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Chapter 1

Introduction

1.1 Fixed-Income Instruments
The interest-rate derivatives market is by far the largest derivatives market in the
world. In its 2010 survey1, the Bank for International Settlements (BIS) reports
that the global notional amounts outstanding of over-the-counter (OTC) deriva-
tives2 totalled $583 trillion at the end of June 2010, with interest-rate derivatives
accounting for 82.1% of this amount, followed by foreign-exchange contracts (10.8%),
credit derivatives (5.4%), equity-linked contracts (1.2%) and commodities contracts
(0.6%)3.

The motivations for using interest-rate derivatives are quite diverse and range
from locking in financing costs at a specified fixed rate to pure speculation. While
mutual funds or insurance companies may seek to earn superior returns on their
investments, corporates and mortgage lenders generally want to hedge their interest-
rate exposures. According to the International Swaps and Derivatives Association
(ISDA)4 more than 88% of the world’s 500 largest companies use derivatives to
manage their interest-rate risks.

Interest-rate derivatives come in different flavors such as swaps, forwards/futures
and option-like instruments. An interest-rate swap, for instance, is in its most basic
form an agreement between two counterparties to exchange a stream of fixed-rate
payments for a stream of floating-rate payments (typically based on a reference rate
such as Libor5). A pension fund may wish to enter into a receiver swap6 to convert
the floating-rate coupons, that it is earning on a portfolio of bond-like assets, into
a stream of fixed-rate payments to match the expected future pension liabilities,
which are often fixed in nature. In contrast, a company with a floating-rate loan

1BIS : Triennial and semiannual surveys – Positions in global over-the-counter (OTC) derivatives
markets at end-June 2010, Nov. 2010, http://www.bis.org/publ/otc_hy1011.pdf.

2Notional amounts outstanding of exchange traded derivatives reached $78 trillion, see BIS: Statis-
tical Annex 2010, http://www.bis.org/publ/qtrpdf/r_qa1012.pdf.

3The total gross market value amounts to $25 trillion with 75.0% in interest-rate derivatives, 12.8%
in foreign-exchange contracts, 6.9% in credit derivatives, 3.2% in equity-linked contracts and 2.0%
in commodities contracts.

4International Swaps and Derivatives Association: 2009 ISDA Derivatives Usage Survey, http:

//www.isda.org/researchnotes/pdf/ISDA-Research-Notes2.pdf.
5London Interbank Offered Rate.
6For the party that receives the fixed payments and makes the floating-rate payments the swap is

called a receiver swap. Otherwise it is called a payer swap.

http://www.bis.org/publ/otc_hy1011.pdf
http://www.bis.org/publ/qtrpdf/r_qa1012.pdf
http://www.isda.org/researchnotes/pdf/ISDA-Research-Notes2.pdf
http://www.isda.org/researchnotes/pdf/ISDA-Research-Notes2.pdf
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may be concerned that future interest rates will possibly rise. Hence, to protect itself
from increased financing costs, it may use a payer swap to convert, in effect, the
floating-rate loan into a fixed-rate loan. While this strategy eliminates the risk of
having to make unexpectedly high future payments, it might be quite “expensive” in
a market environment where long-term (fixed) rates are relatively high, compared
to short-term (floating) rates, the latter of which the company might expect to stay
low or even decrease. In this case the company might be better off staying with the
existing loan and buying instead an interest-rate cap. A cap consists of a sequence
of interest-rate call options (caplets) and protects the purchaser against a rate rise
above a prespecified level. Should market rates move above the cap rate, then the
seller pays the purchaser the difference between the market rate and the cap rate. For
the company, a cap therefore creates a ceiling on its floating-rate interest costs on the
loan. In turn, the company pays the cap seller an upfront premium for this“insurance
contract”. Interest-rate floors, in contrast to caps, provide holders with protection
against drops in market rates. These instruments can be bought, for example, by
investors to achieve a minimum return on floating-rate assets or by debt managers
to protect against opportunity losses on fixed-rate debt when interest rates fall.

While (standard) swaps, forwards/futures and caps/floors are the most liquidly
traded contracts and constitute the largest share of interest-rate derivatives in the
market, there exists a great variety of other, more exotic derivatives, that may be
structured individually to meet a company’s specific risk profile or an investor’s
market view. Products that were particularly popular in the years 2005 through
2007 were constant maturity swap (CMS) steepener products, with an estimated $55
billion7 of steepener notes issued in 2005.

Steepener (or CMS spread-linked) products allow investors to take a view on the
shape of the yield curve. Although the specific characteristics of these products may
vary significantly, they are typically sold as a medium-term note, paying high fixed
coupons for the first few years, after which the investor receives coupons based on the
spread between two CMS rates (often the 10-year and the 2-year rate) multiplied by a
leverage factor. Accordingly, these products can be bought by investors who believe
that the prevailing yield curve is too flat and will probably steepen. The latter can
happen for example if central banks loosen their monetary conditions in response to
a weakening economy, or, if short rates and central bank monetary conditions stay
the same, but long-term rates go up due to inflationary pressures.

In the past, yield curves in the USA and the euro countries have tended to
be upward sloping for most of the time. Between 2004 and 2006, however, yield
curves began to flatten significantly and forward curves were even pricing in a future
inversion of the yield curve. Many investors thought that the prevailing interest-rate
curves were artificially flat and would probably steepen. Due to the low forward
spreads, dealers were able to structure products that offered high initial coupons
(often 6%–10%) and high leverage factors for the spread coupons. Many of such
products were sold to retail investors as well as institutional investors, like pension
funds or insurance companies, who were looking at that time for enhanced yields in
a falling interest-rate environment.

However, instead of steeping, yield curves continued to flatten in 2006 and 2007,

7“Vanilla’s the flavour”, Risk, March 2008, p. 61–63.
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leaving owners of steepener notes with mark-to-market losses and below market
coupons8. In the euro area the situation even worsened in June 2008. The spread
between 10-year and 2-year euro swaps had been negative since mid-May, when on
June 5 the European Central Bank (ECB) president Jean-Claude Trichet remarked
that the bank could possibly raise their interest rates in response to a rising inflation9.
This caught many dealers and investors on the wrong foot as they were convinced
at that time that the credit crises and the weakening economy would force the ECB
to cut their rates and that, as a consequence, the curve would remain positive or
even steepen10. After the announcement, the euro curve 10Y–2Y spread underwent
an unprecedented drop, which came to a halt at −60.2 basis points (bp) on June
611, see Figure 1.1. It is interesting to note that the inversion of the yield curve was
partially exacerbated by hedging activities around steepener structures12. In fact, ac-
cording to Risk magazine13, structurers estimated “that probably no more than 30%
of the inversion was due to Trichet’s unexpectedly hawkish comments, with the rest
of the inversion down solely to dynamic hedging activity”. Finally, in October 2008,

2001 2003 2005
year

2007 2009 2011
0%

2%sw
ap

ra
te

4%

6%

S10(t)

S2(t)

S10(t)−S2(t)

Figure 1.1: Historical fixings of the EUR 10Y and 2Y swap-rates and their
difference.

the ECB started the long awaited cycle of rate cuts14 and, as a result, CMS spreads
came back to more normal levels. With the 10Y–2Y spread back in the 150bp–200bp
range, investors, who stayed with their steepener notes, were eventually rewarded
with high coupon payments (provided the notes had not been previously called by
the issuers).

Since 2004/2005, when steepener products emerged in large volumes, also the
market in standard (“vanilla”) CMS spread options has grown substantially, and
prices of such options are nowadays quoted by brokers on a regular basis. Neverthe-

8“Getting flattened”, Risk, February 2006, p. 18–20.
9“Bundesbank’s inflation warning”, Financial Times, June 7, 2008.

10“The rates escape”, Risk, August 2008, p. 25–27.
11Source: Bloomberg L.P.
12At that time many steepener notes were structured as CMS spread range accruals, floored at zero.
Once the curve breaches the strike price of the digital floors implicitly contained in these structure,
the gamma profile of these options suddenly inverts and dealers need to rapidly reallocate their hedge
books. See also “The gamma trap”, Risk, December 2006.
13Risk, August 2008, p. 26.
14After it had indeed increased its main refinancing rate by 25bp in July 2008.
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less, the correct pricing of CMS spread options is still an area of ongoing research.
Indeed, as a recent article by McCloud [McC11] reveals, for much of the year 2009
there were static arbitrage opportunities due to price inconsistencies in the markets
for options on CMS rates and CMS spreads. Yet, pricing CMS spread options inline
with other market sectors is not the only challenge. Also exotic and plain vanilla CMS
spread derivatives must naturally be priced consistently with each other. This is nec-
essary to avoid direct arbitrage opportunities and also to incorporate the true hedging
costs of exotic products. Ultimately, the price of an exotic (or any other) derivative
security is equal to the sum of hedging costs incurred throughout its life time. With
vanilla CMS spread options becoming more and more liquid, these may serve as nat-
ural hedging instruments for CMS spread-linked exotic (or other correlation-sensitive
products), and hence prices of the vanilla options must be properly taken into account
when pricing the exotics.

1.2 Objective of the Thesis and Contribution
In the financial industry, the workhorses for pricing and risk-managing exotic interest-
rate derivatives are the so-called Libor market models (LMMs). Due to the flexibility
of their volatility specification, these models can be calibrated to a wide range of
market instruments, and exotic structures can therefore be priced inline with the
prevailing market conditions. Moreover, contrary to other models, LMMs allow for
rich enough dynamics to capture the decorrelation among rates across the yield curve,
which is particularly important for pricing correlation-sensitive products such as CMS
spread-linked exotics.

The main objective of the present thesis is to provide efficient methods and tools
for calibrating LMMs to market-prices of caps, swaptions and CMS spread options,
and in this way extract the volatility and correlation information implicitly contained
in these products.

Since the standard (log-normal) LMM, as introduced by Miltersen, Sandmann &
Sondermann [MSS97], Brace, Ga̧tarek & Musiela (BGM) [BGM97] and Jamshidian
[Jam97] cannot capture the pronounced volatility smiles found in today’s interest-
rate markets, several extensions of the original model have been proposed. Arguably,
the most popular of these extensions are based on Heston-type dynamics (see e.g.
[AA02], [ABR05] or [Pit05a]). In Chapter 4 we present a new approximation for-
mula for pricing CMS spread options within this model class. At the core of this
approximation lies a new method for efficiently evaluating the density of an inte-
grated Cox-Ingersoll-Ross (CIR) process, based on carefully choosing the integration
contour for the required Laplace inverse transform. This method is not restricted
to the context of CMS spread option pricing, but can be applied whenever a rapid
and exact evaluation of the density of an integrated CIR process is required. The
problem of pricing CMS spread options within the aforementioned model class is also
considered in a recent paper by Antonov & Arneguy [AA09]. We demonstrate that
in terms of speed, accuracy and ease of implementation our pricing formula generally
outperforms the pricing methods described in their paper.

With an efficient and accurate CMS spread option pricing formula at our disposal,
we can include CMS spread options in the general calibration procedure, and in this
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way back out information about the Libor correlations as implied by the market.
This approach is to be contrasted with the common practice of using historically
estimated Libor correlations, which is backward-looking in nature and generally does
not reflect the prevailing market environment.

No matter whether one adopts the implied or the historical calibration approach,
in both cases a parsimonious yet flexible parameterization for the Libor correlations
is required. When following the “historical” approach, this is due to the fact that his-
torically estimated Libor correlation matrices are often quite noisy and may contain
counterintuitive entries. By fitting a low-parametric functional form to the historical
correlations, one tries to obtain a reasonably smooth matrix, which captures only
the main features of the historical data. On the other hand, when following the
implied route, correlation parameterizations are necessary to avoid overfitting and
to obtain stable calibration results. In Chapter 5 we present a new generic method
for constructing correlation parameterizations that are always positive definite and
derive new flexible low-parametric forms. A study shows that these parametric forms
can fit historically estimated correlation matrices better than the popular standard
parameterizations.

In practice, the number of driving factors used within a LMM is typically much
smaller (say 3–10) than the number of modeled forward rates (often 40–80). Since
virtually all existing correlation parameterizations yield full-rank correlation matri-
ces, a PCA-based15 rank reduction must be applied before the matrices can actually
be used within the model. In case of a historical calibration approach, this does not
necessarily constitute a serious drawback, as the historically fitted correlation matrix
must be rank-reduced only once. However, when calibrating the correlation parame-
ters via the implied route, often thousands of rank reductions must be performed. In
this case, the required numerical eigenvalue decompositions may constitute a large
share of the total computational costs of the calibration procedure, and may signif-
icantly slow it down. In Chapter 6 we therefore develop a new efficient method for
rank-reducing parametric forward-rate correlation matrices. The method is based an
applying a discrete cosine transform (DCT) to the rows of the Cholesky decompo-
sition of the correlation matrix. As the Cholesky decompositions of our parametric
forms are given in closed form, and due to the low computational cost of the DCT
rank-reduction method, the combination of the two implicitly generates a new family
of low-rank parametric forms.

Finally, in Chapter 7, we put the previously developed methods and tools into
action, and calibrate LMMs to real market data. We discuss two possible calibration
approaches and demonstrate that with our correlation parameterization generally
better market fits can be achieved than with the standard correlation parameteriza-
tions. Moreover, one of the main findings of our empirical analysis is that market-
implied correlation matrices do not display pronounced upward sloping sub-diagonals
– a typical feature of historical correlation matrices, which is sometimes even directly
built into correlation parameterizations.

Lastly, we use the calibrated models to provide some pricing examples. In par-
ticular, we demonstrate that LMMs with different correlation structures may yield
markedly different prices for certain exotic interest-rate products, even though their

15Principal component analysis.
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market fit to a collection of caps, swaptions and CMS spread options is essentially
identical.

1.3 Structure of the Thesis
After this introductory chapter, we introduce in Chapter 2 the basic definitions, out-
line the fundamental concepts of fixed-income modeling and give an overview of the
most common interest-rate derivatives. Furthermore, we introduce some of the most
important single-rate and full term-structure models. Chapter 3 is devoted to the
introduction of one of the most popular families of term-structure models: the Li-
bor market models. Besides the standard (log-normal) LMM we also introduce a
class of stochastic-volatility extended LMMs. We present possible parameterizations
of the models and discuss pricing and calibration techniques. In Chapter 4 we de-
velop a new formula for efficiently pricing CMS spread options in the aforementioned
class of stochastic-volatility extended LMMs. Chapter 5 briefly reviews the standard
Libor correlation parameterizations before new flexible parametric forms are devel-
oped. The subsequent Chapter 6 introduces a new efficient method for rank-reducing
parametric forward-rate correlation matrices. The previously developed methods and
tools are finally put into action in Chapter 7, where we calibrate LMMs to real market
data, provide pricing examples and discuss empirical findings.

A Word Regarding Computational Implementation and Market Data
All numerical results (including the timing results) are based on C++ implementa-
tions, where we made use of the free/open-source QuantLib framework, see http:

//quantlib.org. The code was compiled with the Microsoft C/C++ Compiler ver-
sion 14.0, and run on a standard desktop PC with an Intel Core2Duo 3Ghz processor.
Most of the market data used in this thesis was provided by Bloomberg L.P. This
data service is available at the Universität Ulm due to the generous support of the
Landesbank Baden-Württemberg (LBBW). We thank Dr. Jörg Kienitz for providing
the CMS spread options data used for the calibration examples in Chapter 7.

http://quantlib.org
http://quantlib.org


Chapter 2

Interest-Rate Products and Pricing Models

In this chapter we introduce the basic notations to characterize prices and yields
of interest-rate products and present a brief review of the literature on interest-rate
models.

2.1 Probabilistic Framework and Arbitrage-Free Pricing
Throughout this thesis, we shall always consider an economy with continuous friction-
less trading taking place inside some finite time horizon [0, T ∗]. To model uncertainty
and the flow of information we work on a filtered probability space (Ω,F ,F,P). Our
sample space Ω is equipped with a σ-algebra F , and “information” is revealed over
time according to a filtration F = {Ft}0≤t, an increasing family of σ-algebras satis-
fying Fs ⊆ Ft ⊆ F whenever 0 ≤ s ≤ t. In all of the models, that we consider in
this thesis, the market is “driven” by some d-dimensional standard Brownian motion
(or Wiener process) W (t) = (W1(t), . . . ,Wd(t))

′, and the filtration is always the one
generated by W (·), i.e., Ft = σ ({W (u), 0 ≤ u ≤ t})1. Prices of assets will generally
be modeled via a p-dimensional Itô process X(t) = (X1(t), . . . , Xp(t))

′, characterized
by a stochastic differential equation (SDE) of the form2

X(t) = X0 +

∫ t

0
µ(s,X(s))ds+

∫ t

0
σ(s,X(s))dW (s),

or, in differential notation,

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dW (t), X(0) = X0,

with drift µ : [0, T ∗] × Rp → Rp, diffusion coefficient σ : [0, T ∗] × Rp → Rp×d and
initial condition3 X0 ∈ Rp. An introduction to Itô processes, Itô integrals and the
related stochastic calculus can be found, e.g. in [KS98] or [Øks03].

In the following we give a brief review of some fundamental results concerning the
arbitrage-free pricing of derivative securities (also known as contingent claims). For

1Augmented to satisfy the “usual conditions”, i.e., Ft must be right-continuous for all t, and F0

must contain all P-null sets of F .
2For restrictions on µ and σ ensuring existence and uniqueness of the solution to the SDE, see e.g.

[Øks03].
3In most cases X0 will be the currently market observed price/rate of a security and we will omit

the initial condition.
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a more detailed and rigorous treatment of this topic we refer the reader to [HK00],
[MR05] and [BK04].

A trading strategy is a predictable4 Ft-adapted process ϕ(t, ω) = (ϕ1(t, ω), . . . ,
ϕp(t, ω)), where ϕi(t, ω) denotes the amount of shares of asset Xi held in the portfolio
(associated with the trading strategy) at time t. The value process of the trading
strategy at time t is given by5

Vϕ(t) = ϕ(t)′X(t).

A trading strategy ϕ is called self-financing if, for any t ∈ [0, T ∗], the value process
satisfies

Vϕ(t) = Vϕ(0) +

∫ t

0
ϕ(s)′dX(s).

An arbitrage opportunity is a self-financing strategy ϕ for which Vϕ(0) = 0 and for
some t ∈ [0, T ∗],

Vϕ(t) ≥ 0 a.s. and P(Vϕ(t) > 0) > 0.

Absence of arbitrage opportunities in an economy can be characterized via the con-
cept of equivalent martingale measures. Define a numeraire to be any a.s. strictly
positive non-dividend paying asset and denote it by N . Then we say that a mea-
sure QN , equivalent6 to P, is an equivalent martingale measure induced by N if the
relative price process

X(t)/N(t) = (X1(t)/N(t), . . . , Xp(t)/N(t))′

is a martingale with respect to ({Ft},QN ).

In a nutshell, the absence of arbitrage in a financial market is “equivalent” to the
existence of an equivalent martingale measure. There exist various formulations of
this statement7, and a number of technical conditions are necessary in order to define
more precisely in which sense the two concepts are equivalent. For brevity, we ignore
these technicalities at this point and refer the reader to the references mentioned at
the beginning of this paragraph.

Next, we define a derivative security (or contingent claim) with maturity date
T to be an FT -measurable random variable H(T ). We assume that H(T ) has finite
variance and say that the derivative security is attainable if there exists an admissible8

trading strategy ϕ, such that H(T ) = ϕ(T )′X(T ) = Vϕ(T ) a.s. We call such a trading
strategy ϕ a replicating strategy for H(T ). This means, that holding the portfolio
(associated with the replicating strategy) and holding the derivative security are
equivalent from a financial point of view. In the absence of arbitrage, the time-0 price
H(0) of an attainable derivative security must therefore equal the cost of setting up

4See [KS98].
5For convenience we often drop the dependence on ω when considering random variables or stochas-

tic processes.
6Two measures Q and P, defined on the same measure space (Ω,F), are said to be equivalent, if

they share the same null-sets, i.e., Q(A) = 0⇔ P(A) = 0, ∀A ∈ F .
7Commonly known as the fundamental theorem of asset pricing.
8A self-financing trading strategy ϕ is said to be admissible if

∫ t
0
ϕ(s)′dX(s) is a martingale under

QN .
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the (self-financing) replicating strategy, i.e., H(0) = Vϕ(0). More generally, we must
have H(t) = Vϕ(t) ∀t ∈ [0, T ] a.s. This observation sets the stage for what is known as
arbitrage pricing and allows us to write prices of derivative securities as expectations
under an equivalent martingale measure. Specifically, consider a numeraire N and
assume the existence of an associated equivalent martingale measure QN . Then, from
the martingale property of Vϕ(t)/N(t) and the relation Vϕ(t) = H(t) it immediately
follows that

H(t)

N(t)
= ENt

[
H(T )

N(T )

]
,

or equivalently,

H(t) = N(t)ENt
[
H(T )

N(T )

]
, (2.1)

where we used the shorthand notation Et[ · ] := E[ · |Ft] and where EN [ · ] denotes the
expectation operator with respect to the measure QN . Equation (2.1) often serves as
the starting point for specifying new models. The description of asset-price dynamics
is then directly carried out in an equivalent martingale measure9, without addressing
the real-world evolution of asset prices.

In later sections we will see that it is often convenient to choose a particular
numeraire for pricing certain products, as this will simplify computations. For this the
so-called change-of-numeraire technique10 is useful: Given an equivalent martingale
measure QN induced by a numeraire N , we may define a new measure QM , associated
with another numeraire M , via the Radon-Nikodym derivative ζ(T ∗) with respect to
QN ,

ζ(t) =
dQM

dQN

∣∣∣
Ft

=
M(t)N(0)

N(t)M(0)
, 0 ≤ t ≤ T ∗,

such that for an FT -measurable random variable H(T ) we have

H(t) = N(t)ENt
[
H(T )

N(T )

]
= M(t)EMt

[
H(T )

M(T )

]
.

If all FT -measurable random variables (satisfying some integrability conditions)
are attainable (i.e., can be replicated or hedged), the market is said to be complete.
In a complete market all derivatives have unique prices, no matter which equivalent
martingale measure we choose.

2.2 The Yield Curve, Forwards & Swaps
2.2.1 Zero-Coupon Bonds and Spot Rates

The most basic fixed-income security is the so-called zero-coupon bond (also known
as zero bond or discount bond), which is the building block of all interest rates. A
zero-coupon bond maturing at time T > 0 is a contract that guarantees its holder
the payment of one unit of currency at time T , with no intermediate payments. We

9Often just called pricing measure.
10See Section 2.3 of [BM05] for useful facts and formulae around the change-of-numeraire technique.
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will denote the price at time t ≤ T of such a bond by P (t, T ). Clearly, P (T, T ) = 1
for all T > 0.

It is often more convenient to characterize bond prices in terms of interest rates.
One such rate is the continuously compounded spot rate R(t, T ) prevailing at time t
for maturity T

R(t, T ) := − logP (t, T )

τ(t, T )
,

that is

e−R(t,T )τ(t,T )P (t, T ) = 1.

Here, the so-called year fraction (or accrual factor) τ(t, T ) measures the time between
t and T (in years). In practice there exists a great variety of day-count conventions,
which differ according to product type and country. For more details, also on the dif-
ferent business day calendars and date rolling conventions see [ISD06]11. For clearness
of exposition we will simply use τ(t, T ) = T − t in the rest of this thesis, although we
correctly take into account the respective conventions when dealing with real market
data in later chapters.

The continuously compounded spot rate is consistent with the rather idealized
assumption of continuously reinvesting any accrued interest at a constant rate. In
reality, however, most market quotes are based on simple compounding, where inter-
est accrues proportionally to the time of the investment. Accordingly, we define the
simply-compounded spot rate L(t, T ) as

L(t, T ) :=
1

τ

(
1

P (t, T )
− 1

)
, (2.2)

that is,

(1 + τL(t, T ))P (t, T ) = 1,

where τ = T − t is often called the tenor of the spot rate. Examples for such
spot rates are Libor rates (London Interbank Offered Rate) and Euribor rates (Euro
Interbank Offered Rate), which are benchmark interest rates at which banks can
borrow unsecured funds from other banks in the interbank markets12. Libor13 and
Euribor rates are quoted for tenors τ ranging from one week (τ = 1/52)14 to 12
months (τ = 1) and form the basis for determining the cash flows of other interest-rate
derivative securities. One such security is a forward contract known as forward-rate
agreement (FRA).

2.2.2 Forward-Rate Agreements and Forward Rates

A FRA is a contract between two parties that allows to lock in at the current time
t, the interest rate over the future period [T1, T2], t < T1 < T2. More specifically, at

11For conventions used for EUR market instruments see also [AB09].
12See www.bbalibor.com and www.euribor-ebf.eu.
13All further references to Libor rates in this thesis are equally valid for Euribor rates.
14For Libor rates the standard day-count convention is “Actual/360”, i.e., τ = τ(T1, T2) is the actual
number of days between T1 and T2 divided by 360. Consequently, for a 6M Libor rate τ is usually
slightly larger than 0.5.
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the expiry T2 of the FRA, a fixed payment based on a fixed rate K (agreed on at the
time of initiation of the contract) is exchanged against a floating payment based on
the spot (Libor) rate L(T1, T2) resetting at time T1 with tenor τ = T2−T1. Formally,
in case of a FRA with unit notional, one pays at time T2 the amount τK and receives
τL(T1, T2). From the perspective of the fixed-rate payer, the value of the contract at
time T2 is therefore

τ(L(T1, T2)−K). (2.3)

Recalling the definition of L(t, T ) in (2.2), this value can be rewritten as

1

P (T1, T2)
− 1− τK. (2.4)

The term 1/P (T1, T2) is an amount of currency held at time T2. Multiplying it by
P (T1, T2) gives its value at time T1, which is clearly one. One unit of currency at
time T1, in turn, is worth P (t, T1) units of currency at time t. Therefore, the amount
1/P (T1, T2) at time T2 is equivalent to an amount of P (t, T1) units of currency at
time t. Discounting also the other two terms in (2.4) back to time t finally yields the
time-t value of the FRA

VFRA(t, T1, T2, τ,K) = P (t, T1)− P (t, T2)− P (t, T2)τK

= τP (t, T2)

(
1

τ

(
P (t, T1)

P (t, T2)
− 1

)
−K

)
.

Most often, at the time of issuance, the fixed rate K of a FRA is chosen such that
the cost to enter in the forward contract is zero for either party. The value of K that
renders the contract fair at time t, i.e., that makes the FRA have value zero, is given
by the simply-compounded forward rate L(t, T1, T2)

L(t, T1, T2) :=
1

τ

(
P (t, T1)

P (t, T2)
− 1

)
. (2.5)

Notice that in order to value a FRA, we simply have to replace the Libor rate
L(T1, T2) in the payoff (2.3) with the just-defined forward rate L(t, T1, T2) and then
take the present value of the resulting (deterministic) quantity. The forward rate
L(t, T1, T2) may thus be interpreted as an estimate of the future (spot) Libor rate
L(T1, T2), and it is therefore often called forward Libor rate15.

2.2.3 The Short Rate and Instantaneous Forward Rates

When the maturity S of the forward rate L(t, T, S) collapses towards its expiry T ,
we obtain the time-t instantaneous forward rate for maturity T > t,

f(t, T ) := lim
S↓T

L(t, T, S)

= −∂ logP (t, T )

∂T
. (2.6)

15In fact, we will see below that L(t, T1, T2) is the time-t expectation of L(T1, T2) under a suitable
probability measure.
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Clearly, this notation makes only sense if we assume that the zero-bond price function
T 7→ P (t, T ) is sufficiently smooth for all T > t. Intuitively, f(t, T ) is the time-t
forward rate for the infinitesimally small time interval [T, T + dT ]. We notice the
relationship

P (t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
between the price of a zero-coupon bond and instantaneous forward rates. Letting
the maturity T of the forward rate f(t, T ) tend to t, we obtain the so-called short
rate

r(t) := f(t, t),

which, loosely speaking, can be interpreted as the overnight rate prevailing at time
t.

Both, the short rate r(t) and the instantaneous forward rate f(t, T ), are of course
only theoretical quantities and cannot be directly observed in the market. They
form, however, the basis for a number of interest-rate models, some of which we will
examine in more detail in Section 2.7.

2.2.4 Interest-Rate Swaps

A swap is a general term for a contract in which two counterparties agree to exchange
one stream of cash flows against another stream. These streams are usually called
the legs of the swap. A fixed-for-floating interest-rate swap (also called plain vanilla
swap16 or just swap if there is no danger of confusion) can be considered as a gener-
alization of a FRA, where one leg of the swap is a stream of fixed-rate payments and
the other leg is a stream of payments based on floating rates, most often Libor rates.

For concreteness, define a tenor structure, i.e., an increasing sequence of maturity
times

0 ≤ T0 < T1 < . . . < TN , τn = Tn+1 − Tn.

At the end of each period [Tn, Tn+1], n = 0, . . . , N−1, one party (the fixed rate payer)
pays the amount

τnK,

corresponding to a fixed simple interest rate K, whereas the other party (the floating-
rate payer) pays the amount

τnL(Tn, Tn+1),

corresponding to the interest rate L(Tn, Tn+1) fixing at time Tn. The times Tn and
Tn+1 are normally referred to as the fixing and payment dates for the n-th period,
respectively. Notice that the realization of the spot rate L(Tn, Tn+1) is not known
until time Tn.

In practice, payments are of course usually netted, such that cash flows take place
in only one direction at each payment date Tn+1, n = 0, . . . , N−1. When the fixed
leg is paid, the swap is usually called payer swap, whereas in the other case we have
a receiver swap.

16In finance, the term “plain vanilla” or just “vanilla” is often used to denote the most basic and/or
most liquid products from a certain class of derivative securities.
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From the perspective of the fixed-rate payer, the net cash flow at time Tn+1 is
that of a FRA with fixed rate K, fixing date Tn and payment date Tn+1,

τn(L(Tn, Tn+1)−K).

A swap may thus be viewed as a portfolio of FRAs17 with time-t value (to the fixed-
rate payer)

Vswap(t) =

N−1∑
n=0

VFRA(t, Tn, Tn+1, τn,K)

=

N−1∑
n=0

τnP (t, Tn+1)(Ln(t)−K),

where we have introduced the short-hand notation18

Ln(t) := L(t, Tn, Tn+1).

We have seen above that requiring a FRA to be fair at the time of issuance leads to
the definition of forward rates. Similarly, we may require the above fixed-for-floating
swap to be fair at time t. The above swap valuation formula can be rewritten as

Vswap(t) =

(
N−1∑
n=0

τnP (t, Tn+1)

)(
P (t, T0)− P (t, TN )∑N−1

n=0 τnP (t, Tn+1)
−K

)

= A0,N (t)(S0,N (t)−K), (2.7)

where we have defined

A0,N (t) :=
N−1∑
n=0

τnP (t, Tn+1) (2.8)

and

S0,N (t) :=
P (t, T0)− P (t, TN )∑N−1

n=0 τnP (t, Tn+1)
. (2.9)

The quantity A0,N (t) is called the annuity factor of the swap (or PVBP for present
value of a basis point) and S0,N (t) is the forward swap rate. If the swap is spot-
starting , i.e., t = T0 (today), then S0,N (t) is called spot swap rate or just swap
rate19. The (forward) swap rate is also often referred to as the par or break-even rate
of the swap, as it is the value of the fixed rate K that makes the swap have value zero

17Conversely, a FRA is a one period swap.
18Observe that Ln(Tn) = L(Tn, Tn, Tn+1) = L(Tn, Tn+1).
19Normally the schedule of “spot-starting” swaps starts one or two business days after time t, i.e.,
T0 = t + δ where δ > 0 is some contractually specified delay. So, strictly speaking, even spot swap
rates are actually forward swap rates.
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at time t. An alternative interpretation of the swap rate can be given by considering
the following formula

S0,N (t) =
N−1∑
n=0

wn(t)Ln(t), (2.10)

where the weights wn(t) are given by

wn(t) :=
τnP (t, Tn+1)∑N−1
k=0 τkP (t, Tk+1)

≥ 0,

N−1∑
n=0

wn(t) = 1.

The swap rate is therefore a convex combination (and thus a weighted average) of
the forward rates associated with the FRAs underlying the swap.

In the above description of the prototypical swap we assumed that fixed-rate
payments and floating-rate payments occur at the same dates with the same year
fractions. This can of course be easily generalized to the case where the swap legs
have different payment dates and day-count conventions (see, e.g. [Sch05], p. 15). In
fact, vanilla swaps in the euro market typically have a fixed leg with annual payments
and a floating leg with semiannual payments (based on 6M Euribor rates).

2.2.5 Yield-Curve Construction

In the above paragraphs we implicitly assumed that we are given a zero-coupon bond
price function (the so-called discount curve) for a continuum of maturities in some
interval, and we defined the various interest rates and values of interest-rate products
in terms of zero-coupon bond prices derived from this curve. This is, however, putting
the cart before the horse. In reality at most a few short-dated zero-coupon bonds are
directly quoted in the market at any given time, and the discount curve must instead
be inferred from a set of liquidly traded fixed-income securities by using an iterative
procedure commonly known as bootstrapping .

To see how the general bootstrapping procedure works, suppose for simplicity
that we can observe in the market at time t a set of N (spot) swap rates S0,i(t), i =
1, . . . , N defined on a common tenor grid t = T0 < T1 < . . . < TN . Assuming
inductively that P (t, Ti) is known for i = 1, . . . , n − 1 and using the definition of
swap rates in (2.9), we may then compute the zero-coupon bond price for maturity
Tn:

P (t, Tn) =
1− S0,n(t)

∑n−2
i=0 τiP (t, Ti+1)

1 + τnS0,n(t)
.

Proceeding in this way we can determine, at least in principle, the discount curve at
the discrete tenor dates Ti underlying the swap rates. In practice, however, liquid
swap rates may only be available for maturities of say 2–5 years and 7, 10, 12, 15,
20, 25 and 30 years.

In order for the above bootstrapping procedure to work, we therefore need to
specify an interpolation scheme that allows us to fill the zero-bond prices for the
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missing tenor dates. Even if we require that all benchmark prices be matched, there
is of course an infinite number of ways to interpolate the missing bond prices, let
alone the bond prices for maturities that do not belong to the given tenor grid. In
recent years, a fairly large body of literature has appeared devoted to the topic of
yield curve construction, including [NS87], [Sve94], [Ron00], [And05], [HW06], and
[HW08].

Possible interpolation schemes include using linear functions, cubic splines or ten-
sion splines applied to either (continuously compounded) spot rates, forward rates
or logarithms of zero-coupon bond prices. It should be clear that the interpolation
scheme must be carefully chosen as it will determine the regularity of different types
of yield curves. Linearly interpolating continuously compounded spot rates, for ex-
ample, is known to produce saw-tooth shaped forward-rate curves (see, e.g. [AP10a],
p. 236). Apart from lacking any economically interpretation, an overly oscillating
curve may even produce negative forward or spot rates. For the purpose of this thesis
we will use cubic spline interpolation applied to log-discount prices combined with the
Hyman cubic monotonic filter [Hym83]. The latter preserves the monotonicity of the
input data and removes most of the unpleasant waviness of the resulting forward-rate
curves, see also [AB09]. For examples of forward-rate curves that were constructed
with this method see Figure 7.2 on page 129 below.

The choice of the securities used for bootstrapping the yield curve depends on the
market under consideration and the liquidity of the available instruments. Typically,
different types of interest-rate derivatives are used to infer the short-, medium- and
long-term part of the yield curve. A common choice for constructing Libor based
yield curves is, for instance, to use Libor deposits for maturities up to 1Y, followed
by FRAs and Futures20 covering the window up to 2Y−3Y. Swap rates are then used
for the long end of the yield curve up to, say, 30Y or 60Y.

2.3 Fixed-Income Probability Measures

As we have seen in Section 2.1, choosing a martingale (or pricing) measure is es-
sentially a matter of specifying a numeraire, which is a strictly positive asset price
process used to renormalize all other security prices. In the following we will list
some of the most common numeraires and pricing measures used when pricing fixed-
income securities. Throughout this section we will assume that the market under
consideration is complete and the corresponding martingale measures exist. Further-
more, we use V (t) to denote the time-t price of a contingent claim making at time T
an FT -measurable payment of V (T ).

20Interest-rate futures are basically exchange-traded equivalents to the over-the-counter (OTC)
FRAs. Due to a daily mark-to-market mechanism, the valuation of futures is, however, more
involved than the valuation of FRAs, and recovering forward rates from futures rates requires a
so-called convexity adjustment. See, e.g. [KN97], [JK05] and [PR06] for more details.
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The Risk-Neutral Measure
The short rate r(t) can be used to define the continuously compounded money market
account B(t), which satisfies the locally deterministic SDE

dB(t) = r(t)B(t)dt, B(0) = 1

with solution
B(t) = e

∫ t
0 r(s)ds.

Taking the money market account as numeraire defines the risk-neutral measure
Q, under which the deflated price process V (t)/B(t) of a derivative security must be
a martingale. This yields the standard risk-neutral valuation formula

V (t)

B(t)
= EQ

t

[
V (T )

B(T )

]
, (2.11)

or equivalently,

V (t) = EQ
t

[
e−
∫ T
t r(s)dsV (T )

]
. (2.12)

In particular, if we set V (T ) = 1, we obtain for the time-t price of a zero-coupon
bond with maturity T

P (t, T ) = EQ
t

[
e−
∫ T
t r(s)ds

]
. (2.13)

Observe that in the context of interest-rate derivatives, the payment V (T ) will
usually depend on realizations of zero-coupon bond prices21, which, in turn (through
(2.13)) can be related to the evolution of r(t). Hence, all terms inside the expectation
in (2.11) depend ultimately on the short rate r(t). It is therefore quite natural
to consider the short rate as the basic quantity “driving” the interest-rate market.
Directly specifying the dynamics of r(t) leads to so-called short-rate models, which
we will examine in more detail in Section 2.7.

The T -Forward Measure
In most simple equity models, including e.g. the Black-Scholes [BS73] model, interest
rates are assumed to be deterministic and the discount factor in (2.12) can therefore
be pulled out of the expectation. In fixed-income pricing, however, discount factors
are not only stochastic (otherwise pricing interest-rate products would be trivial),
but they also exhibit a non-trivial dependence on the payoff V (T ), making it often
difficult to derive analytical formulas for the expectation in (2.12). Therefore, the
risk-neutral measure is usually not the first choice when it comes to pricing interest-
rate derivatives. It is often more convenient, at least for certain simple interest-rate
products, to work under the so-called T -forward measure QT , associated with taking
the T -maturity zero-coupon bond as numeraire22. In this case, the time-t price of a
derivative security simplifies to

V (t) = P (t, T )ETt
[
V (T )

P (T, T )

]
= P (t, T )ETt [V (T )] ,

21Libor rates, for example, being also just functions of zero-bond prices.
22Here we implicitly assume that zero-coupon bond prices are always strictly positive.
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where in the last equation we have used that P (T, T ) = 1.
The reason why the measure QT is called the T -forward measure is justified by

the following

Lemma 2.3.1. The forward Libor rate L(t, S, T ) is a martingale under QT , i.e.,

L(t, S, T ) = ETt [L(S, S, T )] ,

for 0 ≤ t ≤ S < T .

Proof. By definition (see (2.5))

L(t, S, T ) =
1

τ

(
P (t, S)

P (t, T )
− 1

)
,

with the year fraction τ = T −S. As P (t, S)/P (t, T ) is a martingale under QT , so is
L(t, S, T ).

The Spot Measure
When working with a set of forward rates defined on a discrete tenor structure 0 =
T0 < T1 < T2 < . . . < TN , it is often convenient to use as numeraire the discrete-time
equivalent of the continuously compounded money market account B(t). Specifically,
we define

Bd(t) =
P
(
t, Tη(t)

)∏η(t)−1
i=0 P (Ti, Ti+1)

= P
(
t, Tη(t)

) η(t)−1∏
i=0

(1 + τiLi(Ti)) ,

where

η(t) := min{n ≤ N−1| t ≤ Tn}. (2.14)

Notice that η(t) + 1 is the index of the first forward rate Lη(t)+1(t) that has not
expired by time t. Intuitively, Bd(t) is a bank account that is rebalanced only at
times Ti in our discrete tenor structure. At t = 0 we start with 1 unit of currency
and invest it in zero-coupon bonds with maturity T1, returning at time T1 the amount

1/P (0, T1) = 1 + τ0L(0, 0, T1).

This amount is then reinvested (“rolled over”) at time T1 in zero-coupon bonds with
maturity T2 and so forth. The measure associated with taking Bd as numeraire is
called the spot measure (or spot Libor measure), denoted QBd . Accordingly, for the
time-t value of a contingent claim we have

V (t) = EBdt
[
V (T )

Bd(t)

Bd(T )

]
,

where

Bd(t)

Bd(T )
=

P
(
t, Tη(t)

)
P
(
t, Tη(T )

) η(T )−1∏
i=η(t)

(1 + τiLi(Ti))
−1 .
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Swap Measures
Observe that the annuity Am,n(t) of a (forward) swap rate Sm,n(t), spanning the time
interval [Tm, Tn], is simply a portfolio of zero-coupon bonds and hence qualifies as a
numeraire. The corresponding measure Qm,n is known as swap- or annuity-measure.
For a security V maturing at time T ≤ Tm we obtain from the standard martingale
pricing formula

V (t) = Am,n(t)Em,nt

[
V (T )

Am,n(T )

]
.

Earlier, we have seen that the Libor rate L(t, S, T ) is a martingale under QT . A
similar result holds for a forward swap rate under its associated swap measure.

Lemma 2.3.2. The forward swap rate Sm,n(t) is a martingale under Qm,n, i.e.,

Sm,n(t) = Em,nt [Sm,n(T )] .

Proof. By definition (see (2.9))

Sm,n(t) =
P (t, Tm)− P (t, Tn)

Am,n(t)
.

As P (t, Tm)/Am,n(t) and P (t, Tn)/Am,n(t) are both prices of tradeable assets ex-
pressed in units of the numeraire, they must be martingales. And so must be their
difference.

