. 3.14] and [Gol85, Ch. 2, Sec. 8]).
We now recall their definition.

Definition 3.1.13 (Cosine Family). A strongly continuous map Cos: R —
B(X) for a Banach space X is called a strongly continuous cosine family if it
satisfies the following properties:

(i) Cos(0)=1d,
(ii) 2Cos(t)Cos(s) = Cos(t +s)+ Cos(t —s) for all t,s > 0.

We now shortly present some basic properties of cosine families that will
be useful. Given a strongly continuous cosine family Cos: R — B(X), there
exists a uniquely determined closed operator A called the generator of Cos
satisfying (w?, 00) C p(A) for some w > 0 such that

AR(A%,A) = f e MCos(t)dt  for A> w. (3.6)
0

As in the case of Cy-semigroups it is known that a cosine family Cos has
a bounded generator if and only if lim;|([|Cos(f)-Id|| = 0. In that case,
Cos: R — B(X) is continuous in operator norm [ABHN11, Corollary 3.14.9].
There is a systematic way to build cosine families out of groups: suppose
(U(t))ser is a Cy-group on a Banach space. Then C(t) = L(U(t)+ U(-t)) de-
fines a cosine family whose generator is given by the square of the group
generator [ABHN11, Example 3.14.15].

We are now ready to prove a preliminary version of the zero-two law for
cosine families.

Lemma 3.1.14. Let C(t) = %(U(t) + U(-t)) be the cosine family induced by a
strongly continuous group (U(t));er. Suppose

limsup||C(t)-1d|| < 2. (3.7)
t10

Then (C(t)):eR is uniformly continuous and the left hand side of (3.7) equals 0.
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Proof. Assumption (3.7) means that ||C(¢) —Id|| < p for some 0 < p <2 and all
sufficiently small ¢, say 0 <t < ;. Let p(z) = %(z— 1)2. Then ||pN|Ip = pN(-1) =
2N for all N € N. Further, we observe that if M > 0 and @ € R are chosen such
that ||U(¢)|| < Me®! for t > 0, then

N
™ (U)]| = H(U(t)[w —Id])

HU(t)+ U(-t) _Id]N
2

<|JUN?B)| < Me“NtpN

< (Ml/Newtp)N < p~N < ”PN”]D

for every 0 < p < p < 2 provided N is big and ¢ is small enough. Hence, Theo-
rem 3.1.6 applied to pY yields the analyticity of (U(t));eg. It then follows as
in the proof of the zero-two law for groups (Proposition 3.1.12) that (U(t))ser
and therefore (C(t));cg are norm-continuous. O

In particular, for cosine families on UMD-spaces we obtain the following
result proved in [Fac13b]. It solves partially the problem raised by W. Arendt
whether a zero-two law holds for general cosine families on Banach spaces.

Theorem 3.1.15 (Zero-Two Law for Cosine Families). Let Cos = (C(t))scg be
a strongly continuous cosine family on a UMD-space X such that (3.7) holds. Then
Cos is uniformly continuous and the left hand side of (3.7) equals 0.

Proof. Let A denote the generator of the cosine family Cos. Since A is de-
fined on a UMD-space, by Fattorini’s Theorem there exists a generator B of
a Cy-group (U(t));er on X and @ > 0 such that A = B> + w [ABHNI11, Corol-
lary 3.16.8]. Let D(t) = %(U(t) + U(~t)) be the cosine family generated by BZ.
It is shown in [Fat69, Lemma 6.1] that from the iteration given by

Colt) = Cl1), Calt) = L S(t—$)Cyy(s) ds

in the strong operator topology, where S(f) := Jot C(s) ds is the associated so-
called sine function, one obtains the cosine family (D(f));cr in the strong
sense as the series D(t) =) > (—w)"C,(t). Moreover, it is shown in the proof
of [Fat69, Lemma 6.1] that for all n € IN one has ||C,(t)|| < Me‘”% for some
constants M > 1 and a > 0. Consequently, we obtain

limsup ||D(t) —1d|| < limsup|||C(t) - Id|| + Me®"
tl0 t10

Nt
Sl
[\
SIS
==
VAN
[\

n=1

Hence, by Lemma 3.1.14, B? and therefore A are bounded operators which in
turn is equivalent to the claim [ABHN11, Corollary 3.14.9]. O]
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It is an interesting and natural question whether the zero-two law for
cosine families can be strengthened. Using elementary algebraic operations
as in the case of the zero-one law for semigroups, W. Arendt [Arel2] observed
that a 0-3/2 law holds for arbitrary cosine families without any regularity
assumptions on the mapping Cos: IR — B(X). Very recently, it has been shown
in the preprint [SZ14] by means of spectral theory that the zero-two law for
strongly continuous cosine functions as in Theorem 3.1.15 holds for arbitrary
Banach spaces.

3.2 Extrapolation of R-Analyticity

We now turn our attention to the extrapolation of R-analyticity of semigroups,
which in general is a strictly stronger property than analyticity. Here we will
benefit from the methods developed so far in the previous section for the
extrapolation of analyticity. Indeed, we will see that we can give analogous
proofs in the R-analytic case. This holds for both approaches presented in
the analytic case, namely via variants of the Stein interpolation theorem and
the approach via Kato—-Beurling type characterizations. The first approach
is again restricted to the complex interpolation method, whereas the second
works for a general class of interpolation functors of order 6 € (0,1). However,
it will only be possible to show positive extrapolation results if one addition-
ally requires the semigroup at the non-regular part of the interpolation couple
to be locally R-bounded on the real line. In view of this result one may ask
whether maximal regularity does still extrapolate — at least on the L,-scale - if
the non-regular part is only locally bounded in operator-norm. In particular,
for applications this result would be very useful as maximal regularity does
hold for every analytic semigroup on a Hilbert space, a condition which can
often be easily checked in applications, e.g. by form methods or Fourier ana-
lytic methods. Moreover, non-linear partial differential equations often need
to be treated in higher L,-spaces. This extrapolation problem is sometimes
called the maximal regularity extrapolation problem and has been open since the
beginnings of the study of maximal regularity. In the last part of this chapter
we will give a negative answer to this problem based on the article [Fac14].
Here we will strongly benefit from the methods developed in Section 2.1.4
which allow us to construct rather concrete explicit counterexamples to the
maximal regularity problem.

3.2.1 Via Abstract Stein Interpolation

In this subsection we show how one can apply the Stein interpolation theorem
to obtain extrapolation results for R-analyticity. The approach presented here
goes back to S. Buand W. Arendt [AB03]. The key idea is to use Theorem 2.1.18
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which gives an equivalent description of the R-analyticity of a semigroup on
a Banach space X in terms of the analyticity of an associated semigroup on
Rad(X). This allows one to apply the known results for the analytic case.

Theorem 3.2.1. Let (X1,X,) be an interpolation couple of Banach spaces with
non-trivial type. Assume that (T (t));>q is a semigroup on Xy +X, which leaves both
Xy and X, invariant and is bounded R-analytic of angle 6 on X, and R-bounded
on Xy. If (T(t))s0 is strongly continuous on Xy or X,, then for all a € (0,1) the
semigroup (T(t));>o induces a bounded R-analytic Cy-semigroup on the complex
interpolation space X, = (X1, X3), of angle at least ao.

Proof. We first notice that (Rad(X;),Rad(X,)) is an interpolation couple. By
Theorem 2.1.18 one obtains an associated semigroup (7 (t));>o on the sum
Rad(X;)+ Rad(X,). More precisely, (7 (t));>0 is a bounded analytic semigroup
of angle 6 on Rad(X,) and a compatible bounded semigroup on Rad(Xj).
It then follows from Theorem 3.1.1 that (7 (¢));>¢ induces an analytic Cy-
semigroup on the complex interpolation space (Rad(X;),Rad(X,)), of angle
at least a6. Since both X; and X, have non-trivial type, it follows from
Corollary A.5.7 that one has the identification (Rad(X;), Rad(X;)), = Rad(X,).
Applying Theorem 2.1.18 again, we see that (T(t));>¢ is bounded R-analytic
of angle at least a6 on X,,. O

3.2.2 Via a Kato-Beurling Type Characterization

In this section we use our second approach based on a Kato-Beurling type
characterization of R-analytic semigroups in order to obtain extrapolation
results for R-analytic semigroups. One could again work with the induced
semigroup on Rad(X) as done in Section 3.2.1 to deduce the extrapolation
results directly from the known results for analytic semigroups. However,
we think that a direct approach proving analogues of the Kato-Beurling
characterizations as done in [Fac13b] is nevertheless desirable because the
so-obtained characterizations of R-analytic semigroups are of independent
interest.

We start with generalizing the main results, namely Lemma 3.1.2 and
Theorem 3.1.6, to the R-analytic case.

Lemma 3.2.2. Let (T(t));>o be a Cy-semigroup on some Banach space X. Then
(T(t))¢>0 is an R-analytic semigroup if and only if there exist constants |C| = 1,
to > 0 and K > 0 such that R{T(t):0<t <t} < coand

Cep(T(t) forall0<t<ty and R{C-T()":0<t<ty)<K.  (3.8)

In this case the above condition holds for all |C| > 1, C = 1.



3.2. Extrapolation of R-Analyticity

Proof. Let A be the infinitesimal generator of (T(t));>o. We first assume that
(T(t))s>0 satisfies (3.8). Using the same notation as in the proof of Lemma 3.1.2
(which we use freely without further notice), we obtain with the stronger
assumptions of this theorem that for ta = 6 and a > %

t

(A—ia) ' = =" -T(t)! f e ST (s) ds.

0

Again, making essentially the same estimate as before, we obtain that for
a,...,a, with trap = 6 and a; > % (1<k<n)

tk

Riax(A-iap) ™ 1<k <n}< KR{I
0

[z}

Now let R :=R{T(t):0<t < ty}. For xy,...,x, € X we see that

e ST (s) ds}

n 2] ) s o n S
Zrkj e’ST(—)dsxk SJ ZrkT(—)xk ds
k=1 0 Ak 0 M= Yk
n
< RO Zrkxk .
k=1

Hence, R{a(A —ia) " ia> %} < KRO. As before, the same argument works

for negative a. Thus there exists an ay > 0 such that R{a(A —ia) o> ao} <
oo. Now, Proposition 1.2.6 implies that (T(t));>o is R-analytic.

Conversely, let (T(z)),cy be R-analytic. Then it follows from Proposi-
tion 1.2.6 that {AR(A,-A +a) : A & Ty} is R-bounded for some a > 0 and
0 €(0,%). Let|C|> 1, C # 1. As shown in the proof of Lemma 3.1.2 one can
choose a path y such that

1
B(t)= — f et (==t _ )T IR() A+ a)d ).
2ni J,,
is a bounded operator for sufficiently small t € (0,ty]. Again, by the change of
variables z = (1 — a)t, we obtain

1
B(t) = —J e e P -0) "t R(z/t + a,-A+ a)dz
2mi J,,
for a t-dependent curve y;. By Cauchy’s integral formula, we can again replace
the family y, by a fixed curve y; . Let d := infzeyto |e*—C|> 0. For xq,...,x, € X
and ty,...,t, €[0,tg) we have (provided t; is chosen small enough)

1 « z z
<— —R|—+a,-A+
2 J;’to Zrk tx (tk “ a)Xk

k=1

n

kaB(tk)Xk

k=1

|dz]

e? ‘

z(e*-C)
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|dz|

Oto Xty z+ta’J

IdZI

(£+04)R(ti +a,—A+a)xk

tk k
T Xk < C2 Zrkxk
=1 k=1

1
< —
nd()

sclj
Vig

for some constants Cl,Cz > 0, where we have used Kahane’s contraction
principle (Proposition 1.2.2) in the second inequality. This shows that one has
R{B(t): 0 <t <ty} <oo. Further, by the argument in the proof of Lemma 3.1.2,
using the functional calculus one obtains R(C, T(t)) = ¢~'(Id—B(t)), which
yields (3.8). O

We can now give the desired characterization of R-analyticity in terms
of the behaviour of certain polynomials of the semigroup at zero obtained
in [Fac13b].

Theorem 3.2.3. Let (T(t));»o be a Cy-semigroup on a Banach space X.
(a) If R{T(t): 0 <t <1} < oo and there is a polynomial p € P such that
1315173{P(T(t)) (0<t<el<lpllp,

then (T(t));>o extends to an R-analytic semigroup.

(b) Conversely, if (T(z)),ex is R-analytic, for each p € Py there exists Ny € IN
such that for every N > Ny there exists Ky € R, such that

liinR{pN(T(t))T(Kt) 0<t< e} <lpNlp  for all K > K.
el0

Proof. For (a) we may suppose without loss of generality that p(C) =1 = ||p||p
for some C € dD. Then the theorem can be proved exactly along the lines of
the proof of Theorem 3.1.6 from which we borrow the notation: We obtain
that
72{[Id—p(T(t))]*1 0<t< to} < L
1-p
for some t) <1 and 0 < p <1 such that R{p(T(t)):0 <t <ty} < p. From this
we see by factorization that one has R{(C ~T(t)':0<t< to} < co. Finally,
Lemma 3.2.2 shows the claim.

Conversely, let z > T(z) be R-analytic in the sector Tz and let 0 < 6 < 4.
Note that this implies that for t € IR, the ball around t with radius ¢sino
is contained in X5. Let R := R{T(z):z € X4,|z| < 2}. For a polynomial p(z) =
Y i_oaxzX we obtain for s > 0 that p(T(t))T(s) = Y_}_o ax T (s +kt). Since z — T(z)
is an analytic mapping, we can write for 0 < nt < ssind

n (S}

1 T(2) N o
ZukT(s+kt) =5 ;’J-zﬁ:r s dzt %akk , (r <ssind).

k=0 |
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We now replace p by pV = ZQ’:”O ar Nz, where p € P;. After scaling we may
again assume that ||p||, = 1. Further, we choose s = Kt for K € R,. Then, for
K > Nn(sind)~! and r, = Ktsin & we obtain

R{pN(T()T(Kt): t <K'}

(3.9)
(27‘()17?,{1‘1 J|‘Z—Kt|:r % dz:t< Kl}

Moreover,

T 27 T Kt 10 .
J —(z)l - dz:ij T(Kt+re™) .;rltel )rtele do
|z—Kt|=r, (z—Kt)™ 0 (riet?)*

- (3.10)
=i(tKsin 8)! J T(Kt+ rteie)ef"le de.
0
Now, using equations (3.9) and (3.10) together with the estimate obtained
from Lemma 3.1.5 (for f(x) = p(e”*) and x = 0) in the second inequality below,
we obtain the estimate

o |Nn
R{pN(T(T(Kt): t <K'} < RZ ag k! | (K sin )™
1=0 1k=0
N N 1 00
SR[lp(l)l L ( |Ks1nb)+l_;l Ksmb)]

= 1 ,
R(m( N e

Mﬁ and Cx = % (of course for p(1) = 0 the first
term vanishes). Now, since |p(1)| < 1, the right hand side is arbitrarily small
provided first N and then K are chosen large enough. O

N+1 N+1
N 1- Cl,K Cz,K ]

where Cy g =

Again, we obtain the following characterization of R-analyticity via poly-
nomials proved in [Facl3b].

Corollary 3.2.4. Let (T(t));>0 be a Cy-semigroup on a Banach space X satisfying
RAT(t): 0<t<1}<oo. Then (T(t));o is R-analytic if and only if there is p € P
such that

lim R (p(T(1):0 < <¢) < [plp.

Now, we use the characterization via polynomials just obtained in Theo-
rem 3.2.3 to show the announced extrapolation theorem for R-analyticity —
the analogue of Theorem 3.1.10 — for general classes of interpolation functors
which are exact of order 6 € (0,1). In [Fac13b, Theorem 6.1] the following
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theorem is stated without the additional assumption of L,-compability us-
ing [HHKO06, Remark 6.8] which the author can not verify without assuming
L,-compability.

Theorem 3.2.5. Let (T (t));>o and (T,(t));>0 be two consistent semigroups on an
interpolation couple (X1, X,) of Banach spaces Xy and X, with non-trivial type and
let X be an interpolation space with respect to (X1, X;) obtained by a regular L,-
compatible interpolation functor F of exponent 6 € (0,1). Assume that (T1(t))¢>0
is R-analytic and R{T,(t): 0 <t <1} < co. If at least one of the two semigroups is
strongly continuous, then there exists a unique R-analytic Cy-semigroup (T(z))
on X that is consistent with (Ti(t));>o and (T5(t))i>0-

Proof. We immediately obtain from Theorem 3.1.10 that (T());»¢ is uniquely
determined and strongly continuous. It therefore remains to show the R-
analyticity of (T(t));»0. Since (T;(z)) is R-analytic, there is p € P with ||p[|p =1
and degp = n and a constant ¢ > 0 such that

Rip(Ti(t)):0<t<e}<p<l

Moreover, since X; and X; have non-trivial type and F is L,-compatible, one
has
F((Rad(X;),Rad(X3))) =~ Rad(F((X;, X))

by Corollary A.5.7. Now, let R :=R{T,(t): 0< t < 1} and pN(z) = ZkN:”O ak,Nzk.
Then for sufficiently small ¢3(N) one has for some constant C > 0

R{pN(T(1): 0 <t <eo(N)} < CR{pMT(1))  R{pN (Ta(1)))’
Nn 0 Nn 0
< CpN(l—H) [Zlak,N|R{T2(kt)}] < CRQPN(I—G)[ZIQI(’NG
k=0 k=0

<CRO(Nn+ 1)6pN(1_9).

The right hand side tends to zero as N tends to infinity. Hence, Theorem 3.2.3
applied to p™N for sufficiently large N shows the R-analyticity of (T(t));»o. [

The by far most important application of Theorem 3.2.5 is the following
special case for the scale of L,-spaces which was first proved by W. Arendt &
S. Bu [AB03, Theorem 4.3].

Corollary 3.2.6. Let (T,(2)),ey be an analytic Cy-semigroup on L,(Q) for some
o-finite measure space (Q, F, p) and (T,(t))1»o a consistent semigroup on L,(Q)
forp # 2. IfR{Tp(t) 0<t< 1} < oo, then the semigroups (T,(t));»o obtained by
(complex) interpolation can be extended to R-analytic Cy-semigroups on L,((2)
for all q strictly between 2 and p.
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Exactly as in [AB03, Corollary 4.5], the above corollary can directly be
applied to semigroups with Gaussian estimates. For the sake of completeness
we repeat the main notions and arguments. Let QO CIRY be an open set. We
say that a semigroup (T,(¢));»0 on L,(€2) has Gaussian estimates if there exist
constants C >0 and a > 0 such that for all f € L,(Q)

1T, (t)f|(x) < CGy(at)|f|(x) foralmostallxeQandallO<t<1,

where G, denotes the Gaussian semigroup

. 1 e
Gy(t)f =kexf (f € Lp(IRN)) with  ky(x) = We /4,
on LP(IRN). Moreover, given a measure space (Q), F, ), the following equiva-
lent characterization of the R-boundedness of a family (T},),,en of operators
on L,(Q) (for 1 < p < co) is often useful: The square function estimate

H(ngkko)l/z y < CH(;lfklz)

holds for some C > 0, all n € IN and all sequences (f);_; C L,(Q). The
equivalence with the general definition of R-boundedness follows from the
Khintchine inequality (Theorem A.3.1) and Fubini’s theorem.

1/2

L,

Corollary 3.2.7. Let Q C RN be an open set and let (Ty(t))i=0 be consistent Co-
semigroups on L,(Q) for 1 <p < co. Assume that (Ty(t))i»o is analytic and the
semigroups (T,(t))1»0 have Gaussian estimates. Then (T,(t))s»o is R-analytic for
all 1 <p < oo.

Proof. By Corollary 3.2.6 and the above remarks, it is sufficient to show square
function estimates for the Gaussian semigroup. For this notice that by [Ste93,
p- 24, Proposition] the maximal function associated to the convolution with
the Gaussian kernel can be estimated by
sup |k = f|(x) < supt N2k, = f|(x) < cMf(x) for almost all x e RN
0<t<1 >0
for some constant ¢ > 0 only depending on k;. Here M denotes the maximal
operator given by

1
= _ dy.
A = s0p e [ If

Hence, the boundedness of the vector-valued maximal operator [Ste93, p. 51,
Theorem 1] yields for all n e N, ty,...,t,€(0,1) and f;,..., f,, € LP(IRN)

H(glG”(”)ﬁ"z)w ] (iwklz)m , scH(,:ZIIfkf )m

k=1

<c

p
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Remark 3.2.8. The above result for Gaussian estimates is a particular instance
of a general domination principle. Suppose that one has given a family
(S(#))te(0,1) of operators on L,(Q) for p € (1,00) and some o-finite measure
space Q. If there exists a second R-bounded family of positive operators
(T(t))te(0,1) such that [S(¢)] < T(¢) for all t € (0,1), then the family (S(¢));¢(o,1) is
R-bounded as well. In particular, this holds if (5(¢)),(,1) is order bounded,
i.e. dominated by a single bounded linear operator. In the above setting
of Gaussian estimates, the given semigroup is dominated by the Gaussian
semigroup which is itself domainted by the (non-linear) maximal operator
M. Notice that the fact that M is non-linear makes the validity of the square
function estimate for the single operator M non-trivial. As a second example
one obtains a similar result for Poisson estimates.

3.2.3 A Counterexample to the Maximal Regularity Extrapolation
Problem

The maximal regularity extrapolation problem asks whether in the obtained
extrapolation results for R-analyticity (see Theorem 3.2.5) one can weaken
— at least in special cases — the assumption of local R-boundedness on the
non-regular end of the couple to the local boundedness of the semigroup. In
particular, one is interested in the following L,-space situation.

Problem 3.2.9 (Maximal Regularity Extrapolation Problem). Suppose that
(T2(t))i=0 and (Tp(t));>0 are compatible Cp-semigroups on Ly and L, for
Po € (1,00)\ {2} respectively. Further assume that (T,(t));>( is analytic. Do then
the induced Cy-semigroups (T,(t));»o for p between 2 and p, have maximal
regularity?

Note that (T5(t));>o is a semigroup on a Hilbert space and therefore has
maximal regularity because of the analyticity of the semigroup. Moreover,
we have seen in Theorem 3.1.10 that in the setting of Problem 3.2.9 the
semigroups (T,(t));»0 are analytic for all p € (1, c0). The maximal regularity
problem asks therefore whether this extrapolation property can be improved
to R-analytic.

The maximal regularity extrapolation problem has been open since the
emergence of the theory of maximal regularity. Indeed, a positive answer
to the problem would have striking applications to the study on non-linear
partial differential equations as maximal regularity on Hilbert spaces or
equivalently analyticity is often easily established, for example by using form
methods, whereas the verification of maximal regularity usually requires far
more sophisticated tools and can be very difficult to check on general domains
or for general boundary conditions.
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The aim of this subsection is to give a negative answer to this problem
based on the presentation in [Facl14]. We construct consistent semigroups
(Ty(t))t=0 on L, for p € (1,00) with the following properties: (T;(t));» and
therefore all (T,(f));»0 are analytic but (T,(t));»0 has maximal regularity if and
only if p = 2. This is done by using a well-known concrete non-symmetric
basis for ¢, for which the general results of Section 2.1.4.4 on individual
spaces apply. The basis is obtained from a non-standard representation of the
space ¢, which we now present.

We consider the spaces X, = ®},{; given by the ¢,-sum of finite di-
mensional Hilbert spaces of increasing dimension (see Appendix A.2.1).
We always identify X, with a sequence space in the canonical way. Ob-
serve that the standard unit vector basis of X, is normalized and uncon-
ditional. For p € (1,00) \ {2} it is not equivalent to the standard basis of
¢,. Indeed, for 1 < p < 2 consider the sequence given by x; = 27MP for
k = w +1,..., 2”(2;”) and for n € N and by x; = 0 in any other case.
Then one has Y ;2 |x [P =Y ;24 2"L = o0, but

2H
. 1-2 c p_
Il = Y ("2 =y 21 V<o asp<2
n=1 n=1

In the case 2 < p < oo let (xg)ren be the sequence obtained by inserting the
sequence (\/L];)kelN into the set U‘r’l"zl[(2 _21)2 +1,2 (22+1)]. Then ) 7, |xlf =

Y2 kP2 < 00 as p > 2. However, one has
21 (21 41)
2

1
2

|xXe|” = >
k= (211_21)211 +1

by the well-known argument for the divergence of the harmonic series. This
yields ||(xk)||Xp = o0.

