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Abstract

Modern vehicles are equipped with many semi-automated and even highly automated
driving functions, which enormously increase safety and comfort while traveling.
A basic prerequisite for these features is an accurate and reliable perception of
the vehicle’s environment, which is modeled by suitable algorithms on the basis of
various sensor measurements. One appropriate sensor for this purpose is a radar
sensor, which is able to directly measure the position, the orientation as well as the
radial velocity of objects in the vehicle’s surroundings. Contemporary automotive
radar sensors provide high-resolution data, such that multiple radar reflections are
generated for a single object. Subsequently, the object detection task is to recognize
all existing objects in the measured radar target list which means to determine their
localization and class. This thesis proposes a novel technique for object detection
in high-resolution radar data, which is then further used to realize environment
perception at an object level. In summary, this covers the complete processing
pipeline from a radar target list to the object recognition and multi-object tracking.

The radar object detection system designed in this thesis is based on a Deep
Learning technique, where the entire processing chain basically consisting of three
main components. The first module divides the radar target list into several small
regions and determines whether there is an object located in it, and if given, then
its associated class. The second component segments all radar targets belonging to
the actual object of interest. Finally, the third module determines the parameters
for a 2D bounding box modeling the respective object and outputs all predicted
hypotheses after the object extraction. The training of all neural networks exclusively
utilizes real radar data from typical traffic situations in rural and urban areas. The
evaluation validates the radar object detector based on three different datasets, and
scores the intermediate results of each module as well as the final object detection
result. Two of the radar datasets are publicly available ensuring that all results are
reproducible and verifiable. The third dataset is self-generated and includes high-
resolution radar data from real sensors. The evaluation reveals that the radar object
detector provides convincing results on all datasets, where the best performance is
obtained with the self-generated dataset. Further, a successful implementation and
a parallel operation of three radar object detection systems on three radar sensors
installed in a real system for autonomous driving demonstrates that this technology is
real-time capable and appropriate for real-world applications in the automotive field.



In the case of multiple sensors with an overlapping field of view, the respective radar
object detectors provide different hypotheses for the same object, which may be
contradictory. In order to obtain a consistent environment model, it is necessary to
fuse and track all generated object detections over time. A multi-object tracking algo-
rithm allows to combine detections from independent sources into one overall result.
A tracking algorithm consists of two main stages: the prediction of existing objects
according to a motion model and the correction of all object states based on measure-
ments. This thesis presents a measurement model to process all hypotheses provided
by the developed radar object detection system using an established multi-object
tracking algorithm. The tracker processes all radar object detections and generates
a robust environment model. Therefore, the algorithm optimizes the perception of
objects such that the resulting tracks correspond accurately to reality. The proposed
radar object detector and the subsequent multi-object tracking perform precisely and
reliably in real-world applications, which makes this advanced technique an essential
component for the environment perception in a real system for automated driving.



Kurzfassung

Moderne Fahrzeuge verfügen über viele teil- und sogar hochautomatisierte Fahrfunk-
tionen, welche die Sicherheit und den Komfort während der Fahrt enorm erhöhen.
Als Grundvoraussetzung erfordern solche Systeme eine genaue und zuverlässige
Wahrnehmung der Umgebung um das Fahrzeug, welche durch dafür vorgesehene Algo-
rithmen auf Basis von verschiedenen Sensormessungen modelliert wird. Ein für diesen
Zweck geeigneter Sensor stellt das Radar dar, welches in der Lage ist Position, Ori-
entierung und Radialgeschwindigkeit von Objekten in der Fahrzeugumgebung direkt
zu messen. Heutige Automobilradarsensoren liefern bereits hochauflösende Daten,
sodass für ein Objekt mehrere Radarreflektionen erzeugt werden. Anschließend ist es
die Aufgabe der Objektdetektion in der gemessenen Radartargetliste alle vorhandenen
Objekte zu erkennen, das heißt deren Lokalisierung sowie deren zugehörigen Klasse
zu bestimmen. Diese Arbeit stellt eine neuartige Technik für die Objektdetektion
in hochauflösenden Radardaten vor, welche anschließend weiterverarbeitet wird
um eine Wahrnehmung der Umgebung auf Objektebene zu realisieren. Zusammen-
fassend handelt es sich um ein vollständiges System von der Radartargetliste über die
Objekterkennung bis hin zur zeitlichen Verfolgung all dieser detektierten Objekten.

Das in dieser Arbeit entworfene Radar-Objektdetektionssystem basiert auf der Me-
thode des Deep Learning, wobei der Detektor aus drei Hauptkomponenten besteht.
Das erste Modul teilt die Radartargetliste in mehrere kleine Regionen auf und
bestimmt, ob sich darin ein Objekt befindet und gegeben des Falls auch dessen
Klassen. Die zweite Komponente segmentiert alle Radarreflektionen, die zum Zielob-
jekt gehören. Das dritte Modul bestimmt schließlich die Parameter für die zugehörige
2D-Bounding-Box, welche das Objekt modelliert. Dieser Prozess wird für alle Teiltar-
getlisten durchgeführt und letztendlich fasst die Objektextraktion alle prädizierten
Hypothesen zu einem gesamtheitlichen Detektionsergebnis zusammen. Das Training
der neuronalen Netzwerke verwendet ausschließlich reale Radardaten, welche aus
typischen Verkehrssituationen in ländlichen und städtischen Gebieten stammen. Die
Auswertung evaluiert den Radar-Objektdetektor auf drei verschiedenen Datensätze
und bewertet die Zwischenergebnisse der einzelnen Module sowie das eigentliche
Detektionsergebnis. Zwei der Radardatensätze sind öffentlich zugänglich, sodass alle
Ergebnisse reproduzierbar und nachvollziehbar sind. Der dritte Datensatz ist selbst
erzeugt und enthält hochauflösende Radardaten von echten Radarsensoren. Die
Evaluation zeigt, dass der Objektdetektor auf allen Datensätzen überzeugende Ergeb-



nisse liefert, wobei die Detektionsresultate auf dem selbst erzeugten Datensatz am
besten abschneiden. Außerdem beweist eine erfolgreiche Implementierung sowie ein
paralleler Betrieb von drei Radar-Objektdetektionssystemen auf drei Sensoren, die in
einem realen System für autonomes Fahren installiert sind, dass diese fortschrittliche
Technologie echtzeitfähig ist und sich für den Einsatz im realen Straßenverkehr eignet.

Beim Einsatz von mehreren Sensoren mit einem sich überlappenden Sichtbereich,
liefern die zugehörigen Radar-Objektdetektoren für das gleiche Objekt verschiedene
Hypothesen, die sich durchaus widersprechen können. Um ein konsistentes Umge-
bungsmodell zu erhalten, müssen alle erzeugen Objektdetekionen fusioniert und über
die Zeit verfolgt werden. Ein Algorithmus für Multi-Objekt-Tracking ermöglicht
es, Messungen aus unabhängigen Quellen zu einem ganzheitlichen Ergebnis zu
kombinieren. Solch ein Trackingalgorithmus besteht aus zwei wesentlichen Schrit-
ten, der Prädiktion von bestehenden Objekten gemäß einem Bewegungsmodell
und der darauffolgenden Korrektur von aktuellen Objektzuständen mit Messun-
gen. Diese Arbeit stellt ein geeignetes Messmodell vor, um alle Hypothesen, die
das entwickelte Radar-Objektdetektionssystem liefert, mit dem eingesetzten Multi-
Objekt-Trackingalgorithmus zu verarbeiten. Der Multi-Objekt-Tracker erzeugt unter
Nutzung der gefundenen Radar-Objektdetektionen ein robustes Umgebungsmodell.
Dabei optimiert der Algorithmus die Wahrnehmung von Objekten, sodass die re-
sultierenden getrackten Objekte genau denen in der Realität entsprechen. Der in
dieser Arbeit vorgeschlagene Radar-Objektdetektor und das anschließende Multi-
Objekt-Tracking funktioniert im realen Betrieb sowohl schnell und präzise, als auch
zuverlässig, sodass diese Technik ein unerlässlicher Bestandteil für die Umgebungs-
wahrnehmung in einer realen Anwendung für das automatisierte Fahren darstellt.
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Chapter 1

Introduction

Object detection is the task of recognizing the state, including localization and clas-
sification, for all objects in the surrounding based on uncertain sensor measurements.
This thesis focuses on the detection of objects using noisy measurements provided by
a high-resolution automotive radar sensor. Due to the increased resolution of such a
radar sensor, multiple reflections per object are generated. This thesis proposes a
novel radar object detection system which determines hypotheses for objects from
different classes solely based on radar target lists using a deep learning technique.

For many Advanced Driver Assistance Systems (ADAS) and automated driving
functions, a highly accurate perception of the vehicle’s environment is a crucial
prerequisite. In order to detect traffic participants in the surrounding of the vehicle,
modern vehicles are equipped with different sensors, such as radio detection and
ranging (radar), light detection and ranging (lidar) and camera sensors. Further, a
multi-object tracking algorithm processes data generated by these sensors and often
preprocessed by object recognition algorithms to model each traffic participant as a
dynamic object. A tracking system provides object state estimations comprising,
for example position, orientation, velocity and extent, based on the noisy input
data. Each sensor is characterized by particular advantages and deficiencies. Camera
sensors provide semantic information and show remarkably results in the classification
task of objects. Lidar sensors have a high distance and angular resolution, and are
able to yield precise information about the geometry of objects. However, both sensor
are sensitive to weather conditions and occlusion by other objects. In contrast, radar
sensors are more robust against all weather conditions and enable the observation
of occluded objects through multipath propagation. One of the main advantage is,
a radar sensor is able to directly measure the object velocity, more precisely, the
object’s radial velocity based on the Doppler effect. However, a tracking algorithm
achieves best results by a sophisticated fusion of information from different sensors.
Nevertheless, this thesis focuses on a multi-object tracking approach exclusively using
radar data to demonstrate the potential of high-resolution automotive radar sensors.



2 Introduction

Modern automotive radar sensors provide high-resolution measurement data. As
a consequence, radar sensors are able to generate multiple measurements for each
object, hence, the measurement data yield information about its extent. A classical
tracking algorithm follows the assumption that exactly one measurement is generated
per object. This assumption is violated when using high-resolution sensors. There
are two common approaches to address this challenge. One approach encompass
tracking methods which are able to process multiple measurements per object to solve
an extended object problem. An advantage is that these techniques process each
measurement individually, and consequently the entire measurement information
is applied. However, these tracking filters often use very complicated measurement
models to find a relation between sensor measurements and object states. Another
approach to deal with multiple measurement per object is to preprocess the mea-
surements first, and subsequently apply a classical tracking algorithm using a more
simple measurement model. For this purpose, a preprocessing method combines all
measurements to a representation which satisfies the assumption of one measurement
per object, for example a single object detection. Therefore, a detector generates
object hypotheses using the sensor’s measurements, that can be a bounding box
which models an object and represents position, orientation and extent of the object.

A high-resolution automotive radar sensor delivers a list of radar targets per mea-
surement cycle. Such a target list contains various information about a measured
reflection, for example spatial coordinates, radial velocity and reflectivity of the
measured target. The goal of the radar object detection system proposed in this
thesis is to estimate a classified bounding box comprising the entire object based
on all radar targets belonging to the object of interest. For this purpose, there
are three major challenges. Firstly, the classification of an entire list with multiple
radar targets to decide whether an object is located there or not. Secondly, the
segmentation of all radar targets which belong to the object of interest by classifying
each radar target. Thirdly, the estimation of a bounding box comprising the entire
object based on the segmented radar targets. In summary, the proposed radar
object detector performs classification, segmentation and bounding box estimation
to recognize different objects solely using the radar data from an automotive sensor.

There are several existing approaches to process radar data using machine learning
methods. Most neuronal networks expect a defined input format, for example images
with a fixed size. For that reason, the radar data is first transformed into a certain
regular format, for example into a grid map representation, before it will be fed into
a neuronal network. Since the radar data is naturally represented as radar target list,
it is recommended to directly process this list as input for the neuronal network. In
literature, the PointNets are proposed which facilitate to directly process target lists
and are therefore particularly well suited for this radar data format. In a further
work, the Frustum PointNets extend this approach which finally results in the first
object detector based on PointNets. Therefore, camera information is fused with a
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lidar point cloud, in other words, a 2D camera object detection is combined with
a 3D instance segmentation and a 3D bounding box estimation using lidar point
clouds. In contrast, this thesis presents an radar object detector to perform a 2D
object detection exclusively in radar data based on the concept of PointNets. The
proposed method classifies an object and segments all radar targets belonging to it,
as well as applies a bounding box regression based on the segmented radar targets.

The developed radar object detection system provides one hypothesis for each object,
that means, one classified 2D bounding box represents one object. Hence, this fulfills
the assumption of a single measurement for each object, and consequently, a classical
multi-object tracking algorithm is applicable. A multi-object tracking algorithm
consists of two key elements, the prediction and the update. The prediction processes
the multi-object state, that is the number of tracks and their individual states by
predicting it to the next measurement time step using a multi-object motion model.
The update deals with measurements provided by a sensor using a multi-object
measurement model which corrects the predicted multi-object state. The results
of a multi-object update depend on two factors: firstly, the sensor which generates
measurements, and secondly, the measurement model assigning raw or preprocessed
measurements to the existing objects. Since a sensor with long range and high
resolution provides much more precise information about objects, it is possible to
model the environment of the vehicle with much more detail. But, this requires
a more complicated measurement model or an elaborate preprocessing to handle
the large amount of sensor data. However, the update and consequently the overall
performance is improved if the measurement model is tuned or a more sophisticated
preprocessing is performed. This thesis presents a full processing chain for high-
resolution radar data from the raw sensor measurements up to the incorporation of
processed object detections in the update step of a multi-object tracking algorithm.

The scientific contribution of this thesis mainly covers three topics that must be
fulfilled. Firstly, the radar object detection system is able to detect objects in radar
data exclusively. Neither the radar data from several measurement cycles, nor from
multiple radar sensors, nor any other kind of information from other sources is
fused. Secondly, the radar object detector directly process the radar target list as
received from the sensor, without a preliminary transformation into another data
format. Thirdly, the radar object detection system is real-time capable allowing this
algorithm to be deployed in real-world applications for the environment perception.



4 Introduction

The thesis is structured as follows. Initially, Chapter 2 introduces the fundamentals
of radar and deep learning, as well as the basics and the state of the art for object
detection and multi-object tracking. Afterwards, Chapter 3 proposes the novel radar
object detection system which predicts object hypotheses exclusively in radar data,
and describes how the object detections are processed in a multi-object tracking
algorithm. Then, Chapter 4 discusses radar datasets which are used to evaluate the
radar object detector. Subsequently, Chapter 5 presents a detailed evaluation of the
radar object detection system. Finally, Chapter 6 briefly summarizes the contents of
this thesis and gives a conclusion, as well as providing suggestions for future work.



Chapter 2

Fundamentals and State of the Art

This chapter presents the basic principles that are essential for comprehending the
contents of the thesis. In addition to the fundamentals, this chapter also describes
the state of the art in the corresponding sections. This means that for each topic,
the fundamentals as well as the state of the art are described in the same section.
Subsequently, this thesis distinguishes itself from the existing methods and briefly
describes how it is solved in the thesis. Section 2.1 introduces the fundamental
knowledge about a high-resolution automotive radar sensor, as such a sensor is
used for this thesis. Furthermore, this section describes the basic principles of deep
learning to understand its application for object detection. Section 2.2 discusses
the state of the art in object detection using radar data. Therefore, several existing
approaches are presented and distinguished from those proposed in this thesis.
Finally, Section 2.3 provides the basics for multi-object tracking using radar data.

2.1 Basic Principles

This section presents the basics of radio detection and ranging (radar) and the use of
deep learning in a rather general way. Section 2.1.1 introduces the fundamentals of
an automotive radar sensor. This includes the measured variables of a radar sensor,
which are used as input data for the radar object detection system proposed in this
thesis. Further, a common processing chain of an automotive radar sensor, and its
possible different output data, are described. Due to the fact, that the proposed
radar object detector is based on a deep learning approach, Section 2.1.2 covers the
fundamentals of deep learning. In the course of this, the differences between artificial
intelligence, machine learning and deep learning are disclosed. Moreover, the section
explains the classification and regression task, and deals with the advantage of
neuronal networks. Finally, the idea of optimizing model parameters of a network
during training and a common technique to achieve this goal are outlined as well.



6 Fundamentals and State of the Art

2.1.1 Radar Basics

The importance of automotive radar sensors in modern vehicles for environment
perception is constantly increasing. Admittedly, a radar sensor does not achieve
same accuracy in the near range as a light detection and ranging (lidar) or camera
sensor, but it has several other advantages. Firstly, high-resoultion automotive radar
sensors are capable of detecting objects in a distance up to 250m [Con] and due
to multipath propagation, it is also possible to recognize objects that are moving
one behind the other and are partially obscured. Secondly, in comparison to lidar
sensors, a radar sensor is extremely economical in terms of cost effectiveness [Con].
Thirdly, most lidar sensors only operate impeccable under good weather conditions,
and cameras do not perform well in the dark. In contrast, a radar sensor operates
roughly the same in the light and dark, as well as in all weather conditions, even
in the rain, fog and snow [Con]. Last but not least, a radar sensor is the only one
capable of directly measuring a velocity information of an object. Hence, a radar
provides distance as well as velocity information [Con], where the velocity is a radial
velocity. The following subsection only addresses the parts of the technology of a
high-resolution automotive radar sensor, which are essential for this thesis. Extensive
information about radar in general are provided in [Sko08; ST13; Wol98], and more
details concerning the application of automotive radar systems is given in [WHLS15].

Measured Variables

Basically, an automotive radar sensor is able to directly measure the range and
the azimuth angle in polar coordinates, as well as the radial velocity and reflection
power of a target. Section 4.1 presents the radar sensor which used in this thesis.
However, this automotive radar sensors does not provide the mentioned measured
variables, instead the spatial information is given in Cartesian coordinates and the
Radar Cross Section (RCS) is derived from the reflective power. Accordingly, the
actually measured signals are processed by the sensor itself. Since it is not possible to
influence this preprocessing step for the applied radar sensor, the measured variables
are used in this thesis exactly in the format in which the radar sensor provides them.
After the internal transformation of range and azimuth from polar coordinates to
Cartesian coordinates, the position of a radar target is specified by an x and y value.

An automotive radar sensor is able to determine the radial velocity of a moving target
by exploiting the Doppler effect. An electromagnetic wave undergoes a frequency
shift whenever an observer and a transmitter move relative to each other. The same
phenomenon occurs when a radar beam is reflected from the object of interest which
is moving relative to the radar sensor. Consequently, the radial velocity vr is the
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velocity part of a target that acts towards or away from the radar sensor. Since
the measured radial velocity is the relative velocity of a target, any motion of a
radar sensor affects the resulting radial velocity. With the purpose of obtaining the
objects’ actual radial velocity, the motion of a radar sensor itself has to be extracted.
This technique is called ego motion compensation. The derivation and associated
formulas for the ego motion compensation are presented in [Sch19]. As a result, the
parameter ṽr describes the ego motion compensated radial velocity of a radar target.

In order to describe the reflectivity of a target in terms of a quantity, the RCS is
derived from the reflection power. The RCS value σ strongly correlates with the
target to be measured and varies depending on the shape of the target, the material
properties, the wavelength as well as the angle of incidence and angle of reflection
of the beam. In general, the higher the RCS value for an object is, the better this
object can be detected with a radar sensor. In summary, all measured variables that
are provided by the automotive radar sensor from Section 4.1 are now introduced.
Moreover, these are exactly the measured variables which are the input radar data
of the radar object detection system, which is proposed in Section 3.1 of this thesis.

Signal Processing

In order to extract measurement information about a real object from a reflected
electromagnetic wave, an automotive radar sensor performs a specific signal process-
ing. Figure 2.1 presents the individual modules the radar signal processing chain
of a common automotive radar sensor as presented in [WHLS15]. The processing
pipeline is structured in a way that it is generally applicable and independent of a
particular radar design, for example modulation type or antenna concept. Below, all
components of the radar signal processing are explained, since it corresponds to the
chain which is applied in the radar sensor deployed in this thesis. Comprehensive
information on the fundamentals of radar signal processing can be found in [Ric14].

The functionality of a radar is based on emitting and receiving electromagnetic waves,
however these are only utilized as carriers to transmit information modulated on a
signal. The signal modulation is part of signal shaping component. In this module
the signals are generated, so there is no input data as shown in Figure 2.1, but in
fact it is the initial step in the radar signal processing. There are different concepts
to modulate information on amplitude or frequency of a signal by mixing signals,
for example modulating information on a sinus signal, or using pulse modulation.
Automotive radar sensors perform frequency modulation, which varies a carrier
frequency in the bandwidth of 76 − 77GHz over time to transmit information. A
technique for frequency modulation is the Frequency Shift Keying (FSK), which
modifies the current frequency of the signal in multiple steps over a specified time
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Figure 2.1: Overview of the radar signal processing: The transmitted radar
is reflected by an object, and further processed to provide radar
targets, object hypotheses or tracks. The image is drawn in refer-
ence to the overview of the radar signal processing in [WHLS15].

period. Further, the Multi Frequency Shift Keying (MFSK) is an extension of FSK,
which uses more than two frequencies at the same time. In today’s automotive
radar sensors, the common techniques are the Frequency Modulated Continuous
Wave (FMCW) and the Chirp Sequence (CS) modulation. In FMCW, the current
frequency is changed continuously using various ramps with different slopes. The
CS modulation is based on the principles of FMCW, but it sequentially transmits
multiple linear frequency ramps centered, which are realized as single upchirp signals
of short duration, around the carrier frequency. More details on the topic of radar
signal modulation is given in [Far17], and for automotive radar sensors in [WHLS15].

Whenever the emitted signal hits an object, it is reflected and returned to the
receiver unit of the radar. The preprocessing and digital data capturing module
performs a demodulation and amplification of the received signals and converts the
analog signals into digital data by sampling. Then, the sepctral analysis applies
a Fourier Transform to turn the signal from the time domain into the frequency
domain. Practically this is realized on radar sensors using the Fast Fourier Transform
algorithm [CT65]. The resulting frequency spectrum contains information about
range, radial velocity and azimuth angle, which are extracted by the following units.

The next step is to extract a list of radar targets, which comprises the detection and
matching to eventually determine the explicit values for range, radial velocity and
azimuth angle for each radar target. The target detection examines the measured
data for specific characteristics that appear as peaks in the spectrum. The goal is to
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find all peaks belonging to real objects. Often an adaptive threshold is applied for
filtering purpose. This technique is also called Constant False Alarm Rate (CFAR)
detection [Sko08]. Subsequently, the target matching assigns all detected peaks to
an object. This includes the matching of different peaks in the same beam as well
as peaks corresponding to several beams. Finally, the azimuth angle determination
analyzes the amplitudes of peaks which are associated to the same target, but occur
in different beams. Along with the knowledge of the antenna characteristics deployed
in the radar sensor, this allows to identify the respective azimuth angle of a target.

Modern automotive radar sensors have a high resolution which allows to detect
multiple radar targets for one object, especially at vehicles or trucks. Therefore, the
target clustering groups all reflections that belong to the same object and treats
them in the subsequent steps as one measurement, or, in other words as a hypothesis
for an object. The clustering makes use of heuristic assumption to decide whether
the measured quantities belong to the same object. In general, after the clustering
process, each detected object is modeled as a single point target. Hence, the clustering
module outouts a list that contains object hypotheses. Since it strongly depends
on which part of an object is detected, the resulting radar targets are often rather
different in radial velocity or RCS. This is because the measured relative velocity
varies, for example, the wheels of a vehicle rotate faster than the actual velocity of
the entire vehicle, or the limbs of a pedestrian move more rapidly than the rest of
the body. Further, some parts of an object reflect better than others, for instance,
the wheel housing or the license plate of a vehicle. However, the target clustering
technique may turn out to be not straightforward and is therefore prone to errors.

With the focus to achieve a robust perception based on the clustered but still noisy
targets, the object tracking unit filters this data over time. The object hypotheses
constitute a snapshot of the current measurement cycle. Consequently, a tracking
algorithm correlate previous object hypotheses with recent measurements. Primarily,
the tracker predicts all captured objects to the actual measurement time. Subse-
quently, the generated object hypotheses are associated to the objects and the update
corrects those using the measurement information. This algorithm produces tracks,
which are objects described by their current dynamic states, for example, position,
orientation and velocity, and additionally a history of previous states. This results
in a smoothed trace which represents the motion of objects up to the actual time.

The radar processing chain from Figure 2.1 reveals that an automotive radar sensor
is able to generate various outputs on different modeling levels. The radar sensor
produce measurement data on a target level, which are called radar targets. While
the results at an object level are provided as object hypotheses and tracks. The
algorithms for generating radar targets, object hypotheses or track are already
implemented on commercial sensors. The radar sensor presented in Section 4.1
outputs a radar target list where each target comprises four dimensions: the position
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Figure 2.2: Categorization of artificial intelligence: Distinction between the
general artificial intelligence, machine learning and ultimately
deep learning. The image is redrawn and inspired by [Cop16].

in cartesian coordinates, the radial velocity and the RCS value. Since the algorithm
that generates the radar target list is kept secret by the manufacturer, it is not
possible to influence this processing chain and its output. However, algorithms
for object detection and tracking based on the radar target list can be developed.
Section 3.1 proposes a novel algorithm to detect objects in radar data processing an
entire radar target list. This results in object hypotheses or in object detection for
each radar measurement cycle. Thus, this technique replaces the target clustering
module in Figure 2.1 above. Further, Section 3.3 presents a measurement model to
process these object detections in a multi-object tracking algorithm. Eventually, the
motion of dynamic objects is modeled by the obtained tracks, and this represents the
environment at an object level. Hence, this thesis replaces the object tracking module
in Figure 2.1 with a comprehensible and well-established object tracking system.

2.1.2 Deep Learning

The science of artificial intelligence deals with the replication of intelligent human
behavior by a computer system. There are a number of definitions in literature,
which may differ in some aspects, but essentially make the same statement. In
[Wit19], a central aspect for an artificial intelligence system is depicted as “the
attempt to develop a system that can independently handle complex problems”. This
definition describes the basic idea of artificial intelligence quite well, but it is rather
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general. A more detailed description of the topic closely depends on the specific
research field. A categorization of artificial intelligence that is appropriate for this
thesis is given in [Cop16; GBC16]. The presented division is based on subcategories
which are fully enclosed by those above them to clarify their relationship. That is,
machine learning as a part of artificial intelligence, and deep learning that in turn is
a subset of machine learning. Figure 2.2 visualizes this categorization along with a
chronological order to indicate the time when the particular topics came into focus.

In general, artificial intelligence is based on the idea that computers solve tasks
in a sophisticated way and includes anything that addresses the issue of machines
behaving like humans. In [Cop16], it is summarized as “artificial intelligence - human
intelligence exhibited by machines”. Further, in machine learning a large amount of
data is analyzed by algorithms to learn from it and apply what it has been gained
to make further predictions on unseen data. Traditional machine learning methods
are not applicable on raw input data, but preprocessing of the data is required.
This procedure is called feature extraction, which means that humans manually
generate features in order to feed an algorithm, which may be a neuronal network,
to produce predictions. Consequently, the computer learns an intelligent behavior
based on extracted features, or as formulated in [Cop16], “machine learning - an
approach to achieve artificial intelligence”. Last but not least, deep learning extends
the concept of machine learning to achieve better results. For this purpose, a deep
neuronal network is trained using labeled data, where in contrast to machine learning
algorithms, the feature extraction is part of the neuronal network. This means, a
deep learning model processes the raw data and implicitly learns features for the
following predictions. In summary, deep learning realizes machine learning, or in the
words of [Cop16], “deep learning - a technique for implementing machine learning”.
This thesis applies deep learning methods to identify different objects in radar data.

Machine Learning

As already mentioned, deep learning is a particular type of machine learning. More
information about these topics and important definitions of machine learning terms
are provided in [Mit97]. In the following, only some basic principles are introduced.
The goal of machine learning algorithms is to solve a specific task by predicting
an output based on the input data. Therefore, the algorithm analyzes the data
to find particular patterns in it and to use them for further predictions on unseen
data. In order to automate this process, a supervised learning approach is suitable,
that means, the algorithm automatically learns an appropriate model from training
examples. Such a training sample comprises the input data as a vector x ∈ Rn,
where each entry represents a single feature, and a label that is the desired output.
Therefore, the objective during training is to find mapping from input data to labels.
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Classification

The classification is a machine learning technique for predicting a class membership
to specify which category an input belongs to. The objective of this task is to find a
function f : Rn → {1, . . . , k} which maps an input to a specific category k, that is

y = f(x). (2.1)

The vector x describes the input data, whereas the output y is a discrete value
that represents one of the different categories or also called classes. After learning
a sufficiently well performing model based on the training data, the classification
algorithm actually predicts a score that is converted to a probability value and
indicates how likely the assignment of input data to respective classes is. In the
simple binary case, the model only distinguishes between two classes, this is called
logistic regression. Then, the predicted output of the network is forced into the
range between 0 and 1, for example by a sigmoid function which is also known as
the logistic function. In the multi-class case, the model outputs values for each of
the k categories. After appyling a softmax function, which is a generalization of the
logistic function to multiple dimensions, the neuronal network output is normalized
such that the sum over all class probabilities equals to one. Then, the category with
maximum class probability value may be selected as the final classification result.

Regression

The regression is a machine learning method to predict continuous values based on
the input data. In contrast to classification, the sought function of this task maps the
input to a real number, thus f : Rn → R. In fact, regression and classification are
similar, the only difference is the output format, which is continuous for regression
and discrete for classification. In the simplest case, with two-dimensional data, linear
regression is performed. That means, the learning algorithms fits a straight line to
represent all data points. Consequently, the model applies a linear predictor function
to determine a dependent output value on the basis of independent input variables.

Deep Learning with Neuronal Networks

Modern neuronal networks allow to capture different patterns in data, either linear or
non-linear. Therefore, the model of a network, that describes the mapping function,
consists of multiple layers with a large amount of parameters. Figure 2.3a shows a
simple neuronal network with three layers: an input layer, one hidden layer and an
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(b) Network with multiple hidden layers.

Figure 2.3: Both neuronal networks forward an input feature vector and
process them using fully connected layers to get the output result.
The network on the left consists of a single hidden layer with
three parameters. Whereas the architecture on the right belongs
to a deep neuronal network with any number of hidden layers.

output layer. This network expects an input vector x = [x1, x2]T with two features
x1 and x2. The hidden layer represents the function f with three parameters for
mapping the input features to the single output y. The network architecture may
be freely designed, so that it is even possible to cover complex functions f with a lot
of parameters. In order to realize deep learning, the network is composed of many
hidden layers, thus it becomes a deep neuronal network. Figure 2.3b visualizes such a
deep network with the same input and output layers as in the previous example, but
with several hidden layers. That architecture has much more parameters, accordingly,
the model is capable to recognize even highly complex patterns. However, deep
learning needs a lot of training data to learn optimal values for all parameters inside
the network architecture. Furthermore, the training process is computationally quite
complex and requires much computing power. Nevertheless, modern computers
with high-performance Graphics Processing Units (GPU) are able to cope with that,
making deep learning techniques become reality and indispensable for many tasks.

Optimization

After designing a deep learning network, the objective is to find optimal parameters
for the model. Therefore, a training process is necessary, that is an iterative procedure
to optimize the parameters based on training data. In order to measure the prediction
quality of the deep learning algorithm, a function, called cost function or loss function,
is applied. The loss function measures how well the predictions of a model match the
associated labels. The goal during training is to iteratively minimize the loss function
and to identify the global minimum that constitutes the optimal solution based on
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training samples. A common technique to solve the optimization problem is gradient
descent [Cau47]. This method determines a minimum by progressively moving closer
to the lowest point using the derivation of the considered loss function. However, it
is not guaranteed that gradient descent finds the global minimum. It depends on
many factors, for example, the kind of loss function, the deep learning algorithm and
the quality of data. It may even happen that gradient descent gets stuck in a local
minimum. A local minimum is the lowermost point in a particular neighborhood,
but not the absolute minimum point of the entire loss function. Hence, it is possible
that several local minima exist. In deep learning the objective is to find a value for
the loss function, which is very low. Nevertheless, it does not necessarily have to be
the global minimum, because already a local minimum may provide sufficiently well
predictions to solve the defined problem. For performing gradient descent, literature
offers some existing algorithms, where [Rud16] summarizes some established ones.