2.4 Caps, Floors & Swaptions
In the following we introduce the two main (option-like) interest-rate derivatives in
the fixed-income markets: Interest-rate caps/floors and swaptions.

Caps and Floors
Consider a firm with liabilities funded at the Libor rate, i.e., it has to pay at certain
times Tm+1, . . . , Tn the Libor rates resetting at times Tm, . . . , Tn−1, with associated
year fractions τm, . . . , τn−1. Clearly, such a firm is naturally concerned with the
possibility that future interest rates may rise, in which case it has to make higher
interest-rate payments. One way to eliminate this risk is to enter into a payer swap,
which, in effect, transforms the floating-rate payments into fixed ones, since at times
Ti+1 the firm then has to make the payments

τiLi(Ti)− τi(Li(Ti)−K) = τiK,

where K denotes the fixed rate of the swap. While the firm is now protected against
rising interest rates, transforming floating-rate payments into fixed ones also means,
however, that the firm does not benefit from a potential future drop of the interest-
rate level. If the firm wishes to benefit from possibly lower rates in the future, yet
wants to “cap” the future payments at a maximum rate K, it may enter into a so-
called interest-rate cap (or just cap). A cap is a portfolio of (European) call options
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on successive Libor rates, the so-called caplets, which pay off at time Ti+1, i =
m, . . . , n− 1,

τi (Li(Ti)−K)+ .

Note that, by the definition of Li(Ti), we may write such a payoff as

τi(Li(Ti)−K)+ =
τi(1 +K)

P (Ti, Ti+1)

(
1

τi(1 +K)
− P (Ti, Ti+1)

)+

.

Thus, the i-th caplet is equivalent to a multiple of a put option with maturity Ti,
strike K̃ := τi(1 +K) and written on the zero-coupon bond with maturity Ti+1.

The counterpart of an interest-rate cap is an interest-rate floor (or just floor),
which is a portfolio of put options on successive Libor rates, called floorlets, with
time-Ti+1 payoffs

τi (K − Li(Ti))+ .

An investor with assets earning a floating rate can use a floor to protect herself against
low interest-rate scenarios, while still being able to benefit from rising interest rates.
Analogously to caplets, floorlets may be interpreted as call options on zero-coupon
bonds.

Applying the risk-neutral valuation formula (2.11) yields for the time-t value of
a unit-notional cap/floor (covering the time interval [Tm, Tn])

Vcap(t) = B(t)
n−1∑
i=m

τiEQ
t

[
B(Ti+1)−1 (Li(Ti)−K)+] ,

Vfloor(t) = B(t)
n−1∑
i=m

τiEQ
t

[
B(Ti+1)−1 (K − Li(Ti))+] .

The value of the i-th caplet/floorlet may be written in a more convenient form by
switching to the Ti+1-forward measure QTi+1 , defined by using the Ti+1-maturity
zero-coupon bond as numeraire asset. By performing this measure change we remove
the discounting term inside the expectation, and the value of the cap, for instance,
then simplifies to

Vcap(t) =
n−1∑
i=m

τiP (t, Ti+1)ETi+1

t

[
(Li(Ti)−K)+] ,

where the terms inside the expectations now solely depend on the respective Libor
rates. In order to price caplets and floorlets it is therefore sufficient to separately
model the Libor rates under their respective forward measure. Moreover, recall that
by Lemma 2.3.1, Li(t) must be a martingale under QTi+1 , and thus the drift term
of the stochastic process must be zero. Assuming that Li(t) evolves according to a
driftless geometric Brownian motion

dLi(t) = σiLi(t)dW
i(t), (2.15)

or equivalently,

Li(t) = Li(0) exp

(
−σ

2
i

2
t+ σiW

i(t)

)
, 0 ≤ t ≤ Ti,
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where σi > 0 and W i(t) is a one-dimensional QTi+1-Brownian motion, we have that
Li(T ) is log-normally distributed. A straightforward evaluation of the corresponding
expectation leads to the well-known Black formula [Bla76] for the price of the i-th
caplet

V i
caplet(t) = τiP (t, Ti+1)Bl

(
K,Li(t), σi

√
Ti − t, 1

)
, 0 ≤ t ≤ Ti,

where, denoting by Φ(·) the Gaussian cumulative distribution function,

Bl(K,L, v, w) = wLΦ
(
wd+(K,L, v)

)
− wKΦ

(
wd−(K,L, v)

)
, (2.16)

d±(K,L, v) =
log(L/K)± v2/2

v
.

Accordingly, the time-t price of the cap/floor is given by a sum of Black formulas

V (t) =

n−1∑
i=m

τiP (t, Ti+1)Bl
(
K,Li(t), σi

√
Ti − t, w

)
, 0 ≤ t ≤ Tm,

where w = 1 (cap) or w = −1 (floor). It is common market practice to quote the value
of a cap or a floor not in terms of its price but rather in terms of a single volatility
parameter σm,n, the so-called cap/floor implied volatility , such that (at time 0)

V (0) =

n−1∑
i=m

τiP (t, Ti+1)Bl
(
K,Li(0), σm,n

√
Ti, w

)
.

Caps and floors are among the most liquidly traded interest-rate derivatives in
fixed-income markets and the corresponding implied volatilities are quoted in the
market for several standard maturities. An example of an at-the-money (ATM)23

market cap volatility curve is shown in Figure 2.1, where volatilities σm,n are plotted
against option maturities Tn

24.
Although single caplets/floorlets are not traded, the volatility information for

individual forward Libor rates can, at least in principle, be bootstrapped from caps/
floors of different maturities. This so-called volatility bootstrapping is, however, by
no means trivial and we refer the reader to [AP10c], Section 16.2, for more details on
this topic. Once extracted, the Libor rate volatilities can be used as market inputs
when calibrating interest-rate models for pricing other, more complex products.

Remark 2.4.1. Through a deterministic time change (see [AP10a], p. 300) the stan-
dard Black formula can be easily extended to allow for time-dependent (deterministic)
volatilities σ = σ(t) of the underlying process. For European vanilla options only the
integrated instantaneous variance of the underlying is relevant. Hence, in case of a
time-dependent volatility we simply need to replace

v = σ
√
T − t

23A cap (resp. floor) with payment times Tm+1, . . . , Tn is said to be at-the-money if K = Sm,n(0)
(cp. [BM05], p. 18).
24In the euro market Tm is typically equal to 3 months for caps with maturities Tn=1, 1.5 and 2
years and with all other Ti’s equally three-month spaced. For caps with maturities larger than 2
years, the first fixing date Tm is typically equal to 6 months with all other Ti’s equally six-month
spaced.
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Figure 2.1: ATM euro cap implied volatilities σm,n for maturities Tn =1,
1.5, 2, 3, 4, 5, 7, 10, 15, 20 and 30 years.

with

v =

√∫ T

t
σ2(s)ds

in the Black formula.

Swaptions
The second class of liquidly traded interest-rate derivatives are swap options or more
commonly swaptions, which are European options on interest-rate swaps. More
specifically, the owner of a payer swaption has the right (but not the obligation)
to enter at the swaption maturity25 into a payer swap with a prespecified fixed rate
K. In contrast, a receiver swaption is an option to enter into a receiver swap. If the
swap, underlying a swaption, has first reset date Tm and last payment date Tn, then
the length of the swap Tn − Tm is usually called the tenor of the swaption. If we
consider a payer swaption written on a swap covering the interval [Tm, Tn], then we
have for the time-Tm payoff of this swaption

Vswptn(Tm) = (Vswap(Tm))+ =

(
n−1∑
k=m

τkP (Tm, Tk+1)(Lk(Tm)−K)

)+

.

Applying the risk-neutral valuation formula yields for the price of the swaption at
time t ≤ Tm

Vswptn(t) = B(t)EQ
t

B(Tm)−1

(
n−1∑
k=m

τkP (Tm, Tk+1)(Lk(Tm)−K)

)+
 .

Observe that contrary to the cap/floor case, this payoff cannot be decomposed
into a sum of simpler products. In particular, the payoff does not only depend on
the evolution of the individual Libor rates (as was the case with caplets/floorlets),

25We will consider in the following only the most common case, where the maturity of the option
coincides with the first reset date of the underlying swap.
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but it also depends on the joint behavior of the rates. We will return to this topic
in later chapters.

Using formula (2.7) for the swap value at time Tm, we obtain the following alter-
native formulation for the time-t price of the (payer) swaption

Vswptn(t) = B(t)EQ
t

[
B(Tm)−1Am,n(Tm) (Sm,n(Tm)−K)+] .

Finally, switching to the swap measure we can rewrite this formula in the more
compact form

Vswptn(t) = Am,n(t)Em,nt

[
(Sm,n(Tm)−K)+] . (2.17)

From this it is easy to see that (under the right measure) a payer swaption is basically
a call option on the forward swap rate, with the strike K being equal to the fixed
rate of the swap. Similarly, a receiver swaption can be interpreted as a put option
on the forward swap rate.

From Section 2.3 we have that Sm,n(t) must be a martingale under the swap
measure Qm,n. Assuming that the swap rate follows a geometric Brownian motion
yields again a Black-type formula

Vswptn(t) = Am,n(t)Bl
(
K,Sm,n(t), σm,n

√
Tm − t, w

)
, 0 ≤ t ≤ Tm, (2.18)

where σm,n now denotes the swap-rate volatility and where w = 1 for a payer swaption
and w = −1 for a receiver swaption. As with caps/floors it is common market prac-
tice to express market prices of swaptions in terms of Black-implied volatilities, i.e.,
volatilities σm,n that recover the market price when plugged into the Black formula26.
Swaptions are very liquid for a large number of maturity-tenor-combinations. Figure
2.2 shows implied ATM27 volatilities as quoted in the euro market28 on 1/14/2008.

2.5 Vanilla Models
2.5.1 Black’s Model and the Volatility Smile

The options introduced in the last section depend only on a single forward rate, and,
provided we choose the natural martingale measure, it is therefore sufficient to have a
model for the evolution of this particular rate. We adopt the terminology of [AP10a]
and shall call models of this type vanilla models to distinguish them from full term-
structure models, which we will encounter in later sections. The most prominent
example for a vanilla model is the Black model, which assumes that the forward rate
under consideration, say S(t), follows a geometric Brownian motion. Accordingly, for
some fixed time T , S(T ) is log-normally distributed and prices for European call and
put options are given by so-called Black formulas. Although it is standard market

26Note, that this can be done independently of whether or not one believes that the Black model is
a realistic model. One simply uses the Black formula to express option prices in a different (often
more intuitive) coordinate system.
27A swaption at time t = 0 (today) is said to be at-the-money if the strike price equals the forward
swap rate, i.e., if K = Sm,n(0).
28In the euro market swaptions are typically cash-settled and the annuity factor Am,n(t) in (2.18)
must be replaced with a so-called cash-settled annuity factor to obtain the corresponding standard
market formula, see [Mer08].
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Figure 2.2: ATM euro swaption volatilities as quoted on 1/14/2008.

practice to express option prices in terms of Black implied volatilities, the Black
model (or the Black-Scholes model [BS73] in an equity context) is not consistent
with market prices in the sense that for a given maturity, vanilla options written on
the same underlying but with different strike prices require different volatilities to be
plugged into the Black formula. In Figure 2.3 we present the implied volatilities of
swaptions with a maturity of 10 years and a tenor of 5 year (usually simply called
“10y-into-5y” or “10x5” swaptions) for different strike prices K.
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Figure 2.3: Implied volatility smile for 10x5 EUR swaptions on 4/26/2010.
The ATM-strike is KATM = 4.45%.

The mapping K 7→ σimp(K) is commonly known as the volatility smile, or, in
case the smile is predominantly downward sloping, as volatility skew . Clearly, if
market prices were consistent with Black’s model, then the smile would be flat,
since the implied volatility should not depend on the strike K. There are several
conventional explanations29 for the volatility smile/skew and some key words are
supply and demand effects, big downward jumps, the leverage effect or anticorrelated
volatility moves; see e.g. [KG10]. We will simply interpret the volatility smile in

29Some of these explanations originate from the equity markets and cannot be directly carried over
to an interest-rate setting. The “leverage effect”, for example, explains an increase of volatility for
falling stock prices by an increase of the debt-to-equity ratio, i.e., the leverage of the firm.
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terms of the market implied terminal distribution of the forward rate. To this end
let C(t, S(t), T,K) denote the undiscounted time-t price of a European call option
with maturity T and underlying S(t)

C(t, S(t), T,K) = Et
[
(S(T )−K)+

]
.

Assuming that the density fS of S(T ) given S(t) exists, this may be rewritten as

C(t, S(t), T,K) =

∫ ∞
K

(x−K)fS(x, T ; t, S(t))dx,

and differentiating twice with respect to K finally gives

∂2

∂K2
C(t, S(t), T,K)

∣∣∣
K=x

= fS(x, T ; t, S(t)). (2.19)

This classical result, which is due to Breeden & Litzenberger [BL78], allows us
(at least theoretically) to recover the market-implied density from a continuum of
call/put prices. If market prices are not compatible with a single volatility param-
eter, then this simply means that the market-implied density is not a log-normal
density as postulated by Black’s model. In case of a proper (i.e., U-shaped) volatility
smile, where out-of-the-money (OTM)30 implied volatilities are larger than the ATM
volatility, the market-implied distribution for log(S(T )) has fatter tails (or a higher
kurtosis) than a normal distribution. A predominantly downward sloping volatility
smile (or skew), on the other hand, corresponds to a left-skewed distribution for
log(S(T )).

In general, market observed implied volatilities do not only depend on the strike
but also on the maturity of the option, and the mapping (T,K) 7→ σ(T,K) is com-
monly referred to as the (implied) volatility surface. In this regard, however, it is
important to differentiate between equity and fixed-income markets. In the equity
case one usually means by “volatility surface” implied volatilities corresponding to
options with different strike prices and different maturities, but written on the same
stock (and therefore connected to the same stochastic process). Also in fixed-income
markets one can observe, for instance, implied caplet volatilities for different strikes
and maturities, and one therefore often speaks of the caplet volatility surface31. Note,
however, that caplets with different maturities are options written on different for-
ward rates, i.e., written on different underlyings. Put differently, for a given forward
Libor or swap rate we can usually observe at most one single volatility smile in the
market.

The obvious question is now of course: Are there alternative models whose dy-
namics are compatible with the market implied distributions? In the following we
briefly review some of the most popular diffusive models that can account for volatil-
ity smiles or skews.

30A call option is said to be out of the money (in-the-money (ITM)) if the forward price is less
(greater) than the strike price. Conversely, a put option is said to be out-of-the-money (in-the-
money) if the forward price is greater (less) than the strike price.
31In case of swaptions, implied volatilities are not only indexed by strike and maturity, but also by
the tenor of the underlying swap and one therefore speaks of the swaption volatility cube.
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2.5.2 Local Volatility Models

In this section we consider models where the forward rate S(t) under its natural
martingale measure is assumed to satisfy a one-dimensional SDE of the form

dS(t) = ϕ(t, S(t))dW (t), (2.20)

with a state-dependent diffusion coefficient ϕ : [0,∞)×R→R known as local volatility
function. Models that fit into this framework were first32 proposed by Cox [Cox96],
Cox & Ross [CR76] and Rubinstein [Rub83], although it were the works33 by Dupire
[Dup94] and Derman & Kani [DK94] that coined the term “local volatility”.

Dupire noted that there is a unique diffusion coefficient σ(t, s) that is consistent
with a continuum (in maturity and strike dimension) of European call option prices
observed at time t = 0, namely

ϕ2(T,K) =
∂
∂T C(0, S(0), T,K)

1
2K

2 ∂2

∂K2C(0, S(0), T,K)
.

Computing this local volatility function in practice, however, is by no means triv-
ial and requires a smooth and arbitrage-free interpolation scheme for interpolating
the finitely many (often noisy) implied volatilities observed in the market. Apart
from that, local volatility functions calculated in this way usually come out as being
strongly level-dependent and non-monotonic in S, and the resulting model will im-
ply non-stationary volatility smile dynamics, which is at odds with typical market
behavior; see the discussions in Chapter 12 of [Reb04] and Section 7.1 of [AP10a]. It
is therefore advisable to use only local volatility models with relatively simple and
monotonic functions ϕ(t, s), even though it is then usually not possible to perfectly
fit observed market volatility smiles. Two of the most popular monotonic choices for
ϕ(t, s) will be discussed in the following.

The CEV Model
There is empirical evidence34 that the absolute volatility level of interest rates (under
the real measure) generally scales less than proportionally with the level of interest
rates. Consequently, when interest rates fall, percentage volatilities tend to increase.
This observation can, at least heuristically, be taken as a possible explanation for the
existence of volatility skews in the interest-rate markets, with high implied volatilities
for low-strike options. In order to obtain a less than proportional volatility scaling,
one can choose the following local volatility function

ϕ(t, s) = λsβ,

where 0 < β < 1 and λ > 0. The corresponding model is known as the constant-
elasticity-of-variance (CEV) model and was first considered by Cox [Cox96].

32Note, however, that also the Black model trivially fits into this framework with σ(t, x) = σx.
33Dupire developed the continuous-time theory while Derman & Kani considered a discrete-time
binomial tree setting.
34See [Reb03] and Section 8.5 of [RMW09].
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Compared to Black’s model, the CEV model clearly has one additional parameter
β, which can be used to obtain a better fit to the observed market prices of options.
Observe, that in the limiting case β = 1, S(·) is a log-normal process as in the Black
model, and hence the corresponding volatility smile is perfectly flat. Contrary, if
β = 0 we have that S(·) is a Gaussian process, and the model is then called the
Normal or Bachelier model . The volatility smile generated by this model will be
steeply downward sloping, as the process has a constant (absolute) volatility term.
Undiscounted call option prices35 within the Bachelier model are straightforward to
compute and given by the following formula

CBach(t, S(t),K, T ) :=Et
[
(S(T )−K)+

]
= (S(t)−K)Φ(d) + λ

√
T − tφ(d), (2.21)

with

d =
S(t)−K
λ
√
T − t

,

and where Φ(·) and φ(·) denote the standard normal cumulative distribution function
(CDF) and the probability density function (PDF), respectively.

For values of β between zero and one we have the following proposition (cp.
[AA00]):

Proposition 2.5.1. For the stochastic differential equation

dS(t) = λS(t)βdW (t), (2.22)

with 0 < β < 1 and λ > 0 the following holds:

1. All solutions to (2.22) are non-explosive.

2. For β ≥ 1/2 the SDE (2.22) has a unique solution.

3. S = 0 is an attainable boundary for the process (2.22).

4. For β < 1/2 the SDE (2.22) does not have a unique solution, unless a separate
boundary condition is specified for the boundary behavior in S = 0.

In order to obtain a unique solution for the case β < 1/2, S = 0 is usually
defined to be an absorbing barrier, i.e., if the solution ever hits zero it stays there.
This condition is not only consistent with the case β ≥ 1/2 (for which S = 0 is a
natural absorbing boundary), but it is also the only boundary condition that allows
no arbitrage opportunities.

The CEV model is quite popular in mathematical finance since it is complete and
analytically tractable; see [Sch89], [DL01] and [DS02]. In particular, the transition
density can be expressed explicitly in terms of modified Bessel functions. Conse-
quently, prices of European-type option can be computed, at least in principle, by
integrating the payoff function against this transition density. In case of vanilla op-
tions, this results in pricing formulas involving the cumulative distribution functions
of non-central χ2-distributed random variables.

35As usual, put option prices can be obtained via put-call parity.
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The above specification of the CEV model can be easily extended to allow for
a time-dependent volatility parameter λ = λ(t); see [AA00]. One drawback of the
CEV model is that S(t) has a positive probability of being absorbed at zero, which
is at least from an empirical point of view not desirable.

Displaced Diffusions
The displaced-diffusion process (or shifted log-normal process) is obtained by setting

ϕ(t, s) = λs+ α, α ∈ R, λ > 0, (2.23)

and was first introduced by Rubinstein [Rub83]. Throughout this thesis we will use
the following, often more convenient form

ϕ(t, s) = λ(βs+ (1− β)S(0)), β ∈ [0, 1], λ > 0, (2.24)

which is obtained from (2.23) by a simple reparameterization. In order to get an
intuitive feel for the properties of displaced diffusions, consider the corresponding
SDE

dS(t) = λ(βS(t) + (1− β)S(0))dW (t). (2.25)

For large values of S(t), the diffusion coefficient scales approximately proportionally
with the level of S(t); we are in a log-normal setting. For small (absolute) values of
S(t), we have

dS(t) ≈ λ(1− β)S(0)dW (t),

that is, the process is approximately normal. Roughly speaking, we can therefore
consider a displaced diffusion as a (dynamic) mixture of a log-normal and a normal
process. As with the CEV process, normal (β = 0) and log-normal (β = 1) processes
may be seen as special cases of displaced-diffusion processes.

Another interpretation of displaced-diffusion processes can be given in terms of
a transformation of the process. For β ∈ (0, 1] we may define X(t) := (βS(t) + (1−
β)S(0)) and obtain by Itô’s formula

dX(t) = βλX(t)dW (t),

that is, a linear transform of S(t) rather than S(t) itself follows a log-normal process.
Call option prices in the displaced-diffusion model are given by the following

Proposition 2.5.2. Consider the displaced diffusion

dS(t) = λ(βS(t) + (1− β)S(0))dW (t), S(0) > 0,

where λ > 0 and β ∈ (0, 1]. Define α := (1 − β)S(0)/β and assume S(t),K > −α.
Then we have

CDD(t, S(t),K, T ) :=Et
[
(S(T )−K)+

]
= Bl

(
K + α, S(t) + α, λβ

√
T − t, 1

)
, (2.26)

where Bl(K,S, v, 1) is given in (2.16).
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Proof. Follows directly from the standard Black formula after recalling from above
that X(t) = β(S(t) + α) is a log-normal process.

Using the parameterization (2.24) instead of (2.23) has the advantage that the
parameters act almost “orthogonal” on the shape of the volatility smile. While β
provides control over the skew, i.e., the slope of the volatility smile, σ determines
the overall volatility level. Possible shapes of volatility smiles that can be generated
with a displaced-diffusion model are depicted in Figure (2.4), where we have plotted
volatility smiles for β values ranging from 0.01 to 1. As noted above, setting β = 1
yields the Black model, in which case the volatility smile is perfectly flat.
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Figure 2.4: Left: Displaced-diffusion volatility smiles for β = 0.01, 0.2,
0.4, 0.6, 0.8, 1, S(0) = 4.45%, T = 5 and σ = 15.4%. Right: CEV and
displaced-diffusion volatility smiles for β = 0.4, σDD = 15.4%, σCEV =
2.38%. S(0) and T as before.

Option prices produced by CEV and displaced-diffusion dynamics are often re-
markably similar. This can be seen on the right hand side of Figure (2.4), which
displays volatility smiles for βCEV = βDD = 0.4. The volatility parameter of the CEV
process was chosen such that the ATM volatilities match. A partial explanation
for the similarity between the CEV and the displaced-diffusion model can be given
by expanding the CEV local volatility function ϕ(s) = λsβ about the ATM level
s = S(0), which yields

ϕ(S(t)) ≈ ϕ(S(0)) + ϕ′(S(t))(S(t)− S(0))

= λS(0)β−1
(
βS(t) + (1− β)S(0)

)
.

Hence, choosing λDD = λCEVS(0)β−1, the displaced-diffusion process can be seen as
an approximation to the CEV process (with the same skew parameter β). For more
details on the quality of this approximation and for a quantification of the similarity
of option prices associated with the two dynamics see [SG09].

One clear drawback of displaced diffusions is that for β < 1 (which is typically
the case) S(t) can become negative. More precisely, for β ∈ (0, 1) the process S(t)
can assume values in (−α,∞)36. For not too low forward-rate levels, the probability
of negative rates is often small enough to ignore37, and prices of vanilla options are

36With α > 0 given in Proposition 2.5.2.
37For the parameter scenarios considered in Figure 2.4, the probability is in all cases less than 0.5%.
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remarkably close to prices generated by a CEV model, as we have seen above. Never-
theless, as argued in Rogers [Rog96], there exist certain interest-rate products which
are highly sensitive to even very low probabilities of negative rates. For pricing such
products one should obviously avoid models that allow negative rates. Additionally,
for very low interest-rate environments and/or high percentage volatilities, the prob-
ability of negative rates may become large enough to even have an impact on vanilla
option prices. Also in this case, displaced-diffusion models should be used with care.

Despite the drawback of allowing for negative rates, the displaced-diffusion model
is computationally far more tractable than the CEV model, since the standard “log-
normal calculus” known from the Black model can be applied38. And, as noted
above, for not-too-extreme interest-rate- and volatility-scenarios, displaced diffusions
are (very) accurate approximations of CEV processes. So even if one ultimately
wants to use the financially more appealing CEV model39, the displaced-diffusion
approximation can nevertheless be used as a tool for efficiently calibrating such a
model.

In the following we will consider an extension of the displaced-diffusion model,
where we let the local volatility function ϕ explicitly depend on calender time t,

ϕ(t, s) = λ(t)
(
β(t)s+ (1− β(t))S(0)

)
. (2.27)

By itself, European option pricing generally does not require time-dependent skew
or volatility parameters, as only the terminal distribution of the underlying is rele-
vant. However, time-dependent coefficients will later often arise when we model the
dynamics of interest rates in full term-structure models.

First assume, that only the volatility coefficient λ = λ(t) depends on time. In this
case we may simply invoke again the time-change argument mentioned in Remark
2.4.1 to obtain a call option pricing formula that is identical to (2.26), except that
we must replace

v = λβ
√
T − t

with

v = β

√∫ T

t
λ2(s)ds.

Matters become more involved if we also let the skew parameter β depend on
time. For a general skew function β(t) there do not exist closed-form option pricing
formulas. Although option prices could in principle be computed by using PDE40

methods without much difficulty, this is generally too slow or too inaccurate for
calibration applications. In the following we therefore give a brief review of the
so-called parameter-averaging technique, pioneered by Piterbarg [Pit05a], [Pit05b].

The basic idea of parameter averaging is to find a model with time-independent
parameters, that yields European option prices approximately matching the prices
from the time-dependent model. We have already seen a form of parameter aver-
aging when we considered the Black model or the displaced-diffusion model with

38Calculating vanilla option prices in the CEV model, on the other hand, requires the evaluation of
a non-central χ2-distribution, which is computationally fairly demanding.
39In the sense that it guarantees S(t) to remain non-negative.
40Partial differential equation.
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time-dependent volatility functions. From above we have, that prices of T -maturity
European options in the model

dS(t) = λ(t)
(
βS(t) + (1− β)S(0)

)
dW (t)

are the same as in the model

dS(t) = λ̄
(
βS(t) + (1− β)S(0)

)
dW (t), (2.28)

where λ̄ is given by

λ̄2 =
1

T

∫ T

0
λ(s)2ds. (2.29)

Observe that in this case the option pricing formula based on the effective volatility
λ̄ (for maturity T ) is not an approximation, but yields the exact price.

We now focus on finding an effective skew β̄. First recall that European prices
depend only on the terminal distribution of the underlying. So if we consider the two
processes

dS(t) = λ(t)
(
β(t)S(t) + (1− β(t))S(0)

)
dW (t),

dS̄(t) = λ(t)
(
β̄S(t) + (1− β̄)S(0)

)
dW (t),

we could try to find β̄ such that for a given maturity T

E
[
(S(T )− S̄(T ))2

]
→ min .

While the exact solution to this problem is generally not known in closed analytical
form, Piterbarg [Pit05a] uses asymptotic expansion techniques to find the following
approximate solution for the effective skew (over the time horizon [0, T ])

β̄ =

∫ T

0
β(t)wT (t)dt, (2.30)

with weight function wT (·) given by

wT (t) =
v(t)2λ(t)2∫ T

0 v(t)2λ(t)2dt
, v(t)2 =

∫ t

0
λ(s)2ds. (2.31)

With the effective volatility and the effective skew, vanilla option prices can now be
computed efficiently by using the constant-parameter formula given in (2.26). Test
results, which demonstrate that the above approximation is very accurate even for
quite long maturities, can be found in [Pit05a].

2.5.3 Stochastic Volatility Models

In the previous section we introduced vanilla models where the instantaneous volatil-
ity is a deterministic function of the underlying interest rate. With such models it
is possible to account for deviations from a log-normal behavior of interest rates,
and generate downward sloping volatility skews. Comparing, however, the volatility
smiles shown in Figure 2.4 and 2.3, we find that the smiles implied by the CEV
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or displaced-diffusion model are generally too “linear” compared to the more convex
market-implied volatility smile. It therefore seems necessary to somehow enrich our
model setup to be able to achieve better market fits.

A number of empirical studies provide evidence that besides the level-dependence
of interest-rate volatility, there are additional sources of randomness affecting volatil-
ities in fixed-income markets; see, e.g. [CDG02], [HW03], [CS04] and [LZ06] to just
name a few. It therefore seems natural to allow the volatility to be driven by an
additional Brownian motion. The resulting models are known as stochastic volatility
models and generally not only provide more realistic dynamics41, but also give better
fits to market-observed implied volatilities. These advantages are bought at the cost
of completeness: Stochastic volatility models are generally not complete anymore,
that is, contingent claims cannot be replicated or hedged by trading in the under-
lying alone. In this case, either additional hedging instruments must be added to
the hedging portfolio or one must resort to minimum variance hedging or similar
techniques42.

As in the previous section we consider in what follows a forward swap or Libor
rate S(t) under its natural martingale measure, say Q. Further, we let W (t) and
Z(t) be two one-dimensional Brownian motions under Q with correlation ρ ∈ (0, 1)

〈dZ(t), dW (t)〉 = ρdt.

A fairly general family of stochastic volatility models is obtained by specifying the
following dynamics

dS(t) = λϕ(S(t))ψ(V (t))dW (t), (2.32)

dV (t) = κ(θ − V (t))dt+ ξϑ(V (t))dZ(t), V (0) = v0,

where λ, κ, θ, ξ are positive constants and ϕ(·), ψ(·) and ϑ(·) are smooth deterministic
functions.

Classical references investigating specific models that fit into this framework are
for example Hull & White [HW87], Wiggins [Wig87], Stein & Stein [SS91], Chesney
& Scott [CS89] or Hagan et. al [HKLW02].

The Heston Model
One of the most widely used stochastic volatility model is due to Heston [Hes93] and
corresponds to choosing

dS(t) = S(t)
√
V (t)dW (t), (2.33)

dV (t) = κ(θ − V (t))dt+ ξ
√
V (t)dZ(t), (2.34)

with κ, θ, ξ > 0. Here, the stochastic-variance process V (t) follows a mean reverting
square-root diffusion, also known as Cox-Ingersoll-Ross (CIR) process, see [CIR85].

41This is important for hedging purposes. Note, however, that we must be careful when we interpret
properties under the real measure and then move to a pricing measure. Measure changes generally
affect the dynamic properties of processes, see also Chapter 3.
42See, e.g. [PSHE09].
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The mean-reversion level θ determines the long-term mean of the variance process,
while the speed of mean reversion κ represents the rate at which V (t) is pulled back
to this long-term mean. The parameter ξ is the volatility of variance.

Observe that the diffusion term of V (t) in (2.34) is the same as that of a CEV
process with exponent β = 1/2. Opposed to a CEV process, however, the drift term
in (2.34) prevents the CIR process from being absorbed whenever it hits zero. If
the upward drift is “sufficiently large”, then the origin is even inaccessible, as the
following well-known result shows

Proposition 2.5.3. The SDE (2.34) has a unique solution. If 2κθ ≥ ξ2, i.e., the so-
called Feller condition holds, then V = 0 is unattainable. If 2κθ < ξ2 then V = 0 is
an attainable boundary but it is strongly reflecting.

Proof. See, e.g. [KT81].

Similar to the CEV case, the conditional distribution of V (t) is linked to a non-
central χ2-distribution:

Proposition 2.5.4. Let 0 ≤ s < t and define

c =
2κ

ξ2
(
1− e−κ(t−s)

) , u = cV (s)e−κ(t−s), q =
2κθ

ξ2
− 1.

Then, the transition density respectively the CDF of V(t) given V(s) are given by

f(x, t;V (s), s) = ce−u−cx
(cx
u

)q/2
Iq
(
2
√
ucx
)

and
P (V (t) < x|V (s)) = χ2(2cx; 2q + 2, 2u),

where Iq(·) denotes the modified Bessel function of the first kind of order q and
χ2(z; ν, γ) is the CDF of a non-central χ2 distribution with ν degrees of freedom and
non-centrality parameter γ,

χ2(z; ν, γ) = e−γ/2
∞∑
j=0

(γ/2)j

j! 2j+ν/2Γ(j + ν/2)

∫ z

0
yj+ν/2−1e−y/2dy.

Proof. See [CIR85].

The effects that the stochastic-variance parameters have on the model-implied
volatility smile can be summarized as follows. The mean reversion level θ is respon-
sible for the overall level of the implied volatility smile, while κ and ξ provide control
over the curvature or convexity of the smile. The skewness of the volatility smile is
determined by the correlation ρ. In principle, the initial value v0 of the unobservable
stochastic-variance process represents another “free parameter”, which we could use
to improve the fit to market prices. In most cases, however, one is best advised to
simply set v0 = θ; see Section 13.7 of [Reb04] for a discussion of this topic.

One reason why the Heston model is so popular among academics and practi-
tioners alike is its analytical tractability. In particular, the characteristic function
for the logarithm of the underlying is known in closed form (see [AMST07] and Lee
[Lee04]):
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Proposition 2.5.5. The characteristic function of logS(t) is given by

φ(u; t) := E
[
eiu logS(t)

]
= exp {iu logS(0) +A(u, t) +B(u, t)v0} , (2.35)

where

A(u, t) =
κθ

ξ2

(
(κ− ρξiu− γ)t− 2 log

(
1− ge−γt

1− g

))
,

B(u, t) =
κ− ρξiu− γ

ξ2

(
1− e−γt

1− ge−γt

)
,

g = g(u) =
κ− ρξiu− γ
κ− ρξiu+ γ

,

γ = γ(u) =
√

(ρξiu− κ)2 + ξ2(iu+ u2).

The domain43 of φ(u; t) is the strip {u ∈ C | Im(u) ∈ (α−, α+)}, where α− < −1 and
α+ > 0 and solve

g(iα) exp{d(iα)t} = 1.

With the characteristic function at our disposal, we can take advantage of the gen-
eral Fourier-option pricing theory presented for instance by Carr & Madan [CM99],
Lewis [Lew01] or Lee [Lee04]. In particular, the following result allows for the efficient
computation of vanilla option prices

Proposition 2.5.6. Let X be a random variable and let ψ(u) denote its characteristic
function

φ(u) = E
[
eiuX

]
.

Then, for k ∈ R,

E
[(
eX − ek

)+
]

= φ(−i)− K

2π

∫ iα+∞

iα−∞

eiωkφ(−ω)

ω2 − iω
dω (2.36)

for any α ∈ (0, 1) for which the right-hand side exists.

Proof. See [Lew01].

Performing the Fourier inversion in (2.36) via standard numerical integration
procedures is much faster (or more accurate) than relying on Monte Carlo (MC) or
PDE methods, and in particular allows the efficient calibration of the Heston model
to observed market prices.

Remark 2.5.1. There exist various formulas for pricing vanilla options via Fourier
transforms depending, for example, on whether the Fourier transform is performed
in log-strike (Carr & Madan [CM99]) or log-forward (Lewis [Lew01]) coordinates.
See [Sch10] for a good overview of the various approaches.

43Also known as the strip of convergence. This is directly related to the existence of moments.
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Remark 2.5.2. The constant α in the above proposition determines an integration
path in the complex plane. Choosing α = 1/2 corresponds to the so-called Lewis-
Lipton-formula [Lip02], which is common in practice and gives stable numerical re-
sults in most cases. The particular choice for α can be optimized to improve the
numerical properties of the integral, see e.g. [LK07]. In Chapter 4 we shall consider
again the topic of choosing optimal integration contours in the complex plane.

Remark 2.5.3. Integrating functions in the complex plane requires some care, espe-
cially when dealing with multi-valued functions such as the complex logarithm. Re-
stricting the logarithm to its principal branch (as is done in most software packages),
the integrand may become discontinuous when the integration contour should cross
a branch cut, leading to wrong option prices. The original formulation of the Heston
characteristic function as given in [Hes93] is not free of such problems and a so-called
branch-cut tracking or rotation-count algorithm must be applied, see e.g. [KJ05]. In
contrast, the formulation given in Proposition 2.5.5 (which is algebraically equivalent
to the original formulation) does not require branch-cut tracking; see [AMST07] for
a detailed discussion.

The Displaced Heston Model

As we have noted above, the skewness of the volatility smile implied by the Heston
model can be controlled via the correlation between the underlying and the stochastic
variance. Most often market-observed volatility smiles are skewed to the left44, which
requires a negative correlation. If S(t) represents the price of a stock, then ρ < 0 is
inline with the observation that volatility tends to go up if prices go down – a feature
commonly known as the “leverage effect”. In the interest-rate markets, however, the
skew effect is mainly due to the strong dependence of the percentage volatilities on
the level of the underlying rates. After accounting for this fact, the evolution of
the rates will often be (almost) uncorrelated with the dynamics of the stochastic
volatility or variance45. In the following we will therefore always set ρ = 0 and
control the skewness via the local volatility function ϕ(·) in (2.32). In terms of fitting
capabilities this is not a limitation: With the right function ϕ(·), we can generate
volatility smiles very similar to those generated by a non-zero correlation parameter
ρ. Also from a hedging perspective it is not overly important46, whether we generate
the skew via the correlation ρ or the function ϕ(·) as long as the right hedge ratios
are used; see Section 8.9 of [AP10a]. Lastly, let us note that setting the correlation
to zero is also appealing from a practical point of view, since, as we will see in the
next chapter, this will simplify matters when performing common measure changes
in full term-structure models.

When it comes to choosing a concrete local volatility function ϕ(·), we may re-
consider the two examples from the last section and use either a CEV- or a displaced-
diffusion-like specification. Due to the better tractability (and the often close resem-
blance) we shall concentrate in the rest of this thesis on the latter specification, which

44At least in the interest-rate and equities markets. FX (Foreign Exchange) smiles are typically
symmetric, while smiles in emerging markets may be right-skewed, see e.g. [Tan10].
45See [Reb04], Chapter 23 and [CS04].
46At least for vanilla-like options.
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results in the so-called displaced Heston model ,

dS(t) = λ
(
βS(t) + (1− β)S(0)

)√
V (t)dW (t), (2.37)

dV (t) = κ(θ − V (t))dt+ ξ
√
V (t)dZ(t), (2.38)

with κ, θ, ξ, λ > 0, β ∈ (0, 1] and where we will always assume that 〈dZ(t), dW (t)〉 =
0dt and v0 = θ. Observe that in the above specification λ and θ are redundant
parameters in the sense that we may fix one of these parameters without restricting
the model. For reasons that will become apparent in the next chapter, we shall
always set θ = 1.

Following Andersen and Andreasen [AA02], we may use the same transformation
as in the displaced-diffusion case and define for β ∈ (0, 1] the process X(t) := (βS(t)+
(1− β)S(0)). By Itô’s formula we obtain

dX(t) = βλX(t)
√
V (t)dW (t),

dV (t) = κ(θ − V (t))dt+ ξ
√
V (t)dZ(t).

Introducing θ̃ := (βλ)2θ, ξ̃ := βλθ and Ṽ (t) := (βλ)2V (t), the above system of SDEs
may be rewritten as

dX(t) = X(t)

√
Ṽ (t)dW (t),

dṼ (t) = κ(θ̃ − Ṽ (t))dt+ ξ̃

√
Ṽ (t)dZ(t),

which is of standard Heston form (2.33)–(2.34). Combining this with the closed-form
characteristic function of the Heston model and Proposition 2.5.6, we obtain, after
fixing α = 1/2, the following call price formula:

Proposition 2.5.7. Call option prices in the displaced Heston model (2.37)–(2.38) are
given by

CDDH(0, S(0),K, T ) :=E
[
(S(T )−K)+

]
=
S(0)

β
− K̃

2πβ

∫ ∞
−∞

e(1/2−iω)kφ(−(ω + i/2);T )

ω2 + 1/4
dω, (2.39)

where we have defined

K̃ = βK + (1− β)S(0), k = log(S(0)/K̃),

and where

φ(u;T ) = exp {A(u, T ) +B(u, T )} ,

A(u, T ) =
κ

ξ2

(
(κ− γ)T − 2 log

(
1− ge−γT

1− g

))
,

B(u, T ) =
κ− γ
ξ2

(
1− e−γT

1− ge−γT

)
,

g = g(u) =
κ− γ
κ+ γ

,

γ = γ(u) =
√
κ2 + (λβξ)2(iu+ u2).
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After having presented a pricing formula for European options in the displaced
Heston model, let us now consider some volatility smiles generated by this model.
As can be seen in Figure 2.5, the displaced Heston model is capable of fitting the
market smile from Figure (2.3) quite well. The main effect of the volatility of vari-
ance parameter ξ is adding curvature to the implied volatility smile, or equivalently
generating implied marginal distributions with fatter tails. Observe that the smile
corresponding to ξ = 0 is in effect that of a displaced-diffusion model. The speed of
mean reversion κ has a similar effect on the volatility smile as ξ. Both together can
be used to control how fast the convexity of the smile decays in T -direction.
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Figure 2.5: Market volatility smile (cp. Fig. (2.3)) and fitted displaced He-
ston smile with parameters S(0) = 4.45%, T = 5, β = 0.1, λ = 0.16, ξ =
0.89, κ = 0.10. The other smiles correspond to different values of ξ as
indicated in the graph, with λ being chosen such that the ATM volatility
levels match (all other parameters being the same as before).