Moreover, using Pelczynski’s decomposition technique, one has the follow-
ing identifications.

Proposition 3.2.10. For p € (1, 00) one has the isomorphism X, = (,.

Proof. By the Khintchine inequality (Theorem A.3.1), there exists a constant
Cp > 0 such that

) (]

k=1

n

Zrk(w)ak

k=1

P 1/p n 1/2
dw) < cp(2|ak|2)

k=1

for all n € N and ay,...,a, € C. Hence, the spaces {2 are uniformly isomorphic
to the subspaces Rad,, of L,([0,1]) spanned by the first # Rademacher func-
tions. Furthermore, Rad, is a subspace of the space G, C L,([0,1]) spanned
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by the indicator functions ]l[i kel for k=0,...,2" — 1. Clearly, one has a (p-
20 N
dependent) canonical isometric isomorphism G,, ~ 53". Hence, by the uniform

boundedness of the isomorphisms ¢4 ~ R, one obtains
_ o opn o o n ~ o p2"
Xp = @gpez = @gp Radn C €B€p G2n = @gpep = €p

Since the family of Rademacher projections L,([0,1]) > G« — Rad,, are uni-
formly bounded, X, = EBZ,,&% is a complemented subspace of ,. We now use
the Petczynski decomposition technique (Theorem A.2.2) to show that X,
is even isomorphic to ;. For this notice that F,, := [ewﬂ]kem is a comple-

mented subspace of X, isomorphic to £,. Since one clearly has £,(¢,) ~ (),
the assertion indeed follows from the Pelczynski decomposition technique
(Theorem A.2.2). O

It follows that the standard unit vector basis of X, can be identified with
an unconditional basis of £,. Since the standard basis (e,;)en of X, is not
equivalent to the standard basis of £, (for p € (1,00)\ {2}), the general theory
shows that (e,,),eny cannot be symmetric [Sin70, Proposition 21.5]. More
easily, choose m(2m) = (m_Tl)m + 1 and use successively 7(2m + 1) to fill up the
rest. Then [e;(2m)|men is isometrically isomorphic to £, and versions of the
counterexamples above show that (ey(2m))men is Not equivalent to (€2,) menN-
Note that one sees directly that X is isometrically isomorphic to ¢, and that
the standard unit vector basis of X, is equivalent to the standard Hilbert space

basis of ¢,. We have therefore shown the following

Proposition 3.2.11. Under the identification £, ~ X, for p € (1,00) \ {2} the
standard unit vector basis of X, is a semi-normalized non-symmetric unconditional
basis of £,

One can now use Theorem 2.1.35 and the calculations just made to obtain
an explicit counterexample on X, =~ ¢, for p € (1,00) \ {2}. However, we want
to do more: we want to define a consistent family of counterexamples on
X, on the scale p € (1,00) \ {2}. For this it is necessary to find explicitly p-
independent choices of both the permutations and the bases f,, used in the
proof of Theorem 2.1.35. This is the goal of the next proposition.

Proposition 3.2.12. Let (e,,)menN e the standard unit vector basis of X, (p €
(1,00)). Then there exists a p-independent permutation 1 of the even numbers
such that the choice f,, in the proof of Theorem 2.1.35 yields semigroups without
maximal regularity for all p € (2, 0).

Proof. The permutation 7 of the even numbers is defined as follows. Let
bg,b1,b,,... be the first even numbers in the blocks By = [(k_zl)k +1, k(k2+1)]
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(keN),soby=2,b;=4,b,=8,b3=12,by =16, b5 =22, by = 30 and so on.
Now, we define

m m odd
mi(m) = < by m =4k +2
min2IN\ ({b,, : n e N}Une([1,m—1])) m = 4k.

The permutation 7 jumps to the first even number of some block By in every
second permutation step of the even numbers and collects all other even num-
bers in the other steps. Notice that a sequence of the form (ay,0,45,0,43,0,...)
converges with respect to (ex(2m))men if and only if (a,,)uen € €, This ob-
servation together with a slight modification of the above counterexamples
shows that (e, (2/u))men is not equivalent to (e241)meN-

Moreover, the above arguments show that for p € (2,00) there exists a
sequence (a,,),eN Which converges with respect to (e, (2))men but not with
respect to (ep,41)men. Thus in the case p € (2,00) one can use (f,,)meN tO
construct a counterexample. O

Proposition 3.2.12 leaves open what happens in the case p € (1,2). Since
we can construct a counterexample to the extrapolation problem without
addressing this issue and we want to stay as elementary as possible first, we
will postpone the discussion of this question to the next subsection where we
will give refined counterexamples.

Notice that we have not yet found a counterexample to the extrapolation
problem although we have found consistent semigroups on X, with the de-
sired properties. For this X, ~ ¢, is not sufficient because we also need the
consistency of the isomorphisms for different p. Sadly, the argument given in
Proposition 3.2.10 using Petczynski’s decomposition technique does not seem
to yield such consistent isomorphisms. In a different direction one could try
to apply Theorem 2.1.35 to the normalized Haar basis of L,([0,1]). This works
perfectly for a fixed p € (1, ), but the Haar basis cannot be simultaneously
normalized for all or two different choices of p. Please be aware that the
assumption on the basis to be (semi-)normalized is crucial in the proof of
Theorem 2.1.35 in order to show that the constructed sequences (f”),,en and
(f”)men are Schauder bases. This issue was overlooked in the presentation
given by the author in [Facl3a] and clarified in [Facl4].

Nevertheless, there is a way to embed the above family of counterexamples
on X, consistently into a scale of L,-spaces.

Theorem 3.2.13. There exist consistent analytic Co-semigroups (Ty(z)) ey, on
L,([0,00)) for p € (1, 00) such that (T,(2))zcx,, does not have maximal regularity

for p € (2,00).
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Proof. Notice that for each n € IN one has an isomorphism
n
¢y ~span{ry,...,r,} =Rad, (ay,...,a,) > Z“krk-
k=1

It follows from this explicit representation that the above isomorphisms are
consistent. Moreover, by the Khintchine inequality (Theorem A.3.1) there
exists C, > 0 such that foralln €N, ay,...,a, €C

n 1/2
- C”(Zlaklz) '
1

k=1

n

) e

k=1 Lp([o'

n 1/2
cgl(DakF) <

k=1

Therefore the isomorphisms are uniformly bounded in n. Hence, one has

ot Xp = 692/3 = EBZP Rad,,. The right hand side is a

subspace of &, L,([0,1]) ~ L,([0, 00)). We now show that there exist consistent
P

consistent isomorphisms i

projections Q, from L, ([0, c0)) onto this subspace. Indeed, for a fixed p € (1, o)
the subspace Rad,, of L,([0, 1]) is uniformly complementable in n € IN (since
C is clearly K-convex by Theorem A.3.7 and the Khintchine inequality A.3.1),
where the projections explicitly given by

n 1
Po:f ) r flw)r(w)dw

are consistent for all p € (1, 00). By the uniform boundedness of these projec-
tions one obtains consistent projections Q, as desired. From these we obtain
consistent decompositions L,([0, c0)) ~ (EBZP Rad,) ® Z,. Let (T,(2))zes,, be
the family of semigroups obtained from Proposition 3.2.12. Using the above
decomposition we can define consistent analytic Co-semigroups (5,(2))zesx,,
(p € (1,00)) on L,([0,00)) as

Sp(z) =i, 0 Ty(z)0i,' ®Id.

Clearly, (5,(2))zex,,, has maximal regularity if and only if (T,(z)).ex,, has
maximal regularity. Hence, by Proposition 3.2.12 the analytic semigroup
(Sp(2))zex,,, does not have maximal regularity for p € (2, c0). O

We can now easily modify the above counterexample to obtain the main
result of this subsection published in [Fac14].

Corollary 3.2.14 (A Counterexample to the Maximal Regularity Extrapola-
tion Problem). There exist consistent analytic Co-semigroups (Ry(z))zex, ,, on
L,(R) for p € (1,00) such that (Ry(2))ex, ,, has maximal regularity if and only if
p=2
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Proof. Let (5;(2))zes,,, be the adjoint semigroups (which are again strongly
continuous and analytic) of the semigroups (5,(z))cx,, constructed in The-
orem 3.2.13. By Proposition 1.2.3(b), (S;(2)).es,, does not have maximal
regularity for p € (1,2). Now, the direct sum R,(z) = S,(z) ® Sy(z) of both

semigroups has the desired properties. O

3.2.4 Exact Control of the Extrapolation Scale

In this section we continue with a more detailed study of the extrapolation
problem for maximal regularity. We have already seen that maximal regularity
does not extrapolate from L, to the L,-scale. However, it may theoretically
be possible, for example, that it extrapolates to all p > 2 as soon as maximal
regularity holds for one py > 2. For the moment suppose that one has given
a family (T,(z)) of consistent analytic Cy-semigroups on L, for p € (1, 00) and
let M C (1,00) be the set of all p € (1,00) for which the semigroup (T,(z)) has
maximal regularity. We now collect some basic facts on the set M. First of
all an analytic Cy-semigroup on a Hilbert space has maximal regularity by
Theorem 1.2.12, so 2 € M holds. Moreover, it follows from interpolation
(apply Corollary A.5.7 with the complex interpolation method) that M is
a convex set. In other words, M is a subinterval of (1,00) that contains 2.
The goal of this section is to show that apart from this obvious structural
restrictions one cannot obtain any further positive results for the maximal
regularity extrapolation problem. In fact, we show that for every interval I C
(1,00) with 2 €I there exists a family of consistent Cy-semigroups ( Tp(z))zez%
on L,(RR) such that (Tp(z))zezg has maximal regularity if and only if p € I. The
results of this section are new and have not yet been published.

As a first step we now return to the basis (f,,),en Obtained in Proposi-
tion 3.2.12. Recall that we have seen so far that for p € (2, 00) the basis (f,,)neN
is conditional and yields counterexamples to the maximal regularity problem.
In the case p € (1,2) left open we have the following technical result.

Proposition 3.2.15. The basis (f,,)men constructed in Proposition 3.2.12 is un-
conditional for p € (1,2].

Proof. Assume that )’ a,,f,, converges. We have to show that } 7, €,,a,,f,.
converges for any choice of signs (&,,)en € {—1,1}N. Obviously, the even
part ) 1 €2,,2m€x(2m) cONverges because there is no interference between
two different components of (e,;),,en. For the odd part we have to check the
convergence of the series

) p/2\1/p 0 p/2\1/p
2 2
(Xt vl ) < (Y (Y wvana) |

k=1 ‘leB, k=1"leB;
I odd I odd
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S p/2\1/p
+ (Z( Z (€141 = El)ﬂl+1|2) )

k=1 "‘1eB;

I odd
The first term converges by assumption. Again, we split the second term.
First notice that (a412)men € €p- Observe that for p <2 we have the inclusion
¢, < €, which yields ¢, — @pr;. From this inclusion we deduce that the part
of the second series where I runs over the numbers / with / +1 =2 mod 4
converges. Finally, we have to show that the part of the second series where [
runs over the numbers with /+1 =0 mod 4 converges. This part is essentially

built from the convergent series

(o)

Z A4mCr(4m)

m=1

by eventually inserting zeros. The following lemma shows that this procedure
does not destroy the convergence and finishes the proof. O]

Let (a,,)men be a sequence and (b,,) = (0,...,0,a,0,...,0,a,,...) be a se-
quence built from (a,,),en by inserting zeros. We can then introduce a
mapping ¢: IN — IN which maps k to the position of a; in the new sequence

(bm)mEIN~

Lemma 3.2.16. Let p € [1,0), (a,,)men be a sequence, (by,)men and ¢: N — IN
be as above and suppose that

M =supp(k+1)—-q@(k) < oco.
keN

If () menN € Xp, then (by,)men € X, as well. Conversely, if (by,)nen € Xp, then
(am)meIN € Xp'

Proof. We only prove the first implication as the proof of the second is analo-
gous. Furthermore it suffices to consider the case M = 2 as the general case
then follows inductively. Let B := {B,, : n € IN} be the set of all blocks. By
considering the worst cases, one sees that for each A € B there exist at most
three different B € B such that ¢(A) N B # 0 and likewise for each B € B there
exist at most three different A € B such that ¢(A) N B = 0. Choose C > 1 such
that for every triple a, 8,7 € R one has (a? + 2 + y?)/2 < C(aP + pP + yP) VP,
Then for each B € B one has

S T W IS S I W O WS

meB AeB  meA AeB meA
@(A)NB=0 @(A)NB=0
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Therefore one obtains

RN Ay AR N

BeB ‘meB BeB AeB meA
P(A)NB=D
p/2 p/2
GO NI DUCHS REEED N DM B
AeB  BeB meA AeB ‘meA
@(A)NB=0

From this we obtain the following preliminary result which shows that
maximal regularity can only extrapolate to one side of the L,-scale.

Corollary 3.2.17. There exist consistent analytic Co-semigroups (Ty(z)).ex, , on
L,([0,00)) for p € (1,00) such that (T,(2)).ex,,, has maximal regularity if and only
if p € (1,2] (respectively if and only if p € [2,00)).

So far we have always chosen lacunary sequences (;,)uen for which the
associated multipliers with respect to the perturbed bases yield counterexam-
ples to the maximal regularity problem or respectively to R-sectoriality. As
seen in Lemma 2.1.44 the key property is that for such sequences the ratios

Ym — Vm-1
Vm T Vm-1
are bounded from below, which can easily be verified for the examples y,, = b™
for b > 1 used until now for the case b = 2. We now want to study more
precisely the Schauder multipliers associated to various sequences (¥;;)meN
for the concrete basis (f,,)nen Obtained from the standard unit vector basis
of X, as described in the proof of Proposition 3.2.12. In particular, we are
interested in multipliers associated to sequences (¥,,),en Which grow slower
than the lacunary sequences considered in the general situation.
As a starting point we make the very elementary observation that one can
find sequences (¥,,)nen for which the ratio (3.11) has a prescribed growth.

(3.11)

Lemma 3.2.18. Let (c,,) 2 be a sequence of real numbers with c,, € (0, %)for all
m € IN. Then there exists a unique strictly increasing sequence (V,)menN of real
numbers with y; =1 and

l Ym — Vm-1
2 Ymt Vm-1

Proof. Rewriting the defining relation, one obtains

=cy, forall m> 2. (3.12)

2

Ym = Vm-1 (1—

—1) forall m>2,
—2¢y,

which recursively uniquely determines (y,,),en together with the initial
condition y,, = 1. It is then clear that (y,,),,cn is strictly increasing. O
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3. EXTRAPOLATION OF REGULARITY PROPERTIES

We now formulate a necessary condition for the sequence (c,,),en that
implies that the Schauder multiplier associated to the sequence (¥,,)en With
respect to the basis (f,,),en given by (3.12) is R-sectorial.

Proposition 3.2.19. Let (c,,;),u>2 be a sequence with c,, € (0, %)for all m> 2 and
(¥m)men the sequence given by Lemma 3.2.18. Suppose that for p > 2 the sectorial
operator A on X, given as the Schauder multiplier

D(A) = {x = iamfm : iymamfm exists}
m=1
A(Zamfm) Zymamfm

m=1

is R-sectorial, where (f,,)men is the conditional basis for X, constructed in Propo-
sition 3.2.12. Then (ayCqm12)meN € Xp for all (ay)men € €p.

Proof. Recall that the basic sequence (€y(4m+2))meN 18 isometrically equivalent
to the standard unit vector basis of £,. Let (a,,)men € €. Then the Rademacher
series x = } [ Tyumer(am+2) lies in Rad(X,). One can now argue as in the
proof of Theorem 2.1.45:

Let (9,,)men C IR_ be a sequence to be chosen later. Since A is R-sectorial by
assumption, it follows from Proposition 2.1.43 that the operator R: Rad(X) —
Rad(X) associated to the sequence (g,),en is bounded. We now apply R to x.
Because of ey (4m+2) = fam+2 — fams+1 We obtain

R(X) = R( Z rmam(f4m+2 - f4m+1 )

oo
An9m Anm9m

= dm = Vams2 Am = Viam+1
N ang
mYm mYm
= Z rm—(en(4m+2) +eami1) — T ——C€am+1
= dm~ Vam+2 dm = Vam+1
C Al 1 1
= Z "'m———€r(4m+2) T "'m%m9m - €4m+1-
= 4m = Vams+2 Am = Vam+2  9m ~ Vim+1

Again, we now want to choose (4;,),;,eN in such a way that the last term in the
bracket is big. By Lemma 2.1.44 one has for t = y4,,42

l Yam+2 — Vam+1
2 Vam+2 t Vam+1
Hence, for the choice q,, = —)4,,1» we obtain

9= g

m:

t[(t+74m+2)_1 _(t+74m+1)_1] = = C4om+2-

mCr(4m+2) ~ Cam+2TmAmC€am+1-

t\)lv—k
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As in the proof of Theorem 2.1.35 one deduces from the above equality
that ) | cams1amern,—1 converges in Xp. By Lemma 3.2.16 this implies that

(amc4m+2)me]N € Xp~ O

In the next step we prove a sufficient criterion for maximal regularity. As
it seems difficult to verify maximal regularity directly, we will establish the
boundedness of the imaginary powers which seems easier. Let (e,,),,en denote
the standard unit vector basis of X, and let A be the Schauder multiplier
associated to some sequence (¥,,)eN as above. It then follows from formula
(2.12) that the imaginary powers A! for t € R act formally as

Zamem g Z?Zamem + ZQZm(V;'It—l(zm) - y;t,l<2m)_1)en—1(2m),1, (3.13)
m=1 m=1 m=1

where

, m odd
77m = {Vm

Vr-i(m)y M even

It is clear that the first series of the right hand side of (3.13) converges for all
(@m)men € Xp. The crucial point is therefore the question whether the second
series of (3.13), which by the unconditionality of the basis (e,,),en can be
rewritten as

ZQZm(V;;t—l(zm) - V;t—l(zm),l )enfl(Zm)—l = Zan(Zm)(Vétm - Véfn—l )e2m-1,

m=1 m=1
converges in X, for all (a,,),eny € X,. Equivalently by Lemma 3.2.16, the
sequence (an(Qm)(y/éfﬂ - yéfﬂ_l))meN must lie in X, for all (a,)men € Xp. We
now give a sufficient condition.

Proposition 3.2.20. Let (c,,)nen be a sequence with c,, € (O,%) forall m > 2
and let (yy,)men be the sequence given by Lemma 3.2.18. Consider for p > 2 the
sectorial operator A on X, defined as

D(A) = {x = iamfm : iymamfm exists}
m=1

m=1

A( iamfm) = i Vmm fms
m=1

m=1

where (fi)men is the conditional basis of X, constructed in Proposition 3.2.12. If
(bimCom)men lies in X, for all (by,)men € €y, then A has bounded imaginary powers
with wgp(A) = 0. In particular, A is R-sectorial with wg(A) = 0.
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Proof. A short calculation shows that one has for all m € N

5 = Va1 P = explitlog yam) - explitlog yau )|
= lexp(itlog y2,)|* + lexp(itlog yam-1)I?
— 2Reexp(it(log(y2m-1 —108 ¥2m)))
= 2(1 - cos(t(log y2m-1 —1og yam)))-

Here we have used the identity
lz—w|? = (z—w)Z-w) = |z* +|w|* - (2w + Zw) = |2]> + |w|® — 2Re zw.

Further, one has

|log Y21 —10g Y| =

Y2m-1
lo (—)
8 Y

2m

log(l _ o Yam = Vam-1 )
Vom t Vom-1

log(l _ Yom — V2m-1 )
Yom

<

= [log(1 — 4cz).

2 .
It follows from elementary calculus that 1 —cosx < % for all x € R. In particu-
lar, we obtain the estimate

2(1 - cos(t(log yam-1 —log yam)) < t*log?(1 — 4cy).
A further elementary estimate from calculus is that |log(1 — 4x)| < 8x holds for

all x € [0, %]. Therefore we see that for all m € IN one has

[yst — it 1< 8t com (3.14)

Now, let (a,;)men € Xp. Since p > 2, we have the inclusion X, < ¢,. Hence,
(arc(Zm))melN € €p. By assumption, the mapping (b,,)men — (U1mC2m)men from
¢, into X, is well-defined and closed. Hence, by the closed graph theorem
there exists a constant C > 0 such that ||(c2mbm)||xp <C ||(bm)||€p for all (b,,)menN
in £,. Hence, we obtain that (a;2mu)C2m)meN € X, with

||(a7'[(2m)c2m)”Xp < C”(arc(Zm))”€p <C ||(am)||Xp .

It is a now a direct consequence of equation (3.14) that ((yéin - yéinfl)an(z,ﬂ)) €
X, with
(30 = Vam-1)axm)lix, < 8CIH (@)l -

Altogether this shows that A has bounded imaginary powers with ||A’|| <
K(1 +|t|) for some constant K > 0. Hence, wgp(A) = 0. O

For a special type of sequences (c;,)cN One can use the above results to
even obtain a complete characterization of maximal regularity.
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Corollary 3.2.21. Let (c,;)meN be an eventually decreasing sequence with c,, €
(0, %L)for all m> 2 and (y,,) men the sequence given by Lemma 3.2.18. Consider
for p > 2 the sectorial operator A on X, defined by

D(A) = {x = iamfm : iymamfm exists}

m=1 m=1

A(iamfm) = iymamfm;
m=1

m=1

where (fu)men is the conditional basis for X, constructed in Proposition 3.2.12.
Then A is R-sectorial if and only if (¢,,) meN € ©) g, where % = ;—, + %. Moreover,

in this case one has wg(A) = 0.

Proof. Clearly, it suffices to show the corollary for decreasing sequences. As a
first observation we show that both the conditions of Proposition 3.2.19 and
Proposition 3.2.20 are equivalent to: (a,,¢,,)men € X, for all (a,,)men € €, We
show only the non-trivial implication for the condition of Proposition 3.2.20.
Of course, for the condition of Proposition 3.2.19 the proof is completely
analogous. So assume that (a,,C2p)men € X, for all (a,,)men € €. Now let
(am)men € €p. In order to show that (a,,¢,)men € X, it suffices to show by
Lemma 3.2.16 that (a2,,¢2mm)men and (a2441C2m+1)men lie in X,,. For the first
sequence this follows directly from the assumption and for the second this
follows from the monotonicity of (c,,),en and the elementary estimate

||(ﬂzm+1C2m+1)||xp < ||(ﬂzm+1C2m)||xp-

Hence, we have shown that A is R-sectorial if and only if (a,,¢;)men € X,
for all (a,,)men € € In this case, by the closed graph theorem, there exists a
constant M > 0 such that

l(@memlix, < Mll(am)lle, (3.15)

for all (a,,)men € €,- Now, we show that this condition is equivalent to
(¢m)meN € B¢, g On the one hand it follows from Holder’s inequality that for
(¢m)meN € B¢, 4 one has

/2\1/
Howenl, =(Y_( T | ) ,,

m=1 ‘keB,,

S (LNl

m=1 ‘keB,, keB,,

1/q, o 1/p
<sup( Y it ) (Y taar)
keB,, m=1

8

melN
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which is (3.15). On the other hand it follows from (3.15) that for all n € IN
1/2
sup ( Z|akck|2) <M.
”(um)”fpsl keB

This implies that for all n € IN one has

1/q
( Z |ck|q) <M.
keB,

In other words one has (¢;,) e € ®¢, €5 This finishes the proof. O

We now check for special sequences (c;)uen Whether they lie in &, (7.
We start with the choice ¢,, = m™ for & > 0. Then one has for all n € IN

n(n+1)
=
Y kM= a(n+ )] < [n(n - 1))
k:"("T_])H
— n—aq+1((n + 1)—aq+1 _ (n _ 1)—aq+1) ~ n—aq+1n—aq ~ n—2aq+1‘
Hence, (m™%),eN € ©) {7 if and only if —2ag + 1 < 0. This holds if and only if
S I p-2 - < 2
T 29  4p P14
where the last inequality holds for a € (0, 4)
A second interesting choice is the variant c,, = m~*log?(m) for m > 2 and

some ¢, € (0,00). It is then clear from the above calculations that (c;,;)uen €
o) g for all a > qu and all g, € (0,00). However, for the choice @ = 2%1 and

qo = % one has

1) 1)
Z CZ = Z k12 logk
k=" 11 k=" 11
~ m(log( n+1))-2)- mlog -2)
= Vn(Vn +1(log(n(n+1)) - 2) - Vn—1log(n( 2))

~ \/Eﬁ logn =logn.