2.2 Object Detection

The term object recognition generally refers to the task of identifying objects in
data, for example radar data. Object recognition can be categorized into related
but different tasks, these include object classification, object localization and object
detection. These terms are now explained in relation to radar data, that is, a radar
target list. During the object classification, the class of a single object in radar data
is assigned. This implies that the input is a radar target list in which exactly one
object is present. The task is to predict a class for this object. In contrast, the object
localization does not classify objects, but identifies the location of all objects in the
radar data. The input is a radar target list with one or more objects. And the task
is to locate all present objects and mark them with a bounding box. As a result,
the output is a list with one or several bounding boxes representing the location
of all objects. The task of object detection combines the challenges of classification
and localization. This means the goal is to localize as well as classify all objects by
indicating the existing objects with a bounding box and assigning a class to each of
them. Once again, the input radar target list contains one or multiple objects in it.
Hence, the detection output is a list with one or more bounding boxes, as well as an
associated class label for each bounding box. This thesis focuses on object detection
exclusively in radar data generated by a high-resolution automotive radar sensor.

As mentioned in Section 2.1.1, a high-resolution automotive radar sensor represents
the environment using radar target lists. Common automotive sensors measure range
for the distance and azimuth for the direction to provide a 2D spatial information
for each radar target. However, if the elevation angle is measured as well, the radar
sensor is able to generate 3D spatial information. After processing, the radar sensor
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provides its captured data as a radar target list containing a variable number of
unordered targets. The radar target list in this thesis comprise the 2D position, the
radial velocity and the RCS value for each radar target. Since, the data does not
show an ordered and regular format, the technique of this thesis allows to process
an unordered radar target list by applying a deep learning method for point sets.

There are already a couple of concepts for object recognition which process data
generated by an automotive radar sensor. Most methods in literature classify single
radar targets or clusters comprising multiple targets of an object, meaning that
these approaches only perform object classification. But some methods focus on
object localization by estimation bounding boxes for specifics objects. However, few
methods are presented that perform object detection using only radar data. This
thesis presents a technique for object detection using data from a single radar sensor.

The methods for object recognition presented in the next section differ in their
strategy and can be categorized into classical methods, learning algorithms with
manually extracted features and deep learning approaches. A classical way is to design
engineered features and analyze them using algorithms established or developed for
this purpose. Another approach is to generate features manually and forward them
to a machine learning algorithm. Consequently, it is possible to learn a model based
on features extracted from sufficient training data, which solves the respective object
recognition task. Since it is sometimes difficult to design appropriate features, deep
learning networks are designed which allow automatic learning of features solely
based on training data. These self-learned features are applied directly within the
network, and ultimately, a model that solves the object recognition task is learned.

2.2.1 Classical Approaches

In [RKK+15], an approach to estimate the vehicle orientation based on radar data
is presented. Therefore, the Orientated Bounding Box (OBB) algorithm [Tou83] is
enhanced for radar targets and adapted with a quality function. Since an object
generates multiple radar reflections, a preprocessing step clusters all input targets
using the Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
algorithm [EKSX96]. For each group representing a potential object, a vehicle model
is fitted in form of a rectangle. Then, this method determines the convex hulls for
every cluster and sets up a basic rectangle, which is rotated to evaluate several
orientations. In order to handle clutter measurements, which are measured radar
targets that do not belong to the object of interest, any target is left out multiple
times to construct different convex hulls resulting in various basic rectangles. Then,
again the algorithm rotates each of them to take all sides into account. Finally, the
quality function rates all rectangles in consideration of different factors to find a
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solution. The evaluation in [RKDW16] compares the enhanced OBB [RKK+15]
with other methods. Firstly, as the standard OBB is very sensitive to clutter radar
measurements, it is extended with a quality function to compensate them in the
bounding box fitting algorithm. Secondly, using the L-fit algorithm [JCYK08], the
vehicle is modeled with two perpendicular lines. Thirdly, since a radar sensors also
captures reflections under the vehicle, a brute-force approach is applied to consider
all these measurements. Therefore, the Random Sample Consensus (RANSAC)
algorithm [FB81] determines a strong distinctive contour of the vehicle to produce a
basic rectangle. Subsequently, a quality function rates different rectangles which are
obtained by some variations of the basic contour. This approach produces the best
possible estimate results, but is computationally very expensive. The evaluation
examines the error of orientation for all algorithms, the dependency of estimation
on aspect angle and distance to the object of interest, as well as the extraction of
its dimension. Furthermore, it is investigated how the results for the orientation
estimation change when data generated from two radar sensors are used. It turns
out that the results of all investigated algorithms are more accurate regarding the
orientation error metric when targets of both sensors are merged to create a denser
radar target list than the result for data which is generated by a single radar sensor.

Before applying an algorithm for bounding box fitting, it is necessary to group all
radar targets which belong to the objects of interest. Clustering methods are per-
formed during this preprocessing, for example, the algorithm DBSCAN or RANSAC.
Since these standard clustering algorithms are limited in their ability to consider
the specific characteristics of radar data, [SRKW16] proposes an adaptive clustering
method called KNN-DBSCAN algorithm. The clustering procedure is based on a
k-nearest-neighbours distance examination, the basic DBSCAN algorithm and a
combination of overlapping clusters to find the best possible cluster comprising all
radar targets originated from a vehicle. After grouping the radar data, the method
estimates an object contour by fitting an orientated bounding box of minimum area
including all radar targets within a cluster. The proposed evaluation examines differ-
ent parameter sets for the clustering algorithm and compares the resulting estimated
bounding boxes. It turns out that in situations where limited measurements for the
object of interest are present, the adaptive clustering approach finds clusters at all.
Generally, it is essential to identify a cluster before the contour estimate is possible.

In [SSSW17], an alternative method for contour estimation to the OBB approach is
presented. Similar to [RKK+15], the goal is to estimate an orientated bounding box
using radar data. The method performs a Generalized Hough Transform [Bal81]
analysis and template fitting to match the bounding box for a vehicle. The orientation
and position is determined in multiple iterations, where a quality function investigates
each parameter set to find the most probable solution for the template. The analysis
shows that in most situations this approach achieves similar results as the OBB
method. In challenging situations, for example when few radar reflections for a
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vehicle or clutter measurements are given, the OBB algorithm can not fit a bounding
box. Whereas the template matching algorithm [SSSW17] performs better in some
of those cases. However at the expense of a much higher computational complexity.

2.2.2 Learning Methods

In the classical methods for object recognition in radar data, the entire algorithm,
which comprises all calculation rules, is hand-designed. In contrast, learning algo-
rithms are capable of automatically finding a function that maps input data to an
output. As already discussed in Section 2.1.2, machine learning and deep learning
differ from each other. In machine learning, the input of a model are crafted features
that are generated in a previous stage. Afterwards the network predicts an output
according to this feature vector. In contrast, deep learning algorithms are able to
learn such features by themselves. As a consequence, the raw input data is forwarded
to the model, where the neuronal network primarily extracts features and predicts
the output based on these self-learned features. This may offer major advantages,
since the automated analysis of training data usually results in better or even not
considered features, meaning the subsequent predictions are significantly improved.

Machine Learning

In [HR10], a recognition method for pedestrians and vehicles using a 24GHz automo-
tive radar sensor is proposed. The object recognition system deploys different signal
features for the classification of measured radar targets. Therefore, three features are
extracted: the received amplitude, the range profile and the Doppler spectrum. The
amplitude depends mainly on the RCS and differs clearly for pedestrians and vehicles.
The range profile describes the size and is used to distinguish between extended and
point shaped objects. A vehicle has a static range profile as its extent is constant at
any time. Whereas the range profile of a pedestrian changes over time, since the
arms and legs are in motion which define the range extension. The Doppler spectrum
of a vehicle is constant as long as it is moving at the same speed. A pedestrian
has a changing Doppler spectrum, because the torso, arms and legs show different
velocities over time. Since a pedestrian has a varying range profile and Doppler
spectrum, the point shaped range profile or the maximum spread in the Doppler
spectrum may only be measured at certain times. For this reason, a stochastic
approach is applied by observing multiple consecutive measurements and a feature
vector is built by selecting the maximum values per feature considered over time.
The approach is evaluated using simulated radar signals for pedestrians and vehicles.
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Subsequently, a Support Vector Machine (SVM) [CV95] is applied to classify the
radar targets into pedestrian and vehicles based on the extracted feature vectors.

The object recognition system in [HR11] consist of two stages to classify objects
in real-world data generated by an automotive radar sensor. The classification
process distinguishes between pedestrians and vehicles using suitable feature vectors.
Similar to the work in [HR10], the recognition model is based on the radar signal
characteristics of both object classes, the range profile and the Doppler spectrum. In
the case of a pedestrian, the range profile is point shaped, but the Doppler spectrum
is extended caused by different measured velocities for the trunk, arms and legs.
Hence, in a first step, the range profile and the Doppler spectrum are extracted from
the radar echo signal as features. An SVM classifier processes these input features to
differentiate between pedestrians and vehicles. In order to confirm the classification
result, the classifier output is forwarded into a tracking system. In this second step, a
Joint Probabilistic Data Association (JPDA) filter, which is able to handle scenarios
with multiple objects, verifies the potential tracks using consecutive measurements.
Subsequently, additional features based on the tracking results are extracted. Since
a Kalman filter is the basis of a JPDA tracker, the extraction module provides the
process noise matrix and the Kalman gain as further features, which are different
for pedestrians and vehicles. The range and velocity of a pedestrian varies in their
radar measurements, resulting in a large process noise and Kalman gain. Whereas a
vehicle generates similar radar reflections over time, as a consequence, the process
noise as well as the Kalman gain are small. Then, the extracted features are fed
back into the classifier to finally make a decision regarding the class of the object.

The system for object recognition proposed in [HR12] processes several radar features
with the main focus on distinguishing between pedestrians and lateral moving vehicles.
The objective is to classify measurements of a 24GHz automotive radar sensor into
four classes, that is longitudinally and laterally moving vehicles, as well as pedestrians
and other objects. In contrast to the object classification process in [HR11], the
tracking module and the feature extraction based on it, are omitted, and only applies
an SVM classifier. Therefore, a feature vector based on range and velocity profile
is extracted. Since a radar sensor measures different velocities for certain parts
of a moving pedestrian, such as the torso or arms and legs, the resulting velocity
profile is extended. While the extent of a pedestrian is small, the range profile
is point shaped. In the case of vehicles, it is important to distinguish between a
longitudinal and lateral movement, because the range profile and velocity profile is
different. In both situations, the range profile of a vehicle is extended, while the
extension for a lateral moving vehicles is larger. Considering the velocity profile, a
longitudinal moving vehicle shows a point shaped velocity profile, because the radial
velocity at all reflection points is equal to the actual velocity. Due to the lateral
movement of a vehicle regarding the radar sensor, the radial velocities vary on the
object, consequently, the resulting velocity profile is extended. On the basis of these
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profiles, various stochastic features are calculated, for example the radial velocity,
as well as extension, variance and deviation of the radial velocity and the range,
plus RCS values. Since numerous of pedestrians are misclassified as lateral moving
vehicles, some more features are calculated to improve especially those classification
results. These additional features are based on the longitudinal and lateral velocity
component of an object, which can be calculated using the measured radial velocity
and the corresponding azimuth angle of the radar target. The object classification
system is evaluated on a labeled dataset containing real-world radar measurements.

All object classification systems proposed in [HR10; HR11; HR12] process measure-
ments from a 24GHz radar sensor. Today, most automotive radar sensors use the
77GHz technology [WHLS15], which is more powerful. Such radar sensors enable
measuring objects in near and far ranges with a significantly increased range resolu-
tion and a better separation of objects which are in close proximity to each other
even at great distances. Further, the Doppler resolution of a 77GHz radar sensor is
more accurate [WHLS15], which improves the measurement of the radial velocity.
In contrast, the radar sensors with 24GHz technology are cheaper than those with
the 77GHz technology [WHLS15]. As already mentioned, thesis performs object
detection in radar targets which are generated by a 77GHz automotive radar sensor.

In [DHS+14], an object detector for parked vehicles based on radar data is presented.
The detection system consists of four steps: occupancy grid generation, candidates
selection, features extraction and classification. All previously described object clas-
sification methods directly process the information in radar measurements to create
feature profiles using the range and radial velocity. Another option is preprocessing
the radar measurements into a different representation and then extracting features
for an object classifier. This approach accumulates the radar data over time by
computing an occupancy grid map. This grid map considers the spatial information
of the radar measurement to model the environment using cells with the same size.
The candidates selection has to distinguish between two kinds of parked vehicles:
cross-parked and parallel-parked vehicles. In order to detect potential objects, the
grid map is transformed into a binary representation and a connected component
analysis [PLC00] is applied to get clusters with objects of interest. Since a parked
vehicle normally occupies several cells, the algorithm removes objects with less cells.
The selection method normalizes each sample which comprises the occupied cell of
an object using an estimated direction. Finally, the candidates for cross-parked and
parallel-parked vehicles are extracted after analyzing the cutout map associated to
an object. The feature extraction generates a feature vector for every candidate,
which describes size and shape, occupancy information and local orientation. For
classification, two random forest classifiers [Bre01; Ho95] are trained, one for cross-
parked vehicles and one for parallel-parked vehicles. Next, each classifier divides
the candidates into two classes, vehicle or non-vehicle. Finally, the results of both
classifiers are combined using classification scores to extract one detection per object.
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In order to group all radar targets which belong to the same object, [SHDW18b]
proposes an approach to learn parameters for the DBSCAN algorithm. This means
the search for the DBSCAN hyperparameters is based on machine learning, but the
actual clustering then uses the classic DBSCAN algorithm. However, this is not
a method to directly generate object detections, but only to assign radar targets
to an object. The results in [SHDW18b] shows that radar target clustering using
DBSCAN with learned parameters outperforms the standard DBSCAN algorithm.
Nevertheless, the evaluation in [SHDW18b] also shows that there are still many
situations in which the DBSCAN with learned parameters performs quite poorly.

In [NQ19], an approach is presented to propose regions of interest based on radar
targets. For this purpose, the preprocessing transforms the radar targets into camera-
view coordinates. Then, the regions of interest are determined using the concept
of anchor boxes from [RHGS17]. In order to determine the scaling factor of the
anchor boxes with respect to the distance, [NQ19] applies a scaling formula with
learned parameters. Summarzing, the obtained proposals are not object detections,
but only areas where potential objects are located. The idea of [NQ19] is that the
region proposals are used in two-stage object detection networks, for example in
Fast-RCNN [Gir15], to reduce the overall processing time since this method is fast.

Deep Learning

Most deep learning approaches on radar target lists, transform the input radar data
into another representation with a regular format before applying deep neuronal
networks. The advantage is that if the radar targets are converted into a format
with regular structure, most of the familiar approaches from computer vision are
applicable. Some examples for such transformations are voxelization, projection or
rendering to feed the data into a two-dimensional or three-dimensional Convolutional
Neural Network (CNN) [LB98], or perform feature extraction to use fully connected
networks. Modern lidar sensors provide besides the position measurement also an
intensity value of the reflection that is convertible into an intensity image. This
image has a fixed format and can be forwarded into a classical CNN. A common
method to achieve a regular structure for radar data is the transformation into grid
maps. For this purpose, the environment is approximated by a rectangular grid with
squared cells of a specific size. Each cell contains certain values to represent the
information of radar reflections by accumulating the data over time. Since common
automotive radar sensors generate only a few reflections per measurement cycle,
the accumulation of multiple measurements, overcome the problem of sparse radar
data. In [WRK+15], two methods to generate a grid map based on radar data are
introduced. The amplitude grid map uses the RCS information to calculate cell
values resulting in a grid map which indicates the reflection characteristics of objects.
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The cell values of the occupancy grid map represent the probability of whether a
cell is occupied or free using the spatial coordinates of radar reflections. Since the
amplitude grid map looks blurred but directly identifies the RCS of radar targets, it
is more appropriate in an environment with few objects to recognize the different
reflection properties. Whereas the occupancy-based approach results in a grid with
sharp contours and is well suited for an environment with multiple objects. That
grid map can be applied for position estimation of objects and freespace estimation,
or even classification purposes based on the object contours. Summarized, both
grid mapping approaches adequately model the environment and are applied for
self-localization tasks. The algorithm only processes the measured radial velocity to
remove radar targets belonging to moving objects, however, not for the generation
of radar grid maps. This information should not be neglected, especially for the
classification or detection of objects, as the radial velocity is a very strong feature.

In [LHDW15], an object detector for arbitrarily rotated parked vehicles on the
basis of radar grid maps is presented. Therefore, the radar data is preprocessed by
creating an occupancy grid map using the spatial information being the range and
azimuth angle, and an amplitude grid map using the RCS of radar measurements.
However, both grid mapping approaches do not consider the radial velocity, although
it is valuable information. The object proposal extracts a list of objects using a
connected component analysis on the occupancy grid map. Then two snippets per
object are generated on the basis of occupancy and amplitude grid map. Since the
map snippets have a fixed size similar to an image, the classification can utilize a
Deep Neuronal Network (DNN). The classifier, which is a CNN, uses these map
snippets as input to distinguish between the two classes vehicle and non-vehicle. The
dataset for training of the network consists of labeled radar grid map snippets with
processed radar data. Since the dataset is very small, data augmentation is applied
by rotating each object sample and adding random noise to get more training data.

The results of [LHDW15] already confirm that deep learning methods are suitable
for classification purpose of vehicles in grid maps based on radar data. The study
in [LHDW16] demonstrates how to distinguish between multiple static objects in
radar grids. Again, proposals for objects are extracted using a occupancy grid map.
The classifier is a DNN which divides the map samples into different static classes,
such as building, car, curbstone, fence, and more, as well as the class other. For the
evaluation, an one-vs.-all classifier for each class and some combination of multiple
classes are trained. In contrast to the classification system in [LHDW15], the size of
the radar map snippets are slightly larger, with 8m× 8m instead of 6m× 6m, and
the dataset consists of more examples. The results show that deep learning using
radar grid maps is an appropriate method for classification of static objects. Since
the division of the static class is too specific in some parts, the classifier does not
provide a good performance for all classes. In comparison to that, the classification of
vehicles, that are map snippets with the label car, achieves the best results. However,
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it should be taken into account that the dataset is imbalanced and contains much
more samples of the car class, which causes this classification result to be expected.

The object classification method in [LHDW17] applies a hybrid approach consisting
of two different classifiers for static objects. In a preprocessing step, an occupancy
and amplitude grid map is built using accumulated radar data. Similar to previous
methods, the measured radial velocity is only used to filter out dynamic objects,
but not as a input for generating the radar grid maps. A difference to [LHDW15]
and [LHDW16] is that the radar map snippets are chosen significantly larger with a
size of 15m× 15m to ensure that it contains enough information about the object of
interest. The method uses a random forest classifier [Bre01; Ho95] and a deep CNN
separately to classify the samples, and combines the respective results afterwards.
For the random forest classifier, the feature extracting generates a couple of features
based on clusters resulting from a connected component analysis, and also various
features extracted from the occupancy and the amplitude grid map. The CNN
processes an entire map snippet to predict a class probability for the object located
in the radar grid. Both classifiers are trained to divide the object proposals into seven
categories, which for example include the classes car, building and other. Compared
to [LHDW16], that dataset consists of slightly more labeled radar samples, but is
imbalanced even worse, because there are significantly more examples of the class
car and other. The evaluation of the single classifiers shows that for the car category,
the random forest classifier performs better than the CNN. Further, the ensemble
classifier which combines the output of both classifiers, achieves improved results.

The goal of [SWHD17] is to classify multiple dynamic objects using features extracted
from radar measurements. Therefore, two different methods are compared, a random
forest classifier and a Long Short-Term Memory (LSTM) network [HS97]. Although
LSTM belongs to deep learning techniques and is able to learn features by itself, the
proposed method extracts features manually. In contrast, random forest requires
generated features. It is assumed that then the comparison of both approaches is
possible. For feature generation, the radar targets are clustered using an adapted
version of the DBSCAN algorithm to consider the spatial information as well as the
measured radial velocities. Subsequently, a feature vector comprising 34 features
which are based on the range, ego motion compensated radial velocity, azimuth angle
and RCS, is extracted for every cluster. The random forest classifier directly process
the feature vector of a particular time. Since a LSTM network is capable of learning
long-term dependencies, the input has to be a time ordered sequence, which in this
case is a group of multiple consecutive feature vectors. Moreover, the advantage of
this neuronal network is, that it is able to identify correlations between input feature
vectors. Furthermore, both classifiers are trained to distinguish between different
dynamic classes, namely car, pedestrian and pedestrian group, bike, truck and garbage.
The LSTM network performs slightly better in the prediction of almost all classes
than the random forest approach. Both classifiers achieve the best classification
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results for categories car, pedestrian group and garbage. It is expected that with still
more training data the prediction results of the LSTM classifier will improve further.

The classification approach presented in [LLH+17] is different from the previous
methods, because it performs a classification of static objects cell-wise instead of
object-wise. The objective is to divide cells of a radar grid map into the classes car
and non-car. Before building an occupancy grid map, radar reflections that belong
to dynamic objects are removed by using the captured radial velocity. The classifier
is a CNN with multiple layers and processes radar grids with a specific size to predict
a class probability value for each grid cell. For the extraction of objects on the basis
of the resulting semantic representation, the method applies several thresholds to
decide which cells belong to a vehicle. In order to analyze the network architecture,
the evaluation compares results for a varying number of convolutional layers in the
network. The size of the input grids depends on the number of layers, thus, the
input radar grids have to be imperatively smaller when fewer layers are present in
the network. The evaluation reveals that the larger a radar grid is, and consequently
more convolutional layers are required, the better the final classification results are.

There are many approaches in the literature that combine radar targets with data
from other sensors to perform object detection. In [MK19b], an approach is suggested
to use radar targets and a camera image for 3D object detection. Therefore, the
radar targets are transformed into a birds eye view image. In this process, [MK19b]
discards the measured radial velocity. Next, region proposal are generated based
on the transformed radar data in combination with the camera image. Finally, the
proposals are used to predict 3D bounding boxes which model a detected object. A
similar approach is used by [NGW+19] to improve object detection. For this purpose,
[NGW+19] also fuses the radar data with a camera image. In a preprocessing step,
the radar targets are projected into the image plane. However, [NGW+19] discards
the radial velocity of radar targets during this process as well. In order to make the
input radar target list more dense, [NGW+19] even combines radar targets from
three radar sensors. For the object detection, the transformed radar data and the
camera image are given into a neuronal network based on RetinaNet [LGG+17] to
predict 2D bounding boxes with corresponding classification scores for each object.
In [YVB20], radar targets are fused with an RGB camera images. Therefore, the
radar data is transformed into camera coordinates to generate a radar feature map.
Again, only the spatial information of the radar targets is utilized. Then, the features
are extracted in a network which combines the transformed radar data and the
camera image. In order to achieve a robust object detection, [YVB20] adapts a Faster
R-CNN [RHGS17] by the radar camera fusion network. In summary, a disadvantage
of all these described methods is that the radial velocity information provided by a
radar sensor is not used for object detection, although this has a major impact. A
review with more information on radar based fusion approaches is given in [TZQ21].
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In contrast to the above approaches, [YGCU20] process the measured radial velocity
for object detection. However, [YGCU20] also focuses on the fusion of radar data
and fuses the radar targets with a lidar point cloud. In order to combine the radar
targets with the lidar point cloud, both data formats are converted into a voxel
representation. For the detection of dynamic objects, the transformed radar and lidar
information is forwarded to a neuronal network which is based on PnPNet [LYZ+20].

Indeed, some other approaches in literature apply deep learning solely based on
radar targets. In [PDKG20], a method is proposed to perform object classification
based on a 3D radar cube. Therefore, the radar targets are transformed into the
radar cube representation, where a CNN predicts the class for each radar target. In
order to obtain object proposals, [PDKG20] clusters classified radar targets using the
DBSCAN algorithm. In [DEBK20], 2D car detection is performed on radar targets.
For this purpose, the radar target list is transformed into a grid-based structure.
Then, a CNN based on YOLOv3 [Red18] is applied to predict the final 2D bounding
boxes. For comparison of the grid-based object detection approach with a point
cloud-based object detection technique, [DEBK20] reimplemented the radar object
detector from [DGBD19]. The work in [DGBD19] is the preliminary research for this
thesis. The evaluation in [DEBK20] reveals, that the radar object detection system
of [DGBD19] performs much better since fewer features are lost using this technique.

Although there are several promising results using deep learning on radar grid maps,
the transformation into a grid map representation has its drawbacks. Firstly, even
with a high-resolution radar sensor, the measured target list is still sparse. After
the transformation of radar targets, most of the resulting grid map cells are empty.
Hence, the transformed data representation is unnecessarily expanded compared to
the original radar target list. Secondly, depending on the cell resolution, mapping
the radar data into grid cells may produce quantization artifacts resulting in a
loss of information. As a consequence, natural patterns of the original radar data
may be lost, which may be useful for the neuronal network. Thirdly, radar sensors
naturally generate a radar target list, thus, a set of targets without a specific order.
The transformation of radar targets into a regular format causes that properties
of an unordered target set are no longer fulfilled, for example, the invariance to
permutations of targets. For all these reasons, it is preferable that a deep learning
network directly processes the entire radar target list without any transformations.

2.2.3 PointNets

Some automotive sensors generate point clouds to represent environment information.
A lidar sensor provides a dense point cloud which is very similar to the raw mea-
surements. In contrast, a radar sensor applies some preprocessing steps to provide a
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radar target list. As already described, one possibility is to convert the data into
a regular format before using deep learning methods, such as grid maps for radar
data. However, the data transformation may result in an unnecessarily voluminous
representation. Considering radar grid maps, most of the grids are empty because
the grid map is too large for the relatively few measurements. A further point is that
a radar grid map quantizes the sensor data which may cause natural correlations in
the raw measurements to be lost or even result in spurious coherence. Accordingly,
the transformation may increase the complexity to find patterns in the data. Since
a target list is simple and structured, it is desirable to directly forward the targets
into a deep neuronal network and learn relevant features from the radar target list.

Deep Learning on Point Clouds

In [QSMG17], the PointNet, a new deep learning approach addressing the challenge
to directly process point data, is proposed. The unified net architecture of PointNet
allows deep end-to-end learning of features based on unordered and scattered point
clouds without any conversion into another format. Such a point cloud is represented
as a set which consists of multiple points. The dimensions are not limited to the
3D position, but points can comprise additional features such as color or intensity
of the reflection. The PointNet framework is applicable for different 3D object
recognition tasks, for example object classification, object part segmentation and
semantic segmentation. In order to classify entire objects, the trained neuronal
network predicts a classification score based on a point cloud which belongs to the
object of interest. In contrast, for semantic segmentation, the model outputs a score
for each individual point. Since PointNet deals with a complete point cloud, the
neuronal network has to overcome several challenges which arise due to point data.

In the mathematical sense, a point cloud is an unordered set of points in an Euclidean
space Rn. Such a point set has to satisfy three main characteristics, which has
direct consequences, for example, on an object detection algorithm. Firstly, points
in the set are unordered. Unlike the pixels in an image or cells in a grid map, the
points do not have a specific order. This implies that a point cloud which contains
the same points but in different order, represents mathematically the same point
set. Therefore, when forwarding a point cloud in a neuronal network, the model
needs to be invariant to all permutations of the input set. Secondly, neighboring
points interact among one another. As all points in a space with distance metric,
nearby points are not independent of each other. Consequently, a neuronal network
has to capture local structures from neighboring points as well as the resulting
interaction between these points or even entire local structures. Thirdly, a point
set is invariant under geometric transformations. Probably the most commonly
occurring transformation in the context of an object detection algorithm is rotating
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Figure 2.4: Network architecture of PointNet: All modules and deep learning
layers in the classification and segmentation network to process
a point cloud. The image is redrawn and inspired by [QSMG17].

and translating of points. This means, a rotation or translation of points belonging
to an object must not change the output of an object detector regarding classification,
point segmentation or extent of the object, but only its position and its orientation.

In Figure 2.4, the architecture of PointNet is visualized. PointNet consists of two
large components, one network for classification of an object which is represented
by the entire point cloud and one network for the segmentation of individual
object points. The classification network expects a point cloud comprising 3D
coordinates. In order to address the challenge of a point set having to be invariant
under geometric transformations, the input transform aligns the point cloud using a
Transformer PointNet (T-Net) and a matrix multiplication of the input data with
the predicted transformation parameters. For alignment of the feature space, a
second transformer network, the feature transform, is applied, by multiplying the
transformation parameters from another T-Net with aggregated information from
Multi-Layer Perceptron (MLP) to generate local features. The pointwise MLP in
combination with the max-pooling layer ensures that PointNet is invariant regarding
permutations of an input point cloud. This is achieved because the max-pooling
operation is a symmetric function and always extracts same global features regardless
of the point cloud’s order. The classification probability for the whole point cloud is
predicted by forwarding the global features into another MLP. The segmentation
network extents the classification module to assign a class to each individual point.
Therefore, the network extracts point features by concatenating local and global
features, and then forwards them into pointwise MLP. Since the objective of semantic
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segmentation is to assign a class to each point, a further pointwise MLP is applied
to predict the classification probabilities for the respective points. This PointNet
architecture allows object classification as well as semantic segmentation using deep
learning directly on point sets without any explicit transformation on the input data.

The evaluation of PointNet is based on a detailed theoretical analysis and several
experimental results [QSMG17]. The quantitative and qualitative results on object
classification and semantic segmentation are convincing. One important outcome
is that the PointNet model is resilient against data corruption in the input point
cloud which may be caused by missing points or noisy points. When visualizing the
point cloud which affects the extracted global features, it turns out that the network
learns a global shape signature based on a critical point set from the whole point
cloud. This means, missing non-critical points or noise points that do not affect the
critical points, do not change results of the classification or segmentation network. It
should be emphasized that a lidar point cloud is very dense, thus the critical point
set is sufficiently large and especially the number of non-critical points is huge. For
this reason, it is extremely unlikely that so many critical points will be corrupted,
making the predictions of the network worthless. Since radar target lists are quite
sparse compared to lidar data, it is interesting to explore the robustness of PointNet
for such data. In this thesis, an object detector for radar data based on PointNet is
developed, which is more challenging due to significantly fewer reflections per object.

The raw lidar or radar target list is a point set which is sampled from a distance
metric space, thus a mathematical space with a defined distance metric. PointNet
enables the extraction of a global signature from an unordered point set, but the
neuronal network only learns either global or single-point features. Due to the
structure of the architecture, PointNet is limited to capture detailed pattern in local
areas and interactions among neighboring points which are caused by the distance
metric in a point cloud. However, often such local structures are very useful for more
reliable predictions of a neuronal network, especially regarding the generalization
capability of a model for difficult or unknown scenes. The research of CNNs for
object recognition shows that a deep hierarchical structure using a convolutional
architecture facilitates to exploit local structures and to extract enhanced features
based on such fine-grained patterns. A CNN processes regular data in form of a
grid, such as a camera image or radar grid map, and applies multiple convolutions
using different kernels in a hierarchical manner to capture detailed structures in the
input data. The PointNet++ [QYSG17] addresses the challenge of deep hierarchical
feature learning on unordered and unstructured point clouds. Therefore, the PointNet
architecture is extended with a hierarchical structure to abstract differently sized
regions to produce local features which are then further processed to generate high
level features. Moreover, a new neuronal network called PointNet++, which is built
around the hierarchical PointNet architecture to extract deep geometric features, is
proposed. Therefore, PointNet++ groups the point cloud in multiple local regions
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using various scales to finally combine features that are extracted at different scales.

The architecture for hierarchical feature learning on point clouds using Single Scale
Grouping (SSG) is described in [QYSG17]. Therefore, the input points are grouped
to extract hierarchical point set features in local regions which are continually
becoming larger for every hierarchical level. The network comprises multiple set
abstraction layers to process the point set of a local region using PointNet and
produces aggregated information. The set abstraction layer consists of three sublayers:
the sampling layer, the grouping layer and the PointNet layer. The sampling layer
selects multiple points which represent the centroid of different local regions. Next,
the grouping layer gathers neighboring points of that centroid and assigns these
points to a corresponding local region. Finally, the PointNet layer applies a PointNet
to generate a feature vector based on the local context in the respective region,
which represents a new point set but with fewer points in it. By repeating the set
abstraction process, the network progressively extracts features which gather more
and more information from local regions, with the region growing in size with each
step. This is a significant difference to the standard PointNet architecture that
generates global features from the entire point cloud using a max-pooling operation.