The above model can be extended by allowing for time-dependent parameters.
Besides increasing the flexibility of the vanilla model, time-dependent parameters will
naturally emerge when we will consider full term-structure models in later chapters.
Let us consider a model with time-dependent volatility λ = λ(t) and skew β = β(t):

dS(t) = λ(t)
(
β(t)S(t) + (1− β(t))S(0)

)√
V (t)dW (t), (2.40)

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ(t), V (0) = 1. (2.41)

As with the displaced-diffusion model, we can use parameter-averaging techniques
to derive (constant) effective parameters, which allow us to efficiently price vanilla
options by reusing the formula from Proposition 2.5.7. The effective skew β̄ over a
time horizon [0, T ] in the model (2.40)–(2.41) is obtained similarly as in the displaced-
diffusion case and is given by (see [Pit05a])

β̄ =

∫ T

0
β(t)wT (t)dt, (2.42)
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with weight function

wT (t) =
v(t)2λ(t)2∫ T

0 v(s)2λ(s)2ds
, (2.43)

v(t)2 =

∫ t

0
λ(s)2ds+ ξ2e−κt

∫ t

0
λ(s)2 e

κs − e−κs

2κ
ds. (2.44)

In order to also reduce the time-dependent volatility to an “averaged” effective
volatility, we follow Piterbarg [Pit05a] and consider the price of an (undiscounted)
ATM option (K = S0)

E
[
(S(T )− S0)+

]
= E

[
E
[
(S(T )− S0)+] |{V (t)}Tt=0

]]
.

Due to the independence of the Brownian motions driving S(t) and V (t), we have
that given a particular path {V (t)}Tt=0, the forward-rate process S(t) follows an ordi-
nary displaced-diffusion process with a (conditionally deterministic) time-dependent
volatility function. In particular (see (2.28)–(2.29)), the distribution of S(T ) depends
only on the total integrated variance

V̄ (T ) :=

∫ T

0
λ(t)2V (t)dt,

such that we may write

E
[
(S(T )− S(0))+] = E

[
g(V̄ (T ))

]
,

where g(·) denotes the call price formula in the displaced-diffusion model, see Propo-
sition 2.5.2. The problem of finding an effective volatility can now be represented as
finding λ̄ such that

E
[
g

(∫ T

0
λ(t)2V (t)dt

)]
= E

[
g

(
λ̄2

∫ T

0
V (t)dt)

)]
. (2.45)

Neither of the expectations in (2.45) is easy to compute. However, the Laplace

transform of
∫ T

0 V (t)dt is given in closed form, while the Laplace transform of V̄ (T )
is easy to compute numerically, see [AA02]. This suggests approximating g(v) by a
function of the form

g(v) ≈ a+ be−cv,

around the mean of V̄ (T )

ζ = E
[
V̄ (T )

]
=

∫ T

0
λ(t)2dt.

With this approximation, the problem (2.45) can now be represented as finding λ̄
such that

ψ0

(
−g
′′(ζ)

g′(ζ)
λ̄2

)
= ψ

(
−g
′′(ζ)

g′(ζ)

)
, (2.46)
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with

ψ0(µ) = E
[
e−µ

∫ T
0 V (t)dt

]
and

ψ(µ) = E
[
e−µV̄ (T )

]
being the Laplace transforms of

∫ T
0 V (t)dt and V̄ (T ), respectively.

By means of the parameter-averaging technique we have essentially projected the
time-dependent model (2.40)–(2.41) onto the model

dS(t) = λ̄
(
β̄S(t) + (1− β̄)S(0)

)√
V (t)dW (t), (2.47)

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ(t), V (0) = 1, (2.48)

such that both models produce approximately the same T -maturity vanilla option
prices. This allows us again to make use of the efficient Fourier pricing formula given
in Proposition 2.5.7.

Let us make a final remark regarding the particular choice of a model. So far, our
considerations were mainly driven by the objective of finding a model that matches
market-observed vanilla option prices, or equivalently implied volatilities, as closely
as possible (while being at the same time computationally tractable). The rationale
behind this is that vanilla options are typically (sometimes the only) liquidly traded
instruments from which we can extract market information about dynamics of the
underlying. Moreover, when a model is used for pricing/hedging exotic products,
vanilla options are typically used as additional hedging instruments (besides the
underlying) and the argument is then, that the model should at least be able to
correctly price these hedging instruments. As we have noted several times before,
knowing the prices of European options is equivalent to knowing the distribution
of the underlying at fixed times, conditional on its current value. It is important to
notice, however, that the underlying stochastic process carries much more information
than the conditional laws. The dynamic behavior and the hedging implications of
two different models may therefore be quite different, even though they perfectly
agree on a set of European option prices. In case of vanilla-like options, Poulsen
et al. [PSHE09] demonstrate that as long as the modeling is done sensibly and the
right hedging strategies are used, the particular flavor of (stochastic volatility) model
matters little for hedging these options. The situation may change though, if we
consider the pricing and hedging of more complex (i.e., exotic) derivatives. Schoutens
et al. [SST04] and Ayache et al. [AHNW04] among others show, that models that
produce similar vanilla option prices may very well give markedly different prices of
exotic options (cp. Section 7.3). This must be taken into account when a model
is to be chosen for pricing a certain product. Ultimately, to put it in the words of
Lipton [Lip02], “the right criterion, as advocated by a number of practitioners and
academics, is to choose a model that produces hedging strategies for both vanilla and
exotic options resulting in profit and loss distributions that are sharply peaked at
zero.”
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2.6 Other Interest-Rate Options
In Section 2.4 we introduced caps/floors and swaptions, which are European options
on Libor and swap rates and are among the most liquidly traded interest-rate deriva-
tives in the market. In the following we will extend this set of derivative interest-rate
securities by considering more general examples of market payoffs. In all cases we
will assume that we are given a discrete tenor structure 0 ≤ T0 < T1 < . . . < TN .

2.6.1 CMS Swaps, Caps and Floors

Most of the time, it can be observed that short-term interest rates (e.g. 6M or 1Y
rates) are lower than long-term interest rates (e.g. 20Y rates), and the corresponding
yield curves are hence upward sloping47. So even if today’s long-term swap or forward
Libor rate for a given maturity T is relatively high (say 6% or 7%), it is quite likely
that once we reach time T , the prevailing 6M spot Libor rate at that time is (again)
only between 2% to 3%. For an investor it is therefore often more attractive to receive
a fixed coupon rather than a floating coupon48. But what if an investor thinks that
interest rates (across the yield curve) are currently too low and will increase in the
future? In this case, the holder of a fixed-rate bond will end up receiving a low fixed
coupon over the lifetime of the bond (e.g. 10 years), even if interest rates go up.
The solution for our investor might be a bond with coupons based on a so-called
constant-maturity swap (CMS) rate. As the market for plain vanilla swaps is very
liquid, market quotes for swap rates can be used themselves for defining the payoffs
of other securities. A CMS rate is defined to be the break-even swap rate (see (2.9))
of a standard fixed-for-floating swap of a fixed maturity, e.g. 10 years or 30 years.
Accordingly, a coupon bond based on the 10Y CMS rate pays on each coupon date
(e.g. every 6 months) the currently prevailing 10Y swap rate. With such a security,
an investor can take advantage of an upward sloping yield curve (as the payments
are based on the long end of the yield curve), but still benefits if interest rates go
up (because the coupons are floating rather than fixed). CMS linked products are
also used, for example, by mortgage lenders or insurance companies to hedge risks
connected to movements in, say, the 10Y or 30Y point of the yield curve.

CMS Swaps
A CMS swap is a fixed-for-floating swap, but in contrast to a plain vanilla swap, the
floating leg payments are based on CMS rather than Libor rates. More specifically,
let Sk,k+n(·) denote the n-period swap rate with first fixing date Tk, as defined in
(2.9). Then, the holder of a (payer) CMS swap with fixed rate K, based on the
n-period CMS rate, receives at a payment time Tk+1 the n-period swap rate49 fixed
at time Tk and pays the fixed rate K49. Thus, the value of a CMS swap is given by

V CMS
swap (t) = B(t)

N−1∑
k=0

τkEQ
t

[
B(Tk+1)−1(Sk,k+n(Tk)−K)

]
, (2.49)

47This can be readily observed in Figure 5.1 on p. 99, which shows the evolution of the EUR
forward-rate curve for the period 1/14/2008 – 4/26/2010.
48Put in swap terminology, it is usually better to receive the fixed leg and pay the floating leg.
49Multiplied by an accrual factor.
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or, using the Tk+1-forward measure in each period,

V CMS
swap (t) =

N−1∑
k=0

τkP (t, Tk+1)ETk+1

t [Sk,k+n(Tk)−K] . (2.50)

It is standard market practice to quote prices of such swaps as a spread over Libor,
i.e., in (2.50) the fixed leg is replaced by a floating Libor leg, which pays Lk(Tk) + s
at payment time Tk+1. The (constant) fixed spread s, that makes this swap fair, i.e.,
have value zero today, is then the quoted “price” of the CMS swap.

While plain vanilla swaps can be valued by simple no-arbitrage arguments and
by just knowing today’s yield curve, the valuation of CMS swaps requires a term-
structure model (or at least a vanilla model), as we will see in the following. For
notational simplicity let us focus on a particular CMS cash flow from (2.50)

VCMS(0) := P (t, Tk+1)ETk+1 [Sk,k+n(Tk)] ,

and write this as

VCMS(0) = P (t, T + δ)ET+δ [S(T )] , (2.51)

where the notation should be obvious. We recall that by Lemma 2.3.2, the swap rate
S(t) is a martingale under its associated swap measure QA, where A(t) denotes the
the annuity factor A(t) = Ak,k+n(t) of S(t). In particular, we have

S(0) = EA [S(T )] ,

i.e., today’s forward swap rate is simply the expectation of the (spot) swap rate at
the fixing time T under the natural swap measure. This does not hold50 under the
T + δ-forward measure QT+δ. Note that by changing to the swap measure, we can
rewrite the expectation of S(T ) under QT+δ as

CMS(0) :=ET+δ [S(T )]

=
A(0)

P (0, T + δ)
EA
[
P (T, T + δ)

A(T )
S(T )

]
. (2.52)

The quantity CMS(0) is commonly known as the forward CMS rate, whereas

CA(0) := CMS(0)− S(0) (2.53)

is called the CMS convexity adjustment (applied to S(0)). In order to compute the
expectation in (2.52), we generally need a term-structure model, as the multiplier
P (T, T + δ)/A(T ) depends on the joint distribution of a whole set of interest rates.
Note that we may always write (using the tower property of expectations)

EA
[
P (T, T + δ)

A(T )
S(T )

]
= EA

[
EA
[
P (T, T + δ)

A(T )

∣∣ S(T )

]
S(T )

]
= EA [g(S(T ))S(T )] (2.54)

50If we neglect the degenerate case of a one-period swap rate.
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with a deterministic function g(·) given by

g(s) = EA
[
P (T, T + δ)

A(T )

∣∣ S(T ) = s

]
. (2.55)

While for computing the expectation in Equation (2.54) a Vanilla model (which
models the evolution of S(t)) is sufficient, determining the function g(·) still requires
a full term-structure model. However, convexity adjustments become sizeable only
for longer maturities, and the long end of the yield curve is usually rather flat and
often tends to move in parallel. This may serve as a justification for approximating
the “real” function g(·) by a rather simple function of the swap rate S(T ).

Often such approximations are inspired by either real term-structure models (see
also Chapter 4) or simple “bond mathematics”. A representative for the latter ap-
proach is the following popular choice for g(·) (see [Hag03])

P (T, T + δ)

A(T )
≈ (1 + τS(T ))−δ/τ∑n

j=1 τ(1 + τS(T ))−j

=
S(T )

(1 + τS(T ))δ/τ
· 1

1− (1 + τS(T ))−n

=: g(S(T )), (2.56)

where it is assumed that the accrual factors are approximately equal, i.e., τi ≈ τ .
Another popular approximation is based on the linear swap-rate model of Hunt and
Kennedy [HK00]; see also [BS03] and [Pel03] for a comparison with true (Monte Carlo
simulated) convexity adjustments from a Libor market model. For more sophisticated
specifications of g(·) see [Hag03] or Chapter 16 of [AP10c].

After a particular function g(·) has been selected, the value of the convexity
adjustment (2.53), or equivalently the value of the CMS cash flow (2.51), is fully
determined by the distribution of S(T ) under the swap measure QA and the expec-
tation (2.54) can be computed by using, for instance, a suitably calibrated Vanilla
model.

Alternatively, we can use the Breeden-Litzenberger formula (2.19) to infer the
market-implied density of S(T ) from a continuum of market prices of payer/receiver
swaptions and then compute the expectation by integrating against this density. This
approach is appealing, in that it yields model-independent (up to the choice of g(·))
and market-consistent convexity adjustments, but requires suitable methods for inter-
and extrapolating the (often few) market-observable swaption prices.

Similar in spirit to the Breeden-Litzenberger formula is the following static repli-
cation formula due to Carr & Madan [CM01]:

Proposition 2.6.1. Let p(0, S(0);T,K) respectively c(0, S(0);T,K) denote the undis-
counted time-0 prices of European put and call options with strike K and expiry T .
Then, for any twice-continuously differentiable function f(·), the undiscounted value
of a European option with payoff function f(·) and expiry T may be written as

E[f(S(T ))] = f(K∗) + f ′(K∗)(S(0)−K∗)

+

∫ K∗

0
f ′′(K)p(0, S(0);T,K)dK +

∫ ∞
K∗

f ′′(K)c(0, S(0);T,K)dK (2.57)
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for any K∗ ∈ R+.

Notice that this formula not only allows us to express the value of a European option
in terms of put and call options in a totally model-independent way, but it also
provides us with a static51 hedging portfolio, where the portfolio weights for the
strike-K put and calls are equal to f ′′(K)dK. Of course, in reality one does not have
an infinite number of options to construct this replication strategy. To account for
this fact one will usually choose a collection of (tradeable) strikes {Ki} and then use
a formula of the form

E[f(S(T ))] ≈ f(K∗) + f ′(K∗)(S(0)−K∗)

+
∑
i

wp(i)p(0, S(0);T,Ki) +
∑
i

wc(i)c(0, S(0);T,Ki), (2.58)

where the weights wp(i) and wc(i) are chosen such that the sums in (2.58) approxi-
mate52 the integrals in (2.57).

Using the static replication formula (with K∗ = S(0)), we may write the value of
the CMS cash flow (2.51) as

VCMS(0) = A(0)EA [g(S(T ))S(T )]

= A(0)S(0)g(S(0))

+

∫ S(0)

0
w(K)Vrec(0,K)dK +

∫ ∞
S(0)

w(K)Vpay(0,K)dK, (2.59)

with

w(K) =
∂2

∂K2
(g(K)K)

and where Vrec(0,K) and Vpay(0,K) are the time-0 prices of receiver and payer swap-
tions, respectively:

Vrec(0,K) = A(0)EA
[
(K − S(T ))+

]
,

Vpay(0,K) = A(0)EA
[
(S(T )−K)+

]
.

As before, the swaption prices in (2.59) can be either computed by using a calibrated
model53 or can be directly observed in the market.

Depending on the payment lag δ and the tenor n of the CMS rate, the function
g(·) is often observed to be slowly varying and almost linear54, regardless of the model
used to obtain it. We may therefore approximate g(·) by a linear function and in this
way avoid the necessity of having to perform numerical integrations. Linearizing for
example the function g(·) as given in (2.56) about the initial value S(0)

g(S(T )) ≈ g(S(0)) + g′(S(0))(S(T )− S(0)),

51I.e., the portfolio never needs to be adjusted throughout the life time of the option.
52Alternatively, the weights may be also chosen to super- or sup-replicate the payoff.
53In practice, often the SABR model of Hagan et. al [HKLW02] is used for this task. See also
[MP06].
54See, e.g. the appendix of [ZK10].
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and assuming that A(0)/P (0, T + δ) ≈ g(S(0)), yields the following expression for
the convexity adjustment

CA(0) = S(0)
1 + τS(0)

(
1− δ − n

(1+τS(0))n−1

)
1 + τS(0)

(
EA[S(T )2]

S(0)2
− 1

)
. (2.60)

Computing the actual value of the convexity adjustment is now only a matter of
computing the second moment of S(T ), which is known in closed form for quite a
wide range of models. In the flat-smile case, i.e., when S(T ) is log-normal with
volatility σ, we have

EA[S(T )2] = S(0)2eσ
2T , (2.61)

and only a single volatility parameter is needed for computing the convexity adjust-
ment.

Figure 2.6 illustrates the impact of the (Black) volatility σ and the maturity T
on the size of the convexity adjustment (2.60). We assumed that interest rates are
flat at 5% (continuously compounded) for all maturities. As can be clearly seen,
the convexity adjustment is increasing in maturity T and volatility σ55. In the
flat-smile case this is quite obvious from the exponential factor in (2.61). However,
the same observations generally also hold for other models and convexity-adjustment
formulas. For comparison, we have also plotted the convexity adjustments as obtained
from formula (2.60), if the second moment is taken from a displaced Heston model,
where the parameters are chosen so as to match an ATM volatility level of 15%
for each maturity T . The skewness (and the fatter tails) of the displaced Heston
distribution obviously does not have a huge impact on the size of the second moment
(and therefore on the convexity adjustment), as long as the “average” volatility level
is the same as in the corresponding Black model. Therefore, even in the presence
of a true volatility smile/skew, the “Black implied” convexity adjustment56 with the
market-observed ATM volatility may be used as a first rough approximation57.

CMS Caps and Floors
Options on CMS rates are traded in the market in the form of CMS caps and floors,
which, similar to ordinary (Libor) caps and floors, consist of sequences of European
options:

V CMS
cap (t) =

N−1∑
k=0

τkP (t, Tk+1)ETk+1

t

[
(Sk,k+n(Tk)−K)+

]
,

V CMS
floor (t) =

N−1∑
k=0

τkP (t, Tk+1)ETk+1

t

[
(K − Sk,k+n(Tk))

+
]
.

55Furthermore, it is generally also increasing in the length of the CMS tenor. Notice that a one-
period (forward) swap rate is actually a (forward) Libor rate and accordingly, the necessary convexity
adjustment would be zero.
56That is, combining (2.60) and (2.61).
57From (2.59) it can be seen that low- and high-strike options “equally” enter the valuation formula
for the convexity adjustment. Therefore, using the ATM volatility may be a sufficiently accurate
approximation. This situation will change in case of CMS options, see below.
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Figure 2.6: CMS convexity adjustments in basis points for n = 10, δ =
0.5, τ = 1 as implied by formula (2.60) for the Black and the displaced
Heston model. Black volatilities σ as indicated in the graph. Displaced
Heston parameters: κ = 0.1, ξ = 0.9, β = 0.4. The parameter λ in the
displaced Heston model is chosen such that for each maturity the implied
ATM level of the smile is 15%.

As before, let us focus on a single CMS caplet with initial value

V CMS
caplet(0) = P (t, T + δ)ET+δ

[
(S(T )−K)+

]
.

Introducing again a suitable function g(·), this may be written as

V CMS
caplet(0) = A(0)EA

[
g(S(T ))(S(T )−K)+

]
. (2.62)

As with the “plain” CMS cash flow, the expectation on the right hand side of (2.62)
can be either computed with a vanilla model or inferred from market prices of swap-
tions via a replication argument. While the replication formula from Proposition
2.6.1 is not directly applicable, as the payoff function

f(s) := g(s)(s−K)+

is not differentiable at s = K, it can nevertheless be easily generalized to also cover
this case; see e.g. [Hag03]. The replication formula for the CMS caplet then reads

V CMS
caplet(0) = h′(K)Vpay(0,K) +

∫ ∞
K

h′′(k)Vpay(0, k)dk, (2.63)

where h(s) = g(s)(s − K). We emphasize again that this formula not only allows
us to value the CMS caplet, but also provides us with a model-independent static
hedging portfolio consisting of payer swaptions. Notice that, in contrast to the plain
CMS cash flow from above, now only swaptions with strikes greater than or equal to
the caplet strike K enter the valuation formula. An analogous result holds for CMS
floorlets

V CMS
floorlet(0) = h′(K)Vrec(0,K) +

∫ K

0
h′′(k)Vrec(0, k)dk, (2.64)

where h(s) = g(s)(K − s). In this case only (receiver) swaptions with strikes less
than or equal to the floorlet strike K enter the valuation formula.
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Remark 2.6.1. From formulas (2.59), (2.63) and (2.64) it can be easily seen that the
values of CMS-linked products depend on prices (or implied volatilities) of swaptions
with far-from-the-money strikes, which may not be traded in the market. Provided
that CMS swaps/floor/caps are traded liquidly enough, we can therefore use these
instruments in combination with the aforementioned formulas to infer (at least theo-
retically) market-implied information about the asymptotic behavior of the volatility
smile.

Remark 2.6.2. CMS floors are often implicitly contained in bonds paying CMS
coupons. Most of these bonds include a floor in order to limit the investor’s risk
of receiving very low (or negative) coupons.

CMS-Linked Payoffs and Moment Explosions

In the previous sections we have seen that switching from the forward measure to the
natural swap measure, under which the modeling typically takes place, introduces a
certain function g(·). “Payoffs” of CMS-linked cash flows under QA are hence of the
form

g(s)s or g(s)(s−K)+. (2.65)

While the original payoff functions are linear (at least piecewise), multiplication by
g(s) generally results in payoff functions that grow super-linearly. Therefore, convex-
ity adjustments, respectively prices of CMS-linked cash flows, implicitly or explic-
itly58 depend on higher order moments of S(T ) under QA. In the Black model this
is not a matter of concern as all moments of S(T ) exist. This statement also holds
for the displaced-diffusion model, being essentially just a transformed Black model,
as well as for the CEV model, whose local-volatility function grows only sub-linearly.
Stochastic volatility models, however, which typically have fat-tailed distributions,
may suffer from so-called moment explosions, that is, certain higher-order moments
either may not exist or exist only up to some finite explosion time T ∗.

In the particular case of the displaced Heston model, we have the following con-
ditions on the finiteness of moments (cp. [AP07]).

Proposition 2.6.2. Consider the displaced Heston model (2.37)–(2.38). For a given
ν > 1, set µ = (λβ)2ν(ν − 1) > 0 and define

b =
2µ

ξ2
> 0, a = −2κ

ξ2
< 0, D = a2 − 4b.

The moment E[S(T )ν ] will be finite for all T > 0 if D ≥ 0. If D < 0, then E[S(T )ν ]
will be finite for T < T ∗ and infinite for T ∗ ≥ T , where T ∗ is given by

T ∗ =
2

ηξ2
(π + arctan (2η/a)) , η :=

1

2

√
−D.

For CMS linked cash flows, the second-order moment is of particular importance.
In case of the convexity approximation given in (2.60) this is quite obvious. But

58As is evident for example from Formula (2.60).
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notice, that also in case of the generic expression for g(·) in (2.55) we have

g(s) = EA
[
P (T, T + δ)

A(T )

∣∣ S(T ) = s

]
= sEA

[
P (T, T + δ)

1− P (T, Tk+n)

∣∣ S(T ) = s

]
≤ sEA

[
1

1− P (T, Tk+n)

∣∣ S(T ) = s

]
.

All rational interest-rate models would have the last conditional expectation decay
exponentially fast to 1 for large s, which leaves us again (see (2.65)), to leading order,
with the evaluation of the second-order moment E[S(T )2].

For illustration, Figure 2.7 shows the dependence of the explosion time T ∗ on β
and λ. The stochastic-volatility parameters κ and ξ were set to realistic values (cp.
Section 7.2). As is evident from the figure, lowering the skew parameter β has a
dampening effect, pushing T ∗ further into the future. This is intuitively clear, since
lowering β essentially redistributes probability mass from the right tail of the proba-
bility distribution to the left tail and hence produces more left-skewed distributions.
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Figure 2.7: Critical explosion time T ∗ for the second-order moment of
S(T ) in the displaced Heston model. Stochastic volatility parameters:
κ = 0.06, ξ = 0.9.

With (ATM) volatilities of long-maturity swaptions typically in the 10%–20%
range and with skews β typically less than 0.3, moment explosion are most often
not an issue. However, in high-volatility regimes or when long-dated options are to
be priced, the finiteness of the relevant moments should always be checked. This
is particularly important, since numerical pricing routines usually have a built-in
dampening effect. It might therefore not be obvious that a stochastic-volatility model
suffers from moment explosions. For example, when computing an expectation by
numerical integration, the integral is typically truncated at some large finite value. If
the integral value initially grows only very slowly in the upper bound, then one might
be lead to the conclusion that the expectation exists, even if, in fact, it does not.
Similarly, a user who is performing Monte Carlo simulations might see reasonable
looking prices, albeit that these prices will not converge when increasing the number
of Monte Carlo paths.
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2.6.2 CMS Spread Products

CMS spread products are linked to the difference between two CMS rates, where
typical examples are the 10Y vs. 2Y or the 30Y vs. 2Y spread. In its simplest form,
spread-linked cash flows can be generated by going long a CMS swap based on, say,
the 10Y rate and going short a CMS swap based on the 2Y rate. Neglecting the fixed
leg, this strategy pays off at a payment time Tk + δk, δk ≥ 0 the amount

Sk,k+n(Tk)− Sk,k+m(Tk),

where in case of an underlying tenor structure based on semiannual (quarterly) fixings
we would have n = 20(40) and m = 4(8) to cover 10 years and 2 years, respectively.
More general payoffs linked to CMS spreads can be found in the market in the form
of CMS spread-leveraged notes or exotic swaps paying coupons59 of the form

Ck = max {min {g · (Sk,k+n(Tk)− Sk,k+m(Tk)) + s, c} , f} , (2.66)

with a gearing factor g, spread s, cap c and floor f . CMS spread-linked structures
are not affected by shifts in the overall level of the yield curve, but rather depend on
the slope of the yield curve. By buying such structures, investors can express their
view on (or hedge risks associated with) the relationship between the long and the
short end of the yield curve.

As discussed earlier, yield curves tend to be upward sloping most of the time60.
Moreover, the long end is often observed to be relatively flat, which implies that
future realized 10 year and 2 year rates (as seen today) will be approximately equal.
Therefore, if an investor believes that either the current yield curve will steepen
further61 or that future realized yield curves will be again upward sloping, and not
as flat as projected by today’s long end of the yield curve, she might be interested
in buying a CMS spread-linked note62. Depending on whether a certain product
benefits from a curve steepening or flattening, such structures are often also called
(curve) steepeners or flatteners.

A standard CMS call spread option or CMS spread cap pays at a sequence of
payment times Tk + δk the amounts

(Sk,k+n(Tk)− Sk,k+m(Tk)−K)+. (2.67)

That is, similar to Libor and CMS caps, CMS spread caps consist of a sequence of
caplets (European call options). There exists a relatively liquid broker market for
such spread options on EUR and US$ CMS rates and prices are quoted on a regular
basis.

CMS spread-linked products typically cannot be valued in terms of vanilla prod-
ucts by a replication argument. Observe that the value of the payoff (2.66) depends

59In case of a swap, the exotic leg pays the structured coupons, while the other leg may receive fixed
rates or floating Libor (plus spread).
60At least in the USA, Japan and the euro countries.
61As remarked in the introduction, this might be the case, for instance, if a central bank is expected
to loosen monetary policy due to a weak economy. Alternatively, long rates may be expected to
increase due to inflationary pressure.
62With n > m and g > 0.
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on the joint distribution of the swap rates under a common pricing measure. For
notational simplicity let us assume that we have fixed k, n and m and denote the two
swap rates by Si(T ), i = 1, 2 and the payment time by T+δ. Using the T+δ-forward
measure, we obtain for the (undiscounted) value of the payoff (2.67)

V (0;T,K) = ET+δ
[
(S1(T )− S2(T )−K)+

]
. (2.68)

Note that generally there does not exist a common measure under which both
S1(t) and S2(t) are martingales. Although, in principle, we could switch to one of the
natural swap measures63 QAi , the T + δ-forward measure is often more natural and
more convenient to work with. In particular, when working under the forward mea-
sure, both rates are“equally”affected by certain measure-change related adjustments,
and possible approximation errors often tend to at least partially cancel.

Similar to single-rate vanilla options, market prices of CMS spread options are
often quoted in terms of implied volatilities. More specifically, the implied Normal
(also known as basis-point) spread volatility σ(T,K) for strike K and maturity T is
defined by equating the undiscounted market price of a spread option to the option
price formula in the Bachelier (or Normal) model, i.e.,

Vmkt(0;T,K) = CBach(0, S(0),K, T, σ(T,K)) (2.69)

where CBach(t, s,K, T, λ) is the call option pricing formula in the Bachelier model with
volatility λ as defined in (2.21). In the above equation, S(0) denotes the convexity-
adjusted forward (CMS) spread S(0) := ET+δ [S1(T )− S2(T )], which can be com-
puted by using the techniques discussed in Section 2.6.1. Notice that the Bachelier
rather than the Black model is used for quoting implied volatilities, as the spread
S1(T )− S2(T ) can certainly become negative.

The Bachelier model provides a convenient way of quoting spread-option prices,
but similar to single-rate vanillas, Normal spread-implied volatilities will generally
depend on strike and maturity, i.e., there will be again volatility smiles reflecting
the fact that market prices are not consistent with assuming a Normal model for
the spread64. Furthermore, the Normal model provides no link to the distributions
(including swaption volatilities) of the underlying swap rates, which makes the model
of limited use for risk-management and hedging purposes.

In order to price CMS spread options in a really consistent and arbitrage-free
way, a proper term-structure model is generally needed, and we will devote Chapter
4 to the topic of pricing CMS spread options in a certain class of term-structure
models. Before moving on, we shall briefly review an approach, that, despite some
obvious drawbacks, has become the de facto market standard for pricing “vanilla”65

European CMS spread options.

The Copula Approach
In Sections 2.5.1–2.6.1 we have seen that for pricing single-rate derivatives it is often
sufficient to use vanilla models, which model only the evolution of one particular rate.

63In which case at least on rate would be a martingale.
64 For market-implied spread volatility surfaces see Figures 7.4 and 7.10 in Section 7.2.
65The market for CMS spread options of the most basic form (2.67) has become relatively liquid in
recent years, so that one can almost speak of a vanilla (spread) options.
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This is not only more convenient and easier from a mathematical point of view, but it
is usually also faster and more accurate than using a full term-structure model. “More
accurate” is to be understood in the sense that it is generally more difficult to fit the
market-implied distribution of one particular rate with a model that simultaneously
specifies the dynamics of the whole yield curve. Given the high traded volumes in
many derivatives markets, there is often not much room for pricing errors due to not
being able to fit market-observable prices.

The same carries over to vanilla CMS spread options, which have become fairly
liquid in recent years. Essentially, what we would like to have is a fast and flexible
(two-rate) vanilla model, that specifies the joint dynamics of only the two underlying
swap rates. In order to obtain such a model, one usually proceeds along the following
lines. First recall, that we can deduce the distribution of each swap rate Si(T )
under its swap measure QAi from market prices of swaptions across strikes. Further,
by specifying functions gi(·) we can translate these swap-rate distributions into the
corresponding distributions under the T + δ-forward measure. More precisely, we
have for the density of Si(T ) under QT+δ (see Equations (2.52) and (2.54))

QT+δ (Si(T ) ∈ ds) =
Ai(0)

P (0, T + δ)
gi(s)QAi(Si(T ) ∈ ds) (2.70)

with

gi(s) = EAi
[
P (T, T + δ)

Ai(T )

∣∣ Si(T ) = s

]
. (2.71)

Formulas (2.70)–(2.71) are exact as written, but gi(·) would virtually always be ap-
proximated by a simple function of Si(T ) as was demonstrated in Section 2.6.1.
In a two-rate setting this approach will lead to some inconsistencies, since each
P (T, T + δ)/Ai(T ), i = 1, 2 will generally depend on both swap rates S1(T ) and
S2(T ), and the calculation of gi(s) should therefore incorporate the dependence struc-
ture of both rates. Nevertheless, for tractability reasons the measure change related
calculations are most often done independently from the dependence structure mod-
eling.

Having determined the marginal distributions of Si(T ) under the forward mea-
sure, the joint distribution of (S1(T ), S2(T )) can now be obtained by linking the
margins with a so-called copula. A two-dimensional66 copula C : [0, 1]2 → [0, 1] is a
cumulative distribution function on [0, 1]2 with standard uniform margins, i.e.,

C(u, 1) = u and C(1, v) = v.

For given marginal CDFs Fi(·), i = 1, 2, a copula can be used to construct a bivariate
CDF

FC(x1, x2) := C(F1(x1), F2(x2)) (2.72)

having margins F1(·) and F2(·). Conversely, if F (· , ·) is a joint CDF with margins
F1(·) and F2(·), then there exists a copula67 C(· , ·), such that

F (x1, x2) = C(F1(x1), F2(x2)).

66The generalization to d dimensions is straightforward.
67If the margins are continuous, then it is unique.
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Using a somewhat loose notation, we may therefore write

joint distribution = margins⊕ copula.

For a more thorough introduction to copulas and their use in finance, we refer the
reader to [CLV04], [MFE05] and [Nel06].

Provided that the densities of the margins and of the copula exist, the density of
the CDF FC(· , ·) exists and is given by

fC(x1, x2) = c(F1(x1), F2(x2))f1(x1)f2(x2),

with fi(x), i = 1, 2 denoting the marginal densities and c(· , ·) the copula density.
Calculating spread option prices as given in (2.68) is now only a matter of calculating
a two-dimensional integral

V (0;T,K) =

∫∫
(x1 − x2 −K)+fC(x1, x2)dx1dx2.

One of the most commonly used copulas is the so-called Gaussian copula, which
represents the dependence structure of a bivariate Normal distribution and is defined
by

CGauss(x1, x2) = Ψ
(
Φ−1(x1),Φ−1(x2); ρ

)
,

where Ψ(·, · ; ρ) is the bivariate standard Normal CDF with correlation ρ ∈ (−1, 1)
and Φ(·) is the (one-dimensional) standard Normal CDF. In practice, however, it will
generally not be possible to fit market-observed spread-option prices across strikes
with only one correlation parameter68 ρ and other, more flexible copulas must there-
fore be used instead. For examples of parametric copula families, that are possibly
better suited for pricing CMS spread options, we refer the reader to Chapter 17 of
[AP10c].

Arguably the main reason why the copula approach is so popular in practice, is
the ease with which the joint distribution of S1(T ) and S2(T ) can be parameterized
and manipulated, while perfectly matching the market-implied marginal distribu-
tions. Market-observable prices of European spread options can therefore be easily
inter- and extrapolated in an arbitrage-free way. However, using copulas is a totally
static approach, where only the joint terminal distribution is of importance, while the
dynamic behavior of the underlying rates and the spread process is neglected. More-
over, the copula parameters often lack any economic interpretation and may change
in an unexpected way when the underlying rates move. It is therefore questionable
whether a copula based model can be reliably used for hedging purposes.

Since we are mainly interested in pricing exotic CMS spread options and extract-
ing market implied information about the dynamic behavior of interest rates, we will
not consider the copula approach any further.

Remark 2.6.3. An interesting application of copulas is the derivation of certain no-
arbitrage bounds. More specifically, for a given set of single-rate European option
prices, the so-called Fréchet-Hoeffding copula bounds can be used to derive lower
and upper bounds for prices of spread- and other two-rate options. Moreover, super-
replicating strategies can be constructed to exploit possible arbitrage opportunities.
For more details see [CLV04] and [McC11].

68Using different ρ′s for different strikes will lead to a correlation smile or frown.
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2.6.3 More Exotic Products

The various interest-rate derivatives that we have introduced in the last sections
were all of European type and their payoffs depended only on one or two rates. In
the following we give a brief overview of more sophisticated (exotic) interest-rate
products.

Bermudan Swaptions
A financial product is called Bermudan if it has multiple exercise dates, i.e., at
prespecified time points Ti, the holder of such a product can choose between different
payments or financial products. In this sense, Bermudan options line up in between
European options, which can be “exercised” only at expiry T , and American options,
which can be exercised at (almost) any time until expiry69.

A Bermudan swaption is an option to enter into a vanilla fixed-for-floating swap
at any (or any from a subset) of the swap fixing times, say {Tk}N−1

k=0 . If the option
is exercised at time Tn, then the option expires and the holder enters into a swap
with first fixing time Tn, last payment time TN and fixed rate K, which is the strike
of the Bermudan swaption. At time Tn, the value of the Bermudan option will
therefore be the maximum of the swap value and a Bermudan swaption with exercise
dates {Tk}N−1

k=n+1. Bermudan swaptions are, by far, the most liquid exotic interest-
rate derivatives and are used, for example, by mortgage lenders to hedge against
prepayment risks associated with home mortgage financing.

Exotic Coupons
In an exotic swap a regular floating Libor leg is swapped against a leg paying struc-
tured coupons Ck = Ck(Xk(Tk)), that are allowed to be arbitrary functions of ob-
served interest rates Xk(Tk), such as Libor or CMS rates. Some examples are:

r Capped and floored floaters,

Ck(x) = max {min {g · x+ s, c} , f} ,

with gearing g, spread s, cap c and floor f .

r Capped and floored inverse floaters,

Ck(x) = max {min {s− g · x, c} , f} ,

with gearing g, spread s, cap c and floor f .

r Digitals,

Ck(x) = R1[K,∞)(x) or Ck(x) = R1(−∞,K](x),

with coupon rate R and strike K.

69Most interest-rate products are closely linked to a certain discrete tenor structure, on which the
involved rates and fixing/payment times are defined. In a fixed-income setting Bermudan style
options are therefore more natural and more common than American options.
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r Range accruals,

Ck = R
1

Nk

Nk∑
i=1

1[l,u] (Xi(Ti)) ,

with coupon rate R, lower bound l and upper bound u. That is, the coupon is
proportional to the number of days (in the coupon period) on which a certain
reference rate stayed within a given range or corridor.r Multi-rate coupons

Ck = gX1
k(Tk)1[l,∞)

(
X2
k(Tk)

)
with gearing g and level l, that is, a coupon proportional to one rate is paid if
another rate is above some level l.r Coupons with a snowball (also called ratchet or ladder) feature

Ck = max {min {Ck−1 + Yk, c} , f} ,

where Ck−1 is the previous coupon and Yk may be any of the coupons introduced
above. Coupons of this form are called path-dependent , since they depend not
only on current interest rates, but also on rate observations from previous coupon
periods.

All coupons defined above can certainly also be linked to CMS spreads, rather than Li-
bor or CMS rates. Notice that the first four coupon definitions involve only European-
type options, which can be statically replicated70 with vanilla options (see Prop.
2.6.1). Hence, by themselves, exotic swaps paying such coupons would not require
the use of term-structure models for valuation or risk-management. This changes
though, if these swaps are equipped for example with so-called callability-features,
which we will introduce momentarily.

Before doing so, let us note that exotic swaps often emerge as part of bonds or
notes, sold by banks to investors. Consider for example an investor, who invests a
certain principal amount (e.g., 10 mil. euro) into a structured note, paying any of
the above coupons. The issuer of the note receives the principal amount and invests
it into a money market account, which pays the Libor rate plus or minus a spread.
At maturity, the investor gets back his principal amount. From the perspective of
the issuer, who pays the structured coupons and receives floating Libor, the net
cash-flows of the note are equivalent to those of an exotic swap.

Callable Exotics
Structured notes are often made callable, that is, the issuer of the note has the right to
cancel, or call, the note on a prespecified set of dates, which most often coincide with
the fixing/payment times of the coupons71. If the note is called, the issuer returns
the principal to the investor and no future coupon payments are made. Obviously,
the issuer will only call the note if it is optimal from his point of view and suboptimal

70At least in the single-rate case.
71In general there will be an initial lockout or no-call period (e.g., the first two years), where the
issuer cannot call the note.
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from the investor’s point of view. As a compensation72, the investor can be offered,
for instance, very high fixed initial coupons (cp. Section 7.3). Selling optionality to
the issuer is a so-called yield enhancement strategy.

From the perspective of the issuer, a callable note is equivalent to a straight exotic
swap plus a Bermudan-style option73 to enter a swap with opposite cash-flows, such
that all cash-flows cancel if the option is exercised.

The above list of exotic interest-rate derivatives is of course far from being ex-
haustive and we refer the reader to [BM05], [Fri07] and [AP10a] for other possible
coupon and product specifications. Further examples of structured notes and also
motivations for when and why such products might be interesting to investors can
be found, e.g. in [Nef08] and [Tan10]. Some concrete examples will also be provided
in Chapter 7.

2.7 Term-Structure Models: From Short-Rate Models to HJM

So far, our main focus has been on vanilla models, which specify the dynamics of
only one or (with some tweaks) two interest rates. These models are sufficient for
pricing relatively simple products such as for example European-type options on a
single Libor or swap rate.

Many practically relevant securities, however, which involve for example path-
dependent payoffs or early-exercise features, depend on the dynamics of the entire
yield curve and not just on one or two points on it. Pricing and risk-managing such
products therefore necessitates full term-structure models, which specify the joint
arbitrage-free evolution of all points on the yield curve.

In Section 2.2 we have seen that the different types of interest rates are related
through certain formulas involving zero-bond prices and are hence in some sense
equivalent. Therefore, there is a certain arbitrariness in choosing a particular “coor-
dinate system” for describing the arbitrage-free evolution of the yield curve, and we
could take for example the short rate, instantaneous forward rates or a set of Libor
rates as our basic modeling quantities. In fact, all these choices correspond to dif-
ferent classes of interest-rate models. Despite the conceptual equivalence, it should
be clear that choosing a particular coordinate system will have implications for how
easily a model can be calibrated to market-observable prices.

2.7.1 Short-Rate Models

Historically, the first dynamic term-structure models were short-rate models with ar-
guably the most prominent examples being the Vasicek [Vas77] and the Cox-Ingersoll-
Ross [CIR85] model. In this model class, the dynamics of the short-rate under the

72Note that the investor implicitly sells the issuer an option.
73Essentially, it is a Bermudan swaption, where the underlying of the swaption is not a vanilla
fixed-for-floating swap but an exotic swap.
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risk-neutral measures74 Q are generally assumed to be of the form

dr(t) = µ(t, r(t))dt+ σ(t, r(t))dW (t),

where µ(t, r) and σ(t, r) are well-behaved functions and W (t) is a one-dimensional
Brownian motion under Q. In Table 2.1 we give some classical examples of short-rate
models.