Hence, (m™@ log2“(m))me]N €@, (;if and only if —2ag+1 <0. This holds

if and only if
Jllp2 2
2g 4p 1-4a
These two families of sequences can now be used to obtain the following
complete answer to the maximal regularity extrapolation problem.
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Theorem 3.2.22. Let I C (1,00) be an arbitrary interval with 2 € I. Then there
exists a family of consistent analytic Co-semigroups (T,(z))zex, on L,(R) for
2
p € (1,00) such that (T,(2)),cx,, has maximal regularity if and only if p € I.
2

Proof. Let I be such an interval and let p, be the right end of I. We first
construct a family (T,(z)),cx, that has maximal regularity if and only if
2

p € (1,2)UI. For py = 2 this has already been done in Corollary 3.2.17. So we

may assume pg > 2. Choose ¢, = m™* for a = pfl;oz if pg eI orc, =m*log** m
for a = pip—OZ if po ¢ I multiplied by appropriate scaling constants such that

cm € (0, %) for all m > 2. Then it follows from Corollary 3.2.21 and the above
calculations that the analytic semigroups on X, for p € (1,00) whose nega-
tive generators are the Schauder multipliers associated the sequence () meN
given by Lemma 3.2.18 with respect to the basis (f,,),;en have maximal reg-
ularity for p € (2,00) if and only if p € I N (2,00). Moreover, it follows from
Proposition 3.2.15 and Corollary 2.1.7 that these semigroups have maximal
regularity for p € (1,2]. One can now use the consistent mappings from X, to
L,([0, 00)) from the proof of Theorem 3.2.13 to obtain the desired consistent
semigroups (Tp(z))zez% on L,([0,00)) which have maximal regularity if and
only if p € (1,2) UI. Taking the dual semigroups, it follows from Proposi-
tion 1.2.3(b) and the first part of the proof that there exist consistent analytic
Cp-semigroups (Sp(z))zez% on L,([0,00)) for p € (1,00) such that (Sp(z))zez%
that has maximal regularity if and only if p € (2,00) UI. Taking the direct
sum of (Tp(z))zez% and (Sp(z))ze;;% one obtains the desired family of semi-
groups. O

3.3 Notes & Open Problems

Kato-Beurling type theorems as Theorem 3.1.6 have an interesting and rich
literature which we now want to outline shortly. For an overview mainly
presenting Beurling’s impact we refer to [Neu93].

In [Neu70] J. W. Neuberger proved the following theorem.

Theorem 3.3.1. Let (T(t));>o be a Cy-semigroup on a real Banach space with
generator A satisfying

limsup||T(t)-1d|| < 2.
tl0

Then AT (t) is a bounded operator for all t > 0.

Further, the article contains a second result based on the work of A. Beurl-
ing which we only formulate in a special case. Suppose that the semigroup

109



3. EXTRAPOLATION OF REGULARITY PROPERTIES

110

just considered satisfies the weaker condition

limsup||T(37")-1d|| < 2. (3.16)
n—-oo

Then the collection of functions 7 = {t > (x*, T(t)x): x € X,x* € X*} forms a
quasi-analytic collection on (0, c0) which means that two members f,g €7
agree on a non-empty open subset of (0,0) if and only if g = h. Note that
this property is clearly also satisfied if the set 7 would consist of analytic
functions. Moreover, Neuberger gives an example of a Cy-semigroup that
satisfies (3.16), but for which the set 7 contains elements that are not analytic
functions. In particular, this shows that

liminf||T(¢)-1d|| < 2
t10

does not imply the analyticity of the semigroup (T(#));>o. Remarkably, the
same issue of the journal Proc. Amer. Math. Soc. contains right before the
article of Neuberger the article of T. Kato [Kat70] on which our approach is
based. Here the following strengthening of Theorem 3.3.1 is shown.

Theorem 3.3.2. Let (T(t));>o be a Cy-semigroup on a complex Banach space with

limsup || T(t)-1d|| < 2.
tl0

Then the semigroup (T (t))s( is analytic.

Apparently, when A. Beurling heard of the work of Neuberger he quickly
proved the following more general result which was also published in the
same year [Beu70].

Theorem 3.3.3. Let (T(t))s>0 be a weakly measurable and exponentially bounded
semigroup on some complex Banach space X. Then (T(t));>q is analytic if and only
if for one (and then for all) p € P, one has

(r(g)

One can show that the above condition in Beurling’s theorem is essentially
equivalent to the condition in Corollary 3.1.7. Beurling’s proof uses deep
hard analysis and is completely independent of Kato’s and therefore our
approach. Indeed, it is essentially based on ideas originating from Beurling’s
analyticity theorem, a deep theorem giving sufficient conditions for a scalar-
valued continuous function defined on an interval to be analytic in some
rhombus containing the interval. This allows Beurling to prove a variant of
the above result without requiring strong continuity for the semigroup. For

1/n
limsup <lpllp-

E+E+1-0
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details on Beurling’s result and a statement of the analyticity theorem together
with many historical information and references we refer to J. W. Neuberger’s
review article [Neu93].

Although so much work has been done, the following problem discussed
in Remark 3.1.9 is still open.

Problem 3.3.4. Let (T(t));>( be an analytic Cy-semigroup on some complex
Banach space X. Does there exist an N € IN such that

limsup [[(T () ~1)N||"™ < 22
tlo

Recall, however, that we have seen that the question has a positive answer
if the negative generator of (T(t));>o has a bounded H*-calculus for some
angle smaller than 7.
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Part 11

Structural Characterizations of
Sectorial Operators with a
Bounded H*-calculus
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Classes of Semigroups with a
Bounded H*-Calculus

In this chapter we present general classes of negative generators of strongly
continuous semigroups that have a bounded H-calculus. We will see that the
H®-calculus is closely related to the existence of dilations. In fact, apart from
explicit calculations and perturbation arguments for concrete differential
operators, the approach via dilations seems to be the only one available to
obtain the boundedness of the H*-calculus for classes of sectorial operators.
To give a first flavour of the methods and expected results, we shortly recall
the Hilbert space case which is essentially completely understood. After
that we turn our focus to the case of L,-spaces where matters get way more
complicated. Here we give a complete proof of Fendler’s dilation theorem in
the strongest form possible, namely for so-called r-contractive semigroups.
In fact we will generalize Fendler’s theorem to r-contractive semigroups
on closed subspaces of L,-spaces and prove as an application a pointwise
ergodic theorem on those subspaces. This allows us to obtain a complete
characterization of those semigroups having a strict dilation. Further, we can
deduce the boundedness of the H*-calculus for those semigroups.

4.1 Contractive Semigroups on Hilbert Spaces

In this introductory section we want to present shortly the well-understood
Hilbert space case in order to motivate the results in the following sections.
For semigroups on Hilbert spaces one has the following classical dilation
result [SNFBK10, Theorem 8.1].

Theorem 4.1.1. Let (T(t));>0 be a contractive Cy-semigroup on a Hilbert space
H. Then there exists a second Hilbert space K, an isometric embedding | : H — K,
an orthogonal projection P: K — H and a unitary group (U(t));ecr on K such that

T(t)=PU(t)]  forallt>0.

In particular, we obtain the following characterization for which we will
later prove an L,-analogue.

Corollary 4.1.2. A Cy-semigroup on a Hilbert space has a strict dilation in the
class of all Hilbert spaces if and only if the semigroup is contractive.

This gives the following powerful result on the boundedness of the H*-
calculus.
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Corollary 4.1.3. Let —A be the infinitesimal generator of a bounded analytic C-
semigroup (T(z)),ex on some Hilbert space that is contractive on the real line. Then
A has a bounded H®-calculus with wpe-(A) < 7.

Proof. It follows from Theorem 4.1.1 together with Corollary 1.3.10 that A
has a bounded H*-calculus with wp~(A) < 7. Now, on Hilbert spaces by
Theorem 1.3.4 this automatically improves to wpe~(A) = w(A) < 7. O

In the next chapter we will present a converse result due to C. Le Merdy.

4.2 Positive Contractive Semigroups on L,-Spaces

In this section we show that if —A generates a bounded analytic Cy-semigroup
on L, for some p € (1, 00) which is r-contractive (see Definition 4.2.6) on the
real line, then A has a bounded H*-calculus with wy«~(A) < Z. In the case of
positive contractive semigroups this is due to L. Weis [Wei0O1b, Remark 4.9¢)].
Still Weis” approach seems to be the only one known. It makes heavy use of
Fendler’s dilation theorem [Fen97]. We have decided to give a detailed proof
of this result on the boundedness of the H*-calculus including a proof of
Fendler’s dilation theorem for two reasons. First of all we do not know of
any reference in the literature where a complete presentation of the proof
can be found. This is even more the case for the general version proved here,
although the validity of the result is probably well-known among experts. The
main result is that Fendler’s dilation theorem can be naturally generalized to
semigroups acting on a closed subspace of some L,-space. As we will see, this
new result has applications to ergodic theory which are interesting in their
own right. Furthermore, we will see that the r-contractive analytic semigroups
even characterize those semigroups on L, which have a strict dilation.

4.2.1 Some Operator Theoretic Results for L,-Spaces

Before we can give the proofs of the main results of this chapter, we need
some operator theoretic background on the structure of bounded operators,
in particular isometries, on L,-spaces. Background on general Banach lattices
can be found in Appendix A.4.

Definition 4.2.1. A bounded linear operator T: L,(Q;) — L,(Q)2) between
two L,-spaces is called disjointness preserving if f - ¢ = 0 implies Tf -Tg =0
forall f,g € L,(Qy).

Isometries are an important class of separation preserving operators on L,.
The next lemma can be found in J. Lamperti’s work [Lam58] on the structure
of isometries on L,-spaces.
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Lemma 4.2.2. For p € [1,00)\ {2} let T: L,(Q1) — L,(Q3) be a linear isometry.
Then T is disjointness preserving.

Proof. Let f,g € L,(Q1). Note that f - ¢ = 0 implies

If -+l +11f = gllP = 2(IF1I” +11glIP). (4.1)

Conversely, the above equality (4.1) implies f - g = 0. Indeed, for p > 2 one has
by the convexity of the mapping y > yp/ 2fory>0

14
(s +gll”+llf—g||”>=f@1 )+ gOIF +1f G =gLIF

2

2 2\P/2
N L (If(x)+g(x)| LR ) e f IR + 18P dx

2-[ [f P +1g(x)IP dx = [I£1IP +IgllP -
Q,

Moreover, note that for p > 2 the inequality (x + p)?/? > xP/2 + yP/? for non-
negative x and y is strict if xy # 0. This shows that equality (4.1) can only
hold if f(x = 0 almost everywhere, i.e. f - g = 0. Further observe that in
the case p < 2 the above inequalities reverse and one can then use the same
argument.

Now, since T is an isometry equality (4.1) holds for f and g if and only if
it holds for Tf and Tg. This implies the assertion. O

As a consequence we obtain that a positive isometry T on L, is a lattice
homomorphism, i.e. T respects the lattice structure of L,.

Lemma 4.2.3. For p € [1,00)\ {2} let T: L,(Q1) — L,(CQ7) be a positive isometry.
Then T is a lattice homomorphism.

Proof. Let f,g € L,(Qy). Since T is positive, one has T(f Vg) > Tf Vv Tg. Now
consider the disjoint sets

Fi=(xeQ: f(x)> gx)

G:={xeQq:g(x)> f(x)}.

By decomposing f V g along the above sets we obtain

T(fve)=T(flp+gle) = T(f1p)+ T(glc)- (4.2)
Since T is disjointness preserving by Lemma 4.2.2, on the support of T(f 1)
one has
T(fUp) =T(fUp+flp)=Tf<TfVTg.
Of course, an analogous estimate holds for the other summand of the right
hand side of equation (4.2). Since the two summands have disjoint supports,
we have shown the converse inequality T(f Vg)<Tf Vv Tg. O
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The definition of a direct sum of multiplication operators is intuitively
clear, nevertheless it needs some care in the case of non-o-finite measure
spaces because of measurability problems.

Definition 4.2.4 (Direct Sum of Multiplication Operators). Let (QQ,%, u) be
a measure space and M a family of measurable functions g: () — C satisfying
u(supp(g1) Nsupp(gz)) = 0 for all g;,g, € M. Then on the space M, of all
measurable functions f: (O — C with o-finite support one can define a linear
operator Ty, as follows. Let f € M. Then f has o-finite support and therefore
the family of functions g € M for which u(supp(f) Nsupp(g)) > 0 is at most
countable. Let (g,),en be an enumeration of these elements and let N =
Upzm SUPP(L,) Nsupp(gm), @ measurable set of measure zero that satisfies: for
all x e supp(f)\ N there exists a unique n € IN with x € supp(g,). We set

Y1 8n(x)f(x) ifxeN

(T f)x) = {0 ifxeN.

Then Ty f € M,. We call Ty, the direct sum of multiplication operators induced
by the family M. Notice that in particular Ty, f is well-defined for all f €
L,(Q) for all p € [1,00). If Im|g| C {0,1} for all g € M, we say that Ty, is a direct
sum of unitary multiplication operators.

The following technical lemma has important consequences for the struc-
ture of operators on L,-spaces. We follow the presentation in [Lac74, Chapter
6,§17].

Lemma 4.2.5. For p € [1,00)\ {2} let T: L,(Qy,%1, 1) — L,(Q;) be a linear
isometry. Then there exists a linear surjective isometric operator U: L,((23) —
L,(Qy) such that UT is a positive mapping. Moreover, U can be chosen as a direct
sum of unitary multiplication operators.

Proof. We assume that Lp(Ql, Y1, 1) = 0. Otherwise there is nothing to show.
Let A be the set of all families of sets 7 C P(X;) that have the following
properties:

1. For every A € F one has p;(A) € (0,00).
2. For every pair A # B € F one has y;(ANB) =0.

Then A is partially ordered by inclusion. Let M be a maximal element in

A. Note that if ((21,%, 41) is o-finite, such an element can be constructed

directly. The case of a general measure space follows from Zorn’s lemma.
Let sgn: C — C be the complex signum function defined by

é ifzz0
sgnz:= .
0 ifz=0
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Now let A € M and M C A measurable. Then 1,—-1); and 1, are disjoint

which implies by Lemma 4.2.2 that T(14—1,,) and T 1, are disjoint as well.

This implies

Tl =T Tplsgn(T Lps) =T L] (sgn(T 14) —sgn(T La\pr))

(4.3)
= T Lylsgn(T 1,).

Since T is separation preserving, the above identity extends to all positive
step functions f = ) (', a; 1y, with a > 0 and My C A pairwise disjoint
and measurable. Further, by an approximation argument the above identity
extends to all positive f in L,(A). On the band (T 1,4)*+ generated by T 1, we
define the isometric unitary multiplication operator

UAZ (T]lA)J'J' —)Lp(Qz)
grosgnTly,-g

Since T is separation preserving by Lemma 4.2.2, the bands (T 14)*+ and
(T1g)t+ for A = B € M have trivial intersection. For A € M let P4 be the
band projection onto (T 14)*+. Then P, is positive and contractive and by the
observation just made one has Py Pg = PgP4 =0 for all A= Be M.

Further notice that the net of finite sums of the form } 4 P4 converges to a
band projection P in the strong operator topology. Now, it follows that the
net of finite sums ) 4, U4 P4 converges strongly to a unitary multiplication
operator U: L,(Q3) — Ly(€23). Observe tha:c Uis neithAer necessarily surjective
nor isometric. However, we can replace U by U = UP + (Id—P). Then U is
the direct sum of unitary multiplication operators induced by the family
{sgnT 1, : A e M} whose boundedness we have just verified directly. Further
notice that the discussion after equation (4.3) implies UT f > 0 for all positive
f € Ly(€2y) as desired. O

We now introduce the class of regular operators on a subspace of a Banach

lattice. Note that there exist several equivalent definitions of regular operators.

We follow the approach by G. Pisier [Pis94] which allows for a definition which
includes the subspace setting.

Definition 4.2.6 (Regular Operator). A linear operator T: S — F between
a subspace S of a Banach lattice E and a Banach lattice F is called regular if
there is a constant C > 0 such that for all finite sequences xy,...,x,, in S one
has

I sup IT(xi)llr < Cll sup |xlle. (4.4)

i=1,..,n i=1,..,n

The smallest constant C > 0 such that (4.4) holds is the regular norm of T and
is denoted by ||T||,. We call T r-contractive if ||T||, < 1 holds.
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In the case of an operator T: L,(Q1) — L,((22) between two L,-spaces
one can show that the above definition is equivalent to the more common
definition of a regular operator as the difference of two positive operators
[Pis10, Chapter 1]. In this case there exist positive operators that dominate T.
The infimum of those operators with respect to the natural order structure on
B(L,) exists and is the modulus |T|. One can then show that |||, = |||T]||-

In the following we are only interested in regular operators on subspaces
of L,-spaces for p € (1,00). Nevertheless we decided to give the definition for
general Banach lattices to clarify the core of the definition.

We now obtain the classical result that in the non-Hilbert space case every
isometry on L, is regular and even r-contractive.

Corollary 4.2.7. For p € [1,00)\ {2} let T: L,(Q) — L,(Q,) be a linear isometry.
Then T is r-contractive.

Proof. By Lemma 4.2.5 there exists a surjective isometric unitary multipli-
cation operator U: L,(€23) — L,(Q;) such that UT: L,(Qq) — L,(Q;) is a
positive operator. Clearly, one has [U~! f| = |f| for all f € L,(€23). Hence, one
has

TfI=|UUTf|=|UTf|<UTIf]

for all f € L,(Qy). This shows that T is regular with T, = [||T||| < [|UT| =
IT]l = 1. O

The key property of regular operators on subspaces of L, is the following
extension property shown by G. Pisier [Pis94, Theorem 3] which even holds
for regular maps between subspaces of more general Banach lattices.

Proposition 4.2.8. For p € [1,00] let L,(Qy) and L,(Q5) be two arbitrary L,-
spaces and S C L,(C11) a closed subspace. Then every regular operator T: S —
L,(Q3) admits a regular extension T: L,(Qq) = Ly(Qy) with T, = IT],-

4.2.2 Fendler’s Dilation Theorem for Subspaces of L,

We now turn our attention to the proof of Fendler’s dilation theorem for
r-contractive semigroups [Fen97]. Here we call a semigroup (T(t));>o 7-
contractive if T(t) is an r-contractive operator for all £ > 0.

For discrete r-contractive semigroups on L, the following celebrated di-
lation theorem independently proved by V.V. Peller [Pel81, Theorem 3 &
Remark 1] and by R. R. Coifman, R. Rochberg and G. Weiss [CRW78, p. 58-
59]) holds.

Theorem 4.2.9. For p € (1,00) \ {2} let T: L,(Q) — L,(Q2) be an r-contractive
operator on some L,-space L,(Q)). Then there exists an L,-space L,(CQ)’), an
isometric isomorphism U: L,(Q’) — L,(Q’), a positive isometric embedding
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D: L,(Q) — L,(Q’) and a positive contractive projection P: L,(Q') — L,(QY’)
such that
DT"=PU"D  foralln>0.

Note that in the first reference it is assumed that the underlying measure
space is o-finite. However, one can check that the same argument works for
general measure spaces.

We need the following decomposition result for group representations on
Banach spaces. The result goes in far more generality back to I. Glicksberg
and K. de Leeuw [dLG65]. A self-contained proof for the special case below
can be found in [Fen97, Proposition 1].

Theorem 4.2.10 (Glicksberg—de Leeuw). Let X be a reflexive Banach space, G
a commutative topological group and 1: G — B(X) a uniformly bounded repre-
sentation of G. Then there exists a projection Q € B(X) onto the closed subspace Y
of all elements x € X for which g v m(g)x is continuous from G to X. Moreover,

Q satisfies
(a) (g)Q =Qmn(g) forall g€ G,
(b) [IQll < supgeg ()l

We are now ready to prove a new generalization to subspaces of L,-spaces
of Fendler’s celebrated dilation theorem for semigroups on L,-spaces [Fen97].
For this we need some basics on ultraproducts of Banach spaces which can
be found in Appendix A.2.1. The dilation theorem was originally proved by
Fendler for r-contractive semigroups on L, for p € (1,00). Using the same
methods and Pisier’s extension result for regular operators (Proposition 4.2.8),
we can extend the result to the subspace case.

Theorem 4.2.11. Let (T(t));>o be an r-contractive Cy-semigroup on a closed
subspace S of some L,-space L,(Q) for p € (1,00)\ {2}. Then there exist an L,-
space L,(Q)’), a Co-group (U(t))ser of isometries on L,(Q)’) together with a positive
isometry D: L,(Q) — L,(Q’) and a contractive projection P: L,(Q’) — L,(QY’)
such that

DT(t)f =PU(t)Df  forallt>0andall f €S.

Proof. By Pisier’s extension result for regular operators (Proposition 4.2.8)
one can extend each operator T(t) of the semigroup individually to an r-
contractive operator T(t) on L,(Q). Of course, we cannot expect (T(1))1>0
neither to be strongly continuous nor a semigroup on L,(Q)). Nevertheless, by
the dilation theorem for r-contractive operators (Theorem 4.2.9), for every
n € IN there exists a dilation of the operator T(%) More precisely, there
exist a measure space ()/,,, an invertible isometry Uy, : L,(Q1/,) = L, (Q1/,)
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together with a positive isometry Dy/,: L,(Q) — L,(Q1/,) and a positive
contractive projection P: L,(Qy/,) — L,(Q1/,) such that

Dy, T(1/n)* =PUYf, Dy,  forallk>0.

For finite sets B C Q we define Fg := {n € IN : ns € Zfor all s € B}. Then
the collection {Fg : B C Q} is a basis of some filter 7 on IN. Now choose an
ultrafilter ¢/ on IN refining F. Further, we set

U - Uln/sn ifnseZ
"1 if nse Z.

Let D be the corAnposition of the cAanonical inclusion of L,(Q) into [, L,(Q)
with [[;;Di/u, P = [y Piyn and U(s) = [[y U,s for all s € Q. Notice that
the operators U(s) live on [T/ L,(Q) which is order isometric to some L,-
space LP(Q) by KakutanAi’s theorem (Theorem A.4.7). Further, D is a Eositive
isometric embedding, P is a positive projection and the operators U(s) are
isometric isomorphisms. We now show that the mapping U: Q — B(LP(Q)) is
a homomorphism. For this choose s,t € Q and let (f,),cn be a representant of
an element in [[;;L,(€Q1/,). Then for n € F, ;; one has

Un,s+t(fn) = Uln/(z+t)(fn) = U{q;n(Uln/tn(fn)) = Un,s(Un,tfn)-

Since U is finer than F, we see that both (U, s++(f))nen and (U, s(Uy, 1 f1))nen
represent the same element in [[;, L,(€2;/,). Thus U(t+s) = U(s)U(t) is shown.
Analogously, one has for f € S CL,(Q), t € Q¢ and n € Fyy

Pl/n Un,tDl/nf = Pl/n U{q/tnDl/nf = Dl/nT(l/n)ntf
= DI/nT(l/”)ntf = Dl/nT(t)f'

This shows that for all f € S one has PU(t)Df = DT(t)f.