PointNet architecture for hierarchical feature learning only uses SSG layers to
capture local patterns in the point cloud of a group, where all groups have the same
scale. In order to identify deep point features, PointNet++ architecture extends
the abstraction level by extracting and combining features from various groups with
different scales. For this reason, some density adaptive PointNet layers are added
to the hierarchical network structure. In [QYSG17], two types for such layers are
presented: the Multi-Scale Grouping (MSG) and Multi-Resolution Grouping (MRG).
The MSG layer splits the input point set into multiple groups by using different
scales. Then, it applies PointNet on the data to extract features for each scale, which
are finally combined to a multi-scale feature vector. The MRG extracts features
from multiple levels using different resolutions and concatenates them to a feature
vector. The various levels summarize information from multiple set abstraction layers.
This means when a feature vector consist of two levels, the first part comprises the
processed information from a subregion of the lower level, and the other part extracts
features directly from the raw point cloud in the local region. Both density adaptive
layers capture local structures in the point cloud and aggregate information on the
distribution of input points. The MSG layer is computationally more expensive than
the MRG layer because it applies individual PointNets for every region to extract
local features, which may be numerous groups, particularly for large scales regions.

The PointNet++ is a neuronal network which enables hierarchical deep learning
directly on point clouds to learn deep point set features efficiently and robustly with
regard to the distance metric space. Therefore, the network exploits neighboring
regions to extract features which aggregate local structures and detailed patterns.
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The evaluation in [QYSG17] shows that PointNet++ is applicable for classification
and semantic segmentation purposes on point clouds. The results using this neuronal
network are slightly better as compared to using PointNet from [QSMG17]. Overall,
PointNet++ is a appropriate opportunity to imitate CNN behavior on point clouds
without any data transformation, even when the computational complexity increases.

PointNets for Object Detection

In [QLW+18], the Frustum PointNets, a framework for 3D object detection based
on an RGB image detector and multiple PointNets, is introduced. Although, this
method allows the detection of objects using deep learning on point clouds, it still
requires a camera detection which comprises an object of interest, as input. This
framework extends the method for semantic segmentation on point sets based on
PointNet and PointNet++ to perform object detection in several stages. Therefore,
the camera detector is required for two purposes, first to find an object of interest
and its class, and second to reduce the number of points for further processing. Then,
several PointNets are applied for instance segmentation and estimation of a bounding
box for each object. In reference to the definition of terms introduced above for
object recognition, the image detector provides the classification of objects, and the
PointNets perform the object localization. In summary, the Frustum PointNets is
the first method for 3D object detection on unstructured point data, that includes
classification and bounding boxes estimation. The evaluation in [QLW+18] provides
quantitative and qualitative results. In [QLW+18], it is also demonstrated that the
Frustum PointNets detector achieves comparable and partially even better perfor-
mance than established object detection methods. Overall, these results confirm that
PointNets are fundamentally well suited for the task of 2D and 3D object detection
on lidar point clouds, but still requires the extra information from camera images.

The complete pipeline of Frustum PointNets is illustrated in Figure 2.5. This 3D
object detector is structured into three main modules, the Frustum Proposal, the 3D
Instance Segmentation and the Amodal 3D Box Estimation. Firstly, a CNN predicts
2D bounding boxes for objects in an RGB image. Each image detection is used in
combination with the depth image to cut out the associated region in the 3D point
cloud. Therefore, the 2D region proposal of an object is transformed to a frustum
and all 3D points inside this area are extracted, which makes up the search space for
further processing. Besides the point cloud that contains points of a single object
and its local environment, the classification information of this object is forwarded
to the next module. Secondly, a segmentation PointNet determines which points in
the frustum actually belong to the 3D representation of the object. A classification
PointNet assigns a probability value for every lidar point to determine whether it
belongs to the object of interest or not. This information is used for the masking
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process to segment all points which are actually part of the object instance. Thirdly,
two different PointNets are applied to estimate a 3D bounding box modeling the
object. Thus, a preceding mini-network predicts the true center of the object, which
is utilized to transform the segmented point cloud into object coordinates. Then, a
regression PointNet predicts the parameters of an amodal bounding box to represent
the object by its position, orientation and extent. By repeating the whole procedure
for all 2D object proposals in the RGB image, several classified bounding boxes are
identified in the entire 3D lidar point cloud, where each corresponds to a real object.

The Frustum PointNets for object detection is realized with both, the PointNet and
the PointNet++, as a base. Figure 2.6 shows the respective network architectures,
where the architecture based on PointNet is referred as model v1 and the one with
PointNet++ is named model v2. In general, the network architectures are quite
similar to those of the original PointNet and PoinNet++ models. The main difference
is that a class one-hot vector is attached to the extracted feature vector, such that
instance segmentation and bounding box estimation benefit from the classification
information provided by the image detector. An observation that stands out is
the fact that compared to the classification network in [QSMG17], the input and
feature transformer networks are missing in the instance segmentation PointNet. The
argumentation in [QLW+18] is that the input point cloud is already normalized by
rotating it in the Frustum Proposal module. Further, in addition to the 3D position,
the instance segmentation also incorporates the lidar intensity as input channel.
However, the PointNet model only uses this fourth dimension for segmentation, not
for box estimation. Whereas the PointNet++ model process all four channels for
box estimation as well. This is not explained, but is probably, due to the fact that
the bounding box parameters mainly depend on the position, where the intensity has
only a small influence. But it remains questionable why this is handled differently.
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Figure 2.6: Network architecture of Frustum PointNets: Structure of the
neural networks implemented in the modules using PointNet and
PointNet++. The image is redrawn and inspired by [QLW+18].

The Frustum PointNets shows good results for object detection, but there are also
certain limitations to this approach. The performance of the object detector depends
strongly on the number of points belonging to the object. Consequently, the results
are impressively accurate in a close range to the lidar sensor, when the point cloud
in the frustum is dense. Especially, frustums with objects located at a large distance,
result in a sparse point cloud and hence, the output of the model deteriorates. When
comparing the PointNet architectures, it turns out that the overall results for instance
segmentation and bounding box estimation are better when using the PointNet++
model [QLW+18]. This is expected, since PointNet++ learns more advanced features
due to its hierarchical structure. One drawback of the detection system in Figure 2.5
is the dependency on the CNN object detector. When the image detector fails, there
is no object proposal, and consequently, it does not exist a frustum for further 3D
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object localization. Nevertheless, it is important to emphasize that the 3D Instance
Segmentation and the Amodal 3D Box Estimation modules are not restricted to 2D
region proposals. The last issue to be mentioned, the Frustum PointNets detector
absolutely assumes that in a frustum exactly one object is located. In case of multiple
instances per frustum, the segmentation of some object points is ambiguous which
may have an effect on the following box estimation. Both challenges are addressed
in the radar object detector proposed in this thesis. There is no dependency to a
preceding CNN detector for region proposal or any data from another sensor than
radar. In addition, the pipeline of this novel radar object detection system allows
processing multiple instances of objects even those which are close to each other.

PointNets on Radar Data

In [SHDW18a], a neuronal network based on the PointNet++ architecture is pre-
sented to obtain semantic information for radar targets. On that account, a trained
model is fed with a radar target list in order to assign a class probability to each
target, whereby the network distinguishes between various categories. Every radar
measurement consists of four dimensions, two spatial coordinates, the ego motion
compensated radial velocity and the RCS value. Since one radar measurement cycle
of a radar sensor provides relatively few reflections, the preprocessing accumulates
radar data over 500ms to make the input radar target list more dense. This raises
a fundamental question about how the varying radial velocity of dynamic targets
with different timestamps is interpreted at the time of segmentation. It is not
mentioned in [SHDW18a] how to deal with this important issue, although it is an
essential aspect when processing radar data. Another option to make the input
radar target list more dense is to fuse measurements from multiple radar sensor with
an overlapping Field of View (FOV). While this method prevents the timestamps
of the input from differing too much, it does create a dependency between these
sensors. In [SLH+20], another approach in which the target list is at least partially
processed without transformation is presented. [SLH+20] describes a pipeline to
perform semantic segmentation on radar targets. A distinction is made between
the perception of the static environment and the moving objects. For the static
environment perception, the radar list is transformed into a radar grid map, which
is forwarded to a CNN. For the semantic segmentation of radar targets which belong
to dynamic object, a neuronal network based on PointNet++ [QYSG17] is applied.

PointNets are not only used for semantic segmentation in radar targets, but also
to identify anomalies in the radar data. Hence, [GAH+21] modifies the PointNet
architecture to detect noisy radar targets in the measured data. Strictly speaking,
this is also a type of semantic segmentation in which the networks distinguishes
between real radar targets and anomalous targets. Similarly, [CRSW21] presents an
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approach that detects ghost targets in 3D radar target lists. The network used for
this purpose is also based on the PointNet architecture. Summarizing, PointNets are
becoming increasingly popular for different types of detection in radar target lists.

The method, which is proposed in [SFY21], performs object detection in a radar target
lists using a graph based structure. Therefore, the radar targets are transformed
into a graph. However, this method does not take the measured radial velocity into
account when constructing the graph. The neuronal network, which is based on
the Point-GNN [SR20] for lidar points, processes the radar data using the graph
representation and outputs one object proposal as a bounding box for each radar
target. Finally, overlapping bounding boxes are suppressed using the Non-Maximum
Suppression (NMS) algorithm [RHGS17], which results in exactly a single bounding
box for each object. Section 3.1.2 explains the NMS technique in more detail, since
it is also a part of the radar object detection system that is proposed in this thesis.

An overview of techniques for object detection in radar target lists generated by
automotive radar sensors is given in [SKA+21]. This thesis proposes a radar object
detection system which directly processes a radar target list in a deep neuronal
network using multiple PointNets without any transformation of the input data.
In contrast to [SHDW18a], the radar data is neither accumulated from different
measurement cycles, nor from multiple sensors, but rather, the object detection is
performed on a sparse radar target list. Further, the radar object detector in this
thesis does not use information from another sensor, as it is done in [QLW+18]. In
summary, the radar object detection system proposed in Section 3.1 successfully
operates on a sparse radar target list generated by a single automotive radar sensor.

2.3 Multi-Object Tracking

In many perception applications, tracking of objects is a crucial prerequisite for
modeling objects in an arbitrary environment. The goal of object tracking algorithms
is to estimate the state of dynamic objects over time, where the state comprises for
example position, orientation and velocity. In this context, single object tracking
methods focus on one specific object, while multi-object tracking system are able to
track several objects in parallel. Thus, multi-object tracking is the task of estimating
both, the number of dynamic objects and the state of each object simultaneously
using a noisy sequence of uncertain measurements. In literature, three approaches
for multi-object tracking are established, namely, the JPDA [BF88], the Multiple
Hypotheses Tracking (MHT) [Rei79] and the multi-object Bayes filter [Mah07]. The
last one is based on the Random Finite Set (RFS) framework [Mah07] which is useful
to model multiple objects at the same time in a tracking application. This section
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only introduces the essentials for object tracking, which are important for this thesis.

In multi-object tracking, the current dynamics of a single object are mathematically
represented by a stochastic state vector x. The state may comprise values for position,
orientation, velocity, yaw rate, acceleration or even more. As an example, the vector

xT = [x, y, θ, v, ω], (2.2)

describes the state including spatial position (x, y), orientation θ, velocity v and yaw
rate ω of an object. A tracking filter has to estimate the object’s state xk at time
step k using the noisy measurement zk of the same time. However, the measurement
vector does not necessarily have to contain all the same state components as the
state vector. In order to continue the example, if the current measurement vector is

zT = [x, y, θ], (2.3)

which is measured by an arbitrary sensor, then it only contains values for the x and
y position as well as the orientation θ. Nonetheless, the application of motion models
during the tracking process still allows to estimate all the values of a state vector.

In general, a tracking algorithm performs two steps, a prediction step and an update
step. During prediction the estimated state x̂k of each tracked object is predicted into
the time step k + 1 by applying a motion model. Next, the algorithm incorporates
each obtained measurement zk+1 during update to correct the predicted state x̂k+1|k
of each object. After the prediction and update step, each object is described by the
estimated state x̂k+1 which represents the dynamic state at time k + 1 taking into
account all available measurements. The basic method for single object-tracking
to perform the prediction and update step, is the Kalman filter [Kal60] for linear
systems, and the Extended Kalman Filter (EKF) [BF88; BP99; Jaz70; Sor85; Uhl92]
and the Unscented Kalman Filter (UKF) [BWT11; JU04; JUD00; JUD95] for
nonlinear systems. In multi-object tracking algorithms, these steps are much more
complex, but even there, a Kalman filter, a EKF or a UKF are the underlying basis.

LMB Filter

This thesis implements the RFS tracking approach by applying an existing and
approved realization of the Labeled Multi-Bernoulli (LMB) filter [Reu14; RVVD14].
The idea of the RFS filtering is to model the multi-object state as an RFS. In order
to be able to track the label of an object in addition to its state and the number of
objects, [VV13] introduces the labeled RFS. Further, the δ-Generalized Labeled Multi-
Bernoulli (δ-GLMB) filter [Vo08; VV13] is the first analytic implementation of the
multi-object Bayes filter based on labeled RFSs. Since the computational complexity
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of a δ-GLMB filter exponentially increases with the number of objects, this filter is
not suitable real-time critical system. However, the LMB filter [Reu14; RVVD14] is
a time-efficient approximation of the δ-GLMB filter to achieve real-time capability.
Although the approximation results in a loss of information, an LMB filter shows
almost the same performance as a δ-GLMB filter in most typical tracking scenarios.

The theory and mathematical description of the LMB filter is explained in [Reu14;
RVVD14]. This includes the derivation of the LMB RFS, as well as the filter equations
including the prediction and update step. This thesis implements a Gaussian Mixture
(GM) LMB filter for tracking objects in radar data. The GM LMB filter is fully
described and illustrated in [Reu14], including the specification of all the equations.

The standard LMB filter expects one measurement for each track. However, since a
high-resolution radar sensor generates several targets per object, this assumption
is not fulfilled. In [BRG+16], an approach to incorporate multiples radar targets
per object using an LMB filter is introduced. This approach generates multiple
object hypotheses by partitioning individual measurements into various groups,
where every partition represents a different assignment of measurements to objects.
Hence, this automatically results in several hypotheses for one object, meaning that
this technique implicitly realizes a kind of multiple hypothesis tracking. With the
intention of incorporating individual radar reflections into such an LMB filter, [SD19]
presents a radar measurement model designed for such a purpose. This technique
allows to determine a predictive density in a radar target list based on a particular
vehicle state. More details about this method is given in [Sch19]. In general, this is a
convenient method to process radar target lists in tracking algorithms, but the radar
model proposed in [SD19] is limited to vehicles. This thesis uses the standard LMB
filter for multi-object tracking in radar data. The radar object detection system
proposed in Section 3.1 outputs exactly one object detection for each object. Thus, all
assumptions for the LMB filter are fulfilled. Section 3.3 describes a suitable technique
to successfully integrate the recognized radar object detections into an LMB filter.





Chapter 3

Object Detection in Radar Data

The detection of objects based on sensor data is an important task to capture
the perception of the environment around a vehicle. Advanced Driver Assistance
Systems (ADAS) are already able to recognize objects in front of a vehicle with the
help of data from a radio detection and ranging (radar) sensor. In applications, for
example, adaptive cruise control system or distance warning, it only matters whether
there is an object in front of the vehicle. Such kind of tasks can be accomplished
with relatively simple algorithms, since it is sufficient to check if an object in
front of the vehicle generates radar reflections or not. However, the demand for
autonomous driving requires more information in object detection, such as the class
of an object or its specific position and heading as well as its extent. That requires
high-resolution radar data, but also much more sophisticated algorithms to extract
all the information from the radar target list. This thesis presents a novel radar
object detection system based on a deep learning technique using high-resolution
radar data. The proposed object detector allows to process pure radar data in its
natural target format without any transformation. Further, the object detection
is based solely on radar reflections from one measurement cycle of a single sensor.
That implies that there is neither an accumulation of multiple measurement cycles
or various sensors, nor a fusion of radar data with measurements from other sensors
like light detection and ranging (lidar) or camera. The application of deep learning
techniques requires solving several challenges. Firstly, often the input data has to
be transformed into a suitable format for the neuronal network. The radar sensor
employed in this thesis generates reflections as targets with multiple dimensions.
Since the presented radar object detection system is able to directly process point
sets by using PointNets as a basis, this issue is obsolete. Secondly, the complete
system needs to be assembled with appropriate components and the architecture of
a neuronal network must be defined. The proposed radar object detector consists of
three main components which themselves contain neuronal networks with different
architectures. Each network architecture comprises various layers which have to be
chosen in such a way that the neuronal network is enabled to handle the input data
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and achieves the expected result. Thirdly, a training strategy is necessary to find
an optimal solution. And last but not least, the data must be prepared for training
purposes which includes collecting, labeling as well as preprocessing the radar data.

This chapter proposes suitable solutions for all mentioned issues. Section 3.1 deals
with the entire radar object detection system. This comprises the problem formulation
which mathematically defines input data and the object detection result as desired
output. Moreover, the complete pipeline of the radar object detector is introduced
and each individual component is explained in detail. Subsequently, the network
architecture, as well as the training process are given. Section 3.2 describes the
implementation details for the realization required to employ the application in a
real system. Finally, Section 3.3 presents an appropriate measurement model for the
obtained radar object detections to process them in a multi-object tracking system.

The basic approach of the radar object detector proposed in this chapter, is already
pre-published in [DGBD19]. However, the method presented in [DGBD19] has been
significantly further refined in this thesis. Hence, the thesis proposes a complete
radar object detection system to recognize traffic participants of different classes.
Furthermore, Section 5.1 presents a greatly improved and more detailed evaluation.

3.1 Radar PointNets

This thesis proposes a sophisticated radar object detection system to solve the object
detection task in real high-resolution radar data. The proposed realization relies
on a deep learning technique based on PointNets to process radar reflections in
their natural form, namely, as radar targets. Section 3.1.1 mathematically defines
the problem of object detection in radar data. Then, a solution is designed which
solves the subproblems of the detection task step by step. Section 3.1.2 describes
the entire radar object detection system from raw radar targets as input to object
hypotheses in form of classified 2D bounding boxes as output. In the application of
deep learning, neural network design is an important part. Section 3.1.3 presents
the network architectures of the applied models based on PointNet and PointNet++.
After designing the neuronal networks, these have to be trained, that means to
identify the optimal model parameters based on labeled training data. Section 3.1.4
explains the training process by introducing a loss function as well as a technique to
train the complete system. Finally, Section 3.1.5 gives a final conclusion about the
proposed method. In summary, this section presents the entire radar object detection
system from concept over design to realization through deep learning techniques.
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(a) Camera view of the traffic scene.

(b) Reflections of the partial radar view.

Figure 3.1: 2D object detection in radar data: Exemplary radar target list
with reflections belonging to cars (blue) or clutter (red), where
the length of arrows visualizes the radial velocity and the size of
targets displays the RCS value. The blue amodal 2D bounding
boxes represents position, heading and size of objects, here cars.

3.1.1 Problem Formulation

The aim of the radar object detection system is to find all objects, which are located
in the Field of View (FOV) of the radar sensor. The object detection task includes
classification and localization of various objects in a 2D space based on a radar target
list. This means each object is modeled as a classified and orientated 2D bounding box.
Figure 3.1 visualizes a part of the radar measurements and the corresponding camera
image for an exemplary real-world scenario, where multiple vehicles are located at
a two-lane intersection. The employed radar sensor is mounted frontal on the ego
vehicle and is aimed directly at the intersection. In this example, all present objects
are represented by vehicles, but the radar object detector proposed in this thesis is
able to detect multiple classes, namely, vehicles, trucks, bikes and even pedestrians.

In order to define the problem mathematically, a set of targets P = {pi|i = 1, . . . , n}
represents the input radar target list, where n ∈ N denotes the number of radar
targets. Furthermore, each target pi = (x, y, ṽr, σ) has four dimensions and contains
the (x, y)-coordinates, the ego motion compensated radial velocity ṽr, and the Radar
Cross Section (RCS) value σ. The radar data is generated by multiple high-resolution
automotive radar sensors, which perform a proper data preprocessing to provide
data in the target list format. The object detection system provides an output for
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each measurement cycle of a single radar sensor. This means that neither radar data
is accumulated over time nor the measurements from multiple sensors are combined.

As already mentioned, a subtask of object detection is the classification task. For
this purpose, the radar object detector has to distinguish between multiple classes,
which are defined as car, truck, bike, pedestrian and clutter. Mathematically the set

Ccls = {(clutter, 0), (car, 1), (truck, 2), (bike, 3), (pedestrian, 4)} , (3.1)

describes each class c as a pair of a specific class name and a number. Consequently,
this is a multi-class problem with five different categories, where the set Ccls comprises
all of them. The special class clutter describes the case that the considered radar
targets do not belong to any real object, or expressed in other words, it represents
the non-object case. Otherwise, all occurring objects are assigned to one of the other
classes. If a real object cannot be mapped exactly to any of the given categories, the
class with the next best match is selected. For example, there is no separate category
for a bus, but as buses and trucks look similar in radar data, all buses are assigned
to the class truck. The same reasoning applies to motorcycles and bicycles, both are
mapped to the more general bike category. Naturally, it would be reasonable to keep
these more finely structured classes, since certainly each of them show noticeable
differences in the radar measurement. In the case of bicycles, for example, it is
possible to recognize the cyclic movements of the pedals in the radar measurements.
In contrast, this effect does not occur with a motorcycle because it is driven by
an engine. However, in order to recognize such fine details, the radar target lists
representing the environment have to be dense. But as this is not guaranteed at all
times when using an automotive radar sensor, this thesis focus on the approach of
combining as many classes as possible for similar appearing radar measurements.

In the case that radar targets are classified as object, the localization of these objects
is the other part of the object detection system. Hence, the radar object detector
performs the localization task by determining an amodal 2D bounding box. In real-
world scenarios, situations may occur, where only parts of the real object are visible
to the radar sensor, for example due to shadowing, obscuring or the object being only
partially located in the sensor’s FOV. The prediction of an amodal bounding box
means that even in such situations, always a box that surrounds the entire object is
estimated. The final 2D bounding box is described by several box parameters, which
are the center position (xc, yc) and heading angle θ in the xy-plane as well as the
size containing the length l and width w, which describes the extent of the object.
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Figure 3.2: Overview of the 2D object detection system in radar data using
PointNets: Firstly, the classification module divides the radar
target list into patches and classifies them to find regions con-
taining objects. Secondly, the segmentation module performs an
instance segmentation by classifying each of the n radar targets
per patch. Thirdly, the bounding box estimation regresses a 2D
box for each object based on all the m segmented radar targets.

3.1.2 Radar Object Detection

The goal of the presented method is to perform object detection using solely radar
data which is provided by a high-resolution automotive radar sensor. A basic version
of this approach is already presented in [DGBD19], but the thesis describes the
complete system with a number of adjustments resulting in improvements. Figure 3.2
shows an overview of the proposed 2D radar object detection system, which consist
of three principal parts: the classification module, the segmentation unit and the
bounding box estimation module. In order to generate object hypotheses from the
radar target list as input, certain components are interconnected to forward extracted
information to the next module. This process finally results in box parameters to
model each object as a separate 2D bounding box. The following sections provide
detailed information about the structure and functionality of the respective modules.
For this purpose, the entire processing chain is explained in depth and is illustrated
with a real-word example. Figure 3.1 visualizes the radar data for a traffic scenario.
In order to describe the radar object detection system in detail, the target list is
processed step by step, and all intermediate results are depicted as well as explained.

Classification

The first module of the radar object detection system is the classification unit. This
module expects the radar target list provided by the radar sensor as input data,
where each radar measurements comprises the position as (x, y) coordinates, the
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ego motion compensated radial velocity ṽr and the RCS value σ. The radar target
list is directly forwarded to the patch proposal component. This module divides
the entire radar target list into many regions of interest. Objects that are located
in these areas and are to be detected are referred to below as objects of interest.
It is important to clarify why the patch proposal concept is reasonable or even
essential. Another possibility would be to pass the task of generating regions of
interests to the neural network as well. A method of how this can be achieved in
3D point clouds is suggested in [QLHG19]. But the patch proposal technique has
some convincing advantages. The fundamental motivation of this approach is that
after the normalization of patches, objects that are located at different positions
result in similar patches. Hence, after generating and normalizing the regions of
interest, it does not matter where objects are actually positioned in the radar target
list with respect to the angle. Consequently, the neuronal network does not have
to learn all angular regions in the sensor’s FOV, and, as a result, it requires far
fewer learning examples for the training. The normalization method is explained
in detail below. Another advantage is that the patch proposal approach reduces
the complexity of the overall detection problem. When considering the entire radar
target list, the challenge is to detect an undefined number of objects which may
be located anywhere within the target list. However, the patch proposal technique
reduces the task to find exactly one object per patch which is always located in the
region’s center or rather approximately in the center of the extracted radar target
list. An evaluation concerning the complexity of computation is hard to give. In
principle, solving several small tasks which are less complicated, is often faster than
finding the solution of one complex problem. Since this investigation is not part of
the thesis, no statement concerning this issue is made. It can be assumed that a
parallel execution of the radar object detection system on a Graphics Processing
Unit (GPU) accelerates the calculation significantly, because this allows a processing
of all generated patches simultaneously. Section 3.2 gives more details on this topic
and describes how parallelization is implemented in an application for real operation.

The patch proposal creates a rectangle with specific length and width, called patch,
around every radar target, where the target under consideration specifies the center
point of the region. The choice of a patch’s length and width is essential for further
processing steps, since a patch should enclose the full potential object. This creates a
dilemma, because if the patch is too small, large objects like trucks will not fit within
it. But, if the region of interest is too large, small objects such as pedestrians might
get lost, because there might be other objects inside the patch that are attracting
the focus. In order to comprehend this issue, it is important to understand what
consequences the application of the patch proposal component has for the whole
object detection processing chain. In fact, this method is designed to detect exactly
one object per patch. Since each radar target defines a custom patch, there are
several patches where the same object of interest is located in the patch center.
Thus, the patch proposal produces so many regions of interest, that each real object
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is guaranteed to be repeatedly in the center of various patches. Nevertheless, it is
possible that various objects are in the same patch at the same time following the
rule, the larger a region, the more objects can be located inside it. In the worst
case, a few objects are very close to each other at the center of a region. Even
though, the radar detection system is trained that the target object is located in
the very patch center, it may happen that another object close to the actual one
is detected. Thus, the wrong object attracts the focus. Due to the fact that an
object usually generates more than one radar target, and consequently multiple
patches, this behavior does not necessarily imply that the object is not detected at
all. In theory, such a behavior is not really desired when examining the detection
pipeline at a patch level, because this type of prediction is strictly speaking a false
detection. However, since the radar object detections of each patch are merged into
one final output, such false predictions usually have no effect on the object detection
result. Another aspect to consider when choosing the patch size is, the region under
examination should be large enough to ensure that the radar targets still represent
the typical measurement behavior of a radar sensor. As already mentioned before,
the measured radar reflections do not only originate from dynamic objects, but also
from the static environment, which are referred to as clutter measurements. With
the goal to model an object as a bounding box, it is essential to extract only the
radar targets belonging to the object of interest. This may be performed manually by
an algorithm specially designed for that purpose. Alternatively, a neuronal network
can learn this extraction and integrate it into the pipeline. The object detection
system presented in the thesis makes use of this learning approach and solves the
challenge in the segmentation component. In order to enable the network learning
the occurrence of real radar reflections and clutter measurements, the region under
examination must realistically reflect this characteristic behavior. For that reason,
the patch needs to be large enough so that sufficient radar targets are placed in it.
Section 5.1.3 presents the results of determining a reasonable patch size in this thesis.

The patch proposal extracts a region of interest for each radar target. Figure 3.3
visualizes the results for all reflections on the left side. Since this illustration is
confusing, the right side of the figure exemplary visualizes some patches for individual
radar measurements. In the end, the patch proposal generates various regions with
slightly different positions and orientations for an object comprising multiple radar
reflections. Since all patches are processed in the pipeline, the detector ultimately
provides multiple hypotheses for the same object. In order to obtain a single detection,
the detection result requires further processing. In the subsequent description of the
corresponding module, a convenient method of achieving this objective is illustrated.

Subsequently all regions of interest are normalized by rotating them into the center
view. Therefore, the radar target list inside the patch is rotated by the azimuth angle
of the central radar target which defines the patch. In Figure 3.4 the normalization
step is visualized. This method ensures rotation invariance of the algorithm. It
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(a) Complete output of the patch proposal
for the radar target list in the scene.

(b) An exemplary selection of some gener-
ated patches for a better visualization.

Figure 3.3: Patch proposal for a radar target list: Each radar target defines
a specific patch which is visualized as colored square. The radar
targets defining a patch are highlighted and marked with a cross.
The ground truth is colored in black that to allow distinguishing
which reflections, or rather which patches, belong to the object.

guarantees that regardless of the measured angle of the object’s radar targets towards
the sensor, after normalization all radar targets generated by the object of interest
have an azimuth angle close to zero. This process only normalizes the radar target
list of a patch regarding the aspect angle, but not with respect to the range. That is
deliberately realized in such a manner, because the range information is helpful in
the classification process. Due to the angular resolution of a radar sensor, objects
near the sensor produce many more reflections than at a larger distance. Accordingly,
this valuable information should not be neglected in the following classification.

Afterwards, the radar target list of each patch is passed to the actual classification
process to determine whether the respective targets contain an object or not. The
classification component is composed of a PointNet to classify the patch under
consideration of all radar targets. The classification network distinguishes between
the defined classes car, truck, bike, pedestrian and clutter. If the patch is classified
as clutter it implies that the examined radar target list does not contain any objects
of interest. The classification PointNet estimates a probability vector for each patch
with values pcls,c ∈ (0, 1) per class c ∈ Ccls. Finally, the predicted class is given by

ĉ = arg max
c∈Ccls

(pcls,c), (3.2)

where, the argmax function extracts the class index c associated to the maximum
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(a) Extracted patch with a car in the center. (b) Patch after rotation to the center view.

Figure 3.4: Patch normalization: Each patch, respectively the radar targets
inside, is rotated to the center view for normalization purpose. As
an aid the object of interest is outlined as a black bounding box.

probability pcls,c that represents the most likely class of the prediction. Finally, the
relation of Equation (3.1) maps the integer value ĉ to the corresponding class label.

The neuronal network is trained that the radar target which defines the region of
interest, that is the radar target in the patch center, actually specifies the class of
the whole patch. This implies that if the central radar target belongs to an object
class, the patch should be recognized with the according category. Otherwise, the
region of interest should be classified as clutter. As a consequence, it is possible that
one or more objects are located inside the radar target list of the patch, but the
classifier assigns it to the non-object class. Since each target is the center of a patch
once, all objects can still be recognized. Furthermore, there are several possibilities
to detect an object, because one object usually generates multiple radar reflections.
Accordingly, various patches belong to the same object of interest. This procedure
of patch classification is essential to ensure a unique identification in multi-object
scenarios. If more than one object of different category is present in the radar target
list, the assignment of a class to the patch is ambiguous. In order to avoid this
aspect, only the radar target in a patch center is of importance, or more precisely,
the object to which this central target belongs to is actually the object of interest.

The classification outcome is assigned to the entire patch. Figure 3.5 shows the
result of the classification component exemplary for two patches extracted from the
radar measurement cycle. In both regions the radar target list contains multiple
objects. In the example on the left side, the central radar target is a reflection of a
vehicle, consequently the radar target list in the patch is classified as car. The vehicle
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(a) Radar target list classified as car. (b) Radar target list classified as clutter.

Figure 3.5: Patch classification: All patches are individually classified to
determine if the radar targets belong to an object or not. Two
examples are given where both patches contain multiple objects,
but only in the left one, the central radar target indeed belongs
to the object of interest (black box) and is classified accordingly.

produces five more radar reflections in this scene. The radar sensor measures two
targets on the rear left wheelhouse located at the identical position but with different
radial velocities. In the optimum case, the classification assigns all six patches to
the car category. Hence, the object detector creates exactly six hypotheses for the
same vehicle. Although, the patch on the right side comprise almost the same radar
target list, the patch is correctly classified as clutter, because the radar target in
the center does not belong to any object. This example visualizes the classification
principle for objects applying the proposed patch proposal technique. Particularly,
it clarifies how the detection system ensures an unambiguous classification result for
the case when several objects are present in the radar target list of a single patch.