Once the short-rate dynamics have been specified, discount bond prices are given
in terms of the fundamental formula

P (t, T ) = EQ
t

[
e−
∫ T
t r(s)ds

]
, (2.73)

which we have already encountered in Section 2.3. Short-rate models are generally
quite tractable and for many models listed in Table 2.1, the above expectation can be
calculated analytically. Depending on the particular model, also prices of caplets and
swaptions may be given in closed or semi-closed form, which simplifies the calibration
to market-observable prices.

Model Dynamics

Vasicek (1977) dr(t) = κ(θ − r(t))dt+ σdW (t)

Dothan (1978) dr(t) = κr(t)dt+ σr(t)dW (t)

Brennan & Schwartz (1979) dr(t) = κ(θ − r(t))dt+ σr(t)dW (t)

Cox, Ingersoll & Ross (1985) dr(t) = κ(θ − r(t))dt+ σ
√
r(t)dW (t)

Ho & Lee (1986) dr(t) = θ(t)dt+ σdW (t)

Hull & White (1990) dr(t) = κ(t)(θ(t)− r(t))dt+ σ(t)dW (t)

dr(t) = κ(t)(θ(t)− r(t))dt+ σ(t)
√
r(t)dW (t)

Black & Karasinski (1991) dr(t) = r(t)(θ(t) + σ2/2− κ log r(t))dt+ σr(t)dW (t)

Pearson & Sun (1994) dr(t) = κ(θ − r(t))dt+ σ
√
r(t)− β dW (t)

Table 2.1: Classical (one-factor) short-rate models. Here, κ, θ, σ and β
denote scalar (possibly deterministically time-dependent) model parame-
ters.

One of the main drawbacks of the earlier (time-homogeneous) models is, that
they are not capable of fitting the initial yield curve exactly. Clearly, using just three
parameters, say κ, θ, σ, it will generally be impossible to obtain a perfect match
between the (theoretical) model prices Pmod(0, Ti) and the observed market prices
Pmkt(0, Ti), i = 1, . . . , N , where typically N � 3. Models of this type are therefore
also referred to as “endogenous term-structure models”, meaning that the initial yield
curve is a model output rather than an input. This situation is somewhat unsatis-
factory in that it gives rise to arbitrage opportunities when such a model is used for
pricing and hedging derivatives (even though internally the model is consistent and
arbitrage-free). One way to solve this problem is to increase the degrees of freedom
of the model by allowing for time-dependent parameters. Famous examples of this

74In the original works, model dynamics were often derived via equilibrium considerations or by
first specifying the dynamics under the real-world measure, and then changing to the risk-neutral
measure via a certain market price of risk. We instead follow the more modern approach and start
by specifying the dynamics under the risk-neutral measure directly.
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approach are the Hull & White [HW90] extended versions of the Vasicek and the
CIR model. If the only concern is matching the initially observed bond prices, then
it is usually sufficient to make just one parameter time-dependent. In most cases this
will be the “level parameter” θ, which will then be a function directly given in terms
of the initial discount curve75; see also Equation (2.78) below. Nevertheless, often
also the volatility parameter σ is allowed to depend on time, which helps improving
the fit of the model to market-observable prices of caps and swaptions.

Before the reader starts assuming that introducing time-dependent parameters
is a panacea, we should note that this approach has its limitations and should not
be taken too far. Trying to perfectly match a given set of market prices with time-
dependent parameters may result in a strongly time-inhomogeneous model, implying
a rather unrealistic evolution of future forward rates and volatilities76. As a conse-
quence, model-implied prices and hedging strategies for exotic products might not
be reliable.

Gaussian short-rate models such as the Vasicek model or its popular Hull-White
extension are generally fairly tractable. A drawback of these models is, however, that
they allow interest rates to become negative. Given the prevalence of log-normal
distributions in derivatives pricing theory, it should therefore come as no surprise
that many authors have attempted to introduce short-rate models with log-normal-
like behavior, i.e., models where the dynamics of the short-rate r(t) are of the form

dr(t) = O(dt) + σ(t)r(t)dW (t)

for some deterministic function σ(t). Well-known examples are the models due to
Dothan [Dot78] and Black & Karasinski [BK91], see also Table 2.1. Although log-
normal models guarantee interest rates to stay positive, they generally do not have
closed-form pricing formulas for zero-coupon bonds or interest-rate options77, which
substantially reduces their tractability. An even more severe drawback, shared by all
log-normal short-rate models, is the fact that the expected return of investing in the
continuously compounded money market account over any positive time interval

EQ
t

[
B(t+ ∆t)

B(t)

]
= EQ

t

[
e
∫ t+∆t
t r(s)ds

]
(2.74)

will be infinite78, see [SS97]. This disqualifies log-normal short-rate models from
being used in many applications.

Multi-Factor Short-Rate Models
The short-rate models that we have considered so far are all one-factor models,
driven by only a single Brownian motion. The instantaneous correlations between

75The yield curve is now an input rather than an output and we therefore have an exogenous term-
structure model .
76See also the discussions in Chapter 3 of [BM05] and Chapter 10 of [AP10b].
77The Dothan model is the only log-normal short-model with an analytical formula for zero-coupon
bonds. However, the formula involves a double integral with modified Bessel functions, so the
advantage of having an “explicit” formula is dramatically reduced.
78Roughly speaking, the problem is that if r(t) is log-normal then we have a “double exponential”
expression inside the expectation on the right hand side of (2.74).
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forward rates of different maturities are hence all equal to one and the points along
the forward-rate curve always move in the same direction. This is contrary to what
can be observed in reality79 and precludes these models from being used for pricing
and risk-managing products, that strongly depend on correlations across the term
structure of forward rates. Accordingly, in order to properly deal with securities
that depend on “non-parallel” moves of the forward-rate curve, we need to extent
the above models to allow for multiple Brownian drivers. Often this can be done by
following an additive approach, where the short-rate is assumed to be the sum of a
collection of one-dimensional processes. One very popular example is the two-factor
additive Gaussian model (also known as G2++), which is a generalization of the
Vasicek model. Here, the short-rate under the risk-neutral measure is modeled as
(see [BM05], p. 143)

r(t) = x(t) + y(t) + ϕ(t),

where the processes x(t) and y(t) satisfy

dx(t) = −ax(t)dt+ σdW1(t), x(0) = 0,

dy(t) = −by(t)dt+ ηdW2(t), y(0) = 0,

where (W1(t),W2(t)) is a two-dimensional Brownian motion with instantaneous cor-
relation ρ ∈ (−1, 1)

dW1(t)dW2(t) = ρdt,

and where a, b, σ, η are positive constants. The deterministic function ϕ(t) would
then be chosen such that the model matches the initially observed yield curve. For
more general formulations of d-factor short-rate models see Chapter 12 of [AP10b].

Multi-factor models are not only more realistic in capturing the main charac-
teristics of yield-curve movements, but they are also more flexible in that they can
generally better fit market-observed prices of caplet and swaption volatilities, with-
out relying too heavily on time-dependent parameters. On the other hand, however,
multi-factor short-rate models are numerically substantially more demanding than
their one-factor counterparts. Analytical tractability is therefore often key to making
such models applicable in practice. This is the main reason why Gaussian models
like the G2++ model are so popular, despite their unpleasant feature of allowing
for negative rates. A CIR2++ model, which would guarantee rates to stay positive,
would be distinctively more difficult to handle numerically.

A major disadvantage of short-rate models in general is that these models are
formulated in terms of an artificial non-observable quantity. Dynamic properties of,
say, Libor and swap rates can be manipulated only indirectly through the short-rate
parameters. In particular, it is often difficult to precisely control the decorrelation
among different points along the forward-rate curve (no matter how many factors
are used), which makes short-rate models only of limited use for pricing and risk-
managing CMS spread-linked securities. We therefore stop our review of short-rate
models at this point and refer the reader to [BM05] and [AP10b] for more details on
this model class.

79See Chapter 7.



2.7. Term-Structure Models: From Short-Rate Models to HJM 57

2.7.2 The HJM Framework

As we have noted in the introduction of this section, specifying the arbitrage-free
evolution of the yield curve can be done in various ways, of which using the short-
rate process is only one example. Heath, Jarrow and Morton (HJM) [HJM92] take
the instantaneous forward rates80

f(t, T ) = −∂ logP (t, T )

∂T
,

as the fundamental quantities to model and assume, that under the risk-neutral
measure Q, the forward rate f(·, T ) for each T ∈ [0, T ∗] evolves according to

df(t, T ) = α(t, T )dt+ σf (t, T )′dW (t), 0 ≤ t ≤ T, (2.75)

where W (t) is a d-dimensional Q-Brownian motion and α(·, T ) resp. σf (·, T ) are one-
resp. d-dimensional adapted processes. Observe that here the entire instantaneous
forward-rate curve is used as the underlying “state variable” and Equation (2.75)
indeed represents an infinite dimensional system of SDEs. The main achievement of
Heath, Jarrow and Morton [HJM92] is usually considered to be the so-called HJM
drift condition:

Proposition 2.7.1. Assume that under the risk-neutral measure Q the forward-rate
dynamics are given by (2.75), then we have

α(t, T ) = σf (t, T )′
∫ T

t
σf (t, s)ds, 0 ≤ t ≤ T ≤ T ∗, Q− a.s., (2.76)

so that the integrated dynamics of f(t, T ) under the risk-neutral measure are

f(t, T ) = f(0, T ) +

∫ t

0
σf (u, T )′

∫ T

u
σf (u, s)dsdu+

∫ t

0
σf (u, T )′dW (u). (2.77)

This demonstrates that, contrary to short-rate models, where we are free81 to
choose the diffusion and the drift coefficient, an HJM model is fully specified once
the diffusion coefficients σf (t, T ) have been specified for all t and T . A clear advantage
of these models is that they take the initial forward-rate curve f(0, T ), 0 ≤ T ≤ T ∗ as
an exogenous input and therefore perfectly fit the initial yield curve by construction
(i.e., we have an exogenous model). A drawback, however, is the sheer dimensionality
of the model: In order to describe the underlying state variable at time t, we need
to keep track of a continuum of instantaneous forward rates {f(t, T ), t ≤ T ≤ T ∗}.
Note also, that Equation (2.77) constitutes an arbitrage-free framework rather than a
specific model, as we can almost arbitrarily81 choose the diffusion coefficients σ(t, T ).
In fact, any diffusive arbitrage-free interest-rate model can be derived as a special
case of the HJM framework. This includes the short-rate models from above just as
well as the so-called market models that we will consider in the next chapter.

80See also Equation (2.6).
81Subject to regularity conditions.
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Note, for example, that from Equation (2.77) it follows that the short rate r(t)
under Q is given by

r(t) = f(t, t) = f(0, t) +

∫ t

0
σf (u, t)′

∫ t

u
σf (u, s)dsdu+

∫ t

0
σf (u, t)′dW (u).

Suppose now that d = 1 and that the volatilities of the instantaneous forward rates
are given by

σf (t, T ) = σe−κ(T−t).

Then, straightforward calculations show82 that the dynamics of the short rate under
Q are given by

dr(t) = κ(θ(t)− r(t))dt+ σdW (t),

with

θ(t) =
1

κ

∂

∂T
f(0, T )

∣∣∣
T=t

+ f(0, t) +
σ2

2κ2

(
1− e−2κt

)
. (2.78)

That is, we have obtained a version of the Hull-White extended Vasicek model,
where the time-dependent level parameter θ(t) ensures that the initial yield curve is
recovered.

Even though we can, in principle, derive any arbitrage-free interest-rate model83

by appropriately specifying the volatility coefficients σ(t, T ) in the HJM framework,
this is generally not the most natural way to derive a specific model. Moreover,
without any further restrictions on the (possibly state-dependent) coefficients σ(t, T ),
a particular choice will generally lead to a model that is not Markovian in a finite
number of state variables, i.e., we have to keep track of a continuum of processes.
There exist however, certain conditions on the volatility structure of forward rates
under which the short rate r(t) is either outright Markov or at least can be written in
terms of a finite-dimensional Markovian vector of state variables, see e.g., Carverhill
[Car94] and Ritchken & Sankarasubramanian [RS95]. This is important for practical
applications, as the models can then be efficiently implemented using, for instance,
lattice-based methods.

As a final remark let us note that in order to avoid negative forward rates one
might again be tempted to consider volatility specifications of the form

σf (t, T ) = σ(t, T )f(t, T )

for some deterministic function σ(t, T ), in which case the forward rate f(t, T ) would
be log-normally distributed under the T -forward measure. However, similar to log-
normal short-rate models, this specification suffers from severe technical problems.
More specifically, forward rates will explode to infinity with positive probability and
zero-coupon bond prices are hence all equal to zero, leading to obvious arbitrage op-
portunities. Sandmann and Sondermann [SS97] observed that these log-normal explo-
sion problems can be avoided altogether by shifting from continuously-compounded
to simply-compounded interest rates. This ultimately laid the foundations for the
so-called Libor market models, which we will consider in the next chapter.

82See e.g. [Fri07], p. 359.
83As long as it is driven by Brownian motions.



Chapter 3

The Libor Market Model

As we have argued earlier, working with interest rates based on continuous com-
pounding, such as the short-rate r(t) or forward rates f(t, T ), is not particularly at-
tractive in practical applications. For one, these rates are neither directly observable
in the market, nor do they directly specify the payoff of any traded derivative con-
tracts. This renders the calibration to prices of market-observable instruments often
cumbersome and does not allow for an intuitive interpretation of the corresponding
model parameters. Moreover, none of the short-rate or low-factor Markovian HJM
models is compatible with the standard market-practice of using Black-type formulas
for pricing vanilla interest-rate options.

In the late 1990’s the focus therefore shifted from the unobservable instantaneous
rates to quoted market rates and a new class of so-called market models emerged.
While the pioneering works by Miltersen, Sandmann & Sondermann [MSS97] and
Brace, Ga̧tarek & Musiela (BGM) [BGM97] focused on Libor rates, Jamshidian
[Jam97] later extended the approach also to a swap-rate context. One of the most
striking feature of market models, and eventually the main reason for their success,
is their consistency with the market practice of pricing caps, floors and swaptions
by means of Black-type formulas, while at the same time being proper arbitrage-
free term-structure models1. Accordingly, these models can be calibrated to a set of
plain-vanilla options “virtually by inspection”2.

In the following section we will introduce the log-normal Libor market model
(LMM), which is usually considered as the LMM3. Several approaches have appeared
in the literature for deriving the no-arbitrage dynamics of forward Libor rates: See,
for instance, the original articles mentioned above as well as Musiela & Rutkowski
[MR97] or Rutkowski [Rut99]. While the various derivations are by and large equiva-
lent, they nevertheless display significant differences4. In the earlier works, Libor-rate
dynamics were often derived within the HJM framework by explicitly specifying (a
continuum of) bond-price or instantaneous forward-rate volatilities. Showing that
the LMM falls within the HJM model class, however, represents an unnecessary ex-
tra burden. We shall therefore follow the more modern forward-measure approach

1At that time this was particularly remarkable in the light of the problems one was experiencing
with log-normal short-rate and forward-rate models.

2See [Reb02].
3Sometimes also referred to as BGM model.
4For a nice overview of the different approaches see the survey article by Rutkowski [Rut01].
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as presented e.g. in [Rut99] and work only with a finite collection of forward Libor
rates.

3.1 Model Set-Up and No-Arbitrage Dynamics
In the following let 0 ≤ T0 < T1 < . . . < TN be a discrete tenor structure together
with a sequence τn := Tn+1−Tn, n = 0, . . . , N−1 of year fractions. Typically the τn’s
will be either set to (roughly) 0.25 or 0.5 (corresponding to 3 or 6 months), depending
on the accrual period of the associated observable Libor rates. Rather than keeping
track of the entire yield curve, we focus only on the evolution of a finite collection of
Libor forward rates

Ln(t) :=
1

τn

(
P (t, Tn)

P (t, Tn+1)
− 1

)
, 0 ≤ t ≤ Tn, 0 ≤ n ≤ N−1.

Notice that the forward Libor rate Ln(t) expires at time Tn, so that at a given time
instant t ∈ [0, TN−1] only the forward Libor rates with indices n ≥ η(t)5 are still
“alive”.

Further, let {σn(t)}N−1
n=0 be a collection of deterministic (bounded) d-dimensional

instantaneous volatility functions, for some fixed d ∈ {1, . . . , N}. As shown in Lemma
2.3.1, Ln(t) must be a martingale under the Tn+1-forward measure QTn+1. Therefore,
we may postulate that for n ∈ {0, . . . , N−1}, the forward Libor rate Ln(t) has the
following driftless dynamics under the respective forward measure QTn+1:

dLn(t) = Ln(t)σn(t)′dWn+1(t), 0 ≤ t ≤ Tn, (3.1)

where Wn+1(t) := W Tn+1(t) is a d-dimensional standard Brownian motion under
QTn+1 . The unique strong solution of the SDE (3.1) is then easily seen to be

Ln(t) = Ln(0) exp

(
−1

2

∫ t

0
‖σn(s)‖2ds+

∫ t

0
σn(s)Wn+1(s)

)
, 0 ≤ t ≤ Tn, (3.2)

and hence Ln(t) is log-normally distributed for all 0 ≤ t ≤ Tn.
In order to fully specify the model (and to establish existence of the model), we

need to find the joint dynamics of all forward Libor rates under one common measure:

Proposition 3.1.1. Let k ∈ {1, . . . , N} be fixed and assume that Ln(t), 0 ≤ t ≤
Tn, n = 0, . . . , N−1 satisfy (3.1). Then the following relations for the Libor dynamics
under the forward measure QTk hold:

n > k − 1 : dLn(t) = Ln(t)σn(t)′

(
n∑
i=k

τiLi(t)

1 + τiLi(t)
σi(t)dt+ dW k(t)

)
, (3.3)

n < k − 1 : dLn(t) = Ln(t)σn(t)′

(
−

k−1∑
i=n+1

τiLi(t)

1 + τiLi(t)
σi(t)dt+ dW k(t)

)
, (3.4)

where 0 ≤ t ≤ min{Tn, Tk} and W k(t) is a d-dimensional standard Brownian motion
under QTk . The above system of SDEs admits a unique strong solution.

5See Equation (2.14) for the definition of the index function η(t).
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Proof. First we consider the case n > k − 1. In order to derive the Radon-Nikodym
derivative of QTn with respect to QTn−1 , we employ the change-of-numeraire technique
(see p. 9)

ζ(t) =
dQTn−1

dQTn

∣∣∣
Ft

=
P (t, Tn−1)P (0, Tn)

P (t, Tn)P (0, Tn−1)
,

=
1 + τn−1Ln−1(t)

1 + τn−1Ln−1(0)
, 0 ≤ t ≤ Tn−1.

From this formula we can easily compute the dynamics of ζ(t) under QTn

dζ(t) =
τn−1

1 + τn−1(0)
dLn−1(t)

=
τn−1Ln−1(t)

1 + τn−1Ln−1(0)
σn−1(t)′dWn(t)

= ζ(t)
τn−1Ln−1(t)

1 + τn−1Ln−1(t)
σn−1(t)′dWn(t).

Observe that the Girsanov kernel

ϕ(t) :=
τn−1Ln−1(t)

1 + τn−1Ln−1(t)
σn−1(t)

is bounded and hence satisfies the Novikov condition (cp. [Bjö09], p. 167)

ETn
[
exp

(
1

2

∫ Tn−1

0
‖ϕ(t)‖2dt

)]
<∞.

From the Girsanov theorem (cp. [Bjö09], p. 164) it then follows that

dWn(t) =
τn−1Ln−1(t)

1 + τn−1Ln−1(t)
σn−1(t)dt+ dWn−1(t),

where Wn−1(t) is a d-dimensional standard Brownian motion under QTn−1 . Applying
this inductively we obtain

dWn+1(t) =

n∑
i=k

τiLi(t)

1 + τiLi(t)
σi(t)dt+ dW k(t)

and hence

dLn(t) = Ln(t)σn(t)′dWn+1(t)

= Ln(t)σn(t)′

(
n∑
i=k

τiLi(t)

1 + τiLi(t)
σi(t)dt+ dW k(t)

)
,

which is (3.3). The corresponding result for n < k − 1 follows similarly.



62 3. The Libor Market Model

Finally, by applying Itô’s formula we obtain

n > k − 1 : d logLn(t) = σn(t)′

(
n∑
i=k

τiLi(t)

1 + τiLi(t)
σi(t)dt−

1

2
σn(t)dt+ dW k(t)

)
,

n < k − 1 : d logLn(t) = σn(t)′

(
−

k−1∑
i=n+1

τiLi(t)

1 + τiLi(t)
σi(t)dt−

1

2
σn(t)dt+ dW k(t)

)
.

Existence and uniqueness of a strong solution to this system of SDEs is ensured (see
e.g. [Øks03]) by the fact that the diffusion coefficients are deterministic and bounded,
and the drift coefficients are bounded and continuous functions of the forward Libor
rates.

Corollary 3.1.1. Under the assumptions of the above proposition and for n > k, the
following relationship between the Brownian motions Wn(t) and W k(t) under the
respective forward measures QTn and QTk holds:

dWn(t) =
n−1∑
i=k

τiLi(t)

1 + τiLi(t)
σi(t)dt+ dW k(t).

Observe that the numeraire process P (·, Tk) associated with the Tk-forward mea-
sure is only alive up to time Tk. Accordingly, the Libor rates can be evolved under
this measure only up to time t = Tk. In most cases one therefore works either under
the so-called terminal measure, i.e., the forward measure QTN , associated with the
last zero bond defined on the tenor structure, or under the spot Libor measure QBd

(see Section 2.3), involving repeatedly rolling over in the bond with the shortest time
to maturity available. In both cases the numeraire process remains alive throughout
the time span of the tenor structure {Tn}Nn=0. This is necessary for the evaluation
of derivative securities that may involve random payoffs at any date in the tenor
structure. The forward Libor dynamics under the spot Libor measure are given by
the following

Proposition 3.1.2. Let Ln(t), 0 ≤ t ≤ Tn, n = 0, . . . , N−1 satisfy (3.1). The forward
Libor dynamics under the spot Libor measure QBd are given by

dLn(t) = σn(t)′

 n∑
i=η(t)

τiLi(t)

1 + τiLi(t)
σi(t)dt+ dWBd(t)

 ,

where WBd(t) is a d-dimensional standard Brownian motion under QBd.

Proof. Recall from Section 2.3 that the numeraire process associated with the spot
Libor measure is given by

Bd(t) = P
(
t, Tη(t)

) η(t)−1∏
i=0

(1 + τiLi(Ti)) .
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At any time t the random part of this process is the factor P (t, Tη(t)) (all Libor rates
with index i < η(t) will have been fixed by time t). So essentially just we need to
derive the dynamics under the measure QTη(t) . Starting from the dynamics under
QTn+1 and proceeding inductively as in the proof of Proposition 3.1.1 we obtain

dWn+1(t) =
n∑

i=η(t)

τiLi(t)

1 + τiLi(t)
σi(t)dt+ dW η(t)(t)

as stated.

An immediate consequence of the log-normal property (3.2) is that caplets can
be priced within the log-normal LMM by means of Black’s formula. The model can
therefore be trivially calibrated to a collection of market-implied caplet volatilities
{σmkt

n }N−1
n=0 by choosing the instantaneous Libor volatilities {σn(t)}N−1

n=0 such that (cp.
Equation (2.15) and Remark 2.4.1)

(σmkt
n )2Tn =

∫ Tn

0
‖σn(t)‖2dt. (3.5)

However, from the above propositions it is also easy to see that a forward Libor
rate Ln(t) is a log-normal martingale only under its respective forward measure. Put
differently, there exists no measure under which all Libor rates are simultaneously
log-normal. Furthermore, the systems of SDEs stated in the above propositions
do not allow for closed-form analytical solutions and one therefore has to resort to
simulation of discretized versions of the SDEs when pricing derivative securities, that
depend on the joint evolution of several Libor rates. For a comparison of various
numerical discretization schemes see, e.g. [JS08].

Remark 3.1.2. From a mathematical point of view working under the terminal mea-
sure or the spot measure is equivalent. When performing Monte Carlo simulations,
however, it is often advantageous to use the spot measure, since the variance of the
Monte Carlo error is then typically lower (see [Bra08], p. 42) and possible drift
approximation errors are more evenly distributed among the rates (see [BM05], p.
219).

3.1.1 Swap-Rate Dynamics

While pricing caplets in a LMM is, by construction, a fairly easy task, pricing swap-
tions requires some more work as we will see in the following. Consider, for instance,
a payer swaption with strike price K > 0, written on a swap covering the time inter-
val [Tm, Tn], where 0 ≤ m < n ≤ N . In Section 2.4 we have seen that working under
the swap measure Qm,n we may write the time-zero price of such a swaption as (cp.
Equation (2.17))

Vswptn(0) = Am,n(0)Em,n
[
(Sm,n(Tm)−K)+] .

For the dynamics of Sm,n(t) under the measure Qm,n we have (cp. [AP10b]):
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Proposition 3.1.3. Let Li(t), 0 ≤ t ≤ Tm, i = m, . . . , n − 1 satisfy (3.1). The
dynamics of the swap rate Sm,n(t) under the swap measure Qm,n are given by

dSm,n(t) = Sm,n(t)

n−1∑
i=m

wi(t)σi(t)
′dWm,n(t), 0 ≤ t ≤ Tm, (3.6)

where the stochastic weights are

wi(t) =
Li(t)

Sm,n(t)
· ∂Sm,n(t)

∂Li(t)

=
Li(t)

Sm,n(t)
· τiSm,n(t)

1 + τiLi(t)

(
P (t, Tn)

P (t, Tm)− P (t, Tn)
+

Ai,n(t)

Am,n(t)

)
,

and where Wm,n(t) is a d-dimensional standard Qm,n-Brownian motion.

Proof. Recall that by Lemma 2.3.2 Sm,n(t) must be a martingale under the associated
swap measure Qm,n. Further, note that Sm,n(t) can be written as a function of the
Libor rates Lm(t), . . . , Ln−1(t), see Equation (2.10). A straightforward application
of Itô’s lemma then gives the result.

The SDE (3.6) is rather complicated due to the stochastic weights wi(t) and does
not allow for an analytical solution. Therefore, closed-form pricing of swaptions in a
LMM is in general not possible. Nonetheless, having a closer look at the stochastic
weights wi(t), one finds that these are generally slowly varying, such that one obtains
as a reasonable approximation for the dynamics

dSm,n(t) ≈ Sm,n(t)
n−1∑
i=m

wi(0)σi(t)
′dWm,n(t), (3.7)

in which case the swap rate follows again a log-normal martingale. Accordingly,
prices of swaptions can be approximated by using Black’s swaption formula (2.18)
with volatility parameter (cp. Remark 2.4.1)

σm,n :=

√√√√ 1

Tm

n−1∑
i,j=m

wi(0)wj(0)

∫ Tm

0
σi(t)′σj(t)dt .

This approximation, which was first introduced by Hull & White [HW00], is sur-
prisingly accurate6 and allows to efficiently calibrate a LMM to market-observable
swaption prices.

Swap Market Models
The standard LMM as introduced above is based on a set of contiguous forward Li-
bor rates. In contrast, Jamshidian [Jam97] introduces so-called swap market models
(SMM) which take a set of co-terminal7 swap rates {S0,N (t), S1,N (t), . . . , SN−1,N (t)}

6See e.g. [JR03a] and [Reb02] for an analysis of the approximation error. Various other approxi-
mations are analyzed in Chapters 6 and 8 of [BM05].

7I.e., swap rates that share the same final payment date.
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as the fundamental building blocks. The approach was later extended to also cover
the case of co-initial swap rates {S0,1(t), S0,2(t), . . . , S0,N (t)}, see e.g. [HK00] and
[GH04]. Assuming that the swap rates follow log-normal martingales under their re-
spective swap measures, swaptions written on the swap rates underlying a particular
model can be priced by means of Black formulas. As a consequence, SMMs can be
calibrated almost effortlessly to a set of market-observable swaptions prices. Similar
to the LMM case it is possible to derive relations between swap-rate dynamics un-
der different measures, such that the swap rates can be evolved under one common
measure.

In principle, all products that can be priced with LMMs can also be priced with
SMMs and vice versa. The reason is that swap rates can be written as weighted
sums of Libor rates and Libor rates can be expressed as differences of certain swap
rates. Nevertheless, the two model classes are not equivalent and they will generally
not yield the same prices for a given set of caplets and swaptions. In particular, in a
log-normal LMM swaptions cannot be priced (exactly) by means of Black’s swaption
formula (see above), whereas a log-normal SMM does not produce prices in line with
Black’s caplet formula8. This is due to the fact that Libor rates and swap rates
(defined in terms of sums of Libor rates) cannot be simultaneously log-normal under
their respective natural measures. The incompatibility of log-normal LMMs and
SMMs though, is mostly theoretical. In fact, by means of simulation studies (see
Chapter 8 of [BM05]) one can show that swap rates in a log-normal LMM are “very
close” to being log-normal, which is also one reason why the approximation (3.7)
works so well.

Even though SMMs feature some advantages, especially when it comes to pricing
swap-based securities, LMMs are generally easier to handle both mathematically and
numerically. Moreover, it is usually more natural to express swap rates in terms of
Libor rates rather than doing the opposite, i.e., Libor rates are in some sense the
more representative coordinates for describing the yield curve. As a consequence,
the LMM has become the benchmark model for pricing both Libor- and swap-rate
dependent products, and we will therefore not pursue the swap-rate based modeling
approach any further.

3.2 A Stochastic-Volatility Extended LMM
The standard log-normal LMM as introduced in the previous section has become an
essential tool for pricing and risk-managing complex interest-rate derivatives. One of
its great advantages, and the main motivation for its development, has been the ease
with which it can be calibrated to a grid of caplet and swaption volatilities. However,
a trivial consequence of the log-normality is, that the model produces flat caplet and
swaptions volatility smiles, which are obviously not compatible with the pronounced
volatility smiles found in today’s interest-rate markets.

Several extensions of the original LMM have therefore been proposed in the liter-
ature to incorporate the volatility smile effect by using, for instance, local volatilities

8In a log-normal SMM even swap rates that do not belong to the underlying set of swap rates will
not be log-normal.



66 3. The Libor Market Model

(Andersen & Andreasen [AA00]), jump diffusions or general Lévy processes (Glasser-
man & Kou [GK03], Eberlein & Özkan [EÖ05]) or stochastic volatilities (Andersen
& Andreasen [AA02], Joshi & Rebonato [JR03b], Andersen & Brotherton-Ratcliffe
[ABR05], Piterbarg [Pit03], [Pit05a]), to name just a few.

The models that are arguably the most popular examples of these extensions
are based on Heston-type dynamics (see e.g. [AA02], [ABR05] or [Pit05a]). Models
of this type are fairly tractable due to the existence of closed formulas for pricing
European options and efficient simulation schemes (see e.g. [And08] and [VHP10]).
Moreover, with the time-averaging techniques introduced in Section 2.5, it is possible
to efficiently calibrate such models to the full term-structure of volatility smiles across
the swaption grid.

In the next section we present the displaced Heston LMM with time-dependent
skew functions as introduced by Piterbarg [Pit03], [Pit05a]. This LMM, which will
be referred to as stochastic-volatility LMM (SV-LMM) from now on, contains the
standard log-normal LMM as well as the displaced-diffusion (or shifted log-normal)
LMM 9 as special cases. It will serve as the basis model for all further theoretical and
empirical investigations in this thesis.

3.2.1 Model Description

In order to establish the SV-LMM we simply need to “embed” the displaced Heston
model from Section 2.5.3 into the LMM framework. For this, let the stochastic
variance process V (t) follow a square-root diffusion

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ(t), V (0) = 1, (3.8)

with positive constants κ and ξ, and where Z(t) is a one-dimensional standard Brow-
nian motion under a generic pricing measure Q. The spanning forward Libor rates
Ln(t), 0 ≤ t ≤ Tn, n = 0, . . . , N−1 are then assumed to have dynamics of the form

dLn(t) = ϕn(t, Ln(t))
√
V (t)σn(t)′

(√
V (t)µn(t)dt+ dW (t)

)
, (3.9)

with
ϕn(t, L) = βn(t)L+ (1− βn(t))Ln(0),

and where W (t) is a d-dimensional standard Brownian motion under Q, independent
of Z(t), {σn(t)}N−1

n=0 is a collection of d-dimensional (deterministic) instantaneous
volatility functions for some fixed d ∈ {1, . . . , N}, and {βn(t)}N−1

n=0 is a collection
of one-dimensional skew functions10 βn : [0, Tn] → (0, 1], n = 0, . . . , N −1. The
numeraire-specific drift terms µn(t), which ensure that the model is arbitrage-free,
can be derived similarly as in the standard LMM. For example, if Q is the spot Libor
measure QBd , then the drift terms are given by (see [AP10b])

µn(t) =
n∑

i=η(t)

τiϕi(t, Li(t))

1 + τiLi(t)
σi(t), 0 ≤ t ≤ Tn, n = 0, . . . , N−1.

9Due to the aforementioned similarity between displaced diffusions and CEV processes (see Section
2.5.2), it may also serve as a tractable proxy for the CEV-LMM as introduced in [AA00].
10The range of the skew functions can be extended to (−1, 1], see [Pit03].
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Note carefully that all Libor rates in (3.9) are simultaneously scaled by a single
common stochastic-volatility factor

√
V (t). Moreover, due to the independence of

Z(t) and W (t), the dynamics of V (t) are unaffected by measure changes and remain
the same under all pricing measures11.

3.2.2 Pricing European Options

Calibrating a model by means of Monte Carlo simulations is usually prohibitively
expensive. Therefore, in order for a model to be really useful in practice, fast and
accurate approximations for caplet and swaption prices have to be found. In case
of the SV-LMM (3.8)–(3.9), this task can be accomplished by using the parameter-
averaging techniques introduced in Section 2.5.

Caplets
Deriving caplet pricing formulas in extended LMMs is generally similarly straightfor-
ward as in the standard LMM, as the underlyings of caplets – the Libor rates Ln(t) –
constitute the fundamental building blocks of every LMM. More concretely, observe
that under the Tn+1-forward measure, Ln(t) has driftless dynamics

dLn(t) = ϕn(t, Ln(t))
√
V (t)σn(t)′dWn+1(t), (3.10)

where Wn+1(t) is a d-dimensional standard Brownian motion under QTn+1 . Drawing
on the results of Section 2.5, we find that in the SV-LMM the time-zero price of a
caplet written on Ln(Tn) with strike price K > 0, i.e.,

Vcaplet(0, Tn) = τnP (t, Tn+1)ETn+1
[
(Ln(Tn)−K)+] ,

can be well approximated by using the Fourier pricing formula (2.39) in the vanilla
model

dLn(t) = λ̄n(β̄nLn(t) + (1− β̄n)Ln(0))
√
V (t)dW̃n+1(t), (3.11)

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ̃(t), V (0) = 1, (3.12)

with effective skew parameter

β̄n =

∫ Tn

0
βn(t)wTn(t)dt,

wTn(t) =
vn(t)2‖σn(t)‖2∫ Tn

0 vn(t)2‖σn(s)‖2dt
,

vn(t)2 =

∫ t

0
‖σn(s)‖2ds+ ξ2e−κt

∫ t

0
‖σn(s)‖2 e

κs − e−κs

2κ
ds,

with independent one-dimensional QTn+1-Brownian motions W̃n+1(t) and Z̃(t), and
where the effective volatility parameter λ̄n is obtained as the solution to the root-
search problem (2.46).

11See [AP10b], p. 602 for more details.
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Swaptions
Now consider a swaption written on a swap covering the time interval [Tm, Tn], where
0 ≤ m < n ≤ N . The dynamics of the underlying swap rate Sm,n(t) under the swap
measure Qm,n can be derived similarly as in Proposition 3.1.3 and are given by (see
[AP10b])

dSm,n(t) =
√
V (t)

n−1∑
i=m

wi(t)σi(t)
′dWm,n(t), 0 ≤ t ≤ Tm, (3.13)

where the stochastic weights are

wi(t) = ϕi(t, Li(t))
∂Sm,n(t)

∂Li(t)
,

and where Wm,n(t) is a d-dimensional standard Qm,n-Brownian motion. By freezing
the stochastic weights at their initial values (in the spirit of (3.7)) and assuming that
the swap-rate dynamics are again approximately of displaced-Heston type, Piterbarg
[Pit03] obtains as an accurate approximation for the dynamics (3.13)

dSm,n(t) ≈ (βm,n(t)Sm,n + (1− βm,n(t))Sm,n(0))
√
V (t)σm,n(t)′dWm,n(t) (3.14)

with

σm,n(t) =
n−1∑
i=m

qm,ni σi(t), (3.15)

βm,n(t) =

n−1∑
i=m

pm,ni βi(t), (3.16)

qm,ni =
Li(0)

Sm,n(0)
· ∂Sm,n(0)

∂Li(0)
, (3.17)

pm,ni =
σi(t)

′σm,n(t)

‖σm,n(t)‖2
. (3.18)

The derivation of the above quantities is straightforward but somewhat lengthy and
is therefore omitted at this point, see [Pit03] for more details.

Note that the swap-rate dynamics (3.14) are of the same form as the exact SDE
(3.10) for the Libor rate Ln(t). Hence, the same formulas as in the caplet case can
be used to derive effective (time-independent) parameters β̄m,n and λ̄m,n, which in
conjunction with Proposition 2.5.7 yield a semi-closed formula for the time-zero price
of swaptions. For an analysis of the accuracy of this formula the reader is referred
to [Pit03].

3.3 Parameterization of the LMM
So far our discussion of the LMM framework has been relatively generic in the sense
that we did not make any further assumptions about the instantaneous Libor volatil-
ity functions σn(t) and (in case of the SV-LMM) the skew functions βn(t). However,
in order to make a model operational (and to reduce the degrees of freedom to a
reasonable level), we need to impose some additional structure on these parameter
functions.
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3.3.1 Volatility Structure

For convenience we define the absolute or scalar instantaneous volatility λn(t) of the
forward Libor rate Ln(t) by

λn(t) := ‖σn(t)‖, n = 0, . . . , N−1,

and the factor loadings Rn(t) by

Rn(t) :=
σn(t)

‖σn(t)‖
, 0 ≤ t ≤ Tn, n = 0, . . . , N−1,

such that

σn(t) = λn(t)Rn(t), 0 ≤ t ≤ Tn, n = 0, . . . , N−1.

The instantaneous Libor correlations12 ρ(t) are then defined by

ρij(t) := Ri(t)
′Rj(t), 0 ≤ t ≤ min{Ti, Tj}, i, j = 0, . . . , N−1. (3.19)

Let us assume for a moment that we want to calibrate a log-normal LMM to a
collection of ATM caplet prices. As stated earlier, caplet prices are only affected by
the (scalar) Libor volatilities (and not by Libor correlations) and we can perfectly
recover the market prices by specifying the Libor volatilities λn(t) such that (cp.
Equation (3.5))

(σmkt
n )2Tn =

∫ Tn

0
λn(t)2dt,

where σmkt
n denotes the implied ATM caplet volatility for maturity Tn. Obviously,

there exists an infinite number of solutions to this problem with the trivial solution
being λn(t) ≡ σmkt

n .

While for caplets, which are simple European options, only the total (integrated)
variance of the Libor rates is of importance, prices of exotic products may indeed
be affected by the time-dependent evolution of the Libor volatilities. The price of a
complex derivative security is essentially given by the sum of hedging costs incurred
throughout its life time. This includes not only the initial cost of setting up the
hedging portfolio, but also all future re-hedging costs. So if caplets are used for
dynamically hedging a certain product, then a model should not only recover today’s
caplet prices but also the future prices, i.e., volatilities.

Generally the overall shape of the term structure of caplet volatilities does not
change too much over time. In particular, most of the time it can be observed
that the volatility term structure is humped shaped13, as is demonstrated in Figure
3.1. Therefore, if we do not have any further information (or view) on the future
evolution of caplet volatilities, it is generally most reasonable to require the future
caplet volatilities term structure (as implied by the model) to look similar to today’s.
This means that the Libor volatility functions λn(t) should be time-homogeneous14

12I.e., the correlation between forward-rate increments.
13For a financial explanation for the existence of a volatility hump see, e.g. [Reb04], p. 672.
14No matter whether it be a standard or an extended LMM.
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Figure 3.1: Bootstrapped ATM euro caplet implied volatilities as of
1/14/2008.

(or time-stationary) in the sense that they are only functions of (residual) time to
maturity Tn − t, rather than of calender time t and maturity Tn, i.e.,

λn(t) = g(Tn − t), 0 ≤ t ≤ Tn, n = 0, . . . , N−1,

for some function g(·). A parametric form for the function g(·) that has been com-
monly used in the past is due to [Reb99b]:

g(T − t) = (a+ b(T − t)) exp(−c(T − t)) + d, a, b, c, d ∈ R+. (3.20)

This functional form, commonly known as abcd-parameterization, is capable of pro-
ducing a wide range of empirically observed volatility term structures. Nevertheless,
it is generally impossible to perfectly fit the initially observed caplet volatilities with
a purely time-homogeneous parameterization15. To address this drawback several
“separable” extensions of the type

λn(t) = f(Tn)h(t)g(Tn − t)

have been proposed in the literature16, where the functions f(T ) and h(t) are usually
required to be close to unity, such that the corresponding Libor volatilities are at the
very least “almost” time-homogeneous.

However, relying on parametric or separable forms is often too restrictive and
inflexible for practical applications, particularly if not only caplet but also swaption
volatilities are to be used as calibration targets. Therefore, we shall take a more
general approach and assume the Libor volatility functions λn(t) to be piecewise
constant functions of the form

λn(t) =

n∑
i=0

1[Ti−1,Ti)(t)λni, λni > 0, (3.21)

15Note that in order to match the market-observed volatilities with a purely time-homogeneous g(·),
we need to have (σmkt

n )2Tn − (σmkt
n−1)2Tn−1 =

∫ Tn

Tn−1
g(u)2du > 0, n = 1, . . . , N−1, which is not

always satisfied in practice. So even with an arbitrarily flexible parameterization for g(·), a perfect
fit can not always be achieved.
16See [BM05], Section 6.3 for an overview.
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with the convention that T−1 := 0. In order to reduce the number of free parameters,
we further parameterize the volatility functions via a “grid-based” approach (cp.
[AP10b]). For this, let us define

λ̃(t, Tn − t) := λn(t),

and introduce a grid of times and times to maturity

{(ti, Tj)|i = 1, . . . , Nt, j = 1, . . . , NT }, (3.22)

for some integers Nt and NT . Furthermore, let Λ be a Nt ×NT -dimensional matrix,
whose elements will be interpreted as

λ̃(ti, Tj) = Λij .