In the next step we show that for all f € S the map t — U(t)Df is continu-
ous fr01}1 Q endowed with the Euclidean topology to LP(Q). First observe that
since (U(t))teq is a group of isometries, it suffices to show strong continuity
from the right at t = 0. Without loss of generality, we assume ||f|| = 1. Then
for € > 0 there exists a 0 > 0 such that ||T(t)f — f|| < € for all t € [0, 0). Hence,

for t e QN[0,0) one has
|Ut)Df + DfII>IPU(t)Df + PDfI = IDT(t)f + DI =IT(t)f + ]
=12f =(f =TIz N2fII-NT @A) f - fll =2 e

Since ||[U(t)Df|| = ||IDf|| = 1 for all t € Q and L,(Q) is uniformly convex, the
above estimate implies that ||U(t)Df - Df|| — 0 for t | 0. This shows the
desired continuity.
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Furthermore, it follows from Theorem 4.2.10 that there exists a contractive
projeAction Q from LP(Q) to the space Y of elements f € LP(Q) for whic}}
t — U(t)f is continuous. Notice that by the above observation the range of D
is contained in Y. Since Y is invariant under the action of U, we can restrict
U to a strongly continuous representation of Q on Y. Hence, we can extend
U to a continuous representation of IR on Y which we will still denote by U.

We are finished except for the fact that U acts on Y = QLP(Q) instead of an
L,-space. As Y is the image of a contractive projection on L, there exists an L,-
space L,(Q2) and an isometric isomorphism L: L,(€2;) — Y [Lac74, Chapter 6,
§17, Theorem 3(ii)]. Consider the isometric mapping L™ oD L,(Q) = L,y(Qy),
which is well-defined because of DLP(Q) C Y. By Lemma 4.2.5 there is an
isometric isomorphism V': L,(Q1) — L,(CQ;) such that V o L 'oD: L,(Q) —
L,(Q;) is a positive mapping. Applying Lemma 4.2.5 again to the isometric
mapping Lo V~1: L,(Qy) — LP(Q), there exists a surjective isometric direct

sum of unitary multiplication operators W: L,(€2) — L,(€2) such that Wo Lo
V=1 > 0. Observe that for positive f € L,(Q2) one has

WDf=(WoLoV ) (VoL loD)f >0.

Since D is positive, one also has Df > 0. This implies that W acts as the
identity on the image of D. Moreover, (W o Lo V‘l)(Lp(Ql)) = WY isa

A

closed sublattice of L,(()) because a positive isometric mapping on L, for
p € (1,00) \ {2} is automatically a lattice homomorphism by Lemma 4.2.3.
Therefore WY is order isometric to some L,-space L,(()’) by a mapping
©: WY — L,(Q’). Now set

D=®oD
Ut)=®oWoQoU(t)oWlod™!
P=®oWoPoWlod
Then D, P and U(t) for t > 0 have the desired properties. We only verify the
dilation property explicitly. Since W acts as the identity on the image of D,
one has forall f €S
PU(t)Df =(Po®oWoQoU(t)oW loD)f =(Po®oWoQoU(t)oD)f
=(Po®oWoW(t)oD)f =(@oWoPoU(t)oD)f
=(@oWoDoT(t)f =(PoDoT(t)x=DT(t)f. O

Sometimes it is more useful to use a different representation of the dilation
just obtained.

Corollary 4.2.12. Let (T(t));>o be an r-contractive Cy-semigroup on a closed
subspace S of some L,-space L,(Q) for p € (1,00) \ {2}. Then there exist an
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L,-space L,(QY’), a Co-group (U(t))cr of isometries on L,(Q)’) together with
a positive isometric embedding J: L,(Q) — L,(Q’) and a contractive mapping
Q: L,(Q') — Ly(Q) such that

T(t)f =QU(t)]f  forallt>0andall f €S.

Proof. Consider the dilation DT(t) = PU(t)D obtained in Theorem 4.2.11.
Since D is an isometry, D is an isometric isomorphism onto the closed subspace
RgD of L,(€Y’). The dilation property shows that (P o U(t) o D)(L,(2)) c RgD
for all t > 0. Hence, we can apply D7!: RgD — L,(Q) to both sides of the
dilation equation and obtain

T(t)=D"'PU(t)D  forall t > 0.

Now, we set ] = D and Q = D™'P and we obtain the desired form of the
dilation. O

Hence, we see that every r-contractive Cy-semigroup on a closed subspace
of some L,-space for p € (1,00)\ {2} has a strict dilation in the class of all
L,-spaces. We now show that the r-contractive semigroups are exactly those
having a strict dilation in the class of all L,-spaces. This seems to be a new
semigroup variant of the known characterization for discrete semigroups due
to V.V. Peller [Pel81, §3] which is probably known to experts.

Theorem 4.2.13. Let (T(t))i»o be a Co-semigroup on an Ly-space L,(Q) for p €
(1,00)\ {2}. Then (T (t))s»0 has a strict dilation in the class of all L,-spaces if and
only if (T (t))s>o is an r-contractive semigroup.

Proof. On the one hand we have just seen in Corollary 4.2.12 that every
r-contractive Cyp-semigroup on L, has a strict dilation in the class of all L,-
spaces. On the other hand suppose that (T(t));>( has a strict dilation in the
class of all L,-spaces, i.e. there exists a Co-group (U(t));cr of contractions
on some Lj,-space L,(€)’) and contractive mappings J: L,(Q2) — L,(Q’) and
Q: L,(Q') — L,(Q) such that

T(t)=QU((t)] for all t > 0.

Note that one directly sees that U(t) is an isometric isomorphism for all t € R.
In particular, it follows from Lemma 4.2.7 that U(t) is r-contractive for all
t > 0. Moreover, for t = 0 one obtains the identity Id = QJ. Since Q and |
are contractions, this implies that ] is an isometry. Moreover, taking adjoints
we obtain Id = J*Q". By the same argument we see that Q*: L,(Q’) — L,(Q)
is an isometry, where g is the adjoint index given by 1 = 11—7 + %. Applying
Lemma 4.2.7 again to ] and Q", we see that both are r-contractive. We now
show that the r-contractivity of Q* implies that Q is r-contractive as well.
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Let P*: L,(Q) — L4(Q) be a positive contraction such that |Q*g| < P*[g]

for all g € L,(Q2). We show that |Qf| < P™|f] for all f € L,(Q) as desired.

Notice that P™ is a positive contraction and that it suffices to show that

IQ, |Qf|14 < IQ,P** |f|14 for all f € L,(Q) and all A ¢ Q of finite measure.

For A c Q’ of finite measure one has
f 1Qf |14 = f Qf sgn(Qf) 1, = f FQ (sgn(Qf) 1)
Q’ Q’ Q
< f F11Q"(sgn(Qf) 1) < j [£1P* Isgn(Qf) .4
Q Q

=J 1P L, =f P*If|14.
Q Q’

It follows that for all t > 0 the operator T(t) is r-contractive as the composition
of r-contractive operators. This finishes the proof. O]

Remark 4.2.14. Notice that the same characterization is valid in the subspace
case if one additionally requires that ] extends to a mapping J: L,(Q) —
L,(€Q)’) and that one has Id;, = QJ. This property is clearly satisfied by the
dilation constructed in Corollary 4.2.12. For the proof of the characterization
in the subspace case just notice that with the same proof one obtains that Q, ]
and U(t) for all t > 0 are r-contractive. Hence, T(t) = QU(t)]|s is r-contractive
as the restriction of an r-contractive operator to the closed subspace S.

On L,-spaces (and on more general Banach lattices) one can generalize the
definition of R-boundedness seen as square function estimates to the notion
of R,-boundedness. This notion seems to go back to L. Weis [Wei0la] and
opens the door for interpolation arguments which are crucial in the proof of
the main result of this section.

Definition 4.2.15 (R ;-Boundedness). Let p,q in [1,00] and S C L,(Q) be a
closed subspace of an L,-space. A subset 7 of B(S) is called R,-bounded
if there is a constant C > 0 such that for all n € IN, all T},...,T,, € 7 and

fir--o fu € Ly(Q) one has
n 1/q
(> )
i=1

n 1/
H(;mﬁﬂ) q

I sup |T:filll, <Cll sup Ifilll,  ifg=oco.
i=1,..,n

i=1,..,n

-

if g€ [1,00),

p p

The smallest constant C > 0 such that the above inequality holds is denoted
by R4(T). We give some remarks on the basic properties of R;-bounded sets
and their connection with R-boundedness.
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Remark 4.2.16. A subset 7 C B(S) for a closed subspace S of L,(Q2) for p €
[1,00) is R,-bounded if and only if it is norm-bounded. For this observe that
one has

u@ww

..... p

L ZI(Tifi)(x)l” dx = ZL (T f) ()P dx = ;nnﬁup

Moreover, a subset 7 C B(L,(€)) is R-bounded if and only if 7" is R,-bounded.
Indeed, by the Khintchine inequality (Theorem A.3.1) one has the equivalence

Emir) T = L et
_ L Iy

p

) r@)Tf,
i=1 L,(Q)

Let (V(s)f)(t) := f(t —s) be the right bilateral shift group on L,(R). For

b € Li(IR) one defines the convolution operator

n

) r(Tif))

=1 Lp([orl])

p
dx

dow.

Tb:L(

frbsf= j -—s ds_f b(s)V(s)f ds.
In the following we denote by L; .(IR) the space of all functions f € L;(R) with
compact support.

We now prove an order theoretic version of the transference principle
for Cy-groups (Theorem 1.3.9). Here and for the rest of this subsection our
point of view is very similar to the presentations in [Blu01] (and [Fen12]).
There it is assumed that the semigroup (T(#));( is dominated by a contractive
positive semigroup. In our treatment we only use that the semigroup is r-
contractive (or r-bounded) throughout the presentation. It is known, but not
at all obvious, that both assumptions are equivalent [BG86, Proposition 2.3].

Proposition 4.2.17 (Transference of R ,-boundedness). Let (U(t));cr be a
Co-group of uniformly r-bounded operators on some L,-space L, () for p € [1,00)
and let M = sup{||U(t)||, : t € R}. Then for arbitrary subsets B C Ly .(IR) one has

Reo {Jm b(s)U(s)ds:be B} <M?R|{T,:beB},
0

where the integral on the left hand side is understood in the strong sense.
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Proof. We first assume that the underlying measure space () is o-finite.
Choose a compact set K such that by,...,b, € B have support in K. Further for
t>0let K; := K+[0,¢]. Since |f| < |U(-t)[|U(t)f| holds for all f € L,(Q)) and
all t >0, we have for all f;,..., f, eLp( ) that

o0 p
'.max f (s)fids
i=1,..,n
p
J |U(- U(r)bi(s)U(s)fi ds|dr
p
|U | max f bi(s)U(r+s)f;ds|dr
p
J- U (- |||pH max J- (s)U(r+s)f; ds
p
<= J ‘rrllax J L, (r+s)bi(s)U(r +s)fids|| dr,
—co 1=1,...,n 0

where we have used Jensen’s inequality in the second to last inequality. Fur-
ther, one has by Fubini’s theorem

e

p
dr

foob( Vg, (r+s)U(r +5s)f;ds

.....

J f max j bi(s)V (=s)(Lg,(-)(U()fi)(x drdx
’ d
-, |n;f VUS| s
(oo p r
<R { b(s)V(=s)ds : beB} max|]lK (~)ﬁ)(x)|p dx
0 Jo lli=L.., L,(R)
=R {mb(s)V(—s)ds:beB}p (|| max |]1K U(r)f
0 IR =Ly
<R { Poob(s)V(—s)ds:beB}p [ 1k, (r) 'rrllax |U(r)fi| pdr
0 J i=1,..,n
{ Pmb(s)V(—s)ds:beB}p [ ]th(r) (r)] max |ﬁ|der
Jo JR i=1,..,n

) p
§|Kt|MPROO{j b(s)V(—s)ds:beB} ‘
0

P
; .

Note that by change of variables one has for all by,...,b,, € Band all fi,..., f, €

Ly(R)
0 p
L bi(s)V(-s)fids|| = f}leaxn

.....

p
dt

max
i=1,..,n

|

JOO bi(s)f(t+s)ds
0
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p p

dt =

= max
IRiZl ..... n

From the above identity one directly deduces

Reo {L b(s)V(-s)ds:be B} =R {J; b(s)V(s)ds:be B}

:ZTQOG{Tb :be B}.

L bi(s)V () fi(—) ds

max
i=1,..,n

L bi(s) fi(~(t —))ds

Altogether, we have shown that for all t > 0

max
i=1,..,n

Kd\P
S(T) MROO{Tb:beB}||i£rl1aXn|ﬁ|||-

foo bi(s)U(s)f; ds
0

For t — oo we obtain the desired inequality in the o-finite case. If () is an
arbitrary measure space we consider for given fi,..., f, € L,(Q) the separable
sublattice L of L,(Q)) generated by fi,..., f, and their images under U(t) for
t € R which is order isometric to a o-finite L,-space [LT79, Theorem 1.b.2].
Hence, the above estimate holds and is independent of L. This shows the
general case. O

The transference principle for R.,-boundedness together with Fendler’s
dilation theorem now yields the following.

Theorem 4.2.18. Let (T(t));>o be an r-contractive Cy-semigroup on a closed
subspace S of some L,-space L,(Q) for p € (1,00)\ {2}. Further let M: (0, 0c0) —
B(X) be given by

in the strong sense. Then the set {M(t): t € (0,00)} is Ro,-bounded.

Proof. We first start with the special case where (T (t));>o is an r-contractive
Co-group on L,(Q), i.e. S = L,(Q2). Notice that for b; = %]1[0,;&] one has

t t [e)
M= [ Famndy=7 | vEIn@y = [ bevenmay.
By the transference principle for R,-boundedness (Theorem 4.2.17) one has
Reo {M(t) 1 £ € (0,00)) < Reo [Ty, : £ € (0,00)}.

It therefore remains to show that for all n € N, t,...,t, >0 and fi,..., f, €
L,(R) one has

1 ("
o[ ae-mas]| <cnsup 1
1 J0 i=1,..,

n

.....
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for some constant C > 0. For this one has

ﬁ <[supt [ sup [fi-
t Jo

t>0 i=1,..,n
where the right hand side is the left-sided Hardy-Littlewood maximal operator.
It is a classical result in harmonic analysis that this operator is bounded on L,
for p € (1,00) [HS75, (21.76)].
Now, we consider the general case, where (T(t));>o is an r-contractive Cy-

sup

semigroup on a closed subspace of L,(Q2). Then it follows from the dilation the-
orem for such semigroups (Theorem 4.2.11) that there exist an r-contractive
Co-group (U(f))scr on some L,-space LP(Q), a positive isometric embedding
D: L,(Q) — LP(Q) and an r-contractive mapping P: LP(Q) - LP(Q) such that

U(t)Df =DT(t)f  forall f €S8.

Notice that Lemma 4.2.3 shows that D is an isometric lattice homomorphism.
Therefore one has for all n e N, ty,...,t,>0and fy,..., f, € S by the first part

of the proof

1 (" 1 ("

sup |M(t;)fil ' 'D sup J T(s)f; ds sup J DT(s)f; ds

i=1,..n i=1,..,nti Jo i=1,..,n1ti Jo

1 (" 1 ("
=) sue | | puepsas| <nen sup | | veps]as
i=1,. i=1,.
sup A= o s 151]] - ] s 151 =

4.2.3 An Application to Ergodic Theory

Before proving the main result of this chapter, we present some direct conse-
quences of the results proved so far. As a corollary of the R ,-boundedness
just shown one obtains a maximal ergodic inequality for r-contractive semi-
groups. The validity of this inequality is known to experts in the L,-case (see
for example [LMX12, Remark 4.3]) and can be obtained along the lines of the
arguments in [Fen12, Theorem 5.4.3]. However, the result below seems to be
new in the subspace case.

Corollary 4.2.19 (Maximal Ergodic Inequality). Suppose (T(t));>q is an r-
contractive Cy-semigroup on a closed subspace S of some L,-space L,(Q) (p €
(1,00)\ {2}). Then there exists a C > 0 such that for all f € S the semigroup
(T(t))¢>0 satisfies the maximal ergodic inequality

1 (!
?Jo T(s)f ds

where the supremum is formed in the pointwise sense.

< CIIfll,

sup
t>0
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Proof. 1t follows as a special case from Theorem 4.2.18 that for all n € N,
t1,...,t,>0and all f € S one has

ti
tli J; T(s)f ds

for some constant C > 0. It then follows from the monotone convergence
sup

theorem that ,
1
—J T(s)f ds
teQ, t 0

for all f € S. Taking suitable representatives, one sees that the expression

sup
i=1,..,n

< CIIfll

<CIIfll

X %fOt(T(s)f)(x)ds exists and is continuous in x except for a set of mea-
sure zero (see the detailed discussion in [DS58, p. 686f.] and the proof of
Corollary 4.2.20 for a similar argument). This shows that

%J; T(s)f ds %L T(s)f ds

The maximal ergodic inequality is the key ingredient to prove pointwise
almost everywhere convergence of the Cesaro means of the semigroup. We use
a continuous variant of the argument in [Kre85, Section 5.2, Lemma 2.1] for
which we do not know any explicit reference in the literature. The maximal
ergodic inequality is known to experts in the L,-case although we could not
find any explicit reference. It seems to be new in the subspace case.

sup
>0

sup
teQ,

< ClIfIl- O

Corollary 4.2.20. Let (T(t));>o be an r-contractive Cy-semigroup on a closed
subspace S of some L,-space L,(Q,%, u) (p € (1,00)). Then for all f € S the ergodic

mean
1

?J:T(s)fds

converges almost everywhere for t — oo.

Proof. Since S is reflexive, one has S = Ker(A) ® Rg(A), where A denotes the
generator of the semigroup (T(t));>o- Now, if f € Ker(A), one clearly has
T(t)f = f for all t > 0 and the ergodic mean obviously converges pointwise.
Further, if f € Rg(A), there is a g € S with f = Ag and one obtains

1 (! 1 (! 1
MUIf = | T ds= | T(Agds= HT (g
For the pointwise convergence almost everywhere it clearly suffices to show
that %T(t)g converges pointwise almost everywhere. For this notice that
we may assume L,(Q) to be o-finite. Indeed, since the space generated by
the functions T(t)g for t > 0 is separable by the strong continuity of (T());>0,
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[DS58, Lemma II1.8.5] shows that this space can be seen as a subspace of an L ,-
space over a o-finite measure space. Now, notice that because of ¢ € D(A) the
map t +— T(t)g lies in Wpl(Lp(Q)). By measure theoretic considerations [DS58,
Theorem I11.11.17] there exists a measurable function h: [1,00) x Q — C
uniquely determined up to a set of product measure zero such that h(t,:) =
T(t)g for t almost everywhere. Moreover, except for a set N C () of measure
zero one has h(-,x) € Wpl([l,oo)). In particular, by the Sobolev embedding
theorem one has the inclusion Wpl([l, o)) = Cp([1,00)) [Brell, Theorem 8.12].
Hence for all x e Q\ N, one has h(t,x) > 0 as t — 0.

Altogether we have shown that the ergodic mean converges pointwise
almost everywhere in the dense set Ker(A) ® Rg(A). We now finish the proof
by showing that the subspace of all functions in S for which pointwise conver-
gence almost everywhere holds is closed. This follows from Banach’s principle
which we now present. Let f,g € S and t,5 > 0. Then

IM(2)f = M(s)f| < IM(2)f = M(t)g] + M (t)g — M(s)g| +M(s)g — M(s)f]

< 2supM(D(f =gl + IM{t)g = M(s)gl-
>
Now, if M(t)g converges pointwise almost everywhere for g € S, one has by
taking the limes superior in the measurable functions

A= lim suplM(1)f ~M(s)f| < 25upIM()(f - gl
/500 >
Now, employing the maximal ergodic inequality shown in Corollary 4.2.19
one has for every ¢ > 0

plew: M (@) > 2¢) < ple sup M) - 9)| > e] < Pllsup IM(1)f - )IP

t>0

<CPePf -glP.

Now, taking f,, € S for which M(t)f, converges almost everywhere and which
converge in norm towards f (such a sequence exists because of the density of
Ker(A)®Rg(A) in S), it follows from the above inequality that A = 0 almost
everywhere. Hence, except for a set of measure zero, (M(t)f)(x) is a Cauchy
sequence and therefore converges. This shows that for all f € S the ergodic
means M(t)f converge for t — co almost everywhere. O]

4.2.4 Bounded H*-Calculus for r-Contractive Semigroups

We now return to the main goal of this section, namely the study of the H*-
calculus. In the following we prove on subspaces of L,-spaces a generalization
of Weis’ celebrated theorem (see [WeiO1b, Remark 4.9¢)] and [WeiOla, Sec-
tion 4d)]) on the boundedness of the H*-calculus for r-contractive analytic
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Co-semigroups on L,-spaces. This theorem was originally proved by Weis
for positive contractive semigroups, it is however known among experts
that the methods extend to r-contractive semigroups on L, (see for exam-
ple [LMX12, Proposition 2.2]). However, it is new that the same approach
also works for the subspace case (without the improvement of the angle) as
until now the validity of Fendler’s dilation result has not been known for the
subspace case. Notice that the improvement of the angle to wy~(A) < T in the
theorem is crucial as this implies the maximal regularity of A.

Theorem 4.2.21. Let —A be the generator of an r-contractive Cy-semigroup
(T(t))=0 on a closed subspace S of L,(Q) for p € (1,00). Then the negative gen-
erator A of (T(t));»o has a bounded H*-calculus with wp~(A) < 5. Moreover, if
S =Ly(Q) and (T (t))s0 extends to a bounded analytic semigroup, then one has

(1—%)+%a)(A) forpe(1,2]
p

_2)+ P_w(A) forpe[2,oo)'

DSIERNTE

—_

2(p— 2(p-1)

In particular, one has wp-(A) < 7.

Proof. Since the semigroup (T(t));»o dilates to a group on some L,-space
by Theorem 4.2.11, it follows from Proposition 1.4.2 that A has a bounded
H%-calculus with wp~(A) < 7.

Moreover, we have shown in Theorem 4.2.18 that the family {M(t):t e
(0,00)}, where M(t) = %I(:T(s)ds, satisfies R, {M(t):t € (0,00)} < co. Now,
assume that (T(t));>o can be continued to a bounded analytic semigroup on
some sector X for some 6 € (0, %). Then it follows from Remark 4.2.16 that
Rp{M(z):z € X5} <ooforall 6 €(0,0). Choose such a 6 € (0,9).