Segmentation

After the classification process, the radar target list of each patch as well as the
predicted class is forwarded to the segmentation module to determine the radar
targets which belong to the current object of interest. This segmentation procedure is
applied for all patches regardless of the results previously obtained, also for the target
lists that are classified as clutter, which is the non-object class. Nevertheless, the
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segmentation results are only relevant for real objects, because later, the predictions
for clutter patches are ignored. Another classification PointNet performs the radar
target segmentation. This PointNet predicts a probability score pseg,o ∈ (0, 1) for
each radar target in the patch. This value indicates the probability that a radar
reflection belongs to the object. Since the segmentation network already has the class
information c ∈ Ccls of the previous module at its disposal, that the PointNet only
distinguishes between the classes object or non-object. Thus, class o is an element of

Cseg = {(non-object, 0), (object, 1)} , (3.3)

hence, this is a logistic regression problem. The actual decision whether a radar
reflection belongs to the object of interest or not, is obtained by maximizing the
probability vector from the segmentation PointNet. An argmax function calculates

ô = arg max
o∈Cseg

(pseg,o), (3.4)

for each radar target, which results in the final segmentation information. Although,
the network estimates another class o for all radar targets in a patch, this prediction
depends on the class information c. Therefore, the feature vector of the segmentation
network is expanded by the predetermined class information ĉ, which is encoded
in a k dimensional one-hot class vector. A one-hot vector is a vector that contains
the value zero at all components except at the component which represents the
class under consideration, where the value is one. Section 3.1.3 addresses this issue,
when describing the network architecture of the radar object detector as well as the
feature vectors for the respective main modules. Since the segmentation procedure
of radar targets considers the individual class information c, the segmentation result
of an identical targets list may vary with regard to the previously determined
category. Consequently, the neuronal network learns a class dependent segmentation
by utilizing a prior class information to determine the optimal segmentation result.

The masking step extracts all radar targets that are classified as object by the
segmentation network. In other words, this procedure removes all radar reflections
from the input target list of a patch that do not belong to the object of interest. In
order to make sure that the algorithm is translation invariant, the masking process
additionally normalizes the coordinates of masked radar targets as presented in
[QLW+18]. Therefore, it transforms the target list into a local coordinate system
with the centroid of the segmented radar targets as origin. Hence, for further
processing, rotation and translation invariance are guaranteed. This implies that
distance information of radar targets affects the patch classification and target list
segmentation, but not the following bounding box estimation. However, rotation of
objects respectively the azimuth information of their associated radar targets has
almost no influence on any of the modules due to the previous patch normalization.
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(a) Radar target list after segmentation. (b) Radar target list after masking.

Figure 3.6: Target list segmentation and masking: Primarily, all radar mea-
surements that belong to the object of interest, depicted as a
black bounding box, are marked. Subsequently, only radar tar-
gets that are classified as reflections of that object are kept for
next processing, and all others are removed from the target list.

At the end, the segmentation provides a list with all radar targets belonging to the
object. Figure 3.6 visualizes the segmentation result for a vehicle. The left side
shows the outcome of the PointNet that classifies all radar targets of the object.
Thus, this network performs an instance segmentation for the object of interest. The
right side illustrates the resulting masking process that extracts all radar targets
classified as objects. For further processing only these radar targets are relevant,
since the bounding box solely depends on measurements reflected from that object.

Bounding Box Estimation

The goal of the bounding box estimation is to localize all objects in the radar
target list. There are a total of two tasks for the module. Firstly, for each patch,
it predicts bounding box parameters based on the classification information and
the results of the instance segmentation. Secondly, it chooses one of the various
detection hypotheses per object, because usually several patches comprising the
identical object. This means that if an object appears in multiple patches, several
independent hypotheses are generated. Subsequently, a separate module selects the
most probable one for this object. In order to estimate a complete 2D bounding box,
three parameters are necessary, namely, the center coordinates, the heading and the
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extent. For this purpose, two neuronal networks are applied, one for estimating the
real center of the object, and one for predicting its orientation as well as its extent.

After the masking process, the spatial coordinates are present in relation to the
centroid of extracted radar targets. As [QLW+18] states, the real object’s center is
often different from that of the amodal bounding box. This occurs especially, when a
lidar sensor is applied, because it only receives measurements targets from the sides
that are directed towards the sensor. Since often only parts of the object are visible
for the lidar sensor, the centroid is quite far from the real object center. For this
reason, [QLW+18] proposes a lightweight regression PointNet called Transformer
PointNet (T-Net) to estimate the center coordinates with respect to the entire object.
This T-Net only cares about transforming the centroid to the actual center of the
object, which makes it extremely fast to process. The advantage of a radar sensor
is that it allows to obtain reflections from the non-visible side, for example the
opposite wheel housing of a vehicle. Since the radar target list is sparse and rarely
all prominent spots of the object are measured, the centroid of masked radar targets
does not match the true object center. That is why the bounding box estimation
unit includes a T-Net to predict the residual center. Finally, the transformation
component translates the segmented radar target list into a local object coordinate
system with the predicted center as origin using the output produced by the T-Net.

The next stage is the estimation of the amodal 2D bounding box based on the
transformed radar targets and the classification information of every patch. For this
purpose, another regression PointNet predicts the box parameters by utilizing the
residual approach described in [QLW+18]. The bounding box estimation depends on
the previously determined classification result. In order to integrate the classification
results, features generated in the bounding box network are extended using the
predicted class. Since PointNet provides residual values for the center coordinates
regarding the previously estimated object center by the T-Net, the absolute bounding
box center combines the center residuals from the T-Net as well as those from
bounding box network. The size and heading estimation applies a hybrid formulation
that unites the typical classification and regression techniques. Therefore, predefined
size templates and angle bins are deployed. This method is similar to anchor boxes
that are introduced in [RHGS17]. An established option is to specify a box with
average length and width values for each class. The average sizes per category is
derivable from the employed radar dataset. The division of angle bins is uniform,
which means for example, a graduation in 30° intervals requires twelve bins. That
is exactly the way this thesis proceeds for the choice of templates. The PointNet
classifies the size and angle template based on the input target list. This technique
is already applied in [QLW+18] and is explained in detail there. Summarizing, it
predicts a score for all size and angle categories. Here, the expanded class information
has a particular impact on the classification result of the size template, but this does
not mean that automatically the one defined for the corresponding class is always
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(a) Predicted center of the object. (b) Predicted bounding box of the object.

Figure 3.7: Bounding box estimation: A mini-network predicts the center
coordinates of the object (black) that is illustrated by shifting
the blue cross. After transforming all radar targets into the local
object coordinate system, another neuronal network estimates
the parameters to describe the object as a bounding box, that is
the adjusted center position, as well as its heading and its size.

selected. Further, PointNet estimates a residual for every category to obtain the
precise values for size and heading of the bounding box. Thus, the absolute size and
heading results from the most probable predefined template and the corresponding
predicted residual values. This is a common approach in object detection, more
information about it when using image data is given in [MAFK17; RHGS17]. As
in the segmentation module, the bounding box estimation unit determines box
parameters for all patches, including those classified as clutter. Since there is no
object in these regions, estimating a bounding box actually does not make any sense.
But in the following processing stage, all patches which not containing an object are
discarded and only the prediction results for classified objects are processed further.

The bounding box estimation is performed for each generated patch. Figure 3.7 shows
the results for a vehicle that generates six radar reflections. The left side visualizes
the centroid of the target list and the predicted true center coordinates. In this
example, the difference between centroid and center coordinates is considerable. The
right side shows the estimated bounding box for the object of interest. The center
coordinates of the bounding box are slightly adjusted compared to the previously
estimated value. The heading of the object corresponds to the driving direction which
is expected according to the measured radial velocity measurements. Further, the
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size estimation is reasonable, as the reflections of wheel houses are quite recognizable.
Since a radar sensor typically produces noisy measurements, not all radar targets are
located within the bounding box, although these belong to the corresponding object.

Once the radar target list is divided into patches, the radar object detector performs
the explained actions visualized in Figures 3.4 - 3.7 for all patches. In summary, the
detection system predicts a classified bounding box based on the radar target list in
a patch. As already mentioned, this results in several hypotheses per object since
one object typically causes multiple radar reflections. However, the radar object
detection system ultimately outputs only one hypothesis per object, specifically the
one which matches the real object best. Hence, a last component in the detection
pipeline is responsible for the matching, which is called the object extraction. Beside
the prediction results, all neuronal networks, that are PointNets for classification,
segmentation and bounding box estimation, implicitly supply an individual score
Si ∈ [0, 1] for each of the predictions. This value indicates how confident the neuronal
network is with its prediction result and can be interpreted as probability. For every
region, the bounding box estimation module combines all these scores into one
comprehensive score. Hence, for one object detection the confidence score is given by

S = Scls × Sseg × Sbbox ∈ [0, 1], (3.5)

where Scls is the classification score, Sseg the segmentation score and Sbbox the score
of the 2D bounding box. The multiplication of all scores ensures S ∈ [0, 1], thus, the
resulting score may be interpreted as the detection probability of an object. As a
consequence, the confidence score may be used for filtering object hypotheses by the
object extraction module. There are two selection issues in this detection system,
one is optional for filtering out unlikely hypotheses, the other is mandatory for
satisfying the requirement of generating exactly one hypothesis per object. Since the
confidence score represents a probability, that value may be used for filtering purposes
of improbable predictions. The extraction module removes all object hypotheses
with a confidence score lower than a specific threshold γobj , which has to be chosen
depending on the field of application. This operation is optional and recommended
primarily for practical applications. However, what cannot be avoided is the filtering
of multiple hypotheses belonging to the same real object. For the purpose of finding
the best matching hypothesis per object, the confidence score is applied again. In this
calculation, the optimum is specified by the self-assessed confidence of the different
neuronal networks. In order to realize this task, the object extraction unit performs
a Non-Maximum Suppression (NMS) [RHGS17]. The NMS filters all predicted radar
object hypotheses regarding the score and overlap of bounding boxes. Therefore, the
algorithm obtains a list including all proposals, which comprises the bounding boxes
together with the corresponding confidence score for each patch. As a result the
NMS returns a filtered list containing the most probable non-overlapping bounding
boxes, where the likelihood of a bounding box is represented by its individual score.
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(a) Various predicted radar object hypothe-
ses from different patches for one object.

(b) The most likely radar object detection
for the object after the NMS method.

Figure 3.8: Non-Maximum Suppression: The left side illustrates all predic-
tions for the same object of interest. Since the object is present
in multiple patches, this leads to various overlapping bounding
boxes. The right side depicts the selected radar object hypothesis
after the NMS, that is the predicted bounding box with highest
detection score. The ground truth object is drawn as black box.

The NMS is a technique that was first applied in computer vision, for example in the
Faster R-CNN [RHGS17] object detection system. This postprocessing algorithm
is designed for the purpose to merge all proposals of bounding boxes which belong
to an identical object. The filtering of proposals depends on several factors, the
object extraction in this thesis utilizes an NMS based on two criteria, the overlap of
estimated bounding boxes and the predicted confidence score. In the following the
NMS algorithm and its individual steps are explained by processing the preceding
outputs of the radar object detector. In general, the pipeline of the radar object
detection system generates various classified bounding box proposals for every object.
The amount of object hypotheses depends on the number of radar targets reflected
from the real object. Thus, the more radar measurements belong to that object,
the more patches are generated for it. And if eventually the predictions are correct,
the radar detector generates a corresponding number of proposals for this object.
The NMS is an iterative algorithm comprising two steps to finally obtain the object
detection result based on a list including all hypotheses. Therefore, in each iteration,
the NMS selects the object hypothesis with the highest predicted confidence score
and adds it to the output list. Then, the associated estimated bounding box is
compared to all others. In the case that the two inspected boxes are overlapping,
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(a) Radar targets as input target list. (b) Object hypotheses as detection output.

Figure 3.9: Radar object detection: The left side illustrates the input data,
that is the unclassified radar targets provided by the sensor.
The right side visualizes the output of the radar object detector,
hence the various classified object hypotheses modeled as 2D
bounding boxes and colored according to their class. In order to
rate this detection result, the ground truth is depicted in black.

the hypothesis that belongs to the other bounding box is removed. The NMS in this
thesis applies the Intersection over Union (IoU) metric [Jac12] to measure the overlap
of two bounding boxes. Therefore, the IoU value is determined and once it exceeds
a specific threshold, the respective object hypothesis is rejected. Since the IoU is
later applied to evaluate the bounding box estimation of the radar object detection
system, Section 5.1.2 introduces this metric. The described two iteration stages are
repeated as long as all object hypotheses are processed. Figure 3.8 visualizes the
output of the object extraction unit after the NMS procedure for a single object.
The left side shows all proposals that belong to the object of interest. The right side
displays the final radar detection of this object after performing an NMS. As a result,
the bounding box with the highest score is selected, which is the most probable
hypothesis for this object, whereas all the others are discarded. Compared to the
true object, the final detection is quite precise, since the object is correctly classified
as car, and the estimated bounding box is almost identical to the ground truth box.

The object extraction is the last stage in the pipeline of the radar object detection
system and summarizes the intermediate outcomes of every patch to a final result.
Hence, this process is the counterpart of the patch proposal, which is the first
procedure in the pipeline. The patch proposal divides the complete input radar
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target list into several small and independent regions of interest. The processing of
theses patches runs in parallel and each patch provides a particular object proposal.
Finally, the object extraction merges all this information to produce one detection
output for the entire input target list. Figure 3.9 visualizes the input data, thus, all
radar targets of an entire measurement cycle, and the predicted object hypotheses as
output of the radar detection system. Hence, for every object the detector outputs an
amodal 2D bounding box and its classification information, as well as the segmented
radar targets which the bounding box estimation is based on. In summary, the
object detection result for the real-world scenario, which is shown in Figure 3.1, is
really satisfying. Especially those bounding box estimates for objects with sufficient
measurement targets at distinctive spots, as for example on wheel houses or on the
facing sides, are quite accurate. The estimated heading of the object located in the
upper left corner is distorted compared to the object label. This is due to the fact that
the segmentation module misclassifies one radar target, which is actually a clutter
measurement but fits well with the other two reflections. Nevertheless, taking all
these targets into account in bounding box estimation, this constitutes a reasonable
solution. This example demonstrates the effect of a single noisy measurement on
the overall result. Since the measured target list often is very sparse, individual
radar targets may have a significant impact on the prediction of an object. However,
these kinds of clutter reflections do not occur in each measurement cycle in such an
unfortunate way, which means that in previous and following time steps the extracted
hypothesis for such an object may be much better. For the purpose to overcome
the issue that single outliers considerably deteriorate the perception performance,
a filtering of the object proposals over time is applicable. Therefore, Section 3.3
introduces an appropriate measurement model to simultaneously process all radar
object hypotheses in a multi-object tracking system. This technique improves the
radar object perception, as it becomes much more resilient and even more accurate.

The following is a short analysis focusing on a few more details on the interaction
of all modules in the radar object detection system. Figure 3.2 shows the three
main components of the object detector, that is classification, segmentation and
bounding box estimation. Each of them has a specific task and the respective interim
results may directly affect the final object detection result. Firstly, the predicted
classification information establishes the basis for further object detection. For one
thing, this module determines the category for the object of interest. In addition,
the predicted class is an important global feature for the segmentation and bounding
box estimation networks. Consequently, a false classification may already cause the
whole object detection to be incorrect. Next, the segmentation has a considerable
impact on the quality of the estimated bounding box. The fact that only radar
reflections which are assigned to the object of interest are relevant for the estimation
of a bounding box underlines the significance of that stage. And ultimately, the
bounding box estimation predicts the localization of an object and its extent. Since
for every class a template is provided, the classification information has an effect
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especially on the estimated size. In contrast, the segmentation result has an influence
on the estimation of position and orientation, as well as on the residual size regarding
the predefined anchor box. That brief discussion emphasizes once again that all core
modules have to perform at their best for an optimal overall object detection result.

3.1.3 Network Architecture

The radar object detection systems consists of neuronal networks with different sub-
tasks, namely, classification, segmentation, residual center estimation and bounding
box estimation. The architectures of these networks are similar to the presented
ones in [QLW+18]. In contrast to the detection pipeline of this thesis, the Frustum
PointNets for 3D object detection requires lidar and camera data as input. Hence,
a 2D Convolutional Neural Network (CNN) object detector is essential to classify
the objects of interest as well as to identify their position in the image. This object
detection is used for the following frustum proposal to find the respective objects in
the 3D lidar point cloud. In contrast, the radar object detection system proposed in
this work solely processes radar data to detect objects in a radar target list. There-
fore, the object detector has a different processing chain, especially the procedure for
generating regions of interest and the classification process differ significantly from
Frustum PoinNets. The radar object detection system of this thesis can be designed
with an underlying PointNet [QSMG17] or PointNet++ [QYSG17] architecture.
Both variants are presented and their performance is later compared with each other.

Radar PointNet

First of all, the PointNet network architecture is introduced. Figures 3.10 - 3.14
visualize the architecture for all radar object detector modules. In order to classify a
radar target list in a region, a classification network based on [QSMG17] is deployed.
Figure 3.10 shows the corresponding network architecture. The special feature of
this network is that it allows a classification of a complete radar target list without
prior transformation directly on radar targets. In contrast, the Frustum PointNets,
realizes the classification using a CNN camera detector on an RGB image. In order
to process all information of an radar target, the input is adjusted to four dimensions
compared to the classification network in [QSMG17]. Further, the classification
network of [QSMG17] includes two transformer networks for normalization of input
data and local features. In [QLW+18], a similar network architecture is used for
instance segmentation as in the classification network of [QSMG17]. But, [QLW+18]
describes that the transformer networks for normalization purposes are in principle
not necessary, because the point cloud in the region of interest, referred to as frustum
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Figure 3.10: Architecture of the classification PointNet: The network pro-
cesses any number of radar targets and predicts the classifica-
tion information for the radar target list as one-hot class vector.
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Figure 3.11: Architecture of the feature transformer T-Net: The network
outputs a feature transformation matrix to generate local fea-
tures based on extracted radar features from the radar targets.

there, is already normalized. This statement also holds for radar data inside the
generated patches, since the above described rotation normalizes the radar target list.
However, the radar object detector does not renounce the feature transformation in
the classification network which aligns the feature space. Therefore, an alignment
network realized as a T-Net predicts a feature transformation matrix based on
extracted target features. Figure 3.11 illustrates the network architecture of this
T-Net. Next, the set of features is normalized by a matrix multiplication with the
predicted transformation matrix resulting in local target features. This technique
allows normalizing in particular the information extracted from the radial velocities
and RCS of a radar target list. Experiments in Section 5.1.3 evaluate the effect of this
transformation and show the detection results in case that additionally a T-Net for
input data is used. Both transformer networks are initially proposed in [QSMG17].

In order to realize the classification on a target level, the network deploys several
shared Multi-Layer Perceptrons (MLP), one for each of the n input radar targets.
The subsequent max pooling layer generates a set of global features from the radar
targets for classification purpose. After applying various Fully Connected (FC) layers,
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Figure 3.12: Architecture of the segmentation PointNet: This network per-
forms radar target segmentation by predicting the classification
information for each target. The object scores are determined
on the basis of the local features and the global features as well
as the classification information for the whole radar target list.

the network provides the classification scores in form of logits. With the intention to
get probability values pcls,c for each class c ∈ Ccls, the softmax function [Bis06] is
applied to normalize the output vector. This transforms classification scores into
a probability distribution, where all components are normalized to the range (0, 1)
and add up to one. Softmax, also known as the normalized exponential function, is
a generalization of the binary logistic function to k dimensions, and it is defined as

σ(z)c = exp(zc)∑k
j=1 exp(zj)

, (3.6)

for all classes c = 0, . . . , k − 1 and classification scores z = (z0, . . . , zk−1) ∈ Rk. For
further processing, the network encodes the classification information by applying
one-hot encoding. This means, the predicted class with the highest score, respectively
probability, is selected as the classification result and a one-hot vector is generated
with value 1 for the most likely class and value 0 for all other components. Since the
succeeding modules employ this one-hot vector as a global feature, this once again
clarifies the importance of a correct classification for the following processing chain.

In order to extract features for the segmentation task, the network with architecture
shown in Figure 3.12, is applied. This neuronal network initially concatenates all
the local and global features as well as the predicted output of the classification
network. As a result, the global features in the segmentation network consist of
local features which are target specific, and several others that are the same for
each input radar target. This procedure is essential because every radar target is
classified individually during the segmentation, and therefore the consideration of
individual features is meaningful. After various shared MLPs, the network outputs
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Figure 3.13: Architecture of the residual center T-Net: This network esti-
mates the residual center based on all segmented radar targets
which belong to the object of interest. The output is predicted
using features extracted from the segmented radar targets and
the classification information of the complete radar target list.

object scores for each radar target indicating whether a reflection belongs to the
object of interest or not. As already explained, the usage of a softmax function
allows converting the segmentation results into comprehensible probability values.

After masking of the segmented radar targets, the residual center networks predicts
the true center of the regarded object. Figure 3.13 visualizes the network architecture
of the corresponding T-Net. For the segmentation, all masked radar targets are
forwarded to three shared MLPs. Subsequently, the max pooling operation generates
features which are extended with the previously predicted classification information.
Based on these global features, different FC layers finally estimate the residual
position to the real center of the object. More precisely, this neuronal network
provides the difference between the masked object targets’ centroid and the object’s
true center position to transform all radar targets into the object coordinate system.

The architecture of the neuronal network for bounding box estimation, which is
depicted in Figure 3.14, is almost the same as for the prediction of the residual
center. Merely for the generation of much more global features, an additional MLP
is added before the max-pooling operation is executed. The network itself extracts
most of the global features and again the predicted class of the classification network
is attached to these features. Further, the following FCs layers generate multiple
output values, which are exactly so much that all parameters of the 2D bounding
box can be calculated. Accordingly, this network does not provide the final bounding
box parameters. Section 3.1.2 introduces the object extraction that implements a
strategy to merge all the estimated values to the actual bounding box comprising
center position, orientation and size, before extracting the ultimate object detection.

As already mentioned, a PointNet allows to process an entire radar target list without
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Figure 3.14: Architecture of the bounding box PointNet: The neuronal net-
work determines all the information to calculate parameters for
the final 2D bounding box. The box parameters are calculated
based on features extracted from the transformed radar target
and the classification information of an entire radar target list.

any transformation beforehand. The network architectures in Figures 3.10 - 3.14
clarifies that the shared MLPs and the max-pooling operation are the key element of
PointNet. The particular MLP ensures that the neuronal network extracts features
from every individual input radar target. Since each MLP of a layer is equal and
consists of the same learned weights, the network examines all radar targets under
the same conditions. The max-pooling operation guarantees that the order of input
targets is irrelevant, as well as radar targets with identical information not having
a major impact on the feature extraction. In other words, regardless of the order,
max-pooling layer always extracts the same features, exactly those of maximum
value with respect to all n radar targets. Whenever identical input radar targets
occur more than once, it results in the same feature values for those radar targets.
Identical radar targets mean that the targets have exactly the same value in each
of the four dimensions. Since the maximum value of those global features is equal,
max-pooling extracts the corresponding feature solely one time. More information
and also a theoretical analysis on the max-pooling function is given in [QSMG17].

Radar PointNets++

Next up, the PointNet++ network architecture for radar object detection is described.
As proposed in [QYSG17], PointNet++ realizes a hierarchical network with density
adaptive PointNet layers. Figures 3.15 - 3.17 show all the elements of the PointNet++
architecture that are different to PointNet. Figure 3.15 visualizes the classification
network with an underlying PointNet++. The neuronal network consists of multiple
Set Abstraction (SA) Multi-Scale Grouping (MSG) layers and a final SA Single



60 Object Detection in Radar Data

C
la
ss

Sc
or
es

n×
4 1024 fc(256,128,k)

global features

Classification Network
R
ad

ar
T
ar
ge
ts

one-hot class

arg max
k

k
32×25648×192

sa ssg
sa msg

sa msg

np=48, r=[1,3]
ns=[8,32]
mlp=[[32,32,64],[64,64,128]]

np=32, r=[2,3]
ns=[16,32]
mlp=[[64,64,128],[64,64,128]]

r=inf
mlp=[128,256,1024]

Figure 3.15: Architecture of the classification PointNet++: The neuronal
network generates global features on the basis of the input radar
targets. The predicted ouput is the classification information
for the radar target list and is encoded in a one-hot class vector.

Scale Grouping (SSG) layer to generate global features. The MSG allows to capture
multi-scale patterns by extracting features from different scales and concatenate
them to a multi-scale feature. Thus, this layers basically contains several MLPs, but
primarily performs some grouping operations. Subsequently, the determination of
a predicted class is the same as in PointNet by forwarding the global features to
several FC layers and performing one-hot encoding which results in a class vector.

For the segmentation of radar targets, the network architecture that is illustrated
in Figure 3.16 is applied. In order to generate global features, the network extends
features extracted from classification unit with the resulting one-hot class vector.
Next, several feature propagation (FP) levels with fully connected layers aggregate
information to get target features for all input targets. In contrast to a SA layer, which
subsamples the input target set, the FP layer propagates features from downsampled
targets to the original radar targets. In comparison to PointNet architecture, the
FP layers replaces some of the MLPs, however within this layer there are again some
MLPs. Lastly, the network forwards all upsampled features to shared MLPs for
predicting the final object scores. The segmentation scores distinguish which target
belongs to the actual object. The network for residual center estimation is same as
in the PointNet version. Figure 3.13 shows the corresponding network architecture.

The architecture of the bounding box network is similar to the one for classification
purpose. Figure 3.17 shows the corresponding architecture. This neuronal network
only consists of SA layers with SSG instead of MSG. Nevertheless, the network
achieves hierarchical point set feature learning for the radar target, but the SSG
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accomplishes only single-scale grouping in each SA level. After generating all the
global features, the predicted classification information is attached to these and
the output of the FC layers supplies all the required parameters to construct the
ultimate 2D bounding box. That is the same procedure as in the PointNet version.
More information on PointNet++ and all the network architectures as well as the
differences between PointNet++ and PointNet is described in [QLW+18; QYSG17].

3.1.4 Training Process

The training procedure using deep learning is an optimization process, where pa-
rameters are optimized on the basis of a loss function. The training of the neuronal
networks in the radar object detection system follows the strategy to simultaneously
optimize all networks by applying multi-task learning [Car97]. The general idea of
this technique is to use one model, that includes multiple individual tasks, and to
train this model for parallel learning of multiple tasks while sharing the information
for all tasks. This means for the radar object detection system that the model must
learn how to detect objects in a radar target list. In order to successfully achieve this
goal, several small tasks have to be solved, which are introduced in this context as
classification, segmentation and the bounding box estimation module. Consequently,
the idea is to share what is learned for each task with the other task to learn better
for the overall goal, the complete object detection. This is a major advantage, which
is the reason why in this thesis multi-task learning is applied and not each module is
trained individually. For the realization of multi-task learning, a multi-task loss for
the optimization is required. In [QLW+18], a suitable multi-task loss optimization is
presented, which is also used in this thesis. In order to train all modules of the radar
object detector, the loss requires an extension for the patch classification. For this
purpose, an additional loss function for the classification part is added to the total
loss as presented in [QSMG17]. Mathematically, the multi-task loss is specified as

Lmulti−task = wclsLcls + wsegLseg + wbboxLbbox, (3.7)
Lbbox = Lc1−reg + Lc−reg + Lh−cls + Lh−reg+

Ls−cls + Ls−reg + wcornerLcorner,

where this loss combines several individual weighted losses by adding them together.
Altogether, the multi-task loss consists of three major parts, the loss for patch
classification, the loss for segmentation of a radar target list and the loss for bounding
box estimation. During the training process, the associated weighting parameters
w ∈ R allow to control the degree of optimization for the respective three main
modules. In Table 3.1 all parameters of the multi-task loss from Equation (3.7) are
listed and described. For optimizing the model parameters using this multi-task
loss, a higher weight increases the influence of the individual loss on the total loss.
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Loss Weight Description
Lcls wcls loss and weight for classification
Lseg wseg loss and weight for segmentation
Lbbox wbbox loss and weight for bounding box estimation
Lc1−reg − loss for residual center regression
Lc−reg − loss for center regression of the bounding box
Lh−cls − loss for classification of the bounding box heading
Lh−reg − loss for residuum estimation of the bounding box heading
Ls−cls − loss for classification of the bounding box size
Ls−reg − loss for residuum estimation of the bounding box size
Lcorner wcorner Loss and weight for corner estimation of the bounding box

Table 3.1: Multi-task loss parameters: Overview of all components and their
corresponding weights used in Equation (3.7) for the total loss.

Since a bounding box estimation is only useful if a region of interest is classified as
containing an object, the weight wbox is also used to control whether a bounding box
estimation is performed or not. Consequently, the weight is set to zero for clutter
patches, and it remains unaffected for a patch where an object is classified inside it.

The corner loss is a novel loss for regularization that is first suggested in [QLW+18]
for 3D bounding boxes estimation. Since the radar object detection system predicts
2D bounding boxes, the corner loss is modified and mathematically calculated by

Lcorner =
nS∑

s=1

nA∑
a=1

δsa min
{ 4∑

c=1
‖P sa

c − Pc‖,
4∑

c=1
‖P sa

c − P ∗c ‖

}
, (3.8)

where it ensures an optimized estimation of the 2D bounding box using the IoU
metric. The corners for a predicted box are calculated using the estimated center,
heading and size of the bounding box. Since these three parameters and the corners
depend on each other, the corner loss allows to regularize the multi-task training
for center, size and heading simultaneously. As described in [QLW+18], the corner
loss is the sum of all distances between the four corners of a predicted bounding box
and the ground truth box. For this purpose, the loss calculator constructs nS × nA

anchor boxes, where nS and nA are the number of size templates and angle bins,
respectively. In order to ensure that the constructed anchor boxes are comparable
to the predictions, these boxes are translated to the estimated bounding box center.
The corner of a predicted box is denoted with P sa

c , where s, a, c are the indices of size
and heading class, as well as a predefined order of the corners, accordingly. Moreover,
Pc denotes the corners of the ground truth box, and P ∗c the ones for the flipped
ground truth box. Determining the minimum of the distances between the predicted
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box and the ground truth box or between the predicted box and the flipped box
ground truth box, avoids a large penalty during optimization for a flipped heading
estimate. The function δsa is a mask that equals one for the ground truth size or
heading and zero otherwise. It selects the required distance term for the corner loss.

Another important aspect is the choice of the actual losses which used for implementa-
tion of the training. In this thesis, the training process uses the tasks for classification
and segmentation use softmax [Bis06] with cross-entropy loss [Mur12]. Whereas, the
regression tasks apply smooth-l1 loss [Hub64], also called huber loss. After defining
the loss function, the training process applies this loss for the optimization of all
PointNets using end-to-end training. In order to find optimal model parameters,
the training applies the Adam optimizer [KB15]. The Adam optimization algorithm
is an extension of the classical stochastic gradient descent to iteratively adapt the
weights of a neuronal network using training data. For the purpose of speeding up
the learning process, this thesis uses the Adam optimizer with an initial learning rate
and incremental learning rate decaying by half after a specific number of iterations.

A common technique for accelerating the whole training procedure, which is also
used in this thesis, is batch processing. This method takes advantage of the parallel
computing capability offered by GPUs. It involves simultaneously processing multiple
batches of training data, where every batch contains exactly one training sample.
The batch size depends on the amount of data, that is the cardinality of an observed
target list, the network architecture and the real memory of the installed GPU. Thus,
all these hyperparameters define the number of training samples to process before
updating the model parameters. Furthermore, the training procedure performs
batch normalization for all layers except the last classification and regression ones
to speed it up even more. In doing so, batch normalization uses an initial decay rate
which is gradually increased up to a fixed decay rate using momentum. Next, for
regularization purposes, drop out layers are used during training in the ultimate FCs
of the classification PointNets and in the last MLPs of the segmentation networks.