With Λ we specify λi(t) = λ̃(t, Ti − t) on the grid (ti, Tj). The remaining function
values for all i and t are then obtained by bilinear inter-/extrapolation17.

Observe that if we require all rows of Λ to be identical, then the corresponding Li-
bor volatility functions will be fully time-homogeneous. In particular, the functional
form (3.20) can be closely approximated by setting

Λij = (a+ b Tj) exp(−c Tj) + d.

Even after “parameterizing” λn(t) via Λ, the number of parameters might still be
quite large (depending on Nt and NT ). In order to avoid overfitting and to obtain
stable calibration results, we will therefore use suitable penalty functions (see next
section), by means of which we can control how smooth and constant the rows and
columns of the matrix Λ should be.

Parameterizing and calibrating the instantaneous Libor correlations ρ(t) will be
discussed extensively in Chapters 5–7. We shall therefore assume throughout the rest
of this chapter, that these correlations (and hence the factor loadings Rn(t)) have
been exogenously specified.

3.3.2 Skew Structure

After having made some structural assumptions about the Libor volatilities λn(t),
by means of which we can control the model implied ATM volatilities of caplets and
swaptions, we are left with specifying the skew functions βn(t), which determine the
skewness of the model-implied caplet and swaption volatility smiles.

As with the volatility functions, we will take a grid-based approach. More specif-
ically, we assume that the skew functions are of the form

βn(t) =

n∑
i=0

1[Ti−1,Ti)(t)βni, βni ∈ (−1, 1] (3.23)

and define
β̃(t, Tn − t) := βn(t).

17Note, that the entries in the bottom right part of the matrix with ti + Tj > TN−1 are of course
redundant.
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For our applications we will always use the same grid (3.22) for both the skew and
the volatility functions (although using different grids would clearly be possible).
We proceed by defining a Nt × NT -dimensional matrix B, whose elements will be
interpreted as

β̃(ti, Tj) = Bij .

The remaining function values of βn(t) = β̃(t, Tn − t) for all n and t are then again
obtained by bilinear inter-/extrapolation. The regularity and time-homogeneity of
these functions are controlled by means of certain penalty functions, which will be
described in the next section.

3.4 Calibration

In this section we give a brief review of the general calibration procedure if only
caplets and swaptions are used as calibration targets (cp. [AP10b]).

Suppose that, based on the exotic products that are later to be priced and risk-
managed with the model, we have fixed the tenor structure, have decided upon
the number of factors d to be used and have exogenously specified the correlation
structure18.

Depending on the characteristics of the exotic products, we also assume that
a set of (market-observable) caplet and swaption smiles – which are considered to
contain “information” about the price of the exotic product and are potentially used
as hedging instruments – has been selected.

3.4.1 Pre-Calibration: Effective Swaption and Caplet Parameters

The first step of the calibration procedure consists of the so-called pre-calibration,
where for each caplet smile an effective volatility and an effective skew parameter is
extracted. More precisely, if X(·) denotes the underlying process of one of the caplets
or swaptions from the calibration set, then we assume that its dynamics (under the
appropriate forward/swap measure) are of displaced Heston type:

dX(t) = (β̄xX(t) + (1− β̄x)X(0)
)
σ̄x
√
V (t)dU(t),

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ(t), V (0) = 1,

where U(t) and Z(t) are independent one-dimensional standard Brownian motions.
These (separate) vanilla models are then calibrated19 to the implied volatility smiles.
When solving for the market implied smile parameters σ̄∗x and β̄∗x, we simultaneously
optimize for a “global” speed of mean reversion κ∗ and volatility of variance ξ∗, such
that all market smiles are matched as well as possible.

18See Chapter 5 and 7 for more information on choosing the number of factors and the correlation
structure.
19By least-square fitting implied volatilities or weighted prices.
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3.4.2 Main Calibration: Time-Dependent Parameters

The purpose of the main calibration is to obtain the time-dependent model parame-
ters λn(t) resp. βn(t) in (3.21) resp. (3.23) from the effective parameters determined
in the pre-calibration.

Suppose that the grid of times and times to maturities (3.22) has been fixed20. For
given matrices Λ and B, the forward-rate parameters βn(·) and σn(·) and the (model)
swap-rate parameters21 βm,n(·) and σm,n(·) can be related to effective (constant)
model parameters σ̄x and β̄x by using the parameter-averaging formulas from Section
3.2. As such, σ̄x and β̄x can be considered as functions of Λ and B and calibrating
the model ultimately comes down to performing a least-squares-style minimization

(Λ∗, B∗) = argmin
Λ,B

{∑
x

wσx
(
σ̄x(Λ, B)− σ̄∗x

)2
+
∑
x

wβx
(
β̄x(Λ, B)− β̄∗x

)2
(3.24)

+
∑
i,j

[
wλt

(
∂Λij
∂ti

)2

+ wλT

(
∂Λij
Tj

)2

+ wλt2

(
∂2Λij
∂t2i

)2

+ wλT 2

(
∂2Λij
∂T 2

j

)2]
(3.25)

+
∑
i,j

[
wβt

(
∂Bij
∂ti

)2

+ wβT

(
∂Bij
Tj

)2

+ wβ
t2

(
∂2Bij
∂t2i

)2

+ wβT 2

(
∂2Bij
∂T 2

j

)2]}
, (3.26)

where the index x references the different caplet/swaption-smiles from the calibration

set, and wσx , w
β
x ∈ R+ are exogenously specified weights, chosen according to the

importance/reliability of the respective market parameters. The penalty functions in
(3.25)–(3.26) are included to regularize the problem and to control the smoothness
and time-homogeneity of the parameter functions. The partial derivative terms are
to be interpreted as first- and second-order finite differences along the rows/columns
of the matrices Λ and B. With the weights w ·t , w

·
T , w

·
t2 , w

·
T 2 ∈ R+, we can control

the constancy and smoothness of the rows/columns22 of the matrices.
Instead of performing one “big” optimization, where both Λ and B are calcu-

lated simultaneously, Piterbarg [Pit03] suggests to split the problem into a sequence
of skew and volatility calibrations, and in this way make the calibration procedure
faster and more stable. One can justify this by the fact that the effective model
volatilities σ̄x depend only very mildly on the skew functions βi(t), and the volatility
and skew calibrations can therefore be considered as being two “nearly-orthogonal”
problems.

20Most often the points in the grid will be chosen to include (or coincide with) the maturities/tenors
of the caplets and swaptions from the calibration set.
21Obtained by using the approximation (3.14).
22Recall that forcing the columns of Λ and B to be constant will result in a perfectly time-
homogeneous model.
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To summarize, the main calibration procedure can be carried out in three steps:

Main Calibration

Step 1: Set the skew parameters Bij all to the same value B̄, chosen for example
to be the average of all effective market skews β̄∗x. Calibrate the model
volatilities λn(t) to the σ̄∗x;

Step 2: Using model volatilities calculated in the previous step, the skews βn(t)
are now calibrated to the β̄∗x;

Step 3: Finally, the model volatilities λn(t) are re-calibrated to the σ̄∗x, with the
updated skews βn(t) from the previous step.

Steps 2 and 3 can be repeated several times, although often one cycle (even without
Step 3) is already enough to obtain a good fit. Concrete calibration examples will be
provided in Chapter 7.

Remark 3.4.1. The advantage of calibrating (in the main calibration) to implied
vanilla model parameters (determined in the pre-calibration step) instead of cali-
brating outright to option prices is twofold: First, working with implied parameters
usually gives a more homogeneous error norm, as option prices may vary consid-
erably with respect to strike and option maturity (although this could be resolved
by choosing appropriate weighting functions). Second, and more importantly, the
performance of the calibration procedure is improved, since we avoid applying time-
consuming Fourier option-pricing formulas.

Remark 3.4.2. Once the model has been calibrated to market-observable vanilla op-
tion prices, prices and hedge ratios for exotic interest-rate products can be obtained
by performing Monte Carlo simulations. For details on numerical aspects see, e.g.
[Gla04], [And08], [JS08] and [VHP10].



Chapter 4

Efficient Pricing of CMS Spread Options1

Being able to efficiently compute CMS spread option (CMSSO) prices in a LMM is
important for several reasons. For example, when using a LMM for pricing exotic
interest-rate products with CMS spread-related payoff structures, we would like to
be able to easily check whether the model prices CMSSOs inline with the market.
More importantly, with an efficient pricing method at our disposal we can include
CMSSOs in the general calibration procedure and in this way extract information
about the Libor correlations from the market.

While existing literature, e.g. [BM05] and [BKS10], deals mainly with approxi-
mation methods for pricing CMSSOs in standard (log-normal) LMMs, we present in
this chapter a new rapid and accurate method for approximating prices of CMSSOs
in the SV-LMM (3.8)–(3.9). In Section 4.5 we also compare the performance of our
approach to that of an approximation introduced in a recent paper by Antonov &
Arneguy [AA09].

4.1 Approximating the Swap-Rate Dynamics

Using again the general set-up from the last chapter, assume that we have fixed
integers n,m and m′ such that 0 ≤ n < m < m′ ≤ N . Recall from Section 2.6.2 that
pricing CMS spread caps essentially comes down to calculating prices of CMS spread
caplets2, with (undiscounted) prices of the form (see Equation (2.68))

ETn+δ
[
(Sn,m′(Tn)− Sn,m(Tn)−K)+

]
, (4.1)

where K > 0 and δ ≥ 0. In the following we will often just mean (4.1) when we
speak of CMS spread options. Furthermore, we will use again the short-hand notation
Si(t), i = 1, 2 to denote Sn,m′(t) and Sn,m(t). In order to avoid confusion with the
Libor skew and volatility functions βi(t) and σi(t), i = 0, . . . , N−1, we denote the
swap rate skew and volatility functions by βSRi (t) and σSRi (t), i = 1, 2, respectively.

Notice that under the forward measure QTn+δ both swap rates will have non-zero
drift terms. Using the approximation (3.14) we have that the swap-rate dynamics

1The contents of this chapter will appear in [KL11].
2Here and in the sequel, we will often just consider the call case for clarity of exposition. All

statements easily carry over to the floor case.
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under QTn+δ are (approximately) of the form

dSi(t) = ϕi(t, Si(t))
(
µi(t)dt+ σSRi (t)′

√
V (t)dW Tn+δ(t)

)
, i = 1, 2, (4.2)

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ̃(t), V (0) = 1, 0 ≤ t ≤ Tn, (4.3)

with
ϕi(t, s) :=

(
βSRi (t)s+ (1− βSRi (t))Si(0)

)
, i = 1, 2,

independent one- resp. d-dimensional QTn+δ-Brownian motions Z(t) and W Tn+δ(t),
and with βSRi (t) and σSRi (t) as in (3.15) and (3.16), respectively.

Drift Terms
In order to calculate the drift terms of the swap rates we first use the product rule
to calculate the dynamics of3 Si(t)Ai(t)/P (t, Tn+ δ):

d

(
Si(t)Ai(t)

P (t, Tn+ δ)

)
= Si(t) d

(
Ai(t)

P (t, Tn+ δ)

)
+

Ai(t)

P (t, Tn+ δ)
dSi(t) + d

〈
Si(t),

Ai(t)

P (t, Tn+ δ)

〉
. (4.4)

Clearly, Si(t)Ai(t)/P (t, Tn+ δ) and Ai(t)/P (t, Tn+ δ) are martingales under QTn+δ

and thus their drift terms must be zero. Collecting only dt-terms from (4.4), we
obtain for the drift term

ϕi(t, Si(t))µi(t)dt = −P (t, Tn+ δ)

Ai(t)
d
〈
Si(t),

Ai(t)

P (t, Tn+ δ)

〉
.

Next, we can write the swap rates Si(t) as well as the annuity-bond ratios
Ai(t)/P (t, Tn + δ) as functions of the underlying Libor rates L(t) := (L0(t), . . . ,
LN−1(t)) at time t:

Si(t) =: Fi(L(t)) and
Ai(t)

P (t, Tn+ δ)
=: Gi(L(t)), i = 1, 2.

Applying Itô’s Lemma, we finally obtain for the drift terms

ϕi(t, Si(t))µi(t) = −P (t, Tn+ δ)

Ai(t)
∇Fi(L(t))D(t)Σ(t)D(t)∇Gi(L(t))′V (t),

with RN−1×N−1-valued functions

D(t) = diag (βk(t)Lk(t) + (1− βk(t))Lk(0), k = 0, . . . , N−1) ,

Σ(t) =
(
σk(t)

′σl(t)
)N−1

k,l=0
.

With these fully path-dependent drifts there is of course no hope to obtain closed-
form solutions for the system of SDEs (4.2)–(4.3). Usually the so-called“freezing-the-
drift” technique is applied, which means fixing the drift terms as an approximation

3Here, 〈X(t), Y (t)〉 denotes the quadratic covariation of the two processes X(t) and Y (t).
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at their initial values. This, however, works reasonably well only if the processes
are considered over relatively small periods of time or if the occurring volatilities are
quite small.

Instead of just fixing the drift terms at their initial values, we propose to use the
following approximation

µi(t) ≈ −
P (0, Tn+ δ)

Ai(0)ϕi(0, Si(0))
∇Fi(L(0))D ΣD ∇Gi(L(0))′ V (t)

=: µ̄iV (t), i = 1, 2, (4.5)

with
D := D(0) = diag(Lk(0), k = 0, . . . , N−1),

and the “average covariance matrix”

Σ =

(
1

Tn

∫ Tn

0
σk(t)

′σl(t)dt

)N−1

k,l=0

.

By taking average covariances we account for generally time-dependent, i.e., non-
constant Libor volatility functions σn(t). More importantly, we retain the stochastic
variance factor V (t), which will prove to be quite effective in capturing the nature of
the convexity adjustments, which are implicitly given by the drift terms. Intuitively,
this can be explained by the fact that the volatility smiles/skews of the underlying
rates generally have a strong influence on the size of the convexity adjustments (cp.
Remark 2.6.1), and the stochastic-variance factor V (t) is the main determinant of
the curvature of the volatility smile.

Swap-Rate Correlation
Next, with the definition

ϕi(t, s) :=
(
βSRi (t)s+ (1− βSRi (t))Si(0)

)
, i = 1, 2,

we obtain for the quadratic variation and covariation of S1(t) and S2(t)

d〈Si(t)〉 = ϕi(t, Si(t))
2‖σSRi (t)‖2V (t)dt, i = 1, 2,

d〈S1(t), S2(t)〉 = ϕ1(t, S1(t))ϕ2(t, S2(t))σSR1 (t)σSR2 (t)V (t)dt,

such that the instantaneous correlation4 among the swap rates at time t is given by

Corr (dS1(t), dS2(t)) =
σSR1 (t)′σSR2 (t)

‖σSR1 (t)‖‖σSR2 (t)‖
. (4.6)

Note carefully that the instantaneous correlation in the SV-LMM is indeed determin-
istic (and the same as in a non-stochastic-volatility displaced/log-normal LMM) – a
consequence of the fact that all Libor/swap rates are being multiplied by the same
stochastic-volatility factor

√
V (t).

4I.e., the correlation of the increments of the swap-rate processes.
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In the subsequent calculations we will replace the time-dependent instantaneous
correlation given in (4.6) by the following effective or term correlation5 (cp. [BM05],
p. 286)

ρ̄ :=

∫ Tn
0 σSR1 (t)′σSR2 (t)dt√∫ Tn

0 ‖σSR1 (t)‖2dt
√∫ Tn

0 ‖σSR2 (t)‖2dt
. (4.7)

Swap-Rate Skews and Volatilities
In order to obtain the effective swap rate skew and volatility parameters β̄i and σ̄i,
we make again use of the parameter averaging formulas from Section 3.2.

Finally, with the various approximations from above, we obtain for the dynamics
of the swap rates under QTn+δ

dSi(t) ≈
(
β̄iSi(t) + (1− β̄i)Si(0)

) (
µ̄iV (t)dt+ σ̄i

√
V (t)dUi(t)

)
, i = 1, 2, (4.8)

with U1(t) and U2(t) being two one-dimensional QTn+δ-Brownian motions (indepen-
dent of Z(t)), such that dU1(t)dU2(t) = ρ̄dt.

4.2 Iterated Expectations
By applying the standard displaced-diffusion transform (see p. 35) we can always
reduce displaced Heston type SDEs like (4.8) to the standard (log-normal) Heston
case. So for clarity of exposition, let us assume for the moment that β̄i = 1, i = 1, 2.
Then our pricing problem essentially reduces to calculating expectations of the form6

π(0) = E
[
(S1(Tn)− S2(Tn)−K)+

]
, (4.9)

with K > 0 and two stochastic processes Si(t), i = 1, 2, having dynamics

dS1(t) = S1(t)
(
µ̄1V (t)dt+ σ̄1

√
V (t)dU1(t)

)
, S1(0) > 0,

dS2(t) = S2(t)
(
µ̄2V (t)dt+ σ̄2

√
V (t)dU2(t)

)
, S2(0) > 0,

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ(t), V (0) = 1,

where

dU1(t)dU2(t) = ρ̄dt,

dUi(t)dZ(t) = 0, i = 1, 2.

Conditioning on the path of the stochastic-variance process and using iterated ex-
pectations, we may write the pricing formula (4.9) as

π(0) = E
[
E
[
(S1(Tn)− S2(Tn)−K)+

∣∣ {V (t), 0 ≤ t ≤ Tn}
]]
,

5The term rather than the instantaneous correlation is important for spread options. Note that
there can be a significant decorrelation effects due to time-dependent volatilities. We shall return to
this topic later.

6All expectations in the following are to be taken with respect to QTn+δ.
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Due to the independence of the Brownian motions Ui(t) and Z(t), we have that
Si(t), i = 1, 2, given the path of V (t) are (jointly) geometric Brownian motions with
(conditionally) deterministic time-dependent drift and volatility functions, as pointed
out by Hull & White [HW87]. As we have seen earlier, for the terminal distribution
of a geometric Brownian motion only the total integrated squared volatility (and the
integrated drift) is important and not the particular “path” of the time-dependent
functions. Hence, defining the integrated variance (up to time Tn) by

V (Tn) :=

∫ Tn

0
V (t)dt,

we have that S1(Tn) and S2(Tn) given V (Tn) are jointly log-normal, and using again
iterated expectations we may thus write

π(0) = E
[
E
[(
S1(0)eY1 − S2(0)eY2 −K

)+∣∣ V (Tn)
]]
, (4.10)

with the random vector Y := (Y1, Y2)′ being conditionally a bivariate normal

Y | V (Tn) ∼ N

((
(µ̄1 − σ̄2

1/2)V (Tn)

(µ̄2 − σ̄2
2/2)V (Tn)

)
, V (Tn)

(
σ̄2

1 σ̄1σ̄2ρ̄

σ̄1σ̄2ρ̄ σ̄2
2

))
.

Now recall that Y1|Y2, for two jointly normal random variables Y1 and Y2, is again
normally distributed. Exploiting this fact and applying once more the law of iterated
expectations, one can derive (cp. [BM05], p. 604) a pseudo-analytical formula for
the inner expectation7 in Equation (4.10)

E
[(
S1(0)eY1 − S2(0)eY2 −K

)+∣∣ V (Tn) = v
]

=

∫ +∞

−∞
g(u, v)

1√
2π
e−

1
2
u2
du,

where

g(u, v) = S1(0) exp
(
m(u, v) + s(v)2/2

)
Φ

 log
(
S1(0)
h(u,v)

)
+m(u, v) + s(v)2

s(v)


− h(u, v) Φ

 log
(
S1(0)
h(u,v)

)
+m(u, v)

s(v)

 (4.11)

and

h(u, v) = S2(0) exp
{
µ̄2T − σ̄2

2v/2 + σ̄2

√
vu
}

+K,

m(u, v) = µ̄1T − σ̄2
1v/2 + ρ̄σ̄1

√
vu,

s(v)2 = σ̄2
1(1− ρ̄2)v.

7This formula holds for the case where S1(0), S2(0) and K are all greater than zero. We will consider
a more general case later.



80 4. Efficient Pricing of CMS Spread Options

If we were able to efficiently evaluate the density f of the integrated variance V
at time Tn, then the calculation of the expectation in (4.9) would just be a matter
of calculating the two-dimensional integral∫ +∞

0

∫ ∞
−∞

g(u, v)
1√
2π
e−

1
2
u2
du f(v)dv, (4.12)

with g(· , ·) given in (4.11). Unfortunately, the density f is not known in closed form
and in order to evaluate it one needs to numerically invert its Laplace transform.
This makes the numerical computation of (4.12) generally too slow to be usable
for calibration purposes. In the next section we therefore derive a new method for
speeding up the numerical evaluation of the density of V (Tn). The approach is based
on carefully choosing the integration contour for the Laplace inverse transform and
allows the fast and accurate evaluation of the density in its entire domain, a result
which is also applicable outside the context of spread-option pricing.

4.3 The Density of the Integrated Variance

4.3.1 The Branch-Cut Corrected Laplace Transform

The Laplace transform of the integrated variance V (T ) for T > 0 is given by (see
e.g. [LL08])

f̂(z) = E
[
e−zV (T )

]
= exp

{
2κ

ξ2
log

(
2γe−γT/2

γ + κ+ (γ − κ)e−γT

)
+

+
κ2T

ξ2
+

(
2γe−γT

γ + κ+ (γ − κ)e−γT
− 1

)
V (0)(γ − κ)

ξ2

}
, (4.13)

with

γ = γ(z) =
√
κ2 + 2zξ2

and z ∈ C such that f̂(z) exists. As we show in Appendix A.1, all singularities of f̂
lie on the negative real axis. Before we can proceed with the numerical inversion of
the Laplace transform we need to take care of the complex logarithm appearing in
(4.13). Recall that the complex logarithm is a multi-valued function. If we restrict
the logarithm to its principal branch (as is done in most software packages), then it is
discontinuous along the negative real axis and evaluating the density via numerically
inverting the Laplace transform will therefore possibly result in wrong values. In
Appendix A.2 we use similar ideas as in Kahl & Jäckel [KJ05] to derive a“continuified”
version of the Laplace transform (4.13), which is given by

f̂(z) = exp

{
2κ

ξ2
A(z) +B(z)

}
,
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where

A(z) = Log
∣∣∣2γe−γT/2∣∣∣+ i

(
Arg

(
2γe−γT/2

)
+ 2πn

)
− Log

(
γ + κ+ (γ − κ)e−γT

)
,

B(z) =
κ2T

ξ2
+

(
2γe−γT

γ + κ+ (γ − κ)e−γT
− 1

)
V (0)(γ − κ)

ξ2
,

n =

⌊
Arg(γ)− T

2 |γ| sin(Arg(γ)) + π

2π

⌋
,

γ =
√
κ2 + 2zξ2,

where b.c denotes rounding to the nearest smaller integer and Log(.) denotes the
principal value of the logarithm. In what follows, when we write f̂ we are always
referring to this this representation of the Laplace transform.

4.3.2 Calculating the Bromwich Integral

With the Laplace transform from above, the density f of V (T ) is given in terms of
the inverse Laplace transform

f(x) =
1

2πi

∫ a+i∞

a−i∞
exsf̂(s)ds, x ≥ 0, (4.14)

where the integration in the complex plane is done along the so-called Bromwich line
Re(s) = a, with a being greater than the real part of all singularities of f̂ . In our case,
as mentioned above, all singularities of the Laplace transform lie on the negative real
line and a can therefore be greater than or equal to zero. Note that with a = 0, the
above inverse integral becomes identical to the standard inverse Fourier transform.
Parameterizing the Bromwich line by s = a+ iu and taking symmetry into account,
we can write Equation (4.14) as

f(x) =
1

2π

∫ ∞
−∞

ex(a+iu)f̂(a+ iu)du

=
1

π

∫ ∞
0

Re
(
ex(a+iu)f̂(a+ iu)

)
du. (4.15)

The integrand in (4.15) is often rapidly oscillating as depicted in Figure 4.1. Addi-
tionally, the transform f̂(z) may decay slowly as Im(z)→∞, making the evaluation
of the density via direct numerical integration of the Bromwich integral generally too
costly (or inaccurate) for our applications8.

The problem of the occurrence of highly oscillatory and/or slowly decaying inte-
grands is of course not specific to our case, but is often faced when dealing with the
numerical inversion of Laplace transforms. A standard strategy for avoiding these

8Note that we possibly need to evaluate the density f several hundred times when numerically
integrating (4.12).
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Figure 4.1: Integrand g(u) := Re
(
ex(a+iu)f̂(a+ iu)

)
in (4.15) for a = 0

and x = 15. Parameters: V (0) = 1, κ = 0.15, ξ = 1.3, T = 5.

problems is to make use of Cauchy’s theorem and to deform the Bromwich (half-)line
into a contour s, such that Re(s) → −∞ at the upper end. This has the effect that
the exponential factor in (4.14) forces the integrand to decay rapidly. The approach
of deforming the Bromwich line was originally pioneered by Talbot [Tal79], who used
a contour of the form

s(ϕ) = a+ bϕ(cotϕ+ ic), 0 ≤ ϕ < π, (4.16)

where the parameters a, b and c must be chosen such that all singularities of the
Laplace transform are to the left of the contour. Besides this technical requirement
(which is due to Cauchy’s theorem) there is, however, a priori no general rule for
choosing a, b and c, and finding parameters such that one obtains a nice and smooth
integrand is often a challenge in its own right.

a+ b
Re

bcπ

Im

a
Re

b

Im

Figure 4.2: Left: Upper half of Talbot’s contour (4.16). Right: Linear
contour (4.17).

Note also that in our case one needs to find an optimal contour for each and every
x, for which the density is to be evaluated, as the shape of the integrand does not
only depend heavily on the parameters of the stochastic-variance process, but also
on the value of x. Furthermore, observe that the real part of Talbot’s contour is
bounded. This can lead to an integrand that falls off rapidly along the first part of
the contour, but then becomes irregular due to coming too close to the sometimes
slowly decaying singularities along the negative real axis. In order to circumvent this
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problem we therefore propose to use a “linear contour” of the form

s(u) = a+ u(bi− a), 0 ≤ u <∞, (4.17)

with a, b > 0. The consequence is that Im(s(u))→∞ as u→∞, i.e., we “stay away”
from the singularities at the left end (see Figure 4.2). However, one problem remains
to be solved: The optimal choice of a and b.

4.3.3 The Optimal Linear Contour

Using the contour (4.17), the integral (4.15) becomes

f(x) =
1

π

∫ ∞
0

Im
(
exs(u)f̂(s(u))s′(u)

)
du

=
1

π

∫ ∞
0

Im
(
ex(a+u(bi−a))f̂

(
a+ u(bi− a)

)
(bi− a)

)
du. (4.18)

First note, that for large values of x the integrand will be unnecessarily blown up
by the exponential factor (at least in the region of the contour where Re(s(u)) > 0).
In order to avoid this, it is clear that a should be chosen approximately inverse
proportional to the value of x, and we will therefore simply set a = 1/x. Having fixed
a, we are now only left with choosing the second parameter b. Observe that the main
behavior of the integrand in (4.18) is determined by Im

(
ex(a+u(bi−a))f̂(a+u(bi−a))

)
and Re

(
ex(a+u(bi−a))f̂(a + u(bi − a))

)
, since s′(u) = bi − a is just a constant scaling

factor. Having a closer look at these two functions in Figure 4.3, we can see that
choosing b too large (red lines) generally results in picking up too many oscillations
along the path of integration. On the other hand, when choosing b too small (orange
lines) we might get too close to the singularities along the negative real line, and the
integrand can also become unsmooth.

In order to find an “optimal” value for b, we need to have some kind of measure
for the oscillatory behavior of the integrand. If we denote by η(z) the exponent of
the Laplace transform, i.e., f̂(z) = eη(z), then we need to consider (if we are just
concerned with the behavior along the positive imaginary axis)

exui+η(ui) = exp
{

Re(η(ui)) + i Im(xui+ η(ui))
}

= eRe(η(ui))
[

cos
(
xu+ Im(η(ui))

)
+ i sin

(
xu+ Im(η(ui))

)]
.

Now, if we assume that the oscillatory behavior of the integrand is mainly due to the
sine and cosine terms, then we can take as a measure for the frequency, for example,
the smallest value b∗ such that

cos
(
b∗x+ Im(η(b∗i))

)
= 0,

that is
b∗x+ Im(η(b∗i)) =

π

2
. (4.19)

This non-linear equation, however, does not possess an analytical solution and one
needs to use numerical root-finding algorithms in order to solve for b∗. Furthermore,
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Figure 4.3: Re
(
exz f̂(z)

)
and Im

(
exz f̂(z)

)
in the upper complex plane for

x = 3, V (0) = 1, κ = 0.15, ξ = 1.3, T = 1. The lines depict the path of
integration for b = 15 (red lines), b = 0.09 (orange lines) and b∗ = 0.768
(cyan lines). In all three cases a was set to 1/3. The irregular behavior
of the integrand in the vicinity of (−2, 0) is due to one of the singularities
along the negative real axis.

Equation (4.19) has to be solved for each and every x, for which the density is to be
evaluated. As if this was not enough, depending on the parameter combination (and
x), b∗ can be close to zero or greater than 500, making it hard to even give a good
initial guess for the root finding algorithm. At first glance, it therefore seems like
this route would be too costly for being usable. However, having a closer look at

h(u) := xu+ Im(η(ui))− π

2

one finds that this function is generally convex and for large values of u almost linear9

9In fact, one can show that asymptotically it behaves like xu− κT+V (0)
ξ

√
u.
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(see also Figure 4.4).
Thus, Newton’s method applied to h(u) converges pretty fast and reliably towards

b∗, even if the initial guess b0 is set, for instance, to 1, 000. As h is close to linear for
large values of u, four Newton iterations are usually more than enough to obtain an
accurate approximation10 of b∗. Hence, if we approximate the first derivative, needed

20 40 60 80
u

−5

5

10

15

20

h
(u

)

Figure 4.4: h(u) for parameters V (0) = 1, κ = 0.15, ξ = 1.3, T = 5 and
for values of x ranging between 0.18 (bottommost line) and 10 (uppermost
line).

when applying Newton’s method, via finite differences, then for four iterations we
just need eight evaluations of h in order to find b∗. The initial choice π/2 in (4.19)
was of course arbitrary and numerical experiments have shown that the integrands
will be generally even smoother if one chooses a value around π/8.

Having determined the optimal contour parameters a and b, we could in principle
proceed by numerically integrating (4.18). However, direct numerical integration of
the improper integral would result in a truncation error. In order to avoid this,
one can change variables and transform the original integration range [0,∞) to the
finite interval [0, 1]. When analyzing the asymptotic behavior of the integrand one
finds that it decays at least exponentially (see Appendix A.3). Thus, we may use
a logarithmic transform of the integration range. Actually, we obtained excellent
results for practically all relevant parameter scenarios using the transform

u→ −3 log(ũ).

With this transformation (4.18) becomes

f(x) = − 1

π

∫ 1

0
Im
(
exs̃(u)f̂(s̃(u))s̃′(u)

)
du (4.20)

with

s̃(u) = a− 3 log(u)(bi− a),

s̃′(u) = −3

u
(bi− a),

10Recall that we are not really interested in a highly accurate approximation of b∗, since we only
need it as a measure for the order of magnitude of the oscillatory behavior of the integrand.
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and where a and b are chosen as described above.
In Figure 4.5 we show the integrand in (4.20). Observe that it is perfectly smooth

over the entire range of considered x-values. In particular, this smooth integrand
(on a finite interval) should be compared with the oscillatory integrand (on an un-
bounded interval) shown in Figure 4.1. Using an advanced integration algorithm like,
for instance, the adaptive Gauss-Lobatto scheme [GG00], 50–80 evaluations of the
integrand are mostly enough to obtain a precision in the order of magnitude of 10−6

for the value of the density, whereas one needs up to 4,000 evaluations of the inverse
Fourier integrand (4.15), in order to obtain a similar accuracy11. The efficiency of our
method is also demonstrated by the fact, that sampling the density (with parameters
as given in Figure 4.5) at 400 equally spaced points x ∈ {0.05, . . . , 20} takes only
0.069 seconds, opposed to 1.521 seconds when using Fourier inversion.
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) x = 15
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x = 2.5
x = 1.25
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Figure 4.5: Integrand g(u) := Im
(
exs̃(u)f̂(s̃(u))s̃′(u)

)
in (4.20) for pa-

rameters V (0) = 1, κ = 0.15, ξ = 1.3, T = 5 and for various values of
x.

Figure 4.6 shows the density of the integrated variance for various parameter
values. One can clearly see, that the proposed method for evaluating the density
yields perfectly smooth plots, even in the tails, where direct Fourier inversion is
usually prone to numerical instabilities due to the highly oscillatory nature of the
integrand.

Finally, as a simple sanity check, we consider the normalization integral
∫∞

0 f(v)dv
to see how much it deviates from 1. Numerical integration12 of the various densities
presented in Figure 4.6 yields a maximum absolute error of 1.1×10−6, which should
be negligible for most practical applications.

4.4 Calculating CMS Spread Option Prices
In this section we return to our original goal: Pricing CMSSOs, which comes down to
calculating the expectation given in (4.9). In order to solve the system of SDEs (4.8),

11Admittedly, there might exist more suitable integration schemes tailored towards the integration
of highly oscillating functions.
12Integration was performed on [0,1.5] in the case T = 0.25 and on [0,150] in the case T = 5.
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Figure 4.6: Density f(x) of the integrated variance V (T ) for V (0) = 1, κ =
0.15, T = 0.25 (top), T = 5 (bottom) and various values of ξ.

we use the standard displacement transform and define the stochastic processes

Xi(t) := β̄iSi(t) + (1− β̄i)Si(0), i = 1, 2. (4.21)

Applying Itô’s Lemma yields for the dynamics of these processes

dXi(t) = β̄idSi(t)

= β̄i
(
β̄iSi(t) + (1− β̄i)Si(0)

) (
µ̄iV (t)dt+ σ̄i

√
V (t)dUi(t)

)
= Xi(t)

(
µ̃iV (t)dt+ σ̃i

√
V (t)dUi(t)

)
, (4.22)

where µ̃i := β̄iµ̄i and σ̃i := β̄iσ̄i, i = 1, 2. With the results from Section 4.2, we then
have that conditionally on the integrated variance

Xi(Tn)
d
= Xi(0) exp

{(
µ̃i −

σ̃2
i

2

)
V (Tn) + σ̃i

√
V (Tn)Zi

}
=: X̃i(Tn), i = 1, 2, (4.23)

where (
Z1

Z2

)
∼ N

((
0
0

)
,

(
1 ρ̄
ρ̄ 1

))
.
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Reversing the transformation (4.21) finally gives us for the swap rates (conditional
on V (Tn))

Si(Tn)
d
=

1

β̄i

(
X̃i(Tn)− (1− β̄i)Si(0)

)
, i = 1, 2.

Using the law of iterated expectations we obtain for K ∈ R and w = ±1

E
[
(wS1(Tn)− wS2(Tn)− wK)+

]
=

= E
[
E
[(
wS1(Tn)− wS2(Tn)− wK

)+∣∣ V )(T )
]]

≈ E
[
E
[(

w

β̄1

(
X̃1(Tn)− (1− β̄1)S1(0)

)
− w

β̄2

(
X̃2(Tn)− (1− β̄2)S2(0)

)
− wK

)+∣∣∣ V (T )

]]

= E
[
E
[(

w

β̄1
X̃1(Tn)− w

β̄2
X̃2(Tn)− wK̃

)+∣∣∣ V (T )

]]
,

where

K̃ =
1− β̄1

β̄1
S1(0)− 1− β̄2

β̄2
S2(0) +K

and with X̃i(Tn) as given in (4.23). Applying the generalized spread-option formula
for two jointly log-normal random variables given in Appendix A.4, we finally obtain
for the time-zero price of a CMSSO

P (0, Tn+ δ)E
[
(wS1(Tn)− wS2(Tn)− wK)+

]
≈

≈ P (0, Tn+ δ)

∫ +∞

0

∫ +∞

−∞
g(u, v)

1√
2π
e−

1
2
u2
du f(v)dv, (4.24)

where

g(u, v) =



(
S1(0)

β̄1
eh(u,v) − K̂(u, v)

)
1{w=1} , K̂(u, v) ≤ 0,

wS1(0)

β̄1
eh(u,v)Φ

w log

(
S1(0)

β̄1K̂(u,v)

)
+h(u,v)+ 1

2
σ̃2

1(1−ρ̄2)v

σ̃1

√
v(1−ρ̄2)



−wK̂(u, v)Φ

w log

(
S1(0)

β̄1K̂(u,v)

)
+h(u,v)− 1

2
σ̃2

1(1−ρ̄2)v

σ̃1

√
v(1−ρ̄2)


, K̂(u, v) > 0,

K̂(u, v) =
S2(0)

β̄2
exp

{(
µ̃2 −

1

2
σ̃2

2

)
v + σ̃2

√
vu
}

+ K̃

h(u, v) =
(
µ̃1 −

1

2
ρ̄2σ̃2

1

)
v + ρ̄ σ̃1

√
vu,

and where the density f(v) can be evaluated by using the method developed in
Section 4.3.
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Remark 4.4.1. Note that Formula (4.24) remains valid even for other stochastic-
volatility extensions of the LMM, provided that the variance process and the forward
rates are uncorrelated and that an appropriate method for evaluating or approximat-
ing the integrated variance density f(v) is used.

Moment Explosions
As we have remarked in Section 2.6.1, CMS linked payoffs implicitly or explicitly
depend on higher-order moments of the underlying swap rate under the corresponding
swap measure. In order to make sure that MC-prices of CMSSOs generated by
the SV-LMM are meaningful, it suffices to check (by using Proposition 2.6.2) that
EAi [Si(Tn)2], i = 1, 2 are finite.

However, it is not so obvious whether this is also a sufficient condition for the
spread-option pricing formula (4.24) (which is only an approximation) to be well-
defined. For this we need the first-order moments of Xi(Tn), i = 1, 2 to be finite13.

Proposition 4.4.1. Consider the processes

dX(t) = X(t)
(
µV (t)dt+ σ

√
V (t)dU(t)

)
, X(0) > 0,

dV (t) = κ(1− V (t))dt+ ξ
√
V (t)dZ(t), V (0) = 1,

where µ, σ, κ, ξ are positive constants and where U(t) and Z(t) are independent one-
dimensional Brownian motions. Define

D := κ2 − ξ2ν(2µ+ σ2(ν − 1))

and fix ν ≥ 1. The moment E[X(T )ν ] will be finite for all T > 0 if D ≥ 0. If D < 0,
then E[X(T )ν ] will be finite for T < T ∗ and infinite for T ∗ ≥ T , where T ∗ is given
by

T ∗ =
2√
−D

(
π + arctan

(
−
√
−D
κ

))
.

Proof. The explosion time may be derived by using similar arguments as in the proof
of Prop. 2.6.2, which is sketched in [AP07]. First we make the change of variable
Y (t) = log(X(t)). An application of the Feynman-Kac formula then shows that
u(0, Y (0), V (0)) = E[X(T )ν ], where u(t, y, v) satisfies the PDE

ut +
(
µ− σ2/2

)
vuy + κ(1− v)uv +

1

2
σ2vuyy +

1

2
ξ2vuvv = 0

subject to the final condition f(T, y, v) = eνy. Making the Ansatz u(t, y, v) =
eνyeA(T−t)+vB(T−t), where A(0) =B(0) = 0, results in the following system of ODEs
(τ ≡ T − t)

A′(τ) = κB(τ),

B′(τ) =
ξ2

2
B2(τ)− κB(τ) + ν(µ+ (ν − 1)σ2/2).

13For µ̃i = 0 this is always true. However, the drift terms µ̃iV (t)dt in (4.22) capture the necessary
convexity adjustments, so in general µ̃i > 0, which may again lead to moment explosions.
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The ODE for B(τ) can be solved in closed form and is given by

B(τ) =
1

ξ2

(
2R(R− κ)

(R+ κ)eRτ +R− κ
−R+ κ

)
(4.25)

with R =
√
D =

√
κ2 − ξ2ν(2µ+ σ2(ν − 1)). The explosion of E[X(T )ν ] is directly

related to the explosion of B(τ). If D ≥ 0 then B(τ) is finite for all τ > 0. However,
if D < 0 then the denominator in (4.25) may become zero. We have

(R+ κ)eRτ +R− κ = 0 ⇔ τ =
1

R

(
Log

(
κ−R
κ+R

)
+ 2inπ

)
, (4.26)

where n ∈ Z and Log(·) denotes the principal branch of the complex logarithm. The
right hand side of (4.26) can be rewritten as

τ =
2√
−D

(
arctan

(
−
√
−D
κ

)
+ nπ

)
.

Choosing n = 1 yields the first positive root of the above denominator, which com-
pletes the proof.

By means of Proposition 4.4.1 we can easily check that the prices produced by
Formula (4.24) are reliable14. However, observe that for typical market parameters
we virtually always have D = κ2 − 2ξ2µ̃i > 0, such that the explosion times (for
E[Xi(Tn)], i = 1, 2) will almost always be infinite.

4.5 Numerical Results
In this section we provide evidence that the approximation developed above is indeed
fast and highly accurate. In the first part we want to investigate how the approxi-
mation performs in a setting with fully time-dependent Libor parameters, whereas
in the second part we compare our method with the approach introduced in a recent
paper by Antonov & Arneguy (AA) [AA09].

4.5.1 Time-Dependent Parameters

In order to test our approximation we use a realistic time-dependent (but time-
homogeneous) parameter setting. The underlying model is based on 6-month Libor
rates (τi ≡ 0.5, N = 39) with a typical upward sloping initial yield curve, given
in Table B.4, Appendix B. Instantaneous (scalar) Libor volatilities are generated
via the abcd-parameterization (3.20) with a = 0.04, b = 0.32, c = 1.1 and d =
0.17. Instantaneous and effective Libor volatilities are shown in Figure 4.7. Skew
parameters decrease linearly from 90% to 40% with decreasing time to maturity

βn(t) =

(
1− Tn − t

TN−1

)
0.4 +

Tn − t
TN−1

0.9, 0 ≤ n ≤ N−1.