Let us now assume that S = L,(Q) for p € (1,2] and an underlying o-finite
measure space. Further for A € C such that ¢'* € X5, g € [1,00] and n € NN,
t1,...,t, > 0 consider the mappings

N(A): Lp(Q;65) — Ly(€567)
(frreor fu) > (Mt fr, o M(Ege™) ).
Then the above arguments show that
1. {N(is): s € R} is uniformly bounded in B(L,(Q;{,)) and that

2. for every 6 € (0,9) the set {N(6 +is) : s € R} is uniformly bounded in
B(L,(Q;€))

Let @ € (0,1) be such that % = ocll) +(1- a)é. Then it follows from the abstract

Stein interpolation theorem (Theorem A.5.8) that for every 6 € (0,9) the

family {N(ao +is) : s € R} = {N(%é +is) : s € R} is uniformly bounded in
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B(L,(€;£73)). Note that the same argument applies if one replaces et by e”'*in
the definition of N (). Altogether, by the observation made in Remark 4.2.16,
we have therefore shown

R{M(teii‘jp/z) : teIR} < o0

for every o € (0,6). It follows form Proposition 1.2.3(a) that the set {M(z) :
zZ€ Zég} is R-bounded. Further, one has zM’(z) = T(z) — M(z). Since {zM’(z) :
zZE 25121} is also R-bounded for all 6 € (0,0’) by Proposition 1.2.3(a), the R-
boundedness of the set {T(z):z € Z%O-} follows. This shows that wr(A) < Z(1 -
£)+Bw(A). If p > 2, it follows by a duality argument from Proposition 1.2.3(b)
and the first part of this proof that wg(A) < F(1- 1)+ Zw(A), where 11_7 + % =1,
or equivalently g = ’%. If the underlying measure space of L,((2) is not
o-finite, one can replace L,(Q) by the closed separable sublattice generated
by fixed elements fi,..., f, and their images under T(t) for t > 0 which is
order isometric to a o-finite L,-space. Therefore the first part of the proof
applies and we obtain the same uniform estimate on wg(A). The assertion

now follows from wgr(A) = wy~(A) (Lemma 1.3.4). O

Remark 4.2.22. The result in the subspace case is due to C. Le Merdy and
A. Simard [LMSO01, Corollary 3.2]. Their original proof uses a variant of
the transference principle. In our proof, however, we construct directly a
dilation in the subspace case which is a stronger property. Although one
obtains the R.,-boundedness in the subspace case as well (Theorem 4.2.18),
we do not know whether a similar interpolation argument as in the proof
of Theorem 4.2.21, even in the case p € (1,2), can be applied. Therefore
the question whether every negative generator of an r-contractive analytic
Cop-semigroup on a closed subspace of L, for p € (1,00) \ {2} has a bounded
H%-calculus with wp~(A) < T remains open.

4.3 Basic Persistence Properties of the H*-Calculus

In this section we present some fundamental operations under which the
boundedness of the H*-calculus of the negative generator of a Cy-semigroup
is preserved. Hence, these operations can be used to construct systematically
further classes of sectorial operators with bounded H*-calculus, ultimately
leading to the structural characterizations of the H*-calculus on certain
spaces that will be proved in Chapter 5.

The following technical lemma will be useful for our studies.

Lemma 4.3.1. Let (T(t));>0 be a Cy-semigroup on a Banach space X with genera-
tor —A. Then for a closed subspace M of X the following are equivalent.
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(i) T(t)yM Cc M forall t > 0.

(ii) R(A,A)M C M forall A€ Tya)e forall e > 0.
Moreover, if w(A) < 5, both are equivalent to

(iii) T(z)M C M for all z € Xx_(4)-¢ for all € > 0.
Proof. (i) = (ii): Recall that for x € X the resolvent for Re A > 0 is given by

R(A,-A)x = f e MT(t)xdt.
0

This shows that x € M implies R(A,A)x € M for Re A > 0. Since the resolvent

mapping A — R(A, A) is analytic, this implies R(A, A)M C M for all € >0 and
all 1 e Zw(A)HC. Indeed, assume that y = AR(A, A)x ¢ M for some ¢ >0, some

Ae Zw(A)HC and some x € X. By the Hahn-Banach theorem there exists an
x* € X* that vanishes on M and satisfies (x*,y) # 0. The identity theorem
for analytic functions shows that A — (x*, AR(A, A)x) vanishes on the whole
complement X, A)HC, contradictory to our assumption.
(ii) = (i): This follows from T(t)x =1lim,,_, (%R(%,—A))n x for all x € X.
(ii) & (iii): The non-trivial implication follows from the analyticity of
z +— T(z) by the same argument as in the first part of the proof. O]

Suppose we have given a Cy-semigroup (T (t));>o on some Banach space X
together with invariant closed subspaces N ¢ M C X. It is then easy to show
that the induced semigroups (Tju(t));>0 and (Tpg/n (t))i>0 are Co-semigroups
on M respectively M/N. Let —A); and —A);/y denote their generators. We
now show that the boundedness of the H*-calculus passes as well to subspace-
quotients.

Lemma 4.3.2. Let —A be the generator of a bounded Cy-semigroup (T (t));>o on
some Banach space X such that A has a bounded H*(Xg)-calculus. Suppose there
exist closed subspaces N C M C X which are invariant under (T (t));>o. Then Ay
on M and Ay on M/N have a bounded H*(YXg)-calculus.

Proof. Lemma 4.3.1 shows that M and N are invariant under the resolvent
R(A,A) as well. This shows that the H*-functional calculus naturally restricts
to subspaces. It remains to show that it also passes to quotients. Again,
Lemma 4.3.1 shows that the functional calculus homomorphism factorizes
through M/N by the universal property of quotients. More concretely, for f €
Hi°(Xg) and y € M/N the value of f(A)y is independent of the representant
and therefore well-defined. For ¢ > 0 choose an x € y + N such that |[y|| <
(1+¢&)||x||. We have

1F (Al < Cllf gy I¥llx < (1 +ECIF ey 9y
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Hence, [|f (A)yll < (1+&)ClIfllge (5, I7llm/n - Since € > 0 is arbitrary, this shows
1 (A < Cllflgosy I9lasn- 0

Besides subspace-quotients similarity transforms are a second class of
elementary operations which preserve the boundedness of the H*-calculus.

Lemma 4.3.3. Let X,Y be Banach spaces and —A the generator of a bounded C-
semigroup (T(t));>o on X such that A has a bounded H*-calculus. If S € B(Y, X)
is an isomorphism and —B generates the induced Cy-semigroup (ST (t)S);sq on
Y, then B has a bounded H*-calculus with wg~(A) = wy~(B).

Proof. Clearly, w(A) = w(B). Further one has

AR(A,-B)=S"" UmeMT(t) dt)S =S 1AR(A,-A)S
0

for all A > 0 and therefore for all A € Ea,(A)HC and all ¢ > 0 by Lemma 4.3.1.

Thus f(B) = S™1f(A)S for all f € H®(Xy) which implies the assertion. O
We summarize the above findings in the following proposition.

Proposition 4.3.4. The boundedness of an H*(Xg)-calculus for a sectorial opera-
tor is preserved under similarity transforms and by passing to invariant subspace-
quotients.

4.4 Notes & Open Problems

For some p € (1,00) \ {2} Theorem 4.2.13 gives a characterization of those

semigroups on L, which have a strict dilation in the class of all L,-spaces.

However, a characterization for the more general case of loose dilations is not
known.

Problem 4.4.1. Let p € (1, ) \ {2}. Characterize those bounded semigroups
on L, that have a loose dilation in the class of all L,-spaces.

For more details on (the discrete analogue of) the problem we refer to
[AM14].

The problem of whether one can generalize Fendler’s dilation theorem to
other classes of Banach spaces is largely open. For example, we do not know
whether the following analogue holds on UMD-Banach lattices.

Problem 4.4.2. Let (T(t));>o be a positive and contractive Cy-semigroup on a
UMD-Banach lattice. Does (T (t));»o have a strict or loose dilation in the class
of all UMD-Banach lattices?
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This would in particular imply that the negative generator of such a semi-
group has a bounded H-calculus, which is also not known. In the negative
direction one knows the following: there exists a completely positive con-
traction, in other terms a discrete semigroup, on a noncommutative L,-space
which does not have a strict dilation in the class of all noncommutative L,-
spaces [JLMO7, Corollary 4.4]. Hence, the natural noncommutative analogue
of Fendler’s dilation theorem does not hold. Furthermore, in [GR88, Contre
exemple 6.1] it is shown that there exists a positive contraction T on some
L,(L,)-space for some p # q € (1,00) \ {2} such that there do not exist a positive
isometry U on some bigger L,(L,)-space and a positive contractive projection
Q from the bigger onto the smaller L,(L,)-space such that TQ = QU.

Even if such dilations exist, it is not clear how to reduce the angle of the
H®-calculus as it was done in the proof of Theorem 4.2.21. For example,
in the case of r-contractive semigroups on closed subspaces of L,-spaces for
which we constructed dilations in Theorem 4.2.11 we do not know whether
we can improve the angle.

Problem 4.4.3. Let —A be the generator of an r-contractive Cy-semigroup
on a closed subspace of some L,-space for p € (1,00). Does then its negative
generator A have a bounded H*-calculus with wpe~(A) < 5?

For the boundedness of the H*-calculus similar questions arise. There
may of course be other general methods to establish the boundedness of the
H-calculus except for constructing dilations, although none are known at
the moment. A particular interesting question is the following.

Problem 4.4.4. Let —A be the generator of a contractive Cy-semigroup on
some L,-space for p € (1,00). Does then A have a bounded H*-calculus with

Even in the more general case of uniformly convex Banach spaces no
counterexample to this question is known, so one even may ask the following.

Problem 4.4.5. Let —A be the generator of a contractive Cy-semigroup on a
uniformly convex Banach space. Does then A have a bounded H®-calculus
with wpe-(A) < 5?

Further note that we will show in Theorem 5.5.14 that for a Cy-semigroup
(T(t));>0 on a uniformly convex space whose negative infinitesimal generator
has a bounded H*-calculus of angle smaller than 7 there exists an equivalent
uniformly convex norm for which the semigroup is contractive (we only prove
the result for UMD-spaces but it can be generalized to super-reflexive spaces
as discussed in Section 5.6). So a positive answer to this problem would give a
(too?) beautiful characterization of the boundedness of the H*-calculus on
uniformly convex spaces.



4.4. Notes & Open Problems

A Connection with Matsaev’s Conjecture Problem 4.4.4 has an interesting
connection with Matsaev’s conjecture. Let S € B({,(Z)) be the bilateral shift.
Then Matsaev’s conjecture asks whether every contraction T € B(L,) on some
L,-space for p € [1, o0] satisfies for all polynomials p € P

||P(T)||[5(Lp) < ||P(S)||B(ZP(Z))'

For p = 1,00 this can be easily verified, whereas for p = 2 the inequality
reduces to the well-known von Neumann inequality. Recently, for the case
p =4 S.W. Drury has found a 2 x 2 matrix counterexample which relies heavily
on the use of computers [Drull]. Until now, all other cases remain open and
no analytical approach to a counterexample is known.

However, it was observed by C. Le Merdy that a negative answer to Prob-
lem 4.4.4 for some p € (1,00) would also provide a negative answer to Mat-
saev’s conjecture for the same p [LM99b, p. 33].
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Generic Classes for Bounded
H*-Calculus

We have seen in the previous chapter that the negative generator A of a
bounded analytic semigroup on L, for some p € (1,00) that is positive and
contractive on the real line has a bounded H*-calculus with wp~(A) < 5
(Theorem 4.2.21). The aim of this chapter is to show a converse to this
assertion, namely that each semigroup on L, for p € (1,00) whose negative
generator B has a bounded H*-calculus with wp~(B) < 5 can be obtained
from a positive contractive analytic semigroup on some L,-space after

(a) restricting to invariant subspaces,
(b) factoring through invariant subspaces and

(c) taking similarity transforms,

which all preserve the boundedness of the H*-calculus by Proposition 4.3.4.
Together with Theorem 4.2.21 this new result gives an L,-space generalization
of the following characterization by C. Le Merdy [LM98, Theorem 4.3].

Theorem 5.0.6. Let —A be the generator of a bounded analytic Cy-semigroup
(T(z)) on some Hilbert space H. Then A has a bounded H*-calculus if and only
if (T(t));>0 is similar to a contraction semigroup, i.e. there exists an invertible
S € B(H) such that

ISTIT(1)S||<1  forall t > 0.

In other words, one may say that the class of all positive contractive
analytic semigroups on L, is generic for those semigroups whose negative
generators have a bounded H*-calculus for some angle strictly smaller than
7. This gives a very satisfying description of the structure of the H*-calculus
on L,-spaces. In fact, the genericity result can be established for a broader
class of Banach lattices and has an analogue for UMD-Banach spaces.

The proof is based on results and techniques from the theory of p-matrix
normed spaces, a generalization of the theory of operator spaces which is
introduced in Appendix B. We will develop this theory along the way in the
depth necessary for our purposes. The presentation and the content of this
chapter is closely based on the accepted manuscript [Faca].
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5.1 p-Completely Bounded Maps and p-Matrix
Normed Spaces

In this section we present the necessary operator space theoretic background
on p-completely bounded maps and p-matrix normed spaces. As we do
not want to delve deeply in this branch of functional analysis, we give ad-
hoc definitions only introducing the concepts necessary to understand our
approach following the terminology in [LM96]. See also Appendix B for the
closely related case of classical operator spaces.

Let E, F be two Banach spaces which are embedded into the algebras of
bounded operators 5(X) and B(Y) of two Banach spaces X and Y. A linear
map u: E — F induces (for n € IN) a linear map

Uy My(B(X)) > My (E) — M, (F) € My (B(Y))
[a;;] — [u(a;j)]
between the matrix algebras. For a fixed p € [1,00] we identify the algebra

M, (B(X)) with B(£(X)). For p < co the norm of a matrix element [a;;] € M, (E)
is then given as

n

”[‘Zij]||§4,,(15) =sup Z

i=1

n p n
Y a)| +) Il <1
j:l ]:1

Definition 5.1.1 (p-Complete Boundedness). A map u: E — F as above is
p-completely bounded (p € [1,c0]) if the induced maps u,: M, (E) - M, (F)
seen as linear maps between B({};(X)) and B({,(Y)) are uniformly bounded in
n e N.

Notice that the p-complete boundedness depends on the choice of the
embeddings E < B(X) and F < B(Y). We use the following terminology.

Definition 5.1.2 (p-Matrix Normed Spaces). We call the datum of a Banach
space E with an embedding into B(X) (and the identification of M, (B(X))
with B(£,(X))) for all n € N a p-matrix normed space structure for E.

We will always consider B(Z) for a Banach space Z with its natural p-
matrix normed space structure given by the embedding :: B(Z) — B(Z).

5.2 The p-Matrix Normed Space Structure for H*(X,)

In this section we introduce two related p-matrix normed space structures for
the algebra H*(Xy) which will later be used for the study of the H*-calculus.



5.2. The p-Matrix Normed Space Structure for H*(Xy)

Let Y be a Banach space and let V()g(s) = g(s — t) be the right shift group
on LP(IR; Y) for p € (1, 0) and B its negative infinitesimal generator. Then for
0 > % one has f(B)g = b+g for f € Hi°(Xp) (see Example 1.3.8), where b is
the unique element in L, (R, ) such that f = £b, the Laplace transform of b.
We have seen in Example 1.2.12 that the Banach space valued variant of the
Mikhlin multiplier theorem shows that B has a bounded H*-calculus with
wye(B) = 5 if Y is a UMD-space, which we from now on assume.

Using the boundedness of the H*(Xg)-calculus of B on L,(RR;Y) for each
0 > % one can define the following embedding of H°°(Z§+) = U9>% H*(Xp)
(as vector spaces)

H*(Sz,) = B(Ly(R;Y))
f = f(B).

The above map is indeed injective: First let f;(B) = f,(B) with f; € Hy*(Xg)
for some 6 > 7. This implies for the inverse Laplace transforms b; of f; that
by+g =byxg forall g € L,(R;Y) and therefore by = b,, which yields f; = f,.
For the general case we use the fact that Hgo(Zng) is an ideal in HW(E%Jr):

f1(B) = f,(B) implies (f1p)(B) = (f,p)(B), where p(A) = ﬁ, which in turn

(p-MNS1)

shows f1p = f,p and therefore f; = f,.

We endow HOO(Z%Jr) with the norm induced from B(L,(RR; Y)) when seen
as a subspace via the above embedding. Notice that this also gives H*(Xx,)
the structure of a p-matrix normed space. We will call this p-matrix normed
space structure the p-matrix normed space structure (p-MNS1) with respect to
Y.

The above choice of a matrix normed space structure is natural in view
of transference techniques, but has the disadvantage that it does not make
use of the angle wy~ and therefore loses information on the strength of the
functional calculus. We will now solve this issue by using the fractional
powers of B to define refined versions of the above embedding.

In the setting as above choose a with a € [1,00). Then B/® has a bounded
H* (X x . )-calculus by Proposition 1.3.13. Now consider the embedding

H®(Ex ) < B(L,(R;Y))
* 1 (p_Mst)
f = f(Be).

Notice that one has f(Bli) = (f o -/®)(B) by the composition formula of the
functional calculus and that for 6 € (0, 7r) one has an isomorphism

H®(Xg) — H*(Xg/q)
fe[As f(AY)]
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Therefore f o -1/ ¢ H“(E%Q and injectivity follows from the case a =1
considered above. This again endows H Oo(E%Jr) with the structure of a p-
matrix normed space. We will call this p-matrix normed space structure the
p-matrix normed space structure (p-MNS2) with respect to Y (this structure
depends on «a although not explicitly mentioned).

We want to point out that the norms on H* induced by the p-matrix
normed space structures (p-MNS1) and (p-MNS2) respectively do not agree
with the usual norms on these algebras as introduced in Definition 1.3.1. We
will always consider the spaces H*(6) with these non-standard norms.

5.3 A p-Completely Bounded H*-Calculus

In this section we show that the H*-calculus of a sectorial operator is p-
completely bounded for the p-matrix normed space structures just defined.
The proof uses vector-valued transference techniques and therefore we start
with the case of a bounded group. We need the following vector-valued
generalization of the transference result stated in Theorem 1.3.9 which goes
back to [LM99a, Theorem 4.1] (compare also with the order-theoretic variant
shown in Theorem 4.2.17) and for which we give a new proof. Here (V (t));cr
is the shift group defined by V(t)g(s) = g(s — t) over scalar-valued functions.

Theorem 5.3.1 (Vector-Valued Transference Principle). Let (U(t));ecr be a
bounded Cy-group on a Banach space X with M = sup, g ||U(t)|| < co. Then for
all p € [1,00) and all b € L,(IR; B(X)) for which for almost all t € R the operator
b(t) commutes with U(s) for all s € R one has

‘fmb(t)U(t)dt‘ LV(t)m(t)dt’

Proof. We first assume that b is supported on some compact subset C C R.
Note that for x € X the assumption ||U(—t)x|| < M ||x|| implies ||x|| < M ||U(t)x||
for all t € R. By averaging over an arbitrary compact subset K C IR with
positive measure we obtain

<M?

B(X) B(L,(R;X))

p
‘J b(t)U(t) xdt t)xdt|| ds
R X X
J U(t)xdt ds
X

By assumption, we have U(s)b(t) = b(t)U(s) for almost everywhere. Hence,
the right hand side equals

MP b MP k
— b(t)U(s+t)xdt ds<— b(t)U(s+t)x]1K+C(s+t)dt ds

K] K] X
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Note that the integrand on the right hand side is (V(—t)®b(t))(U(-)x Lxc(-))(s).
Hence, the right hand side can also be written as

MP P

IK|

(L V<—t>®b<t)dt)<U<-)an+c<->>dt

L,(R;X)

_ M P
V- >®b<>dt| )||U<>x111<+c<->||‘;p(m)
p
< ||x||”f|111<+c dt - U dt‘
|K| B(L,(R;X))
|K+C|
K — — M?||x ||X V(—t)®b(t)dt
R B(L,(R;X))

<M?
X

Since we can choose for K arbitrarily large intervals K, we obtain in the limit
lIxllx

f V(—t)®b(t)dt‘
R B(L,(R;X))

as desired. Note that as in the proof of Theorem 4.2.17 one sees by change of

variables that
J V(—t)®b(t)dt‘ J V(t)®b(t)dt‘
R R

Further, a general b € L1 (IR; B(X)) as in the assertion can be approximated by
functions of the form b1, for C C R compact for which the above estimate
holds. The general assertion then follows by taking limits. O

j b(t)U(t)xdt
R

B(L,(R;X)) ‘ B(L,(R;X))

Recall that by Corollary 1.3.10 the negative generator of a bounded group
on a UMD-space always has a bounded H*(Xg)-calculus for all 6 > 7. Further,
notice that in the next two propositions we consider Hi*(Xx ) with the norm
induced by the p-matrix normed space structure (p-MNS1).

Proposition 5.3.2. Let —C be the generator of a bounded Cy-group (U(t));er 01 a
subspace-quotient SQx of a UMD-space X. Then the H*-calculus homomorphism

u: HE(S5,) = B(SQx)

is p-completely bounded for p € (1,00) and the p-matrix normed space struc-
ture (p-MNS1) with respect to X.

Proof. Let us first assume that the subspace-quotient is X itself. Further let
M := sup,cg||U(t)]|. One has for [f;;] € M,,(Hi"(Xx,)), n € N and the inverse
Laplace transforms [b;;] € M,,(L1(RR,)) determined by f;; = Lb

||[fif(c)]||M,,<B(x)) - ||[f1~]'(C)]||,5(€; H[I il dt]” B(ey(X
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HJ bij(t)|@ld)U(t )dtH ,
B((p(X))

where U(t) is the diagonal operator diag(U(t),..., U(t)) in 8(5”( )). Since the
matrix [b;;(s)] = [b;;(s)d] commutes with the group (U(t))er, one has by the
vector-valued transference principle (Theorem 5.3.1)

”[fij(c)]“z\/In(zs’(X))SM2 J; V(t)®[bij(t)]®lddt‘

B(L,(R;£p(X)))

Let V(t) be the diagonal operator diag(V (¢),..., V(t)) on £;(L,(R;X)). Then
after interchanging the order of the L,-spaces we obtain

([bij(t)]@)ld)V(t)dt”

”[fij(c)]“Mn(B(X)) = BE(L, (R:X))

[ e dt]H =i ml,,
0 (€3(L,(R;X)))

which is the p-complete boundedness of u. Now, if SQx is a general subspace-
quotient of X, one can repeat all the above arguments replacing X by SQx.
Further, note that the shift (V(#)),er in L, (IR; X) naturally restricts to the shift
(Vso, (t))ier on Ly(R; SQx) with negative generator Bgg, . From this and the
definition of the functional calculus it then follows immediately that for all
[fij] € My(Hg* (X))

= M?

L,(R;X))’

”[fll ||M SQX) ” [£ij(Bsay) ]| §M2||[ﬁ] ||M L,(R;X))"

O]

M, (Ly(R;SQx))

We now need the following more precise formulation of the Frohlich-Weis
theorem already stated in Theorem 1.4.3 [FW06, Corollary 5.4].

Theorem 5.3.3. Let —A be the generator of a bounded analytic Cy-semigroup
(T(t));>0 on a UMD-space X such that A has a bounded H*-calculus with
whe(A) < 5. Then for all p € (1,00) there exists an isometric embedding ] : X —
L,([0,1];X), a bounded projection P: L,([0,1];X) — L,([0,1];X) onto Rg] and a
bounded Cy-group (U(t))ier on L,([0, 1] X) such that

JT(t)=PU(t)]  forallt>0.

Let now —A be the generator of a bounded analytic Cy-semigroup (T(t))so
with sectorial generator —A that has dense range on a subspace-quotient SQx
of a UMD-space X. If A has a bounded H*-calculus with wy~(A) < 7, the
Frohlich—Weis theorem (Theorem 5.3.3) yields that the semigroup (T(t))>0
dilates to a bounded Cy-group (U(t));cr with generator —C on the UMD-space
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SQy = L,([0,1];SQx) which is itself a subspace-quotient of Y := L,([0,1]; X)
(one can choose p € (1,)), i.e.

JT(t)=PU(1)],

where J: SQx — SQy is an isometric embedding and P: SQy — SQy is
a bounded projection onto Im(J). Then by Proposition 5.3.2 one has for

M :=sup,g U (1)l
LA (AN, 150,y = MU 155N

M, (B(SQx,5Qy))
= ”[Pfi]' ||M B(SO.SQy) = 1P| “[flJ ”M B(SQy))
< IPIM2 (55BN, 1 vy

where —B is the generator of the right shift group on L,(IR;Y). We have shown
the following proposition.

Proposition 5.3.4. Let A be a sectorial operator with dense range on a subspace-
quotient SQx of a UMD-space X with a bounded H*(Xq)-calculus for some 6 < Z.
Then the H®-calculus homomorphism

u: Hy'(Zy,) = B(SQx)

is p-completely bounded for p € (1,00) and the p-matrix normed space struc-
ture (p-MNS1) with respect to L,([0,1]; X).