Another hyperparameter is the number of epochs which specifies how often a dataset
has to be passed through during the training. An epoch consists of multiple batches
and covers the event that every training sample is processed once. Then the model
parameters are updated according to the acquired knowledge. For monitoring and
assessment of the training, the current model parameters are analyzed after each
epoch by measuring the performance on validation data. In case that the model
performs poorly or the trained parameters tend to overfit, it is possible to react at
this point and adjust some design parameters. Eventually, training is stopped when
the observed metrics are no longer improving and the model is providing satisfactory
results on the validation dataset. Finally, the training freezes all parameters and the
optimized model for the radar object detector is ready to be evaluated on test data.
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3.1.5 Discussion

The radar object detector which is proposed in the previous sections is a system to
process a raw radar target list and detect objects of different classes. This method is
inspired on the idea of Frustum PointNets [QLW+18], which is an approach based on
PointNet [QSMG17] or PointNet++ [QYSG17] to perform object detection in lidar
data combined with information from a camera image. Comparing the pipeline of the
radar object detection system in Figure 3.2 with the Frustum PointNets for 3D object
detection [QLW+18], as well as the network architectures in Figures 3.10 - 3.17
with the PointNet [QSMG17] and PointNet++ [QYSG17] architectures, several
similarities can be observed. However, it must be emphasized that the goal of this
thesis is not to find a new type of network architecture for object detection, but to
propose a technique for detecting objects by directly processing a radar target list.

As already mentioned above, the motivation of this thesis consists of three main
aspects. Firstly, the detection system is intended to detect objects in radar data
exclusively, without combining information from any other source. This is a significant
difference to the method in [QLW+18], which extracts and combines information
from a camera image and lidar point clouds. Secondly, the radar object detector
must process the target list directly, without the need to transform the data into
another format. This is an important difference to methods existing in the literature,
which initially transform the radar targets into a fixed format, such as radar grid
maps, and then apply image processing algorithms to identify objects. And thirdly,
the radar object detection system has to be real-time capable, so that it can be
deployed on a real system for environment perception. Section 3.2.2 gives a definition
of real-time capability with respect to the radar object detector. The evaluation in
Section 5.1 demonstrates that the presented technique for object detection in radar
data is feasible and that it is also real-time capable. In conclusion, the proposed radar
object detection system combines, extends and adapts elements from established
methods in a sophisticated way to fulfill all these requirements. Consequently, all the
objectives are achieved and this approach is distinguishable from existing methods.

3.2 Implementation Details

The radar object detection system has to meet certain requirements. In order to
realize this complex system in a real system, some practical implementation details
are necessary. These are especially important when using real data or to ensure
real-time capability of the algorithm. Firstly, the detection system has to cope with
a varying number of radar targets which a sensor provides per measurement cycle.
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Secondly, the processing of all measurement cycles must be real-time capable. With
respect to this, the reduction of computational complexity is a remedy. Thirdly, in
real operation mode, the detection system only outputs hypotheses with a specific
confidence score, and it must be decided which ones should actually be processed
further. Finally, a reliable detection in real operation is indispensable. For this reason,
the detection system focuses on dynamic objects, as these can be well identified with
a radar sensor due to the occurring radial velocity. The following sections explain
all these challenges in more detail and propose a suitable solution for each of them.

3.2.1 Input Data

In theory, a PointNet principally allows an arbitrary number of input radar targets.
In case of the radar object detection system proposed in this thesis, there are two
situations where a varying number of radar targets occur and affect the processing
chain. In fact, each measurement cycle may consist of a different number of radar
reflections depending on the current environment. Since each radar target generates
an individual patch, the number of targets defines the quantity of input patches.
Furthermore, every patch may contain a different number of radar targets depending
on how many reflections are measured in this region of interest. One possible solution
is to perform object detection for one patch after the other. Then, the amount of
input radar targets is equal to the number of required iterations and the batch size
is the same for each iteration. This eliminates the problem of a varying radar targets
number per patch by nature, because only one radar target list is forwarded to
the network and the PointNet allows any number of targets by architecture design.
However, the sequential processing of all radar patches is computationally quite
expensive as the neuronal network is reinitialized before each execution. Another
and much more efficient method is to run the processing of all patches in parallel
by using multiple batches. In this case, the network architecture requires that all
batches comprise the same number of radar targets. Since one patch corresponds to
exactly one batch, the number of targets per patch varies quite a lot during the same
measurement cycle. But, this case practically never occurs. Thus, the radar target
list have to be adjusted into an appropriate data format to ensure that the input
dimensions of all the batches are equal without modifying the target representation.

With the intention of getting a representation that allows batch processing there are
two techniques: either downsampling or upsampling the input targets to the same
quantity. This means that for all regions of interest the number of radar targets has
to be fixed. It is necessary to remove or add targets within the patches to achieve this.
Removing radar reflections has the major drawback that the information of those
targets is lost and the neuronal network may extract worse features. In contrast,
when adding radar targets it is generally assumed that the extracted information is
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also falsified due to the fact that additional targets may generate new global features
or weight existing ones differently. But when using the PointNet architecture, it is
possible to upsample the input targets to any number without changing the extracted
features. This is comparable in its basic idea to padding methods in computer vision,
for example zero padding and reflection padding. The goal of the upsampling process
in the radar object detector is to increase the input radar target list to a specific
quantity to ensure that every patch consists of the same number of targets. There
are two techniques to make this happen. The first approach is to add radar targets
with zero information, which is a similar method to zero padding. For this purpose,
so many radar targets are synthetically created such that the desired number of
targets is achieved. The values for each dimension, that is spatial coordinates, radial
velocity and RCS, are set to zero. Such a radar target never occurs in reality, since
the radar sensor is located at position (0, 0). As a result, the upsampling generates a
new radar target which may affect the following feature extracting. The alternative
technique is to reproduce already existing radar targets. That approach is close
to reflection padding. Therefore, the method duplicates arbitrary radar targets
including their values in the respective dimension until the desired number of targets
is reached. Section 3.1.3 already discusses that the identical radar targets do not
have an influence during extracting global features, because of the preceding max
pooling layer as key element. In summary, reproduction of existing radar targets does
not affect the resulting features. Therefore, this is the best technique to obtain an
equal number of input radar targets for all patches, and hence, equally sized batches.

The reproduction technique is not only necessary for batch processing, but rather
for realizing the masking process during the segmentation process. The bounding
box estimation module only processes the m segmented object radar targets instead
of all n input targets. With the purpose to avoid a reallocation of GPU memory,
the implementation does not reduce the radar target list to size m. Instead, the
masking randomly replicates radar targets assigned to the object of interest as
long as the segmented radar target list comprises n reflections again. When the
batch size is one, it is possible to skip this step and simply select the radar targets
belonging to the object. But for batch processing, a fixed size of the target list
is necessary. Therefore, this masking implementation is recommended. However,
if batch processing is performed, the upsampling method is necessary to ensure a
fixed number of radar targets during the segmentation over all batches. As already
mentioned, the proposed technique to upsample radar targets does not affect any
global features, because always a max pooling layer is used for the feature extraction.
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3.2.2 Real-Time Capability

By definition, a technical system is real-time capable if it is able to reliably deliver
certain results within a predefined period of time. Thus, in case of the proposed
radar detection system, the requirement is that when radar reflections from a new
measurement cycle are received, the system must have completely finished processing
the previous measurements and the object detection result must be available. As a
consequence, the measuring frequency of the deployed radar sensor determines the
specific time interval which defines the real-time capability of the system. Section 4.1
presents the technical specifications of the radar sensor which is used in this thesis.
That sensor has a measurement interval of about 70ms to 80ms, which corresponds to
a frequency of 12− 15Hz. Accordingly, the object detection system has a maximum
time of 70ms for processing the entire measurement cycle. However, it has to be
considered that during this time also the decoding of input data from the sensor
must be finished. For this reason, it is recommended to budget a small time buffer.
Section 5.1 presents an expressive evaluation that investigates the calculation time
as well as the real-time capability of the radar detection system to clarify this issue.

With the aim to achieve a real-time capable radar object detection system for a real
application, two implementation tricks are applied. The first one realizes a parallel
processing of all patches to accelerate the entire object detection pipeline. After the
patch proposal module, all following components up to the object extraction are
independent of each other and may be performed in parallel. In this implementation
the calculation of dependent components, namely, the patch proposal and the object
extraction, is performed on the Central Processing Unit (CPU) and all others on
the GPU. Since a GPU is designed for parallel calculations, the idea is to perform
all independent modules simultaneously. The realization of this uses the advantages
of batch processing. Normally, only training of deep learning models applies batch
processing to speed up and parallelize the training iterations. Later in the application,
the inference uses this trained model for the prediction with a batch size of one. For
example in a camera application, the model is able to handle multiple images in the
training process, but during inference there is normally only one image available at
the same time. However, the special processing chain of the radar detection system
with independent patches in a measurement cycle enables batch processing during
training and inference. That means that multiple batches allow processing several
patches in parallel. Then, a question that arises is how to choose the batch size. In
this thesis the maximum number of radar targets per measurement cycle is sparse,
and comprises a maximum of 250 targets. This limitation is caused by the radar
sensor employed in this, which is introduced in Section 4.1, as this sensor does not
produce more targets per measurement cycle. Accordingly, the maximum number of
generated patches corresponds to this value, and thus the required batch size. For
better performance on the GPU a power of 2 should be chosen. As a result, the
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usage of such a radar sensor recommends a batch size of 256. Consequently, the
six additional batches are filled with dummy data, that is data in form of zeros or
through radar target duplication. Since the radar sensor does not guarantee a fixed
number of measured reflections, the missing batches are filled with dummy data
anyway. In summary, this reproduction technique ensures a constant batch size with
small effort over all the radar measurement cycles to allow parallel batch processing.

The second issue concerns the realization of the masking process in the segmentation
component. In order to grasp this, it is necessary to briefly explain the implementation
of the masking that is proposed in [QLW+18]. This method gathers object targets
according the predicted segmentation mask, more precisely the object scores which
predicts the segmentation PointNet. For this purpose, a loop randomly draws object
targets until the desired number of radar targets is reached. This implements a
method to increase targets randomly, where especially randomness is an important
characteristic during the training process. However, the number of loop iterations is
not deterministic, but depends on the input radar target list and the segmentation
result. During training this does not matter, because computing complexity is not a
critical factor. But in the application at inference, it is essential that the calculation
time is deterministic and especially constant. For this reason, in application mode
the masking algorithm is approximated such that the calculation time is almost fixed.
On that account the masking does not randomly sample radar targets according
to the predicted segmentation scores, but masks the object targets using a single
multiplication operation. Therefore, the segmentation mask is transformed to a
binary mask that enforces all scores greater than 0.5 to be corresponded to 1, all
other to 0. Next, this mask is multiplied with the input radar targets, which causes
all segmented targets to remain unchanged and get a value 0 in each dimension.
Consequently, the approximation maps all non-object radar targets to a dummy
target (0, 0, 0, 0) which is mathematically valid. However, this radar target never
occurs in practice, because the real radar sensor is exactly installed at the position
represented by this target. Due to the fact that no radar reflection with these values
occurs in the training dataset, the neural network will neither see this radar target
during the training nor extract corresponding features. As a consequence, that target
does not create any features in the bounding box estimation PointNet. Further, the
max pooling layer ensures that multiple occurrence of the dummy radar target do
not have any influence on the feature extraction. Hence, this is a valid approximation
technique which does not affect the final radar object detection result in any way.

All of these suggested techniques constitute an option to efficiently operate the radar
detection system in a real application. These methods are designed in such a way that
no restrictions are imposed on their usage. Nevertheless, for general evaluation the
batch size is set to one and the approximation during masking process is deactivated.
Consequently, no upsampling of the input radar target list is necessary, although it is
already shown that mathematically this does not affect the feature generation. With
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the focus to speed up the training process, the batch size will be as large as possible,
and therefore in training mode the proposed upsampling trick needs to be performed
to realize the usage of multiple batches during training. Where performing batch
processing and the approximation of the standard masking method are required to
ensure a real-time capable system with critical time constraints in operating mode.

3.2.3 Computational Complexity

An important objective to be achieved in the scope of this thesis is that the developed
radar object detection system successfully operates on a real-world system for
environment perception. Since the PointNet++ version of the object detector is
not real-time capable, only the architecture based on PointNet is deployed on the
experimental vehicle. In order to reduce the computational complexity, two tricks
are applied to approximate the required calculations in real operation. With the
purpose to reduce the number of arithmetic operations, the feature transformer in
the classification networks is deactivated. The comparison in Section 5.1.3 about
different ways of implementing transformer networks reveals that this approximation
only marginally deteriorates the overall detection results. Another technique to
tremendously reduce the computational complexity is switching to a half precision
floating point format, also called float16 or FP16. Instead of performing all calculation
with a single precision floating point format, also named float32 or FP32 as it
occupies 32 bits in the computer memory, the neuronal networks only perform
16 bits calculations. The approximation results in a noticeable acceleration of all
networks, but still provides sufficient accuracy. Although Section 5.1 does not present
a direct comparison of the different number formats, this statement is confirmed by
successful application on a real experimental vehicle in automated operation mode.

3.2.4 Object Extraction

The output of the radar object detection system is one hypothesis for each object
comprising a 2D amodal bounding box and a confidence score for each of them. Since
this score can be interpreted as detection probability, it is applicable for filtering the
object hypotheses. For every object detection, the final score is determined using
Equation (3.5), which combines the confidences for classification, segmentation and
bounding box estimation. Then, the object extraction filters all hypotheses in such
a way that only detections are output whose confidence score exceeds an application
specific threshold. In practical operation, this allows to control whether more reliable
predictions or rather uncertain ones are to be considered for further processing.
While a higher threshold results in more reliable predictions, the detector produces
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less false positives (FP), but more frequently true positives (TP) may be lost. In
contrast, a lower threshold value means that more TP are preserved, however, it
generates more FP. Finally, it is a decision depending on the actual application field.

3.2.5 Dynamic Objects

The radar object detection system proposed in this thesis has one key characteristic,
in fact, it is just able to detect dynamic objects, or more precisely, objects in motion.
However, this is not caused by the developed design of the object detector itself, but
rather due to the quality of input radar data. The employed sensor delivers with
a maximum number of 250 radar targets relatively few radar reflections. However,
automotive radar sensor are mainly good at measuring reflections from moving
objects by exploiting the Doppler effect. As described in [WHLS15], for measuring
multiple radar targets, the sensor requires a suitable separation capability in at
least one of the dimensions distance, azimuth angle and relative velocity. In general,
particular importance is attached to separability at distance and radial velocity.
In the case of stationary objects, the separability via radial velocity cannot be
performed. Consequently, azimuth angle and range can be used for the separability
and the number of radar targets depends only on the extent of the object. However,
as soon as objects move, another dimension for separability is available in the form
of radial velocities. Furthermore, various Doppler effects occur on real objects, for
example on tires of vehicles, on pedals of bikes or on arms and legs of pedestrians.
That produces more peaks in the measured spectrum, and as a result more radar
reflections are measurable per object. This argument again indicates quite distinctly
what a strong feature the radial velocity represents for object detection. Altogether,
these circumstances lead to the fact that without a sensor fusion and without a
merging of several radar measurement cycles, a detection of stationary objects is not
realistic, respectively not possible at all. Accordingly, this thesis exclusively aims at
the detection of dynamic objects which are in motion. Nevertheless, it is possible
to model stationary objects in the environment perception by using a multi-object
tracking algorithm with a corresponding motion model, but under the condition that
these objects are moving beforehand and the radar object detector recognizes them.

3.3 Radar Object Tracking

The detection of objects is an essential step for environment perception, but for
a robust object recognition, it is advisable to track these object hypotheses over
time. One common approach to achieve this are multi-object tracking methods, that



72 Object Detection in Radar Data

iteratively process measurement information obtained from objects in the surrounding.
As already described in Section 2.3, an object tracking algorithm performs two basic
tasks, the prediction and the update step. As a consequence, there are two options
for improving the overall tracking result, either enhance the prediction technique or
improve the update method. For a more accurate prediction, the challenge is to find
a way to more realistically model the motion of objects between two observed time
intervals. Therefore, [DGD18] proposes an extension for modeling vehicle interaction
with respect to its static and dynamic environment during the prediction step of a
standard Labeled Multi-Bernoulli (LMB) filter resulting in an enhanced prediction,
and finally, this yields to an overall improved multi-object tracking performance.

In order to improve the update results, there are basically two approaches. Either
to optimize the update calculation technique itself, or simply to provide more
accurate observations as input data. This is a valid argumentation, since the further
development of the sensor’s technology improves the quality of measurements, but it
is not necessarily granted that existing algorithms are able to handle this amount of
data directly. Especially in the case of radar sensors, modern automotive sensors
have a much higher resolution, and therefore provide much more information per
measurement cycle. This thesis presents in Section 3.1 a novel object detection
system to process high-resolution radar data with radar object hypotheses as an
output, one for each detected object. Consequently, the second option is chosen and
the tracking algorithm is enhanced by using improved object detections. Therefore,
the predicted radar object detection results are forwarded into a multi-object tracking
system, an LMB filter, as measurement input. Overall, the enhanced radar object
observations are expected to provide much better multi-object tracking performance.

This section covers the topic of how the output of the presented radar object detection
system can be processed in a multi-object tracking algorithm. For this purpose, a
measurement model is proposed to incorporate the radar object detections, hence the
bounding boxes after the object extraction, into the update step of an LMB filter.

Modeling Radar Objects

The radar object detection system proposed in Section 3.1 provides at most one radar
object hypothesis for each object after the object extraction, thus as explained in
Section 3.1.2 the output after the NMS. Since this is a prerequisite for the LMB filter,
it can be used for multi-object tracking. Therefore, the tracking algorithm requires
a measurement model to correct all predicted tracks based on these observations.

In addition to a tracking of the dynamic object state, the LMB filter is capable of
estimating the static extent of an object[Reu14]. For this purpose, the state vector
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from Equation (2.2) is extended by the length and the width of a track to become

xT = [x, y, θ, v, ω, l, w], (3.9)

where x and y is the center position and θ the heading, v is the velocity and ω the
yawrate, as well as, the length l and width w of the track. However, the output
of the radar object detection system is a set of classified 2D bounding boxes, each
representing one object detection belonging to a different object. In order to represent
a single measurement, the measurement vector from Equation (2.3) is adjusted to

zT = [x, y, θ, l, w], (3.10)

where the vector includes the center position (x, y), the heading angle θ as well as
the length l and the width w of a detected object. A comparison between state and
measurement components reveals that the employed radar object detector is not able
to directly measure all state components. However, to still obtain an estimate for each
object state, a suitable motion model must be used. This thesis uses a Constant Turn
Rate and Velocity (CTRV) model [SRW08] when processing radar object detections.
Then, the LMB filter is able to reliably estimate the unknown states, because these
can be derived from the measurable states. In this case, the velocity is derivable from
the position measurements and the yaw rate from the heading angle measurements.
An important step during the measurement update step is to calculate the residual
between the actual measurement and the predicted measurement. In order to get
the predicted measurement, the components for position, heading angle, length and
width have to be extracted from the predicted object state. Eventually, it is possible
to correct the prediction for a track which spatial distribution is represented by a
Gaussian Mixture (GM). In other words, this measurement model allows to forward
object detections generated from sparse radar target lists by the radar detection
system proposed in this thesis into an LMB filter for tracking multiple objects.





Chapter 4

Radar Data

The last chapter deals with the entire radar object detection system itself to find
objects of different classes in radar data. In contrast, this chapter covers the input of
the proposed radar object detector, the radar data. Section 2.1.1 presents the signal
processing of an automotive radar sensor and already describes that the introduced
detection system of this thesis processes radar targets with the goal to generate
object hypotheses based on multiple reflections. Therefore, radar data is required in
the target format explained above to ensure an appropriate training and testing of
the object detection system. For a detailed evaluation of the detector, this thesis
examines detection results based on radar data at a target level from various origins.

This thesis has two objectives regarding the proposed radar object detection system.
Firstly, the radar object detector needs to operate on a real system. For this purpose,
the autonomous experimental vehicle of Ulm University [KNW+15], that is equipped
with multiple high-resolution automotive radar sensors, is used as test platform.
Secondly, to ensure that this approach is not limited on a particular platform or on
radar data from a specific radar sensor, the object detection system is also evaluated
on publicly accessible radar datasets. In order to address and evaluate both of these
issues, appropriate radar data are required, which must be preprocessed accordingly.

Initially, Section 4.1 introduces the radar sensor which is deployed in the experimental
platform, the vehicle of Ulm University. Section 4.2 discusses different datasets with
radar data. However, not all of them are open to the public, and therefore only the
accessible datasets are discussed in detail. One important outcome may already be
anticipated, in fact that the publicly available radar datasets are not suitable to train
models which are applicable on the real experimental platform. For that reason, this
thesis introduces a self-generated dataset based on radar data which is delivered
from the radar sensor described in Section 4.1 and collected using the experimental
vehicle. Since datasets is an important topic when using deep learning, all datasets
used in the evaluation are discussed in detail, especially the self-generated dataset.
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(a) Experimental vehicle of Ulm University. (b) ARS 408-21 long range radar sensor.

Figure 4.1: Radar setup: Three radar sensors facing forward are mounted
on the experimental vehicle. This setup ensures an excellent
sensor coverage of the vehicle’s front area with an overlapping
FOV at near range and a complementary FOV at the far range.

4.1 Radar Sensor

The experimental vehicle of Ulm University [KNW+15] is a Mercedes E-Class
S212 equipped with different automotive sensors, for example, camera, lidar and
radar sensors. Figure 4.1 shows the front view of this vehicle with all installed
radar sensors, as well as a close-up view of a single radar sensor. In this thesis, three
radar sensors are deployed, which are mounted on the front left, center and right of
the experimental vehicle. The utilized automotive radar sensor is an ARS 408-21
Long Range Radar Sensor 77GHz Premium [Con] of the Continental Engineering
Services GmbH company. The ARS 408-21 is a very robust sensor that operates
in the frequency band of 76 − 77GHz to measure distance and radial velocity of
objects based on Frequency Modulated Continuous Wave (FMCW) with very fast
ramps. Moreover, it uses Digital Beam Forming with a total of 24 antenna channels,
where in the near field as well as in the far field it applies 2 antennas for sending and
6 antennas for receiving the signals. The radar sensor has two modes to measure
reflections, one for the near range and the other for the far range. Table 4.1 gives an
overview of all important sensor properties. The ARS 408-21 radar sensor provides
for both modes measurements in a time period of approximately 72ms. Since the
sensor is connected via Controller Area Network (CAN) interface, it is limited in the
amount of data that can be sent using CAN messages in this time interval. More
information about the ARS 408-21 radar sensor is provided in [Con]. In summary, the
ARS 408-21 is a high-resolution automotive radar sensor that provides measurements
at short time intervals and generates multiple radar targets for a single real object.
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Property Mode Performance
distance range
at opening angle

near range up to 20m at ±60°
up to 70m at ±45°

far range up to 150m at ±9°
up to 250m at ±4°

distance resolution
with accuracy

near range 0.39m± 0.10m
far range 1.79m± 0.40m

azimuth angle resolution
with accuracy
at opening angle

near range 3.2°± 0.3° at 0°
4.5°± 1.0° at ±45°
12.3°± 5.0° at ±60°

far range 1.6°± 0.1°
velocity range both ranges −400km/h to +200km/h
velocity resolution
with accuracy

near range 0.43km/h± 0.1km/h
far range 0.37km/h± 0.1km/h

Table 4.1: Radar sensor data: Overview of properties and data about the
ARS 408-21 high-resolution automotive long range radar sensor.

After discussing the hardware specifications, the setting options of the radar sensor
with respect to its software are explained. The ARS 408-21 sensor offers numerous
options and parameters for configuring its behavior, for example, the transmitted
radar power, the sensitivity or the usage of filtering methods. Furthermore, the sensor
supports two different types of output, the cluster list and the object list. Firstly,
the radar sensor generates clusters based on the signal reflection. A cluster consists
of spatial position, radial velocity and RCS value. With reference to the signal
processing chain presented in Figure 2.1, the cluster list corresponds to radar targets.
Depending on the output configuration, the sensor sends a maximum number of 250
clusters or 125 clusters with additional quality information for each cluster. This
extra message contains details such as standard deviation, false alarm probability, the
cluster state and the ambiguity state of the radial velocity measurement. Secondly,
the sensor produces a list of objects including their history. This means that multiple
radar reflections are clustered to the same object and then are tracked over time.
Under consideration of the signal processing chain, the sensor clusters multiple radar
targets to object hypotheses and performs an object tracking. This thesis proposes
an algorithm for object detection, that is the generation of object hypotheses, which
are forwarded into a multi-object tracking system. Consequently, the radar sensor is
configured to output the cluster list including radar targets. Since the radar object
detection system performs much better when the input radar target list is dense, the
sensor is configured to generate up to 250 radar targets in each measurement cycle.
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An ego motion compensation is required for further processing of measured radar
targets. In order to determine the ego motion, the experimental vehicle is equipped
with an Automotive Dynamic Motion Analyzer (ADMA) of the company GeneSys
Elektronik GmbH. This system combines an Inertial Measurement Unit (IMU) and
a Differential Global Positioning System (DGPS) that provides measurements for
acceleration and yaw rate at a rate of 50Hz. The ADMA determines the vehicle’s
ego motion at any time. In order to compensate the resulting ego motion part from
the measured radar targets, a preprocessing software module is implemented. This
ego motion compensation is done immediately after decoding the CAN messages.

4.2 Datasets

In order to use the radar object detection system proposed in Section 3.1, suitable
radar data is required. The training, application and evaluation of the radar object
detector is based on different datasets. Firstly, this section discusses some radar
datasets in literature and presents two publicly available datasets in detail. Since
none of these datasets are fully qualified, a proprietary radar dataset is developed.

The literature study in Section 3.1.2 shows that some approaches for object recogni-
tion based on radar data already exist. In order to evaluate the proposed methods,
radar datasets are necessary. But unfortunately, most of them are not publicly avail-
able what makes it impossible to reconstruct the results. In [SHDW18a], semantic
segmentation is performed on radar targets. The used dataset [SHS+21a; SHS+21b]
contains real-world radar data collected from multiple 77GHz sensors. Another radar
dataset in literature is the one utilized [PDKG20] for road user detection. The radar
data is recorded in an urban environment using a radar sensor, which is of the same
series as the one described in Section 4.1 above. The annotation of the collected
radar data is automatically performed on the basis of a camera detection system.
Presumably, the effect is that not all objects are accurately or correctly labeled.
Moreover, the resulting dataset is not publicly available at the time of this thesis.

This thesis also utilizes a radar dataset that is not yet publicly accessible, but the
proposed technique for object detection in radar data is also evaluated on two public
datasets. Thus, it is possible for anyone to reproduce all the results presented in
this thesis. Henceforth, the focus is on the datasets that are used for evaluating the
proposed radar object detector, which in total are three. Section 4.2.1 presents the
Astyx HiRes2019 dataset and Section 4.2.2 introduces the nuScenes dataset, which
are both publicly available. Section 4.2.3 discusses the internal Radar Dataset, which
is created as it turned out that the other two are not ideal for this thesis to develop
a radar object detection system that can be deployed in a real-world application.
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Dataset Preparation

In order to forward the radar data into the object detection system proposed in
Section 3.1, data must be available in a specific format. Firstly, the input radar data
has to be a set of targets comprising the spatial position in form of (x, y)-coordinates,
the ego motion compensated radial velocity ṽr and the RCS value σ of a radar target.
In case that the radar sensor described in Section 4.1 or a different sensor which
also provides that data, is used, the corresponding values are simply transferred.
Otherwise, a method for mapping the sensor data to the appropriate data format
is necessary. Secondly, for a faster training process of the object detection model,
it is advisable to divide the complete dataset into patches in advance. The reason
is that the training process of respective PointNets for classification, segmentation
and bounding box estimation is solely based on preprocessed patches. Accordingly,
the patch proposal and object extraction module of the detection system are rather
detached modules regarding the training, and do not have to be considered in this
stage. Therefore, the dataset preparation performs the patch proposal on the entire
dataset and then stores all patches for the subsequent training process. Consequently,
the prepared dataset does not consist of radar targets from a complete measurement
cycle, but rather it contains separate patches including a smaller radar target list.

The patch proposal utilizes various parameters to generate patches from the original
radar target list. An important parameter is the patch size, because it may have a
significant impact on the detection result of a considered patch. Another possibility
to control the patch generation is the decision whether a patch is valid or not. One
option is the number of radar targets that determines if a patch is applicable. This
can be either the total amount of targets inside a patch or the number of reflections
belonging to the object of interest itself. There are other approaches on how to handle
the patch generation, but this thesis restricts them to the patch size and number of
radar targets. During this process, a patch is accepted as valid, when a minimum
number of targets belonging to the classified object are present in that region. The
choice of patch proposal parameters for the dataset generation process is heuristic.
In order to detect objects in a patch, it is a basic requirement that a patch completely
encloses the object of interest. As a consequence, the patch size depends strongly on
the objects existing in the dataset. However, for a comparison of the detection results
on different datasets, the patch size is the same for all datasets used in this thesis.
Therefore, Section 5.1 conducts a brief investigation based on a subset of the Radar
Dataset introduced in Section 4.2.3 below. The experiment reveals that a patch size
of 22 shows the best performance considering various metrics. Furthermore, the
minimum number of radar targets which belong to the classified instance of a patch
is 2. This means, for an object patch at least two radar target must be assigned
to the object of interest to make the patch valid. In case of clutter patches, there
must be one other clutter reflection present in addition to the center target. There is
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another restriction for patches belonging to an objects. It may happen that an object
of interest is not completely present in a patch, because it is too large or is located
at the edge of the sensor’s FOV. Since such objects do not necessarily contribute
positively to the training process, all patches where less than 25% of the object’s
bounding box is contained within the patch are sorted out. In total, the patch
proposal generates an individual patch for every radar target in the measured target
list. Since most of them are reflections not belonging to any object, clutter patches
prevail in the resulting dataset. All in all, there are sufficient clutter reflections
per measurement cycle, and due to fact that many of them appear similar, some of
them may be neglected. Consequently, this requires a technique for data balancing
solely at the expense of clutter reflections, or more precisely, patches classified as
clutter. The patch proposal processes all radar targets one by one, starting from
the close ones to the more distant ones. A simple method is to count the number
of generated patches per class and discard a clutter patch if it exceeds the number
of object patches. The problem is that since the radar target list is systematically
looped, clutter patches are methodically dropped. That is why a random factor is
introduced, that controls the discarding process of clutter patches. When generating
a patch of the clutter category, the proposed technique checks two conditions: Firstly,
the patch remains if the total number of object patches is greater than the number
of clutter patches. Secondly, a pseudo-random generator draws a number in the
semi-open range [0.0, 1.0). In case that the random number is greater than a value
of 0.1, the clutter patch is discarded. This method ensures a balanced dataset with
regard to the ratio between object and clutter patches. The random factor does not
guarantee a 50/50 split, but still one that is close to it. Further, this technique does
not control the ratio of respective object classes among each other, but it assures
that the prepared data includes all labeled objects which are suitable for a training.

In order to identify model parameters for a neuronal network, different datasets are
essential. Therefore, the complete dataset is divided into three parts, the training
and validation dataset during the training process, and the testing dataset for
evaluation purposes. The training process described in Section 3.1.4 optimizes the
initial parameter set based on backpropagation over several epochs and evaluates
them on the validation dataset. The training is stopped when the trained model
performs well and the results on that dataset do not improve any more. Furthermore,
during training of the neuronal network, it is a common practice to vary the model’s
hyperparameters. For fixing these parameters, the validation process compares
different results based on the validation dataset and selects the best parameter set.
The last step is to show the generalization ability of the finalized model. This is done
by applying the model to a dataset containing unseen samples that are independent
of the training and validation data, the testing dataset. Since data for training
and validation is only available in patches so far, the evaluation can only measure
the performance of the model on individual patches, but not for the entire radar
object detection system. This requires another testing dataset that contains labels of
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complete radar frames, instead of selected patches from different measurement cycles.
For this purpose, the patch proposal prepares the radar data in such a way that
extracted patches still can be associated with the individual measurement cycle. This
allows to consider the radar data frame by frame, so that it is possible to generate a
result with respect to a radar frame. After the object extraction using all patches
of a radar frame, the detection result for the whole measurement cycle is obtained.
Since the training dataset only contains samples with at least two radar targets
belonging to the object of interest or clutter class, this restriction still holds when
generating the testing dataset with all radar frames. In contrast, when generating
the test data comprising full radar frames, the constraint that 75% of the object’s
bounding box must be included in the patch, is discarded. This means that all
objects which generate at least two radar reflections are present in the final testing
dataset. In summary, the described data preparation results in four datasets, two for
the training process and two for evaluation purposes. The training and validation
datasets solely contain extracted patches and are balanced in regard to object and
clutter patches. Both testing datasets are based on the same data, but have different
application fields. The patchwise dataset is similar to the training and the validation
data, thus, it comprises selected patches to ensure data balancing. The objective
of that dataset is to evaluate the classification, segmentation and bounding box
estimation module of the radar object detector. Whereas the evaluation goal on
the test dataset with full radar frames is to demonstrate the capability of object
detection in a radar target list. Accordingly, this dataset is used to supply testing
results of the complete object detection system for each radar measurement cycle.