14 As we have noted earlier, numerical pricing routines usually have a built-in dampening effect. In
particular, when evaluating Formula (4.24) by using numerical integration, the domain of integration
is typically truncated at some large finite value. Therefore, the produced numbers might look
reasonable even if, in fact, the option prices do not exist.
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For the correlation among the Libor rates we use the time-homogeneous specification
(cp. [Reb04], p. 691)

ρi,j(t) = exp{−|Ti − Tj |ν exp{−ηmin(Ti − t, Tj − t)}}, t ≤ min(Ti, Tj),

with ν = 0.11, η = 0.22 and perform a rank reduction15 to 5 factors (see Figure
4.8). For the stochastic-variance process we use again a speed of mean-reversion of
κ = 0.15 and a volatility of variance of ξ = 1.3.
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Figure 4.7: Time-homogeneous instantaneous and effective Libor volatili-
ties.
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Figure 4.8: Instantaneous Libor correlations ρij(0).

Table 4.1 gives the test results for 10Y–2Y CMSSOs with 5Y and 10Y maturity
and a payment lag of half a year (δ = 0.5). In both cases our approximation yields
excellent results over the entire strike ranges, with absolute errors generally remaining
well below 1 bp. Note that the absolute error of 0.2 bp for the 5Y option with strike
0.442% corresponds to an error in “implied correlation” of only 0.17%, i.e., bumping
the input correlation for the approximation by 0.17 percentage points yields the MC-
price.
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5Y Maturity

Strike -0.558% -0.308% -0.058% 0.192% 0.442% 0.692% 0.942% 1.192% 1.442%

MC 88.2 69.6 52.1 36.9 25.2 17.5 12.5 9.2 6.9
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

Approx 87.7 69.2 52.1 37.1 25.4 17.3 12.0 8.5 6.2

Abs. Err. 0.5 0.4 0.1 0.2 0.2 0.2 0.5 0.7 0.7

10Y Maturity

Strike -0.509% -0.259% -0.009% 0.241% 0.491% 0.741% 0.991% 1.241% 1.491%

MC 72.5 58.0 44.9 33.9 25.9 20.4 16.5 13.6 11.5
(0.2) (0.2) (0.2) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

Approx 71.7 57.7 44.9 34.2 26.0 20.0 15.7 12.7 10.4

Abs. Err. 0.8 0.4 0.1 0.3 0.1 0.4 0.7 0.9 1.0

Table 4.1: Test results, in basis points (bp), for 10Y–2Y CMS spread
options. Numbers in parentheses denote standard deviations (218−1 =
262,143 paths, 16 steps per year). Convexity-unadjusted forward spreads:
S1(0)−S2(0) = 0.335% (5Y), 0.218% (10Y). Convexity-adjusted forward
spreads (MC-values): ET [S1(T )−S2(T )] = 0.442% (5Y), 0.491% (10Y).
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Figure 4.9: Implied normal spread volatilities in basis points for 10Y–2Y
CMS spread options with 5Y maturity (top) and 10Y maturity (bottom).

In order to provide some further intuition for the quality of the approximations,
we present in Figure 4.9 implied normal spread volatilities16 for the prices given
in Table 4.1. Also with respect to this “error metric” the approximation performs
excellently.

To conclude, let us note that there are basically two types of errors made when
calculating CMSSO prices via formula (4.24). The first one is due to the numerical
calculation of the integrals (including the evaluation of the density of V (T )) and plays

15More details on rank reducing correlation matrices will be provided in Chapter 6.
16See p. 48.
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in our case only a minor role17. The second one, being the “actual” approximation
error, comes from the assumptions being made about the dynamics of the swap rates
under the measure QTn+δ (implicitly given by Equation (4.8)). In order to further
reduce this error one could principally use more sophisticated drift-approximations18

and let the percentage drift terms, for instance, also depend on the stochastic drivers
of the swap rates. Nevertheless, using the stochastic variance as the only stochastic
driver of the percentage drift terms seems to capture already a great part of the
variability of the drift terms, and the numerical results suggest, that the quite simple
approximation proposed above is already good enough to obtain excellent results.

4.5.2 Constant Parameters

In [AA09] two approximations for CMSSOs are presented, the better of which is based
on first changing the measure from the Tn+ δ-forward measure to a so-called“spread-
measure”, under which the swap-rate spread S(t) := S1(t)− S2(t) is a martingale

ETn+δ
[
(S(Tn)−K)+

]
= ES

[
(S(Tn)−K)+M(Tn)

]
.

They then use a (non-linear) regression approximation for the stochastic factorM(Tn),
which is due to the change of measure, and finally arrive at

ETn+δ
[
(S(Tn)−K)+

]
≈ ES

[
(S(Tn)−K)+(A(Tn)

+B(Tn)∆S(Tn) + C(Tn)(∆S(Tn))+)
]

= A(Tn)ES [(S(Tn)−K)+]

+B(Tn)ES
[
(S(Tn)−K)+∆S(Tn)

]
+ C(Tn)ES

[
(S(Tn)−K)+(∆S(Tn))+

]
, (4.27)

where ∆S(Tn) = S(Tn) − S(0) and the coefficients A(Tn), B(Tn) and C(Tn) are
obtained by solving a linear system of equations containing the first two moments
of ∆S(Tn) and (∆S(Tn))+. In order to calculate expectations involving the spread-
option payoff function, they provide a two-dimensional Fourier representation of the
payoff, which is based on the complex Gamma function, and then use two-dimensional
Fourier inversion. The Fourier representation of the spread payoff was developed
simultaneously by Hurd & Zhou [HZ10].

For numerical comparison we set up a 3-factor LMM with a 20Y annual model
tenor and run Monte Carlo simulations with the parameter scenario19 given in [AA09].
Although we were not able to reproduce their prices exactly, the obtained prices
generally differ only by a few basis points and thus absolute differences between
Monte Carlo values and the respective approximations should be comparable.

In Table 4.2 and Figure 4.10 we compare the approximation errors of our method
with the corresponding values given in [AA09]. For 10Y–2Y CMS spread options with
5Y maturity both approximation methods yield excellent results over the entire strike

17Provided one chooses reasonable cutoff and accuracy levels.
18Observe, though, that not only the drift terms but also the diffusion terms are just approximate.
19Note, that they use as input a somewhat unrealistic yield curve, which increases linearly at the
beginning, has a jump of more than 100 basis points at 14Y maturity and then decreases linearly.
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5Y Maturity

Strikes -0.672% -0.422% -0.172% 0.078% 0.328% 0.578% 0.828% 1.078% 1.328%

MC 116.3 98.0 80.9 65.4 52.2 41.4 33.2 26.9 22.2
(0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Approx 116.9 98.7 81.6 66.0 52.6 41.7 33.2 26.8 21.9

Abs. Err. 0.6 0.7 0.7 0.6 0.4 0.2 0.0 0.1 0.2
Abs. Err. (AA) 1.0 0.5 0.2 0.1 0.2 0.1 0.0 0.0 0.1

10Y Maturity

Strikes -1.321% -1.071% -0.821% -0.571% -0.321% -0.071% 0.179% 0.429% 0.679%

MC 109.6 94.9 81.0 68.2 56.9 47.1 39.1 32.6 27.4
(0.3) (0.3) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2) (0.2)

Approx 109.7 94.9 81.0 68.1 56.6 46.6 38.3 31.7 26.4

bs. Err. 0.1 0.1 0.0 0.1 0.3 0.5 0.7 0.9 1.0
Abs. Err. (AA) 1.0 1.2 1.3 1.1 0.5 0.7 2.0 3.0 3.7

Table 4.2: Test results, in basis points (bp), for 10Y–2Y CMS spread
options. Numbers in parentheses denote standard deviations (219 −
1 = 524,287 paths, 16 steps per year). Parameter scenario as in
[AA09]. Convexity-unadjusted forward spreads: S1(0)−S2(0) = 0.327%
(5Y), −0.319% (10Y). Convexity-adjusted forward spreads (MC-values):
ET [S1(T )−S2(T )] = 0.578% (5Y), 0.055% (10Y).

range and absolute errors generally remain below 1 bp. For spread options with 10Y
maturity our approximation method works again remarkably well and errors remain
in the 1 bp range. In particular, our method yields more accurate results for all
strike values than the AA-approximation, with a maximum absolute error of 1.0 bp
opposed to 3.7 bp.

Based on the above results, we find that the accuracy of formula (4.24) is excel-
lent, even for the quite challenging parameter setting given in [AA09], with constant
but rather high Libor volatilities between 20% and 39 % and a volatility of vari-
ance ξ of 130%. Note also that the approximation is pretty fast: The computation
of the spread-option prices in Table 4.2 took only 48 ms on average and thus the
approximation should be suitable for being used within calibration routines.

Remark 4.5.1. Instead of integrating against the densities of the normal distribution
and of the integrated variance there is a another way of calculating prices: Use the
drift approximation derived in Section 4.1, calculate the joint characteristic func-
tion of (X̃1(T ), X̃2(T ))′, combine it with the Fourier transform of the (transformed)
spread payoff (see [HZ10] or [AA09]) and then use a two-dimensional Fourier inver-
sion to finally calculate the price. While this is principally possible, it is, as far as our
experience goes, generally slower. Using the same adaptive integration scheme and
the same precision level as before it took 755 ms on average to calculate the spread
option prices given in Table 4.2 via the two-dimensional Fourier inversion. Further-
more, note that when using the AA-approximation given in (4.27), one generally
needs to calculate not one but several of these two-dimensional Fourier integrals.
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Figure 4.10: Absolute approximation errors in basis points with respect
to Monte Carlo for 10Y–2Y CMS spread options with 5Y maturity (top)
and 10Y maturity (bottom).

4.6 Conclusion
In this chapter we considered the efficient pricing of CMSSOs within the SV-LMM.
In Section 4.3 we introduced a new method for calculating the density of an inte-
grated CIR process, which is based on carefully choosing the integration contour for
the necessary Laplace inverse transform. This method allows the fast and accurate
evaluation of the density in its entire domain, a result which is also applicable out-
side the context of spread-option pricing. In Section 4.1 we proposed an approach
for approximating the drift terms of the swap rates under the forward measure and
derived a semi-analytical formula for CMS spread option prices. The accuracy and
speed of our approximation was finally demonstrated in Section 4.5, where it was
also compared with the approximation introduced in [AA09]. We have shown that
our method is, at least for the used parameter scenario, more accurate (in terms of
maximum absolute error) and faster.





Chapter 5

New Correlation Parameterizations

The correct specification of the volatility and correlation structures underlying a
LMM is essential for obtaining accurate prices and hedge ratios from the model.
While information about the forward-rate volatilities is usually quite easy to extract
from market prices of caps and swaptions (cp. Section 3.4), the situation is more
delicate with regard to the Libor correlations. Statistically estimating the forward-
rate correlations from time series of forward-rate curves is, apart from some practical
difficulties, straightforward, and using such historically estimated correlation matri-
ces for valuing less correlation-sensitive products may be acceptable. For products
which exhibit a more pronounced dependence on forward-rate correlations, however,
this approach is not ideal due to its “backward-looking” nature.

It is therefore tempting to imply the sought correlations directly from market
instruments and in this way incorporate the prevailing market views. But also this
approach leads to some difficulties, since swaptions, which are usually the main cal-
ibration instruments besides caps, depend only relatively mildly on the underlying
forward-rate correlations. In fact, as pointed out by Rebonato [Reb02], swaption
prices show an “almost total lack of dependence on the shape of the correlation func-
tion”. Intuitively, this can be explained by the fact that swap rates are just weighted
averages of forward Libor rates (see Equation (2.10)). So rather different correlation
functions (the volatility functions being fixed) will produce almost identical swap-
tion prices/volatilities, as long as the average correlations among the forward rates
are roughly the same. It can therefore be a rather challenging task to obtain stable
calibration results when trying to simultaneously back out volatilities and correla-
tions from caps and swaptions alone1. To overcome this problem, one can consider
augmenting the set of calibration instruments with CMSSOs, which are far more
correlation sensitive and have become relatively liquid in recent years.

No matter whether the instantaneous forward-rate correlations of a LMM are
exogenously specified, by using some historically estimated correlation matrix, or ob-
tained implicitly, by calibrating the model to market prices of interest-rate options,
in both cases one needs some parsimonious yet flexible parameterization for the Libor
correlations ρij(t). Although there exists quite a number of different parameteriza-
tions (see e.g. [Reb04] or [Sch05]), most of these are relatively inflexible or are not
guaranteed to always yield positive definite matrices. In this chapter we therefore

1In [Sch05] a regularization method is introduced which may help to overcome some of the stability
problems.
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present a new generic method for constructing correlation parameterizations that are
always positive definite and derive new flexible low-parametric forms.

5.1 General Considerations
The instantaneous Libor correlations, as we have defined them in Equation (3.19),
may generally exhibit a functional dependence on calendar time t and on the matu-
rities Tn of the respective forward rates:

ρij(t) = ρ(t, Ti, Tj), i, j = 0, . . . , N−1.

However, as with the Libor volatilities (see Section 3.3.1), it is in general a convenient
and financially desirable feature for the correlation function ρ(t, Ti, Tj) to display a
time-homogeneous behavior. Therefore, the correlation structures that we shall work
with in the following will most often be of the form

ρij(t) = ρ(Ti − t, Tj − t),

i.e., they will depend solely on the residual time to maturity of the respective forward
rates. For ease of notation we will furthermore make the common assumption that
the Libor correlations are piecewise constant on the tenor structure. In this case2,
we just need to consider the initial matrix

ρij := ρij(0), i, j = 0, . . . , N−1 (5.1)

and can set

ρij(t) = ρi−η(t),j−η(t) (5.2)

with η(t) as in (2.14). In the next paragraph we will shortly review the general
procedure for estimating historical correlations (see also [Sch05] and [AP10b]).

5.1.1 Historical Correlations

For some fixed year fraction τ (e.g. 0.25 or 0.5) and some integer N , let us define
so-called sliding forward rates3 Lsl

k (t) by

Lsl
k (t) = L(t, t+ kτ, t+ (k + 1)τ), k = 1, . . . , N.

Suppose that for each ti from a given set of calendar times4 t0, . . . , tNt , we have
constructed a forward-rate curve Lsl

k (ti), k = 1, . . . , N , bootstrapped from observed
prices of deposits, FRAs, Futures and swaps, as described in Section 2.2.5. In Figure
5.1 we show a time-series of EUR forward-rate curves spanning January 2004 to
April 2010. Assuming time-homogeneity5, the covariance matrix of the normalized

2And assuming roughly equidistant tenor dates Ti.
3With a fixed time to maturity rather than a fixed time of maturity.
4The number of calendar times Nt has no relation with the grid dimension Nt from Section 3.3.
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Figure 5.1: Evolution of the EUR forward-rate curve (1/14/2008 –
4/26/2010). Semi-annual forward rates (τ = 0.5) were bootstrapped from
weekly observations of 6M and 12M deposits and swaps with tenors of 2, 3,
4, 5, 7, 10, 15 and 20 years, using log-cubic interpolation in discount-price
coordinates.

forward-rate increments6

Ik(ti) :=
Lsl
k (ti)− Lsl

k (ti−1)√
ti − ti−1

, k = 1, . . . , N, i = 1, . . . , Nt.

can then be estimated via the standard sample covariance estimator

Ĉ =
1

Nt − 1

Nt∑
i=1

(I(ti)− Ī)(I(ti)− Ī)′ ∈ RN×N

with column vectors I(ti) = (I1(ti), . . . , IN (ti))
′, i = 1, . . . , Nt and standard sample

mean Ī = 1
Nt

∑Nt
i=1 I(ti). If we assume a LMM with time-homogeneous (scalar)

Libor volatilities and time-homogeneous correlations of the form (5.1) – (5.2), then
the sample correlations

ρ̂ij =
Ĉi+1,j+1√

Ĉi+1,i+1Ĉj+1,j+1

, i, j = 0, . . . , N−1

may be used as a rough approximation (neglecting any drift terms) for the Libor
correlations ρij of the LMM.

In Figures 5.4 and 5.6 (which we will comment on later) we present two concrete
examples of historically estimated correlation matrices.

5Time-homogeneous forward Libor rate volatilities/correlations imply constant sliding forward-rate
volatilities/correlations.

6Here we use absolute increments, as forward rates generally tend to be more normal than log-
normal. Using e.g. log-returns is of course also possible. However, for small time increments
ti − ti+1 the particular choice is not overly important.
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Remark 5.1.1. The historical correlation matrix (ρ̂ij)
N−1
ij will generally be of full rank.

So we implicitly assumed that we are working with a full-factor model, i.e., d = N .
The problem of reducing the rank of Libor correlation matrices will be dealt with in
Chapter 6.

In practice, obtaining meaningful correlations from historical data is not as simple
as it might look at first glance. First, correlations will generally not be constant
over time, such that the estimation horizon will have a significant influence on the
results. On the one hand, the used estimation period should be long enough to obtain
statistically meaningful estimates, but on the other hand, it should not be too long if
we are to capture current market conditions. Second, non-synchronous prices of the
instruments, from which the forward-rate curves are constructed, can introduce non-
negligible errors. To minimize effects due to non-synchronicity (and other noise in the
data) it is therefore advisable to not use too short a sampling frequency (weekly often
works reasonably well). Third, the interpolation method used in the bootstrapping
procedure often has a considerable influence on the estimation results, see e.g. [AL03].
In particular, so-called “ringing effects” in forward-rate curves may lead to highly
peaked correlation matrices with counterintuitive (e.g. negative) entries. To avoid
ringing effects it is best to choose a “relatively linear” (in forward-rate coordinates)
interpolation method and to use only forward rates with maturities that correspond
to tenors of the underlying instruments from which the curves are constructed. Last
but not least, the statistical estimation of correlations by itself may suffer from certain
robustness problems, see e.g. [JKB95] or [Wil05].

In view of these problems and because of the backward looking nature of historical
parameters in general, it is most often preferable to extract the Libor correlation via
an implied calibration to market prices of correlation-sensitive products, as we will
demonstrate in Chapter 7. Nevertheless, historically estimated correlation matrices
can be used to get a feel for the general shape of Libor correlation matrices and to
come up with reasonable correlation parameterizations.

5.1.2 Stylized Facts

No matter whether historical or implied correlations are to be used within a model, in
both cases one needs a parsimonious and smooth parameterization of the correlation
matrix. In case of historically estimated correlation matrices, this is due to the fact
that these are often quite noisy and may contain counterintuitive entries (see above).
By fitting a low-parametric functional form to the historical correlations, one tries
to obtain a reasonably smooth matrix, which captures only the main features of
the historical data. In case of the implied calibration approach the reason is that
one cannot expect to obtain reliable results for all the N(N − 1)/2 entries of the
correlation matrix.

Before we will have a closer look at some candidate parametric forms for the
matrix ρ = (ρij)

N−1
i,j=0, we need to fix some general requirements that ρ must comply

with in order to be regarded as a valid correlation matrix:

(A1) ρ must be real and symmetric,

(A2) ρii = 1, i = 0, . . . , N−1,
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(A3) ρ must be positive semi-definite.

Besides these minimum requirements, which any valid correlation matrix must
satisfy, there is conventional wisdom that a forward-rate correlation matrix should
also exhibit the following features:

(B1) i 7→ ρij , i ≥ j is decreasing,

(B2) i 7→ ρi+p,i is increasing for fixed p ∈ {1, . . . , N − 2}.

The first requirement comes from the observation that the farther apart two forward
rates are, the less correlated they typically are. Furthermore, one usually expects
same distance rates to move more “in line” at the long end than at the short end
of the forward-rate curve, i.e., the 2Y and the 5Y rate should be more decorrelated
than, say, the 12Y and the 15Y rate. This results in requirement (B2), that the
entries along the sub-diagonals should be increasing. The above stylized facts can
be readily observed from the historically estimated correlation matrices depicted in
Figures 5.4 and 5.6.

5.2 Classical Parameterizations
The simplest parametric form for a forward-rate correlation matrix is arguably the

Classical exponential form:

ρij = exp
(
− β|i− j|

)
, β ≥ 0. (5.3)

The matrix clearly satisfies (B1) for any β > 0 and one can also show that it is
always an admissible correlation matrix, i.e., it satisfies (A1) – (A3). Unfortunately,
expression (5.3) cannot reproduce feature (B2) since the sub-diagonals are simply
constant. In order to have more degrees of freedom and also to take condition (B2)
into account, Rebonato [Reb99a] proposes the following

Rebonato 3-parametric form I:

ρij = ρ∞ + (1− ρ∞) exp
(
− |i− j|(β − αmax(i, j))

)
, (5.4)

− 1 < ρ∞ < 1, β > 0, 0 ≤ α ≤ β

N − 1
.

However, while (5.4) may produce realistic correlations, Schoenmakers & Coffey
[SC03] point out that the matrices are not guaranteed to be positive semi-definite for
all parameter combinations. One therefore always has to check, whether the matrix
has negative eigenvalues and, if necessary, “repair” it by using for example one of
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the methods introduced in [RJ99] or [Hig02]. This, of course, adds an undesirable
computational burden, at least if we want to use full-factor matrices7.

In order to fix the above problem Rebonato [Reb04] provides a further functional
form

Rebonato 3-parametric form II (Reb3):

ρij = ρ∞ + (1− ρ∞) exp
(
− β|i− j| exp{−αmin(i, j)}

)
, (5.5)

β > 0, α ∈ R, −1 < ρ∞ < 1,

and claims that all eigenvalues of ρij can be shown to be always positive. However,
it is quite easy to find otherwise realistic parameters that also let (5.5) have negative
eigenvalues8. One would therefore be again forced to check during a calibration,
whether the resulting matrix is positive semi-definite.

Parametric forms that satisfy conditions (A1) – (A3) and (B1) – (B2) by their
very construction can be derived from the semi-parametric family introduced by
Schoenmakers & Coffey (SC) [SC03].

Semi-parametric Schoenmakers-Coffey family:
Let b0, . . . , bN−1 be a strictly increasing sequence of coefficients such that

1 = b0 < b1 < . . . < bN−1 and
b0
b1
<
b1
b2
< . . . <

bN−2

bN−1
. (5.6)

Then set

ρij =
bj
bi
, 0 ≤ j < i ≤ N−1. (5.7)

Conditions (B1) and (B2) are directly enforced by the monotonicity constraints
in (5.6), and it can also be shown that (5.7) is always positive definite. The above
family is called semi-parametric as the number of parameters needed is N−1, opposed
to the N(N − 1)/2 entries of the entire correlation matrix.

As the conditions in (5.6) might be difficult to handle in practice, Schoenmakers
& Coffey [SC03] show that a sequence of the above type can always be characterized
in terms of another, not necessarily increasing sequence of N−1 coefficients ∆i ≥
0, 1 ≤ i ≤ N−1 via

bi = exp

(
N−1∑
k=1

min(k, i)∆k

)
, 0 ≤ i ≤ N−1. (5.8)

More low-parametric correlation structures can now be easily derived from the above
parameterization by choosing simple functional forms for either the b’s or the ∆′s.
Imposing for example a linear behavior to the ∆′s results, after some rearrangements,
in the following popular two-parametric form

7If a PCA-style factor reduction is applied, then the factors corresponding to smaller (and negative)
eigenvalues are discarded anyway.

8See the calibration examples below.
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Schoenmakers-Coffey 2-parametric form I (SC2):

ρij = exp

(
−|i− j|
N − 1

(
− log ρ∞ + η h(i, j)

))
, 0 ≤ i, j ≤ N−1, (5.9)

h(i, j) =
i2 + j2 + ij − 3Ni− 3Nj + 6i+ 6j + 2N2 − 7N + 5

(N− 2)(N− 3)

ρ∞ ∈ (0, 1), η ∈ [0,− log ρ∞].

Notice, that ρ∞ = ρ1,N−1 is the correlation between the farthest apart forward rates,
whereas η can be used to control the rate of correlation decay.

Another two-parametric form can be constructed by using

bi = exp(iαβ), i = 0, . . . , N−1, 0 < α < 1, β > 0.

Introducing ρ∞ := 1/bN−1 we obtain

Schoenmakers-Coffey 2-parametric form II :

ρij = exp

(
log ρ∞

∣∣∣∣( i

N−1

)α
−
(

j

N−1

)α∣∣∣∣) , 0 ≤ i, j ≤ N−1. (5.10)

Even though the two above parameterizations are generally not quite as flexi-
ble as for example (5.4), one can rest assured that they always produce admissible
correlation matrices.

5.3 New Flexible Correlation Parameterizations
When calibrating a model to caps and swaptions or when fitting historical correlation
matrices, it may be reasonable to use only one- or two-parametric forms, in order
to obtain a sufficient smoothing effect and to avoid overfitting. In contrast, if we
augment the set of calibration instruments with CMSSOs, we should be able to
back out more detailed information about the underlying correlation structure. Put
differently, if we assume that the volatilities are mainly determined by prices of caps
and swaptions, then we cannot expect to obtain a reasonable fit to, say, 5-10 prices of
CMS spread options with different maturities with just two correlation parameters.

In order to obtain more flexible parameterizations that are positive definite, a
natural attempt would be to parameterize the ∆-coefficients of the SC-family in a
very general way. Unfortunately, controlling the shape of the correlation matrix via
the ∆- or b-coefficients is not very intuitive and it is not evident how a more gen-
eral parameterization of these coefficients should look like. Apart from that, there is
a more fundamental problem with the SC-family when it comes to designing more
flexible correlation structures. Considering expression (5.7) we find that the entries
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of the first column of the correlation matrix are given by ρi1 = 1/bi. Consequently,
fixing the first column of the matrix determines all N−1 parameters bi and therefore
also all the remaining entries of the matrix. In particular, the last row of the matrix
ρN−1,i = bi/bN−1 is always approximately inverse-proportional to the first column of
the matrix, which makes it difficult to control the “front-end” and “back-end” cor-
relations separately and introduces constraints on possible shapes of the correlation
matrix.

Below we present an alternative way of characterizing matrices from the SC-
family, which gives rise to a new construction principle for correlation matrices.

5.3.1 Alternative Characterization of the SC-Family

Let us fix some coefficients b1, . . . , bN−1 such that (5.6) holds and denote the corre-
sponding correlation matrix from the SC-family by ρ. If we consider the Cholesky
decomposition L of this matrix

ρ = LL′,

we find that

Lij =


b−1
i , j = 0,

b−1
i

√
b2j − b2j−1, 0 < j < i,

0, otherwise.

(5.11)

Likewise, the Cholesky decomposition can be written as

L = AC,

where
A = diag(b−1

0 , . . . , b−1
N−1)

and C has entries

Cij =


1, j = 0,√
b2j − b2j−1, 0 < j < i,

0, otherwise,

i.e., C is a lower triangular matrix with constant columns (see Figure 5.2). The
column coefficients

c0 := 1, cj :=
√
b2j − b2j−1, j = 1, . . . , N−1,

can alternatively be defined recursively via

cj :=

√√√√b2j −
j−1∑
k=0

c2
k, j = 1, . . . , N−1, (5.12)

which reveals that for the i-th row of C, denoted by ri, we have

‖ri‖ = bi, i = 1, . . . , N−1.
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1
1 c1

1 c1 c2

1 c1 c2 c3

1 c1 c2 c3 c4

1 c1 c2 c3 c4 c5
... · · · . . .

���

‖r3‖ = b3

Figure 5.2: Matrix C.

The above observations suggest that one should be able to obtain more flexible semi-
parametric forms by suitably reparameterizing the column coefficients ci of the matrix
C or even allowing non-constant columns, while keeping the row norms fixed at bi to
preserve the general structure.

5.3.2 Reformulation of the Cholesky Decomposition

Inspired by the above findings, we present the following general construction principle
for correlation matrices:

Lemma 5.3.1. Let N > 2, I := {1, . . . , N−1}, I0 := I ∪{0}. Assume f : I0 → [−1, 1]
and h : I × I → R are functions such that f(0) = 1 and h(i, 1) 6= 0, i ∈ I. Define L
to be a lower triangular matrix with entries

Lij =


f(i), j = 0,

h(i, j)
√

1−f(i)2

ai
, 0 < j ≤ i,

0, otherwise,

(5.13)

where

a0 = 1, ai =

i∑
k=1

h(i, k)2, i ∈ I.

Then the matrix

ρij = (LL′)ij = f(i)f(j) +

√
1− f(i)2

ai
· 1− f(j)2

aj

min(i,j)∑
k=1

h(i, k)h(j, k), i, j ∈ I0

(5.14)
is a proper correlation matrix with first column/row

ρi0 = ρ0i = f(i), i ∈ I0.

If, furthermore, |f(i)| < 1 and h(i, i) 6= 0 ∀i ∈ I, then ρ is of full rank and L =
(Lij)i,j∈I0 is its unique Cholesky decomposition.

Proof. It is easy to see that ρ is real and symmetric. Furthermore, it is clearly positive
semi-definite since for arbitrary x ∈ RN we have

x′ρx = x′LL′x = (x′L)(x′L)′ = ‖xL‖2≥ 0.
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Finally, we have

ρii =
i∑

k=0

L2
ik = f(i)2 +

i∑
k=1

h(i, k)2 1− f(i)2

ai
= 1.

The last claim follows from linear algebra.

Parametric correlation structures can now be easily derived by specifying simple
parametric forms for the functions f and h.

Remark 5.3.2. In principle, it is also possible to directly parameterize the Cholesky
decomposition of a forward correlation matrix. However, it is generally more difficult
to come up with simple parametric forms, as the Cholesky decompositions of oth-
erwise smooth forward correlation matrices may look quite erratic, and one has to
simultaneously take care of the normalization. In contrast, splitting up the problem
into finding parametric forms for f and h is usually easier. Since f represents the
“front-end” correlations in the first column of ρ, it is natural to require f to be some
positive function with f(0)=1, which decreases monotonically to some asymptotic
correlation level. The behavior of the remaining entries of the correlation matrix can
be controlled by means of the function h, where using a smooth functional form for h
will generally result in a smooth transition from the entries in the first column/row
to the 1’s on the diagonal.

Remark 5.3.3. Comparing (5.11) and (5.13) it can be easily seen that for a given
sequence bi, i ∈ I0, which satisfies conditions (5.6), one can recover the corresponding
SC correlation matrix from (5.14) by choosing

f(i) = 1/bi, and h(i, j) =
√
b2j − b2j−1, i, j ∈ I.

Observe, that while matrices from the SC-family naturally satisfy conditions (B1)
and (B2), this is not necessarily the case for correlation matrices constructed via
“arbitrary” generating functions f and h. However, for our applications this is not
a problem since our primary goal is to provide more flexible correlation structures
that can be used when calibrating to prices of CMSSOs. Provided conditions (B1)
and (B2) are reasonable, they should naturally come out of the market data, rather
than be imposed. We will return to this point in Chapter 7.

Finally, we note that the result of Lemma 5.3.1 also holds in the opposite direction:

Lemma 5.3.4. Let ρ be an arbitrary N × N correlation matrix of full rank. Then
there exist functions f : I0 → [−1, 1] and h : I × I → R such that

ρij = f(i)f(j) +

√
1− f(i)2

ai
· 1− f(j)2

aj

min(i,j)∑
k=1

h(i, k)h(j, k), i, j ∈ I0 (5.15)

and the Cholesky decomposition L of ρ can be written as

Lij =


f(i), j = 0,

h(i, j)
√

1−f(i)2

ai
, 0 < j ≤ i,

0, otherwise,

(5.16)
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with

ai =
i∑

k=1

h(i, k)2, i ∈ I.

Proof. If ρ is real symmetric positive definite, then its Cholesky decomposition L =
(Lij)i,j∈I0 exists and is unique. Now simply set f(i) := Li0 = ρi0, i ∈ I0 and
h(i, j) := Lij , i, j ∈ I, and verify that (5.15) and (5.16) hold.

5.3.3 New Parametric Forms

Below we present two concrete examples of choices for the “generating functions” f
and h. The resulting correlation structures are quite flexible and can be written in a
nice and compact form.

For the first parameterization let us take

f(i) = exp (−β iα) , α, β > 0, i ∈ I0,

h(i, j) = exp
(
− γ

N − 2
j
)
, γ ∈ R, i, j ∈ I. (5.17)

Then, after adding a further parameter ρ∞ ∈ [0, 1) for controlling the asymptotic
correlation level (see Appendix C) and after some simplifications, we obtain the
following

New 4-parametric form (4P):

ρij = ρ∞+ (1− ρ∞)

[
exp
(
− β(iα + jα)

)
+ ψ(i, j)

√(
1− exp{−2βiα}

)(
1− exp{−2βjα}

) ]
, i, j ∈ I0, (5.18)

ψ(i, j) =



1, min(i, j) = 0,√
min(i,j)
max(i,j) , min(i, j) > 0, γ = 0,√
1−exp(− 2γ

N−2
min(i,j))

1−exp(− 2γ
N−2

max(i,j))
, min(i, j) > 0, γ 6= 0,

α, β > 0, γ ∈ R, ρ∞ ∈ [0, 1).

This parametric form has two parameters α and β for controlling the front-end cor-
relations, one parameter γ for controlling the correlations at the back end, and one
parameter ρ∞ for the asymptotic correlation level. It is considerably more flexible
than the 2-parametric forms (5.9) and (5.10). It is generally also more flexible than
the 3-parametric form (5.4) and additionally even always positive definite.
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Note that h in (5.17) does not depend on the row index i and thus the matrix C
from Section 5.3.1 has again constant columns. In order to gain additional flexibility
this restriction can be relaxed. As a refinement of (5.17) let us take

h(i, j) = exp

(
−
(
i− 1

N−2
γ +

N−1− i
N−2

δ

)(
j

i
− 1

))
, γ ∈ R, i, j ∈ I, (5.19)

which yields, again after applying the ρ∞-extension, the following

New 5-parametric form (5P):

ρij = ρ∞+ (1− ρ∞)

[
exp
(
− β(iα + jα)

)
+

ϑij√
ϑiiϑjj

√(
1− exp{−2βiα}

)(
1− exp{−2βjα}

) ]
, i, j ∈ I0,

(5.20)

ϑij =



1, min(i, j) = 0,

min(i, j), min(i, j) > 0, ξiξj = 1,

(ξiξj)
min(i,j) − 1

1− 1/(ξiξj)
, min(i, j) > 0, ξiξj 6= 1,

ξi = exp

(
− 1

i

(
i− 1

N−2
γ +

N−1− i
N−2

δ

))
,

α, β > 0, γ, δ ∈ R, ρ∞ ∈ [0, 1).

The interpretation of the parameters is essentially the same as above, only that
we now have two parameters for controlling the transition from the diagonal to the
first column of the correlation matrix: δ acts more on the rows in the upper part
whereas γ acts mostly on the rows in the lower part of the correlation matrix. Note,
that if we fix δ = 0 we obtain again a 4-parametric version, which hardly differs
from (5.18). Some examples for possible shapes of correlation matrices, that can be
generated with (5.20), are shown in Figure 5.3.
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no. 1 2 3 4 5 6 7 8 9
α 1.0 1.0 3.0 1.0 1.0 1.5 2.2 0.5 1.0
β 0.1 0.1 0.01 0.1 0.1 0.1 0.006 0.8 0.06
γ -3.7 0.0 -5.6 10.0 -1.7 -3.4 0.95 3.0 -7.0
δ -0.3 0.0 1.0 4.5 3.7 8.3 3.6 -0.2 2.0

Figure 5.3: A variety of shapes that can be generated by the 5P-
parameterization. The corresponding parameter values are given in the
table (numbering from top, left to right). In all cases N = 40. The
asymptotic correlation level ρ∞ was kept fixed at 0.2.
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5.4 Fitting Historical Correlations
In Figures 5.4 – 5.7 we present two concrete examples, where the parametric forms
SC2, Reb3 and 5P were fitted to historical correlations. For estimating the historical
matrices we used in both cases 4 years of weekly data from the EUR market, spanning
Jan. 2004 to Jan. 2008 and Apr. 2006 to Apr. 2010, respectively. For each date in
the respective data set a 6M forward-rate curve was constructed from market quotes
for deposits and swaps. The correlations were then calculated from the obtained
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Figure 5.4: Historically estimated forward-rate correlations (Jan. 2004 –
Jan. 2008) and fitted parameterizations. From top, left to right: Histori-
cal, SC2, Reb3, 5P.

Corr.-form 2004 – 2008 2006 – 2010

SC2 0.132 0.187
Reb3 0.096 0.133
5P 0.061 0.076

Table 5.1: Root mean square errors with respect to the historical correla-
tion matrices.

time series of 6M (sliding) forward rates with maturities of 0.5, 1, 2, 3, 4, 5, 7, 10,
20 and 30 years. Finally, the parametric forms were fitted to these correlations by
using simple least-squares. The optimal parameters are given in Table D.5 and D.6
in Appendix D. As can be seen from the plots in Figures 5.4 – 5.7 (and the root
mean square errors (RMSE) in Table 5.1), the new 5-parametric form is capable
of fitting the historical matrices far better than the other parameterizations, while
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still providing a sufficient smoothing effect. We also note that for both data sets
the best-fit parameters for the Reb3 parameterization result in non-positive definite
matrices. Hence, before being able to use these matrices one is forced to somehow
“repair” them as mentioned above.
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Figure 5.5: Historically estimated forward-rate correlations (Jan. 2004 –
Jan. 2008) and fitted parameterizations. First columns (top) and last rows
(bottom) of the correlation matrices.

According to our experience the 5P-parameterization is generally flexible enough
for most applications, not only for fitting historical matrices but also when used
for calibrating LMMs to market prices of caps, swaptions and CMSSOs, as we will
demonstrate in Chapter 7. If, however, this correlation structure is still considered
as not having enough degrees of freedom, one can pursue a more “semi-parametric”
approach. For this, one can introduce some grid of row and column indices {ik} ×
{jl}, k = 1, . . . , n, l = 1, . . . ,m, a vector θ ∈ [0, 1]n and a matrix H ∈ Rn×m+ . The
“parameters” θk and Hkl are then interpreted as

f(ik) = θk,

h(ik, jl) = Hkl,

where the remaining values of the generating functions f and h are obtained by
using suitable interpolation schemes9. With such a grid-based approach one can
have “arbitrary” many parameters, but one also runs the risk of overfitting if no
further regularity conditions are imposed on θ and H.

9For example, Kruger-Splines for f and some bicubic interpolation in log-coordinates for h would
be possible.
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Figure 5.6: Historically estimated forward-rate correlations (Apr. 2006 –
Apr. 2010) and fitted parameterizations. From top, left to right: Histori-
cal, SC2, Reb3, 5P.
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Figure 5.7: Historically estimated forward-rate correlations (Apr. 2006 –
Apr. 2010) and fitted parameterizations. First columns (top) and last
rows (bottom) of the correlation matrices.
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5.5 Conclusion
In this chapter we have presented a new generic method for constructing parameter-
izations of forward-rate correlation matrices, that are always positive definite. New
flexible parametric forms were derived, where different portions of the correlation
matrix can intuitively be controlled by means of the parameters. Furthermore, we
have provided evidence that our new 5-parametric form can fit historically estimated
matrices better than the standard parameterizations.

Ultimately, the main field of application of the new flexible parameterizations,
however, will be the implied calibration to CMSSOs, where they will allow for an
easy handling and excellent market fits. Another great advantage of parametric forms
derived via our generic construction principle is that they can be readily combined
with the DCT rank-reduction method. This new method, which we will present in the
next chapter, allows to significantly reduce the computational cost of the calibration
procedure.





Chapter 6

DCT Rank-Reduced Parameterizations

In practice, the number of factors d used for a LMM is typically much lower than
the number of modeled forward rates N (e.g. 3–10 factors for a model with 60 or 80
forward rates). The reasons for using low-factor models are manifold. For example,
when empirically analyzing historical yield curve movements, one often finds (using
principle component analysis (PCA)) that a low number of factors1 suffices to explain
a large amount2 of the variability of forward rates. In particular, we do not have 60 or
even more (meaningful) factors. Apart from that, the shapes of interest-rate curves
generated by low-factor LMMs will generally look more realistic, see e.g. [Fri07], p.
368. On the numerical side, using a low number factor will save computing time
when performing MC simulations, since the state-dependent Libor rate drift terms
(which constitute a large part of the total computational cost) can be calculated more
efficiently (see [Jos03]) and the MC variance is generally lower3.

Ultimately, the choice for a particular number of factors d will also be influenced
by the products that are to be priced with the model. Some interest-rate products,
such as Bermudan swaptions for example, are not very sensitive to the number of
factors and using two or even just a single4 factor may be sufficient, see e.g. [AA01].
However, in case of strongly correlation-sensitive products such as CMS spread-linked
structures5, for instance, a larger number of factors (up to say 10) is necessary to cap-
ture the market implied correlations and to achieve a sufficient decorrelation among
the rates.

The obvious problem now is that almost all6 practically relevant correlation pa-

1Due to the shape of the first three eigenvectors, the corresponding factors can often be interpreted
as “level”, “slope” and “curvature”.

2In case of the two historical data sets from the last chapter, 5 factors are sufficient to explain more
than 97% of the variance of the forward-rate increments.

3Note also that Quasi-MC methods typically work better in lower dimensions.
4In this case all forward rates are driven by a single Brownian motion and hence all rates are

instantaneously perfectly correlated. Note carefully, however, that this does not mean that the term
correlations of Libor and swap rates in the model are also all equal to one. In fact, term correlations
are not only determined by the instantaneous Libor correlations ρij but also by the shape of the
Libor volatilities λn(t). Time-dependent volatilities can lead to a significant decorrelation effect, see
[Fri07], Section 21.2 for illustrative examples.

5See Chapter 4 of [Sch05] for other examples.
6The only two low-rank low-parametric forms that we are aware of are the ones given in [RBM07],

Section 10.1 and [AA01], Appendix C. However, both are overly restrictive with regard to flexibility
and number of factors, and therefore generally cannot provide reasonable fits to market data.