Using the p-matrix normed space structure (p-MNS2) instead, we obtain
our main result of this section. In what follows, we consider Hg° (Z%Q with
the norm induced by (p-MNS2).

Theorem 5.3.5. Let A be a sectorial operator with dense range on a subspace-
quotient SQx of a UMD-space X with a bounded H*(Xg)-calculus for some
0 < %. Then for a € [1, 55) the H*-calculus homomorphism

w:HE(Sg.) = B(SQ)
is p-completely bounded for p € (1,00) and the p-matrix normed space struc-

ture (p-MNS2) with respect to L,([0,1]; X).

Proof. Let a € [1,75). Then A% has a bounded H* (X ,¢)-calculus with a0 < %
by Proposition 1.3.13. We apply Proposition 5.3.4 to A® and obtain that for
C=C(a)>0

[fisami] < c|lis; ]
for all [ﬁ]] € M,(Hy"(Xx)). Now let [f;;] € M,,(H5"(X = ,)). Then there exist
fij € HY(£2,) such that ﬁj(Aa) = £;j(A). Now,

il =7 oyl = i ea)M < € L7 (BN = ClLf (B O
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The p-complete boundedness of the functional calculus homomorphism
extends from Hy*(X ) to H®(X ).

Corollary 5.3.6. Let A be a sectorial operator with dense range on a subspace-
quotient SQx of a UMD-space X with a bounded H*(Xg)-calculus for some 6 < 7
Then for a € [1, 55) the H*®-calculus homomorphism

u: H¥(E ) - B(SQx)

is p-completely bounded for p € (1,00) and the p-matrix normed space struc-
ture (p-MNS2) with respect to L,([0,1]; X).

Proof. Let Y :=L,([0,1];X). The case of general [f;;] € M,,(H*(X x ,)) follows
from Theorem 5.3.5 by the following approximation argument One has
[oxfij] € M (Hy" (X~ 4)) for all k € N (remarks after Definition 1.3.1) and
therefore obtains for some constant C > 0 that for all n € N and all x4,...,x, €
X

p

<CP ZHx [P hmmf”[pk BY%) )i (B ]”p

i=

p(RY)))

RYZJMW

Since sup;¢p ||pk(Bl/“)|| < 00, we showed ||[ﬁ](A)]“ <C ||[ﬁj(Bl/“)]|| for some
constant C > 0. 0

Cpsup“pk Bl/a ||P|| fz] Bl/zx

5.4 Pisier’s Factorization Theorem Applied to the
Functional Calculus

We now apply Pisier’s factorization theorem for p-completely bounded maps
to the homomorphism obtained from the bounded H*-calculus. We start with
some terminology that is needed for the formulation of Pisier’s factorization
result.

Let X be a Banach space and Y = L,([0, 1]; X) for some p € (1, c0). Further
let (QQ}, p1;) jej be a family of measure spaces, U an ultrafilter on J and & € [1, o).
Then for each j €] and f € H*(X « ,) using the notation from the last section
we have canonical maps

7(f): Lp(QjLy(IR;Y)) — Ly(Q5 Ly (R; Y))
g [w > f(BYY)(g(w))].



5.4. Pisier’s Factorization Theorem

These mappings induce for all ¢ > 0 and all f € H*(Xx,,) a map 7(f) €

B(X) in the ultraproduct X := ]_Ijej L,(Qj;L,(R;Y))/U that satisfies [|re(f)|| <

sup; 17 (Pl < IIf (B < Cellfllizos ., by the boundedness of the H*-
7q e

calculus. AMore generally, each T € B(L,(R;Y)) induces a map on the ultra-
product X with operator norm at most ||T|. Notice that this in particular
implies that an analytic mapping z — T, in B(L,(IR; Y)) induces an analytic
mapping in X.

We now formulate a special case of Pisier’s factorization theorem [Pis90].

Theorem 5.4.1 (Pisier’s Factorization Theorem for Completely Bounded
Mappings). Let Z,X be Banach spaces and A C B(Z) a unital subalgebra and
u: A — B(X) a p-completely bounded unital algebra homomorphism for some
p € (1,00). Then there exists a family ofmeﬁzsure spaces (Qj, pj) jej and an ultrafilter
U on | such that for the ultraproduct X := [];e;L,(Qj; Z)/U there are closed
subspaces N ¢ M c X and an isomorphism S: X — M/N such that for a € A the
operators 1t(a) defined as the ultraproducts l_[je] 7j(a)/U, where

mj(a): Lp(Qj;2) = Lp(Qj;2),  (mj(a)f)(@) = a(f(w)),

satisfy (a)M C M and 1(a)N C N for all a € A and the induced mappings
#t(a): M/N — M/N satisfy

u(a)=S"'1(a)S  forallac A

This follows from [Pis90, Theorem 3.2]. In the following we will need
some details on the proof of the theorem. By checking the reference, one sees
that the theorem is first proved for p-completely bounded maps of the form
u: A— B(l;(T),l(I")) for some sets T’ and I, where one can choose M = X
and N = 0 in the assertion of the factorization theorem. In the general case of
Theorem 5.4.1 one then chooses a metric surjection Q: ¢1(I') —» X (i.e. Q"is an
isometric embedding) and an isometric embedding J: X — ¢,(I"’) and then
deduces the theorem from the special case above applied to the p-completely
bounded map a > Ju(a)Q.

In our concrete case of the functional calculus we get the following.

Theorem 5.4.2. Let A be a sectorial operator with dense range on a subspace-
quotient SQx of a UMD-space X with a bounded H*(Xg)-calculus for some
0 < 5. Then for each { € (0, 7) there exist (O, ;) jej, U and 1 as in Theorem 5.4.1
together with subspaces N C M of the ultraproduct

]_[LP(Q]-;LP(IR;LP([O,1];X)))/L{
jel
such that

n(f)McM and n(f)NCN  forall f € H®(Zy).
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Moreover, if 7t(f): M/N — M/N denotes the induced mapping, there exists an
isomorphism S: SQx — M/N such that

u(f)=S"'R(f)S  forall f e HX(Zy).

Proof. Let i > 6. We have shown in Theorem 5.3.6 that for a suitably chosen
a > 1 the functional calculus homomorphism u: H*(Xy) — B(SQx) is p-
completely bounded for the p-matrix normed space structure (p-MNS2) with
respect to L,([0,1]; X). We now apply Theorem 5.4.1 to u. O

5.5 Properties and Regularization of the Constructed
Semigroup

We now study the properties of the semigroup obtained from the application
of Pisier’s factorization theorem to the functional calculus mapping. Note
that, in particular, in Theorem 5.4.2 one has, for ¢ < 7, that e, € H*(2y) for
z € ¥y/2-y and one obtains T(z) = u(e,) = S~'7t(e,)S, where (T(z))zezmimm) is
the analytic semigroup generated by —A.

Therefore we are interested in the properties of the constructed semigroup
(n(ez))zez%ﬂp which in turn leads us to the study of the semigroup generated

by —B!/%. Here one has the following general result for fractional powers of
semigroup generators as defined before Proposition 1.3.13.

Theorem 5.5.1. Let —A be the generator of a Cy-semigroup (T(t));>o. Then for
a € (0,1) the bounded analytic Cy-semigroup (T,(2)),ex ) generated by —A“®
2 w

has the following properties:

* Onehas ||T,(t)|| <1 forallt > 0if ||T(¢)|| <1 forall t >0.
Moreover, if X is a Banach lattice, one has

e To(t)=0ifT(t)>0.

Proof. The assertions follow from the explicit representation of the semigroup
(T(X(t))tZO [YOSSO, IX, 1].]

T,(t)x = j fra(s)T(s)xds forall t>0and x € X,
0

where f; , is a function with f; , > 0 and JOOO fral(s)ds=1. O

In our case we apply the above theorem to the generator —B of the contrac-
tive vector-valued shift semigroups. Moreover, if X and therefore L,([0,1]; X)
are Banach lattices, the shift semigroup is positive with respect to the natural
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Banach lattice structure on L,(IR; L,([0,1]; X)). Hence, (7t(e;))»0 is a (positive
if X is a Banach lattice) contractive semigroup. Here we used the fact that
the ultraproduct of positive operators is positive on ultraproducts of Banach
lattices (see Appendix A.2.1).

Remark 5.5.2. One can now ask if the analytic semigroup generated by —B*
is contractive on the whole sector where the semigroup is defined. Notice
that the Fourier transform diagonalizes B to the multiplication operator with
ix. The analytic semigroup (T,(z)) generated by —B“ is then given by the
Fourier multipliers exp(—z(ix)®) for |argz| < Z(1 —a) = ¢. Now, if X is a
Hilbert space Plancherel’s theorem yields that (T,(z)) is a sectorial contractive
analytic semigroup on L,(IR; X). However, even in the case X = C one does
not have contractivity on the whole sector for p € (1,00) \ {2}. Indeed, ||T(z)|| is
even unbounded on X, N{z : |z| < 1}. For this, by [ABHN11, Proposition 3.9.1],
it suffices to show that —e’? A% does not generate a Cy-semigroup on L,.

Assume that this would be the case. Then in particular exp(—e'?(ix)%) is
a bounded Fourier multiplier on L,. Using the boundedness of the Hilbert
transform for p € (1, 00) one sees that then

_ e (£22),
m(é)-—{o (€ <2)

is also a bounded Fourier multiplier. However, this contradicts [ABHN11,
Theorem E.4b) (i)].

Before giving the proof of the next main proposition, we need some
preparatory results before. The first is a similarity theorem which can be
proved for arbitrary semigroup representations.

Definition 5.5.3. A semigroup S is a set together with an associative binary
operation -: S xS — S for which there exists an element e € S, the identity
element, such that for every element g € S the equation e- g =g-e = g holds.

Note that the above definition differs from the common mathematical
terminology. Indeed, a mathematical structure satisfying Definition 5.5.3 is
usually called a monoid and for a semigroup one usually does not require
the existence of an identity element. We make this abuse of terminology be-
cause we want to identify Cy-semigroups with strongly continuous semigroup
representations of the additive semigroup Rs.

Definition 5.5.4. Let S be a semigroup and X a Banach space. A mapping
1: S — B(X) is called a semigroup representation on X if m satisfies

(i) 7e(gh) = mt(g)m(h) for all g h e S,
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(ii) m(e) =1dy.
The similarity theorem uses the following short-hand terminology.

Definition 5.5.5. Let X be a Banach space and u: A — B(X) an arbitrary
mapping for some set A. Suppose that there exists closed subspaces E, C E;
such that

u(a)Ey CE; and u(a)E, CE, for all a € A.

Then u induces a map ii: A — B(E;/E;) which we call the compression of u to
E,/E,.

The following similarity result is a variant of [Pis01, Proposition 4.2] for
semigroup representations on Banach spaces. In fact, one can use the same
proof without any modifications.

Proposition 5.5.6. Let S be a semigroup and X, Z two Banach spaces. Further let
n: S — B(Z)and 0: S — B(X) be semigroup representations and let wy: X — Z
and wy: Z — X be bounded linear operators such that

0(g) =wom(g)w, forall geS.

Then o is similar to a compression of . More precisely, there are m-invariant
closed subspaces Ey C E; C Z and an isomorphism S: X — E|/E, such that

ISISTHI < llws [ [[wl
and such that the compression 7t of 1t to E1/E, satisfies
o(g)=S"'7(g)S  forallges.

Proof. We first notice that one has Idy = g(e) = w,w;. Let E; be the smallest
1t-invariant closed subspace of Z containing wy(X), that is

E = M{U n(g)wy (X)}'

ges

Further, let E, = E; N Ker(w,). We now show that E, is r-invariant as well.
For this let z € E,, i.e. z € E; and w,(z) = 0. Then z can be written as the limit
of finite sums of the form

z=lim ) n(g))w(x))

n—o0 L
i

for some x!, € X and g/, € S. Hence, for all g € S we have

n(g)z=lim ) m(gg,)wi(xy). (5.1)
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Moreover, because of wow; =1dyx and w;(z) = 0, we obtain

0= lim o(gh)xl.
n—-oo
i

Applying w, to both sides of (5.1) yields

war(g)z = lim 3" algshs, = lim o) Y atgiiwi|=o.
! i

Since m(g)z € E;, this yields n(g)z € E,. Now, let Q: E; — E;/E;, be the
canonical surjection and define S: X — E;/E; by x — Quw(x). Since wow; =
Idy, the restriction of w; to the image of w; and a fortiori wyg, : E; — X are
surjective. By the universal property of quotients, this induces a uniquely
determined isomorphism R: E{/E; — X with ||R][| < |lw,]| such that RQ = wy g, .
In particular, we have RS = RQw; = wow; =Idy. Since R is an isomorphism,
this shows that S is invertible and S = R™!. Moreover, we have

ISIS™HE = Qi IR < llws [ ]lwsl
as desired. Further, the compression 7 of 7 to E|/E; satisfies for all ge S
§7'7(9)S = ST H(g)Quy = ST Qm(g)wy = RQm(g)wy = wor(g)w = o (g)
This finishes the proof. O]

The second preparatory result deals with the finite representability of
vector-valued L,-spaces. In the following we will need some basic notions
from the local theory of Banach spaces which we have summarized in Ap-
pendix A.2.2. The following lemma is well-known in the scalar-valued case
and can be proved completely analogously in the vector-valued case.

Lemma 5.5.7. Let p € [1,00) and X be a Banach space. Then for an arbitrary mea-
sure space () the vector-valued Lebesgue space L,(Q, p; X) is finitely representable
in €,(X).

p

Proof. Let F be a n-dimensional subspace of L,((2;X). Choose a normalized
vector space basis fi,..., f, of F. Since the simple functions are dense in
L,(€);X), we can choose for every ¢ > 0 simple functions gy, ..., g, such that

llgi — fill < e foralli=1,...,n
Now let E be the subspace spanned by the vectors g,...,g, and let

T:F—E
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iaifi > iaigi-
ioT

i=1

Since (a;)i_, = “Z?Zl ocifi” defines a norm on C" and all norms on a finite
dimensional vector space are equivalent, there exists a constant C > 0 such

that ; " "
) lail=<cll) aifil<C) lail.
i=1 i=1 i=1
Moreover,
n n n n
HT(Za%)H: Zaigi < Za,ﬁ + ai(gi—fi)”
i=1 i=1 i=1 i=1
n n n n
<[t d et <] o+ cef| st
i=1

i=1 i=1 i=1

=(1+Ce)

n
> aif|
i=1

Hence, ||T|| <1 + Ce. Similarly, one gets
n

S -5 ool S s

i=1 i=1

>

n n n n
S A e Zal-fiH—eC DiﬁH
i=1 i=1 i=1 i=1
n
=(1-¢C) Zocifi '
i=1

Hence, T is an isomorphism between F and G with ||[T~!|| < (1 —C)~!. Hence,

one has the estimate
1+¢C

1-¢C’

The functions g; (i =1,...,n) are simple, so we can find — changing g; on a set
of measure zero if necessary — disjoint measurable sets Ay,..., Ay such that
#(Ag) >0 for all k=1,...,N and such that for each fixed k the function g;|,, is
constant for all i =1,...,n. Now let

N
L T::{Z]lAkxk:xkeX}—)q,\’(X)
k=1

ITINT I <

N
Y Taxe (pADPx, . p(AN) Pxy).
k=1
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Observe that 1 is an isometric isomorphism. Indeed, one has

N
$ o
k=1

Since G is a subspace of 7, G is isometrically isomorphic to the closed subspace
1(G) of Z;,V(X). One then obtains an isomorphism S: F — 1(G) with

N 1/p
= (lexk”p :u(]lAk)) = ||(,M(A1)1/pxlr"-’I’l(AN)I/pXN)”g‘SI(X) .
k=1

1+eC
SIS~ < ——.
SIS < T
Since ¢ can be chosen arbitrarily small, this finishes the proof. O

We now prove the following similarity result for semigroups.

Proposition 5.5.8. Let A be a sectorial operator on a subspace-quotient SQx of
a UMD-Banach lattice X with a bounded H*(Xg)-calculus for some 6 < 5 and
let (T(z)) be the bounded analytic Cy-semigroup generated by —A. Then for each
P € (0, %) there exists a UMD-Banach lattice X and a bounded analytic semigroup
(H(Z))zezn/2,¢ on X, which is positive and contractive on the real line, together

with subspaces N ¢ M C X which are invariant under (I1(z)) and an isomorphism
S: SQx — M/N such that the induced semigroup (ﬁ(z))zegn/w on M/N satisfies

T(z) = S~'T1(2)S forallze X5 y.
Moreover, if X is separable, X can be chosen separable as well.

Proof. Let € (6, %). We first assume that A additionally has dense range. For
z € Yx_y we set Il(z) := mt(e;), where 7 is obtained from Theorem 5.4.2. We
denote the ultraproduct constructed there by X. Notice that the analyticity
of the semigroup (I'l(z)) follows from the remarks at the beginning of Sec-
tion 5.4. We now verify that X is a UMD-space. Notice that the UMD-property
is a super-property, i.e. a property which is inherited by spaces which are
finitely representable in a space having this property (for an introduction
to these notions we refer to Appendix A.2.2). Again let Y = L,([0,1]; X) for
p € (1,00). Now, for all j € ] the space Lp(Qj;Lp(IF; Y)) is finitely representable
in {,(L,(R;Y)) by Lemma 5.5.7 and therefore X = l_[je] Ly, (Qj L, (R Y))/U iAs
finitely representable in £,(L,(IR; Y)) by Proposition A.2.5. This shows that X
is a UMD-space because X and therefore £,(L,(IR;Y)) are UMD-spaces.

Now assume that SQy is separable. Then there exist a metric surjection
Q: {; — SQx and an isometric embedding J: SQx — {,. By the short descrip-
tion of the proof of Pisier’s factorization theorem given after Theorem 5.4.1,

the ultraproduct X is constructed via a reduction to the p-completely bounded

map ¢; — SQx M SQx ER {., which factorizes as

v o 7(f)

JRNLNG GUEENS RNy
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for two maps vy: £; — X and v,: X — {,. We can now replace X by a
separable closed vector sublattice constructed as follows: Let X, be the closed
vector sublattice generated by v;({;). Then for n > 1 define X,, inductively
as the closed vector sublattice generated by elements of the form Il(g)X,,_;,
where g runs through (Q +iQ)N Yz_y. Then for all n € N the lattice X,, is
separable and by the continuity of the semigroup one has I'l(z)X,, C X,,,; for
all ze 2%_1/,. Hence, the closure of Y := Uyen, X» 1 a closed separable vector
sublattice of X which is invariant under the semigroup (I1(z)). We may now
finish the proof with X replaced by Y.

Now let A be an arbitrary sectorial operator. Then, by the remarks after
Definition 1.3.2, one can decompose SQy into SQx = WGBN(A) such that A

is of the form A = (A(())o 8) Then R(A) is a subspace-quotient of X as well and

therefore, by Corollary 5.3.6, the sectorial operator Ayy on R(A) — which has
dense range — has a p-completely bounded H*(X,)-calculus for p € (1,00) and
the p-matrix normed space structure (p-MNS2) with respect to L,([0,1]; X).
Hence, by Theorem 5.4.2 and the first part of the proof there exists a UMD-
Banach lattice X (which can be chosen separable if SQx is separable), a
semigroup (H(Z))zez%_w on X, (I(z))-invariant subspaces N C M C X and an

_ A

isomorphism S: R(A) — M/N such that the induced semigroup (H(Z))ze):ﬂﬂp
2

on M/N satisfies
|@(2) =S7'T1(2)S forall ze Tx_y.

Notice that with respect to the decomposition X = R(A) @ N(A) one has T(z) =
ﬂm(z) ®1d. Let now P be the projection onto N(A) and let Z be the direct
sum X @ X with its natural Banach lattice structure. Clearly, Z is UMD and
separable if X is separable. Then M/N @ SQy is a subspace-quotient of Z.
S
0

the inclusion of N(A) into SQx, and V,: M/N & SQx — SQx as the matrix

Now define V;: SQx — M/N & SQx as the matrix V| = ( ([)), where 1 is

-1
V, = (SO g) Let 77(f) be the extension of 7 to Z by the identity on the

second component for all f € H*(X,) and 7t its compression to the subspace-
quotient M/N & SQx. Note that 77 is constructed in a way such that one
has

T(z) = ii(e,) = Vort(e,)V; forall ze Tr_y.
We can now apply Proposition 5.3.1 which shows that there exist subspaces
E, c E; ¢ M/N & SQy that are invariant under 7t(e,) for all z € Yr_y and an
isomorphism $: SQx — E;/E, such that the compression 7¢ of 7 satisfies

T(z) = S~ rc(e,)S forall ze Tz _y.
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Note that E; and E; can be seen as subspaces of Z. This finishes the proof. [

Remark 5.5.9. Notice that in the special case where X is an L,-space the
semigroup (I1(z)) lives on (a closed vector sublattice of) an ultraproduct of L,-
spaces which, by Kakutani’s theorem AA.4.7, is order isometric to an L,-space.
In this case one can therefore realize X as an L,-space as well.

Strong Continuity Notice that there is one drawback of the ultraproduct
construction just employed. In general, the semigroup (Il(z)),cy obtained
in Theorem 5.5.8 is not strongly continuous. However, the semigroup is
a bounded analytic semigroup, that is a bounded analytic mapping from
the sector ¥ to the Banach space X satisfying the semigroup law. For such
semigroups one has the following decomposition theorem [Are01, beginning

of §5].

Lemma 5.5.10. Let (T(z)) be a locally bounded analytic semigroup on some reflex-
ive Banach space X. Then P :=lim, |y T(t) exists in the strong operator topology
and is a projection onto Xy := PX. Further, the restriction T (z)|x, defines a strongly
continuous semigroup on Xy, whereas T(z)x, = 0, where X, = (Id —P)(X).

Since the space X obtained in Proposition 5.5.8 is reflexive, we can apply
Lemma 5.5.10 in the situation of this proposition. In the next theorem we
show that we can always reduce to the obtained strongly continuous part.

Theorem 5.5.11. Let —A be the generator of a bounded analytic Cy-semigroup
(T(z)) on a subspace-quotient SQx of a UMD-Banach lattice X such hat 6 :=
wpe(A) < 5. Then for each 1 € (0,%) there exists a UMD-Banach lattice X
and a bounded analytic Cy-semigroup (R(Z))zez%,w on X which is positive and

contractive on the real line together with closed subspaces N ¢ M c X which
are invariant under (R(z)) and an isomorphism U: SQx — M/N such that the
induced semigroup (ﬁ(z))zezﬂﬂp on M/N satisfies

2

T(z)=U'R(2)U  forallz€ Sy,
Moreover, if X is separable, X can be chosen separable as well.

Proof. Let i € (6,%) and let S: SQx — M/N and (H(z))zez%_w be as in the
assertion of Theorem 5.5.8. Further, let P := lim;|oII(¢) be the projection
onto X; from Lemma 5.5.10. It follows directly from the definition that
P is a positive contractive projection. Hence, X; is a lattice subspace and
therefore itself a Banach lattice with the induced order structure [AA0Q2a,
Theorem 5.59]. Since the UMD-property passes to subspaces, X; is a UMD-
Banach lattice. Let (R(z))zd%,¢ be the restriction of (H(Z))zez%,¢ to X;. By
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construction (R(z))z@:ﬂw is a bounded analytic Cy-semigroup on X; and
positive and contractive on the real line. It follows from the discussion
above that I'1(z)X; Cc X; forall z € Yr_y. Furthermore notice that I'l(z) leaves
PM c X; and PN C X invariant for all z € Tr_y and that P restricts to
projections defined on M and N by the invariance under the semigroup. This
allows us to define maps

Vi: SQx o M/N — PM/PN,  Vy: PM/PN < M/PN — M/N —> SQx.
.