4.2.1 Astyx HiRes2019 Dataset

The Astyx HiRes2019 dataset [MK19a] is a dataset with focus on high-resolution
radar data. For this purpose, a proprietary radar sensor, the Astyx 6455 HiRes
radar, is deployed. This sensor produces data on a target level, and is even capable
of generating spatial information in three dimension. Hence, the resulting output is
a radar target list with (x, y, z)-coordinates, radial velocity and the magnitude of
the reflection that is convertible to an RCS value. In order to generate ground truth
data, a semi-automatic labeling process based on measurements of a radar, lidar and
camera sensor, is performed [MK19a]. This results in 3D object labels containing
position, rotation, size in all dimensions, and class information with the distinction of
seven classes, occlusion indicator and uncertainty information for position and extent
of an object. Although the semi-automatic labeling workflow enables a rather fast
labeling, the entire dataset only comprises slightly over 500 measurements frames.
That is a small amount of data and is practically not suitable for the application of
deep learning methods. Moreover, this radar dataset has a tremendous disadvantage:
the measured radial velocities are not ego motion compensated and to complicate
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matters no ego motion is provided. For the usability of radar data that is actually
an exclusion criterion. Nevertheless, as there are almost no public radar datasets
available, this thesis examines that dataset anyway. This includes a training and
evaluation of a model for object detection. However, the results are not considered
to be representative compared to the performance based on the internal radar data.

The high-resolution radar sensor that is employed to record the raw data for the
Astyx dataset is a completely different one compared to the sensor introduced in
this thesis. Hence, the measured radar target list does not match the expected data
format which is defined for the object detection system. As a consequence, the
target list of radar frames from the Astyx dataset needs to be converted accordingly.
The problem formulation in Section 3.1.1 requires that the input is a set of four-
dimensional radar targets comprising 2D spatial coordinates, radial velocity and
RCS value. For this reason, the spatial information is projected onto the flat world
by cutting the z-component of the position. Despite the measured amplitudes
of radar reflections being different compared to the RCS values, the amplitude
represents a similar property and may remain unchanged. As already stated, the
velocity data is a problem as no ego motion compensation is performed. Due to
the fact that no ego motion information exists, the compensation cannot be done
retroactively. Consequently, the radial velocity values remain unchanged as well.
This is a significant issue, because without ego motion compensation of the measured
radial velocities, the object detection depends on the ego motion. However, knowing
that this may have a drastic effect on the performance of the radar object detector,
the original radial velocities are retained and an evaluation is performed nonetheless.

The Astyx dataset comprises labeled data of relatively few radar frames, but it is
advantageous that the Astyx 6455 HiRes sensor is able to measure a lot of radar
targets in a single measurement cycle. Table 4.2 shows the full statistics of this
dataset including the number of labeled instances and the patch distribution over
all object classes. Although the total number of radar frames is small, the patch
proposal generates a large amount of patches, because a measurement cycle contains
many individual radar targets. The average number of radar targets as well as
the minimum and maximum targets per frame confirm this fact. Furthermore, the
average number of reflections in a patch, and also the radar targets reflected from
an object, is quite high. Basically, these are very favorable circumstances for object
detection, but even the large number of radar targets in a measurement does not
compensate the lack of ego motion information. The evaluation of the radar object
detector on the Astyx dataset in Section 5.1.3 reaffirms this anticipated statement.

In order to get an impression of the data, some selected examples of radar frames
are discussed hereinafter. Figure 4.2 visualizes a few parts of radar target lists from
six different measurement cycles that are recorded in an urban environment. For the
purpose of demonstrating the importance of missing ego motion information, the
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Criterion Class Training Validation Testing (Frames)
dataset distribution frames 70% 15% 15%

386 80 80
patches 182659 33521 33625 (144530)

labeled instances object 2100 486 493
car 1967 454 451
truck 106 32 22
bike 1 0 12
pedestrian 26 0 8

patch distribution object 57.8% 62.8% 63.1% (14.7%)
105564 21056 21231

clutter 42.2% 37.2% 36.9% (85.3%)
77095 12465 12394 (123299)

car 46.8% 53.7% 52.8% (12.3%)
85498 17996 17747

truck 10.7% 9.1% 9.5% (2.2%)
19605 3060 3209

bike 0.0% 0.0% 0.6% (0.1%)
15 0 207

pedestrian 0.2% 0.0% 0.2% (0.0%)
446 0 68

average targets frame 2316 1842 1807
patch 514 297 398 (399)
object 146 88 105
car 78 66 72
truck 447 215 298
bike − − 19
pedestrian 27 − 13

minimum and frame 320/9432 557/2594 299/8501
maximum targets patch 2/3328 2/1243 2/2172 (2/2176)

object 2/1272 2/605 2/633
car 2/310 2/185 2/259
truck 6/1272 16/605 5/633
bike −/− −/− 4/24
pedestrian 3/52 −/− 2/23

Table 4.2: The Astyx dataset: All statistics on the radar dataset considering
frames and patches, as well as instance information. For training
and validation a balanced dataset is available, but for testing
there is patch data and a dataset that contains complete frames.
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Figure 4.2: Impressions from the Astyx dataset: Exemplary radar target
lists taken from some urban scenarios. On the left side, the ego
vehicle is standing still, whereas on the right side, it is in motion.
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ego vehicle is stationary in three examples and in motion for the other three. Even
though the plots only depict excerpts of the target list, the examples illustrate the
abundance of radar targets per measurement cycle. A closer look at the shown data
reveals that the radial velocities of some radar targets are not meaningful. In general,
the direction of radial velocities is such that the value is positive for objects moving
away from the sensor and negative for approaching objects. Since the Astyx dataset
does not perform an ego motion compensation, this is only recognizable for dynamic
objects when the ego vehicle is stationary. In Figure 4.2, the first and third examples
on the left side reveal that this property is violated. But even if the ego vehicle is
moving, the corrupted radial velocity data is still visible when looking at stationary
radar targets. Considering the fact that when the ego vehicle moves forward, the
radial velocity values of stationary radar reflections must all point towards the sensor.
However, the second sample on the right side in Figure 4.2 shows that almost all
radar targets point away from the sensor, even though the vehicle actually moves in
a forward direction. A closer examination of the radial velocity values discloses that
over the entire Astyx dataset, the minimum and maximum radial velocity values are
vr,min = −5.12m/s and vr,max = 5.20m/s, respectively. This is equivalent to a radial
velocity that does not even reach 20km/h, which absolutely does not make sense
when reviewing all scenarios in the dataset. An assumption that may explain these
values is, that some kind of arithmetic overflow exists in the radial velocity values.
This means that as soon as a certain value is exceeded, for instance vr = 5.5m/s,
the next value, for example vr = 5.6m/s, is mapped into the negative numerical
range, thus vr = −5.6m/s in this case. This assumption has not been proven within
the scope of this thesis, but remains unresolved as a hypothesis. Since this thesis
does not focus on solving the problem of corrupted radial velocity values, these
deficiencies must be accepted when processing radar data from the Astyx dataset.

In summary, the Astyx dataset only contains a limited number of radar frames, but
each measurement cycle comprises a large amount of radar targets. Unfortunately,
the radial velocity in this dataset is not ego motion compensated, and in addition
the radial velocities do not behave as typically expected from radar reflections. In
principle, it is possible to forward the radar data into the proposed object detector,
but no substantial results are expected and moreover, these must be treated with
caution. However, this thesis evaluates the radar object detection system on the
Astyx data, just for the sake of completeness. In other words, the evaluation in
Section 5.1.3 presents all obtained results, but it is not interpreted in any detail.

4.2.2 NuScenes Dataset

The nuScenes dataset [CBL+19] is a public dataset focusing on data for autonomous
driving. The dataset includes thousands of scenarios with dense traffic recorded
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in the cities of Boston and Singapore. Each of the manually selected scenes has a
length of 20s and comprises various driving maneuvers of different locations, weather
conditions and vehicle types. Apart from a huge amount of camera and lidar data,
the nuScenes dataset also contains 40000 labeled frames with 1400000 radar sweeps
and 1400000 object bounding boxes. For data collection, the experimental vehicle is
equipped with six camera sensors, one spinning lidar sensor on top of the vehicle’s
roof, five radar sensors and a IMU to measure the ego motion information. For this
thesis the radar data generated by the radar sensor is of particular interest, where
three sensors are installed at the vehicle’s front and two at the rear. In addition to
the fact that the nuScenes dataset actually contains radar data, the sensor deployed
is indeed the same model as used in this thesis, namely, the Continental ARS 408-21
long range radar sensor. However, the radar data of the nuScenes dataset differs
slightly from the data in this thesis, which has a significant impact on the resulting
target lists. Section 4.1 already discusses that it is possible to configure the ARS
408-21 radar sensor in different ways, either the sensor outputs 250 radar targets
or only half of them, but with additional quality information. The radar sensors of
the experimental vehicles operating in nuScenes for data collection are configured
to generate only 125 radar reflections with extra information on each measured
target. Besides the spatial position, radial velocity and RCS value per radar target,
this quality information provides the standard deviation of all measured variables.
Further, it includes details about the validity state of a radar target, the ambiguity
state of the radial velocity and a false alarm probability for each measured target.
All this additional information allows filtering the radar targets according to certain
criteria, such that the resulting target list includes higher quality measurements.
Basically, the radar data comprises exactly the same information as intended for the
object detection system, but the target lists are significantly sparser due to half the
number of measured radar reflections, which makes object detection more difficult.

The open source nuScenes devkit [Mot] implements functions to extract all data
from the nuScenes dataset in a convenient way, but also to filter the target lists with
respect to certain criteria. In case of radar data, the filtering is based on the quality
information generated by the sensor. For comparison to the radar dataset which
is introduced in Section 4.2.3, the radar data preparation module deactivates all
these filter options. This means, even if the sensor rates a measurement as invalid,
the radar target is still added to the output target list. Nevertheless, this results
in a radar target list with a maximum of 125 reflections per measurement cycle or
in the jargon of the nuScenes dataset, in one radar sweep. Table 4.3 displays the
full statistics on the nuScenes radar dataset after the described data preparation
process. One outstanding advantage is that an extremely large number of objects are
labeled in the dataset. However, a disadvantage that complicates object detection is
the sparse radar target list in a frame or in the extracted patch. The presumption
is that the capability of object detection solely on radar data is difficult, but not
impossible. Despite this fact, the nuScenes dataset is excellent for a generally
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Criterion Class Training Validation Testing (Frames)
dataset distribution frames 65% 17% 18%

42703 11388 11723
patches 509775 130956 134489 (1174700)

labeled instances object 75509 18777 20464
car 49611 12690 14463
truck 22610 5469 5288
bike 663 149 183
pedestrian 2625 469 530

patch distribution object 52.9% 51.9% 51.7% (5.9)%
269826 67975 69558 (69893)

clutter 47.1% 48.1% 48.3% (94.1)%
239949 62981 64931 (1104807)

car 28.6% 28.2% 30.6% (3.5)%
145565 36876 41173 (41054)

truck 23.0% 22.7% 20.0% (2.3)%
117070 29760 26820 (27274)

bike 0.3% 0.2% 0.3% (0.0)%
1492 327 421

pedestrian 1.1% 0.8% 0.9% (0.0)%
5699 1012 1144

average targets frame 109 111 113 (107)
patch 15 16 15 (14)
object 5 5 5
car 3 3 3
truck 7 8 7
bike 2 2 3
pedestrian 2 2 2

minimum and frame 2/125 3/125 4/125 (3/125)
maximum targets patch 2/75 2/69 2/60 (2/61)

object 2/29 2/30 2/40
car 2/25 2/22 2/18
truck 2/29 2/30 2/40
bike 2/6 2/4 2/7
pedestrian 2/8 2/8 2/6

Table 4.3: The nuScenes dataset: All statistics on the radar dataset consid-
ering frames and patches, plus instance information. For training
and validation the balanced patch data is sufficient, but during
testing data with single patches and also complete frames exists.
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Figure 4.3: Impressions from the nuScenes dataset: Examples of different
radar target lists that are measured in an urban environment.
In most of the samples, the objects only generate very few radar
reflections, even though the objects are quite close to the sensor.
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applicable evaluation, because this data is publicly available, and thus, the results
are reproducible. Section 5.1.3 demonstrates the performance of the radar object
detection system based on nuScenes data, where the results on individual patches are
considered as well as the overall object detection ability on complete radar frames.

The nuScenes dataset comprises labeled radar targets from lots of different traffic
scenarios in an urban environment. Figure 4.3 shows a small selection of these
scenes with fewer or more traffic participants in the situation, and some of them in
rainy weather conditions. The examples on the left side demonstrate the quantity
of labeled objects, as well as the occurrence of different classes. However, all of
the selected samples illustrate the sparse number of radar reflections belonging to
an object. The example at the bottom left, in which a high number of objects are
present in the scene, emphasizes this fact. Most of the vehicles still generate radar
measurements but not enough for a reliable bounding box estimation. Further, it can
be observed that there are several pedestrians in the scenes, however not even one
radar target is assigned to them, which makes object detection impossible. Another
surprising aspect of this sample is that objects hardly contain any radar targets, but
a relatively large number of clutter reflections are present in that target list. This
is especially astonishing, because a radar is supposed to recognize moving targets
better due to the additional radial velocity information. One more conspicuous
observation is that the measuring sensor provides only few radar targets even for
objects that are very close to the ego vehicle. Especially, the example at the bottom
right side reveals this, where despite a good location of the object to the radar sensor,
it still produces merely two reflections. Needless to say that this is not the situation
in all scenarios, but rather the nuScenes dataset also consist of a large number of
frames with sufficient measured radar targets belonging to the object of interest.
In the sample on the top right, two of the existing objects generate as many radar
reflections, which enables the detection system to estimate a classified bounding box.

In conclusion, the nuScenes dataset is well suited for evaluating the performance of
the radar object detection system in general. Due to the rather sparse radar target
lists with only a maximum of 125 targets per measurement cycle, the conditions for
the object detector are not ideal. Therefore, it must be assumed that the detection
results ultimately are not going to be the best, which mainly affects the metrics as
these evaluate the result over the whole dataset. Nevertheless, the nuScenes dataset
comprises a lot of radar frames with target lists which are successfully processed and
the proposed object detection system outputs reliable results. Section 5.1 presents
the complete evaluation on this dataset using several metrics, including a typical
one, to score the overall object detection capability. The crucial point that makes it
essential to perform an investigation on the nuScenes dataset is that it is publicly
available, and hence, the results are reproducible without exception. This evaluation
is indispensable to allow other approaches for object detection in radar data the
opportunity for comparison under the same conditions against the proposed method.
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4.2.3 The Radar Dataset

The Radar Dataset is an internal dataset with labeled radar data which is recorded
with the experimental vehicle of Ulm University. For the labeling process of radar
targets, an open source labeling tool [PRM18; Tec] is modified for radar data. This
tool allows a semi-automated labeling, as it internally includes a simple tracking
system based on a Kalman filter [Kal60]. After the labeling, all objects in the scene
and the associated radar targets reflected from these objects are annotated. The
Radar Dataset comprises a lot of radar target lists recorded with the experimental
vehicle in rural and provincial surroundings around Ulm University. In order to have
the widest possible selection of traffic scenarios available, a number of recordings are
made in different traffic situations and under various weather conditions. Since the
labeling effort is not to be underestimated, the Radar Dataset limits the selection of
recordings to merely the eleven best ones. But even these are not fully annotated,
because the goal of this dataset is to cover as many different scenarios as possible
with minimal labeling effort. As in many recorded sequences, quite similar situations
are repeatedly present, just parts of the recordings are conscientious picked out
and actually labeled. The final dataset is indeed not very large, but it contains
enough radar data from many typical common scenarios which frequently occur
in everyday traffic. In the scope of this thesis, the Radar Dataset has to satisfy
two main purposes: Firstly, the principal objective is to show that the radar object
detection system works and is suitable for the perception of the vehicle environment
in a real system. For this purpose, it requires a diversity of traffic situations with
various traffic participants and under different conditions. Secondly, the radar
detection system is intended to be deployed in real applications, specifically on the
experimental vehicle of Ulm University as test platform. Although the radar data
all originate from the area around Ulm University, the final Radar Dataset is far
sufficient to demonstrate the generalization capability of the radar object detection
system proposed in this thesis, as well as being applicable in real-world applications.

The Radar Dataset comprises several carefully selected sequences with consecutive
radar frames. Depending on how many distinct traffic situations occur in a sequence,
these are of longer or shorter duration. An important fact is that radar sensors
generate noise measurements, such that successive scenarios which look similar
to the human eye produce quite different radar frames. As a consequence, even
in two consecutive measurement cycles of the same scene the radar target lists
may noticeably be different. After selecting appropriate radar frames, the labeling
process is performed with human assistance. Afterwards the dataset preparation
presented above automatically converts the annotated data to the predefined data
format to enable the tooling for the radar object detection system. Furthermore,
this resulting dataset is divided into three parts to distinguish between data for
training, validation and testing purposes. In this part, meticulous care and attention
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Criterion Class Training Validation Testing (Frames)
dataset distribution frames 64% 16% 20%

5210 1291 1642
patches 117694 29206 37594 (279655)

labeled instances object 16354 4041 4546
car 13704 3407 3493

truck 1071 262 787
bike 598 153 194

pedestrian 981 219 72
patch distribution object 54.1% 54.2% 55.4% (7.6%)

63667 15825 20827 (21296)
clutter 45.9% 45.8% 44.6% (92.4%)

54027 13381 16767 (258359)
car 44.2% 44.4% 34.3% (4.6%)

52073 12972 12898
truck 6.1% 6.3% 19.3% (2.8%)

7198 1830 7250 (7719)
bike 1.4% 1.5% 1.3% (0.2%)

1675 426 486
pedestrian 2.3% 2.0% 0.5% (0.1%)

2721 597 193
average targets frame 189 188 190 (176)

patch 25 26 32 (34)
object 6 6 8

car 5 5 5
truck 13 13 13
bike 3 3 3

pedestrian 3 3 3
minimum and frame 25/250 25/250 29/250 (24/250)
maximum targets patch 2/120 2/101 2/112 (2/113)

object 2/40 2/32 2/42
car 2/25 2/27 2/27

truck 2/40 2/32 2/42
bike 2/10 2/12 2/8

pedestrian 2/9 2/8 2/6

Table 4.4: The Radar dataset: All statistics on this radar dataset considering
entire frames and patches, together with instance information.
The data with balanced patches is used for training and validation,
for testing purpose, both patch and frame datasets are available.
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is necessary to ensure that training and test data are completely independent of
each other. Therefore, the labeled radar data of all sequences is completely assigned
to either the training data or the test dataset. In case that the sequences are from
the same recording, the division process assures that the scenes are separated from
each other according to the location of the event. Table 4.4 shows the distribution
and some more statistics of the Radar Dataset. Compared to the nuScenes dataset,
the average targets distribution of the Radar Dataset is much higher, as already
expected, because there are more radar targets present per frame or patch. As a
result, slightly more radar reflections are generated per object, where especially
objects of the truck class even show significantly more reflections. Like the Astyx and
nuScenes datasets, this dataset is imbalanced in terms of objects per class. However,
this thesis presents a radar dataset that convinces predominantly with the high
quality of real measured radar target lists in comparison to the other two datasets.

Altogether, the Radar Dataset contains a relatively large number of cars, which is
comprehensible, because in rural and provincial areas this type of object appears
more often. However, the creation of this radar dataset focuses on the fact that
per scene, or more precisely per radar frame, several objects are always present at
the same time. A closer examination on the nuScenes dataset reveals that many
radar samples comprise only a few objects. In scenarios with more objects located
in the FOV, the radar sensor measures a surprisingly small number of reflections
per object. Figure 4.3 confirms this negative fact with certain matching examples
from the prepared nuScenes dataset. In contrast, the sensor configuration applied in
thesis ensures that the target lists are denser and even in situations with congested
traffic, the ARS 408-21 radar sensor measures several targets per object. The
impressions in Figure 4.4 and 4.5 highlight that the sensor is able to capture multiple
reflections from the same object, even with numerous objects around. Both figures
impressively illustrate the potential of correctly configured high-resolution radar
sensors. Furthermore, this radar sensor is to generate enough measured reflections
that even the extent of objects is recognizable, and to reliably separate measurements
of objects that are close to each other. The first and second radar frames on the left
side of Figure 4.4 demonstrate this capability quite well. In theory, the ARS 408-21
radar sensor may recognize objects up to a maximum range of 250m, where at large
distances the sensor measures a single reflection per object. Certainly, at a range up
to 100m, this sensor is still able to generate several radar targets for an object. The
second and third radar frame on the left side of Figure 4.5 visualize this situation,
where especially large objects have more radar reflections. Moreover, the sensor
measures sufficient radar targets that allow object detection when even multiple
objects are moving in succession. The three examples that are visualized on the
right side of Figure 4.5 support this statement for different traffic scenarios. Thus,
the Radar Dataset contains many more such positives samples demonstrating that
the applied radar sensor is well suited for the object detection task in radar data.
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Figure 4.4: Impressions from the Radar Dataset: Several examples of radar
target lists containing multiple traffic participants in rural and
provincial environment. Almost any object generates sufficient
reflections, thus the object detector is able to detect all of them.
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Figure 4.5: More impressions from the Radar Dataset: The high-resolution
radar sensor is capable of measuring several radar targets re-
flected from objects in the near range, as well as from those that
are quite far away. Moreover, the employed radar sensor can also
identify multiple objects which are located behind each other.
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The Radar Dataset does not contain a large amount of annotated radar data and
labeled objects, but it is absolutely sufficient to demonstrate the functionality of the
radar detection system. For further investigation, it is not a difficulty to re-train
the neuronal networks of the detection system with any other radar target list, as
long as all data is available in the defined data format. If the radar targets even
originates from the same sensor, an already pre-trained model may very easily be
further trained with additional annotated radar data. Finally to recapitulate, the
proposed radar object detection system is not limited to any particular dataset. A
major issue is that the applied radar dataset covers as much general traffic scenarios
as possible. Furthermore, the generated radar targets depend on the sensor and a
specific software employed on it, which is radar manufacturer proprietary and usually
secret. Therefore, for the best possible results, it is recommended to ensure that
all radar targets in a dataset originate from the same radar sensor with identical
configuration. Moreover, it is suggested to deploy the freezed model, thus, the model
with finalized parameters, on a system that is equipped with same sensors or at least
sensors that produce similar radar data. But, there is no appropriate and public
radar dataset that meets these requirements and provides radar targets similar to
the deployed radar sensor from Section 4.1 above. For this reason, the proprietary
Radar Dataset is created, where the focus is locally restricted to the area around
Ulm University. However, this dataset may be expanded to cover additional areas.





Chapter 5

Evaluation

Finally, this section presents the evaluation of the radar object detection system.
Therefore, Section 5.1 provides the results for the radar object detector which is
proposed in this thesis. Furthermore, Section 5.2 shows the improvements that are
achieved by the multi-object tracking system based on the radar object detections.

5.1 Radar Object Detection

This section evaluates the entire radar object detection system on real radar data
and assesses all the results using common object detection metrics. Section 5.1.1
describes the experimental setup for the evaluation. Then, Section 5.1.2 introduces
all metrics to rate the final output of the radar object detector, but also to analyze
the intermediate results that are further processed internally. Section 5.1.3 presents
the object detection results for the previously presented radar datasets. Eventually,
Section 5.1.4 concludes the evaluation with a brief discussion and closing conclusion.

5.1.1 Experimental Setup

The investigations of the proposed radar object detection system are exclusively
performed with real radar data from the datasets presented in Section 4.2 above.
The training and testing is performed on a single GPU of type NVIDIA GeForce
GTX 1070 with Random Access Memory (RAM) of 8GB. The training process
introduced in Section 3.1.4 involves the setting of several hyperparameters. Table 5.1
list the parameters which are chosen to be the same for all following examinations.
This includes the weighting parameters for the multi-task loss of Equation (3.7) as
well as the parameters for learning rate and batch normalization. According to the
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Description of the Parameter Value
weighting in
multi-task loss

classification loss wcls 2.0
segmentation loss wseg 1.0
bounding box loss wbbox 10.0
corner loss loss wcorner 10.0

learning rate initial rate in warm-up 0.000001
warm-up iterations 2000
initial rate 0.001
decay rate 0.5
minimum rate 0.000001

batch normalization initial decay 0.5
decay rate 0.5
maximum decay 0.99

Table 5.1: Settings for the evaluation setup: Overview of all parameters with
values which are used in the evaluation of radar object detections.

proposal of the warm-up heuristic in [GDG+17], the learning rate is set extremely
low at the beginning for a certain number of training iterations. This method ensures
that the parameters of the Adam optimizer stabilize during this time. After the
warm-up process, the learning rate is increased to the actual initial learning rate,
and then gradually reduced using a decay rate to a certain minimum value as a lower
limit. Furthermore, the training performs batch normalization with a specific initial
decay and a decay rate to gradually increase the decay up to a maximum value as
upper limit. In addition to these design parameters, the batch size and the number
of epochs are important. The batch size depends on the selected radar data, more
precisely on the amount of radar targets in one measurement cycle. Thus, a radar
target list from the Astyx dataset requires much more memory on the GPU than
one from the Radar Dataset or nuScenes dataset. Consequently, the actual number
of epochs varies according to the specific training run, and is therefore, indicated
in the respective evaluations on the datasets. The training is terminated as soon
as the intermediate results on the validation data no longer improve. Finally, the
evaluation validates the model with frozen parameters on testing data. For testing,
the minimum output probability is set to 0.0 for an object detection. This implies
that all provided radar object hypotheses are a valid output and no filtering is active.
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5.1.2 Metrics

In order to evaluate the radar object detection system, a meaningful metric is
necessary. In literature there are already some metrics that are very well suited to
measure the performance of such an object detector. However, probably the most
popular metric that describes the detection results in terms of a single scalar value is
the average precision for object detection. The average precision metric requires an
introduction of additional metrics to be fully comprehended, namely, precision, recall
and Intersection over Union. An overview of various performance metrics for object
detection algorithms is provided in [PNS20]. This section introduces all metrics that
are applied to analyze the radar object detection system as a whole, but also to rate
the results of all individual networks for classification, segmentation and bounding
box estimation, which are the essential parts of the complete radar object detector.

Precision, Recall and F1 Score

The two metrics, precision and recall, are commonly used to score the performance
of a respective system for classification problems. For a given classification task, for
example, the issue to classify a complete radar target list or each radar target in
such a list, the precision metric measures the accuracy of all predictions produced
from a classifier. The precision for a particular class is mathematically specified as

P = TP

TP + FP
= TP

total positive predictions ∈ [0, 1], (5.1)

where TP describes the number of correct positive predicted samples and FP is the
number of the incorrect positive predicted ones. This can be explained by a simple
example concerning the classification or segmentation module of the radar object
detector. If the radar target list of a patch belongs to an object of the car category,
and the classification network predicts the class car, then it is a TP. In case that it
belongs to another class, for instance truck or clutter, but the classifier still outputs
car as classification, it is a FP when considering the car category. The same is valid
for the segmentation network, where it is a binary classification problem. Hence,
precision for a given class is the percentage of all correct predicted samples and
describes how many of the positive predictions are relevant. A precision with value 1
signifies that all predictions are correct. In contrast, the recall for a specific category
measures how well the positive samples are correctly identified, and it is defined as

R = TP

TP + FN
= TP

total positive results ∈ [0, 1], (5.2)
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where false negatives (FN) are the number of incorrectly negative predicated samples.
Just to pick up the above example with the classification unit of the radar object
detection system again: if a target list comprises a car, but the classifier predicts
another category, it is a FN. For the segmentation network, this is the case, if a
radar target belongs to an object, but it is associated to the non-object class. Thus,
the recall for a given class describes the percentage of how many of all the actually
relevant results are found. A recall with value 1 implies that all relevant results are
correct predicted by the utilized classifier. For completeness, the true negatives (TN)
are the samples which a classifier correctly predicts negative. This means that if an
object does not belong to the car category, the classification module will not output
car as the predicted class for the radar target list. Alternatively, the segmentation
module is capable of correctly predicting the class for a radar target that does not
belong to the object, when predicting the category for each individual radar target.

In order to determine the performance of a classification system, precision and recall
must always be considered simultaneously. In fact, reducing the number of FP
results in a high precision, but it will automatically decrease the recall. And the
other way around, diminishing the number of FN causes the recall to increase, but a
decrease of the precision. Consequently, a good precision but a bad recall and vice
versa do not constitute a good performance of a classifier. It is important to find a
trade-off between the precision and recall performance. The application of a neuronal
network even allows this trade-off to be simply adjusted by varying the threshold
of a final softmax layer. In object detection tasks, the focus is often on achieving a
high precision. This may be justified with the argument that in real applications the
effects of a missing detection may have worse consequences. However, it depends
on the application of the object detector. In an automotive system, it can be very
dangerous if objects are detected incorrectly in front of the vehicle, and as a reaction
the automated vehicle brakes. Accordingly, the objective is to tune the networks in
such a way to concurrently maximize the precision as well as the recall. In order to
capture the results of this maximization at a glance, the F1 score is an appropriate
metric. The F1 score incorporates precision and recall, and combines them through

F1 = 2 P ·R
P +R

∈ [0, 1], (5.3)

to a single scalar value. The F1 score calculates the harmonic mean of precision and
recall. As a consequence, if precision and recall are high, then the F1 score is high,
too. However, as soon as one metric drops, the F1 score also decreases. A perfect
precision and recall, that is both metrics return the value 1, results in a perfect
F1 score which also has the value 1. Whereas in the worst case, the F1 score is 0,
which happens when precision or recall are 0. This thesis lists values for all these
metrics to measure the performance of the classification and segmentation networks.
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Intersection over Union

In order to analyze the results of the bounding box estimation module, another
metric is required. This metric has to compare two bounding boxes by considering all
parameters, these are the position, orientation and extent, before eventually providing
one single number. The Jaccard index [Jac12] is a measure for the similarity between
two sample sets. For analyzing predicted bounding boxes, two boxes are the sample
set, which need to be compared based on their areas. In this context, the Jaccard
index is also known as the Intersection over Union (IoU) metric, which is defined as

IoU = (Pred BBox) ∩ (GT BBox)
(Pred BBox) ∪ (GT BBox) = area of overlap

area of union ∈ [0, 1], (5.4)

where Pred BBox is the area of the predicted bounding box and GT BBox is the
area of the ground truth bounding box. If the prediction overlaps exactly with the
ground truth, then the IoU equals 1. Whereas, with no overlap of the two bounding
boxes, the metric takes its minimum value at 0. In order to score the IoU of all
predicted bounding boxes in a given dataset, the evaluation simply averages all IoU
of the respective bounding box estimates. The resulting mean IoU (mIoU) is a good
measure for the overall bounding box estimation performance of an object detector.

In general, the definition of the IoU is for different geometric areas in two and even
in three dimensions. This thesis applies the IoU, only to compare the predicted 2D
bounding boxes with the ground truth boxes. However, it is possible to interpret
the IoU metric in a point-by-point manner as already applied in [EEG+15], this is
called segmentation accuracy. This thesis introduces that metric as the pointwise
IoU for scoring the segmentation results. Therefore, the pointwise IoU is specified as

IoU = TP

TP + FP + FN
∈ [0, 1], (5.5)

where TP, FP and FN refer to classified targets. Accordingly, that IoU allows an
assessment of the classification ability for individual targets in a radar target list.
The interpretation of the given equation is that the pointwise IoU represents the
overlap of predicted segmentation and ground truth, divided by the union of them.
Hence, this ends in the general definition of the IoU as defined in Equation (5.4)
with particular attention to the last part of the term. With the specification from
Equation (3.3), the segmentation differs between two classes, the object and non-
object class. Thus, the evaluation for the segmentation calculates a pointwise IoU
for both classes and averages them to get a single value that represents the final
segmentation performance. This metric is called the pointwise mIoU and is given by

mIoU =
IoUobj + IoUobj

2 , (5.6)
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where IoUobj is the segmentation result for the object class and IoUobj belongs to
the prediction for the non-object category. The next sections reveals that the IoU is
not only suitable for segmentation or bounding box comparison, but it is an essential
part to measure the overall performance of the entire radar object detection system.