116 6. DCT Rank-Reduced Parameterizations

rameterizations, including those introduced in the previous chapter, yield full-rank
correlation matrices and hence some kind of rank-reduction method has to be applied
before the matrices can actually be used within the model. This adds of course an
undesirable computational burden and may significantly slow down the calibration
process. In the following we will shortly review the general problem of rank-reducing
correlation matrices and then present a new simple method for reducing the rank of
given positive-definite parametric forms. Due to its simplicity and the low compu-
tationally cost, the method can be considered as a way of generating new low-rank
low-parametric forms from given full-rank parameterizations.

6.1 Existing Methods for Rank-Reducing Correlation Matrices
The problem of finding a low-rank correlation matrix nearest to a given correlation
matrix appears in many areas in finance and quite a number of different approaches
(see e.g. [PG04], Section 2 for a good literature review) exist for solving this problem.
From a mathematical point of view, the problem is usually formulated as follows:
Find

X∗ = argmin
X∈RN×d

{ ‖XX ′ − C‖F : diag(XX ′) = 1}, (6.1)

where d ≤ N , ‖.‖F denotes the Frobenius norm, ‖A‖2F := tr(AA′), and where C
is a given correlation matrix, i.e., C ∈ RN×N satisfies (A1) – (A3). The matrix
C∗ := X∗X∗′ is then the low-rank approximation to C with rank(C∗) ≤ d.

Different methods that aim7 at finding X∗ in (6.1) are presented for example
in [ZW03], [PG04], [GP07] or [RBM07]. All of these methods involve some kind of
numerical optimization or iterative algorithm and are therefore (especially for large
correlation matrices) computationally expensive.

In practice, speed is often more important than a high degree of accuracy8 and
one therefore often resorts to the so-called modified PCA or eigenvalue zeroing method
(see e.g. [Bri02]), which is based on the spectral or eigenvalue decomposition of the
correlation matrix. Since C is real and symmetric it can be written as

C = QΛQ′,

with an orthonormal matrix Q ∈ RN×N and a diagonal matrix Λ, containing the cor-
responding eigenvalues in descending order. A rank-d approximation9 to the original
correlation matrix is then given by

C̄ = Ȳ Ȳ ′, (6.2)

Ȳi. =
Yi.
‖Yi.‖2

, i = 0, . . . , N−1, (6.3)

Y = QΛ
1/2
d , (6.4)

7Most of these methods do not in general guarantee to converge to the (globally) optimal solution.
However, it is quite easy to check the optimality of a potential solution by a criterion based on
Lagrangian multipliers; see [GP07].

8Recall that the statistical estimation of correlations is often difficult and the corresponding confi-
dence intervals may therefore be quite large anyway, see Section 5.1.1.

9Provided the d− th eigenvalue is not equal to zero.
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where Λ
1/2
d ∈ RN×d consists only of the first d columns of Λ1/2 and where Ai. denotes

the i-th row of a matrix A. Without the normalization step in (6.3), the approach
would correspond to ordinary PCA, which gives the optimal approximation to C in
the standard least-square sense, i.e.,

Y = argmin
X∈RN×d

{ ‖XX ′ − C‖F}. (6.5)

It is clear that the subsequent rescaling of Y , which is necessary in order for C̄ to
have unit diagonal, affects the optimality of the PCA-based solution and we will in
general have

‖C̄ − C‖F > ‖C∗ − C‖F .

For regular forward-rate correlation matrices and a modest number of factors d,
however, the ordinary PCA-based solution Y Y ′ is often not too far from having
a unit diagonal. The difference between Ȳ Ȳ ′ and the optimal solution X∗X∗′ will
therefore generally be rather small, as the normalization step will then have little
effect. For comparisons between the optimal and the modified PCA-based solution
see for example [Bri02] or Section 6.3 below. Since the modified PCA method is easy
to implement, reasonably fast and accurate it is quite popular among practitioners.

Application to the LMM
As we have discussed in the previous chapter, there exist two possible approaches
when it comes to specifying the Libor correlation matrix (5.1). First, one can use
historically estimated correlations. In this case the rank-reduction problem is exactly
(6.1), where C is the empirical correlation matrix, often smoothed via some para-
metric form, and the objective is to find the nearest rank-d approximation to the
given matrix. Here, the relative slowness of the methods mentioned in the previous
section is generally not a serious problem, as the historically estimated correlation
matrices are usually not updated too often, and the rank-reduction task must be only
performed once outside of the general LMM calibration routine.

In the second approach, which we are mainly interested in, the correlations are
implied from market prices of traded options. In order to reduce the effective number
of parameters, and since the N(N − 1)/2 entries of the forward-rate correlation
matrix cannot all be inferred from market instruments, one usually uses one of the
parameterizations introduced in Chapter 5. The correlation parameters together
with the other model parameters are then obtained by minimizing some calibration
objective function.

As we have noted above, almost all of the existing correlation parameterizations
yield full-rank matrices, so that these matrices cannot be used directly. Instead, for
a given parameter vector θ, first a rank reduction

ρ(θ) −→ ρ̂d(θ)

must be performed. This rank reduction step must be performed over and over again
inside the calibration loop and thus using the modified PCA method for this task is
usually the only computationally viable approach.
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Note carefully, that for the above application it is not of great importance whether
‖ρ(θ) − ρ̂d(θ)‖F is small or not, as long as ρ̂d(θ) is able to generate similar shapes
of correlation matrices as the original parametric form ρ(θ). In effect, rather than
solving a problem like (6.1), one simply tries to obtain with the rank-reduction step a
low-rank parametric form. For such a “simple task”, even the modified PCA method
can be considered an overkill. Although being generally much faster than other rank-
reduction methods, it still requires a full numerical eigenvalue decomposition and is
therefore one of the computationally more expensive calculation steps performed dur-
ing the calibration. Especially if one tries to calibrate time-dependent correlations,
the PCA rank reductions can account for a non-negligible part of the required total
calibration time. In the next section we introduce a new simple approach for rank-
reducing positive definite parametric forms, which is much faster than the modified
PCA method.

6.2 The DCT Rank Reduction Method
The approach we present below is based on applying the discrete cosine transform
(DCT) to the rows of the Cholesky decomposition of a correlation matrix. Similar
to the discrete Fourier transform (DFT), the DCT transforms a discrete function or
signal from the spatial domain to the frequency domain and expresses it in terms of
a sum of oscillating functions with different frequencies and amplitudes. While the
DFT uses cosine and sine terms (in the form of complex exponentials), the DCT only
uses cosine terms, and the output remains real (for real input). There exist different
types of DCTs (usually denoted by type I, II, III and IV), which differ by implying
different boundary conditions, see [BYR06]. In the following we will only consider
the DCT of type III, which we have found to work best for the applications that we
have in mind. In this case N real numbers xk, k = 0, . . . , N−1 are transformed into
N real numbers x̂k, k = 0, . . . , N−1 according to the formula

x̂k =
1√
N

(
x0 +

√
2

N−1∑
n=1

xn cos
( π
N
n(k + 1/2)

))
, k = 0, . . . , N−1. (6.6)

Written in this form10, the transform is its own inverse, i.e.,

xk =
1√
N

(
x̂0 +

√
2
N−1∑
n=1

x̂n cos
( π
N
n(k + 1/2)

))
, k = 0, . . . , N−1 (6.7)

and x is expanded into a sum of sinusoids of increasing frequency. For “smooth”
sequences x, the absolute values of the coefficients x̂k usually decrease quite rapidly,
such that the original xk’s can be approximated fairly well by using only the first few
low frequency components in (6.7), i.e.,

xk ≈
1√
N

(
x̂0 +

√
2

d−1∑
n=1

x̂n cos
( π
N
n(k + 1/2)

))
, k = 0, . . . , N−1 (6.8)

10Note that there exist different normalization conventions, not all of which directly yield orthogonal
transforms.
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for some d� N . For truncation error estimates and convergence properties of Fourier
cosine series see [Boy01].

The DCT transform can also be written in matrix form

(x0, . . . , xN−1) Ψ = (x̂0, . . . , x̂N−1),

with an orthonormal N×N matrix Ψ having entries

Ψij =


1√
N

, i = 0,√
2
N cos

(
π
N i(j + 1/2)

)
, i > 0,

for i, j = 0, . . . , N −1. From this it is easy to see that for x, y ∈ RN , the DCT
transform satisfies a version of Plancherel’s theorem

N−1∑
n=0

xnyn =
N−1∑
n=0

x̂nŷn,

since
x y′ = xΨ Ψ′ y′ = x̂ ŷ′. (6.9)

Now let A ∈ RN×N be a symmetric positive definite matrix with square-root
decomposition

A = BB′,

for some matrix11 B ∈ RN×N . If we combine (6.8) and (6.9) from above and assume
that the rows of B are sufficiently smooth, then we should have as a good rank-d
approximation to A

A ≈ (BΨd)(BΨd)
′,

where Ψd denotes, as before, the N × d-matrix consisting only of the first d columns
of the DCT matrix Ψ. The above result can be adapted to forward-rate correlation
matrices and their corresponding Cholesky decompositions. To this end let ρ ∈ RN×N
be a forward-rate correlation matrix with Cholesky decomposition

ρ = LL′.

If we ignore for a moment the first column entries of L, then, provided ρ is sufficiently
smooth, also the rows of L will be smooth, at least up to the main diagonal beyond
which all entries of L are clearly zero. The first column of L requires some special
treatment, as it is always equal to the first column of ρ (see Section 5.3). In particular,
its first entry L00 is always equal to one. To account for these properties we do not
multiply L by Ψd directly but rather by the first d columns of the following matrix

Ψ̃ =


1 0 · · · 0

0
... Ψ(N−1)

0

 , (6.10)

11Note that B is only unique up to a unitary transformation.
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where Ψ(N−1) is an N−1×N−1 DCT matrix. After a normalization, which is again
necessary in order for the final matrix to have unit diagonal, we obtain the following
rank-d approximation to ρ

ρ̂d = Z̄Z̄ ′, (6.11)

Z̄i. =
Zi.
‖Zi.‖2

, i = 0, . . . , N−1, (6.12)

Z = LΨ̃d. (6.13)

Observe that if ρ = ρ(θ) is a parametric form from the SC-family or is derived via
the construction principle presented in Section 5.3, then the corresponding Cholesky
decompositions are either directly given in closed form or can be calculated very
efficiently, see Appendix C.1. We may therefore write L = L(θ), and (6.11) – (6.13)
(requiring, in effect, only some matrix multiplications) can be regarded as a simple
method for deriving low-rank parameterizations ρ̂d = ρ̂d(θ) from given (positive-
definite) full-rank parameterizations.

Remark 6.2.1. Letting d→ N we clearly have ρ̂d → ρ.

Remark 6.2.2. Instead of interpreting the above approach in terms of the DCT and its
interpolating properties, it can also be interpreted as expressing the Cholesky factor
in a different basis. To see this, let the singular value decomposition of the Cholesky
factor L be given by L= UΣV ′ for some orthonormal matrices U, V ∈ RN×N and
a diagonal matrix Σ ∈ RN×N . Further, let ρ = LL′ = QΛQ′ be the eigenvalue
decomposition of ρ with an orthonormal matrix Q ∈ RN×N and a diagonal matrix
Λ ∈ RN×N . Then, as is known, we have12 U = Q and Σ = Λ1/2. It is therefore

easy to see that QΛ
1/2
d = LVd, which is the matrix square root used in the PCA-

based approach. Comparing LVd with (6.13), we can interpret the above approach
as replacing the right-singular vectors of L by some “general purpose” basis vectors.
Although the right-singular vectors are in some sense optimal, they are tailored to-
wards the particular L and do not necessarily “work well” for other Cholesky factors.
In contrast, as we will see in the next section, the usage of Ψ̃d will generally yield
smooth and realistically shaped forward-rate correlation matrices for quite a wide
range of Cholesky factors L.

Remark 6.2.3. Once the dimension N and the number of factors d has been fixed,
the DCT matrix Ψ̃d remains always the same and could in principle be cached. In
practice, the potential speed advantage, however, will most often be negligible.

6.3 Numerical Results
In Figures 6.1 and 6.2 we consider two scenarios for possible shapes of forward-rate
correlation matrices, where in both cases, the full-rank matrices were generated by the
5P form. The matrix in Figure 6.1 corresponds to the historically fitted matrix from
Figure 5.5, while the matrix in Figure 6.2 is implied from a calibration to market data,

12Provided we use the same ordering for the eigenvalues and the singular values.
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see Chapter 7 below. As can be seen from the figures, the DCT method produces
quite realistic correlation matrices, relatively close to the initial full-rank matrices.
We can therefore expect this implicit low-rank parameterization to exhibit the same
dependence on the different parameters as the original full-rank parameterization.

We also show in Figures 6.1 and 6.2 the matrices obtained by applying the mod-
ified PCA method and the majorization method from [PG04], the latter of which
yields the respective optimal13 low-rank approximations to the given full-rank matri-
ces. We would like to emphasize again, however, that closely matching these optimal
solutions is not our primary concern, and the plots are merely included for the reader’s
interest.
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Figure 6.1: Rank reduction to 4 factors. From top, left to right: Full-Rank,
DCT, Majorization, PCA.

In Table 6.1 we present the required computing times for rank-reducing a 60×60
and a 120 × 120 correlation matrix to 4 factors by using different methods. The
parameters for the underlying 5P form are the same as those used in Figure 6.1. As
we have already noted above, the Cholesky decomposition of the 5P form is available
at practically no extra cost, and together with the DCT method we obtain virtually
instantly the low-rank correlation matrix. For a 60× 60 correlation matrix the DCT
method is over 100 times faster than the modified PCA14 method, as can be seen

13See Footnote 7 in Section 6.1.
14For the eigenvalue decomposition we used a combination of Househoulder reduction to tridiagonal
form followed by the QL algorithm with implicit shifts, see [PTVF01]. This is still one of the
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Figure 6.2: Rank reduction to 7 factors. From top, left to right: Full-Rank,
DCT, Majorization, PCA.

from Table 6.1. For N = 120, which would correspond to, say, a 30Y LMM with
quarterly fixings, the difference is even more significant.

For parameterizations other than the Schoenmakers-Coffey forms or our 4P and
5P form, the Cholesky decomposition might not always be directly available. For
this reason we also report in Table 6.1 the required computing times, if prior to cal-
culating (6.11)–(6.13), the standard Cholesky algorithm must be performed. While
both the Cholesky decomposition and the eigenvalue decomposition have computa-
tional complexity O(N3), the Cholesky decomposition is generally much faster. The
combination of the Cholesky decomposition and the DCT method is therefore still a
factor of almost 30 times faster than the modified PCA method.

To give the reader an idea of how using DCT rank-reduced parametric forms
might affect calibration times: In Chapter 7 we perform calibrations of a 10 factor
30Y LMM with semiannual fixings and time-dependent correlations to real market
data15. Although both the PCA-based and the DCT based calibration yield virtually
identical calibration results (in terms of market fit), the first approach required 71.4s

most efficient ways of computing the eigenvalues and eigenvectors of real symmetric matrices of the
considered size.
15As correlation structure we choose our 4P-form with time-dependent ρ∞ parameter. ρ∞(t) is
“parameterized” by using a grid of 5 knot points t = 0, 5, 10, 15, 20 years and interpolating linearly
between them.
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while the latter took only 31.1s16.

N 60 120
time (s) speedup time (s) speedup

PCA 10.56 – 64.89 –
DCT+Chol 0.38 28 2.27 29
DCT 0.09 112 0.38 173
Majorization 0.39 – 1.97 –

Table 6.1: First three rows: Computing times for 5,000 runs of the different
rank reduction methods (reduction to 4 factors). The columns denoted
‘speedup’ give the speedup factors compared to the PCA method. For
comparison we also give in the last row the computing times for one run
of the majorization method.

6.4 Conclusion
In this chapter we have presented a new method for rank reducing forward-rate cor-
relation parameterizations. The proposed approach is easy to implement, computa-
tionally inexpensive and together with the existing positive definite parameterizations
implicitly generates a new family of flexible low-parametric forms of arbitrary rank.
These low-parametric forms allow for a much more efficient calibration of LMMs
than the currently common approach of using PCA rank-reduced parameterizations,
which is computationally much more demanding.

16In both cases roughly 20,000 (low-rank) correlation matrices had to be calculated.





Chapter 7

Extracting Correlations from the Market

In the past, the volatility structures of LMMs were most often calibrated to market
prices of caps and/or swaptions, while the Libor correlations ρij were specified ex-
ogenously and would typically have originated from an empirical analysis in the style
of that presented in Section 5.1.

However, as we have discussed earlier, it would generally be preferable to use
correlations obtained from an implied calibration to market prices. In this way one
would capture the prevailing market conditions and obtained a model, that prices
exotic securities inline with the prices of products used as hedging instruments.

In previous chapters we have established a new framework for parameterizing
and rank-reducing forward-rate correlations and presented an efficient method for
pricing CMSSOs within the SV-LMM. In the following we will apply these meth-
ods to actually extract the correlation information implicitly contained in market
prices of interest-rate options. Moreover, we will compare the performance of various
correlation parameterizations and also provide some pricing applications.

7.1 Including CMS Spread Options
Before deciding on where and how to incorporate market prices of CMS spread options
in the general calibration procedure, it is worth checking how the different model
parameters affect the prices of such options. Suppose, that we have fixed two swap
rates denoted1 by S1 and S2 with fixing date T and strike price K. Then, the
“parameters” that enter the CMSSO pricing formula (4.24) are (besides the initial
swap rates S(0)=(S1(0), S2(0))′) the effective swap-rate volatilities σ̄=(σ̄1, σ̄2)′, the
swap-rate skews β̄=(β̄1, β̄2)′, the effective swap-rate correlation ρ̄ and the stochastic-
volatility parameters κ and ξ2.

Figure 7.1 depicts the sensitivities of CMS spread option prices (expressed in
terms of normal implied spread volatilities) with respect to the various parameters.
Clearly, the main determinants of the implied spread volatility are the swap-rate
volatilities σ̄ and the swap rate correlation ρ̄. The swap rate volatilities affect the
level and skew of the spread smile, while the correlation almost solely affects its level.
As with caplets and swaptions, the stochastic-volatility parameters κ and ξ control

1Here we use the notation of Chapter 4.
2For the moment we neglect the convexity adjustments, i.e., the drift terms µ̃i.
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the convexity of the volatility smile, which can be seen from the sign-changes of the
respective sensitivities. Furthermore, it can be seen from Figure 7.1 that CMS spread
options exhibit only a very modest sensitivity with respect to the swap rate skews,
especially if compared to the sensitivities with respect to the swap rate volatilities
and the correlation.

We therefore propose to include prices (or implied volatilities3) of CMS spread
options only in Steps 1 and 3 of the main calibration procedure4 and simultaneously
calibrate the volatility parameters Λij and the correlation parameters of the chosen
correlation structure. Step 2 remains untouched, and the model skew parameters are,
as before, just calibrated to the market implied effective caplet and swaption skews.
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Figure 7.1: Sensitivities of implied normal spread volatilities in basis
points with respect to model parameters. Parameter values: S(0) =
(0.04, 0.04)′, σ̄ = (0.15, 0.15)′ (top), σ̄ = (0.15, 0.18)′ (bottom), µ̃ = (0, 0)′,
κ = 0.06, ξ = 0.95, ρ̄ = 0.87, T = 5 (years).

Even though Formula (4.24) allows a reasonably rapid computation of spread
option prices, it is still computationally more expensive than the computation of the
various effective swaption and caplet parameters/prices during the calibration. If
the calibration procedure as introduced above is considered too slow, it is generally

3As with caps or swaptions it is usually preferable to calibrate to implied volatilities instead of
prices for a more balanced error norm.

4See page 74.
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possible to speed things up (without sacrificing too much accuracy) by calibrating
to implied effective correlations instead of CMS spread option prices/volatilities. In
the following we therefore outline the necessary steps for extracting market-implied
effective correlations from CMS spread option prices.

If we denote the spread-option pricing formula (4.24) by CMSSO, then the prob-
lem is to solve the following equation for ρ̄imp

CMSSO(K,T ;S(0), µ̃, σ̄, β̄, ξ, κ, ρ̄imp) = MarketPrice(K,T ). (7.1)

For this we need to fix all other parameters. For ξ and κ we may just plug in ξ∗

and κ∗ from the pre-calibration. Further, if we assume that the calibrated model
will closely match the market-implied swap-rate volatilities σ̄ and skews β̄, we may
just use these parameter values in (7.1), leaving us with the drift-related parameters
µ̃i = β̄iµ̄i, i = 1, 2 (cp. Equation (4.22)). The drift coefficients µ̄i can be written as
(cp. Equation (4.5))

µ̄i = F̃i(L(0)) Σ G̃i(L(0))′, i = 1, 2,

with

Σ =

(
1

T

∫ T

0
σk(t)σl(t)

′dt

)N−1

k,l=0

(7.2)

and where F̃i and G̃i are some RN -valued functions of the initial forward-rate curve
L(0) = (L0(0), . . . , LN−1(0))′. For the covariance matrix Σ we would need the in-
stantaneous model forward-rate volatility functions σk(t), which we are just about
to calibrate. As a proxy we therefore propose to use

Σ =
(
σ̄ck σ̄

c
l ρkl

)N−1

k,l=0
, (7.3)

where σ̄ck are the market-implied effective caplet volatilities and (ρkl)
N−1
k,l=0 is some

simple “average” correlation matrix, e.g., ρkl = 0.5(1 + exp(−0.15|Tk − Tl|)).
Having fixed all the parameters we can now solve (7.1) for ρ̄imp. After this has

been done for all relevant CMS spread option maturities, we can perform the main
calibration as described above, except that we now calibrate to implied correlations
instead of CMS spread option prices/volatilities. The model implied correlations,
which are compared in Steps 1 and 3 with the respective market implied ones, are
calculated via Equation (4.7). After the first run of Steps 1 and 2 we suggest to update
the drift terms µ̃ by using the proper model covariance matrix (7.2) instead of the
proxy (7.3) and then recalculate the market-implied correlations for the following
runs.

Remark 7.1.1. The above method for calculating “market-implied” correlations is
based on the assumption that the model implied swap-rate parameters (in particu-
lar the swap-rate volatilities) of the calibrated model will closely match the market
implied ones. If this is not the case, then it may happen that the calibrated model
matches the “market implied” correlations perfectly, even though the market and
model prices for CMS spread options diverge. In such a case the calibration to
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prices/volatilities instead of correlations is to be preferred. Our experience shows,
however, that the model is generally capable of reproducing the market swap-rate
parameters quite well, and the calibration strategy via implied correlations therefore
produces usually perfectly usable results (see the calibration examples below) with
shorter computing times.

Remark 7.1.2. When using spread-option prices/volatilities, it is possible to calibrate
several strikes per maturity. In contrast, we can only have one implied correlation
per maturity, i.e., for each maturity we can calibrate the model only to one point of
the respective “spread smile” if we use the route via implied correlations. We return
to this point in Section 7.2.2.

To summarize, the calibration procedure can be carried out in the following steps:

Calibration to Caplets, Swaptions and CMSSOs

Step 0: Perform the pre-calibration as described in Section 3.4.1. If necessary calcu-
late market-implied correlations ρ̄imp;

Step 1: Set the skew parameters Bij all to the same value B̄, chosen for example to be
the average of all effective market skews β̄∗x. Calibrate the model volatilities
λi(t) and the parameters of the chosen model correlation structure to the σ̄∗x
and the CMSSO prices/volatilities/correlations;

Step 2: Using model volatilities and correlations calculated in the previous step, the
skews βi(t) are now calibrated to the β̄∗x;

Step 3: (Only if implied correlations are used and if this is the first time that Step
3 is performed: Update the market-implied correlations ρ̄imp as described
above). Finally, the model volatilities λi(t) and the correlation parameters
are re-calibrated to the σ̄∗x and the CMSSO prices/volatilities/ correlations,
with the updated skews βi(t) from the previous step.

Steps 2 and 3 can be repeated several times, although often one cycle (Steps 1 to 3)
is already enough to obtain a good fit (see examples below).

7.2 Calibration Examples
7.2.1 Data Description

Below we calibrate 30Y SV-LMMs based on 6M Libor rates, i.e., N = 60 and τk≈ 0.5
(up to day-count-conventions), to market data as of 01/14/2008 and 04/26/2010. The
following selection of market instruments is used:

r Implied Black volatilities of 6M EUR caplets with maturities 1, 2, 5, 7, 10, 15, 20,
25 and 30 years, stripped from market volatilities of caps/floors. For each maturity
9 relative strikes5 are used (0.00% being ATM): −2.00%, −1.00%, −0.5%, −0.25%,
0.00%, 0.25%, 0.5%, 1.00%, 2.00%.

5Provided the strike price is greater than zero.
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r A grid of implied Black volatilities of EUR swaptions with maturities 1, 2, 5, 7,
10, 15, 20 years and tenors 2, 5, 7, 10, 15, 20, 25 years provided maturity+tenor≤
30 years (see also Tables D.7 and D.9 in Appendix D). For each maturity/tenor
combination again nine relative strikes are used (see above).

r Implied normal volatilities of EUR 10Y–2Y CMS spread caplets with maturities
1, 2, 5, 7, 10, 15 and 20 years stripped from market prices of 10Y–2Y CMS spread
caps/floors6. The quoted price matrix on 01/14/2008 contains prices of CMS
spread caps/floors with strike prices−0.50%, −0.25%, 0.00%, 0.25%, 0.50%, 0.75%,
1.00%. On 04/26/2010 the strike prices of the quoted options are −0.25%, −0.10%,
0.00%, 0.25%, 0.50%, 0.75%, 1.00%, 1.50%. In both cases only the center strikes are
used for the calibration, i.e., 0.25% for 01/14/2008 and 0.50% in case of 04/26/2010.
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Figure 7.2: Initial 6M forward-rate curves.

The 2008 data set corresponds to a more normal market environment with a rela-
tively flat forward-rate curve (see Figure 7.2) and with Black-implied (ATM) caplet
and swaption volatilities in the 10% – 18% range. In contrast, the 2010 data set cor-
responds to a more excited market environment with caplet and swaption volatilities
ranging from roughly 20% to 50% and with a very steep forward-rate curve.

7.2.2 Calibration Results

For the calibrations presented below we choose the following weights for the different
instrument classes: 20% for caplets, 75% for swaptions and 5% for CMS spread
options7. Within each group all instruments receive the same weighting. The penalty
functions by means of which we can control the behavior of Λ and B, are chosen,
such that we obtain reasonably smooth and time-homogeneous volatility and skew
functions. For each data set the same penalty function settings are used for all the
calibration tasks. For the parameterization of Λ and B we use a grid with Nt = NT =
8 and ti = 0, 3, 9, 13, 19, 29, 39, 49 and Tj = 0, 3, 9, 19, 29, 39, 49, 59. Concerning initial
values, we set all entries of Λ and B to the averages of the effective market volatilities
and effective market skews, respectively. For the correlation parameterizations we

6Reuters page ICAPSPREADS1.
7With these weightings we account for the fact that caps and swaptions are more liquid than CMS

spread options and hence their prices are more reliable. The other reason is that we use 36 swaption
smiles but only 9 caplet smiles and 7 CMS spread options.
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use as initial values the respective best-fit parameters obtained from the historical
fitting procedure8, see Tables D.5 and D.6 in Appendix D. We use 10 factors, which
suffices in most cases to satisfactorily recover the full-rank correlation matrices and
provides enough flexibility for spread-linked products. For the rank reductions we
use in all cases the modified PCA method (6.2) – (6.4) to make the computing times
comparable9. We always perform only one cycle of Steps 1 to 3 from the main
calibration.

Market Data as of 01/14/2008
In Table 7.1 we present calibration results in terms of root mean square errors
(RMSE) for the 2008 data set. Since the results for the two calibration approaches
are relatively similar, no matter whether implied CMS spread volatilities or implied
correlations are used, we will consider for the moment only the results for the latter
approach and give some comments on the first one at the end of this section.

Correlation- Caplets (Black-vol) Swaptions (Black-vol) CMSSOs (bp vol)
Structure ATM Smile ATM Smile K=0.25% Smile Time (min)

Calibration to CMSSO implied correlations

SC2 0.24% 0.51% 0.26% 0.33% 3.0 3.8 0:30
Reb3 0.26% 0.49% 0.27% 0.34% 2.2 3.2 0:25
5P 0.24% 0.48% 0.25% 0.31% 0.7 2.4 0:23

Calibration to CMSSO implied volatilities

SC2 0.38% 0.44% 0.24% 0.28% 2.5 3.6 3:13
Reb3 0.34% 0.50% 0.30% 0.36% 1.2 2.9 1:53
5P 0.25% 0.46% 0.25% 0.32% 0.3 2.6 2:17

Calibration to caplets and swaptions only

5P (hist.) 0.26% 0.47% 0.25% 0.33% 2.8 4.2 0:02

Table 7.1: Calibration errors (RMSE) for the 2008 data set. Errors for
caplets and swaptions are quoted in terms of Black-implied volatilities.
Errors for CMSSOs are quoted in terms of normal implied bp-volatilities.
The last column gives the computing time (in minutes) required for the
main calibration. The pre-calibration step requires 1:31 minutes and is
identical for all scenarios.

The pre-calibration step, in which the effective market caplet/swaption param-
eters and the stochastic-volatility parameters are calibrated, requires 1:31 minutes.
The corresponding parameter values can be found in Table D.7 in Appendix D. In
the upper part of Table 7.1 we report the results for the correlation structures SC2,
Reb3 and 5P, obtained from the main calibration if market-implied correlations are
used, as described in Section 7.1. The columns denoted “ATM” give the RMSEs for
at-the-money caplets and swaptions10. The columns denoted “Smile” give the overall
RMSEs if all strike prices are considered11. All three correlation parameterizations

8We note, that the specific choice of the initial values has no influence on the final result, only on
computing times. We use the historical best-fit parameters only to make computing times comparable
in some way.

9Note that in case of the Reb3 form the faster DCT rank reduction method cannot be applied since
this parametric form is not guaranteed to always yield positive semi-definite matrices.
109 caplets and 36 swaptions.
1181 caplets, 324 swaptions and 49 CMS spread options.
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are capable of fitting the caplet and swaption volatilities almost equally well and the
computing times remain well under one minute.

Concerning the fit to CMSSOs the results are as was to be expected when re-
garding the number of correlation parameters: The 2-parametric SC-form provides
the worst fit, whereas our 5-parametric form gives the best fit. This can also be
seen from Figure 7.3 where we show implied CMS spread option volatilities for the
options with strike K = 0.25%, which were used as calibration targets. The volatil-
ity term-structures implied by SC2 and Reb3 are generally too “flat”. As an aside,
we note that the obtained best-fit parameters for the Reb3-form result again in a
non-positive definite matrix.
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Figure 7.3: 2008 data set: 10Y–2Y CMS spread option implied volatilities
for K = 0.25%.

5

10

15T

vol. (bp)

−0.50
0.00

0.50

K

1.00

60

50

40

30

20

10

Figure 7.4: 2008 data set: 10Y–2Y CMS spread option volatility surface,
market (blue) and model (orange). Correlation parameterization 5P.

For comparison we also show in Figure 7.3 the model-implied spread volatilities
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if historical correlations are used12 and the model is just calibrated to caplets and
swaptions (see also the last row of Table 7.1). In this case CMS spread options are
generally undervalued, especially for longer maturities. A partial explanation for
this can be given if we look at the calibrated correlation matrices shown in Figure
7.6. Comparing the historical matrix with the calibrated parametric forms we find
that the historical correlations are generally higher, which in turn yields lower CMS
spread option prices (the corresponding swap-rate volatilities being fixed)13. As a
side note, we point out that (neglecting drift terms) 10Y–2Y CMS spread options
carry only information about the correlation matrix entries highlighted in Figure 7.5,
while the remaining entries must still be implicitly inferred from prices of swaptions.

0

19

39

59
0 19 39 59

i

j

Figure 7.5: Entries of the forward-rate correlation matrix that can theo-
retically be inferred from prices of 10Y–2Y CMS spread options.

Figure 7.4 shows the market-implied spread volatility surface together with the
model implied one, if the correlation structure 5P is used. The model implied volatil-
ity smiles are especially at the long end too right-skewed. As we have noted above,
the considered SV-LMM has no parameters that solely affect the spread smiles14. The
main drivers of the skewness and the curvature of the spread volatility smiles are the
respective swap-rate volatilities and the stochastic-volatility parameters, which are,
however, already “fixed” by the market swaption smiles. The shapes of the spread
smiles are therefore rather a consequence of the swaption-volatilities than being cal-
ibrated and we can only use the forward-rate correlations to calibrate the levels of
the spread smiles.

For the examples above we have only used CMSSOs with strike prices 0.25% for
the calibration. This is of course arbitrary and one could also use other strike prices
that might be more important for a specific exotic product that is to be priced. If
we calibrate to CMSSO prices/volatilities instead of implied correlations, then, in
principle, we can also use several options per maturity and in this way try to achieve
a better fit between the market and model spread smiles. This, however, is likely to
work only if we sacrifice a little bit of the swaptions fit.

12More precisely, we use 5P fitted to the historical correlation matrix, see Figure 5.4.
13Recall, however, that the instantaneous forward-rate correlations ρij are not the only factors that
determine the terminal correlation of the swap rates underlying a spread option, see Footnote 4 on
page 115.
14This would require some sort of multi-stochastic-volatility extended LMM, which would be far
more difficult to handle.
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Figure 7.6: Calibrated correlation matrices for the 2008 data set. From
top, left to right: 5P fitted to Historical, SC2, Reb3, 5P.

Observe that for the examples above, we have used a relatively large number of
calibration instruments. In order to obtain better fits (not only to CMSSOs), one can
of course reduce the number of calibration instruments and judiciously choose only
a small subset of caplets and swaptions, which might be of particular importance for
pricing and hedging a certain exotic security.

Calibration errors can also be reduced by putting less weight on the various
penalty functions and by allowing less regular parameter functions. For the above
calibration tasks, however, we aimed to obtain rather smooth and time-homogeneous
parameter functions, as can be seen from Figure 7.7, where we plot the calibrated
time-dependent forward-rate volatilities and skews for the 5P form. The correspond-
ing functions for the other two correlation parameterizations look very similar, but
are mostly a little bit less “constant”, partly probably as a compensation for the less
flexible correlation structures.

Lastly, we note that all of the above findings also hold if we calibrate to CMS
spread volatilities instead of implied correlations, and the results are pretty much
the same as can be seen from Table 7.1. The fitting errors for CMS spread options
are obviously a little bit smaller. In case of the SC2 and Reb3 structures, however,
the better fit to CMS spread options comes with slightly larger caplet errors and
with less regular volatility functions. Forcing the volatility functions to be similarly
smooth as before, we obtain practically the same fitting errors as those given in the
first two rows of Table 7.1. In case of the 5P form, the caplet and swaptions errors
are basically the same (and the volatility functions equally smooth) as before, only
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Figure 7.7: 2008 data set: Calibrated time-dependent forward-rate volatil-
ities σi(t) (top) and skews βi(t) (bottom) for i = 4, 9, 14, 19, 29, 39, 49, 59.
Correlation parameterization 5P.

that the CMS spread errors are marginally smaller. We note that the RMSE of 0.3
bp for the 0.25% strike prices is already within the accuracy of our approximation
formula for CMSSO prices. For the calibrated parameter values a fine-stepped Monte
Carlo simulation yields that the maximum approximation error (in terms of implied
spread volatility) is 0.6 bp with a RMSE of 0.3 bp.

As we have noted in Section 7.1, the calibration approach via implied correla-
tions relies on the fact that the market effective swaption parameters will be closely
matched by the calibrated model. If this is the case, as can be seen above, then
the two approaches yield almost identical results and the calibration via implied
correlations is generally to be preferred, due to much shorter computing times.

Market Data as of 04/26/2010

The calibration results for the 2010 data set, which corresponds to a rather excited
market environment, are given in Table 7.2. Fitting simultaneously all the calibration
instruments is a more challenging task as with the 2008 data set, and overall the root
mean square errors are consequently somewhat larger.

The SC2 and Reb3 forms yield again worse results than the 5P form. Observe
that in case of a calibration to implied correlations the swaption errors are more or
less identical for all three correlation parameterizations, while the caplet fitting errors
are slightly larger for SC2 and Reb3. Reducing the weights for CMSSOs, such that
we obtained similar caplet and swaption fitting results as with the 5P form would
result in CMS spread errors of 5 – 6 bp for K = 0.5% and 7 – 8 bp for the smiles.

Similar results are obtained when calibrating to implied spread volatilities instead
of implied correlations. Fitting errors are generally a little bit smaller, although in
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Correlation- Caplets (Black-vol) Swaptions (Black-vol) CMSSOs (bp vol)
Structure ATM Smile ATM Smile K=0.50% Smile Time (min)

Calibration to CMSSO implied correlations

SC2 0.78% 2.76% 0.44% 0.63% 3.8 6.8 0:20
Reb3 0.79% 2.80% 0.44% 0.63% 4.0 6.9 0:43
5P 0.65% 3.05% 0.42% 0.61% 1.9 5.5 1:02

Calibration to CMSSO implied volatilities

SC2 0.66% 2.65% 0.53% 0.72% 3.4 6.5 4:53
Reb3 0.74% 2.59% 0.49% 0.67% 2.5 6.0 6:24
5P 0.67% 2.92% 0.39% 0.58% 1.7 5.3 5:54

Calibration to caplets and swaptions only

5P (hist.) 0.41% 2.37% 0.44% 0.60% 5.7 7.8 0:04

Table 7.2: Calibration errors (RMSE) for the 2010 data set. Errors for
caplets and swaptions are quoted in terms of Black-implied volatilities.
Errors for CMS spread options are quoted in terms of normal implied
bp-volatilities. The last column gives the computing time (in minutes)
required for the main calibration. The pre-calibration step requires 2:09
minutes and is identical for all scenarios.

case of SC2 and Reb3 this comes again with slightly less regular volatility functions.

As a side note, observe that the computing times in Table 7.2 are for calibrations
from a “cold start”, with not particularly well chosen initial values. We would expect
to see significantly reduced computing times if we took as initial values, for instance,
the parameters from a previous calibration.

As can be seen from Figure 7.8, the overall implied correlation level ist substan-
tially lower in comparison to the 2008 data set, partly, probably, as a reflection of
the increased market uncertainty. Also the historical correlations are somewhat lower
now. Nevertheless, the corresponding implied spread volatilities are, as before, too
low for options with long maturities, as depicted in Figure 7.9. Notice, that this does
not change too much if we use only 2 years worth of data (instead of 4 years) for the
historical estimation, in order to base the correlations only on more recent data.

Quite interesting is the fact that the requirement (B2) from Section 5.1.2, i.e.,
“same-distance rates are more decorrelated at the front-end than at the back-end”,
can hardly be observed from the implied correlation matrices in Figure 7.8. The sub-
diagonals in case of the SC215 and the Reb3 form are only very marginally upward
sloping, and in case of the 5P form are even slightly decreasing at the back end.
Although intuitively this requirement makes sense and can also be observed from the
historical correlation matrices, it seems that it is not supported by the market data.
The market premia for long-term CMS spread options are just too high for being
compatible with pronounced upward sloping sub-diagonals and the resulting high
correlations at the back end of the correlation matrix. It is therefore questionable
whether one should really impose (B2) on correlation structures, if they are to be
used for implied calibrations.

In Figure 7.10 we show the spread volatility surface corresponding to using the
5P form. The smiles for long maturities are again too right skewed, although the

15Recall that requirement (B2) is directly built into correlation matrices from the Schoenmakers-
Coffey family.
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Figure 7.8: Calibrated correlation matrices for the 2010 data set. From
top, left to right: 5P fitted to Historical, SC2, Reb3, 5P.

general volatility levels and the short-maturity smiles are matched reasonably well.

Finally, in Figure 7.11 we show the calibrated time-dependent forward-rate volatil-
ities and skews for the 5P-parameterization (the corresponding functions for the other
two correlation parameterization look more or less the same). This figure shows that
the market obviously anticipates a decrease in volatility, with instantaneous forward-
rate volatilities coming down to more normal levels in the 10% range.

7.3 Pricing Applications
In the following we will briefly investigate how different correlation calibrations may
affect prices of CMS spread-linked products. More precisely, we use SV-LMMs cali-
brated to the 2008 market data set and compute prices of the following products16:

r A 10Y–2Y CMS spread ratchet cap with a tenor of 20 years, first fixing in 6 months
and initial strike set to ATM, i.e., the i-th cash flow (fixed at Ti and paid at Ti+1)
is given by

Ci = τi(Si,i+20(Ti)− Si,i+4 −Ki)
+, Ki = Si−1,i−1+20(Ti−1)− Si−1,i−1+4,

with K0 = 0.0044.

16All products are based on a semi-annually tenor structure.
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Figure 7.9: 2010 data set: 10Y–2Y CMS spread option implied volatilities
for K = 0.50%.
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Figure 7.10: 2010 data set: 10Y–2Y CMS spread option volatility surface,
market (blue) and model (orange). Correlation parameterization 5P.

r A 10Y–2Y CMS spread sticky cap with a tenor of 20 years, first fixing in 6 months,
initial strike set to ATM and a spread of 15bp, i.e., the i-th cash flow (fixed at Ti
and paid at Ti+1) is given by

Ci = τi(Si,i+20(Ti)− Si,i+4 −Ki)
+,

Ki = min{Si−1,i−1+20(Ti−1)− Si−1,i−1+4(Ti−1),Ki−1}+ s,

with K0 = 0.0044 and s = 0.0015.

r A callable 10Y–2Y CMS spread note (or steepener note) with maturity in 20 years
and principal value N=100. During the first 3 years, the owner of the note receives
fixed coupons of 8% (payed semi-annually in-arrears). Thereafter, the note pays
the 10Y–2Y CMS spread floored at 0% multiplied by a gearing factor of 14. The
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Figure 7.11: 2010 data set: Calibrated time-dependent forward-rate volatil-
ities σi(t) (top) and skews βi(t) (bottom) for i = 4, 9, 14, 19, 29, 39, 49, 59.
Correlation parameterization 5P.

coupons are hence given by

Ci =

{
NτiK, i = 0, . . . , 5,
Nτig · (Si,i+20(Ti)− Si,i+4(Ti))

+, i = 6, . . . , 39,

with K = 0.08 and g = 14. After an initial lock-out period of 3 years, the bond
can be called by the issuer. If the bond is called at time Ti, then at time Ti+1 the
last coupon Ci as well as the principal is paid and no further cash flows occur.