Since for all z € ¥z_,, the operator I1(z) acts only non-trivially on X;, one
obtains

T(z) = V,R(2)V; forall ze Yz _y,

where the tilde indicates the compression of (R(2)),ey , , to PM/PN. We
7_ ~

now apply Proposition 5.5.6 which shows that there exist (R(z))-invariant
subspaces E, C E; C PM/PN and an isomorphism U: SQyx = E1/E, such that
the compression R of R to E;/E, satisfies

T(z)= U 'R(z)U forall zeXx_y.
Notice that the proof is finished since E,/E, is a subspace-quotient of X;. [

Remark 5.5.12. Notice that if the semigroup is defined on a Hilbert space
the used ultraproduct construction also yields a Hilbert space. The subspace-
quotient M/N in Theorem 5.5.11 then is a Hilbert space as well. So in this case
S is an isomorphism between two Hilbert spaces. Moreover, the constructed
semigroup is even contractive on the whole sector by Remark 5.5.2. Therefore
our general construction recovers Le Merdy’s result in the Hilbert space case
(Theorem 5.0.6).

Remark 5.5.13. The assumption wp~(A) < 7 is crucial. Indeed, we have seen
in Theorem 2.2.1 that there exists a generator —A of a bounded Cj-semigroup
(T(t))s=0 on a Hilbert space with wpe~(A) = 7 such that (T(t));»¢ is not similar
to a contractive semigroup.

In the same spirit a classical counterexample by P.R. Chernoff [Che76]
shows that there exists a semigroup on some Hilbert space with a bounded
generator which is bounded on the real line but not similar to a contractive
semigroup.

Note that the above arguments also work for general UMD-Banach spaces
instead of UMD-Banach lattices. The underlying Banach space X of the
constructed semigroup (R(z)) inherits properties from the Banach space X if
they are stable under the constructed ultraproduct as well as under quotients
and subspaces. For example, if X is uniformly convex the ultraproduct X
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(for p = 2) is uniformly convex as well (with the same modulus of uniform
convexity) because it is finitely representable in the space £,(L,(IR;Y)) which
is uniformly convex by [Day41b, Corollary 1]. As uniform convexity also
passes to subspaces and quotients and every UMD-space has an equivalent
uniformly convex norm by Theorem A.3.10 and Theorem A.3.8, we obtain the
following new theorem.

Theorem 5.5.14. Let —A be the generator of a bounded analytic Cy-semigroup
(T(2))zex on a UMD-space X such that A has a bounded H®-calculus with
wpe(A) < 5. Then there exists an equivalent uniformly convex norm on X for
which the semigroup (T (t));o is contractive.

Moreover, in the Lp-space setting we obtain the following corollary.

Corollary 5.5.15. Let —A be the generator of a bounded analytic Cy-semigroup
(T(z)) on a subspace-quotient SQLp of some L,-space L,(Q) for p € (1,00) such

that 0 := wye~(A) < 5. Then for each i € (0, %) there exists an L,-space L,(Q)

and a bounded analytic Cy-semigroup (R(Z))zezg,l,, on LP(Q) which is contractive
2

and positive on the real line together with closed subspaces N C M C L, ((2), which
are invariant under (R(z)), and an isomorphism S : SQLP — M/N such that the

induced semigroup (R(2))5ex » , o M/N satisfies
n

T(z)=S"'R(z)S  forallz€ Xy,

Moreover, if L,(Q) is separable, L,(()) can be chosen separable as well.

Proof. Note that in this special case the projection P onto X; is defined on
some L,-space and positive and contractive. It is known that in this case
Im P is a closed vector sublattice [AA02b, Problem 5.3.12] and therefore order
isometric to an L,-space by Kakutani’s theorem (Theorem A.4.7). O

In the case where the semigroup is defined on a subspace-quotient of an
L,-space one obtains the following new particularly nice equivalence, the
main result of [Faca].

Corollary 5.5.16. Let —A be the generator of a bounded analytic Cy-semigroup
(T(z)) on a subspace-quotient SQLP of an Ly-space L, () for some p € (1,00). Then
the following are equivalent.

(i) A has a bounded H*®-calculus with wp~(A) < Z.

(ii) There exists a bounded analytic Co-semigroup (R(z)),ex on some Ly-space
LP(Q) which is contractive and positive on the real line together with
(R(z))-invariant closed subspaces N,M with N C M and an isomorphism
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5:5Q, — M/N such that the induced semigroup (R(z)),ex on M/N satis-
fies
T(z)=S"'R(z)S  forallze¥.

Moreover, if L,(Q) is separable, then so is L,(€2).

Proof. Note that the boundedness of the H*(Xgy)-calculus passes through
invariant subspace-quotients and is preserved by similarity transforms by
Proposition 4.3.4. Hence, (ii) implies (i) because the negative generator of
every bounded analytic semigroup on some L,-space which is contractive and
positive on the real line has a bounded H*-calculus of angle lesser than 7 by
Weis’ result (Theorem 4.2.21).

Conversely, (i) implies (ii) by Corollary 5.5.15. 0

5.6 Notes & Open Problems

Corollary 5.5.16 leaves open some natural questions concerning the validity
of stronger forms of the obtained result. In particular, we do not know
whether in the case SQ; = L,(€2) the result remains true without passing to a
subspace-quotient.

Problem 5.6.1. Let —A be the generator of a bounded analytic Cy-semigroup
(T(2))zex on L,(Q) for p € (1,00) such that A has a bounded H*-calculus with

wp~(A) < 5. Does then exist a ip > 0, an L,-space L,(Q), an invertible operator

S: L,y(Q) — L,y(€Q) such that
T(z)=ST'R(z)S  forallz€ X,y

for a bounded analytic Cy-semigroup (R(z))zegn/w which is positive and con-
tractive on the real line?

This question may have a negative answer for spectral theoretic reasons.
A second question deals with the regularity of the obtained semigroup after
the similarity transform. Recall that we have seen in the Hilbert space case
that one finds a semigroup (R(z)) that is contractive on a sector. Hence, the
following question arises naturally.

Problem 5.6.2. Can one choose the semigroup in Corollary 5.5.16 to be con-
tractive in a whole sector of the complex plane and not only on the real
line?

Furthermore, in a recent joint work with C. Arhancet and C. Le Merdy
that has not yet appeared as a preprint, we could improve some of the results
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of this chapter. In fact, under the assumptions of Theorem 5.5.11 for a UMD-
Banach lattice one can even show that the semigroup (T(t));>o dilates to a
bounded analytic Cy-semigroup that is positive and contractive on the real
line. Notice that this directly implies the assertion of Theorem 5.5.11 by
Proposition 5.5.6. Moreover, we obtain Theorem 5.5.14 for all super-reflexive
spaces, i.e. for the most general case possible. It is interesting to note that
the proof uses totally different concepts, namely generalized square functions
and the theory of stochastic integration on Banach spaces.

Additionally, we obtain natural analogues of Theorem 5.5.11 for so-called
Ritt operators on UMD-Banach lattices which can be seen as the analogue of
analytic Cy-semigroups for discrete semigroups and for which one also has
the concept of a bounded H*-calculus.
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Banach Spaces and Lattices

In this part of the appendix we give the basic definitions and results from the
theory of Banach spaces and Banach lattices which are used throughout the
text. Some more specialized results which are only used once at a particular
place of the thesis are contained in the main body of the text exactly where
they are used.

A.1 Schauder Bases & Schauder Decompositions

Of central importance is the concept of a Schauder basis, a generalization of
Hilbert space bases to general Banach spaces. We now present the necessary
background needed in the main text. Further details can for example be found
in [AK06], [Sin70], [LT77], [LT79] and [FHH*11].

Definition A.1.1 (Schauder Basis). A sequence (e,,),en in a Banach space
X is called a Schauder basis if for every x € X there is a unique sequence of
scalars (a,;,),en such that

A sequence (e,,) e is called a basic sequence if it is a basis in the closed linear
span of (e,,)men- The functional e), € X* that maps x to the unique m-th
coefficient in the expansion of x is called the m-th coordinate functional.

One has the following notion of equivalence for Schauder bases.

Definition A.1.2. Let (e,,),,en be a Schauder basis for a Banach space X and
(fm)men @ Schauder basis for a Banach space Y. Then (e,,)nen and (f) men are
equivalent if for every sequence of scalars (a,,),,cn the expansion ) >, a,,e,,
converges if and only if ) )7, a,, f,, converges.

In this case there exists an isomorphism T: X — Y such that Te,, = f,, for
each m € N. If ||T|| = 1, one says that (e,,),en and (f,,)men are isometrically
equivalent.

The mere concept of a Schauder basis is sometimes too general to be
useful in practice, therefore one often considers special bases with additional
properties. The most important example is that of an unconditional basis.

Definition A.1.3 (Unconditional Basis). A Schauder basis (e,,),,en for a Ba-
nach space X is called unconditional if for each x € X the unique expansion
X = ) ;-1 mey converges unconditionally, i.e. } 771 dr(m)€r(m) = X for each
permutation 7 of the natural numbers.
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There are several useful equivalent characterizations of unconditionally
convergent series (see [AK06, Lemma 2.4.2] and [AKO06, Proposition 2.4.9]).

o0

Proposition A.1.4. Given a series ), _;

equivalent.

X in a Banach space, the following are

(i) Xj=1 Xm is unconditionally convergent, i.e. Y 17_1 Xy (m) converges for every
permutation 7t: IN — IN,

ii) For every subsequence (x,, )reN the series Y 2> x,, converges,

£ q k k=1 k 4
(iii) The series Y So_; €, converges for every choice (&) men € {—1, 1}N.
(iv) The series ) ;_; by,e,, converges (unconditionally) for all (b,,)meN € Coo-

The closed graph theorem and the uniform boundedness principle show
that there exists a smallest constant K > 0 such that

[ee) [ee)
E baem SKHE Amem
m=1 m=1

holds for all (a,,),en for which the expansion converges and all choices of
sequences (b,,),en With ||(b,,)
constant of (e,;)meN-

There are several methods to construct new Schauder bases / basic se-
quences out of given ones. Block basic sequences are an elementary and
important example.

lo < 1. This constant is called the unconditional

Definition A.1.5 (Block Basic Sequence). Let (¢,,),,cn be a basis for a Banach
space X. Let (p,,)men, be a strictly increasing sequence of integers with py =0
and let (a,,),en be a sequence of scalars. Then the sequence (u,,),,en defined

by
pm

P

k:pm—l +1

is a basic sequence called a block basic sequence of (e,;)meN-

The structure of the normalized block basic sequences of ¢, is very simple
[AK06, Lemma 2.1.1].

Theorem A.1.6. Every normalized block basic sequence of the standard unit basis
of £y is isometrically equivalent to the standard unit basis.

The constant coefficient block basic sequences are a technical concept
which helps to simply the proofs of some results.
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Definition A.1.7 (Constant Coefficient Block Basic Sequence). A block ba-
sic sequence (Uy,)eN Of a basis (e,,;)meN

Pm
Um = ageg
k:pm—l +1

is a constant coefficient block basic sequence if for each m € IN there is a constant
¢y, such that a; € {0,¢,,} for p,,_1 +1 <k <p,,, that is

for some subset A,, of (p;_1,pm] NIN.

The concept of a perfectly homogeneous block basic sequence was orig-
inally introduced to give an abstract description of bases that have similar
structural properties like the canonical unit vector bases of ¢, and ¢y. Nowa-
days, they still play an important role in the development of the theory of
Schauder bases.

Definition A.1.8. A basis (e,,),,en of a Banach space X is perfectly homogeneous
if every normalized constant coefficient block basic sequence of (e;;),enN 1S
equivalent to (e,,);eN-

One can show that a perfectly homogeneous basis is already equivalent
to all of its normalized block basic sequences. In particular, this follows
from the following celebrated theorem by M. Zippin that characterizes all
Banach spaces which admit a perfectly homogeneous basis. We omit the
proof of this result, although it plays a central role in the development of
our approach to the maximal regularity problem, thereby for a single time
violating our leitmotif to be self-contained in the presentation of our main
results, as the proof both needs some technical effort and is extremely well-
covered in the literature (for a proof among our line of presentation see [AKO06,
Theorem 9.1.8]).

Theorem A.1.9. Let (e,,),eN be a normalized perfectly homogeneous basis of a
Banach space X. Then (e,,)menN is equivalent either to the canonical basis of ¢ or
the canonical basis of €, for some 1 < p < co.

Block perturbations are a second method to construct new Schauder bases
out of given Schauder bases.

Definition A.1.10. Let (e,,),,en be a Schauder basis for a Banach space X that
is bounded from below, i.e. inf,,cn|le;ll > 0. Let (1,,)men, and (p)men be
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strictly increasing sequences of scalars with ny = 0 and n,, | < p,, <n,, for all
m € IN. Then a sequence (z)ren in X of the form

ek for k #p,,
Z) =
ep, txm fork=p,

with x,, = Z?:"’nm_ﬁl a;e; for a scalar-valued sequence (a;);cn such that ||x,,|| <

lip”’l
M for all m € IN for some M > 0 is called a block perturbation of (e,,;)eN-

One has the following perturbation result for Schauder bases [Sin70, Ch. I,
Proposition 4.4].

Proposition A.1.11. Let (e,,;),,eN be a Schauder basis for a Banach space X which
is bounded from below, i.e. inf,,cn|le,|| > 0. Then every block perturbation of
(em)men 1s a Schauder basis of X.

Proof. Let (zx)ren and (x,,) men be as in Definition A.1.10. Then the orthogonal
sequence (2} )ren associated to (zx)ren is given by

* Pm
Zk -

*

{ez —age, fork=p, withn, +1<k<n,,
€

for k =p,,.

Let x € X. We now calculate the expansion of x with respect to the orthogonal
sequence (z; )rew- We have for I € N

1 min(n,,,l)
ZZZ(X)Zk = Zei(x)zk - Z €, (x) Z Az
k=1 k=1 m:n,,_ <l k=n,,_;+1

k#pu

=) ep(x)er+ Z €y (X)X — Z €, (x)x,; —remaining terms

k=1 m:p,, <l m:n,, <l

!
Ze;(x)ek —e, (x) Z ae; form, 1+1<I<p,-1

k=1 i=n,_1+1
R Ty
e (x)ex + e, (x) Z a;e; for p,, <l <ny,.
k=1 i=l+1

Recall that the projections Py = Zi\lzl e, for N € N are uniformly bounded by
some constant C > 0. Hence, we obtain the inequalities

l

H Z a;e;

i=t,,_1+1

< Cllxmll < CM,
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nm

a;e;ll < (C + 1)||xm|| <(C+ 1)M.

i=l+1

Further notice that it follows from e}, (x)e,, — 0 for m — oo and the assumption
inf,,cnllen] > O that the coefficients satisfy e}, (x) — 0 for m — co as well.
Altogether we obtain that for all x € X and all € > 0 there exists an N € IN such

that
1

!
|3 sz - )i
k=1 k

=1

<e forall ] <N.

Form this it follows that one has

for all x € X. This shows that (zi)xen is @ Schauder basis for the space X. [

Schauder decompositions naturally generalize the concept of a Schauder
basis.

Definition A.1.12 (Schauder Decomposition). A sequence (A,,)en C B(X)
for a Banach space X is called a Schauder decomposition if

AN, =0 forallm=n and ZAmx:x for all x € X.

m=1

The decomposition (A,,;)en is called unconditional if the expansion ) ;_; A,,x
converges unconditionally for all m € IN.

Almost all comments concerning Schauder bases have natural analogues
for Schauder decompositions. In fact, it follows from the compactness of
{~1,1}N and the uniform boundedness principle that for an unconditional
Schauder decomposition (A,,),,en the family of bounded operators given by
Ste,), (Xm=1 Amx) = Y o—1 EmApmx for (&,)nen € (-1, 1}N is uniformly bounded
in operator norm. One calls K = Sup(en),,eme{l,l}w”S(en)n” the unconditional
constant of the decomposition (A,,;),en. Moreover, the projections (Py)nen
defined by Py = Zln\lzl A,, are uniformly bounded for an arbitrary Schauder
decomposition (A,,),en by the uniform boundedness principle.

A variant of the block perturbation result shown in Proposition A.1.11
can also be proved for general Schauder decompositions.

Proposition A.1.13. Let (A,,),en be a Schauder decomposition for a Banach
space X. Further let (e,,)meN be a sequence with e,, € RgA,, for all m € IN and
inf,,cn el > 0 and let (e},)eN be associated contractive rank-one projections.
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Then for strictly increasing sequences (1) meN, 414 (Pym)men with ng = 0 and
N1 < Pm < Ny, for all m € N consider a sequence (X,,),eN of the form x,, =
n
Zi;nnm,1+1 aje; for a scalar-valued sequence (a;)icN such that sup,, . l1xXull < co.
i#py,

Then the sequence (Q;)jeN given by

1
P-e, ® Z aje; forn, 1+1<I<p,-1

Ql _ i=n,,_1+1

nm

P+e, ® Z a;e; for p,, <1<mn,

i=l+1

induces a Schauder decomposition (A,,)men for X with A, = Q,, — Qu_y (where

QO = O)

Proof. It suffices to show that (Q,,),cn is a sequence consisting of projections
satistying Q,Q;; = Qmin{n,m) for all m,n € N and lim,,_,, Q,x = x for all
x € X. Notice that for x in the closed span of {e,, : m € IN} all properties
follow immediately from Proposition A.1.11 as (e,,),enN 1S @ basic sequence.
Moreover, if x € X has only trivial intersection with this closed subspace,
one has Q;x = Px and the first two properties are satisfied because they are
satisfied for (P);en. One may now finish the proof as in Proposition A.1.11.

O

A.2 Geometry of Banach Spaces — General Methods
and Techniques

In this section we summarize some basic methods and techniques attributed
to the geometry of Banach spaces which are used throughout the text. The
following method is often used to construct new Banach spaces.

Definition A.2.1. Let (X,),en be a sequence of Banach spaces. Then for
p €[1,00) the £,-sum & X, of (X,),cN is given by
P

S 0 S 1/p
& X, = {(x,n e [%u:) Il < oo}, 1)l := (annng) :
n=1 n=1 n=1

We now formulate some instances of the Petczynski decomposition tech-
nique which can be seen as a variant of the Cantor-Schroder-Bernstein theo-
rem for Banach spaces.

Theorem A.2.2 (The Pelczyniski Decomposition Technique). Let X and Y be
Banach spaces so that X is isomorphic to a complemented subspace of Y and Y is
isomorphic to a complemented subspace of X. Suppose further that either
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(@) X=2=X@XandY=Y®Y or
(b) X ~£,(X) for some 1 < p < oo.
Then X is isomorphicto Y.

Proof. First, assume that (a) holds. We can write X ~Y@®E and Y ~ X&F.
Then one has

X>2YPYPE~YpX2XpY~2XPpXPF~Y.

Now, assume that (b) holds. Then, a fortiori, one has X ® X =~ £,(X) & {,(X) ~

¢,(X) = X. Hence, by the proof of part (a), one has Y ~ X® Y. On the other

hand

€(X) = €,(Y ®E) ~ €,(Y) @, (E).

Hence, X ~ {,(X) implies
X=ly(Y)@l(E)=Yal,(Y)®l,(E)= Y@, (X)~ Yo X.

Altogether, we have shown the assertion Y ~ X. O]

A.2.1 Ultraproducts of Banach Spaces

Ultraproducts are a powerful method in Banach space theory that trades
between local and global results. We discuss their definitions and basic
properties.

Let (X;);c; be a family of Banach spaces. We consider the space of bounded
sequences {,(I; X;) endowed with the norm

[1Cxi)ll == sup [|x;|l-
i€l

Let U/ be an ultrafilter on I. Then it follows by compactness that the image
of U under the map i — ||x;|| — which is again an ultrafilter — converges, i.e.
for some ¢ > 0 is finer than the neighbourhood filter of c. Now, consider the
closed subspace

Nig = { ()it € €lliX) s limlx = 0},
Definition A.2.3. The ultraproduct [ [ X;/U of the spaces (X;);cs is the quotient
Banach space

goo(I}X,')/Nu.
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Notice that a sequence of bounded operators T; € B(X;,Y;) such that
C = sup,|ITi|| < oo gives rise to a bounded operator T: (x;)ic; = (Tx;)ies
in B([1X;/U,T1Y;/U) with ||T|| < C.

The main usage of ultraproducts of Banach spaces lies in their permanence
properties. For example, the ultraproduct of Banach lattices is a Banach
lattice when endowed with the order structure induced by the pointwise
order modulo null sequences. For further details and results on ultraproducts
we refer to [DJT95, Chapter 8].

A.2.2 Local Theory of Banach Spaces

We present the basic terminology and methods from the local theory of Banach
spaces, i.e. the study of Banach spaces via the structure of its finite dimen-
sional subspaces. Here the following concept is of fundamental importance.

Definition A.2.4 (Finitely Representable). Let X and Y be two Banach
spaces. We say that Y is finitely representable in X if for every ¢ > 0 and every
finite dimensional subspace F of Y there is a finite dimensional subspace E of
X and an isomorphism u: F — E such that

-1
lull -[lu || < 1 +e.

Finite representability behaves well with respect to ultraproducts [Pis11,
Lemma 3.48].

Proposition A.2.5. Let (X;);c; be a family of Banach spaces such that each space
X; is finitely representable in a fixed Banach space X. Then every ultraproduct
[1Xi/U is finitely representable in X.

We now define a special class of properties of Banach spaces which only
depend on the structure of the finite dimensional subspaces.

Definition A.2.6 (Super-Property). Let (P) be a property for Banach spaces.
We say that a Banach space Y has super-(P) if every Banach space X that is
finitely representable in Y has (P). A property (P) is called a super-property if
(P) is the same as super-(P).

In this way one obtains for example the definition of a super-reflexive space.
Note that reflexivity is not a super-property, i.e. there are Banach spaces which
are reflexive but not super-reflexive.

A.3 Geometric Properties of Banach Spaces

In this section we introduce some geometric properties of Banach spaces that
are used throughout the text. For further details we recommend [D]JT95].
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A.3.1 Type and Cotype

As a starting point to the notions of type and cotype we recall the following
classical inequality from probability theory. In the following let ri(t) :=
sign sin(2k7t) be the k-th Rademacher function.

Theorem A.3.1 (Khintchine inequality). For p € [1,00) there exist constants
Ap, B, > 0 such that for any finite sequence ay, ..., a, of scalars and any n € N we
have

n

)

k=1

n 1/2 n 1/2
AP(Z|ak|2) < < (Z|ak|2) for pe[1,2]
k=1 Lol iz
and

n

n 1/2
(> me) <3 na
k:1 k:l

From the geometrical point of view the Khintchine inequality shows that
for each p € [1, c0) the space L,[0,1] contains a copy of ¢,. Note that the Khint-
chine inequality in particular implies that on the span of the Rademacher
functions all L,-norms on [0, 1] are equivalent for p € [1, c0). The following so-
called Kahane-Khintchine inequality shows that this particular consequence
remains true if C is replaced by an arbitrary Banach space X.

n 1/2
SBP(Z|ak|2) for p € [2,00).
L,[0,1] =1

Theorem A.3.2 (Kahane-Khintchine Inequality). For each p € [1,00) there
exists a constant C, > 0 such that for every Banach space X and every finite
sequence x1,...,x, € X one has

n

)i

k=1 Ly([0,1]:X)

n

)
k=1

Rademacher averages of the above type play a central role in the modern
theory of Banach spaces.

n

)i

<C .
k=1 Li([0,1];X)

= P
L,([0,1]:X)

<

Definition A.3.3. For p € [1,00) and a Banach space X let Rad,(X) be the
closed subspace of L,([0,1];X) of elements of the form } ;7 rzx; for some
xx € X (k € N). By the Kahane-Khintchine inequality (Theorem A.3.2) the
spaces Rad,(X) are isomorphic for different values of p and one therefore
simply uses the notation Rad(X).