Average Precision

The metrics presented so far allow to evaluate the individual modules of the object
detection system, these are the classification, segmentation and bounding box
estimation components. However, these metrics are not applicable for an analysis
of the actual capability to detect objects. Indeed, the average precision (AP) is a
popular metric for exactly that purpose. This metric offers a possibility to score
object detection results, and thus, it allows to measure the performance of an object
detector. In theory, AP computes the mean precision over all recall values in the
range from 0 to 1. The two Equations (5.1) and (5.2) show that for the calculation
of precision and recall, the number of TP, the total number of positive predictions
and the total number of positive results are required. In an object detection task,
a prediction is correct, that corresponds to a TP, if the object’s class is correctly
estimated and the IoU between predicted and ground truth bounding box exceeds a
specific threshold. After ranking all the results regarding the predicted confidence
score, the calculated precision is plotted against the recall in the precision-recall curve.
In general, the AP is the area under the precision-recall curve, which is defined as

AP =
1∫

0

p(r) dr ∈ [0, 1], (5.7)

where p(r) is a function which returns the precision at specific recall value. Since the
computation of an integral is not trivial in practical applications, this thesis applies
the interpolated AP [SM86] to evaluate the prediction results of the radar object
detection system. The interpolated AP calculates the area under the precision-recall
curve by summing up the mean precision for a set of eleven equally distributed recall
levels. As a consequence, the interpolated AP is computed by using the definition

AP = 1
11

∑
r∈[0,0.1,...,1]

pintrpl(r), (5.8)

where the function pintrpl(r) returns the interpolated precision value for a specific
recall level. The interpolation function for a precision at a given recall is realized by

pintrpl(r) = max
r̃≥r

p(r̃), (5.9)
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where p(r̃) is the precision for the recall value r̃. In words, this function interpolates
the precision at recall r by using the maximum precision value measured for any
recall value r̃ that exceeds the currently observed recall r. Consequently, this results
in a precision-recall curve in which the precision values decrease monotonously for a
recall from 0 to 1. That interpolation technique reduces the susceptibility to small
variations when ranking all the predictions of the network by their confidence score.

5.1.3 Results

After the introduction of all metrics, the next step is to analyze the results of the
proposed radar object detection system based on these metrics. For this purpose,
the evaluation in this thesis is divided into two main parts. Firstly, an assessment of
the individual modules is performed by applying the precision, recall and F1 score
for the classification and segmentation component and the IoU for the predictions
of the bounding box estimation unit. Therefore, the evaluation rates the modules
one after the other. Basically, the classification performance is measured, that is the
ability to classify the radar target list in a patch. Afterwards, the evaluation of the
segmentation and bounding box estimation is only performed if the classification
result for the patch under consideration is predicted correctly. Since the bounding
box estimation depends on the segmentation result of the previous module, false
assigned radar targets directly affect the prediction of a bounding box. In case of
a poor segmentation and a poor bounding box estimation, the evaluation cannot
distinguish whether it is only due to weak segmentation, or due to an additional bad
bounding box estimation. And secondly, a rating of the object detection results is
carried out, that is scoring the final output of the complete radar object detection
system by utilizing the explained interpolated AP metric. In the further course
of this thesis, the term AP refers to interpolated AP as defined in Equation (5.8)
above. For the specification of the object detection performance, the evaluation
applies three different thresholds to determine whether a prediction is considered as
a TP or not. A common threshold value for object detection is IoUth = 0.5 which
is often used in literature, as for example in [EGW+10]. This thesis also evaluates
the object detection performance using IoUth = 0.25 and IoUth = 0.1 as additional
thresholds to calculate the metrics. Although, operating at a low threshold can result
in relatively inaccurate object detection, this analysis is reasonable. Since a radar
sensor may output in quite noisy measurements targets and at the same time also
rather few targets per object, it is very difficult to estimate an accurate bounding
box. That is why it is useful to observe the performance even at lower thresholds
to determine whether the proposed detection approach is able to find objects at all.
Further, the evaluation conducts this analysis on different radar data, namely the
three which are presented Section 4.2 in detail. Another goal of the evaluation is
to justify the design of the radar object detection system as well as the choice of
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Description of the Parameter Value
batch size 32
decay step for learning rate 45000
decay step for batch normalization 45000

Table 5.2: Settings for dataset: Overview of all specific parameters with val-
ues which are chosen in the evaluation based on the Radar Dataset.

different parameters. These investigations are carried out only on the Radar Dataset,
because the implementation of the object detector as proposed in Section 3.1 is
based on that radar data. Subsequently, a separate training is performed for each
described radar dataset, and then the evaluation determines the performance of the
object detection system. Hence, this thesis provides both, a detailed analysis on the
Radar Dataset, and for general replicability also on a publicly available radar data.

The Radar Dataset

The first evaluation measures the performance on the Radar Dataset presented in
Section 4.2.3, which includes the radar data recorded by the radar sensor described
in Section 4.1 above. Since an important issue is that the proposed radar object
detection system can be deployed on a real-world application, these results are
crucial. Further, this radar data provides the basis for the development and all
investigations of the proposed method for object detection solely on radar data. This
section presents detailed results of the outcome produced by the object detector’s
main modules, as well as the final detection result from the complete radar object
detection system. Apart from the stage of designing the detector, it includes topics
such as the choice of input features, the decision on how to chose the patches and
the adjustment of the network’s architecture. The ultimate implementation of the
radar object detection system is founded on investigations using the Radar Dataset.
Accordingly, this section presents the findings of these small experiments during
research. This provides the opportunity to comprehend all decisions, but also to
assess what effects a different design may have on the performance. Table 5.2 lists all
parameters used for training based on the Radar Dataset. The training monitoring
supervises the training progress after each epoch by evaluating the current results
on the validation dataset, and stops the training when all results are satisfactory.

Table 5.3 shows the number of epochs for the respective models after which the
training stopped. Subsequently, the evaluation measures the actual performance on
the test dataset with a batch size of one. Since the test data is independent from the
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Model Epochs
PointNet 31
PointNet++ 31

Table 5.3: Training epochs: The number of epochs after which the training
is stopped for the particular model based on the Radar Dataset.

other data and the training process does not see any sample of this dataset, that is a
valid dataset distribution for testing purpose. Table 5.4 shows the results of all single
modules for the PointNet and PointNet++ architectures. In the classification and
segmentation task, the model using PointNet++ outperforms the PointNet model in
almost all metrics. The evaluation for bounding box estimation shows the introduced
mIoU, as well as the percentage of how often the measured IoU of individual boxes
exceeds a specific threshold. An interesting fact is that the bounding estimation
module with PointNet provides slightly better results for the car, bike and pedestrian
class. In summary, both versions show good performance for the respective three
main components. Nevertheless, the ability of object detection is crucial, this requires
a well-working interaction of all modules including preprocessing and postprocessing.
Table 5.5 depicts the final results of the entire radar object detection system, that
is the measured performance on how well the proposed method is able to detect
objects from various classes. With respect to the detection results measured by
the AP, the radar object detector with PointNet++ architecture shows better
performance for objects independent of their actual category. When considering the
individual classes, the PointNet++ model provides a significant improvement for the
car category. Whereas, the PointNet has a better performance at a stricter threshold
and nearly same results for the other thresholds when considering trucks. A further
analysis of the results reveals that the object detector often predicts one or more
cars instead of a truck. Naturally, this leads to a poor performance for the detection
ability of trucks, because the evaluation considers it as a false prediction. However,
in a real application it is much more important that an object is recognized at all,
rather than a precise classification of the object. For the purpose of classification, the
usage of lidar and camera sensors is better suited. As the results reveal, the proposed
radar object detector is certainly capable of recognizing objects, regardless of the
PointNet or PointNet++ architecture. Upon examination of the bike and pedestrian
group, it turns out that both architectures show a detection performance which is
quite low. The poor results in those categories are definitely due to unbalanced
distributions of classes in the dataset. Overall, the Radar Dataset contains too
few samples to make a meaningful statement regarding these classes. But still, the
presented result indicates that the radar object detector is in principle capable of
detecting bikes and pedestrian. However, the proof of this requires a larger dataset
with an approximately balanced distribution. The key finding from this evaluation
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Classification Class Samples Precision Recall F1 Score
PointNet clutter 16767 0.848 0.976 0.908

car 12898 0.679 0.797 0.733
truck 7250 0.770 0.318 0.450
bike 486 0.621 0.148 0.239
pedestrian 193 0.064 0.016 0.025

PointNet++ clutter 16767 0.884 0.969 0.924
car 12898 0.723 0.902 0.803
truck 7250 0.906 0.349 0.504
bike 486 0.412 0.218 0.285
pedestrian 193 0.345 0.104 0.159

Segmentation Class Targets Precision Recall F1 Score mIoU
PointNet object 88117 0.975 0.985 0.980 0.911

car 54246 0.939 0.905 0.922 0.914
truck 33646 0.951 0.908 0.929 0.871
bike 216 0.912 0.963 0.937 0.934
pedestrian 9 0.75 1.0 0.857 0.846

PointNet++ object 102292 0.948 0.918 0.933 0.919
car 64191 0.943 0.917 0.930 0.921
truck 37733 0.958 0.920 0.939 0.886
bike 306 0.993 0.889 0.938 0.934
pedestrian 62 1.0 0.726 0.841 0.839

Bounding Box Class Boxes mIoU IoU ≥ 0.5 IoU ≥ 0.7
PointNet object 12664 0.624 0.786 0.420

car 10282 0.649 0.824 0.480
truck 2307 0.516 0.626 0.165
bike 72 0.502 0.569 0.097
pedestrian 3 0.688 1.0 0.0

PointNet++ object 14294 0.629 0.801 0.418
car 11640 0.641 0.813 0.461
truck 2528 0.583 0.760 0.237
bike 106 0.451 0.434 0.085
pedestrian 20 0.372 0.350 0.050

Table 5.4: Evaluation of the individual modules: Results for classification,
segmentation and bounding box estimation components of the
radar detection system. This evaluation analyzes the predictions
of all individual patches and is performed on the Radar Dataset.
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet object 0.5 0.463 0.572 0.511 0.721 0.452

0.25 0.601 0.742 0.664 0.636 0.638
0.1 0.733 0.907 0.811 0.552 0.830

car 0.5 0.485 0.711 0.577 0.724 0.586
0.25 0.567 0.831 0.674 0.676 0.697
0.1 0.582 0.854 0.692 0.663 0.703

truck 0.5 0.326 0.123 0.179 0.656 0.121
0.25 0.399 0.151 0.219 0.602 0.128
0.1 0.503 0.191 0.277 0.513 0.137

bike 0.5 0.180 0.083 0.113 0.638 0.018
0.25 0.281 0.129 0.177 0.552 0.057
0.1 0.303 0.139 0.191 0.528 0.120

pedestrian 0.5 0.009 0.014 0.011 0.689 0.046
0.25 0.009 0.014 0.011 0.689 0.046
0.1 0.009 0.014 0.011 0.689 0.046

PointNet++ object 0.5 0.465 0.604 0.525 0.714 0.519
0.25 0.607 0.790 0.687 0.630 0.680
0.1 0.720 0.937 0.814 0.558 0.850

car 0.5 0.491 0.755 0.595 0.716 0.625
0.25 0.579 0.891 0.702 0.666 0.742
0.1 0.591 0.909 0.717 0.657 0.802

truck 0.5 0.312 0.107 0.159 0.652 0.087
0.25 0.431 0.147 0.220 0.585 0.133
0.1 0.498 0.170 0.254 0.532 0.140

bike 0.5 0.139 0.103 0.118 0.646 0.031
0.25 0.250 0.186 0.213 0.522 0.050
0.1 0.271 0.201 0.231 0.494 0.080

pedestrian 0.5 0.023 0.042 0.030 0.678 0.005
0.25 0.063 0.111 0.080 0.497 0.018
0.1 0.070 0.125 0.090 0.470 0.019

Table 5.5: Evaluation of the entire object detector: Results after performing
the complete pipeline of the radar object detection system from
the input radar targets to the output radar object hypotheses.
This evaluation analyzes the final predictions of radar objects and
measures the object detection performance on the Radar Dataset.
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Features Classification & Segmentation Bounding Box Estimation
Position RCS Radial Vel Position RCS Radial Vel

I X X X X X X
II X − X X − X
III X X − X X −
IV X − − X − −
V X X X X − −

Table 5.6: Combinations of radar features: Various options to choose input
features for the respective modules of the radar object detector.

is that the proposed radar object detection system successfully operates in an area
where mainly vehicles, such as cars, are present. All things considered, the method
for object detection solely on radar data is absolutely applicable for real operation.
In the end, for the application in an automatic driving mode, the environment
perception of the vehicle does not only employ the proposed radar object detector,
but rather, the system operates additional detectors based on lidar and camera data.
Then, a following multi-object tracking system fuses all generated hypotheses into
one smoothed detection result to realize an object-based environment perception.

During the designing of the radar object detector, the choice of important features is
essential. The radar sensor of this thesis applies the signal processing as described in
Figure 2.1 and provides a radar target list. Every measured radar target comprises
range and azimuth, and respectively after the internal transformation: the spatial
position in Cartesian coordinates, the radial velocity and RCS value. These are
all quantities the sensor is able to measure directly. In particular the radar sensor
ARS 408-21 may provide additional information, for example a state that indicates
whether a radar target is ambiguous or invalid, but also dynamic properties that
specify whether the radar target is moving or static. Such information cannot be
measured directly, but is obtained by internal algorithms. Since the idea of the
proposed radar object detector is to process the radar data as raw measurements,
information based on unknown algorithms is not desirable. For this reason, the
object detection system solely processes those features which are measurable by the
radar sensor, thus the spatial information, the radial velocity and the RCS value.

In order to be able of determining which influence the respective features have on
the object detection result, the following evaluation compares the impact of the
input features. For this purpose, the models are trained and evaluated with different
combinations of features as input. Table 5.6 shows all examined feature options
which are carried out within the scope of this experiment for both architectures. The
first investigation covers the standard approach that is the proposed one for the final
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Model Option Epochs
PointNet Features II 30
PointNet Features III 27
PointNet Features IV 31
PointNet Features V 25
PointNet++ Features II 29
PointNet++ Features III 23
PointNet++ Features IV 31
PointNet++ Features V 31

Table 5.7: Training epochs: The number of epochs after which the training is
stopped for different model options based on the Radar Dataset.

radar object detector and which forwards all available features into the networks.
The next examinations deal with the cases that either RCS values or radial velocity
or both features are omitted. The final experiment uses all features as input for
the classification and segmentation network, but the bounding box estimation is
only performed on the spatial position of radar targets. This analysis compares the
detection metrics of the model using testing data of the Radar Dataset. Table 5.7 lists
the training duration for the different model combinations. Furthermore, Table 5.5
presents the object detection results when applying all available radar features.
The outcomes for all other feature combinations are depicted in Table 5.8 for the
PointNet model and Table 5.9 for the PointNet++ architecture. As expected, the
PointNet and PointNet++ models with all measured radar features show the best
performance for object detection. An interesting aspect of this experiment is to
observe the influence of the specific features. The study Features IV proves the
importance of the radial velocity and RCS values as features. Without these radar
features, the detection results are really poor and reasonable object detection is not
possible. Adding even one of these features already improves the ultimate outcome
of the object detector significantly. A closer look reveals that the influence of radial
velocity, that is investigation Features II, leads to a larger improvement than the
RCS value, which is examination Features III. However, when forwarding all features,
the improvement of the performance is again noticeable. The last study, namely
Features V, examines the effect of radial velocity and RCS values for bounding box
estimation. The detection results prove that the features are also important to
determine a bounding box, as adding these features provides a further improvement.
Especially in the detection ability of cars, the enhancement is extremely significant.
All findings discussed in this evaluation are valid for both architectures. Although in
comparison of the particular feature combinations, all PointNet++ models always
yield slightly better results than those with PointNet what is exactly to be expected.
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet

Features II

object 0.5 0.351 0.522 0.419 0.714 0.380
0.25 0.481 0.716 0.578 0.659 0.598
0.1 0.607 0.903 0.726 0.525 0.770

car 0.5 0.374 0.666 0.479 0.715 0.455
0.25 0.452 0.804 0.578 0.659 0.598
0.1 0.473 0.843 0.606 0.637 0.609

truck 0.5 0.195 0.041 0.067 0.671 0.091
0.25 0.268 0.056 0.093 0.590 0.091
0.1 0.335 0.070 0.116 0.507 0.091

bike 0.5 0.065 0.036 0.046 0.566 0.018
0.25 0.148 0.083 0.106 0.470 0.019
0.1 0.167 0.093 0.119 0.434 0.021

pedestrian 0.5 0.015 0.056 0.024 0.676 0.003
0.25 0.048 0.181 0.076 0.500 0.032
0.1 0.056 0.208 0.088 0.457 0.041

PointNet

Features III

object 0.5 0.135 0.483 0.211 0.708 0.277
0.25 0.186 0.667 0.291 0.609 0.422
0.1 0.231 0.829 0.362 0.524 0.552

car 0.5 0.152 0.617 0.244 0.710 0.352
0.25 0.189 0.770 0.304 0.664 0.432
0.1 0.202 0.823 0.324 0.615 0.470

truck 0.5 0.083 0.050 0.062 0.631 0.091
0.25 0.109 0.065 0.081 0.568 0.091
0.1 0.126 0.075 0.094 0.512 0.091

bike 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.003 0.005 0.004 0.333 0.001
0.1 0.003 0.005 0.004 0.333 0.001

pedestrian 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet

Features IV

object 0.5 0.080 0.350 0.130 0.700 0.067
0.25 0.123 0.537 0.200 0.577 0.205
0.1 0.166 0.727 0.271 0.473 0.287

car 0.5 0.090 0.441 0.150 0.701 0.084
0.25 0.124 0.605 0.205 0.612 0.138
0.1 0.136 0.665 0.226 0.573 0.155

truck 0.5 0.025 0.039 0.031 0.668 0.061
0.25 0.042 0.065 0.051 0.565 0.061
0.1 0.047 0.074 0.058 0.522 0.061

bike 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

pedestrian 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.002 0.014 0.003 0.444 0.000
0.1 0.002 0.014 0.003 0.444 0.000

PointNet

Features V

object 0.5 0.392 0.544 0.456 0.708 0.355
0.25 0.547 0.760 0.636 0.607 0.574
0.1 0.667 0.926 0.775 0.530 0.801

car 0.5 0.411 0.686 0.514 0.710 0.417
0.25 0.507 0.847 0.634 0.648 0.569
0.1 0.529 0.885 0.662 0.629 0.586

truck 0.5 0.267 0.088 0.132 0.647 0.051
0.25 0.349 0.114 0.172 0.589 0.129
0.1 0.411 0.135 0.203 0.527 0.137

bike 0.5 0.137 0.036 0.057 0.612 0.018
0.25 0.275 0.072 0.114 0.519 0.046
0.1 0.294 0.077 0.122 0.491 0.046

pedestrian 0.5 0.006 0.014 0.009 0.598 0.023
0.25 0.024 0.056 0.034 0.457 0.023
0.1 0.024 0.056 0.034 0.457 0.023

Table 5.8: Evaluation of the feature impact: Object detection results using
various combinations of radar features as input into PointNets.
Table 5.5 shows the findings of option PointNet Features I when
all the measured features are forwarded to the neuronal networks.
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet++

Features II

object 0.5 0.411 0.574 0.479 0.714 0.423
0.25 0.544 0.760 0.634 0.627 0.613
0.1 0.666 0.930 0.777 0.544 0.786

car 0.5 0.433 0.708 0.537 0.718 0.548
0.25 0.515 0.842 0.639 0.665 0.662
0.1 0.537 0.878 0.666 0.646 0.672

truck 0.5 0.263 0.159 0.198 0.654 0.092
0.25 0.385 0.233 0.290 0.575 0.140
0.1 0.506 0.306 0.382 0.476 0.211

bike 0.5 0.137 0.052 0.075 0.631 0.091
0.25 0.233 0.088 0.127 0.512 0.091
0.1 0.233 0.088 0.127 0.512 0.091

pedestrian 0.5 0.049 0.056 0.052 0.623 0.011
0.25 0.111 0.125 0.118 0.494 0.037
0.1 0.111 0.125 0.118 0.494 0.037

PointNet++

Features III

object 0.5 0.291 0.531 0.376 0.712 0.336
0.25 0.386 0.705 0.499 0.625 0.547
0.1 0.435 0.794 0.562 0.575 0.604

car 0.5 0.314 0.673 0.428 0.715 0.408
0.25 0.379 0.811 0.516 0.658 0.541
0.1 0.394 0.843 0.537 0.641 0.560

truck 0.5 0.175 0.079 0.109 0.630 0.091
0.25 0.263 0.118 0.163 0.548 0.118
0.1 0.297 0.133 0.184 0.507 0.122

bike 0.5 0.012 0.010 0.011 0.599 0.002
0.25 0.012 0.010 0.011 0.599 0.002
0.1 0.012 0.010 0.011 0.599 0.002

pedestrian 0.5 0.003 0.014 0.006 0.557 0.001
0.25 0.007 0.028 0.011 0.471 0.001
0.1 0.007 0.028 0.011 0.471 0.001
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet++

Features IV

object 0.5 0.124 0.409 0.190 0.718 0.113
0.25 0.173 0.572 0.266 0.614 0.249
0.1 0.204 0.674 0.313 0.548 0.304

car 0.5 0.131 0.521 0.209 0.719 0.141
0.25 0.168 0.668 0.268 0.643 0.198
0.1 0.181 0.720 0.289 0.610 0.230

truck 0.5 0.073 0.048 0.058 0.650 0.091
0.25 0.109 0.072 0.087 0.562 0.091
0.1 0.132 0.088 0.105 0.499 0.091

bike 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.009 0.010 0.010 0.460 0.036
0.1 0.009 0.010 0.010 0.460 0.036

pedestrian 0.5 0.006 0.028 0.009 0.660 0.001
0.25 0.008 0.042 0.014 0.565 0.002
0.1 0.008 0.042 0.014 0.565 0.002

PointNet++

Features V

object 0.5 0.438 0.574 0.497 0.715 0.389
0.25 0.589 0.773 0.668 0.622 0.602
0.1 0.702 0.921 0.797 0.550 0.818

car 0.5 0.468 0.703 0.562 0.719 0.500
0.25 0.567 0.852 0.681 0.659 0.622
0.1 0.589 0.886 0.708 0.641 0.638

truck 0.5 0.251 0.160 0.196 0.653 0.115
0.25 0.367 0.234 0.286 0.564 0.163
0.1 0.440 0.281 0.343 0.499 0.182

bike 0.5 0.168 0.113 0.135 0.602 0.031
0.25 0.298 0.201 0.240 0.521 0.083
0.1 0.298 0.201 0.240 0.521 0.083

pedestrian 0.5 0.012 0.014 0.013 0.663 0.002
0.25 0.024 0.028 0.026 0.543 0.003
0.1 0.024 0.028 0.026 0.543 0.003

Table 5.9: Evaluation of the feature impact: Object detection results using
several combinations of radar features as input into PointNets++.
Table 5.5 shows the results of option PointNet++ Features I when
all the measured features are forwarded to the neuronal networks.
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Patch Size 20 22 24 26 30 40 50
Cls Precision Clutter 0.958 0.922 0.926 0.947 0.941 0.947 0.906
Cls Precision Car 0.915 0.922 0.919 0.91 0.916 0.861 0.891
Cls Precision Truck 0.962 0.959 0.970 0.978 0.955 0.988 0.988
Cls Precision Bike 0.754 0.92 0.640 1.0 0.753 0.775 0.75
Cls Precision Pedestrian 1.0 1.0 1.0 1.0 0.574 1.0 0.912
Cls Recall Clutter 0.942 0.953 0.932 0.938 0.929 0.903 0.926
Cls Recall Car 0.956 0.93 0.927 0.95 0.936 0.953 0.914
Cls Recall Truck 0.896 0.862 0.929 0.902 0.926 0.831 0.880
Cls Recall Bike 0.639 0.554 0.663 0.494 0.699 0.747 0.253
Cls Recall Pedestrian 1.0 1.0 1.0 0.871 1.0 1.0 1.0
Cls F1 Score Clutter 0.950 0.937 0.929 0.942 0.935 0.925 0.916
Cls F1 Score Car 0.935 0.926 0.923 0.930 0.926 0.905 0.902
Cls F1 Score Truck 0.928 0.908 0.949 0.938 0.940 0.903 0.931
Cls F1 Score Bike 0.693 0.692 0.651 0.661 0.725 0.761 0.378
Cls F1 Score Pedestrian 1.0 1.0 1.0 0.931 0.729 1.0 0.954
Seg Precision Car 0.962 0.968 0.965 0.961 0.961 0.964 0.965
Seg Precision Truck 0.954 0.960 0.953 0.957 0.957 0.962 0.957
Seg Precision Bike 0.965 1.0 0.991 0.980 1.0 0.993 0.935
Seg Precision Pedestrian 0.951 0.860 0.404 0.724 0.593 0.6 0.762
Seg Recall Car 0.957 0.952 0.941 0.967 0.945 0.950 0.952
Seg Recall Truck 0.957 0.962 0.949 0.955 0.943 0.917 0.906
Seg Recall Bike 0.948 1.0 0.922 0.958 0.931 0.859 1.0
Seg Recall Pedestrian 0.858 0.920 0.894 0.848 0.929 0.876 0.876
Seg F1 Score Car 0.960 0.960 0.953 0.964 0.953 0.957 0.958
Seg F1 Score Truck 0.955 0.961 0.951 0.956 0.950 0.939 0.931
Seg F1 Score Bike 0.957 1.0 0.955 0.969 0.964 0.921 0.966
Seg F1 Score Pedestrian 0.902 0.889 0.557 0.781 0.724 0.712 0.815
BBox IoU Car 0.674 0.691 0.681 0.691 0.672 0.682 0.683
BBox IoU Truck 0.626 0.672 0.670 0.687 0.654 0.670 0.677
BBox IoU Bike 0.555 0.629 0.583 0.537 0.562 0.466 0.608
BBox IoU Pedestrian 0.388 0.442 0.059 0.240 0.204 0.202 0.432

Table 5.10: Choice of patch size: Comparison between different patch sizes
based on the results produced from the respective modules. The
metrics are evaluated for each category after classification (Cls),
segmentation (Seg) and bounding box estimation (BBox) tasks.
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A question that arises quite early in the development of the radar object detection
system, is the size of generated patches. As already mentioned, a patch must be
sufficiently large to contain the object of interest in its entirety. However, it is difficult
to decide what the optimal patch size is. Because of that, the next experiment tests
the performance of respective modules on different patch sizes. Since the complete
Radar Dataset was not yet labeled at the time of this evaluation, it is only performed
on a subset of the data. Further, this investigation is not based on the test dataset,
but on the validation data directly during the training process. Table 5.10 shows the
results of individual modules after a training process over 51 epochs of the PointNet
model. This evaluation examines precision, recall and F1 score for the classification
and segmentation results, as well as the IoU on the predicted bounding box. These
analyses are considered separately for all object classes to determine the change of
outcomes by the patch size on the particular class categories. The metric values
reveal that the respective modules of the radar object detectors produces best results
on patches with a size of 22m the most. Even though the results are quite specific
to a subset of the Radar Dataset, this patch size is reasonable, because it is large
enough to include almost all kinds of considered objects. That investigation explains
why the patch proposal component chooses the heuristic value of 22m as patch size.

The last decision during the design of the radar object detection system concerns
the network architecture for classification purpose. As described in Section 3.1.3,
the classification network consist of a mini PointNet for feature transforming. In the
original PointNet approach, [QSMG17] suggests a T-Net for the input data and one for
the alignment of local extracted features. Whereas, in Frustum PointNets, [QLW+18]
completely forgoes all transformer networks. This experiment demonstrates the
effect and differences on the object detection result when using transformer networks.
Table 5.11 shows the various combinations of mini networks to normalize the input
data and locale features. The proposal of adding T-Nets for data transformation
can only be realized with PointNet architecture. The investigation examines the
detection results for all possible combinations. For this purpose, a separate training
is conducted for every model, and afterwards its performance is measured using the
detection metrics. The classification model in the first study, that is T-Net I, does
not contain any transformer network as applied in Frustum PointNet [QLW+18].
The two examinations T-Net II and T-Net III consider the case when exactly one
T-Net is deployed, either for input data or for local features. Figure 3.10 visualizes
the architecture with feature transforming. Where the alignment of input data
happens immediately when the data is inserted into the network, that is before
applying the first shared MLPs. Except for the fact that different dimensions are
necessary, the alignment of input data is identical to the feature transformation.
The last investigation, which is T-Net IV, examines the usage of both transformer
as proposed in PointNet [QSMG17]. Table 5.12 lists the training duration for the
different variations. Further, Table 5.5 presents the results for study T-Net III, which
is the configuration that is used in the final version of the radar object detection
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T-Net Classification PointNet
Input Transforming Feature Transforming

I − −
II X −
III − X
IV X X

Table 5.11: Choice of T-Nets: Various options to combine transformer net-
works in the classification network of the radar object detector.

Model Option Epochs
PointNet T-Net I 30
PointNet T-Net II 31
PointNet T-Net IV 26

Table 5.12: Training epochs: The number of epochs after which the training
is stopped for the model variations based on the Radar Dataset.

system. Further, Table 5.13 illustrates the outcomes for all other T-Net combinations.
This evaluation reveals that the various architectures actually differ only slightly
in their results. Since the patches are comparable to the frustums from [QLW+18],
it is actually to be expected that according to the statements in [QLW+18], no
transformer networks should be necessary. This assertion can neither be confirmed
nor clearly refuted with the presented analysis on the Radar Dataset. For that
reason, this thesis does not recommend which model design is best suited for the
object detection task in radar data. The proposed radar object detector in this
thesis employs the variant T-Net III for two reasons. Firstly, since the described
rotation of patches, as visualized in Figure 3.4 is applied, the input data is normalized
regarding the position. The normalization of radial velocity and RCS value by an
affine transformation is quite hard to follow. That is why the expectation of a large
improvement using input transformation network is unlikely. Secondly, the detection
metrics reveal that with a feature transforming, the object predictions are better
compared to option T-Net I and T-Net II. In comparison to T-Net IV, the feature
transformer yields marginally worse detection results, but for the universal object
class, both model versions perform the same. As already emphasized, that decision is
difficult to make and is here optimized for the challenges in this thesis. As a matter,
a definite statement requires further research on a radar dataset with more samples.