In Table 7.3 we present Monte Carlo prices of the above products computed by
using differently calibrated LMMs. In all cases, the exercise strategy for the callable
note was calculated by using the Longstaff-Schwartz [LS01] algorithm. Besides LMMs
based on the implied and the historical (time-homogeneous) 5P correlation structures
from the last section, we also used a SV-LMM with a time-dependent 4P correlation
structure17, where the overall correlation level parameter ρ∞ was allowed to depend
on calendar time (all other parameters were kept constant). The level function ρ∞(t)
was “parameterized” by using a grid of 5 knot points t = 0, 5, 10, 15, 20 years and
interpolating linearly between them. The calibrated parameter values are given in
Table D.11 in Appendix D. As we have already anticipated in Section 6.3, using
the DCT method for rank-reducing the correlation matrices significantly reduces
the computational burden of calibrating a model with a time-dependent correlation
structure. The PCA-based calibration requires 71.4s while the DCT-based approach
takes only 31.1s.

As can be seen from Table 7.3, the LMM with the historical correlation ma-
trix yields prices that are significantly lower than the corresponding values pro-

17Implicitly calibrated to the same market data as described in the last section.
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duced by the LMMs with the implied correlation structures. Compared to the time-
homogeneous implied 5P version, prices are generally off by 5–20%. Only the prices
of the callable note seem to be comparable. The reason is that the callability feature
partly cancels the differently priced CMS spread caplets implicitly contained in the
note. Considering a non-callable version of the steepener note, we find again that the
“historical” model produces significantly lower prices. The values of the callability
options18 even differ by more than 40%.

For the given market data set, the model with the time-homogeneous 5P version
and the model with the time-dependent 4P form both yield virtually the same mar-
ket fit in terms of calibration errors with respect to caplets, swaptions and CMSSOs.
Hence, these models will generally produce almost the same prices for European-
type options, which can be readily observed by comparing the values of the CMSS
coupons19 contained in the steepener notes. However, from the other prices in Table
7.3 we can see that the time-dependent correlations may have an impact on prices
of more exotic products. While the price of the callable note seems not to be overly
sensitive with respect to the time-dependent behavior of correlations, the situation
is different with the exotic CMSS caps. The model based on the time-dependent
correlation structure implies significantly higher prices than the model with the time-
homogeneous correlation parameterization. Observe that the cash flows of sticky and
ratchet CMSS caps are not only sensitive with respect to the decorrelation among
the swap rates defining the spread, but they also depend on the decorrelation among
contiguous spread fixings, as their strikes at a given time depend on the previous
spread realization. The time-dependent correlation structure, with its monotonically
decreasing correlation level parameter ρ∞(t), obviously leads to a stronger decorre-
lation effect and hence to higher prices.

Correlation- CMSS caps CMSS note
structure sticky ratchet callable non-callable coupons call. option

5P hist. 193.7 122.1 98.17 113.54 52.26 15.37
(0.7) (0.2) (0.05) (0.14)

5P 237.4 127.8 99.70 126.22 64.94 26.52
(0.9) (0.2) (0.04) (0.16)

4P time-dep. 292.2 146.0 100.20 125.74 64.46 25.54
(1.1) (0.3) (0.04) (0.16)

Table 7.3: Monte Carlo prices of different exotic products. 130,000 paths,
16,000 training paths for the Longstaff-Schwartz exercise strategy. Prices
of caps in basis points. Values in parentheses denote Monte Carlo errors.
The last four columns give the prices of the callable CMS spread note, the
non-callable CMS spread note, the plain CMS spread coupons contained
in the non-callable note and the value of the callability option.

From the market fits to the (European-type) calibration instruments alone, we
cannot judge which model specification yields the “correct” exotics prices. For the
considered market data set it seems not necessary to allow for time-dependent corre-
lation parameters, provided that we use a sufficiently flexible correlation parameteri-
zation (such as the 5P form). Note that even with a SC2 form we can obtain similar

18I.e. the price difference between the callable and the non-callable note.
19Which are in effect just multiples of strike zero European CMSS caplets.
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market fits as with the time-homogeneous 5P form, if we allow the two parameters of
the SC2 form to depend on time. In this case, however, introducing time-dependent
parameters is obviously only necessary to increase the “degrees of freedom” of the less
flexible SC2 form and not because the market data really implies a time-dependent
behavior.

As we have noted earlier, if the market fit is reasonably accurate and unless we
have a particular view on the future evolution of the market, then in most cases it is
advisable to use a time-homogeneous parameterization in order to obtain robust cali-
bration results and to avoid overfitting. Nevertheless, in some market environments it
might become necessary to use time-dependent correlation parameterizations. In this
case, as we have demonstrated, models with time-homogeneous and time-dependent
correlation structures may yield significantly different prices for CMS spread-linked
exotics, even if they coincide on the prices of the calibration instruments.

7.4 Conclusion
In this chapter we have discussed two different methods for calibrating the SV-LMM
to caplets, swaptions and CMSSOs and calibrated models to real market data. It
has been demonstrated that with our new 5-parametric form better market fits can
be achieved than with the other analyzed correlation structures. It also turned out,
that pronounced upward sloping sub-diagonals of correlation matrices, as they can
often be observed from empirically estimated matrices, and as they are sometimes
directly built into correlation parameterizations, seem not to be compatible with
market prices of long-term CMSSOs. Implied long-term correlations are usually
substantially lower than the corresponding historically estimated correlations. If this
was a persistent feature and if suitable correlation-sensitive products were liquidly
traded, then it should be possible to run some kind of statistical arbitrage strategies.
Lastly, we have demonstrated that time-dependent correlation structures may have
a perceptible impact on prices of certain exotic products.
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A Laplace Transform of V (T )

A.1 Singularities

Lemma A.1. γ+κ+(γ−κ)e−γT 6∈ (−∞, 0) for z ∈ {x+iy ∈ C|x ∈ R, y ≥ 0}\(−∞, 0).

Proof. First recall that for z ∈ H := {x + iy ∈ C|x ∈ R, y ≥ 0} \ (−∞, 0) we have
that

γ =
√
κ2 + 2zξ2 ∈ {x+ iy ∈ C|x, y ≥ 0} \ [0, i∞)

(provided we take the principal square root). Now assume that γ+κ+(γ−κ)e−γT ∈
(−∞, 0) for some u ∈ H.

⇒ Im(γ + κ) = −Im
(
(γ − κ)e−γT

)
⇒ (Im(γ))2 =

(
Im((γ − κ)e−γT )

)2
We also must have that

Re
(
(γ − κ)e−γT

)
< −Re(γ + κ) < 0

⇒
(
Re((γ − κ)e−γT )

)2
>
(
Re(γ + κ)

)2
.

But this implies

|γ + κ|2 <
∣∣(γ − κ)e−γT

∣∣2
= |γ − κ|2e−2Re(γ)T

=
(
(Re(γ)− κ)2 + Im(γ)2

)
e−2Re(γ)T

Re(γ)T>0
<

(
(Re(γ)− κ)2 + Im(γ)2

)
Re(γ),κ>0

<
(
(Re(γ) + κ)2 + Im(γ)2

)
= |γ + κ|2,

which leaves us with a contradiction. Thus, γ + κ+ (γ − κ)e−γT 6∈ (−∞, 0).

Lemma A.2. All singularities of f̂ lie on the negative real line.
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Proof. First observe that singularities may occur either if

2γe−γT/2 = 0

in the logarithm or if

γ + κ+ (γ − κ)e−γT = 0 (A.4)

in the denominator of the fractions. However,

2γe−γT/2 = 0⇔ z = − κ2

2ξ2
,

which is in (−∞, 0), since κ and ξ are positive real constants.

Now consider the second case. Because of symmetry reasons, we just need to
consider f̂ in the upper complex half. Hence, assume that (A.4) holds for some
z ∈ H := {x+ iy|a ∈ R, b ≥ 0} \ (−∞, 0]. Since we always take the principal value
of the square root, γ lies in the upper right quadrant of the complex plane (without
the positive imaginary axis), i.e., Re(γ) > 0 and Im(γ) ≥ 0. But then (A.4) implies

γ + κ = −(γ − κ)e−γT

⇒ |γ + κ| = |γ − κ|e−Re(γ)T

⇒
√

Im(γ)2 + (Re(γ) + κ)2 =
√

Im(γ)2 + (Re(γ)− κ)2e−Re(γ)T

⇒ Im(γ)2 + (Re(γ) + κ)2 =
(
Im(γ)2 + (Re(γ)− κ)2

)
e−2Re(γ)T

⇒ 0 ≤ Im(γ)2︸ ︷︷ ︸
≥0

(
1− e−2Re(γ)T

)
︸ ︷︷ ︸

>0

= (Re(γ)− κ)2︸ ︷︷ ︸
<(Re(γ)+κ)2

since Re(γ),κ>0

e−2Re(γ)T︸ ︷︷ ︸
<1

−(Re(γ) + κ)2 < 0,

which leaves us with a contradiction. Thus,

γ + κ+ (γ − κ)e−γT 6= 0 for z ∈ H

and all singularities of f̂ lie on the negative real line.

A.2 Derivation of the “Continuified” Laplace Transform

The Laplace transform of the integrated variance is given by

f̂(z) = exp

{
2κ

ξ2
log

(
2γe−γT/2

γ + κ+ (γ − κ)e−γT

)
+

+
κ2T

ξ2
+

(
2γe−γT

γ + κ+ (γ − κ)e−γT
− 1

)
V (0)(γ − κ)

ξ2

}
,

where γ =
√
κ2 + 2zξ2. Now recall that the complex logarithm and the square root

are multi-valued functions. Although one can choose a unique principal value for such
functions (as is usually done in software packages), these functions are not continuous
in the entire complex plane.
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In case of the square root γ we may readily restrict it to its principal value (i.e.,
the square root with non-negative real part) as f̂ is an even function in γ. In case of
the logarithm, however, we need to do some adjustment in order to account for the
branch cut of the principal value along the negative real axis. First, we may write

log

(
2γe−γT/2

γ + κ+ (γ − κ)e−γT

)
= log

(
2γe−γT/2

)
− log

(
γ + κ+ (γ − κ)e−γT

)
,

where we must keep in mind that this identity holds in the complex case only modulo
2πi (we will deal with determining the right branch later). The second term on the
right hand side is continuous in the upper complex plane20, as the argument of
the logarithm never crosses the negative real line (see Lemma A.1). However, the
argument of the first logarithm on the right hand side may cross the negative real axis
several times along continuous integration paths in the upper complex plane. So in
order to obtain a continuous function we have to make some branch cut corrections.

Consider the principal value of the complex square root γ =
√
κ2 + 2zξ2. In our

case we have that

z ∈ H := {x+ iy ∈ C|x ∈ R, y ≥ 0} \ (−∞, 0),

which can be reinterpreted in terms of polar coordinates as

z = rze
iϕz , rz ≥ 0, ϕz ∈ [0, π).

Even if we multiply z by a positive real number (2ξ2) and add a positive real number
(κ2), the argument ϕz will still be in [0, π). If we use the principal value of a complex
square root, we have for a complex number y = reiϕ, r ≥ 0, ϕ ∈ (−π, π]

√
y =
√
reiϕ/2.

In our case, we thus have

γ =
√
κ2 + 2zξ2 = rγe

iϕγ , with rγ ≥ 0 and ϕγ ∈ [0, π/2).

In particular, γ is continuous for z ∈ H. In the following we shall use the represen-
tations

γ = rγe
iϕ, rγ ≥ 0, ϕγ ∈ [0, π/2),

or γ = aγ + ibγ , (a, b) ∈ {(a, b) ∈ R2|a, b ≥ 0} \ (i0, i∞).

as is convenient. We therefore have for the argument of the logarithm

2γe−γT/2 = 2rγe
iϕγe−(aγ+ibγ)T/2

= 2rγe
−aγT/2ei(ϕγ−bγT/2).

20In the inverse Laplace integration step we only need to evaluate the Laplace transform in the upper
complex (half-)plane.
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Since the logarithm is discontinuous along the negative real line, we have to pay
special attention to points, where

ϕγ − bγ
T

2
= kπ, k ∈ {m ∈ Z | m = 2n+1, n ∈ Z}. (A.5)

Now we have
bγ = Im(γ) = rγ sin(ϕγ).

Hence, (A.5) can be rewritten as

ϕγ −
T

2
rγ sin(ϕγ) = kπ, k ∈ {m ∈ Z | m = 2n+1, n ∈ Z}.

In order to make the logarithm continuous we first rewrite its argument as

2γe−γT/2 = r∗ei(ϕ
∗+2πn∗)

with

r∗ =
∣∣2γe−γT/2∣∣,

ϕ∗ = Arg
(
2γe−γT/2

)
,

n∗ =

⌊
ϕγ − T

2 rγ sin(ϕγ) + π

2π

⌋

=

⌊
Arg(γ)− T

2 |γ| sin(Arg(γ)) + π

2π

⌋
,

where b.c denotes rounding to the nearest smaller integer and Arg(.) denotes the
principal argument. Now, applying the logarithm yields

log
(
2γe−γT/2

)
= log(r∗) + i(ϕ∗ + 2πn∗).

This was the crucial step for “continuifying” the Laplace transform: note that the
first part on the right hand side (log(r∗) + iϕ∗) corresponds to the principal value of
the logarithm, which would be returned by most software packages. The last term
2πn∗ is the branch cut correction.

With this formulation of the logarithm, the Laplace transform is clearly continu-
ous. Finally, we have to make sure that everything is “anchored” on the right branch,
since

log

(
2γe−γT/2

γ + κ+ (γ − κ)e−γT

)
= log(r∗) + i(ϕ∗ + 2πn∗)− log

(
γ + κ+ (γ − κ)e−γT

)
only holds modulo 2πi. However, it is easy to verify (recall that the Laplace transform
evaluated at a positive real number must be real valued) that

Log(r∗) + i(ϕ∗ + 2πn∗)− Log
(
γ + κ+ (γ − κ)e−γT

)
with Log(.) denoting the principal branch already yields the right values (without
adding a multiple of ±2πi).
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To summarize, a “continuified” version of the Laplace transform is given by

f̂(z) = exp

{
2κ

ξ2
A(z) +B(z)

}
,

A(z) = Log
∣∣∣2γe−γT/2∣∣∣+ i

(
Arg(2γe−γT/2) + 2πn

)
− Log

(
γ + κ+ (γ − κ)e−γT

)
,

B(z) =
κ2T

ξ2
+

(
2γe−γT

γ + κ+ (γ − κ)e−γT
− 1

)
V (0)(γ − κ)

ξ2
,

n =

⌊
Arg(γ)− T

2 |γ| sin(Arg(γ)) + π

2π

⌋
,

γ =
√
κ2 + 2zξ2.

A.3 Asymptotic Behavior

In this section we consider the asymptotic behavior of

es(u)xf̂(s(u)) = exp
{
s(u)x+

2κ

ξ2
A(s(u)) +B(s(u))

}
with s(u) = 1/x + u(bi− 1/x), x, b > 0. Actually, due to Euler’s formula it suffices
to just consider the real part of the exponent on the right hand side. For the first
part of the exponent we have

Re(s(u)x) = 1− u.

Next, we have

Re(A(s(u))) = log(2|γ|e−Re(γ)T/2)− Re(log(γ + κ+ (γ − κ)e−γT )

= log 2 + log(|γ|)− T

2
Re(γ)− Re(log(γ + κ+ (γ − κ)e−γT )

' −c
√
u, (u→∞)

for some c > 0. Similarly,

Re(A(s(u))) ' −d
√
u, (u→∞)

for some d > 0. In total we therefore have that

Re(s(u)x+
2κ

ξ2
A(s(u)) +B(s(u))) ' −u−M

√
u, (u→∞)

for some M > 0, which implies that the decay of es(u)xf̂(s(u)) is asymptotically at
least of exponential order.
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A.4 Generalized Spread-Option Formula

Let X and Y be two jointly log-normal random variables

X = X0 exp{µx + vxZ1}
Y = Y0 exp{µy + vyZ2}

where (
Z1

Z2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

with µx, µy ∈ R, vx, vy, X0, Y0 > 0 and ρ ∈ (−1, 1). Consider a “generalized spread
payoff” of the form

H = (waX − wbY − wK)+

with a, b > 0, w = ±1 and K ∈ R. Using iterated expectations we have for the
expectation of the payoff

E[H] = E
[
E[(waX − wbY − wK)+|Z2]

]
. (A.6)

Next, observe that the density of Z1|Z2 is given by

fZ1|Z2
(z1, z2) =

1√
2π(1− ρ)2

exp

{
−(z1 − ρz2)2

2(1− ρ2)

}
,

i.e., Z1|Z2 is again normally distributed with mean ρZ2 and variance 1 − ρ2. Using
this fact and defining K̃(z2) := Y0 exp{µy + vyz2} + K, we obtain for the inner
expectation in (A.6)

E[(waX − wbY − wK)+|Z2 = z2] =

=

∫ ∞
−∞

(
waX0e

µx+vxz1 − wK̃(z2)
)+

fZ1|Z2
(z1, z2)dz1

=: I(z2).

After tedious but straightforward calculations, one obtains for the value of the integral
I(z2), z2 ∈ R,

I(z2) =



(
aX0 exp{µx + ρvxz2 + 1

2(1− ρ2)v2
x} − K̃(z2)

)
1{w=1} , K̃(z2) ≤ 0,

waX0 exp{µx + ρvxz2 + 1
2(1− ρ2)v2

x}

×Φ

(
w

log
(
aX0
K̃(z2)

)
+µx+ρvxz2+(1−ρ2)v2

x

vx
√

1−ρ2

)

−wK̃(z2)Φ

(
w

log
(
aX0
K̃(z2)

)
+µx+ρvxz2

vx
√

1−ρ2

) , K̃(z2) > 0,

where Φ(·) denotes the standard normal CDF. Finally, the expectation of the payoff
is given by

E[H] =

∫ +∞

−∞
I(z2)

1√
2π
e−

1
2
z2
2dz2.
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B Time-Dependent Parameter Scenario

Index n Fixing times Tn Ln(0) Eff. Libor vols λ̄n Eff. Libor skews β̄n
0 0.5 3.011% 21.00% 40.00%
1 1 3.211% 25.35% 40.69%
2 1.5 3.374% 26.74% 41.18%
3 2 3.510% 26.73% 41.55%
4 2.5 3.629% 26.10% 41.86%
5 3 3.733% 25.26% 42.12%
6 3.5 3.826% 24.42% 42.36%
7 4 3.910% 23.64% 42.58%
8 4.5 3.986% 22.97% 42.79%
9 5 4.056% 22.39% 43.00%
10 5.5 4.121% 21.91% 43.22%
11 6 4.182% 21.50% 43.44%
12 6.5 4.239% 21.16% 43.66%
13 7 4.292% 20.88% 43.89%
14 7.5 4.342% 20.63% 44.13%
15 8 4.389% 20.43% 44.38%
16 8.5 4.434% 20.25% 44.64%
17 9 4.477% 20.09% 44.91%
18 9.5 4.517% 19.95% 45.18%
19 10 4.556% 19.83% 45.46%
20 10.5 4.593% 19.72% 45.75%
21 11 4.629% 19.62% 46.05%
22 11.5 4.663% 19.53% 46.36%
23 12 4.696% 19.45% 46.67%
24 12.5 4.728% 19.37% 46.98%
25 13 4.759% 19.30% 47.31%
26 13.5 4.788% 19.24% 47.64%
27 14 4.817% 19.18% 47.97%
28 14.5 4.845% 19.12% 48.31%
29 15 4.871% 19.07% 48.65%
30 15.5 4.897% 19.02% 49.00%
31 16 4.923% 18.97% 49.35%
32 16.5 4.947% 18.92% 49.71%
33 17 4.971% 18.88% 50.07%
34 17.5 4.994% 18.84% 50.43%
35 18 5.017% 18.80% 50.80%
36 18.5 5.039% 18.76% 51.17%
37 19 5.061% 18.73% 51.54%
38 19.5 5.082% 18.69% 51.92%

Table B.4: Initial yield curve and effective Libor parameters for the time-
homogeneous parameter setting.
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C Standard ρ∞-extension
Lemma C.1. Let ρ ∈ RN be a proper forward-rate correlation matrix, i.e.,

(i) ρ is symmetric, positive-definite,

(ii) ρii = 1, 0 ≤ i ≤ N−1,

(iii) ρij ∈ [0, 1), 0 ≤ j < i ≤ N−1.

Furthermore, let ρ∞ ∈ [0, 1) and define a new matrix C = (cij)
N−1
i,j=0 via

cij = ρ∞ + (1− ρ∞)ρij , i, j = 0, . . . , N−1.

Then C is again a proper forward-rate correlation matrix.

Proof. With R∞ := (ρ∞)N−1
i,j=0 we have

C = R∞ + (1− ρ∞)ρ.

For arbitrary x ∈ RN \{0} it holds

x′Cx = x′R∞x︸ ︷︷ ︸
≥0

+ (1− ρ∞)︸ ︷︷ ︸
>0

x′ρx︸︷︷︸
>0

> 0,

i.e., C is positive definite. Moreover, C is clearly symmetric and

cii = 1 · ρ∞ + (1− ρ∞)cii = 1, 0 ≤ i ≤ N−1,

cij = 1 · ρ∞ + (1− ρ∞)cij ∈ [0, 1), 0 ≤ j < i ≤ N−1,

as a convex combination.

C.1 The Cholesky Decomposition of ρ∞-extended Parametric Forms

Let C ∈ RN×N be a correlation matrix with given Cholesky decomposition C = LL.
Suppose we need to calculate the Cholesky decomposition of

C̃ = R+ (1− ρ∞)C = R+ (1− ρ∞)LL′ (C.7)

where ρ∞ ∈ [0, 1) and R = (ρ∞)Ni,j=1. Instead of performing the standard Cholesky

algorithm, we can calculate the Cholesky decomposition of C̃ more efficiently by
applying so-called rank-one updating methods to the already given L, see [GGMS74].
One possible approach is based on Givens rotations and works as follows. First
observe, that we can write

C̃ = aa′ + (1− ρ∞)LL′

= (a L̄ )(a L̄ )′,

where a = (
√
ρ∞, . . . ,

√
ρ∞)′ and L̄ =

√
1− ρ∞ L. The idea is then to multiply the

matrix (a L̄ ) by a sequence of Givens matrices in such a way, that we obtain a

matrix (0 L̃ ) with a lower triangular matrix L̃ (the required Cholesky factor of C̃).
The algorithm given below implements this approach and requires only O(N2)

operations, while the standard Cholesky algorithm is of computational complexity
O(N3).
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Algorithm 1: Rank one Cholesky updating via Givens rotations

Input: a = (
√
ρ∞, . . . ,

√
ρ∞)′ ∈ (0, 1)N , (if ρ∞= 0 nothing to do)

L̄ =
√

1− ρ∞ L ∈ RN×N lower triangular

Output: a is overwritten with 0

L̄ is overwritten with L̃

1: for j=0 to N-1

2: sq=sqrt(a[j]ˆ2+L[j][j]ˆ2)

3: s=a[j]/sq

4: c=L[j][j]/sq

5: for i=j to N-1

6: x=a[i]

7: y=L[i][j]

8: a[i]=c*x-s*y

9: L[i][j]=s*x+c*y

10: end

11: end

We note that the 4P- and the 5P form presented in Section 5.3 are exactly of the
form (C.7), with L being given in closed form. The above algorithm therefore allows
for an almost instant calculation of the Cholesky decompositions of these parametric
forms.

D Calibration Results

Corr.-form ρ∞ α β γ δ η

SC2 0.44 – – – – 0.82
Reb3 0.45 0.28 0.21 – – –
5P 0.29 0.68 0.27 2.24 -0.34 –

Table D.5: Best-fit parameters for the 2004 – 2008 historical correlation
matrix.

Corr.-form ρ∞ α β γ δ η

SC2 0.18 – – – – 1.72
Reb3 0.24 0.25 0.31 – – –
5P 0.00 0.53 0.50 1.21 -0.33 –

Table D.6: Best-fit parameters for the 2006 – 2010 historical correlation
matrix.
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Tenor
Maturity 6M 2Y 5Y 7Y 10Y 20Y 25Y

1Y 18.01% 17.50% 15.84% 14.83% 13.72% 12.19% 11.99%
2Y 17.76% 16.30% 14.82% 13.90% 13.09% 11.95% 11.86%
5Y 15.25% 14.16% 13.28% 12.86% 12.44% 11.72% 11.62%
7Y 14.11% 13.20% 12.65% 12.33% 12.12% 11.61% –
10Y 13.01% 12.24% 12.02% 11.92% 11.81% 11.40% –
15Y 11.99% 11.60% 11.58% 11.49% 11.64% – –
20Y 11.95% 11.38% 11.35% 11.39% 11.46% – –
25Y 11.70% – – – – –
30Y 11.08% – – – – – –

Tenor
Maturity 6M 2Y 5Y 7Y 10Y 20Y 25Y

1Y -30.00% -30.00% -27.82% -26.87% -21.23% -25.04% -27.10%
2Y -20.13% -30.00% -25.50% -25.94% -21.02% -23.27% -24.04%
5Y 5.42% -6.75% -8.98% -10.86% -11.99% -17.85% -18.22%
7Y 5.81% -5.39% -9.71% -12.03% -13.17% -17.17% –
10Y 7.27% 2.29% -6.99% -9.35% -12.58% -16.05% –
15Y 9.80% 3.20% -3.58% -8.63% -13.57% – –
20Y -2.72% 9.73% 3.71% -2.96% -13.09% – –
25Y 10.33% – – – – – –
30Y 16.75% – – – – – –

Table D.7: Effective caplet and swaption volatilities σ̄∗ (top) and skews β̄∗

(bottom) for the 2008 data set, obtained from the pre-calibration. The 6M-
tenor columns give the effective caplet volatilities and skews, respectively.
The best-fit stochastic-volatility parameters are κ∗ = 4.50% and ξ∗ =
63.15%.

Corr.-form ρ∞ α β γ δ η

SC2 0.35 – – – – 1.05
Reb3 0.10 0.11 0.07 – – –
5P 0.45 1.92 0.03 -2.95 1.95 –

Table D.8: Calibrated correlation parameters for the 2008 data set.
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Tenor
Maturity 6M 2Y 5Y 7Y 10Y 20Y 25Y

1Y 53.88% 41.61% 28.22% 24.67% 21.74% 19.97% 21.09%
2Y 43.04% 33.72% 26.10% 23.70% 21.74% 21.09% 22.16%
5Y 24.75% 22.91% 20.72% 20.11% 19.73% 20.36% 21.57%
7Y 20.75% 19.84% 18.96% 18.84% 19.19% 20.18% –
10Y 18.23% 18.38% 18.39% 18.65% 19.17% 20.41% –
15Y 18.29% 18.69% 20.10% 20.58% 21.30% – –
20Y 20.94% 21.45% 23.33% 23.86% 24.12% – –
25Y 24.55% – – – – – –
30Y 26.44% – – – – – –

Tenor
Maturity 6M 2Y 5Y 7Y 10Y 20Y 25Y

1Y 99.90% 60.86% 28.20% 19.11% 10.82% -29.30% -40.00%
2Y 62.67% 50.34% 22.14% 13.45% 3.56% -22.29% -32.56%
5Y 22.69% 13.93% 7.49% 1.10% -7.53% -24.48% -31.49%
7Y 20.52% 7.38% 3.87% -2.44% -9.98% -25.68% –
10Y 14.85% 13.04% 10.39% 3.35% -7.03% -21.76% –
15Y 18.27% 3.98% 5.59% 1.73% -4.74% – –
20Y 36.90% 12.53% 14.68% 13.40% 7.64% – –
25Y 55.02% – – – – – –
30Y 69.25% – – – – – –

Table D.9: Effective caplet and swaption volatilities σ̄∗ (top) and skews β̄∗

(bottom) for the 2010 data set, obtained from the pre-calibration. The 6M-
tenor columns give the effective caplet volatilities and skews, respectively.
The best-fit stochastic-volatility parameters are κ∗ = 6.31% and ξ∗ =
96.22%.

Corr.-param. ρ∞ α β γ δ η

SC2 0.11 – – – – 0.99
Reb3 0.24 0.03 0.10 – – –
5P 0.28 3.00 0.04 -4.09 0.99 –

Table D.10: Calibrated correlation parameters for the 2010 data set.

time t
Parameter 0 5 10 15 20

α 2.13 2.13 2.13 2.13 2.13
β 0.03 0.03 0.03 0.03 0.03
γ -2.44 -2.44 -2.44 -2.44 -2.44
ρ∞ 0.44 0.41 0.18 0.01 0.00

Table D.11: Implied parameters of the time-dependent 4P form fitted to
the 2008 data set



Abbreviations and Notation

r A′: transpose of matrix A.r Am,n(t): annuity factor, PVBP (present value of a basis point).r a.s.: almost surely.r Bd(t): discretely compounded money-market account.r B(t): continuously compounded money-market account.r Et[ · ] = E[ · |Ft]: conditional expectation w.r.t. Ft.r η(t): η(t) + 1 is the index of the first forward rate Lη(t)+1(·) that has not expired
by time t.r F = {Ft}0≤t: filtration.r f(t, T ): instantaneous forward rate.r L(t, T ): simply-compounded spot rate, Libor rate.r L(t, Tn, Tn+1), Ln(t): simply compounded forward rate, forward Libor rate.r (Ω,F ,F,P): filtered probability space.r P (t, T ): time-t price of a zero-coupon bond with maturity T .r Φ(·): the Gaussian cumulative distribution function.r Q: risk neutral measure or generic pricing measure.r QBd : spot Libor measure.r QT : T -forward measure.r Re(z), Im(z): real and imaginary part of a complex number z.r R(t, T ): continuously-compounded spot-rate.r r(t): short rate.r Sm,n(t): (forward) swap rate.r τ(Tn, Tn+1): year fraction between time points Tn and Tn+1.r 1W, 1M, 1Y: 1 week, 1 month, 1 year.r AA: Antonov-Arneguy.r ATM, ITM, OTM: at-the-money, in-the-money, out-of-the-money.r BS: Black-Scholes.r BGM: Brace-Ga̧tarek-Musiela.r bp: basis point, 1/100 of one percent (1bp = 10−4).r CDF: cumulative distribution function.r CEV: constant elasticity of variance.r CIR: Cox-Ingersoll-Ross.r CMS: constant maturity swap.r CMSSO: CMS spread option.r DCT: discrete cosine transform.r DFT: discrete fourier transform.
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r FRA: forward-rate agreement.r HJM: Heath-Jarrow-Morton.r LMM: Libor market model.r MC: Monte Carlo.r ODE: ordinary differential equation.r PCA: principal component analysis.r PDE: partial differential equation.r PDF: probability density function.r RMSE: root mean square error.r SC: Schoenmakers-Coffey.r SDE: stochastic differential equation.r SMM: swap market model.r SV-LMM: stochastic-volatility extended Libor market model.
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Zusammenfassung

Libor-Markt-Modelle zählen zu den Standardmodellen in der Finanzindustrie, wenn
es darum geht exotische Zinsderivate zu bewerten und zu hedgen. Aufgrund der Fle-
xibilität ihrer Volatililitäts-Spezifizierung können diese Modelle an eine große Anzahl
von Marktinstrumenten kalibriert werden und liefern somit Preise von exotischen
Strukturen, die konsistent mit den vorherrschenden Marktbedingungen sind. Im Ge-
gensatz zu anderen Modellen ist die dynamische Struktur von Libor-Markt-Modellen
auch reichhaltig genug, um Dekorrelationseffekte zwischen verschiedenen Zinssätzen
der Zinskurve realistisch nachzubilden. Dies ist besonders wichtig bei der Bewertung
von korrelationssensitiven Produkten, wie zum Beispiel CMS-Spread-Produkten, de-
ren Zahlungsströme jeweils von der Differenz zweier Zinssätze abhängen. Produkte
dieser Art haben sich in den letzten Jahren relativ großer Beliebtheit erfreut und
exotische Anleihen mit CMS-Spread-abhängigen Coupons wurden in großen Volu-
mina gehandelt. Gleichzeitig hat sich auch ein liquider Markt für “gewöhnliche”
CMS-Spread-Optionen entwickelt, und Preise solcher Derivate werden heutzutage
von verschiedenen Brokern auf täglicher Basis gequotet. Dennoch ist das korrek-
te Preisen von CMS-Spread-basierten Produkten immer noch Gegenstand aktiver
Forschung. Tatsächlich deckte beispielsweise McCloud [McC11] in einem kürzlich
erschienenen Artikel auf, dass es im Jahr 2009 aufgrund von Bewertungsinkonsis-
tenzen über längere Zeiträume hinweg statische Arbitrage-Möglichkeiten zwischen
den Märkten für CMS- und CMS-Spread-Optionen gab. Das konsistente Bewerten
von CMS-Spread-Optionen relativ zu anderen Marktsektoren ist jedoch nicht die
einzige Herausforderung. Auch die verschiedenen CMS-Spread-abhängigen Produkte
müssen selbstverständlich konsistent zueinander bewertet werden. Zum einen ist dies
notwendig um direkte Arbitrage-Möglichkeiten auszuschließen. Andererseits sollten
die Hedging-Kosten beim Preisen von exotischen Produkten korrekt mit einbezogen
werden. Schließlich spiegelt der Preis eines exotischen (oder jedes anderen) Derivats
letztendlich die während der Laufzeit anfallenden Hedgingkosten wider. Da CMS-
Spread-Optionen aufgrund ihrer Liquidität inzwischen als Hedginginstrumente für
andere korrelationssensitive exotische Produkte eingesetzt werden können, sollten
deren Preise natürlich beim Bewerten der exotischen Instrumente sachgemäß be-
rücksichtigt werden.

Das Ziel der vorliegenden Arbeit besteht darin, effiziente Methoden und Werk-
zeuge zur Kalibrierung von Libor-Markt-Modellen an Caps, Swaptions und CMS-
Spread-Optionen zu entwickeln, um auf diesem Wege marktimplizierte Volatilitäten
und Korrelationen zu extrahieren und exotische Produkte marktkonsistent zu bewer-
ten.
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Da das standard (log-normale) Libor-Markt-Modell, wie es von Miltersen, Sand-
mann & Sondermann [MSS97], Brace, Ga̧tarek & Musiela (BGM) [BGM97] und
Jamshidian [Jam97] eingeführt wurde, die in den heutigen Märkten beobachtba-
ren Volatilitäts-Smiles nicht nachbilden kann, sind zahlreiche Erweiterungen des ur-
sprünglichen Libor-Markt-Modells in der Literatur erschienen. Die wohl beliebtesten
und am weitesten verbreiteten dieser Erweiterungen basieren auf Dynamiken mit sto-
chastischer Volatilität vom Heston-Typ (siehe z.B. [AA02], [ABR05] oder [Pit05a]).
In Kapitel 4 stellen wir eine neue Approximation zum Preisen von CMS-Spread-
Optionen innerhalb dieser Modellklasse vor. Grundlage dieser Approximation ist eine
neue Methode zum effizienten Auswerten der Dichte eines integrierten Cox-Ingersoll-
Ross-Prozesses (CIR) (siehe Abschnitt 4.3), welche auf einer speziellen Wahl des
Integrationspfades bei der notwendigen Laplace-Invers-Transformation basiert. Diese
Methode kann nicht nur bei der Bewertung von CMS-Spread-Optionen verwendet
werden, sondern wann immer eine schnelle und genaue Auswertung der Dichte eines
integrierten CIR-Prozesses benötigt wird. Das Preisen von CMS-Spread-Optionen
innerhalb der zuvor erwähnten Modellklasse wurde auch in einem kürzlich erschie-
nenen Arbeitspapier von Antonov & Arneguy [AA09] betrachtet. Wir zeigen in Ab-
schnitt 4.5, dass unsere Bewertungsformel hinsichtlich Geschwindigkeit, Genauigkeit
und Aufwand der Implementierung im Allgemeinen besser abschneidet als die Be-
wertungsmethoden von Antonov & Arneguy.

Bisher war es üblich die Volatilitätsparameter von Libor-Markt-Modellen durch
Kalibrierung an Caps und Swaptions zu gewinnen, während die Korrelationsparame-
ter meist historisch geschätzt wurden. Auch wenn diese Vorgehensweise bei weniger
korrelationssensitiven Produkten akzeptabel ist, so ist sie bei Instrumenten die stark
von der Abhängigkeitsstruktur zwischen den einzelnen Zinssätzen abhängen nicht ide-
al, da die historisch geschätzten Korrelationen in der Regel nicht die aktuellen Markt-
bedingungen widerspiegeln (vgl. Abschnitt 5.4). Mit Hilfe der von uns vorgestellten
Approximationsformel lassen sich Libor-Markt-Modelle mit stochastischer Volatili-
tät gleichzeitig an Caps, Swaptions und CMS-Spread-Optionen kalibrieren. Auf diese
Weise können nicht nur marktimplizierte Volatilitäten sondern auch marktimplizier-
te Korrelationen gewonnen werden und komplexe Produkte somit marktkonsistent
bewertet werden.

Unabhängig davon welche Kalibrierungsmethode man für die Libor-Korrelationen
verwendet – ob implizit oder historisch – in beiden Fällen benötigt man sparsame
und dennoch flexible Parametrisierungen für die Libor-Korrelationsmatrizen. His-
torisch geschätzte Korrelationsmatrizen sind oft verrauscht und enthalten teilweise
unrealistische Einträge. Durch das Fitten von Parametrisierungen an die historisch
geschätzten Matrizen versucht man glatte Korrelationsmatrizen zu erhalten, wel-
che nur die wesentlichen Charakteristika der historischen Daten widerspiegeln. Bei
der impliziten Kalibrierung hingegen werden Korrelationsparametrisierungen benö-
tigt um Overfitting zu vermeiden und stabile Kalibrierungsergebnisse zu erhalten. In
Kapitel 5 präsentieren wir eine neue generische Methode um Korrelationsparametri-
sierungen zu konstruieren, welche stets positiv definite Matrizen liefern. Des Weiteren
stellen wir in Abschnitt 5.3 konkrete Parametrisierungen vor, welche äußert flexibel
sind und historisch geschätzte Matrizen wesentlich besser fitten als die bekannten
Standard-Parametrisierungen (siehe Abschnitt 5.4).
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In der Praxis ist die verwendete Anzahl der Faktoren bei einem Libor-Markt-
Modell typischerweise wesentlich kleiner (z.B. 3–10) als die Anzahl der modellierten
Libor-Raten (oftmals 40–80). Da praktisch alle der bekannten Korrelationsparame-
trisierungen Vollfaktor-Matrizen ergeben, muss der Rang dieser Matrizen erst mit-
tels PCA21-basierten Methoden reduziert werden, bevor sie tatsächlich innerhalb des
Modells verwendet werden können. Im Falle eines historischen Kalibrierungsansatzes
stellt diese Vorgehensweise im Allgemeinen keinen sonderlich großen Nachteil dar,
da der PCA-Algorithmus nur ein einziges Mal durchgeführt werden muss. Werden
jedoch die Korrelationsparameter über eine implizite Kalibrierung geschätzt, so muss
der PCA-Algorithmus möglicherweise mehrere tausend Mal durchgeführt werden. In
diesem Fall können die dabei notwendigen numerischen Eigenwertzerlegungen einen
Großteil des für die gesamte Kalibrierung benötigten Rechenaufwandes ausmachen
(vgl. Abschnitt 6.3 und 7.3). In Kapitel 6 entwickeln wir deshalb eine neue Methode
um den Rang von parametrischen Libor-Korrelationsmatrizen effizient zu reduzie-
ren. Diese basiert darauf eine Diskrete Kosinustransformation (DCT) auf die Zeilen
der Cholesky-Zerlegung der Korrelationsmatrizen anzuwenden (siehe Abschnitt 6.2).
Hierbei müssen im Wesentlichen nur einige Matrixmultiplikationen durchgeführt wer-
den. Da außerdem die Cholesky-Zerlegung bei unseren parametrischen Formen in ge-
schlossener Form angegeben werden kann (vgl. Abschnitt 5.3), erhalten wir aus der
Kombination von DCT-Methode und unseren parametrischen Formen implizit eine
neue Familie von flexiblen Parametrisierungen mit beliebiger Faktoranzahl.

In Kapitel 7 werden schließlich die zuvor entwickelten Methoden und Werk-
zeuge angewandt und Libor-Markt-Modelle an Marktdaten kalibriert. Wir disku-
tieren dabei in Abschnitt 7.1 zwei möglich Kalibrierungsansätze und demonstrieren
in Abschnitt 7.2, dass mit Hilfe unserer neuen Korrelations-Parametrisierungen die
Marktpreise im Allgemeinen besser getroffen werden als mit den üblichen Standard-
Parametrisierungen. Ein Hauptresultat unserer empirischen Studien ist dabei, dass
implizite Korrelationsmatrizen keine stark ansteigenden Nebendiagonalen aufweisen
– ein typisches Merkmal von historisch geschätzten Korrelationsmatrizen, welches
manchmal sogar bei Parametrisierungen direkt integriert wird (vgl. Abschnitt 5.2).

Zuletzt verwenden wir in Abschnitt 7.3 die kalibrierten Modelle um einige praxis-
relevante Bewertungsbeispiele zu diskutieren. Insbesondere demonstrieren wir dabei,
dass Libor-Markt-Modelle mit verschiedenen Korrelationsstrukturen signifikant ver-
schiedene Preise für bestimmte exotische Produkte liefern können, auch wenn die
Marktpreise von Caps, Swaptions und CMS-Spread-Optionen von allen Modellen
nahezu gleich gut getroffen werden.

21Principal component analysis (Hauptkomponentenanalyse).
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