In particular, one often omits the concrete norm if one is only interested
in estimates up to constant factors. Furthermore, one can show that Rad,(X)
is the closure of the finite Rademacher sums in L,([0,1]; X) [ABO3, p. 321].

One-sided weaker variants of the Khintchine inequality give rise to impor-
tant Banach space invariants, the type and cotype of a Banach space.
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Definition A.3.4. A Banach space X has type p € [1, 2] if there is a constant
C > 0 such that for every finite sequence x,...,x, € X one has

n 1/p
< C(Zuxknp) :
k=1

The space X has cotype q € [2, 00] if there is a constant C > 0 such that for every
finite sequence xy,...,x, € X one has

n 1/q
(anknq) <C
k=1

for g < oo, whereas for g = co one requires

TkXk

k=1

n

)i

k=1

max lxl<C

.....

Zrkxk .

k=

By the triangle inequality and the Hahn-Banach theorem every Banach
space X has type 1 and cotype co. One therefore says that X has non-trivial
type if X has type p for some p > 1. Analogously, one says that X has non-trivial
cotype if X has cotype q for some g < co. Moreover, if X has type p; and cotype
g2, then X has type p for all p € [1,p;] and cotype g for all g € [g,, 0]. Tt
follows from the parallelogram identity that a Banach space isomorphic to a
Hilbert space has both type and cotype 2. The converse is a celebrated result
by Kwapien [Kwa72].

Theorem A.3.5. A Banach space X has both type and cotype 2 if and only if X is
isomorphic to a Hilbert space.
A.3.2 K-Convexity

In the duality theory of type and cotype the complementability of the space
Rad(X) plays a crucial role.

Definition A.3.6. A Banach space X is called K-convex if the sequence of
projections (P,),en With

L,([0,1];X) — Rad,,(X)

Y
fe ) r(t)f(t)dt
- k 0 k

onto the first n Rademacher functions Rad, (X) is uniformly bounded in
operator norm and therefore induces a bounded projection from L,([0,1]; X)
onto Rad,(X) for one (equivalently all) p € (1, 0).
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The following deep theorem by G. Pisier gives a complete description of
K-convex spaces.

Theorem A.3.7. A Banach space is K-convex if and only if it has non-trivial type.

For a detailed proof see [DJT95, Chapter 13]. One can show, for example
via the passage through B-convexity [DJT95, Chapter 13], that every uniformly
convex Banach space is K-convex. In particular, every subspace and quotient
of an L,-space for p € (1,00) is K-convex. However, there is no connection
between K-convexity and reflexivity, in particular there are K-convex space
which are not reflexive, for a particularly nice approach and further references
see [PX87].

A.3.3 Super-Reflexive Spaces

There is a deep connection between uniform convexity and reflexivity. It is
well-known that every uniformly convex Banach space is reflexive. However,
there exist reflexive spaces which do not have an equivalent uniformly convex
norm, a result which goes back to [Day41la]. In the language of the local
theory of Banach spaces the two properties cannot be equivalent as the first is
a super-property whereas the second is not. In fact, this is the only obstruction
by the following celebrated result by P. Enflo [Enf72].

Theorem A.3.8. A Banach space is super-reflexive if and only if the space has an
equivalent uniformly convex norm.

Notice that it is clear from the above result that every super-reflexive space
is K-convex.

A.3.4 UMD-Spaces

The class of UMD-spaces is by now known to be the right class to study vector-
valued stochastic integration and harmonic analysis and therefore plays an
important role in the development of these theories.

Definition A.3.9 (UMD-Space). A Banach space X has the UMD-property
if the Fourier multiplier operator for the multiplier m(x) = 1{,.(f) can be
extended to a bounded operator on L,(IR; X) for one (equivalently all) p €
(1, 00).

Notice that the above definition is clearly equivalent to the requirement
that the vector-valued Hilbert transform defines a bounded operator on the
space L,(IR;X). The term UMD is an abbreviation for unconditional mar-
tingale differences and comes from an equivalent definition of those spaces.
For the precise and other equivalent definitions of UMD-spaces as well as
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proofs and references for the following properties of UMD-spaces we refer to
the surveys [RdF86] and [Bur01]. For us it will be important that the UMD-
property is stable under closed subspaces and quotients and that L,(Q; X)
is a UMD-space for all measure spaces () and all p € (1,00) whenever X is
a UMD-space. In particular, since C is a UMD-space, the Lebesgue spaces
L,(Q) are UMD-spaces for p € (1,00). Moreover, we make use of the following
implications throughout the text.

Theorem A.3.10. Every UMD-space is super-reflexive. In particular, every UMD-
space is K-convex or equivalently has non-trivial type.

A.3.5 Pisier’s Property (a) and Property (A)

In the study of Rademacher averages the following structural properties of
Banach spaces dealing with multiple sums of Rademacher averages have
turned out to be of conceptual importance.

The first property goes back to G. Pisier and was introduced in [Pis78b].

Definition A.3.11. A Banach space X is said to have Pisier’s property («) if
there is a constant C > 0 such that for all n € IN, all nxn-matrices [x;;] € M,(X)
of elements in X and all choices of scalars [a;;] € M,,(C) one has

j Z

We remark that L,-spaces have Pisier’s property (a) for p € [1,00) and that
Pisier’s property (a) passes to subspaces and is stable under the formation
of L,-spaces for p € [1,00). Moreover, it is shown in [Pis78b] that a Banach
lattice X has Pisier’s property («) if and only if X has finite cotype. However,
there are UMD-spaces, for example the Schatten classes S, for p € [1,00) \ {2},
that do not have Pisier’s property («).

The following weaker property originates from the work of N.J. Kalton
and L. Weis.

dsdt.

dsdt < Csup'al]|f

71(5)7j(t)xij
i,j=1

Definition A.3.12. A Banach space X has property (A) if there is a constant
C > 0 such that for all n € N and all n x n-matrices [x;;] € M,(X) one has

j dsdt < CJ
[0,1]?

The usefulness of property (A) partially comes from the validity of the
following result proved in [KWO01, Proposition 3.2].

n

)it

i,j=1

dsdt.

Xl]

Proposition A.3.13. Every UMD-space has property (A).
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A.4 Banach Lattices

We only collect in the following for the sake of the reader some basic concepts
from the theory of Banach lattices which are used throughout the text. For
further details we refer to the monographs [AB06], [MN91] and [Sch74]
and [LT79].

Definition A.4.1. A partially ordered Banach space (X, <) over the real num-
bers is called a Banach lattice if

(i) x<yimpliesx+z<y+zforall x,y,z€ X,
(ii) ax>0forall x >0and all a > 0,

(iii) for all x,y € X there exists a least upper bound x VvV y and a greatest lower
bound x Ay,

(iv) ||x|| < |lyll whenever |x| < |y|, where the absolute value |x| of x € X is
defined by |x| = x V (—x).

It follows from the definition that the lattice operations are norm continu-
ous. This implies that the positive cone C := {x € X : x > 0} is a closed convex
subset.

Definition A.4.2. Let T: X — Y be a linear operator between two Banach
lattices X and Y.

(i) T is called positive if Tx > 0 for all x > 0 in X.

(ii) T is called order preserving if T preserves the lattice structure for which
it suffices to check that

T(Xl /\XZ) = TXI A\ TX2 for all X1,Xp € X.

(iii) T is called an order isomorphism if T is one-to-one and onto and both T
and T~! are order preserving.

X and Y are called order isomorphic if there exists an order isomorphism
between X and Y. Further, X and Y are called order isometric if there exists an
isometry T: X — Y which is also an order isomorphism.

In general, not every set in a Banach lattice that is order bounded, i.e.
bounded for the order <, has a least upper bound.

Definition A.4.3. A Banach lattice X is said to be complete (o-complete) if
every order bounded set (sequence) has a least upper bound.
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One defines several mathematical subobjects for Banach lattices.
Definition A.4.4. Let Y be a closed subspace of a Banach lattice X. Then
(i) Y is called a (vector) sublattice if x Ay € Y whenever x,y € Y.
(ii) Y is called an ideal if y € Y whenever |y| < |x| for some x € Y.

(iii) Y is called a band if Y is an ideal and if for every family (;);c; in Y such
that \/,c; v; exists in X, this element already belongs to Y.

A further continuity property is the following.

Definition A.4.5. A Banach lattice X is called order continuous (o-order con-
tinuous) if, for every decreasing net (sequence) (x,) in X, i.e. xg < x, for > a,
with A, x, =0, one has lim, ||x,|| = 0.

Of fundamental importance in the theory of Banach lattices are so-called
representation theorems which give an abstract description of concrete Banach
function lattices. We need the following concept.

Definition A.4.6. Let p € [1,00). A Banach lattice is called an abstract L,-space
if [lx+ y|[P = ||x]|P + ||ly|[P holds for all x,y € X with x Ay = 0.

For an abstract L,-space one has the following representation theorem by
S. Kakutani [LT79, Theorem 1.b.2].

Theorem A.4.7. Let p € [1,00). An abstract L,-space is order isometric to some
concrete L,-space L,(Q)) over some measure space (C2, %, p).

In particular, every ultraproduct of L,-spaces is order isometric to some
concrete L,-spaces, i.e. the class of L,-spaces is stable under ultraproducts.

A.5 Interpolation Theory

In this section we present the basics of interpolation theory. For further details
we refer to [Tri78], [BK91] and [BL76].

A.5.1 Interpolation Spaces and Interpolation Functors

We now introduce the general notions from interpolation theory without
presenting concrete interpolation methods for which we refer to the afore-
mentioned literature.

We first define the category of interpolation couples.
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Definition A.5.1. An interpolation couple of Banach spaces is a pair (X;, X,) of
Banach spaces together with a Hausdorff topological vector space A" such that
X1 and X, are continuously embedded in X. A morphism between two such
couples (X;,X;) and (Y7, Y,) is a linear operator T: X; + X, — Y; + Y, whose
restrictions to X; define bounded linear operators from X; to Y; fori =1, 2.

By Mor((X1,X>),(Y1,Y;)) we denote the set of all morphisms from (X, X>)
to (Y1, Y;). One can show that if (X;, X;) is an interpolation couple, then the
spaces X; N X, and X; + X, are Banach spaces when endowed with the norms

lIxllx, nx, = max(|lx|lx, , llxllx,) and [|Ix]|x, 1 x, = infx=x€1+>cz llx1llx, + llx2llx, -
Xi€Aj

Of special interest are the following immediate spaces lying between both
ends of a Banach couple.

Definition A.5.2. Let (X;, X,) be an interpolation couple of Banach spaces. A
Banach space X is called an interpolation space of exponent 6 € [0,1] between
X7 and X, (or with respect to the interpolation couple (X;, X)) if it satisfies

(i) One has continuous embeddings X1 N X; < X — X + Xp;
(i) If T € Mor((X;, X5), (X1, X3)), then T(X) C X and Tjx € B(X);

(iii) For some constant C > 0 one has for all T € Mor((X1, X3), (X1, X3))

||T|X||B(X) <C ||TIX1 ”;z;) ”TIXz“Z’(Xz);

(iv) For some constant ¢ > 0 one has

1-6 0
lIxllx < cllxllx,” [Ixllx, for all x € X1 N X,.

An interpolation space X between X; and X, is called regular if X; N X, is
dense in X.

Note that in the literature an interpolation space of exponent 6 is usually
defined as a Banach space satisfying only (i)-(iii). We add (iv) for technical
reasons. General methods to construct interpolation spaces can be formalized
with the help of interpolation functors.

Definition A.5.3. An interpolation functor F of exponent 0 € [0,1] is a functor
from the category of interpolation couples into the category of Banach spaces
such that

(i) for each interpolation couple (X;,X;) the space F((Xy,X>)) is an inter-
polation space of exponent 6 with respect to (X7, X;) and

(ii) one has F(T) = Tix € B(X,Y) for all T € Mor((Xy,X5),(Y1,Y>)), where
X = f((Xl,Xz)) and Y = f((Yl,Yz))
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Moreover, an interpolation functor F is called regular if F((Xy,X5)) is a
regular interpolation space for all interpolation couples (X, X»).

Notice that for a space X = F((X;,X;)) constructed by an interpolation
functor F of exponent 6 property (iv) holds automatically. Indeed, for x €
X1 N X, apply the functor to the morphism T: C — X; + X, given by A — Ax.

We note without going into further details that the well-known real in-
terpolation (if the interpolation parameter usually denoted by g satisfies
g < c0) and complex interpolation methods all define interpolation functors
of exponent 0 € (0, 1).

In general, determining interpolation spaces for concrete interpolation
functors is a difficult task. However, there is an abstract method which
sometimes can be quite useful.

Definition A.5.4. Let X and Y be Banach spaces. An operator R € B(X,Y) is
said to be a retraction if there exists an operator S € B(Y, X) such that

RS =1dy.
In this case one says that S is the coretraction belonging to R.

To illustrate this abstract definition, let X be a Banach space and Y a
complemented subspace of X. Then one can take S: Y <> X as the inclusion
mapping and R: X — Y as a projection onto Y.

Retractions may allow to reduce the problem of determining interpolation
spaces to known cases via the following theorem [Tri78, 1.2.4].

Theorem A.5.5. Let (X1,X,) and (Y1,Y,) be interpolation couples. Further as-
sume that there are

SeB((Y1,Y2),(X1,X3))  and  ReB((X1,X,),(Y1,Y3))
such that the restrictions S;: Y; — X; and R;: X; — Y; satisfy
RZ-Si:Iin fOT'i:Lz;

i.e. R; are retractions and S; are coretractions respectively. Then for an interpola-
tion functor F one has the identification (as Banach spaces)

F((Y1,Y2)) = RgSRi7((x,,x,) € F (X1, X3)).

This theorem in particular applies for the interpolation of Rademacher
sequences. We are interested in those interpolation functors F which com-
mute with Rad, i.e. which satisfy F((Rad(X;),Rad(X3))) =~ Rad(F((X1,X3)))
for a sufficiently regular Banach couple (X;,X;). This is indeed satisfied if the
interpolation functor commutes with the formation of L,-spaces. We follow
the terminology in [KS12].



A.5. Interpolation Theory

Definition A.5.6. An interpolation functor F is called L,-compatible if over
every o-finite measure space one has for all interpolation couples (X;, X,) and
all p € (1, 00) that

F((Lp(X1), Lp(X2))) = Ly(F (X1, X3)))
as sets with equivalent norms.

It is a well-known fact that both the complex and real interpolation meth-
ods define L,-compatible interpolation functors for fixed interpolation pa-
rameters.

For L,-compatible interpolation functors one obtains the following com-
patibility with Rademacher spaces [KS12, Proposition 3.14].

Corollary A.5.7. Let (X1, X;) be an interpolation couple of two Banach spaces
with non-trivial type and F an L,-compatible interpolation functor. Then one has

F((Rad(X;),Rad(X5))) = Rad(F((Xy, X5))).

Proof. Since X; have non-trivial type, the Rademacher spaces Rad(X;) are
complemented in L,([0,1];X) for i = 1,2 as a consequence of Pisier’s charac-
terization of K-convex spaces (Theorem A.3.7). Hence, if S: Rad(X; + X;) <
L,([0,1]; X1 +X5) is the inclusion mapping and R: L,([0,1]; X;+X;,) — Rad(X;+
X,) the Rademacher projection, the pair (R, S) satisfies the assumptions of
Theorem A.5.5. Hence, we obtain the identifications

F((Rad(X),Rad(X5))) = SR(L,([0, 1]; F (X1, X5)))) = Rad(F (X, X2))),

where we have used the L,-compatibility of the interpolation functor in the
first identification. O]

A.5.2 Stein Interpolation Theorems

The methods used in the proofs of the Riesz—Thorin interpolation theorem
and the Stein interpolation theorem already suggest that there should be a
generalization of the Stein Interpolation theorem to the setting of the complex
interpolation method. We present the version proved in [Voi92]. Let S denote
the strip S := {z€ C: 0 <Rez < 1} in the complex plane.

Theorem A.5.8 (Abstract Stein Interpolation). Let (X, X,) and (Y1,Y,) be
two interpolation couples of Banach spaces and let Z be a dense subspace of
(X1 N Xy, | llx,nx,)- Moreover, let (T(2)),es be a family of linear mappings with
T(z): Z > Y1+ Y, forall ze S and the following properties:

(a) For all z € Z the function T(-)z: S — Y; + Y, is continuous, bounded and
analytic on the interior of S.
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(b) For all z € Z the functions
st T(is)z and s> T(1+is)z

are continuous as mappings from R to Y| respectively Y, and satisfy for
i=1,2

M; = sup{||IT(j -1 +is)x||Yj :seRxe Z,||x||Xj <1} < oo.

Fort €[0,1] let X; = (X1, X5); and Y; = (Y1,Y,); denote the complex interpola-
tion spaces. Then for all t € [0,1] one has T(t)Z C Y; and

IT()xlly, <M "'Mj|ixlly,  forallxeZ.



Operator Spaces

In this appendix we give a very short introduction to the theory of operator
spaces and completely bounded maps which is used in some parts of the thesis.
For detailed references the reader can consult [ER00], [Pis01], [Pau02], [Pis03]
and [Hel10].

We now define the category of operator spaces.

Definition B.0.9. An operator space is a Banach space X that is isometrically
embedded into B(H) for some Hilbert space H.

Note that the datum of an operator space therefore consists of a Banach
space together with a fixed embedding. There may be different embeddings for
the same Banach space which give rise to different operator space structures.
Further we will always see X as a subspace of B(H).

Note that if X Cc B(H) is an operator space, one can define for all n € N
the matrix algebras M, (X) c M,(B(H)) of all [a;;] € M,(B(H)) for which
a;j € X foralli,j=1,...,n. Here one identifies M,,(B(H)) with B(¢;(H)) for all
n € IN. Moreover, a map u: X — Y induces mappings u,,: M, (X) = M,(Y) via
[xij] > [u(x;)] for all n € IN. We now define the morphisms between operator
spaces.

Definition B.0.10. Let X ¢ B(H) and Y C B(K) be two operator spaces. A
map u: X — Y is called completely bounded if ||u||., = sup, e |t < o0, i.e.
the induced maps u,: M,(X) — M, (Y) are uniformly bounded.

There is a close connection between completely bounded maps and simi-
larity problems which is in detailed covered in [Pis01] and [Pau02]. We need
only the following result by V.I. Paulsen [Pau02, Theorem 9.1] going back to
the work [Pau84].

Theorem B.0.11. Let H and K be Hilbert spaces. Further let A C B(K) be a
unital operator algebra and let u: A — B(H) be a completely bounded algebra
homomorphism. Then there exists an invertible S € B(H) such that a > S~ u(a)S
is a contractive homomorphism.
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Zusammenfassung in deutscher
Sprache

In dieser Arbeit untersuchen wir Regularitatseigenschaften sektorieller Opera-
toren und deren gegenseitiges Wechselspiel. Im Zentrum stehen die Regulari-
tatseigenschaften maximale Regularitit oder im wesentlichen dquivalent dazu
die R-Sektorialitdt und der Begriff des beschrinkten H*-Kalkiils. Das Konzept
der maximalen Regularitét spielt mittlerweile eine zentrale Rolle im Studium
nichtlinearer partieller Differenzialgleichungen und der eng verwandte H*-
Kalkiil hat sich seit seiner Einfihrung zu einem zentralen Werkzeug fur das
Studium von Halbgruppen entwickelt. Die vorliegende Arbeit enthalt drei
Hauptresultate.

Das erste Hauptresultat gibt einen wichtigen Beitrag zu dem maxima-
len Regularititsproblem. Es ist klassisch bekannt, dass der Generator einer
stark stetigen Halbgruppe mit maximaler Regularitat auf einem Banachraum
notwendigerweise eine analytische Halbgruppe erzeugt. Auf Hilbertraumen
hat umgekehrt jeder Generator einer analytischen stark stetigen Halbgruppe
maximale Regularitat. Das maximale Regularitdtsproblem fragt, welche Ba-
nachraume diese Eigenschaft besitzen. Fur L,- oder allgemeiner UMD-Raume
geht diese Frage auf H. Brézis zuriick. Dieses Problem blieb langer offen, bis
es von N.J. Kalton und G. Lancien negativ beantwortet wurde [KL0O0]. Sie
zeigten, dass ein Banachraum mit einer unbedingten Basis die maximale Regu-
laritatseigenschaft genau dann besitzt, wenn dieser bereits isomorph zu einem
Hilbertraum ist. Der Ansatz von Kalton und Lancien basiert auf abstrakten
Resultaten aus der Theorie der Banachraume und liefert insbesondere kein
explizites Beispiel eines Generators einer analytischen Halbgruppe ohne ma-
ximale Regularitat. Tatsachlich war bis jetzt kein explizites Beispiel auf einem
UMD-Raum bekannt. In unserem ersten Hauptresultat geben wir einen neuen
expliziten Beweis fiir das Resultat von Kalton und Lancien. Insbesondere
konnen wir die ersten expliziten Beispiele von analytischen Halbgruppen
ohne maximale Regularitat auf UMD-Raumen - auch auf L,-Rdumen - kon-
struieren. Zudem konnen wir mit unseren Methoden zeigen, dass es positive
Halbgruppen auf UMD-Banachverbanden ohne maximale Regularitat gibt
und ein offenes Problem uber die Struktur von Schauderbasen auf L,-Raumen
negativ beantworten.

Das zweite Hauptresultat beschaftigt sich mit der Extrapolation von ma-
ximaler Regularitat. Konkreter beschaftigen wir uns mit folgendem aus den
Anwendungen motivierten bisher offenem Problem: Gegeben sei eine Fami-
lie von konsistenten Halbgruppen (T,(#));»0 auf L, fir p € (1,0). Ferner sei
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(T5(t))s>0 analytisch und besitze damit maximale Regularitat. Folgt dann, dass
(T, (t))s0 fur alle p € (1, 00) maximale Regularitat besitzt? Wir geben Gegenbei-
spiele fiir diese Vermutung in der starkstmoglichen Form. Konkret zeigen wir,
dass fur jedes Teilintervall I C (1,00) mit 2 € I eine Familie von konsistenten
analytischen Halbgruppen (Tp(z))zezg auf L,(R) fur p € (1, 00) existiert so, dass
(Tp
man maximale Regularitat durch die Analyzitat der Halbgruppe, so besitzt
die Frage als eine klassische Anwendung des Steinschen Interpolationssatzes
eine positive Antwort. Fiir dieses Resultat geben wir einen neuen Beweis, der
die Aussage auf eine breite Klasse von Interpolationsraumen verallgemeinert.
Zudem erlaubt dieselbe Methode, ein Extrapolationsresultat fiir maximale
Regularitat fiir eine breite Klasse von Interpolationsfunktoren zu zeigen.
Das dritte Hauptresultat beschreibt die Struktur von sektoriellen Operato-
ren mit einem beschrankten H*-Kalkul auf L,-Rdumen. Wir zeigen, dass ein
sektorieller Operator genau dann einen H*-Kalkul von Winkel kleiner als
% auf Lp fur p € (1, 0) besitzt, wenn dieser nach der Bildung von invarianten
Quotientenunterrdumen und Ahnlichkeitstransformationen aus einem sekto-
riellen Operator A auf einem anderen L,-Raum hervorgeht derart, dass -A
eine analytische Cy-Halbgruppe erzeugt, die positiv und kontraktiv auf der
reellen Achse ist. Auf dem Weg zu diesem Resultat verallgemeinern wir Fend-
lers Dilatationsresultat auf r-kontraktive Halbgruppen auf abgeschlossenen
Unterrdumen von L,-Raumen, geben einen vollstindigen Beweis von Weis’
Resultat tiber den beschrankten H*-Kalkiil von negativen Generatoren von
positiven kontraktiven Halbgruppen auf L,-Réaumen fiir p € (1, c0) und zeigen
einen punktweisen Ergodensatz fur allgemeine Unterrdume von L,-Raumen

(2))zex» genau dann maximale Regularitit besitzt, wenn p € I gilt. Ersetzt
2

fur p € (1, c0).
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