A good performance of the radar object detector is essential for the application on
real-world data. However, for actual operation in live mode on an automated vehicle,
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet

T-Net I

object 0.5 0.394 0.574 0.467 0.712 0.433
0.25 0.521 0.761 0.619 0.624 0.632
0.1 0.642 0.938 0.762 0.540 0.823

car 0.5 0.411 0.731 0.526 0.713 0.563
0.25 0.487 0.867 0.624 0.663 0.678
0.1 0.501 0.892 0.642 0.650 0.685

truck 0.5 0.225 0.053 0.086 0.635 0.091
0.25 0.326 0.078 0.125 0.547 0.091
0.1 0.428 0.102 0.164 0.458 0.131

bike 0.5 0.097 0.057 0.072 0.602 0.017
0.25 0.159 0.093 0.117 0.490 0.091
0.1 0.168 0.098 0.124 0.477 0.091

pedestrian 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

PointNet

T-Net II

object 0.5 0.421 0.572 0.485 0.714 0.438
0.25 0.558 0.759 0.643 0.625 0.632
0.1 0.680 0.925 0.784 0.544 0.826

car 0.5 0.454 0.721 0.557 0.716 0.571
0.25 0.538 0.854 0.660 0.665 0.681
0.1 0.554 0.880 0.680 0.651 0.687

truck 0.5 0.208 0.086 0.122 0.629 0.091
0.25 0.300 0.125 0.176 0.550 0.119
0.1 0.385 0.160 0.226 0.467 0.127

bike 0.5 0.167 0.072 0.101 0.653 0.018
0.25 0.238 0.103 0.144 0.574 0.113
0.1 0.238 0.103 0.144 0.574 0.113

pedestrian 0.5 0.009 0.028 0.013 0.608 0.023
0.25 0.009 0.028 0.013 0.608 0.023
0.1 0.009 0.028 0.013 0.608 0.023
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet

T-Net IV

object 0.5 0.438 0.601 0.507 0.711 0.498
0.25 0.577 0.791 0.667 0.625 0.653
0.1 0.688 0.942 0.795 0.553 0.831

car 0.5 0.461 0.762 0.574 0.713 0.599
0.25 0.542 0.896 0.676 0.665 0.708
0.1 0.553 0.914 0.689 0.656 0.766

truck 0.5 0.242 0.061 0.098 0.638 0.091
0.25 0.354 0.089 0.142 0.555 0.091
0.1 0.490 0.123 0.197 0.447 0.136

bike 0.5 0.164 0.093 0.118 0.629 0.018
0.25 0.273 0.155 0.197 0.528 0.080
0.1 0.273 0.155 0.197 0.528 0.080

pedestrian 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.007 0.014 0.009 0.308 0.002
0.1 0.007 0.014 0.009 0.308 0.002

Table 5.13: Evaluation of the T-Net impact: Object detection results using
several combinations of T-Net for alignment in the classification
PointNet. Table 5.5 shows the results of option T-Net III when
feature transforming of the extracted local features is performed.

the capability of real-time processing is at least of the same importance. Real-time
operation is ensured when a measurement cycle is completely processed before the
next radar measurements are pending. Since the radar sensors in this thesis delivers
new measurements about every 70ms, the object detector has to process a complete
radar target list in this time at the latest. The following evaluation demonstrates
whether the proposed radar object detection system is capable of doing this. As
described in Section 3.2, it is possible to use half precision floating point format
or single precision floating point format for the calculations inside the neuronal
networks. Table 5.14 presents the inference time in real operating mode using three
radar sensors of the type ARS 408-21 simultaneously. As expected, the radar object
detector is slightly faster with half precision, but with averagely significantly of
less than 3ms, not that much. Nevertheless, the experiment shows that the radar
object detection system is definitely real-time capable at both precision formats with
impressive inference times. With that successful experiment, the real application of
the object detection system is quantitatively proven. Moreover, this radar object
detector is already successfully deployed in the automated vehicle of Ulm University.
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Inference Time Radar FL Radar FC Radar FR Full radar setup
Float16 Precision 18.5ms 18.3ms 18.4ms 18.4ms
Float32 Precision 21.4ms 20.8ms 21.2ms 21.1ms

Table 5.14: Comparison of the inference times: Measured average times of
the object detector during inference on different sensors instances
in real operating mode, that are mounted on the front left (FL),
front center (FC) and front right (FR) of the experimental vehicle.
The evaluation compares resulting inference times when using
half precision floating point format (FP16) and single precision
floating point format (FP32) for the trained model parameters.

Description of the Parameter Value
batch size 16
decay step for learning rate 50000
decay step for batch normalization 50000

Table 5.15: Settings for dataset: Overview of the parameters with values
which are utilized in the evaluation based on the Astyx dataset.

Model Epochs
PointNet 6
PointNet++ 5

Table 5.16: Training epochs: The number of epochs after which the training
is stopped for the particular model based on the Astyx dataset.

Astyx HiRes2019 Dataset

This section shows the performance of the radar object detection system on the
public Astyx HiRes2019 dataset. Section 4.2.1 presents the corresponding radar data
after dataset preparation. It is already mentioned that the radar data is sometimes
extremely unanticipated and the following object detection results must be treated
with caution. Nevertheless, this evaluation presents the object detection results for
the sake of completeness. Table 5.15 lists the general parameters for the training.
Since a target list of one measurement cycle comprises a lot of radar targets, the
batch size is chosen smaller to prevent an overflow of the RAM in the GPU. In
order to avoid an overfitting of the models, the training process is stopped when the
parameters tend to overfit based on the average loss values over the entire validation
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Classification Class Samples Precision Recall F1 Score
PointNet clutter 12394 0.555 0.857 0.673

car 17747 0.788 0.635 0.703
truck 3209 0.194 0.010 0.019
bike 207 0.0 0.0 0.0
pedestrian 68 0.0 0.0 0.0

PointNet++ clutter 12394 0.555 0.923 0.693
car 17747 0.899 0.659 0.761
truck 3209 0.143 0.001 0.001
bike 207 0.0 0.0 0.0
pedestrian 68 0.0 0.0 0.0

Segmentation Class Targets Precision Recall F1 Score mIoU
PointNet object 904995 0.788 0.744 0.765 0.757

car 897809 0.788 0.745 0.766 0.757
truck 7186 0.873 0.601 0.712 0.592
bike 0 − − − −
pedestrian 0 − − − −

PointNet++ object 937683 0.820 0.776 0.798 0.784
car 937311 0.820 0.776 0.800 0.784
truck 372 0.987 0.790 0.878 0.706
bike 0 − − − −
pedestrian 0 − − − −

Bounding Box Class Boxes mIoU IoU ≥ 0.5 IoU ≥ 0.7
PointNet object 11303 0.445 0.445 0.166

car 11271 0.445 0.445 0.166
truck 32 0.398 0.531 0.0
bike 0 − − −
pedestrian 0 − − −

PointNet++ object 11699 0.462 0.508 0.172
car 11697 0.462 0.508 0.172
truck 2 0.266 0.0 0.0
bike 0 − − −
pedestrian 0 − − −

Table 5.17: Evaluation of the individual modules: Results for classification,
segmentation and bounding box estimation components of the
radar object detector. This evaluation analyzes the predictions
concerning all extracted patches and is performed on Astyx data.
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet object 0.5 0.098 0.250 0.141 0.667 0.142

0.25 0.204 0.520 0.293 0.506 0.305
0.1 0.255 0.652 0.367 0.441 0.388

car 0.5 0.100 0.273 0.147 0.667 0.145
0.25 0.204 0.554 0.298 0.510 0.312
0.1 0.246 0.670 0.360 0.454 0.378

truck 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.035 0.048 0.040 0.147 0.004

bike 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

pedestrian 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

PointNet++ object 0.5 0.157 0.281 0.202 0.653 0.185
0.25 0.287 0.557 0.379 0.513 0.366
0.1 0.346 0.610 0.442 0.463 0.428

car 0.5 0.156 0.304 0.207 0.654 0.202
0.25 0.287 0.557 0.379 0.513 0.366
0.1 0.340 0.652 0.447 0.466 0.443

truck 0.5 0.0 0.0 0.0 0.0 0.0
0.25 1.0 0.048 0.091 0.275 0.091
0.1 1.0 0.048 0.091 0.277 0.091

bike 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

pedestrian 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.0 0.0 0.0 0.0 0.0

Table 5.18: Evaluation of the entire object detection system: Results after
forwarding the radar targets into the whole radar object detection
system to identify the radar object hypotheses. This evaluation
analyzes the overall detection results based on the Astyx dataset.
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data. Table 5.16 shows the number of epochs for each model. It is rather conspicuous
that overfitting of parameters starts after a few epochs with this dataset. This is a
sign that the Astyx radar dataset is not suitable for deep learning methods, because
it is far too limited in size and quality. Moreover, the dataset contains not enough
distinct radar samples to be able to train any model with generalization capability.

After freezing all model parameters, the evaluation forwards the testing data into
the radar object detector. Table 5.17 illustrates the results of the classification,
segmentation and bounding box estimation modules. Both, PointNet and Point-
Net++ are able to classify clutter patches as well as regions with a car in its center.
But neither of them is able to detect any bike or any pedestrians. Furthermore,
since only two samples are correctly classified, the ability to recognize trucks is not
given. However, both architectures provide good segmentation results of correct
classified radar target lists. Although, the bounding box estimation module predicts
a box for each detected object, but the overlap with the ground truth is generally
unconvincing. Table 5.18 presents the overall object detection performance for both
model architectures. The results reveal that the trained object detector is only
capable of detecting cars in the Astyx radar data. Even when applying a low IoU
threshold in the AP metric, the detection performance is not conclusive. But as
expected, the PointNet++ model provides slightly enhanced object detection results.

NuScenes Dataset

The evaluation on the nuScenes dataset, which is described in Section 4.2.2, is an
important part of this thesis, since the radar data fulfills two major aspects. Firstly,
the nuScenes dataset is publicly available, which means that all results obtained are
reproducible. And secondly, the radar data originates from the same sensor type
that is described in Section 4.1 above. However, this data differs from that in the
Radar Dataset, because the sensor is differently configured and provides no more
than half the number of radar targets per measurement cycle. The training with
the radar data extracted from the nuScenes dataset is performed in the same way
as based on the Radar Dataset. Table 5.19 shows the general training parameters.
Further, Table 5.20 lists the number of training epochs for the respective models. It
is interesting that the results do not improve even after a minor number of epochs.
This is due the fact that the various preprocessed training samples contain only
sparse radar target lists and the networks produce comparatively similar features.
In order to avoid an overfitting of the model parameters, training is stopped in time.

After the training procedure and finding the optimal parameters, the particular mod-
els are evaluated on testing data. Table 5.21 presents the results of the classification,
segmentation and bounding box estimation module for PointNet and PointNet++
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Description of the Parameter Value
batch size 32
decay step for learning rate 125000
decay step for batch normalization 125000

Table 5.19: Settings for dataset: Overview of all the specific parameters with
values chosen for the evaluation based on the nuScenes dataset.

Model Epochs
PointNet 9
PointNet++ 11

Table 5.20: Training epochs: The number of epochs after which the training
is stopped for a particular model based on the nuScenes dataset.

model. In the classification of radar patches, both architectures show roughly the
same performance. What is striking about this evaluation is that PointNet performs
slightly better in segmentation and bounding box estimation for car and truck classes,
as well as the comprehensive category for objects. For the bike class, a classification
with neither architecture is feasible. However, since there are only a few extracted
examples available, these results are not really representative. Although there are
not that many samples for pedestrians, a recognition is definitely possible with both
architectures. Table 5.22 shows the final detection outcomes of the complete radar
object detector. This analysis again reveals the same behavior as the evaluation of the
individual modules. The PointNet model yields better results than the PointNet++
architecture for the classes car, truck and pedestrian, as well as the general category
comprising all objects. No detection is possible for the bike class, no matter which
type of architecture is used. Due to the small number of bike samples in this dataset,
the results for this class must also be treated with caution. Despite that, this method
is still capable of detecting the other object classes and especially objects in general.

The nuScenes dataset does not offer optimal conditions for object detection in radar
data as the measured target lists are extremely sparse. Nevertheless, this experiment
demonstrates that the approach presented in this thesis allows an object detection in
radar data originating from the nuScenes dataset. Compared to the object detection
results with data from the Radar Dataset, the nuScenes dataset provides significantly
worse performance. However, it must be considered that the Radar Dataset contains
much denser radar target lists and these are also of much higher quality. Especially
with the proposed technique it is true that the more radar targets an object generates,
the more likely it is that the radar object detector identifies an accurate detection.
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Classification Class Samples Precision Recall F1 Score
PointNet clutter 64735 0.918 0.930 0.924

car 41173 0.784 0.837 0.810
truck 26820 0.787 0.700 0.741
bike 421 0.150 0.007 0.014
pedestrian 1144 0.741 0.552 0.633

PointNet++ clutter 64735 0.924 0.921 0.922
car 41173 0.776 0.857 0.814
truck 26820 0.791 0.683 0.733
bike 421 0.258 0.019 0.035
pedestrian 1144 0.639 0.628 0.633

Segmentation Class Targets Precision Recall F1 Score mIoU
PointNet object 265055 0.902 0.938 0.919 0.891

car 111731 0.949 0.979 0.964 0.955
truck 151820 0.868 0.907 0.887 0.815
bike 6 0.750 1.0 0.857 0.860
pedestrian 1498 0.865 0.975 0.917 0.909

PointNet++ object 263393 0.896 0.933 0.914 0.885
car 115201 0.943 0.970 0.956 0.946
truck 146488 0.860 0.904 0.881 0.804
bike 28 1.0 1.0 1.0 1.0
pedestrian 1676 0.889 0.958 0.922 0.915

Bounding Box Class Boxes mIoU IoU ≥ 0.5 IoU ≥ 0.7
PointNet object 53870 0.554 0.642 0.250

car 34471 0.585 0.715 0.310
truck 18764 0.501 0.520 0.146
bike 3 0.184 0.0 0.0
pedestrian 632 0.418 0.350 0.038

PointNet++ object 54312 0.517 0.567 0.184
car 35280 0.566 0.687 0.278
truck 18306 0.426 0.343 0.007
bike 8 0.269 0.0 0.0
pedestrian 718 0.437 0.376 0.053

Table 5.21: Evaluation of the individual modules: Results for classification,
segmentation and bounding box estimation parts of the radar
detection system. This rating investigates the predictions of all
individual patches and is accomplished on the nuScenes dataset.
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Detection Class IoUth Precision Recall F1 Score mIoU AP
PointNet object 0.5 0.208 0.518 0.297 0.673 0.355

0.25 0.314 0.782 0.448 0.575 0.562
0.1 0.356 0.887 0.508 0.529 0.640

car 0.5 0.212 0.612 0.315 0.681 0.435
0.25 0.285 0.821 0.423 0.608 0.645
0.1 0.301 0.866 0.446 0.586 0.670

truck 0.5 0.134 0.200 0.161 0.634 0.077
0.25 0.271 0.404 0.325 0.507 0.242
0.1 0.324 0.483 0.388 0.454 0.280

bike 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.0 0.0 0.0 0.0 0.0
0.1 0.048 0.006 0.010 0.150 0.015

pedestrian 0.5 0.076 0.165 0.104 0.601 0.030
0.25 0.190 0.409 0.259 0.475 0.111
0.1 0.216 0.466 0.295 0.441 0.121

PointNet++ object 0.5 0.212 0.480 0.294 0.665 0.328
0.25 0.335 0.757 0.465 0.597 0.546
0.1 0.395 0.893 0.547 0.503 0.637

car 0.5 0.242 0.604 0.346 0.673 0.424
0.25 0.330 0.824 0.471 0.597 0.636
0.1 0.351 0.874 0.501 0.574 0.658

truck 0.5 0.064 0.100 0.078 0.577 0.060
0.25 0.227 0.355 0.277 0.437 0.181
0.1 0.294 0.460 0.359 0.376 0.245

bike 0.5 0.0 0.0 0.0 0.0 0.0
0.25 0.105 0.010 0.020 0.280 0.091
0.1 0.105 0.010 0.020 0.280 0.091

pedestrian 0.5 0.069 0.225 0.106 0.606 0.019
0.25 0.167 0.544 0.256 0.478 0.103
0.1 0.184 0.597 0.281 0.453 0.118

Table 5.22: Evaluation of the entire object detection system: Results after
performing the complete pipeline of the radar object detector
from input radar target list to radar object hypotheses. This
evaluation analyzes the detection results based on nuScenes data.
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5.1.4 Discussion

The detailed evaluation confirms that the radar object detection system is capable of
recognizing objects in sparse radar target lists. In order to prove this capability, the
system is evaluated on three different radar datasets. Two of them, the Astxy dataset
and the nuScenes dataset, are publicly accessible. This allows anyone to reproduce
the presented results. Indeed, beginning with the Astxy dataset, the radar object
detector shows rather poor performance on this radar data. However, this is because
the quality of the Astyx dataset is poor for two reasons. Firstly, the radar targets
are not corrected using an ego motion compensation. Secondly, the measured radial
velocities are not reasonable, because the velocities do not match to the measured
object. For this reason, the results on the Astyx data is not considered to evaluate
the actual performance of the radar object detection system in the context of this
thesis. In contrast, the results on the nuScenes dataset are extremely promising. The
radar object detector provides good results in detecting objects, and works especially
well for vehicles, but still acceptably for trucks. Unfortunately, the radar target
lists in the nuScenes dataset are rather sparse in general, such that a detection of
bikes and pedestrians is not really possible. Nevertheless, it is a great success to
demonstrate that the radar object detector performs well on a public radar dataset.

The system performs exceptionally well on the self-generated radar dataset, which
is called the Radar Dataset. In this dataset, the radar target lists are much denser
than in nuScenes dataset, which allows a much more reliable detection of objects. As
a result, the radar object detector is able to recognize objects from different classes.
However, the detection system also has difficulties to detect bikes and pedestrians,
whereby this is caused by the fact that the dataset is unbalanced with regard to these
classes. The best results by far are achieved with vehicles as well. Compared to the
nuScenes dataset, these detection results are significantly improved. In summary, the
radar object detection system demonstrates that it is possible to detect objects only
based on radar data. Furthermore, the proposed technique for radar object detection
is real-time capable, and thus, it is suitable for a deployment in real-world systems.

5.2 Radar Object Tracking

This section presents the results of the multi-object tracking using the output of
the radar object detection system proposed in Section 3.1.2 of this thesis. The
tracking system applies the measurement model, that is introduced in Section 3.3,
which allows to estimate the motion and the extent of detected objects. In order
to qualitatively assess this tracking system, the evaluation is divided as follows.
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Description of the Parameter Value
extraction probability object detection 0.01

tracked object 0.05
standard deviation acceleration 5m/ss

yaw acceleration 0.5rad/ss

persistence probability track 0.99
detection probability object 0.7
clutter intensity measurement 0.0001

Table 5.23: Settings for the multi-object tracking system: Overview of all
the parameters with values which are chosen for the LMB filter.
A detailed explanation of these parameters is given in [Reu14].

Section 5.2.1 describes the vehicle setup for this investigation. Section 5.2.2 highlights
the improvements achieved by multi-object tracking of the radar object detections
over time. And finally, Section 5.2.3 concludes the findings with a brief discussion.

5.2.1 Experimental Vehicle Setup

The setup for this evaluation consists of a experimental vehicle with three high-
resolution radar sensors, as presented in Section 4.1, to analyze the improvements
when applying tracking for a further processing of the obtained radar object detections.
The multi-object tracker is a standard LMB filter, as suggested in [Reu14] and briefly
introduced in Section 2.3, with the incorporation of object classification based on
the Dempster-Shafer theory from [DLR77; Sha76]. Furthermore, a feasible approach
to consider object classification in a tracking system is introduced in [Mun11]. That
advanced version of the LMB filter is applied for tracking purpose of the radar object
detection system, however, the concrete implementation is not a part of the thesis.

In order to avoid withholding information from the object detector, the number of
radar targets per patch is set to the maximum value over all patches of a measurement
cycle. Whenever a patch contains less targets, the existing ones are upsampled. The
choice of parameters for the multi-object tracking system are application-specific
and all respective values are heuristically determined. Table 5.23 lists all parameters
which are used for the LMB filter. The multi-object tracker processes all object
detections provided by the radar object detection system. The goal is to discard as
few as object hypotheses as possible, however, absolute unrealistic ones are rejected
to limit the calculation complexity. Further, the spatial distribution of an object is
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described by using a GM, where the LMB filter outputs the component with the
highest weight as current estimate. The extraction probability is deliberately set to a
low value which allows a better comparison of the tracking result with the outcomes
of the radar object detector. The prediction utilizes the CTRV model to describe the
motion of existing tracks. Finally, the LMB filter performs a multi-object tracking
based on object hypotheses which are identified in different radar target list. As a
consequence, the object tracking performs a data fusion to ensures that all extracted
information from the radar object detection system, which is deployed on three equal
radar sensors into one consistent and smoothed result for environment perception.

The evaluation for multi-object tracking on radar object hypotheses is of a qualitative
nature, because no ground truth data is available for complete tracking sequences.
Although the radar data is labeled for training purpose, it is not suitable for the
tracking evaluation, as not all consecutive radar frames are annotated. Consequently,
the analysis compares individual traffic scenes that describe distinctive situations
and demonstrate the benefits of a subsequent multi-object tracking. The focus of this
evaluation is not to prove how much a tracking system improves the recognition of
objects, but rather to emphasize that the extracted detections from the radar object
detector is processable with a generally established algorithm for object perception.
The ability of an LMB filter to fuse measurements from different origins and smooth
the resulting trajectories of tracks over time is already demonstrated in [Reu14]. The
analysis of this thesis reveals in a few examples that an LMB filter allows combining
object hypotheses extracted from three different radar target lists, which are partly
contradictory, into one reasonable detection result. The validation is absolutely
adequate to demonstrate this fact. In summary, the evaluation examines three real
traffic scenes which occur in the region around Ulm University. Accordingly, the
testing scenarios take place in rural and urban areas with common traffic situations.

5.2.2 Improvements

The first situation is located out of town on a rural road with an additional left turn
lane. The ego vehicle is on the lane that leads straight ahead and travels at a speed
of about 70km/h. Two vehicles are in the same lane at a larger distance and four
vehicles take the second lane to turn left. Figure 5.1 visualizes the radar targets from
three sensors and a front view camera image, together with the detection results of
the respective radar detectors and the final object tracking result. Especially for the
two left-turning vehicles the object detection systems do not all produce the same
results, because some object hypotheses have a false orientation. Nevertheless, due
to the objects already tracked and the prediction performed before the measurement
update, the LMB filter is able to confirm the existing objects by the most probable
radar object detections. The second vehicle from the left demonstrates the benefit of
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Figure 5.1: Radar object tracking in a rural area: The left side visualizes
all object hypotheses which are identified in three radar target
lists from different sensors as blue rectangles. The right side
illustrates the multi-object tracking result based on all radar
object detections, where tracks are visualized as red rectangles.

a multi-object tracking system. Although, two of three radar object detectors provide
a hypothesis with an incorrect estimate for the orientation, the single detection has
a stronger influence during the filter update, as this object hypothesis fits better
to the currently existing track. Finally, when comparing the tracking result with
the real traffic scene, it is confirmed that the LMB filter estimates all objects in the
environment correctly, both in the near range and in the far range of the radar sensors.

The second traffic scenario takes place in the middle of the campus at Ulm University.
This is an interesting scene, because objects of several classes are present, namely,
vehicles, pedestrians and even a streetcar, which is assigned to the truck category.
In the lane of the ego vehicle three vehicles are driving ahead in a row. Further, on
the tracks to the left of that road lane a streetcar is moving towards the ego vehicle.
On the right side on the sidewalk, two pedestrians are walking close to the vehicle
and in the same direction. Figure 5.2 illustrates the detection result of all radar
object detectors, together with the outcome after the fusion of all object hypotheses
processed by a multi-object tracking system. This example also demonstrates that
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Figure 5.2: Radar object tracking in an urban area: On the left side, the ob-
ject detections are shown. The radar detector recognizes objects
with different classifications, where cars are blue, trucks are cyan
and pedestrians are magenta. The tracking system combines all
detections to one result. On the right side, the tracking result is
shown as red cars, orange trucks as well as yellow pedestrians.

the LMB filter combines various radar object hypotheses from different sources into a
single tracking result. Two fundamental capabilities of an object tracking algorithm
are highlighted. Firstly, the vehicles again verify that the object tracker allows to
deal with contradictory measurement input and finds the optimal solution, which
matches the reality here as well. Secondly, the LMB tracker does not necessarily
need a hypothesis per object from each radar object detector at all times. In this
situation, the pedestrians do not generate enough radar reflections in each sensor,
so that not all radar object detection systems yield a hypothesis for both of them.
Since the LMB filter already estimates tracks for the two pedestrians from previous
time steps, just one of three possible detections may be sufficient to confirm the
presence of the pedestrian. This proves that the multi-object tracking system is able
to provide a robust and realistic estimation result that involves both an accurate
estimate for dynamic motion data and the classification information for all objects.

Last but not least, the third traffic situation impressively reveals the full potential
of environment perception with the radar setup proposed in this thesis. Due to the
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Figure 5.3: Radar object tracking at a multi-lane intersection: The left side
illustrates all and even partially contradictory object hypotheses
from the radar object detectors as blue rectangles. The right
side demonstrates the more robust multi-object tracking result
where the tracked objects which are depicted as red rectangles.

deliberately designed redundant coverage of the sensors’ FOV in the near range, it is
actually possible to track a multitude of objects in that area. In this scene, the ego
vehicle is located at the outskirts of Ulm University campus and standing at a rural
intersection. From this point of view, the crossroad consists of four lanes on the right,
where two lanes lead straight ahead and two of them turn to the left in direction of
the ego vehicle. This example refers to the same sequence from which the scene in
Figure 3.1 originates, which is used to explain the complete pipeline of radar object
detection system step by step. Since the ego vehicle is positioned directly in front of
the stop line, the three radar sensors have a direct view on the entire intersection.
This is a quite challenging scenario for environmental perception, because there
simultaneously are numerous objects in a confined space at the crossroad. Further,
all the objects are close to each other and partially obscure one another. Figure 5.3
presents the object detection result in the entire radar data and the multi-object
tracking output. In combination, at least one object hypothesis is provided by one
of the radar object detectors for each vehicle that is located in the covered area
of the respective sensors. Due to the tracking information previously accumulated,
the multi-object tracker is able to realistically represent the motion data of every
individual vehicle. The two vehicles at the bottom edge are no longer in one of the
sensor’s FOV, which is why no radar reflections are produced and therefore none of
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the object detectors can identify any hypothesis at all. However, the radar detection
systems previously recognize these objects such that the LMB filter sets up tracks
and calculates an estimate for them. This allows the tracker to continue outputting
tracks for both vehicles, where the estimation is fully based on the prediction. In
summary, this example of a real traffic situation demonstrates again how successfully
the multi-object tracking algorithm stabilizes detected hypotheses from the radar
object detection system over time. Thus, a single measurement with an incorrect
state, for example an object detection with wrong orientation, or even missing
measurements for an actually existing object do not cause any trouble for the tracker.
In summary, the multi-object tracking system processes all radar object detections
to produce an accurate and robust environment perception model at an object level.

5.2.3 Discussion

This qualitative evaluation already demonstrates the positive impact of a multi-object
tracking system when combining information from several sensors. Although, the
results of the individual radar object detection system are sometimes contradictory,
the object tracking system is able to combine them appropriately to achieve the
best possible result. Another advantage is that even if the object detectors do not
provide detections of previously tracked objects at all times, the tracking system is
still able to further estimate the object’s motion by predicting it. As soon as object
detections are available again, the prediction is corrected accordingly. Finally, the
multi-object tracker not only combines the detection results from different sources
appropriately, but also filters the motion of the objects over time, so that it yields a
smoothed trajectory for each object. In summary, an object tracking system is always
recommended for a robust and reliable perception of objects in the environment.
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Conclusion and Future Work

This final chapter of the thesis summarizes the research and findings of the disserta-
tion. The first section recaps all novel developments and their results concerning
object detection in radio detection and ranging (radar) data. Although, the new
technologies perform well, there is still potential for improvements. The second part
suggests approaches on how to enhance the radar object detection system further.

6.1 Conclusion

Environment perception is essential for automated driving functions, that means the
vehicle must recognize which objects are located in the current surroundings. Modern
high-resolution automotive radar sensors are widely installed in today’s vehicles
and are well suited to solve the object detection task. This thesis proposes a novel
technique to detect objects of various classes in sparse radar target lists produced from
that sensors. The radar object detection system consist of three main components
for classification, segmentation and bounding box estimation. The classification
module divides the entire radar target list into regions of interest and classifies these
areas, which implies that one category is assigned to each of the corresponding
sublists. The radar targets of a patch and the associated classification information
are forwarded to the segmentation. This component determines for each radar target,
whether it belongs to the object of interest or not, that means the segmentation
classifies each individual radar target. After a masking process, which removes
all radar targets that do not belong to the object, the bounding box estimation
module estimates an amodal 2D bounding box in two steps. Firstly, a Transformer
PointNet (T-Net) specifies the object’s center in the extracted radar targets and the
following transformation shifts the target list into this center. Secondly, a regression
PointNet determines the parameters for the bounding box based on the classification
information and segmented radar target list. The first unit, the patch proposal,
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generates a region of interest for each radar target, which results in various object
hypotheses. Since an object generates several radar reflections, this leads to the fact
that different bounding boxes are generated for one object in reality. For that reason,
the last unit, the object extraction, combines all recognized hypotheses and outputs
exactly one detection per object. Hence, the proposed radar object detection systems
processes a real radar target list, and therein identifies multiple object hypotheses
of actually existing objects in form of classified and orientated 2D bounding boxes.

The presented radar object detection system is evaluated exclusively on real radar
data. In total, the evaluation analyzes object detection results on three different radar
datasets, where two of them are publicly available. Another dataset is self-generated,
that means radar data is recorded and annotated accordingly. The prepared radar
target list for the so-called Radar Dataset contains high-resolution radar data from
various real traffic situations in rural as well as urban regions. In order to ensure
that the object detection results may be reproduced by anyone, further evaluations
are performed on the two public datasets, the Astyx HiRes2019 dataset and the
nuScenes dataset. The nuScenes data are even generated from the same sensors
which are used for the Radar Dataset. However, since the configuration of the used
sensors are not advantageous, the sensors provide only half as much radar targets.
The radar object detection system performs really well on all datasets which proves
that this technique is suitable for operation in real-world traffic. Eventually, the
object detector shows the best performance on radar data of the Radar Dataset.
Although, the radar target lists are sparse, the configuration of the sensors ensures
to generate enough reflections per object for an improved detection. In fact, the
proposed radar object detection system is so effective that it is successfully deployed
on a real system for real-time environment modeling while driving in road traffic.

In order to provide a robust environment perception over time, a multi-object tracking
system combines the output of three identical radar sensors, on which the presented
radar object detector is operated simultaneously. The utilized radar sensors have
an overlapping Field of View (FOV) for the most part in the near range. Still, this
does not imply that the radar detecting systems provide same detections for the
same object. In order to combine various object detections, which are sometimes
even contradictory, this thesis realizes a multi-object tracking using a Labeled Multi-
Bernoulli (LMB) filter. For this purpose, the thesis describes a measurement model
to process the outputs of all deployed radar object detection systems in parallel. The
obtained results of the multi-object tracking system demonstrates that the proposed
radar object detection system enables a recognition of objects in the surroundings
based on high-resolution radar data. The tracking algorithm not only stabilizes the
results of the radar object detectors, but ultimately, provides a reliable environment
perception at an object level. This object detection technique performs well on
high-resolution radar data from real traffic situations and is successfully integrated as
an essential part in an environment perception setup applied for automated driving.
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6.2 Future Work

Although the proposed radar object detection system produces impressive results,
it has the capability for further improvements. This section outlines two possible
enhancements to make the detection algorithm more powerful. Actually, the output
of the radar detector is one single hypothesis for each object in form of a 2D bounding
box. Such an object detection comprises an estimate for position, orientation and
extent of the object as well as a classification information. A radar target contains
a radial velocity information, which is an essential factor for the estimation of an
object hypothesis, particularly when estimating the orientation. Since an object
usually generates several radar reflections, and the radial velocities differ slightly
depending on the position, in principle it, is feasible to predict a velocity for the
object. The regression network to determine bounding box parameters is basically
suitable to generate an estimate for the velocity as well. Then, the output of the
radar object detection pipeline must be modified in such a way that a bounding box
comprises another state, specifically that of an object’s velocity. In the context of the
thesis, it is not intended to estimate a velocity for an object of interest, because the
self-generated Radar Dataset does not include any reliable values for this component.
In general, it is possible to annotate the object velocity, but this requires successive
radar target lists. Since the time intervals of labeled radar data from the three
sensors employed for the Radar Dataset are not uniform and mostly with a longer
time span, no reliable object velocities can be obtained. Even if this thesis does not
consider the object velocity, this does not imply that it is not possible to directly
estimate a velocity for an object based on radar data using the presented approach.

For object detection in radar data using the proposed technique, it is essential to
initially generate patches from the input radar target list. Next, multiple networks
identify a maximum of exactly one object, which is located in the center of a patch,
for each partial target list. Eventually, the last unit in the pipeline combines the
intermediate results from all patches into one object detection result for the complete
radar target list. This principle performs excellently and is absolutely practical
for real-world application. But, another approach is to identify regions of interest
internally using a neuronal network. That implies that the network is initially able
to find objects anywhere in the radar target list, and subsequently predicts their
classification information and bounding boxes. The Deep Hough Voting proposed
in [QLHG19] is a method for that purpose when processing 3D light detection and
ranging (lidar) data. Therefore, a VoteNet identifies the center of objects by voting
individual points of the input data. Then, a sampling process groups and aggregates
all votes to obtain clusters with potential objects. These are comparable to regions of
interest that are classified as object patches. The last module predicts the class and
the bounding box parameters for a 3D object. Similar to PointNet and PointNet++,
the methodology of VoteNet is expected to be applicable to radar targets as well.



136 Conclusion and Future Work

In conclusion, this thesis proposes a novel radar object detection system which consti-
tutes a fully functional technology for object detection in high-resolution radar data
in real-time, and that exhibits the capability for further research and development.
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ĉ predicted class for classification
Cseg set with class mapping for segmentation
o class for segmentation
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